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Preface

This volume contains the proceedings of the 16th International Symposium on
Practical Aspects of Declarative Languages (PADL 2014), held during January
20–21, 2014, in San Diego, California. PADL is an annual forum where re-
searchers and practitioners present original work emphasizing new ideas and
approaches pertaining to applications and implementation techniques of declar-
ative languages.

PADL solicits both full technical papers and shorter application papers. This
year, the Program Committee received 27 submissions (26 technical papers and
one application paper) and accepted 15 papers (including one application paper).
Each submission was reviewed by at least three Program Committee members.

The accepted papers span a range of topics related to logic and functional
programming, including language support for parallelism and GPUs, constructs
and techniques for modularity and extensibility, and applications of declarative
programming to document processing and DNA simulation. The conference pro-
gram includes invited talks by Molham Aref of LogicBlox and David Walker of
Princeton.

The symposium was sponsored by the Association of Logic Programming and
the ACM. We also thank the University of Nebraska at Omaha, the University
of Utah, and the University of Texas at Dallas for supporting the organization
of the symposium. The support of many individuals was crucial to the success
of the symposium. We thank all Program Committee members and additional
reviewers for giving constructive feedback on each paper. We thank Gopal Gupta
for coordinating the organization of the symposium. We thank David Van Horn
for the general organization and coordination with POPL. We thank Roni Myers
and Zac Fowler, from the University of Nebraska at Omaha, for maintaining the
symposium website. Last but not least, we thank the Springer staff responsible
for producing the LNCS series and the developers of EasyChair, which is a won-
derful conference management system for assisting the paper reviewing process
and preparation of symposium proceedings.

November 2013 Matthew Flatt
Hai-Feng Guo
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The Frenetic Project: Declarative Languages

for Programming Networks

David Walker

Princeton University

dpw@cs.princeton.edu

For decades, traditional network devices such as switches, firewalls, load bal-
ancers and routers have been closed, proprietary platforms controlled by the
major hardware vendors. Each device contains a combination of (1) hardware to
forward packets efficiently along chosen network paths, and (2) software to run
the distributed protocols that decide which network paths to choose. To config-
ure or specialize these devices, network operators have had to learn a myriad of
complex, vendor-specific interfaces and protocols. Moreover, there was no easy
way to change the basic distributed routing algorithms these network devices
implement.

Over the last few years, however, software-defined networking (SDN) has
taken both the academic and industrial networking communities by storm. In a
software-defined network, each switch exports a simple, standard and relatively
direct interface to its underlying hardware. These switches are organized and
managed by a separate, logically centralized controller machine or cluster of
machines. A controller runs a general-purpose computation that reacts to net-
work events such as changes in topology or traffic volume and decides how to
route packets across the network. Based on these decisions, it sends commands
to configure the switches it controls. By standardizing the hardware interface
and separating out the decision-making software, this new architecture makes it
possible to control and optimize networks in ways that were previously impossi-
ble. Google is already taking advantage of this technology to control the global
backbone network that connects its data centers together [1]. Many other net-
working companies, both large and small, have also begun to innovate in this new
space. However, despite the genesis of SDN in the networking community, many
of the key problems are actually programming problems. Hence, researchers who
understand the design of declarative programming languages have much to offer
in this important new domain.

In this talk, we will discuss the Frenetic project [2], whose goal over the last
several years has been to develop new, high-level, declarative, domain-specific
languages for programming software-defined networks. In particular, we will dis-
cuss several of the core abstractions and programming language features we have
developed, what key problems they solve, their formal semantics, and how to
compile them to the underlying switch hardware. We will also touch on the next
generation of software-defined networks and future opportunities for declarative
language design.
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The Frenetic Project is a large collaborative project centered between Cor-
nell and Princeton universities. Since it began in 2009, the project has been led
by Nate Foster, Jennifer Rexford and David Walker. We thank the wonderful
contributions to the project made by Carolyn Jane Anderson, Shrutarshi Basu,
Rebecca Coombes, Michael Freedman, Arjun Guha, Steven Gutz, Rob Harrison,
Jean-Baptiste Jeannin, Nanxi Kang, Naga Praveen Katta, Dexter Kozen, Zhen-
ming Liu, Matthew Meola, Matthew Milano, Christopher Monsanto, Nayden
Nedev, Josh Reich, Mark Reitblatt, Cole Schlesinger, Emin Gün Sirer, Robert
Soulé, Alec Story, Laure Thompson, and Todd Warszawski.

Acknowledgement. This work is supported in part by the NSF under grants CNS-
1111520, SHF-1016937 and a Google Research Award. Any opinions, findings,
and recommendations are those of the author and do not necessarily reflect the
views of the NSF or Google.
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Declarative Programming for the Cloud

Molham Aref

LogicBlox
molham.aref@logicblox.com

Abstract. I will present the LogicBlox database and describe business
applications that use it. The LogicBlox database marries declarative pro-
gramming (logic-based specifications) with cloud deployment over large
datasets. The database is programmed with a variant of the Datalog pro-
gramming language. The flexibility of declarative programming allows
us to integrate both traditional business application development and
“probabilistic” applications: machine-learning or search-based solutions,
as required by the domain. Our approach aims to eliminate the distance
between prototyping and deployed, high-performance implementations.
I will discuss real customer applications and actual deployment instances
that elastically adapt to several thousands of machines.
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�CML: A Prescription for Safely Relaxing Synchrony

K.C. Sivaramakrishnan1, Lukasz Ziarek2, and Suresh Jagannathan1

1 Purdue University
{chandras,suresh}@cs.purdue.edu

2 SUNY Buffalo
lziarek@buffalo.edu

Abstract. A functional programming discipline, combined with abstractions like
Concurrent ML (CML)’s first-class synchronous events, offers an attractive pro-
gramming model for concurrency. In high-latency distributed environments, like
the cloud, however, the high communication latencies incurred by synchronous
communication can compromise performance. While switching to an explicitly
asynchronous communication model may reclaim some of these costs, program
structure and understanding also becomes more complex. To ease the challenge
of migrating concurrent applications to distributed cloud environments, we have
built an extension of the MultiMLton compiler and runtime that implements CML
communication asynchronously, but guarantees that the resulting execution is
faithful to the synchronous semantics of CML. We formalize the conditions under
which this equivalence holds, and present an implementation that builds a decen-
tralized dependence graph whose structure can be used to check the integrity of an
execution with respect to this equivalence. We integrate a notion of speculation
to allow ill-formed executions to be rolled-back and re-executed, replacing of-
fending asynchronous actions with safe synchronous ones. Several realistic case
studies deployed on the Amazon EC2 cloud infrastructure demonstrate the utility
of our approach.

Keywords: Message-passing, Speculative Execution, Axiomatic Semantics,
Cloud Computing.

1 Introduction

Concurrent ML [18] (CML) provides an expressive concurrency mechanism through
its use of first-class composable synchronous events. When synchronized, events al-
low threads to communicate data via message-passing over first-class channels. Syn-
chronous communication simplifies program reasoning because every communication
action is also a synchronization point; thus, the continuation of a message-send is guar-
anteed that the data being sent has been successfully transmitted to a receiver. The cost
of synchrony comes at a high price in performance, however; recent proposals there-
fore suggest the use of asynchronous variants of CML’s synchronous events [28] to
overcome this cost. While asynchronous extensions can be used to gain performance,
they sacrifice the simplicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new additions to CML’s core set
of event combinators is to give the underlying runtime the freedom to allow a sender

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 1–16, 2014.
© Springer International Publishing Switzerland 2014



2 K.C. Sivaramakrishnan, L. Ziarek, and S. Jagannathan

to communicate data asynchronously. In this way, the cost of synchronous communi-
cation can be masked by allowing the sender’s continuation to begin execution even
if a matching receiver is not yet available. Because asynchrony is introduced only by
the runtime, applications do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish to have the runtime
enforce the equivalence: [[ send (c, v)]]k ≡ [[ asend (c, v)]]k where k is a continuation,
send is CML’s synchronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does not synchronize with
matching receiver.

Motivation. To motivate the utility of safe relaxation of synchronous behavior, con-
sider the problem of building a distributed chat application. The application consists of
a number of participants, each of whom can broadcast a message to every other mem-
ber in the group. The invariant that must be observed is that any two messages sent by
a participant must appear in the same order to all members. Moreover, any message
Y broadcast in response to a previously received message X must always appear af-
ter message X to every member. Here, message Y is said to be causally dependent on
message X .

datatype ’a bchan = BCHAN of (’a chan list (* val*) * unit chan list (* ack*))

(* Create a new broadcast channel *)
fun newBChan (n: int) (* n = number of participants *) =

BCHAN(tabulate (n,fn _ => channel ()), tabulate (n,fn _ => channel ()))

(* Broadcast send operation *)
fun bsend (BCHAN (vcList, acList), v: ’a, id: int) : unit =
let

val _ = map (fn vc => if (vc = nth (vcList, id)) then () else send (vc, v))
vcList (* phase 1 -- Value distribution *)

val _ = map (fn ac => if (ac = nth (acList, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments *)

in ()
end

(* Broadcast receive operation *)
fun brecv (BCHAN (vcList, acList), id: int) : ’a=
let val v = recv (nth (vcList , id))

val _ = send (nth (acList , id), ())
in v
end

Fig. 1. Synchronous broadcast channel

Building such an application using a centralized server is straightforward, but hin-
ders scalability. In the absence of central mediation, a causal broadcast protocol [2] is
required. One possible encoding of causal broadcast using CML primitives is shown
in Figure 1. A broadcast operation involves two phases. In the first phase, values (i.e.,
messages) are synchronously communicated to all receivers (except to the sender). In
the second phase, the sender simulates a barrier by synchronously receiving acknowl-
edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the ac-
knowledgment phase occurs only after message distribution ensure that no member
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can proceed immediately after receiving a message until all other members have also
received the message. This achieves the desired causal ordering between broadcast
messages since every member would have received a message before the subsequent
causally ordered message is generated. We can build a distributed group chat server
using the broadcast channel as shown below.

(* bc is broadcast chan , daemon is spawn as a separate thread *)
fun daemon id = display (brecv (bc, id)); daemon id
fun newMessage (m, id) = display m; bsend (bc, m, id)

Assume that there are n participants in the group, each with a unique identifier id
between 0 and n − 1. Each participant runs a local daemon thread that waits for in-
coming messages on the broadcast channel bc . On a reception of a message, the dae-
mon displays the message and continues waiting. The clients broadcast a message using
newMessage after displaying the message locally. Observe that remote messages are only
displayed after all other participants have also received the message. In a geo-distributed
environment, where the communication latency is very high, this protocol results in a
poor user experience that degrades as the number of participants increases.

Without making wholesale (ideally, zero!) changes to this relatively simple protocol
implementation, we would like to improve responsiveness, while preserving correct-
ness. One obvious way of reducing latency overheads is to convert the synchronous
sends in bsend to an asynchronous variant that buffers the message, but does not syn-
chronize with a matching receiver. There are two opportunities where asynchrony could
be introduced, either during value distribution or during acknowledgment reception.
Unfortunately, injecting asynchrony at either point is not guaranteed to preserve causal
ordering on the semantics of the program.

Consider the case where the value is distributed asynchronously. Assume that there
are three participants: p1, p2, and p3. Participant p1 first types message X , which is
seen by p2, who in turn types the message Y after sending an acknowledgment. Since
there is a causal order between the message X and Y, p3 must see X followed by Y. The
key observation is that, due to asynchrony, message X sent by the p1 to p3 might be
in-flight, while the causally dependent message Y sent by p2 reaches p3 out-of-order.
This leads to a violation of the protocol’s invariants. Similarly, it is easy to see that
sending acknowledgments message asynchronously is also incorrect. This would allow
a participant that receives a message to asynchronously send an acknowledgment, and
proceed before all other participants have received the same message. As a result, causal
dependence between messages is lost.

To quantify these issues in a realistic setting, we implemented a group chat simulator
application using a distributed extension of the MultiMLton Standard ML compiler. We
launched three Amazon EC2 instances, each simulating a participant in the group chat
application, with the same communication pattern described in the discussion above. In
order to capture the geo-distributed nature of the application, participants were placed
in three different availability zones – EU West (Ireland), US West (Oregon), and Asia
Pacific (Tokyo), resp.

During each run, p1 broadcasts a message X , followed by p2 broadcasting Y . We
consider the run to be successful if the participant p3 sees the messages X , Y , in that
order. The experiment was repeated for 1K iterations. We record the time between
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protocol initiation and the time at which each participant gets the message Y . We con-
sider the largest of the times across the participants to be the running time. The results
are presented below.

Execution Avg.time (ms) Errors
Sync 1540 0
Unsafe Async 520 7
Safe Async (�CML) 533 0

The Unsafe Async row describes the vari-
ant where both value and acknowledgment
distribution is performed asynchronously; it
is three times as fast as the synchronous vari-
ant. However, over the total set of 1K runs, it
produced seven erroneous executions. The Safe Async row illustrates our implemen-
tation, �CML, that detects erroneous executions on-the-fly and remediates them. The re-
sults indicate that the cost of ensuring safe asynchronous executions is quite low for this
application, incurring only roughly 2.5% overhead above the unsafe version. Thus, in
this application, we can gain the performance benefits and responsiveness of the asyn-
chronous version, while retaining the simplicity of reasoning about program behavior
synchronously.

Contributions. The formalization of well-formed executions, those that are the result
of asynchronous evaluation of CML send operations, but which nonetheless are ob-
servably equivalent to a synchronous execution, and the means by which erroneous
executions can be detected and repaired, form the focus of this paper. Specifically, we
make the following contributions:

– We present the rationale for a relaxed execution model for CML that specifies
the conditions under which a synchronous operation can be safely executed asyn-
chronously. Our model allows applications to program with the simplicity and com-
posability of CML synchronous events, but reap the performance benefits of imple-
menting communication asynchronously.

– We develop an axiomatic formulation of the relaxed execution model which is used
to reason about correctness in terms of causal dependencies captured by a happens-
before relation (§ 2).

– A distributed implementation, �CML, that treats asynchronous communication as
a form of speculation is described. A mis-speculation, namely the execution that
could not have been realized using only synchronous communication, is detected
using a runtime instantiation of our axiomatic formulation. An un-coordinated, dis-
tributed checkpointing mechanism is utilized to rollback and re-execute the offend-
ing execution synchronously, which is known to be safe (§ 3).

– Several case studies on a realistic cloud deployment demonstrate the utility of the
model in improving the performance of CML programs in distributed environments
without requiring any restructuring of application logic to deal with asynchrony
(§ 4).

2 Axiomatic Semantics

We introduce an axiomatic formalization for reasoning about the relaxed behaviors of a
concurrent message-passing programs with dynamic thread creation. Not surprisingly,
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our formulation is similar in structure to axiomatic formalizations used to describe, for
example, relaxed memory models [7, 19, 21].

An axiomatic execution is captured by a set of actions performed by each thread and
the relationship between them. These actions abstract the relevant behaviors possible
in a CML execution, relaxed or otherwise. Relation between the actions as a result of
sequential execution, communication, thread creation and thread joins define the de-
pendencies that any sensible execution must respect. A relaxed execution, as a result
of speculation, admits more behaviors than observable under synchronous CML execu-
tion. Therefore, to understand the validity of executions, we define a well-formedness
condition that imposes additional constraints on executions to ensure their observable
effects correspond to correct CML behavior.

We assume a set of T threads, C channels, and V values. The set of actions is pro-
vided below. Superscripts m and n denote a unique identifier for the action.

Actions A := bt (t starts) | et (t ends)
| jmt t′ (t detects t’ has terminated) | fm

t t′ (t forks a new t’)
| smt c, v (t sends value v on c) | rmt c (t receives a value v on c)
| pmt v (t outputs an observable value v)

c ∈ C (Channels) t, t′ ∈ T (Threads) v ∈ V (Values) m,n ∈ N (Numbers)

Action bt signals the initiation of a new thread with identifier t; action et indicates
that thread t has terminated. A join action, jmt t′, defines an action that recognizes the
point where thread t detects that another thread t′ has completed. A thread creation
action, where thread t spawns a thread t′, is given by fm

t t′. Action smt c, v denotes the
communication of data v on channel c by thread t, and rmt c denotes the receipt of data
from channel c. An external action (e.g., printing) that emits value v is denoted as pmt v.
We can generalize these individuals actions into a family of related actions:

Ar = {rmt c | t ∈ T} (Receives) As = {smt c, v | t ∈ T, v ∈ V} (Sends)
Ac = As ∪ Ar (Communication) Ao = {pmt v | t ∈ T, v ∈ V} (Observables)

Notation. We write T (α) to indicate the thread in which action α occurs, and write
V (smt c, v) to extract the value v communicated by a send action. Given a set of actions
A ∈ 2A, Ax = A ∩ Ax, where Ax represents one of the action classes defined above.

Definition 1 (Axiomatic Execution). An axiomatic execution is defined by the tuple
E := 〈P,A,→po,→co〉 where:

– P is a program.
– A is a set of actions.
– →po ⊆ A × A is the program order, a disjoint union of the sequential actions of

each thread (which is a total order).
– →co ⊆ (As × Ar) ∪ (Ar × As) is the communication order which is a symmetric

relation established between matching communication actions (i.e., α →co β =⇒
β →co α). Moreover, a send and its matching receive must operate over the same
channel (i.e., smt c, v →co r

n
t′c

′ =⇒ c = c′).
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Additionally, there is an obvious ordering on thread creation and execution, as well
as the visibility of thread termination by other threads:

Definition 2 (Thread Dependence). If α = fm
t t′ and β = bt′ or α = et and β = jmt′ t

then α →td β holds.

Definition 3 (Happens-before relation). The happens-before order of an execution
is the transitive closure of the union of program order, thread dependence order, and
actions related by communication and program order:

→hb = (→po ∪ →td ∪
{(α, β) | α →co α′ ∧ α′ →po β} ∪
{(β, α) | β →po α′ ∧ α′ →co α})+

For any two actions α, β ∈ A, if α �hb β, then α and β are said to be concurrent
actions. Importantly, our happens-before relation defines a preorder. A preorder is a
reflexive transitive binary relation. Unlike partial orders, preorders are not necessarily
anti-symmetric, i.e. they may contain cycles.

Definition 4 (Happens-before Cycle). A cycle exists in a happens-before relation if
for any two actions α, β and α →hb β →hb α.

(* current thread is t1 *)
val t2 = spawn (fn () =>

recv c2;
print "2";
recv c1)

val t3 = spawn (fn () =>
send(c2,v2);
print "3";
recv c2)

val _ = send(c1,v1)
val _ = print "1"
val _ = send(c2,v2)

(a) A CML program
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(b) Well-formed execution
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(c) Ill-formed execution

Fig. 2. A CML program and its potential axiomatic executions

We provide an example to illustrate these definitions and to gain an insight into erro-
neous executions that manifest as a result of speculative communication. Consider the
example presented in Figure 2 which shows a simple CML program and two possible
executions. The execution in Figure 2b imposes no causal dependence between the ob-
servable actions (i.e., print statements) in t2 or t3; thus, an interleaving derived from this
execution may permute the order in which these statements execute. All interleavings
derivable from this execution correspond to valid CML behavior.

In contrast, the execution depicted in Figure 2c, exhibits a happens-before cycle be-
tween t1 and t2, through a combination of program and communication order edges.
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Such cyclic dependences never manifest in any correct CML execution. Cyclic depen-
dences may however manifest when synchronous sends are speculatively discharged
asynchronously. We must therefore strengthen our notion of correct executions to dis-
card those that contain such cycles.

To do so, we first note that the semantics as currently presented is concerned only
with actions that introduce some form of causal dependence either within a thread (via
program order) or across threads (via thread dependence or communication order).
However, a real program also does computation, and reasoning about an execution’s
correctness will require us to specify these actions as well. To facilitate this reasoning,
we abstract the intra-thread semantics, and parameterize our definition of an axiomatic
execution accordingly.

Intra-thread semantics. The intra-thread semantics is abstracted in our formulation
via a labeled transition system. Let Stateintra denote the intra-thread state of a thread; its
specific structure is not interesting for the purposes of the axiomatic definition1. A la-
beled transition between intra-thread states is captured by the relation,

.
−�⊆ Stateintra×

Labelintra × Stateintra, given to each thread t ∈ T. The transition labels are in the set
Labelintra = (A \ Ar) ∪ (Ar × V) ∪ {τ}. Thus, a thread can either take a global action
step (e.g., creating another thread, performing a send action, ending a thread, etc.), exe-
cute a silent thread-local computation (denoted by label τ ), or execute a receive action
that receives the value associated with the label. The requirements on the intra-thread
semantics are:

–
.
−� can only relate states belonging to the same thread.

– there is an initial state READY: no transition leads to it, and a thread t steps from it
if and only if it emits a begin action bt.

– there is a final state DONE: a thread leads to it if and only if it emits an end action
et and no transition leads from it.

Definition 5 (Intra-trace). Let tr = α be a sequence of actions in set A, and →co be
a communication order on A. Given a thread t ∈ T in a program P, tr is a valid intra-
trace for t if there exists a set of states {δ0, δ1, . . .}, and a set of labels l = {l0, l1, . . .}
such that:

– for all αi ∈ α, T (a) = t
– δ0 is the initial state READY

– for all 0 ≤ i, δi
li−� δi+1

– the projection β of l to non-silent labels is such that βi = (αi, V (γi)) if αi ∈ Ar

and αi →co γi, or βi = αi otherwise.

We write InTrP[t] set of such pairs (tr,→co) for P.

Definition 6 (Well-formed Execution). An execution E := 〈P,A,→po,→co〉 is well-
formed if the following conditions hold:

1 The concrete instantiation of the intra-thread state, and an operational semantics for the lan-
guage are given in a technical report, available from:
http://multimlton.cs.purdue.edu/mML/rx-cml.html

http://multimlton.cs.purdue.edu/mML/rx-cml.html
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1. Intra-thread consistency: for all threads t ∈ T, ([→po]t,→co) ∈ InTrP[t]
2. Happens-before correctness: The happens-before relation →hb constructed from E

has no cycles.
3. Observable correctness: Given α ∈ Ao and β ∈ Ac if β →hb α then there exists

β′ ∈ Ac s.t. β →co β′.

For an axiomatic execution E := 〈P,A,→po,→co〉 to be well-formed, the actions,
program order and communication order relations must have been obtained from a valid
execution of the program P as given by the intra-thread semantics defined above (1). As
we noted in our discussion of Figure 2, no valid execution of a CML program may in-
volve a cyclic dependence between actions; such dependencies can only occur because
of speculatively performing what is presumed to be a synchronous send operation (2).

Finally, although the relaxed execution might speculate, i.e., have a send operation
transparently execute asynchronously, the observable behavior of such an execution
should mirror some valid non-speculative execution, i.e., an execution in which the
send action was, in fact, performed synchronously. We limit the scope of speculative
actions by requiring that they complete (i.e., have a matching recipient) before an ob-
servable action is performed (3). Conversely, this allows communication actions not
preceding an observable action to be speculated upon. Concretely, a send not preceding
an externally visible action can be discharged asynchronously. The match and validity
of the send needs to be checked only before discharging the next such action. This is
the key idea behind our speculative execution framework.

Safety. An axiomatic execution represents a set of interleavings, each interleaving
defining a specific total order that is consistent with the partial order defined by the exe-
cution2. The well-formedness conditions of an axiomatic execution implies that any ob-
servable behavior of an interleaving induced from it must correspond to a synchronous
CML execution. The following two definitions formalize this intuition.

Definition 7 (Observable dependencies). In a well-formed axiomatic execution E :=
〈P,A,→po,→co〉, the observable dependencies Aod is the set of actions that precedes
(under →hb) some observable action, i.e., Aod = {α | α ∈ A, β ∈ Ao, α →hb β}.

Definition 8 (CML Execution). Given a well-formed axiomatic execution E := 〈P,A,
→po,→co〉, the pair (E,→to) is said to be in CML(P) if →to is a total order on Aod

and →to is consistent with →hb.

In the above definition, an interleaving represented by →to is only possible since
the axiomatic execution is well-formed, and thereby does not contain a happens-before
cycle.

Lemma 1. If a total order →to is consistent with →hb, then →hb does not contain a
cycle involving actions in Aod.

Next, we show that a well-formed axiomatic execution respects the safety property
of non-speculative execution of a CML program. When a CML program evaluates non-
speculatively, a thread performing a communication action is blocked until a matching

2 Two ordering relations P and Q are said to be consistent if ∀x, y,¬(xPy ∧ yQx).
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communication action is available. Hence, if (〈P,A,→po,→co〉,→to) ∈ CML(P), and
a communication action α on a thread t is followed by an action β on the same thread,
then it must be the case that there is a matching action α →co α′ that happened before
β in →to. This is captured in the following theorem.

Theorem 1. Given a CML execution (E,→to) ∈ CML(P), ∀α, β such that α ∈ Ac,
T (α) = T (β), α →to β, there exists an action α →co α′ such that α′ →to β.

Proof. LetE := 〈P,A,→po,→co〉. First, we show thatα′ ∈ A. Sinceα →to β,α ∈ Aod,
by Definition 8. By Definition 7, there exists some γ ∈ Ao such thatα →hb γ. Since E is
well-formed and α →hb γ, by Definition 6, there exists an α′ ∈ A such that α →co α′.

Next, we show that α′ ∈ Aod. By Definition 3, α′ →co α →hb γ implies α′ →hb γ.
Hence, α′ ∈ Aod, and is related by →to. Finally, since T (α) = T (β) and α →to β,
α →po β. And, α′ →co α →po β implies α′ →hb β. By Lemma 1 and Definition 8,
α′ →to β.

3 Implementation

The axiomatic semantics provides a declarative way of reasoning about correct CML
executions. In particular, a well-formed execution does not have a happens-before cycle.
However, in practice, a speculative execution framework that discharges synchronous
sends asynchronously (speculatively), needs to track the relations necessary to perform
the integrity check on-the-fly, detect and remediate any execution that has a happens-
before cycle.

To do so, we construct a dependence graph that captures the dependencies described
by an axiomatic execution, and ensure the graph has no cycles. If a cycle is detected,
we rollback the effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation. By definition, this synchronous re-execution is
bound to be correct. The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the MultiMLton SML compiler
and runtime [15]. We have extended MultiMLton with the infrastructure necessary for
distributed execution.

3.1 System Architecture

An �CML application consists of multiple instances, each of which runs the same Mul-
tiMLton executable. These instances might run on the same node, on different nodes
within the same datacenter, or on nodes found in different data centers. Each instance
has a scheduler which preemptively multiplexes execution of user-level CML threads
over multiple cores. We use the ZeroMQ messaging library [26] as the transport layer
over which the �CML channel communication is implemented. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also provides the ability
to construct higher-level multicast patterns. In particular, we leverage ZeroMQ’s pub-
lish/subscribe support to implement CML’s first-class channel based communication.

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

http://multimlton.cs.purdue.edu/mML/rx-cml.html


10 K.C. Sivaramakrishnan, L. Ziarek, and S. Jagannathan

The fact that every instance in an �CML application runs the same program, in addi-
tion to the property that CML channels are strongly-typed, allows us to provide typesafe
serialization of immutable values as well as function closures. Serializing mutable ref-
erences is disallowed, and an exception is raised if the value being serialized refers to
a mutable object. To safely refer to the same channel object across multiple instances,
channel creation is parameterized with an identity string. Channels created with the
same identity string refer to the same channel object across all instances in the �CML

application. Channels are first-class citizens and can be sent as messages over other
channels to construct complex communication protocols.

3.2 Communication Manager

Each �CML instance runs a single communication manager thread, which maintains
globally consistent replica of the CML channels utilized by its constituent CML threads.
The protocol for a single CML communication is illustrated in Figure 3. Since CML
channel might potentially be shared among multiple threads across different instances,
communication matches are determined dynamically. In general, it is not possible to
determine the matching thread and its instance while initiating the communication ac-
tion. Hence, whenever a thread intends to send or receive a value on the channel, its
intention (along with a value in the case of a send operation), is broadcast to every other
�CML instance. Importantly, the application thread performing the send does not block
and speculatively continues execution.

send (c,v)

recv (c)join

Instance 1 Instance 2 Instance 3

broadcast
match

c [v] c [v]

c [v]c [ ]

c [v]

c [ ]

broadcast 
send

c [ ]c [ ] c [ ]

Fig. 3. Communication manager be-
havior during a send and its matching
receive

Subsequently, an application thread that per-
forms a receive on this channel consumes the send
action, sends a join message to the sender thread’s
instance, and proceeds immediately. In particu-
lar, receiver thread does not block to determine
if the send action was concurrently consumed by
a thread in another instance. This corresponds to
speculating on the communication match, which
will succeed in the absence of concurrent receives
for the same send action. On receiving the join
message, a match message is broadcast to every
instance, sealing the match. Those instances that
speculatively matched with the send, except the
one indicated in the match message, treat their re-
ceive action as a mis-speculation. Other instances that have not matched with this par-
ticular send remove the send action from the corresponding local channel replica.

3.3 Speculative Execution

Aborting a mis-speculation requires restoring the computation to a previously known
consistent state. Achieving this entails rolling back all threads that communicated with
the offending action, transitively. In this regard, stabilizers [27] provide a suitable ab-
straction for restoring consistent checkpoints in message-passing programs. A stabi-
lizer builds a dependence graph that takes into account intra-thread program order and
inter-thread communication dependence. However, the implementation reported in [27]
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assumes a centralized structure, and a global barrier that stops all execution while a
checkpoint is restored; neither condition is reasonable in a high-latency, distributed
environment.

Replicated Dependence Graph. Instead, �CML exploits the broadcast nature of the
match message (Section 3.2) to incrementally construct a globally-consistent replica of
the dependence graph at every instance. The nodes in the dependence graph correspond
to the actions in the axiomatic definition. Thread spawn and join actions are broadcast
to allow other instances to add necessary nodes and edges. Maintaining a replica of the
dependence graph at each replica allows ill-formed executions to be detected locally
and remediated.

Well-Formedness Check. To ensure observable behavior of an �CML program to its
synchronous equivalent, the compiler automatically inserts a well-formedness check be-
fore observable actions in the program. �CML treats system calls, access to mutable refer-
ences, and foreign function calls as observable actions. On reaching a well-formedness
check, a cycle-detector is invoked which checks for cycles in the dependence graph
leading up to this point. If the execution is well-formed (no cycles in the dependence
graph), then the observable action is performed. Since there is no need to check for well-
formedness of this fragment again, the verified dependence graph fragment is garbage
collected on all instances.

Checkpoint. After a well-formedness check, the state of the current thread is consistent.
Hence, right before the next (speculative) communication action, we checkpoint the cur-
rent thread by saving its current continuation. This ensures that the observable actions
performed after the well-formedness check are not re-executed if the thread happens to
rollback. In addition, this checkpointing scheme allows multiple observable actions to
be performed between a well-formedness check and the subsequent checkpoint. Unlike
Stabilizers [27], every thread in an �CML application has exactly one saved checkpoint
continuation during the execution. Moreover, �CML checkpointing is un-coordinated [10],
and does not require that all the threads that transitively interacted capture their check-
point together, which would be unreasonable in geo-distributed application.

Remediation. If the well-formedness check does report a cycle, then all threads that
have transitively observed the mis-speculation are rolled back. The protocol roughly
follows the same structure described in [27], but is asynchronous and does not involve a
global barrier. The recovery process is a combination of checkpoint (saved continuation)
and log-based (dependence graph) rollback and recovery [10]. Every mis-speculated
thread is eventually restored to a consistent state by replacing its current continuation
with its saved continuation, which was captured in a consistent state.

Recall that �CML automatically captures a checkpoint, and only stores a single check-
point per thread. As a result, rolling back to a checkpoint might entail re-executing, in
addition to mis-speculated communication actions, correct speculative communications
as well (i.e., communication actions that are not reachable from a cycle in the depen-
dence graph). Thus, after the saved continuation is restored, correct speculative actions
are replayed from the dependence graph, while mis-speculations are discharged non-
speculatively (i.e., synchronously). This strategy ensures progress. Finally, we leverage
ZeroMQ’s guarantee on FIFO ordered delivery of messages to ensure that messages
in-flight during the remediation process are properly accounted for.
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3.4 Handling Full CML

Our discussion so far has been limited to primitive send and recv operations. �CML

also supports base events, wrap, guard, and choice combinators. The wrap and guard

combinators construct a complex event from a simpler event by suffixing and prefix-
ing computations, resp. Evaluation of such a complex event is effectively the same as
performing a sequence of actions encapsulated by the event. From the perspective of rea-
soning about well-formed executions, wrap and guard are purely syntactic additions.

Choices are more intriguing. The choose combinator operates over a list of events,
which when discharged, non-deterministically picks one of the enabled events. If none
of the choices are already enabled, one could imagine speculatively discharging ev-
ery event in a choice, picking one of the enabled events, terminating other events and
rolling back the appropriate threads. However, in practice, such a solution would lead to
large number of mis-speculations. Hence, �CML discharges choices non-speculatively.
In order to avoid spurious invocations, negative acknowledgment events (withNack)
are enabled only after the selection to which they belong is part of a successful well-
formedness check.

3.5 Extensions

Our presentation so far has been restricted to speculating only on synchronous sends.
Speculation on receives is, in general, not possible since the continuation might depend
on the value received. However, if the receive is on a unit channel, speculation has a
sensible interpretation. The well-formedness check only needs to ensure that the receive
action has been paired up, along with the usual well-formedness checks. Speculating
on these kinds of receive actions, which essentially serve as synchronization barriers,
is useful, especially during a broadcast operation of the kind described in Figure 1 for
receiving acknowledgments.

4 Case Studies

4.1 Online Transaction Processing

Our first case study considers a CML implementation of an online transaction pro-
cessing (OLTP) system. Resources are modeled as actors that communicate to clients
via message-passing, each protected by a lock server. A transaction can span multiple
resources, and is implemented pessimistically. Hence, a transaction must hold all rele-
vant locks before starting its computation. We can use our relaxed execution semantics
to allow transactions to effectively execute optimistically, identifying and remediating
conflicting transactions post facto; the key idea is to model conflicting transactions as
an ill-formed execution. We implement each lock server as a single CML thread, whose
kernel is:

fun lockServer (lockChan : unit chan) (unlockChan: unit chan) =
(recv lockChan ; recv unlockChan; lockServer lockChan unlockChan)

which protects a single resource by ensuring atomic access. It is up to the application
to ensure that the lock servers are correctly used, and when obtaining multiple locks,
locks are sorted to avoid deadlocks.
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In the absence of contention, the involvement of the lock server adds unnecessary
overhead. By communicating with lockChan asynchronously, we can allow the client
(the thread performing the transaction), to concurrently proceed with obtaining other
locks or executing the transaction. However, the transactional guarantees are lost in
this case. Under �CML such serializability violation shows up as a cycle in the happens-
before dependence graph. �CML rejects such executions, causing the transaction to abort,
and re-execute non-speculatively.

For our evaluation, we implemented a distributed version of this program ( vacation )
taken from the STAMP benchmark suite [4]. To adapt the benchmark for a distributed
environment, we partitioned resources into 16 shards, each protected by a lock server.
The workload was setup for moderate contention, and each transaction involves 10
operations. The shards were spread across 16 EC2 M1 large instances within the same
EC2 availability zone. The clients were instantiated from all of the different regions
on M1 small instances to simulate the latencies involved in a real web-application. A
benchmark run involved 10K transactions, spread equally across all of the available
clients. Each benchmark run was repeated 5 times.
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Fig. 4. Performance comparison
on distributed vacation (OLTP)
benchmark. Lower is better.

The performance results are presented in the Fig-
ure 4. The number of clients concurrently issuing
transaction requests was increased from 1 to 48.
�CML is the speculative version, while Sync is the
synchronous, non-speculative variant. The 1-client
Sync version took 1220 seconds to complete. For
comparison, we extended the original C version
with a similar shared distribution structure. This
run was 1.3× faster than the CML baseline. The
benchmark execution under �CML scales much bet-
ter than the Sync version due to optimistic transac-
tions. With 48 clients, �CML version was 5.8× faster
than then Sync version. Under �CML, the number of transaction conflicts does increase
with the number of clients. With 48 clients, 9% of the transactions executed under
�CML were tagged as conflicting and re-executed non-speculatively. This does not, how-
ever, adversely affect scalability.

4.2 Collaborative Editing
Our next case study is a real-time, decentralized collaborative editing tool. Typically,
commercial offerings such as Google Docs, EtherPad, etc., utilize a centralized server
to coordinate between the authors. Not only does the server eventually become a bot-
tleneck, but service providers also need to store a copy of the document, along with
other personal information, which is undesirable. We consider a fully decentralized
solution, in which authors work on a local copy of the shared document for responsive-
ness, with remote updates merged incrementally. Although replicas are allowed to di-
verge, they are expected to converge eventually. This convergence is achieved through
operational transformation [22]. Dealing with operational transformation in the ab-
sence of a centralized server is tricky [16], and commercial collaborative editing ser-
vices like Google Wave impose additional restrictions with respect to the frequency of
remote updates [24] in order to build a tractable implementation.
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We simplify the design by performing causal atomic broadcast when sending up-
dates to the replicas. Causal atomic broadcast ensures that the updates are applied on
all replicas in the same global order, providing a semblance of a single centralized
server. Implemented naı̈vely, i.e., performing the broadcast synchronously, however, is
an expensive operation, requiring coordination among all replicas for every broadcast
operation compromising responsiveness. Our relaxed execution model overcomes this
inefficiency. The key advantage of our system is that the causal atomic broadcast is
performed speculatively, allowing client threads to remain responsive.

We use a collaborative editing benchmark generator described in [14] to generate
a random trace of operations, based on parameters such as trace length, percentage of
insertions, deletions, number of replicas, local operation delay, etc. Our benchmarking
trace contains 30K operations, 85%(15%) of which are insertions(deletions), and 20%
of which are concurrent operations. We insert a 25 ms delay between two consecutive
local operations to simulate user-interaction. Updates from each replica is causal atomi-
cally broadcasted every 250 ms. Each replica is represented by a �CML instance placed in
widely distributed Amazon EC2 availability zones chosen to capture the geo-distributed
nature of collaborative editing. The average inter-instance latency was 173 ms, with a
standard deviation of 71.5. Results are reported as the average of five runs.

2 3 4 5 6
# Authors

0

1

2

3

4

5

6

7

T
im

e
 (

X
 1

0
0

0
 S

e
cs

) Rx

Sync

Fig. 5. Performance comparison on
collaborative editing benchmark.
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We consider the time taken by a collaborative
editing session to be the time between the first
operation generation and the completion of the
last broadcast operation, at which point the doc-
uments at every replica would have converged.
Figure 5 shows results with respect to total run-
ning time. Sync represents an ordinary CML
execution, while �CML represents our new im-
plementation. With 2-authors, �CML version took
485 seconds to complete, and was 37% faster
than the synchronous version. As we increase
the number of concurrent authors, the number of
communication actions per broadcast operation
increases. Hence, we expect the benchmark run to
take longer to complete. The non-speculative version scales poorly due to the increas-
ing number of synchronizations involved in the broadcast operations. Indeed, Sync is
7.6× slower than �CML when there are six concurrent authors. Not surprisingly, �CML

also takes longer to complete a run as we increase the number of concurrent authors.
This is because of increasing communication actions per broadcast as well as increase
in mis-speculations. However, with six authors, it only takes 1.67× longer to complete
the session when compared to having just two authors, and illustrates the utility of spec-
ulative communication.

5 Related Work

Causal-ordering of messages is considered an important building block [2] for dis-
tributed applications. Similar to our formulation, Charron-Bost et al. [5] develop an ax-
iomatic formulation for causal-ordered communication primitives, although their
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focus is on characterizing communication behavior and verifying communication proto-
cols, rather than latency hiding. Speculative execution has been shown to be beneficial
in other circumstances under high latency environments such as distributed file sys-
tems [17], asynchronous virtual machine replication [6], state machine replication [25],
deadlock detection [13] etc., although we are unaware of other attempts to use it for
transparently converting synchronous operations to asynchronous ones.

Besides Erlang [1], there are also several distributed implementations of functional
languages that have been proposed [23, 20]. More recently, Cloud Haskell [11] has been
proposed for developing distributed Haskell programs. While all these systems deal
with issues such as type-safe serialization and fault tolerance central to any distributed
language, �CML’s focus is on enforcing equivalence between synchronous and asyn-
chronous evaluation. The formalization used to establish this equivalence is inspired by
work in language and hardware memory models [21, 7, 3]. These efforts, however, are
primarily concerned with visibility of shared-memory updates, rather than correctness
of relaxed message-passing behavior. Thus, while language memory models [3, 7] are
useful in reasoning about compiler optimizations, our relaxed communication model
reasons about safe asynchronous manifestations of synchronous protocols.

Transactional events(TE) [8, 9] combine first-class synchronous events with an
all-or-nothing semantics. They are strictly more expressive than CML, although such
expressivity comes at the price of an expensive runtime search procedure to find a satis-
fiable schedule. Communicating memory transactions (CMT) [12] also uses speculation
to allow asynchronous message-passing communication between shared-memory trans-
actions, although CMT does not enforce any equivalence with a synchronous execution.
Instead, mis-speculations only arise because of a serializability violation on memory.

6 Conclusions and Future Work
CML provides a simple, expressive, and composable set of synchronous event combi-
nators that facilitate concurrent programming, albeit at the price of performance, espe-
cially in high-latency environments. This paper shows how to regain this performance by
transparently implementing synchronous operations asynchronously, effectively treating
them as speculative actions. We formalize the conditions under which such a transfor-
mation is sound, and describe a distributed implementation of CML called �CML that in-
corporates these ideas. Our reported case studies illustrate the benefits of our approach,
and provide evidence that �CML is a basis upon which we can build clean, robust, and
efficient distributed CML programs. An important area of future work is the integration
of fault tolerance into the system. Note that the state of a failed instance can be recovered
from the dependence graph (which includes all saved continuations), enabling the use of
checkpoint restoration and replay as a feasible response mechanism to node failures.
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Abstract. Strong type systems can be used to increase the reliability
and performance of programs. In combination with type inference the
overhead for the programmer can be kept small. Nevertheless, explicit
type signatures often remain needed or useful. In languages with standard
Hindley-Milner-based type systems, programmers have a binary choice
between omitting the type signature (and rely on type inference) or ex-
plicitly providing the type entirely; there are no intermediate options.
Proposals for partial type signatures exist, but none support features
like local constraints and GHC’s non-generalisation of local bindings.
Therefore we propose and motivate a practical form of partial type sig-
natures for present-day Haskell. We formally describe our proposal as an
extension of the OutsideIn(X) system and prove some of its properties.
We have developed a (not yet complete) implementation for the GHC
Haskell compiler. Our design fits naturally in both the OutsideIn(X)
formalism and the compiler.

Keywords: Haskell, Hindley-Milner type inference, (partial) type sig-
natures, wildcards.

1 Introduction

Static type checking can help catch errors at compile-time and provide useful
information for compiler optimisations. Through the use of type inference, pro-
grammers are not required to provide explicit type signatures for all values in
a program. Nevertheless, explicit signatures can still be needed or useful: type
signatures provide a form of machine-checked documentation, they can be used
to make general inferred types more specific, and help to verify whether the
program corresponds to the programmer’s intentions.

Haskell’s overloaded math operators exemplify the need for type signatures:

let harmonic x y = 2
1
x+ 1

y

in print (harmonic 3 2)

Under Haskell’s defaulting rule1, x and y are interpreted as floating point num-
bers leading to the inexact output 2.4000000000000004. The exact output 12

5

1 Haskell lets programmers manually specify to which type the ambiguous type vari-
ables satisfying the Num class should resolve.
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is produced with the signature harmonic :: Rational → Rational → Rational .
Without defaulting, an ambiguous type variable would make a type signature
mandatory.

Additionally, type inference is fundamentally limited. It is impossible to infer
types for all programs that are typeable in more complex type systems. Consider
the following Haskell program:

foo x = (x [True,False ], x [’a’, ’b’])

test = foo reverse

This program is rejected by Haskell’s type checker, because of the Damas-Milner
rule that a lambda-bound argument (like x) must have a monomorphic type. x
could be assigned the type [Bool ] → [Bool ], or [Char ] → [Char ], but not
∀a.[a ] → [a ], see e.g. [9]. With a correct signature, the program is accepted:

foo :: (∀a.[a ] → [a ]) → ([Bool ], [Char ])
foo x = (x [True,False ], x [’a’, ’b’])

Haskell, like many other programming languages provides a binary, all-or-
nothing choice when it comes to type signatures: either the programmer writes
the whole signature or none at all. Nevertheless, in many of the situations where
type signatures are needed or useful, it suffices to pin down certain parts of the
type. Providing the full type is unneeded and sometimes tedious or distracting.
For example, when types are intended to document the code or to make its
inferred type more specific, this is often only needed for one argument of a
function or for the monad in which a computation runs, but not its result type.
For example, only the type of foo’s argument cannot be inferred, but its result
type can. In cases where we want or need to specify only a part of a type, it can
be beneficial to not specify the rest. That remainder can be boilerplate, tedious
or obscure the intention of the type signature. Not providing this information
can save the programmer some thought and work, especially if the uninteresting
bits of the type are unknown or prone to frequent change during development.

For such cases, partial type signatures can specify a type only partially and
leave the rest for the type inferencer to decide. For foo, we could use:

foo :: (∀a.[a ] → [a ]) →
foo x = (x [True,False ], x [’a’, ’b’])

This partial signature specifies that foo is a function and defines the polymorphic
type of foo’s first argument. The result type is unspecified, as indicated by a
type wildcard (written ). Similarly, for the harmonic example, it would suffice
to write the shorter signature harmonic :: Rational → .

At this point, we should mention some partial workarounds for the lack of
partial signatures in Haskell. foo could for example use a pattern type signature:

foo (x :: ∀a.[a ] → [a ]) = ...

Expression type signatures similarly provide a partial solution. Another way
to simulate partial type signatures uses a helper function, isTypeFor , which
forces its second argument to have the same type as the first. Combined with an
explicitly typed dummy value, we could write for example foo as follows:
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isTypeFor :: a → a → a
‘isTypeFor ‘ x = x

foo = (⊥ :: (∀a.[a ] → [a ]) → b) ‘isTypeFor ‘
(λx → (x [True,False ], x [’a’, ’b’]))

The type variable b acts as a type wildcard and will be instantiated to the result
type. A downside is that foo’s implementation is obscured with computationally
insignificant code. A combinator library supports this technique [2]. Kiselyov
also proposes a trick using fake clauses to partially annotate constraints [5]:

addOrd ::Ord x ⇒ x → a
addOrd = ⊥
foo2 x | False = addOrd x
foo2 x = x

The first clause of foo2 is never executed but it does make the type inferencer
produce an additional constraint Ord x , leading to the type Ord a ⇒ a → a
instead of a → a. Not every partial signature can be emulated though: we do
not see a way to forbid the inference of additional constraints and there may be
other limitations w.r.t. our work as well.

These workarounds are generally poorly legible, cumbersome to use (e.g. re-
quiring lambda functions instead of left-hand-side patterns) and limited (e.g.
only a lower bound on type constraints). Their existence does prove the need for
actual partial type signatures.

We propose and study a form of partial type signatures in the context of
a language with HM-based type inference. Our partial type signatures extend
normal signatures with type wildcards ( ). During type inference, such wildcards
can be instantiated to arbitrary types, e.g. the type → can be instantiated
to Int → (Bool → Int) or (Int → Bool ) → String . They map nicely to the
unification variables used internally by most type inferencers.

In the context of HM-based type inference, we take care to properly interact
with the type generalisation that is performed to achieve let-polymorphism. If
(part of) the type instantiating a wildcard is not restricted by type inference, a
HM-style type inferencer will quantify over it. Consider the following program:

bar :: →
bar = True

From the return value True, the type checker learns that the second wildcard
in the partial signature of bar must be instantiated to Bool . However, the first
wildcard remains open. In this case, type generalisation will infer bar ’s principal
type ∀a.a → Bool , as when the type signature is omitted entirely.

A second, related challenge is dealing with constraints, for example type class
constraints (e.g. ∀a.Num a ⇒ a) and equality constraints (e.g. (Fun1 a ∼ (b →
b)) ⇒ a → b) supported by GHC. Our partial signatures allow the inference
of additional constraints if and only if the type contains an extra-constraints
wildcard, written as an underscore just before the double arrow: ⇒ a → b. For
example, the signature → b (without an extra-constraints wildcard) forbids
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types with additional constraints like Num b ⇒ Int → b. That type can be
allowed explicitly with the signature ⇒ → b. Only one extra-constraints
wildcard can be present and allows any number of constraints to be added.

In a GHC ticket discussion, Peyton Jones has argued the usefulness of an
extra-constraints wildcard based on the following example [12]. By placing a
wildcard, the programmer tells the type checker to infer the context for him.

f :: ⇒ [a ] → String -- Inferred constraints: (Num a, Show a)
f xs = show (sum xs)

We also allow multiple references to a wildcard within a signature using named
wildcards (written as a). They can be used to shorten tedious type signatures:

isMeltdown :: NukeMonad param1 param2 Bool
unlessMeltdown :: nm () → nm ()
unlessMeltdown c = do m ← isMeltdown

if m then return () else c

To make our proposal precise, we give a formal account based on Vytiniotis
et al.’s OutsideIn(X) formalism [13]. We define natural and algorithmic typing
rules and prove their correspondence. Additionally, we prove that our new rules
generalise the old ones for signatures without wildcards and that a partial signa-
ture f :: ⇒ has the same effect as no signature at all. Such correspondences
are important for consistency and to align with users’ expectations.

We have an implementation of our proposal in the Glasgow Haskell Compiler,
but it is not yet complete at the time of writing. Our current version correctly
unifies wildcards and named wildcards with concrete types, but unifying with
open types, generalisation, and the extra-constraints wildcard are not yet work-
ing as we intend. We hope to finish our modifications in the coming months.

Contributions The idea of partial type signatures is not novel. Several languages
support them in some form or other [7,6,10] and they have been proposed for
Haskell several times before [14,15]. Dijkstra [4] and Sulzmann andWazny [11,16]
have detailed proposals for Haskell-like languages. Still, we believe that ours is
the first rigorous formalisation of partial type signatures for a HM-style inference
that supports all the features of present-day Haskell. Specifically, we support lo-
cal constraints (that arise e.g. from pattern matching on GADTs) and align with
GHC’s non-generalisation of local bindings. More specifically, our contributions
are the following:

– A formalised proposal for partial type signatures, including generalisation,
in a Hindley-Milner-style type inference system. Our work plugs into the
constraint-based type inference approach OutsideIn(X) [13], currently em-
ployed by the de facto standard Haskell compiler GHC.

– We align our partial type signatures with the OutsideIn(X) policy that let
should not be generalised.

– We formally show that the new typing rules generalise the existing rules for
signatures without wildcards and for omitted signatures.

– A (not yet complete) implementation in the GHC Haskell compiler.
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Term variables ∈ x, y, z, f, g, h
Type variables ∈ a, b, c
Named wildcards ∈ a , b , c
Data constructors ∈ K

ν ::= K | x
Programs prog ::= ε | f = e, prog |

f :: σ = e, prog
Expressions e ::= ν | λx . e | e1 e2 |

case e of {K x → e}
Type schemes σ ::= ∀a .Q ⇒ τ
Type schemes with wildcards σ ::= ∀a . Q ⇒ τ

Constraints Q ::= ε | Q1 ∧Q2 | τ1 ∼ τ2 | D τ | . . .
Constraints with wildcards Qw ::= Q | Qw

1
∧Qw

2
| τ 1 ∼ τ2 | D τ | . . .

Constraints with extra con-
straints wildcard

Q ::= Qw | Qw ∧ _

Monotypes τ, υ ::= tv | Int | Bool | [τ ] | T τ | . . .
Monotypes with wildcards τ , υ ::= τ | | a | [τ ] | T τ
Type environments Γ ::= ε | (ν :σ),Γ
Free type variables ftv(·)
Top-level axiom schemes Q ::= ε | Q ∧ Q | ∀a .Q ⇒ Q
Unification variables ∈ α, β, γ, ω ,. . .
Unifiers θ, ϕ ::= [α �→ τ ]
Unification or rigid (skolem)
variables

tv ::= α | a

Algorithm-generated constraints C ::= Q | C1∧C2 | ∃α . (Q⊃C)
Free unification variables fuv(·)
Named wildcards nwc(·)

Fig. 1. Wildcard syntax extension of [13, Fig. 1, page 12] and [13, Fig. 5, page 17]

Outline In Sect. 2, we describe our additional syntax, both informally and for-
mally. Formal rules for handling wildcard syntax are listed in Sect. 3. We extend
OutsideIn(X) typing rules to support wildcards in Sect. 4. Local bindings with
partial type signatures are described in Sect. 5. We prove the correspondence
of our rules to the standard ones for the uninformative signature ⇒ and
for signatures without wildcards in Sect. 6. We discuss our implementation in
Sect. 7, related work in Sect. 8 and conclude in Sect. 9. Proofs of our results can
be found in an extended version of this paper [17].

2 Wildcard Syntax

In the introduction we already gave an informal account of the wildcard syntax
we support. We quickly reiterate and formalise the syntax of wildcards as an
extension of the syntax in OutsideIn(X) [13]. Figure 1 contains the formal
definitions with additions and changes highlighted in grey.
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First of all, type wildcards can take the place of monotypes, e.g. f :: → .
For type inference, they are translated to unification variables (see Sect. 3.2). By
convention, we write unification variables that arise from wildcards as ω1, ω2, · · · .

A wildcard in a constraint is called a constraint wildcard, e.g. Eq ⇒ a. A
wildcard occurring as a constraint is an extra-constraints wildcard, e.g. ⇒ a.
When it is present, any number of constraints may be added to the type during
inference. Because one extra-constraints wildcard can be instantiated to any
number of constraints, more than one such wildcard would be pointless. For
clarity, we allow only one and require that it comes last in the list of constraints.

Additionally, we support named wildcards, e.g. a → a. All instances of a
named wildcard within a partial type signature must unify with the same type.
Named wildcards are particularly useful to express constraints on wildcard types,
e.g. Eq a ⇒ a or ( a ∼ b) ⇒ a → [b ]. Although syntactically similar,
named wildcards should not be confused with type variables: they can unify with
concrete types. Only when not unified with concrete types, they are generalised
over and behave like type variables.

In Fig. 1 we provide variants of type schemes (σ), constraints (Q), and mono-
types (τ) that can contain wildcards, respectively σ, Q, and τ . A distinction be-
tween constraints with wildcards (Qw) and constraints with [an] extra-constraints
wildcard (Q) is made to enforce that the extra-constraints wildcard can occur
at most once and must come last.

3 Wildcard Instantiation and Desugaring

Before we introduce the adapted typing rules, we formalise the relation between
wildcards and types. To this end, we define two judgments: the wildcard instan-
tiation judgment and the wildcard desugaring judgment. They are employed in
Sect. 4 by the natural and algorithmic typing rules respectively and the latter
should be understood as algorithmic variants of the former.

3.1 Wildcard Instantiation

The wildcard instantiation judgment Q ; τ ➾ Q ; τ can be read as “The wildcards
in constraints Q and monotype τ can be instantiated to obtain constraints Q
and monotype τ”. Each wildcard in Q and τ corresponds to a concrete type
or a type variable in Q and τ . Remember that Q and τ can contain wildcards,
whereas Q and τ cannot. This judgment will be used by the adapted typing rules
to instantiate a partial type signature to a type signature without wildcards.

The rules of the judgment are shown in Fig. 2. The rule NamedWc requires
monotypes υ that are substituted by the named wildcards in Q and τ . We
then delegate to two subjudgments that instantiate the unnamed wildcards in
respectively Qw and τ . The rule ExtraWc states that an extra-constraints
wildcard can be instantiated to an arbitrary conjunction of constraints Qres,
which can consist of zero or more constraints. Remember that Q can contain an
extra-constraints wildcard and Qw cannot.
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Q ; τ ➾ Q ; τ

_a = nwc(τ) ∪ nwc(Qw) [_a �→ υ]Qw ➾c Q [_a �→ υ]τ ➾t τ

Qw ; τ ➾ Q ; τ
NamedWc

Qw ; τ ➾ Q ; τ

Qw ∧ _ ; τ ➾ Q ∧ Qres ; τ
ExtraWc

τ ➾
t τ

_ ➾t τ
TyWc

τ ➾t τ
TyNoWc

∀i . τ i ➾t τi

T τ i ➾t T τ i

TyApp

Qw
➾

c Q

Q ➾c Q
ConNoWc

Qw

1
➾c Q1 Qw

2
➾c Q2

Qw

1
∧Qw

2
➾c Q1 ∧Q2

ConConj

∀i . τ i ➾t τi

D τ i ➾c D τ i
ConTc

τ1 ➾t τ1 τ 2 ➾t τ2

τ 1 ∼ τ2 ➾c τ1 ∼ τ2
ConEq

Fig. 2. Natural wildcard instantiation judgment rules

The first subjudgment τ ➾t τ instantiates wildcards in a monotype to concrete
types or type variables. The rule TyWc states that a type wildcard can be
instantiated to any monotype τ . A monotype without wildcards is instantiated to
itself (TyNoWc) and there is a congruence rule for type constructor applications
(TyApp). Note that function types: (→), tuples: (, ), lists: [ ], . . . are all treated
as type constructor applications.

The second subjudgment Qw ➾c Q instantiates wildcards in constraints to
concrete types or type variables. Constraints without wildcards need no further
wildcard instantiation (ConNoWc). A conjunction of constraints is handled
recursively in ConConj. A type-class constraint can also contain wildcards
(ConTc), which will be instantiated using the previously described subjudg-
ment. Type wildcards in equality constraints are handled in ConEq.

3.2 Wildcard Desugaring

We also define an algorithmic variant of the wildcard instantiation judgment,
the wildcard desugaring judgment. Instead of instantiating wildcards to concrete
types or type variables as the wildcard instantiation judgment does, the wildcard
desugaring judgment replaces them by fresh unification variables in order to
participate in OutsideIn(X)’s type inference.

The wildcard desugaring judgment Q ; τ ➾a Q ; τ ; extra can be read as: re-
placing all the wildcards in Q and τ with fresh unification variables, gives us
Q, τ , and extra. This last boolean output parameter indicates whether the con-
straints contained an extra-constraints wildcard or not, e.g. the underscore in
⇒ a. If and only if extra = true, extra constraints can be generated.



24 T. Winant et al.

Q ; τ ➾a Q ; τ ; extra

_a = nwc(τ) ∪ nwc(Qw) ω fresh

[_a �→ ω]Qw ➾c
a Q [_a �→ ω]τ ➾t

a τ

Qw ; τ ➾a Q ; τ ; false
ANamedWc

Qw ; τ ➾a Q ; τ ; false

Qw ∧ _ ; τ ➾a Q ; τ ; true
AExtraWc

τ ➾
t
a τ

ω fresh

_ ➾t
a ω

ATyWc
τ ➾t

a τ
ATyNoWc

∀i . τi ➾t
a τi

T τi ➾t
a T τi

ATyApp

Qw
➾

c
a Q

Q ➾c
a Q

AConNoWc
Qw

1
➾c

a Q1 Qw

2
➾c

a Q2

Qw

1
∧ Qw

2
➾c

a Q1 ∧ Q2

AConConj

∀i . τi ➾t
a τi

D τ i ➾c
a D τ i

AConTc
τ1 ➾t

a τ1 τ2 ➾t
a τ2

τ1 ∼ τ2 ➾c
a τ1 ∼ τ2

AConTc

Fig. 3. Algorithmic wildcard desugaring judgment rules

The rules of this judgment are shown in Fig. 3. As they strongly resemble the
corresponding natural rules, we shall only highlight the differences. If Q contains
an extra-constraints wildcard, extra will be true (AExtraWc). Subsequently, or
if it did not, the named wildcards in Qw and τ are replaced with fresh unification
variables ω1, ω2, . . . (ANamedWc). Note that multiple occurrences of a named
wildcard are replaced with the same unification variable. Unnamed wildcards in
τ and Qw are desugared separately by two subjudgments τ ➾t

a τ and Qw ➾c
a Q

respectively. The only difference with the corresponding wildcard instantiation
subjudgments is that in the rule ATyWc, a wildcard is replaced with a fresh
unification variable instead of a monotype τ .

4 Typing Rules

When checking a partial type signature, the wildcards are unified with concrete
types if necessary, otherwise they are replaced with fresh universally quantified
type variables, i.e. the type is generalised. If an extra-constraints wildcard is
present, additional constraints may be generated and added to the annotated
constraints. We formalise this by adapting the OutsideIn(X) typing rules [13].

4.1 Natural Typing Rules

Figure 4 shows the three top-level natural typing rules in [13]: Empty, the base
case, Bind, for definitions without a type signature, and BindA, for definitions
with a signature. It also shows the new rule BindPA which replaces BindA.
Changes in BindPA w.r.t. BindA are greyed. The rules refer to the constraint
entailment judgment Q � Q, which should be read as: “the axioms Q imply Q”.
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Q ; Γ � prog
ftv(Γ) = fuv(Q) = ∅

Q ; Γ � ε
Empty

Q1 ; Γ � e : τ a = ftv(Q) ∪ fuv(τ ) Q ∧Q � Q1

Q ; Γ, (f :∀a .Q ⇒ τ ) � prog

Q ; Γ � f = e, prog
Bind

Q1 ; Γ � e : τ a = ftv(Q) ∪ fuv(τ ) Q∧Q � Q1

Q ; Γ, (f :∀a .Q ⇒ τ ) � prog

Q ; Γ � f::∀a .Q ⇒ τ = e,prog
BindA

Q ; τ ➾ Q ; τ Q1 ; Γ � e : τ a � b = ftv(Q) ∪ fuv(τ )

Q∧Q � Q1 Q ; Γ, (f :∀ab .Q ⇒ τ ) � prog

Q ; Γ � f::∀a . Q ⇒ τ = e, prog
BindPA

Fig. 4. Natural top-level typing rules, adapted from [13, Fig. 4, p. 15]

Compared to BindA,BindPA supports partial type signatures. It is extended
with the premise Q ; τ ➾ Q ; τ , i.e. Q and τ are instantiated to Q and τ (see
Sect. 3.1). Additional type variables that were not present in the partial type
signature but arose from the generalisation of the type, are captured in b, and
are also universally quantified over in the final type of the top-level definition.

4.2 Constraint Solver

Before discussing the new top-level algorithmic typing rules, which make use
of OutsideIn(X)’s constraint solver, we shall briefly describe the constraint
solver [13, Sect. 5.5]. The OutsideIn(X) type inference system is parameterised
by a constraint domain X. For present-day Haskell, X would be instantiated
to a constraint domain that contains type-class and equality constraints (and
Vytiniotis et al. present a concrete solver for this X [13]), but the OutsideIn(X)
typing rules and algorithms are designed to support alternative domains as well.
In this text, we keep X abstract. We will only describe the form of the constraint
solver, not the implementation, which is specific to X.

We have already seen the natural constraint entailment relation Q � Q. On
the algorithmic side, the constraint solver (Fig. 5) has the following signature.

Q ;Qgiven ;αtch ��
solv

Cwanted � Qresidual ; θ

The inputs in this signature are:
– Q: the top-level axiom scheme. In a concrete setting, it will contain e.g. class

instances or reduction rules of type functions, but we will leave it abstract.
– Qgiven: the given constraints that arise from type annotations (or pattern

matching),
– αtch : the touchable unification variables that the solver is allowed to instan-

tiate, and
– Cwanted : the constraints to be solved.
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The outputs are:

– Qresidual : residual constraints that the solver has not been able to solve, and
– θ: a substitution mapping unification variables to types, with dom(θ) ⊆ αtch .

Vytiniotis et al. keep the constraint solver abstract, but require certain prop-
erties of it. It is required to be sound and yield guess-free solutions, two formal
properties (specified in terms of the natural constraint entailment relation �)
that we do not go into further. We will however require the solver to support a
somewhat larger form of inputs. In the next section, we explain this further.

4.3 Wildcards in Constraints

We have chosen to allow both named and unnamed wildcards in constraints.
Nevertheless, it is important to point out a limitation of such wildcards in our
system. The OutsideIn(X) infrastructure will never apply unification to two
constraints. Consider the following example:

h :: Eq ⇒ a → a → Bool
h = (≡)

In this case, h’s implementation generates the wanted constraint Eq a, which
one might expect to be unified with Eq , so that the wildcard is instantiated
with type a, but this is not what happens. The OutsideIn(X) constraint solver
does not unify the given constraint Eq with the wanted constraint Eq a. In
general, it will never unify one constraint with another; the algorithm will only
instantiate wildcards a in constraints C if

– a is a named wildcard also mentioned in the non-constraint part of the
signature and it is instantiated during unification with the inferred type.

– The instantiation follows semantically from the constraint, i.e. C ⊃ a ∼ ....

In OutsideIn(X), unifying the non-constraint part of a signature with the in-
ferred type happens through the generation of equality constraints, so in this
sense the first case is comprised in the second. As a result, for h we get an error
that the constraint Eq a cannot be solved from given constraints Eq .

Nevertheless, this limitation does not mean that wildcards in constraints are
useless. Consider the following example:

f ::Monad m ⇒ m Bool

For this signature, m can either be unified with a concrete type constructor like
Maybe for which there is a Monad instance or be generalised to a universally
quantified monad m. Similarly, we can say something like:

g :: ( a, ) ∼ F b ⇒ b → a

This signature states that g is a function whose domain type is mapped by type
function F to a tuple whose first element is its range type.

Contrary to the behaviour of wildcards in the non-constraint part of a signa-
ture, some of the behaviour of wildcards in constraints we just discussed could
be unexpected by programmers. Because of this, one might consider disallowing
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Q ; Γ �� prog Q ; Γ �� ε
Empty

Γ �� e : τ � C Q ; ε ; fuv(τ ) ∪ fuv(C) ��solv C � Q ; θ a fresh
α = fuv(θτ ) ∪ fuv(Q) Q ; Γ, (f :∀a . [α �→ a](Q ⇒ θτ )) �� prog

Q ; Γ �� f = e, prog
Bind

Γ �� e : υ � C Q ;Q ; fuv(υ) ∪ fuv(C) ��solv C ∧ υ ∼ τ � ε ; θ
Q ; Γ, (f :∀a .Q ⇒ τ ) �� prog

Q ; Γ �� f::∀a .Q ⇒ τ = e, prog
BindA

Q ;Qgiven ;αtch ��solv Cwanted � Qresidual ; θ

Fig. 5. Top-level algorithmic rules, taken from [13, Fig. 12, page 39]

Γ �� e : υ � C Q ; τ ➾a Q ; τ ; extra

Q ;Q ; fuv(υ) ∪ fuv(C)∪ fuv(τ ) ∪ fuv(Q) ��solv C ∧ υ ∼ τ � Qres ; θ

extra ∨ (Qres = ε) β = fuv(θτ ) ∪ fuv(θQ ∧Qres) b fresh

Q ; Γ, (f :∀ab . [β �→ b] (θQ∧Qres ⇒ θ τ )) �� prog

Q ; Γ �� f::∀a . Q ⇒ τ = e, prog
BindPA

Fig. 6. New top-level algorithmic rule, adapted from Fig. 5

both named and unnamed type wildcards in constraints. This is a viable and
safe option, but we have currently chosen not to do so. Our impression is that
the limitations of wildcards in constraints can be explained to the user, and our
examples show that they can be useful despite the limitations.

Formally, the choice to allow wildcards in constraints implies that we have
to drop an invariant of the constraint solver. For the constraint solver, Vy-
tiniotis et al. mention two invariants that should hold: αtch#fuv(Qgiven) and
dom(θ)#fuv (Qgiven), i.e. the free unification variables in Qgiven should not be uni-
fied. In order to support wildcards in constraints, it is required to remove this
restriction. This also requires corresponding modifications in Definition 3.2 and
subsequent proofs in Vytiniotis et al.’s paper [13, p. 20]. We suspect potential
issues when the wildcards are under a GADT pattern match, but this remains
to be further investigated in future work.

4.4 Algorithmic Typing Rules

In addition to the top-level natural typing rules, we also adapt the top-level al-
gorithmic typing rules. The original top-level algorithmic typing rules are shown
in Fig. 5. As wildcards can only occur in a type signature, only the rule BindA
that handles declarations with a type annotation has to be adapted. The adapted
rule is presented in Fig. 6, with changes w.r.t. BindA highlighted in grey.
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The BindPA rule works as follows. First, the type υ of e is inferred using the
constraint generation judgment from [13] while generating the constraints C.
The wildcards in Q and τ are replaced with fresh unification variables with the
wildcard desugaring judgment we defined earlier. The extra output parameter
indicates whether we are allowed to infer extra constraints.

On the second line, the invocation of the constraint solver has been slightly
modified. The free unification variables in τ and Q, introduced during the wild-
card desugaring, are added to the set of touchable unification variables that
the constraint solver is allowed to instantiate. We also capture the residual con-
straints, which were not allowed in the previous version of the rule, in Qres. Now
they are allowed, but only if extra is true.

In the next step, we collect the remaining free unification variables in θτ and
θQ ∧ Qres. These unification variables were not instantiated to concrete types
while solving the constraints and so we generalise over them. They are replaced
with fresh, universally quantified type variables, b. The residual constraints, i.e.
the extra constraints that have not been solved by the constraint solver, are
added to the annotated constraints.

Theorem 1 (Algorithm soundness). If Q ; Γ �� prog then Q ; Γ � prog in a
closed top-level Γ.

5 Typing of Local Definitions

Advanced type system features like GADTs have a profound impact on a type
system. Crucially, the clean and simple principal typing property that the HM
system satisfies is no longer valid [13]. This makes type inference a harder prob-
lem and Vytiniotis et al. present one possible way out. They advocate the policy
that the types of local (unannotated) definitions should not be generalised, with
the slogan “Let should not be generalised”.

For partial type signatures of local definitions, we align with the policy to
not generalise local definitions. Next, we present the adapted typing rules for
local definitions, but we omit natural typing rules as the required changes are
minimal. The existing algorithmic rules and our adapted rule are shown in Fig. 7.

The rule LetA applies to definitions with an annotated monomorphic type,
GLetA for polymorphic type signatures and Let for definitions without a sig-
nature. The rule Let is remarkably simple, as it applies the NoGen policy of not
generalising the inferred type at all. Our adapted typing rule GLetPA extends
this policy to partial type signatures.

The GLetPA rule applies to local bindings with a partial type signature,
either polymorphic or monomorphic. It first desugars the partial type signature.
The extra parameter must be false, i.e. we forbid an extra-constraints wildcard,
since the NoGen policy forbids additional constraints. We verify that the type
signature was indeed partial by requiring free unification variables in the desug-
ared type and constraints. Next, the set of unification variables allowed to unify,
i.e. the touchables, is extended with those resulting from the wildcard desugar-
ing. Solving the implication constraint should unify them, fixing the definition’s
actual type. The local binding, annotated with the desugared type, is added
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Γ �� e1 : τ1 � C1 Γ, (x :τ1) �� e2 : τ2 � C2

Γ �� let x = e1 in e2 : τ2 � C1 ∧ C2
Let

Γ �� e1 : τ � C1 Γ, (x :τ1) �� e2 : τ2 � C2

Γ �� let x :: τ1 = e1 in e2 : τ2 � C1 ∧ C2 ∧ τ ∼ τ1
LetA

σ1 = ∀a .Q1 ⇒ τ1 Q1 �= ε or a �= ε Γ �� e1 : τ � C
β = (fuv(τ ) ∪ fuv(C))− fuv(Γ) C1 = ∃β . (Q1 ⊃ C ∧ τ ∼ τ1)

Γ, (x :σ1) �� e2 : τ2 � C2

Γ �� let x ::σ1 = e1 in e2 : τ2 � C1 ∧ C2
GLetA

Γ �� e : τ � C

σ1 = ∀a . Q
1
⇒ τ1 Γ �� e1 : τ � C Q

1
; τ 1 ➾a Q1 ; τ1 ; false

Q1 �= ε or a �= ε or fuv(τ1) ∪ fuv(Q1) �= ∅
β = ((fuv(τ ) ∪ fuv(C))− fuv(Γ))∪ fuv(τ1) ∪ fuv(Q1)

C1 = ∃β . (Q1 ⊃ C ∧ τ ∼ τ1) Γ, (x : ∀a .Q1 ⇒ τ1 ) �� e2 : τ2 � C2

Γ �� let x :: σ1 = e1 in e2 : τ2 � C1 ∧ C2
GLetPA

Fig. 7. Constraint generation for local let-bound definitions, taken and adapted from
[13, Fig. 13, page 40]

to the environment to type check the body e2. Following the NoGen policy, no
generalisation is performed. The example foo shows the effect of not generalising:

foo = let g :: →
g x = x
h :: Eq a ⇒ a → a → Bool
h x y = x ≡ y

in (g True, g ’v’, h True True, h ’a’ ’b’)

Instead of being quantified over, the free unification variables in the type of g
unify with the Bool type at the first call of g. Thus, g’s type is Bool → Bool . As
g is also called with a Char argument, the program will be rejected. Similarly,
the unification variable for the named wildcard a in h’s type is not generalised.
Instead, it unifies with the Bool type, producing the type Eq Bool ⇒ Bool →
Bool → Bool for h.

6 Alignment with Existing Rules

Partial type signatures are a generalisation of the binary choice between a full
signature or none at all. Using wildcards, partial type signatures can mix anno-
tated and inferred types. To demonstrate that partial type signatures truly are
a generalisation of the existing inference, we prove two properties.

First, partial type signatures are a conservative extension: the adapted typing
rules are equivalent to the original rules for signatures without wildcards.

Second, (top-level) definitions without a type signature are equivalent to defi-
nitions with the partial type signature ⇒ . More formally: the BindPA rule
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(Fig. 6) can be used to type check a definition f = e without a type signature by
treating it as if it had the partial type signature f :: ⇒ = e. The AltBind
rule provides the definitions without type signature with the equivalent partial
type signature.

Q ; Γ �� f:: _ ⇒ _ = e, prog

Q ; Γ �� f = e, prog
AltBind

Theorem 2. Given a program prog in which every definition f has either a type
signature without wildcards, i.e. f :: ∀a .Q ⇒ τ = e, or no type signature at all,
i.e. f = e. If Q ; Γ �� prog, using Bind, BindA, and Empty (Fig. 5), then
Q ; Γ �� prog, using AltBind, BindPA (Fig. 6), and Empty (Fig. 5).

These properties show that our proposal aligns well with the existing be-
haviour of type inference. This is not just theoretically important, but also shows
that our proposal is natural and unsurprising for existing users.

7 Implementation and Extensions

We have developed an implementation of our proposal in the de facto standard
Haskell compiler GHC. GHC’s inferencer is based on the OutsideIn(X) type in-
ference system. As a result, our proposal fits relatively nicely into the compiler’s
inference infrastructure. Nevertheless, GHC’s actual inferencer is (unavoidably)
more complex than Vytiniotis et al.’s elegant theory, notably when it comes to
the inference and generalisation of mutually recursive blocks and higher-rank
types. Hence, our prototype currently implements only part of our theoretical
development. More specifically, it correctly unifies wildcards and named wild-
cards with closed types, but does not yet support unifying with open types,
generalisation and extra-constraints wildcards. The prototype code is available
for download at http://github.com/mrBliss/ghc. We still intend to check and
ensure compatibility with the ScopedTypeVariables [8] and ConstraintKinds [1,18]
extensions, but we expect no major problems there.

8 Related Work

Vytiniotis et al. provide a comprehensive overview of work on constraint-based
type systems and type inference for advanced type system features that we do
not repeat here [13], except to discuss aspects related to partial type signatures.
Vytiniotis et al. claim that their presentation is the first one that deals with
local assumptions introduced by type signatures and data constructors, and
where those local assumptions may include type equalities.

The idea of partial type signatures is not new. The topic regularly comes
up on the Haskell community mailing lists. In two 2006 tickets on the Haskell
Prime wiki (where the Haskell community proposes and tracks future language
changes), Malcolm Wallace proposes a form of partial type signatures [14,15].

http://github.com/mrBliss/ghc
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His proposal seems similar to ours, but it does not contain a lot of detail. A GHC
feature request has also been logged to request a form of constraint wildcards [12].

The Agda programming language [7] has a dependent type system, which
allows terms in types and vice versa. The type system allows more powerful
type-level computations, so that type inferencing becomes harder. On the other
hand, the inferencer can sometimes infer terms as well. In Agda, any value or
type can be replaced by an underscore, in which case Agda will try to infer it.
Agda’s inference does not perform generalisation: if the type checker cannot infer
the value of such a meta-variable, it reports an error.

Our work was inspired by the partial signatures in Dijkstra and Swierstra’s
Explicit Haskell [4][3, Chapt. 10]. They also use wildcards and allow predicate
wildcards very similar to our extra-constraints wildcards. However, where we
follow Vytiniotis et al. in using a rather standard form of HM style type general-
isation, Dijkstra and Swierstra use quantifier location inference rules that differ
significantly, both for normal and partial type signatures. They argue that de-
pending on the structure of the type in which a type variable appears, it should
either be existentially or universally quantified to align with user expectations.
For example, the type a → a is interpreted as ∀a.a → a but (a → a) → Int is
interpreted as (∀a.a → a) → Int , unlike in Haskell. In a product type, the vari-
ables are quantified existentially instead of universally, e.g. (a, a) is interpreted as
∃a.(a, a) and (a, a) → Int as (∃a.(a, a)) → Int . Dijkstra and Swierstra formalise
Explicit Haskell, but do not prove results like our Theorem 1 and Theorem 2.

For the Chameleon programming language, Sulzmann and Wazny describe a
form of existential type signatures, supported in addition to standard universal
signatures [11,16]. Type variables in a universal signature f :: a → a are inter-
preted in the same way as Haskell, i.e. as f ::∀a.a → a. However, in an existential
type signature f ::: a → a (note: three colons) the variables are interpreted more
or less like our named wildcards, so that it becomes equivalent to our f :: a → a.
A mixture of existential and universal annotations is not supported, but can be
encoded by nesting existential in universal annotations.

Both FML [10] and HMF [6] combine the expressiveness of System F with
the convenience of Hindley-Milner type inference, while remaining a conserva-
tive extension of ML and HM respectively. Both solutions employ partial type
annotations to avoid the guessing of polymorphic types during type inference.
These partial type annotations are similar to the ones in the introduction, which
use the ScopedTypeVariables extension. Furthermore, they support partial type
annotations of the following form: e :: ∃α . σ, where the free variables α in σ are
locally bound. This should be read as “for some types α, the expression e has
type σ” and the α correspond to our named wildcards. The authors formalised
these partial type annotations, including generalisation, for a HM-based type
system, but without considering GADTs or local type assumptions.

9 Conclusion

Partial type signatures are a useful feature that has often been requested and
proposed for Haskell. They bridge the gap between complete type annotations
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and none at all. Our proposal pins down the precise behaviour and we formally
prove its well-behavedness. The result fits naturally in both the existing formal
description of GHC’s type inferencer (OutsideIn(X)) and the implementation.
The idea of partial type signatures is not novel, but we believe our proposal is
the first that supports all the features necessary for present-day GHC Haskell,
esp. local constraint assumptions.
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dation - Flanders (FWO), and by the Research Fund KU Leuven. Dominique
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Abstract. Program logic can often be structured using abstract compu-
tation types such as monoids, monad transformers or applicative
functors. Functional programmers use those abstractions directly while
main-stream languages often integrate concrete instances as language
features – e.g. generators in Python or asynchronous computations in
C# 5.0. The question is, is there a sweet spot between convenient, hard-
wired language features, and an inconvenient but flexible libraries?

F# computation expressions answer this question in the affirmative.
Unlike the “do” notation in Haskell, computation expressions are not tied
to a single kind of abstraction. They support a wide range of abstractions,
depending on what operations are available. F# also provides greater
syntactic flexibility leading to a more intuitive syntax, without resorting
to full macro-based meta-programming.

We present computation expressions in a principled way, developing
a type system that captures the semantics of the calculus. We demon-
strate how computation expressions structure well-known abstractions
including monoidal list comprehensions, monadic parsers, applicative
formlets and asynchronous sequences based on monad transformers.

1 Introduction

Computations with non-standard aspects like non-determinism, effects, asyn-
chronicity or their combinations can be captured using a variety of abstract
computation types. In Haskell, we write such computations using a mix of com-
binators and syntactic extensions like monad comprehensions [5] and “do” no-
tation. Languages such as Python and C# emphasize the syntax and provide
single-purpose support e.g. for asynchrony [1] and list generators.

Using such abstractions can be made simpler and more intuitive if we employ
a general syntactic machinery. F# computation expressions provide uniform
syntax that supports monoids, monads [22], monad transformers [10] and ap-
plicative functors [13]. They reuse familiar syntax including loops and exception
handling – the laws of underlying abstractions guarantee that these constructs
preserve intuition about code. At the same time, the mechanism is adaptable
and enables appropriate syntax depending on the abstraction.

Most languages, including Haskell, Scala, C#, JavaScript and Python have
multiple syntactic extensions that improve computational expressivity: queries,
iterators, comprehensions, asynchronous computations are just a few. However,

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 33–48, 2014.
© Springer International Publishing Switzerland 2014
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“syntactic budget” for such extensions is limited. Haskell already uses three no-
tations for comprehensions, monads and arrows [15]. C# and Scala have multiple
notations for queries, comprehensions, asynchronicity and iterators. The more
we get with one mechanism, the better. As we show, computation expressions
give a lot for relatively low cost – notably, without resorting to full-blown macros.

Some of the technical aspects of the feature have been described before1 [20],
but this paper is novel in that it uses more principled approach by developing a
new type system and relating the mechanism to well-known abstractions.

Practical Examples. We demonstrate the breadth of computations that can
be structured using F# computation expressions. The applications include asyn-
chronous workflows and sequences (§2.1, §2.3), list comprehensions and monadic
parsers (§2.2) and formlets for web programming (§2.4).

Abstract Computations. We show that the above examples fit well-known
types of abstract computations, including additive monads and monad trans-
formers, and we show that important syntactic equalities hold as a result (§4).

Syntax and Typing. We give typing rules that capture idiomatic uses of
computation expressions (§3.2), extend the translation to support applicative
functors (§2.4) and discuss the treatment of effects (§3.4) needed in impure
languages.

We believe that software artifacts in programming language research matter [9],
so all code can be run at: http://tryjoinads.org/computations. The syntax
for applicative functors is a reserch extension; other examples require F# 2.0.

2 Computation Expressions by Example

Computation expressions are blocks of code that represent computations with
a non-standard aspect such as laziness, asynchronicity, state or other. The code
inside the block is re-interpreted using a computation builder, which is a record
of operations that define the semantics, but also syntax available in the block.

Computation expressions mirror the standard F# syntax (let binding, loops,
exception handling), but support additonal computational constructs. For ex-
ample let! represents the computational (monadic) alternative of let binding.

We first introduce the syntax and mapping to the underlying operations in-
formally, but both are made precise later (§3). Readers unfamiliar with F# may
find additional explanation in previous publications [20]. To show the breadth
of applications, we look at five examples arising from different abstractions.

2.1 Monadic Asynchronous Workflows

Asynchronous workflows [19] allow writing non-blocking I/O using a mechanism
based on the continuation monad (with error handling etc.) The following exam-
ple compares F# code with an equivalent in C# using a single-purpose feature:

1 F# 3.0 extends the mechanism further to accomodate extensible query syntax. To
keep this paper focused, we leave analysis of these extensions to future work.

http://tryjoinads.org/computations
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let getLength url = async {
let! html = fetchAsync url
do! Async.Sleep 1000
return html.Length

}

async Task〈string〉 GetLength(string url) {
var html = await FetchAsync(url);
await Task.Delay(1000);
return html.Length;

}

Both functions return a computation that expects a continuation and then
downloads a given URL, waits one second and passes content length to the
continuation. The C# version uses the built-in await keyword to represent non-
blocking waiting. In F#, the computation is enclosed in the async {. . .} block,
where async is an identifier that refers to a library-defined computation builder.

The computation builder async is an F# object with instance members such
as async.Bind. The members determine which of the pre-defined keywords are
allowed – e.g. Bind member enables let! which represents (monadic) binding.
Bind also enables the do! e expression, which is a shortcut for let! () = e.
Finally, the return keyword is mapped to the Return operation:

async.Bind(fetchAsync(url), fun html →
async.Bind(Async.Sleep 1000, fun () →

async.Return(html.Length)))

The Bind and Return operations form a monad. As usual, Return has a type
α → Aα and the required type of Bind is Aα× (α → Aβ) → Aβ (we write α, β
for universally qualified type variables and τ as for concrete types)2.

Sequencing and Effects. Effectful expressions in F# return a value () which
is the only value of type unit. Assuming e1 has a type unit, we can sequence
expression using e1; e2. We can also write effectful if condition without the else
clause (which implicitly returns the unit value () in the false case). Both have
an equivalent computation expression syntax:

async { if delay then do! Async.Sleep(1000)
printfn "Starting..."

return! asyncFetch(url) }

If delay is true, the workflow waits one second before downloading the page
and returning it. The translation uses additional operations – Zero represents
monadic unit value, Combine corresponds to the “;” operator and Delay embeds
an effectful expression in a (delayed) computation. For monads, these can be
defined in terms of Bind and Return, but this is not the case for all computations
(e.g. monoidal computations discussed in §2.2 require different definitions).

We also use the return! keyword, which returns the result of a computation
and requires an operation ReturnFrom of type Aα → Aα. This is typically
implemented as an identity function – its main purpose is to enable the return!
keyword in the syntax, as this may not be alway desirable.

2 For the purpose of this paper, we write type application using a light notation Tτ .
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async.Combine
( ( if delay then async.Bind(Async.Sleep(1000), fun () → async.Zero())

else async.Zero() ), async.Delay(fun() →
printfn "Starting..."

async.ReturnFrom(asyncFetch(url)))))

Zero has a type unit → A unit and is inserted when a computation does not
return a value, here in both branches of if. A computation returning unit can
be composed with another using Combine which has a type A unit×Aα → Aα
and corresponds to “;”. It runs the left-hand side before returning the result of
the right-hand side. Finally, Delay, of type (unit → Aτ) → Aτ , is used to wrap
any effectful computations (like printing) in the monad to avoid performing the
effects before the first part of sequential computation is run.

2.2 Additive Parsers and List Comprehensions

Parsers or list comprehensions differ in that they may return multiple values.
Such computations can be structured using additive monads (MonadPlus in
Haskell). These abstractions can be used with F# computation expressions too.
Interestingly, they require different typing of Zero and Combine.

Monadic Parsers. For parsers, we use the same notation as previously. The
difference is that we can now use return and return! repeatedly. The following
parsers recognize one or more and zero or more repetitions of a given predicate:

let rec zeroOrMore p = parse {
return! oneOrMore p
return [ ] }

and oneOrMore p = parse {
let! x = p
let! xs = zeroOrMore p
return x :: xs }

The oneOrMore function uses just the monadic interface and so its translation
uses Bind and Return. The zeroOrMore function is more interesting – it combines
a parser that returns one or more occurrences with a parser that always succeeds
and returns an empty list. This is achieved using the Combine operation:

let rec zeroOrMore p = parse.Delay(fun () →
parse.Combine( parse.ReturnFrom(oneOrMore p),

parse.Delay(fun() → parse.Return( [ ] ) )))

Here, Combine represents the monoidal operation on parsers (either left-biassed
or non-deterministic choice) and has the type Pα×Pα → Pα. Accordingly, the
Zero operations is the unit of the monoid. It has a type unit → Pα, representing
a parser that returns no α values (rather than returning a single unit value).

For effectful sequencing of monads, it only makes sense to use unit-returning
computations in the left-hand side of Combine and as the result of Zero. How-
ever, if we have a monoidal computation, we can define Combine that combines
multiple produced values. This shows that the computation expression mecha-
nism needs certain flexibility – the translation is the same, but the typing differs.
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List Comprehensions. Although list comprehensions implement the same ab-
stract type as parsers, it is desirable to use different syntax if we want to make
the syntactic sugar comparable to built-in features in other languages. The fol-
lowing shows an F# list comprehension and a Python generator side-by-side:

seq { for n in list do
yield n
yield n ∗ 10 }

for n in list :
yield n
yield n ∗ 10

The computations iterate over a source list and produce two results for each
input. Monad comprehensions [5] allow us to write [ n ∗ 10 | n ← list ] to
multiply all elements by 10, but they are not expressive enough to capture the
duplication. Doing that requires rewriting the code using combinators.

The F# syntax works similarly to what we have seen for monads. The for
and yield constructs are translated to For and Yield operations which have the
same types as emphBind and Return, but provide backing for a different syntax
(each keyword is mapped to a specific named operation of the builder e.g. for uses
seq.For, so the members defined by seq determine which keywords are enabled):

seq.For(list, fun () →
seq.Combine(seq.Yield(n), seq.Delay(fun () → seq.Yield(n ∗ 10))) )

Combine concatenates multiple results and has the standard monoidal type
[α] × [α] → [α]. For has the type of monadic bind [α] → (α → [β]) → [β]
and Yield has a type of monadic unit α → [α]. We could have provided the Bind
and Return operations in the seq builder instead, but this leads to a less intuitive
syntax that requires users to write let! for iteration and return for yielding.

As the Python comparison shows, the flexibility of computation expressions
means that they are often close to a built-in syntax. The author of a concrete
computation (parse, seq, async, . . . ) chooses the appropriate syntax. For additive
monads, the choice can be made based on the laws that hold §4.2.

2.3 Layered Asynchronous Sequences

It is often useful to combine non-standard aspects of multiple computations. This
is captured by monad transformers [10]. Although F# does not support higher-
kinded types, monad transformers still provide a useful conceptual framework.

For example, asynchronous sequences [16] combine non-blocking asynchronous
execution with the ability to return multiple results – a file download can then
produce data in 1kB buffers as they become available. Using Async τ as the base
type, we can follow the list monad transformer [7] and define the type as:

type AsyncSeqInner τ = AsyncNil | AsyncCons of τ × Async τ
type AsyncSeq τ = Async (AsyncSeqInner τ)

When given a continuation, an asynchronous sequence calls it with either the end
of the sequence AsyncNil or with AsyncCons that carries a value together with
the tail of the asynchronous sequence. The flexibility of computation expression
makes it possible to provide an elegant syntax for writing such computations:
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let rec urlPerSecond n = asyncSeq {
do! Async.Sleep 1000
yield getUrl i
yield! iterate (i+ 1) }

let pagePerSecond urls = asyncSeq {
for url in urlPerSecond 0 do
let! html = asyncFetch url
yield url, html }

The urlPerSecond function creates an asynchronous sequence that produces one
URL per second. It uses bind (do!) of the asynchronous workflow monad to
wait one second and then composition of asynchronous sequences, together with
yield to produce the next URL. The pagePerSecond function uses for to iterate
over (bind on) an asynchronous sequence and then let! to wait for (bind on) an
asynchronous workflow. The for loop is asynchronous and lazy – it’s body is run
each time the caller asks for the next result.

Asynchronous sequences form a monad and so we could use the standard
notation for monads with just let! and return. We would then need explicit lifting
function that turns an asynchronous workflow into an asynchronous sequence
that returns a single value. However, F# computation expressions allow us to
do better. We can define both For and Bind with the following types:

asyncSeq.For : AsyncSeqα → (α → AsyncSeqβ) → AsyncSeqβ
asyncSeq.Bind : Asyncα → (α → AsyncSeqβ) → AsyncSeqβ

We omit the translation of the above example – it is a straightforward variation
on what we have seen so far. A more important point is that we use the fact
that operations of the computation builder are not restricted to a specific type
(the above Bind is not an ordinary binding making let! behave differently).

As previously, the choice of the syntax is left to the author of the compu-
tation. Asynchronous sequences are an additive monad and so we use for/yield.
Underlying asynchronous workflows are just monads, so it makes sense to add
let! that automatically lifts a workflow to an asynchronous sequence.

An important aspect of the fact that asynchronous sequences can be described
using a monad transformer is that certain laws hold. We discuss how these map
to the computation expression syntax later (§4.3).

2.4 Applicative Formlets

Applicative functors [13,11] are weaker (and thus more common) abstraction
than monads. The difference between applicative and monadic computations is
that a monadic computation can perform different effects depending on values
obtained earlier during the computation. Conversely, the effects of an applicative
computation are fully determined by its structure.

In other words, it is not possible to choose which computation to run (using
let! or do!) based on values obtained in previous let! bindings. The following
example demonstrates this using a web form abstraction called formlets [2]:

formlet { let! name = Formlet.textBox
and gender = Formlet.dropDown ["Male"; "Female"]
return name+ " "+ gender }
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The computation describes two aspects – the rendering and the processing of
entered values. The rendering phase uses the fixed structure to produce HTML
with text-box and drop-down elements. In the processing phase, the values of
name and gender are available and are used to calculate the result of the form.

The structure of the form needs to be known without having access to specific
values. The syntax uses parallel binding (let!. . . and. . . ), which binds a fixed num-
ber of independent computations. The rest of the computation cannot contain
other (applicative) bindings.

There are two equivalent definitions of applicative functors. We need two op-
erations known from the less common definition. Merge of type Fα × Fβ →
F (α × β) represents composition of the structure (without considering specific
values) and Map of type Fα× (α → β) → Fβ transforms the (pure) value. The
computation expression from the previous example is translated as follows:

formlet.Map
( formlet.Merge(Formlet.textBox,Formlet.dropDown ["Male"; "Female"]),
fun (name, gender) → name+ " "+ gender )

The computations composed using parallel binding are combined using Merge.
In formlets, this determines the structure used for HTML rendering. The rest
of the computation is turned into a pure function passed to Map. Note that the
translation allows uses beyond applicative functors. The let!. . . and. . . syntax can
also be used with monads to write zip comprehensions [5].

Applicative functors were first introduced to support applicative programming
style where monads are not needed. The idiom brackets notation [13] fits that
purpose better. We find that computation expressions provide a useful alterna-
tive for more complex code and fit better with the impure nature of F#.

3 Semantics of Computation Expressions

The F# language specification [20] documents computation expressions as a
purely syntactic mechanism. They are desugared before type-checking, which is
then performed on the translated code using standard F# typing rules. Similarly
to Haskell’s rebindable syntax, but to a greater level, this provides flexibility that
allows the users to invent previously unforseen abstractions.

The purely syntactic approach allows more experimentation, but does not
disallow erroneous uses. In this section, we present new typing rules that capture
such common uses and make the system more robust. Aside from guaranteeing
idiomatic use of computation expressions, it also enables better error messages.

3.1 Syntax

The full syntax of computation expressions is given in the language specification,
but the following lists all important constructs that we consider in this paper:

expr = . . . | expr { cexpr } (computation expression)
binds = v = expr (single binding)

| v = expr and binds (parallel binding)
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cexpr = let v = expr in cexpr (binding value)
| let! binds in cexpr (binding computation)
| for v in expr do cexpr (for loop computation)
| return expr (return value)
| return! expr (return computation)
| yield expr (yield value)
| yield! expr (yield computation)
| cexpr1; cexpr2 (compose computations)
| expr (effectful expression)

We omit do! which is easily expressed using let! To accommodate the applicative
syntax, binds is used to express one or more parallel variable bindings.

For space reasons, we also omit imperative while and exception handling con-
structs, but both of these are an important part of computation expressions.
They allow taking existing code and wrapping it in a computation block to
augment it with non-standard computational aspect.

3.2 Typing

The Figure 1 uses three judgments. Standard F# expressions are typed using
Γ � expr : τ . Computation expressions always return computation of type Mτ
and are typed using Γ �σ cexpr : Mτ . A helper judgement Γ �σ binds : MΣ
checks bindings of multiple computations and produces a variable context with
newly bound variables, wrapped in the type M of the bound computations.

The latter two are parameterized by the type of the computation expression
builder (such as seq or async). The operations supported by the builder deter-
mine which syntactic constructs are enabled. Typing rules that require a certain
operation have a side-condition on the right, which specifies the requirement.

In most of the side-conditions, the functions are universally quantified over
the type of values (written as α, β). This captures the fact that computation
should not restrict the values that users can work with. However, this is not
the case in the rules (seq) and (zero). Here, we can only require that a specific
instantiation is available – the reason is that these operations may be used in
two different ways. As discussed earlier (§2.1), for monads the result of Zero and
the first argument of Combine are restricted to M unit. They can be universally
quantified only if the computation is monoidal (§2.2).

Another notable aspect of the typing is that a single computation expression
may use multiple computation types (written M,N,L and D). In Bind and
For, the type of bound argument is M , but the resulting computation is N (we
require that bind returns the same type of computation as the one produced by
the function). This corresponds to the typing used by computations arising from
monad transformers (§2.3). Although combining multiple computation types is
not as frequent, computations often have a delayed version which we write as
D. This is an important consideration for impure langauges (§3.4).

Finally, we omitted typing for yield and yield! because it is similar to the typing
of return and return! (using Yield and YieldFrom operations, respectively).
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Γ � expr : τ and Γ �σ binds : MΣ

(run)
Γ � expr : σ Γ �σ cexpr : Mτ

Γ � expr { cexpr } : Nτ

(∀α : σ.Run : Dα → Nα
∀α : σ.Delay : (unit → Mα) → Dα)

(bind-one)
Γ � expr : Mτ

Γ �σ v = expr : M(v : τ)

(bind-par)
Γ � expr : τ Γ �σ binds : MΣ

Γ �σ v = expr and binds : M(Σ, v : τ)

(∀α, β : σ.Merge :
Mα → Mβ → M(α× β))

Γ �σ cexpr : Mτ

(let)
Γ � expr : τ1 Γ, v : τ1 �σ cexpr : Mτ2

Γ �σ let v = expr in cexpr : Mτ2

(bind)
Γ �σ binds : MΣ Γ,Σ �σ cexpr : Nτ

Γ �σ let! binds in cexpr : Nτ

(∀α, β : σ.Bind :
Mα → (α → Nβ) → Nβ)

(map)
Γ �σ binds : MΣ Γ,Σ � expr : τ

Γ �σ let! binds in return expr : Nτ

(∀α, β : σ.Map :
Mα → (α → β) → Nβ)

(for)
Γ � expr : Mτ1 Γ, v : τ1 �σ cexpr : Nτ2

Γ �σ for v in expr do cexpr : Nτ2

(∀α, β : σ.For :
Mα → (α → Nβ) → Nβ)

(return-val)
Γ � expr : τ

Γ �σ return expr : Mτ
(∀α : σ.Return : α → Mα)

(return-comp)
Γ � expr : Mτ

Γ �σ return! expr : Nτ
(∀α : σ.ReturnFrom : Mα → Nα)

(seq)
Γ �σ cexpr1 : Mτ1 Γ �σ cexpr2 : Nτ2

Γ �σ cexpr1; cexpr2 : Lτ1

(∀α : σ.Delay : (unit → Nα) → Dα
∀α : σ.Combine : Mτ1 → Dα →Lα)

(zero)
Γ � expr : unit

Γ �σ expr : Mτ
(σ.Zero : unit → Mτ)

Fig. 1. Typing rules for computation expressions

3.3 Translation

The translation is defined as a relation [[− ]]m that is parameterized by a variable
m which refers to the current instance of a computation builder. This param-
eter is used to invoke members of the builder, such as m.Return(. . .). Multiple
variable bindings are translated using 〈〈binds〉〉m and we define a helper mapping
〈binds〉 that turns bindings into a pattern that can be used to decompose a tuple
constructed by merging computations using the Merge operation.

As can be easily checked, our typing guarantees that a well-typed compu-
tation expression is always translated to a well-typed F# expression. The side-
conditions ensure that all operations are available and have an appropriate type.

Some readers have already noticed that our definition of [[− ]]m is ambiguous.
The let! binding followed by return can be translated in two different ways. We
intentionally do not specify the behaviour in this paper – the laws (§4.2) require
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expr { cexpr } = let m = expr in m.Run(m.Delay(fun () → [[ cexpr ]]m))

[[ let v = expr in cexpr ]]m = let v = expr in [[ cexpr ]]m
[[ let! binds in cexpr ]]m = m.Bind(〈〈binds〉〉m, fun 〈binds〉 → [[ cexpr ]]m)

[[ let! binds in returnexpr ]]m = m.Map(〈〈binds〉〉m, fun 〈binds〉 → expr)

[[ for v in expr do cexpr ]]m = m.For(expr , fun () → [[ cexpr ]]m)

[[ return expr ]]m = m.Return(expr)

[[ return! expr ]]m = m.ReturnFrom(expr)

[[ cexpr1; cexpr2 ]]m = m.Combine([[ cexpr1 ]]m, m.Delay(fun () → [[ cexpr2 ]]m))

[[ expr ]]m = expr ; m.Zero()

〈〈v = expr〉〉m = expr

〈〈v = expr and binds〉〉m = m.Merge(expr , [[ binds ]]m)

〈v = expr〉 = v

〈v = expr and binds〉 = v, 〈binds〉

Fig. 2. Translation rules for computation expressions

the two translations to be equivalent. For monads, this equivalence is easy to see
by considering the definition of Map in terms of Bind and Return.

In earlier discussion, we omitted the Run and Delay members in the transla-
tion of expr { cexpr }. The next section discusses these two in more details.

3.4 Delayed Computations

We already mentioned that side-effects are an important consideration when
adding sequencing to monadic comptuations (§2.1). In effectful languages, it
becomes apparent that we need to distinguish between two types of monads.

We use the term monadic computation for monads that represent a delayed
computation such as asynchronous workflows or lazy lists; the term monadic
containers will be used for monads that represent a wrapped non-delayed value
(such as the option type, non-lazy list or the identity monad).

Monadic Computations. The defining feature of monadic computations is
that they permit a Delay operation of type (unit → Mα) → Mα that does
not perform the effects associated with the function argument. For example, in
asynchronous workflows, the operation builds a computation that waits for a
continuation – and so the effects are only run when the continuation is provided.

Before going further, we revist the translation of asynchronous workflows using
the full set of rules to show how Run and Delay are used. Consider the the
following simple computation with a corresponding translation:

let answer = async {
printfn "Welcome..."

return 42 }

let answer = async.Run(async.Delay(fun () →
printfn "Welcome..."

async.Return(42) ))

For monadic computations such as asynchronous workflows, we do not expect
that defining answer will print “Welcome”. This is achieved by the wrapping the
specified computation in the translation rule for the expr { cexpr } expression.
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In this case, the result of Delay is a computation A int that encapsulates the
delayed effect. For monadic computations, Run is a simple identity (of type
Mα → Mα). Contrary to what the name suggests, it does not run the computa-
tion (that might be an interesting use beyond standard abstract computations).
The need for Run becomes obvious when we look at monadic containers.

Monadic Containers. For monadic containers, it is impossible to define a De-
lay operation that does not perform the (untracked) side-effects and has a type
(unit → Mα) → Mα, because the resulting type has no way of capturing uneval-
uated code. However, the (seq) typing rule in Figure 1 permits an alternative
typing. Consider the following example using the Maybe (option) monad:

maybe { if b = 0 then return! None
printfn "Calculating..."

return a / b }

Using the same translation rules, Run, Delay and Delay are inserted as follows:

maybe.Run(maybe.Delay(fun () → maybe.Combine
( (if b = 0 then maybe.ReturnFrom(None) else maybe.Zero()),
maybe.Delay(fun () → printfn "Calculating..."

maybe.Return(a / b)) ) ))

The key idea is that we can use two different types – Mα for varlues representing
(evaluated) monadic containers and unit → Mα for delayed computations. The
operations then have the following types:

Delay : (unit → Mα) → (unit → Mα)
Run : (unit → Mα) → Mα
Combine : M unit → (unit → Mα) → Mα

Here, the Delay operation becomes just an identity that returns the function
created by the translation. In the translation, the result of Delay can be passed
either to Run or as the second argument of Delay, so these need to be changed
accordingly. The Run function now becomes important as it turns the delayed
function into a value of the expected type Mα (by applying it).

Unified Treatment of Effects. In the typing rules (§3.2), we did not explicitly
list the two options, because they can be generalized. We require that the re-
sult of Delay is some (possibly different) abstract type Dα representing delayed
computations. For monadic computations, the type is just Mα and for monadic
containers, it is unit → Mα. Our typing is even more flexible, as it allows usage
of multiple different computation types – but treatment of effects is one example
where this additional flexibility is necessary.

Finally, it should be noted that we use a slight simplification. The actual F#
implementation does not strictly require Run and Delay in the translation of
expr { cexpr }. They are only used if they are present.
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4 Computation Expression Laws

Although computation expressions are not tied to any specific abstract compu-
tation type, we showed that they are usually used with well-known abstractions.
This means three good things. First, we get better understanding of what com-
putations can be encoded (and how). Second, we can add a more precise typing
§3.2. Third, we know that certain syntactic transformations (refactorings) pre-
serve the meaning of computation. This section looks at the last point.

To keep the presentation in this section focused, we assume that there are no
untracked side-effects (such as I/O) and we ignore Run and Delay.

4.1 Monoid and Semigroup Laws

We start from the simplest structures. A semigroup (S, ◦) consists of a set S and
a binary operation ◦ such that a ◦ (b ◦ c) = (a ◦ b) ◦ c. A computation expression
corresponding to a semigroup defines only Combine (of type Mα×Mα → Mα).
To allow appropriate syntax, we also add YieldFrom which is just the identity
function (with a type Mα → Mα). The associativity implies the following syn-
tactic equivalence (we use m as a placeholder for concrete computation builder):

m { cexpr1; cexpr2; cexpr3 } ≡ m { yield! m {cexpr1; cexpr2 }; cexpr3 }

A monoid (S, ◦, ε) is a semigroup (S, ◦) with an identity element ε meaning that
for all values a ∈ S it holds that ε ◦ a = a = a ◦ ε. The identity element can be
added to computation builder as the Zero member. This operation is used when
a computation uses conditional without else branch. Thus we get:

m { if false then cexpr1
cexpr2 } ≡ m { cexpr2 } ≡ m { cexpr2

if false then cexpr1 }

Although these are simple laws, they can be used to reason about list comprehen-
sions. The associativity means that we can move a sub-expression of computation
expression (that uses yield! repeatedly) into a separate computation. To use the
identity law, consider a recursive function that generates numbers up to 100:

let rec range n = seq {
yield n
if n < 100 then yield! range (n+ 1) }

The law guarantees that for n = 100, the body equals seq { yield 100 }. This is
an expected property of the if construct – the law guarantees that it holds even
for if that is reinterpreted by some (monoidal) computation expression.

4.2 Monad and Additive Monad Laws

Monad laws are well-understood and the corresponding equivalent computation
expressions do not significantly differ from the laws about Haskell’s do notation:

m { let! y = m { return x } in cexpr } ≡ m { let y = x in cexpr }
m { let! x = c in return x} ≡ m { return! c}
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m { let! x = m { let! y = c in cexpr1 } in cexpr2 } ≡
≡ m { let! y = c in let! x = m { cexpr1 } in cexpr2 }

Resolving ambiguity. When discussing the translation rules (§3.3), we noted
that the rules are ambiguous when both Map and Bind operations are present.
The following can be translated both monadically and using the Map operation:

m { let! x = c in return expr }

The two translations are shown below. Assuming that our computation is a
monad, this is a well-known definition of Map in terms of Bind and Return:

m.Map(x, fun x → expr) ≡ m.Bind(x, fun x → m.Return(expr))

More generally, if a computation builder defines both Map and Bind (even if
they are not based on a monad), we require this equation to guarantee that the
two possible translations produce equivalent computations.

Additive Monads. Additive monads are computations that combine monad
with the monoidal structure. As shown earlier (§2.2), these can be embedded
using let!/return or using for/yield. The choice can be made based on the laws
that hold.

The laws required for additive monads is not fully resolved [8]. A frequently
advocated law is left distributivity – binding on the result of a monoidal operation
is equivalent to binding on two computations and then combining the results:

m.For(m.Combine(a, b), f) ≡ m.Combine(m.For(a, f),m.For(b, f))

We intentionally use the For operation (corresponding to the for keyword), be-
cause this leads to the following intuitive syntactic equality:

m { for x in m { cexpr1; cexpr2 } do
cexpr }

≡ m { for x in m { cexpr1 } do cexpr
for x in m { cexpr2 } do cexpr }

If we read the code as an imperative looping construct (without the computa-
tional reinterpretation), then this is, indeed, a valid law about for loops.

Another law that is sometimes required about additive monads is left catch.
It states that combining a computation that immediately returns a value with
any other computation results in a computation that just returns the value:

m.Combine(m.Return(v), a) ≡ m.Return(v)

This time, we intentionally used the Return member instead of Yield, because
the law corresponds to the following syntactic equivalence:

m { return v; cexpr } ≡ m { return v }

The fact that left catch corresponds to an intuitive syntactic equality about
let!/return while left distributivity corresponds to an intuitive syntactic equality
about for/yield determines the appropriate syntax. The former can be used for
list comprehensions (and other collections), while the latter is suitable e.g. for
the option monad or the software transactional memory monad [6].
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4.3 Monad Transformers

There are multiple ways of composing or layering monads [10,12]. Monad trans-
formers are perhaps the most widely known technique. A monad transformer is
a type constructor T m together with a Lift operation. For some monad M the
operation has a type M α → T M α and it turns a computation in the underlying
monad into a computation in the transformed monad.

The result of monad transformer is also a monad. This means that we can
use the usual syntactic sugar for monads, such as the do notation in Haskell.
However, a more specific notation can use the additional Lift operation.

We looked at computation expression for a composed monad when discussing
asynchronous sequences (§2.3). An asynchronous sequence AsyncSeqα is a com-
putation obtained by applying the list monad transformer [7] to the monad
Asyncα. Asynchronous sequences are additive monads satisfying the left dis-
tributivity law, so we choose the for/yield syntax for working with the composed
computation. We also provided additional Bind to support awaiting a single
asynchronous workflow using let! This operation is defined in terms of Lift of
the monad transformer and For (monadic bind) of the composed computation:

asyncSeq.Bind(a, f) = asyncSeq.For(asyncSeq.Lift(a), f)

There are two laws that hold about monad transforers. To simplify the presen-
tation, we use asynchronous workflows and sequences rather than showing the
generalised version. The first law states that composing Return of asynchronous
workflows with Lift should be equivalent to the Yield of asynchronous sequences.
The other states that Lift distributes over monadic bind.

Our syntax always combines Lift with For, so the following syntactic equiva-
lences also require right identity for monads and function extensionality:

asyncSeq { let! x = async { return v } in return x } ≡ asyncSeq { return v }

asyncSeq { let! x = async { let! y = c in cexpr 1 } in cexpr2 } ≡
≡ asyncSeq { let! y = c in let! x = async { cexpr1 } in cexpr2 }

The first equation returns v without any asynchronous waiting in both cases
(although, in presence of side-effects, this is made more complicated by cancel-
lation). The second equation is more subtle. The left-hand side awaits a single
asynchronous workflow that first awaits c and then does more work. The right-
hand side awaits c lifted to an asynchronous sequence and then awaits the rest.

4.4 Applicative Computations

The last type of computations that we discussed (§2.4) is applicative functor.
We use the less common definition called Monoidal [13]. It consists of Map and
Merge, together with a unit computation. The unit computation can be used to
define Zero. This is used only in the translation of empty computations f { () }.

The identity law guarantees that merging with a unit and then projecting the
non-unit value produces an equivalent computation:

f { let! x = f { () }
and y = c in return y }} ≡ c ≡ f { let! x = c

and y = f { () } in return x }}
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The naturality law specifies that Merge distributes over Map, which translates
to the following code (assuming x1 not free in expr2 and x2 not free in expr1):

f { let! y1 = f { let! x1 = c1 in return expr1 }
and y2 = f { let! x2 = c2 in return expr2 } in expr } ≡

≡ f { let! x1 = c1 and x2 = c2 in let y1, y2 = expr 1, expr2 in expr }

As with the earlier syntactic rules, we can leave out the non-standard aspect
of the computations, read them as ordinary functional code and get correct and
expected laws. This means that the laws, again, guarantee that intuition about
the syntax used by computation expressions will be correct.

Finally, the Merge operation is also required to be associative – this does not
have any corresponding syntax, but it means that the user does not need to
know implementation details of the compiler – it does not matter whether the
parsing of binds in let!. . . and. . . is left-associative or right-associative.

5 Related Work

Haskell and its extensions support monad comprehensions [12] and “do” nota-
tion for monads, idiom brackets [13] for applicatives and arrows [15]. These are
similar to computation expressions in that they are not tied to concrete computa-
tions. However, they differ syntactically – they add multiple new notations, while
computation expressions add a uniform notation resembling standard language
structures. Adding arrows to computation expressions is an open question.

Python and C# generators, LINQ [14] in C# and “for” comprehensions in
Scala are just a few examples of syntax for concrete computations. Although
they can all be used with other computations, this is not generally considered
idiomatic use. Similarly to F#, the Scala async library [21] supports loops and
exception handling. However, it is implemented through full macro system.

Other encodings of effectful computations include effect handlers [17] and
continuations [3]. Providing syntactic support for these may be an interesting
alternative to our encoding. Interestingly, our Run operation resembles reset of
delimited continuations [18] and our Delay is similar to reify of Filinsky [4].

6 Conclusions

This paper is presents a principled treatment of F# computation expressions. We
develop a type system that captures the static semantics and relate the feature
to well-known abstract computation types. Computation expressions provide a
unified way for writing a wide range of computations including monoids, monads,
applicative formlets and monads composed using monad transformers.

Computation expressions follow a different approach than e.g. Haskell “do”
notation. They integrate a wide range of abstractions and flexibly reuse exist-
ing syntax (including loops and exception handling). The library developer can
choose the appropriate syntax and use laws of abstract computations to guar-
antee that the computation preserves intuition about the syntax.
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Such reusable syntactic extensions are becoming increasingly important. We
cannot keep adding new features to support comprehensions, asynchronicity,
queries and more as the “syntactic budget” is rapidly running out.

Acknowledgements. We are grateful to Dominic Orchard, Alan Mycroft, Sam
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Abstract. Integrating diverse formalisms into modular knowledge representa-
tion systems offers increased expressivity, modeling convenience and compu-
tational benefits. We introduce the concepts of abstract inference modules and
abstract modular inference systems to study general principles behind the de-
sign and analysis of model-generating programs, or solvers, for integrated multi-
logic systems. We show how modules and modular systems give rise to transition
graphs, which are a natural and convenient representation of solvers, an idea pi-
oneered by the SAT community. We illustrate our approach by showing how it
applies to answer-set programming and propositional logic, and to multi-logic
systems based on these two formalisms.

1 Introduction

Knowledge representation and reasoning (KR) is concerned with developing formal
languages and logics to model knowledge, and with designing and implementing cor-
responding automated reasoning tools. The choice of specific logics and tools depends
on the type of knowledge to be represented and reasoned about. Different logics are
suitable for common-sense reasoning, reasoning under incomplete information and un-
certainty, for temporal and spatial reasoning, and for modeling and solving boolean
constraints, or constraints over larger, even continuous domains. In applications in areas
such as distributed databases, semantic web, hybrid constraint modeling and solving, to
name just a few, several of these aspects come to play. Accordingly, often diverse logics
have to be accommodated together.

Modeling convenience is not the only reason why diverse logics are combined into
modular hybrid KR systems. Another motivation is to exploit in reasoning the trans-
parent structure that comes from modularity, computational strengths of individual
logics, and synergies that arise when they are put together. Constraint logic program-
ming [10] and satisfiability modulo theories (SMT) [20,2] are well-known examples
of formalisms stemming directly from such considerations. More recent examples in-
clude constraint answer-set programming (CASP) [13] that integrates answer-set pro-
gramming (ASP) [16,18] with constraint modeling languages [22], and “multi-logic”
formalisms PC(ID) [17], SM(ASP) [14] and ASP-FO [4] that combine modules ex-
pressed as logic theories under the classical semantics with modules given as answer-set
programs.

The key computational task arising in KR is that of model generation. Model-
generating programs or solvers, developed in satisfiability (SAT) and ASP proved to be
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effective in a broad range of KR applications. Accordingly, model generation is of crit-
ical importance in modular multi-logic systems. Research on formalisms listed above
resulted in fast solvers that demonstrate gains one can obtain from their heterogeneous
nature. However, the diversity of logics considered and low-level technical details of
their syntax and semantics obscure general principles that are important in the design
and analysis of solvers for multi-logic systems.

In this paper we address this problem by proposing a language for talking about mod-
ular multi-logic systems that (i) abstracts away the syntactic details, (ii) is expressive
enough to capture various concepts of inference, and (iii) is based only on the weakest
assumptions concerning the semantics of underlying logics. The basic elements of this
language are abstract inference modules (or just modules). Collections of abstract infer-
ence modules constitute abstract modular inference systems (or just modular systems).
We define the semantics of abstract inference modules and show that they provide a
uniform language capturing different logics, diverse inference mechanisms, and their
modular combinations. Importantly, abstract inference modules and abstract modular
inference systems give rise to transition graphs of the type introduced by Nieuwenhuis,
Oliveras, and Tinelli [20] in their study of SAT and SMT solvers. As in that earlier
work, our transition graphs provide a natural and convenient representation of solvers
for modules and modular systems. In this way, abstract modular inference systems and
the corresponding framework of transition graphs are useful conceptualizations clarify-
ing computational principles behind solvers for multi-logic knowledge representation
systems and facilitating systematic development of new ones.

We start the paper by introducing abstract inference modules.We then adapt transi-
tion graphs of Nieuwenhuis et al. [20] to the formalism of abstract inference modules
and use them to describe algorithms for finding models of modules. In Section 4, we
introduce abstract modular inference systems, extend the concept of a transition graph
to modular systems, and show that transition graphs can be used to formalize search
for models in this setting, too. We conclude by discussing related work, recapping our
contributions, and commenting on future work. Throughout the paper, we illustrate our
approach by showing how it applies to propositional logic and answer-set programming,
and to multi-logic systems based on these two formalisms. A version of the paper con-
taining proofs is available at http://www.cs.uky.edu/ai/ams.pdf.

2 Abstract Inference Modules

We start with some notation. Let σ be a fixed infinite vocabulary (a set of propositional
atoms). We write Lit(σ) for the set of all literals over σ. For a set M ⊆ Lit(σ), we
define M+ = σ∩M and M− = {a ∈ σ : ¬a ∈ M}. A literal l ∈ Lit(σ) is unassigned
by a set of literals M ⊆ Lit(σ) if M contains neither l nor its dual literal l. A set M of
literals over σ is consistent if for every literal l ∈ Lit(σ), l /∈ M or l /∈ M . We denote
the set of all consistent subsets of Lit(σ) by C(σ).

Definition 1. An abstract inference module over a vocabulary σ (or just a module, for
short) is a finite set of pairs of the form (M, l), where M ∈ C(σ), l ∈ Lit(σ) and
l /∈ M . These pairs are called inferences of the module. For a module S, σ(S) denotes
the set of all atoms that appear in inferences of S.

http://www.cs.uky.edu/ai/ams.pdf
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Intuitively, an inference (M, l) in a module indicates support for inferring l when-
ever all literals in M are given. We note that if (M, l) is an inference and l ∈ M , the
inference is an explicit indication of a contradiction. Figure 1(a) shows all inferences
over the vocabulary {a}. Figures 1(b) and 1(c) give examples of modules over the vo-
cabulary {a}. Here and throughout the paper, we present inferences as directed edges
and modules as bipartite graphs.

(a)
a

∅

¬a

∅

¬a

{a}

a

{¬a}

(b)

∅

a

{¬a}

(c)

{a}

¬a

∅ {¬a}

a

Fig. 1. All inferences and two inference modules over the vocabulary {a}

A set M ⊆ Lit(σ) is consistent with a set X ⊆ σ if M+ ⊆ X and M− ∩X = ∅. A
literal l ∈ Lit(σ) is consistent with a set X ⊆ σ if {l} is consistent with X . Let S be an
abstract inference module. A set X ⊆ σ of atoms is a model of S if for every inference
(M, l) ∈ S such that M is consistent with X , l is consistent with X , too. For example,
any set of atoms that contains a is a model of the module in Figure 1(b), whereas no
set of atoms that does not contain a is such. The module in Figure 1(c) has no models
due to inferences (∅, a) and (∅,¬a). A module is satisfiable if it has models, and is
unsatisfiable otherwise. The module in Figure 1(b) is satisfiable, the one in Figure 1(c)
is unsatisfiable.

Two modules that have the same models are equivalent.

Proposition 1. Abstract inference modules S1 and S2 are equivalent if and only if they
have the same models contained in the set σ(S1) ∪ σ(S2).

The semantics of modules is given by the set of their models. A module S over a
vocabulary σ entails a literal l ∈ Lit(σ), written S |≈ l, if for every model X of S,
l is consistent with X . Furthermore, S entails l with respect to a set M ⊆ Lit(σ) of
literals, written S |≈M l, if wheneverM is consistent with a modelX of S, l is consistent
with X , too. Modules are sound with respect to their semantics:

Proposition 2. Let S be a module and (M, l) an edge in S. Then S |≈M l.

In the paper we often consider unions of (finitely many) modules. We use the sym-
bol ∪ to denote the union of modules.

Proposition 3. Let S1 and S2 be abstract inference modules. A set X of atoms is a
model of S1 ∪ S2 if and only if X is a model of S1 and S2.

Modules are not meant for modeling knowledge. Representations by means of logic
theories are usually more concise. Furthermore, the logic languages align closely with
natural language, which facilitates modeling and makes the correspondence between
logic theories and knowledge they represent direct. Modules lack this connection. The
power of modules comes from the fact that they provide a uniform, syntax-independent
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way to describe theories and inference methods from different logics. We illustrate this
property of modules by showing that they can capture theories and inferences in clas-
sical propositional logic and in answer-set programming [8,16,18] (where theories are
commonly called programs).

Let T be a finite CNF propositional theory over σ and let σT be the set of atoms
that actually appear in T . We first consider the inference method given by the classical
entailment. By Ent(T ) we denote the module consisting of pairs (M, l) that satisfy the
following conditions: M ∈ C(σT ), l ∈ Lit(σT ) \ M , and T ∪ M |= l. Figure 1(b)
shows the module Ent({a}). Similarly, Figure 2 presents the module Ent(T ), where T
is the theory:

{a ∨ b,¬a ∨ ¬b}. (1)

We note that Ent(T ) has two models contained in {a, b}: {a} and {b}.1 More generally,
every model X of Ent(T ) contains exactly one of a and b.

{a} {a, b}

¬b

{b}

¬a

{¬a}

b

{¬a,¬b}

a

{¬b}

Fig. 2. Abstract module Ent(T ) for the theory T given by (1)

Focusing on specific inference rules of propositional logic also gives rise to abstract
modules. Unit Propagate is a standard inference rule commonly used when reasoning
with CNF theories. This inference rule is essential to all satisfiability (SAT) solvers,
programs that compute models of CNF theories or determine that no models exist. The
Unit Propagate rule gives rise to the moduleUP(T ) that consists of all pairs (M, l) that
satisfy the following conditions: M ∈ C(σT ), l ∈ Lit(σT ) \ M , and T has a clause
C ∨ l (modulo reordering of literals) such that for every literal u of C, u ∈ M .

Let T be the theory (1). The module Ent(T ) in Figure 2 coincides with UP(T ).
Thus, for the theory (1) the Unit Propagate rule captures entailment.

We say that a moduleS is equivalent to a propositional theory T if they have the same
models. Clearly, the module in Figure 2 is equivalent to the propositional theory (1).
This is an instance of a general property.

Proposition 4. For every propositional theory T (respectively, CNF formula T con-
taining no empty clause), Ent(T ) (respectively, UP(T )) is equivalent to T .

Unit Propagate is the primary inference rule of most SAT solvers. In the case of
answer-set programming, most solvers rely on several inference rules associated with
reasoning under the answer-set semantics. For instance, the classical answer-set solver
SMODELS [19] exploits four inference rules: the Unit Propagate rule, the Unfounded
rule, the All Rules Cancelled rule, and the Backchain True rule. To state these rules we
introduce some definitions and notations commonly used in logic programming.

1 We identify a model, an interpretation, of a propositional theory with the set of atoms that are
assigned True in the model.
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A logic program, or simply a program, over σ is a finite set of rules of the form

a0 ← a1, . . . , a�, not a�+1, . . . ,not am, (2)

where each ai, 0 ≤ i ≤ m, is an atom from σ. The expression a0 is the head of the rule.
The expression on the right hand side of the arrow is the body. For a program Π and an
atom a, Bodies(Π, a) denotes the set of the bodies of all rules in Π with the head a.
We write σΠ for the set of atoms that occur in a program Π .

For the body B of a rule (2), we define s(B) = {a1, . . . , a�,¬a�+1, . . . ,¬am}. In
some cases, we identify B with the conjunction of the elements in s(B), and we often
interpret a rule (2) as the propositional clause

a0 ∨ ¬a1 ∨ . . . ∨ ¬a� ∨ a�+1 ∨ . . . ∨ am. (3)

For a program Π , we write Πcl for the set of clauses (3) corresponding to all rules in
Π . We assume the reader is familiar with the definition of an answer set [8], as well
as the concept of unfounded sets [25]. For a set M of literals and a program Π , we
write U(M,Π) to denote a set that is unfounded on M w.r.t. Π (typically, such set
will be identified by some algorithmic method, but a specific way in which we find it is
immaterial for the purposes of this paper).

We are now ready to define the SMODELS inference rules. For a program Π , a set
M ∈ C(σΠ) of literals, and a literal l ∈ Lit(σΠ) \M :

Unit Propagate: derive l if Πcl contains clause C∨ l such that for every u ∈ C, u ∈ M ;

Unfounded: derive l if l = ¬a and a ∈ U(M,Π);

All Rule Cancelled: derive l if l = ¬a and for every B ∈ Bodies(Π, a), there is
u ∈ s(B) such that u ∈ M ;

Backchain True: derive l, if for some rule a ← B ∈ Π , a ∈ M , l ∈ s(B), and for every
B′ ∈ Bodies(Π, a) \ {B}, there is u ∈ s(B′) such that u ∈ M ;

Note that UP(Π) and UP(Πcl) are identical (and equivalent) even though they
concern different logics.

The four rules above give rise to abstract inference modules UP(Π), UF (Π),
ARC (Π) and BC (Π), respectively, each defined by taking the definition of the rule
as the condition for (M, l) to be an inference of the module. We note that the infer-
ence rule All Rule Cancelled is subsumed by the inference rule Unfounded. That is,
ARC (Π) ⊆ UF (Π). This is the only inclusion relation between distinct modules in
that set that holds for every program.

We say that a module S is equivalent to a program Π if for every X ⊆ σΠ , X is a
model of S if and only if X is an answer set of Π .2 None of the four modules UP(Π),
UF (Π), ARC (Π) and BC (Π) alone is equivalent to the underlying programΠ . How-
ever, some combinations of these modules are. Let us define

UPUF (Π) = UP(Π) ∪ UF (Π)

2 This is not the standard concept of equivalence as it is restricted to models over the vocabulary
of the program. It is sufficient, however, for our purpose of studying algorithms to compute
answer sets.
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and
smodels(Π) = UP(Π) ∪ UF (Π) ∪ ARC (Π) ∪ BC (Π).

Since ARC (Π) ⊆ UF (Π), it is not necessary to list the module ARC (Π) explicitly
in the union above. We do so, as the rule All Rule Cancelled is computationally cheaper
than the rule Unfounded and in practical implementations the two are distinguished.

The following result restates well-known properties of the inference rules [12] in
terms of equivalence of modules and programs.

Proposition 5. Every logic program Π is equivalent to the modules UPUF (Π) and
smodels(Π).

Let Π be the program
a ← not b
b ← not a.

(4)

This program has two answer sets {a} and {b}. Since these are also the only two mod-
els over the vocabulary {a, b} of the module in Figure 2, the program and the module
are equivalent. The module represents the reasoning mechanism of entailment with re-
spect to the answer sets of the program. Furthermore, that module also represents the
program (4) and the reasoning mechanism captured by the module smodels(Π).

Two other modules associated with program (4) are given in Figure 3. Figure 3(a)
shows the module UP(Π), which represents the program (4) and the reasoning mech-
anism based on Unit Propagate. This module is not equivalent to program (4). Indeed,
{a, b} is its model but not an answer set of (4). Figure 3(b) shows the module ARC(Π)
(which in this case happens to coincide with both UF (Π) and BC (Π)). Also this mod-
ule is not equivalent to program (4) as ∅ is its model but not an answer set of Π . The
union of the two modules in Figure 3 captures all four inference rules and is indeed
equal to the module in Figure 2.

(a)

{¬a}

b

{¬a,¬b} {¬b}

a

(b)

{a}

¬b

{a, b} {b}

¬a

Fig. 3. Two abstract modules based on the program (4)

3 Abstract Modular Solver: AMS

Finding models of logic theories and programs is a key computational task in declara-
tive programming. Nieuwenhuis et al. [20] proposed to use transition graphs to describe
search procedures involved in model-finding algorithms commonly called solvers, and
developed that approach for the case of SAT. Their transition graph framework can ex-
press DPLL, the basic search procedure employed by SAT solvers, and its enhancements
with techniques such as the conflict driven clause learning. Lierler and Truszczyn-
ski [12,14] proposed a similar framework to describe and analyze the answer-set pro-
gramming solvers SMODELS, CMODELS [9] and CLASP [6], as well as a PC(ID) solver
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MINISAT(ID) [17]. In the previous section, we argued that theories and programs can be
represented by equivalent abstract inference modules (Propositions 4 and 5). We now
show that the idea of a transition graph can be generalized to the setting of modules,
leading to an abstract perspective on the problem of search for models of modules, and
unifying the approaches to the model-finding task.

Let δ be a finite vocabulary. A state over δ is either a special state ⊥ (the fail state)
or a sequence M of distinct literals over δ, some possibly annotated by Δ, which marks
them as decision literals, such that:

1. the set of literals in M is consistent or M = M ′l, where the set of literals in M ′ is
consistent and contains l, and

2. if M = M ′lΔM ′′, then l is unassigned in M ′.

For instance, if δ = {a, b}, then ∅, a, ¬aΔ b, ¬a bΔ a and ⊥ are examples of states
over δ. If M is a state, by [M ] we denote the set of the literals in M (that is, we drop
annotations and ignore the order). Our definition of a state allows for inconsistent states.
However, inconsistent states are of a very specific form — the inconsistence arises
because of the last literal in the state. There is also a restriction on annotated (decision)
literals. A decision literal must not appear in a state following another occurrence of
that literal or its dual (annotated or not). Intuitively, a literal annotated by Δ denotes a
current assumption: thus once a literal is assigned in a state, there is no point of later
making an assumption concerning whether it holds or not.

Each module S determines its transition graph AMS . The set of nodes of AMS con-
sists of all states relative to σ(S). The edges of the graph AMS are specified by the
transition rules listed in Figure 4. The first rule depends on the module, the last three
do not. They have the same form no matter what module we consider. Hence, we omit
the reference to the module from its notation.

PropagateS : M −→ Ml if

{
[M ] is consistent, l /∈ [M ], and
for some M ′ ⊆ [M ], (M ′, l) is an inference of S

Fail: M −→ ⊥ if [M ] is inconsistent and M contains no decision literals

Backtrack: P lΔ Q −→ P l if

{
[P lΔ Q] is inconsistent, and
Q contains no decision literals

Decide: M −→ M lΔ if [M ] is consistent and l is unassigned by [M ]

Fig. 4. The transition rules of the graph AMS

The graph AMS can be used to decide whether a module S has a model. The follow-
ing properties are essential.

Theorem 1. For every module S,

(a) graph AMS is finite and acyclic,
(b) for any terminal state M of AMS other than ⊥, [M ]+ is a model of S,
(c) state ⊥ is reachable from ∅ in AMS if and only if S is unsatisfiable (has no models).
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Thus, to decide whether a module S has a model it is enough to find in the graph
AMS a path leading from node ∅ to a terminal node M . If M = ⊥, S is unsatisfiable.
Otherwise, [M ]+ is a model of S. For instance, let S be a module in Figure 2. Below we
show a path in the transition graph AMS with every edge annotated by the corresponding
transition rule:

∅ Decide−→ bΔ
PropagateS−→ bΔ ¬a. (5)

The state bΔ ¬a is terminal. Thus, Theorem 1(b) asserts that {b} is a model of S. There
may be several paths determining the same model. For instance, the path

∅ Decide−→ ¬aΔ Decide−→ ¬aΔ bΔ. (6)

leads to the terminal node ¬aΔ bΔ, which is different from bΔ ¬a but corresponds to
the same model.

We can view a path in the graph AMS starting in ∅ and ending in a terminal node as
a description of a specific way to search for a model of module S. Each such path is
determined by a function (strategy) selecting for each non-terminal state exactly one of
its outgoing edges (exactly one applicable transition). Therefore, solvers based on the
transition graph AMS are uniquely determined by the “select-edge-to-follow” function.
Such a function can be based, in particular, on assigning strict priorities to inferences in
S. Below we describe an algorithm that captures “classical” DPLL strategy. Assuming
M is the current state and it is not terminal, the algorithm proceeds as follows :

if M is inconsistent and has no decision literals, follow the Fail edge (this is
the only applicable transition); if M is inconsistent and has decision literals,
follow the Backtrack edge (this is the only applicable transition); if M is con-
sistent and PropagateS applies, follow the edge implied by the highest priority
inference of the form (M ′, l) in S such that M ′ ⊆ [M ]; otherwise, follow the
Decide edge.

This is still not a complete specification of a solver, as it offers no specification on
how to select a decision literal (which of many possible Decide transitions to apply).
Much of research on SAT solvers design, for example, has focused on this particular
aspect and several heuristics were proposed over the years. Each such heuristics for
selecting a decision literal when the Decide transition applies yields an algorithm.

Additional algorithms can be obtained by switching the preference over Propagate
and Decide rules. Earlier, we selected a Propagate edge and only if impossible, we
would select a Decide edge. But that order can be reversed resulting in another class of
algorithms. Finally, we could even consider a more complicated selection functions that,
when both Decide and Propagate edges are available, in some cases select a Propagate
edge and in others a Decide one.

We now show how the approaches proposed by Nieuwenhuis et al. [20] and Lierler
[12] to describe and analyze SAT and ASP solvers, respectively, fit in our abstract
framework. Let F be a CNF formula that contains no empty clause. Nieuwenhuis
et al. [20], defined the transition graph DPF to capture the computation of the DPLL

algorithm. We now review this graph in the form convenient for our purposes. All states
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over the vocabulary of F form the vertices of DPF . The edges of DPF are specified by
the three “generic” transition rules Fail, Backtrack and Decide of the graph AMS , and
the Unit Propagate rule below:

Unit PropagateF : M −→ Ml if

⎧
⎨

⎩

[M ] is consistent, l /∈ [M ], and
there is C ∨ l ∈ F , such that
for every u ∈ C, u ∈ [M ]

For example, let F be the theory consisting of a single clause a. Figure 5 presents DPF .

aΔ

∅

a

¬aΔ

¬aΔa

aΔ¬a

¬a

¬aa

⊥

a¬a

Fig. 5. The DPF graph where F = a

It turns out that we can see the graph DPF as the transition graph of the abstract
module UP(F ).

Proposition 6. For every CNF formula F with no empty clause, DPF = AMUP(F ).

Theorem 1, Proposition 6, and the fact that a CNF formula F and the module UP(F )
are equivalent (Proposition 4) imply the following result.

Corollary 1. For any CNF formula F ,

(a) graph DPF is finite and acyclic,
(b) for any terminal state M of DPF other than ⊥, [M ]+ is a model of F ,
(c) state ⊥ is reachable from ∅ in DPF if and only if F is unsatisfiable (has no models).

This is precisely the result stated by Nieuwenhuis et al. [20] and used to argue that
the graph DPF is an abstraction of the DPLL method. To decide the satisfiability of F
(and to find a model, if one exists), it is enough to find a path leading from the state ∅ to
a terminal state M . If M = ⊥ then F is unsatisfiable; otherwise, [M ]+ is a model of F .
For instance, the only terminal states reachable from the state ∅ in DPF are a and aΔ.
This translates into the fact that {a} is a model of F . Specific algorithm encapsulated by
the graph DPF (equivalently, AMUP(F )) can be obtained by deciding on a way to select
an edge while in a consistent state. Typical implementations of basic backtracking SAT
solvers follow a Unit PropagateF edge whenever possible, choosing Decide edges only
if nothing else applies. These algorithms differ from each other in the heuristics they
use for the selection of a decision literal.

Next, we show that our abstract approach to model generation in logics applies to
answer-set programming [8,16,18]. Lierler [12] introduced a transition system SMΠ to
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describe and study the SMODELS solver. We first review the graph SMΠ and then show
that Lierler’s approach can be viewed as an instantiation of our general theory.

The set of nodes of the graph SMΠ consists of all states relative to the vocabulary of
program Π . The edges of SMΠ are specified by the transition rules of the graph DPΠcl

and the rules presented in Figure 6.

UnfoundedΠ : M −→ M¬a if [M ] is consistent, ¬a /∈ [M ], and a ∈ U([M ], Π)

All Rule Cancelled : M −→ M¬a if

⎧⎨
⎩

[M ] is consistent, ¬a /∈ [M ], and
for every B ∈ Bodies(Π,a),
there is u ∈ s(B) such that u ∈ [M ]

Backchain True : M −→ Ml if

⎧⎪⎪⎨
⎪⎪⎩

[M ] is consistent, l /∈ [M ]
for some a ← B ∈ Π , a ∈ [M ], l ∈ s(B), and
for every B′ ∈ Bodies(Π, a) \ {B},
there is u ∈ s(B′) such that u ∈ [M ]

Fig. 6. Transition rules of the graph SMΠ

The following result shows that Lierler’s approach can be viewed as an instantiation
of our general theory.

Proposition 7. For every logic program Π , SMΠ = AMsmodels(Π).

Indeed, this proposition, Theorem 1 and the fact that Π is equivalent to the module
smodels(Π) (Proposition 5) imply the result stemming from Lierler [12].

Corollary 2. For every logic program Π ,

(a) graph SMΠ (AMsmodels(Π)) is finite and acyclic,
(b) for any terminal state M of SMΠ (AMsmodels(Π)) other than ⊥, M+ is an answer

set of Π ,
(c) state ⊥ is reachable from ∅ in SMΠ (AMsmodels(Π)) if and only if Π has no answer

sets.

Since UPUF (Π) is also equivalent to Π , we obtain a similar corollary for the transi-
tion graph AMUPUF (Π). Intuitively, this graph is characterized by the transition rules of
the graph DPΠcl as well as the rule Unfounded presented in Figure 6. Thus, AMUPUF (Π)

is a model of another correct algorithm for finding answer sets of programs. In fact, it
is so for any module S such that UPUF (Π) ⊆ S ⊆ smodels(Π).

Also the graph SMΠ describes a whole family of backtracking search algorithms for
finding answer sets of programs. They differ from each other by the way we select an
edge while in a consistent state. The selection function could be based on priorities of
the propagation rules.

Our discussion of SAT and ASP solvers shows that the framework of modules uni-
formly encompasses different logics. Furthermore, it uniformly models diverse reason-
ing mechanisms (the logical entailment, reasoning under specific inference rules). Our
results also show that transition graphs proposed earlier to represent and analyze SAT
and ASP solvers are special cases of transition graphs for abstract inference modules.
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4 Abstract Modular System and Solver AMSA

By capturing diverse logics in a single framework, abstract modules are well suited for
studying modularity in declarative formalisms and for analyzing solvers for such mod-
ular formalisms. As illustrated by our examples, abstract inference modules can capture
reasoning of various logics including classical reasoning with propositional theories and
reasoning with programs under the answer-set semantics. Putting modules together pro-
vides an abstract uniform way to represent hybrid modular systems, in which modules
represent theories from different logics.

We now define an abstract modular declarative framework that uses the concept of a
module as its basic element. We then show how abstract transition graphs for modules
generalize to the new formalism.

Definition 2. An abstract modular inference system (AMS) is a finite set of abstract
inference modules. The vocabulary of an AMS A is the union of the vocabularies of
modules of A (they do not have to have the same vocabulary); we denote it by σ(A). A
set X ⊆ σ is a model of A, if X is a model of every module S ∈ A.

Let S1 be a module presented in Figure 1(b) and S2 be a module in Figure 2. The
vocabulary of the AMS A = {S1, S2} consists of the atoms a and b. It is easy to see
that the set {a} is the only model of A contained in σ(A) (more generally, a set X is a
model of A if and only if X contains a). In Section 2, we observed that S1 = Ent(T )
(and also = UP(T )), for a propositional theory T , and that S2 = smodels(Π), where
Π is the program given by (4). This illustrates how abstract modular systems can serve
as an abstraction for heterogeneous multi-logic systems.

For a general example of a modular declarative formalism that can be cast as an
abstract modular system we now discuss the case of modular logic programs [15]. The
semantics of modular logic programs relies on the notion of an input answer set of a
program [14]. A set X of atoms is an input answer set of a logic program Π if X is
an answer set of the program Π ∪ (X \ Head(Π)), where Head(Π) denotes the set
of all head atoms of Π . Informally, input answer sets treat all atoms not occurring in
the heads of program rules as open so that they can assume any logical value. These
atoms are viewed as the “input.” To capture the semantics of input answer sets in terms
of inferences, we introduce a modified version of the propagation rule Unfounded:

Unfounded′: derive l if l = ¬a, a ∈ U(M,Π) and a ∈ Head(Π).

This rule gives rise to an inference module UF ′(Π) defined by taking the condition of
the rule as defining when (M, l) is to be an inference of the module. With the module
UF ′(Π) in hand, we define UPUF ′(Π) = UP(Π) ∪ UF ′(Π).

An inference module S is input-equivalent to a logic program Π if input answer
sets of Π coincide with models of S. We now restate Proposition 5 for the case of
input-equivalence.

Proposition 8. Every program Π is input-equivalent to the module UPUF ′(Π).

A modular (logic) program is a set of logic programs [15]. For a modular programP ,
a set X of atoms is an answer set of P if X is an input answer set of every program Π
in P . An AMS A is equivalent to a modular program P if answer sets of P coincide
with models of A.
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Proposition 9. Every modular program {Π1, . . . , Πn} is equivalent to the abstract
modular system {UPUF ′(Π1), . . . ,UPUF

′(Πn)}.

Theories in the logics SM(ASP) [15] and PC(ID) [17] can be cast as abstract modular
systems in the same manner.

We now resume our study of general properties of abstract modular systems. For an
AMS A = {S1, . . . , Sn}, we define A∪ = S1 ∪ . . . ∪ Sn. We can now state the result
showing that modular systems can be expressed in terms of a single abstract inference
module.

Theorem 2. Every abstract modular inference system A is equivalent to the abstract
inference module A∪.

Each AMS A determines its transition graph AMSA, which we define by setting
AMSA = AMA∪ . Theorem 1 implies the following result.

Theorem 3. For every AMS A,

(a) the graph AMSA is finite and acyclic,
(b) any terminal state M of AMSA other than ⊥ [M ]+ is a model of A,
(c) the state ⊥ is reachable from ∅ in AMSA if and only if A is unsatisfiable.

As in other cases, Theorem 3 shows that the graph AMSA is an abstract representation
of an algorithm to decide satisfiability of a modular system A. Such algorithm searches
in AMSA for a path leading from node ∅ to a terminal node by moving from a node to
node, selecting any edge originating in the current node. Theorem 3 guarantees that the
method terminates, the other two parts of that component ensure correctness.

For instance, let A be the AMS {S1, S2} where S1 is a module in Figure 1(b) and S2

is a module in Figure 2. Below is a valid path in the transition graph AMSA with every
edge annotated by the corresponding transition rule:

∅ Decide−→ ¬aΔ
PropagateS2−→ ¬ aΔ b

PropagateS1−→ ¬ aΔ b a
Backtrack−→ a

Decide−→ a ¬bΔ.

The state a ¬bΔ is terminal. Thus, Theorem 3 (b) asserts that {a,¬b} is a model of A.
Let us interpret this example. Earlier we demonstrated that module S1 can be regarded
as a representation of a propositional theory consisting of a single clause a whereas
S2 corresponds to the logic program (4) under the semantics of answer sets. We then
illustrated how modules S1 and S2 give rise to particular algorithms for implementing
search procedures. The graph AMSA represents the algorithm obtained by integrating
the algorithms supported by the modules S1 and S2 separately.

We will now discuss some classes of algorithms captured by the graph AMSA. As
before, they are more specifically determined by a strategy of selecting an outgoing
edge from the current state. Let us assume that such a strategy is available for each
module S ∈ A. Let us also assume that the modules in A are prioritized. This leads
to an algorithm that proceeds as follows (assuming M is the current state and it is not
terminal):

if M is inconsistent, we always select the Fail or Backtrack edge (whichever is
applicable); if M is consistent then we select an edge determined by the highest
priority inference from the highest priority module.
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Assuming that modules in A are enumerated S1, . . . , Sk from the highest priority one
to the lowest, the described algorithm works as follows. It starts by moving along edges
implied by inferences of the module S1 (according to the selection strategy for that
module). If we reach ⊥, the entire search is over with failure. Otherwise, we reach a
consistent state, in which no inference from module S1 is applicable (that state repre-
sents a model of S1). The phase of search involving module S1 gets suspended and we
continue in the same way but now following edges determined by inferences in module
S2. In other words, we start the phase of the search involving module S2. If we reach ⊥,
the search is over with failure. If we reach an inconsistent state that contains decision
literals, we apply the Backtrack rule. If that rule backtracks to a literal introduced after
we moved to module S2, we remain in the module S2 phase and continue. If the back-
track takes us back to a literal introduced while a higher priority module was considered
(in this case, that must be module S1), we resume the module S1 phase of the search
suspended earlier. If Propagate or Decide edges in module S2 are available, we select
one of them following the strategy for module S2. If we reach a consistent state with
no outgoing edges implied by inferences of S2 (that state represents a model of both S1

and S2) we suspend the module S2 phase and start the module S3 phase, and continue
in that way until a terminal state is reached.

The main advantage of such an algorithm is that each phase is concerned only with
inferences coming from a single module and state changes involve only literals from the
vocabulary of that module. The literals established during phases involving higher pri-
ority modules remain fixed. Thus, the search space in each phase is effectively limited
to that of the module involved in that phase.

Clearly, other specializations of the graph AMSA are possible. For instance, we may
alternate between modules in a more arbitrary way, possibly switching from the current
module to another even in situations when the current state has outgoing edges implied
by the inferences of the current module. However, such algorithms may have to work
with search spaces that are larger than the search space for a single module.

DLVHEX: Our results apply to a version of the DLVHEX3 solver [5] restricted to logic
programs. DLVHEX computes models of HEX-programs by exploiting their modular-
ity, that is, representing programs as an equivalent modular program. Answer set pro-
grams consisting of rules of the form (2) form a special class of HEX-programs. There-
fore, DLVHEX restricted to such programs can be seen as an answer-set solver that
exploits their modularity. Given a program Π , DLVHEX starts its operation by con-
structing a modular program P = {Π1, . . . , Πn} so that (i) Π = Π1 ∪ · · · ∪ Πn and
(ii) answer sets of P coincide with answer sets of Π . It then processes modules one
after another according to an order determined by the structure of a program. That
process can be modeled in abstract terms described above. In particular, the graph
AMS{UPUF ′(Π1),...,UPUF ′(Πn)} can be seen as an abstraction capturing the family of
DLVHEX-like algorithms based on Unit Propagate and Unfounded′ inferences.

3 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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5 Related Work and Conclusions

In an important development, Brewka and Eiter [3] introduced an abstract notion of a
heterogeneous nonmonotonic multi-context system (MCS). One of the key aspects of
that proposal is its abstract representation of a logic that allows one to study MCSs
without regard to syntactic details. The independence of contexts from syntax pro-
moted focus on semantic aspect of modularity in multi-context systems. Since their
inception, multi-context systems have received substantial attention and inspired im-
plementations of hybrid reasoning systems including DLVHEX [5] and DMCS [1]. There
are some similarities between AMSs and MCSs. However, there is also a key differ-
ence. MCSs provide an abstract framework to define semantics of hybrid systems. In
contrast, AMSs explicitly represent inferences of a logic and provide an abstract frame-
work for studying model-generation algorithms. On a more technical level, another
notable difference concerns information sharing among modules. MCSs use to this end
the so-called “bridge rules.” In AMS information sharing is implemented by a simple
notion of sharing parts of the vocabulary between the modules.

Modularity is one of the key techniques in principled software development. This
has been a major trigger inspiring research on modularity in declarative programming
paradigms rooting in KR languages such as answer-set programming, for instance.
Oikarinen and Janhunen [21] proposed a modular version of answer-set programs called
lp-modules. In that work, the authors were primarily concerned with the decomposition
of lp-modules into sets of simpler ones. They proved that under some assumptions such
decompositions are possible. Järvisalo, Oikarinen, Janhunen, and Niemelä [11], and
Tasharrofi and Ternovska [23] studied the generalizations of lp-modules. In their work
the main focus was to abstract lp-modules formalism away from any particular syntax
or semantics. They then study properties of the modules such as “joinability” and an-
alyze different ways to join modules together and the semantics of such a join. We are
interested in building simple modular systems using abstract modules – the only com-
position mechanism that we study is based on conjunction of modules. Also in contrast
to the work by Järvisalo et al. [11] and Tasharrofi and Ternovska [23], we define such
conjunction for any modules disregarding their internal structure and interdependencies
between each other.

Tasharrofi, Wu, and Ternovska [24] developed and studied an algorithm for process-
ing modular model expansion tasks in the abstract multi-logic system concept devel-
oped by Tasharrofi and Ternovska [23]. They use the traditional pseudocode method
to present the developed algorithm. In this work we adapt the graph-based framework
for designing backtrack search algorithms for abstract modular systems. The benefits
of that approach for modeling families of backtrack search procedures employed in
SAT, ASP, and PC(ID) solvers were demonstrated by Nieuwenhuis et al. [20], Lier-
ler [12], and Lierler and Truszczynski [14]. Our work provides additional support for
the generality and flexibility of the graph-based framework as a finer abstraction of
backtrack search algorithms than direct pseudocode representations, allowing for con-
venient means to prove correctness and study relationships between the families of the
algorithms.

Gebser and Schaub [7] describe a form of a tableaux system to describe inferences
involved in computing answer sets. Several rules used in their approach are closely
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related to those we discussed in the context of modules designed to represent reasoning
on logic programs. However, the two approaches are formally different. Most notably,
the concepts of states in a tableaux and in an abstract module are different. Still, there
seems to be a connection between them, which we plan to investigate in our future
work.

We introduced abstract modules and abstract modular systems and showed that they
provide a framework capable of capturing diverse logics and inference mechanisms
integrated into modular knowledge representation systems. In particular, we showed
that transition graphs determined by modules and modular systems provide a unifying
representation of model-generating algorithms, or solvers, and simplify reasoning about
such issues as correctness or termination. We believe they can be useful in theoretical
comparisons of solver effectiveness and in the development of new solvers.
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Abstract. Sunroof is a Haskell-hosted Domain Specific Language (DSL)
for generating JavaScript. The central feature of Sunroof is a JavaScript
monad, which, like the Haskell IO-monad, allows access to external re-
sources, but specifically JavaScript resources. As such, Sunroof is pri-
marily a feature-rich foreign-function API to the browser’s JavaScript
engine, and all the browser-specific functionality, including HTML-based
rendering, event handling, and drawing to the HTML5 canvas element.

In this paper, we give the design and implementation of Sunroof. Using
monadic reification, we generate JavaScript from a deep embedding of the
JavaScript monad. The Sunroof DSL has the feel of native Haskell, with
a simple Haskell-based type schema to guide the Sunroof programmer.
Furthermore, because we are generating code, we can offer Haskell-style
concurrency patterns, such as MVars and Channels. In combination with
a web-services package, the Sunroof DSL offers a robust platform to build
interactive web applications.

Keywords: DSLs, JavaScript, Web Technologies, Cloud Computing.

1 Introduction

There are many reasons to want to program in a functional language: effi-
ciency of development, formal and informal reasoning, and high-level control- and
concurrency-structures, such as monads [27]. However, mainstream languages
often have better environmental support than what is provided by functional
language compilers, for example the Objective C and the iOS ecosystem, or
JavaScript and HTML5 web browsers. This paper examines the challenges of
providing an intentionally blurred interface between Haskell and JavaScript, to
support the development of web-based applications.

JavaScript is an imperative language with access to a wide range of established
and useful services like graphical canvases and event handling of browser events.
We want to express JavaScript in Haskell, adding use of Haskell’s static typing,
and gaining access to JavaScript services in the browser directly from Haskell.

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 65–80, 2014.
c© Springer International Publishing Switzerland 2014



66 J. Bracker and A. Gill

One way of providing access to non-native services, such as the HTML5 can-
vas, is to provide, in Haskell, foreign function “hooks” to key JavaScript func-
tionality, and compile Haskell to JavaScript by rewriting the compiler backend.
Haskell already provides many similar hooks into the C RTS, so why not into
JavaScript? There are already a number of systems attempting this [36,29]. If
executed well, this would be ideal, but there are engineering shortcomings: many
standard libraries and Hackage packages are not supported directly, the gener-
ated code is not as efficiently executed as native Haskell, and the runtime system
is often incomplete. These compilers will continue to improve, and with initia-
tives like asm.js [1] and Emscripten [40], the efficiency gap will close.

Rather than rewrite the compiler and runtime system, an alternative approach
is to keep the existing runtime system, and provide the same foreign function
“hooks” to key JavaScript functionality, but instead the executed Haskell be-
comes a server that JavaScript, and the browser, interact with. Unfortunately,
every JavaScript call becomes an expensive proposition: a Remote Procedure
Call (RPC) to a browser. Though some straight-line calls can be batched to-
gether — our own blank-canvas Hackage package [19] was built on this idea
— the granularity of interaction through JavaScript calls is just too fine for this
idea to scale well.

Another approach, and the one we investigate, is to use a deeply embedded
Domain Specific Language (DSL), and the recently discovered monad reifica-
tion technique [30,16,34,37]. A Haskell-hosted deeply embedded DSL is where
Haskell combinators are used to build syntactical forms in the target language,
in this case JavaScript. Historically, these embeddings have worked well for data-
flow, for example generating combinatorial hardware, but had serious challenges
with capturing binding and control flow. Monad reification, where a monadic
computation is representable in the deep embedding, partially mitigates this
shortcoming, allowing statements and effectful bindings to be expressed directly.

Sunroof is an exercise in scaling up the use of monad reification, and other
domain-specific language techniques, to a full-scale JavaScript DSL. With Sun-
roof bindings being regular Haskell monadic bindings, the language fits with
what would be expected from a monadic API. In a previous paper, we showed,
using a prototype, that reification of a JavaScript-like language is possible [16].
In this paper, we expand on this observation, and show that monadic-reification
is useful in practice.

Building on this DSL, we also investigate providing JavaScript control flow
and function abstraction mechanisms to the Haskell programmer interested in
using the browser API. Though for technical reasons we cannot directly com-
pile pattern matching and let-binding to JavaScript without committing to a
full Haskell to JavaScript compiler, both control flow and function abstraction
can be provided with a small syntactical overhead, and reifiable fix-points can
be provided with a modest syntactical overhead. With these capabilities, a pro-
grammer can start programming using the JavaScript API directly, and refine
their program to migrate more and more computation from the server into the
browser.
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2 Calling JavaScript from Haskell

From a programmers’ point of view, calling JavaScript functions appears straight-
forward. We as a community know how to reflect an API into Haskell, using the
IO monad. Furthermore, objects in the target API become handles in Haskell.

As a first example, consider this simplified example of Sunroof code, and
corresponding JavaScript.

-- Haskell // JavaScript

ioCode :: IO ()

ioCode = send jsCode

jsCode :: JS ()

jsCode = do function jsCode() {

name <- prompt "Name?" var name = prompt("Name?");

alert ("Your name: " <> name) alert("Your name: " + name);

}

Here, we use a new monad, the JS monad, our JavaScript analog of the IO

monad, and an explicit send command that sends the JavaScript to the browser.
This reversal of control, where the server sends the client commands, follows the
Comet AJAX application model. Comet is a push technology that allows a server
to push messages to a client. In our case, the Comet interaction is implemented
by long polling on behalf of the client. For the above example, this interface
bundles the prompt and alert commands into a single interaction. It is this
flavor of interface we want to support in our Sunroof DSL and web server.

To make Sunroof a viable interface to JavaScript, we need to resolve the
following issues:

– JavaScript is an object-based, imperative, dynamically typed language.
Haskell is a pure, function-based, statically typed language. In Section 3,
we introduce expressions and statements in Sunroof, and show how they
jointly form an object model, mapping these two worlds together. The Sun-
roof DSL does not support laziness; the DSL expresses monadic Sunroof
code strictly, reflecting the JavaScript target.

– We need to select a concurrency model for Sunroof. Natively, JavaScript only
supports non-blockable threads. In Section 4, we give the Sunroof interface
for providing both non-blocking and blocking cooperative threads, using the
type system to delimit the two concurrency models.

– We choose to provide a way of defining functions in Sunroof such that they
are first-class functions in JavaScript. In Section 5, we show how we support
both functions and continuations.

– We need to provide a foreign function interface, to allow us to call specific
JavaScript-native functions, such as prompt and alert. In Section 6 we
present this interface.

– Critically, we need to be able to compile our Sunroof DSL into JavaScript.
We examine this in Section 7.
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Table 1. Sunroof types and their Haskell analogs

Constraint Haskell Type τ↑ Sunroof Type τ js

() () �
Bool JSBool �
Double JSNumber �
String JSString �

Sunroof α [α↑] JSArray α
SunroofKey α Map α↑ β↑ JSMap α β

Sunroof β
SunroofArgument α α↑ → JSA β↑ JSFunction α β

Sunroof β
SunroofArgument α α↑ → JSB β JSContinuation α
SunroofArgument α MVar α↑ JSMVar α
SunroofArgument α Chan α↑ JSChan α

– To enable the compiled code to dynamically interact with a web browser, we
provide an expansion of the send idea above, which we discuss in Section 8.

We close with related work and our conclusions. The underlying ideas used
here are not new, though the use of monadic reification for JavaScript generation
is original. What we demonstrate is how far the practical aspects of DSL capture
have come, using the full scale example of Haskell to JavaScript translation.

3 Sunroof Expressions and Statements

JavaScript makes a distinction between expressions and statements. Sunroof is
a typed version of JavaScript, so therefore also makes this distinction, and does
so using Haskell types.

3.1 Sunroof Expressions

In JavaScript, there are a small number of core types, such as object, array,
and string. In our JavaScript object model, there is a reflection of this family
of core types, all prefixed with JS. There is support for booleans, strings, num-
bers, functions, arrays, and other common programming structures. The use of
JSNumber, rather than (say) Double, explicitly reminds us of the enforced dimin-
ished capabilities of being within an embedded language. All of the JS- types are
representable in our target language. Table 1 enumerates the major JS- types
used in Sunroof. The left-hand column of Table 1 gives constraints, implemented
via Haskell type classes.

– All our core types are brought together with the Sunroof class. If a type is
an instance of Sunroof, then that type can be realized inside JavaScript. All
the JS- types are instances of Sunroof.
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– Instances of the SunroofArgument class are values that can be passed to
JavaScript functions and methods, including tuples of values which are used
for representing multi-argument function calls. The asymmetry here is a re-
flection of the JavaScript asymmetry inherited from C: you can pass multiple
arguments to a function, but only get a single thing back.

– Finally, there is a third class, SunroofKey, which is a JavaScript version of
the Haskell Show class, but specifically for generating JavaScript object keys,
which are realized as JavaScript strings.

Using our JS-types, we can build expressions using the traditional Haskell
expression-building mechanisms. JSNumber is overloaded, and thus can be used
directly for arithmetic. JSBool is an instance of the relevant classes in the Hack-
age package boolean. boolean provides the capability to express control-flow in
an embedded DSL, as needed by Sunroof. Further, JSString is a Monoid, which
is only possible because JavaScript strings are immutable values, providing a
neat and standard string-concatenation operator for Sunroof.

To help the conversion between classical Haskell values and Sunroof values,
we provide the overloaded function js. The second column of Table 1 shows
what types can be converted, using js. The full types of js is:

js :: (SunroofValue a, Sunroof (ValueOf a)) => a -> ValueOf a

SunroofValue and the type function [8] ValueOf represent the mapping given
in the table. Putting the expression-building capability together, along with a
show function called toString, we can write:

alert ("n=" <> js (n::Int) <> " m=" <> toString (m::JSNumber))

Here, n is a Haskell Int, and m is a Sunroof number, presumably the result of
a previous computation. Given that we are bundling expressions to send to a
browser for execution, n is a static value, and m is a dynamic value, unobservable
until inside our browser’s execution. Finally, toString has type:

toString :: Sunroof a => a -> JSString

One design decision in Sunroof is that we enforce a stronger typing than
JavaScript itself would. Specifically, there are restrictions on the type arguments
of our container types, like JSArray. What can be seen from this is that we
enforce a Hindley-Milner style thinking to our containers, which is distinct from
JavaScript dynamic typing. Some types involve phantom types to enforce this
imposed type safety [23]. Thus, JSArray is a restricted type of JavaScript array,
that, like Haskell, only supports collections of the same type.

From experience with using Sunroof, the mis-match in typing between Haskell
and Sunroof/JavaScript is not a large problem in practice. However, sometimes
casting between types, which is implicit in JavaScript, is needed. So we provide
an explicit dynamic cast, for use where the type-systems differ, and both sides
of the cast are instances of Sunroof.

cast :: (Sunroof a, Sunroof b) => a -> b
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3.2 Sunroof Statements

The building block of object-oriented programing is calling an object’s method.
This is almost universally done using the dot (.) operator. JavaScript, our target
language, follows this trend, with the method-call syntax being as follows:

object.method(a1,a2,a3,...,aN) // JavaScript method call

For our Sunroof object model, we want to follow this as closely as possible.
We, have our method calls use a monad because method calls are (in general)

effectful. By convention, we take the object as the last argument.

// Shape of a Sunroof method

(SunroofArgument args, Sunroof res) => args -> (JSObject -> JS res)

A neat way of writing method calls in Haskell is transcribing the JavaScript dot,
which is already use for both namespace resolution and function composition in
Haskell, with the # combinator [33,35].

// Sunroof

(#) :: a -> (a -> JS b) -> JS b

(#) obj act = act obj

This gives the following fragment for a Sunroof call to method on object.

object # method (a1,a2,a3,...,aN)

In this way, JavaScript can be transliterated into Haskell where needed, native
JavaScript call idioms can be used, while other Haskell abstraction mechanisms
can be used for the interface that calls Sunroof code.

We piece together our Sunroof method calls using do-notation, Haskell’s syn-
tactic support for monads.

do r1 <- obj # method1 (a1,a2,a3,...,aN)

r2 <- obj # method2 ({-... can use r1 ...-})

....

In this fragment, r1 is bound to the result of the method1 call, and can be used
as an argument to method2.

Sometimes, a JavaScript API requires direct access to object attributes. We
do so using a typed JSSelector.

label :: JSString -> JSSelector a

(!) :: (Sunroof o, Sunroof a) => o -> JSSelector a -> a

(:=) :: (Sunroof a, Sunroof o) => JSSelector a -> a -> (o -> JS t ())

We can build a selector (label), use a selector to access an attribute in a specific
object (!), or update an attribute in a specific object (:=). The update is in
our object-normal-form, that is the object is the final argument. Sunroof is,
in essence, a strict functional language, with monads for effect. We choose to
support direct (non-monadic) reading of attributes, but all updating of objects
requires the monad. This is a design decision we may return to in the future.
The net effect is that assignments to fields can be neatly expressed.
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// JavaScript // Sunroof

c.fillStyle = "red"; c # fillStyle := "red"

Notice that ‘:=’ binds tighter than ‘#’; the ‘fillStyle := "red"’ is effectively
building and calling a setter method for ‘c’, on the fly.

4 Threading Models

JavaScript uses a callback-centric model of computation. There is no support
for concurrency, only a single central loop that executes callbacks, which should
be non-blocking, as events occur. In contrast, Haskell has robust concurrency
and wide-spread abstractions for synchronization, e.g. MVars and Chans [21]. So
the question arises: do we generate non-blocking JavaScript code, and keep the
callback centric model, or do we add concurrency support as value-added by our
transliteration to JavaScript?

In our earlier work [16], we prototyped both blocking and non-blocking trans-
lations, and observed that both choices had poor consequences.

– Existing JavaScript APIs assume atomic, non-blocking semantics. Therefore,
if we compile a higher-order function for a callback, it must not block. Fur-
ther, if this higher-order function returns a result, the function must respect
this non-blocking requirement.

– The lure of threads, and the abstractions they allow, is strong. Threaded code
is — from experience — cleaner if directly used, rather that being faked in
JavaScript itself. There are new libraries in JavaScript that encode some
cooperative concurrency abstractions, like promises [2]; Sunroof is a chance
to translate using cooperative concurrency directly when generating
JavaScript.

In our full-scale implementation of Sunroof, we decided to explicitly support
both blocking and non-blocking threads,and use types to denote which threading
strategies should be used. This means that the programmer can choose which
concurrency model fits the given situation.

In terms of user-interface, we parameterize the JS-monad with a phantom type
that represents the threading model used, with A for Atomic, and B for Blocking
threads. Atomic threads are classical JavaScript computations that cannot be
interrupted and actively use the callback mechanism. Blocking threads can sup-
port suspending operations and cooperative concurrency abstractions as known
from Haskell. By using phantom types, we can express the necessary restrictions
on specific combinators, as well as provide combinators to allow both types of
threads to cooperate.

The blocking model hides the callback mechanism behind abstractions. This
implies that every atomic computation can be converted into a potentially block-
ing computation. liftJS achieves this.

liftJS :: Sunroof a => JS A a -> JS t a
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When suspending, we register our current continuation as a callback to resume
later. This gives other threads (registered continuations) a chance to run. Of
course, this model depends on cooperation between the threads, because a non-
terminating or suspending thread will keep others from running.

There are two main primitives for the blocking model:

forkJS :: SunroofThread t1 => JS t1 () -> JS t2 ()

threadDelay :: JSNumber -> JS B ()

They can both be seen as analogs of their IO counterparts. forkJS resem-
bles forkIO; it registers the given computation as a callback. In forkJS, the
SunroofThread constraint allows the DSL compiler to know if this callback
should be blocking or non-blocking, based on the type of t1. Both blocking and
non-blocking threads can fork new threads, so t2 is unconstrained. threadDelay
sets a continuation callback to be called after a certain amount of time. We rely
on the JavaScript function window.setTimeout [3] to register our callbacks.

This parameterization of JS allows us to use types to capture the blocking
semantics of our primitives. Furthermore, the Haskell type system automatically
propagates the thread semantics. In this way, Sunroof can offer concurrency as
an additional, first class, abstraction. As an example of what is possible, based on
these primitive threading combinators, consider Sunroof’s versions of Haskell’s
Chan, called JSChan. The Sunroof API for JSChan is as follows.

newChan :: (SunroofArgument a) => JS t (JSChan a)

writeChan :: (SunroofArgument a) => a -> JSChan a -> JS t ()

readChan :: (SunroofArgument a) => JSChan a -> JS B a

Note that the types reflect if a specific operation can block. Both newChan and
writeChan can never block, so you can use either threading model, but readChan
may block, so uses the B threading model.

5 Functions and Continuations

Functions are first-class values in Haskell and JavaScript. Sunroof represents
function values with the type JSFunction α β, which corresponds to a function
of type α → β in JavaScript. In Sunroof, we create function objects with the
function combinator.

function :: (SunroofArgument a, Sunroof b)

=> (a -> JS A b) -> JS t (JSFunction a b)

As a function can have side-effects, its computation and result have to be ex-
pressed in the JS-monad. The creation of a function is considered a side-effect,
due to observable allocation. To see an example of usage, consider defining a
double function.

double <- function $ \ (n :: JSNumber) -> return (n + n)
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Now double, which has type JSFunction JSNumber JSNumber, can be stored
in structures, passed to JavaScript functions, and enjoys all the privileges of
first-class JavaScript function objects. function acts as a staging combinator,
converting a monadic Haskell function into a JavaScript-level function.

Function application of JSFunction objects is done through the apply/$$
combinator; they are synonyms. Functions can only be applied in the JS-monad,
since they can have side-effects.

apply, ($$) :: (SunroofArgument a, Sunroof b)

=> JSFunction a b -> a -> JS t b

Together, function and apply give a way of getting into and back from the
abstract JSFunction object.

Sunroof also can express recursive functions, using a version of the fixpoint
combinator.

fixJS :: (SunroofArgument a) => (a -> JS A a) -> JS t a

There is a restriction that the higher-order function be atomic, but the usage of
fixJS is straightforward, if verbose.

fib <- fixJS $ \ (fib :: JSFunction JSNumber JSNumber) ->

function $ \ (n :: JSNumber) ->

ifB (n <* 2)

(return 1)

(liftM2 (+) (fib $$ (n - 1)) (fib $$ (n - 2)))

The ‘fib’ type is a JSFunction object, and we also need to use the JS monad,
because JavaScript functions are assumed to be effectful. <* is the lifted version
of <, as provided by the boolean package.

Continuations are functions that never return. JavaScript uses them; for ex-
ample many callbacks are actually continuations. We can express continuation
objects (continuations in object form), using the type JSContinuation α. Tech-
nically, JSContinuation α are only specializations of functions, but restricted
to a specific threading model. Continuations are meant to be a representation of
side effects — ongoing computations inside the JS-monad — and might not ter-
minate, so they do not return a value. As with functions, there is a combinator
to create and apply a continuation.

continuation :: (SunroofArgument a)

=> (a -> JS B ()) -> JS t (JSContinuation a)

goto :: (SunroofArgument a)

=> JSContinuation a -> a -> JS B ()

The presented goto should not be considered harmful [11]. It calls a continuation,
as apply calls functions. The difference is that a call to goto will never return,
as it executes the given continuation and abandons the current one — the ()

result is never returned.
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JSFunction a b

a → JS A b

JSContinuation a

a → JS B ()

kast

apply gotofunction continuation

liftJS

Fig. 1. How functions and continuations relate between the Haskell and Sunroof

Access to the current continuation is given through the powerful call-with-
current-continuation combinator callcc.

callcc :: SunroofArgument a

=> (JSContinuation a -> JS B a) -> JS B a

Functions and continuations, and their JS-analogs, are connected to each
other, as can be seen in Fig. 1. We can go back and forth between the Haskell and
the Sunroof representation of a function or continuation. But once a function is
specialized to a continuation, it is not possible to go back, because continuations
only model the side effect, but do not return anything. kast is just a specialized
version of cast.

6 Foreign Function Interface

Sunroof also offers a simple foreign function interface, which enables us to easily
access predefined JavaScript. There are four core functions:

fun :: (SunroofArgument a, Sunroof r)

=> String -> JSFunction a r

object :: String -> JSObject

new :: (SunroofArgument a)

=> String -> a -> JS t JSObject

invoke :: (SunroofArgument a, Sunroof o, Sunroof r)

=> String -> a -> o -> JS t r

fun is used to create Sunroof functions from their names in JavaScript. This can
happen in two ways: either to call a function inline, or to create a real binding for
that function. As an example, the alert function can be called in line through
fun "alert" $$ "text", or you can provide a binding in form of a Haskell
function for it.

alert :: JSString -> JS t ()

alert s = fun "alert" $$ s

Existing objects can be bound through the object function, e.g. the document
object is bound through object "document". Constructors can be called using
new. To create a new object you would call new "Object" ().
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We can call methods of objects through invoke. Again, this can be used inline
and to create a real binding. An inline use of this to produce
document.getElementById("id") would look like this:

object "document" # invoke "getElementById" "id"

To provide a binding to the getElementById method, one can write:

getElementById :: JSString -> JSObject -> JS t JSObject

getElementById s = invoke "getElementById" s

Providing actual bindings ensures that everything is typed correctly and pre-
vents the need to resolve ambiguities through large type annotations inside of
code. The current release of Sunroof on Hackage provides bindings for most of
the core browser API, the HTML5 canvas element, and some of the JQuery API.

7 Compiling Sunroof

Our domain-specific language, embedded in Haskell, is useless unless we can
actually compile the DSL to JavaScript. We apply four main techniques. We
believe Sunroof is the first time all four have been used simultaneously in a
full-scale embedded DSL.

Expression Reification: The first technique we use is capturing Sunroof expres-
sions as expression trees. This is a classical use of a deeply-embedded language.
Every expression/JS-type is a Haskell newtype wrapper around an expression
syntax tree. This internal expression syntax is simple, with only five constructors:
literals, variable names, JavaScript ‘dot’, application, and anonymous functions.
When compiling expressions, we use IO-based observable sharing [18] internally.
We preserve a simple and monomorphic representation of our expression type to
allow our generated code to optionally contain types in comments — this was
especially useful for debugging. Overall, this aspect of the Sunroof DSL compiler
is straightforward and unsurprising.

Function Reification: The second technique is we use is capturing functions,
as delimited by the function combinator. Again, existing techniques can be
used. Consider this simple example: ‘Plus‘ is the infix application of the Plus

combinator.

data Expr = Plus Expr Expr | Lit Int | Var String

f :: Expr -> Expr

f x = x ‘Plus‘ (Lit 1)

We can reify f by applying it to (Var "x"), where "x" is a fresh name,
giving Plus (Var "x") (Lit 1). By overloading the literals and arithmetic —
a common trick — we can write a clean Haskell function that can still be reified:
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f x = x + 1

The Sunroof function combinator reifies functions in exactly this way. The
type of the argument is constrained by the SunroofArgument class, and each in-
stance of the class has a mechanism for generating a prototypical argument, like
(Var "x") above. For example, a 2-tuple argument would generate
(Var "x",Var "y") as the template argument.

Monadic Reification: Monadic reification is the capture of monadic statements,
including the bindings, as an abstract syntax tree. A GADT-based deep em-
bedding of the specific monadic operations (bind, return), and all the primitives
(method call, etc.), allows the capture of the operations as abstract syntax trees.
The trick is normalizing the monadic bind [34], both in the GADT, and in a
smart instance of the monadic bind.

data JS :: * -> * -> * where

Return :: a -> JS t a

Bind :: (Sunroof a) => JSPrim t a -> (a -> JS t b) -> JS t b

instance Monad (JS t) where

return = Return

(Return a) >>= k = k a -- left id

(Bind ma h) >>= k = Bind ma (\ a -> h a >>= k) -- assoc

Because Bind is pre-normalized, constraints from the JSPrimGADT (not shown)
can discharge the Sunroof constraint. Simplified, this is the DSL compiler;
JSCode is a simple (and unsurprising) AST for JavaScript.

compileJS :: Sunroof a => JS t a -> M (JSCode, a)

compileJS (Return a) = return ("",a)

compileJS (Bind jx k) = do

(c1,x) <- compileJSPrim jx -- typechecks

(c2,a) <- compileJS (k x)

return (c1 ++ c2,a)

compileJSPrim :: Sunroof a => JSPrim t a -> M (JSCode, a)

-- Implementation of compileJSPrim not given

Counterintuitively, there can be a constraint on the GADT Bind constructor
which is not needed in the monad instance; indeed it was thought to be im-
possible to have GADT constraints on Bind and still use the standard monad
infrastructure. For the technical details, including why it works, and what gen-
eralizations are possible, see [34].

CPS translation: Finally, we compile JS A and JS B differently with respect to
control flow. The compilation of JA A is straightforward, and a transliteration.
The compilation of JS B uses CPS internally, to give CPS-style JavaScript for
control flow. This compilation, though involved in the presence of the other
generalizations in Sunroof, is straightforward.
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8 The Sunroof Server

The Sunroof server provides infrastructure to send arbitrary pieces of JavaScript
to a web client for execution. It is thus possible to interleave Haskell and
JavaScript computations as needed. The three major functions provided are
sunroofServer, syncJS and asyncJS.

sunroofServer :: SunroofServerOptions

-> (SunroofEngine -> IO ()) -> IO ()

syncJS :: SunroofResult a

=> SunroofEngine -> JS t a -> IO (ResultOf a)

asyncJS :: SunroofEngine -> JS t () -> IO ()

SunroofEngine is a handle into our specific web session, one per web application
instance. sunroofServer starts a server that will call the given callback function
for each request. syncJS and asyncJS allow the server to run Sunroof code inside
the requesting website. asyncJS executes it asynchronously without waiting for
a return value. In contrast, syncJS waits until the execution is complete and
then sends the result back to the server. It is converted into a Haskell value that
can be processed further. Values that can be converted to a Haskell type after a
synchronous call use the type function ResultOf to allow JSString to return a
Haskell String, JSNumber to return Double, etc.

9 Related Work

There have been several attempts to compile Haskell to JavaScript. Prominent
ones are the compiler backends for UHC [10,36] and GHCJS [29]. The func-
tional language Clean has also used JavaScript as a backend [12], and there
has been an attempt to use Clean’s Core to support the translation of Haskell
to JavaScript [13]. There is also Fay [14] that compile subsets of Haskell to
JavaScript and JMacro [7] which use quasiquotation [26] to embed a custom-
tailored language into Haskell code. At the same time there are also projects like
CoffeeScript [6] or LiveScript [28] to build custom languages that are very similar
to JavaScript but add convenient syntax and support for missing features.

Our approach to cooperative concurrency through continuations in JavaScript
has been used before [9,31]. To our knowledge, creating a direct connection
between Haskell and JavaScript continuations has not been attempted before.

Deep embeddings of monads based on data structures have been used before
in Unimo [24] and Operational [5,4]. The specific approach Sunroof takes to
monadic reification, and alternative implementation techniques, are discussed in
Sculthorpe et al. [34] in detail.

Another effort to map a functional embedding to JavaScript is the JavaScript
DSL embedded inside Scala [22]. Rather than using a deep embedding, they use
Lightweight Modular Staging (LMS) [32]. Though the language-specific chal-
lenges are different, the two systems are comparable in capability.



78 J. Bracker and A. Gill

The Sunroof server does not aim to provide a full-featured web framework,
as HAppS, Snap or Yesod do. It only provides the infrastructure to commu-
nicate with the currently calling website through the Kansas comet [20] push
mechanism [25].

To our knowledge, Sunroof is the only library that supports generation of
JavaScript inside of Haskell using pure Haskell in a type-safe manner. All other
approaches discussed above either require a separate compilation step or intro-
duce new syntax inside of Haskell. There also is an effort to generalize Active
[38], a library for animations, by implementing a backend based on Sunroof [17].

10 Conclusion

Sunroof takes the key idea of monad reification and successfully creates a typed
JavaScript language, based around the JS-monad, to describe computations in-
tended for a JavaScript interpreter. This paper documents our investigations
since our initial prototype. With pervasive use of types in Sunroof, and the con-
cepts of JSFunction and JSContinuation, there now is a clearer connection
between functions in the JavaScript and Sunroof language spaces (Fig. 1). It is
possible to go back and forth between both worlds.

We were also able to create a two internal translations of our JS monad, one
a direct transliteration, and one based on on the translation of continuations
from Haskell to JavaScript. This enabled us to build applications that use a
blocking threading model on top of JavaScript that resembles the model already
known from Haskell. Based on this model and the provided abstraction over
continuations, we can construct primitives such as forkJS or threadDelay, and
higher-level abstractions like JSMVar and JSChan.

We believe this is the first Haskell-to-JavaScript DSL that makes use of
monadic reification. We think that this form of reification gives a useful DSL,
and we expect many future DSLs to re-use this design pattern.

The Sunroof DSL compiler, server, and several examples, including our
web-based unit tests, are available on github.com/ku-fpg and
hackage.haskell.org. We plan to build a number of abstraction on top of
Sunroof: a port of diagrams [39], an animation DSL [38], and a simple GUI
toolkit for teaching functional programming.
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Abstract. DNA nanotechnology is a rapidly-growing field, with many poten-
tial applications in nanoscale manufacturing and autonomous in vivo diagnostic
and therapeutic devices. As experimental techniques improve it will become in-
creasingly important to develop software tools and programming abstractions, to
enable rapid and correct design of increasingly sophisticated computational cir-
cuits. This is analogous to the need for hardware description languages for VLSI.
In this paper we discuss our experience implementing a domain-specific language
for DNA nanotechnology using a functional programming language. The ability
to use abstract data types to describe molecular structures and to recurse over
these types to derive the various interactions between structures was a major rea-
son for the use of a functional language in this project.

Keywords: DNA strand displacement, process calculus, biological modelling.

1 Introduction

DNA is an attractive engineering material for controlling matter at the nanoscale, as
it is robust and undergoes predictable, sequence-specific, programmable interactions.
Previous work has shown that synthetic DNA circuits can be used to implement com-
putational systems including digital logic circuits [1], neural networks [2] and game-
playing automata [3]. In this setting, DNA is used both as an information carrier and
as an engineering material, simultaneously. Furthermore, DNA is inherently biocom-
patible, meaning that DNA-based computing devices could feasibly operate in living
cells, autonomously monitoring the cell state and administering appropriate treatment
for diseases at the cellular level [4].

As the scale and complexity of DNA-based computing devices continues to grow,
tool support will become ever more important. A key goal is to formalize the structures
and interactions of DNA molecules, so that their behaviour may be analyzed [5]. To
this end we developed a domain-specific language known as DSD [6], which is a pro-
cess calculus for describing a particular class of DNA circuits that interact via strand
displacement reactions [7]. Prior to the development of the DSD language, strand dis-
placement circuits were largely designed by hand, which was time-consuming and not
scalable. The key aspects of the DSD language design are its syntax for represent-
ing a particular class of DNA structures, and the operational semantics which mod-
els the real-world interactions between those structures. We implemented a compiler,
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Fig. 1. (a) DNA secondary structure abstraction. (b) Basic strand displacement reactions.

stochastic and deterministic simulators and state space analysis tools for the DSD lan-
guage in F# [8], and in this paper we describe the experience of modelling and compil-
ing DNA reactions in a functional language.

2 DNA Strand Displacement

DNA strand displacement [7] is a robust mechanism for engineering sequence-specific
interactions between DNA molecules. As shown in Figure 1a, we use the secondary
structure abstraction of DNA structure, which ignores the double helical structure and
absolute positions of the molecules and represents the relative positions of the strands
by parallel lines, with arrowheads denoting strand orientations. Instead of dealing with
nucleotide sequences (G, A, T , C) we define domains as shorthands for particular finite
sequences. We write x∗ for the complement of the domain x, which is the domain that
binds to x. This is defined by the standard Watson-Crick base-pairing rules for DNA
(G ↔ C, A ↔ T ). We assume that domains have been chosen to be non-interfering,
so that each domain only binds to its complement. Domains are divided into toeholds
(drawn in black in figures and denoted by a caret in the text), which are sufficiently
short that they bind reversibly to their complements, and long domains (drawn in grey
in figures), which are sufficiently long that they do not spontaneously unbind from their
complements. Toeholds are identified by a caret, for example tˆ and tˆ∗.

Figure 1b illustrates the fundamental reactions involved in DNA strand displacement,
in which a single strand of DNA interacts with a multi-strand complex, which we call
a gate. In reaction (i), the input strand binds reversibly to the gate via the toehold tˆ.
The next long domain on the input strand matches the neighbouring domain on the gate
structure, which allows the remainder of the input strand to continue binding to the
gate across the x reaction, as in the strand displacement reaction (ii). In this reaction,
the input strand completely displaces another strand from the gate. (We refer to this
displaced strand as unreactive because it contains no toeholds, and we require that the
only exposed complementary domains are toeholds.) Since the remaining domains also
match, the input strand can displace the y domain from the input gate, in a reversible
branch migration reaction (iii). Finally, when the output strand is only bound to the gate
by the toehold uˆ, the output strand may unbind, as in reaction (iv), which is reversible
because the output strand may rebind to the gate via the exposed toehold uˆ.
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Fig. 2. DNA strand and gate structures, and their translation to abstract data types. Examples are
from [9]. (a) An upper strand. (b) A gate made by joining two segments along their lower strand.

Despite their apparent simplicity, strand displacement reactions like those outlined in
Figure 1b are capable of rich behavior. Since the output strand produced by one strand
displacement reaction may serve as the input to another reaction, strand displacement
systems may be scaled up to produce more complex circuits. Our goal is to formalize
these structures and their reactions, at various levels of detail.

3 Modelling DNA Structures

We consider the class of DNA structures introduced in [6]: either single strands or
multi-strand gates. For user convenience, we distinguish between upper and lower
strands. A gate is made up of one or more segments, which consist of a double-stranded
section of one or more complementary domains and possible single-stranded overhang-
ing regions. A segment is connected to its neighbour by joining either the upper or the
lower strand. These structures are translated to the following ML data types:

type domain = Toe of (string * bool) | Long of (string * bool)
type strand = Upper of domain list | Lower of domain list
type segment = Seg of domain list * domain list * domain list

* domain list * domain list
type gate = Single of segment

| LowerJoin of segment * gate
| UpperJoin of segment * gate

In the case of domains, the string represents the name of the domain and the bool
represents whether that domain is complemented. The translation of DNA structures
into these data types is illustrated in Figure 2. Note that if two segments are joined
across an overhang, then there are multiple ways to express the resulting structure:
hence the representation is not unique. Therefore, we normalize structures to a common
representation by gathering overhangs on joining strands, using the following functions

let normLower Seg(L1,L1’,S1,R1,R1’) Seg(L2,L2’,S1,R2,R2’)
= (Seg(L1,L1’,S1,R1,(R1’@L2’)),Seg(L2,[],S1,R2,R2’))

of type segment -> segment -> (segment * segment), and a corresponding
function normUpper for upper strand joins. By applying the appropriate normaliza-
tion function to each segment join in the gate structure, we obtain a canonical gate
representation.
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Fig. 3. Enumerating DNA reactions, using the example species from Figure 2. (a) An upper strand
binding to a single segment. (b) An upper strand binding to a multi-segment gate, which is in-
ferred from the segment-level interaction.

4 Compiling DNA Reactions

To analyze the dynamic behavior of DNA strand displacement systems it is necessary
to enumerate the interactions between the species. We achieve this by defining a com-
piler that takes a set of initial DNA species as input and produces the set of all possible
generated species and all possible reactions that could occur. This enables the dynamic
behaviour of a strand displacement system to be simulated before one attempts a labo-
ratory implementation. We begin by defining a type for reactions:

type species = Strand of strand | Gate of gate
type reaction = Reac of species list * float * species list

The structures of the abstract syntax trees for the DNA strands and gates guide the defi-
nition of the functions that enumerate reactions—consider the problem of enumerating
all possible reactions between a strand and a gate. A free upper strand will only bind
to the exposed lower single-stranded parts of a gate, and only then if a complementary
pair of toeholds are present. As in the definition of the structure normalization func-
tion described above, the basic approach here is to write a “segment-level” compilation
function that enumerates all possible ways that a strand can interact with a particular
segment:

strandBindsToSegment : strand -> segment -> segment list

This function returns a list of all segments that could result from the binding of the
strand in question to the segment, as shown in Figure 3a. Using a custom map-like
functional that collects all the segments that result from the binding of a particular
strand at any point along the gate struture, we can define a compilation function that
produces all possible reactions between the strand and the gate, as shown in Figure 3b:

strandBindsToGate : strand -> gate -> reaction list

Note that these reactions will produce a new gate in which the incoming strand is just
bound by the toehold, since this function only considers the binding reaction.

The unimolecular reactions are strand unbinding, branch migration and strand dis-
placement. These can be enumerated similarly, using segment-level compilation func-
tions that are then mapped across the gate structure.
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strandUnbindings : segment -> (strand * segment) list
branchMignUpper : segment -> segment -> (segment * segment) option
strandDispUpper : segment -> segment -> (segment * segment) option

Strand unbinding reactions can be identified at the single segment level, but branch
migration and strand displacement reactions occur across the boundary between two
neighbouring segments, hence the branchMignUpper and strandDispUpper func-
tions require two segments as arguments. Note that we have only presented signatures
for functions to calculate branch migration and strand displacement reactions on the
upper strand of a gate. This is because the set of possible DNA reactions is closed un-
der a “mirror” operation which swaps the top and bottom strands, so we only need to
define enumeration functions for the top strand and use mirroring to check for possible
reactions on the bottom strand.

To enable modelling at various levels of detail it is desirable to compile reactions at
different levels of abstraction, defined in [6]:

type absLevel = Detailed | Finite | Default | Infinite

We achieve this by categorizing the classes of reactions as fast or slow, depending on
the desired level of abstraction. Strand binding is always a slow reaction, and any fast
reactions that may occur after a slow reaction are simply merged with the slow reaction
to produce a single reaction. In all but the most detailed levels of abstraction, branch
migration reactions (reaction (iii) from Figure 1b) are assumed to happen so quickly
that we use a structural congruence that identifies gates up to branch migration.

In addition, we have implemented reaction rules to enable two gates to interact end
to end, forming linear heteropolymers that may be used to design DNA strand displace-
ment stack machines [10,11], and to allow modelling of “crosstalk” reactions to study
failure modes of DNA circuits [6].

5 Discussion

While the use of domain-specific languages for formal modelling of biological pro-
cesses is a well-established technique [12], the design of engineered biochemical sys-
tems can also benefit from domain-specific languages for specification and simulation.
In addition to DSD, other such languages include GEC [13] and gro [14]. We believe
that this is a fruitful new direction for research in programming languages.

Our experience developing the DSD compiler in F# convinced us that functional lan-
guages are an ideal implementation vehicle for this kind of domain-specific language,
since in DNA nanotechnology, structure and function are closely linked. Base-level rep-
resentations of DNA secondary structure based on strings [15] or numeric encodings
[16] are often too detailed, meaning that some abstraction of structures into high-level
features is typically required. Abstract data types provide a convenient means of repre-
senting DNA secondary structures at the level of domains, since each DNA structure is
reflected in the structure of the abstract syntax tree of the corresponding value. Further-
more, the ability to pattern-match on these values and recurse over them allows concise
definitions of the structure-function relationship.
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The DSD language has been used to develop a number of DNA strand displacement
systems [1,2,17]. In particular, the strand displacement digital logic circuit that was
used to compute the square roots of four-bit binary numbers [1] consists of 74 initial
species (a total of 130 DNA strands). This illustrates the scale of systems that can be
modelled using the DSD language and constructed in the laboratory. Our implemen-
tation can be used online via the Visual DSD web server [18], which is accessible at
http://research.microsoft.com/dna/with accompanying documentation.
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Abstract. This paper presents two applications of the ASP-Prolog system, one
of the earliest modular logic programming frameworks for integrating ASP and
traditional Prolog/CLP reasoning. Both applications represent significant chal-
lenges to existing ASP technologies and share some common traits—mostly re-
lated to the inadequacy of the ground-and-solve approach. The first application
stems from several practical experiences in using state-of-the-art Answer Set Pro-
gramming (ASP) solvers to tackle combinatorial problems in different domains
(e.g., bioinformatics, distributed constraint problem solving). A recurrent issue is
the presence of computationally tractable subproblems that turn out to be chal-
lenging, or even practically infeasible, for current ASP technologies. The second
application of ASP-Prolog is its use to compute the equilibrium semantics of
Multi-Context Systems (MCS).

1 Introduction and Motivation

Answer Set Programming (ASP) [15,13] is a declarative programming paradigm that
has gained a prominent role in a variety of application domains, especially in domains
with knowledge-intensive applications and combinatorial problems in high complexity
classes. An important driving force behind the success of ASP is the continuous devel-
opment and improvement of state-of-the-art ASP solvers, that has led to several highly
competitive ASP solvers (e.g., CLASP1). The majority of ASP solvers employ heuristic
search in computing answer sets. To facilitate the use of variables in ASP programs,
ASP solvers use a two-stage approach, referred to as ground-and-solve, in computing
answer sets of programs with variables. The program is first grounded—by replacing
variables with all possible variable-free terms—and the ground program is used for the
computation of solutions. ASP solvers require the program resulting from grounding
to be finite. In order to accomplish this, ASP solvers impose different syntactical re-
strictions on programs with variables. These restrictions may disallow certain problem
encodings: such encodings might represent natural ASP representations of problems,
but violate some of the syntactical restrictions imposed by the ASP solvers.

There have been attempts to integrate ASP with other programming environments
for different purposes (see [7] for a discussion), including early attempts to integrate
ASP and Prolog (e.g., [7,4]). The ASP-Prolog system [7,17] represents one of the first

1 http://potassco.sourceforge.net/
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systems proposed to provide an embedding of ASP within Prolog. ASP-Prolog is an ex-
tension of a modular Prolog system, which enables the integration of Prolog-style rea-
soning with ASP. The overarching goal of ASP-Prolog is to provide a platform for the
integration of heterogeneous knowledge bases and an alternative computation paradigm
to ASP (goal-oriented computation vs. model computation). In general, an ASP-Prolog
program is a collection of modules, where each module can be declared to contain ei-
ther Prolog code or ASP code. Each module provides an interface which allows the
module to export predicate definitions and import definitions from other modules. In
the current implementation, the root of the module hierarchy is expected to be a Prolog
module, that can be interacted with using the traditional Prolog-style query-answering
mechanism. ASP-Prolog has been used in several applications (e.g., [14,21]).

The objective of this paper is twofold. On one hand, we intend to identify a class of
interesting problems that are challenging for existing ASP systems—and ASP-Prolog
is used to illustrate a technique that can address such problems. On the other hand, the
paper shows how the relatively simple features of ASP-Prolog can provide elegant and
effective solutions in challenging domains.

2 Background: Logic Programming, ASP-Prolog, and MCS

Logic Programming. A logic program Π is a set of rules of the form
c ← a1, . . . , am, not am+1, . . . , not an

where 0≤m≤n, each ai is a literal of a propositional language2 and not aj , m<j≤n,
is called a negation-as-failure literal (or naf-literal). c can be a literal or omitted. When
n = 0, the rule is called a fact. When c is omitted, the rule is a constraint. For a rule
r, pos(r) denotes the set {a1, . . . , am} and neg(r) is the set {am+1, . . . , an}. A set of
literals X is consistent if there is no atom a s.t. {a,¬a}⊆X . A rule r is satisfied by X
if (i) neg(r) ∩X �= ∅, (ii) pos(r) \X �= ∅, or (iii) c ∈ X .

Let Π be a program. For a consistent set of literals S, the reduct of Π w.r.t. S,
denoted by ΠS , is the program obtained from the set of all rules of Π by deleting (i)
each rule that has a naf-literal not a in its body with a ∈ S, and (ii) all naf-literals in the
bodies of the remaining rules. S is an answer set of Π [10] if it satisfies the following
conditions: (i) If Π does not contain any naf-literal then S is the minimal set of literals
satisfying all rules in Π ; and (ii) If Π contains some naf-literal then S is an answer
set of Π if S is the answer set of ΠS . For convenience of notation, we will use some
extensions of ASP that have been proposed—such as choice atoms as defined in [20],
that can occur in a rule wherever a literal can, and aggregate literals.

We will focus on programs that admit a splitting sequence3 [11]. For a program Π ,
a set of literals S is a splitting set of Π if for every rule r of Π , if head(r) ∈ S then
pos(r) ∪ neg(r) ⊆ S. A sequence of splitting sets 〈Si〉∞i=0 of Π is a splitting sequence
of Π , if Si ⊆ Sj for i ≤ j and

⋃∞
i=0 Si is the set of literals occurring in Π .

ASP-Prolog. The ASP-Prolog system, used in this paper, has been originally described
in [7,17]. It provides a modular structure and a set of predicates to enable the interaction

2 A rule with variables is viewed as a shorthand of the set of its ground instances.
3 For simplicity of the presentation, we consider only splitting sequences with ordinal ω.
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between Prolog modules and ASP modules. Among the various components (see [17]),
ASP-Prolog’s interface includes:

• use asp(+ASPModule, +PModule, +Parameters): The Prolog module
PModule is created, providing predicates to access the answer sets of the ASP
program ASPModule with the parameters specified in Parameters. The new
module contains the literals entailed by the skeptical semantics of ASPModule
and has sub-modules which encode the answer sets of ASPModule. PModule
provides the names of the models containing the answer sets through atoms of the
form model/1. PModule and the Parameters arguments are optional.

• assertnb(ASPModule, Progs) and retractnb(ASPModule, Progs): these
two predicates are extended versions of the assert and retract predicates
of Prolog, designed to operate on modules associated to ASP programs. Their ef-
fects are to add and remove, respectively, the clauses specified in Progs to the
ASPModule and create new modules analogously to use asp(ASPModule).

Multi-context Systems (MCS). Heterogeneous nonmonotonic multi-context systems
(MCS) have been introduced in [3]. A logic is a tuple L = (KBL, BSL, ACCL)
where KBL is the set of well-formed knowledge bases of L—each being a set of
formulae. BSL is the set of possible belief sets; each element of BSL is a set of
syntactic elements representing the beliefs L may adopt. Finally, ACCL : KBL →
2BSL is a function specifying the “semantics” of L by assigning to each element of
KBL a set of acceptable sets of beliefs.

Using the concept of logic, we can introduce the notion of multi-context sys-
tem. A Multi-Context System (MCS) M = (C1, · · · , Cn) consists of contexts Ci =
(Li, kbi, bri), (1 ≤ i ≤ n), where Li = (KBi, BSi, ACCi) is a logic, kbi ∈ KBi

is a knowledge base, and bri is a set of Li-bridge rules of the form:
s ← (c1 : p1), · · · , (cj : pj), not (cj+1 : pj+1), · · · , not (cm : pm)

where 1≤ck≤n, pk is an element of some belief set of Lck , 1≤k≤m, and kb ∪
{s}∈KBi for each kb ∈ KBi. Intuitively, a bridge rule r allows us to add s to a
context, depending on the beliefs in the other contexts. Given a bridge rule r, we will
denote by head(r) the part s of r. The semantics of MCS is described by the no-
tion of belief states. Let M = (C1, · · · , Cn) be a MCS. A belief state is a sequence
S = (S1, · · · , Sn) where each Si is an element of BSi.

Given a belief state S = (S1, · · · , Sn) and a bridge rule r, we say that r is applicable
in S if pi ∈ Sci for each 1 ≤ i ≤ j and pk �∈ Sck for each j + 1 ≤ k ≤ m.

The semantic of a MCS M is defined in terms of particular belief states (S1, · · · , Sn)
that take into account the bridge rules that are applicable with respect to the given belief
sets. A belief state S = (S1, · · · , Sn) of M is an equilibrium if, for all 1 ≤ i ≤ n, we
have that Si ∈ ACCi(kbi ∪ {head(r)|r ∈ bri is applicable in S}).

Example 2.1. Let M1 = (C1, C2) where Ci = (Li, kbi, bri) for i = 1, 2, where Li is
the logic of programming under answer set semantics with kb1 = {a ← not b; b ←
not a} and br1 = {a ← (2 : d)}; and kb2 = {c ← not d; d ← not c} and br2 = {d ←
(1 : b)}. It is possible to show that M1 has two equilibria ({a}, {c}) and ({a}, {d}).
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3 Decomposable Programs

3.1 Use Cases

Use Case #1: Optimal Communication Orders between Constraint Nodes. Let
us consider a distributed constraint satisfaction problem (DisCSP) [22]. A DisCSP
is a tuple (X ,D, C,A), where X = {x1, . . . , xn} is a finite set of variables, D =
{D1, . . . , Dn} is a corresponding set of finite domains, C is a set of binary constraints
Ci,j (on the variables xi and xj) and A = {A1, . . . , Ak} is a set of agents. Each agent
Ai owns a subset XAi of the variables of X , s.t. XA1 , . . . ,XAk

is a partition of X . A
solution to a DisCSP is a complete variable assignment satisfying all constraints.

A large number of DisCSP algorithms rely on implementing an asynchronous depth-
first search (DFS). Each agent is placed in an ordering relation; the DFS is reproduced
by having each agent communicate their variable instantiations towards the children
agents, and in case of failure propagate backtracking to their parent agent. This assumes
an ordering ≺ among agents—where Au≺Av denotes that agent Au is the parent of Av

in the DFS tree. The ordering should ensure that if there is a constraint Ci,j such that
xi∈XAu and xj∈XAv , then either Au≺∗Av or Av≺∗Au (≺∗ is the transitive closure of
≺). Algorithms (e.g., [23]) have been proposed to compute such orderings.

A more complex, but realistic, scenario originates from the assumption that the com-
munications among agents have non-uniform costs. Let us denote with ω(Au, Av) the
communication cost between agents Au and Av. In this case, the goal is to determine
an ordering that will minimize the maximum communication cost among agents. The
communication cost between agents Au and Av with respect to an agent order ≺, de-
noted by ζ≺(Au, Av), such that ζ≺(Au, Au) = 0 for any agent Au, and ζ≺(Au, Av) =
max{ω(Au, x) + ζ≺(x,Av) | Au ≺ x, x ≺∗ Av} for any two agents Au �= Av such
that Au ≺∗ Av. The overall cost is ζ(≺) = max{ζ≺(Au, Av) | Au ≺∗ Av}.

The problem admits an elegant encoding in ASP. Let us assume that the facts of
the form edge(X,Y ) are used to describe the constraint graph of a DisCSP—where
edge(X,Y ) states that there exists a constraint containing variables owned by X and
Y . Similarly, let comm(X,Y,C) denote that the non-negative cost of communication
between agents X,Y is C. The ordering ≺ and the DFS tree can be generated by:4

1{root(X) : node(X)}1. {order(X,Y )} ← node(X), node(Y ), X �=
Y, not root(Y ).

The ≺∗ relation can be described by a simple transitive closure:
order s(X,Y ) ← order(X,Y ). order s(X,Z) ← order(X,Y ), order s(Y,Z).

The following constraints guarantee the DFS conditions:
← order(X,Y ), order(Y,X). ← node(Y ), 2{order(X,Y ) : node(X)}.
← node(X), not root(X), not has ancestor(X).

← edge(X,Y ), {order s(X,Y ), order s(Y,X)}0.
We can associate costs to agents based on their distance from the root of the DFS:

cost node(X, 0) ← root(X).

cost node(Y,C1 + C2) ← not root(Y ), order(X, Y ), comm(X, Y,C1), cost node(X,C2).

leaf cost(X,C) ← cost node(X,C), leaf (X).

4 We omit the definition of trivial predicates like leaf.
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and the cost of the resulting DFS tree is
tree cost(C1) ← C1 = #max[leaf cost( , C) = C], C1 > 0.

Note that the definition of tree cost makes use of an aggregate (#max). Our objective is
to determine DFSs with certain properties, e.g., with minimal cost. Observe that this
program has a splitting sequence S0, S1, S2 where:

(i) S0 consists of literals of the form node(X), edge(X,Y ), leaf (X), root(X),
order(X,Y ), and order s(X,Y );

(ii) S1 consists of S0 and the literals relating to the cost (cost node(X,Y ) and
leaf cost(X,Y )); and

(iii) S3 consists of S2 and the other literals.

Intuitively, this splitting sequence represents the steps involved in the process of solving
the problem: (i) create an ordering among the nodes; (ii) compute the cost of each leaf
of the specified order; (iii) compute the cost of the tree as the maximal cost of the leaves.

The difficulty posed to ASP solvers by the above program lies in the rules defining
the cost of the nodes. Without bounding the cost C2 of the rule, the grounding process
does not terminate in any reasonable amount of time. Limiting the cost C2 to be the
sum of all (positive) costs allows CLASP to solve instances that have a small overall
communication cost between nodes (e.g., when the the bound to C2 is smaller than
1, 000). The grounder needs to ground all combinations of the second rule in this group
and this number increases with the bound. We observe that the system ASP{f} [2] could
be useful in this situation. An alternative approach to using functions is to inform the
grounder about the steps in computing the answer sets of the program via an extra
parameter (i.e., effectively exposing the stratification to the grounder):

cost(X, 0, 1) ← root(X).

cost(X,C1 + C2, T + 1) ← level(T ), not root(X), order(Y,X), comm(Y,X,C1),

cost(Y,C2, T ).

leaf cost(Y,C) ← leaf (Y ), cost(Y,C, T + 1), level(T ).

where level is a predicate defining the level in a tree, which can be at most the number
of nodes in the graph. With this change, CLASP is able to identify that C2 can only take
a small set of possible values and has no problem with the value of the weights. The
potential cyclic dependency between cost(X,C1+C2) and cost(Y,C2) is now
a single way dependency (i.e., first depends on the second). Although the method of
breaking dependencies works in this problem, it does not work in the next example.

Use Case #2: Approximated Supertree Computation. We consider phylogenies [12]
as trees where each internal node has at least two children. We will assume the tradi-
tional terminology for trees. For a tree T , let L(T ) denote the set of leaves of T . An
internal edge is an edge connecting two internal nodes, one of which can be the root. A
cluster is the set of all the leaves that are descendants of the same internal node. Let us
denote with MRCA(S) the most recent common ancestor of the set of leaves S.

For two sets of leaves A,B ⊆ L(T ), A <T B if MRCA(A) is a descendant of
MRCA(B). A tree T ′ is obtained from T by contraction if T ′ can be obtained from T
by contracting some internal edges. Let A ⊆ L(T ). The subtree of T with the leaf set
A is the subtree of T whose root has A as its cluster; we refer to it as the subtree of
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T induced by A, and denote it with T |A. A tree T displays a tree t if t is an induced
subtree of T , or can be obtained from an induced subtree by contraction.

Let T be a collection of trees and S =
⋃

T∈T L(T ). A supertree method takes T
as input and returns a tree T with the leaf set S such that T displays each element of
T [18]. Several popular algorithms to compute supertrees have been proposed; in this
section, we consider a rough approximation of the method in [19]. The approximation
has been developed to quickly generate putative supertrees as part of the CDAOStore
project [16]. For a tree T and a set of leaves S, pruned(T, S) denotes the tree obtained
from T by: (1) Deleting all the subtrees of internal nodes whose set of leaves is a subset
of S, and the edges coming into these internal nodes; (2) Deleting all the remaining
leaves appearing in S and the edges leading to such leaves; and (3) Simplifying the
remaining tree by removing all internal nodes which have only one child. A weighted
tree T is a tree with an associated weight w. Given T , a weighted graph ST is defined
as follows: (1) The nodes of ST are the leaves of T ; (2) Nodes a and b are connected if
a and b are in a proper cluster in one of the trees in T (i.e., if there is a tree in T where
MRCA(a, b) is not the root of the tree); (3) The weight of an edge (a, b) in the graph
ST is the total weight of all trees in which a and b are in a proper cluster.

The APPROXSUPERTREE algorithm is described in Algorithm 1. This program runs
in polynomial time in the size of the trees. The APPROXSUPERTREE algorithm can be

Algorithm 1. APPROXSUPERTREE(T )

Require: a set of k trees T , with leaves set S =
⋃

T∈T L(T ) = {x1, . . . , xn}.
1: if n = 1 or n = 2 then
2: return a single node labeled by x1 or x1 and x2

3: end if
4: construct ST
5: if ST is connected then
6: Let Ecut be the set edges of minimal weight of ST
7: ST /Ecut is obtained from ST by deleting all edges in Ecut

8: Replace ST with ST /Ecut

9: end if
10: Let S1, . . . , Sk be the components of ST
11: for each component Si do
12: Ti =APPROXSUPERTREE(T |Si), where T |Si = {pruned(T,L(T ) \ Si) | T ∈ T }
13: Construct a new tree T ′ by connecting the roots of the trees Ti to a new root r
14: end for
15: return T

implemented by an ASP program with the following basic components that implement
one iteration of the algorithm. To fully implement this algorithm, the predicates need to
be extended with an extra parameter denoting the iteration step.
• Encoding trees: a tree is described by a set of atoms of the form edge(t, n1, n2) and

a fact tree(tree name,weight). Rules for defining node, root, leaf, ancestor (anc),
etc. can be easily defined based on these predicates and are omitted to save space.

• Code for computing the pruned tree: this code computes the tree pruned(T, L(T ) \
Si) (Line 12, Algorithm 1). We assume that the tree T and the pruned set of
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leaves S are given. Elements of S are specified by member(X,S). First, we de-
fine some descendants out(T, S,N) which is true whenever N—a non-leaf in the
tree T—has a descendant that does not belong to the pruned set S.

some descendants out(T, S,N) ← pruned set(S), node(T,N), leaf (T,N1),

not member(N1, S), ancestor(T,N,N1).

We then identify the nodes that should be deleted. These are the nodes whose leaf-
descendants belong to the pruned set.

delete node(T, S,N) ← pruned set(S), node(T,N), not leaf (T,N),

not some descendants out(T, S,N).

The above predicates are used to define the predicate simplify node(T, S,N), which
says that a non-leaf node that has not been deleted should be simplified if it has only
one child that is not deleted.

simplify node(T, S,N) ← pruned set(S), node(T,N), not leaf (T,N),

not delete node(T, S,N),

NC = #count{edge(T,N,N1) : not delete node(T, S,N1)

: not member(N1, S)}, NC < 2

A node remains after pruning if it is not deleted, not a member of the pruned set, and
not simplified. This is defined by the following predicate.

is new node(T, S,N) ← pruned set(S), node(T,N), not member(N,S),

not delete node(T, S,N), not simplify node(T, S,N).

This allows us to define the new tree pruned(T, S), that is the result of pruning S
from the tree by identifying the edges of the tree.

ptree edge(pruned(T, S), N1, N2) ← pruned set(S), tree(T,W ), ancestor(T,N1, N2),

is new node(T, S,N1), is new node(T, S,N2), NA < 1,

NA = #count{ancestor(T,NM,N2) : ancestor(T,N1, NM)

: not simplify node(T, S,NM)}.
This rule says that there is an edge between two nodes N1 and N2 in the tree, after
pruning, if N1 is an ancestor of N2 and all the ancestors of N2 which are descendants
of N1 have been simplified.

• Code for computing the connected graph of leaves of a set of trees: this code creates
the weighted graph ST (Line 4, Algorithm 1). We first identify the cluster of a tree.
Two leaves A and B of the tree T with the weight W are in a proper cluster if they
share the same ancestor which is not the root.

in cluster(T,A,B,W ) ← tree(T,W ), leaf (T,A), leaf (T,B), node(T,N),

not root(T,N), ancestor(T,N,A), ancestor(T,N,B).

Next we define the edge of the graph. An edge of the graph is an edge between two
nodes in the same cluster. The weight of the edge is the sum of all the weights of the
corresponding trees in which the nodes appear in the same cluster.

graph(A,B,WG) ← leaf (T,A), leaf (T,B),

1{in cluster(T1, A,B,W ):tree(T1, )},WG=#sum[in cluster( , A,B,W ) = W ].

• Code for constructing the supertree after one iteration: this code accomplishes the
task of computing Ti (Line 12, Algorithm 1). This starts with the construction of
the reduced graph by eliminating edges with minimal weight. To achieve this, we
compute the minimal weight (WM ).

min edge(WM) ← WM = #min[graph( , ,W1) = W1].
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The reduced graph will contain edges whose weight is greater than the minimal
weight. We also introduce the predicate not reduced(A), to indicate that A is the
vertex of at least one edge that is not eliminated.

3{not reduced(A), not reduced(B), reduced graph(A,B,W )}3 ←
graph(A,B,W ),min edge(WMin),WMin < W.

If all edges going out from a vertex are eliminated then the vertex is itself a compo-
nent of the reduced graph. We have the following rule to characterize this.

reduced graph(A,A, 0) ← graph(A,B,W ),

min edge(WMin),WMin == W,not not reduced(A).

The next step in computing the supertree is to identify the components of the reduced
graph and select a representative for each component. The rule

{representative(A)} ← leaf (T,A).

defines that only leaves could be selected to be representatives. Since each compo-
nent has one and only one representative, we add the following rules:

connected(A,B) ← 1{reduced graph(A,B, ), reduced graph(B,A, )}.
connected(A,B) ← reduced graph(A,C, ), connected(C,B).

is connected(A) ← representative(B), leaf (T,A), connected(A,B).

is connected(A) ← representative(B), leaf (T,A), connected(B,A).

← leaf (T,A), not is connected(A).

← representative(A), representative(B),A �= B, connected(B,A).

The first four rules define the connectivity relationship, based on the edges of the
reduced graph. The next rules guarantee that exactly one representative is selected
for each component. Having computed the components and their representatives, the
supertree can be derived using the following rules. To identify the number of nodes
in a component, we define the degree of a node using the rule:

degree(A,D) ← representative(A),D = #count{connected(A, )}.
If the component is a singleton then it will be connected to the root, which is repre-
sented by the name of the pruned set.

edge s(S,A) ← representative(A),degree(A,1), pruned set(S).

If the component has exactly two elements, then a new root will be created and
connected to the root. The new root is connected to the two leaves. In the next rule,
@newName(S,A) creates a new constant that is a direct descendant of the pruned
set and is the parent of the two leaves.

3{edge s(S,N), edge s(N,A), edge s(N,B)} ← representative(A), degree(A,2),

connected(A,B), A �= B, pruned set(S),N := @newName(S,A).

If the component has more than two elements then a new root is created and the
algorithm computes the pruned set for the next iteration.

2{edge s(root,N), generated pruned set(N,A)} ← representative(A),

degree(A,D), D > 2, pruned set(S),N := @newName(S,A).

Here, generated pruned set(N,A) records a new pruned set, named N , related to
the representative A. The pruned set and its members are defined in the next rules.

new pruned set(N) ← generated pruned set(N,A).

new member(B,N) ← generated pruned set(N,A), ptree leaf (T,B),

not connected(A,B).

Observe that ptree leaf is defined in a similar fashion as leaf .
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Let us point out the following aspects that prevent an effective use of ASP for this
algorithm. The algorithm needs to be repeated until all components contain either one
or two leaves. In each iteration, the computation needs to identify the set of leaves that
will be pruned for the computation of the pruned trees. Given the set of leaves that will
be pruned, the pruned trees are uniquely identified. On the other hand, if the set of leaves
is unknown, the ASP solver will need to guess, i.e., it will have to ground all possible
combinations of the leaves of the trees. Thus, the proposed encoding can only deal
with problems with very few leaves (e.g., less than 10). A simple example commonly
encountered in the literature (12 leaves) cannot be solved. We observe that the full ASP
implementation of this algorithm also possesses a splitting sequence corresponding to
the iteration steps that the algorithm must go through in order to compute the supertree.

Use Case #3: Union of All MinCut Sets of a Weighted Graph. A MinCut of a
weighted graph is a set of edges of minimal weight that disconnects the graph. The
problem we consider is to compute the union of all MinCuts of a graph (useful, e.g., for
supertree computations). Unlike the previous problems, this problem has a polynomial
time algorithm but does not seem to have a straightforward ASP encoding.

If we only need to compute one MinCut, the ASP encoding is simple: generate a cut
and minimize its weight. The problem is no longer trivial when we need to generate
the union of all MinCuts. One can try to index the possible MinCuts and use multiple
minimization statements. Since the minimal weight is unique, one would have to add a
constraint that the weight of the cuts is unique. This encoding faces several problems,
e.g., it requires the number of MinCuts and the solver will try to find an answer set
where all weights are equal—which is not necessarily the minimal weight.

An alternative approach relies on the observation that, given a graph G = (V,E), an
edge e ∈ E is in at least one MinCut of G iff c(G) = c((V,E\{e}))+w(e), where c(G)
is the cost of the MinCut of G and w(e) is the weight of edge e. This can be captured
by distinct sets of rules that compute one MinCut for G and for each (V,E \ {e}), plus
a final rule that checks which edges have the above property. In this case, grounding is
not an issue, the repeated minimizations required to compute MinCuts lead to a very
large computation time (no results after 2 hours), while the individual sets of rules
can be executed in less than one second. Also in these cases, an interleaved grounding
and solving would help, by allowing the accumulation of MinCuts from iteration to
iteration, and combining the weights of MinCuts at the end to determine relevant edges.

3.2 ASP-Prolog for Decomposable Programs

Interleaving Grounding and Computation. The above three examples highlight a
real limitation of ASP solvers that employ the traditional ground-and-solve approach.
All three problems share a property that each program possesses a splitting sequence
corresponding to the steps that can be used in computing the answer of the problem.
This is characterized by the splitting sequence theorem in [11]. The theorem shows that,
for each answer set A of a program Π that has a splitting sequence 〈Si〉i≥0, there exists
a decomposition of A in a sequence of sets 〈Ai〉i≥0, such that Ai’s can be computed
step-by-step in the following fashion: (1) Compute an answer set A0 of the bottom
program bS0(Π) that consists of all rules in Π whose atoms belong to S0; (2) For each
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i ≥ 0, compute an answer set Ai+1 of the program eSi(bSi+1(Π) \ bSi(Π),
⋃

j≤i Aj).
In this definition, eS(Π,X) is a program containing rules determined as follows: (a)
remove all rules r ∈ Π such that either there is a positive atom in the body belonging to
S but not X or a negative atom belonging to S and X ; and (b) removing all occurrence
of a or not a for a ∈ S from the remaining rules. We refer to programs that admit a
splitting sequence as decomposable programs.

Decomposable programs can be seen as a sequence of lp-functions [9] 〈Πi〉i≥0 where
each lp-function Πi accepts a set of input predicates Ini and defines a set of output
predicates Outi, such that Ini ⊆

⋃
j<i Outj for every i. Under this view, decompos-

able programs are well-suited to encode iterative algorithms or dynamic programming
algorithms, that frequently occur in a variety of application domains.

Observe that every stratified program, whose answer sets can be computed in poly-
nomial time in the size of the program, is decomposable—while the converse does not
necessarily hold. Thus, computing answer sets of a decomposable program is not nec-
essarily a simple task. However, the computation of an answer set of a decomposable
program could potentially be done more efficiently, if the splitting theorem was applied
in the process. This is because the size of the program Πi depends not only on the orig-
inal program Π , but also on the answer sets computed up to that point (i.e.,

⋃
j<i Aj).

This requires the interleaving of grounding and solving. By interleaving grounding and
solving, some problems that cannot be solved with current ASP solvers may become
efficiently solvable—as the examples illustrated earlier in this paper.

This type of computation is quite natural to encode in the context of ASP-Prolog.
Assume that the program Π has been decomposed into a list L of components. The
following Prolog predicate can be used in ASP-Prolog to compute answer sets of Π .

solve([], Out, Out).

solve([H |T ], In,A) ← use asp(H,H, In),H : model(M), collect facts(M,F ),

solve(T, F,A).

To compute answer sets of the program Π with the list of components L, the goal
solve(L, [], A) should be issued. The predicate collect facts(M,F) col-
lects in a list F all elements of the answer set named M. Observe that the above imple-
mentation requires a prior decomposition of the program. The implementation could be
improved by introducing a module that analyzes the program and automatically identi-
fies the splitting sequence—a topic of future work.

Computing Iterative Algorithms. We will continue with a general methodology for
the implementation of iterative algorithms such as the supertree computation algorithm
detailed earlier. Observe that this type of algorithm can be characterized by a sequence
of values F (0), F (1), . . . , F (n), . . .. The computation stops when a boolean condition,
denoted by H , is satisfied. A generic procedure for computing iterative algorithms can
be roughly described as follows: (1) initialize settings and initialize counter i to 0; (2)
while the halting condition H is not satisfied, compute F i(v) using input F i−1(v) and
increment i; and (3) return F i(v).

Assume that the initialization (step (1) and the body of the loop in (2) can be
implemented by the ASP programs R and Q, such that Q has a splitting set S.
This assumption is, for example, met in the supertree computation problem—thus,
we can view algorithm 1 as a typical iterative algorithm and its implementation
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satisfies this condition—where the splitting set S of Q contains all but the atoms of
the form new pruned set(n), new member(b, n), and generated pruned set(n, a)
in Q. Under the above assumptions, we can use the following steps to implement the it-
erative algorithm in ASP: (a) add t as the last parameter for every predicate in S; (b) add
t+ 1 as the last parameter for every predicate not in S; and (c) add the declaration that
t is a constant in Q. The following pseudo code realizes the algorithm in ASP-Prolog:

solve(Q,R,A) ← solve(Q,R,A, 0).

solve(Q,R,A, 0) ← use asp(R,R, []), R : model(M), create file(M,File),

(satisfied(M,H) → A = File; solve(Q,A, F ile, 1)).

solve(Q,A, Prev, T ) ← T > 0, create string(Paras,T, Prev),

use asp(Q,Q, [Paras]),Q : model(M), create file(M,File),

(satisfied(M,H) → A = File; solve(Q,A, F ile, T + 1)).

In the above code, create string(Paras,T,Prev) creates a string of the
form ‘-c t=@T @M’ where @T (@M) is replaced by the value of T (Prev) respec-
tively; and the predicate satisfied(M,H) indicates whether the current answer set
(described by module named M) satisfies the halting condition H on Line 3. This code
is problem specific and needs to be instantiated by the programmer. A simple way to
achieve this can be realized by adding a rule of the following form

incomplete ← not H.

to the program Q. For instance, for the program computing the supertree, the rule
incomplete ← new pruned set(N).

can be used. In this case, the test satisfied(M,H) is equivalent to checking the
membership of incomplete in M. We have applied this method in solving the problem
of computing the approximated supertree. We should note that, with this method, we
were able to compute the solutions for all three problems described in the three use
cases. In particular, we can solve the largest problem for computing the supertree that
was discussed in the literature (two trees, with 41 leaves and 31 leaves, respectively).

Before we conclude this section, we would like to point out that there are easy ways
to facilitate an interleaving between grounding and solving using current ASP solvers
(e.g., using a scripting language). However, we believe that an off-the-shelf ASP solver
with this feature would have a much larger impact, as it would open ASP to other types
of applications that have not been considered so far. Furthermore, we observe that this
feature could be implemented in a similar fashion as the ICLINGO system (as a matter
of fact, it could be a minor modification of ICLINGO).

4 Computing Equilibria

In this section, we will present another challenging application of ASP-Prolog. We de-
scribe a system, called ASP-PrologMCS , for computing the equilibrium semantics of
multi-context systems (MCS). Observe that the previous applications are concerned
with one program that can be decomposed into a sequence of programs, whose answer
sets can be computed sequentially. The second application is concerned with a set of
inter-connected programs whose semantics (an equilibrium) is a sequence of models. In
many cases, these models might not be computed sequentially as in the first application.
Before we detail the implementation of ASP-PrologMCS let us discuss the algorithms
that can be used in computing the equilibrium semantics of a MCS.
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Let M = (C1, . . . , Cn) be a MCS, where the logic for each context is logic pro-
gramming under answer set semantics [10]. For each context Ci = (Li, kbi, bri) and
for each bridge rule r in bri, we introduce a new set of “tagged” atoms in the language
of Li, of the form t(ck, pk), for k = 1, . . . ,m and ck �= i. We define the program R(r)
that consists of the following rules (for k = 1, . . . ,m and ck �= i):

0 {t(ck, pk)} 1 ←
s ← t(c1, p1), . . . , t(cj , pj), not t(cj+1, pj+1), . . . , not t(cm, pm).

where (ci, pi) is replaced by t(ci, pi). We denote the second rule above by t(r). Let
Pi = kbi ∪

⋃
r∈bri

R(r) and MP = (P1, . . . , Pn). The set of literals of the form
t(k, p) occurring in Pi is denoted by Ti. For the MCS M1 in Example 2.1, we have that
T1={t(2, d)} and T2={t(1, b)}.

For a belief state S=(S1, . . . , Sn) of M , we define t(i, S)={t(j, p)|t(j, p) ∈
Ti and p ∈ Sj}. We can show that a belief state S=(S1, . . . , Sn) is an equilibrium of
M if Si∪t(i, S) is an answer set of Pi. Continuing with the MCS M1 in Example 2.1,
S=({a}, {d}) is an equilibrium of M1 because we have that t(1, S)={t(2, d)} and
t(2, S)=∅; in this case, {a}∪t(1, S) is an answer set of P1, and {d}∪t(2, S)={d} is an
answer set of P2. On the other hand, S=({b}, {d}) is not an equilibrium of M1. We can
observe that t(1, S)={t(2, d)} and t(2, S)={t(1, b)}; thus, {d}∪t(2, S)={d, t(1, b)}
is an answer set of P2, but {b}∪t(1, S)={b, t(2, d)} is not an answer set of P1.

Two answer sets Zi and Zj of Pi and Pj are compatible if: t(i, p) ∈ Zj iff p ∈ Zi

and t(i, p) ∈ Tj , and t(j, p) ∈ Zi iff p ∈ Zj and t(j, p) ∈ Ti. Again, consider the MCS
M1 in Example 2.1, {a} is compatible with {c}; {a, t(2, d)} is compatible with {d};
however, {a} is not compatible with {d}.

We can show that for a sequence of answer sets Z=(Z1, . . . , Zn) of (P1, . . . , Pn),
Z ′=(Z1 \T1, . . . , Zn\Tn) is an equilibrium of M if Zi is compatible with Zj for every
pair of i �= j. This enables a naive computation of the equilibrium in a generate-and-test
fashion: (i) Generate a belief state Z = (Z1, . . . , Zn) of (P1, . . . , Pn); (ii) Check for
compatibility of Z . This is the first algorithm that we implemented in ASP-PrologMCS .

The naive algorithm, however, requires an excessive amount of memory when deal-
ing with programs that have a large number of answer sets. We can exploit the compat-
ibility between answer sets of the programs Pi’s in the construction of an equilibrium
S = (S1, . . . , Sn) of M in an incremental fashion.5 Given a MCS M = (C1, . . . , Cn),
the algorithm needs to first compute MP = (P1, . . . , Pn) and then compute a sequence
of compatible answer sets Z = compatible(MP ). If Z is not a failure, then the
result will be S = (Z1 \ T1, . . . , Zn \ Tn). The function that computes a sequence
of compatible answer sets (compatible) is given in Algorithm 2. Observe that the
algorithm has two non-deterministic choices.

Both the naive and the incremental algorithms can compute MCS with arbitrary
topologies, and they can be easily implemented in ASP-Prolog. Before discussing this,
we consider some enhancements that take into consideration the topology of MCS. We
define the dependency graph GM = (VM , EM ) of a MCS M = (C1, . . . , Cn) as
follows:
◦ The set of vertices is VM = {1, . . . , n};
◦ (i, j) ∈ EM if (i : p) appears in the body of some bridge rule in brj and i �= j.

5 This is possible since M is reducible [3].
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Algorithm 2. compatible(MP )

1: Input: MP = (P1, . . . , Pn)
2: Nondeterministically select Z in compatible(P1, . . . , Pn−1)
3: Assume that Z = (Z1, . . . , Zn−1)
4: if Z �= fail then
5: Let Q1

i = {← not p | t(n, p) ∈ Zi} for i < n
6: Let Q2

i = {t(i, p) ←| t(i, p) ∈ Tn and p ∈ Zi} for i < n
7: Let Q3

i = {← t(i, p) | t(i, p) ∈ Tn and p �∈ Zi} for i < n

8: Pn = Pn ∪
⋃n−1

i=1 (Q
1
i ∪Q2

i ∪Q3
i )

9: Select an answer set Zn of Pn, Zn compatible with Zj for j ≤ n− 1
10: return Z = (Z1, . . . , Zn−1, Zn)
11: end if
12: return fail

Intuitively, an edge (i, j) in EM indicates that if S = (S1, . . . , Sn) is an equilibrium of
M then the applicability of a bridge rule in brj depends on the belief set Si. It is well-
known that the graph GM specifies a topology that can be used in computing equilibria
of M . For instance, if (i, j) is an edge in GM and GM does not contain the edge (j, i),
it is sensible to compute the ith belief set before computing the jth belief set. This has
been utilized in the systems DMCS and DMCSOPT [6,1].6

Let us define an ordering ≺M between the contexts, where i ≺M j if there exists a
path from i to j in GM . We consider the following cases:

• ≺M is a partial order: it can be extended to a total order ≺∗
M over the set {1, . . . , n}.

• ≺M contains a cycle: let SCC1, . . . , SCCt be a set of strongly connected com-
ponents (SCC) of GM , SCCi = (Vi, Ei), such that VM =

⋃t
i=1 Vi and EM =

⋃t
i=1 Ei. Furthermore, the following induced order is a partial order over the SCCs:

SCCi≺MSCCj iff there exists some si∈SCCi and sj∈SCCj such that si≺Msj .

The order ≺M can be used for computing the equilibria of M as follows:

• Add the computation of the dependency graph GM , the SCCs of GM , and the order-
ing ≺M before the computation of MP.

• Sort P1, . . . , Pn using ≺M on the SCCs of GM and provide Algorithm 2 with the
ordering ≺M (for programs in the same SCC, an arbitrary order is used).

• Modify Algorithm 2 to eliminate the compatibility checking between Zn and Zi if
n ≺M i does not hold (Line 9).

The next section discusses the implementation.

4.1 ASP-PrologMCS

The current implementation of ASP-PrologMCS computes equilibria for MCS of the
formM = (C1, . . . , Cn) where the logic underlying each context is logic programming

6 In these systems, the dependency graph is defined in reverse order and used somewhat differ-
ently from our proposal.
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under answer set semantics [10]. Extending ASP-PrologMCS to allow different seman-
tics can easily be introduced since ASP-Prolog can support different types of semantics
for different modules. We assume that each Ci = (Li, kbi, bri) is stored in a file named
pi containing pi = kbi ∪ bri. The main predicates of ASP-PrologMCS are:

• load MCS(Input): this predicate prepares the computation of the equilibrium of the
MCS whose contexts are specified by the list Input. Its execution will:

◦ Create a Prolog module named pi, for each pi ∈ Input, and compute Pi = kbi ∪⋃
r∈bri

R(r) (as defined earlier);
◦ Create a dependency graph between contexts. This is achieved by defining a pred-

icate dependency/4 where, for each literal (ck : pk) in a bridge rule r of the
context ci such that ck �= ci, we assert the atom dependency(ci, s, ck, pk). Intu-
itively, the atom dependency(i, a, j, p) states that there is a dependence of atom a
in the context i to atom p in the context j.

• compute equilibrium(Input, Answer): two versions of this predicate have
been implemented. The first one implements the naive generate-and-test algorithm
and the second one implements the modified algorithm discussed above. The imple-
mentation of this predicate makes use of the infrastructure provided by ASP-Prolog.
Execution of this predicate will: load the files in Input, which is a list of files rep-
resenting the MCS, compute the answer sets of each program in Input (via the
predicate use asp/3), and call the predicate that implements the naive algorithm or
the Algorithm 2 to obtain the equilibrium.

• generate and test(Input, Answer): this predicate implements the generate
and test algorithm and returns the answer.

• compatible(Input, Answer): this implements the algorithm compatible and
returns the answer.

4.2 Experiments

We experimented ASP-PrologMCS with the set of benchmarks downloaded from the
DMCS system website.7 The benchmarks include five domains (Diamond, Ring,

Zig-zag, House and Binary tree). The name of each domain characterizes the
topology of the MCS, for example, in an instance of the Diamond domain, the contexts
are combined by multiple diamonds in a row.

Both algorithms were used in testing this set of problems. The experiments were
successful, showing a competitive performance. The only limitation encountered was
in problems where selected contexts have a large number of answer sets—e.g., sev-
eral thousands—in which case the answer sets occasionally saturated the streams cre-
ated by the underlying Prolog system—SICStus Prolog, used in the current imple-
mentation, imposes limitations on the number of concurrent open streams (around 200
streams). Only the generate-and-test algorithm can successfully solve all problems, due
to the limitations on the numbers of opened streams; the second algorithm cannot be
used for MCS with more than 200 contexts. However, whenever possible both algo-
rithms performed well. Overall, ASP-PrologMCS performs well in the search for an

7 www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html

www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html
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equilibrium after the contexts have been loaded. The complete evaluation can be found
at www.cs.nmsu.edu/˜tile/aspmcs/experiment.html.

4.3 Application of ASP-PrologMCS

Although ASP-PrologMCS was developed for MCSs, an interesting by-product of the
system is that it can be used to compute answer sets of decomposable logic programs.

Let Π be a decomposable logic program. For simplicity, let us assume that Π has a
splitting set S. Let us consider a partition (Π1, Π2) of Π , such that Π1 is the bottom of
Π with respect to S, i.e., Π1 = bS(Π) and Π2 = Π \Π1. Let M = (C1, C2) where
Ci = (Li, Πi, bri), Li is the logic of logic programming under answer set semantics,
br1 = ∅ and br2 = {l ← c1 : l | l ∈ S}. It is easy to see that X is an answer set of Π
iff X = X1 ∪X2 such that (X1, X2) is an equilibrium of M . This means that the equi-
librium of the MCS (C1, C2) can be computed by Algorithm 2 without backtracking,
i.e., ASP-PrologMCS could provide an alternative platform for the implementation of
decomposable programs and iterative algorithms, as the above observation can be gen-
eralized to a splitting sequence of Π . We will show next that ASP-PrologMCS could be
used to explore heuristics in answer set programming.

Let us consider the well-known graph coloring problem. Given a undirected graph
(V,E), we would like to know whether the graph has a 3-coloring solution. The ASP
encoding for computing a 3-coloring solution of a graph (V,E), denoted by Π(V,E),
is well-known and is omitted here to save space.

Table 1. ASP-PrologMCS in 3-coloring

Instance colorable
ASP-PrologMCS

Instance colorable
ASP-PrologMCS

Load MCS total Load MCS total
p10000e10000 y 20.63 10.16 30.79 p10000e11000 y 22.75 12.56 35.31
p10000e12000 y 24.99 13.53 38.52 p10000e13000 y 25.74 17.87 43.61
p10000e14000 y 27.42 14.93 42.35 p10000e15000 y 31.93 16.68 48.61
p10000e16000 y 37.37 20.93 58.30 p10000e17000 y 52.71 18.99 71.70
p10000e18000 y 50.73 12.51 63.24 p10000e19000 y 50.46 11.79 62.25
p10000e20000 y 53.57 10.80 64.37 p10000e21000 n 59.02 4.51 63.53

A well-known heuristic for solving the 3-coloring problem is as follows. Let the
degree of a node X , denoted by degree(X), be the number of edges that have one
endpoint in X . Let R(V,E) = (V ′, E′) be the graph obtained from (V,E) by removing
all vertices whose degree is less than 3 and all the edges to/from these vertices. It is easy
to see that Π(V,E) has an answer set iff Π(V ′, E′) does. This process can be repeated
until the degree of all vertices in the graph is at least three (including the possibility
of the graph becoming empty). This can be used to create a partition (V1, . . . , Vn) of
V , where Vi is the set of vertices with degree less than 3 in the graph consisting of the
vertices

⋃i
j=1 Vj and the edges among them that belong to E. Intuitively, Vi is the set of

nodes removed at the ith iteration of the process described above. Using this partition,
we can define a MCS M = (C1, . . . , Cn) where, for each i, (i) kbi contains the rules

www.cs.nmsu.edu/~tile/aspmcs/experiment.html
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Π(Vi, Ei), where Ei is the set of edges from E between nodes in Vi; (ii) bri contains
the following constraints: for each (p, q) ∈ E such that q ∈ Vi and p ∈ Vk with k < i:

← (k : color(p, C)), color(q, C).

The Prolog code for computing the above partition is straightforward. We exper-
imented this idea using the instances of the graph coloring problems obtained from
assat.cs.ust.hk/Assat-2.0/coloring-2.0.html. The results of this experi-
ment are presented in Table 1. In this table, each instance is of the form pnem, where n
is the number of vertices and m is the number of edges in the graph. All the reported
problems are randomly generated. The results show the simplicity of adding heuris-
tics in the process. The execution times are relatively high compared to optimized ASP
solvers (e.g., CLASP), due to the relative cost of decomposing the graph into MCS, but
show success where other systems (e.g., standard Prolog or CLP(FD)) would fail.

5 Conclusions

In this paper, we presented two applications of the ASP-Prolog system. The first ap-
plication deals with a large class of logic programs that are computationally easy, yet
sometimes unsolvable for current ASP solvers. We showed how answer sets of this type
of programs can be computed using the ASP-Prolog platform. The experimental results
with the use cases highlight the potential of ASP-Prolog as a viable platform for the use
of ASP in practical problems.

The second application is a centralized MCS system, ASP-PrologMCS , built using
the facilities provided by ASP-Prolog. We described the implementation of the com-
putation of equilibria semantics and encouraging experimental results. The system im-
plements various algorithms that are required for the computation of equilibria of MCS
systems; these are made possible by the specific capabilities of ASP-Prolog. The sys-
tem can be used in applications that can be formulated as MCSs. The experimental
evaluation is promising. Nevertheless, it also highlighted a need for improving the per-
formance of ASP-PrologMCS . We believe that this can be achieved via targeted opti-
mizations. In particular, we propose to explore mechanisms to optimize backtracking
among modules (e.g., through caching mechanisms) and communication. This will be
one of our goals in the nearest future.

As another future work of both applications, we propose to explore the role that the
specific capabilities of ASP-Prolog (e.g., constraint solving capabilities) can have.
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Abstract. We investigate the potential of logic programming (LP) to model
morality aspects studied in philosophy and psychology. We do so by identifying
three morality aspects that appear in our view amenable to computational mod-
eling by appropriately exploiting LP features: dual-process model (reactive and
deliberative) in moral judgments; justification of moral judgments by contractu-
alism; and intention in moral permissibility. The research aims at developing an
LP-based system with features needed in modeling moral settings, putting em-
phasis on modeling these above mentioned morality aspects. We have currently
co-developed two essential ingredients of the LP system, i.e., abduction and logic
program updates, by exploiting the benefits of tabling features in logic programs.
They serve as the basis for our whole system, into which other reasoning facets
will be integrated, to model the surmised morality aspects. Moreover, we touch
upon the potential of our ongoing studies of LP based cognitive features for the
emergence of computational morality, in populations of agents enabled with the
capacity for intention recognition, commitment and apology.

Keywords: abduction, program updates, argumentation, reactive behavior,
deliberative reasoning, morality, emergence.

1 Introduction

The importance of imbuing agents more or less autonomous, with some capacity for
moral decision making has recently gained a resurgence of interest from the artificial
intelligence community, bringing together perspectives from philosophy and psychol-
ogy. A new field of enquiry, computational morality (also known as machine ethics,
machine morality, artificial morality and computational ethics) has emerged from their
interaction, as emphasized e.g., in [5, 17, 65]. Research in artificial intelligence partic-
ularly focuses on how to employ various techniques, namely from computational logic,
machine learning and multi-agent systems, in order to computationally model moral
decision making (to some improved extent). The overall result is therefore not only im-
portant for equipping agents with the capacity for moral decision making, but also for
helping us better understand morality, through the creation and testing of computational
models of ethical theories.
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Recent results in computational morality have mainly focused on equipping agents
with particular ethical theories, cf. [6] and [51] for modeling utilitarianism and deonto-
logical ethics, respectively. Another line of work attempts to provide a general frame-
work to encode moral rules, in favor of deontological ethics, without resorting to a set
of specific moral rules, e.g., [11]. The techniques employed include machine learning
techniques, e.g., case-based reasoning [39], artificial neural networks [21], inductive
logic programming [3, 7], and logic-based formalisms e.g., deontic logic [11] and non-
monotonic logics [51]. The use of these latter formalisms has only been proposed rather
abstractly, with no further investigation on its use pursued in detail and implemented.

Apart from the use of inductive logic programming in [3, 7], there has not much been
a serious attempt to employ the Logic Programming (LP) paradigm in computational
morality. Notwithstanding, we have preliminarily shown in [24, 44–48] that LP, with its
currently available ingredients and features, lends itself well to the modeling of moral
decision making. In these works, we particularly benefited from abduction [30], stable
model [19] and well-founded model [64] semantics, preferences [15], and probability
[9], on top of evolving logic programs [1], amenable to both self and external updating.
LP-based modeling of morality is addressed at length, e.g., in [33].

Our research further investigates the appropriateness of LP to model morality, em-
phasizing morality aspects studied in philosophy and psychology, thereby providing an
improved LP-based system as a testing ground for understanding and experimentation
of such aspects and their applications. We particularly consider only some – rather than
tackle all morality aspects – namely those pertinent to moral decision making, and, in
our view, those particularly amenable to computational modeling by exploring and ex-
ploiting the appropriate LP features. Our research does not aim to propose some new
moral theory, the task naturally belonging to philosophers and psychologists, but we
simply uptake their known results off-the-shelf. We identify henceforth three morality
aspects for the purpose of our work: dual-process model (reactive and deliberative) in
moral judgments [13, 38], justification of moral judgments by contractualism [58, 59],
and the significance of intention in regard to moral permissibility [60].

The remainder of the paper is organized as follows. Section 2 discusses the state-
of-the-art of approaches that have been sought in computational morality. In Section 3
we detail the potential of LP for computational morality in the context of our research
goal, and give a direction on how LP can be exploited to model the three chosen moral-
ity aspects. Section 4 presents two novel implementation techniques for abduction and
knowledge updates, which serve as basic ingredients of the system being developed.
Section 5 summarizes an application concerning a princess-saving moral robot. We
conclude, in Section 6, by pointing out the importance of cognitive abilities in what
regards the emergence of cooperation and morality in populations of individuals, as
fostered in our own work, and mention directions for the future in this respect.

2 State of the Art

The field of computational morality, known too as machine ethics [5], has started grow-
ing, motivated by various objectives, e.g., to equip machines with the capability of moral
decision making in certain domains, to aid (or even train) humans in moral decision
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making, to provide a general modeling framework for moral decision making, and to
understand morality better by experimental model simulation.

The purpose of ‘artificial morality’ in [14] is somewhat different. The aim is to show
that moral agents successfully solve social problems that amoral agents cannot. This
work is based on the techniques from game theory and evolutionary game theory, where
social problems are abstracted into social dilemmas, such as Prisoner’s Dilemma and
Chicken, and interactions of agents in games are implemented using Prolog.

The systems TruthTeller and SIROCCO were developed based on case-based rea-
soning [39]. Both systems implement the ethical approach casuistry [29]. TruthTeller is
designed to accept a pair of ethical dilemmas and describe the salient similarities and
differences between the cases, from both an ethical and a pragmatic perspective. On
the other hand, SIROCCO is constructed to accept an ethical dilemma and to retrieve
similar cases and ethical principles relevant to the ethical dilemma presented.

In [21], artificial neural networks, i.e., simple recurrent networks, are used with the
main purpose of understanding morality from the philosophy of ethics viewpoint, and
in particular to explore the dispute between moral particularism and generalism. The
learning mechanism of neural networks is used to classify moral situations by train-
ing such networks with a number of cases, involving actions concerning killing and
allowing to die, and then using the trained networks to classify test cases.

Besides case-based reasoning and artificial neural networks, another machine learn-
ing technique that is also utilised in the field is inductive logic programming, as evi-
denced by two systems: MedEthEx [7] and EthEl [3]. These are advisor systems in the
domain of biomedicine, based on prima facie duty theory [53] from biomedical ethics.
MedEthEx is dedicated to give advice for dilemmas in biomedical fields, while EthEl
serves as a medication-reminder system for the elderly and as a notifier to an overseer
if the patient refuses to take the medication. The latter system has been implemented in
a real robot, the Nao robot, being capable to find and walk toward a patient who needs
to be reminded of medication, to bring the medication to the patient, to engage in a
natural-language exchange, and to notify an overseer by email when necessary [4].

Jeremy is another advisor system [6], which is based upon Jeremy Bentham’s act
utilitarianism. The moral decision is made in a straightforward manner. For each pos-
sible decision d, there are three components to consider with respect to each person p af-
fected: the intensity of pleasure/displeasure (Ip), the duration of the pleasure/displeasure
(Dp) and the probability that this pleasure/displeasure will occur (Pp). Total net plea-
sure for each decision is then computed: totald = Σp∈Person(Ip×Dp×Pp). The right
decision is the one giving the highest total net pleasure.

Apart from the adoption of utilitarianism, like in the Jeremy system, in [51] the deon-
tological tradition is considered having modeling potential, where the first formulation
of Kant’s categorical imperative [32] is concerned. Three views are taken into account
in reformulating Kant’s categorical imperative for the purpose of machine ethics: mere
consistency, common-sense practical reasoning, and coherency. To realize the first view,
a form of deontic logic is adopted. The second view benefits from nonmonotonic logic,
and the third view presumes ethical deliberation to follow a logic similar to that of belief
revision. All of them are considered abstractly and there seems to exist no implementa-
tion on top of these formalisms.
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Deontic logic is envisaged in [11], as a framework to encode moral rules. The work
resorts to Murakami’s axiomatized deontic logic, an axiomatized utilitarian formulation
of multiagent deontic logic, that is used to decide operative moral rule to attempt to ar-
rive at an expected moral decision. This is achieved by seeking a proof for the expected
moral outcome that follows from candidate operative moral rules.

The use of category theory appears in [12], where it is used as the formal framework
to reason over logical systems, taking the view that logical systems are being deployed
to formalize ethical codes. The work is strongly based on Piaget’s position [28]. As
argued in [12], this idea of reasoning over – instead of reasoning in – logical systems,
favors post-formal Piaget’s stages beyond his well-known fourth stage. In other words,
category theory is used as the meta-level of moral reasoning.

Belief-Desire-Intention (BDI) model [10] is adopted in SophoLab [66], a framework
for experimental computational philosophy, which is implemented with JACK agent
programming language. In this framework, the BDI model is extended with the deontic-
epistemic-action logic [63] to make it suitable for modeling moral agents. SophoLab
is used, for example, to study negative moral commands and two different utilitarian
theories, viz. act and rule utilitarianism.

We have preliminarily shown, in [44, 45], the use of integrated LP features to model
the classic trolley problem1 [18] and the double effect2 as the basis of moral deci-
sions on these dilemmas. In particular, possible decisions in a moral dilemma are mod-
eled as abducibles, and abductive stable models are computed to capture abduced de-
cisions and their consequences. Models violating integrity constraints, i.e., those that
contain actions violating the double effect principle, are ruled out. A posteriori pref-
erences, including the use of utility functions, are eventually applied to prefer models
that characterize more preferred moral decisions. The computational models, based on
the prospective logic agent architecture (shown in Figure 1) and developed on top of
XSB Prolog, successfully deliver moral decisions in accordance with the double effect
principle. They conform to the results of empirical experiments conducted in cognitive
science [27] and law [40]. In [46–48], the computational models of the trolley problem
dilemmas are extended, using the same LP system, by considering another moral prin-
ciple, viz. the triple effect principle [31]. The work was extended further, in [24], by

1 The trolley dilemmas, adapted from [27]: “There is a trolley and its conductor has fainted.
The trolley is headed toward five people walking on the track. The banks of the track are so
steep that they will not be able to get off the track in time.” The two main cases of the trolley
dilemmas:

Bystander: Hank is standing next to a switch that can turn the trolley onto a side track, thereby
preventing it from killing the five people. However, there is a man standing on the side track.
Hank can throw the switch, killing him; or he can refrain from doing so, letting the five die. Is
it morally permissible for Hank to throw the switch?
Footbridge. Ian is on the bridge over the trolley track, next to a heavy man, which he can
shove onto the track in the path of the trolley to stop it, preventing the killing of five people.
Ian can shove the man onto the track, resulting in death; or he can refrain from doing so, letting
the five die. Is it morally permissible for Ian to shove the man?

2 The doctrine of double effect states that doing harms to another individual is permissible if it
is the foreseen consequence of an action that will lead to a greater good, but is impermissible
as an intended means to such greater good [27].
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introducing various aspects of uncertainty, achieved using P-log [9], into trolley prob-
lem dilemmas, both from the view of oneself and from that of others. The latter by
tackling the case of jury trials to proffer rulings beyond reasonable doubt.

Fig. 1. Prospective logic agent architecture

3 Potential of Logic Programming for Computational Morality

Logic programming (LP) offers a formalism for declarative knowledge representation
and reasoning. It thus has been used to solve problems in diverse areas of artificial
intelligence (AI), e.g., planning, diagnosis, decision making, hypothetical reasoning,
natural language processing, machine learning, etc.

Our research aims at developing an LP-based system with features needed in model-
ing moral settings, to represent agents’ knowledge in those settings, and to allow moral
reasoning under morality aspects studied in philosophy and moral psychology.

The choice of the LP paradigm is due to its potentials to model morality. For one
thing, it allows moral rules, being employed when modeling some particular aspects, to
be specified declaratively. For another, research in LP has provided us with necessary
ingredients that are promising enough at being adept to model morality, e.g. default
negation is suitable for expressing exception in moral rules, abductive logic program-
ming [30] and (say) stable model semantics [19] can be used to generate possible de-
cisions along with their moral consequences, and preferences [15] are appropriate for
enabling to choose among moral decisions or moral rules.

We have identified three important morality aspects, from the fields of philosophy
and psychology, that in our view are amenable to computational model by exploiting
appropriate LP features: (1) the dual-process of moral judgments [13, 38], (2) justifica-
tion of moral judgments [58, 59], and (3) the significance of intention in regard to moral
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permissibility [60]. The choice of these aspects is made due to their conceptual close-
ness with existing logic-based formalisms under available LP approaches as explained
below. The choice is not meant to be exhaustive (as morality is itself a complex sub-
ject), in the sense that there may be other aspects that can be modeled computationally,
particularly in LP. On the other hand, some aspects are not directly amenable to model
in LP (at least for now), e.g., to model the role of emotions in moral decision making.

The development of the system is driven by the above three important morality as-
pects. The following LP features, being an integral part of the agent’s observe-think-
decide-act life cycle, serve as basic ingredients for the system to bring about moral
reasoning:

1. Knowledge updates, be they external or internal. This is important due to con-
stantly changing environment, and also particularly relevant in moral settings where
an agent’s moral rules are susceptible to updating, including when considering
judgments about others, which are often made in spite of incomplete, or even con-
tradictory, information.

2. Deliberative and reactive decision making. These two modes of decision making
correspond to the dual-process model of moral judgments. Furthermore, reactive
behavior can be employed for fast and frugal decision making with pre-compiled
moral rules, thereby avoiding costly deliberative reasoning performed every time.

Given these basic ingredients, the whole process of moral decision making are par-
ticularly supported with the following capabilities of the system, justified by our need
of modeling morality:

• To exclude undesirable actions. This is important when we must rule out actions
that are morally impermissible under the moral rules being considered.

• To recognize intentions behind available actions, particularly in cases where inten-
tion is considered a significant aspect when addressing permissibility of actions.

• To generate alternatives of actions along with their consequences. In moral dilem-
mas agents are confronted with more than one course of action. They should be
made available, along with their moral consequences, for an agent to ultimately
decide about them.

• To prefer amongst alternatives of actions based on some measures. Preferences are
relevant in moral settings, e.g. in case of several actions being permissible, prefer-
ences can be exercised to prefer one of them on the grounds of some criteria. More-
over, it is realistic to consider uncertainty of intentions, actions or consequences,
including to perform counterfactual reasoning, in which cases preferences based on
probability measures play a role.

• To inspect consequences of an action without deliberate imposition of the action
itself as a goal. This is needed for instance to distinguish moral consequences of
actions performed by an agent to satisfy its goals from those of its actions and
side-effects performed unwittingly, not being part of the agent’s goals.

• To provide an action with reasons for it (not) to be done. Reasons are used to justify
permissibility of an action on grounds that one expects others to accept. In other
words, morality in this way is viewed as striving towards argumentative consensus.
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With respect to the first morality aspect, we look into recent approaches in combining
deliberative and reactive logic-based systems [34, 35]. Inspired by these approaches, we
have proposed two implementation techniques which are the basis for our system. First,
we have improved the abduction system ABDUAL [2], employed for deliberative moral
decision making in our previous work [24, 44–48]. We particularly explored the benefit
of LP tabling mechanisms in abduction, to table abductive solutions for future reuse,
resulting in a tabled abduction system TABDUAL [54]. Second, we have adapted evolv-
ing logic programs (EVOLP) [1], a formalism to model evolving agents, i.e., agents
whose knowledge may dynamically change due to some (internal or external) updates.
In EVOLP, updates are made possible by introducing the reserved predicate assert/1
into its language, whether in rule heads or rule bodies, which updates the program by
the rule R, appearing in its only argument, whenever the assertion assert(R) is true
in a model; or retracts R in case assert(not R) obtains in the model under consider-
ation. We simplified EVOLP, in an approach termed EVOLP/R [55, 56], by restricting
assertions to fluents only, whether internal or external world ones. We discuss both
TABDUAL and EVOLP/R in Section 4.

The second morality aspect views moral judgments as those about the adequacy of
justification and reasons for accepting or rejecting the situated employment of broad
consensual principles, whilst allowing for exceptions. This view is supported by con-
tractualism [58], one of the major schools in moral philosophy. Contractualism provides
flexibility on the set of principles to justify moral judgments so long as no one could rea-
sonably reject them, i.e., reasoning becomes an important feature [59]. Thus, morality
can be viewed as (possibly defeasible) argumentative consensus, which is why contrac-
tualism is interesting from a computational and AI perspective. We are researching the
applicability of argumentative frameworks, such as [16, 52, 62], to deal with this aspect.

Finally, we shall employ results on intention recognition, e.g., [23] for the third
morality aspect, about intention in regard to moral permissibility. Counterfactuals will
also play some role in uncovering possible implicit intentions, and “What if?” questions
in order to reason retrospectively about past decisions. With regard to counterfactuals,
both causal models [8, 41] and the extension of inspection points [43] to examine con-
textual side effects of counterfactual abduction may be considered, meaning foreseeable
extraneous consequences in future or past hypothetical scenarios.

The lighter conceptual and implementation advantages of EVOLP/R will help in com-
bining with TABDUAL, to model both reactive and deliberative reasoning. Their com-
bination also provides the basis for other reasoning facets needed in modeling other
morality aspects, notably: argumentative frameworks and intention recognition to deal
with the second and the third aspects, respectively.

4 TABDUAL and EVOLP/R

We recently proposed novel implementation techniques, both in abduction and logic
program updates, by employing tabling mechanisms in LP. Tabling mechanisms in LP,
known as the tabled logic programming paradigm, is currently supported by a number
of Prolog systems, to different extent. Tabling affords solutions reuse, rather than re-
computing them, by keeping in tables subgoals and their answers obtained by query
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evaluation. Our techniques are realized in XSB Prolog [61], one of the most advanced
tabled LP systems, with features such as tabling over default negation, incremental
tabling, answer subsumption, call subsumption, and threads with shared tables.

4.1 Tabled Abduction (TABDUAL)

The basic idea behind tabled abduction (its prototype is termed TABDUAL) is to em-
ploy tabling mechanisms in logic programs in order to reuse priorly obtained abductive
solutions, from one abductive context to another. It is realized via a program transfor-
mation of abductive normal logic programs. Abduction is subsequently enacted on the
transformed program.

The core transformation of TABDUAL consists of an innovative re-uptake of prior
abductive solution entries in tabled predicates and relies on the dual transformation [2].
The dual transformation, initially employed in ABDUAL [2], allows to more efficiently
handle the problem of abduction under negative goals, by introducing their positive dual
counterparts. It does not concern itself with programs having variables. In TABDUAL,
the dual transformation is refined, to allow it dealing with such programs. The first
refinement helps ground (dualized) negative subgoals. The second one allows to deal
with non-ground negative goals.

As TABDUAL is implemented in XSB, it employs XSB’s tabling as much as possible
to deal with loops. Nevertheless, tabled abduction introduces a complication concerning
some varieties of loops. Therefore, the core TABDUAL transformation has been adapted,
resorting to a pragmatic approach, to cater to all varieties of loops in normal logic
programs, which are now complicated by abduction.

From the implementation viewpoint, several pragmatic aspects have been exam-
ined. First, because TABDUAL allows for modular mixes between abductive and non-
abductive program parts, one can benefit in the latter part by enacting a simpler trans-
lation of predicates in the program comprised just of facts. It particularly helps avoid
superfluous transformation of facts, which would hinder the use of large factual data.
Second, we address the issue of potentially heavy transformation load due to produc-
ing the complete dual rules (i.e., all dual rules regardless of their need), if these are
constructed in advance by the transformation (which is the case in ABDUAL). Such
a heavy dual transformation makes it a bottleneck of the whole abduction process.
Two approaches are provided to realizing the dual transformation by-need: creating
and tabling all dual rules for a predicate only on the first invocation of its negation,
or, in contrast, lazily generating and storing its dual rules in a trie (instead of tabling),
only as new alternatives are required. The former leads to an eager (albeit by-need)
tabling of dual rules construction (under local table scheduling), whereas the latter per-
mits a by-need-driven lazy one (in lieu of batched table scheduling). Third, TABDUAL

provides a system predicate that permits accessing ongoing abductive solutions. This
is a useful feature and extends TABDUAL’s flexibility, as it allows manipulating abduc-
tive solutions dynamically, e.g., preferring or filtering ongoing abductive solutions, e.g.,
checking them explicitly against nogoods at predefined program points.

We conducted evaluations of TABDUAL with various objectives, where we examine
five TABDUAL variants of the same underlying implementation by separately factoring
out TABDUAL’s most important distinguishing features. They include the evaluations
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of: (1) the benefit of tabling abductive solutions, where we employ an example from
declarative debugging, now characterized as abduction [57], to debug incorrect solu-
tions of logic programs; (2) the three dual transformation variants: complete, eager
by-need, and lazy by-need, where the other case of declarative debugging, that of
debugging missing solutions, is employed; (3) tabling so-called nogoods of subprob-
lems in the context of abduction (i.e., abductive solution candidates that violate con-
straints), where it can be shown that tabling abductive solutions can be appropriate
for tabling nogoods of subproblems; (4) programs with loops, where the results are
compared with ABDUAL, showing that TABDUAL provides more correct and complete
results. Additionally, we show how TABDUAL can be applied in action decision making
under hypothetical reasoning, and in a real medical diagnosis case [57].

4.2 Restricted Evolving Logic Programs (EVOLP/R)

We have defined the language of EVOLP/R in [56], adapted from that of Evolving Logic
Programs (EVOLP) [1], by restricting updates at first to fluents only. More precisely,
every fluent F is accompanied by its fluent complement ∼F . Retraction of F is thus
achieved by asserting its complement ∼F at the next timestamp, which renders F su-
pervened by ∼F at later time; thereby making F false. Nevertheless, it allows paracon-
sistency, i.e., both F and ∼F may hold at the same timestamp, to be dealt with by the
user as desired, e.g., with integrity constraints or preferences.

In order to update the program with rules, special fluents (termed rule name fluents)
are introduced to identify rules uniquely. Such a fluent is placed in the body of a rule, al-
lowing to turn the rule on and off, cf. Poole’s “naming device” [50]; this being achieved
by asserting or retracting the rule name fluent. The restriction thus requires that all rules
be known at the start.

EVOLP/R is realized by a program transformation and a library of system predicates.
The transformation adds some extra information, e.g., timestamps, for internal process-
ing. Rule name fluents are also system generated and added in the transform. System
predicates are defined to operate on the transform by combining the usage of two fea-
tures of tabling in XSB Prolog: incremental and answer subsumption tabling.

Incremental tabling of fluents allows to automatically maintain the consistency of
program states, analogously to assumption based truth-maintenance system in artificial
intelligence, due to assertion and retraction of fluents, by relevantly propagating their
consequences. Answer subsumption of fluents, on the other hand, allows to address
the frame problem by automatically keeping track of their latest assertion or retraction,
whether obtained as updated facts or concluded by rules. Despite being pragmatic, em-
ploying these tabling features has profound consequences in modeling agents, i.e., it
permits separating higher-level declarative representation and reasoning, as a mecha-
nism pertinent to agents, from a world’s inbuilt reactive laws of operation. The latter
are relegated to engine-level enacted tabling features (in this case, the incremental and
answer subsumption tabling); they are of no operational concern to the problem repre-
sentation level.

Recently, in [55], we refined the implementation technique by fostering further incre-
mental tabling, but leaving out the problematic use of the answer subsumption feature.
The main idea is the perspective that knowledge updates (either self or world wrought
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changes) occur whether or not they are queried, i.e., the former take place independently
of the latter. That is, when a fluent is true at a particular time, its truth lingers on inde-
pendently of when it is queried. Fluent updates are initially kept pending in the database,
and on the initiative of top-goal queries, i.e., by need only, incremental assertions make
these pending updates become active (if not already so), but only those with timestamps
up to an actual query time. Such assertions automatically trigger system-implemented
incremental upwards propagation and tabling of fluent updates. In order to delimit an-
swers in the table, which in some cases could lead to iterative non-termination, the prop-
agation is bounded by some given predefined upper global time limit. Though foregoing
answer subsumption, recursion through the frame axiom can thus still be avoided, and
a direct access to the latest time a fluent is true is made possible by means of existing
table inspection predicates. Benefiting from the automatic upwards propagation of flu-
ent updates, the program transformation in the new implementation technique becomes
simpler than our previous one, in [56]. Moreover, it demonstrates how the dual pro-
gram transformation, introduced in the context of abduction and used in TABDUAL, is
employed for helping propagate the dual negation complement of a fluent incremen-
tally, in order to establish whether the fluent is still true at some time point or if rather
its complement is. In summary, the refinement affords us a form of controlled, though
automatic, system level truth-maintenance, up to the actual query time. It reconciles
high-level top-down deliberative reasoning about a query, with autonomous low-level
bottom-up world reactivity to ongoing updates.

4.3 LP Implementation Remarks: What’s Still Left to Be Done

Departing from the current state of our research, the integration of TABDUAL and
EVOLP/R becomes naturally the next step. We shall define how reactive behavior (de-
scribed as maintenance goals in [34, 35]) can be achieved in the integrated system. An
idea would be to use integrity constraints as sketched below:

assert(trigger(conclusion)) ← condition
false ← trigger(conclusion), not do(conclusion)

do(conclusion) ← some actions

Accordingly, fluents of the form trigger(conclusion) can enact the launch of mainte-
nance goals, in the next program update state, by satisfying any corresponding integrity
constraints. Fluents of the form ∼trigger(conclusion), when asserted, will refrain any
such launching, in the next program update state. In line with such reactive behavior, is
fast and frugal moral decision making, which can be achieved via pre-compiled moral
rules (cf. heuristics for decision making in law [20]).

Once TABDUAL and EVOLP/R are integrated, we are ready to model moral dilem-
mas, focusing on the first morality aspect, starting from easy scenarios (low-conflict)
to difficult scenarios (high-conflict). In essence, moral dilemmas will serve as vehicles
to model and to test this morality aspect (and also others). The inclusion of other in-
gredients into the system, notably argumentation and intention recognition (including
counterfactuals), is in our research agenda. The choice of their appropriate formalisms
still need to be defined, driven by the salient features of the second and the third morality
aspects to model.
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5 Application: A Princess Saviour Moral Robot

Apart from dealing with incomplete information, knowledge updates (as realized by
EVOLP/R) are essential to account for moral updating and evolution. It concerns the
adoption of new (possibly overriding) moral rules on top of those an agent currently
follows. Such adoption is often necessary when the moral rules one follows have to be
revised in the light of situations faced by the agent, e.g. when other moral rules are
contextually imposed by an authority.

Moral updating is not only relevant in a real world setting, but also in imaginary
ones, e.g., in interactive storytelling; cf. [37], where the robot in the story must save the
princess in distress while it should also follow (possibly conflicting) moral rules that
may change dynamically as imposed by the princess and may conflict with the robot’s
survival.

It does so by employing Prospective Logic Programming (PLP), a declarative frame-
work supporting the specification of autonomous agents capable of anticipating and
reasoning about hypothetical future scenarios. This capability for prediction is essential
for proactive agents working with partial information in dynamically changing envi-
ronments. The work explores the use of state-of-the-art declarative non-monotonic rea-
soning in the field of interactive storytelling and emergent narratives and is supported
by a concrete graphics application prototype to enact the story of a princess saved by
a robot imbued with moral reasoning. Note that ACORDA [36], an ad hoc abduction
implementation on top of the updates system EVOLP [1], is used in the previous LP
implementation for this application, without exploiting tabling features. From that ex-
perience, we now move on to a new single integrated system, as described in Section
4.3, that fully exploits tabling technology.

In order to test the PLP framework and the integration of a virtual environment for
interactive storytelling, a simplified scenario was developed. In this fantasy setting, an
archetypal princess is held in a castle awaiting rescue. The unlikely hero is an advanced
robot, imbued with a set of declarative rules for decision making and moral reasoning.
As the robot is asked to save the princess in distress, he is confronted with an ordeal.
The path to the castle is blocked by a river, crossed by two bridges. Standing guard at
each of the bridges are minions of the wizard which originally imprisoned the princess.
In order to rescue the princess, he will have to defeat one of the minions to proceed.3

Prospective reasoning is the combination of pre-preference hypothetical scenario
generation into the future plus post-preference choices taking into account the imag-
ined consequences of each preferred scenario. By reasoning backwards from this goal,
the agent generates three possible hypothetical scenarios for action. Either it crosses one
of the bridges, or it does not cross the river at all, thus negating satisfaction of the res-
cue goal. In order to derive the consequences for each scenario, the agent has to reason
forwards from each available hypothesis. As soon as these consequences are known,
meta-reasoning techniques can be applied to prefer amongst the partial scenarios.

This simple scenario already illustrates the interplay between different LP techniques
and demonstrates the advantages gained by combining their distinct strengths. Namely,

3 More at online demo: http://centria.di.fct.unl.pt/∼lmp/
publications/slides/padl10/quick moral robot.avi

http://centria.di.fct.unl.pt/~lmp/publications/slides/padl10/quick_moral_robot.avi
http://centria.di.fct.unl.pt/~lmp/publications/slides/padl10/quick_moral_robot.avi
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the integration of top-down, bottom-up, hypothetical, moral and utility-based reasoning
procedures results in a flexible framework for dynamic agent specification. The open
nature of the framework embraces the possibility of expanding its use to yet other useful
models of cognition such as counterfactual reasoning and theories of mind.

6 Emergence and Computational Morality

The mechanisms of emergence and evolution of cooperation in populations of abstract
individuals with diverse behavioral strategies in co-presence have been undergoing
mathematical study via Evolutionary Game Theory, inspired in part on Evolutionary
Psychology. Their systematic study resorts as well to implementation and simulation
techniques, thus enabling the study of aforesaid mechanisms under a variety of condi-
tions, parameters, and alternative virtual games. The theoretical and experimental re-
sults have continually been surprising, rewarding, and promising.

Recently, in our own work we have initiated the introduction, in such groups of
individuals, of cognitive abilities inspired on techniques and theories of Artificial In-
telligence, namely those pertaining to both Intention Recognition and to Commitment
(separately and jointly), encompassing errors in decision-making and communication
noise. As a result, both the emergence and stability of cooperation become reinforced
comparatively to the absence of such cognitive abilities. This holds separately for Inten-
tion Recognition and for Commitment, and even more when they are engaged jointly.

From the viewpoint of population morality, the modeling of morality in individu-
als using appropriate LP features (like abduction, knowledge updates, argumentation,
counterfactual reasoning, and others touched upon our research) within a networked
population shall allow them to dynamically choose their behavior rules, rather than to
act from a predetermined set. That is, individuals will be able to hypothesize, to look
at possible future consequences, to (probabilistically) prefer, to deliberate, to take into
account history, to adopt and fine tune game strategies.

Indeed, the study of properties like the emergent cooperative and tolerant collective
behavior in populations of complex networks, very much needs further investigation
of the cognitive core in each of the social atoms of the individuals in such populations
(albeit by appropriate LP features). See our own studies on intention recognition and
commitments, such as in e.g. [22, 23, 25, 26, 49]). In particular, the references [42, 49]
aim to sensitize the reader to these Evolutionary Game Theory based studies and is-
sues, which are accruing in importance for the modeling of minds with machines, with
impact on our understanding of the evolution of mutual tolerance, cooperation and com-
mitment. In doing so, they also provide a coherent bird’s-eye view of our own varied
recent work, whose more technical details, references and results are spread through-
out a number of publishing venues, to which the reader is referred therein for a fuller
support of claims where felt necessary.

In those works we model intention recognition within the framework of repeated in-
teractions. In the context of direct reciprocity, intention recognition is performed using
the information about past direct interactions. We study this issue using the well-known
repeated Prisoner’s Dilemma (PD), i.e., so that intentions can be inferred from past
individual experiences. Naturally, the same principles could be extended to cope with
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indirect information, as in indirect reciprocity. This eventually introduces moral judg-
ment and concern for individual reputation, which constitutes “per se” an important
area where intention recognition may play a pivotal role.

In our work too, agents make commitments towards others, they promise to enact
their play moves in a given manner, in order to influence others in a certain way, often
by dismissing more profitable options. Most commitments depend on some incentive
that is necessary to ensure that the action is in the agent’s interest and thus, may be
carried out to avoid eventual penalties. The capacity for using commitment strategies
effectively is so important that natural selection may have shaped specialized signaling
capacities to make this possible. And it is believed to have an incidence on the emer-
gence of morality. Not only bilaterally wise but also in public goods games, where in
both cases we are presently researching into complementing commitment with apology.

Modeling such cognitive capabilities in individuals, and in populations, may well
prove useful for the study and understanding of ethical robots and their emergent be-
havior in groups, so as to make them implementable in future robots and their swarms,
and not just in the simulation domain but in the real world engineering one as well.

7 Message in a Bottle

In realm of the individual, Logic Programming is a vehicle for the computational study
and teaching of morality, namely in its modeling of the dynamics of knowledge and
cognition of agents.

In the collective realm, norms and moral emergence has been studied computation-
ally in populations of rather simple-minded agents.

By bridging these realms, cognition affords improved emerged morals in populations
of situated agents.
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Abstract. The tree based representation described in this paper, heredi-
tarily binary numbers, applies recursively a run-length compression mech-
anism that enables computations limited by the structural complexity of
their operands rather than by their bitsizes. While within constant fac-
tors from their traditional counterparts for their average and worst case
behavior, our arithmetic operations open the doors for interesting numer-
ical computations, intractable with a traditional number representation.

We provide a complete specification of our algorithms in the form of
a purely declarative Prolog program.

Keywords: hereditary numbering systems, compressed number repre-
sentations, arithmetic computations with giant numbers, tree-based
numbering systems, Prolog as a specification language.

1 Introduction

This paper is about a hereditary number system that supports computations
with giant numbers and is based on a recursively applied run-length compression
of a special bijective base-2 notation.

While notations like Knuth’s “up-arrow” [1] or tetration are useful in describ-
ing very large numbers, they do not provide the ability to actually compute with
them - as, for instance, addition or multiplication with a natural number results
in a number that cannot be expressed with the notation anymore.

The novel contribution of this paper is a tree-based numbering system that
allows computations with numbers comparable in size with Knuth’s “arrow-up”
notation. Moreover, these computations have an average and worst case com-
plexity that is comparable with the traditional binary numbers, while their best
case complexity outperforms binary numbers by an arbitrary tower of exponents
factor. Simple operations like successor, multiplication by 2, exponent of 2 are
practically constant time and a number of other operations of practical interest
like addition, subtraction and comparison benefit from significant complexity
reductions.

To facilitate cost analysis, a concept of structural complexity is introduced,
based on the size of our tree representations. It provides estimates on worst
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and best cases for our algorithms and it serves as an indicator of the expected
performance of our arithmetic operations.

We have adopted a literate programming style, i.e. the code contained in the
paper forms a self-contained Prolog program (tested with SWI-Prolog, Lean Pro-
log and Styla), also available as a separate file at http://logic.cse.unt.edu/
tarau/research/2013/hbn.pl . We hope that this will encourage the reader to
experiment interactively and validate the technical correctness of our claims.

The paper is organized as follows. Section 2 gives some background on rep-
resenting bijective base-2 numbers as iterated function application and section
3 introduces hereditarily binary numbers. Section 4 describes constant average
time successor and predecessor operations on tree-represented numbers. Section
5 shows an emulation of bijective base-2 with hereditarily binary numbers and
section 6 discusses some of their basic arithmetic operations. Section 7 defines a
concept of structural complexity and studies best and worst cases and compar-
isons with bitsizes. Section 8 discusses related work and section 9 concludes the
paper.

2 Bijective Base-2 Numbers as Iterated Function
Applications

Natural numbers can be seen as represented by iterated applications of the func-
tions o(x) = 2x + 1 and i(x) = 2x + 2 corresponding the so called bijective
base-2 representation [2] together with the convention that 0 is represented as
the empty sequence. As each n ∈ N can be seen as a unique composition of these
functions we can make this precise as follows:

Definition 1. We call bijective base-2 representation of n ∈ N the unique se-
quence of applications of functions o and i to ε that evaluates to n.

With this representation, and denoting the empty sequence ε, one obtains 0 =
ε, 1 = o(ε), 2 = i(ε), 3 = o(o(ε)), 4 = i(o(ε)), 5 = o(i(ε)) etc. and the following
holds:

i(x) = o(x) + 1 (1)

2.1 Properties of the Iterated Functions on and in

Proposition 1. Let fn denote application of function f n times. Let o(x) =
2x + 1 and i(x) = 2x + 2, s(x) = x + 1 and s′(x) = x − 1. Then k >
0 ⇒ s(on(s′(k)) = k2n and k > 1 ⇒ s(s(in(s′(s′(k)))) = k2n. In particular,
s(on(0)) = 2n and s(s(in(0))) = 2n+1.

Proof. By induction. Observe that for n = 0, k > 0, s(o0(s′(k)) = k20 because
s(s′(k))) = k. Suppose that P (n) : k > 0 ⇒ s(on(s′(k))) = k2n holds. Then,
assuming k > 0, P(n+1) follows, given that s(on+1(s′(k))) = s(on(o(s′(k)))) =
s(on(s′(2k))) = 2k2n = k2n+1. Similarly, the second part of the proposition also
follows by induction on n.

http://logic.cse.unt.edu/tarau/research/2013/hbn.pl
http://logic.cse.unt.edu/tarau/research/2013/hbn.pl
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The underlying arithmetic identities are:

on(k) = 2n(k + 1)− 1 (2)

in(k) = 2n(k + 2)− 2 (3)

and in particular
on(0) = 2n − 1 (4)

in(0) = 2n+1 − 2 (5)

3 Hereditarily Binary Numbers

3.1 Hereditary Number Systems

Let us observe that conventional number systems, as well as the bijective base-2
numeration system described so far, represent blocks of contiguous 0 and 1 digits
appearing in the binary representation of a number somewhat naively - one digit
for each element of the block. Alternatively, one might think that counting the
blocks and representing the resulting counters as binary numbers would be also
possible. But then, the same principle could be applied recursively. So instead
of representing each block of 0 or 1 digits by as many symbols as the size of the
block – essentially a unary representation – one could also encode the number
of elements in such a block using a binary representation.

This brings us to the idea of hereditary number systems.

3.2 Hereditarily Binary Numbers as a Data Type

First, we define a data type for our tree represented natural numbers, that we
call hereditarily binary numbers to emphasize that binary rather than unary
encoding is recursively used in their representation.

Definition 2. The data type T of the set of hereditarily binary numbers is de-
fined inductively as the set of Prolog terms such that:

X ∈ T if and only if X = e or X is of the form v(T, T s) or w(T, T s) (6)

where T ∈ T and Ts stands for a finite sequence (list) of elements of T.
The intuition behind the set T is the following:

– The term e (empty leaf) corresponds to zero
– the term v(T, T s) counts the number T +1 (as counting starts at 0) of o ap-

plications followed by an alternation of similar counts of i and o applications
in Ts

– the term w(T, T s) counts the number T +1 of i applications followed by an
alternation of similar counts of o and i applications in Ts

– the same principle is applied recursively for the counters, until the empty
sequence is reached
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Definition 3. The function n : T → N shown in equation 7 defines the unique
natural number associated to a term of type T.

n(T ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if T = e,

2n(X)+1 − 1 if T = v(X,[]),

(n(U) + 1)2n(X)+1 − 1 if T = v(X,[Y|Xs]) and U = w(Y,Xs),

2n(X)+2 − 2 if T = w(X,[]),

(n(U) + 2)2n(X)+1 − 2 if T = w(X,[Y|Xs]) and U = v(Y,Xs).

(7)

For instance, the computation of N in ?- n(w(v(e, []), [e, e, e]),N) ex-
pands to (((20+1 − 1 + 2)20+1 − 2 + 1)20+1 − 1 + 2)22

0+1−1+1 − 2 = 42. The
Prolog equivalent of equation (7) (using bit-shifts for exponents of 2) is:

n(e,0).

n(v(X,[]),R) :-n(X,Z),R is 1<<(1+Z)-1.

n(v(X,[Y|Xs]),R):-n(X,Z),n(w(Y,Xs),K),R is (K+1)*(1<<(1+Z))-1.

n(w(X,[]),R):-n(X,Z),R is 1<<(2+Z)-2.

n(w(X,[Y|Xs]),R):-n(X,Z),n(v(Y,Xs),K),R is (K+2)*(1<<(1+Z))-2.

The following example illustrates the values associated with the first few natural
numbers.

0:e, 1:v(e,[]), 2:w(e,[]), 3:v(v(e,[]),[]), 4:w(e,[e]), 5:v(e,[e])

Note that a term of the form v(X,Xs) represents an odd number in N
+ = N−{0}

and a term of the form w(X,Xs) represents an even number in N
+. The following

holds:

Proposition 2. n : T → N is a bijection, i.e., each term canonically represents
the corresponding natural number.

Proof. It follows from the identities (2) and (3) by replacing the power of 2
functions with the corresponding iterated applications of o and i.

4 Successor and Predecessor

We will now specify successor and predecessor through a reversible Prolog pred-
icate s(Pred,Succ) holding if Succ is the successor of Pred.

s(e,v(e,[])).

s(v(e,[]),w(e,[])).

s(v(e,[X|Xs]),w(SX,Xs)):-s(X,SX).

s(v(T,Xs),w(e,[P|Xs])):-s(P,T).

s(w(T,[]),v(ST,[])):-s(T,ST).

s(w(Z,[e]),v(Z,[e])).

s(w(Z,[e,Y|Ys]),v(Z,[SY|Ys])):-s(Y,SY).

s(w(Z,[X|Xs]),v(Z, [e,SX|Xs])):-s(SX,X).
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It can be proved by structural induction that Peano’s axioms hold, and con-
sequently, < T, e, s > is a Peano algebra.

Proposition 3. The predicate s works in constant time, on the average, when
computing the successor or the predecessor.

Proof. Observe that the average size of a contiguous block of 0s or 1s in a
number of bitsize n has the upper bound 2 as

∑n
k=0

1
2k = 2 − 1

2n < 2. As on
2-bit numbers we have an average of 0.25 more calls, we can conclude that the
total average number of calls is constant, with upper bound 2 + 0.25 = 2.25.

A quick empirical evaluation confirms this. When computing the successor on
the first 230 = 1073741824 natural numbers, there are in total 2381889348 calls
to s averaging to 2.2183 per computation. The same average for 100 successor
computations on very large 100000 bit random numbers oscillates around 2.22.
The worst case (a deep linear tree) is bounded by the very slowly growing iterated
logarithm.

Note also that by using a single reversible predicate s for both successor and
predecessor, while the solution is always unique, some backtracking occurs in
the latest case. One can eliminate this by using two specialized predicates for
successor and predecessor.

5 Emulating the Bijective Base-2 Operations o, i

To be of any practical interest, we will need to ensure that our data type T

emulates also binary arithmetic. We will first show that it does, and next we will
show that on a number of operations like exponent of 2 or multiplication by an
exponent of 2, it significantly lowers complexity.

Intuitively, the first step should be easy, as we need to express single appli-
cations or “un-applications” of o and i in terms of their iterated applications
encapsulated in the terms of type T.

First we emulate single applications of o and i seen in terms of s. Note that
o/2 and i/2 are also reversible predicates.

o(e,v(e,[])).

o(w(X,Xs),v(e,[X|Xs])).

o(v(X,Xs),v(SX,Xs)):-s(X,SX).

i(e,w(e,[])).

i(v(X,Xs),w(e,[X|Xs])).

i(w(X,Xs),w(SX,Xs)):-s(X,SX).

Finally the “recognizers” o and i simply detect v and w corresponding to o

(and respectively i) being the last operation applied and s detects that the
number is a successor, i.e., not the empty term e.

s_(v(_,_)). s_(w(_,_)).

o_(v(_,_)). i_(w(_,_)).
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Note that each of the predicates o and i calls s exactly once, therefore:

Proposition 4. o and i are constant time, on the average.

Definition 4. The function t : N → T defines the unique tree of type T associ-
ated to a natural number as follows:

t(x) =

⎧
⎪⎨

⎪⎩

e if x = 0,

o(t(x−1
2 )) if x > 0 and x is odd,

i(t(x2 − 1)) if x > 0 and x is even

(8)

We can now define the corresponding Prolog predicate that converts from
terms of type T to natural numbers. Note that we use bit-shifts (>>) for division
by 2.

t(0,e).

t(X,R):-X>0, X mod 2=:=1,Y is (X-1)>>1, t(Y,A),o(A,R).

t(X,R):-X>0, X mod 2=:=0,Y is (X>>1)-1, t(Y,A),i(A,R).

The following holds:

Proposition 5. Let id denote λx.x and “◦” function composition. Then, on
their respective domains

t ◦ n = id, n ◦ t = id (9)

Proof. By induction, using the arithmetic formulas defining the two functions.

Note also that the cost of t is proportional to the bitsize of its input and the
cost of n is proportional to the bitsize of its output.

6 Arithmetic Operations

6.1 A Few Low Complexity Operations

Doubling a number db and reversing the db operation (hf) are quite simple, once
one remembers that the arithmetic equivalent of function o is λx.2x+ 1.

db(X,Db):-o(X,OX),s(Db,OX).

hf(Db,X):-s(Db,OX),o(X,OX).

Note that efficient implementations follow directly from our number theoretic
observations in section 2. For instance, as a consequence of proposition 1, the
operation exp2 computing an exponent of 2 , has the following simple definition
in terms of s:

exp2(e,v(e,[])).

exp2(X,R):-s(PX,X),s(v(PX,[]),R).

Proposition 6. The operations db, hf and exp2 are constant time, on the
average.

Proof. It follows by observing that at most 2 calls to s, o are made in each.
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6.2 Addition and Subtraction Favoring Numbers with Large
Contiguous Blocks of 0s and 1s

We now derive efficient addition and subtraction operations similar to the suc-
cessor/predecessor s, that work on one run-length encoded bloc at a time, rather
than by individual o and i steps.

We first define the predicates otimes corresponding to on(k) and itimes

corresponding to in(k).

otimes(e,Y,Y).

otimes(N,e,v(PN,[])):-s(PN,N).

otimes(N,v(Y,Ys),v(S,Ys)):-add(N,Y,S).

otimes(N,w(Y,Ys),v(PN,[Y|Ys])):-s(PN,N).

itimes(e,Y,Y).

itimes(N,e,w(PN,[])):- s(PN,N).

itimes(N,w(Y,Ys),w(S,Ys)):-add(N,Y,S).

itimes(N,v(Y,Ys),w(PN,[Y|Ys])):-s(PN,N).

They are part of a chain of mutually recursive predicates as they are already
referring to the add predicate, to be implemented later. Note also that instead of
naively iterating, they implement a more efficient “one bloc at a time” algorithm.
For instance, when detecting that its argument counts a number of applications
of o, otimes just increments that count. On the other hand, when the last
predicate applied was i, otimes simply inserts a new count for o operations.
A similar process corresponds to itimes. As a result these algorithms favor
numbers composed of large blocks of 0s and 1s.

We also need a number of arithmetic identities on N involving iterated appli-
cations of o and i.

Proposition 7. The following hold:

ok(x) + ok(y) = ik(x+ y) (10)

ok(x) + ik(y) = ik(x) + ok(y) = ik(x+ y + 1)− 1 (11)

ik(x) + ik(y) = ik(x+ y + 2)− 2 (12)

Proof. By (2) and (3), we substitute the 2k-based equivalents of ok and ik, then
observe that the same reduced forms appear on both sides.

The corresponding Prolog code is:

oplus(K,X,Y,R):-add(X,Y,S),itimes(K,S,R).

oiplus(K,X,Y,R):-add(X,Y,S),s(S,S1),itimes(K,S1,T),s(R,T).

iplus(K,X,Y,R):-add(X,Y,S),s(S,S1),s(S1,S2),itimes(K,S2,T),s(P,T),s(R,P).
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Note that the code uses the predicate add that we will define later and that it is
part of a chain of mutually recursive predicate calls, that together will provide
an intricate but efficient implementation of the intuitively simple idea: we want
to work on one run-length encoded block at a time.

The corresponding identities for subtraction are:

Proposition 8.

x > y ⇒ ok(x)− ok(y) = ok(x− y − 1) + 1 (13)

x > y + 1 ⇒ ok(x)− ik(y) = ok(x− y − 2) + 2 (14)

x ≥ y ⇒ ik(x)− ok(y) = ok(x − y) (15)

x > y ⇒ ik(x)− ik(y) = ok(x− y − 1) + 1 (16)

Proof. By (2) and (3), we substitute the 2k-based equivalents of ok and ik, then
observe that the same reduced forms appear on both sides. Note that special
cases are handled separately to ensure that subtraction is defined.

The Prolog code, also covering the special cases, is:

ominus(_,X,X,e).

ominus(K,X,Y,R):-sub(X,Y,S1),s(S2,S1),otimes(K,S2,S3),s(S3,R).

iminus(_,X,X,e).

iminus(K,X,Y,R):-sub(X,Y,S1),s(S2,S1),otimes(K,S2,S3),s(S3,R).

oiminus(_,X,Y,v(e,[])):-s(Y,X).

oiminus(K,X,Y,R):-s(Y,SY),s(SY,X),exp2(K,P),s(P,R).

oiminus(K,X,Y,R):-

sub(X,Y,S1),s(S2,S1),s(S3,S2),s_(S3), % S3 <> e

otimes(K,S3,S4),s(S4,S5),s(S5,R).

iominus(K,X,Y,R):-sub(X,Y,S),otimes(K,S,R).

Note the use of the predicate sub, to be defined later, which is also part of the
mutually recursive chain of operations.

The next two predicates extract the iterated applications of on and respec-
tively in from v and w terms:

osplit(v(X,[]), X,e).

osplit(v(X,[Y|Xs]),X,w(Y,Xs)).

isplit(w(X,[]), X,e).

isplit(w(X,[Y|Xs]),X,v(Y,Xs)).

We are now ready for defining addition. The base cases are:

add(e,Y,Y).

add(X,e,X):-s_(X).
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In the case when both terms represent odd numbers, we apply with auxAdd1 the
identity (10), after extracting the iterated applications of o as A and B with the
predicate osplit. Note also the reference to the comparison operation cmp, to
be defined later, also part of our chain of mutually recursive operations.

add(X,Y,R):-o_(X),o_(Y),osplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxAdd1(R1,A,As,B,Bs,R).

In the case when the first term is odd and the second even, we apply with
auxAdd2 the identity (11), after extracting the iterated application of o and i as
A and B.

add(X,Y,R):-o_(X),i_(Y),osplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxAdd2(R1,A,As,B,Bs,R).

In the case when the first term is even and the second odd, we apply with
auxAdd3 the identity (11), after extracting the iterated applications of i and o
as, respectively, A and B.

add(X,Y,R):-i_(X),o_(Y),isplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxAdd3(R1,A,As,B,Bs,R).

In the case when both terms represent even numbers, we apply with auxAdd4

the identity (12), after extracting the iterated application of i as A and B.

add(X,Y,R):-i_(X),i_(Y),isplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxAdd4(R1,A,As,B,Bs,R).

Note that in each case we ensure that a block of the same size is extracted,
depending on which of the two operands A or B is larger. Beside that, the auxiliary
predicates auxAdd1, auxAdd2, auxAdd3 and auxAdd4 implement the equations
of Prop. 7.

auxAdd1(’=’,A,As,_B,Bs,R):- s(A,SA),oplus(SA,As,Bs,R).

auxAdd1(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),oplus(SB,R1,Bs,R).

auxAdd1(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),oplus(SA,As,R1,R).

auxAdd2(’=’,A,As,_B,Bs,R):- s(A,SA),oiplus(SA,As,Bs,R).

auxAdd2(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),oiplus(SB,R1,Bs,R).

auxAdd2(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),oiplus(SA,As,R1,R).

auxAdd3(’=’,A,As,_B,Bs,R):- s(A,SA),oiplus(SA,As,Bs,R).

auxAdd3(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),oiplus(SB,R1,Bs,R).

auxAdd3(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),oiplus(SA,As,R1,R).
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auxAdd4(’=’,A,As,_B,Bs,R):- s(A,SA),iplus(SA,As,Bs,R).

auxAdd4(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),iplus(SB,R1,Bs,R).

auxAdd4(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),iplus(SA,As,R1,R).

The code for the subtraction predicate sub is similar:

sub(X,e,X).

sub(X,Y,R):-o_(X),o_(Y),osplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxSub1(R1,A,As,B,Bs,R).

In the case when both terms represent odd numbers, we apply the identity (13),
after extracting the iterated applications of o as A and B. For the other cases, we
use, respectively, the identities 14, 15 and 16:

sub(X,Y,R):-o_(X),i_(Y),osplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxSub2(R1,A,As,B,Bs,R).

sub(X,Y,R):-i_(X),o_(Y),isplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxSub3(R1,A,As,B,Bs,R).

sub(X,Y,R):-i_(X),i_(Y),isplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxSub4(R1,A,As,B,Bs,R).

Note also the auxiliary predicates auxSub1, auxSub2, auxSub3 and auxSub4

that implement the equations of Prop. 8.

auxSub1(’=’,A,As,_B,Bs,R):- s(A,SA),ominus(SA,As,Bs,R).

auxSub1(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),ominus(SB,R1,Bs,R).

auxSub1(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),ominus(SA,As,R1,R).

auxSub2(’=’,A,As,_B,Bs,R):- s(A,SA),oiminus(SA,As,Bs,R).

auxSub2(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),oiminus(SB,R1,Bs,R).

auxSub2(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),oiminus(SA,As,R1,R).

auxSub3(’=’,A,As,_B,Bs,R):- s(A,SA),iominus(SA,As,Bs,R).

auxSub3(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),iominus(SB,R1,Bs,R).

auxSub3(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),iominus(SA,As,R1,R).

auxSub4(’=’,A,As,_B,Bs,R):- s(A,SA),iminus(SA,As,Bs,R).

auxSub4(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),iminus(SB,R1,Bs,R).

auxSub4(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),iminus(SA,As,R1,R).
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6.3 A Comparison Operation Optimized for Numbers with Large
Contiguous Blocks of 0s and 1s

The comparison operation cmp provides a total order (isomorphic to that on
N) on our type T. It relies on bitsize computing the number of applications
of o and i that build a term in T, which is also part of our mutually recursive
predicates, to be defined later.

We first observe that only terms of the same bitsize need detailed compar-
ison, otherwise the relation between their bitsizes is enough, recursively. More
precisely, the following holds:

Proposition 9. Let bitsize count the number of applications of o or i opera-
tions on a bijective base-2 number. Then bitsize(x) < bitsize(y) ⇒ x < y.

Proof. Observe that, given their lexicographic ordering in “big digit first” form,
the bitsize of bijective base-2 numbers is a non-decreasing function.

cmp(e,e,’=’).

cmp(e,Y,(’<’)):-s_(Y).

cmp(X,e,(’>’)):-s_(X).

cmp(X,Y,R):-s_(X),s_(Y),bitsize(X,X1),bitsize(Y,Y1),cmp1(X1,Y1,X,Y,R).

cmp1(X1,Y1,_,_,R):- \+(X1=Y1),cmp(X1,Y1,R).

cmp1(X1,X1,X,Y,R):-reversedDual(X,RX),reversedDual(Y,RY),

compBigFirst(RX,RY,R).

The predicate compBigFirst compares two terms known to have the
same bitsize. It works on reversed (big digit first) variants, computed by
reversedDual and it takes advantage of the block structure using the following
proposition:

Proposition 10. Assuming two terms of the same bitsizes, the one starting
with i is larger than one starting with o.

Proof. Observe that “big digit first” numbers are lexicographically ordered with
o < i.

As a consequence, cmp only recurses when identical blocks head the sequence
of blocks, otherwise it infers the “<” or “>” relation.

compBigFirst(e,e,’=’).

compBigFirst(X,Y,R):- o_(X),o_(Y),

osplit(X,A,C),osplit(Y,B,D),cmp(A,B,R1),fcomp1(R1,C,D,R).

compBigFirst(X,Y,R):-i_(X),i_(Y),

isplit(X,A,C),isplit(Y,B,D),cmp(A,B,R1),fcomp2(R1,C,D,R).

compBigFirst(X,Y,(’<’)):-o_(X),i_(Y).

compBigFirst(X,Y,(’>’)):-i_(X),o_(Y).

fcomp1(’=’,C,D,R):-compBigFirst(C,D,R).

fcomp1(’<’,_,_,’>’).

fcomp1(’>’,_,_,’<’).
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fcomp2(’=’,C,D,R):-compBigFirst(C,D,R).

fcomp2(’<’,_,_,’<’).

fcomp2(’>’,_,_,’>’).

The predicate reversedDual reverses the order of application of the o and i
operations to a “biggest digit first” order. For this, it only needs to reverse the
order of the alternative blocks of ok and ik. It uses the predicate len to compute
with auxRev1 and auxRev2 the number of these blocks. Then, it infers that if the
number of blocks is odd, the last block is of the same kind as the first; otherwise
it is of its alternate kind (w for v and vice versa).

reversedDual(e,e).

reversedDual(v(X,Xs),R):-reverse([X|Xs],[Y|Ys]),len([X|Xs],L),

auxRev1(L,Y,Ys,R).

reversedDual(w(X,Xs),R):-reverse([X|Xs],[Y|Ys]),len([X|Xs],L),

auxRev2(L,Y,Ys,R).

auxRev1(L,Y,Ys,R):-o_(L),R=v(Y,Ys).

auxRev1(L,Y,Ys,R):-i_(L),R=w(Y,Ys).

auxRev2(L,Y,Ys,R):-o_(L),R=w(Y,Ys).

auxRev2(L,Y,Ys,R):-i_(L),R=v(Y,Ys).

len([],e).

len([_|Xs],L):- len(Xs,L1),s(L1,L).

6.4 Computing bitsize

The predicate bitsize computes the number of applications of the o and i

operations. It works by summing up the counts of o and i operations composing
a tree-represented natural number of type T.

bitsize(e,e).

bitsize(v(X,Xs),R):-tsum([X|Xs],e,R).

bitsize(w(X,Xs),R):-tsum([X|Xs],e,R).

tsum([],S,S).

tsum([X|Xs],S1,S3):-add(S1,X,S),s(S,S2),tsum(Xs,S2,S3).

Bitsize concludes our chain of mutually recursive predicates. Note that it also
provides an efficient implementation of the integer log2 operation ilog2.

ilog2(X,R):-s(PX,X),bitsize(PX,R).

6.5 Multiplication by an Exponent of 2

The predicate leftshiftBy uses the fact that repeated application of the o

operation (otimes) provides an efficient implementation of multiplication with
an exponent of 2 for numbers composed of large blocks of 0s or 1s.

leftShiftBy(_,e,e).

leftShiftBy(N,K,R):-s(PK,K),otimes(N,PK,M),s(M,R).
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6.6 General Multiplication One Block at a Time

Proposition 11. The following holds:

on(a)om(b) = on+m(ab+ a+ b)− on(a)− om(b) (17)

Proof. By 2, we can expand and then reduce as follows: on(a)om(b) = (2n(a +
1) − 1)(2m(b + 1) − 1) = 2n+m(a + 1)(b + 1) − (2n(a + 1) + 2m(b + 1) + 1 =
2n+m(a + 1)(b + 1)− 1 − (2n(a+ 1)− 1 + 2m(b + 1)− 1 + 2) + 2 = on+m(ab +
a+ b+ 1)− (on(a) + om(b))− 2 + 2 = on+m(ab+ a+ b)− on(a)− om(b)

The corresponding Prolog code starts with the obvious base cases:

mul(_,e,e).

mul(e,Y,e):-s_(Y).

When both terms represent odd numbers we apply the identity (17):

mul(X,Y,R):-o_(X),o_(Y),osplit(X,N,A),osplit(Y,M,B),

add(A,B,S),mul(A,B,P),add(S,P,P1),s(N,SN),s(M,SM),

add(SN,SM,K),otimes(K,P1,P2),sub(P2,X,R1),sub(R1,Y,R).

The other cases are reduced to the previous one by the identity i = s ◦ o.
mul(X,Y,R):-o_(X),i_(Y),s(PY,Y),mul(X,PY,Z),add(X,Z,R).

mul(X,Y,R):-i_(X),o_(Y),s(PX,X),mul(PX,Y,Z),add(Y,Z,R).

mul(X,Y,R):-i_(X),i_(Y),

s(PX,X),s(PY,Y),add(PX,PY,S),mul(PX,PY,P),add(S,P,R1),s(R1,R).

Note that when the operands are composed of large blocks of alternating on

and im applications, the algorithm works (roughly) in time proportional to the
number of blocks rather than the number of digits.

7 Structural Complexity as Size of Our Tree
Representation

As a measure of structural complexity we define the predicate tsize that counts
the nodes of a tree of type T (except the root).

tsize(e,e).

tsize(v(X,Xs),R):- tsizes([X|Xs],e,R).

tsize(w(X,Xs),R):- tsizes([X|Xs],e,R).

tsizes([],S,S).

tsizes([X|Xs],S1,S4):-tsize(X,N),add(S1,N,S2),s(S2,S3),tsizes(Xs,S3,S4).

It corresponds to the function c : T → N defined by equation (18):

c(T ) =

⎧
⎪⎨

⎪⎩

0 if T = e,
∑

Y ∈[X|Xs] (1 + c(Y )) if T = v(X,Xs),
∑

Y ∈[X|Xs] (1 + c(Y )) if T = w(X,Xs).

(18)

The following holds:
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Proposition 12. For all terms T ∈ T, tsize(T) ≤ bitsize(T).

Proof. By induction on the structure of T , by observing that the two predicates
have similar definitions and corresponding calls to tsize return terms assumed
smaller than those of bitsize.

Note that the while the actual heap representation size of the tree is larger in
terms of bits used, it is within a constant factor of tsize and therefore within
a constant factor of bitsize. The following example illustrates their use:

?- t(123456,T),tsize(T,S1),n(S1,TSize),bitsize(T,S2),n(S2,BSize).

T = w(e, [w(e, [e]), e, v(e, []), e, w(e, []), w(e, [])]),

S1 = w(e, [e, e]), TSize = 12,

S2 = w(e, [w(e, [])]), BSize = 16 .

Figure 1 shows compares of structural complexity with bitsize.

Fig. 1. Structural complexity bounded by bitsize from 0 to 210 − 1

After defining the predicate iterated, that applies K times the predicate F

iterated(_,e,X,X).

iterated(F,K,X,R):-s(PK,K),iterated(F,PK,X,R1),call(F,R1,R).

we can exhibit a best case, of minimal structural complexity for its size

bestCase(K,Best):-iterated(wtree,K,e,Best).

wtree(X,w(X,[])).

and a worst case, of maximal structural complexity for its size

worstCase(K,Worst):-iterated(io,K,e,Worst).

io(X,Z):-o(X,Y),i(Y,Z).

The following examples illustrate these predicates:

?- t(3,T),bestCase(T,Best),n(Best,N).

T = v(v(e, []), []), Best = w(w(w(e, []), []), []), N = 65534 .

?- t(3,T),worstCase(T,Worst),n(Worst,N).

T = v(v(e, []), []), Worst = w(e, [e, e, e, e, e]), N = 84 .
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It follows from identity (5) that the predicate bestCase computes the iter-
ated exponent of 2 (tetration) and then applies the predecessor to it twice, i.e.,

it computes 22
...2 − 2. A simple closed formula (easy to prove by induction) can

also be found for worstCase, the predicate worstCase k computes the value in

T corresponding to the value 4(4k−1)
3 ∈ N.

The average space-complexity of our number representation is related to the
average length of the integer compositions of the bitsize of a number. Intuitively,
the shorter the partition in alternative blocks of o and i applications, the more
significant the compression is.

The following example shows that computations with towers of exponents 20
and 30 levels tall become possible with our number representation.

?- t(20,X),bestCase(X,A),t(30,Y),bestCase(Y,B),add(A,B,C),

| tsize(C,S),n(S,TSize),write(TSize),nl,fail.

314

Note that the structural complexity of the result (that we did not print out) is
still quite manageable: 314. This opens the door to a new world where tractabil-
ity of computations is not limited by the size of the operands but only by their
structural complexity.

8 Related Work

A draft version of this paper has been presented at CICLOPS’13 with informal
proceedings at the arxiv.org repository [3].

Natural numbers in word array-based systems like GMP, OpenSSL’s BigNum
or Java’s BigInteger, given that on a 64-bit architecture array sizes cannot exceed
264 words, are limited by the corresponding 0..22

64

range. On the other hand,
our tree numbers are limited only by a measure of structural complexity, defined
as the size of the trees representing them.

More closely, several notations for very large numbers accommodating “towers
of exponents” have been invented in the past. Examples include Knuth’s arrow-
up notation [1] covering operations like the tetration (a notation for towers of
exponents). In contrast to our tree-based natural numbers, such notations are
not closed under addition and multiplication, and consequently they cannot be
used as a replacement for ordinary binary or decimal numbers.

The first instance of a hereditary number system, at our best knowledge, oc-
curs in the proof of Goodstein’s theorem [4]. Another hereditary number system
is Knuth’s TCALC program [5] that decomposes n = 2a+b with 0 ≤ b < 2a and
then recurses on a and b with the same decomposition. While hereditary, given
the constraint on a and b, the TCALC system is not based on a bijection between
N and N × N and therefore the representation is not canonical. Moreover, the
literate C-program that defines it only implements successor, addition, compari-
son and multiplication and does not provide similar constant time exponent of 2
and low complexity left-shift / nightshift operations like our tree representation
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does. In [6] a similar (non-canonical) exponential-based notation called “inte-
ger decision diagrams” is introduced, providing a compressed representation for
sparse integers, sets and various other data types.

Our first take on a hereditary number system is described in [2]. Like [5], it
uses a binary tree-based representation derived from the bijection f : N × N →
N

+, f(x, y) = 2x(2y + 1). The representation is canonical, it provides constant
time exponent of 2 and left-shift operation and, like the proposal in this paper,
it implements all the basic arithmetic operations. However, by contrast with
this paper, it does not handle well arbitrary linear combinations of towers of
exponent numbers, as for instance, numbers of the form 2x − 1 expand to large
unbalanced binary trees.

9 Conclusion

We have provided a declarative specification of a tree-based number system. Our
emphasis here was on the correctness and the theoretical complexity bounds of
our operations. We have also ensured that our algorithms are as simple as possi-
ble and we have closely correlated our Prolog code with the formulas describing
the corresponding arithmetical properties. Our algorithms rely on properties of
blocks of iterated applications of functions rather than the “digits as coefficients
of polynomials” view of traditional numbering systems. They favor numbers
with large contiguous blocks of 0s and 1s, allowing computations with with
giant numbers (e.g. towers of exponents) provided that they have a tractable
representation size. While the rules for our operations are often more complex,
restricting our code to a purely declarative subset of Prolog made managing a
fairly intricate network of mutually recursive dependencies much easier.

References

1. Knuth, D.E.: Mathematics and Computer Science: Coping with Finiteness. Sci-
ence 194(4271), 1235–1242 (1976)

2. Tarau, P., Haraburda, D.: On Computing with Types. In: Proceedings of SAC 2012,
ACM Symposium on Applied Computing, PL track, Riva del Garda (Trento), Italy,
pp. 1889–1896 (March 2012)

3. Tarau, P.: A Prolog Specification of Giant Number Arithmetic. In: Rocha, R., Have,
C.T. (eds.) Proceedings of the 13th International Colloquium on Implementation of
Constraint Logic Programming Systems (CICLOPS 2013), Istanbul, Turkey (August
2013), http://arxiv.org/abs/1307.8389

4. Goodstein, R.: On the restricted ordinal theorem. Journal of Symbolic Logic (9),
33–41 (1944)

5. Knuth, D.E.: TCALC program (December 1994)
6. Vuillemin, J.: Efficient Data Structure and Algorithms for Sparse Integers, Sets and

Predicates. In: 19th IEEE Symposium on Computer Arithmetic, ARITH 2009, pp.
7–14 (June 2009)

http://arxiv.org/abs/1307.8389


Embedding Foreign Code

Robert Clifton-Everest, Trevor L. McDonell,
Manuel M.T. Chakravarty, and Gabriele Keller

University of New South Wales,
School of Computer Science and Engineering

{robertce,tmcdonell,chak,keller}@cse.unsw.edu.au

Abstract. Special purpose embedded languages facilitate generating
high-performance code from purely functional high-level code; for ex-
ample, we want to program highly parallel GPUs without the usual high
barrier to entry and the time-consuming development process. We pre-
viously demonstrated the feasibility of a skeleton-based, generative ap-
proach to compiling such embedded languages.

In this paper, we (a) describe our solution to some of the practical
problems with skeleton-based code generation and (b) introduce our ap-
proach to enabling interoperability with native code. In particular, we
show, in the context of a functional embedded language for GPU pro-
gramming, how template meta programming simplifies code generation
and optimisation. Furthermore, we present our design for a foreign func-
tion interface for an embedded language.

1 Introduction

Accelerate is an embedded language for general-purpose GPU programming. It is
implemented in Haskell, which also serves as its host language, and generates op-
timised CUDA code [14] from regular, multi-dimensional array programs [2,13].
Accelerate is an example of a class of embedded languages aiming at simplif-
ing the programming of specialised high-performance architectures by offering
a restricted high-level language with a specialised code generator. Other recent
examples are Nikola [12], Obsidian [4], Delight/LMS [19], as well as embedded
hardware description languages [1,10]. These embedded languages reuse part of
the language infrastructure of their host language, while supplying a dedicated
and specialised code generator. This reuse is in contrast to standalone languages
with similar aims, such as StreamIT [22], Halide [18], and NOVA [7].

Among those languages, Accelerate’s implementation is unique by being based
on a generative, template-based code generator, in the spirit of Cole’s algorith-
mic skeletons [6]. The main advantage of this approach to code generation is
the simplicity with which code idioms of the target architecture can be adopted
— this is crucial for GPU programs as GPUs only deliver high performance if
both control structures and data access patterns are suitably constrained [20].
The approach’s main challenges are two: (1) we need a mechanism to express,
instantiate, and compose code skeletons and (2) we need a fusion framework that

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 136–151, 2014.
© Springer International Publishing Switzerland 2014
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eliminates intermediate structures at skeleton boundaries. In previous work [13],
we addressed the second challenge by a novel fusion framework for SIMD lan-
guages. In the present paper, we address the first challenge and also explain the
interplay between our fusion framework and skeleton instantiation.

Moreover, the use of any special-purpose language in practice needs to ad-
dress interoperability with native code. In particular, we need to be able to use
existing, third-party library code from embedded code as well as enable the use
of embedded code from native applications. To this end, we present the design
of a foreign function interface for embedded array code.

In summary, this paper discusses the generation of high-performance foreign
code by way of code skeletons as well as a foreign function interface for embedded
programs to leverage native libraries and applications. It makes the following
main contributions:

– We discuss how to implement skeleton-based code generation with template
meta programming (Section 2).

– We explain how to implement consumer-producer fusion as skeleton instan-
tiation (Section 3).

– We introduce the, to our knowledge, first foreign function interface for an
embedded language (Section 4).

– We explain how to integrate embedded Haskell GPU code in a CUDA C
program (Section 5).

We discuss benchmarks in Section 6 and related work in Section 7. All code is
available from https://github.com/AccelerateHS/accelerate.

2 Embedding GPU Programs as Skeletons

Accelerate offers a range of aggregate operations on multi-dimensional arrays.
They include operations modelled after Haskell’s list library, such as map and
fold, but also array-oriented operations, such as permute and stencil convolu-
tions.

As a simple example, consider the dot product of two vectors:

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

The crucial difference to vanilla Haskell is the Acc type constructor representing
embedded array-valued computations. The types Vector e and Scalar e repre-
sent one-dimensional and zero-dimensional (singleton) arrays, respectively.

The expression zipwith (*) xs ys implements pointwise multiplication of
the two argument vectors, and fold (+) 0 sums the resulting products up to
yield the final, scalar result, wrapped into a singleton array. The type of fold is

fold :: (Shape sh, Elt a) => (Exp a -> Exp a -> Exp a)

-> Exp a -> Acc (Array (sh:.Int) a) -> Acc (Array sh a)

https://github.com/AccelerateHS/accelerate
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It uses a binary folding function operating on embedded scalar computations of
type Exp a to implement a parallel reduction along the innermost dimension
of an n-dimensional, embedded array of type Array (sh:.Int) a. The shape
sh:.Int consist of a polymorphic shape sh with one added (innermost) dimen-
sion, which is missing from the shape of the result array.

2.1 Array Operations as Skeletons

Accelerate’s CUDA1 backend is based around the idea of algorithmic skele-
tons [6]. In other words, the backend implements each of the aggregate array
operations, such as map, by way of a CUDA C code template that is parame-
terised with array types and worker functions, such as the mapped function.

This generative approach is attractive for specialised hardware, such as GPUs,
as the CUDA C code templates are hand-tuned to avoid expensive control flow,
ensure efficient global-memory access, and use fast on-chip shared memory for lo-
cal communication, all of which is required for high-performance GPU code [14].
It is much more difficult —and subject to open research questions— to generate
the corresponding code idioms with a synthetic code generator.

In the first version of Accelerate, we implemented CUDA C code templates
and template instantiation with a mixture of C++ templates and C preprocessor
macros — see [2] for details. While workable, this approach turned out to have
a number of problems. Firstly, the use of CPP is fragile and hard to maintain.
Template instantiation by inlining of CPP macros required the use of fixed vari-
ables with no static checking to ensure the consistent use of names or that used
names where defined before their use. Moreover, it was easy to generate code
that wasn’t even syntactically valid. All this seriously complicated maintenance
and further extension of the code generator. Secondly, the approach led to the
generation of dead code whenever specific template instances didn’t use some
of their parameters or fields of structured data. (The CUDA compiler was not
able to remove most of this dead code.) Finally, and most importantly, the use of
CPP did not scale to support the implementation of producer-consumer skeleton
fusion, which is a crucial optimisation, even for code as simple as dot product.

Next, we discuss a new approach to template definition avoiding these prob-
lems. Then, we will discuss the implementation of producer-consumer skeleton
fusion and general template instantiation in the following section.

2.2 Skeletons as Template Meta Programs

Due to the shortcomings of C++ templates and CPP, we explored the use of
template meta programming to implement CUDA skeletons. More specifically,
we use Mainland’s quasiquotation extensions [11] to Template Haskell to define
skeletons as quoted CUDA C templates with splices for the template parameters.

1 CUDA is NVIDIA’s C/C++-based framework for general-purpose GPU program-
ming: http://www.nvidia.com/object/cuda_home_new.html

http://www.nvidia.com/object/cuda_home_new.html
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[cunit|

__global__ void map( $params:argIn, $params:argOut ) −− (3)
{

const int shapeSize = size(shOut);

const int gridSize = $exp:(gridSize dev);

for (int ix = $exp:(threadIdx dev); ix < shapeSize; ix += gridSize)

{

$items:(dce x .=. get ix) −− (2)
$items:(setOut "ix" .=. f x) −− (1)

}

}

|]

Listing 1. Accelerate CUDA skeleton for the map operation

Listing 1 displays the skeleton template for the map family of functions (which
also includes zipWith). The [cunit|· · ·|] brackets enclose CUDA C definitions.
CUDA uses the __global__ keyword to indicate that map is a GPU kernel : a
single data-parallel computation launched on the GPU by the CPU. Antiquota-
tions $params:e, $exp:e, $items:e, and $stms:e denote template parameters
using a Haskell expression e to splice CUDA C parameters, expressions, items,
and statements, respectively, into the skeleton.

The map skeleton is parameterised by a function f that gets applied to the
individual array elements in the line marked (1). The arguments to f are ex-
tracted from the input arrays in the line marked (2), and we will explain the
meaning of the auxiliary combinators get, setOut, dce, and (.=.) in the next
section. Finally, the arguments to a specific instantiation of the map template
are computed and spliced in the function head marked (3).

As the quasiquoter [cunit|· · ·|] executes at Haskell compile time, syntactic
errors in the quotations and antiquotations as well as in their composition are
flagged at compile time; i.e., we can be sure that the generated code is syn-
tactically correct if we can compile our backend. See [11] for more details on
quasiquoters.

3 Instantiating Skeletons

In the first, pre-template meta programming, version of Accelerate we generated
one or more CUDA GPU kernels for each aggregate array operation. This scheme
led to superfluous intermediate arrays and array traversals. Recall the body of the
definition of the dot product: fold (+) 0 (zipWith (*) xs ys). The function
zipWith compiles to an instance of the map template that we discussed in the
previous section. Similarly, fold compiles to an instance of the fold template.
As a result, the execution of zipWith produces an array that the fold kernels
consume.
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This is not what a CUDA programmer would manually implement; it is more
efficient to inline the zipWith computation into the kernel of the fold. This
strategy eliminates one GPU kernel and an intermediate array that is of the same
size as the two input arrays. To achieve the same performance as handwritten
CUDA code, we developed the array fusion system described in [13].

Our fusion system distinguishes producer-producer and consumer-producer
fusion. The former combines two skeletons that produce complex arrays, whereas
the latter combines an array producer (such as map) with a skeleton reducing
an array (such as fold). Central to our approach is a representation of arrays
as functions, which we call delayed arrays (in contrast to manifest arrays) and
represent as follows:

data DelayedAcc a where

Delayed :: (Shape sh, Elt e)

=> Exp sh −− array extent
-> Fun (sh -> e) −− generate element at index
-> Fun (Int -> e) −− ...at linear index
-> DelayedAcc (Array sh e)

Instead of generating a map skeleton instance for zipWith straight away, we
represent the computation implemented by zipWith as a function —actually, a
pair of functions— together with the extent (domain) of the array as a value of
type DelayedAcc. For more details on this representation, see [13].

As far as skeleton template instantiation goes, the crucial step in Accelerate’s
CUDA backend is the function codegenAcc, which turns an Accelerate array
operation (of type Acc a) into the AST of instantiated skeleton CUDA code
CUSkeleton a:

codegenAcc :: DeviceProperties -> Acc a -> CUSkeleton a

codegenAcc dev (Fold f z a)

= mkFold dev (codegenFun dev f) (codegenExp dev z) (codegenDelayed dev a)

codegenAcc dev (Map f a)

= mkMap ...

Here we see that mkFold, which generates an instance of the fold template, gets
the code generated from a delayed array as its last argument from the call to
codegenDelayed. In the case of the dot product code, that delayed array will be
a delayed representation of zipWith whose code —as an AST— will be passed to
mkFold. In the following, we will discuss template instantiation by our skeleton
constructors such as mkFold and mkMap.

3.1 Consumer Producer Fusion by Template Instantiation

The use of template meta programming to implement CUDA skeletons is crucial
to enable consumer-producer fusion by way of template instantiation. In the
dot product example, the delayed producer is equivalent to the scalar function
λix -> (xs!ix) * (ys!ix). The call to mkFold in codegenAcc passes a CUDA
version of this function, which is bound to the argument get in the mkFold
definition given in Listing 2. This delayed producer function is used in the line
marked (1), where it expands to the following C code:
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mkFold :: DeviceProperties -> CUFun (e -> e -> e) -> CUExp e

-> CUDelayedAcc (Array (sh :. Int) e) -> CUSkeleton (Array sh e)

mkFold dev combine seed (CUDelayed shape _ get)

= CUSkeleton [cunit|

__global__ void foldAll( $params:argIn, $params:argOut )

{ // omitted variable declarations

if ( ix < shapeSize ) {

$items:(y .=. get ix)

for ( ix += gridSize; ix < shapeSize; ix += gridSize ) {

$items:(x .=. get ix) −− (1)
$items:(y .=. combine x y)

}

}

$items:(sdata "threadIdx.x" .=. y)

__syncthreads(); −− (2)
$stms:(treeReduce dev combine sdata)

// first thread writes the result to memory

}

|]

Listing 2. Accelerate CUDA skeleton for the foldAll operation

const Int64 v2 = ix;

const int v3 = toIndex(shIn0, shape(v2));

const int v4 = toIndex(shIn1, shape(v2));

y0 = arrIn0_a0[v3] * arrIn1_a0[v4];

The functions shape and toIndexmap multi-dimensional indices to linear array
representations. In this example these functions do not contribute anything as
dot product consumes two vectors, and the CUDA compiler is able to remove
the superfluous assignments in this case.

In contrast to the map skeleton, the code generated by mkFold proceeds in two
phases of parallel activities. The first phase is the sequential for loop including
the use of get. The second phase starts after the CUDA __syncthreads()

statement at the line marked (2) and implements a parallel tree reduction [3].

3.2 Instantiating Skeletons with Scalar Code

Most aggregate array operations in Accelerate are parameterised by scalar func-
tions, such as the mapping function for map and the binary operator for fold.
Hence, a crucial part of template instantiation is the inlining of CUDA code
implementing scalar Accelerate functions into template code. Inlining of scalar
functions is always possible as the scalar sublanguage of Accelerate is first-order
and does not support recursion. These restrictions are necessary to generate
GPU code as GPU hardware neither supports large stacks (for recursion) nor
closures (for higher-order functions).
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To splice scalar code fragments into the skeleton code of array operations,
we define a typeclass of l-values and r-values to define a generic assignment
operator (.=.), which is, for example, used in the lines marked (1) and (2) in
Listing 1. This representation abstracts over whether our skeleton uses l-values in
single static assignment-style to const declarations or as a statement updating
a mutable variable. The class declarations are the following:

class Lvalue a where

lvalue :: a -> C.Exp -> C.BlockItem

class Rvalue a where

rvalue :: a -> C.Exp

class Assign l r where

(.=.) :: l -> r -> [C.BlockItem]

instance (Lvalue l, Rvalue r) => Assign l r

-- method definition omitted

Furthermore, we can also bring any additional terms into scope before evaluating
an r-value. As an example, see the get code fragment in Section 3.1 in the
calculations of toIndex. We enable this by way of the following class instance:

instance Assign l r => Assign l ([C.BlockItem], r)

-- method definition omitted

3.3 Eliminating Dead Code

As mentioned before, one problem of the original code generator based on CPP
and C++ templates was its inability to remove some forms of dead code. As
an example, consider the following Accelerate function that projects the first
component of each element of a vector of quadruples:

fst4 :: Acc (Vector (a,b,c,d)) -> Acc (Vector a)

fst4 = map (\v -> let (x,_,_,_) = unlift v in x)

The function unlift turns an embedded scalar expression that yields a quadru-
ple into a quadruple comprising four embedded scalar expressions — hence, we
can pattern match on the quadruple in the let-binding. The use of fst4 can lead
to serious inefficiencies as Accelerate uses a non-parametric array representation:
arrays of tuples are represented as tuples of arrays. This helps us to maintain the
strict memory access rules that CUDA requires for best performance. Clearly,
an efficient implementation of this operation should simply select the first tuple
component of the representation, only taking constant time.

If a value of type Vector (a,b,c,d) is represented as a tuple of arrays, an
application of fst4 should execute in constant time (independent of the size of
the array). As explained in [2], to keep the number of skeletons reasonable, our
CPP/C++-template code generator represented scalar tuples as C-structs and
resorted, during skeleton instantiation, to a family of getter and setter functions
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consuming these structs to read and write the elements from the non-parametric
array representation.

As a consequence, in fst4, array elements are copied into a struct, only for
the first element to be extracted again and the struct to be discarded. One
might hope that the CUDA compiler spots (1) the redundant copying of array
elements and (2) that the elements of three of the four arrays are never used.
Alas, it does not and as a result fst4 does not run in constant time, and it
generates considerable memory traffic.

With template meta programming and the Assign type class introduced
previously, we fare much better. Template instantiation inlines the scalar com-
putations, including all array accesses, directly into the AST representing the
skeleton. Instead of packaging the tuple into a struct, we represent it by a set of
individuals values, one per component. During code generation, we keep track of
the values constituting a tuple by maintaining a list of expressions, one for each
component of the tuple. Moreover, a generalised version of the (.=.) operator
allows us to assign all values making up a tuple with one assignment in our meta
programming system — i.e., we use lists of l- and r-values:

instance Assign l r => Assign [l] [r]

-- method definition omitted

Unfortunately, the CUDA compiler doesn’t always eliminate memory reads,
as it does not always detect if the values are not used. Hence, rather than rely on
the CUDA compiler, we explicitly keep track of which values are used at all in
generated scalar code, and when splicing assignments into a skeleton template,
we elide dead statement; i.e., those whose results are not used. The following
instance of the Assign-class uses a flag that is False whenever the assigned
value of an assignment is not used:

instance Assign l r => Assign (Bool,l) r where

(.=.) (used,lhs) rhs

| used = lhs .=. rhs

| otherwise = []

The map skeleton of Listing 1 exploits this: when generating code for the mapped
function f, the function dce :: [a] -> [(Bool,a)]—on the line marked (2)—
determines for each term whether it is being used. Thus, when the code gener-
ated by get reads data from the input array, it doesn’t read unused values.
Consequently, fst4 only touches the array representing the first component of
the quadruple of arrays. In combination with fusion, we completely avoid any
unnecessary memory traffic.

In summary, the use of template meta programming for skeleton definition
and instantiation enables us to combine the advantages of conventional synthetic
code generators (such as def-use analysis for dead code elimination) with those of
generative skeleton-based code generators (such as handwritten idiomatic code
for special-purpose architectures).
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4 Using Foreign Libraries

Accelerate is a high-level language framework capturing idioms suitable for
massively parallel GPU architectures, without requiring the expert knowledge
needed to achieve good performance at the level of CUDA. However, there are
existing highly optimised CUDA libraries, for example, for high performance lin-
ear algebra and fast Fourier transforms. For Accelerate to be practically useful,
we need to provide a means to use those libraries. Moreover, access to native
CUDA code also provides a developer the opportunity to drop down to raw
CUDA C in those parts of an application where the code generated by Acceler-
ate is not sufficiently efficient. We achieve access to CUDA libraries and native
CUDA components with the Accelerate Foreign Function Interface (or FFI).

The Accelerate FFI is a two-way street: (1) it enables calling native CUDA C
code from embedded Accelerate computations and (2) it facilitates calling Accel-
erate computations from non-Haskell code. Overall, a developer can implement
an application in a mixture of Accelerate and other languages in a manner that
the source code is portable across multiple Accelerate backends.

Given that Accelerate is embedded in Haskell, it might seem that Haskell’s
standard FFI should be sufficient to enable interoperability with foreign code.
Unfortunately, this is not the case. With Haskell’s standard FFI, we can call
C functions that in turn invoke GPU computations from Haskell host code.
However, we want to call GPU computations from within embedded Accelerate
code and pass data structures located in GPU memory directly to native CUDA
code and vice versa. The latter is crucial, as transferring data from CPU memory
to GPU memory and back is very expensive.

4.1 Importing Foreign Functions

Calling foreign code in an embedded Accelerate computation requires two steps:
(1) the foreign function must be made accessible to the host Haskell program
and (2) the foreign function must be lifted into an Accelerate computation to
be available to embedded code. For the first step, we use the standard Haskell
FFI. The second step requires an extension to Accelerate.

As a concrete example, let us use the vector dot product of the highly opti-
mised CUDA Basic Linear Algebra Subprograms (CUBLAS) library [15]. This
CUBLAS function is called cublasSDot(); it computes the vector dot product
of two arrays of 32-bit floating point values. To access it from Haskell, we use
this Haskell FFI import declaration:

foreign import ccall "cublas_v2.h�cublasSdot_v2" cublasSdot

:: Handle

-> Int −− Number of array elements
-> DevicePtr Float -> Int −− The two input arrays, and...
-> DevicePtr Float -> Int −− ...element stride
-> DevicePtr Float −− Result array
-> IO ()
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The Handle argument is required by the foreign library and created on initiali-
sation. The DevicePtr arguments are pointers into GPU memory. As mentioned
before, the primary aim of the Accelerate FFI is to ensure that we do not un-
necessarily transfer data between GPU and CPU memory.

To manage device pointers, the Accelerate FFI provides a GPU memory allo-
cation function allocateArray and a function devicePtrsOfArray to extract
the device pointers of an Accelerate array. We can use these functions to invoke
cublasSdot with GPU-side data:

dotp_cublas :: Handle

-> (Vector Float, Vector Float)

-> CIO (Scalar Float)

dotp_cublas handle (xs, ys) = do

let n = arraySize (arrayShape xs) −− number of input elements
result <- allocateArray Z −− allocate a new Scalar array
((),xptr) <- devicePtrsOfArray xs −− get device memory pointers
((),yptr) <- devicePtrsOfArray ys

((),rptr) <- devicePtrsOfArray result

liftIO $ cublasSdot handle n xptr 1 yptr 1 rptr

return result

The result of devicePtrsOfArray is a nested tuple of pointers, as we represent
arrays of tuples as tuples of arrays; hence, we can have multiple CUDA arrays
for one Accelerate array. In the above example, there is only one, though. The
CIO monad is simply the IO monad enriched with some information used by the
CUDA backend to manage devices, memory, and caches.

4.2 Executing Foreign Functions with Accelerate

The function dotp_cublas invokes native CUDA code in such a manner that
it directly uses arrays in GPU memory. This leaves us with two challenges: (1)
we need to enable calling functions, such as dotp_cublas, in embedded code
and (2) we need to account for Accelerate supporting multiple backends, while
Accelerate programs should be portable across backends.

To discuss these issues, we need to briefly recap some of the Accelerate in-
ternals described in [2]. Accelerate reifies embedded programs into an abstract
syntax tree (AST) encoded as a generalised abstract data type (GADT) to track
types of the embedded language in the host language — i.e., the AST can only
represent well-typed embedded programs. Accelerate compiles fused collections
of array operations into GPU kernels and orchestrates the execution of those
kernels CPU-side by a tree traversal of the AST.

Returning to the two remaining challenges, we address the challenge of en-
abling calling functions, such as dotp_cublas, by extending the AST with a new
node type Aforeign representing foreign calls. One instance of an Aforeign node
encodes the code for one backend, but it also contains a fallback implementation
in case a different backend is being used. The AST data constructor is defined
as follows:
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Aforeign :: (Arrays as, Arrays bs, Foreign f)

=> f as bs −− foreign function
-> (Acc as -> Acc bs) −− fallback implementation
-> Acc as −− input array
-> Acc bs

When the tree walk during code execution encounters an Aforeign AST node,
it dynamically checks whether it can execute the foreign function. If it can’t, it
instead executes the fallback implementation. A fallback implementation might
be another Aforeign node with native code for a different backend (e.g., for
OpenCL instead of CUDA), or it can simply be a vanilla Accelerate implemen-
tation of the same functionality that is provided by the foreign code. With a
cascade of Aforeign nodes, we can provide an optimised native implementation
of a function for a range of backends and still maintain a vanilla Accelerate
version of the same functionality for execution in the Accelerate interpreter.

The dynamic check for the suitability of a foreign function is facilitated by
the class constraint Foreign f in the context of Aforeign. The class Foreign
is a subclass of Typeable with instances for data types that represent foreign
functions for specific backends. For the CUDA backend, we have the following:

class Typeable2 f => Foreign f where ...

instance Foreign CUDAForeignAcc where ...

data CUDAForeignAcc as bs where

CUDAForeignAcc :: as -> CIO bs

CUDAForeignAcc wraps calls to foreign CUDA code executed in the CIO monad.
When theCUDAbackendencounters anASTnodeAforeignforeignFunaltarg,
it attempts to cast2 the value of foreignFun to type CUDAForeignAcc as bs. If
that cast succeeds, it can unwrap the CUDAForeignAcc and invoke the function it
contains. Otherwise, it needs to execute the alternative implementation alt.

Finally, we can define an embedded vector dot product that uses CUBLAS
when possible and, otherwise, falls back to the version defined in Section 3.1:

dotp' :: Acc (Vector Float) -> Acc (Vector Float)

-> Acc (Scalar Float)

dotp' xs ys = Aforeign (CUDAForeignAcc (dotp_cublas handle))

(uncurry dotp)

(lift (xs, ys))

Foreign calls are not curried; hence, they only have got one argument, which is
an instance of the class Arrays of tuples of Accelerate arrays.

4.3 Embedding Foreign Scalar Functions

So far, we discussed the use of foreign array computations from Accelerate.
However, we also wish to be able to use foreign scalar operations in embedded
array computations. For example, CUDA provides fused floating-point multiply-
add intrinsics with a variety of rounding modes.

2 See Haskell’s Data.Typeable library for details on cast.
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We import foreign scalar functions similarly to foreign array computations.
In particular, the AST type Exp for scalar embedded computations includes a
data constructor Foreign that serves the same purpose as Aforeign for Acc:

Foreign :: (Elt x, Elt y, Foreign f)

=> f x y -> (Exp x -> Exp y) -> Exp x -> Exp y

Where we used CUDAForeignAcc to wrap CUDA array computations for use
with Aforeign, we use CUDAForeignExp to wrap scalar CUDA functions for use
with Foreign. However, instead of wrapping a Haskell FFI call, the scalar case
simply encodes the textual representation of the CUDA function in CUDA code.
As discussed in Section 2, scalar code is used to instantiate skeleton templates.
The skeleton code is a template for CUDA code; so, a Haskell function invocation
wouldn’t be appropriate. As in the array case, functions are uncurried, but in
the scalar case, they can only return a single scalar argument:

data CUDAForeignExp x y where

CUDAForeignExp :: IsScalar y

=> [String] -> String -> CUDAForeignExp x y

The first argument is a list of header files that need to be included when com-
piling an instantiated skeleton template including this specific foreign function.

Overall, we define a foreign function based on CUDA’s explicitly fused floating-
point multiply-add intrinsics as follows (using IEEE rounding towards zero):

fmaf :: Exp Float -> Exp Float -> Exp Float -> Exp Float

fmaf x y z = Foreign (CUDAForeignExp [] "__fmaf_rz")

(\v -> let (x,y,z) = unlift v in x * y + z)

(lift (x, y, z))

5 Embedding Embedded Programs

Accelerate simplifies writing GPU code as it obviates the need to understand
most low-level details of GPU programming. Hence, we would like to use Accel-
erate from other languages. As with importing foreign code into Accelerate, the
foreign export functionality of the standard Haskell FFI is not sufficient for effi-
ciently using Accelerate from languages, such as C. In the following, we describe
how the Accelerate FFI supports exporting Accelerate code as standard C calls.

5.1 Exporting Accelerate Programs

To export Accelerate functions as C functions, we make use of Template Haskell
[21]. For example, we might export our Accelerate dot product:

dotp :: Acc (Vector Float, Vector Float) -> Acc (Scalar Float)

dotp = uncurry $ \xs ys -> fold (+) 0 (zipWith (*) xs ys)

exportAfun 'dotp "dotp_compile"
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The function exportAfun is defined in Template Haskell and takes the name of
an Accelerate function, here dotp, as an argument. It generates the necessary
export declarations by inspecting the properties of the name it has been passed,
such as its type.

Compiling a module that exports Accelerate computations in this way (say,
M.hs) generates the additional file M_stub.h containing the C prototype for the
foreign exported function. For the dot product example, this header contains:

#include "HsFFI.h"

extern AccProgram dotp_compile(AccContext a1);

A C program needs to include this header to call the Accelerate dot product.

5.2 Running Embedded Accelerate Programs

One of the functions to execute an Accelerate computation in Haskell is:

run1In :: (Arrays as, Arrays bs)

=> Context -> (Acc as -> Acc bs) -> as -> bs

This function comprises two phases: (1) program optimisation and instantiation
of skeleton templates of its second argument and (2) execution of the compiled
code in a given CUDA context (first argument). The implementation of run1In is
structured such that, partially applying it to only its first and second argument,
yields a new function of type as -> bs, where Phase (1) has been executed
already — in other words, it precompiles the Accelerate code. Repeated appli-
cation of this function of type as -> bs executes the CUDA code without any
of the overheads associated with just-in-time compilation.

The Accelerate export API retains the ability to precompile Accelerate code.
The C function provided by exportAfun compiles the Accelerate code, returning
a reference to the compiled code. Then, in a second step, runProgram marshals
input arrays, executes the compiled program, and marshals output arrays:

OutputArray out;

InputArray in[2] = { ... };

AccProgram dotp = dotp_compile( context );

runProgram( dotp, in, &out );

The function dotp_compile was generated by exportAfun 'dotp "dotp_

compile".

5.3 Marshalling Input and Output Arrays

Accelerate uses a non-parametric representation of multi-dimensional arrays: an
array of tuples is represented as a tuple of arrays. The type InputArray follows
this convention. It is a C struct comprising an array of integers indicating the
extent of the array in each dimension together with an array of pointers to each
underlying GPU array of primitive data.

typedef struct { int* shape; void** adata; } InputArray;
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Table 1. General performance of Accelerate (in ms) — c.f., [13]

Benchmark Input Size Contender Accelerate

Black Scholes 20M 6.70 (CUDA) 6.19 (0.92×)
Dot Product 20M 1.88 (CUBLAS) 2.35 (1.25×)
N-Body 32k 54.42 (CUDA) 102.47 (1.88×)
SMVM (protein) 4M 0.641 (CUSP) 0.637 (0.99×)

Table 2. Fast Fourier Transform based benchmarks (in ms)

Accelerate Accelerate Accelerate
Benchmark Input Size Contender full no fusion no FFI

FFT 512×512 43 (FFTW) 4.36 (0.1×) 5.9 (0.14×) 3658 (8.5×)
High pass 512×512 65 (FFTW) 14.97 (0.23×) 27.82 (0.43×) 21936 (34×)
SmoothLife 128×128 16.21 (MATLAB) 4.01 (0.25×) 6.38 (0.39×) 6829 (42×)

OutputArray includes an extra field, a stable pointer, that maintains a ref-
erence to the associated Haskell-side Array. This keeps the array from being
garbage collected until the OutputArray is explicitly released with freeOutput.

typedef struct { int* shape; void** adata;

HsStablePtr stable_ptr; } OutputArray;

6 Applications and Benchmarks

We conducted benchmarks on a single Tesla T10 processor (compute capabil-
ity 1.3, 30 multiprocessors = 240 cores at 1.3GHz, 4GB RAM) backed by two
quad-core Xenon E5405 CPUs (64-bit, 2GHz, 8GB RAM) running GNU/Linux
(Ubuntu 12.04 LTS). The reported runtimes are the average of 100 runs.

Table 1 establishes baseline Accelerate performance, showing a comparison
of kernel runtimes for a selection of Accelerate programs compared to native
CUDA implementations. Accelerate is clearly competitive.

6.1 Fast Fourier Transform (FFT) — Foreign Import

The column “Accelerate, no FFI” in Table 2 measures a pure Accelerate imple-
mentation of an out-of-place Cooley-Tukey FFT algorithm [8], whereas “Acceler-
ate, full” uses the FFI to access NVIDIA’s highly optimised CUFFT library [16].
“Accelerate, no fusion” also uses the FFI, but without fusion.

The row labelled “FFT” measures a single forward Fourier transform of a
greyscale image. The row labelled “High pass” is a high-pass filter of an RGB
image, which for each component performs a forward transform, zeros out the
centre (high) frequencies, then performs the inverse transform. Finally, the row
“SmoothLife” measures a generalisation of Conway’s Game of Life to a contin-
uous domain [17], which is based on Fourier transforms.
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We compare the single FFT and the high-pass filter to the highly regarded
FFTW library [9] (multithreaded, estimate mode). We compare the Acceler-
ate implementation of SmoothLife to SmoothLife’s reference implementation in
MATLAB (version R2012B). FFTW and MATLAB execute on multicore CPUs.

In all cases, our out-of-place Cooley-Tukey implementation of FFT in pure
Accelerate is much slower than the highly optimised FFTW and MATLAB
multicore implementations. However, once we use the Accelerate FFI to utilise
CUFFT, the Accelerate code clearly outperforms the FFTW and MATLAB im-
plementations. This is although we incur significant overhead due to a mismatch
of complex number representations. CUFFT represents complex numbers in a
packed AoS format, requiring marshalling to and from Accelerate’s SoA rep-
resentation. Array fusion allows this additional overhead to be integrated into
surrounding operations, amortizing the cost of this impedance mismatch when
calling foreign libraries. This is particularly noticeable in the high-pass filter
benchmark. We leave native support of packed vector types to future work.

6.2 N-Body — Foreign Export

To demonstrate the use of Accelerate code from C, we use an n-body example
that simulates Newtonian gravitational forces on a set of massive bodies in 3D
space, using the naive O(n2) algorithm. We export the Accelerate n-body imple-
mentation into an OpenGL program that visualises the positions of the particles
at each step of the simulation. The visualisation program — part of the n-body
example from the NVIDIA CUDA distribution — uses a packed AoS representa-
tion for which we had to introduce additional marshalling. We did not note any
performance difference between executing the Accelerate program from Haskell
compared to execution via the C-based visualisation program. This is because
the O(n) additional marshalling is dominated by the O(n2) n-body calculations.

7 Related Work

Our work is based on the quasiquotation extension to Template Haskell described
in [11] to instantiate the skeletons by splicing in parameters and customised code.
The flexibility of this approach is essential for many of our optimisations.

Nikola [12] and Obsidian [5] also embed GPU computations in Haskell, but
are not based on skeletons. Obsidian offers no FFI. Nikola does not have an FFI
as such, but it allows to embed CUDA code blocks in Nikola programs. Since
it only supports single kernel programs, it only deals with limited interactions
between the imported code and the rest of the EDSL program.

Delite/LMS [19] is a framework for parallel DSLs in Scala using library-based
multi-pass staging. It is not based on skeletons and doesn’t seem to have an FFI.

NOVA [7] is a standalone functional language for GPU programming, which
unlike Accelerate supports nested parallel computations. It also allows importing
foreign functions, but not for exporting NOVA computations.

Acknowledgements. We thank Serge Le Huitouze for helpful comments.
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Abstract. This paper presents an experimental study aimed at assess-
ing the feasibility of parallelizing constraint propagation—with particu-
lar focus on arc-consistency—using Graphical Processing Units (GPUs).
GPUs support a form of data parallelism that appears to be suitable
to the type of processing required to cycle through constraints and do-
main values during consistency checking and propagation. The paper
illustrates an implementation of a constraint solver capable of hybrid
propagations (i.e., alternating CPU and GPU), and demonstrates the
potential for competitiveness against sequential implementations.

1 Introduction

Constraint programming has gained prominence as an effective paradigm for
problem modeling and solving, with applications to such diverse domains as
scheduling, satisfiability testing, optimization, and verification. A typical Con-
straint Satisfaction Problem (CSP) consists of a set of variables, each taking
values from an associated finite domain, along with a set of constraints. The
constraints are used to restrict the values that different variables can simultane-
ously assume. Resolving a CSP consists of determining complete assignments of
values to the variables that satisfy all the constraints. Constraint programming
is frequently used to address combinatorial problems, which are, in general, NP-
hard. Solving CSPs is usually achieved by combining backtracking search with
forms of consistency checking, to prune values from the variables’ domains that
are inconsistent with the constraints. Polynomial time techniques like node, arc,
path and bound consistency have been developed for this purpose.

The cost of solving complex CSPs has motivated the exploration of techniques
to improve the exploration of the search space; parallelism has been recognized as
a strong contender, especially with the wider availability of multicore and cluster
platforms. A large body of research has been developed to address parallelization
of backtracking search on a variety of parallel and distributed platforms.

The research presented in this paper makes a contribution to the domain of
parallel constraint solving, by exploring ways of using Single-Instruction Multiple-
Threads (SIMT) parallelism to reduce the cost of constraint propagation. The
choice of SIMT parallelism has two driving motivations. First of all, it is our
belief that this form of parallelism is suitable to the type of processing that con-
straints are subjected to during consistency checking. Second, SIMT is the style
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of parallelism that is natively supported by modern General Purpose Graph-
ical Processing Units (GPGPUs). GPGPUs are massive parallel architectures,
that are available in the form of graphic cards in most modern computers; they
provide hundreds of computing cores at an affordable cost. Exploiting the par-
allelism offered by GPUs is not trivial—the cores are often significantly slower
than CPU cores, they impose restrictions on branching, and provide a complex
memory hierarchy with differences in speed, size, and concurrency of accesses.

The contribution of this paper is a feasibility study that demonstrates the
potential for using GPGPUs to speedup a constraint propagation engine, based
on the notion of events [23]. We propose a methodology to map constraints,
variables, and domain elements to threads running on GPU cores, thus enabling
the concurrent analysis of arc and bound-consistency and removal of inconsistent
domain values. The methodology is implemented in an experimental solver, and
shown to produce performance enhancements even in its simple and unoptimized
form. The prototype demonstrates also the strengths and weaknesses of GPU
parallelism in constraint solving. This is, to the best of our knowledge, the first
study investigating the use of GPGPUs in constraint propagation; this study
opens the doors to an alternative way to enhance performance of constraint
solvers, through the unexploited computational power offered by GPUs.

2 Background

A Constraint Satisfaction Problem (CSP) [19] is defined as P = (X,D,C) where:

• X = 〈x1, . . . , xn〉 is a n-tuple of variables;

• D = 〈Dx1 , . . . , Dxn〉 is a n-tuple of finite domains, each associated to a
distinct variable in X . We assume eachDxi ⊆ N; minDx and maxDx denote
the minimum and maximum element of Dx, respectively.

• C is a finite set of constraints on variables in X , where a constraint c
on the m variables xi1 , . . . , xim , denoted as c(xi1 , . . . , xim), is a relation
c(xi1 , . . . , xim) ⊆ ×im

j=i1
Dxj . The variables xi1 , . . . , xim are referred to as

the scope of c (denoted by scp(c)).

A solution of a CSP is a tuple 〈s1, . . . , sn〉 ∈ ×n
i=1D

xi s.t. for each c(xi1 , . . . , xim)
∈ C, we have 〈si1 , . . . , sim〉 ∈ c. P is (in)consistent if it has (no) solutions.

CSP solvers (e.g., Algorithm 1) alternate two steps: (1) Selection of a variable
and non-deterministic assignment of a value from its domain (labeling), and (2)
Propagation of the assignment through the constraints, to reduce the admissible
values of the variables and possibly detect inconsistencies (constraint propaga-
tion). Thus, at the core of a CSP solver there is a constraint propagation engine,
that repeatedly propagates information based on the available constraints; its
basic component is a function, from domains to domains, referred to as propa-
gator [23]. Given two n-tuples of domains D1 and D2, we say that D1 � D2 if,
∀x ∈ X , we have that Dx

1 ⊆ Dx
2 . A propagator f is a monotonically decreasing

function: f(D) � D and f(D1) � f(D2) whenever D1 � D2. Each constraint
c ∈ C is implemented by a set of propagators prop(c) that operate on the m-
tuple of domains of the variables in scp(p). In the paper we denote by F the set
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of all propagators considered. If f(D) = D for all f ∈ F then D is a fixpoint of
F . A propagation solver i-solv for a set of propagators F and an initial domain
D finds the greatest fixpoint of F . i-solv start its computation from a subset
F0 ⊆ F of propagators and the current domains that will be, in general, reduced.

Algorithm 1. search(X,D,C, �)

1: if � > |X| then
2: output D; return true;
3: end if
4: for all d in Dx� do
5: D′ ← 〈Dx1 , . . . , Dx�−1 , {d}, Dx�+1 , . . . , Dx|X| 〉;
6: F0 ← {prop(c) : c ∈ C ∧ x� ∈ scp(c)};
7: if i-solv(F0, D

′) ∧ search(X,D′, C, �+ 1) then
8: return true;
9: end if
10: end for
11: return false;

The procedure i-solv (Algorithm 2) iteratively invokes the propagators until
the greatest fixpoint is reached. Two general decisions have to be made in order
to reach the fixpoint: (1) Which propagators should execute, and (2) In which
order they should execute. These decisions are based on the notion of events: an
event is a change in the domain of a variable. We distinguish five types of events:
(1) failed event : there is a variable x such that D′x = ∅. (2) empty event :
no event happened, i.e., D′x = Dx for all variables considered. (3) sing event :
there is a variable x such that |D′x| = 1. (4) bc event : there is a variable x
such that minD′x > minDx or maxD′x < maxDx. (5) dmc event : there is a
variable x such that D′x ⊂ Dx. These events are used to invoke the necessary
propagators only, based on the changes to the variables’ domains that occurred.

Algorithm 2. i-solv(Q,D)

1: D′ ← D;
2: while Q �= ∅ do
3: for all f ∈ Q do
4: D′′ ← f(D);
5: if failed event then return false; end if
6: D ← D′′;
7: end for
8: Q ← new(Q,D′, D′′);
9: end while
10: return true;

The pseudo code in Algorithm 2 is similar to the well-known AC3 algorithm
(c.f., e.g., [19]): the while loop (lines 2–9) propagates the constraints in the
queue of propagators Q until no changes happen in the domains, i.e., D is a
fixpoint for the propagators invoked, or some domain is empty. The procedure
new(Q,D′, D′′) chooses the new propagators to be inserted in the queue, based
on the changes between the original domain D′ and the final domain D′′ and on
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the propagators already in Q. As a side-effect, the procedure modifies the values
of the calling domain variable in the search procedure.

3 GPU Computing

Modern graphic cards (Graphics Processing Units) are multiprocessor devices,
offering hundreds of computing cores and a rich memory hierarchy for graphical
processing (e.g., DirectX and OpenGL). Efforts like NVIDIA’s CUDA—Compute
Unified Device Architecture [21] aim at enabling the use of the multicores of
a GPU to accelerate general applications—by providing programming models
and APIs that enable the full programmability of the GPU. In this paper, we
consider the CUDA programming model. The underlying conceptual model of
parallelism supported by CUDA is Single-Instruction Multiple-Thread (SIMT), a
variant of the popular SIMD model. In SIMT, the same instruction is executed by
different threads that run on identical cores, while data and operands may differ
from thread to thread. CUDA’s architectural model is represented in Figure 1.

Different NVIDIA GPUs provide different numbers of cores, organized in a dif-
ferent way, and with different amounts of memory. The GPU consists of a series
of Streaming MultiProcessors (SMs); the number of SMs depends on the spe-
cific characteristics of each class of GPU—e.g., the Fermi architecture provides
16 SMs. In turn, each SM contains a collection of computing cores (contain-
ing a fully pipelined ALU and floating-point unit); the number of cores per SM
may range from 8 (in the older G80 platforms) to 32 (e.g., in the Fermi plat-
forms). Each GPU provides access to on-chip memory (for thread registers and
shared memory) and off-chip memory (L2 cache, global memory and constant
memory)—see Fig. 1.

A logical view of computations is introduced by CUDA, in order to define
abstract parallel work and to schedule it among different hardware configura-
tions. A typical CUDA program is a C/C++ program that includes parts meant
for execution on the CPU (referred to as the host) and parts meant for paral-
lel execution on the GPU (referred to as the device). A parallel computation
is described by a collection of kernels—each kernel is a function to be exe-
cuted by several threads. Threads spawned on the device to execute a kernel are

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared 
memory

Thread Thread

regs regs

Block

Shared 
memory

Thread Thread

regs regs

Block
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Fig. 1. CUDA Architecture

hierarchically organized to facilitate the mapping
of the threads to the (possibly multi-dimensional)
data structures being processed: threads are
organized in a 3-dimensional structure (called
block), and blocks themselves are organized in
2-dimensional tables (called grids). CUDA maps
blocks (coarse-grain parallelism) on the SMs for
execution; each SM schedules the threads in a
block (fine-grain parallelism) on its computing
cores in chunks of 32 threads at a time (called
warps), thus allowing a group of threads in a
block to use the computing resources while other
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threads of the same block might be waiting for information (e.g., completing a
slow memory request). Threads have access to several memory levels, each with
different properties in terms of speed, organization (e.g., banks that can be con-
currently accessed) and capacity. Each thread stores its private variables in very
fast registers (anywhere from 8K to 64K per SM); threads within a block can
communicate by reading and writing a common area of memory (called shared
memory). On the other side, communication between blocks is not supported
and it can be accomplished after the completion of the whole kernel. Neverthe-
less, global memory (up to several GBytes) can be used to store information
that can be used by subsequent kernels.

The kernel, invoked by the host, is executed by the device and it is written
in standard C-code. The number of running blocks (gridDim) and the number of
threads of each block (blockDim) is specified by the kernel call that is invoked
on the host code with the following syntax:

Kernel ≪ gridDim, blockDim ≫(param1, . . . , paramn);

In order to perform a computation on the GPU, it is possible to move data
between the host memory and the device memory. By using the specific identifier
of each block (blockIdx—providing x, y coordinates of the block in the grid), its
dimension (blockDim) and the identifier of each thread (threadIdx—providing
x, y, z coordinates for the thread within the block), it is possible to differentiate
the data accessed by each thread and code to be executed. For example, the
following code fragment shows a kernel and the corresponding call from the
host. Each element of a two dimensional matrix is squared, and each thread is
in charge of one element of the matrix. The matrix A is represented by a pointer
in the device’s global memory; CUDA provides functions (e.g., cudaMemCopy)
to transfer data between the host and the device’s global memory.

int main() { ...

dim3 thrsBlock(n,n);

sqMatrix<<<1,thrsBlock>>>(A);

...

__global__ sqMatrix(float *Mat){

int i=threadIdx.x;

int j=threadIdx.y;

Mat[i][j] = Mat[i][j]*Mat[i][j]; }

While it is relatively simple to develop correct CUDA programs (e.g., by incre-
mentally modifying an existing sequential program), it is challenging to design
an efficient solution. Several factors are critical in gaining performance. The
SIMT model requires active threads in a warp to execute the same instruction—
thus, diverging flow paths among threads may reduce the amount of actual
concurrency. Memory levels have significantly different sizes (e.g., registers are
in the order of dozens per thread, while shared memory is in the order of a
few kilobytes per block) and access times; different cache behaviors are applied
to different memory levels (e.g., constant memory is a cached read-only global
memory) and various optimization techniques are used (e.g., accesses to con-
secutive global memory locations by contiguous threads can be coalesced into
a single memory transaction). Thus, optimization of CUDA programs require a
thorough understanding of the hardware characteristics of the GPU being used.
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4 Parallelizing the Constraint Engine

In this section we describe our approach to GPU-based execution of the i-solv
procedure presented in Section 2. The corresponding pseudo-code is reported in
Algorithm 3.

Our model encodes three different types of parallelism for constraint propa-
gation. Recall that constraint propagation is monotonic, therefore the order in
which the data is analyzed does not influence the result (while it might affect
the number of operations performed to reach the fixpoint).

Constraints: Given a set C of constraints for which propagation and consis-
tency checks are to be performed, a natural form of parallelism is to delegate
the processing of each constraint c ∈ C to a different parallel computation.
In particular, it is convenient to map a block of threads (Bc) to the handling
of each c, in order to exploit the various parallel GPU’s SM.
A kernel with a number of blocks of the size of the current constraint queue
C is invoked. Up to 232 blocks can be used on NVIDIA 2.x cards, which is
adequate for most CSPs.

Variables: A second level of parallelism is applied to the processing of a con-
straint c assigned to a block Bc. Domain reductions for the variables involved
in the constraint (namely x ∈ scp(c)) can be performed in parallel fashion. In
particular, each variable can be handled by a different thread that executes
the domain filtering. Moreover, the type of operations is executed in a SIMT
fashion, since the code for propagation usually repeats identically for each
variable. This level of parallelization is suitable to global constraints, such
as element, inverse, or table constraint—while it would not bring benefit to
constraints that admit efficient propagation algorithms.

CPU and GPU: Host and device are capable of independent and parallel work,
that can be synchronized by specific programming constructs. We designed
a third level of parallelism for constraint propagation, by partitioning the set
of propagators in two queues: one to be processed by the CPU and another
one by the GPU. Constraints with efficient propagators (e.g. few variables),
remains on the host, while the others are delegated to the GPU. During the
evolution of the propagation, exchanges of information between host and
device ensure to reach the fixpoint faster.

Let us describe the main components of Algorithm 3. At each invocation
of the i-solv procedure, the set of initial propagators F0 is split between host
and device by the function split that initializes the queues of constraints Qhost

and Qdev (host and device constraints), based on the type of constraints to be
propagated in line 2. The default distribution, based uniquely on the type, can
be changed by the split function according to two internal thresholds: (1) If
the number of CPU-propagators is higher than a given upper bound, they are
all moved to Qdev; (2) If the number of GPU-propagators is lower than a given
lower bound, they are moved to Qhost.

By varying these bounds, it is possible to force the computation completely
on the CPU (huge lower bound) or completely on the GPU (upper bound =
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Algorithm 3. i-solv(F0, D)

1: T ← max{|scp(c)| : c ∈ C};
2: 〈Qhost,Qdev 〉 ← split(F0);
3: while Qhost ∪Qdev �= ∅ do
4: if Qdev �= ∅ then
5: cudaMemcpy(Ddev, D);
6: gpu propagate<<< |Qdev|, T >>> (Qdev, Ddev);
7: cudaMemcpy(D′, Ddev);
8: if failed event then return false; end if
9: end if
10: if Qhost �= ∅ then
11: for f ∈ Qhost do
12: D′′ ← cpu propagate(f,D);
13: if failed event then return false; end if
14: end for
15: end if
16: Daux ← D;D ← D′ ∩D′′;
17: 〈Qhost,Qdev 〉 ← split(props(D,Daux,Qhost ∪Qdev));
18: end while
19: return true;

0). These bounds are used to handle the cases where a large number of efficient
propagators are assigned to the CPU, while they could take advantage of parallel
propagation or, vice-versa, very few expensive propagators are assigned to the
GPU, where the time required by memory transactions between host and device
would likely offset the advantages of a parallel propagation. The only exception
to these rules is for complex constraints (such as the table constraint) that are
always delegated to the GPU.

Every loop iteration analyzes and modifies the propagators in Qhost and in
Qdev. If Qdev is not empty, parallel propagation is performed by invoking the
kernel gpu propagate (line 6), with as many blocks as the size of Qdev, and
as many threads per block as the maximum scope size among all constraints.
The kernel function gpu propagate is sketched in Algorithm 4 and explained
later. If Qhost is not empty sequential propagation is performed by invoking the
function cpu propagate (line 12). If both propagations succeed, the new states
D′ and D′′, produced respectively by the GPU and the CPU, are merged (line
16) and the function props() determines the minimal sets of propagators that
are not at their fixpoint for the domain D (line 17). The function props() is
based on the notion of events. It calculates the events based on status Daux of
the previous iteration and the current status D (evts(D,Daux)), and updates
the queue of propagators accordingly:
props(D,Daux, Q) = {f ∈ F : evt set(f) ∩ evts(D,Daux) �= ∅} \ fix(Q,D)

where the set evt set(f) is the set of events related to the propagator f , and
fix(Q,D) = {f ∈ Q : f(D) = D}. This set of events is computed by analyzing
the differences between D and Daux.

Let us briefly discuss Algorithm 4. This kernel invokes a propagator per block.
The identifier of the block (blockIdx ) is used as index on the queue Q to retrieve
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Algorithm 4. gpu propagate(Q,D)

1: c id ← Q[blockIdx];
2: get propagators[get type(c id)](c id,D);

the identifier c id of the constraint to propagate. The function get propagators
returns a pointer to the device function that implements the (set of) propagators
for the constraint c indexed by its type get type(c id). The constraint identifier
c id is also used by the propagator to identify the scope and any parameters
of the constraint to propagate.1 A failed event is generated when there is an
empty domain. If this is the case, then the propagation will fail and the i-solve
procedure will return false; this will cause the search to backtrack (line 9).

The propagation on the host is similar; the kernel invocation is replaced by a
for loop that iterates over all the propagators in Qhost (lines 12-15). Let us note
that, differently from the propagation on the device, the failed event is checked
every time a propagator has been considered. Let us discuss some details related
to the CPU and GPU implementations of these algorithms.
Domain Representation. Domains are represented using bit-masks stored in k
unsigned int 32-bit variables. Precisely, considering D ⊆ {0, . . . , 32k−1} viewing
the k variables as a unique string, the domain D is represented by

∑32k−1
i=0 2ibi,

where if i ∈ D then bi = 1, else bi = 0. Negative numbers can be implemented
using an appropriate offset value. The use of bit-wise operators on domains
reduces the differences between the GPU cores and the CPU cores, since access
to data in the former is much slower than in the latter. Three extra variables
are used: two for storing the domain bounds (minD and maxD) and one for
storing the current event associated to D. We denote with M = k+3 the number
of variables used. For instance, for storing domains included in [0..927] we use
M = 32 unsigned int variables.

Status Representation. The status of the computation at every node of the
search tree is represented by a vector of M · |V | where M is as described above.
This representation of the status reduces the total number of accesses to the
global memory, since every consecutive 32 domain values are grouped together
in a single integer value. The choice of M as a multiple of 32 integers allows us
to take advantage of the device cache, since global memory accesses are cached
and served as part of 128-byte memory transactions. Moreover, using the same
array of data for both the bit-mask and the domain bounds increases the coa-
lesced memory accesses, i.e., the accesses to the global memory are coalesced for
contiguous locations in global memory, increasing access performance.

Data Transfers. The memory dataflow is designed in order to optimize memory
throughput. Since applications should strive to minimize data transfers between
the host and the device (i.e., data transfers with low bandwidth), at each parallel
propagation step we transfer the minimum information needed to represent the
current state in the search tree. Namely, we copy into the global memory of the
GPU the previous decisions performed in the current exploration of the search

1 The relationships between constraints and variables (constraint graph) is stored in
the device memory, to limit the information exchange between CPU and GPU.
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tree, and only the domains of the variables not labeled yet. These domains still
ensure a correct execution of the propagation algorithm, as we are interested in
reducing only the domains of the variables that are still to be labeled. In order to
allow concurrent computations on the host and the device, every cudaMemcpy
is performed as an asynchronous data transfer. A call to the CUDA function
cudaDeviceSynchronize(), used to synchronize the host and the device, is
requested only when the CPU has finished its sequential propagation.

MiniZinc Constraints Encoding. In this work we considered the finite do-
main constraints that are available in the MiniZinc/FlatZinc modeling lan-
guage [15]. Given a MiniZinc model, we translate it and produce an input for
our solver in three steps: (1) first, we read the MiniZinc file to identify the global
constraints being used; (2) we translate the model into a FlatZinc model without
considering the global constraints (we use the compiler available in the MiniZinc
distribution [15]); and (3) the FlatZinc translation is given as input to a parser
that produces the input for the solver.

Propagators. We have implemented the propagators for the FlatZinc con-
straints plus specific propagators for some global constraints that take advantage
of GPU parallelism. As described earlier, every propagator is implemented as a
specific device function invoked by a single block. For example, let us consider
an all different constraint c on the variables x1, . . . , xn, naively encoded as a
quadratic number of binary �= constraints. It can be implemented by a set of n
propagators p1, . . . , pn, such that the propagator pi takes care of the constraints
xi �= xj where j �= i (see Algorithm 5). The propagator is typically activated for
one i at a time. A sequential implementation of this propagator requires time
O(n), while the parallel version requires O(1).

Algorithm 5. pi(c id,D)

1: xi ← scp(c id)[i];
2: label ← min Dxi ; {min Dxi = max Dxi since xi is the current labeled variable}
3: n ← scp(c id).size(); {Constraints information on device global memory}
4: if threadIdx < n ∧ threadIdx �= i then
5: temp ← scp(c id)[threadIdx];
6: Dtemp[label] ← 0;
7: end if

Some other constraints require more than one block to fully exploit the parallel
computation. This is the case, for example, of the table constraint (see Sec. 5).
To handle these cases, we modified Algorithm 3 in order to further split the
queue Qdev in two queues: one for constraints that are propagated using one
block per propagator, and one for constraints that use more than one block.

5 Results

We experimentally evaluated our solver using several classical benchmarks.
Benchmarks are encoded in MiniZinc and compiled automatically in the solver.
In particular, we compare the performance of our solver (in terms of execu-
tion time) with that of two state-of-the-art solvers, namely Gecode [24] and
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JaCoP [10]. Our solver does not include advanced search strategies at this
time—therefore, for a fair comparison, we use Gecode and JaCoP with a naive
“leftmost” strategy with increasing value assignment. In order to measure par-
allel performance, we analyze the speed-ups and limitations of the GPU version
against a purely CPU execution of our code—as mentioned earlier, this can be
realized by modifying the bounds used to manage the constraint queues. Thus,
while the first set of comparisons gives us an idea about the baseline perfor-
mance of our core solver (including an indication of the overhead introduced to
support parallelism), the second set of data measures the improvements gained
by using parallelism. We have aimed at creating a core solver that is efficient
and competitive with the state-of-the-art, containing overhead to the minimum.
All tests have been performed on the following hardware: the Host is an AMD
Opteron 270, 2.01GHz, RAM 4GB, while the Device is an NVIDIA GeForce GTS
450, 192 cores (4MP), Processor Clock 1.566GHz, OS Linux.

Comparison with Gecode and JaCoP. We start by evaluating the perfor-
mance of our solver w.r.t. the solvers Gecode and JaCoP on some classical bench-
marks, specifically nQueens, Schur (numbers 1, . . . , N in B blocks), and the
propagation stress benchmarks (see, e.g., the MiniZinc benchmarks folder [15]).
Let us remark that the all different constraints is implemented in a “quadratic
way” in all these problem instances—this explains the relatively slow running
times for nQueens. As expected, there are instances that better fit one solver, and
other instances that better fit others (see Table 1—running times in seconds).
We report two columns for our solver (CPU and GPU). For this experiment, let
us focus on the GPU column (the CPU column is used in the following experi-
ments). or a fair comparison, we modified the hybrid and adaptive recomputation
parameters of Gecode. In particular we switched off cloning by setting the value
cd (commit distance) greater than the expected depth of the search tree.

The labeling strategy for our solver, Gecode and JaCoP is the naive “leftmost”
strategy with increasing value assignment. We can observe that the solver we
are proposing is, on average, comparable with the state-of-the-art.

Comparing GPU vs. CPU. In this section we compare the GPU parallel ver-
sion of the solver w.r.t. a purely sequential version. The core of the propagators

Table 1. Comparison between i-solv (sequential CPU and parallel CPU versions),
Gecode, and JaCoP for the nQueens, Schur, and propagation stress benchmarks

N CPU GPU Gecode JaCoP
24 6.273 9.699 7.094 47.59
26 5.975 8.773 7.438 47.55
28 50.88 68.47 66.88 442.6
30 930.3 1278 1407 9600

N B CPU GPU Gecode JaCoP
40 4 88.59 84.75 19.02 2.570
41 4 92.92 90.71 19.54 2.610
42 4 97.03 95.41 20.54 2.700
43 4 108.4 98.75 21.35 2.850

k n m CPU GPU Gecode JaCoP
10 20 200 0.043 0.053 0.696 2.550
10 20 300 0.068 0.082 1.740 4.730
10 20 400 0.175 0.159 3.155 8.460
10 20 500 0.339 0.306 4.968 13.94
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are implemented in the same way (i.e., they use the same C encoding). The main
drawbacks of the GPU computations are primarily related to data transfers, due
to the GPU memory latency and coalesced access patterns, and to the difference
between the GPU clock and the CPU clock.

We have tested various benchmarks described in Table 1: the running times
are comparable for the sequential and parallel executions. Similar considerations
hold for other “small” instances. We used the upper bound (UB) parameter
to move constraints from the host queue to the device queue. UB is calculated
empirically, and it is automatically set by the solver in a preprocessing step,
by considering the average numbers of global memory accesses w.r.t. the type
of propagators involved in the model. For example, if there is an average of 3
memory accesses for each propagator, and each propagator requires O(1) time,
then the upper bound will be set to at least 900, since each global memory
access requires about 300 clock cycles. Table 2 shows how the UB affects the
computational time on the Golomb ruler problem for a ruler of 20 integers.
Notice that the solver with an appropriate upper bound performs better than
both the CPU and the GPU without upper bound (UB = 0, all constraints
propagated on device). The model comprise both O(1) and O(n) propagators.

Table 2. Influence of the upper bound parameter on the Golomb ruler problem

CPU UB = 0 UB = 100 UB = 500 UB = 1000 UB = 1500 UB = 2000

266.4 223.4 216.4 214.2 210.4 207.8 208.2

Significant performance improvements emerge when more complex constraints
are considered. As explained in Section 4, the GPU is delegated to large sets of
non trivial propagators. Using the CUDA framework, the CPU and the GPU can
execute concurrently, since the kernels and the memory copy operations between
host and device can be performed asynchronously. Let us focus on two “expen-
sive” constraints, namely the inverse and the combinatorial table constraint.

The inverse Constraint. This constraint ties two arrays of variables using the
global inverse property. Given two lists X = [x1, . . . , xn] and Y = [y1, . . . , yn] of
integer variables, where Dxi = Dyi = [1..n], the constraint inverse(X,Y ) holds
iff (∀i ∈ [1..n])(∀j ∈ [1..n])(xi = j ↔ yj = i). The FlatZinc implementation of
this constraint uses n2 Boolean variables and 2n2 reified equality constraints:

∧
i,j xi = j ↔ Bij ∧

∧
i,j yj = i ↔ Bij

The GPU version of this constraint is implemented by 2n propagators. Namely,
n propagators are used for the “→” (resp., “←”) direction of the constraint,
considering the labeling of one variable in X (resp., in Y ). Since we expand
the relation xi = j ↔ yj = i either on the left or the right side depending on
the labeled variable, we do not need to explicitly use the Boolean variables Bij

to link the binary equality constraints. These constraints are propagated by n
threads. For example, let us assume that x1 = 2 after the labeling of x1; the
constraint engine invokes the propagator inverse(x1, Y ) where the thread whose



Exploring the Use of GPUs in Constraint Solving 163

threadIdx = 2 propagates the constraint y2 = 1 (i.e, B12 = true), while the
other threads propagate the constraints yi �= 1, where i ∈ {1, 3, 4, . . . , n− 1, n}.

Table 3 compares the sequential and the parallel implementations of the in-
verse constraints, by increasing the number n of variables in its scope.

Table 3. Time comparison for the inverse constraint

n CPU GPU Speedup

100 0.030 0.026 1.15
250 0.338 0.152 2.22
500 2.456 0.744 3.30
750 7.855 2.142 3.66

For n = 100 there is a poor speedup, since the CPU cores are faster than
the GPU cores and the instance of the problem is small. The speedup increases
for bigger instances (i.e., n > 200) where the parallel computations offset the
difference of speed between CPU and GPU cores. We have verified that the
FlatZinc encoding of the inverse constraint is sensibly slower; for instance, if
n = 100, the CPU takes time 3.583 seconds, while the GPU 3.334 seconds.

The inverse constraint is employed in several encodings, such as the black hole
problem, and it is also used to create the dual models of problems.

The table Constraint. A table constraint is an extensional constraint defined
by explicitly listing (a set of n)m-tuples of values that are either allowed (positive
table constraint) of disallowed (negative table constraint) for the variables in its
scope. Table constraints arise naturally in configuration problems where they
represent available combinations of options. For some applications, compatibility
between resources, e.g., persons or machines, can be expressed by tables. Tabular
data may also come from databases: the results of database queries are sometimes
expressed as tables that have large arity.

A table constraint c represented by a n×m matrix and the Generalized Arc
Consistency (GAC ) [19] is maintained through propagation. Precisely, focusing
on a variable xi ∈ {x1, . . . , xm} = scp(c) a support for all the values in Dxi is
searched. This is realized by iterating over the n allowed tuples until a valid one
is found. This algorithm ensures consistency in time O(nm) (a faster, but more
complex, algorithm is presented in [12]).

Using the GPU, it is possible to reduce this time to (parallel) time O(1), by
performing the GAC test as follows: we assign each row to a kernel block, and
each column to a different thread within the block. For table constraints with
scope size larger than 1024, we split the computation among multiple kernels.
For 1 ≤ i ≤ n and 1 ≤ j ≤ m, thread tij checks whether the value contained in
the cell cij is valid w.r.t. the domain Dxj . The domains of the variables involved
in the constraint are then replaced with the (new) domains, containing only
those values that still might lead to a solution, as determined by each block.

We impose a specific ordering among propagated constraints: we first prop-
agate binary constraints and constraints that have a fast propagator, that may
eventually lead to a failure; more expensive propagators are executed last.
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Table 4 compares the times for the propagation of the table constraint varying
the number of rows n, the number of columns m, and the size of the domains
of the variables. The tables are filled with random values, where |D| is the size
of the domain; note that larger domains produce fewer valid tuples after the
labeling of a variable involved in the constraint.

Table 4. Time comparison for the table constraint with random values.

n×m | D | CPU GPU Speedup

100× 100 2 0.002 0.001 2.00

250× 250 2 0.007 0.003 2.30

500× 500 2 0.026 0.010 2.60

n×m | D | CPU GPU Speedup

100× 100 50 0.001 0.001 1.00

250× 250 50 0.003 0.001 3.00

500× 500 50 0.013 0.004 3.25

Examples Containing Table and Inverse Constraints.
The Three-barrels problem is a planning problem, where the state of the world
is represented by three barrels of wine, whose capacities are n (even number),
n/2 + 1, and n/2− 1, respectively. At the beginning, the largest barrel is full of
wine, while the other two are empty. The goal is to reach a state in which the two
largest barrels contain the same amount of wine. Moreover, the only admissible
action is to pour wine from one barrel to another, until the latter is full or the
former is empty. We encoded this problem as a decision problem, by imposing
an upper bound � on the number of actions and evaluating whether the goal
state can be reached in � steps. In this setting, we have 3(� + 1) variables, with
domains {1, . . . , n}, representing the sequence of states, and � variables with
domains {0, . . . , 5}, representing the 6 possible “pouring” actions. The labeling
is done on the action variables, and � table constraints tie the ith state with
the successor i+ 1th state. Table 6 (left) shows the results for the Three-barrels
problem considering a number of actions � equal to n, that was experimentally
found to be the length of the shortest successful plan. The speedup is slowly
increasing due to the size of the tables (r× 7, with r proportional to n) and the
number of valid rows at each labeling (at most 6 given the current state), that
reduce the propagation time to O(r).
The Black-hole is a card game problem derived from [4]. A MiniZinc model is also
present in the benchmark folder of the MiniZinc distribution [15], using both the
global constraints inverse and table. The former is used to relate card values and
positions in the sequence, while the latter is used to impose matching constraints
among consecutive cards. The < constraints impose an order between played
cards, and are always propagated on the host. Table 6 (right) shows the results
for the Black-hole game problem. Since the game is devised for 52 cards, the set
of order constraints for instances 104 and 208 are artificially introduced. The
table shows an increasing speedup. The GPU is faster even on small instances,
since the two expensive constraints are propagated in parallel on the GPU.
Positive table constraint benchmarks. The following benchmark problems are
defined using only positive table constraints.2 They include some well-known

2 These benchmarks can be downloaded from http://becool.info.ucl.ac.be/

resources/positive-table-constraints-benchmarks .

http://becool.info.ucl.ac.be/resources/positive-table-constraints-benchmarks
http://becool.info.ucl.ac.be/resources/positive-table-constraints-benchmarks
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Table 5. Time comparison for the Three-barrels problem and the Black-hole game

Three-Barrels Problem

n CPU GPU Speedup

100 176.5 160.8 1.09

120 364.9 324.3 1.12

140 679.6 588.8 1.15

Black-hole Problem

n. cards CPU GPU Speedup

52 7.637 7.694 0.99

104 68.14 51.08 1.33

208 73.77 42.66 1.72

problems, such as the crossword game, the Langford problem, several synthetic
problems, and some other real-world problems, such as the modified Renault
problem. A speedup of at least 2 is obtained in all the problem instances, show-
ing that the use of the GPU pays off on large instances and real problems.

Table 6. Positive table constraint benchmarks.

Instance CPU GPU Speedup Instance CPU GPU Speedup

CW-m1c-lex-vg4-6 0.015 0.005 3.00 langford-2-50 44.06 15.16 2.94

CW-m1c-uk-vg16-20 1.488 0.225 6.61 ModRen 0 0.381 0.154 2.74

CW-m1c-lex-vg7-7 209.4 43.87 4.77 ModRen 49 0.317 0.117 2.74

langford-2-40 136.4 46.39 2.90 RD k5 n10 d10 m15 0.138 0.053 2.60

6 Related Work

Extensive research has been conducted focusing on parallelizing backtracking
search, both in the context of CSP as well as in more general search-based sce-
narios (e.g., [28,9,11,25]). Some works in this direction include the foundational
work of Van Hentenryck in parallelizing the Chip system [26], the follow-up work
in various CLP systems (e.g., [6]), the work of Perron [17], Schulte [22], and the
more recent explorations by Michel et al. [14].

The problem of parallelizing consistency techniques has been also explored in
the literature. The seminal works of Nguyen and Deville [16] and Hamadi [7]
present methods based on message passing and distributed memory platforms;
these approaches rely on the partitioning of the set of constraints among pro-
cessors, and the use of messages to exchange variable domains. More recent
approaches shifted the focus to multicore platforms and multithreaded imple-
mentations — e.g., the proposals by Rolf and Kuchcinksi [18] and Ruiz-Andino
et al. (focused on non-binary constraints [20]). Note that, following the results
from Kasif [8], establishing arc-consistency is P-complete; this is an indication
that extracting parallelism from AC is, in general, not an easy problem (and, in
the worst case, may not lead to complexity improvements).

To the best of our knowledge, this is the first reported effort exploring the
use of GPGPUs in constraint propagation; some related effort includes [2], that
shows how to parallelize unit propagation on GPGPUs. Some preliminary studies
have instead addressed the problem of parallelizing search on GPUs [2,5,13].
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7 Future Work and Conclusions

In this paper, we presented a feasibility study exploring the potential for ex-
ploitation of fine-grained GPU-level parallelism from the process of constraint
propagation. The investigation has been grounded in a prototype (with com-
petitive performance with the state-of-the-art), demonstrating the potential for
enhanced performance, especially in the context of complex global constraints.
This is not an easy task, and the speedups proposed are in-line with results
observed for parallelization of other classes of problems on GPUs.

This work complements preliminary studies [2,27], conducted by the authors,
in the context of SAT and ASP solving—where we demonstrated performance
improvement from the “orthogonal” direction of parallelizing the actual search
process. The combination of these two aspects (parallel search and parallel prop-
agation) provide a roadmap for the creation of a fully GPU-parallel constraint
solver—which is the focus of our future effort. The performance improvements
for complex constraints reflect also on the potential for effective exploitation of
parallelism in the case of domain-specific constraints with complex propagation
strategies. We experimented with an ad-hoc constraint-based implementation of
protein structure prediction via fragment assembly, parallelized on GPUs using
similar techniques, with excellent performance results, outperforming previous
approaches [1,3]. We will continue along our current efforts of developing ad-hoc
strategy to propagate complex constraints on GPUs.

Let us conclude with a final observation: the overall strategy for handling
constraint propagation reported in Algorithm 2 is designed for efficient sequen-
tial implementation, and indeed is at the core of the state-of-the-art constraint
solvers. Alternative schemes (e.g., AC-3), that can be found in several other im-
plementations, provide a lower level of sequential performance, but they are also
more amenable for GPU-level parallelization (as we demonstrated in a prelimi-
nary study). Unfortunately, the difference in sequential performance effectively
defeats the advantages gained from parallelism.

Acknowledgments. The authors acknowledge Marco Meneghin for his support
in the developing of the wrapper from FlatZinc.
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Abstract. Tabling is an implementation technique that improves the
declarativeness and expressiveness of Prolog in dealing with recursion
and redundant sub-computations. A critical component in the imple-
mentation of an efficient tabling framework is the design of the data
structures and algorithms to access and manipulate tabled data. One of
the most successful data structures for tabling is tries. In previous work,
our initial approach to deal with concurrent table accesses, implemented
on top of the Yap Prolog system, was to use lock-based trie data struc-
tures. In this work, we propose a new design based on lock-free data
structures and, in particular, we focus our discussion on the correctness
and efficiency of extending Yap’s tabling framework to support lock-free
expandable tries. Experimental results show that our new lock-free de-
sign can effectively reduce the execution time and scale better, when
increasing the number of threads, than the original lock-based design.

Keywords: Lock-Free, Tries, Hash Tables, Tabling.

1 Introduction

Tabling [3] is a refinement of Prolog’s standard resolution that can reduce the
search space, avoid looping and have better termination properties. Work on
tabling proved its viability for application areas such as natural language process-
ing, knowledge based systems, model checking, program analysis, among others.
Currently, tabling is widely available in systems like B-Prolog, Ciao, Mercury,
XSB and Yap. Multithreading in Prolog is the ability to concurrently perform
computations, in which each computation runs independently but shares the
program clauses. When multithreading is combined with tabling, we have the
best of both worlds, since we can exploit the combination of higher procedural
control with higher declarative semantics.

A critical component in the implementation of an efficient concurrent tabling
system is the design of the data structures and algorithms to access and ma-
nipulate tabled data. One of the most successful data structures for tabling
is tries [13], a tree-based data structure in which common prefixes are repre-
sented only once. To deal with concurrent table accesses, our initial approach,
implemented on top of the Yap Prolog system [15], was to use lock-based data
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structures [2]. However, lock-based data structures have their performance re-
strained by multiple problems, such as, convoying, low fault tolerance and delays
occurred inside a critical region. Yap’s framework supports the evaluation of
tabled programs according to the semantics of SLG resolution [3]. The practical
significance of this is that, in general, we know that a concurrent tabled program
will only execute search and insert operations over the table space shared data
structures. Yap’s shared data structures are only removed when the last running
thread abolishes the tables. Since no concurrent delete operations are performed,
the size of the shared tries always grows monotonically during an evaluation.

The main motivation of this work is then to refine our lock-based tries in
order to be as efficient as possible in the concurrent search and insert operations
and to maintain an efficient average node access as the size of the tries increases,
independently of the number of running threads. In order to achieve that, we
propose a new design based on lock-free data structures and we focus our dis-
cussion on the correctness and efficiency of extending Yap’s tabling framework
to support lock-free expandable tries, but our new design can be easily gener-
alized and applied to similar concurrent data structures. Lock-freedom allows
individual threads to starve but guarantees system-wide throughput. As we will
see, this is very important since it allows to avoid the bottlenecks and perfor-
mance problems mentioned above without introducing significant overheads for
multithreaded tabled evaluation.

Experimental results show that our new lock-free design can effectively reduce
the execution time and scale better, when increasing the number of threads,
than the original lock-based design. Several lock-free approaches do exist in the
literature, such as Shalev and Shavit split-ordered lists [16] or Prokopec et al.
CTries [12], however to the best of our knowledge none of them is specifically
aimed for an environment with the characteristics of our tabling framework. By
avoiding the node deletion complexity, we were able to produce a fresh and new
approach to deal with concurrency inside the tries.

The remainder of the paper is organized as follows. First, we briefly introduce
some background and discuss related work. Then, we describe our new lock-
free expandable tries design and we present the relevant implementation details.
Next, we prove the correctness of our implementation. Finally, we discuss exper-
imental results and we end by outlining some conclusions.

2 Background

The trie data structure provides complete discrimination for terms and permits
look up and possibly insertion to be performed in a single pass through a term,
hence resulting in a very efficient and compact data structure for term represen-
tation. An essential property of the trie structure is that common prefixes are
represented only once. Two terms with common prefixes will branch off from
each other at the first distinguishing token. Figure 1 shows an example for the
internal representation of the trie levels. For the sake of simplicity, we only show
two levels (the same idea applies to all trie levels).
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Fig. 1. Internal trie representation

The first level represents
a parent node P and the
second level represents how
the trie is adapted to the in-
sertion of distinguish child
nodes with values V 1, V 2,
V 3 and V 4. Figure 1(a)
shows the trie representation
after the insertion of V 1 and Fig. 1(b) shows the trie representation after the
insertion of V 2. Note that new nodes are always inserted on the head for the
level. Whenever the number of nodes in a level reaches a predefined threshold
value, Yap’s tries are expanded with a hash mechanism. Here, for the sake of
simplicity, we will use a threshold value of 2. Figure 1(c) shows the hash rep-
resentation after the insertion of values V 3 and V 4. The parent node P now
points to a special hash node H , which includes a pointer to a hash bucket array
with K entries, and the insert operation is now done on the head for the bucket
entry corresponding to the hash key value k, 0 ≤ k < K. Whenever the hash
bucket array becomes saturated, i.e., when the number of nodes in a bucket en-
try exceeds the threshold value and the total number of nodes exceeds K, then
the bucket array is expanded to a new one with 2 ∗K entries (we will give more
details about this expansion in the following sections).

To deal with concurrent table accesses, our initial approach was to use a lock-
based scheme that allows a single writer per chain of sibling nodes that represent
alternative paths from a common parent node, meaning that only one thread at
a time can be inserting a new child node starting from the same parent node [2].
For locking, we used either a locking field per trie node or a global array of
lock entries [1]. In order to reduce the lock duration, we also tried with trylocks
instead of traditional locks. With trylocks, when a thread fails to get access to
the lock, instead of waiting, it returns to the non-critical region, i.e., it traverses
the newly inserted nodes, if any, searching if the value V at hand was, in the
meantime, inserted by another thread. If V is not found, the process repeats
until the thread gets access to the lock or until V is found.

In this work, we are interested in taking advantage of the CAS (Compare-and-
Swap) operation, that nowadays can be widely found on many common architec-
tures. The CAS operation is an atomic instruction that compares the contents of a
memory location to a given value and, if they are the same, modifies the contents
of that memory location to a given new value. The atomicity guarantees that the
new value is calculated based on up-to-date information, i.e., if the value had been
updated by another thread in the meantime, the write would fail. The CAS result
indicates whether it has successfully performed the substitution or not. Besides re-
ducing the granularity of the synchronization, the CAS operation is at the heart of
many lock-free objects [6]. An object is lock-free if it can be accessed by multiple
threads concurrently without using any type of locking mechanism, such as spin-
locks, mutexs or semaphores. For this work, we are most interested in lock-free lin-
earizable objects as they permit greater concurrency since semantically consistent
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(non-interfering) operations may execute in parallel. Further, linearizability is a
local property, and is therefore independent of any underlying scheduling policy
or interaction between objects. Locality improves the portability and modularity
of large concurrent systems, and can simplify reasoning about concurrent objects.

3 Related Work

Despite the availability of both threads and tabling in several Prolog systems,
such as Ciao, XSB and Yap, the implementation of these two features such that
they work together implies complex ties to one another and to the underlying
engine. To the best of our knowledge, XSB and Yap are the unique Prolog
systems combining tabling with multi-threading. XSB offers two types of models
for supporting multi-threaded tabling: private tables and shared tables [8]. For
private tables, each thread keeps its own copy of the table space. For shared
tables, each tabled subgoal is computed independently by the first thread calling
it, the generator thread, and each generator thread is the sole responsible for fully
exploiting and obtaining the complete set of answers for the subgoal. Since both
XSB models avoid concurrency over the table space, Yap is thus the single Prolog
system that implements and supports concurrent table accesses.

We next briefly describe some of the state-of-the-art approaches for concur-
rent tries and lock-free hash tables using linked lists to deal with collisions.
The first practical work about a lock-free algorithm for hash tables with linked
lists was presented by Michael [10]. Experimental results showed that the lock-
free implementation outperformed, by significant margins, the best lock-based
implementations, both under high and low contention. Another lock-free algo-
rithm for expandable hash tables was presented by Shalev and Shavit [16]. It
is based in split-ordered lists and allows the number of hash buckets to vary
dynamically according to the number of nodes inserted or deleted, preserving
the read-parallelism. More recently, Triplett et al. presented a set of algorithms
that allow concurrent wait-free, linear scalable searches while shrinking and ex-
panding hash tables [17]. The experimental results showed a good performance
even when the hash table is under resizing.

Regarding concurrent trie data structures, Prokopec et al. presented recently
the CTries [12]. The CTries are trees composed of internal nodes (I-Nodes) and
leaves, combined with the support for a snapshot operation, where the updates
on the CTries are done on the I-Nodes. The work shows how the efficiency of
the CTries is directly related with the efficiency of the snapshots and how to
improve the efficiency of those snapshots.

4 Lock-Free Expandable Tries

This section presents our new lock-free design to support the concurrent search,
insertion, hash creation and expansion inside the trie structures. We start with
Fig. 2 showing a small example that illustrates how the concurrent insertion of
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Fig. 2. Concurrent insertion of nodes in the new lock-free expandable trie structure

nodes in the new lock-free trie structure is done. Again, for the sake of simplicity,
we are only considering two levels of the trie.

Figure 2(a) shows the trie configuration after the insertion of the child nodes
V 1 and V 2 in the parent node P . At this stage, the search/insert operation for a
node with a value V is straightforward. Initially, a thread follows the pointer of
P to access the next level of the trie. Then, the chain of sibling nodes is searched
for the value V at hand. If no such node exists, the pointer of P is used in a CAS
operation to guarantee the synchronization of the insertion of V in the chain.
During the search, a local counter is used to count the number of nodes on the
level which, in the case of a node insertion, is then used to verify if the trie level
has reached the predefined threshold value required for hash creation. For this
count, no synchronization is required, since only one thread will be able to have
its local counter equal to the threshold value.

Figure 2(b) then shows the trie configuration in the case where a thread has
started the hash creation process for a trie level. The thread first creates the
special node H , the initial bucket array with size K and initializes all entries in
the bucket array pointing to a special marking node M . The node M is then
used to implement a synchronization point with the first child node V of P
(node V 2 in the figure) that, whenever both are synchronized, will correspond
to a successful CAS operation on P that updates V to H . This means that, from
this point on, the access to the trie level will be done through the new hash node
H . If a thread has accessed the trie level before the hash creation, which means
that it has not seen H , in such case, when trying to insert a new node, the CAS
operation on P will fail because P is now pointing to H .

In the continuation, Fig. 2(c) and Fig. 2(d) show the adjustment process of
placing the child nodes in the correct bucket entries. To ensure lock-free synchro-
nization, we need to guarantee that, at any time, all threads are able to read the
correct values (starting from any bucket entry) and insert new values without
any delay from the adjustment process. To guarantee both properties, we use M
as a way to mark the beginning of the nodes not yet adjusted and we execute the
adjustment process in reverse order. Figure 2(c) shows the case where node V 1
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is first adjusted to be in the bucket entry En and Fig. 2(d) shows the case where
node V 2 is then adjusted to be in the bucket entry Em. Concurrently with the
adjustment process, other threads can be inserting nodes in the same bucket
entries. In Fig. 2(c), a new node V 3 is inserted after V 1 in entry En and, in
Fig. 2(d), a new node V 4 is inserted before V 2 in entry Em. To ensure that the
nodes not yet adjusted (after M) can always be accessed from any bucket entry,
the adjustment process may lead to cycles between the nodes. For example, in
Fig. 2(c), node V 1 is made to point to node M and since M is pointing to V 2
and V 2 is still pointing to V 1, we have a temporary cycle between these nodes.

At the end of the adjustment process, all bucket entries still access M . To
complete the hash creation process, the last operation is thus to remove M from
all entries. For each bucket entry E, if M is on the head of E, then a CAS
operation updating M to Null is necessary. Otherwise, if M is not on the head
of E, then we can simply mark as Null the pointer of the node that is pointing
to M (nodes V 1 and V 4 in Fig. 2(d)). This can be safely done without any CAS
operation since no other thread can write on those nodes.

We complete the presentation of our new lock-free design by describing how
a hash table with a bucket array of size K is expanded to a new one with size
2 ∗K. The decision of performing hash expansion is similar to the hash creation
process. During the search, a local counter is used to count the number of nodes
on a bucket entry which, in the case of a node insertion, is then used to verify
the conditions for hash expansion (please refer to Section 2). In order to ensure
that only one thread gains access to the hash expansion operation, we use a CAS
operation to tag a specific field on H . Figure 3 illustrates the hash expansion of
Fig. 2(d) after the insertion of a new node V 5 on the bucket entry En.
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.
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2*K
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.
.
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K E’n

Fig. 3. Expanding the hash tables

The thread that gains
access to the hash expan-
sion operation starts by
creating a new bucket ar-
ray B′ of size 2 ∗ K en-
tries. Next, for each old
bucket entry En, it re-
computes the hash func-
tion for the nodes on En and redistributes them on B′ accordingly to the new
hash values. In particular, for our hash function, this means that a node on the
nth entry of the old bucket array B (En on Fig. 3) will be assigned to the nth
or (n + K)th entry of B′ (entries E′n and E′m on Fig. 3). As before, we use
again a marking node M to implement a synchronization point between the old
bucket entry En and the new bucket entries E′n and E′m that, whenever both
are synchronized, will correspond to a successful CAS operation that updates
En to B′ (situation illustrated on Fig. 3). In the continuation, we follow the
same adjustment process as before and, at the end, we remove M from E′n and
E′m. At the end, when the process of bucket expansion is completed for all K
entries of B, we update H to point to the new bucket array B′ (and remove
simultaneously - same memory position - the tagging mark for hash expansion).



174 M. Areias and R. Rocha

5 Implementation Details

We now present in more detail the algorithms that implement the key aspects of
our new lock-free design. We start with Algorithm 1 that shows the pseudo-code
for the search/insert operation of a new node N in a given bucket entry E.

Algorithm 1. TrieSearchInsert(N,E)

1: markingNodeV isited ← False
2: oldF irst ← Null
3: repeat
4: first ← FirstNode(E)
5: while IsBucketArray(first) do
6: B ← BucketArray(first)
7: K ← Size(B)
8: E ← BucketEntry(B,Hash(K,V al(N)))
9: markingNodeV isited ← False
10: oldF irst ← Null
11: first ← FirstNode(E)
12: chain ← first
13: while chain �= oldF irst do
14: if V al(chain) = V al(N) then
15: return chain
16: else if IsMarkingNode(chain) then
17: if markingNodeV isited then
18: break
19: else
20: markingNodeV isited ← True
21: chain ← NextNode(chain)
22: if not IsMarkingNode(first) then
23: oldF irst ← first
24: NextNode(N) ← first
25: until CAS(E, first,N)
26: return N

In a nutshell, the algo-
rithm executes in a loop
until one of the following
situations occurs: (a) the
search operation is success-
ful, meaning that there is
already a node in the trie
level with the same value of
N (lines 14–15); or (b) N is
successfully inserted in the
trie (lines 24–25).

In more detail, the al-
gorithm starts by checking
(lines 4–5) if the bucket en-
try E is referencing another
bucket array (this happens
when another thread is do-
ing hash expansion). In
such case, it moves to the
new bucket array (variable
B at line 6) and updates
E (by recomputing the hash
function using the value on
N), markingNodeV isited,
oldF irst and first accord-
ingly (lines 8–11). The aux-
iliary variable markingNodeV isited denotes if the marking node was already
visited and the auxiliary variable oldF irst marks the beginning of the chain of
nodes on E that were already searched in a previous round.

On the second part of the algorithm, it then searches if there is a node with
the same value of N already in the chain (lines 12–21). Note that this search
is done while the nodes in the chain were not yet searched in a previous round
(while condition at line 13) and while the marking node was not visited twice
(lines 16–20). This second condition allows to break any potential cycle between
the nodes, as a result of a hash creation/expansion operation being done by
another thread. Finally, if the value of N is not found, the algorithm tries to
insert N on the bucket entry E by using a CAS operation that updates first to
N (line 25). In case of failure, this means that the head of E has changed in the
meantime, thus leading to a new round.

Next, Algorithm 2 shows the pseudo-code for the hash expansion operation
given a hash node H (due to the lack of space and since it is quite similar, we
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will leave aside the algorithm for hash creation). Please remember that to ensure
that only one thread executes the hash expansion operation for H , we use a CAS
operation to tag a specific field on H (not shown here for the sake of simplicity).

Algorithm 2. HashExpansion(H)

1: M ← MarkingNode(H)
2: oldB ← BucketArray(H)
3: oldK ← Size(oldB)
4: newK ← 2 ∗ oldK
5: newB ← AllocBucketArray(newK)
6: i ← 0
7: while i < oldK do
8: oldE ← BucketEntry(oldB, i)
9: if not CAS(oldE,Null, newB) then
10: newE1 ← BucketEntry(newB, i)
11: newE2 ← BucketEntry(newB, i+ oldK)
12: FirstNode(newE1) ← M
13: FirstNode(newE2) ← M
14: repeat
15: NextNode(M) ← FirstNode(oldE)
16: until CAS(oldE,NextNode(M), newB)
17: AdjustNodes(M,newB)
18: RemoveMarkingNode(M,newE1)
19: RemoveMarkingNode(M,newE2)
20: i++
21: BucketArray(H) ← newB
22: return

The algorithm begins by
initializing a set of local vari-
ables and by allocating a
new bucket array (lines 1–5).
Next, for each old bucket en-
try oldE, it redistributes the
chain of nodes on oldE to
the corresponding bucket en-
tries on the new bucket array
newB (lines 7–20). At line 9,
it executes a CAS operation
on oldE trying to update a
value ofNull to newB. A suc-
cessful CAS operation means
that oldE was empty and thus
no redistribution is necessary
(it just becomes a pointer to
the new bucket array). An
unsuccessful CAS operation
means that oldE has nodes to
be expanded. In such case, the
algorithm then computes the
entries on newB in which the nodes from oldE will fall (entries newE1 and
newE2) and initializes them to point to the marking node M (lines 10–13). The
marking node M is then used to implement a synchronization point between
the old bucket entry oldE and the new bucket entries newE1 and newE2 that,
whenever both are synchronized, will correspond to a successful CAS operation
that updates oldE to newB (lines 14–16). In the continuation (lines 17–19), the
algorithm proceeds by adjusting the nodes on the old chain (Algorithm 3 below)
and by removing M from the newE1 and newE2 chains (Algorithm 4 below).
At the end, when the process of bucket expansion is completed for all entries in
oldB, H is updated to point to the new bucket array newB (line 21).

Algorithm 3. AdjustNodes(N,B)

1: chain ← NextNode(N)
2: if NextNode(chain) �= Null then
3: AdjustNodes(chain, B)
4: K ← Size(B)
5: E ← BucketEntry(B,Hash(K,V al(chain)))
6: repeat
7: NextNode(chain) ← FirstNode(E)
8: until CAS(E,NextNode(chain), chain)
9: return

Algorithm 3 shows the
pseudo-code for the process
of adjusting a chain of nodes,
starting from a given node N ,
into a given new bucket array
B. One can observe that the
algorithm traverses the chain
of nodes recursively and that
the base case for recursion is
the last node on the chain
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(lines 1–3). For each chain node, it then calculates the bucket entry E in which it
will fall (lines 4–5). The bucket entry E is then used in repeated CAS operations
until successfully insert the chain node on the head of E (lines 6–8).

Algorithm 4. RemoveMarkingNode(M,E)

1: if not CAS(E,M,Null) then
2: chain ← FirstNode(E)
3: next ← NextNode(chain)
4: while (next �= M) do
5: chain ← next
6: next ← NextNode(chain)
7: NextNode(chain) ← Null
8: return

Finally, Algorithm 4 shows
the pseudo-code for the op-
eration of removing a given
marking node M from a given
bucket entry E. Initially, it
executes a CAS operation on
E trying to update an ex-
pected value M to Null.
A successful CAS operation
means that no nodes were ad-
justed to be on E (and E just
becomes a pointer to Null). An unsuccessful CAS operation means that at least
one node was adjusted to be on E. In such case, the algorithm then follows the
chain of nodes on E until reaching M and updates the node previous to M to
point to Null (thus removing M from the chain). This can be safely done with-
out any CAS operation, because at this stage no other thread can be writing at
this node.

6 Proof of Correctness

In this section, we discuss the correctness of our implementation.

6.1 Linearizability

Linearizability is an important correctness condition for the implementation of
concurrent data structures [7]. A concurrent operation is linearizable if it ap-
pears to take effect instantaneously at some moment of time Itime between its
invocation and response. The literature often refers to Itime as a linearization
point and, for lock-free implementations, a linearization point is typically a single
instant where its effects become visible to all the remaining operations. Lineariz-
ability guarantees that if all operations individually preserve an invariant, the
system as a whole also will. Our new implementation is linearizable, since ev-
ery trie manipulation operation takes effect in specific linearization points. The
linearization points for our algorithms are the following:

– TrieSearchInsert() is linearizable at successful CAS in line 25.
– HashExpansion() is linearizable at successful CAS in lines 9 and 16 and at

algorithms AdjustNodes() and RemoveMarkingNode() in lines 17–19:
• AdjustNodes() is linearizable at successful CAS in line 8.
• RemoveMarkingNode() is linearizable at successful CAS in line 1 and
at line 7 when the node previous to the marking node is updated to
Null.
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Due to the lack of space, we do not show the full proof of correctness of
the linearization points defined above. Instead, we focus on proving that our
implementation is ABA-free.

6.2 The ABA Problem

We now discuss how we address the ABA problem. We use the fact that a
memory location has not changed between two readings to assume that nothing
has changed during the period of time from the first to the second reading.
Although, this is a common technique when using the CAS operation, in some
cases, it can lead to the ABA problem. An example of that would be: a thread T
reads a value V 1 from a memory location L, uses V 1 to do some work, updates
L to a new value V 2 and, at the end of the work, changes the value of L again to
V 1. In such case, if another thread has read the memory location L before and
after the work done by T , then it will be deceived by the fact that the memory
location has not changed. In our implementation, a practical consequence of this
would be to insert more than once the same value on the same level of the trie.

To address the ABA problem, several techniques already exist, such as version
tagging [4], hazard pointers [11] or value semantics [5]. In general, these kind of
techniques rely on the fact that a writing over a memory position always cause
a transition from the current state of the system to a uniquely new different
state. To prove that our algorithm is ABA-free, we prove that each concurrent
memory location L only points once to the same value V 1, i.e., if L is updated
from V 1 to V 2 than L will never point to V 1 again. Our concurrent memory
locations are defined by the pointers on the parent nodes P , on the hash nodes
H and on the bucket entries E as described in the previous sections.

Theorem 1. The new implementation is ABA-free.

Proof. Assume that P , C, H, M and E already exist in a trie T and represent,
respectively, a parent node, a child node, a hash node, a marking node and a
bucket entry. Assume also that NC, NH and NB represent, respectively, a new
child node, a new hash node and a new bucket array.

The following writing situations may occur: (i) if a write occurs in P then a
NC or NH was added to the trie T ; (ii) if a write occurs in H then a NB was
added to T ; (iii) if a write occurs in E then a NC or NB was added to T or
the node adjustment process adjusted E to Null or to a child node C.

In the latter situation, if E is adjusted to Null that means that before the write
operation, E was pointing to a marking node M . Otherwise, if E is adjusted to
a child node C, then before the write operation, E was pointing to another node,
say N . N can be a new child node NC added in the meantime, a marking node
M , or another child node adjusted previously. In any case, N is necessarily
different from C and E will never point to N again.

Thus, all concurrent memory locations always point once to the same value
whenever a write operation occurs.
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6.3 Liveness

In this subsection, we prove that the insert and hash operations are lock-free
and that the search operation is wait-free. For that, we begin by enumerating
the following Lemmas.

Lemma 1. If the CAS operation in TrieSearchInsert() at line 25 succeeds,
then a new node was inserted in the trie.

Lemma 2. If the CAS operation in HashExpansion() at lines 9 or 16 succeeds,
then the bucket entry was updated to point to a new bucket array.

Lemma 3. If the CAS operation in AdjustNodes() at line 8 succeeds, then the
bucket entry was updated to point to a node that was already in the chain of the
bucket entry.

Lemma 4. If the CAS operation in RemoveMarkingNode() at line 1 succeeds,
then the bucket entry was updated to point to Null.

To prove the property of lock-freedom, we prove that the insert and hash
operations always lead to progress in the trie configuration. We start with Theo-
rem 2 that proves that progress is always achieved for the insert operation. The
proof is done on the point of the implementation where we try to insert new
nodes in the trie, i.e., the CAS operation in TrieSearchInsert() at line 25. Note
that, since we are assuming that the CAS operation was executed, this means
that the given node N was not found in the chain starting from first (lines 12
to 21) as otherwise the return at line 15 would have been executed.

Theorem 2. In TrieSearchInsert(), everytime a thread executes the CAS op-
eration at line 25, then the trie configuration has made progress when compared
to the time at which the thread has entered the repeat loop at line 4.

Proof. If the CAS operation succeeds then, by Lemma 1, a new node was inserted
in the trie thus leading to progress in the trie configuration.

Otherwise, if the CAS operation fails, then the value in the bucket entry E is
necessarily different from the initial one, as given by first (initialized at lines
4 or 11). Thus, the new value of E must be the result of one of the following
situations: (i) a new node was inserted by another thread (Lemma 1); (ii) the
current hash is being expanded by another thread (Lemma 2); or (iii) another
thread is performing the adjustment process on E (Lemmas 3 or 4). In either one
of these three cases, another thread has lead to progress in the trie configuration.

To prove that the hash creation/expansion operations progress even when
other threads are inserting new nodes, we can use as sketch the proof for Theo-
rem 2. Due to the lack of space, we are also omitting such proofs here.

Theorem 3. The new implementation is lock-free.
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Next, we prove the wait-free property of the search operation and, for that,
we show that any search operation is always completed in a bounded number of
visited nodes. In particular, this bound is always lower or equal to the number
of nodes in the chain being searched. Since the number of steps of the search
operation is finite, the proof that the bound exists is sufficient to prove that the
search operation is wait-free.

Theorem 4. The search operation is completed within a bounded number of
visited nodes.

Proof. Assume that CN is a chain of nodes and that a search operation in CN
is executed between two instants of time, Iinit and Ifinal. This corresponds to
the block of code between lines 12 and 21 in the TrieSearchInsert() algorithm.
Assume also that Ninit is the number of nodes at instant Iinit, Nnew is the
total number of new nodes inserted between Iinit and Ifinal, and that Nvis is the
number of nodes visited between Iinit and Ifinal.

The variable chain represents a node to be visited, the variable first rep-
resents the first node visited, and variable oldF irst represents the first node
that was visited on the previous search operation. On the first search operation,
oldF irst is always Null. We begin now the proof that Nvis is bounded for all the
configurations of CN .

If Ninit = 0, then first and oldF irst are both Null and thus Nvis = 0.
If Ninit �= 0, then first �= Null. Now, if oldF irst = Null then two situations

can occur. On the first situation, no concurrent hash expansion has interfered
with the search, thus the variable chain visits all nodes until reaching oldF irst,
and in such case Nvis = Ninit. On the second situation, a concurrent hash
expansion has interfered with the search, thus the variable chain may not visit
all Ninit nodes (some nodes may be scheduled to a different bucket entry) but a
node can be visited more than once (please remember that, during the adjustment
process, we may have cycles between the nodes). In any case, it stops either when
reaching oldF irst (line 13) or when the marking node is visited twice (line 17).
Thus, Nvis ≤ 2 ∗ (Ninit +Nnew).

Finally, if Ninit �= 0 and oldF irst �= Null, then the variable chain will not
visit all Ninit nodes (the ones after oldF irst) and thus Nvis ≤ Ninit.

7 Experimental Results

We now present experimental results for the new lock-free design using the set
of benchmarks from [1] which includes 19 different programs in total. We choose
these benchmarks because they have characteristics that cover a wide number of
scenarios in terms of trie usage. The benchmarks create different trie configura-
tions with lower and higher number of nodes and depths, and also have different
demands in terms of trie traversing. The environment for our experiments was
a machine with 32 Core AMD Opteron (tm) Processor 6274 using 32 GBytes of
memory and running the Linux kernel 3.6.6-1.fc17.x86 64 with Yap Prolog 6.3.
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To compare our new design, which we named Lock-Freedom (FD), we used
the four lock-based strategies from the previous design, which we named Local
Locks (LL), Global Locks (GL), Local Trylocks (LT) and Global Trylocks (GT).
All strategies use the Pthreads implementation for lock support. The LL and
LT strategies use a lock field per trie node. The GL and GT strategies use
a global array of 512 lock entries with a hash function that maps trie nodes
to lock entries. Through experimentation, we observed that the number of trie
nodes mapped by hash function to each lock entry shows a good balancing, thus
reducing contention points. To put our results in perspective, we also make a
comparison with XSB Prolog, version 3.4.0, using thread-private tables [8].

Note that our goal with these experiments is not to prove that we can speedup
the execution of tabled programs, despite this is an obvious goal of having a
concurrent implementation. Other works have already showed the parallel ca-
pabilities of the use of multithreaded tabling [8,9]. Since parallelism is highly
dependent on the available concurrency that programs have and on the way
synchronization is done, we can easily select/construct programs where linear
speedups can be achieved or, on the other hand, where no speedups exist. Here,
we are more interested in evaluating the robustness of our implementation when
exposed to worst case scenarios. Note that if we are able to deal well with such
scenarios, we will certainly have the conditions to better support parallelism.
Moreover, by doing that, we avoid the peculiarities of the program at hand and
we try to focus on measuring the real value of our new design.

Thus, we will follow a common approach to create worst case scenarios and
we will run all threads starting with the same query goal. By doing this, it is
expected that all threads will access the table space, to check/insert for subgoals
and answers, at similar times, thus causing a huge stress on the same critical
regions. To put the results in perspective, we experimented with intervals of 8
threads until 64 threads (two times the number of cores in our machine). Figure 4
shows the overhead ratios, comparing the execution time with 8, 16, 24, 32, 40,
48, 56 and 64 threads against the respective execution time with one thread, for
the average of five runs, when running the set of benchmarks.

By observing Fig. 4, the results show that XSB achieves the best ratio for
8 threads but then, for more than 8 threads, XSB is noticeably worse than all
Yap’s strategies, showing a clear tendency to worsen as we increase the number
of threads. For the sake of presentation, we are not showing the results for
more than 24 threads (for 32, 40, 48, 56 and 64 threads, XSB is respectively
17.35, 22.35, 27.21, 32.41 and 36.60 times slower than the execution with one
thread). On comparison with Yap, these results are even more important since
XSB shows, on average, base execution times (with one thread) higher than Yap.
Regarding Yap’s synchronization strategies, the results show that FD is always
the best strategy of all, regardless of the number of threads. The best lock-based
strategy is LT, for 8 to 32 threads, and LL, for 40 to 64 threads. In general,
the differences to the corresponding GT and GL strategies is meaningless, which
confirms the low contention observed for the global lock array.
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Fig. 4. Overhead ratios, comparing the execution time with 8, 16, 24, 32, 40, 48, 56
and 64 threads against the respective execution time with one thread

Starting from 32 threads, one can also observe that the LT and GT trylock
strategies start to diverge and that the LL and GL strategies keep the difference
to the FD design. This is explained by the fact that, in the Pthreads imple-
mentation, when a thread fails to get a lock it falls asleep, leaving the machine
resources available to the remaining threads. In particular, for the LL and GL
strategies, when the number of execution threads exceeds the number of cores,
this leads to an inversion on the execution priorities, which results in having the
machine resources always available to the threads inside the critical regions (i.e.,
holding the corresponding synchronization locks).

For a number of threads smaller than 32, the LT and GT trylock strategies
perform better. This is due to the fact that, for fewer threads than the number
of cores, they do not have to pay the cost of resuming the threads that fall asleep
when failing to get a lock but, for more threads than the number of cores, they
may have to pay the cost of not having machine resources always available to
the threads holding the synchronization locks. Again, since the FD strategy is
immune to the availability of machine resources, and since the CAS operation
was a lower synchronization overhead when compared with a lock-based design,
makes our new FD design clearly the best approach for both scenarios.

To better understand these results, we next show the overhead ratios, but
now comparing the average user time (Fig. 5(a)) and the average system time
(Fig. 5(b)) for 8, 16, 24, 32, 40, 48, 56 and 64 threads against the respective
execution time (walltime) with one thread for Yap’s synchronization strategies.
The results on Fig. 5(a) show us how concurrency affects, on average, the exe-
cution of a thread, i.e., how much more user code, on average, a thread has to
execute when compared with the base execution with one thread. One can ob-
serve that all strategies start to pay a huge cost for eight threads (between 2.32
(FD) and 3.04 (GL) times the execution time with one thread) and then this
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Fig. 5. Overhead ratios, comparing the average user/system time with 8, 16, 24, 32,
40, 48, 56 and 64 threads against the respective execution time with one thread

cost decreases gradually, except for the LT and GT trylock strategies that, for
more than 32 threads, start paying the cost of not having machine resources al-
ways available (as explained before). The results on Fig. 5(b) show us how much
more system (synchronization) code, on average, a thread has to execute when
compared with the base execution with one thread. One can observe that all
strategies show a similar tendency, with FD always showing the least overhead
of all, which confirms the lower synchronization overhead of the CAS operation.

8 Conclusions

We have presented a novel, efficient and lock-free design for expandable trie data
structures applied to the multithreaded tabled evaluation of logic programs. Our
main motivation was to refine the previous lock-based design in order to be as ef-
ficient as possible in the concurrent search and insert operations and to maintain
an efficient average node access as the size of the tries increases, independently
of the number of running threads. We discussed the relevant implementation
details and we proved the correctness of our implementation. Experimental re-
sults show that our new lock-free design can effectively reduce the execution
time and scale better, when increasing the number of threads, than the original
lock-based design. Further work will include extending our framework to sup-
port multithreaded mode-directed tabling [14], which includes studying how to
extend our new lock-free design to allow the concurrent deletion of trie nodes.

Acknowledgments. This work is partially funded by the ERDF (Euro-
pean Regional Development Fund) through the COMPETE Programme and
by FCT (Portuguese Foundation for Science and Technology) within projects
LEAP (FCOMP-01-0124-FEDER-015008) and PEst (FCOMP-01-0124-FEDER-
037281). Miguel Areias is funded by the FCT grant SFRH/BD/69673/2010.



On the Correctness and Efficiency of Lock-Free Expandable Tries 183

References

1. Areias, M., Rocha, R.: An Efficient and Scalable Memory Allocator for Multi-
threaded Tabled Evaluation of Logic Programs. In: International Conference on
Parallel and Distributed Systems, pp. 636–643. IEEE Computer Society (2012)

2. Areias, M., Rocha, R.: Towards Multi-Threaded Local Tabling Using a Common
Table Space. Journal of Theory and Practice of Logic Programming, International
Conference on Logic Programming, Special Issue 12(4 & 5), 427–443 (2012)

3. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

4. Detlefs, D.L., Martin, P.A., Moir, M., Steele Jr., G.L.: Lock-Free Reference Count-
ing. In: ACM Symposium on Principles of Distributed Computing, pp. 190–199.
ACM (2001)

5. Hendler, D., Shavit, N., Yerushalmi, L.: A Scalable Lock-free Stack Algorithm. In:
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 206–215.
ACM (2004)

6. Herlihy, M., Wing, J.M.: Axioms for Concurrent Objects. In: ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pp. 13–26. ACM
(1987)

7. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3), 463–
492 (1990)

8. Marques, R., Swift, T.: Concurrent and Local Evaluation of Normal Programs.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
206–222. Springer, Heidelberg (2008)

9. Marques, R., Swift, T., Cunha, J.: A Simple and Efficient Implementation of Con-
current Local Tabling. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937,
pp. 264–278. Springer, Heidelberg (2010)

10. Michael, M.M.: High Performance Dynamic Lock-Free Hash Tables and List-Based
Sets. In: ACM Symposium on Parallel Algorithms and Architectures, pp. 73–82.
ACM (2002)

11. Michael, M.M.: Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Transactions on Parallel and Distributed Systems 15(6), 491–504 (2004)

12. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent Tries with
Efficient Non-Blocking Snapshots. In: ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 151–160. ACM (2012)

13. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–
54 (1999)

14. Santos, J., Rocha, R.: On the Efficient Implementation of Mode-Directed Tabling.
In: Gupta, G. (ed.) PADL 2013. LNCS, vol. 7752, pp. 141–156. Springer, Heidelberg
(2013)

15. Santos Costa, V., Rocha, R., Damas, L.: The YAP Prolog System. Journal of
Theory and Practice of Logic Programming 12(1 & 2), 5–34 (2012)

16. Shalev, O., Shavit, N.: Split-Ordered Lists: Lock-Free Extensible Hash Tables.
Journal of the ACM 53(3), 379–405 (2006)

17. Triplett, J., McKenney, P.E., Walpole, J.: Resizable, Scalable, Concurrent Hash
Tables via Relativistic Programming. In: USENIX Annual Technical Conference,
p. 11. USENIX Association (2011)



Typelets — A Rule-Based Evaluation Model

for Dynamic, Statically Typed User Interfaces

Martin Elsman1 and Anders Schack-Nielsen2

1 University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
mael@diku.dk

2 SimCorp, Weidekampsgade 16, DK-2300 Copenhagen, Denmark
anders.schack-nielsen@simcorp.com

Abstract. We present the concept of typelets, a specification technique
for dynamic graphical user interfaces (GUIs) based on types.The technique
is implemented in a dialect of ML, called MLFi,1 which supports dynamic
types, for migrating type-level information into the object level, so-called
type properties, allowing easy specification of, for instance, GUI control at-
tributes, and type paths, which allows for type-safe access to type compo-
nents at runtime. Through the use of Hindley-Milner style type-inference
in MLFi, the features allow for type-level programming of user interfaces.
The dynamic behavior of typelets are specified using declarative rules. The
technique extends the flat spreadsheet programming model with higher-
order rule composition techniques, extensive reuse, and type safety. A lay-
out specification language allows layout programmers (e.g., end-users) to
reorganize layouts in a type-safewaywithout being allowed to alter the rule
machinery. The resulting framework is highly flexible and allows for creat-
ing highly maintainable modules. It is used with success in the context of
SimCorp’s high-end performance-critical financial asset-management sys-
tem with screens containing several hundreds of GUI controls located in
group-boxes, sub-tabs, andmenu structures andwith very complex depen-
dency structures defined using declarative rule composition.

1 Introduction

Complex GUI applications are often developed using costly and error prone
development procedures for which developers are required to design the precise
static layout of GUI controls, using a so-called designer tool, and develop an
excessive amount of boilerplate side-effecting event-handler functions for which
the host language provides little (or no) type guarantees.

This paper presents a technique to obtain a dynamic GUI given a declarative
description (in terms of a MLFi type declaration) that specifies the type of the
different controls in the user interface as well as possible high-level layout proper-
ties such as relative positions and groupings of controls. The approach supports
a large set of composable GUI controls, including ordinary value input fields (for
integers, floats, amounts, etc.), buttons, select boxes, check boxes, date-picking

1 MLFi is a derivative of OCaml, extended by LexiFi with extensions targeted at the
financial industry.
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c© Springer International Publishing Switzerland 2014



Typelets — A Rule-Based Evaluation Model 185

controls, grid controls, and various grouping controls, such as labeled groups,
tab controls, and more.

For specifying the dynamic behavior of a typelet, the programmer writes rules,
stating, for example, that a change in some fields influence the content of other
fields. The rule-based approach is declarative in the sense that focus is on “what
the end-user gets” instead of “how the end-user gets it”.

Rules may be composed and attached to a typelet in a type-safe way. More-
over, rules are objects for analysis in the sense that it may statically be deter-
mined, for instance, that different rules target the same field or that a subset of
rules form a cyclic dependency. The declarative nature of typelet rules is similar
to the Functional Reactive Programming (FRP) approach, as seen in Fran [7],
Fruit [6], and Flapjax [16].

The typelet implementation is augmented with a type-safe and rule-preserving
layout specification mechanism, that allows for layout programmers (e.g., the
end-user) to freely reorganize layouts using a set of layout combinators.

The contributions of this paper are the following:

1. We present a novel technique for programming dynamic graphical user inter-
faces, based on the notion of types and declarative rules for specifying how
different parts of the GUI interact.

2. We show how the technique can be augmented with a technique for separat-
ing layout from functionality.

3. We describe how this novel declarative approach to programming graphi-
cal user interfaces with success is used in practice in SimCorp Dimension,
a financial asset-management system with typelet-based trade screens con-
taining several hundreds of inter-dependent fields and other controls, such
as grids.

4. Finally, the paper also serves to demonstrate the usefulness of some of the
dynamic type features of MLFi, including type properties, and type paths.

We first present a simple typelet and proceed by showing how MLFi type
properties may be used to control details of layout and GUI behavior. In Sec. 4,
we outline the dynamic type features of MLFi. We then cover the central concept
of rules in Sec. 5 and discuss some details of the implementation in Sec. 6. The
augmented type-safe layout specification mechanism is described in detail in
Sec. 7. Related work is presented in Sec. 8 and Sec. 9 concludes.

2 Typelet Basics

We first demonstrate the typelet idea with a simple example that allows a user
to enter some personal data and information about whether the user has passed
an introductory programming course. Fig. 1(a) lists a typelet specification for
the user interface. The result of displaying the specification as a GUI is shown
in Fig. 1(b).

There are a series of points to be made here. First, notice that MLFi record
field names are used as labels in the GUI; for localization purposes, the im-
plementation allows these names to be overwritten by a resource file. Second,
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type gender = Male | Female

type t = {
name: string;

address: string;

age: int;

gender: gender;

passed_course: bool

}
(a) (b)

Fig. 1. A simple typelet with data entered by the end user

notice that default controls are selected based on the type of record field names
in the typelet; for instance, a drop down selection box is chosen for the gender

field. Third, the order the controls appear in the GUI matches closely the order
of fields in the typelet. Finally, notice that default values are chosen for each
control.

Typelets also support more dynamic behavior. For instance, if a typelet con-
tains sum-types with data constructors that take arguments, a dynamic GUI
is generated for which the GUI’s representing the data constructor arguments
are replaced and shown based on a left-positioned drop-down list with data
constructor names.

There are many details to consider regarding the layout of even the simple
typelet presented above. For instance, should all fields extend to the right if the
GUI window is enlarged? How can it be specified that a radio button group
is desired instead of a drop down selection box for the gender? How can it be
specified that two controls should appear on the same row?

3 Increasing Control with Type Properties

MLFi supports the notion of type properties, which allows the programmer to
attach arbitrary key-value properties (or key properties) to types. Fig. 2(a) lists
the code for a small example typelet that makes use of type properties setting
the width of controls and for specifying that a control should appear to the right
of another control. The result of displaying the typelet is shown in Fig. 2(b).

A large number of type properties are supported for controlling the layout for
various controls, including the number of digits for float fields, the caption field
for a control, the height, width, and default value for a control, and so on. As
demonstrated by the first two type declarations in the example, it is possible
to make use of ML’s type inference (and the fact that sets of type properties
compose) to ease the annotation of types with type properties.

Whereas this possibility is great for getting a good initial layout for a user
interface, we shall see in Sec. 7 how so-called typelet layouts allow for separation
of layout specification from functionality.
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type ’a r = ’a + [right]

type ’a fixed = ’a + [fixedwidth]

type t = {
name: string; street: string;

no: string r fixed

+ [width="50";

nocaption];

zip: string fixed

+ [width="100"];

city: string r

}
(a) (b)

Fig. 2. Use of type properties to control layout

The typelet implementation makes use of special MLFi features (described
in the next section) for computing a runtime representation for a type and for
inspecting type properties in runtime representations of a type. Using these
features, the typelet implementation allows for the typelet-programmer to make
use of type properties for specifying details of how a control should be displayed
and for specifying default values for controls, and so on.

4 Dynamic Types and Type Paths in MLFi

Before proceeding with presenting how a user may specify rules to give dynamic
behavior to user interfaces, we summarize how MLFi extends OCaml with dy-
namic types and so-called type paths [11].

MLFi provides a universal datatype for representing static types at runtime:

type utype = Int | ...

| List of utype | Option of utype

| Record of (string * utype) list

| Props of utype * (string * string) list

| ...

Notice that the representation allows for the programmer to inspect the type
properties for a type, inferred at compile time and provided to the programmer
using the Props value constructor.

Further, MLFi supports an abstract notion of typed dynamic types, of type
t ttype, for some concrete type t. Values of type t ttype can be constructed
using the simple expression form (ttype_of:t) for injecting the static type t
into a value of type t ttype. Values of type t ttype can easily be converted
into values of type utype, with no computational overhead, using the func-
tion to_utype: ’a ttype -> utype. The type argument to the ttype type
constructor is really just a phantom type, which provides for improved type-
safe programming [2, 9, 10, 15]. In concert with the support for dynamic types,
MLFi supports the notion of a universally tagged representation of values, called
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variants, which are useful for programming ad-hoc polymorphic functions, with
a “pay-as-you-go” strategy (no overhead forced on ordinary code). MLFi has
a built-in function variantize: t:’a ttype -> ’a -> variant and another
built-in function devariantize: t:’a ttype -> variant -> ’a, which may
fail by raising an exception. Notice here the so-called labeled arguments t:’a ty,
a special feature of MLFi, which allows for the programmer to label particular
arguments. When calling such functions, labeled arguments can be provided ex-
plicitly, as in variantize ~t:(ttype_of:int) 5 or implicitly, in the case of
typed dynamic types, with the compiler looking in the context for a value of the
particular inferred type. In many cases, the programmer can then omit the typed
dynamic type arguments. In the case above, the programmer may simply write
variantize 5. Using the above features, it is straightforward to write pseudo-
ad-hoc polymorphic functions, such as print: t:’a ttype -> ’a -> string.

MLFi also supports the notion type paths, which are values representing
functions for pointing at a subcomponent of a value. Type paths have type
(t,s)tpath where t is a type containing s as a subcomponent. A special type
path is the identity type path of type (t,t)tpath for arbitrary t.

Syntactically, type paths are written using dot-notation (with a prefix dot).
As an example, if {a:{b:int;c:string}; d:bool} is a MLFi type t, then .a.b

is a type path of type (t,int)tpath. Type paths are a little more than selector
functions on types. They compose, using a type path compose operator, but it
is also possible to extract from a type path, at runtime, the sequence of labels
that define the type path. The runtime representation works well together with
dynamic types and variant values.

5 Rules for Specifying Typelet Dynamics

Before we describe the concept of typelet rules in detail, we demonstrate the
concept with a simple temperature typelet:

type ’a ro = ’a + [readonly]

type temp = {celsius: float; fahrenheit: float ro; kelvin: float ro}
open Fields

let calc =

Rule.update (value(.celsius)) (value(.fahrenheit) & value(.kelvin))

(fun c -> (9.0 /. 5.0 *. c +. 32., c +. 273.15)

let low =

Rule.validate (value(.celsius))

(fun c -> if c <-273.15 then Some "Temperature too low" else None)

let () = typelet "Temperature" ~t:(ttype_of:temp) ~rules:[low;calc] ()

Notice first the load of the typelet using the typelet function in the last line.
This function takes as argument a name, the type of the Typelet (i.e., the argu-
ment for ~t), and a list of rules. Notice also that the Fahrenheit and Kelvin fields
are marked readonly using type properties in the type declaration for t. The
dynamic behavior of the typelet is specified using two rules, one that updates
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the Fahrenheit and Kelvin fields when there are changes to the Celsius field, and
one that reports an error when a value in the Celsius field becomes invalid. The
resulting typelet is shown in action in Fig. 3.

(a) (b)

Fig. 3. Temperature typelet. Image (a) shows the typelet after evaluation of the update
rule (upon change of the Celsius field). Image (b) shows the typelet after evaluation of
the validate rule on invalid input (Celsius below -273.15 degrees).

In principle, the Rule.update function takes three arguments, (1) a specifi-
cation of which source fields the rule depends on, (2) a specification of which
target fields the rule targets, and (3) a MLFi function that accepts a value cor-
responding to the source specification and computes a result corresponding to
the target specification. The source and target specifications are specified using
an algebra over type paths. The algebra over type paths allows for selection of
multiple fields and for referring to basic properties of a field, such as its value or
whether the field is read only or disabled.

The module type for the Fields module is presented in Fig. 4(a).

module type FIELDS = sig

type (’i,’a)t (* ’i : type of the root *)

(* ’a : type of elements pointed to *)

val const : t:’a ttype -> ’a -> (’i,’a)t

val value : (’i,’a)tpath -> (’i,’a)t

val enabled : (’i,_)tpath -> (’i,bool)t

val readonly : (’i,_)tpath -> (’i,bool)t

val restrict : (’i,’a)tpath

-> (’i,’a list)t

val (&) : (’i,’a)t -> (’i,’b)t

-> (’i, ’a*’b)t

end

(a) (b)

Fig. 4. The FIELDS module type (a) and an example of a fields value composed of
three fields (b)

A value of type (a,b)fields for some a and b represents a set of located
fields inside the type a. The diagram in Fig. 4(b) illustrates a case where the
fields value is composed of three fields within a.
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The const function provides functionality for expressing a constant field value
whereas the value function gives access to the content of a field. The functions
enabled and readonly give access to a field’s enabled property and readonly
property, respectively (as boolean values). The restrict function makes it pos-
sible to refer to the restricted set of valid values for a field; when used in the
target of a rule, the set of valid values for a field may be restricted dynamically.

The & operator may be used to compose field values, as we have seen in the
example. Most of the functions in the Fields module takes a ttype argument.
In normal use of the module, the arguments are passed implicitly by the compiler
and the programmer need not be explicit about these arguments, as can be seen
in the example above.

module type RULE = sig

type ’i t

type (’i,’a) fields = (’i,’a) Fields.t

val update : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields -> (’a -> ’b) -> ’i t

val validate : t:’a ttype -> (’i,’a)fields

-> (’a -> string option) -> ’i t

val button : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields

-> (’a -> ’b) -> (’i,unit)tpath -> ’i t

val grid : (’i,’a)fields -> (’i,’b list)tpath -> (’a * ’b)t -> ’i t

val grid_add : t:’a ttype -> (’i,’a)fields -> (’i,’b list)tpath

-> (’b,’c)fields -> (’a -> ’c) -> ’i t

val default : t:’a ttype -> (’i,’a)fields -> (unit -> ’a) -> ’i t

val subpath : (’i,’a)tpath -> ’a t -> ’i t

val all : ’i t list -> ’i t

val iso : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields

-> (’a -> ’b) -> (’b -> ’a) -> ’i t

val weak_upd : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields -> (’a -> ’b) -> ’i t

...

end

Fig. 5. The RULE module type

The module type for the Rule module is presented in Fig. 5. As we have seen
earlier, the update function takes as arguments a source field specification, a
target field specification, and an appropriate MLFi function that matches the
source and target specifications. In addition, the function takes as argument two
ttype arguments. As described in Sec. 4, these arguments are provided implicitly
whenever the call site context provides the appropriate values.

Fig. 6(a) illustrates the semantics of the update rule. Intuitively, when a
source field is modified, either by an end user or by another rule, the source
values are extracted to form an argument for the MLFi rule function. Hereafter



Typelets — A Rule-Based Evaluation Model 191

(a) (b)

Fig. 6. Illustration of (a) the update rule and (b) the subpath rule

the function is applied and the result is stored into the target fields denoted by
the target field specifier.

The implementation takes care that each rule is evaluated only once for each
field modification performed by an end user. Rules are not allowed to form
cycles, except through the iso and weak_upd rules (see below), thus rules may
be topologically ordered. Instead of evaluating rules eagerly when triggered by
a change in a source field, rules are dynamically added to a heap structure
when a source field changes value. The heap structure is evaluated by repeatedly
evaluating the topologically lowest ordered rule in the heap. Given that no cycles
appears in the graph defined by the rules and given that each rule satisfies
some validity constraints, the rule evaluation strategy guarantees that rules are
evaluated on consistent data and that each rule is evaluated at most once in
reaction to a field update.

The validate function takes only a source field specifier and a function that
optionally returns an error message (besides from an appropriate ttype argu-
ment). The implementation guarantees that validate functions that have a spe-
cific field in its source field specifier are evaluated before other rules that have
the same field in its source field specifier.

The button function takes four non-ttype arguments, (1) a source field speci-
fier, (2) a target field specifier, (3) an evaluation function, to be evaluated when
the button is pressed, and (4) a type path to a unit type, which serves to identify
the button in the generated layout.

The grid function lifts a rule that works on a pair of auxiliary GUI data
and data for a grid row to a rule that works on an entire grid, represented as
a list of values (i.e., a list of rows). The grid_add function is used to specify
field data for new rows added to the grid (by the user). The supplied type path
points to the grid. The supplied function takes as argument data specified by the
first fields specifier. The result of the supplied function matches a field specifier
relative to the data for a row in the grid. Those fields in the added row that are
not mentioned in the relative field specifier are filled with default values.

The default function provides functionality for specifying default values
other than the built-in defaults or defaults specified using type properties.

The subpath function makes it possible to lift a rule for some type s to a rule
for a type t that contains s in the sense that there exists a type path from t
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to s. The relation between t and s is illustrated in Fig. 6(b). The all function
makes it possible to treat a list of rules as one rule. These two functions are
important for building new rules from existing ones.

The last two rule functions shown, iso and weak_upd, allow for certain kinds
of cycles in the fields dependency graph formed by a particular set of rules. The
iso rule allow the programmer to set up an isomorphism between fields—it is
the obligation of the programmer to guarantee that the supplied functions form
an isomorphism. The weak_upd rule function works like the update function,
except that the rule is triggered only when the change in a source field is due
directly to a modification by an end user. This latter function has proven to be
useful, for instance, for implementing a generic “fill out utility” that allows a
user to select a value in a dropdown box and thereby get the effect that a series
of fields are filled out with computed data, but in such a way that if some value
in the set of filled out fields is edited, the wittness in the dropdown-box is erased.
By using weak update rules for both the “fill out” functionality and the erase
functionality, cycles in the rule evaluation is avoided.

6 Implementation

The implementation of typelets in the SimCorp Dimension asset-management
system, targets the .NET platform via an extension to Microsoft’s Windows
Forms library. Whereas all rules are specified and analyzed in MLFi, the Win-
dows Forms control tree is generated at the .NET side based on a serialized
variant-representation of the type that specifies the layout of the typelet. Besides
from the control-tree, a container tree is also constructed at the .NET side based
on the (variant-representation of the) typelet type. Once both the container-tree
and the control-tree are constructed, the containers are bound to the controls,
which has the effect that changes in the containers will have a visible effect in
the controls. Information about rules is also serialized and communicated to the
.NET side. For each update rule, for instance, event handlers are attached to
the source controls, by traversing the GUI control structure using type-indexed
functions that iterate on the variantized version of the relevant type paths. At
runtime, an attached event handler will, when triggered, collect the argument
represented by a fields value, serialize the argument into MLFi representation,
call the registered MLFi function, and store the result in the fields represented
by the target fields value.

The typelet mechanism is by no means tied to the .NET platform. If desired,
it should be straightforward to replace the .NET part of the framework with,
for instance, a JavaScript/HTML backend using, for instance, SMLtoJs [8] or
js_of_ocaml [23].

6.1 A Computation Monad

The MLFi runtime system is single-threaded and not reentrant, which make it
impractical to let MLFi functions make queries to the database and call ex-
pensive functions (e.g., monte-carlo simulations for contract pricing [13]) on the
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.NET side. For this reason, the actual interface provided to the rule programmer
is a slight modification of the RULE module type given in Fig. 5. The actual RULE
module type exposes a monadic interface to computations [18], through a monad
of type ’a m. In effect, the type for the update rule function actually takes the
following form:

val update : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields -> (’a -> ’b m) -> ’i t

Functionality on the .NET-side are exposed to the MLFi programmer as
monadic computations, which may be composed with direct MLFi computa-
tions using the monad’s return and bind functionality. Now, because the com-
posed computations are driven from the .NET-side, the MLFi runtime system
is blocking for entrance only when it is busy computing.

6.2 A Functional-Relational Mapping Scheme

The typelet implementation is also augmented with a typed functional-relational
mapping scheme for mapping data in a typelet into a form acceptable for a
relational database system and vice versa. The mapping forms an isomorphism
between the data in the database and the data in the typelet and is used both
for loading and saving typelet data. In this paper we have focused on the more
dynamic behavior of typelets and we shall not discuss the functional-relational
mapping scheme in more detail here, except by stating that the mapping scheme
is applied for screens where the user may load particular stored data into the
screen, either for presentation purposes or for the purpose of making changes to
the data. Similarly, the mapping mechanism is used whenever data in a screen
needs to be stored.

7 Separating Concerns Using Typelet Layouts

A front-end programmer may specify a complete redesign of a typelet using a set
of combinators to form a so-called typelet layout. Besides from basic combinators
for grouping controls in tab pages and group controls, two basic combinators are
available, namely the pick combinator, which selects (using a type path) a com-
ponent from the typelet (an entire group or a concrete control) and the apply

combinator, which replaces a subcomponent in a layout with an alternative lay-
out. As we shall see, the typelet layout combinators are guaranteed not to alter
the rule semantics of the underlying typelets.

The front-end programmer may choose to redesign the entire standard layout
(as induced by the type for the underlying typelet) or use parts of the standard
layout in the defined layouts. Typelet layouts are first class entities and there is
no limit to the number of layouts that can be associated with a typelet. Typelet
layouts are typed in the sense that they are defined for particular typelets (or
typelet library components). The typing ensures that we can give appropriate
meaning to a typelet layout.
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module type LAYOUT = sig

type ’i t (* Layout for ’i-typelets *)

type caption = string

type halign = Left | Center | Right

type valign = Top | Middle | Bottom

val grp : ’i t -> ’i t (* Grouping environment *)

val (%%) : ’i t -> ’i t -> ’i t (* Horizontal sequencing *)

val (@@@) : ’i t -> ’i t -> ’i t (* Vertical stacking *)

val box : caption -> ’i t -> ’i t (* Wrap box around a layout *)

val tab : ’i t list -> ’i t (* Show boxes as tabs *)

val halign : halign -> ’i t -> ’i t (* Horizontal alignment *)

val valign : valign -> ’i t -> ’i t (* Vertical alignment *)

val hspace : int -> ’i t (* Horizontal space *)

val vspace : int -> ’i t (* Vertical space *)

val caption : caption -> ’i t -> ’i t (* Use the provided caption *)

val pick : (’i,’a)tpath -> ’i t (* Pick standard layout item *)

val apply : (’i,’a)tpath -> ’a t (* Apply alternative layout *)

-> ’i t -> ’i t

(* Derived combinators *)

val emp : ’i t (* Empty layout *)

val all : ’i t (* Complete type layout *)

val hide : (’i,’a)tpath -> ’i t (* Hide pointed-to item *)

-> ’i t

val lift : (’i,’a)tpath -> ’a t (* Lift pointed-to item *)

-> ’i t

val (%) : ’i t -> ’i t -> ’i t (* Padded sequencing *)

val (@@) : ’i t -> ’i t -> ’i t (* Padded stacking *)

end

Fig. 7. The LAYOUT module type

Typelet programmers write typelet layouts in an embedded domain specific
language for layouts. Fig. 7 lists the module type for the language.

The grouping environment introduced by grp allows the layout programmer
to organize layouts in a grid style with proper alignment of columns and rows. In
a group environment (e.g., in an argument to grp or box), the programmer may
use the % and @@ combinators to separate items and rows (of items), respectively.

The alignment and space combinators give programmers control over the po-
sitioning of items without allowing programmers to work with absolute position-
ing. Notice that layouts should adapt properly to resizing of typelets and that
layouts should position themselves properly, also on limited space.

The pick combinator allows the programmer to pick a layout from the type
as pointed to by the type path argument. The apply combinator applies a given
layout to a pointed-to item in a larger layout.

The tab combinator takes a list of boxes, which may either be constructed
using the box combinator or picked from the typelet (by picking an existing tab
element, a box, or an existing tab group).
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It is possible, and often straightforward, to define derived combinators such
as the hide and lift combinators. For instance, the hide combinator is imple-
mented as follows:

let hide tp = apply tp emp

The interface imposes some restrictions. For instance, we have deliberately
chosen not to allow the programmer to overwrite the default minimum size and
width-flexibility of a control. Thus, picking a date control yields a date control
with the same width, height, and caption as the picked control. Also, we do not
attempt to capture, at the type level, which components are shown or whether
an item is a box or another kind of object. This choice is deliberate; we want
to keep the layout concept simple without cluttering the types with additional
type parameters.

Fig. 8 demonstrates various features of the layout programming interface,
including regrouping. Notice that the type currency is defined elsewhere as a
sum datatype, which present themselves as a drop-down control.

type leg = {legno: int; underlying: string option;

fixedrate: float option; currency: currency}
type tradedata = {tdata1: string; tdata2: string}
type tlet = {tradeid: string; nominal: float;

receiveleg: leg; payleg: leg; tradedata: tradedata}
open Layout

let leg = pick(.underlying) @@

pick(.fixedrate) @@

pick(.currency)

let l2 : tlet t =

pick(.tradeid) % pick(.nominal) @@

grp(box "Receive"

(lift(.receiveleg)leg) %

box "Pay"

(lift(.payleg)leg)) @@

pick (.tradedata)

(a) (b)

Fig. 8. An example typelet layout (a) and it’s effect on the typelet presentation (b)

It is natural to ask for properties of the pick and apply combinators. In
particular, we would expect the following property to hold:

Property 1. For all type paths p, it holds that all = apply p (pick p) all.

Typelet layouts may be registered with the typelet at typelet definition time
or loaded and linked dynamically using MLFi’s dynamic linking features. Fig. 9
shows a layout for an input screen for an interest rate swap, a complex financial
instrument used by most financial institutions for hedging interest rate risk.
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Fig. 9. Input screen for an interest rate swap, a complex financial instrument used by
most financial institutions for hedging interest rate risk

Data can be entered by the user in any order and the rule machinery calculates
a number of derived values whenever sufficient information is typed in by the
user.

8 Related Work

There is a large body of related work. One strand of related work includes
work on providing type-safe language bindings for constructing graphical user
interfaces in functional languages [3, 14, 19] either using monads or by using
the effectful features of a language for controlling the behavior of a GUI. A
specific monadic combinator library for constructing GUI’s is the Clean iTask
library [17, 20], which primarily focuses on allowing the programmer to generate
a workflow GUI from a declarative specification of the GUI and the workflow.
Compared to the iTask framework, typelets do not address how windows are
opened and closed, but rather on how fields, grids, and controls change upon
changes in a field.

Like the typelet library, many GUI libraries make use of phantom types
[2, 9, 15] as a mechanism for providing increased type-safety, for instance through
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modeling single-inheritance [10]. Phantom types are used in the typelet imple-
mentation both for the Fields, Rule, and Layout modules to restrict the com-
posability of values.

Another branch of related work is the large body of work on functional re-
active programming [5–7, 16, 22], which has served as inspiration for the rule
mechanism for typelets. In particular, using a topological ordering of rules and
a heap data structure to guarantee that rules are triggered at most once upon
a change of input is directly influenced by previous work on implementations of
functional reactive programming [8]. The work on flowlets [1] combines work on
functional reactive programming with formlets [4], which, as typelets, focuses
much on composability of GUI components.

Other related work investigates the possibility of synthesizing user interfaces
and event handling code for interdependent fields based on formal descriptions
specified by the programmer in a domain specific language for specifying the
logic dependencies. Both the work on property models [12] and the work on Plato
[21], a compiler for interactive web forms, follows this direction. In the typelet
approach, cyclic dependencies are only supported in a controlled way, through
iso-rules and weak rules, and programmers need to be explicit about such cyclic
dependencies, which makes it straightforward to express to programmers the
requirements for composing user interface components.

9 Conclusion

We have presented the concept of typelets, which have been designed for con-
structing trade screens for the SimCorp Dimension asset management system.
Each trade screen can have more than 400 individual fields located in nested tab-
structures and group controls. Together with a functional-relational mapping (for
storing and loading database content), the typelet implementation forms a dy-
namic GUI mechanism, which is declarative and statically typed, but also highly
flexible.
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Abstract. The Pandoc program is a versatile tool for converting be-
tween document formats. It comes with a great variety of readers, each
converting a specific input format into the universal Pandoc format, and
a great variety of writers, each mapping a document represented in this
universal format onto a specific output format.

Unfortunately the intermediate Pandoc format is fixed, which implies
that a new, unforeseen document element cannot be added. In this paper
we propose a more flexible approach, using our collection of Haskell li-
braries for constructing extensible parsers and attribute grammars. Both
the parsing and the unparsing of a specific document can be constructed
out of a collection of precompiled descriptions of document elements
written in Haskell. This collection can be extended by any user, without
having to touch existing code.

The Haskell type system is used to enforce that each component is well
defined, and to verify that the composition of a collection components is
consistent, i.e. that features needed by a component have been defined
by that component or any of the other components. In this way we can
get back the flexibility e.g. offered by the packages in the LATEX package
eco-system.

Keywords: Document Formatting, Pandoc, Attribute Grammars, Pars-
ing, Haskell, Type System.

The nice thing about standards is that there are so
many to choose from.

— Andy Tanenbaum

1 Introduction

1.1 The Starting Point

The world is littered with document standards, from very simple ones such as
markdown for easily expressing markup in wiki based systems up to very elabo-
rate ones such as LATEX, not to mention all the proprietary standards associated
with programs like Word and its numerous brothers and sisters. It goes without
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saying that, besides all the differences, these standards have a lot in common,
and so do the programs which are used to process and generate documents based
on these standards. Unfortunately, once a document is created in one of these
formats there is no easy way back; your formatting commands have effectively
been stolen by the vendor of your document processing program.

Pandoc is a popular Haskell program which tries to alleviate such problems;
its architecture is centered around a “universal document format”, together with
a collection of readers which map documents written using some other format
onto this universal format, and a collection of writers, each mapping a document
represented in this universal format onto the desired output format.

The design of this intermediate format is no sinecure, since on the one hand
it is unrealistic to expect that it can represent all document elements which are
introduced by any of the existing or future standards, and on the other hand
it should not be so restricted that it cannot represents a substantial subset of
these elements.

When we look back at the mother of all document formatters, TEX, we see
no such limitations, since the language standard contains, besides a collection
of primitives, a powerful macro mechanism which can be used to express the
formatting of new document elements when the need arises. It is this extensibility
which has kept TEX alive and the TEX ecosystem growing over the last 40 years.

A first shortcoming, albeit not such a serious one, is that all formatting com-
mands are following the same lexical and syntactic structure. As a result of this
some people prefer to use something like the markdown format when typing a
document or to use a preprocessor like lhs2TeX which was used to add LATEX
formatting commands to the input for the paper you are reading, making the
Haskell code fragments look good. By using an adaptable syntax there are just
fewer symbols to type and the structure of the final document is better visible
in the input format of the document.

The second, but probably most serious shortcoming, is that the macro mecha-
nism of TEX can hardly be seen as a modern programming environment. Building
abstraction layer on top of abstraction layer by implementing what are effectively
programming language interpreters using TEX’s macro mechanism, makes result-
ing systems extremely slow and unforgiving in case the input contains any small
mistake. Those who have used TikZ in combination with lhs2TeX in the beamer
environment, which may cause a single slide to take seconds to format, can only
agree with this observation. Abstraction is nice, but comes at a large cost if the
abstraction mechanism itself is expensive. Furthermore the sequential nature of
TEX processing makes it cumbersome to collect information and make it avail-
able at other places in the output. In those cases we have to recur to writing
data into files and reading it back in the next run.

The question we seek to answer in this paper is whether we can deploy an
extensible document structure with a way to collect and distribute information
in the document, sharing common parts between the various readers and writers,
and in which we can describe how an element is to be formatted in a modern,
strongly typed programming language.
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1.2 Our Approach

In this paper we present our solution to the problems mentioned in the previous
subsection, demonstrating the use of the CoCoCo1 libraries written in Haskell,
which we developed over the years for constructing compilers in a compositional
way [9]. From now on we will talk about parsers instead of readers and about
semantics instead of writers, thus following conventional compiler construction
terminology. The full code can be found in the Haskell package expand2.

One of the libraries we base our solution on is the murder[11,10]3 library which
can be used to explicitly represent mutually recursive values. In our case these
will be grammar fragments which jointly describe the structure of the document
to be formatted or converted. Notice that each grammar fragment is represented
as a Haskell value, which can be combined, inspected, transformed, abstracted
from, etc. Once we have all grammar fragments, which together describe our
document, available we can construct the final grammar and map this grammar
onto an error correcting parser, using e.g. the uu-parsinglib4 library.

For describing the semantics of the document, i.e. the mapping of the recog-
nised structure onto the desired output format, we use AspectAG[13]5. This li-
brary provides a set of combinators for describing attribute grammar based frag-
ments of evaluators. Also here such fragments (or aspects) of the final semantics
are described by plain Haskell values, which are to be combined into the overall
semantics of the final document structure. Instead of using the fixed Pandoc
format our parsers and semantics are related to each other by an underlying
abstract document format for this specific class of documents.

Hence each Document Element Description (DED) consists of the following
elements:

1. some possibly new document kinds (non-terminals in the grammar) or new
element alternatives, thus extending the structure relating the reading and
writing phase of the document mapping

2. grammar fragments telling us how to recognise these new elements and how
they are to be mapped onto the intermediate document structure

3. common semantics to all possible output formats, such as the construction
of a table of contents

4. a description, in attribute grammar terms, describing how to map the newly
defined elements onto specific output formats.

1.3 Outline of the Paper

In the paper we will describe how we reimplemented a subset of the intermediate
Pandoc data type in such a way that it can be easily extended with new document

1 http://www.cs.uu.nl/wiki/Center/CoCoCo
2 http://hackage.haskell.org/package/expand
3 http://hackage.haskell.org/package/murder
4 http://hackage.haskell.org/package/uu-parsinglib
5 http://hackage.haskell.org/package/AspectAG

http://www.cs.uu.nl/wiki/Center/CoCoCo
http://hackage.haskell.org/package/expand
http://hackage.haskell.org/package/murder
http://hackage.haskell.org/package/uu-parsinglib
http://hackage.haskell.org/package/AspectAG
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Fig. 1. Architecture Fig. 2. Multiple Parsers and Semantics

elements. We assume that the reader is familiar with Haskell and its various
extensions, since our libraries depend on them. Emphasis will however be on the
underlying processes and techniques, and not so much on completeness.

In our example we start by showing how the usual top level structure of a doc-
ument, including its sections, subsections and paragraphs, may be represented
and mapped onto HTML. At the same time we show how some of the micro-
formatting, such as bold and italic text are realised. Emphasis will be here on
how we express the grammar for the input document, and how to generate some
simple output. In no way we claim that something spectacular is going on here;
it mainly serves as a basis from which we start to define our extensions in such
a way that we can leave the initial code completely intact, and do not even have
to recompile it. In the rest of the paper we describe two such extensions: the
labeling of section headers with their index number, and the addition of a table
of contents element, which displays information that is collected from various
places in the input text.

2 Implementing expand

The architecture of expand, which stands for “Extensible Pandoc”, is depicted in
Figure 1; boxes represent (groups of Haskell) modules and arrows denote import
relations.

The expand library is divided into three parts:

1. Declarations of abstract syntax for the general document format
2. Grammars that describe the parsers for concrete syntax of input languages.
3. Semantics that describe the unparsing for the concrete syntax of output

languages.

each of which contain modules that serve as a collection of building blocks for
the programmer.

As we show in Figure 2, multiple parsers (e.g. markdown , LATEX) and seman-
tics (e.g. generating HTML, RTF) can be defined following the same approach
as Pandoc does. What makes the difference between our approach and Pandoc
however, is that we can also extend, in a modular way, the parsers, semantics
and intermediate representations of documents. For example, in Figure 3 we ex-
tend the generation of HTML by adding a numbering system to the headers.
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Fig. 3. Generating HTML and Numbered
Headers

Fig. 4. Documents with Table of Contents

Notice that the original modules are neither inspected nor modified; they are
just imported. Thus there is no need to access to the source files of the former
semantics, which could have been distributed as binary code. In our approach,
extensions can be done to any of the three parts that compose to a complete
definition. For example, in Figure 4 we show how extensions to the grammar
and the intermediate document type and the semantics (may) depend on earlier
modules. Here we start with a subset of LATEX which does not include the pos-
sibility to define a table of contents and to which we will refer to as the LATEX
core; we extend the parser to recognise the \tableofcontents command, the
document structure to represent its abstract syntax, and the semantics describ-
ing how to collect the information, distribute the information in the document,
and the final formatting of this table. Note that the first two of these semantic
aspects are likely to be defined separately, since they are not HTML specific and
can be shared between different output formats.

In the following subsections we will show what such definitions look like. As
an example we will show how to construct a program that translates core LATEX
to HTML. We will also show how the extensions of figures 3 and 4 are expressed
in Haskell.

2.1 Declarations

In our attribute grammar fragments we use names6 to refer to children of nodes,
names to refer to attributes and names to refer to the non-terminals of the
abstract grammar. We use Template Haskell to generate such names from con-
ventional Haskell data type definitions as in Figure 5.

A document (Document) consists of a list of blocks (BlockL), each being
either a header or a paragraph. A header consists of an Int representing its level
(level header ), and its text (InlineL). A paragraph contains text, some of which
can be bold or italic. The function deriveAG generates the necessary labels and
types to be used in the attribute grammars fragments describing computations
over trees described by the above types. The function deriveLang generates a
record data type containing a field for each non-terminal. Such a field holds the
function which maps the inherited attributes of the corresponding non-terminal
to its to synthesised attributes. Once such a record is constructed by combining

6 We use the HList label model as defined in the module Data .HList .Label4 .
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data Document = Document {blocks :: BlockL} deriving Show

type BlockL = [Block ]

data Block = Header { level header :: Int
, inlines header :: InlineL}

| Paragraph {inlines par :: InlineL}
deriving (Show)

type InlineL = [Inline ]

data Inline = Plain {str plainInl :: String }
| Bold {inlines boldInl :: InlineL}
| Italics {inlines italInl :: InlineL}

deriving (Show)

$ (deriveAG “Document)
$ (deriveLang "Doc" [“Document , “BlockL, “Block , “InlineL, “Inline ])

Fig. 5. The Haskell data types describing our document structure

document → block∗

block → paragraph | header
paragraph → "\begin" "{" "paragraph" "}" inline∗"\end" "{" "paragraph" "}"

header → "\section" "{" inline∗"}"
| "\subsection" "{" inline∗"}"
| "\subsubsection" "{" inline∗"}"

inline → "\plain" "{" text "}"

| "\textbf" "{" inline∗"}"
| "\textit" "{" inline∗"}"

Fig. 6. The EBNF for our input language

all attribute grammar fragments for all non-terminals we pass it to the parser, so
the parser can apply the appropriate function for each recognised non-terminal.
Notice that we use a deforestated approach: the intermediate tree never comes
into existence, but is instead directly represented by its semantics, i.e. a function
mapping the inherited attributes of the root to its synthesised ones. We use
plenty of type synonyms, so we have names for all types that play a role as
non-terminal in the actual parser.

2.2 Grammars

In this subsection we show how to construct a parser. For a deeper explanation
and more information on the types involved, see [9] section 3.3. For simplicity
reasons we assume here that plain text is explicitly marked using the commands
\plain{...} and \begin{paragraph}. Such commands can be inserted by a
preprocessor, or be omitted by writing a more elaborate parser. The EBNF
expressing the concrete input syntax is given in Figure 6, where text is a string,
excluding the special characters: \, &, %, $, #, _, {, }, ~ and ^.
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gLatex sem = proc () → do
rec

document ← addNT ≺ � (pDocument sem) blockL �

blockL ← addNT ≺ pFoldr (pBlockL Cons sem, pBlockL Nil sem)
� block �

block ← addNT ≺ � header � <|> � paragraph �

paragraph ← addNT ≺ � (pParagraph sem) "\\begin" "{" "paragraph" "}"

inlineL
"\\end" "{" "paragraph" "}" �

header ← addNT ≺ let h (x ,name) = � (pHeader sem x) "\\" name
"{" inlineL "}" �

headers = [(1, "section")
, (2, "subsection")
, (3, "subsubsection")]

in foldr1 (<|>) (map h headers)

inlineL ← addNT ≺ pFoldr (pInlineL Cons sem, pInlineL Nil sem)
� inline �

inline ← addNT ≺ � (pPlain sem) "\\plain" "{"

(someExcept "\\&%$#_{}~^") "}" �
<|> � (pBold sem) "\\textbf" "{" inlineL "}" �
<|> � (pItalics sem) "\\textit" "{" inlineL "}" �

exportNTs ≺ exportList document ( export cs document document
◦ export cs blockL blockL
◦ export cs paragraph paragraph
◦ export cs header header
◦ export cs inline inline
◦ export cs inlineL inlineL)

Fig. 7. Our EBNF encoded as a series of grammar transformations

With the abstract and concrete syntax in mind, we use combinators from the
murder library to straightforwardly encode this grammar fragment in Haskell,
as shown in Figure 7. Note that we can freely use Haskell abstractions where
this comes in handy, as in the case where we deal with various levels of section
headers; as a result our abstract grammar is more expressive than our input
grammar.

2.3 Arrows and Their Syntax

A grammar fragment in the murder library is expressed using the arrow interface,
which generalises the notion of a function, modelling effectful computations with
input and output. In our case we maintain a state containing an environment
holding the productions for each of the non-terminals introduced thus far.



Expand: Towards an Extensible Pandoc System 207

Because arrow syntax [3] can be a bit daunting, we give some analogies to
functions. When writing proc inp → ... (arrow abstraction), we define the arrow
equivalent of writing λinp → ... for functions. The pat ← a ≺ alternatives syntax
is used in a recursive do block (do rec), indicating that we apply the arrow a
to alternatives and match the output to the pattern pat (≺ is written as -<

in Haskell code). Such a do block allows for recursive bindings, similar to a let
block. Finally, we indicate the output of the grammar fragment with a ≺ input
(which should be the last statement in the do block), meaning that the output
of arrow a will be the final output of our grammar fragment arrow.

In the case of grammar fragments, the input of such an arrow provides infor-
mation how to refer to earlier introduced elements of the grammar under con-
struction (in this case we call the fragment a grammar extension). The empty
structure () indicates that our fragment does not need to refer to any other
fragment (we say the current fragment is an initial grammar).

In Figure 7 we introduce new non-terminals using the addNT arrow. A call to
addNT extends the state with a new non-terminal, it takes the initial productions
of this new non-terminal as input and returns a reference to the newly introduced
non-terminal, which we can use as non-terminal in further fragments. Fragments
as defined in Figure 7 are combined by means of arrow composition, as we will
see later.

Each production is expressed using the so called idiom brackets7 (iI and Ii in
Haskell code). The brackets enable a notation which closely follows the common
CFG notation, but reduce to normal applicative combinators. We have used
class overloading to let the type of each element decide what kind of parser to
construct. For example, when we write:

� (pBold sem) "\\textbf" "{" inlineL "}" �

we construct a parser that parses the strings "\\textbf" and "{", next applies
the parser for the non-terminal inlineL and finally parses the string "}". The
strings are not used and the result of the complete parse is constructed by
selecting the appropriate semantic function (pBold ) from the overall semantics
sem, and applying it to the result of the parser inlineL.

Using the function exportList a list of non-terminals is constructed that can
be used in later extensions. Its first argument expresses that the starting point of
the grammar is document and that the extensible non-terminals are document ,
blockL, paragraph , header , inline and inlineL; they can be accessed using the
labels cs document , cs blockL, cs paragraph , cs header , cs inline and cs inlineL
which were generated by Template Haskell.

Note that the above grammar fragment is parameterised with a record sem
containing for each production its associated semantic function. The type of
this record is imported from the Declarations modules and was generated by
deriveLang . In this way we have decoupled what to do with the recognised
structure form the recognition process itself.

7 http://www.haskell.org/haskellwiki/Idiom_brackets

http://www.haskell.org/haskellwiki/Idiom_brackets
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2.4 Semantics

We can compute useful information from an abstract syntax tree by using an
attribute grammar. In an attribute grammar, each node in a parse tree is deco-
rated with a set of values, called attributes. There exist two kinds of attributes:
synthesised and inherited. Synthesised attributes are used to pass information
up to the parent node, while inherited attributes are used to pass information
down to children nodes. Attribute value computations can refer to inherited
attributes of the parent and synthesised attributes of the children. Attribute
grammar based specifications differ from function definitions in the way that in
case of the latter we have to specify both all arguments at the same time, and
the various parts of a computed result together in the body at the same time,
whereas in the former situation this specification can be given incrementally.
For a proper understanding it suffices to see each introduction of an inherited
attribute as adding an extra parameter to the semantics of a non-terminal and
each introduction of a synthesised attribute as an extension of its result.

We will now show how, using the AspectAG library, we define a synthesised
attribute containing the HMTL code for a piece of parsed input text. This library
allows us to define attribute grammar fragments which can be type-checked,
compiled, distributed and composed as any normal Haskell value. For naming
the individual attributes of a node we follow the same approach as we did with
naming the children and the non-terminals: we again use heterogenous lists [5]
(HList package), in which values of different types can be stored and accessed
by using a unique type as index.

Depending on whether we think of the abstract syntax as data type, a tree,
or a grammar we use the following words as synonyms:

1. “data type”, “parent node” and “left-hand-side (non-terminal)”
2. “data constructor”, “current node” and “production”
3. “data constructor field”, “child node” and “right-hand-side non-terminal”

Before introducing the definitions of the new attribute, we first create a unique
label html , using the Template Haskell function attLabels :

$ (attLabels ["html" ])

For every production of the abstract syntax with which we associate the syn-
thesized html attribute, we provide a rule that states how to compute that
attribute html (a String); we use the syn function to specify the rules:

document html = syn html $ do blocks ← at ch blocks
return $ blocks # html

blockLnil html = syn html $ return ""

blockLcons html = syn html $ do block ← at ch hd BlockL Cons
blocks ← at ch tl BlockL Cons
return $ block # html ++ blocks # html

We define the rule for the only production (constructor) of the Document type
and the two productions of the BlockL type (derived form the list type defini-
tions). We use the Reader monad to get access to a small heterogenous record
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containing the attributes of the child nodes (constructor field). The (#) operator
is used to access the fields of those records. Thus, to compute the html attribute
for the production Document , we just return the value of the html attribute of its
only child. Note that we are not working with the actual data types, but merely
use the labels (i.e. ch blocks , ch hd BlockL Cons etc) that were generated from
the data types (this method is key to achieve extensibility of the AST). We show
two more rules, for the Block productions:

header html = syn html $ do level ← at ch level header
inls ← at ch inlines header
return $ "<h"++ show level ++ ">"

++ inls # html
++ "</h"++ show level ++ ">"++ "\n"

paragraph html = syn html $ do inls ← at ch inlines par
return $ "<p>" ++ inls # html ++ "</p>" ++ "\n"

In order to construct the semantic record using the defined attribute rules,
we use the generated function mkDoc (which explains the role of the "Doc"

parameter in the Template Haskell) which was also generated by deriveLang
(see section 2.1), and which collects the semantic rules for all productions. The
definitions of the other functions follows the same pattern as above.

semHtml = mkDoc blockLcons html
blockLnil html
bold html
document html
header html
inlineLcons html
inlineLnil html
italics html
paragraph html
plain html

The mkDoc function returns exactly the record structure with which we pa-
rameterised the grammar fragments.

2.5 Composing the Tool

Now that we have a definition for the semantics, we can finally put the tool to-
gether that maps LATEX onto HTML. We start by writing a small utility function
to build the converter:

buildConverter gram att input = let parser = compile $ closeGram gram
res = result (parse parser input)

in res emptyRecord # att

Thus, buildConverter takes an extensible grammar (e.g. a grammar fragment),
an attribute with which we can index in the heterogenous record with the syn-
thesized attributes of the root element, and an input string for the parser. We
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use the murder functions compile and closeGram to generate the parser, and
parse to run it. With result we drop extra information from the parsing process
and obtain the result: a function that takes a heterogenous record with inherited
attributes (in our case none, thus emptyRecord) and returns a record containing
the synthesized attributes, of which we select the one specified using (#).

We can now construct a converter tool for our language, by passing the defined
semantic functions to the parser description, and using buildConverter to build
and run the parser.

latex2html :: String → String
latex2html = buildConverter (gLatex semHtml) html

3 Extending Our Definitions

In this section we show how our design can be extended in three different ways:
extending the set of attributes, adding new non-terminals to the abstract syntax
and extending the grammar describing the input language.

3.1 Extending the Semantics: Numbered Headers

As a first use case, we extend the HTML generation. In LATEX section headers
are automatically numbered. In order to integrate this aspect into the HTML
generation, we define some extra attributes.

We model a header number as a value of type [Int ], taking the level of headers
into account, e.g. 3.1.4 is represented as [3,1,4]. We write a small function to
format such an index

formatNH :: [Int ] → String
formatNH = intercalate "." ◦map show

We introduce an attribute cHeaderNum , a chained header number, which
threads (or chains) the header indexes through the tree, updating it whenever
a header is encountered. Such a chained attribute is by convention a pair of an
inherited and a synthesised attribute having the same name, and has the same
effect as using a StateT monad transformer. We also define a local attribute
headerNum , which is only accessible from within the header node.

$ (attLabels ["cHeaderNum", "headerNum" ])

-- the non-terminals which have chained cHeaderNum attributes:
cHeaderNum NTs = nt BlockL .*. nt Block .*. hNil

-- by default the attribute is copied in a state monad like fashion:
default cHeaderNum = chain cHeaderNum cHeaderNum NTs

-- initialise the list of Integers at the root of the document:
document cHeaderNum = inh cHeaderNum cHeaderNum NTs $ do

return (ch blocks .=. ([ ] :: [Int ]) .*. emptyRecord )
-- compute a local attribute containing the new list of numbers:
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header headerNum = loc headerNum $ do
lhs ← at lhs
level ← at ch level header
return $ updateHeaderNum level (lhs#cHeaderNum)

-- return the updated list of numbers:
header cHeaderNum = syn cHeaderNum $ do

loc ← at loc
return $ loc # headerNum

-- auxiliary function which computes the next header number:
updateHeaderNum :: Int → [Int ] → [Int ]
updateHeaderNum level par = zipWith (+) par ′ (zeros ++ [1])

where par ′ = par ++ repeat 0
zeros = replicate (level − 1) 0

Note that the computation of this new attribute is independent of the output
language. Therefore, this attribute definition is defined in a separate module
and can be shared across different output languages. It is now easy to access
this attribute in our new definition of the html generation, where synmodM
creates a rule that will overwrite the original rule when extending it.

header html ′ = synmodM html $ do level ← at ch level header
inls ← at ch inlines header
loc ← at loc
let num = loc # headerNum
return $ "<h"++ show level ++ ">"

++ formatNH num ++ " "

++ inls # html
++ "</h"++ show level ++ ">"++ "\n"

We can now construct a new semantic record for html generation by combining
both the html and the cHeaderNum aspects:

semHtml ′ = mkDoc (default cHeaderNum ‘ext ‘ blockLcons html)
(default cHeaderNum ‘ext ‘ blockLnil html)
bold html
(document cHeaderNum ‘ext ‘ document html)
(header headerNum ‘ext ‘ header cHeaderNum

‘ext ‘ header html ′

‘ext ‘ header html)
inlineLcons html
inlineLnil html
italics html
(default cHeaderNum ‘ext ‘ paragraph html)
plain html

This is where the actual composition of semantics happens. The original
header html rule is extended from right to left, with rules for cHeaderNum ,
headerNum and a redefinition for the html attribute.
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3.2 A Table of Contents

As our second extension we show how to extend the grammar, abstract syntax
and semantics by computing a table of contents of the document.

We start out by computing the table of contents as a synthesised attribute,
since this computation requires no extension of the abstract syntax. Again, we
would like this attribute to be reusable for different output languages, so we
model the table as a value of type [([Int ], String)], i.e. a list of section headers
tupled with the name of the section.

We start by defining two attribute labels: sToc contains the synthesised table
of contents, and toc the complete table of contents, to be passed down the tree
as an inherited attribute. In this way information collected from all over the
document is made available at all places where we might insert the table of
contents.

$ (attLabels ["sToc", "toc" ])

sToc NTs = nt Document .*. nt Block .*. nt BlockL .*.HNil

default sToc = use sToc sToc NTs (++) [ ]

header sToc = syn sToc $ do loc ← at loc
inls ← at ch inlines header
return [(loc # headerNum , inls # sInlStr)]

For sToc we provide a default rule that aggregates the synthesized table of con-
tents. The use function from the AspectAG library takes an operator to combine
the synthesized tables from all the child nodes, and a default value if a child
does not define the attribute. Next, we write a specific rule defining how to syn-
thesize a table of contents at the header node. We ask for the local attributes,
and reuse the headerNum attribute, defined in the previous subsection. We also
use the sInlStr attribute which formats the InlineL text as a simple string, while
ignoring text formatting such as bold and italics (we omit its implementation).

We now add an extension to the abstract syntax to be able to indicate where
the table of contents is to be inserted:

data EXT Block = Toc

$ (extendAG ’’ EXT Block [ ])
$ (deriveLang "DocToc" [’’ EXT Block ])

The EXT Block should be read as an extension of the Block data type (defined
in section 2.1), thus introducing a new production for the table of contents. The
function deriveLang will also produce a new record type containing the semantic
function of the Toc production. Now that we have this semantic record available,
we can extend the LATEX grammar

gLatexToc sem = proc imported → do
let block = getNT cs block imported

toc ← addNT ≺ � (pToc sem) "\\tableofcontents" �
addProds ≺ (block ,� toc �)

exportNTs ≺ imported
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We retrieve the non-terminal block defined in the fragment from section 2.2
and introduce a new non-terminal toc that recognises the LATEX command. We
then add this new non-terminal as an extra alternative to the block non-terminal.
Now we can also define the synthesis of the html attribute for the Toc production:

toc html = syn html $ do lhs ← at lhs
return $ formatToc (lhs # toc)

formatToc :: [([Int ], String)] → String
formatToc = foldr f ""

where f (x , section) table = "<a href=#" ++ show x ++ ">"

++ (formatNH x) ++ " "++ section
++ "</a><br />\n"++ table

We use the inherited attribute toc (the complete table) and format it using a
small helper function. From this, we can derive the required semantic record.

semHtmlToc = mkDocToc (default toc ‘ext ‘ toc html ‘ext ‘
default cHeaderNum ‘ext ‘ default sToc)

We also redefine the synthesised html attribute for the header node, using
its headerNum as a value for id in the HTML tag. This gives us a navigation
mechanism within the HTML document. We omit the implementation since it
closely resembles the html rule defined in section 3. We also do not show the
construction of a new semantic record semHtml ′′ with mkDoc since it is similar
to semHtml ′ in section 3, except for the addition of the newly defined rules.

We now have all the building blocks to create the new conversion tool:

latex2html ′′ :: String → String
latex2html ′′ = buildConverter (gLatex semHtml ′′ +>> gLatexToc semHtmlToc) html

The combinator +>> composes grammar fragments, such that its second argu-
ment extends the grammar in its first. It just composes two arrows, passing the
output of the first one (exported non-terminals) as input to the second one.

4 Conclusions, Related and Future Work

We have shown how our libraries can be used to construct a more flexible and
extensible Pandoc system. We have shown how to extend the underlying parsers
for the input language, how to extend the intermediate representation, and how
to extend and change computations over this intermediate data structure. The
consistency of all definitions is done by the Haskell compiler. We foresee a system
in which a document may come with references to the definitions of used doc-
ument elements (like DTD’s) including their semantics, i.e. how these elements
are to be formatted in combination with other elements.

We heavily lean of the Typed Transformations of Typed Abstract Syntax [1]
technique in realising this. One of the questions which arises is whether such
flexibility might have been achieved otherwise. On his website8 the designer of

8 http://johnmacfarlane.net/pandoc/scripting.html

http://johnmacfarlane.net/pandoc/scripting.html
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Pandoc, John Macfarlane, shows how some of the things we are doing using our
attribute grammar system may be achieved by some form of scripting, which
boils down to constructing the abstract syntax tree of the document, and sub-
sequently applying functions to this tree, before writing the tree out in some
specific format. We believe that, although this technique may work for simple
transformations, this is not the way to go. Such approaches look simple at first,
but become cumbersome to use once many (related) transformations are to be
applied. They are inefficient since the tree is to be inspected over and over again,
and worse, the programmer has to be aware of all the transformations, what they
do to the tree, what information to leave in the tree for further transformations,
and where to pick it up in further steps. Once one tries to use the Haskell type
system to check for the consistency of this process the types of the intermediate
trees change, defeating the whole underlying Pandoc philosophy. Of course this
problem can be circumvented by storing attributes in the tree in the form of
dictionaries, but then we move to the untyped world, where the type system
does not guarantee that entries referred to are present. If one wants to resort to
such untyped techniques one might look at systems which have been designed
to support this approach such as Stratego [2] (see however [4] for an extension
of transformation systems with attribute grammar facilities). The fact remains
however that in all these approaches the life of the programmer becomes much
more complicated because he loses strong typing and has to make the evaluation
order and the storage and retrieval explicit, whereas this is implicitly done by
the lazy evaluation underlying the attribute grammar approach. In a technical
report we show the viability of our approach in implementing a compiler for the
language Oberon0 in a stepwise fashion [9]. Other systems pursuing solutions
along these lines are Kiama [6] which uses Scala as the (host) implementation
language and Silver [8].

Once we have introduced a lot of attributes, the tree structures may grow,
and accessing the individual attributes may start to add to the overall cost. In
[12] we have described how the AspectAG code we have shown may be generated
by the Utrecht University Attribute Grammar Compiler (uuagc) from a less
verbose format. Another option which becomes available that way is to group
attributes such that they can be accessed faster [12]. The uuagc compiler can
also read a large collection of attribute grammar fragments, analyse the overall
dependencies and generate the tree-walk evaluators which have to be constructed
by hand in the more explicit approaches. In this way we can easily generate a
very fast compiler for the document type at hand.

Although we have hardly used the full power of the attribute grammar for-
malism we want to mention that for many kinds of computations over trees they
are the tool of choice: attribute grammars form a domain specific language for
describing computations over trees, where we do not have to limit ourselves to
non-circular grammars at all when we use an lazy evaluated underlying language.
In the online computation of pretty printed documents we essentially use lazy
evaluation to be able to evaluate a circular attribute grammar; something which
is not easily transformed into an explicitly scheduled version [7].
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Abstract. Generic programming (GP) is a form of abstraction in programming
languages that serves to reduce code duplication by exploiting the regular struc-
ture of algebraic datatypes. Over the years, several different approaches to GP
in Haskell have surfaced. These approaches are often similar, but certain differ-
ences make them particularly well-suited for one specific domain or application.
As such, there is a lot of code duplication across GP libraries, which is rather
unfortunate, given the original goals of GP.

To address this problem, we define conversions from one popular GP library
representation to several others. Our work unifies many approaches to GP, and
simplifies the life of both library writers and users. Library writers can define their
approach as a conversion from our library, obviating the need for writing meta-
programming code for generation of conversions to and from the generic repre-
sentation. Users of GP, who often struggle to find “the right approach” to use, can
now mix and match functionality from different libraries with ease, and need not
worry about having multiple (potentially inefficient and large) code blocks for
generic representations in different approaches.

1 Introduction

GP can be used to reduce code duplication, increase the level of abstraction in a pro-
gram, and derive useful functionality “for free” from the structure of datatypes. Over
the past few years, many approaches to GP have surfaced. Including pre-processors,
template-based approaches, language extensions, and libraries, there are well over 15
different approaches to GP in Haskell [7, Chapter 8]. This abundance is caused by the
lack of a clearly superior approach; each approach has its strengths and weaknesses,
uses different implementation mechanisms, a different generic view [4] (i.e. a different
structural representation of datatypes), or focuses on solving a particular task. Their
number and variety makes comparisons difficult, and can make prospective GP users
struggle even before actually writing a generic program, since they first have to choose
a library that is appropriate for their needs.

We have previously investigated how to model and formally relate some Haskell GP
libraries using Agda [9], and concluded that some approaches clearly subsume others.
The relevance of this fact extends above mere theoretical interest, since a comparison
can also provide means for converting between approaches. Ironically, code duplication
across generic programming libraries is evident: the same function can be nearly iden-
tical in different approaches, yet impossible to reuse, due to the underlying differences
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in representation. A conversion between approaches provides the means to remove du-
plication of generic code.

In this paper we show how to automatically derive representations for many popu-
lar GP libraries, all coming from one single compiler-supported approach. The base ap-
proach, generic-deriving [10], has been supported in the Glasgow Haskell Compiler
(GHC), the main Haskell compiler, since version 7.2.1 (August 2011). From gener-
ic-deriving we define conversions to other popular generic libraries: regular [13],
multirec [14], and syb [5, 6]. Some of these libraries are remarkably different from
each other, yet advanced type-level features in GHC, such as GADTs [16], type func-
tions [15], and kind polymorphism [18], allow us to perform these conversions.

Using the type class system, our conversions remain entirely under the hood for
the end user, who need not worry anymore about which GP approach does what, and
can simply use generic functions from any approach. As an example, the following
combination of generic functionality is now possible:

import Generics.Deriving as GD
import Generics.Regular.Rewriting as R
import Generics.SYB.Schemes as S
import Conversions ()

data Logic α = Var α | Logic α :∨: Logic α | Not (Logic α) | T | F
deriving (GD.Generic)

rewriting :: Logic Char
rewriting = let elim2Not = R.rule $ λ x → Not (Not x) :�: x

in R.bottomUp (R.rewrite elim2Not)$ T :∨: Not (Not (Var ’p’))

size :: Int
size = S.everything (+) (const 1)$ Var ’p’ :∨: Var ’q’

rename :: Logic String
rename = GD.gmap (’_’:)$ T :∨: Var "p"

Here, the user defines a Logic datatype, and lets the compiler automatically derive a
Generic representation for it (from generic-deriving). Three examples then show
how functionality specific to three separate GP libraries can be used from this single
representation:

– In rewriting, a rewrite rule is applied to a logical expression. The rewriting system
requires a fixed-point view on data for encoding expressions extended with meta-
variables [13]. This fixed-point view is provided by the regular library. The term
rewriting evaluates to T :∨: Var ’p’.

– Expression size showcases the combinator approach to GP typical of syb, reducing
all leaves to 1, and combining them with the (+) operator. The term size evaluates
to 5.

– Expression rename uses a map on the String parameter of Logic to rename all the
variables. This makes uses of the support for parameters of generic-deriving.
The term rename evaluates to T :∨: Var "_p".

All this functionality can be achieved using only the Generic representation of ge-
neric-deriving, and by importing the conversion instances defined in some module
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Conversions (provided by us); there is no need to derive any generic representations for
regular or syb. Previously, combining the functionality of these libraries would also
require generic representations for regular and syb. This would bring a dependency
on Template Haskell [17] for deriving regular representations, and added code bloat.

Generic library writers also see an improvement in their quality of life, as they no
longer need to write Template Haskell code to derive representations for their libraries,
and can instead rely on our conversion functions. Furthermore, many generic functions
can now be recognised as truly duplicated across approaches, and can be deprecated
appropriately. Defining new approaches to GP has never been easier; GP libraries can
be kept small and specific, focusing on one particular aspect, as users can easily find
and use other generic functionality in other approaches.

We say this work is about generic generic programming because it is generic over
generic programming approaches. Specifically, we define conversions to multiple GP
libraries (Sections 3 to 5), covering a wide range of approaches, including libraries with
a fixed-point view on data (regular and multirec), and a library based on traversal
combinators (syb). In defining our conversions to other libraries, we also update their
definitions to make use of the latest GHC extensions (namely data kinds and kind poly-
morphism [18]). This is not essential for our conversions (i.e. we are not changing the
libraries to make our conversion easier), but it improves the libraries (while these li-
braries were always type safe, our changes make them more kind safe).

Moreover, our work brings forward a new way of looking at GP, where new, special-
purpose GP libraries can be easily defined, without needing to repeat lots of common
infrastructure. Users of GP can now simply cherry-pick generic functions from different
libraries, without having to worry about the overhead introduced by each GP approach.

Notation. In order to avoid syntactic clutter and to help the reader, we adopt a liberal
Haskell notation in this paper. We assume the existence of a kind keyword, which
allows us to define kinds directly. These kinds behave as if they had arisen from datatype
promotion [18], except that they do not define a datatype and constructors. We omit the
keywords type family and type instance entirely, making type-level functions look like
their value-level counterparts. When we use the same name for a constructor and a type,
the “level” of the expression is clear from the context. Additionally, we use Greek letters
for type variables, apart from κ , which is reserved for kind variables.

This syntactic sugar is only for presentation purposes. An executable version of
the code, which compiles with GHC 7.6.2, is available at http://dreixel.net/
research/code/ggp.zip. We rely on many GHC-specific extensions to Haskell,
which are essential for our development. Due to space constraints we cannot explain
them all in detail, but we try to point out relevant features as we use them.

Structure of the Paper. We first provide a brief introduction to the generic-deriv-
ing library for GP (Section 2). We then see how to obtain other libraries from gener-
ic-deriving: regular (Section 3), multirec (Section 4), and syb (Section 5). We then
conclude with a discussion in Section 6. Along the way, we also show several examples
of how our conversion enables seamless use of multiple approaches.

http://dreixel.net/research/code/ggp.zip
http://dreixel.net/research/code/ggp.zip
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2 Introduction to generic-deriving

We begin our efforts of homogenising GP libraries by introducing generic-deriving,
the library from which we derive the other representations.

kind UnD = VD | UD | KD KType �
| MD MetaD UnD
| UnD :+:D UnD
| UnD :×:D UnD

kind MetaD = DD MetaData
| CD MetaCon
| FD MetaField

kind KType = P | R RecType | U
kind RecType = S | O

data �α :: UnD �D ::� where
U1D :: �UD �D
M1D :: �α �D → �MD ι α �D
K1D :: α → �KD ι α �D
L1D :: �φ �D → �φ :+:D ψ �D

R1D :: �ψ �D → �φ :+:D ψ �D
:×:D :: �φ �D → �ψ �D → �φ :×:D ψ �D

Fig. 1. Universe and interpretation of generic-deriving

Universe. The structure used to encode datatypes in a GP approach is called its universe
[12]. The universe of generic-deriving can be seen on the left in Figure 1. It repre-
sents datatypes as a sum of products, additionally keeping track of meta-information.
Since GP approaches often use the same names for similar representation types, we use
the “D” subscript for generic-deriving names.

Datatypes are sums (choices between constructors, encoded with :+:D) of products
(constructors with several arguments, encoded with :×:D). The sum can be nullary (VD),
in case the datatype has no constructors, and so can each of the products (UD), in
case the constructor takes no arguments. Constructor arguments (encoded with KD)
can either be the (last) parameter of the datatype (KD P), an occurrence of a datatype,
which can be the same as the one we are defining (KD (R S)) or some other datatype
(KD (R O)), or something else (such as an application of a type variable, encoded with
KD U). The annotations given by KType and RecType will prove essential when convert-
ing to approaches with a fixed-point view on data (Section 3 and Section 4), as there we
need explicit knowledge about the recursive structure of data.

Interpretation. The interpretation of the universe defines the structure of the values
that inhabit the datatype representation. Datatype representations are types of kind
UnD. We use a GADT [16] � �D to encode the interpretation of the universe of ge-
neric-deriving, which can be seen on the right in Figure 1. The top-level inhabitant
of a datatype representation is always a constructor M1D (with type �MD (DD ι) α �D),
which serves only as a proxy to store the datatype metadata on its type. An M1D appears
also around each constructor (but then with type �MD (CD ι) α �D, and each construc-
tor field (but then with type �MD (FD ι) α �D). Constructors can be on the left (L1D)
or right (R1D) side of a sum. Constructor arguments are encoded in a product structure
(:×:D), or can be empty (U1D). Constructor fields are all encoded with K1D, which is
used with different types to encode the meta-information of the field in question (simi-
larly to M1D). We encode the last parameter of the datatype with K1D ::KD P α , datatype
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occurrences with K1D :: KD (R ι) α , with ι being S if the datatype is the same we are
encoding and O otherwise, and anything else with K1D :: KD U α .

Conversion to and from User Datatypes. Having seen the generic universe and its
interpretation, we need to provide a mechanism to mediate between user datatypes and
our generic representation. We use a type class for this purpose:

class GenericD (α ::�) where
RepD α :: UnD

fromD :: α → �RepD α �D

toD :: �RepD α �D → α

In the GenericD class, the type family RepD encodes the generic representation asso-
ciated with user datatype α . The class methods from and to perform the conversion
between the user datatype values and the interpretation of the generic representation.
From here on, we shall omit the toD direction, as it is always entirely symmetrical
to fromD.

Example Encoding: Lists. We now show an example of how a user datatype is en-
coded in generic-deriving. (Users never have to define the encodings manually;
GHC can automatically derive GenericD instances.) We omit the encoding of metadata
in the datatype, constructors, and selectors, as these are not relevant to our developments
in the rest of the paper. The simplified instance looks as follows:

instance Generic [α ] where
Rep [α ] = UD :+:D ((KD P α) :×:D (KD (R S) [α ]))

from [ ] = L1D U1D

from (h : t) = R1D (K1D h :×:D (K1D t))

The first argument of the (:) constructor is tagged as being the parameter (with P), and
the second as being a recursive occurrence of the datatype being defined (R S).

3 From generic-deriving to regular

In this section we show how to obtain regular representations from generic-de-
riving. The regular library, first described in the context of generic rewriting [13],
encodes datatypes using a “fixed-point view”. As such, it abstracts over the recursive
position of the datatype, allowing for the definition of recursive morphisms such as cata-
and anamorphisms. It was previously thought that a fixed-point view was a requirement
for defining recursive morphisms generally, or that it would be very hard or messy in
other views. Here we show that this need not be the case, as our conversion to regular
comes from a non-fixed point view, and is rather simple.

Encoding regular. We show a simplified encoding of the universe of regular (sub-
script “R”), omitting the constructor meta-information:

kind UnR = UR | IR | KR � | UnR :+:R UnR | UnR :×:R UnR
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As before, we have a type for encoding unitary constructors (UR) and a type for con-
stants (KR). However, we also have a type IR to encode recursion. The regular library
supports abstracting over single recursive datatypes only, so IR need not store the index
of what type it encodes. Sums and products behave as in generic-deriving.

The interpretation of this universe is parametrised over the type of recursive positions
τ , which is used in the IR case:

data �α :: UnR �R (τ ::�) where
UR :: �UR �R τ
IR :: τ → � IR �R τ
KR :: α → �KR α �R τ
LR :: �α �R τ → �α :+:R β �R τ
RR :: �β �R τ → �α :+:R β �R τ
(:×:R) :: �α �R τ → �β �R τ → �α :×:R β �R τ

The Regular class witnesses the conversion between user-defined datatypes and their
representation in regular. Note how the τ parameter of �α �R is set to α itself:

class Regular (α ::�) where
PF α :: UnR

fromR :: α → �PF α �R α

This means that regular encodes a one-layer generic representation, where the recur-
sive positions are values of the original user datatype, not generic representations.

Type Conversion. We now show the first conversion in this paper, which serves as
an introduction to the structure of our conversions. We use a type family to adapt the
representation, and a type-class to adapt the values. The first step is then to convert the
representation types of generic-deriving into representation types of regular using
a type family:

D→R (α :: UnD) :: UnR

For units, meta-information, sums, and products, the conversion is straightforward:

D→R UD = UR

D→R (MD ι α) = D→R α
D→R (α :+:D β ) = D→R α :+:R D→R β
D→R (α :×:D β ) = D→R α :×:R D→R β

The interesting case is that for constructor arguments, as we have to treat recursion into
the same datatype differently:

D→R (KD (R S) τ) = IR

D→R (KD (R O) α) = KR α
D→R (KD P α) = KR α
D→R (KD U α) = KR α

One might wonder what would happen if the generic-deriving representation had an
inconsistent use of KD (R S) τ where τ is not the type being represented. This would
lead to a type error, as we explain in the next section.
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Value Conversion. Having performed the type-level conversion, we have to convert
the values in a type-directed fashion. The conversion of the values is witnessed by the
ConvertD→R type class:

class ConvertD→R (α :: UnD) τ where
d→r :: �α �D → �D→R α �R τ

(We omit the r→d direction, as it is entirely symmetrical.) This is a multiparameter type
class because we need to enforce the restriction that the recursive occurrence under
KD (R S) τ has to be of the expected type τ:

instance ConvertD→R (KD (R S) τ) τ where d→r (K1D x) = IR x

The tag R S expresses this restriction informally only; the formal guarantee is given
by the type-checker, since this instance requires type equality, encoded in the repeated
appearance of the variable τ in the instance head. We omit the remaining instances as
they are unsurprising.

To finish the conversion, we provide a Regular instance for all GenericD types. It is
here that we set the second parameter of ConvertD→R to the type being converted (α):

instance (GenericD α,ConvertD→R (RepD α) α)⇒ Regular α where
PF α = D→R (RepD α)
fromR x = d→r (fromD x)

With this instance, functions defined in the regular library are now available to all
generic-deriving supported datatypes. This is remarkable; in particular, functions
that require a fixed-point view on data, such as the generic catamorphism, can be used
on generic-deriving types without having to provide an explicit Regular instance.
From the generic library developer point of view there are other advantages. When
defining a new generic function that fits the fixed-point view naturally, a developer
could implement this function easily in regular, but would then require the users of
this function to use regular, and manually write Regular instances for their datatypes,
or use the provided Template Haskell code to derive these automatically. Alternatively,
the developer could try to define the same function in generic-deriving, but this
would probably require more effort; the advantage would be that users wouldn’t need
an external library to use this function, and could rely solely on GHC.

With the instance above, however, the developer can implement the function in
regular, and the users can use it through the deriving GenericD extension of GHC.
In fact, regular can be simplified by removing the Template Haskell code for gener-
ating Regular instances altogether. Given that this code often requires updating due to
new releases of GHC changing Template Haskell, this is a clear improvement, and helps
reduce clutter from the GP libraries themselves.

4 From generic-deriving to multirec

Having seen how to convert from generic-deriving to a fixed-point view for a single
datatype, we are ready to tackle the challenge of converting to multirec, a library with
a fixed-point view over families of datatypes [14].
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Encoding multirec. The universe of multirec is similar to that of regular, only IM

is parametrised over an index (since we now support recursion into several datatypes),
and we have a new code :�:M for tagging a part of the representation with a concrete
index:

data UnM κ = UM | IM κ | KM � | UnM κ :�:M κ
| UnM κ :+:M UnM κ | UnM κ :×:M UnM κ

Tagging is used to differentiate between different datatypes within a single represen-
tation. As an example, we show a family of two mutually-recursive datatypes together
with the type-level representation in multirec:

data Zig = Zig Zag | ZigEnd
data Zag = Zag Zig

ZigZagRep = ((IM Zag :+:M U) :�:M Zig)
:+:M ((IM Zig) :�:M Zag)

The multirec library encodes indices by using the datatype itself as an index. As such,
in our example above, the index κ is �. This turns out to be convenient for our conver-
sion, so we will always use UnM instantiated to kind �.

The interpretation of the multirec universe is parametrised not only by the represen-
tation type α , but also by a type constructor τ that converts indices into their concrete
representation, and a particular index type ι:

data �α :: UnM κ �M (τ :: κ → �) (ι :: κ) where
UM :: �U �M τ ι
IM :: τ o → � IM o�M τ ι
KM :: α → �KM α �M τ ι
TagM :: �α �M τ ι → �α :�:M ι �M τ ι
LM :: �α �M τ ι → �α :+:M β �M τ ι
RM :: �β �M τ ι → �α :+:M β �M τ ι
:×:M :: �α �M τ ι → �β �M τ ι → �α :×:M β � τ ι

In other words, the interpretation �α �M τ ι can be seen as a family of datatypes, one
for each particular index ι . The TagM constructor introduces a type equality constraint
on the tagged index; this is how the interpretation is restricted to a particular index.

Finally, user datatypes are converted to the multirec representation using two type
classes, FamM and ElM:

newtype I0M α = I0M α
class FamM (φ ::�→ �) where

PFM φ :: UnM �
fromM :: φ ι → ι → �PFM φ �M I0M ι

class ElM (φ :: κ → �) (ι :: κ) where
proofM :: φ ι

The class FamM takes as argument a family type φ . Here we instantiate the τ in
� �M to an identity type I0M; other applications in multirec, such as the generalised
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catamorphism, make use of the generality of τ . The ElM class associates each index
type ι with its family φ .

This is all best understood through an example, so we show the encoding for the
family of datatypes Zig and Zag shown before. The first step is to define a GADT to
represent the family. This datatype contains elements of either type Zig or Zag:

data ZigZag ι where
ZigZagZig :: ZigZag Zig
ZigZagZag :: ZigZag Zag

The type ZigZag now describes our family, by providing two indices ZigZagZig and
ZigZagZag. This is made concrete by the following instances:

instance FamM ZigZag where
PFM ZigZag = ZigZagRep

fromM ZigZagZig (Zig z) = LM (TagM (LM (IM (I0M z))))
fromM ZigZagZig ZigEnd = LM (TagM (RM UM))
fromM ZigZagZag (Zag z) = RM (TagM (IM (I0M z)))

instance ElM ZigZag Zig where proofM = ZigZagZig

instance ElM ZigZag Zag where proofM = ZigZagZag

Type Conversion. The first step in converting a family of datatypes representable in
generic-deriving to multirec is to convert a single datatype. This is the task of the
D→M type family:

D→M (α :: UnD) :: UnM �

D→M UD = UM

D→M (MD ι α) = D→M α
D→M (α :+:D β ) = D→M α :+:M D→M β
D→M (α :×:D β ) = D→M α :×:M D→M β

The most interesting case is that for constants, which we now need either to turn into
indices, or to keep as constants. We turn recursive occurrences into indices, and leave
the rest as constants:

D→M (KD (R ι) τ) = IM τ
D→M (KD U α) = KM α
D→M (KD P α) = KM α

Having defined D→M to convert one datatype, we are left with the task of converting
a family of datatypes. We encode a family as a type-level list of datatypes, and define
D→MFam parametrised over such a list:

data ⊥
D→MFam (α :: [� ]) :: UnM �

D→MFam [ ] = KM ⊥
D→MFam (α : β ) = (D→M (RepD α)) :�:M α) :+:M D→MFam β
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We convert a list of datatypes by taking each element, looking up its representation
in generic-deriving using RepD, converting it to a multirec representation using
D→M, and tagging that with the original datatype. The base case is the empty list, which
we encode with an empty representation (since multirec has no empty representation
type, we define an empty datatype ⊥ and use it as a constant).

Value Conversion. Converting a value of a single type is done in exactly the same way
as for the regular conversion:

class ConvertD→M (α :: UnD) where
d→m :: �α �D → �D→M α �M I0M ι

As before, we omit the instances, as they are without surprises.
We’re left with dealing with the encapsulation of values within a family. We represent

families as lists of types, but a value of a family is still of a single, concrete type. We
use a GADT to encode the notion of a value within a family:

data (α :: [� ]) :@: (β ::�) where
This :: (α : β ) :@: α
That :: β :@: α → (γ : β ) :@: α

For example, the value This ZigEnd has the type [Zig,Zag ] :@: Zig, and the value
That (This (Zag ZigEnd)) has the type [Zig,Zag ] :@: Zag.

The application of :@: to a single argument is of kind �→ �, and it encodes precisely
the notion of a multirec family. We make this explicit by providing ElM instances
stating that a type α is either at the head of the list, and can be accessed with This, or it
might be deeper within the list, in which case we have to continue indexing with That:

instance ElM ((α : β ) :@:) α where proofM = This
instance (ElM (β :@:) α)⇒ ElM ((γ : β ) :@:) α where proofM = That proofM

Converting a value within a family requires producing the appropriate injection into
the right element of the family, plus the tag (with TagM). We use our :@: GADT for this
(which results in a right-biased encoding of the family):

instance (FamConstrs α)⇒ FamM (α :@:) where
PFM (α :@:) = D→MFam α
fromM This x = LM (TagM (d→m (fromD x)))
fromM (That k) x = RM (fromM k x)

The constraints on this instance are not trivial, as each type in the family needs to have a
GenericD instance and be convertible through ConvertD→M . The FamConstrs constraint
family expresses these requirements:

FamConstrs (α :: [� ]) :: Constraint
FamConstrs [ ] = ()
FamConstrs (α : β ) = ( GenericD α,ConvertD→M (RepD α)

, FamM (β :@:),FamConstrs β )
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Example. To test this conversion, assume we have some generic function sizeM de-
fined in multirec which computes the size of a term. Assume we also have GenericD

instances for the Zig and Zag types in generic-deriving (derived by the compiler).
These give rise to a FamM ([Zig,Zag ] :@:) instance (this section). As such, we can call
sizeM directly on a value of type Zig:

sizeM :: (FamM φ , . . .)⇒ φ ι → ι → Int
sizeM = . . .

zigZag :: Zig
zigZag = Zig (Zag (Zig (Zag ZigEnd)))

testd→m :: Int
testd→m = sizeM (proof :: [Zag,Zig ] :@: Zig) zigZag

Our test value testd→m evaluates to 4 as expected. The use of :@: makes multirec easier
to use than before; unlike in our example in Section 4, it is not necessary to define a
family type; we can simply use :@:. The index (first argument to sizeM) is automatically
computed from the type signature of proof , so there is no need to explicitly use This
and That. Finally, families can be easily extended: the code for testd→m works equally
well if we supply proof as having type [Zag,Zig, Int ] :@: Zig, for instance.

5 From generic-deriving to syb

The syb library, unlike the others we have seen so far, does not encode the structure
of user datatypes at the type level. Instead, it views data as successive applications of
terms; generic functions then operate on this applicative structure. The interface pre-
sented to the user hides this view, and is instead based on various traversal operators. In
this section we show how to obtain syb representations of data from generic-deriv-
ing. We use the syb encoding of Hinze et al. [3] as the basis of our development instead
of the “official” encoding shipped with GHC, but this does not make our conversion any
less applicable or general.

Encoding syb. The basis of syb is the Spine datatype, which defines a view on data as a
sequence of applications. A value of type Spine is either a constructor, or an application
of a Spine with functional type to an argument:

data Spine ::�→ � where
Con :: α → Spine α
(:�:) :: (Data α)⇒ Spine (α → β )→ α → Spine β

The Data constraint will be explained later.
The Spine datatype is both Functorial and Applicative, and we can also fold it:

instance Functor Spine where
fmap f (Con x) = Con (f x)
fmap f (c :�: x) = fmap (f◦) c :�: x

instance Applicative Spine where
pure = Con
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Con f <∗> x = fmap f x
(c :�: x)<∗> Con y = fmap (λ f x → f x y) c :�: x
(c :�: x)<∗> (d :�: y) = (fmap (λ f d y → f (d y)) (c :�: x)<∗> d) :�: y

foldSpine :: (∀α β .Data α ⇒ φ (α → β )→ α → φ β)
→ (∀α.α → φ α)→ Spine α → φ α

foldSpine f z (Con c) = z c
foldSpine f z (c :�: x) = foldSpine f z c ‘f ‘ x

Although the type of foldSpine might look intimidating at first, its first argument is
simply the replacement for the :�: constructor, and the second is the replacement for
Con.

The Data class is used to embed conversions between user datatypes and the Spine
generic view:

class (Typeable α)⇒ Data α where
spine :: α → Spine α
gfoldl :: (∀γ β .Data γ ⇒ φ (γ → β )→ γ → φ β )

→ (∀β .β → φ β)→ α → φ α
gfoldl f z = foldSpine f z◦ spine

The Data class has Typeable as a superclass for convenience, because many generic
functions in syb make use of type-safe runtime cast. The gfoldl method is the basis of
all generic consumer functions in syb, and we see that it is just a variant of foldSpine.

The way syb is implemented in GHC, gfoldl is a primitive, and its definition is auto-
matically generated by the compiler for user datatypes using the deriving mechanism.
In our presentation, the spine method is the primitive, from which gfoldl follows.

The encoding of user datatypes in syb using Spine is very simple. As an example,
here is the encoding of lists:

instance (Data α)⇒ Data [α ] where
spine [ ] = Con [ ]
spine (h : t) = Con (:) :�: h :�: t

Base types are encoded trivially:

instance Data Int where spine = Con

We show a simplified version of syb, in particular omitting meta-information and the
gunfold function. These are cosmetic simplifications only; Hinze et al. [3] describe how
to support meta-information in the Spine view, and Hinze and Löh [2] describe how to
define gunfold.

Value Conversion. To convert the generic representation of generic-deriving into
that of syb we only need to convert values, as syb has no type-level representation. As
such, we require only a type class:

class ConvertD→S (α :: UnD) where
d→s :: �α �D → Spine (�α �D)
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The idea is to first build a representation of type Spine (�α �D), and later transform this
into Spine α . The instances are unsurprising, and follow the functorial nature of Spine:

instance ConvertD→S UD where d→s U1D = Con U1D

instance (ConvertD→S α,ConvertD→S β )⇒ ConvertD→S (α :+:D β ) where
d→s (L1D x) = fmap L1D (d→s x)
d→s (R1D x) = fmap R1D (d→s x)

instance (ConvertD→S α,ConvertD→S β )⇒ ConvertD→S (α :×:D β ) where
d→s (x :×:D y) = pure (:×:D)<∗> d→s x <∗> d→s y

instance (Data α)⇒ ConvertD→S (KD ι α) where
d→s (K1D x) = Con K1D :�: x

instance (ConvertD→S α)⇒ ConvertD→S (MD ι α) where
d→s (M1D x) = fmap M1D (d→s x)

With these instances in place, we can define a Data instance for all GenericD types:

instance (GenericD α,ConvertD→S (RepD α),Typeable α)⇒ Data α where
spine = fmap toD ◦ d→s◦ fromD

We first convert the user type to its generic-deriving representation with fromD,
then build a Spine representation using d→s, and finally adapt this representation with
fmap toD.

To test our conversion, assume that we had not given the Data [α ] instance ear-
lier in this section; the GenericD [α ] instance of Section 2 would then cascade down
into a Data [α ] instance using the conversion defined in this section. Assuming also
generic functions everywhere (to apply a transformation to all subterms) and mkT (to
transform a type-specific query into a generic query), as defined in syb, the expression
everywhere (mkT (λ n → n+ 1 :: Int)) [1,2,3 :: Int ] evaluates to [2,3,4 ], as expected,
without ever having to derive Data instances directly.

The code defined in this section, albeit straightforward, allows GHC developers to
scrap the current code for deriving Data instances, as these can be obtained automati-
cally from GenericD instances (which are currently derivable in GHC). Furthermore, it
brings the combinator-style approach to GP of syb within immediate reach of the other
approaches. It is also worth nothing that uniplate, another GP library, can derive its
encodings from syb [11, Section 5.3]; therefore, by transitivity, we can also provide
uniplate encodings from generic-deriving.

6 Discussion and Conclusion

We conclude this paper with a review of related work, and a discussion of concerns
regarding the pratical implementation of the conversions as shown in the paper.

Related Work. We have defined conversions between GP approaches before, in Agda
[9]. Those conversions were of a more theoretical nature, as the intention was to for-
mally compare approaches. Furthermore, generic-deriving was not involved. Our
work can be seen as providing conversions between views. In particular, while the
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Generic Haskell compiler had generic views defined internally, whose adaptation re-
quired changing the compiler itself [4, Section 5], our work allows new views to be
defined simply by writing a new universe and interpretation together with a conversion
(as in Section 3).

Other approaches to providing functionality mixing different views have been at-
tempted. Chakravarty et al. [1] mention support for multiple views, but do this through
duplication of the universe, interpretation, and datatype representations. The Hackage
pages instant-zipper and generic-deriving-extras provide functionality usually
associated with a fixed-point view on a library without such a view, respectively, a
zipper in instant-generics, and a fold in generic-deriving. This is achieved by
extending the non fixed-point view libraries, rather than by converting between repre-
sentations, as we do.

Performance. One aspect that we have not addressed in this paper is the potential per-
formance penalty that the conversions might bring. We find it very likely that such an
overhead exists, given that the conversions are not trivial. However, we also believe that
this overhead should be fully removable by the compiler, using techniques similar to
those described by Magalhães [8]. Performance concerns are relevant, as these are cru-
cial for user adoption of our conversions. However, optimisation concerns often result
in cumbersome code where the original idea is obscured. As such, we preferred to focus
on presenting the conversions and their potential applications, and defer performance
concerns to future work.

Practical Implementation. Performance concerns are just one of the aspects to con-
sider when deciding how to best integrate our conversions with the existing GP libraries.
While we have tried to remain faithful to the original libraries in our encoding, a few
modifications to the way generic-deriving handles the tags in KD and RecD were
necessary to support the conversion to multirec. These changes, besides being minor,
actually improve generic-deriving, as the current implementation is rather ill-defined
with respect to which tag is used when. Furthermore, we know of no generic function
currently relying on these tags; our conversion in Section 4 might be the first example.

We have used datatype promotion in all approaches, and encode meta-information at
the type level, instead of using type classes. These changes are not backwards compat-
ible because the current implementation of datatype promotion requires choosing dif-
ferent names for a representation type (e.g. UR) and its interpretation (also named UR),
while these are often the same in the current implementations of the libraries. While the
implementation of datatype promotion might change to allow avoiding name clashes,it
might be preferable to have a new release for each library that breaks backwards com-
patibility, requires GHC 	 7.6, but homogenises naming conventions and meta-data
representation across libraries, for instance. Alternatively, we could introduce a new li-
brary, intended to sit at the top of the hierarchy, from which all other conversions could
be derived. This library would not be intended for direct use, allowing it to be easily
adapted to support new libraries. This would further enhance the new approach to GP
in Haskell that we advocate: a particular library is just a particular way to view data,
and all libraries interplay seamlessly because they all share a common root.

http://hackage.haskell.org/package/instant-zipper
https://github.com/spl/generic-deriving-extras
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Conclusion. In the past, there was a lot of apparent competition between different
approaches to GP. While it is reasonably easy to use Template Haskell to derive the
encodings of the datatypes needed to use a particular library, most users seemed to
prefer the libraries that had direct support within GHC, such as syb or generic-de-
riving. On the other hand, users had a difficult decision to make, operating under the
assumption that they have to pick a single library among the many that are available,
perhaps afraid to make the wrong choice and to then stumble upon a programming
problem that cannot easily be solved using the chosen library.

Those times are over. GP library authors no longer have to feel embarrassed if they
present a new library suitable only for a specific class of GP programming problems.
All they need to do is to define a conversion, and their library will be integrated better
than ever before, without any need for Template Haskell. Users should no longer worry
that they have to make a particular choice. All GP libraries interact nicely, and they can
simply pick the one that offers the functionality they need right now—we have arrived
in the era of truly generic generic programming!
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[2] Hinze, R., Löh, A.: “Scrap Your Boilerplate” revolutions. In: Uustalu, T. (ed.) MPC 2006.
LNCS, vol. 4014, pp. 180–208. Springer, Heidelberg (2006), doi:10.1007/11783596 13

[3] Hinze, R., Löh, A., Oliveira, B.C.d.S.: “Scrap Your Boilerplate” reloaded. In: Hagiya,
M. (ed.) FLOPS 2006. LNCS, vol. 3945, pp. 13–29. Springer, Heidelberg (2006),
doi:10.1007/11737414 3
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