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Abstract. Robust solutions to vision-based human action recognition
require effective representations of body shapes and their dynamics.
Combining multiple cues in the input space can improve the recogni-
tion task. Although conventional method such as concatenation of fea-
ture vectors is straightforward, it may not sufficiently encapsulate the
characteristics of an action. Inspired by the success of convolution-based
reverb application in digital signal processing, we propose a novel method
to synergistically combine shape and motion histograms via convolution
operation. The objective is to synthesize the output (action representa-
tion) which carries the characteristics of both source inputs (shape and
motion). Analysis and experimental results on the Weizmann and KTH
datasets show that the resultant feature is more efficient than other hy-
brid features. Compared to other recent works, the feature that we used
has much lower dimension. In addition, our method avoids the need for
determining weights manually during feature concatenation.

1 Introduction

There has been a surge, in recent years, towards the study of human action recog-
nition because it is fundamental to many computer vision applications such as
video surveillance, human-computer interface, and content-based video retrieval.
The search results retrieved from the search engine upon the keyword ‘human
action recognition’ is astonishing. For instant, Google search engine returned
27,800,000 results as on 9 August, 2013. While human can recognize an action in
a seemingly effortless fashion, the solutions using computer have, in many cases,
proved to be immensely difficult. One open problem is the choice of optimal
representations for human actions. Ideally, the representation should be robust
against inter/intra variations, noises, temporal variations, and sufficiently rich
to differentiate huge number of possible actions. Practically, such representation
does not exist.

Recent approaches can be categorized into local and global representations.
Local representation encodes the image or video frames as a collection of local
patches. Common local representation includes spatio-temporal interest points
such as 3D Harris, cuboid, Hessian, Dense etc. Usually the interest points are
extracted at different spatial and temporal scales. Laptev and Lindeberg [1] pro-
posed to extend Harris corner detector to the third dimension. Dollár et al. [2]
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cuboid detector is based on temporal Gabor filter. Willems et al. [3] measured
the saliency with the determinant of the 3D Hessian matrix. For global represen-
tation, the region-of-interest (obtained by tracking or background subtraction)
is encoded as a whole. In other words, the entire human figure is considered. Sil-
houette, optical flow, edge and space-time volume fall into this category. Efros
et al. [4] used blurred optical flows to recognize the actions of small human
figures. Blank et al. [5] stacked silhouettes over a sequence to form space-time
volumes. Poisson equation was used to compute local space-time saliency and
orientation features. Ikizler et al. [6] extended the motion descriptor of Efros
by using spatial and directional binning and then combined it with line shape
descriptor. Following that, they proposed to use histogram of oriented rectangles
as the shape descriptor [7]. Likewise, Lin et al. [8] used silhouettes as the shape
descriptor by counting the number of foreground pixels and motion-compensated
optical flow as motion descriptor. Ikizler et al. [7] pointed out that human actions
can be encoded as spatial information of body poses and dynamic information of
body motions. As a matter of fact, some actions cannot be distinguished using
shape or motion feature alone. For example, as shown in Fig. 1 a skip action may
look very similar to a run action if only the pose of the body is observed. The
classification task would be easier if the motion flow of the body is considered
simultaneously. One would expect that skip action generates more vertical flows
(upward/downward). Besides, actions such as jogging, walking and running can
be easily confused if only pose information is used due to similar postures in
the action sequences. Likewise, there are some actions which cannot be fully
described by motion feature alone. Combining both cues potentially provides
complementary information about an action. Conventionally, motion and shape
feature vectors are concatenated to form a super vector [8,9]. However, the super
vector may not explicitly convey the underlying action. Moreover, the super vec-
tor is unnecessarily long and require feature dimension reduction techniques. In
this regard, an efficient representation of action is highly desirable. Motivated by
the idea of convolution-based reverb in digital signal processing (DSP), we pro-
pose to encode the human action by convolving shape and motion histograms.
This novel representation extracts rich information from actions.

Fig. 1. Similar poses observed in skip (left) and run (right) action sequences
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The paper is organized as follows. In Section 2, we describe the details of
shape and motion feature extraction. Next, we define the atomic action and
explain how it can be represented as the convolved shape-motion histogram.
Section 5 sets the backdrop for the experimental evaluation on Weizmann and
KTH datasets while Section 6 shows the results. Finally, Section 7 gives the
conclusion remarks of the paper.

2 Motion and Shape Histogram Binning

Observing shape and motion is a very natural way to recognize an action. Jhuang
et al. [10] pointed out that the visual cortex in the brain has two pathways to pro-
cess shape and motion information. Motivated by the robustness of the histogram
of feature, we use histogram-of-oriented gradient (HOOG) and histogram-of-
oriented optical flow (HOOF) as the shape and motion descriptors respectively.
We adopt the histogram formation method which was originally introduced by
Chaudhry et al. [11]. The method is more robust against scale variation and the
change of motion direction. The method is illustrated in Fig. 4(a) with example
of creating a 4-bin histogram. The main idea is to bin the vectors according to
their primary angles from the horizontal axis. Therefore, the vectors are sym-
metry about the vertical axis. As a result, the histogram of a person moving
from left to right will be same as the one with a person moving in the opposite
direction. The contribution of each vector is proportional to its magnitude. The
histogram is normalized to sum up to unity to make it scale-invariant. Therefore,
we do not normalize the size of the bounding box. We further enhance Chaudhry
et al. algorithm by including spatial information. This is done by dividing the
bounding box of the subject into 4×4 regions as shown in Fig. 4(c).

(a) (b)

Fig. 2. (a) Histogram binning, (b) the bounding box is divided into 4×4 grid and the
resultant histograms from each region are concatenated

3 Atomic Action Representation – Convolution of
Shape-Motion Histrograms

3.1 Defining ‘Atomic Action’

Formally, a complex action can be decomposed to into a sequence of elementary
building blocks, known as ‘atomic actions’. For example, Fig. 3 shows a walking
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action can be decomposed into several atomic actions – right-leg stepping, two-
leg crossing and left-leg crossing. In this study, an atomic action is defined as
the action performed at video frame t. It is represented by a shape histogram
extracted at frame t and optical flow histogram computed at frames (t− 1) and
t. Therefore, a T -frame action video has (T − 1) number of atomic actions.

Fig. 3. A walking sequence can be decomposed into sequence of atomic actions: right-leg
stepping (left most), two-leg crossing (middle two), and left-leg crossing (right most)

3.2 Convolving Shape-Motion Histograms
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(c)

Fig. 4. (a) A jumping-jack action, (b) the corresponding shape histogram (upper) and
motion histogram (lower), (c) the convolved histogram

Inspired by the idea of convolution-based reverb in digital signal processing
(DSP), we propose to encode atomic actions by convolving shape and motion
histograms. In DSP, convolution is a mathematical way of combining two source
signals to form an output signal. The output signal bears the characteristics
of both sources. One important application of convolution is convolution-based
reverb, a process for digitally simulating the reverberation of a virtual or phys-
ical space. Given the impulse response of a space which can be obtained by
recording a short burst of a broad-band signal, we can convolve any “dry” signal
(little room or space influence) with that impulse response. The results is that
the sound appears to have been recorded in that space. Analogously, knowing
that an action is characterized by both shape and motion information, we can
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obtain an atomic action histogram A[i] by convolving the corresponding shape
histogram Xs[i] and motion histogram Xm[i]:

A[i] = Xs[i] ∗Xm[i] =
k=+∞∑

k=−∞
Xs[k].Xm[i− k] (1)

where the asterisk ‘*’ denotes the convolution operator and square bracket [
] indicates the signal is discrete. Since histograms are discrete in nature, for
notation consistency the square bracket is omitted in the latter parts of this paper
(i.e., xi is equivalent to x[i]). Convolution operation is commutative meaning that
it does not mathematically matter the order of the inputs. Thus, convolving Xs

with Xm opposed Xm with Xs does not affect the result of the output. The
length of output is given by the ‖Xs‖+ ‖Xm‖− 1. Fig. 4 shows the convolution
process of a jumping-jack action.

The proposed representation has two major advantages: First, the action his-
togram is more robust against noises. This is because each bin in the action
histogram is influenced by bins in the shape histogram weighted by the motion
histogram or vice versa (commutative property of convolution), therefore the
effect of abrupt changes in the histogram magnitude can be minimized; second,
the action histogram produced using convolution is more discriminative. We
measure the ratio of inter-class distance to intra-class distance and the results
on Weizmann dataset is shown in Table 1. We use Hellinger distance measure
to compare two histograms:

Dh(X1, X2) =

[
1−

∑

∀x

√
X1X2

] 1
2

(2)

The results suggest that convolution operation produces the feature vectors that
are potentially more discriminative than the features obtained through other
combination methods.

4 Compact Video Representation: Distance Weighted
Bag-of-Atomic-Actions

Over the past decade, a large body of work on human action recognition using
local representation has been focusing on the bag-of-visual-words model [2, 3,
12–14]. In local representation, a huge collection of independent patches (e.g.:
spatial-temporal features) is extracted from the training data. A codebook is
then created from these local patches using some clustering algorithms such as
K-means. Following that, an image or short sequence of images can be repre-
sented as a histogram which corresponds to the frequency of the visual-words.
Apparently, this technique may not be directly applicable to global represen-
tation. Therefore, we propose an extension scheme to encode a video that is
represented by the global features. In the proposed scheme, an action video is
represented as a collection of repetitive atomic actions. Recall that an atomic
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actions is fully characterized by the convolved shape-motion histogram as de-
scribed in the previous section. A visual codebook can be created by performing
K-means clustering on all atomic actions from the training data. The cluster
centroids, which are essentially some normalized histograms, serve as the visual
codewords. Next, each atomic action in the video is compared against those
codewords and the distances are recorded accordingly. The distance between the
atomic action and its nearest codeword is used to weight the histogram bin.
The histogram for all relevant codewords in a video is computed by aggregating
their respective distances. This final representation allows any lengthy video to
be ‘compressed’ into a compact histogram. The histogram is normalized such
that sum of the bins is unity. The normalization ensures that the histogram dis-
tribution is invariant to the video length. For instant, given a particular action
class, we expect to see the codewords (i.e., key atomic actions) frequencies for a
variable length video remains relatively stable.

Table 1. Comparison of normalized inter-intra class distance ratio on Weizmann
dataset for different types of feature combination methods. Higher value indicates that
the feature is potentially more discriminative.

Combination Strategies Ratio

Convolution (Conv) 1.0000
Summation (Sum) 0.8535
Product (Prod) 0.8489
Concatenation (Concat) 0.8743

5 Experiments

We performed various experiments to evaluate the proposed action recognition
framework on two publicly available datasets (see Fig. 5):

– Weizmann. The dataset was originally introduced in [5]. The dataset con-
tains 90 low-resolution (180×144 pixels) video sequences with 9 subjects per-
forming 10 actions: bend (bend), jumping-jack (jack), jump-forward (jump),
jump-in-place (pjump), run (run), gallop-sideways (side), jump-forward-one-
leg (skip),walk (walk),wave-one-hand (wave1 ), andwave-two-hands (wave2 )1 .
We used the silhouettes provided to compute the bounding boxes for the sub-
jects. HOOG and HOOF features are extracted from the silhouettes.

– KTH. The dataset was introduced in [15]. There are 25 subjects performing
6 actions: boxing, handclapping, handwaving, jogging, running, and walking.
The low resolution (160×120) videos were recorded under four scenarios (s1-
outdoors, s2- outdoors with scale variation, s3- outdoor with different clothes,

1 Note that there are two versions of Weizmann dataset, the original one has 9 actions
while the augmented version has 10 which includes skip action.
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s4- indoors with lighting variation) and each video was split into 4 sub-clips.
Originally, the dataset has (4 settings) × (25 subjects) × (6 actions) × (4
sub-clips) = 2400 clips. However, only 2391 clips are available because 8 clips
were missing. We used the bounding box provided by Lin et al. [8] to locate
the subject. Nevertheless, we did not compute the silhouette because object
segmentation is not our focus in this work. Therefore, HOOG and HOOF
features are extracted directly from the raw grayscale video frames.

In the literature, KTH dataset has been regarded either as one large set with
strong intra-subject variations (all-in-one) or as four independent scenarios. In
the latter case, each scenario is trained and tested separately. In this work, we
only focus on the all-in-one case.

Leave-one-out cross validation (LOOCV) protocol is used in all evaluations.
We use multiclass Support Vector Machine (SVM) as the classifier.

Fig. 5. Examples of different actions from databases Weizmann (left) and KTH (right)

6 Results

Table 2 shows the LOOCV recognition rate for Weizmann dataset. With only
using 5 clusters (codewords), the convolved feature yielded a much higher ac-
curacy (96.67%) compared to other features. When the number of clusters is
increased further, the convolved feature consistently gives perfect classification
accuracy (100%). It is worth noting that using only shape feature (HOOG) or
motion feature (HOOF) resulting poorer results. On average, by using the pro-
posed method we gain about 11.29% overall improvement (4% for sum, 5.33%
for prod, 4.44% for concat, 23.56% for HOOG and 19.11% for HOOF ). Since
KTH is a more challenging dataset with strong intra-class variations, it would
be interesting to find out if the proposed method can still perform well as for the
Weizmann dataset. The results for KTH dataset is tabulated in Table 3. Obvi-
ously, similar to Weizmann dataset, for all number of clusters, higher accuracies
are attained from the convolved feature. Although classification task on KTH
dataset is more difficult, the advantage of using the convolved feature is more
prominent on this dataset. The average improvement over all other five features
is 19.56% (10.61% for sum, 10.58% for prod, 6.49% for concat, 42.72% for HOOG
and 27.41% for HOOF ). On this dataset, both HOOG and HOOF features fail to
provide discriminative information which contribute to the poor classification re-
sults. One important observation from the results is that our method consistently
requires a much smaller number of clusters (codewords) to give higher accuracy.
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Table 2. Weizmann dataset: LOOCV classification accuracy using different number
of clusters

No. of Clusters \Features Convol Sum Prod Concat HOOG HOOF

5 96.67 87.78 87.78 86.67 66.67 73.33
10 100 94.44 94.44 93.33 74.44 78.89
15 100 97.78 94.44 98.89 77.78 81.11
20 100 97.78 96.67 97.78 78.89 84.44
25 100 98.89 96.67 97.78 81.11 83.33

Table 3. KTH dataset: LOOCV classification accuracy using different number of
clusters

No. of Clusters \ Features Convol Sum Prod Concat HOOG HOOF

10 83.94 70.25 72.22 75.58 45.88 57.73
25 91.63 79.94 79.92 83.30 51.90 63.88
40 92.46 82.44 81.43 87.64 45.24 64.88
55 91.46 84.43 83.62 86.97 45.58 63.37

For example, with only 10 clusters our method achieves comparable accuracy
with the product feature which uses 40 clusters. This confirms the finding that
the convolved feature is significantly more discriminative. Moreover, we notice
that the product-based combination method is slightly inferior to the sum-based
approach, probably due to the information lost when multiplying two features
with elements equal to zero. The bottom part of Fig. 4(b) shows an optical flow
histogram with many bins equal to zero. When multiplying this histogram with
the gradient histogram, the output will bias to the motion input while some
useful information from the shape input is discarded.

The confusion matrix for Weizmann and KTH datasets are given in Fig. 6(a)
and 6(b) respectively. For KTH dataset, errors mainly occur when classifying
boxing, handwaving and handclapping. The misclassification of boxing action
could be due to the erroneous bounding box extracted which is off-centered from
the body axis when the person punches to the side. Nevertheless, our method is
able to discriminate jogging-running-walking classes very well. This is remarkable
given that these three actions share substantial similarity in motion and shape
cues.

We have compared the results with state-of-the-art action recognition ap-
proaches. Table 4 shows that our method achieved the same perfect accuracy
as [9], [16] for Weizmann dataset. As for KTH dataset, it may be argued that the
results are not directly comparable as different authors employed different eval-
uation protocol (splits vs. LOOCV). While not definitive, Table 5 still provides
some indicative comparison. The result shows that our method achieves one of
the highest accuracies (only slightly lower than [8]) as far as the LOOCV proto-
col is concerned. One possible reason is that Lin et al. used silhouette for feature
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(a) (b)

Fig. 6. Confusion matrix for (a) Weizmann (accuracy = 100%), and (b) KTH dataset
(accuracy = 92.46%)

Table 4. Comparison of Recognition Rates for Weizmann Dataset

Method Accuracy (%)

Our method 100.00
Fathi [16] 100.00
Schindler [9] 100.00
Blank [5] 99.64
Jhuang [10] 98.80
Wang [17] 97.78
Chaudhry [11] 94.44
Niebles [14] 90.00

extraction while in our KTH experiment we only used the original grayscale im-
age containing inside the bounding box. It is well known that silhouette-based
approach is more robust but it requires good background modelling which is
more restrictive than the bounding box-based approach. From the result, it can
be deduced that our method can perform very well even without using silhou-
ette. One biggest advantage of our approach is the simplicity in implementation
as opposed to their complicated prototype trees generation procedure. Moreover,
the feature used in our method has much lower dimension (length = 79) than
those used in [8](length = 512) and [9](length = 1000). Most importantly, the
tedious task of determining the optimal weight to control the relative importance
of shape and motion cues during concatenation, is no longer required.
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Table 5. Comparison of Recognition Rates for KTH Dataset

Method Protocol Accuracy (%)

Our method LOOCV 92.46
Lin [8] LOOCV 93.43
Schindler [9] Splits 92.70
Fathi [16] Splits 90.50
Ahmad [18] Splits 88.83
Willems [3] Splits 84.26
Niebles [14] LOOCV 83.33
Dollár [2] LOOCV 81.17
Ke [19] LOOCV 80.90
Schüldt [15] Splits 71.72

7 Conclusion

This paper presents a novel method to encode human actions by convolving
shape-motion histograms. The inspiration comes from the success of convolu-
tion reverb application in digital signal processing. The main idea is to produce
an output signal (i.e., action histogram) from the source signals (i.e., shape and
motion histograms) so that the output shares the characteristics of both sources.
The experimental results demonstrate that the proposed method is very efficient
compared to other combination strategies such as sum, product and concatena-
tion. Moreover, our results are compared to the state-of-the-art results.
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