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Abstract We propose a method for visualizing two-dimensional symmetric pos-
itive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is
derived from the heat kernel and was originally introduced as an isometry invariant
shape signature. Each positive definite tensor field defines a Riemannian manifold
by considering the tensor field as a Riemannian metric. On this Riemmanian
manifold we can apply the definition of the HKS. The resulting scalar quantity is
used for the visualization of tensor fields. The HKS is closely related to the Gaussian
curvature of the Riemannian manifold and the time parameter of the heat kernel
allows a multiscale analysis in a natural way. In this way, the HKS represents field
related scale space properties, enabling a level of detail analysis of tensor fields.
This makes the HKS an interesting new scalar quantity for tensor fields, which
differs significantly from usual tensor invariants like the trace or the determinant.
A method for visualization and a numerical realization of the HKS for tensor fields
is proposed in this chapter. To validate the approach we apply it to some illustrating
simple examples as isolated critical points and to a medical diffusion tensor data set.
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1 Introduction

The Heat Kernel Signature (HKS), introduced by Sun et al. in [8], is known to be a
powerful shape signature. In [8] it is shown that the HKS is not only an isometric
invariant but contains almost all intrinsic information of a surface. Thus it is well
suited for detecting similar shaped regions of surfaces. The HKS is derived from the
process of heat diffusion and consequenlty equipped with a time parameter. This
multiscale property allows to adjust the size of the neighborhood that influences
the value of the HKS at a point. Additionally, the HKS is not sensitive to small
perturbations of the underlying surface, e.g. a tunnel between small sets of points.
Several methods employ the HKS to detect similar shaped surfaces globally, see
[1,4-6]. Also from a visual point of view the HKS characterizes a surface very
well, since, for small time values, it is closely related to the Gaussian curvature of
the surface. For large time values it can be considered as the curvature on a larger
scale. Our idea is to use the HKS for the visualization of tensor fields. Since positive
definite tensor fields can be considered as Riemannian metrics, i.e. together with
its domain as Riemannian manifolds, the definition of the HKS is still applicable
for positive definite tensor fields. Consequently, we obtain a scalable Gaussian
curvature of the Riemannian manifold associated with tensor field.

For a better understanding we illustrate the relation between the HKS of a two
dimensional surface M and a positive definite tensor field (i.e. the metric tensor field
of the surface) in Fig. 1. If g is the metric of the surface M and f : RZ? D U - R*a
parametrization of M, i.e. f(U) = M, we can compute the pull back of the metric
gon U by f, denoted by f*g. The metric f*g is a positive definite tensor field
on U which is well characterized by the HKS of the surface. In this chapter we
propose a method for computing the HKS directly for a positive definite tensor field
defined on U C R2, interpreting the tensor field as the metric of a surface. We do
not demand that there exists a simple embedding of the surface in some Euclidean
space. We restrict ourselves to 2D positive definite tensor fields in this chapter, but
the definition of the HKS and the numerical realization presented here is also valid
in higher dimensions. However, the computational complexity will be a problem in
higher dimensions, see also the remark in Sect. 6.

In Sect.2 we give a short introduction to the HKS. The application of the HKS
to tensor fields is explained in Sect. 3. To compute the HKS we need to compute
the eigenvalues of a the Laplacian on a Riemannian manifold (M, g). In case of
surfaces the embedding in the Euclidean space can be utilized, whereas, in the case
of tensor fields, all computations must be done by using the tensor only. A finite
element method to achieve this for tensor fields on a uniform grid is proposed in
Sect. 4, alongside with some numerical tests. Results of our method are shown in
Sect. 5.
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Fig. 1 Commutative diagram illustrating the relation between the HKS of a surface and a positive
definite tensor field. Metric of the surface depicted as ellipses (fop left), the parametrized surface
(top right), HKS on the surface (bottom right) and the HKS on U (bottom right)

2 Heat Kernel Signature

The Heat Kernel Signature (HKS) is typically used for the comparison of surfaces.
It is derived from the heat equation and assigns each point of the surface a time
dependent function [0, co) — R which depends only on the metric of the surface.
Conversely, all information about the metric are contained in the HKS under quite
weak assumptions. For smaller time values the HKS at a point is governed by
smaller neighbourhoods, i.e. one can control the portion of surface which should
be taken into account. This makes the HKS a powerful tool for the identification of
similar shaped parts with different level of detail by comparing the HKS for different
time values. However, the HKS is not restricted to surfaces, it is defined for arbitrary
Riemannian manifolds. We employ this fact to apply the HKS on positive definite
tensor fields. A short introduction to the HKS is given in this section. For details we
refer the reader to [8]. A detailed treatment of the heat operator and the heat kernel
can be found in [7].

Let (M, g) be a compact, oriented Riemannian manifold and A the Laplace-
Beltrami operator (also called just Laplacian) on M which is a equivalent to the
usual Laplacian in case of flat spaces. Given an initial heat distribution i (x) =
h(0,x) € C*°(M) on M, considered to be perfectly insulated, the heat distribution
h(t,x) € C®(RTxM) at time ¢ is governed by the heat equation

3 + A)h(t.x) =0 .
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One can show that there exists a function k(¢, x, y) € C®(R* x M x M) satisfying
0 + A k(t,x,y) =0,

lim / k(t.x. y)h(y) dy = h(x) .

where A, denotes the Laplacian acting in the x variable. The function k(¢, x, y) is
called heat kernel. Let now H, be the integral operator defined by

Hyh(x) = /M k(tox. )h() dy .

then h(z, x) = H;h(x) satisfies the heat equation. Consequently H; takes an initial
heat distribution /(x) to the heat distribution %(z, x) at time ¢. The operator H, is
called heat operator.

The heat kernel can be computed by the formula

k(t.x,9) =Y e gi(x)i(y) . (1)

where A; and ¢; are the eigenvalues and eigenfunctions of A. Since A is invariant
under isometries, Eq. (1) shows that this is also true for the heat kernel. Moreover,
the metric can be computed from the heat kernel by the formula

. L,
tl_l)lgotlogk(t,x,y) = _Zd (x,y) .,

where d(x, y) denotes the geodesic distance between two points x,y € M. Thus,
for a given manifold M, the information contained by the heat kernel and the
metric are equivalent. Another important property of the heat kernel is its multi-
scale property. For the heat kernel ¢ plays the role of a spatial scale of influence,
i.e. k(t,x, -) depends mainly on small neighborhoods of x for small ¢, whereas
k(t,x, -) is influenced by larger neighborhoods of x for larger ¢.

The HKS is defined in [8] to be the function HKS € C®(R™ x M) given by

HKS(t,x) = k(t,x,x) . 2)

Since the heat kernel is much more complex than the HKS, one might expect to
loose a lot of information when regarding the HKS instead of the heat kernel. But,
as shown in [8], the metric can be reconstructed from the HKS under quite weak
assumptions. This means that the HKS of a positive definite tensor field contains
almost all information of the tensor field itself and is consequently much more
informative than usual scalar quantities like the trace or the determinant.
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2.1 Relation to Curvature

In order to obtain a more intuitive understanding of the HKS we study its relation to
the curvature of the manifold M . For small values of the time parameter ¢ the HKS
has the row expansion

1 & .
HES(t, x) = — > uir (3)
i=1

The general form of the functions u; (x) is discussed in [7]. For the two-dimensional
manifolds considered in this chapter the first three functions can be written as

up(x) =1,

() = 1K) |

1
uy(x) = 5 (4K()c)2 — SAK(x)) ,
where K is the Gaussian curvature of M. Consequently, for a small value of 7, the
value of the HKS consists mainly of %K plus a constant. The derivation of the stated
u; from the general case can be found in the Appendix.

3 HKS for Tensor Fields

The HKS introduced in Sect.2 is defined for any compact, oriented Riemannian
manifold. Thus the HKS is not restricted to surfaces embedded in R". If we have a
metric tensor g, i.e. a symmetric positive definite tensor field, defined on a region
U C R, then (U, g) forms a Riemannian manifold. Since there is a Riemannian
manifold associated with a positive definite tensor field in this way, we can compute
the HKS for any positive definite tensor field. In this section we illustrate the relation
of the HKS for surfaces and tensor fields by considering a parametrized surface and
the pullback of its metric.

Let f : R2 DU - R¥*bea parametrized surface. On the one hand, we can
compute the HKS for the surface f(U). On the other hand, we can define a metric
gon U by

g L,U)xT,U)—-R, (v.wr{(Jwv, J@w) , “)
where J(u) denotes the Jacobian of f at u € U and (-, -) the standard scalar

product on R3. That is, g is the pullback f*(-,-) of (-, -) by f. The components
of g are givenby g;; = (JTJ);;.
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This makes (U,g) a Riemannian manifold which is isometric to f(U)
(equipped with the metric induced by R3) and f the associated isometry. Now
we can compute the HKS directly on U by using g as metric. This is equivalent
to computing the HKS on the surface f(U) and then pull it back to the parameter
space U by f, i.e.

HKSy (t,u) = HKS ruy (¢, f(w))

where HKSy and HKS ;) denote the HKS on U and f(U), respectively. In other
words: The diagram in Fig. | commutes.

Figure 1 also shows that the HKS of (U, g) (bottom left) is a meaningful
visualization of the metric. Thus we are interested in a method for computing the
HKS directly for tensor fields, so that no embedded surface with the tensor field as
metric tensor needs to be constructed. We propose such a method in Sect. 4.

4 Numerical Realization

To our knowledge, the HKS has only been used for triangulated surfaces, so far.
We want to use the HKS for the visualization of two-dimensional symmetric positive
definite tensor fields 7' defined on a rectangular region U C R2. Thus we need a
method to compute the HKS of T' or, more precisely, of the Riemannian manifold
(U, T) associated with 7. A finite element method for solving this problem is
proposed in this section. Moreover, we discuss the boundary conditions and check
the correctness of our results numerically.

From Egq. (1) follows that we can compute the heat kernel signature by the
formula

HKS(t,x) = Ze—*i’fqb,-(x)q&i (x) ,

where A; and ¢; are the eigenvalues and eigenfunctions of the Laplacian A on
(U, T). Thus we need a suitable discretization of A. Our first idea was to adapt
the Laplacian from the framework of discrete exterior calculus, see [3], which
is closely related to the cotangent Laplacian and widely used for triangulated
surfaces. However, this discretization makes intensive use of edge lengths, whereas
triangulating the domain U and computing edge lengths by the metric g results in
triangles which might not even satisfy the triangle inequality. Thus there seems to be
no easy modification of this approach. Instead we propose a finite element method
to compute the eigenvalues of the Laplacian.

According to Sect.3 we can think of 7' as the metric of a surface in local
coordinates. In this case the Laplacian is given by

1

Af = —
S =

div( 7] T‘IVf)
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for any function f € C° (M), where div and V denote the divergence and the
gradient on U, respectively. Hence we have to solve the eigenvalue equation

1
——div(V/|T|T7'Ve) = A¢ ,
g o )

or equivalently

div( |T|T—1v¢) =A/IT| ¢ .

The weak formulation of this problem is given by

/(jdiv(ﬁT_IVq&)wdx:/\/U\/mmﬁdx

while this equation must hold for every smooth function . We can rewrite the left
hand side to

/div (\/WT_IVq&)wdx
U
:Ldiv(ﬁT_l(V(]ﬁ)l//) dx—/U IT| T~V - Vi dx

:/ ( |T|T_1(V¢)1//) -ndx—/U\/WT_IVQS-Vde,

U

where 1 denotes the outward pointing normal of the boundary. If we apply Neumann
boundary conditions, i.e. V¢p-n = 0, the first term vanishes. Finally, we have to
solve the equation

/U\/WT—IVqs-vwdx:—/\/U\/mqwdx.

Choosing basis functions #4; the stiffness matrix L and the mass matrix M are
given by

L,’j =/ \/|T|T_1Vhi-thdx B
U
—/ \/|T|h,-hjdx ,
U

and we solve the generalized eigenvalue equation

Lv=AMv .
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min

Fig. 2 The result on the left is strongly influenced by the boundary. This effect can be reduced
significantly by reflecting a portion of the tensor field on the boundary (middle) and cropping the
result (right)

In our examples the tensor fields are given on regular grids and we use bilinear basis
functions /.

Usual boundary conditions like Dirichlet or Neumann boundary conditions
influence the HKS significantly. In particular for large time values the influence
is not limited to the immediate vicinity of the boundary. Neumann boundary
conditions cause the HKS to have higher values close to the boundary; their physical
meaning is that the heat is perfectly insulated. Dirichlet boundary conditions cause
the HKS to have a fixed value at the boundary. To overcome this problem we reflect a
part of the field at the boundary. Now we can use Neumann boundary conditions for
the sake of simplicity and obtain a significantly reduced influence of the boundary,
see Fig. 2. The physical meaning of these reflected boundaries is that the heat at the
boundary can diffuse outwards in the same way than inwards.

4.1 Numerical Verification

We check the correctness of the FEM described above experimentally by comparing
the HKS for a surface with the pull back of its metric, i.e. the commutativity of Fig. 1
is reflected by our verification. Consider a bumpy torus parametrized by

cos(u) (r1(u) + ra(v)cos(v))
S, v) = | sin(u) (ri(u) + r2(v)cos(v)) |

r2(v)sin(v)

where the radii are modulated, i.e. major radius and minor radius are given by
r(u) =3+ %cos(lOu) and r,(v) = 1+ %cos(Sv), respectively. This results in
the surface that is also used in Fig. 1. We compute the metric of the bumpy torus
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Table 1 Relative difference between HKS for tensors and surfaces

Resolution 502 100? 2007 4002
Relative difference 0.38369 0.07599 0.00920 0.00075

on [0, 27r]? by formula (4) and sample the resulting tensor field with four different
resolutions of 502, 1002, 200? and 400 points. For this four datasets we compute
the HKS with the FEM described above. The results are compared with the HKS
for the bumpy torus given as a triangulated surface with 400? points, while the HKS
is computed by the standard FEM Laplacian for triangulated surfaces, see e.g. [9].
If we denote the HKS for the tensor field by HKS7 and for surfaces by HKSs, the
relative difference for = 1 is given by

1
2

IS, (1, )~ HKSs (1, )lly  (Joaep HKST(13) — HKSs (1,2)) d)

|HKSs (1, )1, ( Joonp (HKSs (1, x))? dx)%

See Table 1 for the relative difference between HKSt for different resolutions and
HKSg5. It is obvious that HKSt approaches HKSs quickly for increasing resolutions.

5 Results

We show several results of our method in this section. In the following we investigate
the significance of the HKS and the meaning of Gaussian curvature in the general
tensor context. To get a more intuitive understanding, we analyze the influence
of the eigenvalues and eigenvectors on the HKS, and consider synthetic tensor
fields with constant eigenvectors and eigenvalues, respectively. As central structural
components of tensor fields we also consider isolated degenerate points in our
analysis. As real world example we apply the method to a diffusion tensor data set
of the brain. During the whole section we use the colormap shown in Fig. 2, which
ranges from the minimum to the maximum over all results in one figure, unless
otherwise stated.

In Fig. 3 we analyze easy examples of diagonal tensor fields, i.e. T, = 0. These
fields serve as examples of tensor fields with variable eigenvalues but constant
eigenvectors. For the tensor field 7!, where component T}, is a Gaussian function
depending on u; and T, is constant, the HKS is constant. The field 7 is very
similar to 7!, the only difference is that T121 depends on u,. In this case the HKS is
not constant anymore. To understand this we consider the formula (3) forz = 1, i.e.

HKS(1,x) = % (1 + %K(x) + % (4K(x)* = 3AK(x)) + ) . (5
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r= () )

Fig. 3 HKS of diagonal tensor fields for small 7. The function f is givenby f(x) =1+ 10e=~*
and the tensor fields are defined for u € [—5, 5]
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Fig. 4 Tensor fields defined on [0, 1]? by constant eigenvalues and an analytic major eigenvector
field (see caption). The HKS is shown for small ¢ and the major eigenvector field is visualized by
some integral lines. The dependency of the HKS on the eigenvectors demonstrates a significant
difference to other scalar quantities like trace, determinant and anisotropy. The colormap ranges
from the minimum to the maximum of the single images

while the Gaussian curvature for diagonal T is given by

K= 1 (3 0, Ta _ 0, T ) (6)
2JTiuTn \ " VTiuTn  “NVTiuTn)

Consequently, if d,, 72> = 0 and d,,71;1 = 0 we have K = 0 and thus HKS(1, x)
is constant for T''. The tensor field T3 has components 77, and T3, depending on
uy and u,, respectively, consequently both diagonal components have influence on
the HKS. The field T* satisfies T}, = T, where T}, and T, depend radially on u.
As expected, the HKS depends also radially on u.

The HKS for tensor fields with constant eigenvalues and variable eigenvectors
are shown in Fig.4. These fields are defined by choosing fixed eigenvalues and
a variable major eigenvector field, which is visualized by some integral lines.
We observe that the HKS is also influenced by the eigenvectors and has high values
in compressing regions and low values in expanding regions. This shows also that
the HKS and other scalar quantities like trace, determinant and anisotropy, which
depend only on the eigenvalues.
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Fig. 5 HKS of degenerate points with different index ind for small z. The tensor field is defined
on u € [—1, 1] and the eigenvalues are given by 10 + 3|u| and 10 — 3|u]|
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Fig. 6 HKS of a brain dataset for different . The colormap ranges from the minimum to the
maximum of the single images (Brain dataset courtesy of Gordon Kindlmann at the Scientific
Computing and Imaging Institute, University of Utah, and Andrew Alexander, W.M. Keck
Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-Madison)

In Fig. 5 we consider degenerate points of tensor fields with indices between —2
and 3. The index ind is defined to be the number of rotations of the eigenvector
fields along a curve enclosing the degenerate point (and no other degenerate points).
For a more formal definition see [2]. The results show that the HKS also hints at
topological features like degenerate points, although there seems to be no obvious
way to derive the tensor field topology from the HKS.

As a last example Fig. 6 shows a diffusion tensor dataset of a brain. Again, the
HKS is evaluated for different timesteps. Although the extraction of a slice might
cut valuable information the structure of the brain becomes obvious by the HKS.
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The reason for this is that the heat transfer is based on the same mathematical
foundations as the diffusion process which is described by the diffusion tensor
field. This means that also the HKS has an immediate link to the diffusion process,
which makes the HKS a promising quantity for the analysis of diffusion tensor data.
It suggests, that the curvature has also a deeper meaning for Riemannian manifolds
associated with a diffusion tensor dataset. Moreover, the time parameter ¢ allows to
focus on smaller and larger structures.

6 Conclusion and Future Work

By applying the HKS to tensor fields we have developed a new method for the
visualization of tensor fields. Compared to common scalar invariants like the trace
or the determinant it provides additional information, as Fig.4 shows. A special
strength of the method is its inherent level of detail properties. Thus, it is possible to
emphasize smaller or larger structures. In contrast to naive Gaussian smoothing the
scaling is directly driven by the tensor data itself. For diffusion tensor data the results
are very promising. For the future we plan on further investigating the significance
of the HKS for further applications. It might be of interest to compare the scaling
properties to ideas of anisotropic diffusion. We will also work on an extension to 3D,
since due to the projection of 3D tensors on 2D slices much valuable information
is lost.

From a theoretical point of view the method can be generalized easily to 3D
tensor fields. With the exception of the formulas indicating the relation to Gaussian
curvature, all formulas are valid in higher dimensions. The problem is that the
computation of the eigenvalues of the Laplacian takes very long for most 3D data.
The computation of the first 500 eigenvalues for a dataset with 2562 points already
takes a few minutes, thus the computation time for a dataset with 256* points will
not be feasible. For tensor fields defined on surfaces a generalization is also no
problem from a theoretical point of view, but in this case the interpretation is even
more difficult. The HKS of the standard metric on the surface results in the usual
HKS for surfaces, i.e. the HKS is influenced not only by the tensor field but also by
the surface itself.

Acknowledgements This research is partially supported by the TOPOSYS project FP7-ICT-
318493-STREP.

Appendix

The row expansion of the HKS for small values of ¢ is given by

- .
HES(1,x) = — > w0t
T

i=1
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In the general case the functions u; are given by

u(x) =1,

() = 2R

1 N :
ur(x) = — (2Rijus RV¥ (x) + 2Rk R7* (x) + 5R*(x) — 12AR(x))

360
where R;jj; is the Riemann curvature Tensor, R, = Rj.,. « the Ricci tensor and
R = R§ the Ricci scalar or scalar curvature. For surfaces these tensors can be

written in terms of the Gaussian curvature by

Rijii = K(gikgji — gi1&jk) -
Rjk = Kgjk ,
R =2K .

Thus we find

Riji R = K(gingy — gugin) K(g* g/ — g''g'%)
=K (gikgjlgikgjl —gigng ¢ —guging™ g’ + gilgjkg”gjk)
= K*(818] — 8,5 — 818 +5/8))

=K’ (4—2-2+44)=4K",
RjR* = K?g; g% = K] = 2K* .
And consequently the functions u; can be expressed in terms of K by

up(x) =1,

() = 3K .

ur(x) = 41—5 (4K(x)* —=3AK(x)) .
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