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Abstract. A Sketch-Based Image Retrieval (SBIR) algorithm compares a line-
drawing sketch with images. The comparison is made difficult by image back-
ground clutter. A query sketch includes an object of interest only, while data-
base images would also contain background clutters. In addition, variability of 
hand-drawn sketches, due to “stroke noise” such as disconnected and/or wobbly 
lines, also makes the comparison difficult. Our proposed SBIR algorithm com-
pares edges detected in an image with lines in a sketch. To emphasize presumed 
object of interest and disregard backgrounds, we employ Visual Saliency 
Weighting (VSW) of edges in the database image. To effectively compare the 
sketch containing stroke noise with database images, we employ Cross-Domain 
Manifold Ranking (CDMR), a manifold-based distance metric learning algo-
rithm. Our experimental evaluation using two SBIR benchmarks showed that 
the combination of VSW and CDMR significantly improves retrieval accuracy. 

Keywords: sketch-based image retrieval, visual saliency detection, cross-
domain matching, manifold ranking.  

1 Introduction 

Querying modality is an issue central to image retrieval. Query-by-keywords may be 
the easiest among query modalities for users to perform, but its retrieval accuracy is 
not satisfactory. Images taken by phones and cameras generally do not have keyword 
tags, and if they do, specifying image content by keywords alone can be difficult. An 
alternative is content-based image retrieval, which uses an example image or a user-
drawn sketch of some kind to query images. The first option, querying by image ex-
ample, is not practical as a user often does not have an image appropriate for query. 
The second option, Sketch-Based Image Retrieval (SBIR), has become a popular 
modality of late. Earlier SBIR systems, mostly likely using a mouse as an input de-
vice, have drawn sketches by using simple geometrical primitives, such as straight 
lines, rectangles or circles for drawing, possibly combined with color specification. 
Recently, with prevalence of touch- and pen-based devices, line-drawing sketch has 
become the most popular querying modality for content-based image retrieval. 

The issue in SBIR is an effective comparison between a line drawing sketch and a 
2D image. The comparison should be robust against background clutter in the 2D 
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image. It should also be robust against “stroke noise” of the line drawing sketch, that 
is, wobbling and/or disconnected lines and difference in drawing styles. 

A SBIR algorithm uses a common ground representation, either line/edge image 
[1-5] or gradient field image [6, 7], for sketch-to-image comparison. Then, one or 
more image features are extracted from the common ground representation for com-
parison. Saavedra et al. [3] uses a set of local histograms of Canny edge orientations 
as an image feature, while Eitz et al. [2] combines several orientation sensitive image 
features including a variant of HoG [14]. The BF-GFHoG by Hu et al. [6][7] employs 
gradient field image as the common ground and extracts HoG descriptors. Hundreds 
of HoG descriptors extracted from a gradient field image are integrated into a feature 
vector per image by using the Bag-of-Features (BF) approach. To our knowledge, BF-
GFHoG is one of the best performing SBIR algorithms. 

These algorithms perform well if database images do not have any background 
clutter and if all the strokes in sketch images are stable and well-connected. However, 
images contain background clutters, and sketch strokes are disconnected or wobbly. 
For example, images shown in Figure 1a contain leaves and clouds in their back-
grounds, producing noisy Canny edge images in Figure 1c. A casual photograph taken 
by using phones would contain even more clutters. Also, hand-drawn sketches contain 
stroke noise. Comparison of a sketch having stroke-noise with an image having back-
ground-clutter would lead to low retrieval accuracy.  

To suppress background clutter, visual saliency map is often employed. A visual 
saliency map, which approximates visual attention of human, is used for image seg-
mentation [16], object detection [17], and other applications. Recently, Yang et al. [8] 
proposed a graph-based saliency detection method called Manifold Ranking-based 
Saliency Detection (MRSD). The MRSD yields better saliency maps than existing 
methods. Our proposed algorithm uses the MRSD algorithm to emphasize foreground 
object of an image for background-clutter-free comparison of a sketch with an image. 

To perform robust sketch-to-image comparison under the presence of sketch stroke 
noise, distance metric learning has been employed [9][12][15]. For example, Wein-
berger et al. [15] compares handwritten digits in a subspace where distances among 
feature vectors are robust against stroke noise. Recently, we proposed Cross-Domain 
Manifold Ranking (CDMR) algorithm for the task of sketch-to-3D model “cross-
domain” comparison [12]. The CDMR is based on Manifold Ranking proposed by 
Zhou et al. [9]. It learns distributions, or manifolds, of sketch features and 3D model 
features to improve distance (or similarity) computation among them. Our proposed 
algorithm adopts the CDMR algorithm for improved sketch-to-image comparison.  

In this paper, we aim for a SBIR algorithm that is robust against background clut-
ters in images and robust against stroke noise in sketches. Figure 2 illustrates the 
overall processing pipeline of the proposed algorithm.  

To gain robustness against background clutters, the algorithm tries to emphasize a 
region presumed to be foreground, i.e., the object sought for by the sketch query. The 
emphasis, called Visual Saliency Weighting, is done by multiplying, pixel-by-pixel, a 
Canny edge image with the visual saliency map computed by using the MRSD algo-
rithm [8]. Figure 1d shows the examples of visual-saliency-weighted edge images. 
Background clutter, i.e., edges of leaves and clouds, are effectively suppressed.  
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To gain robustness against stroke noise in sketch, the algorithm employs data-
adaptive distance metric learning. Relevance values from a sketch to images in the 
database are computed by using the CDMR algorithm [12]. The CDMR uses a Cross 
Domain Manifold (CDM) constructed by using similarity values due to multiple, 
heterogeneous features, each of which is may be optimized for a given comparison 
task. A manifold of database images is computed (without edge detection) by using 
the densely sampled SIFT [11] features. A manifold of sketches is computed by using 
the BF-fGALIF [12] feature. Then these two manifolds in two different domains are 
coupled into a CDM by using the BF-fGALIF feature. Once the CDM is constructed, 
relevance values from a sketch to images in a database are computed as diffusion 
distances over the CDM. The CDMR may be used in either semi-supervised, super-
vised or unsupervised mode. In this paper, we use the CDMR in unsupervised mode. 

Note that the CDMR algorithm has a built-in ability to perform automatic query 
expansion if an unlabeled (or labeled) corpus of sketches is available. Relevance dif-
fused from a sketch query turns sketches similar to it into secondary sources of relev-
ance diffusion, creating an expanded set of queries. Such a corpus of sketches may be 
collected beforehand, or collected online over time as sketch queries are made. 

We experimentally evaluated the proposed algorithm by using two sketch-based 
image retrieval benchmarks by Hu et al., that are, the Flickr160 [6] and the Flickr15k 
[7]. Small but consistent improvement in retrieval accuracy is observed for both 
benchmarks when the VSW is applied. The CDMR improved retrieval accuracy very 
significantly. For example, for the Flickr160 benchmark, the combination of the VSW 
and the CDMR produced MAP score of 72.3 %, which is about 18 % higher 
than 54.0 % of the BF-GFHoG reported in [6]. 

Contribution of this paper can be summarized as follows; 

• Proposal of a novel sketch-based image retrieval algorithm. It employs Visual Sa-
liency Weighting (VSW) to suppress background clutter in images. The features 
extracted from edge images processed by VSW are compared against the feature of 
a sketch query by using the Cross-Domain Manifold Ranking (CDMR), a distance 
metric learning algorithm adept at comparing heterogeneous feature domains.   

• Experimental evaluation of the proposed algorithm using multiple benchmarks, 
which showed effectiveness of the proposed algorithm.  

 

 
Fig. 1. Examples of visual saliency weighting 

 

    

(a) input image (b) saliency map (c) edge image (d) saliency-weighted 
edge image  



40 T. Furuya and R. Ohbuchi 

 

 

Fig. 2. Outline of the proposed method that employs Visual Saliency Weighting (VSW) of 
Canny edge images and Cross-Domain Manifold Ranking (CDMR) of image features 

2 Proposed Method 

2.1 Visual Saliency Weighting of Edge Image 

Our algorithm converts (2D) images in a database into saliency-weighted edge images 
for comparison with sketches. The algorithm first computes Canny edge image from 
the database image. We used the parameters found in [2] for Canny edge detection; 
low threshold and high threshold are set to 0.05 and 0.2, respectively. Then, edges due 
to background clutters are suppressed by using Visual Saliency Weighting (VSW), 
which multiplies, pixel-by-pixel, a visual saliency map with the Canny edge image. 
Visual saliency map is computed by using the MRSD algorithm by Yang et al. [8]. 
The MRSD algorithm computes visual saliency in two steps, assuming periphery of 
an image as background. 

In the first step, “background-ness” is propagated from image periphery at four 
sides of the image toward the center. The propagation is performed by using Manifold 
Ranking (MR) [9] algorithm over a graph that connects, conceptually, all the pixels of 
the image. However, MR on such a large graph would be too expensive. Thus, the 
propagation is done on a simplified graph connecting superpixels, a cluster of neigh-
boring pixels having similar color property. An edge of the graph connecting a pair of 
superpixels is weighted by the similarity of the pair of superpixels. The similarity is 
computed from CIE LAB color features of each superpixel. We set the number of 
superpixels per image to 200, the number used in [8]. After the first step, the nodes 
having “background-ness” value lower than a threshold becomes foreground. 

In the second step, “foreground-ness” is propagated from the foreground regions 
over the graph of superpixels. After the second step, “foreground-ness” of each su-
perpixel becomes saliency value for pixels belonging to the superpixel. We blur the 
saliency map before multiplying it with the Canny edge image. 
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Figure 1d shows examples of saliency-weighted edge images. Edges on back-
ground (e.g., edges on leaves and edges on clouds) are effectively suppressed. 

2.2 Cross-Domain Manifold Ranking for Sketch-Based Image Retrieval 

Cross-Domain Manifold Ranking (CDMR) 
The CDMR [12] consists of two stages; Cross-Domain Manifold (CDM) generation 
stage and relevance diffusion stage. 

In the CDM generation stage, a CDM matrix W is generated. W is a graph whose 
vertices are the features from a sketch domain and an image domain. Given the num-
ber of sketches NS and the number of images NI, the matrix W has the size (NS + NI) × 
(NS + NI). 
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The submatrix WSS having size NS ×NS  is the manifold graph of sketch features 
generated by linking features of sketches produced by the BF-fGALIF [12] algorithm. 
We will describe the BF-fGALIF in the following section. An edge of the graph WSS 
connecting vertices i and j is undirected and has a weight, which is a similarity w(i, j) 
among the vertices. The similarity w(i, j) is computed by using the equation (2) after 
normalizing the distance d(i, j) of features i and j to range [0,1]. 
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The submatrix WII having size NI ×NI is a manifold graph of image features. It is 
created in a similar manner as WSS. Features for image-to-image comparison are 
computed by using BF-DSIFT [13] algorithm. 

The submatrix WSI of size NS ×NI couples two submanifolds WSS and WII that lie 
in different domains, that are, sketch feature domain and image feature domain. To 
compute a feature similarity w(i, j) between a sketch i and an image j, BF-fGALIF 
features are extracted from a sketch image i and a saliency-weighted edge image gen-
erated from an image j. Finally, feature similarity w(i, j) is computed by using  
equation (2). 

Submatrix WIS of size NI ×NS is a zero matrix as we assume no diffusion of  
relevance occurs from image features to sketch features.  

In the relevance diffusion stage, ranking of images to a query sketch is done by dif-
fusing relevance value from the query to the images over the CDM by using MR [9]. 
We normalize W for S by using the following equation; 

 2121 −−= WDDS  (3) 

where D is a diagonal matrix whose diagonal element is =
j ijii WD . We use the 

following equation to find rank values in F given initial value, or “source” matrix Y; 
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 ( ) YSIF 1  −−= α  (4) 

Y is a diagonal matrix of size (NS + NI) × (NS + NI) that defines source(s) of relev-
ance value diffusion. If a vertex i is the source of diffusion 1=iiY , and, if not, 0=iiY .  

In our case, the vertex corresponding to the query sketch becomes the source of diffu-
sion. Fij is the relevance value of the image j given the sketch i. The higher the relev-
ance value Fij, the higher the rank of the image j in the retrieval result. 

The ranking is very robust, as diffusion from the query sketch to the images occurs 
via multiple paths. For example, the relevance value may first diffuse quickly through 
sketches similar to the query before reaching to the images. In such a case, the CDMR 
embodies a form of query expansion. 

The parameter σ in equation (2) controls diffusion of relevance value across the 
CDM. We use different values σSS，σII，and σSI for each of the submatrices WSS, 
WII, and WSI as optimal value of σ depends on each submatrix. The parameter 

)1,0[=α  in equation (4) controls regularization. 

Computing Feature Similarities for Cross-Domain Manifold 
Generation of the CDM W requires computation of similarities in the submatrices 
WSS, WII, and WSI. In this section, we describe features used for computing each 
submatrix. 

Computing Similarities for WSI  
Figure 3a shows a feature comparison pipeline for WSI. Given an image in a database, 
it is resized so that the shorter edge of the image becomes 256 pixels. A saliency-
weighted edge image is generated from the resized image by the VSW described in 
Section 2.1. 

From each of the saliency-weighted edge images and the sketch images, we extract 
BF-fGALIF feature, which is shown to be among the best methods for sketch-based 
3D shape retrieval [12]. GALIF features [10] are extracted densely at regular grid 
points on the image. GALIF feature captures orientation of lines and intensity gra-
dient in the image by using Gabor filters. Parameters for GALIF we used in this paper 
are the same as those in [12]. 1,000 to 1,500 GALIF features are extracted per image. 

The set of GALIF features extracted from an image is integrated into a feature vec-
tor per image by using a standard bag-of-features (BF) approach. This integration 
reduces cost of image-to-image matching significantly compared to directly compar-
ing a set of features to another set of features. We used vocabulary size k=3,500 for 
the experiments. We used k-means clustering to learn the vocabulary, and used kd-
tree to accelerate vector quantization of GALIF features into words of vocabulary. 

A BF-fGALIF feature of a sketch image is compared against a BF-fGALIF feature 
of a saliency-weighted edge image by using Cosine distance. 

Computing similarities for WSS 
Similarities for the submatrix WSS is computed, again, by the BF-fGALIF algorithm 
(Figure 3b). For each sketch image, BF-fGALIF feature is extracted after the sketch  
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image is resized down to 256×256 pixels. A distance between BF-fGALIF features is 
computed using Cosine distance. All the parameters for the BF-fGALIF (i.e., parame-
ters for Gabor filter, number of GALIF features per image, and vocabulary size) are 
the same as those used to compute WSI. 

Computing Similarities for WII 
Similarities for the submatrix WII is computed by the BF-DSIFT algorithm [13] (Fig-
ure 3c). BF-DSIFT is extracted from grayscale images without edge detection. Given 
an image, it is resized so that the shorter edge of the image becomes 256 pixels as 
with computing WSI.  

From each resized image, about 3,000 SIFT [11] features are extracted at densely 
and randomly placed feature points on the image. SIFT has invariance against scaling, 
rotation, illumination changes and minor changes in viewing direction. The set of 
about 3,000 SIFT features are integrated into a feature vector per image by using a BF 
approach. We used vocabulary size k=3,500 for the experiments. A distance between 
BF-DSIFT features is computed using symmetric version of Kullback-Leibler  
Divergence. 

 

 

Fig. 3. Feature comparison methods for generating CDM 
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3 Experiments and Results 

We experimentally evaluated effectiveness of weighting by the VSW of Canny edge 
images and ranking by the CDMR for sketch-based image retrieval. We used two 
sketch-based image retrieval benchmark databases; the Flickr160 [6] and the 
Flickr15k [7], both by Hu et al. Figure 4 shows examples of sketch queries and  
retrieval target images for the two benchmarks. 

The Flickr160 consists of a set of 25 sketch queries and a set of 160 retrieval target 
images. Each of the set of sketch queries and the set of target images is partitioned 
into 5 categories. The Flickr15k, which is a larger-scale version of the Flickr160, 
consists of a set of 330 sketch queries and a set of 14,660 retrieval target images. The 
set of sketch queries is partitioned into 33 shape categories (e.g., “round”, “heart-
shape”, etc.). The set of retrieval target images is partitioned into 60 semantic catego-
ries (e.g., “pyramid”, “bicycle”, etc.). A query in the Flickr15k could belong to mul-
tiple semantic categories, for example, a round-shaped sketch query belongs to such 
semantic categories as “moon”, “fire_balloon”, and “london_eye”. 

We used our own implementations for the CDMR and the BF-fGALIF. The MRSD 
[7] and BF-GFHoG [8] are computed by using original codes downloaded from re-
spective authors’ websites. 

Parameters σSS，σII，σSI and α for the CDMR are determined through a set of pre-
liminary experiments so that the retrieval accuracy is the highest among the combina-
tions of parameters we tried. Table 1 summarizes parameters for the CDMR used in 
the experiments below. 

We used Mean Average Precision (MAP) [%] and Recall-Precision plot for quan-
titative evaluation of retrieval accuracy. 

Table 1. Parameters for the CDMR 

algorithms 
Flickr160 Flickr15k 

σSS σII σSI α σSS σII σSI α 
BF-GFHoG 0.0075 0.02 0.020 0.95 0.04 0.0075 0.05 0.7 
BF-GALIF 0.0075 0.02 0,075 0.95 0.04 0.0075 0.05 0.7 

BF-GALIF(w) 0.0075 0.02 0.075 0.95 0.04 0.0075 0.05 0.7 

 

 

(a) Flickr160. 

 

(b) Flickr15k. 

Fig. 4. Examples of sketch queries and retrieval target images 
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3.1 Effectiveness of Edge Weighting by VSW 

Figure 5 shows the relationship between vocabulary size k and retrieval accuracy for 
the Flickr160 and the Flickr15k benchmarks. In the figure, “BF-fGALIF” means BF-
fGALIF is extracted directly from Canny edge images, while “BF-fGALIF(w)”  with 
“(w)” means that the feature is computed from saliency-weighted edge images gener-
ated by the VSW. For both benchmarks, at almost all the vocabulary size, the BF-
fGALIF(w) with saliency weighting produced MAP scores about 2 % higher than the 
BF-fGALIF without saliency weighting.  

It can be concluded that edges due to background clutter are suppressed to certain 
degree by the VSW, resulting in small but consistent improvements in retrieval  
accuracy. 
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(a) Flickr160 (b) Flickr15k 

Fig. 5. Vocabulary size and retrieval accuracy. (Please note the difference in MAP scales.). 

3.2 Effectiveness of Ranking by CDMR 

Table 2 shows ranking performance of the CDMR for the Flickr160 and the Flickr15k 
benchmarks. In this experiment, the sketch-to-image comparison algorithm for the 
submatrix WSI of the CDMR is selected from the following three; the BF-GFHoG, the 
BF-fGALIF, and the BF-fGALIF(w). We fixed the sketch-to-sketch comparison algo-
rithm for the submatrix WSS to the BF-fGALIF. We also fixed the image-to-image 
comparison algorithm for the submatrix WII to the BF-DSIFT. 

For all the three sketch-to-image comparison algorithms we compared, that are, the 
BF-GFHoG, the BF-fGALIF, and the BF-fGALIF(w), the CDMR significantly im-
proved their retrieval accuracy for the two benchmarks. In case of the Flickr160, the 
BF-fGALIF(w) feature using the CDMR produced the highest MAP score of 72.3 %. 
It is about 19 % better than the BF-fGALIF(w) feature without using the CDMR. In 
case of the Flickr15k, the BF-fGALIF(w) with the CDMR yielded MAP score of 
22.4 %. This score is 6 % higher than the BF-fGALIF(w) without the CDMR. 

Overall, gain in retrieval accuracy due to the CDMR is quite significant. Diffusion 
of relevance via multiple paths through the sketches and images of the CDM makes  
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Table 2. Feature selection and ranking accuracy by the CDMR 

algorithms 
Flickr160 Flickr15k 

without CDMR with CDMR without CDMR with CDMR 
BF-GFHoG 44.8 64.1 9.5 15.4 
BF-fGALIF 51.6 69.4 14.3 20.6 

BF-fGALIF(w) 53.7 72.3 16.5 22.5 

 
the ranking robust against stroke noise and other variations in sketches. Also, diffu-
sion of relevance from the query sketch via sketches similar to the query toward target 
images pushes retrieval accuracy up, as it works like an automatic query expansion. 

3.3 Comparison with Other Algorithms 

Table 3 shows comparison of retrieval accuracy using the Flickr160 and the Flickr15k 
benchmarks. The table also lists MAP scores for algorithms reported in Hu et al. 
[6][7] for comparison. Figure 7 shows recall-precision plots for the 6 algorithms we 
compared. Every algorithm listed in Table 2 employs a set of local features to com-
pare images with sketches. Note that, in Table 2, MAP scores of the BF-GFHoG are 
different among our own experiments and theirs found in [6][7]. This discrepancy is 
due probably to the difference in distance metric; we used Cosine distance for feature 
comparison, while Hu et al. used Histogram Intersection.  

Our proposed CDMR-BF-fGALIF(w), which employs edge weighting by the VSW 
and ranking by the CDMR, did the best among 12 methods listed in Table 3, for both 
benchmarks. Our best performer, the CDMR-BF-fGALIF(w), produced MAP=72.3% 
for the Flickr160 benchmark. In comparison, the MAP score of the BF-GFHoG is 
54% [6]. When compared using the Flickr15k benchmark, the CDMR-BF-fGALIF(w) 
produced MAP score of 22.5 %. This score is about 10 % higher than that of BF-
GFHoG, 12.2%, reported in [7]. Most of the gain in retrieval accuracy comes from the 
CDMR ranking, but contribution due to visual saliency weighting is consistent.  

Recall-precision curves of Figure 6 also shows the advantages in retrieval accuracy 
of the CDMR-BF-fGALIF(w) over the other algorithm. 

Table 3. Comparison of MAP scores [%] among several algorithms 

algorithms Flickr160 Flickr15k 
BF-GFHoG 44.8 9.5  
BF-fGALIF 51.6 14.3  

BF-fGALIF(w) 53.7 16.5  
CDMR-BF-GFHoG 64.1 15.4  
CDMR-BF-fGALIF 69.4 20.6  

CDMR-BF-fGALIF(w) 72.3 22.5  
BF-GFHoG [6][7] 54.0 12.2  

BF-HoG [6][7] 42.0 10.9  
BF-SIFT [6][7] 41.0 9.1  

BF-SelfSimilarity [6][7] 42.0 9.6  
BF-ShapeContext [7]  8.1  

BF-StructureTensor [7]  8.0  
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(a) Flickr160 (b) Flickr15k 

Fig. 6. Recall-Precision plots 
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4 Conclusion and Future Work 

In this paper, we proposed an algorithm for Sketch-Based Image Retrieval (SBIR).  
A challenge in SBIR is effective comparison of a line drawing sketch and a 2D image. 
It should be robust against background clutter in the image. It should also be robust 
against stroke noise in the line drawing sketch. Previous algorithms for SBIR convert 
a 2D image into an edge image to compare it against a query line drawing sketch. 
However, unnecessary edges due to background clutter in an image interfere with the 
feature comparison between a sketch and the 2D image. Stroke noise such as  
disconnected or wobbly lines also makes the comparison difficult. 

Our proposed algorithm first converts an image into edge image, and then performs 
Visual Saliency Weighting (VSW) to suppress edges due to background clutters. To 
effectively compare a sketch containing stroke noise with images, we employ a dis-
tance metric learning algorithm called Cross-Domain Manifold Ranking (CDMR) 
[12]. Our experimental evaluation using two SBIR benchmarks showed that the com-
bination of the VSW and the CDMR significantly improves retrieval accuracy. 

We are currently looking into the improvement of computational efficiency of the 
CDMR algorithm, as the CDMR is expensive to compute for a large database. 
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