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Abstract. The feature signatures in connection with the signature
quadratic form distance have become a respected similarity model for
effective multimedia retrieval. However, the efficiency of the model is
still a challenging task because the signature quadratic form distance has
quadratic time complexity according to the number of tuples in feature
signatures. In order to reduce the number of tuples in feature signatures,
we introduce the scalable feature signatures, a new formal framework
based on hierarchical clustering enabling definition of various feature
signature reduction techniques. As an example, we use the framework
to define a new feature signature reduction technique based on joining
of the tuples. We experimentally demonstrate our new feature signature
reduction technique can be used to implement more efficient yet effective
filter distances approximating the original signature quadratic form dis-
tance. We also show the filter distances using our new feature signature
reduction technique significantly outperform the filter distances based
on the related maximal component feature signatures.

Keywords: Similarity Search, Approximate Search, Content-based Re-
trieval, Signature Quadratic Form Distance, Scalable Descriptor.

1 Introduction and Related Work

The content-based multimedia retrieval [6] has become an integral part of vari-
ous information systems managing multimedia data (e.g., e-shops, image banks,
industry and medical systems), providing users an alternative to the keyword-
based retrieval approaches. In order to search the multimedia data in the content-
based way, the systems often employ a similarity model enabling ranking of the
database objects according to a query object, where the similarity model com-
prises multimedia data descriptors and a suitable similarity measure defined for
the utilized descriptors. The selection of a proper similarity model then belongs
among key tasks when designing an effective and efficient content-based multi-
media retrieval system. During the last decades, many types of similarity models
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have been designed and even standardized for a particular multimedia retrieval
tasks (e.g., the MPEG-7 standard [15]). One of the most popular similarity mod-
els investigated during the last decade is the bag of visual words (BoVW) model
[18], utilizing a statically-created vocabulary of codewords, so called codebook.
In the BoVW model, each object is represented as a frequency histogram of
codewords present in the object, where all the objects in a database share one
codebook. Such representation enables efficient retrieval using inverted files, a
well established technique for the text-based retrieval area. Whereas the effi-
ciency of the BoVW model is sufficient for large scale multimedia retrieval, the
practical effectiveness of the model is still an open problem. While recent works
have tried to improve the effectiveness of the BoVW model using semantic pre-
serving models [19], Hamming embedding [10], compressed Fisher vectors [16]
or vectors of locally aggregated features [11], several new approaches have re-
laxed from a common static vocabulary and investigated more general similarity
models based on the feature signatures [17] and the adaptive distance measures
(e.g., Signature Quadratic Form Distance [3] or Signature Matching Distance
[1]). The signature-based models utilize an object specific vocabulary and thus
can flexibly represent the contents of an object. Hence, the feature signatures
can capture more disparities in the data, which can be beneficial in dynamic
databases rapidly changing in content (e.g., multimedia streams). As recently
shown, several signature-based models can outperform the BoVW approaches
in the terms of effectiveness [1], however, the efficiency of the signature-based
models is still a challenging task, especially for feature signatures comprising a
high number of tuples. In [9], the authors employ metric/ptolemaic indexing to
improve the efficiency of the retrieval, however, the approach is restricted only
to distances satisfying metric/ptolemaic postulates. In [13], the authors show
signature-based models can be utilized for effective re-ranking when obtaining a
candidate result set using an efficient model based on a subset of the MPEG-7
descriptors. In this paper, we focus on new feature signature reduction techniques
enabling more efficient yet still effective retrieval. Furthermore, we consider also
scalability of the reduction techniques enabling adjusting the size of the feature
signatures according to the actual system load. Let us now recall several basic
concepts and definitions referred in this paper.

1.1 Feature Signatures and Signature Quadratic Form Distance

Feature signatures [17] have been introduced to flexibly aggregate and represent
the contents of a multimedia object mapped into a feature space F. Whether
the requested feature space F comprises color, position, texture information,
SIFT gradient vectors or other complex features [7,14], the feature signatures
are often obtained by an adaptive variant of the k-means clustering selecting the
most significant centroids. In Figure 1, we depict an example of image feature
signatures according to a CPT feature space1. The feature signatures were ex-
tracted using the GPU extractor [12] employing an adaptive k-means clustering

1 Color 〈L, a, b〉, position 〈x, y〉 and texture information 〈contrast, entropy〉, F ⊆ R
7.
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Fig. 1. Example of feature signatures

algorithm, where the extraction of the first image in Figure 1 has put stress on
the color, while the extraction of the second image in the figure has put stress on
the position. The representatives ri ∈ F corresponding to the selected centroids
are depicted by circles in the corresponding position and color, while the weights
wi ∈ R

+ corresponding to the size of the cluster determine the diameter of the
circles (texture information is not depicted). Formally, the feature signatures are
defined as:

Definition 1 (Feature Signature). Given a feature space F, the feature sig-
nature So of a multimedia object o is defined as a set of tuples {〈roi , wo

i 〉}ni=1

from F× R
+, consisting of representatives roi ∈ F and weights wo

i ∈ R
+

The number of tuples in a feature signature can vary depending on a com-
plexity of a corresponding multimedia object and the parameters used for the
extraction. As a consequence, a feature signature can comprise tens or hundreds
of tuples, which significantly affects the time for similarity computations. In [2],
the authors propose a simple feature signature reduction technique based on
maximal components of a feature signature O, where the maximal component
feature signature OMC with c components is defined as: OMC ⊆ O, |OMC | = c,
such that ∀〈roi , wo

i 〉 ∈ OMC , ∀〈roj , wo
j 〉 ∈ O−OMC : wo

i ≥ wo
j . In other words, the

maximal component feature signature contains c tuples with the highest weights.
The authors also define a signature quadratic form filter distance, applicable for
approximate filter and refine retrieval, where the filter distance just evaluates the
signature quadratic form distance using maximal component feature signatures.
In Figure 2, we depict an example of maximal component feature signatures with
10 and 20 components. We may observe the maximal component feature signa-
tures can omit representative tuples from the original feature signatures (the
rightmost signatures in Figure 2) when few maximal components are utilized.

Let us now shortly recall the Signature Quadratic Form Distance [3], an ef-
fective adaptive distance measure generalizing the quadratic form distance.

Definition 2 (SQFD). Given two feature signatures So = {〈roi , wo
i 〉}ni=1 and

Sp = {〈rpi , wp
i 〉}mi=1 and a similarity function fs : F×F → R over a feature space

F, the signature quadratic form distance SQFDfs between So and Sp is defined
as:

SQFDfs(S
o, Sp) =

√
(wo | −wp) ·Afs · (wo | −wp)T ,
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where Afs ∈ R
(n+m)×(n+m) is the similarity matrix arising from applying the

similarity function fs to the corresponding feature representatives, i.e., aij =
fs(ri, rj). Furthermore, wo = (wo

1 , . . . , w
o
n) and wp = (wp

1 , . . . , w
p
m) form weight

vectors, and (wo | −wp) = (wo
1, . . . , w

o
n,−wp

1 , . . . ,−wp
m) denotes the concatena-

tion of weight vectors wo and −wp.

To determine similarity values between all pairs of representatives from the
feature signatures, the Gaussian similarity function fgauss(ri, rj) = e−αL2

2(ri,rj)

or the Heuristic similarity function fheuristic(ri, rj) = 1/(α+ L2(ri, rj)) can be
utilized, where α is a parameter for controlling the precision, and L2 denotes the
Euclidean distance. If we utilize similarity function fL2(ri, rj) = −L2

2(ri, rj)/2,
we obtain the L2-Signature quadratic form distance [4] suffering from worse
effectiveness but computable in linear time.

The rest of the paper is structured as follows: we present the scalable feature sig-
natures and our new reduction technique in the following section, then we exper-
imentally demonstrate in section 3 our new reduction technique can be employed
for effective approximate search with the signature quadratic form distance, and
finally we conclude the paper and point on the future work in section 4.

2 Scalable Feature Signatures

In this section, we introduce the scalable feature signatures – a formal frame-
work based on hierarchical clustering enabling definition of sophisticated reduc-
tion strategies for feature signatures. The framework extends and generalizes
the maximal component feature signatures [2] primarily designed for approx-
imate filter and refine retrieval. As we experimentally demonstrate, the filter
signature quadratic form distance employing the maximal component feature
signatures does not approximate the original distance (or its lower bound) well,
and thus we focus on new filter distances using new feature signature reduction
techniques providing better approximations of the original feature signatures.
Unlike the maximal components approach that just removes tuples with small

Fig. 2. Maximal component feature signatures
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Fig. 3. Scaling feature signature

weights, our new approach aggregates the tuples during the reduction of the
feature signatures. Our new approach is motivated by the feature signature ex-
traction process [12], where the adaptive k-means clustering removes centroids
with small weights, while the points distributed within the removed centroids
are assigned to the remaining centroids. However, after the extraction process is
finished and new feature signatures are stored, the points are no longer available
and thus only information in the stored tuples can be used for the reduction of
feature signatures.

Before we proceed to formal definitions, let us describe a motivation example
depicted in Figure 3 where the feature signature FS in Figure 3a is consecutively
reduced to the half of the original size in Figure 3c. If the maximal components
approach was used, the reduced feature signature would contain only two blue
tuples, which would not correspond to the original image. Therefore, instead of
removing tuples, we can join them using an aggregation function τ to keep the
original information at least in the aggregated form. To determine which tuples
are joined in each step, we expect a total ordering > defined over all the tuples
in F × R

+ and a mapping function φFS defined for all tuples in FS depicted
as gray arrows in Figure 3. Using a suitable >, φFS and τ , we may observe the
reduced feature signature can be a good approximation of the original feature
signature (as depicted in Figure 3). Furthermore, if we store one of the original
tuples and a pointer to the joined tuple after each join operation, we can later
utilize a reverse split operation to reconstruct the original feature signature (or
just less reduced feature signature). Such scalability property of the descriptor
can be beneficial because we can balance the actual size of the feature signatures
according to actual performance needs of a multimedia retrieval system. Let us
also emphasize, the reduction process should be deterministic in order to enable
preprocessing optimizations for a particular distance functions.

In the following paragraphs we provide definitions formalizing the key con-
cepts described in the motivation example, starting with the definition of the
scalable feature signatures.

Definition 3 (Scalable Feature Signature). Given a feature signature FS
over a feature space F, a total ordering > defined over all tuples in F×R

+, a total
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mapping function φFS : FS → FS and an aggregation function τ : (F×R
+)2 →

F× R
+, then the tuple (FS,>, φFS , τ) is called scalable feature signature.

In the following paragraphs, we show an example of the total ordering and
several examples of mapping and aggregation functions. Let F be the euclidean
space over field R

n and FS be a feature signature over that feature space. We
can define a total ordering > using weights and the lexicographic ordering >lex

over vectors in R
n as: ∀〈ri, wi〉, 〈rj , wj〉 ∈ F × R

+ : 〈ri, wi〉 >wl 〈rj , wj〉 if and
only if wi > wj ∨ (wi = wj ∧ ri >lex rj).

The mapping function φFS can utilize the total ordering >wl and can be
defined for each tuple 〈ri, wi〉 ∈ FS as:

φFS
min(〈ri, wi〉) = 〈ri, wi〉 for 〈ri, wi〉 = max>wl

FS, and otherwise as:

φFS
min(〈ri, wi〉) = min>wl

{〈rj , wj〉 : 〈rj , wj〉 ∈ FS ∧ 〈rj , wj〉 >wl 〈ri, wi〉}.
The mapping function φFS

min just maps each tuple from FS to the first greater
tuple in FS, except for the maximal tuple that is mapped to itself. The mapping
function can consider also a Minkowski distance Lp between the representatives
in FS as follows:

φFS
Lp

(〈ri, wi〉) = 〈ri, wi〉 for 〈ri, wi〉 = max>wl
FS, and otherwise as:

φFS
Lp

(〈ri, wi〉) = 〈rj , wj〉 such that 〈rj , wj〉 ∈ FS ∧ 〈rj , wj〉 >wl 〈ri, wi〉 ∧
(∀〈rk, wk〉 ∈ FS, k �= i �= j : 〈rk, wk〉 >wl 〈ri, wi〉 =⇒ (Lp(rj , ri) < Lp(rk, ri) ∨
(Lp(rj , ri) = Lp(rk, ri) ∧ 〈rk, wk〉 >wl 〈rj , wj〉))).

The aggregation operation τ can be defined trivially as a projection:

τfirst(〈ri, wi〉, 〈rj , wj〉) = 〈ri, wi〉,
or as a more complex aggregation:

τavg(〈ri, wi〉, 〈rj , wj〉) = 〈ri · wi/(wi + wj) + rj · wj/(wi + wj), wi + wj〉.
Having defined scalable feature signature (FS,>, φFS , τ), we can now define

an unary reduction operation that replaces the minimum 〈r, w〉 in FS and the
corresponding tuple φFS(〈r, w〉) by the join tuple τ(〈r, w〉, φFS (〈r, w〉)).

Definition 4 (Scalable Feature Signature Reduction). Given a scalable
feature signature SFS = (FS,>, φFS , τ), let 〈r, w〉 = min> FS, let FS′ = (FS−
{φFS(〈r, w〉), 〈r, w〉}) and let 〈rk, wk〉 = τ(φFS(〈r, w〉), 〈r, w〉), then the reduction
of scalable feature signature SFS denoted as ⊗SFS is defined as ⊗SFS =
(FSr, >, φFSr , τ), where FSr = FS′∪{〈rk, wk〉} for 〈rk, wk〉 /∈ FS′, and FSr =
FS′ − {〈rk, wk〉} ∪ {〈rk, 2 · wk〉} otherwise.

Let as denote φFSr is defined in the same way as φFS , but in the context of
new feature signature FSr. We provide also a simple lemma to emphasize the
unary reduction operation creates another scalable feature signature. The lemma
is without proof because it is a direct consequence of the previous definitions.
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Fig. 4. Scalable feature signatures using φFS
L2

and τavg

Lemma 1. Let (FS,>, φFS , τ) be a scalable feature signature over a feature
space F, then ⊗(FS,>, φFS , τ) is also a scalable feature signature over the feature
space F.

So far we have provided a formal framework enabling definition of vari-
ous feature signature reduction techniques. Using the framework, we can sim-
ply define our new reduction technique based on joining of the tuples as a
quintuplet (FS,>wl, φ

FS
L2

, τavg,⊗), consisting of the scalable feature signature

(FS,>wl, φ
FS
L2

, τavg) and the reduction operation ⊗. In Figure 4, we may observe
our new reduction technique can approximate the distribution of the tuples in
the original feature signature well even for smaller number of tuples.

Let us now provide several notes, for the lack of the space without proofs.
First, the ⊗(FS,>, φFS , τ) can create new scalable feature signature with |FS|,
|FS| − 1 or |FS| − 2 tuples depending on the result of φFS and τ . Second,
in case |FS| = 1, the reduction operation does not have to be identity, for
example, if the aggregation function τ penalizes one of the arguments. Third,
(FS,>wl, φ

FS
min, τfirst) with the reduction operation ⊗ corresponds, except for

minor differences2, to the maximal component feature signatures. However, in
the text we will strictly use the label maximal component feature signatures in
order to distinguish the related work from the scalable feature signatures based
on joining of the tuples.

Having defined an operation reducing the size of a scalable feature signature,
we can now proceed to the definition of a new signature quadratic form filter
distance, generalizing the filter signature quadratic form distance SQFDfilter

defined in [2], where the filter distance is utilized for the approximate search in
a filter and refine architecture. In order to express multiple superpositions of the
unary operation ⊗, we use in the following definition ⊗n(FS,>, φFS , τ) notation
as a shortcut for ⊗ · · ·⊗︸ ︷︷ ︸

n−times

(FS,>, φFS , τ).

2 The maximal component feature signatures do not assume a total ordering of the
tuples.



Approximating the Signature Quadratic Form Distance 93

Definition 5 (Signature Quadratic Form Filter Distance). Given two re-
duced scalable feature signatures (FSr1 , >, φFSr1 , τ) = ⊗|FS1|−n(FS1, >, φFS1 , τ)
and (FSr2 , >, φFSr2 , τ) = ⊗|FS2|−n(FS2, >, φFS2 , τ) over a feature space F, and
let SQFD be the signature quadratic form distance, then the distance SQFDn

f =
SQFD(FSr1 , FSr2) is called the signature quadratic form filter distance accord-
ing to SQFD(FS1, FS2).

The filter distance just simply reduces the original scalable feature signatures
to a requested size and evaluates the original distance measure for the two re-
duced feature signatures. If we define the scalable feature signatures using >wl,
φFS
min and τfirst (which corresponds to the maximal component feature signa-

tures), then the signature quadratic form filter distance SQFDn
f corresponds

to the filter distance SQFDfilter presented in [2]. The new signature quadratic
form filter distance can be also utilized for the approximate search in a filter
and refine schemes, where the reduced scalable feature signatures can be either
cached or evaluated every time the filter distance is requested. Furthermore, such
retrieval system can decide to temporarily use a reduced version of the scalable
feature signatures also for the refinement step. In order to prevent from storing
multiple versions of the scalable feature signatures, we can implement the reduc-
tion operation as a reversible update of the original scalable feature signatures
enabling to keep just one actual version of the scalable feature signatures.

For example, the reduction operation in Figure 3ab replaces φFS
L2

(〈r4, w4〉) =
〈r3, w3〉 by 〈r3′ , w3′〉 = τavg(〈r3, w3〉, 〈r4, w4〉), removes 〈r4, w4〉, inserts pair
(〈r4, w4〉, pointer to 〈r3′ , w3′〉) into a stack and sorts the tuples. The correspond-
ing reverse operation removes pair (〈r4, w4〉, pointer to 〈r3′ , w3′〉) from the stack,
inserts 〈r4, w4〉 into the feature signature, replaces 〈r3′ , w3′〉 by τrevavg (〈r3′ , w3′〉,
〈r4, w4〉) = 〈r3, w3〉 and sorts the tuples, where τrevavg is derived from τavg as:

τrevavg (〈ri, wi〉, 〈rj , wj〉) = 〈(ri − rj · wj/wi) · wi/(wi − wj), wi − wj〉.

3 Experimental Evaluation

For the experiments, we make use of the three different datasets, each with dif-
ferent source of ground truth. Specifically, we use a subset of the ALOI dataset
[8] comprising 12,000 images divided into 1,000 classes, each class contain 12
images of a 3D object rotated by 30 degrees; a subset of the Profimedia dataset
[5] comprising 21,993 images divided into 100 classes, where the ground truth
was collected semi-automatically and verified by users; the TWIC dataset [13]
comprising 11,555 images forming 197 classes, where each class represents images
obtained by a keyword query to the google images search engine. Each TWIC
class was further manually filtered by users. The feature signatures were ex-
tracted using a GPU extractor tool [12]. For all three datasets we have used the
same extractor parameters except the multiplicative vector that was adjusted
to each dataset separately. The average number of tuples in feature signatures
was 33 for ALOI dataset and 66 for TWIC and Profimedia datasets. As the query
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Table 1. The time (in milliseconds) needed to evaluate the filter distances using various
number of tuples (1, 2, 4, ..., 64) and the signature quadratic form distance (all)

1 2 4 8 16 32 64 all

Gaussian 0.0006 0.0007 0.0015 0.0039 0.013 0.050 0.193 0.205

Heuristic 0.0004 0.0006 0.0013 0.0031 0.010 0.038 0.149 0.159

Fig. 5. Mean average precision of the filter distance SQFDsize
f utilizing Gaussian sim-

ilarity function

objects, one representative from each class was selected for all three datasets3,
resulting in 1000 query objects for ALOI, 100 query objects for Profimedia and
197 query objects for TWIC. The experiments have run on 64-bit Windows
Server 2008 R2 Standard with Intel Xeon CPU X5660, 2.8 GHz.

In the experiments, we use (FS,>wl, φ
FS
min, τfirst) as an implementation of

the maximal component feature signatures and compare them to the scalable
feature signatures using joining of the tuples (FS,>wl, φ

FS
L2

, τavg). For each re-

duction technique, we utilize six variants of the filter distance SQFDsize
f using

size ∈ {1, 2, 4, 8, 16, 32, 64} and compare them to the original distance denoted

3 Profimedia dataset is already provided with a set of query objects.
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Fig. 6. Mean average precision of the filter distance SQFDsize
f utilizing Heuristic sim-

ilarity function

as size = all. Before we proceed to the experiments comparing the two reduc-
tion techniques, we present a table of average times (in milliseconds) needed to
evaluate the utilized filter distances and the original distance, measured for the
TWIC dataset for both Gaussian and Heuristic similarity functions. In Table
1, we may observe the Heuristic similarity function is slightly faster then the
Gaussian similarity function. We may also observe the expected quadratic time
dependency of the signature quadratic form filter distance on the number of
tuples in the reduced feature signatures.

Let us now proceed to the following two figures, where the filter distances
utilizing the Gaussian similarity function are depicted in Figure 5 and the filter
distances utilizing the heuristic similarity function are depicted in Figure 6. In
both figures, we have focused on the mean average precision (y-axis) measured
for varying parameter α (x-axis). The figures are organized into two columns,
where the first column contains results for the maximal component feature sig-
natures (denoted as Max. components FS), while the second column contains
the results for the scalable feature signatures using joining of the tuples (denoted
simply as Scalable FS). Let us also denote, we have unified the y-axis scaling for
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each row and thus the reader can directly compare the effectiveness of two corre-
sponding filter distances. In all the graphs we may observe the similar behavior
– when decreasing the size of the reduced feature signatures, the filter distances
using maximal component feature signatures loose the effectiveness more rapidly
than the filter distances using scalable feature signatures based on joining of the
tuples. For example, in the second row of Figure 5, we may observe a markable
difference between the corresponding pairs of filter distances for signatures com-
prising 32 and less tuples, where for scalable feature signatures using joining of
the tuples the mean average precision is over 30% even for just 16 tuples, while
for the same number of tuples and the maximal component feature signatures
the mean average precision is just 15%. From the experiments, we may conclude
the scalable feature signatures using joining of the tuples provide better filter
distances than the maximal component feature signatures.

4 Conclusions and Future Work

In this paper, we have introduced the scalable feature signatures, a formal frame-
work enabling definition of various reduction techniques for feature signatures.
As an example, we have defined a new feature signature reduction technique em-
ploying joining of the tuples and utilized the technique for definition of effective
signature quadratic form filter distances. We have also experimentally demon-
strated the filter distances using our new reduction technique significantly out-
perform the filter distances using maximal component feature signatures. In the
future, we plan to examine the scalable feature signatures with other adaptive
distance measures and measure the effectiveness of the corresponding similarity
models. We would also like to design more complex mapping and joining func-
tions in order to provide more options for the reduction of the scalable feature
signatures. We also plan to investigate the performance of the scalable feature
signatures on various different features extracted from the images (e.g., SIFT
or color SIFT descriptors). We would also like to utilize the scalable feature
signatures for more efficient retrieval using new filter and refine schemes or met-
ric/ptolemaic access methods.
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12. Krulǐs, M., Lokoč, J., Skopal, T.: Efficient extraction of feature signatures us-
ing multi-GPU architecture. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe,
N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part II. LNCS, vol. 7733,
pp. 446–456. Springer, Heidelberg (2013)
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