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Abstract. Transductive learning is the problem of designing learning machines
that succesfully generalize only on a given set of input patterns. In this paper
we begin the study towards the extension of Extreme Learning Machine (ELM)
theory to the transductive setting, focusing on the binary classification case. To
this end, we analyze previous work on Transductive Support Vector Machines
(TSVM) learning, and introduce the Transductive ELM (TELM) model. Contrary
to TSVM, we show that the optimization of TELM results in a purely combina-
torial search over the unknown labels. Some preliminary results on an artifical
dataset show substained improvements with respect to a standard ELM model.

Keywords: Transductive learning, extreme learning machine, semi-supervised
learning.

1 Introduction

In the classical Machine Learning setting [1], starting from a limited set of data sampled
from an unknown stochastic process, the goal is to infer a general predictive rule for the
overall system. Vapnik [2] was the first to argue that in some situations, this target may
be unnecessarily complex with respect to the actual requirements. In particular, if we are
interested on predictions limited to a given set of input patterns, then a learning system
tuned to this specific set should outperform a general predictive one. In Vapnik words,
the advice is that, ”when solving a problem of interest, do not solve a more general
problem as an intermediate step” [2]. Vapnik also coined a term for this setting, which
he called Transductive Learning (TL).

In [2] he studied extensively the theoretical properties of TL, and his insights led
him to propose an extension to the standard Support Vector Machine (SVM) algorithm,
namely the Tranductive SVM (TSVM). While SVM learning results in a quadratic op-
timization problem, TSVM learning is partly combinatorial, making it a difficult non-
convex optimization procedure. However, a number of interesting algorithms have been
proposed for its efficient solution. The interested reader can find a comprehensive re-
view of them in Chapelle et al. [3].

By drawing theoretical and practical ideas from TSVMs, in this paper we extend
Extreme Learning Machine (ELM) theory [4] to the transductive setting. ELM models
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have gained some attention as a conceptual unifying framework for several families of
learning algorithms, and possess interesting properties of speed and efficiency. An ELM
is a two-layer feed-forward network, where the input is initially projected to an highly
dimensional feature space, on which a linear model is subsequently applied. Differently
from other algorithms, the feature space is fully fixed before observing the data, thus
learning is equivalent to finding the optimal output weights for our data. We show that,
in the binary classification case, Transductive ELM (TELM) learning results in a purely
combinatorial search over a set of binary variables, thus it can be solved more efficiently
with respect to TSVM. In this preliminary work we use a simple Genetic Algorithm
(GA) [5] as a global optimizer and test the resulting algorithm on an artificial dataset.
Results show promising increase in performance for different sizes of the datasets.

Transductive learning has been throughly studied lately due to the interest in Semi-
Supervised Learning (SSL) [6]. In SSL, additional unlabelled data is provided to the
algorithm (as in TL), but the goal is to infer a general predictive rule as in classical
inductive learning. In this respect, unlabelled data is seen as additional information
that the algorithm can use to deduce general properties about the geometry of input
patterns. Despite TL and SSL have different objectives, their inner workings are in some
respects similar, and many TL and SSL algorithms can be used interchangeably in the
two situations. In particular, TSVMs are known as Semi-Supervised SVM (S3VM) [3]
in the SSL community. Hence, our work on TELM may be of interest as a first step
towards the use of ELM models in a SSL setting.

The rest of this paper is organized as follows: in Section 2 we introduce some basic
concepts on TL, and detail the TSVM optimization procedure. Section 3 summarizes
the main theory of ELM. Section 4, the main contribution of this work, extends ELM
theory using concepts from Section 2. Section 5 shows some preliminary results on an
artificial dataset. Although we provide a working algorithm, two fundamental questions
remain open, and we confront with them in Section 6. Finally, we make some final
remarks in Section 7.

2 Transductive Learning

2.1 Inductive Learning and Support Vector Machines

Consider an unknown stochastic process described by the joint probability function
p(x,y) = p(x)p(y|x),x ∈ X ,y ∈ Y , where X and Y are known as the input and output
spaces respectively. In this work we restrict ourselves to the binary classification case,
i.e., Y = {−1,+1}. Given a loss function L(x,y, ŷ) : X ×Y ×Y → R that measures the
loss we incur by estimating ŷ = f (x) instead of the true y, and a set of possible models
H, the goal of inductive learning is to find a function that minimizes the expected risk:

I[ f ] =
∫

X×Y
L(x,y, f (x))p(x,y)dxdy (1)
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We are given only a limited dataset of N samplings from the process S = (xi,yi)
N
i=1, that

we call the training set. The empirical risk is defined as:

Iemp[ f ;S] =
1
N

N

∑
i=1

L(xi,yi, f (xi)) (2)

Vapnik [2] derived several bounds, known as VC bounds, on the relation between (1)
and (2) for limited datasets. All bounds are in the following form and are valid with
probability 1−η :

I[ f ]≤ Iemp[ f ;S]+Φ(h,N,η) (3)

where h is the VC-dimension of the set H, and Φ(h,N,η) is known as a capacity term.
In general, such term is directly proportional to h. Thus, for two functions f1, f2 ∈ H
with the same error on the dataset, the one with lower VC-dimension is preferable.
Practically, this observation can be implemented in the Support Vector Machine (SVM)
algorithm, as we describe below.

Consider a generic Reproducing Kernel Hilbert Space H as set of models. There is
a direct relationship [7] between h and the inverse of ‖ f‖H , f ∈ H, where ‖ f‖H is the
norm of f in H. Thus, the optimal function is the one minimizing the error on the dataset
and of minimum norm. When using the hinge loss L(xi,yi, f (x)) = max{0,1−yi f (xi)}
as loss function, we obtain the SVM for classification [8]. It can be shown that learning
corresponds to a quadratic optimization problem:

minimize
f

1
2
‖ f‖2

H +Cs

N

∑
i=1

ζi

subject to yi f (xi)≥ 1− ζi, ζi ≥ 0, i = 1, . . . ,N.

(4)

where ζi are a set of slack variables that measures the error between predicted and
desired output and Cs is a regularization parameter set by the user. Solution to (4) is of
the form f (x) = ∑N

i=1 aik(x,xi), where k(·, ·) is the reproducing kernel associated to H.

2.2 Transductive Learning and Transductive SVM

In Transductive learning (TL) we are given an additional set1 U = (xi)
N+M
i=N+1, called the

testing set, and we aim at minimizing Iemp[ f ;U ]. An extension of the theory described
above [2] leads to minimizing the error on both S and U .

By denoting with y∗ = [y∗N+1, . . . ,y
∗
N+M]T a possible labelling of the elements in U ,

this results in the following (partly combinatorial) optimization problem, known as the
Transductive SVM (TSVM):

minimize
f ,y∗

1
2
‖ f‖2

H +Cs

N

∑
i=1

ζi +Cu

N+M

∑
i=N+1

ζi

subject to yi f (xi)≥ 1− ζi, ζi ≥ 0, i = 1, . . . ,N.

y∗i f (xi)≥ 1− ζi, ζi ≥ 0, i = N + 1, . . . ,N +M

(5)

1 Note the peculiar numbering on the dataset.
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where we introduce an additional regularization term Cu. In particular, equation (5)
is combinatorial over y∗, since each label is constrained to be binary. This makes the
overall problem highly non-convex and difficult to optimize in general. Some of the
algorithms designed to efficiently solve it are presented in [3].

Typically, we also try to enforce an additional constraint on the proportion of la-
bellings over U, of the form:

ρ =
1
M

M

∑
i=1

y∗i

where ρ is set a-priori by the user. This avoids unbalanced solutions in which all pat-
terns are assigned to the same class.

3 Extreme Learning Machine

An Extreme Learning Machine (ELM) [9,4] is a linear combination of an L-dimensional
feature mapping of the original input:

f (x) =
L

∑
i=1

hi(x)βi = h(x)T β (6)

where h(x) = [h1(x), . . . ,hL(x)]T is called the ELM feature vector and β is the vector of
expansion coefficients. The feature mapping is considered fixed, so the problem is that
of estimating the optimal β . Starting from a known function g(x,θ ), where θ is a vector
of parameters, it is possible to obtain an ELM feature mapping by drawing parameters
θ at random from an uniform probability distribution, and repeating the operation L
times. Huang et al. [4] showed that almost any non-linear function can be used in this
way, and the resulting network will continue to be an universal approximator. Moreover,
they proposed the following regularized optimization problem, where we aim at finding
the weight vector that minimizes the error on S and is of minimum norm:

minimize
β

1
2
‖β‖2

2 +
Cs

2

N

∑
i=1

ζ 2
i

subject to hT (xi)β = yi − ζi, i = 1, . . . ,N.

(7)

As for SVM, Cs is a regularization parameter that can be adjusted by the user, and
ζi, i = 1, . . . ,N measure the error between desired and predicted output. The problem is
similar to (4), but has a solution in closed form. In particular, a possible solution to (7)
is given by [4]:

β = HT (
1

Cs
IN×N +HHT )−1y (8)

where IN×N is the N × N identity matrix, and we defined the hidden matrix
H = [h(x1), . . . ,h(xN)] and the output vector y = [y1, . . . ,yN ]

T . When using ELM for
classification, a decision function can be easily computed as:

f ′(x) = sign( f (x))
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4 Transductive ELM

Remember that in the TL setting we are given an additional dataset U = (xi)
N+M
i=N+1 over

which we desire to minimize the error. To this end, similarly to the case of TSVM, we
consider the following modified optimization problem:

minimize
β ,y∗

1
2
‖β‖2

2 +
Cs

2

N

∑
i=1

ζ 2
i +

Cu

2

N+M

∑
i=N+1

ζ 2
i

subject to hT (xi)β = yi − ζi, i = 1, . . . ,N.

hT (xi)β = y∗i − ζi, i = N + 1, . . . ,N +M.

(9)

We call (9) the Transductive ELM (TELM). At first sight, this may seems partly combi-
natorial as in the case of TSVM. However, for any possible choice of the labelling y∗,
the optimal β is given by (8), or more precisely, by a slightly modified version to take
into account different parameters for Cs and Cu:

β = HT (C−1I+HHT )−1
[

y
y∗

]
(10)

Where C is a diagonal matrix with the first N elements equal to Cs and the last M
elements equal to Cu, and the hidden matrix is computed over all N +M input patterns:

H = [h(x1), . . . ,h(xN),h(xN+1), . . . ,h(xN+M)]

Back-substituting (10) into (9), we obtain a fully combinatorial search problem over y∗.
This can be further simplified by considering:

Ĥ = HT (C−1I+HHT )−1 =
[

Ĥ1 Ĥ2
]

(11)

Where Ĥ1 is the submatrix containing the first N columns of Ĥ, and the other block
follow. Equation (10) can be rewritten as:

β = Ĥ1y+ Ĥ2y∗ (12)

Where the vector Ĥ1y and the matrix Ĥ2 are fixed for any choice of the labeling of U .
Any known algorithm for combinatorial optimization [5] can be used to train a TELM
model, and form (12) is particularly convenient for computations. We do not try to
enforce a specific proportion of positive labels (although this would be relatively easy)
since in our experiments the additional constraint never improved performance.

5 Results

The TELM algorithm was tested on an artificial dataset known in literature as the
two moons, a sample of which is shown in Fig. 1. Two points, one for each class,
are shown in red and blue respectively. All simulations were performed by MATLAB
2012a, on an Intel i3 3.07 GHz processor at 64 bit, with 4 GB of RAM available, and
each result is averaged over 100 runs. The TELM is solved using a standard Genetic
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Fig. 1. Sample of the dataset

Algorithm [5]. For comparison, we implemented as baseline a standard ELM model and
a binary SVM.

Sigmoid additive activation functions are used to construct the ELM feature space:

g(x) =
1

1+ e−(ax+b)
(13)

Using standard default choices for the parameters, we consider 40 hidden nodes, and
set C = 1. Parameters a and b of equation (13) were generated according to an uniform
probability distribution. The SVM uses the Gaussian kernel:

k(x,y) = exp{−γ‖x− y‖2
2} (14)

Parameter γ in (14) was also set to 1 in all the experiments. Algorithms were tested
using five different sizes of the datasets. For the first four experiments, a total of 100
samples was considered, and the training size was gradually increased. In the last ex-
periment, instead, we considered two datasets of 100 elements each. For each method
we present the classification accuracy in Table 1, where the highest accuracy in each
row is highlighted in boldface.

As can be seen, TELM outperforms both methods for every combination we consid-
ered. In particular, it gives a small improvement when trained using very small training
datasets (first two rows), very large increments with datasets of medium size (third and
fourth row), and is able to reach 100% classification accuracy with sufficient samples
(fifth row).
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Table 1. Experimental results: classification accuracy

SVM ELM TELM

N = 4, M = 98 0.77 0.75 0.79

N = 10, M = 90 0.81 0.75 0.86

N = 40, M = 60 0.85 0.80 0.93

N = 60, M = 40 0.85 0.81 0.97

N = 100, M = 100 0.93 0.95 1

6 Open Questions

Two main questions remain to be answered for an effective implementation of the
TELM algorithm. We detail them briefly in this Section.

1. Our formulation suffers from a major drawback which is encountered also on
TSVMs. In particular, it cannot be easily extended to the regression case. It is easy
to show that any minimizer β of the first two terms of equation (10) automatically
minimizes the third with the trivial choice y∗i = h(xi)

T β . Thus, some modifications
are needed, for example following [10].

2. The genetic algorithm imposes a strong computational effort in minimizing (10).
This can be addressed by developing specialized solvers able to take into consider-
ation the specific nature of the problem. To this end, we imagine that many of the
algorithms used for TSVMs can be readily extended to our context.

7 Conclusions

In this work we presented an initial study for the extension of ELM theory to the trans-
ductive learning framework. We showed that this results in a fully combinatorial opti-
mization problem. In our experiments, we solved it using a standard GA. Results are
highly promising in the dataset we considered. However, there is the need of further
optimizing the learning algorithm before a successful real-world application.
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