
TravelBuddy: Interactive Travel Route

Recommendation with a Visual Scene Interface

Cheng-Yao Fu1, Min-Chun Hu2, Jui-Hsin Lai1, Hsuan Wang3, and Ja-Ling Wu1

1 Dept. of CSIE, National Taiwan University
2 Dept. of CSIE, National Cheng Kung University

3 Dept. of Civil Engineering, National Central University

Abstract. In this work, we propose a convenient system for trip plan-
ning and aim to change the behavior of trip planners from exhaustively
searching information to receiving useful travel recommendations. Given
the essential and optional user inputs, our system automatically recom-
mends a route that suits the traveler based on a real-time route plan-
ning algorithm and allows the user to make adjustment according to
their preferences. We construct a traveling database by collecting photos
taken around famous attractions and analyzing these photos to extract
each attraction’s travel information including popularity, typical stay
time, available visiting time in a day, and visual scenes of different time.
All the extracted travel information are presented to the user to help
him/her efficiently know more about different attractions so that he/she
can modify the inputs to obtain a more favorable travel route. The ex-
perimental results show that our system can effectively help the user to
plan the journey.

1 Introduction

Besides becoming a millionaire, traveling around the world is the most popular
answer when people are asked about their fantasy. Traveling can always relax our
mind, increase our knowledge and experience, widen our perspective, and create
invaluable memories. With limited money and time, people would like to choose
escorted tours planned by the travel agent and arranged to satisfy the average
customer demand. Escorted tours are convenient but usually more expensive
and with less flexibility than independent tours. With the popularity of inter-
net and world wide web, people tend to search traveling information and plan
suitable schedule on their own. However, this task has become more and more
difficult due to internet information overflow. Trip planning websites/forums are
then established for people to share their traveling experience so that one can
find more reliable information and reorganize a new trip plan based on others’
experiences. Unfortunately, the discussions on these websites/forums are usually
disordered and without proper summarization.

The proliferation of social media websites and mobile devices motivate us to
change the behavior of trip planners from exhaustively searching information to
receiving useful recommendation. In this work, we propose a convenient system

C. Gurrin et al. (Eds.): MMM 2014, Part I, LNCS 8325, pp. 219–230, 2014.
c© Springer International Publishing Switzerland 2014



220 C.-Y. Fu et al.

with user friendly interface for trip planning. The proposed system framework
is illustrated in Figure 1. We first construct a traveling attraction database con-
taining famous attractions of each given city (e.g., Seville Cathedral in Barcelona
and Eiffel Tower in Paris). These attractions are collected from TripAdvisor and
Yahoo!Travel, which are the most two popular travel websites with helpful trav-
eling information shared by experienced tourists [1]. Note that the GPS location
of each attraction is also stored in the database. Moreover, photos of each attrac-
tion are retrieved from social media websites (e.g. Flickr) based on the attraction
name and GPS information. We then analyze these photos to extract each at-
traction’s travel information including popularity, typical stay time, available
visiting time in a day, and visual scenes of different time.

Fig. 1. The proposed system framework

When the user wants to plan a trip, he/she could simply input concise trav-
eling constraints which are essential or optional. The essential user setting in-
cludes a sequence of city destinations (e.g. Barcelona→Paris→Roma) and the
travel period (defined by the start time and the end time of the trip), while
the optional user setting involves must-go attractions, stay-time of specific at-
tractions, arrival-time of specific attractions, and transportation fee budget. The
system presents attraction information of the input destinations to the user with
a designed visual scene interface1 so that he/she could further select must-go

1 Visual Scene Interface: Each attraction may look different at different time in dif-
ferent seasons, and we design an interface to show representative photos of various
time period for each attraction based on Flickr photos.



TravelBuddy: Interactive Travel Route Recommendation 221

Fig. 2. Visual scenes of Kiyomizu Temple (Kyoto, Japan) at different time

(or must-not-go) attractions and arrival/stay-time of specific attractions accord-
ing to his/her preference. The travel route recommendation component then
customizes a more customized and favorable trip route strictly including (or
excluding) these selected attractions in real time with the transportation infor-
mation between two adjacent attractions. For example, after browsing visual
scenes of Kiyomizu Temple taken at different time (as shown in Figure 2), the
user would specify to go to Kiyomizu Temple in the afternoon if his/her travel
is scheduled in November or December because he/she is attracted by the vi-
sual scenes of Kiyomizu Temple taken in the afternoon. Besides recommending
a suitable travel route after the user first inputs essential settings, our system
also allows the user to interactively adjust the recommended route according
to their preference on each suggested attraction or transportation between two
adjacent attractions. The system will re-customize the route according to the
new feedback (i.e. the optional user settings) until the user is satisfied.

The main contributions of this work are threefold. 1) To the best of our knowl-
edge, our system is the first travel recommendation system that considers the
available visiting time of attractions and transportation budget for trip planning.
To be more precise, we tackle the query of finding a best trip route such that the
traveler will arrive at some attractions at some specified time subject to that the
total travel time and the total transportation budget is constrained. This kind
of query is very common in real-world trip planning scenarios, but none of the
existing travel recommendation system is designed to solve this problem. 2) We
designed a convenient visual scene interface to present travel information of each
attraction, so that the user could quickly have an impression on each attraction.
3) Our system deals with the problem of effectively re-adjusting the travel route
and the transportation way according to the users feedback.

The remainder of this paper is organized as follows: Section 2 expounds how
we extract travel information of each attraction and Section 3 introduces the
proposed real-time travel route recommendation algorithm. The experimental
results and discussions are shown in Section 4, and conclusions are given in
Section 5.



222 C.-Y. Fu et al.

2 Attraction Information Extraction

As mentioned in Section 1, we construct the traveling database by searching
famous attractions of each city on TripAdvisor and Yahoo!Travel and collecting
Flickr photos taken around these attractions. All the collected Flickr photos
(including the EXIF information) are used for extracting each attraction’s travel
information including popularity, typical stay time, available visiting time in a
day, and visual scenes of different time. The extracted travel information will be
presented to the user with the designed visual scene interface to help him/her
efficiently know more about different attractions.

2.1 Estimation of Popularity

To estimate the popularity of each attraction, we assume that the more people
had been to the attraction, the more popular the attraction is. This assumption
is widely used by previous works [2, 3]. For each attraction A, we take the number
of people who had taken photos at that attraction (i.e. the number of Flickr users
who had uploaded photos taken at attraction A) as the corresponding popularity
(popular score), denoted as PS(A).

2.2 Estimation of Typical Stay Time

The estimation of typical stay time can be realized by the internal path discov-
ering (IPD) method proposed by Lu et al. [2]. In general, one can utilize the
information of photo taken time (embedded in the EXIF) to compute the time
length of a photo sequence. For each photo sequence si composed of photos taken
at attraction A by the same user on the same date, we set the corresponding
time length, denoted as TL(si), as the stay time of attraction A based on the
sequence si. The estimated typical stay time of attraction A can be then defined
by the average of all TL(si)

′s. Yet photo sequences uploaded by users are usually
sparse and incomplete. Hence the time length of photo sequence would often be
much shorter than the real stay time of the attraction. IPD can concatenate mul-
tiple incomplete photo sequences to a complete one by discovering the internal
path, and therefore the estimated typical stay time would be much more precise.
However, for outdoor attractions, there is usually no specific visiting path, and
therefore IPD may not successfully concatenate incomplete photo sequences. In
this case, we apply the method proposed by Xie et al. [4] instead. That is, the
typical stay time of an attraction A would be (ω ∗ area size of A), where ω
depends on the popularity of the attraction. For instance, popular attractions
are with higher ω than unpopular ones since people would like to spend more
time in more popular attraction per unit area.

2.3 Estimation of Available Visiting Time

In order to automatically retrieve the available visiting time in a day of an
attraction A, we exploit the photo taken time to gather statistics about when



TravelBuddy: Interactive Travel Route Recommendation 223

this attraction is available for visiting. If there are enough amount of photos
taken around attraction A at certain time, then this time should belong to the
available visiting time of attraction A. Practically, we quantize a day into 48 time
intervals (i.e. each interval equals 30 mins) and calculate the amount of photos
taken around attraction A during each time interval instead of at a specific time.
If a time interval has few photos, it implies that A’s open time may not include
that time interval.

2.4 Visual Scenes Generation

We modify the representative photo extraction method proposed in [3] to gen-
erate visual scenes at different time for each given attraction. The flowchart of
our method is illustrated in Figure 3. All photos of an attraction are clustered
into ND Date Clusters by their taken date to distinguish different scenes in a
year. Photos in each Date Cluster are further clustered into NT Time Clusters
to distinguish different scenes in a day. Finally, for each Time Cluster we use
the visual features to cluster all involved photos into NV Visual Clusters [3].
Therefore, photos in the same Visual Cluster would look similar and photos in
different Visual Clusters would look more different. We select the centroid photo
from each Visual Cluster as the representative scene of the attraction at a cer-
tain time. In our implementation, ND is set to 24, which means photos within
the same half month interval would be clustered together. NT is set to 3 since
there are usually three quite different scenes (morning, afternoon, and evening)
in a day of an attraction. Nv is set to

√
n/2 as suggested in [3], where n denotes

the number of photos being clustered.

3 Real-Time Travel Route Recommendation

After gathering travel information of all attractions and the user inputs, we
can compute and generate a suitable travel route for the user. In this section,
we define the route recommendation problem and introduce how to solve it in
real-time.

3.1 Problem Statement

The target travel route should fulfill the following criteria:

• Plentiful. The travel route should contain as many popular attractions as
possible since in general tourists would like to visit as many popular and
representative attractions as they can [5, 6]. The total popular score of a
travel route R can be defined as:

TPS(R) =

RouteSize−1∑

i=1

PS(i), (1)

where i denotes the ith attraction on the trip route, i = 0 means the start
location, and i = 1 means the first visited attraction.



224 C.-Y. Fu et al.

Fig. 3. Flowchart of Visual Scene Generation

• Smooth. The trip route should be smooth to avoid back and forth from one
location to another. The non-smoothness of a trip route R is defined by

NS(R) =

RouteSize−1∑

i=1

[dist(i− 1, i) + dist(i, i+ 1)− dist(i− 1, i+ 1)], (2)

where dist(i−1, i) denotes the distance between the i−1th attraction and the
ith attraction calculated based on the GPS locations. Besides, this criterion
also implies that users would spend more time on staying in attractions
instead of driving between attractions [5, 6].

• Feasible. Every attraction in the generated route should be visited or ar-
rived at its available visiting time.

• Customized. Every users requirement should be satisfied, e.g. “the trip
route must consist of attraction A”, “arrives at attraction B in the evening
of day 2”, and “stay at attraction C for 3 hours”.

Based on the criteria described above, the problem of generating a good trip
route is to maximize TPS(R) and minimizeNS(R) subject to the constraint that
every attraction should be visited at its available visiting time interval and all
user settings should be satisfied. The problem can be transformed to the Vehicle
Routing Problem with Time Window (VRPTW) [7], which had been proven
to be an NP-hard problem. However, in our application, to compute the travel
route in real-time is essential. Inspired by [8], we propose an effective heuristic
algorithm which can be executed in real-time but also yield good results.



TravelBuddy: Interactive Travel Route Recommendation 225

3.2 The Proposed Heuristic Algorithm

As proposed in [8], in the beginning the travel route only consists of the start
location and the end location, then the algorithm starts to insert one attraction
at a time to the travel route until no more attraction can be inserted. To decide
which attraction to insert, we first examine every of the rest attractions and
determine which position in the current trip route is most proper to insert the
examined attraction. The non-smoothness of inserting attraction A to position
i is defined by

NS(A) = min
i
(dist(i, A) + dist(A, i+ 1)− dist(i, i+ 1)), (3)

where i = 0, ..., CurrentRouteSize−1. Hence, the most proper inserting position
of an attraction A can be determined by

MPIP (A) = argmin
i
(dist(i, A) + dist(A, i+ 1)− dist(i, i+ 1)), (4)

where i = 0, ..., CurrentRouteSize − 1. After calculating the most proper in-
serting position for each of the rest attractions, we decide which attraction is
selected to be inserted first. Since our goal is to maximize TPS(R) and minimize
NS(R), we define the inserting priority score of an attraction A as

IPS(A) = α ∗ PS(A)− β ∗NS(A), (5)

where α, β ≥ 0. Each time, the attraction with the highest IPS is inserted to the
original trip route if it is appropriate to be inserted into its most proper inserting
position in the current route. An attraction is said to be appropriate if the new
trip route still fulfills all the constraints after inserting it. The attraction insertion
process will be terminated until no appropriate attractions is left, and then we
obtain the final travel route. To customize the travel route, user feedback should
be taken into account. With the proposed heuristic algorithm, user feedback can
be easily integrated by inserting the user-specified must-go attractions prior to
other attractions into appropriate position of the travel route to fullfill user-
specified arrival-time (if any). Considering the real-time computation issue, we
further apply the local search algorithm [7] to improve the original solution, as
shown in Algorithm 1.

3.3 Transportation Budget Control

There usually exist multiple transportation choices from one attraction to an-
other attraction, and each transportation choice may differ in the transportation
duration and transportation fee. In most cases, the shorter the transportation
duration is, the more expensive the transportation fee is. In other words, when
users travel time and transportation budget are both limited, then the generated
trip route should compromise between taking rapid but expensive transporta-
tion and taking slow but cheaper transportation. The problem becomes how to



226 C.-Y. Fu et al.

Algorithm 1. Real-time Travel Route Recommendation Based on Local Search

Input: OTR(Original Travel Route), k(number of attractions being exchanged at a time), RA(set
of the rest attractions).

Output: UTR(Updated Travel Route)
1: Initialize UTR = OTR
2: do
3: OTR = UTR;
4: UTR = ExchangeWithinTripRoute(OTR, k);
5: ExchangeBetweenTripRouteAndRestAttractions(UTR, k, RAset);
6: while IsImproved(OTR, UTR)
7: function ExchangeWithinTravelRoute(Ro,k,Ru)
8: Ru = Ro;
9: Rtmp = Ro;
10: for every k − combination of attractions in Ro do
11: for every possible exchanges among them do
12: Rtmp = travel route after exchanging
13: if IsFeasible(Rtmp) and IsImproved(Ro, Rtmp) then
14: Ru = Rtmp;
15: Ro = Ru;
16: end if
17: break;
18: end for
19: end for
20: return Ru;
21: end function
22: function Exchange(Ro,k,RAset,Ru)
23: Ru = Ro;
24: Rtmp = Ro;
25: for every k − combination of attractions in Ro and RAset do
26: for every possible exchanges among them do
27: Rtmp = travel route after exchanging
28: if IsFeasible(Rtmp) and IsImproved(Ro, Rtmp) then
29: Ru = Rtmp;
30: Ro = Ru;
31: end if
32: break;
33: end for
34: end for
35: return Ru;
36: end function
37: function IsFeasible(R)
38: if all attractions in R satisfy all the constrains then
39: return true;
40: else
41: return false;
42: end if
43: end function
44: function IsImproved(Ro,Ru)
45: if (TPS(Ru) > TPS(Ro) and NS(Ru) ≤ NS(Ro)) or (TPS(Ru) ≥

TPS(Ro) and NS(Ru) < NS(Ro)) then
46: return true;
47: else
48: return false;
49: end if
50: end function



TravelBuddy: Interactive Travel Route Recommendation 227

Table 1. Execution time for a 150-hours-long trip plan with different number of can-
didate attractions

Number of Candidate Attractions 50 100 150 200 250

Average Execution Time (secs) 0.273 0.655 1.039 1.589 2.319

choose every transportation way between every adjacent attractions pair in the
trip route properly so that the generated trip route can be better?

To address the problem stated above, we propose the following algorithm.
Each time we insert a new attraction into current trip route, we have to deter-
mine which transportation to take. However, at this time it is hard to decide
which can yield better result in the end. Therefore, our algorithm would always
choose the shortest duration but most expensive one, and keep inserting attrac-
tions regardless of whether user-specified transportation budget is exceeded until
no more attractions can be inserted. Next, we start to reduce the total trans-
portation fee to meet the transportation budget specified by the user. There are
two ways to reduce the total transportation fee: (1) Replace one of the trans-
portation way of the current trip route with another transportation choice which
has longer duration but is cheaper. (2) Remove the attraction with lowest IPS
from the current trip route. Our algorithm applies the first way. However, if
there is no solution that meets the budget constraint, the second way will be
utilized.

4 Experimental Results

In this section, we present and discuss the experiment results including the
execution time of the proposed trip route planning algorithm, effectiveness of
the proposed trip route planning algorithm.

4.1 Execution Time of the Proposed Trip Route Planning
Algorithm

In order to evaluate whether the proposed trip route planning algorithm can
compute a good trip route in real-time, we test our algorithm on the PC with
Intel Dual Core i5-3210M CPU of 2.50 GHz. To simulate the user settings,
we randomly generate a number of possible user queries. Then we average all
the queries results to examine the average execution time. As Table 1 shows,
although lots of constraints should be satisfied in order to achieve a suitable trip
route, the proposed algorithm is still able to be accomplished in real-time even
if the total traveling time is 150 hours long (a 7-days trip plan) and the number
of attractions is 200 large.

4.2 Effectiveness of Proposed Trip Route Planning Algorithm

We crawled photos of attractions in popular travel area such as Eastern Area
of Taiwan, Southern Europe and Kansai Area of Japan from Flickr to extract



228 C.-Y. Fu et al.

Table 2. Results of trip route planning evaluated by objective criteria

NAV ETR STR TRPSR

Popular Insert First 17.47 0.98 66.16 0.73

Proposed Algorithm 22.22 0.97 77.67 0.78

Improvements Rate 1.27 0.99 1.17 1.06

travel information of attractions. Then we facilitate Google Maps API to fetch
the distance and the duration of different transportation between attractions in
the same travel area. We conduct subjective test to evaluate the quality of a
planned trip route. However, there are some criteria which can objectively mea-
sure the quality of a trip plan, including Number of Attractions Visited (NAV),
Elapsed Time Ratio (ETR, Total Travel Duration/Users Travel Time Budget),
Stay Time Ratio (STR, Time Spent on Attraction/ Total Travel Duration), and
Trip Route Popular Score Ratio (TRPSR, Total Popular Score of Attractions
being Visited/Maximum Total Popular Score of All Generated Trip Route) [6].
When the other three criteria are the same for the two trip routes, the trip route
with one of the criteria higher than the other trip routes would be considered
better.

Because there doesnt exist trip plan generating algorithm which also takes
the available visiting time of attractions into account to compare with, here we
implement a baseline algorithm called PopularInsertFirst which at each round
would select the attraction with highest popular score to insert into the trip
route. We randomly generate a number of different user settings to simulate
possible users queries and then average the results. The results in Table 2 show
that proposed algorithm on average performs better than Baseline Algorithm
except for the ETR. However, the difference between the two algorithms is quite
small and both algorithms ETR are high enough. Proposed algorithm improved
the most in NAV and its very reasonable because when smoothness is taken into
account, the total travel time would be reduced and therefore more attractions
can be added to the trip route. For the STR, the proposed algorithm also out-
performs a lot. This is because that a smooth trip route also implies that there
would be less redundant path and hence the transportation duration would be
shorter. It is interesting that proposed algorithm also surpassed in IDR despite
that at each round the attraction chosen by PopularInsertFirst has higher pop-
ular score than the one selected by proposed algorithm. The reason is that the
improvements of NAV and STR are high enough to compensate for the slightly
lower popular score of each rounds selection.

Except for the objective evaluation, we also recruit 20 people who had travel
experience or knowledge in the travel destination to help evaluate the quality of
the trip route generated by proposed algorithm. In this part, we also want to ver-
ify the importance of taking available visiting time into consideration. Therefore
we ask users to compare the algorithm with previous works that does not con-
sider available visiting time (denoted as NCA, NotConsiderAvailability). Besides,
we also compare with the RT (RandomTrip) algorithm which randomly choose
attractions and paths to generate a trip route. The questions we ask including:



TravelBuddy: Interactive Travel Route Recommendation 229

1) Are the attractions being visited representative, interesting or popular enough?
2) Is the trip route smooth enough? 3) Is the stay time ratio reasonable? 4) Is
the arrival time of attractions being visited reasonable? 5) Overall, how do you
think the quality of the trip route? Users are asked to rate 1- 5 score to the
above questions. For questions 1 to 4, score 1 means not agree at all and score 5
means absolutely agree. For the fifth question, score 1 means the quality is very
bad, and score 5 means very good. The results are shown in Figure 4.

Fig. 4. Results of trip route planning evaluated by subjective questions

5 Conclusions

A convenient system for trip planning is proposed to change the behavior of trip
planners from exhaustively searching information to receiving useful travel rec-
ommendations. A traveling database is constructed by collecting photos taken
around famous attractions and analyzing these photos to extract each attractions
travel information including popularity, typical stay time, available visiting time
in a day, and visual scenes of different time. All the extracted travel information
are presented to the user to help him/her efficiently know more about differ-
ent attractions in terms of visual scenes. Given the start location, destinations,
traveling dates, and transportation budget information as the input, the system
automatically recommends a route that suits the traveler based on a real-time
routing planning algorithm and allows the user to make adjustment according
to their preferences.

References

[1] Top 15 Most Popular Travel Websites (March 2013),
http://www.ebizmba.com/articles/travel-websites

[2] Lu, X., et al.: Photo2Trip: Generating Travel Routes from Geo-Tagged Photos for
Trip Planning. In: ACM MM 2010 (2010)

[3] Jiang, et al.: ContextRank: Personalized Tourism Recommendation by Exploiting
Context Information of Geotagged Web Photos. In: IEEE ICIG 2011 (2011)

http://www.ebizmba.com/articles/travel-websites


230 C.-Y. Fu et al.

[4] Xie, et al.: CompRec-Trip: a Composite Recommendation System for Travel Plan-
ning. In: ICDE 2011 (2011)

[5] Yoon, H., Zheng, Y., Xie, X., Woo, W.: Smart Itinerary Recommendation Based
on User-Generated GPS Trajectories. In: Yu, Z., Liscano, R., Chen, G., Zhang, D.,
Zhou, X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 19–34. Springer, Heidelberg (2010)

[6] Yoon, H., et al.: Social itinerary recommendation from user-generated digital trails.
Journal of Personal and Ubiquitous Computing (2012)

[7] Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows, Part I:
Route Construction and Local Search Algorithms. Transportation Science (2005)

[8] Solomon, M.M.: Algorithms for the Vehicle Routing and Scheduling Problems with
Time Windows Constraints. Operations Research 35, 254–265 (1987)


	TravelBuddy: Interactive Travel Route Recommendation with a Visual Scene Interface
	1 Introduction
	2 Attraction Information Extraction
	2.1 Estimation of Popularity
	2.2 Estimation of Typical Stay Time
	2.3 Estimation of Available Visiting Time
	2.4 Visual Scenes Generation

	3 Real-Time Travel Route Recommendation
	3.1 Problem Statement
	3.2 The Proposed Heuristic Algorithm
	3.3 Transportation Budget Control

	4 Experimental Results
	4.1 Execution Time of the Proposed Trip Route Planning Algorithm
	4.2 Effectiveness of Proposed Trip Route Planning Algorithm

	5 Conclusions
	References




