Mathematics and Visualization

Peer-Timo Bremer - Ingrid Hotz
Valerio Pascucci - Ronald Peikert Editors

Topological
Methods in Data
Analysis and
Visualization Il

@ Springer

Mathematics and Visualization

Series Editors

Gerald Farin
Hans-Christian Hege
David Hoffman
Christopher R. Johnson
Konrad Polthier

Martin Rumpf

For further volumes:
http://www.springer.com/series/4562

Peer-Timo Bremer e Ingrid Hotz «
Valerio Pascucci « Ronald Peikert
Editors

Topological Methods in Data
Analysis and Visualization

Theory, Algorithms, and Applications

With 98 Figures, 69 in color

@ Springer

Editors

Peer-Timo Bremer

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore

California

USA

Valerio Pascucci
School of Computing and SCI Institute
University of Utah

Ingrid Hotz

Comparative Visualization Group

Konrad-Zuse-Zentrum fiir
Informationstechnik

Berlin

Germany

Ronald Peikert
Department of Computer Science
ETH Ziirich

Salt Lake City Ziirich
Utah Switzerland
USA

ISSN 1612-3786

ISBN 978-3-319-04098-1

DOI 10.1007/978-3-319-04099-8
Springer Cham Heidelberg New York Dordrecht London

ISSN 2197-666X (electronic)
ISBN 978-3-319-04099-8 (eBook)

Library of Congress Control Number: 2011944972
Mathematical Subject Classification (2010): 76M24, 53A45, 62-07, 62H35, 65D18, 65U05, 68U10

(© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

As many areas in science and engineering are relying more and more heavily
on computational science, the analysis of extremely large and complex data sets
is becoming ever more crucial. Even though they are a comparatively recent
development, topological techniques have proven highly valuable in this context as
they can provide a high level, abstract view of data which is well aligned with human
intuition. As a result, topological concepts often translate directly into features of
interest in various applications and thus can reduce the time-to-insight.

The quick rise in popularity of topological techniques has led to an interest and
exciting state of the art that spans the entire gamut of analysis of extremely large data
to fundamental, theoretical work. Similar to previous events, TopoInVis 2013 was
designed to provide a forum for research in the entire spectrum of techniques to be
discussed with a focus on experimental solutions for open problems. The event was
held in Davis, California, on the beautiful campus of the University of California
with the gracious support of the Scientific Computing and Imaging Institute of
the University of Utah and the Computer Science Department at UC Davis. The
two and a half day event led to a number of interesting discussions on the current
state of the art in topological research as well as interesting panel discussions and
off-line research collaborations. The conference was followed by an open call for
contributions to this volume in which all presenters as well as the community at large
was invited to submit novel research contributions. This resulted in 17 interesting
chapters ranging from contributions to flow field analysis to applications in medical
and material science.

Acknowledgements

TopoInVis 2013 has been supported by the Scientific Computing and Imaging
Institute of the University of Utah and the Computer Science Department at UC
Davis. In particular, we would like to acknowledge the help of Deborah Zemek
and Nathan Galli at Utah in organizing and the support that we received from
our colleagues of the Institute for Data Analysis and Visualization (IDAV) and the
Department of Computer Science at UC Davis.

vii

Contents

PartI Robust Topological Analysis

Robust Detection of Singularities in Vector Fields 3
Harsh Bhatia, Attila Gyulassy, Hao Wang, Peer-Timo Bremer,
and Valerio Pascucci

Interpreting Feature Tracking Through the Lens of Robustness........... 19
Primoz Skraba and Bei Wang

Simplification of Morse Decompositions Using Morse Set Mergers........ 39
Levente Sipeki and Andrzej Szymczak

Toward the Extraction of Saddle Periodic Orbits 55
Jens Kasten, Jan Reininghaus, Wieland Reich,
and Gerik Scheuermann

PartII Efficient Computation of Topology

Computational Topology via Functional Programming:
A Baseline Analysiscoi i 73
David Duke and Hamish Carr

Distributed Contour Treesoooiiiiiiiiiiii s 89
Dmitriy Morozov and Gunther H. Weber

Clear and Compress: Computing Persistent Homology in Chunks 103
Ulrich Bauer, Michael Kerber, and Jan Reininghaus

Parallel Computation of Nearly Recurrent Components
of Piecewise Constant Vector Fields............................ot. 119
Nicholas Brunhart-Lupo and Andrzej Szymczak

ix

X Contents

Part III Simplification, Approximation, and Distance

Measures
Notes on the Simplification of the Morse-Smale Complex................... 135
David Giinther, Jan Reininghaus, Hans-Peter Seidel,
and Tino Weinkauf
Measuring the Distance Between Merge Treesccou. 151

Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov,
Gunther H. Weber, and Bernd Hamann

Topological Integrity for Dynamic Spline Models During
Visualizationof BigData i 167
Hugh P. Cassidy, Thomas J. Peters, Horea Ilies, and Kirk E. Jordan

Part IV Time-Dependent Analysis

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents 187
Ronald Peikert, Armin Pobitzer, Filip Sadlo,
and Benjamin Schindler

Development of an Efficient and Flexible Pipeline
for Lagrangian Coherent Structure Computation 201
Siavash Ameli, Yogin Desai, and Shawn C. Shadden

Topological Features in Time-Dependent Advection-Diffusion Flow....... 217
Filip Sadlo, Grzegorz K. Karch, and Thomas Ertl

Part V. Applications

Definition, Extraction, and Validation of Pore Structures

in Porous Materials 235
Ulrike Homberg, Daniel Baum, Alexander Wiebel,

Steffen Prohaska, and Hans-Christian Hege

Visualization of Two-Dimensional Symmetric Positive Definite
Tensor Fields Using the Heat Kernel Signature............................... 249
Valentin Zobel, Jan Reininghaus, and Ingrid Hotz

Topological Features in Glyph-Based Corotation Visualization 263
Sohail Shafii, Harald Obermaier, Bernd Hamann,
and Kenneth 1. Joy

Part I
Robust Topological Analysis

Robust Detection of Singularities in Vector
Fields

Harsh Bhatia, Attila Gyulassy, Hao Wang, Peer-Timo Bremer,
and Valerio Pascucci

Abstract Recent advances in computational science enable the creation of massive
datasets of ever increasing resolution and complexity. Dealing effectively with such
data requires new analysis techniques that are provably robust and that generate
reproducible results on any machine. In this context, combinatorial methods become
particularly attractive, as they are not sensitive to numerical instabilities or the
details of a particular implementation. We introduce a robust method for detecting
singularities in vector fields. We establish, in combinatorial terms, necessary and
sufficient conditions for the existence of a critical point in a cell of a simplicial
mesh for a large class of interpolation functions. These conditions are entirely local
and lead to a provably consistent and practical algorithm to identify cells containing
singularities.

1 Introduction

Vector fields, which are either acquired from real-world experiments or generated
by computer simulations, are ubiquitous in scientific research. In recent years, the
increase in computational power coupled with the ability to simulate ever more
complex data has greatly increased the need for the automatic analysis of large-
scale vector fields. To handle the complexity and size of modern simulations,

H. Bhatia (><) ¢ P.-T. Bremer
SCI Institute, University of Utah, Salt Lake City, UT, USA

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA, USA
e-mail: hbhatia@sci.utah.edu; bhatia4 @llnl.gov; ptbremer @sci.utah.edu; bremer5 @llnl.gov

A. Gyulassy * V. Pascucci * H. Wang
SCI Institute, University of Utah, Salt Lake City, USA
e-mail: jediati @sci.utah.edu; pascucci @sci.utah.edu; haow @cs.utah.edu

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 3
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__1,
© Springer International Publishing Switzerland 2014

mailto:hbhatia@sci.utah.edu
mailto:bhatia4@llnl.gov
mailto:ptbremer@sci.utah.edu
mailto:bremer5@llnl.gov
mailto:jediati@sci.utah.edu
mailto:pascucci@sci.utah.edu
mailto:haow@cs.utah.edu

4 H. Bhatia et al.

flexible and multi-scale methods are needed. These techniques must be able to
define features at different levels of resolution, remove noise, and most importantly
be computationally robust and consistent with the mathematical theory of vector
fields. State-of-the-art topological techniques fulfill many of these requirements
by defining features based on the global behavior of streamlines, which are the
curves parallel to the direction of flow at a given instant, and by providing feature-
based simplification. For example, topological techniques for 2D vector fields use
singularities — points where the field is zero, such as sources, sinks, saddles, etc.,
together with separatrices — the streamlines of saddles, and limit cycles — the
streamlines which wrap back onto themselves, to decompose the vector field into
regions of similar flow behavior. Such decompositions are then used to analyze,
visualize [21,24], simplify [29,31], and compress [23] vector fields.

However, the majority of analysis and visualization techniques are based on the
direct application of the theory of smooth vector fields to sampled flows, ignoring
the fact that real numbers are replaced by finite-precision floating-point arithmetic.
As aresult, such numerical approaches may lead to the lack of consistency, meaning
that the fundamental laws of smooth mathematical theory may not be preserved in
practical applications. One type of inconsistency is the topological inconsistency,
e.g., intersection of streamlines, violation of the Poincaré-Hopf theorem, etc. In
order to obtain consistent results, the analysis must have numerical robustness,
meaning that it is independent of the underlying machine and/or floating-point
standards. Numerical instabilities may produce topological structures which are
incorrect or inconsistent, hence questioning the fidelity of any subsequent analysis.

In several application areas, singularities of scalar fields have been shown to
correspond to features of interest. For example, Laney et al. [9] use the gravitational
potential on an envelope surface to indicate mixing structures in a Rayleigh-
Taylor simulation. Mascarenhas et al. [15] and Bremer et al. [2] use extrema in
fields derived from different combustion simulations to count regions of flame
extinction and strong burning, respectively. Robust singularity detection in vector
fields promises similar results for new applications such as turbulent flow analysis.
As a result, the focus of the current work is a robust technique for the detection of
singularities, which allows for consistent analysis.

Real-world data is most often available as discrete samples at the vertices of
a mesh, and a continuous function is recovered through interpolation of these
values. The particular case of piecewise-linear (PL) interpolants has been studied
extensively in the context of identification and representation of singularities [8,27,
29,31]. The simplicity of linear interpolation makes PL vector fields preferred in
many applications. However, even with this simple interpolant, robust identification
of singularities remains a challenge, as in the case of many non-combinatorial
geometric algorithms [22, 32]. For example, linear interpolation on a simplicial
domain may admit singularities on the boundaries of simplices — an unstable
configuration highly sensitive to numerical perturbation. Figure 1 shows how
non-combinatorial methods may yield false positives or false negatives in these
configurations, leading to inconsistent analysis. Furthermore, a large number of fluid
simulations impose no-slip boundary conditions, meaning that the vectors at the

Robust Detection of Singularities in Vector Fields 5

B \/ \/ \/C‘
Fig.1 (a) When v and v¢ are anti-parallel, a singularity exists on the edge BC. Numerical
techniques for identifying triangles containing critical points might test positive for (b) both ABC
and BDC, or (c) neither of them. (d) A practical implementation of our combinatorial technique

uses Simulation of Simplicity [5] to consistently determine the triangle containing the critical
point

boundary are zero. These zero-vectors are the artifacts of the boundary/simulation
rather than singularities of the field. While it is possible to filter them out of the
critical point identification, it requires an explicit manual intervention, on top of a
priori knowledge of the boundary conditions.

In contrast to numerical approaches, some combinatorial alternatives [18, 19]
have been proposed to extract the topological structure from vector fields. Such
techniques typically convert the input data into a discrete form to obtain numerical
robustness, however, they are severely limited since it is not known how well do
these discrete techniques approximate the field.

To address these problems, new combinatorial techniques are required which
are guaranteed to detect all topological structures in a manner consistent with the
fundamental principles of vector fields. To this end, our contributions are:

* We prove the necessary and sufficient conditions for the existence of singularities
within cells of a simplicial mesh for a broad class of interpolation functions.

* We show how to turn these necessary and sufficient conditions for the existence
of singularities into a combinatorial algorithmic approach.

2 Related Work

The topological skeleton of vector fields introduced by Helman and Hesselink [8] is
of special interest to many researchers. It consists of important features of the field
such as singularities, saddle separatrices, and limit cycles. Thus, the identification
and classification of these features is an integral part of the analysis and visualization
of vector fields. However, most of the early attempts at identification of singularities
were based on numerical analysis. For example, isolated non-degenerate singu-
larities were identified using numerically integrated tangent curves (streamlines)
and classified, based on eigenvalue analysis [8]. Lavin et al. [10] and Batra and

6 H. Bhatia et al.

Hesselink [1] extract singularities in a PL vector field V = Ax + o by numerically
solving the system Ax = 0 for each cell in a triangulated domain.

The detection of singularities has also been extended to higher-order singulari-
ties [20]. Tricoche et al. [27] analyze higher-order singularities in 2D by partitioning
the neighborhood of the singularity into sectors of different flow behavior. The
topological analysis of higher-order singularities provides a foundation for the
design and simplification of vector fields. Tricoche et al. [28] simplify the topology
of vector fields by merging clustered singularities within a convex polygon into
higher-order singularities. These ideas have been extended to 3D by Weinkauf et
al. [30,31]. It is more challenging to identify singularities in nonlinear vector fields.
Li et al. [11] subdivide the simplicial mesh and compute the vector field by side-
vertex interpolation in polar coordinates. Singularities are then ensured to be located
at the vertices.

In general, detection of singularities can be reformulated as solving nonlinear
systems of equations. The Newton-Raphson method and Broyden’s method can be
used to solve such systems. However, techniques aimed at solving generic nonlinear
systems are sensitive to perturbation and not guaranteed to find all the solutions.
For multivariate rational splines, Elber and Kim [6] apply the bisection method to
localize the potential regions containing roots. However, computational complexity
is a major concern of their method.

Consistency and robustness are particularly desired when computing the topo-
logical skeleton of a vector field. A number of techniques have been proposed to
extract it in a stable and efficient manner. Such techniques range from deriving
some properties from the original vector field, and basing the extraction on those
properties; to converting the vector field into a simpler combinatorial form which
makes the extraction more robust.

For example, Polthier and Preuf} [17] detect singularities as the extrema of the
rotation-free and divergence-free potentials obtained from the discrete Helmholtz-
Hodge decomposition of the vector field. This method, however, only works for
piecewise-constant (PC) vector fields. Chen et al. propose the Entity Connection
Graph (ECG) [3] and the Morse Connection Graph (MCG) [4] as the topological
representation of PL vector fields. However, both ECG and MCG do not represent
higher-order features of the field. On the other hand, Reininghaus et al. [18, 19]
construct a combinatorial vector field. While using their combinatorial field enables
the extraction of a consistent topological structure, it is unclear how close the
resulting combinatorial field is to the original field. By comparison, this work
proposes a robust and consistent combinatorial identification of singularities by
working directly on the input vector field.

In addition to the techniques discussed above, the notion of Poincaré index also
inspires combinatorial approaches to detect critical points. In this context, Garth et
al. [7] propose a method to detect and track singularities in time-dependent vector
fields by ensuring the Poincaré index is always preserved. Other techniques ensuring
the validity of Poincaré index include the works of Mann and Raywood [14] and
Trioche et al. [25,26].

Robust Detection of Singularities in Vector Fields 7
3 Foundations

Let D be a bounded, open subset of R". The closure and the boundary of D are
denoted by D and 9D respectively. A pointx € R” is denoted as X = (Xo, . .., X,—1),
and has an L-infinity norm |x| = max{|x;|;i = 0,---,n — 1}. C(D) denotes the
class of continuous functions ¢ € C(D), such that ¢(x) : D — R” with the norm
llgl] = supeep |¢(X)|. C'(D) is a subset of C(D) such that ¢ € C'(D) has
continuous first-order partial derivatives. Let p = ¢(x) = (¢o(X), -+, Ppp—1(X)),
then, the Jacobian matrix J of ¢ is given as Jp(x) = [Vo,---,V¢,—1]7. For
¢ € CYD), p = ¢(x) is called a degenerate value of ¢ if there exists x € D
such that det(J¢ (x)) = 0, otherwise p is a regular value of ¢.

3.1 Degree Theory

The proposed critical point detection technique requires results relating the exis-
tence of certain values in the image of a function to the span of the image. We are
interested in a particular class of functions ¢ : R” — R” for which the pre-image of
a non-degenerate value p is a finite set of points. Therefore, we utilize the Brouwer
degree as a tool for determining whether or not a particular value exists inside the
image of a simplex. The following definitions have been made by Lloyd [12].

For a bounded, open subset D C R”, and a continuous function ¢ € C (D_), the
Brouwer degree of ¢ in D with respect to the value p, where p ¢ ¢(dD) is defined
as follows:

Definition 1 (Brouwer degree for C'(D) and regular value p). If ¢ € C'(D)
and p is a regular value of ¢, then

deg(¢, D.p) =) sign(det(Jp(x))).

x€¢~(p)

An intuition behind the concept of Brouwer degree is illustrated in Fig.2(a). It is
essentially the count of the net crossings of p by the image of D under ¢. The above
definition is limited to regular values p only. Not all values in a sampled function
reconstructed through interpolation are regular, so our definition must encompass
degenerate values as well.

Definition 2 (Brouwer degree for C'(D) and degenerate value p). If ¢ <
C'(D) and p is a degenerate value of ¢, then

deg(¢, Dv p) = deg(d)v D, Pl)

where p; is any regular value such that |p — p;| < dist(p, ¢ (dD)).

8 H. Bhatia et al.

X1 \—Dy——H
1 X2} !
Dl ! X3 D2

D, i Ds !

Fig. 2 The Brouwer degree counts the net number of times p is crossed by the image of D under
¢. The “positive” (det(J¢ (x)) > 0) and “negative” (det(J¢(x)) < 0) crossings are shown as solid
and hollow dots respectively. (a) For the open and bounded sets D and D,, the Brouwer degree
of ¢ (x) with respect to the value p is —1 and O respectively. (b) When the sets D; are symmetric,
Theorem 2 guarantees that if the values on the boundary have different signs, then the Brouwer
degree with respect to 0 is odd, as is the case for D, and D3

The existence of a non-degenerate value in every neighborhood of p is guaranteed by
Sard’s Theorem [12]. Similarly, we would like to extend this definition to functions
that are continuous, but not necessarily in C'(D).

Definition 3 (Brouwer degree for C(D)). If ¢ € C(D), then

deg(¢, D, p) = deg(¢1, D, p)

where ¢, is any function in C'(D) such that for any x € D, |¢(x) — ¢1(x)| <
dist(p. ¢ (D).

Basically, we can find a function ¢; that is “close” to ¢ and has continuous
derivatives, and define the Brouwer degree with respect to this function.

Using the Brouwer degree, the net number of crossings of p by the image of D
can be counted. If this number is nonzero, then there exists at least one x such that
¢(x) = p. This leads to the following theorems:

Theorem 1 (Kronecker’s existence theorem). If deg(¢, D,p) # O, then the
equation ¢ (X) = p has at least one solution in D.

Theorem 2. Let D be a bounded, open, symmetric subset of R" containing the
origin. If ¢ : D — R" is continuous, 0 ¢ ¢ (D), and for all x € 0D

¢ (x) » ¢ (—x)
lp®| " lo(=x)|

then deg(¢, D, 0) is an odd number [12].

Robust Detection of Singularities in Vector Fields 9

Intuitively, Theorem 2 ensures that ¢ crosses ¢(x) = 0 at least once if no antipodal
vectors of ¢ are parallel, as can be seen in Fig. 2b.

3.2 Sampled Vector Fields

The proposed technique addresses the detection of singularities for interpolated
vector fields, where vectors are defined on the vertices of a simplicial complex and
then interpolated on the interior of simplices.

A k-simplex, Gk, is the convex hull of k + 1 affinely-independent vertices, such
that S = {x;},x; € R", 0 <i < k < n. A simplex S is called a [-face of S* for
| < kifS! € S* andaproper-face of S forl < kif S' C S¥. A proper k —1-face
S’;_l of SK is called its facet if S’;_l ={x},x;, CSK, 0<i<k<n, i#j,ie.,
it is constructed by removing vertex x; from S¥. If &' is a (proper) face of S*, then

Sk is called a (proper) coface of S!. 8 denotes the interior of a simplex, and is given
by removing all the proper faces from a simplex. A simplicial complex, denoted as
M, is a collection of simplices such that S; € .# implies that all the faces of 5;
are in ./, and the intersection of any two simplices is a face of both or empty. The
local neighborhood of a vertex x; can be defined in terms of its star S(x;), which
consists of all cofaces of x;. The star is not closed under taking faces.

A sampled vector field is given as a simplicial complex .# with m + 1 vertices
{X0,...,Xm}, X; € R" and vector values {vo,...,v,},v; € R" defined at the
vertices. The vector field is called generic when

1. ||vi]| > 0,Vi €{0,...,m},
2. The vectors {v,,, ..., V;, } at vertices {X;,, ..., X;, } of the d-simplex S; € .# are
affinely independent.

Note that not every vector field sampled from observations or simulations is generic,
since the sampled vector magnitudes can be zero violating condition 1. While we
assume a generic vector field in the following discussion, Sect. 4.2 discusses how
this assumption can be relaxed.

In this chapter, we focus on a class of interpolating vector valued functions which
can be expressed as

V(x) = Z Vi (x), such that, Vi(x) = Z wj (X)V;

g,‘ en Xj €S

where, the weight functions w;(x) defined for vertices x; are continuous, non-
negative, and local, meaning w; (x) > 0, VX € S(X;), and w; (x) = 0, Vx ¢ S(x;).
Following the definition of the weight functions w; (x), it is clear that for the
simplex S; = {Xj,,.... X}, w;(X) > 0 only for j € {io,...,is}. Furthermore,
w;(x) - 0asx — 5;, where G; is a facet of 5;. Since V; are defined only on
the interior of simplices, V is C° continuous across the faces of the simplices. It is

10 H. Bhatia et al.

Fig. 3 The mapping % : S — B in R2. The origin 0 is contained in the interior of S

simple to confirm that PL interpolation falls into this class of functions. Also, a
variant of Radial Basis Function (RBF) interpolation falls into this class where the
weights smoothly fall to zero at the boundary of the vertex stars.

4 Critical Point Detection

This section discusses how Brouwer degree theory can be used to robustly detect
singularities in the class of interpolated vector fields defined in Sect. 3.2.

4.1 Main Result

Using the concepts introduced above we will show that a simplex S contains a
critical point if and only if the origin, 0, lies in the convex hull of the vectors at the
simplex’s vertices. To connect the results of Sect. 3 with vector fields on simplices,
we define a one-to-one mapping from a simplex to an enclosing ball.

Let S = {xp,...,Xp},m < n,x; € R" be a m-simplex of .#. We can assume,
without loss of generality, that the origin 0 is in the interior of S. Let B be the unit
ball. Let x (# 0) be a point in the interior of S, and X’ be the intersection of the ray
from the origin through x with the boundary of S. Then, we can define a mapping
P .S — Bas B(x) = x/||X|| for x # 0, and Z(0) = 0. (see Fig. 3)

Assuming non-degenerate simplices, 4 is continuous and invertible, with 0 as its
fixed point, and we can use it to map V from any simplex in .# onto an enclosing
ball B with center in the interior. We now show that if 0 is contained in the convex
hull of V, the Brouwer degree of this simplex with respect to 0 is odd.

Lemma 1. Let S = {xg,...,X,},X; € R" be a simplex of 4 containing the origin
0, and V be a vector field as defined above. If 0 lies in the convex hull of {vy, ..., V,},
then deg(V, S, 0) is odd.

Pro_of. Let B be the unit ball of S as defined above. Furthermore, define V:B— R",
as V(x) = V(% !(x)). Assume, there exists an x;, € 9B such that

Robust Detection of Singularities in Vector Fields 11

V(xp) = a-V(—x), witha > 0.

The following argumentation proves that this assumption leads to a contradiction.
Due to continuity of %, it can not map adjacent points of S to antipodal points

of B, therefore it follows that there exist two different facets of S, namely S; and

Sk, containing parallel vectors. Let x € S; and 'y € S, such that for some a > 0,

Yo WiV =a- Y, o wi(y)vVis j # k-

D owi@vi—a- Y wi(y)vi =0

i%j i#k
D i (®) —awi (y) Vi —aw; (y)V; + wi(X)vi =0
i)k
Also, since 0 lies in the convex hull of {vy,...,v,}, we can find ¢; such that
Y ocivi =0,and¢; =0, Vi,and) |_,¢; = 1. Now, since {vo,...,V,} forms

an affine combination,) A;v; = Y u;v; < A; = p; Vi. This implies that

ci = wi(x) —aw;(y) Vi # jk
ke = wi(X)
¢j = —aw;(y).

However, since all ¢;’s, w;’s, and a are positive, tl_le third condition gives a
contradiction. Hence, a point x, with V(x;) = a-V(—x;) does not exist. By
Theorem 2, deg(V, B, 0), and hence deg(V, S, 0) is odd. O

Combining all the results presented above allows us to prove the main result:

Theorem 3. Let S = {xo,...,X,},X; € R" be a simplex of # and V be a vector
field on A as defined above. Then S contains a critical point if and only if 0 is in

the interior of the convex hull of {vy, ..., V,}.

Proof. 1If 0 is in the interior of the convex hull of {vy,...,v,}, then the Brouwer
degree of the origin inside S is odd (Lemma 1). By Theorem 1, there exists a critical
pointin S.

If a critical point is located at x in S, then

v(x) = wa XV, =0
i=0

. W,’(X) _ n ‘ -
ﬁgmvf =Y (v =0.

i=0

12 H. Bhatia et al.

where, ¢; (X) = % Since all the weights w;’s are non-negative, we have
Jj=0"J

0<c¢ <1, Vi,and Z?:o ¢; = 1. Hence, 0 is in the interior of the convex hull of

V;’S. |

The practical implication of this result is that, to identify a simplex containing a
critical point, one does not need to know the actual interpolation function as long
as it satisfies the properties discussed in Sect. 3.2. Furthermore, it suffices to check
the convex hull of the vectors at the vertices to find singularities. Thus, detection of
singularities for any interpolation scheme is reduced to a simpler PL test which can
be performed using the Simulation of Simplicity (SoS) [5] as will be discussed later.

Notice that if the space is sampled too sparsely, or a more complex interpolation
scheme is used, multiple critical points may appear within a single simplex. In this
case, our technique will assume the simplest possible interpretation of the vectors at
the vertices. In particular, if the singularities in the same simplex cancel each other,
then no singularities will be reported, since the vector field on the boundary can be
completed with an entirely regular vector field in its interior.

The topological consistency of our technique can be proved as below.

Corollary 1. Using Theorem 3 always leads to topologically consistent critical
point detection for V defined on .# as above.

Proof. Given a closed orientable n-dimensional manifold M, we consider its
corresponding simplicial complex .#. We know that any smooth vector field on M
must have an even number of critical points. Therefore, to demonstrate consistency,
we show that our technique detects an even number of critical points for the sampled
vector field V on .Z.

We study .# in function (vector) space by considering the simplicial complex
defined by the vectors of V, and denote it as .#,. Note that an orientable and closed
. implies an orientable and closed .#. There exists an embedding of .# in R"T!
where the n + 1 component is chosen at random. We trace a line ¢ through the
origin and orthogonal to the R” subspace. Note that £ corresponds to zero vector
0. By Theorem 3, singularities are not allowed to exist on the faces of simplices
of .# . Since ., is closed, there exist an even number of transveral intersections
between .#, and £. Consequently, each intersection corresponds to a single simplex
containing a critical point at its interior, leading to an even number of simplices with
critical points; therefore, even number of critical points. O

4.2 Robust Computation Using the Simulation of Simplicity

Detection of critical point in a simplex S requires a robust way of determining
whether the zero vector is contained in the convex combination of the vectors of
S. Let Sy denote the simplex created by the vectors of V at the vertices of S,
then detection of critical point simply translates into testing whether the origin 0

Robust Detection of Singularities in Vector Fields 13

Algorithm 1 Positive, (xj,, ..., X},)

s <= Sort (jo, ..., ju): 8 is the number of swaps needed to sort
d < Signdet(xj,,...,X;,)
if odd(s) then
d < —d
end if
return d

lies inside Sy. This point-in-simplex test can be further reduced to computing the
orientation of the test point with respect to the facets of the simplex. This section
describes how this procedure can be performed in a combinatorial manner.

The orientation of n + 1 points in n-dimensional space can be computed as the
sign of the following determinant

X0,0 - - - X0,n—1 1
det(xo,...,X,) = e

Xn,() o Xpn—1 1

The determinant is zero if all the points lie on a common hyperplane. For example,
in 2D, the orientation of three points is counter-clockwise (positive) if the sign of the
corresponding determinant is positive, or clockwise (negative) if the sign is negative.
The degenerate case where the three points are collinear leads to the determinant
being zero. Recall that the sign of a determinant switches if an odd number of
row-exchanges are carried out, therefore, care must be taken with respect to the
order of the points. Algorithm 1 [5] calculates the orientation of a set of points, by
first assigning them a consistent order (sorting), and then computing the sign of the
determinant.

As discussed in Sect. 3.2, the determinant is always non-zero for generic vectors.
To impose genericity, we use the Simulation of Simplicity (SoS) [5], which is a
general-purpose programming technique to handle degeneracies in the data. The
SoS applies a symbolic perturbation to the data preventing any of the determinants
from becoming 0, thus providing a non-degenerate point-in-simplex test. Intuitively,
if a point lies on a shared coface of two or more simplices, the SoS makes a
consistent choice by enforcing it to be contained inside one of them, while it lies
outside the rest of them.

Numerical robustness is achieved by first converting the data to a fixed precision,
and then representing the values as long integers in computing the determinant
(as used in the Geomdir library [16]), hence removing the need for floating-
point arithmetic. As a result, the determinant computation is both robust and
combinatorial. We point out that Algorithm 1 is the fundamental step in the process
of critical point detection, and helps achieve robustness by replacing numerical data
(vector components) with combinatorial information (orientation).

14 H. Bhatia et al.

Algorithm 2 Point x in simplex S = {x¢, ..., X,},Xx; € R”
s <— Positive, (X, . . ., X,)
fori = 0ton do

()/((/)v ,X;) s (X07~ e Xp)
X, < X
s; <— Positive, (Xy, X])
if s # s5; then
return false
end if
end for
return true

Using Algorithm 1 for orientation computation, Algorithm 2 [5] performs the
point-in-simplex test. Given a simplex S = {Xo, ..., X,},X; € R”, the first step is to
determine the orientation of the facets of the simplex. Then, one by one each facet
is replaced by the given test point and the corresponding orientation is computed. If
all such combinations have the same orientation, then the test point lies inside the
simplex, otherwise not.

S Experimental Results

We apply our technique to identify critical points in PL vector fields on a
triangulated domain. For each simplex in the domain, we test for origin to lie inside
the simplex created by the vectors at its vertices using the SoS, and use the Geomdir
library [16] to compute the determinants robustly. We compare our method with the
numerical method to detect critical points [10], which solves a linear system for
every simplex in the domain.

To evaluate the two techniques, we create a synthetic 2D vector field with known
critical points, two of which are carefully placed on an edge and a vertex. In Fig. 4,
we see that for both of these critical points, the numerical technique determined
that all the triangles sharing the corresponding edge and vertex respectively, contain
critical points — a topologically inconsistent result. Our proposed method using SoS,
however, makes a choice by representing each critical point as one triangle only,
which matches the known ground truth.

To demonstrate dimension-independence of our technique, we test it on the
Lorenz system (A 3D vector field V(x, y,z) = (6(y — x), x(p —2) — y, xy — Bz))
with parameters 0 = 10, 8 = 8/3, and p = 1/2. For p < 1, we expect the system
to contain a singularity at the origin. Figure 5 shows the comparison where our
technique selects a single tetrahedron touching the origin to represent the singularity.
The numerical technique, on the other hand, detects all the 20 tetrahedra touching
the origin as critical.

To compare the running times of the two methods, we test them on the top
slice of a 3D simulation of global ocean eddies [13], shown in Fig. 6. The ocean

Robust Detection of Singularities in Vector Fields 15

Fig. 4 Detection of singularities in 2D synthetic vector field. The fop row shows the triangles
where critical points were detected, numerically. Zoom-in views show that multiple triangles test
positive for two critical points lying on the boundaries of triangles. Bottom row shows the consistent
results detected using our algorithm where only one triangle per critical point tested positive

surface is represented by 10,633,760 triangles. The numerical method [10] takes
~ 89.22seconds to detect 24,552 critical points. On the other hand, our method
takes only & 6.85 seconds to detect the same critical points, and thus, is significantly
faster.

6 Conclusions and Future Work

In this chapter, we provide a necessary and sufficient condition for the existence
of critical points in a simplex for a broad class of interpolated vector fields. Our
existence condition for critical points allows us to develop a robust method to detect
critical points in n-dimensions. Furthermore, when given finite-precision values,
the technique is guaranteed to use finite-precision, and therefore the result can be
computed exactly in a combinatorial manner. In the future, we wish to investigate
further the class of interpolation functions we showed this result for, identifying
which other interpolation techniques fall into this class. We also wish to extend this
work to include classification of critical points.

16 H. Bhatia et al.

Fig. 5 Detection of singularities in the Lorenz system. Numerical method (left) detects 20 tets
touching the origin, while our technique (right) detects a single tet to represent the singularity

Fig. 6 Detection of singularities in a 2D slice of simulation of global oceanic eddies [13]. The
data contains 24,552 triangles with critical points, each represented by a black dot

Acknowledgements We thank Mathew Maltude from the Climate, Ocean and Sea Ice Modelling
program at Los Alamos National Laboratory and the BER Office of Science UV-CDAT team
for providing us access to the ocean data from Fig. 6. This work was supported in part by NSF
OCI-0906379, NSF OCI-0904631, DOE/NEUP 120341, DOE/MAPD DESC000192, DOE/LLNL
B597476, DOE/Codesign P01180734, and DOE/SciDAC DESC0007446. This work was also
performed under the auspices of the US Department of Energy (DOE) by Lawrence Livermore
National Laboratory (LLNL) under contract DE-AC52-07NA27344. LLNL-PROC-644955.

Robust Detection of Singularities in Vector Fields 17

References

1.

2.

3.

10.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

R. Batra, L. Hesselink, Feature comparisons of 3-D vector fields using earth mover’s distance,
in Proceedings of IEEE Visualization, San Francisco, 1999, pp. 105-114

P.-T. Bremer, G. Weber, V. Pascucci, M. Day, J. Bell, Analyzing and tracking burning structures
in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248-260 (2010)
G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, E. Zhang, Vector field editing and
periodic orbit extraction using morse decomposition. IEEE Trans. Vis. Comput. Graph. 13(4),
769-785 (2007)

. G. Chen, K. Mischaikow, R.S. Laramee, E. Zhang, Efficient Morse decompositions of vector

fields. IEEE Trans. Vis. Comput. Graph. 14(4), 848-862 (2008)

. H. Edelsbrunner, E.P. Miicke, Simulation of simplicity: a technique to cope with degenerate

cases in geometric algorithms. ACM Trans. Graph. 9, 66-104 (1990)

. G. Elber, M.-S. Kim, Geometric constraint solver using multivariate rational spline functions,

in Proceedings of ACM Symposium on Solid Modeling and Applications (SMA "01), Ann Arbor,
2001, pp. 1-10

. C. Garth, X. Tricoche, G. Scheuermann, Tracking of vector field singularities in unstructured

3D time-dependent datasets, in Proceedings of IEEE Visualization, Austin, 2004, pp. 329-336

. J.L. Helman, L. Hesselink, Representation and display of vector field topology in fluid flow

data sets. IEEE Comput. 22(8), 27-36 (1989)

. D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, V. Pascucci, Understanding the structure

of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph.
12(5), 1052-1060 (2006)

Y. Lavin, R. Batra, L. Hesselink, Feature comparisons of vector fields using earth mover’s
distance, in Proceedings of IEEE Visualization, Research Triangle Park, 1998, pp. 103—-109
W.-C. Li, B. Vallet, N. Ray, B. Levy, Representing higher-order singularities in vector fields on
piecewise linear surfaces. IEEE Trans. Vis. Comput. Graph. 12(5), 1315-1322 (2006)

N.G. Lloyd, Degree theory, Cambridge University Press, 1978

M. Maltrud, F. Bryan, S. Peacock, Boundary impulse response functions in a century-long
eddying global ocean simulation. Environ. Fluid Mech. 10, 275-295 (2010)

S. Mann, A. Rockwood, Computing singularities of 3D vector fields with geometric algebra,
in Proceedings of IEEE Visualization, Boston, 2002, pp. 283-290

A. Mascarenhas, R.W. Grout, P.-T. Bremer, E.R. Hawkes, V. Pascucci, J.H. Chen, Topological
feature extraction for comparison of terascale combustion simulation data, in Topological
Methods in Data Analysis and Visualization, ed. by V. Pascucci, X. Tricoche, H. Hagen,
J. Tierny. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2011), pp. 229-240
E.P. Mucke, Geomdir. http://www.geom.uiuc.edu/software/cglist/GeomDir/

K. Polthier, E. Preuf3, Identifying vector field singularities using a discrete Hodge decomposi-
tion, in Mathematical Visualization 111, ed. by H. Hege, K. Polthier (Springer, Berlin/New York,
2003) pp. 112-134

J. Reininghaus, 1. Hotz, Combinatorial 2D vector field topology extraction and simplification,
in Topological Methods in Data Analysis and Visualization, ed. by V. Pascucci, X. Tricoche,
H. Hagen, J. Tierny. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2011), pp.
103-114

J. Reininghaus, C. Lowen, 1. Hotz, Fast combinatorial vector field topology. IEEE Trans. Vis.
Comput. Graph. 17, 1433-1443 (2011)

G. Scheuermann, H. Kriiger, M. Menzel, A.P. Rockwood, Visualizing nonlinear vector field
topology. IEEE Trans. Vis. Comput. Graph. 4(2), 109-116 (1998)

G. Scheuermann, X. Tricoche, Topological methods for flow visualization, in The Visualization
Handbook, ed. by C.D. Hansen, C.R. Johnson (Elsevier, Oxford, 2005), pp. 341-356

S. Schirra, Robustness and precision issues in geometric computation, in Handbook of Compu-
tational Geometry, chapter 14, ed. by J.-R. Sack, J. Urrutia, (Elsevier, Amsterdam/New York,
2000)

http://www.geom.uiuc.edu/software/cglist/GeomDir/

18

23

24.

25.

26.

217.

28.

29.

30.

31.

32.

H. Bhatia et al.

. H. Theisel, C. Rossl, H.-P. Seidel, Compression of 2D vector fields under guaranteed topology
preservation. Comput. Graph. Forum (Proc. Eurographics), 22(3), 333-342 (2003)

H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, Saddle connectors — an approach to
visualizing the topological skeleton of complex 3D vector fields, in Proceedings of IEEE
Visualization, Seattle, 2003

X. Tricoche, C. Garth, A. Sanderson, Visualization of topological structures in area preserving
maps. IEEE Trans. Vis. Comput. Graph. 17(12), 1765-1774 (2011)

X. Tricoche, C. Garth, A. Sanderson, K. Joy, Visualizing invariant manifolds in area-preserving
maps, in Topological Methods in Data Analysis and Visualization I, ed. by R. Peikert,
H. Hauser, H. Carr, R. Fuchs. Mathematics and Visualization (Springer/Berlin Heidelberg,
2012), pp. 109-124

X. Tricoche, G. Scheuermann, H. Hagen, Higher order singularities in piecewise linear vector
fields, in The Mathematics of Surfaces IX, ed. by R. Cipolla, R. Martin (Springer, London),
pp. 99-113

X. Tricoche, G. Scheuermann, H. Hagen, A topology simplification method for 2D vector
fields, in Proceedings of IEEE Visualization, Salt Lake City, 2000, pp. 359-366

X. Tricoche, G. Scheuermann, H. Hagen, Continuous topology simplification of planar vector
fields, in Proceedings of IEEE Visualization, San Diego, 2001, pp. 159-166

T. Weinkauf, H. Theisel, H.-C. Hege, H.-P. Seidel, Toplogical construction and visualization
of higher order 3D vector fields. Comput. Graph. Forum (Proc. Eurographics), 23(3), 469478
(2004)

T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, H.-P. Seidel, Extracting higher order critical
points and topological simplification of 3D vector fields, in Proceedings of IEEE Visualization,
Minneapolis, 2005

C.K. Yap, Robust geometric computation, in Handbook of Discrete and Computational
Geometry, chapter 41, ed. by J.E. Goodman, J. O’Rourke (Chapmen & Hall, Boca Raton,
2004), pp. 927-952

Interpreting Feature Tracking Through the Lens
of Robustness

Primoz Skraba and Bei Wang

Abstract A key challenge in the study of a time-varying vector fields is to resolve
the correspondences between features in successive time steps and to analyze the
dynamic behaviors of such features, so-called feature tracking. Commonly tracked
features, such as volumes, areas, contours, boundaries, vortices, shock waves and
critical points, represent interesting properties or structures of the data. Recently,
the topological notion of robustness, a relative of persistent homology, has been
introduced to quantify the stability of critical points. Intuitively, the robustness of a
critical point is the minimum amount of perturbation necessary to cancel it. In this
chapter, we offer a fresh interpretation of the notion of feature tracking, in particular,
critical point tracking, through the lens of robustness. We infer correspondences
between critical points based on their closeness in stability, measured by robustness,
instead of just distance proximities within the domain. We prove formally that
robustness helps us understand the sampling conditions under which we can resolve
the correspondence problem based on region overlap techniques, and the uniqueness
and uncertainty associated with such techniques. These conditions also give a
theoretical basis for visualizing the piecewise linear realizations of critical point
trajectories over time.

P. Skraba
Jozef Stefan Institute, Ljubljana, Slovenia
e-mail: primoz.skraba@ijs.si

B. Wang ()
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
e-mail: beiwang @sci.utah.edu; wang.bei@gmail.com

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 19
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8_ 2,
© Springer International Publishing Switzerland 2014

mailto:primoz.skraba@ijs.si
mailto:beiwang@sci.utah.edu
mailto:wang.bei@gmail.com

20 P. Skraba and B. Wang

1 Introduction

A number of techniques have been proposed to define, extract and track features
from vector field data [22,26]. There are many different types of tracked features
including volumes, contours, and vortices, which represent interesting properties or
structures of the vector fields. In this chapter, we restrict ourselves to critical
points [12, 13, 19,26, 35-37] and sublevel sets. Feature tracking, which is initially
inspired by object tracking in computer vision [42], has been intensively researched
where most techniques could be classified into three categories [26]. The first
approach does not rely on temporal interpolation but focuses on feature extractions
at individual time slices and subsequently feature matching via region corre-
spondences or attribute correspondences [22]. Correspondences could be found
based on distance proximity [16, 28], attribute similarity [28], or spatial overlap
of features [30-32], or alternatively, using prediction and verification [23-25, 29].
Level sets components volume overlap has been proposed in tracking contour tree
evolution [34] and contour tree matching [20]. The second approach is based on
temporal interpolation and considers time as an additional dimension of the space-
time domain. Iso-surfaces are extracted and tracked in 4D space-time in scalar
field [17,40], and for vortex tracking in scale space [1]. Topological structures,
such as Reeb graphs [8, 39], and Jacobi sets [7], could be employed in feature
tracking (and specifically critical point tracking [8]). Temporal linear interpolation
in combination with critical points tracking in 2D and 3D flow fields have been
developed in [12, 37]. The third approach represents the dynamic behavior of
features as streamlines of a higher-dimensional vector field, called feature flow
fields [35,41], with combinatorial extensions developed in [18,26]. Critical points
are tracked by computing streamlines using combinatorial feature flow fields [26],
whose importance measure, referred to as integrated persistence, combines spatial
persistence of a critical point along its temporal dimension.

Among these various feature tracking approaches, tracking the temporal evolu-
tion of critical points (and their corresponding sublevel sets) plays an important
role in understanding the behavior of time-varying vector fields. Recently, the
topological notion of robustness [5, 6, 11], a relative of persistent homology, has
been introduced to quantify the stability of critical points [5, 38]. Intuitively, the
robustness of a critical point is the minimum amount of perturbation necessary
to cancel it. It has been shown to be useful for vector field analysis, visualization
[38] and simplification [33]. The work in [27] also strongly advocated the need for
importance measures for critical points and proposed such a measure closely related
to persistence. Although robustness is also closely related to persistence, in the sense
that the robustness of features in level and interlevel sets, quantified through well
groups, can be read off the persistence diagram of the function [2]; however in
more general settings the reduction from robustness to persistence is not known and
the authors in [11] have conjectured that robustness may sit somewhere between the
1-parameter notion of persistence and its multi-parameter generalization [3].

Interpreting Feature Tracking Through the Lens of Robustness 21

In this chapter, we offer a fresh interpretation of the notion of feature tracking,
in particular, critical point tracking, through the lens of robustness. We obtain our
theoretical results by relating critical points tracking with their stability. That is, in a
nutshell, stable critical points could be tracked more easily and more accurately. We
prove formally that robustness can help us understand the sampling conditions under
which we can resolve the correspondence problem based on commonly used region
correspondence techniques. (e.g. [20,30-32,34]). It also gives a theoretical basis for
visualizing the piecewise-linear (PL) realizations of critical point trajectories.

2 Background

We provide the relevant background for well groups [5, 6] and degree theory. In
particular, we review the notion of static robustness and its properties explicitly
stated in [38]. The main components for proving our results rely on these properties,
as well as the Stability Theorem of Well Diagrams.

Degrees. In a 2D vector field, the degree of a critical point x, denoted as deg(x),
equals its Poincaré index. Sources and sinks have a degree of 41 while saddles
have a degree of —1. A path-connected component C in the domain that encloses
a set of critical points {x;} has a degree that sums the degrees of the individual
critical points: deg(C) =), deg(x;). For the formal definition of the degree of a
continuous mapping see [14] (page 134) and [6].

Merge tree. Given a continuous 2D vector field f : R*> — R?, we define a scalar
function f; : R* — R such that the value at each point x € R? is the Euclidean norm
of the vector field at x, fo(x) = || f(x)||>. Let F, = f;!(—o0, r] be the sublevel
set of fo for some r = 0. A value r > 01is a regular value of fy if [, is a 2-manifold,
and for all sufficiently small € > 0, f;~'[r —e¢, r + €] deformation retracts to fy ! (r);
otherwise it is a critical value. We further assume f; has a finite number of critical
values and f has finite number of critical points (that is, the number of components
in [is finite).

We construct a merge tree (or a join tree [4]), which tracks the (connected)
components of [, as they appear and merge, as we increase r from 0 (or —o0).
This corresponds to the O-dimensional persistent homology [9] of the sublevel set
filtration of fy. The leaves of the tree represent the creation of a component while
the root represents the entire domain of fj. An internal node represents the merging
of two or more components. We then assign an integer to each node in the tree that
record the degree of the corresponding component in the sublevel set. The degree of
any such component is determined by the sum of degrees of the critical points lying
in it [5].

Well groups and well diagrams. To understand the concepts of well groups and
well diagrams first introduced in [10], we need to introduce our particular notion of
vector field perturbation. Let £,/ : R*> — R? be two continuous 2D vector fields.
A continuous mapping % is an r-perturbation of f, if the distance between the two

mappings d(f, h) := supyege |[f(x) = h(x)[|2 < 7.

22 P. Skraba and B. Wang

CCFrys f h CCF,—s f h

a b

Fig. 1 Illustrations for (a) Lemma 1 and (b) Lemma 2

As we track the connected components over a filtration (the sublevel set of fp)
at each value of r, we are computing the 0-dimensional homology groups over a
field. These groups are vector spaces whose ranks equal the number of components
presented in the associated sublevel sets. Furthermore, if / is an r-perturbation of
f, then Hy = A7'(0) is a subspace of [,. The O-dimensional homology groups
are denoted as H(Hy) and H(F,). The subspace relation induces a linear map
Jn : H(Hy) — H(F,) between the two vector spaces. The well group, U(r), is
the subgroup of H(F,), whose elements belong to the image of each j,, for all
r-perturbation i of f [5]. That is, U(r) = (1), im jj. Intuitively, an element in
U(r) is considered a stable element in H([,) if it does not disappear with respect
to any perturbation. The rank of U(0) is the number of critical points of f. A point
r € (0, 0o) belongs to the well diagram of fy, Dgm(f), with multiplicity & if the
rank of the well group drops by k at r [5]. For reasons of stability, the point 0 is
counted with infinite multiplicity. The point co is counted with multiplicity & if for
all sufficiently large values of r, the rank of U(r) is k. An algorithm to compute
the well diagram is suggested by the Equivalence Theorem [5]. It states that, if r
is a regular value of fj, then the rank of the well group U(r) is the number of
components C of [, such that deg(C) # 0. We demonstrate by an example below
that the constructed augmented merge tree is sufficient to derive its corresponding
well diagram.
Stability of well diagrams. We now introduce the notion of stability for the well
diagrams. Let f,g : R> — R? be two vector fields. Construct a bijection j :
Dgm(fy) — Dgm(go) that maps the kth highest point in Dgm(f) to the kth highest
point in Dgm(gy). Since the point 0 in each well diagram has an arbitrary multiplic-
ity, by choosing the appropriate multiplicities for 0, i becomes a bijection. The
bottleneck distance between Dgm(fy) and Dgm(gy) is Woo (Dgm(fo), Dgm(go)) =
SUP, epem(fy) 1@ — 1 (a)|. The Stability Theorem of Well Diagrams [11] states that the
bottleneck distance between two well diagrams is bounded by the distance between
the mappings, that is, Woo (Dgm(fo), Dgm(go)) < d(f. g).
Static robustness and its properties. The static robustness of a critical point is
the height of its lowest degree zero ancestor in the merge tree [5, 38]. The static
robustness quantifies the stability of a critical point with respect to perturbations of
the vector fields through the following lemmas first introduced in [38]. Both lemmas
are illustrated in Fig. 1.

Interpreting Feature Tracking Through the Lens of Robustness 23

aq (65} a3 Oy

+1 -1 41 -1
oo o
xr T2 Tr3 T4

Fig. 2 Top, vector field f (left) and relations among components of F, (right). Bottom, augmented
merge tree (left) and its well diagram (right) (Figure adapted from [38])

Lemma 1 (Critical Point Cancellation [38]). Suppose a critical point x of f has
static robustness r. Let C be the connected component of V', s containing x, for an
arbitrarily small § > 0. Then, there exists an (r + 8)-perturbation h of f, such that
h='(0) N C =@ and h = f except possibly within the interior of C.

Lemma 2 (Degree and Critical Point Preservation [38]). Suppose a critical
point x of [has static robustness r. Let C be the connected component of F,_s
containing x, for some 0 < § < r and r — § being a regular value. Then for any
e-perturbation h of f where € < r—34, the sum of the degrees of the critical points in
h=(0)NC is deg(C). Furthermore, if C contains only one critical point x, we have
deg(h=1(0) N C) = deg(x). In other words, there is no e-perturbation (¢ < r —§)
that could cancel the critical point in C; that is, X is preserved.

Example. We illustrate the above concepts through an example shown Fig.2
adapted from [38]. A 2D vector field f (on the left) contains four critical points,
a sink x; (red), a source x3 (green), and two saddles x, and x4 (blue). Its
corresponding mapping f, has three critical values, denoted as ri,r, and rs,
respectively. The merge tree (on the right) tracks the components of the sublevel
sets [, as they appear and merge, as r increases from 0. We use «, 8, y etc. to
represent components of certain sublevel sets at the critical values. At r = 0, four
components o to o4 appear that correspond to the four critical points. At r = ry,
components represented by «; and o, merge into a single component represented

24 P. Skraba and B. Wang

by B1, which has degree zero. The number of components with non-zero degree
drops from four to two, this is reflected by two points in the well diagram Dgm(f;)
with value ri. Then at » = r; the number of components with non-zero degree
drops from two to zero, this corresponds to two points in Dgm(fy) with value r3.
By definition, the static robustness of the critical points x;, x», X3, and x4 are ry, 7y,
r3, and r3, respectively.

3 Ciritical Point and Sublevel Set Tracking Through the Lens
of Robustness

In practice, we do not have access to a continuous time-varying 2D vector field,
but rather a dataset consists of a discrete number of snapshots at different points in
time. This means that to track vector fields features (i.e. critical points and sublevel
sets) we must first resolve the correspondence problem. That is, determining the
correspondences between the critical points and sublevel sets in successive time
steps, that actually represent the same object at different times [22]. In this section,
we prove formally that robustness helps us understand the sampling conditions
under which we can resolve the correspondence problem based on region overlap
techniques, and the uniqueness and uncertainty associated with such techniques.

The stability of well diagrams and the properties associated with (static) robust-
ness allow us to give a theoretical underpinning to this approach by requiring that
the vector field changes slowly enough and then treating adjacent time steps as small
perturbations of each other. We assume that the underlying time-varying vector field
is c-Lipschitz and that we have an e-sampling in space and time. It follows that
the vector fields at each time steps are ce-perturbations of each other. Formally,
suppose f : X C R?> — R?is a c-Lipschitz function. That is, Yx,x’ € X,
[|f(x) = f(xX)]]2 < ¢|lx — x'||2. Given a triangulation K of X and f valued
at its vertices, we could linearly interpolate over its simplexes (that is, edges and
triangles) resulting in a continuous function f . |K| — R? [5]. If vertices P in K
are e-sampling of X (namely, Vx € X, d(x, P) := inf,cp |[x — y||]2 < €), then
we have Vx € X, || f(x) — f(x)||2 < ce. This observation allows us to move
from continuous to the piecewise-linear (PL) setting by noting that for a c-Lipschitz
function, a linear interpolation between samples results in an error of at most ce
from the true underlying function. As a consequence of the Stability Theorem of
Well Diagrams, we have,

Lemma 3 (Triangulation Lemma [5]). The bottleneck distance between the well
diagrams of f andthe PL interpolation f is bounded by Weo (Dgm f,Dgm) < ce.

In the time varying setting, to accommodate the additional dimension of time we
make a small change of notation by referring to f : X x R — R? as a time-varying
2D vector field over domain X C R?, where f;(x) = f(x,?) : X — R? represents
a 2D vector field at time ¢ € R. For notational simplicity we assume we have an

Interpreting Feature Tracking Through the Lens of Robustness 25

e . fite
@*“Ct((g) \t-te((s)

/ |:>

Co)

Fig. 3 (a) Definition of C;(§): sublevel set with non-zero degree. (b) Illustration for Lemma 4

e-sampling and that the Lipschitz constant is ¢ in the time domain as well. That is,
Vx € X Afi(xX) = fiae(@)]]2 < ce.

We now give guarantees on the correspondence of critical points across time
slices with respect to robustness. We assume that we have a PL-interpolation of
the c-Lipschitz time-varying vector field built on certain e-sample. The proofs
do not depend on this interpolation but rather require a bound on the error from
approximating the underlying function. Better interpolation methods will lead to
better approximations and therefore better constants in the theoretical guarantees.

We introduce some additional notation. Recall f : X x R — R? is a time-
varying 2D vector field over domain X, and f;(x) = f(x,t) : X — R? represents a
2D vector field at time ¢. A crucial concept is the sublevel set of the Euclidean norm
of fi, || fi(x)||2- Let C,(8) = {x € X | || fi(x)||2 < &} denote its sublevel set for
any § > 0 whose degree is non-zero, see Fig. 3a. If we consider a specific connected
component of C,(§), we denoted it by C/(8). Furthermore, let z, = C,(0) = {x €
X | ||f:(x)]]2 = 0} represent the set of critical points. When considering a single
critical point in the set we will add an index to the notation (e.g. z/). We begin
our discussion of correspondence by making the following observation: the critical
points with high robustness in two adjacent time steps must be contained in the
interior of the intersection of the corresponding sublevel sets. Formally,

Lemma 4 (Critical Points Containment). For two adjacent time steps of the
vector field f;, fire 1 X — R2, the critical points in both time steps belong to
int (C; () N C;4¢(8)) forall § > ce.

Proof. The lemma is illustrated in Fig.3b. Consider C,(§), the sublevel set of f;,
where § > 0. By the Lipschitz assumption, Vx € X, || f;(x) — fite(X)|]2 < ce. It
follows that V§ > ce, the critical points in f;, z; = C,(0) € Ciyc(c€) C Ci4¢(6),
and the critical point in fi4+¢, Zr4¢ = Ci+¢(0) € Ci(ce) C C;(8). On the other
hand, z; = C,(0) C C(§) and z;4c = Ci4(0) C C;1c(8). Hence, 7,214 <
int (C;(8) N Cr4e(8)). o

Lemma 4 states that critical points are contained in intersections across time
steps. While this is an important observation, it does not imply correspondence. The
argument we would ultimately like to make is that we can find correspondences
between two adjacent time slices represented by a (bounded)-homotopy. Recall a

26 P. Skraba and B. Wang

Tt

0.1]

Fig. 4 Tllustrations of (a) bounded-homotopy and (b) §-tube

homotopy between two continuous functions that map between topological spaces,
fis fize + X — R2, is defined to be a continuous function H : X x [0,1] —
R?, such that Vx € X, H(x,0) = f;(x) and H(x,1) = fi4c(x). We then use
hy(x) = H(x,s) : X — R? (s € [0, 1]) to represent intermediate time slices. Such
a homotopy is §-bounded (or has a maximum deformation of at most 4), if Vx € X
and Vs,s’ € [0, 1], ||h;(x) — hy(x)]]2 < 8. Figure 4a gives an illustration.

In order to obtain a correspondence, we will need to impose some further
conditions. First we formally define a correspondence. A §-correspondence between
a pair of critical points is defined such that there exists a §-bounded homotopy
which maps the points to each other. Formally, there is a §-correspondence between
critical points p € z and ¢ € z4. if there exists a §-bounded homotopy H
between f; and f;., such that H~'(0) contains a continuous path embedded in
X x [0, 1] C R3 that connects p with g. We refer to such a path as the critical path.
A construction we will make use of is the straight-line homotopy. For two functions,
fi+ fire : X — R2, we define their straight-line homotopy as

Jrase(®) = ho(x) = (1 =5) fi(X) + sfite(x) Oss<1, VxeX (1)

First, we examine a simple situation, which we refer to as the unique intersection.
We assume a component at time ¢ intersects with only one component at time ¢ + €
and vice versa. Formally we say that, for a single component C/(8) in C,(8), there
exists only a single component C,’ +¢(8) in C;4(8) such that they intersect; and for

; +E((‘)’) the only component it intersects in C; () is C;/ (8).

Lemma 5 (Critical Points Correspondence Under Unique Intersection). For
8 > ce, let C{(8) and C/ ! .(8) be components of the §-sublevel sets with a unique
intersection. If there exists a unique §-robust critical point in each component,
denoted as x and y respectively, then they are in correspondence.

The lemma is illustrated in Fig. 5a. The main idea behind its proof is to construct a
(8 + ce)-bounded homotopy that maps x to y by considering tubular neighborhood
surrounding the parametrized curve connecting x and y as shown in Fig. 5b.

Interpreting Feature Tracking Through the Lens of Robustness 27

fe Jee

[0,1]

Fig. 5 (a) Illustration of Lemma 5 and (b) the main idea behind its proof

fs(q) = (1= 8)fi(q) + sfirelq)
fs(r) = M1 = 8) fe(q) + sfr+e(q)

0

|
|
fs(p)

Fig. 6 (a) Constructing the homotopy for correspondence H : X X [0, 1] — R?. Here we show
two time slices at ¢ and ¢ + €. % C X is represented as a rectangle. The path between critical
points x and y is y C % . It is “lifted” to a parametrized curve y* C X x [0, 1] C R?, with N as
its tubular neighborhood. (b) Spatial interpolation within N, that linearly interpolate between its
boundary and its center. A is the scaling parameter used in the interpolation, where 0 < A < 1

Proof. Let . = C/(§) N C/,.(§) and % = C/(§) U C/, (5). Suppose .# # 0.
Suppose both points x and y are §-robust, that is, they have static robustness greater
or equal to §. First, based on the unique intersection condition, by Lemma 4, both
x and y are contained in .#. Second, we claim that % \C/(§) (and % \C/, .(5)
symmetrically) contains no critical points. Suppose there is a critical point x’ €
U\C/ (8), since x' ¢ C/(8), then either (a) x’ € C/’(8) for some i’ # i, or (b)
[| :(x)|l2 > 6. (a) is impossible as it violates the unique intersection condition.
For (b), based on Lipschitz condition and the reverse triangle inequality, we have
| frae N2 = 11D = 1 fi(x) = fire(x)||]2 > § — ce > 0. Hence x’ cannot
be a critical point.

For the rest of the proof, we need to show that x and y are in correspondence, by
constructing the desired homotopy. We also claim that such a homotopy is (8 + c€)-
bounded. First, we construct a critical path. Since both x,y € %, there exists a
parametrized continuous curve y in % that connects these two points. That is, y :
[0,1] — X where y(0) = x and y(1) = y. Such a curve could be “lifted” to
X x [0, 1] by defining a parametrized curve y* : [0, 1] — X x [0, 1] where y*(z) =
y(t) x t, for 0 < ¢t < 1. This constitutes the desired critical path between x and y
in H~'(0) C R®. Our goal now is to define a continuous homotopy based on such a
critical path. Such a process is shown in Fig. 6a.

Second, we consider a tubular neighborhood N C R* of y*. Such a neigh-
borhood intersects each time slice X x s at Ny, Vs € [0, 1], where Ny C X

28 P. Skraba and B. Wang

contains a zero center that is the intersection between y* and the time slice. We
introduce a spatial interpolation within each N that linearly interpolate between
its boundary and the center. This is shown in Fig.6b. Third, we are ready to
construct the desired homotopy with guaranteed continuity. To do so, we rewrite
the straight-line homotopy for a fixed z € X as a,(s) : [0,1] — RZ?, where
a,(s) = (1 —) f;(z) + sfi+e(z). We further define a curve 8, for a fixed z € X,
such that, B, : [0,1] — z x [0, 1]. We define our homotopy H : X x [0,1] — R?
as follows. Vz € X: (a) If B, does not intersect N or it only intersects N on its
boundary point (non-transversal intersection), we use the straight-line homotopy,
that is, H(z,s) = a.(s) for 0 < s < 1; (b) If B, intersects N transversally (by
entering N at time s’ and existing N at time s”), then H(z,s) is defined to be
a;(s) for s € [0,s'] U [s”, 1], otherwise, it respects the spatial interpolation within
the interior of N for s € (s’,s”). In case (a) and (b), the maximum deformation
at any point z € X during the homotopy is at most ce and (6 + ce) respectively.
Finally, since x and y are the only §-robust critical points within their respective
components, the uniqueness conditions imply that this is the only possible choice of
correspondence. O

Remark 1. Much of the complication in constructing the above homotopy is dealing
with the tubular neighborhoods to ensure the mapping is continuous. and therefore
a homotopy. It is important to note that although the maximum deformation
of such a homotopy is bounded, its Lipschitz constant is not. Controlling the
Lipschitz constant of such a homotopy is a far more difficult problem. We merely
impose a Lipschitz constant on the time-varying vector field to ensure validity
of the approximation, whereas here we demonstrate the existence of a possible
correspondence.

Now we extend the above lemma to cases without the uniqueness intersection
assumptions. We make the following claim regarding many-to-many correspon-
dences among critical points with large robustness. We consider the following
statement a major contribution in rethinking and treating correspondence problem
under the robustness framework. The key point is that we relax the uniqueness
condition on the intersections. With this we lose the guarantee on uniqueness of
the map, but we show that for any choice among possible correspondences, there
exists a homotopy.

Lemma 6 (Robust Critical Points Correspondence). There exists a (§ + ce)-
bounded homotopy between §-robust critical points between time slices, from which
a correspondence could be obtained.

The idea is the behind the proof is illustrated in Fig.7. Here, we consider case (a)
where the sublevel sets have unique intersection, however there may be multiple
d-robust critical points in each component; and case (b) where the sublevel sets do
not have unique intersection. In case (a), we choose the desired correspondence by
constructing the critical paths which are no longer unique. In case (b), we require
that a path exists between critical points. There are many choices of correspondences

Interpreting Feature Tracking Through the Lens of Robustness 29

Case (a) Case (b)
@ (=

Fig. 7 Illustration of the main proof idea behind Lemma 6

(under the restriction that the corresponding points are distinct), our proposed
homotopy construction works for any of them.

Proof. In case (a), suppose we still have unique intersection condition, however
there exist multiple §-robust critical points in each component. All the arguments
from Lemma 5 hold except now we must first choose the desired correspondences
by constructing critical paths (which are no longer unique). We also need to add
some discussions, since for a fixed choice of correspondences, we have multiple
critical paths and their corresponding tubular neighborhoods. In generic situations,
we suppose all such critical paths with arbitrarily small tubular neighborhoods
do not intersect during the construction of the homotopy. Therefore although the
constructed homotopy might be more complicated (where 8, for a fixed z may
intersect multiple neighborhoods), it remains continuous and bounded.

In case (b), suppose the unique intersection condition no longer holds. In the con-
struction of the above homotopy, we require only that a path y exists (in the union
of components, i.e. %) between critical points. Without the uniqueness assumption,
we have many choices of correspondences, and the homotopy construction works
for any of them (under the restriction that the corresponding points are distinct). To
complete the proof, we need only to check that a path y exists, such that, Vx € y,
1/ (X)|2 < (8 + ce) and || fi+c(x)]]2 < (6§ + ce). This follows from the Lipschitz
assumptions. O

Robustness also provides guarantees on the critical paths, that is, trajectories of
critical points trace over time. To make a precise statements, we define the notion of
8-tube and its PL counterpart. A §-fube is a (connected) component in the collection
of §-sublevel sets between two adjacent discrete time steps based on straight-line
homotopy. Let C;(8) be connected components of the §-sublevel set at time s.
Suppose f; and f; 4. are two adjacent time steps. A §-tube is defined as a component
in ;e s4¢ Cs(8). This is illustrated in Fig. 4b. Given the i-th §-tube between times
¢ and 7 + &, without loss of generality, we denote each of its time slice as C/ ().
Note that splitting and merging is possible with a given §-tube.

A PL §-tube is similarly defined but is based on the straightline homotopy of PL
interpolations at each time step. Correspondingly, each of its time slice is denoted

30 P. Skraba and B. Wang

as C‘j (8), fort < s <t + €. The following lemma states conditions under which a
§-tube contains a critical path.

Lemma 7 (Critical Paths Containment). For a c-Lipschitz time-varying vector
field and any § > ce, if a critical path between two §-robust critical points exists,
it will be completely contained within a §-tube between the two time slices f; and

ﬁ+e~

Proof. The lemma is illustrated the same way as in Fig. 5b. Suppose a critical path
y leaves the i -th §-tube at some time s (t < s < f 4 €). This implies that there exists
a critical point p € z, that continuously moves outside of the §-tube at time s. This
means p ¢ C!(§), therefore f;(p) = §. There are two cases: (a) the critical point
re-enters the i -th §-tube at time s” and stays inside the tube until time ¢ + €; and (b)
the critical point enters a different §-tube (i.e. the j-th §-tube) at time s” and never
returns back to the i-th §-tube, where s < s’ <t + €.

In case (a), we consider the particular scenario where (s’ — s) approaches zero,
by the Lipschitz assumption, p € C/(c(s —t)) and p € C/, (c(t + € —s)). Based
on Lemma 4, p € C/(c(s —t)) N C/, (c(t + € — 5)). The Lipschitz condition
also implies that the function value at p based on straight-line homotopy at time
sis, fs(p) < min{2¢(s —t),2¢(t + € — 5)}. The above upper bound achieves its
maximum when s = ¢ + €/2, where f;(p) < ce. Since § > ce, this contradicts the
assumption that f;(p) = §. So case (a) is not possible. '

In case (b), suppose the critical point leaves C/(§) and enters CS’, (8), where

s < s’. Lemma4 implies the critical point belongs to C! (§) ﬂCS]; (8), and in addition,
it belongs to any C/(§) N CS], (8) as (s’ — s) approaches zero. This contradicts the

fact that C!(8) and C S// (8) originate from non-intersecting §-tubes. Therefore case
(b) does not hold either. |

Corollary 1 (PL Critical Paths Containment). For a c-Lipschitz time-varying
vector field and any § > ce, if a critical path between two §-robust critical points
exists, it will be completely contained within a PL (§ + c€)-tube between the two
time slices f; and fi..

Proof. This follows directly from Lemma 7, since C! (§) € éf (8 + ce) for all s
and i. Therefore since the critical path is included in the §-tube, it follows that it is
included in the PL (8 + ce)-tube.

To prove the above inclusion, this property holds at the end points (s = ¢ and
s = t + €) of the straight-line homotopy based on the c-Lipschitz assumption
and e-sampling. Because the straight-line homotopy is a convex combination of
the end points, it holds at any point in between as well. O

Remark 2. The above lemmas prove that regardless of the (possibly unknown)
underlying changes of the vector field, the critical paths of the vector fields for robust
critical points are contained inside some §-tubes, which implies that the straight-line
homotopy roughly captures the behavior of the critical paths.

Interpreting Feature Tracking Through the Lens of Robustness 31

Ci(0) — CY,(ce)

| !

Ci(8 — co)—= C,.(6)
(o3

b

Fig. 8 (a) and (b): Illustration of Lemma 8. (¢) Diagram in its proof

Now we have addressed critical points correspondences and critical paths
containments, we would like to address the problem of sublevel set correspondence,
as shown in the following lemma and illustrated in Fig. 8a, b where critical point x
in f; correspondsto y in f;4..

Lemma 8 (Sublevel Set Unique Correspondence). For § > ce, suppose C! ()
and Ctj+€(8) are two components of C;(8) and C;4¢(8) respectively such that their
intersection contains critical points. If there are no merge events in [§ — ce,§ +
c€| (within the merge trees) between times t and t + €, the map induced between
these pairs of components is unique. In other words, the correspondences between
connected components in C;(8) and C,+.(§) whose intersections contain critical
points are unique.

Proof. Since there are no merge events in [§ — ce,§ + ce] between times ¢ and
t + €, components can neither merge nor split apart. First we show that each
connected component C/ (8) has intersection with at least one connected component
c/ +c(8). For every i, there exists a j such that we can obtain the diagram in
Fig. 8c, where all the maps are inclusions. Three of these inclusions are obvious.
We prove the inclusion exists for C/(§ — ce) — C/ +c(8). Suppose there exists
apoint p € C/(8§ —ce) but p ¢ Ctj+€(8). This implies that f;.(p) > & and
Ji(p) < 8 — ce. This violates the Lipschitz assumption at p. The above diagram
implies that for every i, there exists a j such that C/(§) N C/ +c(8) # 0, and their
intersection contains critical points (referred to as non-zero intersections). Thus
there is a possible correspondence between these two components. To show such
a correspondence is unique, we claim that if there were additional intersections,
ie., with a connected component Ctk_|_€(8), this would imply a merge/splitting

event in the required interval (between C/ () and Cl‘k+€ (6)). Assume that both
c/ +c(8)and C, tk+€ (8) have a non-zero intersection with C; (§), it follows by Lipschitz

assumptions that there exists a path y C C/(8) connecting Ctj+€(8) and Ctk_|_€(8),
such that Vx € vy, ||fi+e(x)|]2 < & + ce. However this implies that the two
components merge in the interval [§ —ce, § + ce] which contradicts our assumption.

32 P. Skraba and B. Wang

Therefore, we conclude there cannot be two components Ctj+€ () and Ctk+€(8) with
a non-zero intersection with C, (§), making the map unique. O

4 Experiments

We demonstrate robustness-based critical point tracking on three real world datasets,
which are extracted from consecutive time slices of 2D time-varying vector fields.
The first two datasets, OceanA and OceanB, come from top layers of the 3D
simulation of global oceanic eddies [21] for 350 days in the year 2002. We extracted
tiles from this simulation data, representing the flow in the central Atlantic Ocean
for OceanA (resolution 60 x 60), south Atlantic Ocean for OceanB (resolution
100 x 100), and construct standard triangulations on the point samples. We use time
slices #21310 and #21311 for OceanA, and #20710 and #20711 for OceanB. Our
third dataset CombustionC is taken from the simulation of homogeneous charge
compression ignition (HCCI) engine combustion [15]. The domain has periodic
boundary and is represented as a 640 x 640 regular grid. The 2D time-varying vector
field consists of 299 time-steps with a time interval of 107> s. We selected time slices
#173 and #174 from this data.

The critical points correspondences based on robustness are shown in Fig.9.
Suppose we use PL interpolation between time slices. Our theoretical results rely
on the quantity ce, which depends on our prior knowledge of the datasets, or some
form of estimation.

First, suppose ce is equal to the magnitude of the maximum observed difference
in the vector fields of the two adjacent time slices #; and t,, § = sup, || f;, (x) —
J,(X)||2- That is, let ce = §. For OceanA (a) and (b), we illustrate the components
of the sublevel set at ce that contains critical points. Since ce is relatively large,
based on Lemma 5, the components (pointed by white solid arrows) in (a) and (b)
have unique intersection and each contains a single critical point, therefore these
critical points correspond to one another. On the other hand, the blue points in #; and
1, could all potentially map to one another, creating a many-to-many correspondence
scenario. It appears that the single yellow point in #; could potentially map to
any of the three points in #, based on region overlap (or distance proximity, if all
three yellow points are moved even closer in distance). However, this is not true
as we investigate further in OceanA(c) and (d) by showing the components of the
sublevel set at the robustness values of each critical point. It is interesting to point
out that the points (pointed by white arrows) end up matching to each other uniquely
based on Lemma 5 since their robustness values are higher than ce, while the two
unmatched points (in the black components) are considered newly appeared. A
similar situation occurs in OceanB(a) and (b). High robustness points have unique
correspondences (pointed by solid white arrows) and many low robustness points
are matched under many-to-many (usually pair-to-pair) scenarios. Newly appeared
critical points (pointed by a hollow white arrow) at #, are not matched and are shown

Interpreting Feature Tracking Through the Lens of Robustness 33

#21310

Fig. 9 Tracking critical points correspondences based on robustness for OceanA (top), OceanB
(middle) and CombustionC (bottom). In each pair of pictures between time slices (e.g. (a) vs (b),
(c) vs (d), (e) vs (f)), the corresponding points are shown by the same color

34 P. Skraba and B. Wang

in black. In CombustionC(a) and (b), ce is quite small, therefore almost all points
have unique matches except for two low robustness pairs which are matched as pairs
(pointed by the hollow white arrows). Second, we can also measure the difference in
vector fields between #; and #, in local regions. We compute §* = sup, ¢ || fr, (x) —
J1,(x)||2 for some §2 in the local neighborhoods of some critical points. Suppose the
critical points in the local regions §2 has robustness values higher than ce, then we
could further differentiate some of the many-to-many correspondence scenarios, and
create unique correspondences. Such conditions are met by OceanA and OceanB,
as shown in Fig.9 OceanA (c) and (d) and OceanB (c) and (d). For example, in
the local regions pointed to by the hollow white arrows, the critical points across
t; and t, obtain unique correspondences since their robustness values are higher
than the amount of vector field perturbation in their local neighborhoods. These
correspondences are shown without sublevel sets in OceanA (e) and (f) and OceanB
(e) and (f) (black marks points which are not matched). Finally, it is interesting to
note that when critical points leave the boundary or appear near fold bifurcations,
they typically do not find correspondences in the adjacent time slices (e.g. the black
points shown in Fig. 9).

5 Discussion

Feature tracking, especially critical point tracking, is crucial for understanding the
temporal behavior of time-varying vector fields. The theory of well groups allows
us to make rigorous statements under mild assumptions about the correspondences:
both when they are unique and when possible ambiguities exist. We infer correspon-
dences between critical points based on their closeness in stability, measured by
robustness, instead of just distance proximities within the domain. The correlations
among critical points with high robustness values inherently capture some core
structures of the time-varying vector field that is otherwise hidden due to the noise
associated with region correspondence techniques.

The stability of well diagrams and the bijection between the critical points and the
generators of the well groups serve as the motivation for viewing correspondence
through well group theory. First, the well diagrams of a vector field and its PL
interpolation are close, making it possible to translate the language of well groups
from smooth to the PL setting in practice. Second, the bottleneck matching between
two well diagrams constructed from two temporally adjacent vector fields gives
a bijective mapping between generators of the well groups (which are also the
generators of the 0-homology groups).

We show that robust generators are in some sense spatially stable, (namely, the
generators must lie in the intersection of the connected components at the two
time slices), and therefore there exist correspondences which respect the underlying
geometry. The correspondences are not always unique since there may be several
possible mappings between the generators of the robust well groups and the robust
critical points. Static robustness captures this ambiguity making it possible to

Interpreting Feature Tracking Through the Lens of Robustness 35

give sufficient conditions on the uniqueness of correspondences. On the other
hand, we constructively show that whenever ambiguity exists, any of the possible
correspondences are valid choices. This brings up many interesting questions. For
example, does other criteria exist to choose the best correspondence from the set
of possible correspondences? This may depend on the distance between the critical
points, preservation of the topological skeletons, etc.

One future research direction is the constructions of different homotopy. The
current construction, while bounded, is not guaranteed to be Lipschitz. It remains an
open question how to construct a homotopy with a controlled Lipschitz constant. A
second direction is the application of these methods to three dimensional and higher
dimensional vector field data. The theorems and proofs are general and generalize
to higher dimensions with minimal modification. Finally, the robustness framework
gives correspondences a natural sense of scale: if we allow larger perturbations,
more correspondences are possible. A natural question which arises is how to best
visualize possible correspondences in a clear and intuitive way.

Acknowledgements This work was funded in part by the EU project TOPOSYS (FP7-ICT-
318493-STREP), NSF OCI-0906379, NSF OCI- 0904631, DOE/NEUP 120341, DOE/MAPD
DESC000192, DOE/LLNL B597476, DOE/Codesign P01180734, and DOE/SciDAC DESCO0007
446. The authors would like to thank Guoning Chen and Paul Rosen for developing the tool for
robustness-based visualization. We thank Jackie Chen for the combustion dataset. We also thank
Mathew Maltude from the Climate, Ocean and Sea Ice Modeling program at Los Alamos National
Laboratory (LANL) and the BER Office of Science UV-CDAT team for providing us the ocean
datasets. The authors would also like to thank the anonymous reviewers for many useful comments
to improve the readability of the paper.

References

1. D. Bauer, R. Peikert, Vortex tracking in scale space, in Proceedings of the Symposium on Data
Visualisation, Switzerland, 2002, pp. 233-240

2. P. Bendich, H. Edelsbrunner, D. Morozov, A. Patel, Homology and robustness of level and
interlevel sets. Homol. Homotopy Appl. 15(1), 51-72 (2013)

3. G. Carlsson, A. Zomorodian, The theory of multidimensional persistence, in Proceedings of
the 23rd Annual Symposium on Computational Geometry, Gyeongju, 2007, pp. 184-193

4. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions, in Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 2000,
pp- 918-926

5. F Chazal, A. Patel, P. Skraba, Computing the robustness of roots. Manuscript. http://ailab.ijs.
si/primoz_skraba/papers/fp.pdf,2011

6. F. Chazal, P. Skraba, A. Patel, Computing well diagrams for vector fields on R”. Appl. Math.
Lett. 25, 1725-1728 (2012)

7. H. Edelsbrunner, J. Harer, Jacobi sets of multiple Morse functions, in Foundations of
Computational Mathematics, ed. by F. Cucker, R. DeVore, P. Olver, E. Sueli (Cambridge
University Press, Cambridge, 2004), pp. 37-57

8. H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, Time-varying Reeb graphs for
continuous space-time data, in Proceedings of the 20th Annual Symposium on Computational
Geometry, Brooklyn, 2004, pp. 366-372

http://ailab.ijs.si/primoz_skraba/papers/fp.pdf, 2011
http://ailab.ijs.si/primoz_skraba/papers/fp.pdf, 2011

36

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

P. Skraba and B. Wang

. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification.
Discret. Comput. Geom. 28, 511-533 (2002)

H. Edelsbrunner, D. Morozov, A. Patel, The stability of the apparent contour of an
orientable 2-manifold, in Topological Methods in Data Analysis and Visualization (Springer,
Berlin/Heidelberg, 2010), pp. 2741

H. Edelsbrunner, D. Morozov, A. Patel, Quantifying transversality by measuring the robustness
of intersections. Found. Comput. Math. 11, 345-361 (2011)

C. Garth, X. Tricoche, G. Scheuermann, Tracking of vector field singularities in unstructured
3D time-dependent datasets, in /EEE Visualization, Washington, DC, 2004, pp. 329-336

A. Gerndt, T. Kuhlen, C. Cruz-Neira, Interactive tracking of three-dimensional critical points
in unsteady, large-scale CFD datasets, in Proceedings of the International Conference on
Computer Graphics and Virtual Reality, Las Vegas, 2008, pp. 22-28

A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002)

E. Hawkes, R. Sankaran, P. Pébay, J. Chen, Direct numerical simulation of ignition front
propagation in a constant volume with temperature inhomogeneities: II. Parametric study.
Combust. Flame 145, 145-159 (2006)

M. in den Haak, H.J.W. Spoelder, F.C.A. Groen, Matching of images by using automatically
selected regions of interest. Computer Science in the Netherlands, pp. 27-40, 1992

G. Ji, H.-W. Shen, R. Wenger, Volume tracking using higher dimensional isosurfacing, in
IEEE Visualization, Seattle, 2003, pp. 209-216

H. King, K. Knudson, N. Mramor, Birth and death in discrete Morse theory. Manuscript, 2008
T. Klein, T. Ertl, Scale-space tracking of critical points in 3D vector fields. Topology-Based
Methods in Visualization, Mathematics and Visualization (Springer, Berlin, 2007), pp. 35-49
M. Kraus, Visualization of uncertain contour trees. Proceedings of the International
Conference on Information Visualization Theory and Applications, Angers, 2010, pp. 132-139
M. Maltrud, F. Bryan, S. Peacock, Boundary impulse response functions in a century-long
eddying global ocean simulation. Environ. Fluid Mech. 10, 275-295 (2010)

F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, H. Doleisch, The state of the art in flow
visualization: feature extraction and tracking. Comput. Graph. Forum 22, 775-792 (2003)

F. Reinders, F.H. Post, H.J.W. Spoelder, Attribute-based feature tracking, in Data Visualization,
Vienna, 1999, pp. 63-72

F. Reinders, FEH. Post, H.J.W. Spoelder, Visualization of time-dependent data using feature
tracking and event detection. Vis. Comput. 17, 55-71 (2001)

F. Reinders, I.A. Sadarjoen, B. Vrolijk, FEH. Post, Vortex tracking and visualisation in a flow
past a tapered cylinder. Comput. Graph. Forum 21, 675-682 (2002)

J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz, Efficient computation of combinatorial feature
flow fields. IEEE Trans. Vis. Comput. Graph. 18(9), 1563-1573 (2011)

J. Reininghaus, C. Lowen, 1. Hotz, Fast combinatorial vector field topology. IEEE Trans. Vis.
Comput. Graph. 17(10), 1433-1443 (2011)

R. Samtaney, D. Silver, N. Zabusky, J. Cao, Visualizing features and tracking their evolution.
Computer 27, 20-27 (1994)

A. Shamir, C. Bajaj, B.-S. Sohn, Progressive tracking of isosurfaces in time-varying scalar
fields. Technical report, CS & TICAM Technical Report TR-02-4, University of Taxes Austin,
2002

D. Silver, X. Wang, Volume tracking, in IEEE Visualization, San Francisco, 1996, pp. 157-164
D. Silver, X. Wang, Tracking and visualizing turbulent 3D features. IEEE Trans. Vis. Comput.
Graph. 3, 129-141 (1997)

D. Silver, X. Wang, Visualizing evolving scalar phenomena. Future Gener. Comput. Syst. 15,
99-108 (1999)

P. Skraba, B. Wang, G. Chen, P. Rosen, 2D vector field simplification based on robustness.
SCI Technical report UUSCI-2013-004, 2013

B.-S. Sohn, C. Bajaj, Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. 12,
14-25 (2006)

Interpreting Feature Tracking Through the Lens of Robustness 37

35

36.

37.

38.

39

40.

41.

42

. H. Theisel, H. P. Seidel, Feature flow fields, in Proceedings of the Symposium on Data
Visualisation, Switzerland, 2003, pp. 141-148

X. Tricoche, G. Scheuermann, H. Hagen, Topology-based visualization of time-dependent 2D
vector fields. Data Visualization (Springer, Vienna, 2001), pp. 117-126

X. Tricoche, T. Wischgoll, G. Scheuermann, H. Hagen, Topology tracking for the visualization
of time-dependent two-dimensional flows. Comput. Graph. 26, 249-257 (2002)

B. Wang, P. Rosen, P. Skraba, H. Bhatia, V. Pascucci, Visualizing robustness of critical points
for 2D time-varying vector fields. Comput. Graph. Forum 32(3), 221-230 (2013)

. G. Weber, P.-T. Bremer, M. Day, J. Bell, V. Pascucci, Feature tracking using Reeb graphs,
in Topological Methods in Data Analysis and Visualization, ed. by V. Pascucci, X. Tricoche,
H. Hagen, J. Tierny (Springer, Berlin/Heidelberg, 2011)

C. Weigle, D.C. Banks, Extracting iso-valued features in 4-dimensional scalar fields, in /EEE
Symposium on Volume Visualization, New York, 1998, pp. 103-110

T. Weinkauf, H. Theisel, A.V. Gelder, A. Pang, Stable feature flow fields. IEEE Trans. Vis.
Comput. Graph 17, 770-780 (2011)

. A. Yilmaz, O. Javed, M. Shah, Object tracking: A survey. ACM Comput. Surv. 38, 13 (2006)

Simplification of Morse Decompositions Using
Morse Set Mergers

Levente Sipeki and Andrzej Szymczak

Abstract A common problem of vector field topology algorithms is the large
number of the resulting topological features. This chapter describes a method to
simplify Morse decompositions by iteratively merging pairs of Morse sets that are
adjacent in the Morse Connection Graph (MCG). When Morse sets A and B are
merged, they are replaced by a single Morse set, that can be thought of as the union
of A, B and all trajectories connecting A and B. Pairs of Morse sets to be merged
can be picked based on a variety of criteria. For example, one can allow only pairs
whose merger results in a topologically simple Morse set to be selected, and give
preference to mergers leading to small Morse sets.

1 Introduction

Due to its relevance to computer aided design, meteorology, fluid dynamics and
computer vision, there has been increasing interest in vector field topology and its
applications in vector field visualization. For time independent vector fields, vector
field topology is typically based on trajectories with special properties: stationary
points, periodic trajectories and separatrices. While several successful methods to
determine these features have been developed, a common challenge that arises in
vector field topology is the overwhelmingly large number of topological features
detected in the input vector field. This causes the visualization of these features
to be too overcrowded to be useful for complex data. The goal of this chapter is
to provide a simple and flexible framework for building multiscale representations
of vector field topology. We build upon earlier work on Morse decompositions
for piecewise constant (PC) vector fields. Morse decompositions provide a natural

L. Sipeki * A. Szymczak (P<)
Colorado School of Mines, Golden, CO 80401, USA
e-mail: levente.sipeki @gmail.com; aszymcza@mines.edu

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 39
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__3,
© Springer International Publishing Switzerland 2014

mailto:levente.sipeki@gmail.com
aszymcza@mines.edu

40 L. Sipeki and A. Szymczak

way to construct multiscale representations of vector field topology, since they
support merger operations. that generalize cancellation operations known in scalar
field topology [1] to the case of general, non-gradient, vector fields. Conceptually,
merging two Morse sets is equivalent to replacing them by a single Morse set,
containing both of the initial ones and all trajectories that connect them. Our
algorithm works by iteratively applying such merger operations in a certain order
that can be controlled by the user. This leads to a sequence of Morse decompositions
of decreasing complexity.

The rest of the chapter will be organized as follows. Section 2 contains a dis-
cussion of related work. Section 3 reviews the work on Morse decompositions and
Morse Connection Graphs that we build upon. Morse set mergers and their proper-
ties are discussed in Sect. 4. Section 5 discusses our approach to building the hierar-
chy of Morse decompositions. Finally, experimental results are presented in Sect. 6.

2 Prior Work

Vector field visualization has been an active research topic during the past two
decades [2—4]. In most cases, the focus of work on vector field topology has been on
computing basic features such as stationary points, periodic orbits and separatrices.
Stationary points can be found using the technique of [5]. Periodic orbits can be
computed by following trajectories until they converge to a limit cycle [6] or by
intersecting stream surfaces [7]. In the 2D case, separatrices can be obtained by
following trajectories along unstable and stable directions of saddles [8,9]. In [10],
stationary points, periodic orbits and connecting trajectories are found using a Morse
decomposition. An approach to 3D vector field visualization based on the concept
of saddle connectors, i.e. isolated trajectories connecting repelling and attracting
saddles, is introduced in [11]. In parameter-dependent vector fields, features such as
stationary points or vortices can be tracked using feature flow fields [12, 13].
Numerical instability (sensitivity to a numerical method used to approximate
trajectories) intrinsically associated with vector field topology defined in terms
of individual trajectories is discussed in [14]. The same paper proposes to use
Morse decomposition and the Morse Connection Graph (MCG), that represents
trajectories connecting the Morse sets, as a more robust representation of vector field
topology. An adaptive refinement scheme for Morse decompositions that can lead
to more efficient and more precise analysis was recently introduced in [15]. The PC
approximation based approach to computing Morse decomposition, which is faster
and yields finer results, has been introduced in [16]. The CVPC framework designed
to support computation of Morse decompositions of user-prescribed stability with
respect to perturbation of the vector field was introduced in [17]. An approach to
vector field topology based on discrete vector fields motivated by Forman’s discrete
Morse theory [18] is proposed in [19]. While this is an attractive approach because
it is purely combinatorial, it has poor approximation properties. Trajectories of a
discrete vector field can only move along edges of the mesh or its dual graph

Simplification of Morse Decompositions Using Morse Set Mergers 41

and, in general, do not converge to the trajectories of the original vector field as
triangle sizes go to zero. The edge map approach recently developed in [20-22]
provides another elegant solution to the consistency issues related to numerical
integration. The basic idea is to represent the way trajectory segments contained
in a single mesh triangle A connect its boundary points as a mapping of the
boundary of A into itself. That mapping can be approximated by a piecewise linear
(possibly quantized), mapping with arbitrary accuracy. As a result, trajectories can
be followed by applying a series of linear interpolations rather than numerical
integration. Most algorithmic tools developed for PC vector fields (in particular, the
concept of transition graph, MCG, and the simplification scheme introduced in this
chapter) can be combined with edge maps. However, edge maps are more difficult to
implement and their extension to higher dimensions appears to be hard. In contrast,
some aspects of the PC framework have recently been extended to the 3D case in
[23]. On the other hand, the advantage of edge maps is their consistency with the
standard piecewise linear interpolation scheme for vector field data.

Prior work on multi-scale topology for non-gradient vector fields includes
topology simplification schemes based on merging nearby stationary points to
reduce their number [24] and cancellations of stationary points connected by a
separatrix [25]. A method of merging critical points based on Conley index theory
has been described in [26] and extended to handle periodic trajectories in [10].
An adaptive refinement scheme for Morse decompositions based built upon the
T-map graph representation is described in [15]. In contrast to the approach
described here, their method is top-down, i.e. selectively refines a coarse Morse
decompsition rather than coarsens a fine one. A hierarchy of stable Morse decom-
positions, which is controlled by stability of the decomposition with respect to
perturbation of the vector field is described in [27]. In this case, the construction
is bottom up and driven by a simple and natural criterion (stability). However,
this construction is computationally expensive. Multi-scale analysis has also been
incorporated into combinatorial vector field based algorithms [19]. Note that most
vector field topology simplification schemes attempt to alter the vector field in
an explicit manner to reduce its topology. A notable exception is [28], where
topological features are modeled as convex subsets of the domain and analyzed
by examining inflow and outflow regions on the boundary. Simplification is
achieved by merging these convex sets into larger ones. In our framework, topology
simplification is achieved by simplifying the Morse decomposition itself, through
Morse set mergers. Morse set mergers can be viewed as generalizations of critical
point cancellations in scalar field topology [1,29].

3 Morse Decompositions and Morse Connection Graphs

Morse decompositions and Morse connection graphs are generally computed from
a finite directed graph representation of the flow induced by the input vector
field. At least three suitable graph representations have been used for vector field

42 L. Sipeki and A. Szymczak

visualization purposes: the geometry based graph [10, 14], the t-map graph [14]
and the transition graph for piecewise constant vector fields [16].

In this chapter, we build upon the method of [16, 30], designed for piecewise
constant (PC) vector fields. In addition to being robust and efficient, this approach
also supports a simple and reliable way to classify Morse sets based on fixed point
index and stability (i.e. categorization as repelling, attracting or neither repelling nor
attracting). This classification scheme provides a natural way to specify the Morse
set merger constraints (Sect. 5).

3.1 PC Vector Fields: Basics

Formally, a PC vector field defined on a triangulated manifold surface is a function
that assigns a vector f(A) parallel to the A’s plane to every mesh triangle A. Inside
A, trajectories of the PC vector field move with constant velocity equal to f(A).
Additionally, trajectories are allowed to slide along any exploding or imploding
edge e, for which vectors in the two incident triangles both point away from or
toward it, with constant velocity f(e) determined as follows. First, rotate one of the
incident triangles around e to make it co-planar with the other. Then, define f(e) as
the convex combination of vectors assigned to the incident triangles, with weights
chosen to make it parallel to e (Fig. 1, top box). Trajectories of a PC vector field can
also stay at stationary vertices, for any amount of time. Stationary vertices are mesh
vertices that are determined by sector analysis: a vertex is stationary if and only if
it has a parabolic sector or its number of hyperbolic sectors is other than 2. Two
examples of sector structure of a vertex are shown in Fig. 1, bottom box.

To sum up, any trajectory of a PC vector field can be obtained by a concatenation
of linear simple segments, either moving through a triangle A with velocity f(A),
sliding along an exploding or imploding edge with velocity f(e) or staying at
a stationary vertex. In particular, this means that trajectories can be constructed
without numerical integration. In contrast to the standard continuous vector fields,
there may be more than one trajectory passing through a point on the surface. For
example, infinitely many trajectories originating from the lowermost vertex on the
exploding edge in Fig. 1, top, can be constructed by following that edge for some
time and then turning into one of the incident triangles at any point along the edge.
Despite this, the multivalued flow defined using trajectories described above can be
analyzed using topological tools [16].

3.2 Transition Graph

For PC vector fields, a transition graph is used to represent its trajectories. Nodes
of a transition graph are in one to one correspondence with n-sets. N-sets are
either mesh vertices or edge pieces, that result from subdividing mesh edges into

Simplification of Morse Decompositions Using Morse Set Mergers 43

N S

p
unstable
parabolic ™\ stable parabolic
unstable unstable
B parabglic B __parabolic
stable parabolic stable parabolic

Fig. 1 Top box: an exploding and an imploding edge. In both cases, trajectories can move along
the edge. The process of determining the velocity of trajectories moving along the edge can
be visualized by moving vectors assigned to both incident triangles so that they are anchored
at the same point p on the edge. The velocity vector is the vector from p to the intersection
point of the edge and the line connecting the endpoints of the vectors (dashed line). Bottom box:
examples of sector analysis of two vertices. The one on the left is non-stationary: it has one large
stable parabolic sectors (on the bottom, between the two nearly horizontal dashed half-lines),
one unstable parabolic sector running along the edge leading to the uppermost neighbor and two
hyperbolic sectors between them. The vertex on the right is stationary: it has two stable and two
unstable parabolic sectors and four hyperbolic sectors between them

shorter line segments. Two n-sets are required to be connected by an arc of the
transition graph if they are directly connected by a simple segment (Fig.2). Since
any trajectory can be obtained by joining simple segments, an encoding of a
trajectory of the PC vector field as a path in the transition graph can be obtained
by recording the consecutive n-sets visited by that trajectory. Such a sequence of
n-sets has to be a path in any valid transition graph. Note that graphs obtained by
inserting new arcs into a transition graph are also transition graphs and therefore can
be used to compute Morse decompositions.

An attractive feature of the transition graph is that it can be refined to provide
more precise information on the flow, by simply splitting an edge piece e into shorter
ones and connecting them with the neighbors of e in the graph according to the local
flow structure. Details of this process as well as refinement strategies to increase the
precision of Morse decomposition and Morse Connection Graph are described in
[16] and [30].

44 L. Sipeki and A. Szymczak

Fig. 2 Left: two adjacent triangles in the mesh, with vectors assigned to them shown as the arrows.
The edge vt is exploding, with flow along it moving down. The contribution of the two triangles to
the transition graph is shown on the right. For example, the flow along the edge v7 is represented
by the path v — i — j — t. Since some simple segments traversing the left triangle connect b
to h and g, the arcs b — h and b — g are in the graph. However, the arc b — f is not since there
is no simple segment starting in » and ending in f. Note that for any stationary vertex, the graph
also contains the loop arc connecting the n-set corresponding to that vertex to itself

3.3 Morse Decompositions and Morse Connection Graphs

A Morse decomposition is derived from a transition graph ¢. Morse sets are defined
by strongly connected components of ¢. They capture all circulation present in
the flow, in particular all stationary points and periodic trajectories (since every
cycle in the graph is contained in a strongly connected component). Morse sets are
classified by means of fixed point index and stability. Morse sets of index i are
referred to as Morse sets of type (i, +) if they are repelling, (i, —) if attracting and
(i, 0) if neither attracting nor repelling. This classification scheme provides a simple
way to distinguish Morse sets similar to classical topological features: sinks (Morse
sets of type (1, —)), sources (1, +), saddles (—1, 0), attracting periodic trajectories
(0, —) and repelling periodic trajectories (0, 4). Morse sets of type (0, 0) are trivial.
In practice, they represent regions where circulation cannot be excluded because
of insufficient resolution of the transition graph or clusters of features that can be
removed by applying a local perturbation to the vector field. Morse sets of types
discussed above are called simple. All other Morse sets are complex. In practice,
simple Morse sets are easier to understand since the flow near them resembles flow
near classical features (or laminar flow in the case of trivial Morse sets).

A Morse connection graph (MCGQG) is also determined from a transition graph
¢ and represents potential connections between different Morse sets. Its nodes are
the strongly connected components of ¢. Here, we define the MCG in two steps,
following [31]. First, define < as the ‘is connected to’ relationship on the strongly
connected components of . More precisely, for two components 4 and B, 4 <
B if and only if there is a path in ¢ connecting a node in A4 to a node in B. By
definition of strongly connected components, existence of such a path is equivalent
to existence of a path from any node p € A to any node ¢ € B in ¢. Note that < is
a partial order [32]. The MCG obtained from ¢, denoted by MCG(¥), can then be
defined as the Hasse diagram of 1. More precisely, an arc A — B is in the MCG
if and only if B is an immediate successor of A (or, equivalently, A is an immediate
predecessor of B) in the partial order <, i.e. A < B and there is no C such that
AQC JB.

Simplification of Morse Decompositions Using Morse Set Mergers 45

An alternative definition of arcs of M CG(¥), which will be convenient in
Sect. 4.3, can be stated directly in terms of properties of ¢. Strongly connected
components A and B are connected by the arc A — B in M C G (%) if and only if
the set Conng (A, B), defined as the union of all paths in ¢ connecting a node in
A to anode in B, is nonempty and intersects no strongly connected components of
¢ other than A and B. It is easy to see that this definition and the one based on the
Hasse diagram are equivalent.

4 Morse Set Mergers

In this section, we describe a basic Morse set merger operation that our hierarchy
construction is built upon. Recall that Morse sets are represented by strongly
connected components of a transition graph ¢ (Sect. 3). We describe how Morse
set (or, on the transition graph level, strongly connected component) mergers can
be modeled by inserting new arcs into ¢ in Sect. 4.1. Later on, we show how these
merger operations affect the MCG in Sect. 4.2 and provide a proof of consistency
between the two in Sect. 4.3.

4.1 Mergers on the Transition Graph Level

A particularly simple way to execute a merger of strongly connected components A
and B, such that the arc A — B is in M CG(¥), is to pick arbitrary nodes a € A
and b € B and insert the arc b — a into ¢ (Fig. 3). In the resulting graph ¢, A, B
and all paths that connect them, are in the same strongly connected component C.
Since A and B are adjacent in the MCG, no other strongly connected component
is affected by this operation (since paths connecting A and B do not intersect any
other component).

4.2 Impact of Mergers on the MCG

We now describe how the merger of strongly connected components A and B
described in the previous section changes the MCG. This is useful since the MCG is
much smaller than a transition graph and therefore certain properties of the Morse
sets involved in the merger are cheaper to compute from the MCG than from the
transition graph (examples are discussed in Sect. 5 below).

To update the MCG, we proceed in two steps illustrated in Fig.4. First, we
contract the arc A — B. Nodes A and B in the MCG are replaced by a single
node C, representing the new strongly connected component in ¢’. For each node
D such that A — D or B — D is in the MCG prior to the merger, the arc C — D

46 L. Sipeki and A. Szymczak

d

Fig. 3 Merger of two strongly connected components A and B in the transition graph, connected
by the arc A — B in the MCG. Since the two nodes are adjacent in the MCG, paths connecting
them exist in the graph (they pass through nodes outside the two boxes). None of these paths
intersects a strongly connected component other than A and B. After the merger, i.e. after inserting
the long dotted arc b — a, the graph contains a loop through every node shown in the figure. For
example, to obtain a loop containing d, follow a path from a to d, then to b and back to a using
the new arc

M N M N M N
S 0 S o | Shortcut S 0
Contraction removal
—_— —_—
T P T P T P
B
R R R
Q Q Q

Fig. 4 Morse set merger on the MCG level. Arc contraction step: nodes corresponding to the
strongly connected components A and B are merged to a single node representing the new
component C. The starting vertices of arcs into the new node are the same as starting vertices
of arcs into A or B in the original graph (here, M, N, P and T'). Similarly, endpoints of arcs out
of C are the same as the endpoints of arcs out of A or B in the graph before the merger (O, Q
and R). Shortcut removal step deletes arcs that are shortcuts of paths through C, introduced by the
contraction step. In this case, two arcs are removed, P — O and M — C

is added to the resulting graph. Analogously, for each node D such that D — A or
D — B is in the MCG prior to the merger, the arc D — C is added to the updated
graph.

The second step is the shortcut removal. Since an MCG is a Hasse diagram of
a partial ordering of strongly connected components, it is not allowed to possess
shortcut arcs. Such shortcuts (but only for paths passing through C) may result
from the edge contraction step described above (Fig.4). Thus, any arc D — E
representing a shortcut for a path passing through C (possibly, starting or ending at
C) is removed from the graph.

Simplification of Morse Decompositions Using Morse Set Mergers 47
4.3 Consistency

This section focuses on a formal proof that the MCG update (Sect. 4.2) is consistent
with the transition graph update (Sect.4.1). In what follows, by 7 we denote the
graph MCG(¥) with the arc A — B contracted as described in the previous section.
We start with the proposition stating that no arcs of M C G(¥’) are missed by our
algorithm.

Proposition 1. M CG(¥Y') is a subgraph of 7.

Proof. Since the two graphs have the same vertices, we need to show that every
arc in MCG(¥') is also an arc of J#. Let E — F be any arc of MCG(¥'). As
discussed at the end of Sect. 3, this means that Conng (E, F) is nonempty and does
not intersect any strongly connected component of ¢’ except for E and F. Consider
the following three cases.

Case 1. Neither £ nor F is the same as C, the node resulting from the
contraction. In this case, £ and F are also strongly connected components of
¢ and Conng (E, F) = Conng/(E, F) (since ¢’ has only one arc more than ¢,
and that arc connects a node in C, which is disjoint with Conng (E, F)). Since
every strongly connected component of ¢ is contained in the strongly connected
component of 4’, Conng (E, F) is disjoint with any strongly connected compo-
nent in & except for E and F, and therefore £ — F belongs to MCG(¥) and
therefore also to .77

Case2. E = C. Sine there is a path ¢ in ¢’ connecting C to F, there is a
path in ¢ connecting A to F. Such a path can be obtained by following a path
from a node in A to the last node of o in C, and then following o to a node in
F. This means that Conng (A, F) # §. Since ¢ is a subgraph of ¢’, any path
connecting A and F in ¢ is also a path connecting C to F in¥". Since such paths
cannot intersect any strongly connected components in ¢’ other than C and F,
we conclude that Conng (A, F) cannot intersect components of ¢ other than A,
B or F.If it does not intersect B, then A — F is in MCG(¥). If it does, then
Conng (B, F) is nonempty and the only components it can intersect are B and F
and therefore B — F' is in MCG(¥). We conclude that in both cases, C — F
belongs to .77

Case3. F = C. The argument in this case is analogous to the one for case 2,
with the directions of any arc involved reversed. O

It remains to show that all shortcuts to be removed from J# to obtain MCG(¥")
are for paths passing through C. This is a simple consequence of the following
proposition.

Proposition 2. Ifthe arc E — F belongs to ¢ and there is a path from E to F in
FC consisting of more than 1 arc, then there is a path from E to C and from C to
Fins?.

48 L. Sipeki and A. Szymczak

Proof. The proposition is trivially satisfied if either £ or F is equal to C. Thus,
from now on, we assume neither E nor F is the same as C. This means that the arc
E — F isin MCG(¥). Since it is a Hasse diagram, MCG (%) cannot contain a path
of length greater than 1 connecting E to F. Such a path can arise in 5 only if there
are paths from E to B and from A to F in MCG(%). But then, paths form E to C
and from C to F exist in J7. O

S Construction of the Hierarchy

Our algorithm works in a bottom up fashion. We start off by computing a fine Morse
decomposition and Morse connection graph from the transition graph constructed
using the method similar to [30]. First, the coarse transition graph is constructed.
Then, the following process is iterated a user-specified number of times:

* Compute the strongly connected components of the transition graph; let S be the
union of these components.

e Compute the union U of all paths in the graph that pass through a node in
a strongly connected component corresponding to a Morse set that is neither
attracting nor repelling (note that these nodes belong to generalized separatrices
[30]; by subdividing these nodes we make them more precise).

» Refine all edge pieces in U U S, by subdividing each of them into two of equal
length.

Then, we initialize a priority queue that controls the Morse set mergers by
inserting all admissible MCG arcs into it. In general, our procedure merges only
pairs of Morse sets connected by an admissible arc. The precise definition of an
admissible arc can be set arbitrarily by the user of the system. The cost of an
admissible arc is also computed using an arbitrary user-provided formula.

To build the hierarchy of Morse decompositions, we execute a series of Morse
mergers. We extract the arc A — B of lowest cost from the queue. We merge A and
B by adding one arc to the transition graph as described in Sect. 4.1. We also update
the MCG to keep it consistent with the transition graph resulting from the merger
(Sect.4.2), and update the priority queue by removing all arcs that are no longer
in the MCG and inserting all new MCG arcs (all of which are incident to the new
node, C in Sect.4.2) that are admissible. This process is continued until the queue
becomes empty, yielding a complete hierarchy.

A compact representation of the hierarchy consists of the initial transition graph
and a sequence of arcs that were inserted into it for each Morse set merger. To
compute the Morse decomposition after n mergers, we add the first n arcs to the
graph and then run the generic algorithm of [16]. Note that the arc additions can be
viewed as counterparts of gradient path reversals in discrete Morse theory [33].

Simplification of Morse Decompositions Using Morse Set Mergers 49
5.1 Admissibility and Cost: An Example

Our procedure is general enough to use an arbitrary user-provided definition of
admissibility and cost. However, its running time can be highly dependent on these
definitions. For complex data, it is beneficial to be able to determine the cost and
admissibility directly from the Morse Connection Graph, perhaps with a small
amount of additional information stored at the nodes. Computing them from the
transition graph is typically significantly more expensive since it is much larger
than the MCG.

A natural goal that one can set for the hierarchy construction is to keep the Morse
sets topologically simple throughout the process. In our algorithm, with each MCG
node we keep the corresponding Morse set type. This information is easy to update
as Morse sets are merged. If A and B are merged into C, the index of C is equal
to the sum of indices of A and B. If the domain of the vector field is a manifold
surface with no boundary, then C is attracting (repelling) if and only if there are no
arcs in the updated MCG out of (respectively, into) C. Let us stress that this may not
be true for domains with boundary: for example, if all paths starting at a strongly
connected component leave the domain through the boundary, there is no arc out of
that component in the MCG which may cause the component to appear attracting
even when it is not. A way to deal with this issue will be described in future work.

Admissibility of an MCG edge A — B can be defined in terms of types of
Morse sets defined by A and B and the type of Morse set that would result from the
merger of A and B (as usual, let us call it C). In this chapter, we define A — B as
admissible if the following two conditions are satisfied:

(i) A is repelling or B is attracting; the motivation is to suppress the growth of
non-attracting or non-repelling sets that are generally harder to understand if
they are large and have complex geometry

(i) C is of a simple type, i.e. (0,0), (1, +), (1,—), (—1,0), (0, +) or (0, —): trivial
or similar to one of the classical vector field features (sink, source, saddle or
attracting or repelling periodic orbit). Such Morse sets are easier to understand
since they behave in a way similar to the classical features.

While there are many ways to define a sensible cost function to control the
Morse set merger order, also in this case efficiency should be taken into account.
A natural goal that one may set for the process is to keep the Morse sets not only
topologically simple, but also small. Size measure can be based on bounding box
size for efficiency. In our implementation, each MCG node of the initial MCG is
equipped with the bounding box information for the corresponding Morse set. This
bounding box estimate is propagated as the Morse sets are merged. Specifically, if
A and B are merged into C then we use the smallest axis oriented box containing
bounding boxes of A and B as an estimate of the size of bounding box of C. Clearly,
this estimate is inaccurate since it ignores the contribution of paths connecting A and
B (which are also included in C). Nevertheless, it can be used as a useful estimate
of the size of C. In our implementation, the diameter of the bounding box of C is
used as the cost of the edge A — B.

50 L. Sipeki and A. Szymczak

SN I ey s SR ISR ey

S g (S G = e a5 g
WI 1&/\AJ| WI l\a./w-‘i'

et 4 - : e 1

' L mEs ~— u‘ - ~ :\‘_ = —) LJ -

[L TR T | NN T _—_— |

ﬁik P ST FOS
\.&‘I l\../\Jl WI 1\5./\4_'

““ - L) -" “~‘ § 83 _,,.- ~—) Lt

Fig. 5 Closeup of results for the cooling jacket dataset. The original Morse decomposition
obtained using 10 refinement operations is shown in the top left (note it contains 723 Morse sets,
139 of which are trivial). Consecutive images show the simplified Morse decomposition after 300,
400 and 500 Morse set mergers. Notice that features near small vortex regions are successfully
cancelled (i.e. combined into trivial Morse sets) after 500 mergers

6 Experimental Results

Our algorithm provides a simple yet effective way to simplify Morse decompo-
sitions. A series of snapshots of the simplification process for the cooling jacket
dataset [34] is shown in Fig.5. We use the standard color-coding of Morse sets
according to their type (trivial — grey, (1, +) and (0, 4+) —red, (1,—) and (1, +) -
green and (—1, 0) — blue; in figures shown here, there are no nontrivial Morse sets
since mergers they would result from are not admissible). Note that color figures
are available only in the electronic version of this chapter. It is interesting to note
that in the Morse decomposition for 500 mergers (Fig. 6) there are only 2 repelling
Morse sets, one on the inlet and one on top of the jacket on the side of the inlet, and
3 attracting sets, one on the outlet and two close to it. All the other Morse sets are
either trivial or of type (—1, 0) (saddle-like). This can be seen as an indication of a
good design, since large and complex attracting or repelling sets near the cylinder
heads would mean potential hot spots (cf. [27,34]). The algorithm is also effective
in simplifying Morse decomposition for the gas engine dataset (Fig. 7).

In general, the running time of our algorithm is dominated by the time needed to
compute the initial MCG. For example, for the cooling jacket discussed above, the
initial Morse decomposition took 2 min to construct, while the order of all mergers
was determined in 1.5s. For the gas engine dataset, the construction of the initial
decomposition took 10s and the merger order was computed in 0.08 s. Since the
transition graph is large, the geometric model of Morse sets for a decomposition in
the hierarchy is relatively expensive to compute: it can be determined within 1.5s
for the gas engine dataset and within 14 s for the cooling jacket dataset.

Simplification of Morse Decompositions Using Morse Set Mergers 51

Fig. 7 Simplification stages for the gas engine dataset. The first image shows the starting Morse
decomposition, consisting of 62 Morse sets. The following images show the Morse decomposition
after 20 and 40 mergers

52 L. Sipeki and A. Szymczak

7 Conclusion

In this chapter we describe a simple and efficient framework for building hierarchies
of Morse decompositions based on flexible, user-specified criteria. There are
number of potential directions for future work. For example, it would be interesting
to systematically explore and compare different ways to control the mergers, in
particular using different definitions of admissibility and cost. It would also be
interesting to develop a more visually appealing way to draw the simplified MCG
to convey important structural information to the user.

References

1. H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarhical Morse-Smale complexes for piecewise
linear 2-manifolds, in Symposium on Computational Geometry, Medford (ACM, New York,
2001), pp. 70-79

2. T. McLouglin, R.S. Laramee, R. Peikert, F.H. Post, M. Chen, Over two decades of integration-
based geometric flow visualization. Comput. Graph. Forum 29(6), 1807-1829 (2010)

3. R.S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, FH. Post, D. Weiskopf, The state of the
art in flow visualization: dense and texture-based techniques. Comput. Graph. Forum 23(2),
203-221 (2004)

4. R.S. Laramee, H. Hauser, L. Zhao, F.H. Post, Topology-based flow visualization, the state of
the art, in Topology-Based Methods in Visualization, ed. by H. Hauser, H. Hagen, H. Theisel
(Proceedings of the TopolnVis 2005) (Springer, Berlin/Heidelberg, 2007), pp. 1-19

5. J.L. Helman, L. Hesselink, Representation and display of vector field topology in fluid flow
data sets. IEEE Comput. 22(8), 27-36 (1989)

6. T. Wischgoll, G. Scheuermann, Detection and visualization of planar closed streamline. IEEE
Trans. Vis. Comput. Graph. 7(2), 165-172 (2001)

7. H. Theisel, T. Weinkauf, Grid-independent detection of closed stream lines in 2D vector fields,
in Proceedings of the Conference on Vision, Modeling and Visualization 2004 (VMV 04),
Stanford, 2004, pp. 421-428

8. J.L. Helman, L. Hesselink, Visualizing vector field topology in fluid flows. IEEE Comput.
Graph. Appl. 11(3), 36-46 (1991)

9. A. Globus, C. Levit, T. Lasinski, A tool for visualizing the topology of three-dimensional vector
fields, in Proceedings of the 2nd Conference on Visualization *91, San Diego, 1991, pp. 33-40

10. G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, E. Zhang, Vector field editing and
periodic orbit extraction using Morse decomposition. IEEE Trans. Vis. Comput. Graph. 13(4),
769-785 (2007)

11. H. Theisel, T. Weinkauf, H.C. Hege, H.P. Seidel, Saddle connectors — an approach to
visualizing the topological skeleton of complex 3D vector fields, in IEEE Visualization, Seattle,
2003, pp. 225-232

12. H. Theisel, H.P. Seidel, Feature flow fields, in Proceedings of the Symposium on Data
Visualisation 2003. VISSYM’03, Grenoble. (Eurographics Association, Aire-la-Ville, 2003),
pp. 141-148

13. T. Weinkauf, H. Theisel, A.V. Gelder, A. Pang, Stable feature flow fields. IEEE Trans. Vis.
Comput. Graph. 17, 770-780 (2011)

14. G. Chen, K. Mischaikow, R.S. Laramee, E. Zhang, Efficient Morse decompositions of vector
fields. IEEE Trans. Vis. Comput. Graph. 14(4), 848-862 (2008)

Simplification of Morse Decompositions Using Morse Set Mergers 53

15.

16.
17.
18.
19.

20.

21.

22.
23.
24.
25.
26.
217.

28.

29.

30.
31.
32.

. R. Forman, Morse theory for cell complexes. Adv. Math. 134(1), 90-145 (1998)
34,

G. Chen, Q. Deng, A. Szymczak, R.S. Laramee, E. Zhang, Morse set classification and
hierarchical refinement using Conley index. IEEE Trans. Vis. Comput. Graph. 18(5), 767-782
(2012)

A. Szymczak, E. Zhang, Robust Morse decompositions of piecewise constant vector fields.
IEEE Trans. Vis. Comput. Graph. 18(6), 938-951 (2012)

A. Szymczak, Stable Morse decompositions for piecewise constant vector fields on surfaces.
Comput. Graph. Forum 30(3), 851-860 (2011)

R. Forman, Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift
228, 629-681 (1998)

J. Reininghaus, C. Lowen, 1. Hotz, Fast combinatorial vector field topology. IEEE Trans. Vis.
Comput. Graph. 17(10), 1433-1443 (2010)

H. Bhatia, S. Jadhav, P.T. Bremer, G. Chen, J.A. Levine, L.G. Nonato, V. Pascucci, Edge maps:
representing flow with bounded error, in Pacific Visualization Symposium (PacificVis) 2011,
Hong Kong, 2011, pp. 75-82

H. Bhatia, S. Jadhav, P. Bremer, G. Chen, J. Levine, L. Nonato, V. Pascucci, Flow visualization
with quantified spatial and temporal errors using edge maps. IEEE Trans. Vis. Comput. Graph.
18(9), 1383-1396 (2012)

J.A. Levine, S. Jadhav, H. Bhatia, V. Pascucci, P.T. Bremer, A quantized boundary representa-
tion of 2D flows. Comput. Graph. Forum 31(3pt1), 945-954 (2012)

A. Szymczak, N. Brunhart-Lupo, Nearly-recurrent components in 3D piecewise constant
vector fields. Comput. Graph. Forum 31(3pt3), 1115-1124 (2012)

X. Tricoche, G. Scheuermann, H. Hagen, A topology simplification method for 2D vector
fields, in Proceedings IEEE Visualization 2000, Salt Lake City, 2000, pp. 359-366

X. Tricoche, G. Scheuermann, Continuous topology simplification of planar vector fields, in
Proceedings IEEE Visualization 2001, San Diego, 2001, pp. 159-166

E. Zhang, K. Mischaikow, G. Turk, Vector field design on surfaces. ACM Trans. Graph. 25(4),
1294-1326 (2006)

A. Szymczak, Hierarchy of stable Morse decompositions. IEEE Trans. Vis. Comput. Graph.
19(5), 799-810 (2013)

T. Weinkauf, H. Theisel, K. Shi, H.C. Hege, H.P. Seidel, Extracting higher order critical points
and topological simplification of 3D vector fields, in Proceedings of the IEEE Visualization
2005, Minneapolis, 2005, pp. 559-566

A. Gyulassy, V. Natarajan, V. Pascucci, B. Hamann, Efficient computation of Morse-Smale
complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6),
1440-1447 (2007)

A. Szymczak, Morse connection graphs for piecewise constant vector fields on surfaces.
Comput. Aided Geom. Des. 30(6), 529-541 (2013)

W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain
recurrence. Found. Comput. Math. 5(4), 409-449 (2005)

D. Kozen, The design and analysis of algorithms (Springer, New York, 1991)

R.S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, H. Hagen, Visual analysis and
exploration of fluid flow in a cooling jacket, in Proceedings of the IEEE Visualization 2005,
Minneapolis, 2005, pp. 623-630

Toward the Extraction of Saddle Periodic Orbits

Jens Kasten, Jan Reininghaus, Wieland Reich, and Gerik Scheuermann

Abstract Saddle periodic orbits are an essential and stable part of the topological
skeleton of a 3D vector field. Nevertheless, there is currently no efficient algorithm
to robustly extract these features. In this chapter, we present a novel technique to
extract saddle periodic orbits. Exploiting the analytic properties of such an orbit, we
propose a scalar measure based on the finite-time Lyapunov exponent (FTLE) that
indicates its presence. Using persistent homology, we can then extract the robust
cycles of this field. These cycles thereby represent the saddle periodic orbits of the
given vector field. We discuss the different existing FTLE approximation schemes
regarding their applicability to this specific problem and propose an adapted version
of FTLE called Normalized Velocity Separation. Finally, we evaluate our method
using simple analytic vector field data.

1 Introduction

In the field of scientific visualization, the analysis of three dimensional vector fields
is often connected to its topology. In many cases the structures that are extracted
consist only of sources, sinks, saddles, saddle connectors, and the separation
surfaces. However, there are more structures contained in these fields such as
attracting, repelling, and saddle-like periodic orbits. In divergence-free flows, there
are also center-like periodic orbits. All orbits are global structures that cannot be
extracted using local analysis.

J. Kasten (0<1) « W. Reich ¢ G. Scheuermann

Leipzig University, Leipzig, Germany

e-mail: kasten @informatik.uni-leipzig.de; reich@informatik.uni-leipzig.de;
scheuermann @informatik.uni-leipzig.de

J. Reininghaus
Institute of Science and Technology Austria, Klosterneuburg, Austria
e-mail: Jan.Reininghaus @ist.ac.at

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 55
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__ 4,
© Springer International Publishing Switzerland 2014

mailto:kasten@informatik.uni-leipzig.de
mailto:reich@informatik.uni-leipzig.de
mailto:scheuermann@informatik.uni-leipzig.de
mailto:Jan.Reininghaus@ist.ac.at

56 J. Kasten et al.

The extraction of attracting and repelling periodic orbits in three-dimensional
vector fields is comparatively easy, since their connected manifolds are volumetric.
This has been previously explored by Wischgoll in [23]. Conversely, the manifolds
connected to a saddle periodic orbit are surfaces. Nearly all stream lines that come
close to a saddle periodic orbit will never reach it, but instead diverge. It is therefore
nearly impossible to detect saddle periodic orbits directly by stream line integration.
They have to be found indirectly.

Saddle periodic orbits can be extracted by intersecting the attracting and repelling
separation surface, i.e., distinguished stream surfaces that are similar to separatrices
in 2D. This was shown by Peikert et al. [14]. Unfortunately, there are two major
problems with this approach: First, the integration of separation surfaces is started
at local structures, i.e., the saddle points. However, not all global structures have to
be connected to this type of critical points. In particular, there are vector fields with
saddle periodic orbits but no saddle points, see for example Fig. 4. In addition, the
integration of separation surfaces is a numerically complex task. Many publications
have been written on this topic. Especially at saddle-like structures, the correct
integration of the surfaces becomes problematic.

In this chapter, we propose a different approach to extract the saddle periodic
orbits. According to their nature, a significant amount of stream line separation
in both time directions can be detected in their vicinity. The finite-time Lyapunov
exponent (FTLE) is the square root of the largest eigenvalue of the Cauchy-Green
deformation tensor and measures that separation by computing the strain of a very
small volume placed inside the flow. It is typically used to analyze time-dependent
flow fields, since vector field topology fails here to extract the interesting structures.
Nevertheless, in many cases, FTLE reveals the separatrices for two-dimensional
stationary vector fields. We propose a new measure called Normalized Velocity
Separation (NVS) based on the FTLE. In three dimensions, the fields of forwards
and backwards integrated NVS indicate the repelling and attracting surfaces. We
propose to use the minimum of both fields to indicate a high amount of separation
and convergence using only one scalar field. The closed curves of this field with a
high value therefore indicate the presence of a saddle periodic orbit. Since the NVS
fields can be very complex we make use of persistent homology [6] to robustly
extract the persistent cycles.

2 Related Work

While the notion of flow topology has been introduced by Helman and Hes-
selink [10] to the visualization community over two decades ago, the particular
interest in detecting closed stream lines was initiated by Wischgoll and Scheuer-
mann [23]. Their approach is to find cycles of cells in a discrete vector field in two
dimensions that get crossed repeatedly by flow particles under numerical integra-
tion. This method requires the closed stream line to be either attracting or repelling.
For the same purpose, Theisel et al. [21] transform planar, two-dimensional vector

Toward the Extraction of Saddle Periodic Orbits 57

fields into an appropriate 3D vector field and detect closed stream lines as a
intersection curve of stream surfaces.

Chen et al. [4] provided a combinatorial approach to extract the topological
skeleton of a planar vector field. Their method is based on the construction of
a graph from the maps that are induced by particle transport from cell to cell.
Closed stream lines are represented by cycles in that graph. There are approaches
in generalizing that technique to three dimensions [16], which are computationally
inefficient at the present.

A tool that is able to determine the stability properties of closed stream lines is the
Poincaré-map [11]. In some cases, this map can be used to extract periodic orbits.
For instance, Sanderson et al. [18] extracted orbits in domain for a magnetic field
by exploiting a natural Poincaré section. In general, such a natural Poincaré section
may not exist, see Fig. 6. An alternative method is also the generation of transition
matrices by a similar combinatorial method from Dellnitz et al. [5]. Periodic orbits
are a special case of a stationary state of such a matrix, i.e. an eigenvector to the
eigenvalue of 1.

In this chapter, we use the fact that saddle-like closed stream lines can be
described by the intersection of two separating manifolds. Therefore, we can use
the finite-time Lyapunov exponent, or brief FTLE, as introduced by Haller [9] to
compute manifolds of separation and convergence. The value of FTLE for flow
visualization was especially shown by Sadlo and Peikert[17], Garth et al. [8]
and Kasten et al. [12]. Interested readers are also referred to surveys concerning
flow visualization by Weiskopf et al. [22] and Post et al. [15].

3 Foundation

3.1 Periodic Orbits

In an arbitrary vector field, there can be distinguished closed stream lines, i.e.,
periodic orbits. They are characterized by attracting, repelling, center-like or saddle-
like behavior. A periodic orbit is called isolated periodic orbit if it has an open
neighborhood that does not contain any other periodic orbit. Note that periodic orbits
cannot occur in fields that are the gradient of an appropriate scalar field. For further
details, we refer to the book of Asimov [1].

3.2 Saddle Periodic Orbits

A saddle-like periodic orbit is characterized by two distinguished manifolds: an
attracting and a repelling one. Therefore, saddle-like periodic orbits are similar to
saddle connectors [20], but, in contrast, there is no critical point at the intersection

58 J. Kasten et al.

Fig. 1 2D views of a simple saddle periodic orbit (yellow). (a) xy-View. (b) yz-View

of these manifolds. For saddle periodic orbits, one of the characterizing manifolds
has to have a tube-like structure and the other one has to have a planar structure
in a sufficiently small neighborhood. In Fig. 1, line integral convolution images are
shown for two planes intersecting a periodic orbit. In Fig. 1a, the attracting manifold
of this periodic orbit can be seen. In this plane, the three-dimensional periodic orbit
looks like a two-dimensional attracting periodic orbit with a source at the origin of
the domain. In contrast, Fig. 1b shows that the periodic orbit has a distinguished
manifold where the particles diverge. Note that we chose a simple saddle periodic
orbit for the explanation. In a general setting, separation or convergence does not
have to occur at every point of the periodic saddle. It is sufficient that the saddle
periodic orbit is characterized by separation surfaces, which are global structures.
Thus, a local analysis can never indicate a saddle periodic orbit.

3.3 Finite-Time Lyapunov Exponent (FTLE)

To detect separation within a vector field, the first idea is to use the FTLE. The
finite-time Lyapunov exponent (FTLE) measures the separation of infinitesimally
close particles over a finite time period 7'. If the FTLE is calculated backwards,
it measures the convergence of particles. We therefore call the separation measure
FTLE™ and the convergence measure FTLE™.

There are different approaches to calculate the FTLE. In this section, we will
discuss two of them: the original method based on the flow map (F-FTLE) and a
method based on accumulating the Jacobian, i.e., the vector gradient, that is called
localized FTLE (L-FTLE). First, we will describe both methods in the general
context of time-dependent flow fields.

Toward the Extraction of Saddle Periodic Orbits 59

F-FTLE - Letv : R? x I — R? be a d-dimensional, time-dependent flow field.
The advection of a particle with the flow for a time 7' can be described using the
flow map

¢RI xI — R (1)

It maps a particle at position X, and time # onto its advected position ¢ (Xo, tp, ') =
¢£ (xp) at time T'. The gradient of the flow map

Vol : RY — R4 @)

characterizes the local flow deformation of a particle neighborhood. Maximum
stretching of nearby particles is given by the spectral norm |[|.|[; of Vq&g . Flow
map FTLE (F-FTLE) is defined as the normalized maximal separation

1
F-FTLE" (x0.7.T) = T In(|[V¢ (x0, t0, T)|]2)- (3

In practice, the flow map is mostly computed by sampling particles on regular grids.

L-FTLE - Consider a path line p(¢) = p(Xo, f, t) for a particle started at space-
time location (xo, #p). The deviation of trajectories of infinitesimally close particles
started at (X + 8o, fo), with 8o — 0, is given by the differential equation

3(t) = Ju(p(t), 10 + 1)8(1). (4)

Solving the differential equation yields

8(t) = exp (/0 Jv(p(z), 10 + ‘L’)d‘L’) 3o. (5)

Given a finite time span 7, the matrix

T
Yr(p) = exp (/0 Jv(p(), 10 + f)df) (6)

expresses the mapping of a neighborhood at the starting point p(0) onto its
deviations at the end point p(7'). Compared to the flow map approach, this matrix
corresponds to the gradient of the flow map. Defining a temporal discretization of
the path line T = At - N, where At is the length of one time step and N the number
of steps, Eq. (6) can be approximated as

N—1

Wr(p) =~ [[expUu(p(AD). 1o +iA1)- Ar). @)
i=0

60 J. Kasten et al.

Fig. 2 FTLE (left) and Normalized Velocity Separation (NVS) (right) computed for a linear saddle.
Red (blue) coloring depicts forward (backward) integration. The forward and backward FTLE field
is constant and therefore the separatrices cannot be detected by FTLE. By normalizing the field for
the flow map computation, NVS can detect the separatrices correctly

L-FTLE is now defined as the largest separation of this mapping. It is computed as
1
L-FTLE" (xo, 70, T) = T In(||¥r(p)I]2), (®)

where ||.||, represents the spectral norm of the resulting matrix.

Comparison — Kuhn et al. [13] analyzed different FTLE methods with the
conclusion that L-FTLE yields better results for long integration times. Indeed,
L-FTLE measures the flow behavior using a single path line and therefore resembles
the separation for longer separation times better — in contrast to the flow map or
renormalization approaches. L-FTLE measures the separation for a single particle
point-wise. In contrast, F-FTLE is calculated using a discrete flow map. Thus, the
separation is measured for a small volume element of the size of the discretization.
For the detection of separation, this has a severe impact: Finding separation surfaces
is nearly impossible using a point-wise evaluation. It is only possible to detect actual
particle separation, if the flow behavior is analyzed using small volume elements.
Therefore, the flow map approach seems to be the method of choice for our purpose.

4 Normalized Velocity Separation

In the last section, we have seen that the F-FTLE approach is able to detect particle
separation for small volume elements. However, even F-FTLE is not perfectly suited
to detect all separation surfaces or separatrices. For instance, for a linear saddle,
the FTLE will be constant in both cases, see Fig.2. Thus, no separatrices would

Toward the Extraction of Saddle Periodic Orbits 61

$ f}‘y{ kY . % (‘;_,, I B

¥=

Fig. 3 A common idea when using FTLE (or NVS) is that the sampling distance of the particles
to compute the flow map has to be decreased to gain better results. Unfortunately, this worsens
the detection of separation in the field, since particle separation may be missed locally (left). The
resolution of the flow map should to be at least as equally coarse as the resolution of the FTLE or
NVS field

be highlighted by this measure. Instead of particle separation, we are interested in
stream line separation, i.e., we need to detect if two stream lines spatially diverge.
Therefore, we introduce a slightly different measure that lifts the aforementioned
limitation.

Similar to the F-FTLE approach, we compute the flow map. Instead of using
a standard integration of the stream lines that are parametrized by the particle
advection time, we normalize the vectors of the underlying vector field since we
are only interested in the limiting behavior of the particles and not in their velocity.
After computing this flow map of the normalized vector field, we need to compute
its gradient. Note that the newly defined flow map is not smooth. In fact, it is
not even continuous. Nevertheless, is has bounded variation, since T < oco. We
can therefore evaluate the distributional derivative on each volume element of a
given grid. In practice, this means that standard finite difference approaches are
still mathematically well founded in this setting. We call the spectral norm of this
measure Normalized Velocity Separation (NVS). Similar to FTLE, NVS can be
computed in forward and backward direction.

Note that if we compute the flow map with a smaller resolution than the final
NVS field, not all separation might be detected. If we choose the same discretization
for the flow map as for the final NVS field, then we can assure that we measure
every separation contained in the field, see Fig. 3. In this chapter, we use NVS with
the same resolution for the flow map as for the final NVS field.

Note that for instationary vector fields, the FTLE is used to extract Lagrangian
coherent structures (LCS). In our context, we use NVS to detect separation and
convergence in a stationary field. Thus, the resulting structures do not necessarily
have to be connected to LCS.

62 J. Kasten et al.
5 Method

Our approach to extract saddle periodic orbits consists of three main steps: First,
both NVST and NVS~ are computed, second, their minimum is computed, and,
third, the persistent cycles are extracted.

NVS computation — As already mentioned, we use a three-dimensional flow map
based approach for the NVS computation. Our approach has three parameters: the
grid resolution of the NVS fields [SX, Sy, SZ], the integration distance 7', and the step
size for each integration step Ar. We first compute the flow map at each point of
the grid. The resolution of the flow map is the same as for the final NVS field. The
integration is done using a simple Runge-Kutta integrator of fourth order without
step size control. We support periodic data sets with our integrator, which enables
unbounded evaluation.

The difference for the integrator between the FTLE computation and the NVS
computation is that we normalize the used vectors. The normalization assures that
shear does not impact our result.

After the flow map is computed, at each grid point, the gradient of the flow map is
computed. We use a central differences approach here. Using the flow map gradient,
the eigenvalues are computed using the method of Smith [19].

Feature field — As we already noted, saddle periodic orbits can be extracted
as an intersection of attracting and repelling manifolds. In the context of NVS,
these manifolds are characterized by high values in the NVST and NVS™ fields.
The intersection can be mimicked by computing the minimum of both fields. The
minimum of both NVS fields is therefore called

NVS™" = min (NVST ,NVS~),

and its closed curves with a high value indicate the presence of saddle periodic
orbits.

Note that the integration time plays an important role in the detection of saddle
periodic orbits. Since the separation might only occur at one single point along the
orbit, the integration has to cover at least one period of the orbit. Therefore, with a
integration time 7', only saddle periodic orbits of arc length L < T can be detected.

Cycle extraction — Since the NVS™" field can be very complex in practice, we
propose to employ persistent homology [6] to robustly extract its dominant cycles.
Especially, derivative-based methods would be difficult to use, since the derivatives
of the minimum field might not be well-defined. Besides, we will see in the results
section that persistence filters out most cycles in the NVS™" field that are not
connected to saddle periodic orbits.

The basic idea in persistent homology is to measure the lifetime of homological
features, i.e. components, tunnels, or voids, with respect to the sub-level threshold.
As the sub-level threshold is increased, these features get born or may die. Using

Toward the Extraction of Saddle Periodic Orbits 63

fast algorithms [3], one can efficiently track these events and thereby compute the
long living topological features.

In our case we not only need the information of the presence of persistent cycles,
but also a geometric representative of the cycle itself. We therefore make use of the
extension to the persistence algorithm proposed in [7]. In this chapter, we make use
of the open source library PHAT [2] to quickly compute the persistent cycles.

6 Results

In this section, we evaluate our method using three data sets. The first two data sets
contain only a single saddle periodic orbit and are therefore simple analytic data
sets. The third data set is constructed from a truncated Fourier series with random
coefficients. It is much more complex and contains a lot of different topological
structures.

6.1 Single Saddle Periodic Orbit No. 1

The first data set is given by the equation

u=x—-y—02-x-(x*+y*+7%) 9)
v=x+y—02-y- (x* +y*+7) (10)
w=02z (x4) +2). (11

For this data set, the position of the saddle periodic orbit is known.

In Fig.4a, we visualized the stream lines of this data set using illuminated
lines. We restricted the field to a bounding box [—4, 4]3. However, the stream line
integration is possible for an infinite length. In the figure, it is hard to see the saddle
periodic orbit. Anyhow, one can observe some stream lines that indicate a saddle-
like behavior.

Figures 4c+d show the NVS fields of this data set as a volume rendering. NVS™
is shown in red and NVS™ is shown in blue. The amount of opacity is determined by
the data value. The N'VS fields are computed with parameters 7 = 10 and A = 0.1
in a volume of [—4, 4]3 with a discretization of 256 steps in each direction. In the
NVST field, a wall of separation can be seen. In the NVS™ field, the expected tube
of convergence can be seen. Intersecting these objects by computing the minimum
of the NVS fields leads to the rendering shown in Fig. 4e. The field is colored in grey
and the amount of opacity is determined by the data value. Here, we can already see
the saddle periodic orbit as a cycle in the NVS™" field. This cycle can be easily
extracted using persistent homology.

64 J. Kasten et al.

3D View Extracted Orbit

c d e

NVS* NVS~ NVsin

Fig. 4 Data set No 1: (a) Stream line visualization of the vector field; (c+d) Volume rendering of
the N'VS fields indicating the attracting and repelling separation surfaces; (e) The minimum of both
NVS fields; (b) Using persistent homology, the dominant cycle in the minimum field is extracted
and is depicted by a black line. We additionally seeded stream lines in the vicinity of the periodic
orbit and colored them according to an arc length parametrization

6.2 Single Saddle Periodic Orbit No. 2

The second data set is given by the equation
u=-y+x-(1-r) (12)

v=x+y-(1—-r) (13)
w=z-2-r), (14)

Toward the Extraction of Saddle Periodic Orbits 65

Fig. 5 Data set No 2: see caption of Fig. 4 for details. (a) 3D View. (b) Extracted Orbit. (c) NVST.
(d) NVS™. (e) NVS™in

where r = /x? + y? 4 72 is the distance to the origin. As for the first data set, the
position of the saddle periodic orbit is known.

In Fig. 5a, the stream lines of this data set are shown as illuminated lines. Again,
we restricted the visualization to a bounding box of [-2, 2]3, while the stream line
integration can be done for an unbounded length. In contrast to the first data set, we
can see that there is some kind of bubble enclosing the inner flow. We cannot see
any indication for a saddle periodic orbit using the stream line visualization.

Figures 5c+4d show the NVS fields of the second data set as a volume rendering.
Again, NVS™ is shown in red and NVS™ is shown in blue and the amount of opacity
is determined by the data value. The NVS fields are computed with parameters
T = 5and Ar = 0.1 in a volume of [—2,2]* with a discretization of 256 steps
in each direction. The NVS fields look quite similar to the NVS fields of data set
no. 1. In particular, the NVS™ field again shows a plane as separation manifold.

66 J. Kasten et al.

Fig. 6 Truncated Fourier series with random coefficients: see caption of Fig. 4 for details. (a) 3D
View. (b) Extracted Orbit. (¢) NVS™T. (d) NVS™. (e) NVS"™"

In contrast, the NVS™ field does not show a tube but an ellipsoid. Note that the
ellipsoid is not solid. Similar to the first data set, the minimum field in Fig. Se shows
aring structure. This is the expected saddle periodic orbit.

6.3 Truncated Fourier Series with Random Coefficients

In Fig. 6a, the stream lines of the third data set are shown. This data set resembles
the complexity of real world data. Each component of the vector field consists of a
sum of a few sin and cos functions with random coefficients. Note that due to the
periodicity of the data set, the stream lines can be traced for an unbounded time.
We sampled this smooth function using 256 steps in each direction. In the stream
line visualization of this vector field, we can see a lot of attracting and repelling
structures, but the contained saddle periodic orbit cannot be found.

Toward the Extraction of Saddle Periodic Orbits 67

Figures 6¢+d show the NVS fields for this data set. The coloring is chosen as for
the data sets aforementioned. We computed the NVS with parameter T = 0.2 and
At = 0.01 for the whole domain with a discretization of 256 steps in each direction.

The separation surfaces are clearly visible in the NVS™ and NVS™ fields. The
complexity of both fields is much higher than for the simple analytic data sets.
In Fig.6e, the NVS™" field is shown. This image shows that the NVS™" not
only indicates the saddle periodic orbits, but also the saddle connectors. Also,
the finite approximation of the field introduces noise. Both effects generate a few
false positives, when we extract the persistent cycles from the NVS™" field, since
saddle connectors can form loops. The amount of extracted saddle connector loops
can be reduced by filtering with respect to minimal vector magnitude, while the
effect of noise can be controlled by focussing on highly persistent cycles. Using
these filtering techniques, we were able to extract a saddle periodic orbit indicated
by an arrow, since the resulting candidate set was small enough to allow for a manual
selection. A zoom-in of this structure is shown in Fig. 6b.

7 Conclusion

In this chapter, we presented a novel method to extract saddle periodic orbits in
a three-dimensional vector field. We introduced a new measure called Normalized
Velocity Separation (NVS) which is based on the FTLE measure. The minimum of
both fields indicates the presence of saddle periodic orbits. We have seen that NVS
based on F-FTLE fits best for this problem, since we can measure the separation
in small volumes instead of a point-wise computation. We extracted the dominant
cycles in this feature field using persistent homology. This makes our method
applicable to relatively complex data sets as we have shown in the results section.

It should be noted that we are not able to extract the periodic orbit shown in
Fig. 6b in a fully automatic manner. Our method depends crucially on the choice of
suitable parameters and generates false positives in the case of complex data sets.
Also, due to the numerical approximation we cannot rule out the presence of false
negatives.

While most topological structures of three-dimensional vector fields are effi-
ciently extractable, saddle periodic orbits remain a challenging problem and a robust
and parameter-free method has yet to be proposed.

Acknowledgements First, we thank the reviewers of this paper for their ideas and critical
comments. In addition, we thank Ronny Peikert and Filip Sadlo for a fruitful discussions. This
research is supported by the European Commission under the TOPOSYS project FP7-ICT-
318493-STREP, the European Social Fund (ESF App. No. 100098251), and the European Science
Foundation under the ACAT Research Network Program.

68 J. Kasten et al.
References
1. D. Asimov, Notes on the topology of vector fields and flows. Technical Report RNR-93-003,

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

NASA Ames Research Center, 1993

U. Bauer, M. Kerber, J. Reininghaus, PHAT: persistent homology algorithm toolbox. http://
phat.googlecode.com/

C. Chen, M. Kerber, Persistent homology computation with a twist, in 27th European
Workshop on Computational Geometry (EuroCG 2011), 2011. Extended abstract

. G. Chen, K. Mischakow, R.S. Laramee, E. Zhang, Efficient morse decompositions of vector

fields. IEEE Trans. Vis. Comput. Graph. 14, 848-862 (2008)

. M. Dellnitz, O. Junge, On the approximation of complicated dynamical behavior. SIAM

J. Numer. Anal. 36, 491-515 (1999)

. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification.

Discret. Comput. Geom. 28, 511-533 (2002)

. H. Edelsbrunner, A. Zomorodian, Computing linking numbers of a filtration, in Algorithms in

Bioinformatics. LNCS, vol. 2149 (Springer, Berlin/Heidelberg, 2001), pp. 112-127

. C. Garth, G.-S. Li, X. Tricoche, C.D. Hansen, H. Hagen, Visualization of coherent struc-

tures in transient 2D flows. In Topology-Based Methods in Visualization II (Springer,
Berlin/Heidelberg, 2007), pp. 1-13

. G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid

flows. Physica D 149, 248-277 (2001)

J. L. Helman, L. Hesselink, Visualizing vector field topology in fluid flows. IEEE Comput.
Graph. Appl. 11(3), 3646 (1991)

M. Hirsch, S. Smale, R. Devaney, Differential Equations, Dynamical Systems and an Introduc-
tion to Chaos, 2nd edn. (Academic, 2004)

J. Kasten, C. Petz, I. Hotz, B. Noack, H.-C. Hege, Localized finite-time lyapunov expo-
nent for unsteady flow analysis, in Proceedings Vision, Modeling and Visualization 2008,
Braunschweig, 2009, pp. 265-274

A. Kuhn, C. Rossl, T. Weinkauf, H. Theisel, A benchmark for evaluating FTLE computations,
in Proceedings IEEE Pacific Visualization 2012, Songdo, 2012, pp. 121-128

R. Peikert, F. Sadlo, Topologically relevant stream surfaces for flow visualization, in Proceed-
ings of Spring Conference on Computer Graphics, Budmerice, 2009, pp. 171-178

FH. Post, The state of the art in flow visualization: feature extraction and tracking. Comput.
Graph. Forum 22(4), 775-792 (2003)

W. Reich, D. Schneider, C. Heine, A. Wiebel, G. Chen, G. Scheuermann, Combinatorial vector
field topology in three dimensions, in Topological Methods in Data Analysis and Visualization
11 (Springer, Berlin/Heidelberg, 2012)

F. Sadlo, R. Peikert, Visualizing lagrangian coherent structures and comparison to vector
field topology, in Topology-Based Methods in Visualization II (Springer, Berlin/Heidelberg,
2009)

A. Sanderson, G. Chen, X. Tricoche, E. Cohen, Understanding quasi-periodic fieldlines and
their topology in toroidal magnetic fields, in Topological Methods in Data Analysis and
Visualization II, Mathematics and Visualization, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs,
(Springer, Berlin/Heidelberg, 2012) pp. 125-140.

0.K. Smith, Eigenvalues of a symmetric 3 X 3 matrix. Commun. ACM 4(4), 168 (1961)

H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, Saddle connectors — an approach to
visualizing the topological skeleton of complex 3D vector fields, in Proceedings of IEEE
Visualization 2003, ed. by G. Turk, J.J. van Wijk, R. Moorhead, Seattle, Oct 2003, pp. 225-232
H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, Grid-independent detection of closed stream
lines in 2D vector fields, in Proceedings Vision, Modeling and Visualization 2008, Konstanz,
2004, pp. 421-428

http://phat.googlecode.com/
http://phat.googlecode.com/

Toward the Extraction of Saddle Periodic Orbits 69

22. D. Weiskopf, B. Erlebacher, Overview of flow visualization, in The Visualization Handbook,
(Academic, 2005), pp. 261-278

23. T. Wischgoll, G. Scheuermann, Detection and visualization of closed streamlines in planar
flows. IEEE Trans. Vis. Comput. Graph. 7(2), 165-172 (2001)

Part I1
Efficient Computation of Topology

Computational Topology via Functional
Programming: A Baseline Analysis

David Duke and Hamish Carr

Abstract Computational topology is of interest in visualization because it summa-
rizes useful global properties of a dataset. The greatest need for such abstractions
is in massive data, and to date most implementations have opted for low-level
languages to obtain space and time-efficient implementations. Such code is com-
plex, and is becoming even more so with the need to operate efficiently on a
range of parallel hardware. Motivated by rapid advances in functional programming
and compiler technology, this chapter investigates whether a shift in programming
paradigm could reduce the complexity of the task. Focusing on contour tree
generation as a case study, the chapter makes three contributions. First, it sets out
the development of a concise functional implementation of the algorithm. Second, it
shows that the sequential functional code can be tuned to match the performance of
an imperative implementation, albeit at some cost in code clarity. Third, it outlines
new possiblilities for parallelisation using functional tools, and notes similarities
between functional abstractions and emerging ideas in extreme-scale visualization.

1 Introduction

The contour tree, Reeb graph and Morse-Smale complex are of interest to com-
putational scientists because they provide useful, well-founded, abstractions that
facilitate analysis of massive datasets. Efficient algorithms to generate these abstrac-
tions are already difficult to implement, and the need for variants that can exploit a
growing range of parallel hardware is an open challenge.

Most algorithms for contour tree generation start with the requirement to traverse
samples in order, with the result that a global property of the data (the ordering)

D. Duke (<) « H. Carr
School of Computing, University of Leeds, Leeds, UK
e-mail: D.J.Duke @leeds.ac.uk; H.Carr@leeds.ac.uk

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 73
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__5,
© Springer International Publishing Switzerland 2014

mailto:D.J.Duke@leeds.ac.uk
mailto:H.Carr@leeds.ac.uk

T4 D. Duke and H. Carr

limits opportunity to apply simple parallel operations on spatially localised regions.
Approaches that require explicit management and coordination of parallel tasks
then add further complexity to implementations. As extreme-scale computation
looks toward exa-scale architectures and new trade-offs between computation and
communication costs, there is an irony that one of the main tools needed for massive
data analysis may be one of the more awkward to parallelize.

One escape route is to find an alternative derivation for the structure, one that is
independent of global assumptions. The Joint Contour Net [8] may provide such a
trap-door, by taking a constructive, computational view of the contour tree as a set
of relationships between discrete geometric regions. Rather than move to a different
algorithm, this chapter investigates whether a different programming paradigm,
(pure) functional programming, could simplify the implementation of topological
computations, and potentially provide a simpler path to parallel computational
topology. The prima facie case for investigating the functional paradigm is:

1. The ability to describe algorithms at a very high level of abstraction, effectively
providing a concise executable specification.

2. Evidence that FP can yield runtime performance commensurate (or sometimes
even better than) that obtained from imperative languages, for example [9, 11].

3. Rapid advances in compiler and run-time technologies, in particular the emer-
gence of lightweight abstractions for opportunistic parallel evaluation [13, 14].

In the longer term, these points are equally important: we seek programs that
combine effective exploitation of parallelism with clear expression of the underlying
algorithm. This chapter addresses the first point, and investigates whether FP can
match imperative performance on a topological computation. Our functional code
is written in Haskell [21], a pure functional language with support multiple forms of
parallelism. Space precludes substantial presentation of parallel approaches, so on
this point the chapter reports only initial findings and opportunities.

Section 2 briefly reviews the relevant literature on approaches to parallelizing
computational topology. Section 3 reviews pure functional programming and intro-
duces the expression of these concepts within Haskell. Three stages of development
are then set out, addressing each of the three claims above. Section 4 describes
an initial contour tree implementation that favours simplicity over performance.
Section 5 then derives an efficient sequential implementation, before Sect. 6 identi-
fies routes to functional parallelization. Section 7 then stands back to consider the
findings against the objectives of this study.

2 Computational Topology and Functional Programming

Computational topology in visualization has focussed on three data structures —
the contour tree, the Reeb graph, and the Morse-Smale complex. Each of these
has posed its own challenges in terms of algorithmic development, particularly
with respect to performance, memory consumption, and parallelization. For the

Computational Topology via Functional Programming 75

contour tree, Pascucci and Cole-McLaughlin [18] described a block-wise parallel
implementation in which contour trees (or merge trees) were computed for individ-
ual blocks, then merged hierarchically in a standard fan-in approach. In a related
approach, Arge and Revsbaek [1] showed how to implement an out-of-core version
of Carr et al.’s approach [3]. More recently, Maadasamy et al. [12] have described
a hybrid approach relying on GPGPU programming. Similarly, Pascucci et al. [19]
described a practically efficient streaming algorithm for Reeb graph computation,
which tackles large data sets by minimising the memory overhead on a single
CPU. Shivashankar et al. [20] also use GPGPU, to implement a paralell algorithm
for computing 2D Morse-Smale complexes, while Guenther et al. [10] propose an
efficient parallel algorithm for computing MS complexes from 3D grayscale images.
Common to all of these approaches however, has been the difficulty of moving
from a relatively simple serial algorithm to a parallel algorithm, and this is
where functional languages become of interest. Functional languages have been a
useful incubator for programming concepts that have only later appeared in more
widespread languages; examples here are parametric polymorphism, and lambda
expressions. Deliberately or coincidentally, a similar pattern can be observed in
emerging software architectures for extreme-scale visualization. The Dax toolkit
[16] replaces per-filter iteration with ‘worklets’ whose execution is coordinated
within a single traversal. Haskell and its libraries exploit ‘fusion’, both for simple
types such as lists and more recently bulk array operations; pushing fusion deeper
into the datatype level, rather than components, may create opportunities for tighter
optimization. At a different level, the Functor/Iterator model of EAVL [15] bears
similarities to the use of type-directed optimization of array operations [11].

3 Functional Programming

In a von Neumann architecture computation proceeds through the application of
instructions that result in the modification of data stored in a (global) memory.
Imperative languages provide layers of abstraction over the raw architecture,
capturing common patterns of computation as control structures, and providing
data representations that mediate between flat machine memory and the conceptual
structures of problem domains.

Computational models typically trade-off control over the raw machine against
level of abstraction. In place of a specific machine architecture, functional program-
ming starts from Church’s mathematical lambda calculus, with computation viewed
as the reduction of an expression to a normal form. In place of assignment, the
fundamental operation in a functional program is the application of a function to an
argument (also called B-reduction). As an introduction to the Haskell language [21]
used in this chapter the following code defines two functions, take and filter, and
uses these to define a program that returns the first three even numbers:

76 D. Duke and H. Carr

take :: Int — [a] — [a]

take 0 _ =]

take _ [] =l

take n (v:vs) = v:take (n—1) vs

filter :: (a — Bool) — [a] — [a]

filter _[] =[]

filterp (v:vs) |pv = v filter p vs
| otherwise = filter p vs

take 3 (filter even [1..])

The first line of each function gives its fype; all Haskell definitions are strongly
typed, but declarations are optional as types can be inferred. Haskell’s rich type
system is beyond the scope of this chapter; for the present all we need are basic
types (Int, Float, Bool, ..), type constructors for lists ([. . .]) and functions (—), and
parametric polymorphism. The first line states that take is a function that given an
integer and a list of values (of some arbitrary type a), returns a list of the same type a.
Haskell functions are curried: rather than taking a tuple of parameters, they take one
argument at a time, allowing a new function to be constructed by partially applying
a function to some of its arguments. Lines 2—4 implement take. The equations use
pattern matching: if the first argument is the constant O, the result is an empty list; if
the first argument is non-zero and the second argument is the empty list, the result is
the empty list; otherwise the function returns the result of cons-ing the head of the
list to the result of taking one fewer item from the tail.

The second function, filter, is higher order; its first argument is itself a function
(from some type a to boolean), and it applies this function to each value in a
list, retaining just those in the output for which the first argument returns True.
Higher-order functions take the place of control structures in imperative languages,
capturing common patterns of computation, with the advantage that new patterns
can be introduced as desired.

An essential component of this expressive power is use of lazy evaluation, where
an argument to a function is only evaluated to the extent that it is needed by the
computation. Most imperative languages evaluate arguments, then pass the result
to the function via a stack. This eager evaluation presumes that the arguments are
needed, limiting the extent to which functions can be ‘glued together’ into new
abstractions.! Fixed control abstractions are necessary in imperative code in part
because they impose particular requirements on evaluation order (e.g. we need
to evaluate the predicate of a conditional statement before deciding which of the
branches to perform). In the last line, the sub-expression filter even [1..] applies
the filter function to two arguments, a function even from numbers to boolean, and

I'This is a simplification. Technically, lazy evaluation is the combination of normal order reduction
with overwriting the root of reducible expressions to ensure that arguments are evaluated at most
once.

Computational Topology via Functional Programming 77

the infinite list of numbers 1, 2, 3, Under eager evaluation, the call to filter would
never return, but under lazy semantics, evaluation proceeds as follows:

take 3 (filter even [1..])

= take 3 (filter even [2..])

= take 3 (2 : filter even [3..])

= 2 : take 2 (filter even [3..])

= 2 : take 2 (filter even [4..])

= 2 : take 2 (4 filter even [5..])

Once three values have been generated, the first equation of fake will apply, and
the expression will reduce to 2 : 4 : 6 : [], or more simply [2,4, 6]. Haskell also
provides n-ary tuples (e.g. (1, True, “foo”) is a 3-tuple of an integer, a boolean and a
string), type synonyms, and user-defined data types. For example, a type to represent
2D points in either polar or rectangular coordinates can be defined by

type Angle = Float
data Coord = Rectangular Float Float | Polar Float Angle

The expression Rectangular 1.5 2.5 constructs a value of type Coord.
Rectangular and Polar are called constructors, and can be used on the left-hand
side of function definitions to pattern-match against arguments. Indeed the list type
used in take and filter is just a data type with two constructors, cons (written :) and
nil ([]). Components of a constructor can be accessed by pattern matching or by
naming the fields, with the field names then available as accessor functions,

data Coord = Rectangular {x :: Float,y :: Float}
| Polar {rho :: Float, theta :: Angle}

Here rho :: Coord — Angle, and if x = Polar 30.0 45.0, then rho x = 30.0.
The functions described so far have been pure, that is, evaluation of the function

produces a single result. In practice most computation involves side-effects, such as
input-output, concurrency, exceptions, or writing to memory. Haskell has adopted an
elegant solution that not only accommodates side effects, but allows programmers to
define new computational models within the language. A Monad is a data type that
captures the operational behaviour of an effect using a small number of fundamental
operations: the ability to create an effect from a value, and to bind the output of
one effect into the input of another. Haskell’s /O monad, for example, captures
operations such as reading a file or writing output; other standard monads deal with
mutable state or non-determinism. As a monad is just a data type supporting a set of
standard operators, monadic expressions can be written just as other functions; for
example the following counts the number of words in a file:

readFile "test" = Ac¢ — return o length o words $ ¢

78 D. Duke and H. Carr

The function ‘=’ takes the IO operation of reading a file, and binds it to an IO
action that breaks the content into a list of words, and returns the length of the list.
Right-associative function application ‘$’ is used in place of parentheses: f $ g v is
equivalent to f (g v). Haskell also provides ‘syntactic sugar’ to hide the ‘plumbing’
needed to pass the out output from one action to the next; the above can be written

do ¢ < readFile "test"
let len = length o words $ ¢
return len

This may look like a block of imperative code, but the compiler de-sugars this
expression into the form above, chaining monadic actions explicitly. For further
information on Haskell, see [17,21].

4 Step I: The Functional Contour Tree

The first goal was to implement a contour tree algorithm, aiming for code simplicity
and where possible exploiting the functional paradigm, e.g. using higher-order
functions in place of explicit recursion. The implementation is based on the contour
tree algorithm described in [3], and in particular the relatively unoptimized code
used by Carr in his original implementation. All implementations require basic
infrastructure for representing the sampled data, the tree, and other working struc-
tures. The intention was to explore performance using 8-bit volumetric data from the
‘volvis’ repository, but it was straightforward to define a flexible representation that
could also support other simple synthetic test cases. A dataset holds three items, the
dimensionality, a function value that reports the scalar value at a given vertex in the
mesh, and a second function, mesh, that maps each vertex to a list of its immediate
neighbours.

type Dimension = (Int, Int, Int) -- dimensionality of a 3D mesh

type Vertex = Int -- unique index of each mesh vertex
type Coord = (Int, Int, Int) -- position in a 3D mesh
data Dataset a
= DS {dim :: Dimension -- spatial dimension
,mesh :: Vertex — [Vertex] --local structure
,value :: Vertex — a -- scalar value at vertex
}

type ScalarField = Dataset Word8

Zwww.volvis.org

www.volvis.org

Computational Topology via Functional Programming 79

There is no commitment, at this point, to where or how the data is stored. Nor
does the representation explicitly record subdivision into cells; it simply provides a
function to compute neighbourhood information needed by the algorithm.

A concrete dataset is constructed by providing a list of values and dimensionality;
the list is converted into an array for direct access to values, and a Dataset value is
constructed where the value function is simply the function that indexes the array.
As ‘", the array indexing operator, has type Array i e — i — e, partial application
of this operator to an array of samples (i.e., array! below), results in a function of
type i — e that can be used to lookup a value in that specific dataset. The second
parameter to dataset, nbhood, provides adjacency information of vertex coordinates
in a 3D mesh; this is transformed into a function that operates with vertex ids.

dataset :: Dimension — (Coord — [Coord]) — [a] — Dataset a
dataset dimension nbhood samples
= let array = listArray (0, size dimension — 1) samples
in DS dimension (neighbours dimension nbhood) (array!)

Most tree structures are straightforward in Haskell. However the contour tree
algorithm constructs an unrooted tree, and for this we needed a general graph
representation. Unfortunately graphs are not (easily) defined as inductive func-
tional datatypes. Our implementation makes use of both a simple edge list, and
an adjacency list structure stored in an IntMap, an efficient updatable mapping
implemented via Patricia trees [6]. IntMap is also used for the disjoint set structure.

type Node = Int -- graph nodes
type EdgeList = [(Node, Node)] -- edge list representation
data Adjacency = Adj {incoming :: [Node]
, outgoing :: [Node]
i
type Graph = I.IntMap Adjacency

Contour tree generation involves two sweeps through the data, to produce the join
and split trees. Algorithmically these are identical, and take two arguments: a list of
mesh vertices ordered with respect to samples, and the neighbourhood mapping.

join_tree :: [Vertex] — (Vertex — [Vertex]) — EdgeList
Jjoin_tree vertices adjacent
= tree o for_each vertices (init_JoinS vertices) $ Ajs v —
for_each (adjacent v) (mark v js) $ Ajs n —
let components = disj js

lowest = base js
comp_y = find v components
comp_n = find n components

u = lowest ? comp_n

80 D. Duke and H. Carr

in if n ‘S.member* (seen js) A comp_v £ comp_n
then js {disj = union comp_n comp_y components
,tree = (u,v) : (tree js)
, base = set (set lowest comp_v v) comp_n v
,seen = S.insert n (seen js)

}

else js

Some brief points of explanation:

* init_JoinS wraps the information used by the join algorithm into a data construc-
tor with four fields, a disjoint set (disj), a list of edges (tree), a map giving the
lowest vertex in each component (base), and a set (seen) to track (i.e. ‘mark’) the
vertices seen during traversal.

* for_each is an example of building a new control structure. The definition is

for_each::[a] >b—> (b—>a—b)—b
Sor_each xs init op = foldl' op init xs

Starting from a seed (init), we take each value in turn from a list (xs), and apply
a function to the seed and the value to obtain a new seed.

The initial sweeps produce join and split trees stored as edge lists, which are
converted into adjacency lists for the merge phase of the algorithm:

contour_tree :: Graph — Graph — EdgeList
contour_tree jtree stree
= unfoldr step (leaves, jtree, stree)
where
step (q, jt, st)
| sizeQ q > 1 = Just (edge, (¢, jt, st'))

| otherwise = Nothing
where
(xi,ql) = leaveQ q
xj = choose (jt ? xi) (st ? xi)
jt = jt/—/xi
st = st/—/xi
q = if leaf (jt' ? xj) & leaf (st ? xj)
then enterQ xj gl else gl
edge = if incoming (jt ? xi) =[]

then (xi, xj) else (xj, xi)
-- Initial leaves:
leaves = fromListQ [v | v < Lkeys jtree, starter (jtree ?v) (stree ?v)]

-- Test whether up-degree J(v) + down-degree S(v) == 1 by
-- pattern-matching on adjacency structures.

Computational Topology via Functional Programming 81

starter (Adj [] =) (Adj[-] =) = True
starter (Adj [—]) (Adj [] =) = True
starter _ _ = False
-- Choose arc (xi,xj) from J if xi is an upper-leaf,
-- else return the arc (xi,xj) from S.
choose aj as | leaf aj = head o outgoing $ aj
| otherwise = head o outgoing $ as
leaf = null o incoming

As with the split/join tree, we exploit a higher-order pattern, in this case unfold,
starting from an initial seed, unfold generates a sequence of values by applying a
‘step’ function to the seed. This either produces ‘Just’ the next item for the output
and a new seed, or ‘Nothing’, terminating the computation. Here the ‘seed’ contains
the join and split trees, and the queue of nodes to be considered for transfer into
the contour tree. This implementation outputs the augmented contour tree; a further
function converts this to a reduced tree, eliminating internal nodes.

Runtime: When executed on the ‘nucleon’ dataset (41 x 41 x 41), the program
took 48 minutes of user time® to generate the contour reduced tree. By comparison,
Carr’s C++ implementation with debug flags enabled performed the same task in
0.5s.

5 Step II: The Fast Functional Contour Tree

The obvious response to 48 min runtime is “...but where does all that time go?”.
Lazy evaluation complicates the task of profiling, as evaluation of one function may
be spread over a substantial period of time, as more of its output is forced by the
calling context. The problem is further complicated by the extensive series of code
transformations and optimization steps involved in mapping Haskell into executable
code. However the Glasgow Haskell Compiler (ghc) suite provides profiling tools,
and there are known causes, and fixes, for runtime performance problems [17].

The GHC approach to profiling involves identifying a set of cost centres within
the code; these are (by default) major expressions such as top level functions. During
execution, statistics are gathered on the number of entries to, and time spent within,
these blocks, along with the amount of heap space allocated against cost centres
and data types. Heap usage is particularly important: by default, Haskell data and
function closures are allocated on the heap. Heap ‘churn’ was likely to be part of the
slow observed runtime, caused by updates to persistent structures like the integer

3Timings were performed on an Apple MacBook, measured using the unix ‘time’ command.
Programs were compiled with -02 -prof -rtsopts -auto-all -rtsopts, enabling
optimization and run-time profiling.

82 D. Duke and H. Carr

| ContourTreeUF +ATS -p -hc 40,765,072,936 bytes x seconds Thu Feb 17 11:18 2011 ‘
g |
‘ . (283)join_tree/contour/main
50M
] B (272)adjacencyicontourimain
45M e
| |__| (268)contourimain
40M
| [] (28s)setioin_treescontour...
35M]

B (270)contour_treelcontourimain

30m

27 T)ordered/contour/main
- [

20M 1] (268)adjacencyireduce/main

15M B (292)tindsoin_treeicontou...

10M B (267)recucermain

M B ze2main

oM
00 2000 4000 6000 B800.0 1000.0 1200.0 1400.0 1600.0 1800.0 20000 seconds

Fig. 1 Heap usage, per cost centre, of pure program

maps used for graph adjacency lists, and for the disjoint set structure. From the
runtime profile and heap statistics, the following stood out:

» Twenty percent of runtime was spent in the find operation of the disjoint set
structure. With path compression, this operation involves multiple lookups and
updates to the IntMap storing the vertex set partition.

» Ten percent of time was spent in a function, adjacency, used to convert from the
graph edge-list to adjacency list representation.

* As shown in Fig. 1, the program was churning over 40 GB of heap space, with
peak occupancy of 30 MB; this usage could be tracked to the lists and maps used
in the principal functions (join_tree, contour), and in adjacency.

We start by reducing heap churn. Most Haskell functions operate on boxed
representations of data, where values are allocated in heap cells. There are two
reasons for this. First, structures such as lists are produced lazily, so rather than a
concrete value, the head and/or tail of a list may be a thunk, i.e. the code to generate
the value when it becomes needed. Second, polymorphic functions cannot know the
shape/storage of arguments. Passing parameters as references to heap cells rather
than values ensures uniformity of size and access.

We reduce overheads by making data constructors fields strict; such a fields
will always be evaluated, never stored as a thunk. A directive then encourages the
compiler to unbox strict fields. Informed by runtime statistics, we replaced the lazy
adjacency list representation of graphs with a strict AdjNode structure:

Computational Topology via Functional Programming 83

data AdjNode = Link ! Node ! AdjNode | Nil
data Adjacency = Adj {indeg = nt
,outdeg ::Int
, incoming :: AdjNode
,outgoing :: 'AdjNode
H

After adding explicit fields for in- and out-degree, these changes improved runtime
to 10min 52s, still a factor of 20x slower than C. Unboxing other structures,
e.g. coordinate lists defining neighbourhoods, yielded only modest gains. Runtime
profiling indicated that update time and heap churn from the graph and disjoint set
structures still contributed substantial overhead.

These costs could be reduced by in-place update of data. The solution is to use
monads, specifically the state (ST) and unboxed array (STUArray), which allow
us to embed effects in an otherwise pure computation, somewhat like a ‘sandpit’
for unsafe code. The price paid is code clarity — here for example is the monadic
equivalent to the join_tree function:

join_tree :: Int — UArray Int Vertex — (Vertex — [Vertex])
— Array Node Adjacency
Jjoin_tree nrV verts adj
= runSTArray $ do
Jj§ < initJ nrV
forM_ [nrV —1,nrV —2..0]$ Ai — do
let v = verts ‘atA i
putA (seen js) v True
comp_v < findU v $ disj js
forM_ (adj v) $ An — do
comp_n < findU n $ disj js
u <« (base js) ‘getA* comp_n
m <« (seen js) ‘getA‘ n
when (m A comp_v # comp_n) $
do unionU comp_n comp_v $ disj js
add_edge uv $ tree js
putA (base js) comp_n v
return $ tree js

The function parameters are the number of vertices (for counting iterations), an
array of vertices (sorted on the underlying field), and the neighbourhood. In place
of the ‘pure’ for_each, the function uses a generic monadic iterator, forM_, which
applies a monadic operation which folds the initial seed over the array of vertex
indices. We replaced the default array indexing operators, which perform bounds
checking, to ‘unsafe’ versions which do not, and reimplented the sorting operation
as a one-buffer merge sort. The heap statistics in Fig.2 highlight the dramatic
improvement, with peak memory use now <600 K.

84 D. Duke and H. Carr

[ContourTree +RTS -p -hc 1,942,675 bytes x seconds Thu Feb 17 13:45 2011 |

5,000k |

B 295101 troeicontousimain
4,500k
Ao [(s081spm
troe/contouriman
3,500k |
3,000k 1 [07)nnssspin_ rooicont...
2,500k |

. (206)nilljoin_tree/conto.

00 01 01 02 02 02 03 03 04 04 05 05 soconds

Fig. 2 Heap usage, per cost centre, of monadic program. Program runtime is <0.5 s; the horizontal
axis shows a longer runtime as profiling code contributes non-neglible overhead

Table 1 Haskell and C++ performance (runtime, in seconds)

Dataset Dimensions Haskell C++ Speedup (H/C)
Nucleon 41 x 41 x 41 0.36 0.10 3.6
Silicium 98 x 34 x 34 0.74 0.15 49
Neghip 64 X 64 X 64 1.42 0.34 4.2
Hydrogen 128 x 128 x 128 9.87 271 3.6
Lobster 301 x 324 x 56 40.80 9.60 43
Aneurism 256 x 256 x 256 74.90 19.92 3.8

Runtime: Applying the above changes reduces runtime on the ‘nucleon’ dataset to
0.36s, slightly faster than the unoptimised C++ code. With optimisation turned on
(-O3 instead of -g), the C++ code executed in 0.10 s. Table 1 shows test results using
a MacBook 2.4 GHz Core 2 Duo with 4 GB of RAM, OS X 10.6.8, ghc version 7.4.1
and g++ version 4.2.1. With optimisation turned on, the C++ code was consistently
three to four times faster than the Haskell code. The C++ code included modest low-
level optimisations, such as block allocation of memory. While the Haskell is slower,
it indicates that optimised Haskell can be brought within sight of C++ efficiency.

Computational Topology via Functional Programming 85
6 Step III: Towards Parallel Functional Contour Trees

Haskell provides two low-level primitives for parallelism. For expressions a
and b,

* a ‘par® b marks a and b as candidates for sparking as separate threads;
* a ‘pseq‘ b forces evaluation of a to a normal form before evaluation of b.

As interaction between these operations and lazy evaluation can be subtle, higher-
level tools for parallel computation, built on top of these operators, have been
developed; see [13, 14]. As a preliminary experiment, we identified three oppor-
tunities to parallelize our code: (i) running the split and join tree computations
in parallel; (ii) exploiting parallelism in early stages, sorting and initialisation;
and (iii) performing parallel updates on the three merge-phase data structures.
Implementing this using evaluation strategies [13], parallelization of our most
efficient join/split computation is expressed as follows (rpar and rseq are monadic
versions of the par and pseq) :

contour :: Ord a = Dataset a — Graph

contour ds = runEval $ do ascending < rpar $ ordered ds
descending < rpar $ reverse ascending
Jt < rpar $ join_tree descending (mesh ds)
st < rpar $ join_tree ascending (mesh ds)
ct < rseq $ contour_tree jt st
return ct

Programs were compiled with the multi-threaded runtime system, and executed
on a four-core linux machine. On the datasets Table 1 we experienced at best
modest speedup (around 1.5) on two cores, with negligible improvement on further
cores. Run-time profiles show that (a) the join and split computations are running
effectively in parallel, but (b) the data structure updates are too fine-grained:
iteration over leaf nodes during the merger phase forces evaluation of the ‘seed’
state and threads sparked to update the structures ‘fizzle’ as there is insufficient
time to execute the thread before the runtime system forces evaluation of the
entire structure. Further work on larger datasets and alternative parallel strategies
are needed before we can draw conclusions on the utility of parallel functional
topology.

7 Conclusions and Prospects

We have described development of a functional implementations of a contour tree
algorithm, and observed the following:

86 D. Duke and H. Carr

* A pure description of the CT is pleasingly concise, and arguably close(r) to a
specification of the algorithm than imperative code;

* However, its run time performance is prohibitive for anything but trivial prob-
lems;

* The monadic version, reached through incremental transformation of the code
guided by profiling data reaches performance within sight of C++ code, and

* Optimising Haskell code is nearly as opaque as optimising C++ code.

Modest gains from tentative steps toward parallelization are entirely expected
given Amdahl’s law. Looking forward, the following comment by Backus may be
germane: “The assignment statement is the von Neumann bottleneck of program-
ming languages and keeps us thinking in word-at-a-time terms in much the same
way the computer’s bottleneck does.” (our emphasis) [2]. Although our functional
code, particularly the non-monadic versions, exploits higher order functions, the
implementation shadows the published algorithm, and our own thinking has been
consciously to follow the structure of an existing (sequential) algorithm. Further
work is needed to understand how to exploit parallelism in a functional setting, and
we see three roles that functional programming might usefully play in advancing
computational topology:

» The pure version of the code is close to an executable specification, and Haskell
facilitates early testing of components. In other work, we have found it very
useful to have test cases generated by an implementation that is relatively slow
but where we have some confidence in its correctness; see e.g. [7]. Increasing
concern with verification and validation of visualization may make Haskell and
its tool chain attractive.

* Functional languages are particularly well suited to hosting embedded DSLs
(where the DSL is constructed as an expression in the host language) and
deploying generative programming. The Diderot project [5], for example, is
exploiting this to map high-level programs for tensor visualization onto multiple
parallel architectures.

* We have examined a single algorithm for contour tree computation. Other
algorithms may be more amenable to parallelism, and could exploit recent
Haskell libraries for array processing (REPA [11]) and GPGPU (Accelerate [4]).

Acknowledgements Support for this work was provided by the UK Engineering and Physical
Sciences Research Council under Grant EP/J013072/1.

References

1. L. Arge, M. Revsbaek, Robust on-line computation of reeb graphs: simplicity and speed.
Algorithms Comput. 5878, 1155-1165 (2009)

2. J. Backus, Can programming be liberated from the von Neumann style? A functional style and
its algebra of programs. Commun. ACM 21(8), 75-94 (1978)

Computational Topology via Functional Programming 87

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom.
24(2), 75-94 (2003)

M. Chakravarty, G. Keller, S. Lee, T. McDonell, V. Grover, Accelerating haskell array codes
with multicore GPUs, in Proceedings of the Declarative Aspects of Multicore Programming,
Austin (ACM, 2011), pp. 3-14

. C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, N. Seltzer, Diderot: a parallel DSL for image

analysis and visualization, in Proceedings of the Conference on Programming Language
Design and Implementation, Beijing (ACM, 2012), pp. 111-120

. Data.IntMap, www.haskell.org/ghc/docs/7.4-1atest/html/libraries/containers-0.4.2.1/Data-

IntMap.html. Last accessed Nov 2012

. D. Duke, R. Borgo, C. Runciman, M. Wallace, Huge data but small programs: visualization

design via multiple embedded DSLs, in Proceedings of the Practical Applications of Declara-
tive Languages, Savannah, vol. 5418 (Springer, 2009), pp. 31-45

. D. Duke, H. Carr, A. Knoll, N. Schunck, H. Nam, A. Staszczak, Visualizing nuclear scission

through a multifield extension of topological analysis. Trans. Vis. Comput. Graph. 18(12),
2033-2040 (2012)

. D. Duke, M. Wallace, R. Borgo, C. Runciman, Fine-grained visualization pipelines and lazy

functional languages. Trans. Vis. Comput. Graph. 12(5), 973-980 (2006)

D. Giinther, J. Reininghaus, H. Wagner, 1. Hotz, Efficient computation of 3D morse-smale
complexes and persistent homology using discrete morse theory. Vis. Comput. 28(10), 959—
969 (2012)

B. Lippmeier, M. Chakravarty, G. Keller, S. Peyton Jones, Guiding parallel array fusion with
indexed types, in Proceedings of the Haskell Symposium, Copenhagen (ACM, 2012), pp. 25-36
S. Maadasamy, H. Doraiswamy, V. Natarajan, A hybrid parallel algorithm for computing and
tracking level set topology, in International Conference on High Performance Computing, Pune
(IEEE, 2012)

S. Marlow, P. Maier, H.W. Loidl, M. Aswad, P. Trinder, Seq no more: better strategies for
parallel haskell, in Proceedings of the Haskell Symposium, Baltimore (ACM, 2010), pp. 91—
102

S. Marlow, R. Newton, S. Peyton Jones, A monad for deterministic parallelism, in Proceedings
of the Haskell Symposium, Tokyo (ACM, 2011), pp. 71-82

J. Meredith, S. Ahern, D. Pugmire, R. Sisneros, EAVL: the extreme-scale analysis and
visualization library, in Eurographics Symposium on Parallel Graphics and Visualization,
Cagliari, 2012

K. Moreland, U. Ayachit, B. Geveci, K.L. Ma, Dax toolkit: a proposed framework for data
analysis and visualization at extreme scale, in Symposium on Large Data Analysis and
Visualization, Providence (IEEE Computer Society, 2011), pp. 97-104

B. O’Sullivan, J. Goerzen, D. Stewart, Real World Haskell (O’Reilly Media, Sebastopol, 2008)
V. Pascucci, K. Cole-McLaughlin, Parallel computation of the topology of level sets. Algorith-
mica 38(1), 249-268 (2004)

V. Pascucci, G. Scorzelli, P.T. Bremer, A. Mascarenhas, Robust on-line computation of reeb
graphs: simplicity and speed. Trans. Graph. 26(3), 58 (2007)

N. Shivashankar, M. Senthilnathan, V. Natarajan, Parallel computation of 2D morse-smale
complexes. Trans. Vis. Comput. Graph. 18(10), 1757-1770 (2012)

The Haskell Programming Language, www.haskell.org. Last accessed Nov 2012

www.haskell.org/ghc/docs/7.4-latest/html/libraries/containers-0.4.2.1/Data-IntMap.html
www.haskell.org/ghc/docs/7.4-latest/html/libraries/containers-0.4.2.1/Data-IntMap.html
www.haskell.org

Distributed Contour Trees

Dmitriy Morozov and Gunther H. Weber

Abstract Topological techniques provide robust tools for data analysis. They are
used, for example, for feature extraction, for data de-noising, and for comparison
of data sets. This chapter concerns contour trees, a topological descriptor that
records the connectivity of the isosurfaces of scalar functions. These trees are
fundamental to analysis and visualization of physical phenomena modeled by real-
valued measurements.

We study the parallel analysis of contour trees. After describing a particular
representation of a contour tree, called local—global representation, we illustrate how
different problems that rely on contour trees can be solved in parallel with minimal
communication.

1 Introduction

To make sense of the world around us, it is common in natural sciences to encode
physical phenomena as scalar functions. Sometimes this is done directly, as when
pressure measurements are recorded during physical experiments. Other times such
functions are derived from the data, e.g., when the geometry of a shape is encoded
in its distance function. It is rarely feasible to understand such functions directly:
the data sets have become too large. Data analysis and visualization techniques,
therefore, focus on extracting salient features that elucidate interesting behavior in
the data. In this context, topological techniques are particularly attractive because
they provide robust descriptors and help quantify the significance of detected
patterns.

D. Morozov (<) » G.H. Weber

Computational Research Division, Lawrence Berkeley National Laboratory,
One Cyclotron Road, Berkeley, CA 94720, USA

e-mail: dmitriy @mrzv.org; GHWeber @1bl.gov

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 89
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8_6,
© Springer International Publishing Switzerland 2014

mailto:dmitriy@mrzv.org
mailto:GHWeber@lbl.gov

90 D. Morozov and G.H. Weber

Broadly speaking, topological data analysis can be viewed as a two-step process.
First, we compute a topological descriptor that summarizes the given data set. Then
we use this descriptor to extract the relevant information. In this work we focus on a
way to describe the connectivity of isosurfaces of a scalar function. Familiar in two
dimensions as contours on a topographic map, isosurfaces consist of all points in the
domain of a function that have the same value. Isosurface extraction [10,13,15] is a
versatile technique in visualization and data analysis. One reason is that isosurfaces
often have an immediate physical interpretation. For example, isosurfaces for
certain charge densities in molecular simulations indicate boundaries of atoms or
molecules; in combustion simulations, an isotherm (isosurface of temperature) can
represent the location of the flame.

By varying the function value and computing the corresponding isosurfaces, it
is possible to explore the behavior of the data. In this process, it is useful to know
the values where interesting changes occur. A contour tree [2] is a standard tool
to describe such changes. It is a graph whose nodes represent extrema and saddles
where the number of connected components of the isosurface changes. Applications
of the contour trees include speeding up isosurface extraction by identifying and
extracting each one of their connected components by region growing [22]; manip-
ulating individual connected components of “flexible isosurfaces™: for example,
hiding a connected component that encloses relevant portions of the isosurface [3];
and segmenting data for volume rendering [24]. Arge and Revsbaek [1] consider
the problem of I/O-efficient contour tree simplification. Contour trees are a special
case of Reeb graphs [18], which have been used, among many other applications,
for shape matching [9], tracking burning regions in combustion simulations [23],
and identifying pore structures in porous media [21].

In the above two-step view of topological data analysis, the first step is performed
once—there is only one contour tree, Morse—Smale complex, persistence diagram,
etc. associated with a scalar function—but the second step, such as the extraction
of a specific isosurface, depends on additional parameters. Therefore, a user usually
repeats it over and over again (often in an interactive setting) as she explores the
structure hidden in the input.

As the size of the available data grows, it is natural for researchers to turn
to larger, parallel computers to meet their analysis needs. Most of the work
on parallelization of topological computation focuses on the first step of the
above process, on using multiple processors to compute a particular topological
descriptor. Cole-McLaughlin and Pascucci [16] study parallelization of merge
tree computation. Gyulassy et al. [7] study parallel computation of Morse—Smale
complexes. Shivashankar et al. [19,20] consider the same problem in shared memory
(and on GPUs). Without focusing on the details of those procedures, we note that
their outcome is always the same: a single, monolithic topological descriptor.'

!The algorithm of [7] is an exception. It computes many descriptors, Morse-Smale complexes
of smaller portions of the domain. However, this information is not sufficient to resolve the
Morse—Smale complex of the entire function. In particular, [7] ignores how one would use

Distributed Contour Trees 91

Such a representation makes it difficult to take advantage of the multiple available
processors during the analysis step.

We suggest taking a holistic view and develop techniques that focus not only on
how long it takes to compute a descriptor, but also on how efficiently we can analyze
it in parallel. In an earlier work [14], we introduced a local-global representation
of a merge tree. Explained in detail in Sect. 3, it combines local information (the
immediate responsibility of a given processor) with extra global information that
specifies where the local data fits globally. In this chapter, we show that having
such representations of two merge trees serves as a local-global representation of a
contour tree. Specifically, it provides enough information to answer queries about
level sets of a function on a simply connected domain.

2 Background

Scalar functions. The central object of our study is a continuous scalar function,
f : X — R. We assume its domain X is simply connected, meaning any loop inside
it can be contracted to a point. For computational purposes, we restrict our view
further. We assume that X is a simplicial complex, and function f is defined on its
vertices and is linearly interpolated on the interiors of its simplices.

Given a scalar function f : X — R, we say that two points x,y € X are
related, x ~ y, if they belong to the same component of the level set £ ~1(f(x)) =
F7Y(f(»)). A Reeb graph is a quotient space of X with respect to this relation,
X/~; in other words, we construct a Reeb graph by continuously contracting the
level set components of f to points. Intuitively, a Reeb graph tracks connectivity
of level sets of the function—how they merge and split—as we vary the level set
threshold. When the domain of our function is simply connected, the Reeb graph is
a tree, called a contour tree [2].

If instead of the level sets of a function, we examine its sublevel sets, i.e. the
sets of the form f~!(—o0,a], we get a merge tree. Specifically, we say that two
points x and y are related, if they have the same function value, and they belong
to the same component of the sublevel set f~!(—oo, f(x)] = f~'(—o0, f(¥)].
The quotient space of X with respect to this relation is called a merge tree of the
function. Intuitively, it tracks the evolution of sublevel sets of f as we vary the
defining threshold parameter a. (Symmetrically,” we can consider the merge tree of
— f, which tracks the evolution of the superlevel sets of f.) Below we use X, =
£ (—00,a] and X = f~'[a, c0) to denote the sublevel and superlevel sets of £,
respectively.

such a representation for the actual analysis. In our terminology, these descriptors are the local
representations.

2Sometimes authors make distinction between merge trees of super- and sub-level sets, calling the
former join and the latter split trees. We prefer a unified terminology in this chapter.

92 D. Morozov and G.H. Weber

The full merge tree of the function f consists of the following nodes. Its leaves
represent the minima of the function; its root is the global maximum. Its internal
nodes correspond to those saddles of the function where multiple sublevel set
components merge. It is often convenient to implicitly add each of the remaining
vertices to the branch of the merge tree that represents the component of the sublevel
set where the vertex first appears. Such additional vertices always have degree two
in the merge tree.

Carr et al. [2] give a linear-time algorithm that combines merge trees of functions
f and — f into a contour tree of function f.

Parallel setup. We assume that we have a collection % = {U;} of sets that cover
the domain of our function, X = U %/. We assume that |% | = p, and we are given
P processors, each responsible for a single set in 7. Specifically, we use the same
indexing for processors as for the cover sets and say that processor P; is responsible
for the set U;. We note that this formulation fits especially well with the so-called in
situ analysis, where an external code decides how the input data is split among the
different processors. In this case, the initial set U; is the union of the in situ blocks
assigned to processor P;; we make no assumptions about the topology of U;. The
processors communicate by message passing.

3 Local-Global Representation

Let Ty denote the full merge tree of the function f. In an earlier work [14],
we introduced a local-global representation of a merge tree. Its key idea is the
following. In a distributed setting, where the domain of the function is split among
many processors, in addition to the information about the connectivity of the
sublevel sets restricted to the local portion of the domain, one may record how
these sublevel sets fit into the domain globally. Such global information creates only
minor overhead; it can be computed efficiently in parallel; and, most importantly, it
minimizes the need for communication during analysis. In this section, we review
this representation.

Local-global merge tree. A local-global representation of the full tree 7y is
defined with respect to a subset U C X; we denote it by Ty (U). For each vertex
x € U, we record all the sublevel set components that contain it. We represent
each component by the minimum of the function inside it. At first, x belongs to
the component of mg in X7(,). As we increase the threshold of the function, this
component grows until eventually, at s, it merges into the component of m2;, which,
in turn, merges into the component of m, at s,, and so on. We get a sequence of
minima and saddles, myg, s1, my, $2, Mo, ..., m,, with

m, <mp—1<...<mp<x<s51<...<8,.

Distributed Contour Trees 93

mi

Fig. 1 Local-global representation of a vertex x. On the left, the lines represent the contours of
the relevant saddles. On the right, the local-global subtree induced by x

Setting s9 = x for convenience, in the sublevel sets X, fora € [s;, i +1), X belongs
to the component with the lowest minimum m;; see Fig. 1. It is important to note
that the minima m; and the saddles s; do not necessarily belong to U—hence, the
“global” part of the representation. A reader familiar with the theory of persistent
homology [6] will notice that the pairs (m;,s;+1) belong to the O—dimensional
persistence diagram of function f.

Naturally, all the relevant information appears in the merge tree Ty, which,
after all, records all the components of all the sublevel sets of the function. We
can think of the local-global representation of a vertex as a subtree of Ty (to be
precise, a subdivision of this representation is a subtree of Ty). Accordingly, we
can represent the local—global representations of multiple vertices compactly as a
subtree of Ty, thus avoiding duplication of the minima whose components contain
many of the local vertices. By definition, the local-global representation of Ty with
respect to U is the tree formed as the union of (subdivided) representations of all
the vertices in U.

Construction. Itis easy to extract a local-global representation from the full merge
tree Tx. To do so, we perform a post-order traversal that identifies the branches of
the tree that contain the vertices in U as well as the branches (with deeper minima)
that they merge into.

An important contribution of [14] is an algorithm that computes the local—
global representation in parallel without assembling the entire tree Ty first. In log p
iterations, the processors can interleave merging and sparsification steps to compute
Tx(U;) with respect to their local subsets of the domain. Another significant
argument in favor of this representation is its size. In all our experiments, the local—
global tree Tk (U) is only slightly larger than the merge tree Ty of f|y, the function
restricted to U. In other words, most of the global merging data is the same for the
vertices in the local domain and, thus, creates only minor overhead; see Table 1.

Analysis routine. To understand why the local-global representation is useful,
consider the following problem. Given a threshold 7, we would like to find the
volume of the component of the sublevel set X, that contains a given point x.
This component may be distributed across many processors, all but one of which

94 D. Morozov and G.H. Weber

Table 1 Maximum local and local-global tree sizes on any processor. In all cases, we count only
the critical nodes in the trees. The time is listed as the time to compute the local tree plus the extra
time to compute the local-global tree using our parallel algorithm [14]. Data from http://volvis.
org: pronel6 is a CT scan of an abdomen; vertebral6 is a rotational angiography scan of a head
with an aneurysm; backpack16 is a CT scan of a backpack

Processors

Dataset Measure 32 64 128 256
Pronel6 Local (nodes) 272,241 143,659 75,335 41,418
512 x 512 x 463 Local-global (nodes) 289,735 154,018 82,598 45,778

Time (s) 3344172 15+ 13 6.64+96 26478
Vertebral6 Local (nodes) 69,693 38,236 19,708 10,277
512 x 512 x 512 Local-global (nodes) 77,939 43,565 23,684 12,901

Time (s) 40+ 6.3 156+5.1 74438 29+34
Backpack16 Local (nodes) 203,792 102,019 67,698 39,951
512 x 512 x 373 Local-global (nodes) 211,324 121,723 72,391 43,147

Time (s) 236+ 105 108483 52461 21463

know nothing about x. However, very little communication is actually required.
The processor P; responsible for x, i.e., x € U;, identifies the minimum m in the
component of X, that contains x. It does this by first marching up from x towards
the root of the tree T%(U;) until it finds a saddle s with f(s) < ¢, but f(s') > ¢
for its parent s”. P; then finds the lowest minimum m in the subtree of 5. (We will
re-use this operation multiple times in the following section, so from now on we call
it COMPONENT(x, t, Tx(U;)).)

Processor P; broadcasts m (and ?) to the rest of the processors. Each processor
P; finds all the vertices in U; that fall into the component of X, that contains m. To
do so, it traverses up from . until it identifies the last saddle s before the traversal
crosses the threshold 7. (Naturally, if m is notin 7% (U;), P; has nothing to do.) The
processor then counts the number of the local vertices in the subtree rooted at s. The
processors combine their counts via a standard reduction.

The entire process has only two communication steps: the initial broadcast
and the final reduction; the rest of the work is performed by the processors
independently.

4 Contour Tree

Carr et al. [2] give an algorithm to combine merge trees of f and — f into a contour
tree of f. However, since we are not trying to compute the full contour tree anyway,
we do not need to combine the trees. Instead, we use the algorithm of [14] on each
processor P; to compute the local-global merge trees Tx+ (U;i) and Ty (U;) of the
functions f and — f* with respect to the cover set U;.

Chiang and Lu [4] use an implicit representation of a contour tree as two merge
trees. It is, however, unclear how to use their scheme in our (distributed) setting,

http://volvis.org
http://volvis.org

Distributed Contour Trees 95

e ae)

Fig. 2 Thelevel set f ~!(f(x)) consists of three components. Bold line highlights the intersection
of the component that contains point x with the cover set U. Of the five components of the level
set inside U only four belong to this intersection

since they label edges of the contour tree by the edges of the merge trees. To do
so in a distributed setting, one would have to assemble the entire merge tree on a
single processor, an expensive operation we carefully avoid. Below, instead, we use
extrema as level set labels.

In this section, we describe three problems efficiently solved using contour trees;
one can interpret them as operations on “flexible isosurfaces” [3]. We explain how to
solve these problems in the distributed setting using the local-global representation.
In all cases, our emphasis is on minimizing the communication between processors.

4.1 Levelset Component

Imagine a user interactively exploring a data set. She picks a point x and wants to
see the component of the level set f~!(f(x)) that contains x. Imagine that the data
set is so large that it does not fit in the memory of a single processor; therefore, it is
distributed across multiple compute nodes.

Each processor must find the intersection of its local domain with the level set
component that contains the given point x. As Fig. 2 illustrates, this intersection
need not be connected. We solve this problem in three steps:

1. First, we identify the component of the level set that contains point x. Suppose
that x € U;. The processor P; identifies the component of the sublevel set X f(y)
and the component of the superlevel set X/ that contain x. As before, it identi-
fies the component by its minimum (or, symmetrically, maximum), which it finds
by the traversals of the subtrees rooted at x, COMPONENT(x, f(x), T}Z' (U;)) and
COMPONENT (x, f(x), Ty, (U;)). We denote these extrema by min, and max,.
Processor P; broadcasts this pair to the rest of the processors.

2. Each processor P; records all the local points in the subtree of T3 (U;) at level
f(x) that contains min,. We denote these points by Sub, (U;); they are exactly

96 D. Morozov and G.H. Weber

the vertices of the intersection of the set U; with the sublevel set component that
contains x. Similarly, P; records all the points in the subtree of 7y, (U;) at level
Jf(x) that contains max, as Sup, (U,). Naturally, if min, or max, do not belong
to their respective trees, the sets Sub, (U;) or Sup,(U;) are empty.

3. A simple (brute-force) way to extract a level set is to filter all the maximal
simplices of the domain detecting those that have both a vertex below the
prescribed threshold f(x) and one above it. We modify this procedure and find
all those maximal simplices in U; that contain a vertex in Sub, (U;) and a vertex
in Sup,(U;). Every maximal simplex that has such a pair of vertices is not only
intersected by the level set ' (f(x)), but it intersects the component of this
level set that contains x.

We note that the only required communication is the broadcast of the identifi-
cation of the queried component, namely, the pair (min,, max,). The rest of the
procedure identifying the local contribution to a level set is carried out completely
independently. Naturally, an extra fourth step is necessary to somehow collect the
data, but its details depend on our specific goal. Computing total volume of the level
set component requires a single reduction; compositing such a distributed level set
for rendering is a well-studied topic in visualization [11, 12, 17].

Correctness. Why does the above procedure find on each processor P; the
intersection of U; with the component of the level set f~'(f(x)) that contains
x? The following theorem implies the answer.

Theorem 1. If X is simply connected, then a component of the sublevel set X, can
intersect a component of the superlevel set X* in at most one component of the
interlevel set f~'[a,b].

Proof. Informally, the statement and the proof of the theorem are simple: if a
component of X, intersected a component of X in two components of f~![a, b],
then we could take two paths from the first component to the second. The first path
would lie entirely in X;, while the second path would lie entirely in X“. Composed
together these paths would form a non-contractible loop in X, contradicting the
assumption that X is simply connected.

To make this proof formal, we turn to the Mayer—Vietoris long exact sequence,
a standard tool in algebraic topology. To proceed, we need the notion of homology,
which we have not defined. Fortunately, we only need its very basic form. Using
coefficients in a field, the O—th homology group of a space Y, denoted by Hy(Y),
is a vector space spanned by the components of Y. Similarly, the first homology
group, H;(Y), keeps track of 1-dimensional cycles. If X is simply connected, its
first homology group is 0, H; (X) = 0.

The necessary portion of the Mayer—Vietoris sequence has the following form:

o HUOO B Ho (7 ab]) 5 Ho(%) @ Ho(2) — .

Distributed Contour Trees 97

The linear map 9* is induced by the intersection of 1-dimensional cycles in X with
the interlevel set ~![a, b]; the maps i * and j* are induced by the inclusions of the
interlevel set into the respective sub- and super-level sets.

The Mayer—Vietoris sequence is exact, which, by definition, means that the image
of the map 9* is equal to the kernel of the map (i *, j *). Since H; (X) = 0, the image
of 9* is also 0. Therefore, the kernel of (i *, j*) is 0, meaning that the inclusion of
components of f'[a, b] into the components of X, and X¢ is an injection. Were a
component of X;, to intersect a component of X* in two components, the inclusion
of these components back into X, and X* would not be injective, i.e., we would get
a contradiction. O

Let Lvl, denote the component of the level set f~!(f(x)) that contains x. We
denote its intersection with U; by Lvl,(U;). The following corollary implies the
correctness of our three-step algorithm. Recall that we assume that f is linearly
interpolated on the interiors of the simplices.

Corollary 1. A simplex 0 € U; has a vertex u in Sub.(U;) and a vertex v in
Sup, (U;) if and only if the point y on the edge (u, v) with f(y) = f(x) belongs to
Lvl.(U;).

Proof. Leta = b = f(x). Suppose u € o belongs to the component of x in X,
and v € o belongs to the component of x in X“. Let y be the point on the edge
(#,v) with f(y) = f(x) (such a point exists because the function is continuous; it
is unique because the function is linearly interpolated). Point y also belongs to the
components of x in X, and in X“. Since these two components can intersect in at
most one component of f~!(f(x)), y belongs to the same component of the level
set as x.

Conversely, if point y on the edge (u, v), with f(y) = f(x) and f(u) < f(v),
belongs to Lvl, (U}), then y belongs to the boundaries of the components of X and
X that contain x. Since the function is linear on the edge (u, v), vertex u belongs to
the component of X;, that contains x and, therefore, to Sub, (U;). Similarly, vertex
v belongs to the component of X* that contains x and, therefore, to Sup,(U;). O

Remark 1. We note that one cannot uniquely identify a branch of the contour tree
of f by a minimum-maximum pair in the respective merge trees T; and Ty .
However, what Theorem 1 and Corollary 1 imply is that, at a fixed level a, such
a pair uniquely identifies a point on the contour tree.

Component labeling. A variation on the problem of finding a single component is
the consistent assignment of labels to all components of a level set. For example,
the user may want to decorate each component of a level set f~!(a) with a unique
color.

To solve this problem, each processor P; extracts all the different components of
the level set £ ~!(a) that intersect its local domain U;. It identifies each component
as the intersection of components in the sub- and the super-level sets by finding
the minimum in X, and the maximum in X“ that identify each component. As noted

98 D. Morozov and G.H. Weber

before (and as Fig. 2 illustrates), locally disconnected components may get the same
identification.

There are multiple ways to assign consistent labels to the components. Perhaps
the simplest approach—the one requiring no communication—is for each processor
to simply hash its minimum—maximum pairs. The components get consistent values
across all the processors (since the extrema pairs are global); with high probability,
all the assigned values are unique.

4.2 Interlevel Set

Imagine that we are interested in a branch of the contour tree, or, more generally, a
monotone path in the contour tree between two points x and y (we assume that such
a path exists). Often such paths correspond to interesting features in the data [24].

Theorem 1 suggests that each point on this path is uniquely identified by a
minimum-maximum pair as well as the function value. Assume f(x) < f(y).
Processor P; responsible for point x, i.e., x € U;, finds the local-global repre-
sentation of x in the tree TX‘|r (U;). In other words, it finds all the minima m; and
saddles s;° that describe the components of the sublevel sets of the function that
contain point x. Similarly, processor P; responsible for point y finds its local-
global representation in the tree 7y (U,), the maxima ml} and the saddles siy . The
two processors broadcast these sequences of critical points.

The two representations together uniquely identify each point on the path from
X to y in the contour tree. Specifically, let z be a point on this path. Let a = f(z)
and suppose that a € [s7, sjy~]. The component of z in the level set f~!(a) is the
unique intersection of the component of X, that contains the minimum 7 and of
the component of X“ that contains the maximum mf .

Having received the broadcasts from P; and P;, each processor identifies its local
contribution to the path x—y. As before, all the processors compute independently,
except for the initial broadcast and the final collective operation (for example, to
compute the total volume of the feature).

4.3 Contour Tracking

Consider another problem. The user has extracted a level set f~!(s) for some
threshold s. The software has identified its different components and highlighted
them with distinct colors. Now the user would like to vary the threshold a little and
extract a nearby level set f~'(¢), with £ > s. When visualizing it, we would like
to preserve the colors of the different components as much as possible, to maintain
consistency with the level set £ ~!(s).

To solve this problem, we want to match the components of the two level sets.
Specifically, we want to find which components of the lower and of the higher level

Distributed Contour Trees 99

Fig. 3 An interlevel set of a

X Y Z X Y Z
contour tree (left). The graph t
of paired components (right) 3\ /\()
§ T T
A B A B

sets map into the same components of the interlevel set f~![s, ¢]. Put another way,
we want to find the components of f~!(s) and f~'(¢) connected in the contour tree
restricted to the interlevel set f~![s, ¢]; see Fig. 3.

Each component x of the level set f ~!(s) is identified by a minimum—maximum
pair (min,, max,). Similarly, each component y of the level set ! (¢) is identified
by the pair (min,, max,). Recall that Theorem 1 tells us that if a component of
X, intersects a component of X°, then it does so in at most a single component of
£ ![s,t]. Therefore, to check if the component x and the component y belong to
the same component of f~![s, ¢], it suffices to check if x belongs to the component
of X, identified by min,, and if y belongs to the component of X* identified by max.
To be precise, we test the following equalities:

min, = COMPONENT(x, t, T (Ux));

max, = COMPONENT(y, 5, Ty (Ux)).
If both equalities are true, we know that the component of x in the superlevel set
X* intersects the component of y in the sublevel set X,. Each processor can find all
such intersections locally. The result is a bipartite graph on the components of the
two level sets, which is constructed without any communication. As in Fig. 3, this
graph may not be a matching, so an auxiliary rule is necessary to break the ties.

S Experiments

To experiment with the local—global representation, we implemented the algorithm
of Sect.4.1. Given a local-global representation of merge trees Ty, and TQ’ , the
processor that contains a given point x locates the minimum-maximum pair that
identifies the connected component of x in its level set and broadcasts the pair to the
rest of the processors. Each processor finds the intersections of the components of
the sublevel and superlevel sets that contain point x with its local domain. If neither
one of these intersections is empty, the processor iterates over every tetrahedron of
the Freudenthal triangulation of its local domain U;. For each tetrahedron, we check
whether it contains a point in the sublevel set component and another point in the
superlevel set component. If it does, we find and record its intersection with the level

set f7H(f(x)).

100 D. Morozov and G.H. Weber

10

Seconds

32 64 128 256 512
Number of processors
Local-global: —@— pronel6 —®— vertebral6 —e— backpackl6

Vislt: —0—pronel6 —O— vertebral6 —o— backpackl6
Perfect scaling: - - -

Fig. 4 Times to extract a level set component that contains a prescribed point using the local—
global representation, and the times to label all the components of a level set in VisIt (Local-global
representation times are taken as the average of ten runs each; Vislt times show the best of ten
runs)

As areference for the running times, we extract the same level sets and label their
connected components using Vislt [5], a state-of-the-art visualization tool. Vislt
uses the algorithm described by Harrison et al. [8] for the parallel connected com-
ponent labeling. Although the two procedures are seemingly different—extracting
a component of the level set that contains a given point versus labeling all the
components of the level set—the comparison is not absurd. In Vislt, to extract a
prescribed component, one must first label all the components and then filter out all
but one of them. In other words, we measure a lower bound for the running time
of this operation. At the same time, using local-global representation, labeling the
components requires no communication, as Sect. 4.1 explains. Accordingly, specific
component extraction is a more involved (and, therefore, interesting) procedure.

Figure 4 shows the times it takes to perform these procedures for the same data
sets as Table 1. The clear trend is the steady decline of the running times, for the
local—global representation, as we increase the number of processors.

6 Conclusion

We have presented the idea of local-global representations of contour trees and
explained how it can be used for fast parallel analysis of the level sets of a function
on a simply connected domain. These representations are small, only slightly larger
than the merge trees of the local domain. Our earlier work [14] presents an efficient
parallel algorithm to compute them.

Distributed Contour Trees 101

Local-global representations scale down well as we increase the number of
processors and, thus, really stand out when it comes to analysis. As our Sect.4
explains, because they incorporate all the necessary global information, these com-
pact representations let us perform variety of tasks with minimal communication.

The most logical directions for future work are extending our construction to the
more general case of Reeb graphs and devising a seed point scheme, similar to the
work of van Kreveld et al. [22], compatible with the local-global representation.
For the latter, there is a natural map from the local to the local-global merge tree.
By storing both trees and this map, we believe it is possible to improve the parallel
algorithms for level set component extraction.

Acknowledgements This work was supported by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. DOE under Contract No. DE-ACO02-
05CH11231 (Lawrence Berkeley National Laboratory) through the grant “Topology-based Visu-
alization and Analysis of High-dimensional Data and Time-varying Data at the Extreme Scale,”
program manager Lucy Nowell.

References

1. L. Arge, M. Revsbaek, I/O-efficient contour tree simplification, in Proceedings of the
International Symposium on Algorithms and Computation, Honolulu. LNCS 5878 (Springer,
Berlin/Heidelberg, 2009), pp. 1155-1165

2. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom.
Theory Appl. 24(2), 75-94 (2003)

3. H. Carr, J. Snoeyink, M. van de Panne, Flexible isosurfaces: simplifying and displaying scalar
topology using the contour tree. Comput. Geom. Theory Appl. 43(1), 42-58 (2010)

4. Y.-J. Chiang, X. Lu, Progressive simplification of tetrahedral meshes preserving all isosurface
topologies. Comput. Graph. Forum 22(3), 493-504 (2003)

5. H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller,
C. Harrison, G.H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E.W. Bethel,
D. Camp, O. Riibel, M. Durant, J.M. Favre, P. Navratil, VislIt: an end-user tool for visualizing
and analyzing very large data, in High Performance Visualization—Enabling Extreme-Scale
Scientific Insight (CRC, Hoboken, 2012), pp. 357-372

6. H. Edelsbrunner, J. Harer, Persistent Homology—A survey. Volume 453 of Contemporary
Mathematics (AMS, Providence, 2008), pp. 257-282

7. A. Gyulassy, V. Pascucci, T. Peterka, R. Ross, The parallel computation of Morse—Smale
complexes, in IEEE IPDPS, Shanghai, 2012, pp. 484-495

8. C. Harrison, H. Childs, K.P. Gaither, Data-parallel mesh connected components labeling and
analysis, in Proceedings of the 11th EG PGV, Switzerland, 2011, pp. 131-140

9. M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic
similarity estimation of 3D shapes, in Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SSIGGRAPH '01, Los Angeles, 2001, pp. 203-212

10. W. E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction
algorithm. Comput. Graph. 21(4), 163-169 (1987)

11. K.-L. Ma, J.S. Painter, C.D. Hansen, M.F. Krogh, Parallel volume rendering using binary-swap
compositing. IEEE Comput. Graph. Appl. 14(4), 59-68 (1994)

12. S. Molnar, M. Cox, D. Ellsworth, H. Fuchs, A sorting classification of parallel rendering. IEEE
Comput. Graph. Appl. 14(4), 23-32 (1994)

102 D. Morozov and G.H. Weber

13. C. Montani, R. Scateni, R. Scopigno, A modified look-up table for implicit disambiguation of
marching cubes. Vis. Comput. 10(6), 353-355 (1994)

14. D. Morozov, G.H. Weber, Distributed merge trees, in Proceedings of the ACM Symposium
Principles and Practice of Parallel Programming, Shenzhen, 2013, pp. 93-102

15. G. Nielson, On marching cubes. IEEE Trans. Vis. Comput. Graph. 9(3), 341-351 (2003)

16. V. Pascucci, K. Cole-McLaughlin, Parallel computation of the topology of level sets. Algorith-
mica 38(1), 249-268 (2003)

17. T. Peterka, D. Goodell, R. Ross, H.-W. Shen, R. Thakur, A configurable algorithm for parallel
image-compositing applications, in Proceedings of the SC, Portland, 2009, pp. 4:1-4:10

18. G. Reeb, Sur les points singuliers d’une forme de pfaff completement intégrable ou d’une
fonction numérique. CR Acad. Sci. 222, 847-849 (1946)

19. N. Shivashankar, V. Natarajan, Paralle] computation of 3D Morse-Smale complexes. Comput.
Graph. Forum 31, 965-974 (2012)

20. N. Shivashankar, M. Senthilnathan, V. Natarajan, Parallel computation of 2D Morse—Smale
complexes. IEEE Trans. Vis. Comput. Graph. 18(10), 17571770 (2012)

21. D.M. Ushizima, D. Morozov, G.H. Weber, A.G. Bianchi, J.A. Sethian, E.W. Bethel, Aug-
mented topological descriptors of pore networks for material science. IEEE Trans. Vis.
Comput. Graph. 18(12), 2041-2050 (2012)

22. M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, D. Schikore, Contour trees and small
seed sets for isosurface traversal, in Proceedings of the Annual Symposium Computational
Geometry, New York, 1997, pp. 212-220

23. G.H. Weber, P.-T. Bremer, M.S. Day, J.B. Bell, V. Pascucci, Feature tracking using reeb
graphs, in Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and
Applications (Springer, Berlin/Heidelberg, 2011) pp. 241-253

24. G.H. Weber, S.E. Dillard, H. Carr, V. Pascucci, B. Hamann, Topology-controlled volume
rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330-341 (2007)

Clear and Compress: Computing Persistent
Homology in Chunks

Ulrich Bauer, Michael Kerber, and Jan Reininghaus

Abstract We present a parallel algorithm for computing the persistent homology
of a filtered chain complex. Our approach differs from the commonly used
reduction algorithm by first computing persistence pairs within local chunks, then
simplifying the unpaired columns, and finally applying standard reduction on the
simplified matrix. The approach generalizes a technique by Giinther et al., which
uses discrete Morse Theory to compute persistence; we derive the same worst-
case complexity bound in a more general context. The algorithm employs several
practical optimization techniques, which are of independent interest. Our sequential
implementation of the algorithm is competitive with state-of-the-art methods, and
we further improve the performance through parallel computation.

1 Introduction

Persistent homology has developed from a theoretical idea to an entire research area
within the field of computational topology. One of its core features is its multi-
scale approach to analyzing and quantifying topological features in data. Recent
examples of application areas are shape classification [5], topological denoising [3],
or developmental biology [10].

Another major feature of persistent homology is the existence of a simple yet
efficient computation method: The standard reduction algorithm as described in
[11,20] computes the persistence pairs by a simple sequence of column operations;

U. Bauer (2<) « J. Reininghaus
Institute of Science and Technology Austria, Klosterneuburg, Austria
e-mail: mail @ulrich-bauer.org; jan.reininghaus @ist.ac.at

M. Kerber
Stanford University, Stanford, CA, USA

Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
e-mail: mkerber@mpi-inf.mpg.de

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 103
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__7,
© Springer International Publishing Switzerland 2014

mailto:mail@ulrich-bauer.org
jan.reininghaus@ist.ac.at
mailto:mkerber@mpi-inf.mpg.de

104 U. Bauer et al.

Algorithm 1 gives a complete description in just 10 lines of pseudo-code. The
worst-case complexity is cubic in the input size of the complex, but the practical
behavior has been observed to be closer to linear on average. Various variants have
been proposed in order to improve the theoretical bounds [6, 17] or the practical
behavior [8].

Our first contribution consists of two simple optimization techniques of the
standard reduction algorithm, called clearing and compression. Both approaches
exploit the special structure of a filtered chain complex in order to significantly
reduce the number of operations on real-world instances. However, the two methods
cannot be easily combined because they require the columns of the boundary matrix
to be processed in different orders.

Our second contribution is a novel algorithm that incorporates both of the above
optimization techniques, and is also suitable for parallelization. It proceeds in three
steps: In the first step, the columns of the matrix are partitioned into consecutive
chunks. Each chunk is reduced independently, applying the clearing optimization
mentioned above. In this step, the algorithm finds at least all persistence pairs with
(index) persistence less than the size of the smallest chunk; let g be the number
of columns not paired within this first step. In the second step, the g unpaired
columns are compressed using the method mentioned above. After compression,
each column has at most g non-zero entries and the unpaired columns form a nested
(g x g)-matrix. In the third and final step, this nested matrix is reduced, again
applying the clearing optimization.

The chunk algorithm is closely related to two other methods for computing
persistence. The first is the spectral sequence algorithm [9, Sect. VIL.4], which
decomposes the matrix into blocks and proceeds in several phases, computing in
phase r the persistence pairs spanning r consecutive blocks. The first step of the
chunk algorithm consists in applying the first two phases of the spectral sequence
algorithm. Note Second, the three step approach of the chunk algorithm is inspired
by an algorithm of Giinther et al. [13], which uses discrete Morse theory for
persistence computation of 3D image data. The first step of that algorithm consists
in constructing a discrete gradient field consistent with the input function; such a
gradient field can be interpreted [1] as a set of persistence pairs that are incident in
the complex and have persistence 0. We replace this method by local persistence
computations, allowing us to find pairs with are not incident in the complex.

We analyze the chunk algorithm in terms of time complexity. Let n be the number
of generators (simplices, cells) of the chain complex, m the number of chunks, £ the
maximal size of a chunk, and g as above. We obtain a worst-case bound of

ome® + gtn + g%),
where the three terms reflect the worst-case running times of the three steps. For the

filtration of a cubical complex induced by a d -dimensional grayscale image (with d
some fixed constant), this bound simplifies to

O(gn +¢°),

Clear and Compress: Computing Persistent Homology in Chunks 105

assuming that the chunks are given by the cells appearing simultaneously in the
filtration. This bound improves on the previous general bound of O(g’nlogn)
from [7]. Moreover, it matches the bound in [13], but applies to arbitrary dimen-
sions. Of course, the bound is still cubic if expressed only in terms of n, since
g € £2(n) in the worst case.

We implemented a sequential and a parallel version of the chunk algorithm.
The sequential code already outperforms the standard reduction algorithm and is
competitive to other variants with a good practical behavior. The parallel version
using 12 cores yields a speed-up factor between 3 and 11 (depending on the
example) in our tests, making the implementation the fastest among the considered
choices. This is the first result where the usefulness of parallelization is shown for
the problem of persistence computation through practical experiments.

2 Background

This section summarizes the theoretical foundations of persistent homology as
needed in this work. We limit our scope to simplicial homology over Z, just for
the sake of simplicity in the description; our methods generalize to chain complexes
over arbitrary fields.

2.1 Homology

Homology is an algebraic tool for analyzing the connectivity of topological spaces.
Let K be a simplicial complex of dimension d. In any dimension p, we call a p-
chain a formal sum of the p-simplices of K with Z, coefficients. The p-chains
form a group called the pth chain group C,. The boundary of a p-simplex o is the
(p — 1)-chain formed by the sum of all faces of o of codimension 1. This operation
extends linearly to a boundary operator § : C,, = C,_1. A p-chain y is a p-cycle
if §(y) = 0. The p-cycles form a subgroup of the p-chains, which we call the
pth cycle group Z,. A p-chain y is called a p-boundary if y = §(§) for some
(p + 1)-chain . Again, the p-boundaries form a group B, and since §(§(§)) = 0
for any chain &, p-boundaries are p-cycles, and so B, is a subgroup of Z,. The
pth homology group H), is defined as the quotient group Z,/B,. The rank of H,
is denoted by B, and is called the pth Betti number. In our case of Z, coefficients,

the homology group is a vector space isomorphic to Zg” , hence it is completely
determined by the Betti number. Roughly speaking, the Betti numbers in dimension
0, 1, and 2 yield the number of connected components, tunnels, and voids of K,
respectively.

106 U. Bauer et al.
2.2 Persistence

Let {oy,...,0,} denote the simplices of K. We assume that for each i < n,
K; := {01,...,0;} is a simplicial complex again. The sequence of inclusions
@ =Ky C...CK;... CK, = K is called a simplexwise filtration of K.
For every dimension p and every K;, we have a homology group H,(K;); we
usually consider all dimensions at once and write H(K;) for the direct sum of the
homology groups of K; in all dimensions. The inclusion K; <— K;4; induces
a homomorphism gf“ : H(K;) - H(K;4+;) on the homology groups. These
homomorphisms compose and we can define gl.’ :H(K;) » H(K;) foranyi < j.
We say that a class o € H(K;) is born at (index) i if

a¢img .
A class « born at index i dies entering (index) j if
: . : - ' -
gl (@) eimg]_, butg! ™ () ¢img! ", .

In this case, the index pair (i, j) is called a persistence pair, and the difference j —i
is the (index) persistence of the pair. The transition from K;_; to K; either causes
the birth or the death of an homology class. We call the added simplex o; positive if
it causes a birth and negative if it causes a death. Note that homology classes of the
full complex K do not die during the filtration. We call a simplex o; that gives birth
to such a class essential. All other simplices are called inessential.

2.3 Boundary Matrix

For a matrix M € Z’z’x", we let M; denote its j-th column, M i jts i-th row, and
M j’ € Z, its entry in row i and column j. For a non-zero column 0 # M; =
(my,...,m,) € 23, we set pivot(M;) := max{i = 1,...,n | m; = 1} and call it
the pivot index of that column.

The boundary matrix D € (Z,)"" of a simplexwise filtration (K;); isan x n
matrix with D; = 1if and only if 0; is a face of o; of codimension 1. In other
words, the jth column of D encodes the boundary of o;. D is an upper-triangular
matrix because any face of o; must precede o; in the filtration. Since the jth row
and column of D corresponds to the jth simplex o; of the filtration, we can talk
about positive columns, negative columns, and essential columns in a natural way,
and similarly for rows.

Clear and Compress: Computing Persistent Homology in Chunks 107

Algorithm 1 Left-to-right persistence computation

1: procedure PERSISTENCE_LEFT_RIGHT(D)
2 R<D;L<10,....0,P <0 >Lez"
3 forj =1,...,ndo
4 while R; # 0 and L|[pivot(R;)] # 0 do
5: R; < R; + RL[inm(RI.)]
6
7
8
9

if R; # 0 then
i < pivot(R;)
Lli] < j
R Mark columns i and j as paired and add (i, j) to P
10: return P

2.4 The Reduction Algorithm

A column operation of the form M; < M + M is called left-to-right if k < j. We
call a matrix M’ derived from M if M can be transformed into M’ by left-to-right
operations. Note that in a derivation M’ of M, the jth column can be expressed
as a linear combination of the columns 1, ..., j of M, and this linear combination
includes M ;. We call a matrix R reduced if no two non-zero columns have the same
pivot index. If R is derived from M, we call it a reduction of M . In this case, we
define

Pri=1{(i.j) | R; # 0 Ai = pivot(R;)}
Er:={i | R =0 Apivot(R;) #iVj =1,....n}.

Although the reduction matrix R is not unique, the sets Pr and Ep are the same
for any choice of reduction; therefore, we can define Py, and Ejs to be equal to
Pr and Eg for any reduction R of M. We call the set P the persistence pairs of
M . When obvious from the context, we omit the subscripts and simply write P for
the persistence pairs. For the boundary matrix D of K, the pairs (i, j) € P are the
persistence pairs of the filtration (K;)o<;i<», and the indices in E correspond to the
essential simplices of the complex. Note that E is uniquely determined by P and n
as the indices between 1 and n that do not appear in any pair of P.

The simplest way of reducing D is to process columns from left to right; for
every column, other columns are added from the left until the pivot index is unique
(Algorithm 1). A lookup table can be used to identify the next column to be added
in constant time. A flag is used for every column denoting whether a persistence
pair with the column index has already been found. After termination, the unpaired
columns correspond to the essential columns. The running time is at most cubic in n,
and this bound is actually tight for certain input filtrations, as demonstrated in [19].

Let M be derived from D. A column M; of M is called reduced if either it is
zero, or if (i, j) € P withi = pivot(M;). With this definition, a matrix M is a
reduction of D if and only if every column is reduced.

108 U. Bauer et al.
3 Speed-Ups

Algorithm 1 describes the simplest way of reducing the boundary matrix, but it
performs more operations than actually necessary to compute the persistence pairs.
We now present two simple techniques, which both lead to a significant decrease in
the number of required operations.

3.1 Clearing Positive Columns

The key insight behind our first optimization is the following fact: if i appears
as the pivot in a reduced column of M, the index i is positive and hence there
exists a sequence of left-to-right operations on M; that turn it to zero. Instead of
explicitly executing this sequence of operations, we define the clear operation by
setting column M; to zero directly. Informally speaking, a clear is a shortcut to
avoid some column operations in the reduction when the result is evident.

In order to apply this optimization, we change the traversal order in the reduction
by first reducing the columns corresponding to simplices with dimension d (from
left to right), then all columns with dimension d —1, and so on. After having reduced
all columns with dimension §, we have found all positive inessential columns with
dimension § — 1 and clear them before continuing with § — 1. This way all positive
inessential columns of the complex are cleared without performing any column
additions on them. See [7] for a more detailed description.

3.2 Compression

Alternatively, we can try to save arithmetic operations by reducing the number of
non-zero rows among the unpaired columns. A useful observation in this context is
given next.

Lemma 1. Let M; be a non-zero column of M with i = pivot(M;). Then M; is a
positive and inessential column.

Proof. The statement is clearly true if M is reduced, because in this case (i, j) is a
persistence pair. If M is not reduced, this means that after applying some sequence
of left-to-right column operations, some reduced column has i as pivot index.

Corollary 1. Let M; be a negative column of M. Then i is not the pivot index of
any columnin M .

As a consequence, whenever a negative column with index j has been reduced,
row j can be set to zero before further reducing, as suggested in [20].

Corollary 2. Let M; be a negative column and let M; be a column with Mj’ =1
Then setting M]’ to zero does not affect the pairs.

Clear and Compress: Computing Persistent Homology in Chunks 109

But we can even do more: let i be the pivot index of the reduced column M ; and
assume that the submatrix of M with column indices {1,..., j} and row indices
{i,...,n} is reduced, i.e., the pivot indices are unique in this submatrix. By adding
column j to each unreduced column in the matrix that has a non-zero entry at row i,
we can eliminate all non-zero entries in row i from the unreduced columns. Note that
ifk < jand M]é # 0, then pivot(M}) = i and thus, by assumption, M} must be a
reduced negative column. Therefore, for each unreduced column My, the operation
My < M + M is a left-to-right addition and thus does not affect the pairs.

4 Reduction in Chunks

The two optimization techniques from Sect. 3 both yield significant speed-ups, but
they are not easily combinable, because clearing requires to process a simplex before
its faces, whereas compression works in the opposite direction. In this section, we
present an algorithm that combines both optimization techniques.

Letm € N.Fixm + 1 numbers 0 = f) < t; < ... < ty—1 < t,, = n and define
the ith chunk of D to be the columns of D with indices {t,_; + 1,...,t;}. We call
a column D; local if it forms a persistence pair with another column in the same
chunk or in one of the adjacent chunks. In this case, we also call the persistence
pair local. Non-local columns (and pairs) are called global. If £ is a lower bound on
the size of each chuck, then every global persistence pair has index persistence at
least £. We also call an index j local if the jth column of D is local, and the same
for global. We denote the number of global columns in D by g. The high-level
description of our new algorithm consists of three steps:

1. Partially reduce every chunk independently, applying the clearing optimization,
so that all local columns are completely reduced.

2. Independently compress every global column such that all its non-zero entries
are global.

3. Reduce the submatrix consisting only of the global rows and columns.

We give details about the three steps in the rest of this section. The first two steps
can be performed in parallel, whereas the third step only needs to reduce a matrix
of size g x g instead of n x n. In many situations, g is significantly smaller than #.

4.1 Local Chunk Reduction

The first step of our algorithm computes the local pairs by performing two phases of
the spectral sequence algorithm [9, Sect. VIL.4]. Concretely, we apply left-to-right
operations as usual, but in the first phase we only add columns from the same chunk,
and in the second phase we only add columns from both the same chunk and its
left neighbor. After phase r, for each b € {r,...,m} the submatrix with column
indices {1,...,%} and row indices {t,—» + 1,...,n} is reduced. If the reduction

110 U. Bauer et al.

Algorithm 2 Local chunk reduction

1: procedure LOCAL_REDUCTION(M ,ty,...,ty)

2 R« M;L<«[0,...,0; P <0 >L ez
3 for6 =d,...,0do

4 forr =1,2do > Perform two phases of the spectral sequence algorithm
5: forb=r,....,mdo > Loop is parallelizable
6: for j =1_,+1,..., t, withdimo; = § do

7 if j is not marked as paired then

8: while R; # 0 A L[pivot(R;)] # 0 A pivot(R;) > t,—, do

9: Rj < Rj + Rippivor(j))
10: if R; # 0 then
11: i < pivot(R;)
12: ifi > t,—, then
13: Llil|<j
14: R; <0 > Clear column i
15: Mark i and j as paired and add (i, j) to P

16: return (R, L, P)

of column j stops at a pivot index i > f,—,, row j cannot be reduced any further
by adding any column, so we identify (i, j) as a local persistence pair. Conversely,
any local pair (i, j) is detected by this method after two phases. We incorporate the
clearing operation for efficiency, that is, we proceed in decreasing dimension and
set detected local positive columns to zero; see Algorithm 2. After its execution,
L[i] contains the index of the local negative column with pivot index i for any local
positive column i, and the resulting matrix R is a derivation of D in which all local
columns are reduced.

4.2 Global Column Compression

Let R be the matrix returned by Algorithm 2. Before computing the global
persistence pairs, we first compress the global columns, using the ideas from Sect. 3;
recall that negative rows can simply be set to zero, while entries in positive rows can
be eliminated by an appropriate column addition. Note, however, that a full column
addition might actually be unnecessary: for instance, if all non-zero row indices in
the added column belong to negative columns (except for the pivot), the entry in the
local positive row could just have been zeroed out in the same way as in Corollary 2.
Speaking more generally, it is more efficient to avoid column additions that have no
consequences for global indices, neither directly nor indirectly.

In the spirit of this observation, we call an index i inactive if either it is a local
negative index or if (i, j) is a local pair and all indices of non-zero entries in column
R; apart from i are inactive. Otherwise, the index is called active. By induction and
Corollary 2, we can show:

Clear and Compress: Computing Persistent Homology in Chunks 111

Algorithm 3 Determining active entries
1: procedure MARK_ACTIVE_ENTRIES(R)
2 for each unpaired column k do > Loop is parallelizable
3 MARK_COLUMN(R, k)
4: function MARK_COLUMN(R, k)
5: if k is marked as active/inactive then return true/false
6
7
8

for each non-zero entry index i of Ry do
if £ is unpaired then
mark k as active and return true

9: else if i is positive then

10: J < Lli] > (i, j) is persistence pair
11: if j # k and MARK_COLUMN(R, j) then

12: mark k as active and return true

13: mark k as inactive and return false

Algorithm 4 Global column compression

1: procedure COMPRESS(R, k)

2 Uses variables: L

3 for each non-zero entry index £ of Ry in decreasing order do
4 if £ is paired then

5: if £ is inactive then
6.
7

8

9

RFE <0

else
Jj < L[] > (¢, j) is persistence pair
Ry < R+ R;

Lemma 2. Let i be an inactive index and let M; be any column with M j’ = 1.
Then setting M]’ to zero does not affect the persistence pairs.

The compression proceeds in two steps: first, every non-zero entry of a global
column is classified as active or inactive (using depth-first search; see Algorithm 3).
Then, we iterate over the global columns, set all entries with inactive index to zero,
and eliminate any non-zero entry with a local positive index £ by column addition
with L[£] (see Algorithm 4). After this process, we obtain a matrix R’ with the same
persistence pairs as R, such that the global columns of R’ have non-zero entries only
in the global rows.

4.3 Submatrix Reduction

After having compressed all global columns, these form a g x g matrix “nested”
in R (recall that g is the number of global columns). To complete the computation
of the persistence pairs, we simply perform standard reduction on the remaining
matrix. For efficiency, we perform steps 2 and 3 alternatingly for all dimensions
in decreasing order and apply the clearing optimization; this way, we avoid
the compression of positive global columns. Algorithm 5 summarizes the whole
method.

112 U. Bauer et al.

Algorithm 5 Persistence in chunks

1: procedure PERSISTENCE_IN_CHUNKS(D, fy, ... 1)

2 (R, L, P) <—LOCAL_REDUCTION(D, ¢, ..., tm) > step 1: reduce local columns
3 MARK_ACTIVE_ENTRIES(R)

4 fors =4d,...,0do

5: > step 2: compress global columns
6 for j =1,...,n withdimo; = § do > Loop is parallelizable
7 if column j is not paired then

8 COMPRESS(R, j)

9: for j =1,...,n withdimo; = § do > step 3: reduce global columns
10: while R; # 0 A L[pivot(R;)] # 0 do
11: Rj < R/' +RL[piv0t(j)]
12: if R; # 0 then
13: i < pivot(R;)
14: Lli] < j
15: R; <0 > Clear column i
16: Mark i and j as paired and add (i, j) to P

17: return P

5 Analysis

Algorithm 5 permits a complexity analysis depending on the following parameters:
n, the number of simplices; m, the number of chunks; £, the maximal size of a chunk;
and g, the number of global columns. We assume that for any simplex, the number
of non-zero faces of codimension 1 is bounded by a constant (this is equivalent to
assuming that the dimension of the complex is a constant).

5.1 General Complexity

We show that the complexity of Algorithm 5 is bounded by
O(me + gln + g*). (D

The three summands correspond to the running times of the three steps.' Note that
g € O(n) in the worst case.

For the complexity of Algorithm 2, we consider the complexity of reducing one
chunk, which consists of up to £ columns. Within the local chunk reduction, every
column is only added with columns of the same or the previous chunk, so there
are only up to 2¢ column additions per column. Moreover, since the number of
non-zero entries per column in D is assumed to be constant, there are only O({)

'The running time of the third step could be lowered to g©, where is the matrix-multiplication
exponent, using the method of [17].

Clear and Compress: Computing Persistent Homology in Chunks 113

many entries that can possibly become non-zero during the local chunk reduction. It
follows that the local chunk reduction can be considered as a reduction on a matrix
with £ columns and O({) rows. If we represent columns by linked lists (containing
the non-zero indices in sorted order), one column operation can be done in O({)
primitive operations, which leads to a total complexity of O(£3) per chunk.

The computation of active columns in Algorithm 3 is done by depth-first search
on a graph whose vertices are given by the columns and whose edges correspond to
their non-zero entries. The number of edges is O(n{), so we obtain a running time
of O(nf).

Next, we consider the cost of compressing a global column with index j. After
the previous step, the column has at most O(£) non-zero entries. We transform
the presentation of the column from a linked list into a bit vector of size n. In
this representation, adding another column in list representation with v entries to
column j takes time proportional to v. In the worst case, we need to add all columns
with indices 1,...,j — 1 to j. Each such column has O({) entries. At the end,
we transform the bit vector back into a linked list representation. The total cost is
O(n + (j — 1)€ + n) = O(nf) per global column.

Finally, the complexity of the global reduction is O(g?®), as in the standard
reduction.

5.2 Choosing Chunks

We discuss different choices of chunk size and their complexities. A generic choice
for an arbitrary complex is to choose O (/1) chunks of size O(/n) each. With that,
the complexity of (1) becomes

O(n* + ginvn + g).

Alternatively, choosing 0(@) chunks of size O(logn), the complexity becomes

O(nlog*n + gynlogn + gé’).

We replaced g by g1 and g, to express that the number of global columns is different
in both variants. In general, choosing larger chunks is likely to produce less global
columns, since every global persistence pair has index persistence at least £ (the size
of the smallest chunk).

5.3 Cubical Complexes

We consider an important special case of boundary matrices: consider a d-
dimensional image with p hypercubes, where each vertex contains a grayscale
value. We assume that the cubes are triangulated conformally in order to get

114 U. Bauer et al.

simplicial input — the argument also works, however, for the case of cubical cells.
We assign function values inductively, assigning to each simplex the maximal value
of its faces. Assuming that all vertex values are distinct, the lower star of vertex
v is the set of all simplices that have the same function value as v. Filtering the
simplices in a way that respects the order of the function values, we get a lower star
filtration of the image. Now choose the lower stars as the chunks in our reduction
algorithm. Note that the lower star is a subset of the star of the corresponding vertex,
which is of constant size (assuming that the dimension d is constant). Therefore, the
complexity bound (1) reduces to

O+ gn+g°) = 0(gn+g).

Note that global columns with large index persistence might still have very small,
or even zero, persistence with respect to the function values, for instance in the
presence of a flat region in the image where many vertices have similar values.

6 Experiments

We implemented two versions of the algorithm presented in Sect. 4: a sequential and
a parallel version (using OPENMP), in which the first two steps of the algorithm are
performed simultaneously on each chunk and on each global column, respectively.
In both cases, we use |+/n] as the chunk size. For a fair comparison, we also re-
implemented the standard reduction algorithm introduced in [11] and the twist
algorithm [7] (clearing optimization applied to standard reduction) in the same
framework, i.e., using the same data representations and low-level operations
such as column additions. All implementations are available as part of the open
source library PHAT [2]. Additionally, we compare with the memory efficient
algorithm [13] based on discrete Morse theory [12] and to the implementation of
the persistent cohomology algorithm [8] found in the DIONYSUS library [18]. An
optimized implementation of the latter algorithm has been announced in [4].

To find out how these algorithms behave in practice, we apply them to five
representative data sets. The first three are 3D image data sets with a resolution
of 1283, The first of these is given by a Fourier sum with random coefficients and
is representative of smooth data. The second is uniform noise. The third is the sum
of the first two and represents large-scale structures with some small-scale noise.
These data sets are illustrated in Fig. 1 by an isosurface.

In addition to the lower star filtrations of these image data sets, we also consider
an alpha shape filtration defined by 10,000 samples of a torus embedded in R?, and
the 4-skeleton of the Rips filtration given by 50 points randomly chosen from the
Mumford data set [14].

As pointed out in [8], the pairs of persistent cohomology are the same as
those of persistent homology. We therefore also applied all algorithms to the
corresponding cochain filtration, given in matrix form by transposing the boundary

Clear and Compress: Computing Persistent Homology in Chunks 115

Fig. 1 A single isosurface of the representative data sets used to benchmark and compare our
algorithm: (a) a smooth data set, (b) uniformly distributed noise, (c¢) the sum of (a) and (b)

Table 1 Running time comparison of various persistent homology algorithms applied to the data
sets described in Sect. 6. The last three columns contain information relevant to the algorithm
presented in this paper: the fraction g/n, where ¢ < g is the number of non-zero global columns
after global column compression, and the running times using 1 and 12 cores, respectively

std. [11] twist[7] cohom.[8] DMT [13] g/n chunk chunk

Dataset n-107% (s) (s) (s) (s) (%) (1x)(s) (12x)(s)
Smooth 16.6 288.5 0.8 65.8 2.0 0 1.6 0.6
Smooth~ 16.6 299.9 53 20.8 - 0 1.9 0.6
Noise 16.6 2792 115 15,971 13.0 7 14.7 4.4
Noise+ 16.6 9402 24.0 190.1 - 9 14.9 5.0
Mixed 16.6 206.4 2.6 50,927 12.3 4 14.1 1.9
Mixedt 16.6 299.2 7.6 32.7 - 5 14.3 2.3
Torus 0.6 40.4 0.1 1.6 - 5 0.2 0.1
Torus 0.6 16.7 0.3 1.4 - 6 0.6 0.2
Mumford 24 298 277 2.8 - 82 115 1.9
Mumford- 2.4 48.8 0.1 184.1 - 1 1.1 0.4

matrix and reversing the order of the columns; this operation is denoted by (-)*.
When reducing such a coboundary matrix with the clearing optimization, columns
are processed in order of increasing instead of decreasing dimension. Note that
the persistent cohomology algorithm in [8] is a dual algorithm, i.e., it computes
persistent cohomology from a boundary matrix and persistent homology from a
coboundary matrix. The other algorithms are primal algorithms, i.e., they compute
persistent (co)homology from a (co)boundary matrix.

Table 1 contains the running times of the above algorithms applied to filtrations
of these five data sets run on a PC with two Intel Xeon E5645 CPUs. All results
(except for the DIONYSUS and DMT codes) are obtained with PHAT 1.2.1 using
the included benchmark tool with the option - -sparse pivot column.The
data sets are available at the PHAT website [2].

We observe a significant speed-up caused by the clearing optimization, as
already reported in [7]. We point out that a similar optimization is also used in
the cohomology algorithm of [8]. We can see that our chunk algorithm performs

116 U. Bauer et al.

slightly worse than the one of [7] when executed sequentially, but often faster when
parallelized. We also observe that the algorithms rwist and chunk generally behave
worse when computing persistent cohomology, except for the Rips filtration of the
Mumford data set, where the converse is true.

7 Conclusion and Outlook

We have presented an algorithm for persistent homology that includes two simple
optimization techniques into the reduction algorithm. It can be fully parallelized,
except for the reduction of compressed global columns, whose number is often
small. Besides our asymptotic complexity bounds, which give a detailed dependence
on the parameters of the algorithm, our experiments show that significant speed-ups
can be achieved through parallel persistence computation. Similar observations have
been made recently by Lewis and Zomorodian [15] for the computation of (non-
persistent) homology; see also [16]. Our experiments also reveal that the running
times for computing persistent homology versus cohomology can be very different,
with a preference for homology or cohomology depending on the data but not so
much on the type of algorithm (primal or dual) used. We plan a more extensive
discussion of these effects in future work.

Acknowledgements The authors thank Chao Chen, Herbert Edelsbrunner, and Hubert Wagner for
helpful discussions. This research is partially supported by the TOPOSYS project FP7-ICT-318493-
STREP and the Max Planck Center for Visual Computing and Communication.

References

1. U. Bauer, Persistence in discrete Morse theory. PhD thesis, Georg-August-Universitit Gottin-
gen, 2011

2. U. Bauer, M. Kerber, J. Reininghaus, PHAT: persistent homology algorithm toolbox. http://
phat.googlecode.com/

3. U. Bauer, C. Lange, M. Wardetzky, Optimal topological simplification of discrete functions on
surfaces. Discret. Comput. Geom. 47, 347-377 (2012)

4.]J.-D. Boissonnat, T.K. Dey, C. Maria, The compressed annotation matrix: an efficient data
structure for computing persistent cohomology, in Algorithms — ESA 2013, Sophia Antipolis,
ed. by H.L. Bodlaender, G.F. Italiano. Volume 8125 of Lecture Notes in Computer Science
(Springer, Berlin/Heidelberg, 2013), pp. 695-706

5. F. Chazal, D. Cohen-Steiner, L. Guibas, F. Memoli, S. Oudot, Gromov—Hausdorff stable
signatures for shapes using persistence, in Eurographics Symposium on Geometry Processing,
Berlin, 2009, pp. 1393-1403

6. C. Chen, M. Kerber, An output-sensitive algorithm for persistent homology, in Proceedings of
the 27th Annual Symposium on Computational Geometry, Paris, 2011, pp. 207-215

7. C. Chen, M. Kerber, Persistent homology computation with a twist, in 27th European
Workshop on Computational Geometry (EuroCG), Morschach, 2011, pp. 197-200. Extended
abstract

http://phat.googlecode.com/
http://phat.googlecode.com/

Clear and Compress: Computing Persistent Homology in Chunks 117

8.

9

10.

11.

12

14.

15.
16.

17.

18.

19.

20.

V. de Silva, D. Morozov, M. Vejdemo-Johansson, Dualities in persistent (co)homology. Inverse
Probl. 27, 124003 (2011)

. H. Edelsbrunner, J. Harer, Computational Topology, An Introduction (American Mathematical

Society, Providence, 2010)

H. Edelsbrunner, C.-P. Heisenberg, M. Kerber, G. Krens, The medusa of spatial sorting:
topological construction (2012). arXiv:1207.6474

H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification.
Discret. Comput. Geom. 28, 511-533 (2002)

. R. Forman, Morse theory for cell complexes. Adv. Math. 134, 90-145 (1998)
13.

D. Giinther, J. Reininghaus, H. Wagner, 1. Hotz, Efficient computation of 3D Morse—Smale
complexes and persistent homology using discrete Morse theory. Vis. Comput. 1-11 (2012)
A.B. Lee, K.S. Pedersen, D. Mumford, The nonlinear statistics of high-contrast patches in
natural images. Int. J. Comput. Vis. 54, 83-103 (2003)

R.H. Lewis, A. Zomorodian, Multicore homology (2012). Unpublished manuscript

D. Lipsky, P. Skraba, M. Vejdemo-Johansson, A spectral sequence for parallelized persistence
(2011). arXiv:1112.1245

N. Milosavljevié, D. Morozov, P. Skraba, Zigzag persistent homology in matrix multiplication
time, in Proceedings of the 27th Annual Symposium on Computational Geometry, Paris, 2011,
pp- 216-225

D. Morozov, Dionysus: a C++ library for computing persistent homology. http://www.mrzv.
org/software/dionysus/

D. Morozov, Persistence algorithm takes cubic time in the worst case, in BioGeometry News
(Duke Computer Science, Durham, 2005)

A. Zomorodian, G. Carlsson, Computing persistent homology. Discret. Comput. Geom. 33,
249-274 (2005)

http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/

Parallel Computation of Nearly Recurrent
Components of Piecewise Constant Vector Fields

Nicholas Brunhart-Lupo and Andrzej Szymczak

Abstract We describe a simple way to parallelize the algorithm for computing
Morse decompositions and nearly recurrent sets for piecewise constant vector fields.
In this chapter, we focus on the most computationally expensive component of the
algorithm, namely refinement of the transition graph, which often takes up over
90 % of the running time.

The original implementation of the refinement algorithm refines nodes of the
graph one at a time, in an arbitrary order. As a node is refined, arcs out of and
into the resulting node are updated to preserve the key property of the graph, i.e.
its ability to represent every trajectory of the vector field as a path in the graph.
A significant portion of time is spent on updating and maintaining the integrity of
the graph for each node that undergoes refinement. This approach is attractive and
elegant since it allows one to refine the nodes in arbitrary order and to an arbitrary
depth while guaranteeing the correctness of the graph. However, its performance is
suboptimal for most transition graph refinement scenarios, not only because of the
cost of maintaining the integrity of the graph for each node refinement operation,
but also because of uncontrollable memory access patterns.

The method described in this chapter is tailored for the special case of nodes
of the graph refined to the same depth, which is sufficient for most applications
described in prior work. The idea is to stream through the set of arcs of the coarse
graph to generate a compact bitmap based representation of the set of arcs of the
refined graph. In the subsequent pass over the bitmap, the refined transition graph’s
arcs are constructed from scratch, using only arc additions. The simplicity of the
two passes makes them easy to parallelize and results in better cache performance.
The bitmap building pass can be offloaded to the GPU to further increase the
performance.

N. Brunhart-Lupo (<) ¢ A. Szymczak

Department of Electrical Engineering & Computer Science, Colorado School of Mines,
Golden, CO, USA

e-mail: nbrunhar@mymail.mines.edu

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 119
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__8,
© Springer International Publishing Switzerland 2014

mailto:nbrunhar@mymail.mines.edu

120 N. Brunhart-Lupo and A. Szymczak
1 Introduction

Because of applications in fluid dynamics, aerodynamics, electromagnetism, biol-
ogy and computer vision, there has been an increasing interest in vector field
analysis. One of the tools developed for this task is vector field topology, which
aims to describe the structure of a vector field in terms of features such as sources,
sinks, saddle points, periodic trajectories and separatrices.

A robust and efficient algorithm for analyzing and extracting close to recurrent
(i.e. stagnant or circulating) flow in a vector field has been developed in [16]
for piecewise constant (PC) 2D vector fields. More recently, this algorithm was
extended to 3D in [15]. While these algorithms are relatively efficient, the imple-
mentations available so far are either serial or rather naively parallelized, with a
modest speedup on multicore CPUs. By reworking these algorithms into a universal,
parallel and cache aware approach, higher performance can be achieved, allowing
the exploration of larger datasets that are common in today’s research.

In this chapter, we put forth an alternate formulation of the algorithm as found in
[15]. The refinement process is replaced with a multi-pass procedure that is friendly
to concurrent implementations, and improves memory locality. The ideas presented
in this chapter apply to both 2D and 3D PC vector fields, however, we focus on the
3D case.

This chapter is organized into the following sections. Section 2 contains a
brief overview of related vector field topology algorithms, and Sect. 3 discusses
background on the original specification and implementation of the algorithm.
Section 4 discusses the improved procedure. Section 5 details our implementation
and results we have obtained thus far. The conclusion in Sect. 6 closes the chapter
with possible future work.

2 Related Work

In this section we discuss prior work on graph based analysis of general (not
necessarily gradient) vector field topology. More in-depth discussion of vector field
topology can be found in [10].

In [3], edge maps are introduced. Edge maps are a mapping of line segments
obtained by subdividing the mesh edges based on vector field dynamics. The goal
of this approach is to provide an approximation of arbitrary quality of the piecewise
linear vector field flow, while at the same time guaranteeing consistency of the
results. In this scheme on a triangulated 2D mesh, we can map pieces of edges
of triangles that are connected by flow inside that triangle, creating an origin-
destination pair. The exit point of a trajectory can be approximated as a linear
function mapping the origin edge pieces into the destination edge pieces. If higher
precision is needed, edges can be subdivided multiple times and reattached to build
a finer set of origin-destination pairs, resulting in a better approximation of the

Parallel Computation of Nearly Recurrent Comp. of PC Vector Fields 121

trajectories of the piecewise linear vector field. Following a trajectory through a
triangle requires one linear interpolation operation based on an edge map, instead of
using numerical integration. As a drawback, this approach has not yet been extended
into 3D, and it is not clear how to accomplish this task.

Recent work on reliable extraction of vector field topology is built off of discrete
Morse Theory [8]. An example of this is in [13]. Here, a purely combinatorial
approach to vector field analysis is presented; the algorithm attempts to build a
graph representation of the flow. This graph representation is a matching between
2D simplices and incident mesh edges. The matching is computed using a maximum
weight matching algorithm. The objective is to make the edges of the matching
follow the direction of the flow throughout the domain. Discrete trajectories
(approximating the trajectories of the underlying vector field) are sequences of
vertices in which every second pair is connected by a matching edge and all other
pairs are not. They can be analyzed using simple graph search algorithms. This leads
to a robust algorithm for vector field topology which in this case consists of discrete
stationary points, periodic trajectories and separatrices. In [14], this matching
algorithm was furnished with a GPU/multi-threaded algorithm to reduce the penalty
of the original quadratic runtime. Unfortunately, the basic approach suffers from a
significant issue; discrete trajectories are a poor approximation, and even if the mesh
size (i.e. maximum diameter of a triangle) trends to zero, the trajectories emitted will
not converge to the their continuous counterparts. This is remedied somewhat in [9],
wherein they increase the expected accuracy of combinatorial gradient vector fields
by employing a randomized algorithm and subdivision.

In [5], Morse decomposition was used as a way to robustly detect features in
a general (not necessarily gradient) vector field. A piecewise linear input vector
field (on a triangle mesh) is converted into a directed graph by inserting a node
for every triangle. The nodes are connected based on flow along the edges of their
representative triangle. If a particle can flow from one adjacent triangle to another,
they will be connected in the graph. Once all the proper arcs have been inserted,
Morse sets can be extracted by using a strongly connected component algorithm.

In [6], an algorithm for computing Morse decompositions based on a different
graph representation, called the r-map, is introduced. To build the r-map graph
(whose nodes also correspond to the mesh triangles), a triangle T is pushed along
the flow by 7 forward in time to yield a set of points 7’. The arc T — S is
inserted into the T-map graph whenever the triangle S intersects 7”. The resulting
Morse decompositions are typically much finer than the ones obtained using the
original approach in [5], but in both cases the algorithms are still limited by the
mesh resolution.

Piecewise constant vector field algorithms (discussed in detail in the next section)
offer an attractive alternative [15, 16]. Firstly, they are based on a graph represen-
tation whose construction does not rely on numerical integration. Precision of the
output is not restricted to the mesh itself; arbitrary sub-triangle/sub-cube accuracy
of features is achieved through a refinement process. Extension of the algorithms
to 2D and 3D have been accomplished, and higher dimensional specializations are

122 N. Brunhart-Lupo and A. Szymczak

straightforward to describe. A drawback of this approach is that the transition graph
can grow to very large sizes as higher levels of refinement are sought or very large
data sets are explored. Merely processing millions of nodes in the graph can take a
non-trivial amount of time, even if the individual refinement operation is simple.

3 Piecewise Constant Vector Fields: Background

In this section we provide a review of the Morse decomposition algorithm for PC
vector fields that this contribution improves. A piecewise constant (PC) 3D vector
field provides a non-zero vector f(D) for every 3D cell (cube) of a regular grid
M . In order to build a graph representation of the flow, f is extended to lower
dimensional grid cells (details are provided in [15, 16]). In general, for a grid cell
D, f(D) is defined as the intersection of the convex hull of vectors assigned to 3D
cells containing D and the linear space of D (note that this means that every vector
in f(D) points along D).

In a PC vector field, trajectories are greatly simplified as opposed to a PL vector
field, and appear as concatenated simple segments. Simple segments are continuous
curves defined on a closed interval and contained fully in a mesh cell, referred to as
the segment’s carrier. For 3D, 2D, or 0D carrier C, simple segments move through
C with constant velocity, given by the only vector in f(C), if such a vector exists.
For 1D carriers (mesh edges), simple segments may be more complex; they move
along C with average velocity in f(C) over any nonzero length interval.

To represent these trajectories, we use a transition graph. The transition graph is
a finite directed graph which records all trajectories in the PC vector field as paths.
The nodes of this graph correspond to n-sets; vertices, edge pieces (either whole
or from subdivided edges), and face pieces (obtained from 2D faces by means of
quad-tree-like subdivision). An arc A — B in the graph indicates that there is a
trajectory in the vector field starting from node A and ending in node B, and is
inserted into the graph pending a connectivity test. Details on how this connectivity
check is performed can be found in [15] as it remains unchanged in this chapter; in
general, it requires projection of the two n-sets and an intersection test. Arcs possess
an owner cell, which is the carrier of the simple segments represented by that arc.

In Fig. 1, we demonstrate the transition graph contributions for each dimension
of cell in a 3D grid. Note that these are contributions; all cells must be considered
and all their derived arcs added to the transition graph. Using the 3D cell case, the
strength of this approach becomes apparent. By projecting the lower dimensional
subcells of the cell along f into a 2D space (as seen in the figure) we know
instantly that a trajectory entering the 3D cell by face .4, can leave the 3D cell
by either [, rg; or Oy ¢ as these three 2D cells intersect in this projected space.
This is repeated for 2D cells; here we project 1D and OD subcells to a 1D space,
and determine graph connectivity by projections. For 1D cells, the convex hull of
adjacent 3D cells’ f, and its intersection with the linear space of the cell result in a
set of vectors with varying magnitude. We only need to know the direction (either

Parallel Computation of Nearly Recurrent Comp. of PC Vector Fields 123

a (adhe) b

a A Ab
a d —// L > al:;cd
® / /
f c T T 4 mﬂ
e h
bd

H

da N
& ¥
) D

Fig. 1 Example transition graph contributions for each grid cell dimension, arranged by 3D to 0D
starting from the upper left. In the 3D case (a), the cell is projected by f, which points into the
paper (circled-plus). In (b), the 2D case, f is denoted by the bold arrow in the center. Dashed lines
illustrate simple segments within the face. If there is no flow along a 2D cell, it will contribute no
arcs to the graph. The 1D edge subfigure in (¢) shows the single and bidirectional case: f for this
cell may actually be an interval of vectors, but we only need to know the direction, not magnitudes.
It is also possible that there will be no flow in this cell; in this situation, it contributes no arcs to the
graph. The 0D figure (d) shows that a vertex cell can add but a single arc to the transition graph

one-way, or bidirectional) to determine its contribution to the transition graph. 0D
cells require no projection steps; we check to see if the zero vector is within the
convex hull of adjacent 3D cells’ f vectors. If so, we add an arc to itself in the
transition graph.

The non-trivial strongly connected components (SCCs) of this transition graph
represent the regions of nearly recurrent flow in the vector field. Here, non-trivial
refers to SCCs that either contain more than one node, or components with a single
node only if that node has an arc to itself.

By refining this transition graph, the upper bound on nearly recurrent sets can
be made tighter. The refinement operation refers to the subdivision of an n-set into
smaller n-sets. In the algorithm, edge pieces are subdivided into two equal sized
smaller edge pieces and face pieces are split into four, in a quad-tree-like manner.
These refined n-sets replace the original in the graph; to maintain the ability for the
graph to represent all trajectories, we are required to update arcs after refinement.
This update is designed to ensure that any two n-sets connected by a simple segment
are connected by an arc in the refined graph.

124 N. Brunhart-Lupo and A. Szymczak

If A is a node in the transition graph, and A’ is one of the n-sets resulting from the
refinement operation on A, we construct arcs out of A’ by looping over all outgoing
arcs A — B for A. If the connectivity check returns true, A’ — B is inserted into
the graph. This process is repeated for incoming arcs B — A. A is then deleted or
unlinked from the graph. Note that the connectivity check is based on an intersection
test for n-sets projected as described earlier.

Overall, the algorithm takes the following steps. First a coarse transition graph is
constructed from the input mesh. Its nodes correspond to 0D, 1D, and 2D grid cells.
The SCCs are then computed. All nodes in trivial SCCs (i.e. SCCs that contain only
a single node with no arc to itself) are removed with all incident arcs. If the user
desires further refinement of the representation, all remaining nodes are then refined
(only one at a time), and the same process is repeated by again computing SCCs,
etc.

The most expensive part of the refinement operation is the connectivity test of
A" and B to determine if an arc between them should be inserted in the graph. In
the 3D implementation of [15], this requires a number of dot product comparisons.
Deleting arcs is also an expensive operation, as we must maintain a doubly linked
arc data structure. Inserting the arcs into the graph requires relatively less processing
time, but is still considerable. We would like to take advantage of the fact that the
connectivity tests can all be computed in parallel.

3.1 Naive Parallelization

As an initial attempt to gain a performance enhancement, the refinement process was
naively parallelized. This approach added multi-threading to the refinement pass,
with a large number of critical sections (forced serialization) to prevent consistency
issues. The results of [15] are based off of this first effort.

Here, ¢ threads (usually equal to the available logical cores of the host CPU) were
spawned, each with an allotment of nodes to refine. Since the refinement process
requires the addition and removal of arcs in the graph, it is disadvantageous to have
two different threads operate on adjacent nodes. Thus, a preprocessing stage was
run in an attempt to create a list of independent nodes, where no node n; shares an
arc with node #; in the list. This list is then consumed by the threads, each taking
a node, refining it, adding the subdivided nodes to the graph, updating the arcs, and
then deleting/unlinking the original node.

There are many problems with this approach. A large amount of time is spent
finding these independent nodes to process in parallel. We must also run the
independence algorithm in a loop (as further independent sets can be extracted
after visiting one set), exacerbating the problem. While the number of nodes that
can eventually be processed in these independent sets is usually a large fraction of
the overall graph, there will be a number of nodes left over that must be done in

Parallel Computation of Nearly Recurrent Comp. of PC Vector Fields 125

serial. A more optimal formulation would be able to process all nodes with no such
expensive preparatory step.

While the situation varies from dataset to dataset, it iS not uncommon to
experience only an approximate 150 % speedup on eight core processors. To solve
these problems, a reformulation of the algorithm is required.

3.2 Contribution

Our contribution is a revision of the algorithm in [15], allowing a better provisioning
of processing resources to accelerate the refinement process. This new algorithm is
not limited to dimension; it applies to both 2D and 3D cases.

4 Algorithm

In this section, we describe our parallel implementation of transition graph subdivi-
sion. The basic idea is to construct a new graph for each refinement round instead
of executing refinements for one node at a time. In our implementation we describe
the 3D case, but the process readily applies to 2D as well.

4.1 Transition Graph Representation

Before we discuss the new algorithm, we first describe an alteration to the under-
lying graph data structures used. The graph consists of many lists of nodes; each
list consists of nodes that were obtained by subdividing the same grid cell. More
precisely, with nodes organized into multiple lists, addition of nodes to the graph no
longer requires a single graph global mutex as in previous implementations; we use
a separate mutex for each list. The objective of this representation is to maximize
concurrent use by taking advantage of our problem context.

While this is not fully optimal, adding a mutex for each node to maximize
concurrency may cause memory problems as the graphs can grow to several millions
of nodes with ease.

4.2 Transition Graph Construction

4.2.1 Coarse Graph

First, we construct a new empty transition graph G, whose nodes correspond to grid
cells of dimension no more than 2 as described in [15]. The compute device will
then receive a list of projection matrices to be used in the refinement operation. For

126 N. Brunhart-Lupo and A. Szymczak

Fig. 2 Multiple graphs s

during subdivision. Node A is A
subdivided into 4’1 and A2,

with pointers to these new

child nodes. The parent node

A is not removed; G remains “
a consistent transition graph

while H is under construction

i rounds of refinement (specified by the user) we cycle through the main loop of our
algorithm.

4.2.2 Refinement

To complete a single iteration, we first create an empty transition graph H,
containing no nodes and no arcs. For each node A in the SCCs of G, we subdivide
A and insert all its children into H. Again, we use the data structure outlined in
Sect. 4.1, using a node list per grid cell. In particular, nodes belonging to different
lists can be subdivided in parallel.

To populate H, we process the nodes in the strongly connected components of
G. For each node A in an SCC of G, we subdivide A into child nodes 47, ..., A,.
In 3D, this means edge n-sets being split in two and face n-sets being split into four
pieces. These child nodes are inserted in H. The parent node A still possesses its
connectivity information to other nodes in G. This is presented in Fig. 2.

Because of the change to graph implementation, node insertions can be done in
parallel without the need for any critical sections by having threads operate on a cell
level. A single thread subdivides all nodes that are owned by cell C, before moving
to the next cell. In this manner, no thread will conflict with another over a cell’s
node list.

With H populated with nodes, we now determine which are to be connected by
an arc. To do this, we examine the parent nodes. For each parent node A, we loop
over all outgoing arcs A — B (with owner cell C). Our goal is to insert an arc
from child node A’ to B’ in H if the connectivity check returns true. To do this,
we add all 4, B as well as C to the parallel processing list L. The goal of L is to
provide a concise representation of all arcs along with arc owner information in a
parallel-ready structure.

Each record in L is then processed in parallel, for example, by a kernel function.
Since L is the only information sent to the device, before connectivity can be
computed, the children of A and B are reconstructed on the compute device (this
is not required if the compute device shares memory address space with the graph
data structure).

While this duplicates the subdivision work of the previous step of the algorithm,
the alternative is to fill the list with children nodes and their projection contexts.
In the case of two 2D nodes (faces), this means 16 records (along with redundant

Parallel Computation of Nearly Recurrent Comp. of PC Vector Fields 127

A1 B1

A1 B2

A2 B

v vV Vv ¥

Fig. 3 Example of children arc testing and encoding. Nodes A, B and arc/owner cell C (which
provides projection information) are the input elements, and the bitmap is returned as the
connectivity output. In this example, there are two children each for nodes A and B. The children
nodes here are temporarily constructed on the compute device, but their connectivity will be
provided to the child nodes in H afterwards. The output bitmap shows one arc is to be constructed
between the child nodes A and B

projection information) must be added to the list and possibly transferred to the
compute device. By only sending nodes and duplicating the child computation, we
limit the effect of the memory transfer bottleneck between host and device, which
is the commonly the slowest portion of the compute process. Further, the children
of a node are relatively inexpensive to compute.

The kernel/thread will look up the associated projection information associated
with C, project the children of 4 and B, and compute intersection tests to determine
which children of A should be connected to which children of B. It then encodes
this information in a bitmap O (each tuple owns a portion of O). An example of
processing a record is in Fig. 3.

The device takes each child of A and computes the connectivity to each child of
B, using the projection information of C. If the connectivity test between the two
n-sets is true, we encode a 1 into the bitmap. In Fig. 3, we can see a single arc that
must be constructed.

The bitmap O is returned from the compute device. We now insert arcs into
H . For each pair of nodes A — B in the upload list, we will connect the children
A, - B ; if their bit is true in the bitmap. This operation can also be done roughly in
parallel. Adding an arc requires the exclusive access of each nodes’ arc lists. When
processing a single bitmap slot in serial, this is a non-issue. For parallelization of
the entirety of the bitmap, the thread will have to lock the mutex of A’s owning grid
cell, as well as the mutex of B’s owning grid cell.

Next, O is returned from the device, where the bitmap is decoded. Whenever the
bitmap indicates that the projections of two refined nodes intersect, arcs connecting
them are inserted into H. G is now destroyed.

We compute the strongly connected components of H. As in the original
algorithm [15], we use Tarjan’s algorithm [17] to compute SCCs. Although this
step could potentially be parallelized [2, 7], this is not the focus of this chapter.

128 N. Brunhart-Lupo and A. Szymczak

Finally the contents of G are replaced with H (at most this requires swapping a
pointer), to prepare for the next round of refinement. This process can be repeated
as many times as the user desires.

5 Implementation and Results

In this section, we present two implementations of this algorithm, and their results
on selected data sets.

5.1 Implementations

Our first implementation has been applied in part to run on a multi-core computer
for 3D input data using multi-threading in a shared memory environment. The
implementation has dual graph support, and fully parallelized connectivity testing.
A buffer system has been added in preparation for OpenCL powered testing. Arc
addition has been partially parallelized through the use of threading and mutexes.

In our second, experimental, implementation, we have added support for a CPU
OpenCL compute device to build the arc connectivity bitmap. It shares the same
technology of the first implementation, with the addition of pooling of nodes in
memory. Because of the current design of OpenCL, this implementation will always
use the maximum number of logical cores available on the platform to build the
bitmap. As our graph implementation is contained in CPU addressable memory and
is in a separate address space from OpenCL, we interpret and connect the arcs using
threading and mutex exclusion.

5.2 Preliminary Results

To show improvements in the previous version of this algorithm, we test our
approach with the same 3D datasets as from [15].

Lorenz: This dataset is a 24 x 24 x 24 grid vector field originally presented in
[11], where the vector field is described by x = o (x —), y = px —y — xz,
z = xy — bz. Using the common parameters ¢ = 10, and b = %, we use
p = 350, which, by Mrozek and Pitarczyk [12], will provide a periodic orbit
within the domain [—150, 150] x [—150, 150] x [200, 500].

Bénard-Rayleigh Convection: This set is a simulation of convection by Daniel
Weiskopf and appears in [18]. We have subsampled the dataset to 128 x 32 x 64.
Further, to reveal more detail in the structure of this dataset, we have striped one

and two voxels from each side to create three datasets in total.

Parallel Computation of Nearly Recurrent Comp. of PC Vector Fields 129

Table 1 Timing results in seconds

Od P1 P2 P4 P8 P24 PCL-244
Dataset Refinement (s) (s) (s) (s) (s) (s) (s)
Lorenz (p = 350) 437 270 217 153 156 174 96
Bénard-Rayleigh 419 241 189 132 153 185 77
Bénard-Rayleigh (-1) 287 154 120 87 110 118 50
Bénard-Rayleigh (-2) 158 91 69 50 62 72 30
Square Cylinder 446 263 201 142 172 207 82

N NN

Square Cylinder: Prepared by Camarri et al. [4], this simulation places a square
cylinder in a fluid flow. By subtracting the average velocity from the flow, we
extract interesting swirling structures. This set has subsampled dimensions of
96 x 32 x 24.

Table 1 provides timing of processing these datasets. The number of refinement
iterations is listed, as well as the original processing times offered in [15] (the
‘Old’ algorithm, with naive parallelization, and the time needed to write the output
excluded). Our improved algorithm was run several times on a compute node with
differing numbers of assigned cores (‘P-n’, where n is the number of available
cores for that run). We also show timings for our experimental OpenCL powered
algorithm as ‘PCL-24-4’, using 24 cores to compute the arc connectivity bitmap,
and 4 cores to connect arcs.

The algorithm was tested on a 24-core 2.4 GHz Intel® Xeon® E5645 node with
48 GB of RAM. Overall, the CPU used here and in [15] are comparable.

5.3 Discussion

Table 1 demonstrates improved performance for all input data sets, even in the
case where only a single core was used, indicating better use of system resources
when in serial mode. In the case of the Lorenz dataset, we reduced execution time
from almost 8 min to under 3 min for our first implementation, and less than 2 min
for the OpenCL implementation. This is promising, as there are still a number of
improvements to make to the implementations to bring them fully in line with the
described algorithm. Memory usage of these algorithms is roughly comparable with
the algorithm in [15]; our algorithm adds a statically sized buffer for computation,
but also uses a more RAM efficient graph representation.

While there are significant gains, the results show that there is not a linear
improvement as we increase the number of cores used. This is ultimately the effect
of Amdahl’s Law [1]; with only the bitmap generation being perfectly parallelized,
the weight of a highly contentious arc insertion procedure and a serial SCC
algorithm become nontrivial. The OpenCL version is able to achieve better times
by being able to use the full 24 cores available to compute connectivity, while only

130 N. Brunhart-Lupo and A. Szymczak

900 ' ' ' % CPU——

800 | 1
700
600 |
500

400

300

200

100 i

0

0 100 200 300 400 500 600

Fig. 4 Example runtime of the Bénard-Rayleigh (4R) dataset on eight processors (‘P-4’). The x-
axis represents the sample number (samples taken around four times a second), while the y-axis
denotes the percent of system CPU activity

having 4 contentious threads to insert arcs, as opposed to the first implementation,
which would use the same number of cores for both tasks.

Figure 4 shows an example CPU profile of an eight core processor node running
the first parallel algorithm on the Bénard-Rayleigh dataset over four refinement
iterations. The features we note are blocks of large spikes of parallelism of 800 %
usage, separated by small troughs that extend to ~200 % usage. These blocks
are separated by larger troughs at 100 % usage (single core saturation). This last
feature represents the strongly connected component algorithm. As this is not yet
parallelized on our implementation, it runs on a single core. The time spent in this
serial procedure (up to 20 % in some cases) is large enough to justify a parallel SCC
addition to the software. Of greater interest are the troughs at 200 %. In our current
implementation, we repeatedly fill a buffer to be processed and then compute the arc
connections, repeating this every time the buffer is full. Here we see the buffer being
processed (the large 800 % spikes) and the arcs being connected (200 % troughs).
The arc connection portion is threaded, but uses mutexes to prevent concurrency
related issues; low processor usage here denotes that the program is waiting for
these mutexes to be unlocked by other threads.

Thus, while the larger issue of computing intersections in parallel has been
solved, these two smaller issues (SCC computation and parallel arc insertion) must
be strongly considered for revision in future implementations of this algorithm. As
mentioned, parallel SCC algorithms have already been developed and are readily
available. The problem of parallel arc insertion is more involved; double buffering,
queues, and other methods could be used as a remedy. A possible solution involves
the use of strong partitioning, where each thread/process owns a portion of the graph
outright, so that no mutexes are used at any stage of the algorithm. This approach is

Parallel Computation of Nearly Recurrent Comp. of PC Vector Fields 131

specifically being explored as we consider out-of-core applications and distributed
systems.

6 Conclusion

In this document, we have presented a parallel reformulation of the refinement
process for piecewise constant transition graphs. The new approach separates
connectivity testing from the arc insertion and node insertion procedures, showing
improvements in computation performance even when run in serial. When run in
parallel, run times are greatly reduced, facilitating study of larger datasets.

Further work on this subject includes parallel strongly connected component
computation. As a larger goal, a reformulation of the algorithm intended for
distributed systems (i.e. MPI) with out-of-core capability is also planned, using
partitioned graphs. It is anticipated that this new scheme will eliminate issues from
arc insertion, boosting performance while scaling to hundreds of cores.

References

1. G. Amdahl, Validity of the single-processor approach to achieving large scale computing
capabilities, in Proceedings of AFIPS Conference, Atlantic City, 1967, pp. 483485

2. J. Barnat, P. Bauch, L. Brim, M. Ceska, Computing strongly connected components in parallel
on CUDA, in Proceedings of the 2011 IEEE International Parallel & Distributed Processing
Symposium, IPDPS’11, Washington, DC (IEEE Computer Society, 2011), pp. 544-555

3. H. Bhatia, S. Jadhav, P.-T. Bremer, G. Chen, J.A. Levine, L.G. Nonato, V. Pascucci, Edge maps:
representing flow with bounded error, in Proceedings of IEEE Pacific Visualization Symposium,
Hong Kong, 2011

4. S. Camarri, M.-V. Salvetti, M. Buffoni, A. Iollo, Simulation of the three-dimensional flow
around a square cylinder between parallel walls at moderate reynolds numbers, in XVII
Congresso di Meccanica Teorica ed Applicata, Florence, Sept 2005

5. G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, E. Zhang, Vector field editing and
periodic orbit extraction using Morse decomposition. IEEE Trans. Vis. Comput. Graph. 13,
769-785 (2007)

6. G. Chen, K. Mischaikow, R.S. Laramee, E. Zhang, Efficient Morse decompositions of vector
fields. IEEE Trans. Vis. Comput. Graph. 14, 848-862 (2008)

7. L. Fleischer, B. Hendrickson, A. Pinar, On identifying strongly connected components in
parallel, in Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, IPDPS’00, London (Springer, 2000), pp. 505-511

8. R. Forman, A user’s guide to discrete Morse theory, in Proceedings of the 2001 International
Conference on Formal Power Series and Algebraic Combinatorics, Arizona. Advances in
Applied Mathematics (2001)

9. A. Gyulassy, P-T. Bremer, V. Pascucci, Computing Morse-Smale complexes with accurate
geometry. IEEE Trans. Vis. Comput. Graph. 18(12), 2014-2022 (2012)

10. R.S. Laramee, H. Hauser, L. Zhao, F.H. Post, Topology-based flow visualization, the state
of the art, in Topology-Based Methods in Visualization (Proceedings of TopolnVis 2005),
Budmerice, ed. by H. Hauser, H. Hagen, H. Theisel (Springer, 2007), pp. 1-19

11. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130-148 (1963)

132 N. Brunhart-Lupo and A. Szymczak

12. M. Mrozek, P. Pitarczyk, The conley index and rigorous numerics of attracting periodic orbits,
in Conference on Variational and Topological Methods in the Study of Nonlinear Phenomena,
Pisa, 2000

13. J. Reininghaus, I. Hotz, Combinatorial 2D vector field topology extraction and simplification,
in Mathematics in Visualization (TopoInVis), Snowbird, 2009

14. J. Reininghaus, C. Lowen, 1. Hotz, Fast combinatorial vector field topology. IEEE Trans. Vis.
Comput. Graph. 99, 1433-1443 (2010)

15. A. Szymczak, N. Brunhart-Lupo, Nearly recurrent components in 3D piecewise constant vector
fields. Comput. Graph. Forum 31(3), 1115-1124 (2012)

16. A. Szymczak, E. Zhang, Robust Morse decompositions of piecewise constant vector fields.
IEEE Trans. Vis. Comput. Graph. 18(6), 938-951 (2012)

17. R. Tarjan, Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146-160
(1972)

18. D. Weiskopf, T. Schafhitzel, T. Ertl, Texture-based visualization of unsteady 3D flow by real-
time advection and volumetric illumination. IEEE Trans. Vis. Comput. Graph. 13(3), 569-582
(2007)

Part I11
Simplification, Approximation,
and Distance Measures

Notes on the Simplification of the Morse-Smale
Complex

David Giinther, Jan Reininghaus, Hans-Peter Seidel, and Tino Weinkauf

Abstract The Morse-Smale complex can be either explicitly or implicitly
represented. Depending on the type of representation, the simplification of the
Morse-Smale complex works differently. In the explicit representation, the
Morse-Smale complex is directly simplified by explicitly reconnecting the critical
points during the simplification. In the implicit representation, on the other
hand, the Morse-Smale complex is given by a combinatorial gradient field. In
this setting, the simplification changes the combinatorial flow, which yields an
indirect simplification of the Morse-Smale complex. The topological complexity
of the Morse-Smale complex is reduced in both representations. However, the
simplifications generally yield different results. In this chapter, we emphasize
properties of the two representations that cause these differences. We also provide
a complexity analysis of the two schemes with respect to running time and memory
consumption.

1 Introduction

The Morse-Smale (MS) complex [17,21] has been proven useful in many applica-
tions due to its compact representation of the input data. However, a simplification
of this complex is mandatory to determine the dominant features within the data.

D. Giinther ()
CNRS LTCI, Institut Mines-Télécom, Télécom ParisTech, Paris, France
e-mail: gunther @telecom-paristech.fr

J. Reininghaus
IST Austria, Klosterneuburg, Austria
e-mail: jan.reininghaus @ist.ac.at

H.-P. Seidel * T. Weinkauf
MPI for Informatics, Saarbriicken, Germany
e-mail: hpseidel @mpi-inf.mpg.de; weinkauf @mpi-inf.mpg.de

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 135
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8_ 9,
© Springer International Publishing Switzerland 2014

mailto:gunther@telecom-paristech.fr
mailto:jan.reininghaus@ist.ac.at
mailto:hpseidel@mpi-inf.mpg.de
mailto:weinkauf@mpi-inf.mpg.de

136 D. Giinther et al.

Over the last few years, two concepts have been established to represent the
MS-complex. The first concept goes back to Edelsbrunner et al. [4] and was
originally proposed for piecewise linear input data given on a triangulated domain.
In this setting, the MS-complex is explicitly represented as a graph called the 1-
skeleton. The graph consists of nodes and edges — called links in this chapter to
avoid confusion with geometric edges. The nodes are the critical points of the
data and the links describe their neighborhood relation given by the separatrices.
The simplification of the MS-complex works iteratively on this graph. Two critical
points can be removed from the graph if they are connected by a single link. After
a removal, the neighborhood information of their respective adjacent critical points
needs to be updated, i.e., the nodes of the graph are newly connected.

The second concept follows a formulation proposed by Forman [6] to describe
the MS-complex. In contrast to the first approach, the MS-complex is only implicitly
represented by a combinatorial gradient field. A simplification is now applied to the
gradient field by changing the direction of the combinatorial flow along a separatrix;
see right column of Fig. 1. This change in direction implicitly simplifies the MS-
complex. Its explicit representation is computed from a simplified gradient field.

The motivation behind these two simplification strategies is different. While the
explicit procedure refers to an explicit computation of a true simplified scalar field,
the implicit case directly addresses the (combinatorial) gradient flow. However, both
simplification procedures follow the same rules to determine which simplification
step is admissible and they may also follow both the same principle to determine the
next removal. But the results of the explicit and implicit simplification procedures
differ, in general.

For 2D data sets, the difference is limited to the geometric embedding of the
separation lines. For 3D data sets, on the other hand, the simplification procedures
may even lead to different hierarchies: the order of the removal as well as the
connectivity of critical points might differ. In this work, we investigate specific
properties of the two representations and show that these properties can cause these
differences. The different representations also affect the algorithmic side. Therefore,
we also provide a complexity analysis of the two simplification schemes.

In Sect.2, we provide a brief overview of prior work. Both simplification
strategies are presented in Sect. 3, and we discuss specific properties in Sect. 4. We
conclude this chapter in Sect. 5 by discussing the effects of these properties.

2 Related Work

In the following, we give a brief overview about the computation and simplification
of the MS-complex in the discrete setting. The MS-complex [17, 21] consists of
critical points (minima, saddles, maxima) and separatrices — the gradient lines that
connect the critical points.

The MS-complex for 2D or 3D piecewise linear data can be computed using an
approach proposed by Edelsbrunner et al. [3,4]. The critical points are given by an

Notes on the Simplification of the Morse-Smale Complex 137

explicit — '2D scalar input data — implicit
simplification shown as height field simplification
procedure procedure

T
<ES}.<‘Z"Z{‘>.
AN OIS

qy» 4
2 - 3
5 =
£ 5
[} g
5 t.AAqPAAAb .
g - - — i
= remove points and connections 2
E then create new connections S
(]

St e i

Fig. 1 Illustration of the explicit and implicit simplification of the MS-complex. The scalar input
data is given on a discretization. From this input, the explicit and implicit simplification procedure
computes a combinatorial gradient field that represents the MS-complex (first row). The left
column shows the explicit procedure. From the gradient field, the MS-complex is extracted and
represented as a graph (second row). The simplification now removes pairs of critical points in the
graph (third row). This involves a local change of the connectivity of the affected critical points:
incident connections are deleted and new connections are added. The right column shows the
implicit procedure. The MS-complex is implicitly simplified by reversing the direction of the flow
along a combinatorial gradient line that connects two critical points (second row). An explicit
representation of the MS-complex is computed after the gradient field was simplified (third row)

analysis of the lower star of each vertex. The separatrices are approximated as a
sequence of steepest edges in the triangulation. An extension to more general input
was proposed by Gyulassy et al. [11] using a region-growing approach based on
the definition [21] of the MS-complex. These approaches result in an explicit graph

138 D. Giinther et al.

representation of the MS-complex. The nodes of this graph are the critical points
and its links represent the separatrices that connect the critical points.

A simplification of this representation of the MS-complex is obtained by
eliminating pairs of critical points in the graph and a subsequent update of the neigh-
borhood relationship of adjacent critical points [4,9]; see the left column of Fig. 1.

In contrast to the above techniques, the MS-complex can also be computed and
simplified using the approach proposed by Forman [6]. The complex is implicitly
given by a combinatorial gradient field. The critical points represent the topological
changes of the sub-level sets of the data [16]. The separatrices are computed
by starting at the (combinatorial) saddle points and following the grid along the
combinatorial gradient field. A simplification of the MS-complex is implicitly done
by changing the combinatorial flow in the gradient field.

The first computational realization of Forman’s theory was presented by Lewiner
[14] and Lewiner et al. [15]. Robins et al. [19] presented the first algorithm
to compute a combinatorial gradient field which is provably correct in up to
three dimensions in the sense that its critical points correspond one-to-one to
the topological changes in the sub-level sets of the input. Based on this method,
Giinther [7] presented an optimal algorithm to compute an explicit representation of
the MS-complex from a combinatorial gradient field for the 2D and 3D case. This
algorithm can be run in parallel and has a complexity of O(cn) with ¢ denoting the
number of critical points and n denoting the size of the input. A memory and running
time efficient hierarchy of this complex is obtained by simplifying the combinatorial
gradient field [7, 18] and extracting the MS-complex afterward as shown in the right
column of Fig. 1.

In the next section, we present the technical details of the explicit and implicit
simplification. While other strategies are conceivable, we concentrate on the
techniques proposed by Gyulassy [9] and Giinther [7] as representatives for the
explicit and implicit case, respectively.

3 Simplification of the Morse-Smale Complex

In this section, we briefly present the explicit and implicit simplification scheme.
The basis for both approaches is an initial combinatorial gradient field that describes
the combinatorial flow of the input data. Although other settings are conceivable, we
concentrate on the setting of discrete Morse theory [6].

3.1 Combinatorial Gradient Field and Morse-Smale Complex

A combinatorial gradient field represents the gradient flow of a given input
but restricted to the discretization of the underlying domain. The discretization
decomposes into cells of different dimensions. Assuming that the domain is given

Notes on the Simplification of the Morse-Smale Complex 139

a b
l < < 1[
> >
Cellsofa2 x 1 grid. Combinatorial gradient field.
c d
@ eunnes 0 R o YA Fo mm—)
0 |1 |0 | (N (A S A S
] |2 |1 2142 Sreereansrrenns s
0 L 0 100 5 Oenvmnnn o S S Py
Graph representation of the grid. Flow represented by a matching.

Fig. 2 Illustration of a combinatorial flow. (a) shows the cells of 2D grid: vertices (circles), edges
(black lines), quads (shaded area). (b) shows a combinatorial gradient field: cells of consecutive
dimension are paired, unpaired cells (blue and yellow) are critical cells. (c¢) shows a graph
representation of the grid shown in (a): each node (sphere) is labeled by the dimension of the cell
it represents, the adjacency of the cells is represented by links (black lines). (d) shows a matching
representation of the combinatorial flow shown in (b): paired cells are represented by links (solid
black lines), nodes with no incident matched links are critical (blue and yellow)

as a 2D grid as shown in Fig.2a, the cells are the k-dimensional entities of the
grid: vertices, edges, quads. Similarly, higher dimensional grids or triangulations
also decomposes into cells. A combinatorial gradient field now pairs cells of
consecutive dimension yielding a combinatorial flow restricted to the entities of
the discretization, see Fig. 2b. Unpaired cells are the combinatorial analogue of the
continuous critical points [6].

Recently, several approaches [9,13,20] to construct such a combinatorial gradient
field based on an input field are proposed. The first provably correct algorithm,
however, is proposed by Robins et al. [19]. While all of the approaches work in
practice, it is beneficial to use this algorithm since the topological structures in the
gradient field are reduced to a minimum, i.e., all structures correspond to evolution
of the sub-level sets and no falsely identified structures are present.

Given a combinatorial gradient field, an explicit representation of the MS-
complex CMS can be computed using the intersection of the underlying ascending
and descending manifolds [21]. The MS-complex consists of the critical points and
separatrices. The critical points are the unpaired cells in the combinatorial flow
(Fig.2b). The dimension k of the cells defines the type of the critical point. For
a 2D input, we call a critical point a minimum (k = 0), a saddle (¢ = 1), or a
maximum (k = 2). In case of a 3D input, the critical points are called: minimum
(k = 0), 1-saddle (k = 1), 2-saddle (k = 2), or maximum (k = 3).

140 D. Giinther et al.

The separatrices, on the other hand, are special combinatorial gradient lines that
connect critical points of different type. The type of the critical points define the
dimensions of the cells a separatrix is allowed to cover in the discretization. The
smaller dimension of the cells defines then the type of the separatrix. For example,
a separatrix that connects a saddle with a minimum only covers cells of dimension
zero and one; we call it a O-separatrix.

In contrast to their continuous counterpart, separatrices can merge or split in 2D.
In 3D, a single separatrix can even merge and split. As we will see in the following,
this property causes the differences in the simplification of the explicit and implicit
representation of the MS-complex.

3.2 Explicit Simplification of the Morse-Smale Complex

In the following, we assume that an explicit representation of the initial MS-complex
Cé”s is given, i.e., the complex is given as a graph with nodes representing the
critical points and links representing the separatrices. Topologically simplifying
this graph means reducing the number of nodes and consequently the topological
complexity of the MS-complex. Based on a simplification guideline, pairs of critical
points are iteratively removed from C™S which yields a hierarchy % of MS-
complexes

¢ = (O)k=0...m-)

A pair of critical points is a valid candidate for a removal if it is connected by a
single link. Let p and ¢ denote two critical points of index £ and £ + 1, respectively.
We denote the £-neighborhood of a critical point ¢ by N/, i.e., N(f contains all
critical points of index £ that are connected to ¢ in the MS-complex. Let the pair
(P q) be connected by a single link, i.e.,¢ € Ny™ and p € N/

The removal of the pair (p, ¢) now changes the neighborhood of all their adjacent
critical points. The removal in the graph consists of two operations:

1. The nodes p and g and all their incident links are deleted from the graph.
2. New connections between each node in N ;H \ {¢} and qu \ {p} are created.

The simplification process terminates if no valid pair of critical points can be
found in the MS-complex. For more details on this simplification, we refer to [9].

3.3 Implicit Simplification of the Morse-Smale Complex

In the following, we assume that an initial combinatorial gradient field V} is given. In
contrast to the explicit representation, the implicit simplification directly addresses
the combinatorial flow. Let a pair of critical points which is uniquely connected by

Notes on the Simplification of the Morse-Smale Complex 141

Two separatrices in V. V Asy.

Fig. 3 Illustration of the implicit simplification. (a) shows two separatrices (blue and green lines)
that begin at a saddle (yellow circle) and end in two minima (blue circles). (b) shows the change
of the combinatorial flow along s; (bounded region). The incident saddle and minimum of s; are
matched and no longer critical. The symbol A denotes the symmetric difference

a separatrix be given. A simplification is now done by reversing the combinatorial
flow along the separatrix. Applying the simplification iteratively yields a sequence
¥ of combinatorial gradient fields

V= (Vk)k=0 m* (2)

From an algorithmic point of view, the simplification can be best expressed in a
graph-theoretical notation. A combinatorial gradient field works on the cells of
a given discretization, i.e., the vertices, edges, triangles, quads, cubes, etc. Each
discretization can be represented as a graph G = (N, E). The nodes N of the
graphs are the k-dimensional cells and its links E describe the adjacency of these
cells, see Fig. 2c for a 2D example. The combinatorial flow is expressed as a pairing
of cells. This pairing can be represented by a subset of links V' C E. Since each
cell can only occur in one pair [6], none of the links in V are adjacent; hence, V is
a matching. Figure 2d shows a 2D example.

We now interpret the combinatorial gradient field V,, as a matching. In graph
theoretical terms, an combinatorial separatrix s C E connecting two critical points
is an augmenting path since it is alternating and its start- and end-node are not
matched (Fig. 3a). Hence, we can produce a larger matching Vy4+; C E by taking
the symmetric difference

Vivr = Vi As. (3)

Equation (3) is called augmenting the matching. Since the incident critical nodes of
s are matched after the augmentation, the number of critical nodes is decreased by
two. Note that Eq. (3) does not depend on the dimension of G, i.e., we can apply the
augmentation to 2D as well as 3D data.

The symmetric difference in Eq. (3) reverses the direction of the combinatorial
gradient flow. Loosely speaking, the augmentation flips the direction of the arrows
representing the combinatorial flow. An illustration of the augmentation is given in

142 D. Giinther et al.

Fig. 3b. The simplification stops if the matching cannot be augmented anymore, i.e.,
there are no critical points that are connected by a unique separatrix.

The sequence ¥ is completely defined by the final matching V,, and the (typically
rather short) augmenting paths (p;). An arbitrary element V; € ¥ can be restored
by iteratively applying Eq. (3) with respect to (p;). For a more detailed description
of this simplification, we refer to [7, 18].1

4 Differences in the Simplifications of the Morse-Smale
Complex

In this section, we elucidate the properties of the explicit and the implicit sim-
plification schemes. Both schemes are based on different representations of the
MS-complex. The representations influence not only the geometric embedding of
the separatrices but also the order of simplifications. In general, both schemes yield
different hierarchies of MS-complexes.

4.1 Geometric Embedding of Separatrices

The geometric embedding of the separatrices in the initial MS-complex coincides
in the explicit and implicit representation. They are defined by the combinatorial
gradient field, and their embedding is given by the cells of the discretization which
they cover, see Fig. 4 (left). However, differences occur if the complex is simplified.

In the explicit representation, critical points are newly connected after a simplifi-
cation. Those new connections involve a merge of separatrices. Figure 4a shows an
example. The separatrices (blue lines) emerging at the two saddles (yellow circles)
meet each other at a non-critical point. Both separatrices share the same cells from
this point on to the central minimum (blue circle). If the saddle and the central
minimum are now removed from the MS-complex, the two separatrices merge,
which yields a partly overlap of the separatrix with itself.

In the implicit representation, on the other hand, the situation is different, see
Fig.4b. The removal of the right saddle and the central minimum is done by
changing the combinatorial flow along the separatrix connecting these two points.
The new separatrix that emanates from the left saddle directly goes to the right
minimum without any self-overlapping.

This situation also occurs in 3D. However, it only affects the geometric embed-
ding of the separatrices and not the simplification process. In the following, we

'Note that the idea of reversing the flow along a separation line was also used to modify a scalar
field based on a simplified contour tree [23].

Notes on the Simplification of the Morse-Smale Complex 143

Fig. 4 The explicit and implicit simplification may create different embeddings of the separatrices.
(a) Before and after the simplification using the explicit representation. Two formerly distinct
separatrices (blue) are stitched together to one new separatrix that partial overlaps with itself.
(b) Before and after the simplification using the implicit representation. Reversing the flow between
the two canceled critical points leads to a new embedding, which does not overlap itself

discuss two properties in the explicit and implicit representation which can yield
different hierarchies.

4.2 Connectivity of Critical Points

The following situation only occurs when a single separatrix can merge and
split. Hence, we assume 3D data as input and concentrate on a saddle-saddle
simplification, i.e., the simplification of an 1- and 2-saddle and the involved 1-
separatrices. For explanatory reasons, we use the above graph-theoretical notation in
the following. This allows us to embed the saddle-saddle connections in the plane,
see Fig. 5.

A simplification of a saddle-saddle pair can completely change the connectivity
of the adjacent saddles in the implicit representation. Figure 5 depicts such a
situation. It may happen that the 1-separatrices of multiple 2-saddles merge and
share several links before they split again and end in 1-saddles, see Fig.5a. The
shared links describe in some sense a narrow one-way street. All 1-separatrices on
the left side of this one-way street must cross it to enter the right side.

However, simplifying the gradient field along one of the 1-separatrices (the blue
line in Fig. 5a) changes the connectivity of the saddles. Before the simplification, all
2-saddles (yellow) were connected to the 1-saddles (green) on the right side. Only
the central 2-saddle was also connected to the 1-saddles on the left side. After the

144 D. Giinther et al.

a, 1 2 1 2 1 2 1
@®-O—0O o= O—O O—O °)
1 2 1 2 1 2 P12 1 2 1
Q- O_O O—o—o—o—o—o—o_.
1 2 1 2 1 2 19 2 1
@®--O0—O OreO=0 O—C@
Subgraph of G showing only 1- and 2-nodes and their connectivity.
b @--0O0—0 == O—O O—0O-@
@ O_O O——=- O_O O—0 .O_O
@=0—0 O=0=0 O—O-@

Changed connectivity.

Fig. 5 Illustration of the connectivity change due to an implicit saddle-saddle simplification (3D).
Shown is a subgraph of G connecting 2-saddles (yellow) and 1-saddles (green). The links of the
matching are depicted as black solid lines. The blue line in (a) depicts an augmenting path. After
the augmentation, the connectivity of the saddles (red lines) completely changed (b)

simplification, none of the remaining 2-saddles is connected to the right 1-saddles
anymore, see Fig. 5b. There is no 1-separation line connecting them. All of them are
now connected to the 1-saddles on the left side, which was not the case before.

In the explicit representation, on the other hand, the above situation does not
occur. Each saddle-saddle pair and its connectivity is separately stored. Although
the geometric embedding of the connections may partly coincide, each connection
is independently treated. A simplification only removes the current pair and its
connections from the MS-complex, and new connections between all neighboring
critical points are created [9]. Therefore, the green 1-saddles on the right are still
connected to the two remaining 2-saddles, and they form valid candidates for further
simplification in the explicit representation.

Since the neighborhood of a saddle changes differently, the above situation
causes different hierarchies in the explicit and implicit representation, in general.
However, the differences are caused by the fact that 1-separation lines partly overlap
in the discrete setting. Given an initial combinatorial gradient field with non-
overlapping separation lines, both schemes would yield the same result.

4.3 Iterative Simplification

A common way to guide the simplification is the use of the height difference of
adjacent critical points [7,9, 14]. This heuristic assumes that unimportant and noise-
induced critical points differ only slightly in their scalar value. Applying an iterative
simplification based on this heuristic yields a hierarchy of MS-complexes. The
initial MS-complex contains all fine-grained structures in the data. The last level,
on the other hand, only contains the large-scale structures of the data.

Notes on the Simplification of the Morse-Smale Complex 145

Pairs of critical points are iteratively removed from the MS-complex such that
each pair represents the currently smallest height difference of all possible pairs.
This height difference guided removal assigns an importance value to each critical
points allowing to distinguish spurious and dominant critical points.

This importance measure is closely related to the concept of persistent homology
[5]. In 2D, it was shown that persistent homology can also be used to simplify
the MS-complex [4]. The adjacency lemma guarantees that two critical points are
connected by a unique separatrix at the moment when they should be canceled.

Recently, it was also shown that the pairing generated by the height difference
produces the same pairing as by persistent homology [2] for data given on a smooth
2D manifold. However, this is no longer true in 3D. It was shown [1] that there are
pairs of critical points generated by persistent homology that can not be obtained by
a sequential removal of critical points as described in Sects. 3.2 and 3.3. Therefore,
the assessment of importance of critical points based on the height difference differs
from persistence, in general.

4.4 Monotonicity of the Simplification

As discussed in Sect. 4.3, the height difference is typically used to guide the simpli-
fication assuming that it represents the currently smallest fluctuation. Therefore, a
natural assumption is that the height difference @ is monotonically increasing over
the simplification process. While this is the case in 2D for the explicit/implicit rep-
resentation and also for the explicit representation in 3D, it is no longer monotone in
the 3D implicit simplification. This stems from the fact that 1-separatices in 3D can
merge and split. Figure 6 shows such an example together with the combinatorial
flow. In the following, we concentrate on saddle-saddle simplifications in an implicit
representation and investigate this non-monotonic behavior in detail. For simplicity,
we use the above graph-theoretical notation in the following.

Due to the degree of the 1- and 2-nodes, the 1-separation lines can merge and
split. Consider a subgraph with different saddle-saddle pairs as shown in Fig. 7a.
Assume that the central pair represents the smallest height difference (w = 1)
and that this pair is next in line for a simplification. However, this pair cannot be
removed since there are three paths connecting them, as shown in Fig. 7b. Since
the saddles could still be canceled with their adjacent extrema, they are deferred
with a weight defined by these extrema. In the next steps, other saddle pairs are
removed with a greater weight (w = 2), see Fig.7c. Parts of the corresponding
augmenting paths, however, share links with the paths connecting the central pair.
Due to the augmentations, the orientation of the links is changed, and the central
pair is suddenly uniquely connected. If the central yellow saddle is now next in
line, its connectivity is recomputed and the central green saddle is determined as the
partner with the smallest height difference (w = 1). Since the connection between
them is now unique, the path allows for an augmentation. However, the weight of
the augmentation is smaller than in the prior operations.

146 D. Giinther et al.

Fig. 6 Illustration of the 3D flow (grey arrows) along a split-merge of a 1-separation line (green)

a b c
010 o7 oll o 10 7 oll IIO 7 Ill

SRS e xS

69 68 6 69 Is 6 i9

Fig. 7 Sketch of a combinatorial gradient field in a subgraph of G (3D) connecting 2-saddles
(vellow) and 1-saddles (green). The critical nodes are labeled with their assigned scalar value.
The links of the matching are depicted as black solid lines. (a) Subgraph of G containing only 1-
and 2-nodes. (b) Multiple paths (blue) between two saddles. (¢) Unique path (blue) after several
augmentations (red)

In practice, the breaks of monotony in the weight sequence are caused by noise.
The perturbations introduced by it yield to short split-merge sequences in the
1-separation lines as depicted in Fig. 7b. To analyze this behavior, we sampled the
artificial function g defined in [8] on an 1283 grid and added two levels of uniform
noise to it. Figure 8 shows the results. The 1-separation lines in the pure function g
are well distributed. No deferring of saddles in the above sense can be observed. The
weights of the augmenting paths are monotonically increasing, see Fig. 8a. However,
adding a small amount of noise in the range of [—0.5, 0.5] results in 12 monotony
breaks, see Fig. 8b. If we add noise in the range of [—1, 1], the number of breaks
increases further to 59, see Fig. 8c. This indicates that the level of noise heavily
influences the number of splits in the 1-separation lines.

In contrast, the height difference is monotonically increasing in the explicit
representation. A single simplification only considers the critical points. It does not
consider if the connection between a pair partially overlaps with other separation

Notes on the Simplification of the Morse-Smale Complex 147

(Y
o

Weight of Augmentation
Weight of Augmentation

0 20 40 60 80 100 120 140 160 0 0.5 1 15 2 25

Augmentations # Augmentations x 10°
g Small amount of noise.
C

L

3

g

1

&0

<

a1

=

)

B

=

8

2 3 4
Augmentations x10°

Large amount of noise.

Fig. 8 Graph of the weights of the augmenting paths. (a) shows the weights of augmentations for
the artificial function g [8] over the number of augmentations. The weights behave monotonically
increasing. The monotony is broken in (b) where a small amount of noise is added to g. The
number of monotony breaks further increases if the level of noise is increased (c)

lines (since all connections are treated independently). Hence, a removal of a critical
point pair does not affect other connections. A saddle pair which is connected by
multiple separation lines can never be removed from the MS-complex, in contrast to
the implicit representation. The height difference during the simplification process
is therefore monotonically increasing in the explicit representation.

4.5 Computational Complexity and Memory Consumption

In the following, we give a brief discussion about the computational complexity and
the memory consumption of the explicit and implicit simplification in case of a 3D
input. We denote the number of vertices by n and the number of saddles by m. Note
that in the worst-case scenario there holds m =~ n.

We begin with the explicit representation. Let (p, g) be a critical point pair with
indices £ and £ + 1, respectively. Let N, qf be the set of adjacent critical points of index
£ in the graph representation. A removal of (p, ¢) deletes all incident links of p and
q and creates new links between the nodes N, qf \{p}and N p“'l \ {g}. Using efficient

148 D. Giinther et al.

data structures with constant insert and delete operations [9], the complexity of a
removal is therefore O(|N,| x |[N5*!|). Since a saddle can be connected to m other
saddles [22], the worst-case complexity of a single simplification step is O(m?).
Hence, the overall complexity of performing all simplifications is O (m?).

The adjacency of the critical points is explicitly stored. Each critical point
contains a list with its neighboring critical points. Since a saddle can be connected
to m saddles, the total memory consumption is O(m?) in the explicit scheme.

In the implicit representation, the connectivity of a critical point needs to be
recomputed since previous simplification steps may have affected its incident sepa-
ratrices. The neighborhood of a critical point can be computed with a complexity of
O(n) using a restricted breadth-first search [7]. Since the simplification procedure
is guided by an importance measure such as the height difference of critical points,
it needs to be checked if the current pair represents the best pair. In the worst case,
this check involves the comparison to m other saddles. Hence, a single simplification
step has a worst-case complexity of O(n m). The overall complexity of performing
all simplifications is therefore O(n m?).

The adjacency of the critical points is implicitly represented by the combinatorial
gradient field. The representation of such a field can be realized by a Boolean vector
representing all cells of the underlying discretization. The size of this vector is
therefore given by the size of the input. In contrast to the explicit representation,
the memory consumption is of order O(n).

5 Discussions and Conclusions

We investigated the properties of the explicit and implicit simplification procedures
and showed that the corresponding results may be different in terms of geometry
and topology. In particular, the simplification procedures generally lead to different
hierarchies of MS-complexes in 3D data sets. Nevertheless, it should be stressed
that both simplification procedures yield valid MS-complexes.

Theoretically, the simplification procedures would give the same results in 3D
if separation lines would not partially overlap. However, this is rarely the case for
real-world data. The different results, as discussed in this chapter, are caused by
saddle-saddle simplifications. Saddles correspond to tunnels and cavities of the level
sets and our practical observations are that qualitative differences regarding these
features are often negligible. As shown in several examples [7,9], both simplification
procedures are able to distill the essential features of the input.

Algorithmically, the main difference between the two simplification procedures
is their memory consumption. In the worst case, the implicit method has a linear
memory consumption while the explicit method has a quadratic memory consump-
tion. Additional heuristics controlling the order of simplifications can mitigate this
issue for the explicit case [10]. However, this also introduces a computational
parameter, which depends on the input data and needs to be adjusted by the user.
In the implicit case, contrarily, no computational parameter is needed.

Notes on the Simplification of the Morse-Smale Complex 149

In 2D and 3D, the geometric embedding of the separation lines can differ between
the two schemes. In the explicit scheme, two lines can merge into a single partially
overlapping line, i.e., cells in the underlying domain are visited multiple times. In
the implicit representation cells can only be visited once allowing no overlap. This
might be useful for noisy data since spurious lines are automatically removed.

We want to stress that both simplification schemes are based on the height
difference heuristic. In 3D, the initial MS-complex cannot be perfectly simplified.
As shown by Joswig and Pfetsch [12] and illustrated by Bauer [1], this is an NP-
complete task. In practice, this results in the situation that some critical points —
which represent spurious features — cannot be removed.

In the both schemes critical points are always removed in pairs. However, it
would be interesting how clusters of critical points could be consistently canceled.
Such a removal might also allow for the removal of spurious critical points in 3D.
However, this needs to be done without creating closed combinatorial streamlines.

Acknowledgements This research is supported and funded by the Digiteo unTopoVis project, the
TOPOSYS project FP7-ICT-318493-STREP, and MPC-VCC.

References

1. U. Bauer, Persistence in discrete Morse theory. PhD thesis, University of Gottingen, 2011

2. T. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang, Persistent heat signature for pose-oblivious
matching of incomplete models. CGF 29(5), 1545-1554 (2010)

3. H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-Smale complexes for piecewise
linear 3-manifolds, in 19th Annual Proceedings of SoCG, San Diego (ACM, New York, 2003),
pp. 361-370

4. H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse complexes for piecewise linear
2-manifolds. Discret. Comput. Geom. 30, 87-107 (2003)

5. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification.
Discret. Comput. Geom. 28, 511-533 (2002)

6. R. Forman, A user’s guide to discrete Morse theory, in Proceedings of the 2001 International
Conference on Formal Power Series and Algebraic Combinatorics, USA. Advances in Applied
Mathematics (2001)

7. D. Giinther, Topological analysis of discrete scalar data. PhD thesis, Saarland University,
Saarbriicken, Germany, 2012

8. D. Giinther, J. Reininghaus, H. Wagner, 1. Hotz, Efficient computation of 3D Morse-Smale
complexes and persistent homology using discrete Morse theory. Vis. Comput. 28, 959-969
(2012)

9. A. Gyulassy, Combinatorial construction of Morse-Smale complexes for data analysis and
visualization. PhD thesis, University of California, Davis, 2008

10. A. Gyulassy, P.-T. Bremer, V. Pascucci, B. Hamann, Practical considerations in Morse-Smale
complex computation, in Proceedings of the TopolnVis, Zurich (Springer, 2011), pp. 67-78

11. A. Gyulassy, V. Natarajan, V. Pascucci, B. Hamann, Efficient computation of Morse-Smale
complexes for three-dimensional scalar functions. TVCG 13, 1440-1447 (2007)

12. M. Joswig, M.E. Pfetsch, Computing optimal Morse matchings. SIAM J. Discret. Math. 20(1),
11-25 (2006)

13. H. King, K. Knudson, N. Mramor, Generating discrete Morse functions from point data. Exp.
Math. 14(4), 435-444 (2005)

150 D. Giinther et al.

14. T. Lewiner, Geometric discrete Morse complexes. PhD thesis, PUC-Rio, 2005

15. T. Lewiner, H. Lopes, G. Tavares, Optimal discrete Morse functions for 2-manifolds. Comput.
Geom. 26(3), 221-233 (2003)

16. J. Milnor, Morse Theory (Princeton University Press, Princeton, 1963)

17. M. Morse, The Calculus of Variations in the Large. Colloquium Publications, vol. 18 (AMS,
New York, 1934)

18. J. Reininghaus, Computational discrete Morse theory. PhD thesis, Freie Universitit, 2012

19. V. Robins, P.J. Wood, A.P. Sheppard, Theory and algorithms for constructing discrete Morse
complexes from grayscale digital images. IEEE PAMI 33(8), 1646-1658 (2011)

20. N. Shivashankar, V. Natarajan, Parallel computation of 3D Morse-Smale complexes. Comput.
Graph. Forum 31(3pt1), 965-974 (2012)

21. S. Smale, On gradient dynamical systems. Ann. Math. 74, 199-206 (1961)

22. H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, On the applicability of topological methods
for complex flow data, in Proceedings of the TopoInVis, Grimma (Springer, 2007), pp. 105-120

23. G. Weber, S. Dillard, H. Carr, V. Pascucci, B. Hamann, Topology-controlled volume rendering.
IEEE Trans. Vis. Comput. Graph. 13(2), 330-341 (2007)

Measuring the Distance Between Merge Trees

Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov, Gunther H. Weber,
and Bernd Hamann

Abstract Merge trees represent the topology of scalar functions. To assess the
topological similarity of functions, one can compare their merge trees. To do so,
one needs a notion of a distance between merge trees, which we define. We provide
examples of using our merge tree distance and compare this new measure to other
ways used to characterize topological similarity (bottleneck distance for persistence
diagrams) and numerical difference (L -o-norm of the difference between functions).

K. Beketayev (0<)
Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA

Nazarbayev University, 53 Kabanbay Batyr Ave, Astana, 010000, Kazakhstan
e-mail: kenes.b@gmail.com; KBeketayev@lbl.gov

D. Yeliussizov
Kazakh-British Technical University, 59 Tole Bi St, Almaty, 050000, Kazakhstan
e-mail: yeldamir@gmail.com

D. Morozov
Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA
e-mail: DMorozov @Ibl.gov

G.H. Weber
Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA

Department of Computer Science, Institute for Data Analysis and Visualization (IDAV),
University of California, Davis, CA 95616-8562, USA
e-mail: GHWeber@Ibl.gov

B. Hamann

Department of Computer Science, Institute for Data Analysis and Visualization (IDAV),
University of California, Davis, CA 95616-8562, USA

e-mail: hamann@cs.ucdavis.edu

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 151
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__10,
© Springer International Publishing Switzerland 2014

mailto:kenes.b@gmail.com
mailto:KBeketayev@lbl.gov
mailto:yeldamir@gmail.com
mailto:DMorozov@lbl.gov
mailto:GHWeber@lbl.gov
mailto:hamann@cs.ucdavis.edu

152 K. Beketayev et al.

/
Noofo)

\ X/

Scalar Functions Persistence Diagrams

Fig. 1 Consider two scalar functions, where one is a slightly shifted version of the other.
Comparing them directly, e.g., via the Lo, norm, results in a large difference. Their persistence
diagrams are the same, thus capturing the topological similarity of these functions

1 Introduction

Many aspects of physical phenomena are described and modeled by scalar func-
tions. Computational and experimental capabilities allow us to approximate scalar
functions at increasing levels of detail and resolution. This fact makes it necessary
to analyze and also compare such function automatically, when possible, and
to include more abstract analysis methods. Topological methods, based on the
characterization of a scalar function via its critical point behavior, are gaining
in importance, and we were therefore motivated to investigate the feasibility
of comparing scalar functions using their topological similarity. Computational
chemistry, physics and climate sciences are just a few applications where our ideas
presented here should be valuable.

We address the generic problem of comparing the topology of scalar functions.
Figure 1 demonstrates this problem. The figure shows slightly shifted versions of
the same function, colored red and blue. Commonly used analytical distances (e.g.,
norms of the difference) between these functions would result in a non-zero value,
failing to highlight the fact that they have the same sub-level set topology.

One well-established distance that expresses the topological similarity in the
above example is the bottleneck distance between persistence diagrams, introduced
by Cohen-Steiner et al. [8]. Computing the bottleneck distance for the example in
Fig. 1 results in zero. Originally motivated by the shape matching problem, where
the goal is to find how similar shapes are based on similarity of their topology, the
bottleneck distance also has an important property — robustness to noise; see Fig. 2.

However, the bottleneck distance does not incorporate sub-level set nesting
information, often necessary for analysis. Figure 3 shows two functions that
differ by the nesting of the maximum m. The bottleneck distance between the
corresponding persistence diagrams is again zero. Nevertheless, the corresponding
merge trees cannot be matched exactly, hinting at a positive difference.

To resolve this problem, we introduce a new definition of the distance between
merge trees. This distance resembles the bottleneck distance between the persistence
diagrams of sub-level sets of the function, but it also respects the nesting relationship

Measuring the Distance Between Merge Trees 153

» »
L >

Fig. 2 Consider two close scalar functions on the /eft, where one contains additional noise. If
we construct their persistence diagrams and find the bottleneck distance (which corresponds to
the longest black line segment between paired points on the right), the result is small, correctly
reflecting the closeness of the functions. In fact, the difference is the same as the level of the noise,
which in this example is small

Scalar Functions Merge Trees Persistence Diagrams

Fig. 3 Consider two scalar functions on the left. The bottleneck distance between persistence
diagrams on the right equals zero, as points of two diagrams overlap. However, comparing
the corresponding merge trees reveals a difference, since we cannot match them exactly. This
difference highlights existence of additional nesting information in merge trees. Quantifying it is
the main goal of this work

between sub-level sets. Furthermore, the proposed distance implicitly distinguishes
the noise in the data, similar to the bottleneck distance, resulting in robust
measurements resilient to perturbations of the input. This property is crucial when
working with scientific data, where noise is a serious problem for any analysis.

The main contributions of this chapter are: a definition and an algorithm
for computing the distance between merge trees; computation of the number of
branch decompositions of the merge tree; an experimental comparison between
the proposed distance, the bottleneck distance, and the L, norm on analytical and
real-world data sets.

Section 2 presents related work and background in scalar field topology, persis-
tent homology, graph theory, and shape matching. Section 3 provides the definition
and the algorithm for computing the distance between merge trees. Section 4
demonstrates several use cases and presents the results of comparing the distance
between merge trees to the bottleneck distance between persistence diagrams, as
well as the Lo, norm. Finally, Sect.5 summarizes the work and suggests ideas for
future work.

154 K. Beketayev et al.

2 Related Work

2.1 Scalar Field Topology

Scalar field topology characterizes data by topological changes of its level sets.
Given a smooth, real-valued function without degenerate critical points, level set
topology changes only at isolated critical points [16]. Several structures relate
critical points to each other.

The contour tree [5,7] and the Reeb graph [20,21] track the level sets of the
function by recording their births (at minima), merges or splits (at saddles), and
deaths (at maxima). The contour tree is a special case of the Reeb graph, as the
latter permits loops in the graph to handle holes in the domain. Both structures are
used in a variety of high-dimensional scalar field visualization techniques [18,23].

Alternatively, the Morse—Smale complex [9, 10] segments the function into the
regions of uniform gradient flow and encodes geometric information. It is also used
for analysis of high-dimensional scalar functions [12].

We focus on a structure called merge tree (sometimes called a barrier tree [11,
13]), as it tracks the evolution of sub-/super-level sets, while still being related to
the level-set topology through critical points [16].

2.2 Persistent Homology

The concept of homology in algebraic topology offers an approach to studying the
topology of the sub-level sets. We refer to Munkres [17] for the detailed introduction
to homology. Informally, it describes the cycles in a topological space: the number
of components, loops, voids, and so on. We are only interested in 0-dimensional
cycles, i.e., the connected components.

Persistent homology tracks changes to the connected components in sub-level
sets of a scalar function. We say that a component is born in the sub-level
set f~!(—oo,b] when its homology class does not exist in any sub-level set
f 7! (—o0, b — €]. This class dies in the sub-level set f~!(co,d] if its homology
class merges with another class that exists in a sub-level set f~!(—o0,b’] with
b’ < b. When a component is born at b and dies at d, we record a pair (b, d)
in the (0O-dimensional) persistence diagram of the function f, denoted D(f). For
technical reasons, we add to D(/') infinitely many copies of every point (a,a) on
the diagonal.

Persistence diagrams reflect the importance of topological features of the func-
tion: the larger the difference d — b of any point, the more we would have to change
the function to eliminate the underlying feature. Thus, persistence diagrams let us
distinguish between real features in the data and noise.

In Cohen-Steiner et al. [8], the authors prove the stability of persistence diagrams
with respect to the bottleneck distance, dg (D (f), D(g)). This distance is defined as

Measuring the Distance Between Merge Trees 155

the infimum over all bijections, y : D(f) — D(g), of the largest distance between
the corresponding points,

dg(D(f),D(g)) = inf sup [lu—y(u)||co-
Y ueD(f)

Their result guarantees that the bottleneck distance is bounded by the infinity norm
between functions:

dg(D(f). D) < |If = &lloo-

We use the bottleneck distance between persistence diagrams as a comparison
baseline for the distance between merge trees.

2.3 Distance Between Graphs

Graph theory offers several approaches for comparing graphs and defining a notion
of a distance between them.

A common approach for measuring a distance between graphs is based on an
edit distance. It is computed as a number of edit operations (add, delete, and
swap in the case of a labeled graph) required to match two graphs [6], or, in a
special case, trees [4]. The edit distance focuses on finding an isomorphism between
graphs/subgraphs, while for merge trees we can have two isomorphic trees with a
positive distance (see the example in Fig. 3).

Alternatively, in a specific case of rooted trees, one can consider the generalized
tree alignment distance [15], which, in addition to the edit distance, considers the
minimization of the sum of distances between labeled end-points of any edge in
trees. However, it is not clear how to adapt this distance definition for our purposes.

2.4 Using Topology of Real Functions for Shape Matching

The field of shape matching offers several methods related to our work. Generally,
these methods focus on developing topological descriptors by treating a shape as a
manifold, defining some real function on that manifold, and computing topological
properties of the function. The selection of the particular function usually depends
on which specific topological and shape properties of interest [2].

While the majority of the mentioned descriptors are not directly related to our
work, two topological descriptors use similar approaches in defining a similarity
measure. One is called a multiresolution Reeb graph, proposed by Hilaga et al. [14],
which encodes nesting information into nodes of a Reeb graph for different hierar-
chy resolutions. Here, the hierarchy is defined by the simplification of Reeb graph.

156 K. Beketayev et al.

Another descriptor is based on an extended Reeb graph (ERG), proposed by Biasotti
et al. [3]. It starts by computing the ERG of the underlying shape, which is
basically a Reeb graph with encoded quotient spaces in its vertices. It couples
various geometric attributes with the ERG, resulting in an informative topological
descriptor. In both cases, similarity of shapes is measured by applying a specialized
graph matching (based on embedded/coupled information) to descriptors. However,
we focus only on the sub-level set topology information, and design a matching
algorithm, tailored specifically for this case.

Thomas and Natarajan [22] focus on symmetry discovery in a scalar function
based on its contour tree. The authors develop a similarity measure between subtrees
of the contour tree, which in some regards is similar to our proposed measure.
However, they consider a single pre-processed branch decomposition, and focus
on discovering symmetry in a sole function.

3 Defining a Distance Between Merge Trees

In this section, we provide a formal definition of the distance between merge trees
and provide an algorithm (with optimizations) for computing it. In short, to compute
the distance between two merge trees, we consider all branch decompositions
of both trees and try to find a pair that minimizes the matching cost between
them. Additionally, we provide the details of computing the number of branch
decompositions of a merge tree, used in complexity analysis of our algorithm.

3.1 Definition

Let K be a simplicial complex; let f : K — R be a continuous piecewise-linear
function, defined on the vertices and interpolated in the interior of the simplices.
Furthermore, assume all vertices have unique function values; in practice, we can
simulate this by breaking ties lexicographically.

Let T be a merge tree of the function f; every vertex of K is mapped to a
vertex in the merge tree. Every vertex of the merge tree has a degree of either one,
two, or more, corresponding to a minimum, a regular point, or a merge saddle. Our
definition works for higher-dimensional saddles (degenerate critical points) as well,
and they need explicit consideration only in the complexity analysis of the algorithm
(Sect. 3.4). A merge tree with purged regular vertices is called reduced.

A branch decomposition B [19] of a reduced merge tree T is a pairing of all
minima and saddles such that for each pair there exists at least one descending path
from the saddle to the minimum. We consider a rooted tree representation R of
the branch decomposition B, such that the rooted tree representation R is obtained
by translating each branch b = (m,s) € B into a vertex v € R, where m and s

Measuring the Distance Between Merge Trees 157

(a,e) (c,e) (b e)

(b,e) (c¢,d) (a,d) (b,e)

(a,e) (c,e) (b,e)

A A

(aye) (b,d) (aye) (c,d)

(c,d)

Fig. 4 Merge trees Ty (top) and T, (bottom), all their possible branch decompositions, and
corresponding rooted tree representations. Root branches are colored red, demonstrating the
mapping of branches to vertices

are minimum and saddle that form the branch ». The edges of the rooted tree
representation describe parent—child relationships between branches, see Fig. 4.

Given two merge trees, T and Ty, consider all their possible branch decom-
positions, Br, = {Rf,...,R]{} and Br, = {Rg,...,R,f}, respectively; see
Fig. 4. We need two auxiliary definitions to describe the matching of rooted branch
decompositions.

Definition 1 (Matching cost). The cost of matching two vertices u = (m,,s,) €
Rif and v = (my,s,) € Rf is the maximum of the absolute function value
difference of their corresponding elements,

mc(u, v) = max(|m, — my|, |5, — Syl).
Definition 2 (Removal cost). The cost of removing a vertex u = (m,, s,) € R/8is
re(u) = |my, — s,|/2.

We say that a partition (M7, E/) of the vertices of a rooted branch decompo-
sition R/ is valid, if the subgraph induced by the vertices M/ is a tree. Here, the
vertices M/ are mapped vertices, while the vertices E/ are reduced vertices. We
say that an isomorphism of two rooted trees preserves order when it maps children
of a vertex in one tree to the children of its image in the other tree.

Definition 3 (e-Similarity). Two rooted branch decompositions R/, RS are e-
similar, if we can find two valid decompositions (M7, E/) and (M#, E?) of
their vertices, together with an order-preserving isomorphism y between the trees
induced by the vertices M I and M ¢, such that the distance between each matched
pair of vertices and the maximum cost for reduced vertices does not exceed €:

158 K. Beketayev et al.

max mc(u, y(u)) < € (1)
ueM /s
max rc(u) < € 2
ueE/UES

The smallest epsilon, for which the above two inequalities hold, denoted
émin(Rifv Rf)

Definition 4 (Distance between merge trees). The distance between two merge
trees Ty, Ty is:

dy(Ty. T) = min (eun(R/. RY)).
R/ €Br, RS €Br,

3.2 Distance Computation

To compute the distance d)y, we design an algorithm that is based on Definition 4.
In particular, our algorithm constructs all possible pairs of branch decompositions,
computes €,,;, for each pair, and selects the minimum among them.

We use a recursive construction of the branch decompositions of a merge tree.
The main operation is to pair a given saddle, one by one, with each minimum in
its subtree. We start by pairing the highest saddle s, with all minima in a tree. Each
pair acts as a root branch (s, m;) in the recursive operation. For each child saddle s;
on the root branch, we recursively repeat the pairing until all the saddle—-minimum
pairs are fixed, producing a unique branch decomposition b;.

To compute emin(R;f, Rf), we design a function ISEPSSIMILAR (e, Rif, Rf) that,
for a predefined €, determines whether two branch decompositions match. We start
by setting € to a high value — for example, the maximum of the amplitudes of the
two functions — and perform a binary search to determine €,y,;,.

The function ISEPSSIMILAR is the core of the algorithm. It works by matching
the vertices and the edges at each level of the tree. We recall that each vertex
u = (my,s,) € ri,v = (My,sy) € r; is a minimum-saddle pair. There are
only two vertices at the root levels of R;f and Rf , so we determine whether their
endpoints can be matched, i.e., max(|m, —m,|, |s,—s,|) < €. If not, ISEPSSIMILAR
returns false. Otherwise, we consider all the child vertices (see Fig.5). Since there
are several potential matches, we compute a bipartite graph between the child
vertices such that the edge between a pair of children u € Rif ,v € R? exists
if and only if they can be matched within given €, and ISEPSSIMILAR returns
true for their subtrees. We also add ghost vertices for each vertex in the rooted
branch decomposition when it can be reduced within . When there exists a perfect
matching in the bipartite graph, the function returns true; otherwise, it returns false.
If one or both of the current pair of children has children of their own, we recursively
call ISEPSSIMILAR. The matching is perfect when there exists an edge cover such
that its edges are incident to all the non-ghost vertices and do not share any of them.

Measuring the Distance Between Merge Trees 159

A
54
DAY L .
S9 S3
my
51
S5
ms (s mio
6
W\
my Moy mg
0 ms me my

Fig. 5 Top: For the merge trees Ty, T,, the smallest manually identifiable difference is shown
as red segments. Bottom: The first iteration of the ISEPSSIMILAR function chooses (s4,7;) and
(ss, m¢) as root branches (depicted in green)

3.3 Optimized Algorithm with Memoization

The naive algorithm described above has exponential complexity. Indeed, there
exist O(2¥~!) branch decompositions for a tree with N extrema (see Sect.3.4
for details). Consequently, comparing all branch decompositions of two trees to
each other would require a total of O(2¥+M~2) operations, where N, M are the
numbers of extrema in each tree. This computational cost makes it infeasible to

160 K. Beketayev et al.

compare even small trees using this method. To alleviate this problem, we have
designed an optimization, which reduces the number of explicitly considered branch
decompositions, thus improving the complexity of the function ISEPSSIMILAR from
exponential to polynomial. (Details are given at the end of this section.)

We demonstrate the optimized version of the function ISEPSSIMILAR using the
example in Fig. 5. The function starts by iterating over all possible root branches
(s4,m;),i € 1...5,and (s3,m;),j € 6...10. Once the pair of root branches is
fixed as (s4,m) and (sg,m¢), the function is called recursively for every possible
pairing of child subtrees in each tree. Fixing the root branches leads to two sets
of child subtrees, {Ss,—s;, Ss,—mss Ssi—mo AN {Sss—m10> Ss7—mgs Sss—sqJ- A subtree
(e.g., Ss,—s;) needs two vertices to be uniquely identified, a child saddle (e.g., s4),
and the immediate child vertex (e.g., s3) that can be either a saddle or minimum.

A key observation allowing us to reduce cost is that each pair of subtrees, for
which the function is called recursively, also appears in subsequent iterations over
other root branches. For example, the pair (Sy,—s,, Sss—s,o) that appears in the first
iteration that chooses (s4,71) and (sg, mg) as root branches, also reappears in 11
subsequent iterations, e.g., in the iteration that chooses (s4, 71;) and (sg, m7) as root
branches. Therefore, it is sufficient to compute the matching for subtrees S,, S,
once, and reuse the result in subsequent iterations. More generally, for any subtree
Pair S, —sepiaori € Tr and Ss;—s11001; € Tg» one of the three possibilities is recorded
in the array match[Ss;—s.i1407:1[Ssj—seniraor; |: DOt yet compared — (0), comparison
returned false — (1), or true — (2).

Furthermore, the same pair of subtrees also reappears in other binary search
iterations as well, i.e., when the function ISEPSSIMILAR is called with other values
of €. However, the reuse of previous results in this case is selective. If two subtrees
were matched for some €, they would stay matched only if the value of € stayed the
same or gets larger. If it gets smaller, we will have to recompute the matching result.
And correspondingly, if two subtrees were unmatchable for some €, they would stay
unmatchable, only if the value of € was the same or lower. However, if the value
gets higher, we will have to recompute the matching result.

Returning to the example in Fig.5, consider the case where ¢ = 5. The first
pair of root branches (s4, 1) and (sg, m¢) (depicted in green in Fig. 5) do match, as
| f(s4)—g(sg)| =0 < 5and | f(m)—g(me)| = 2 < 5, hence the function proceeds
to their child subtrees. The first pair Sg,—,, Sss—m,, 1S matchable, thus there is an
edge in the bipartite graph (similar to the naive algorithm) between the nodes that
correspond to these subtrees. In fact, from nine pairs, only pairs Sg,—n;, Ssg—m,, and
Ss4—s3+ Ss;—mo are unmatchable, thus there exists a perfect matching in the bipartite
graph, and two merge trees are e-similar for ¢ = 5. Consequently, we continue the
search with decreasing value of ¢, until it converges to € = 2, in which case for
the root branches (s4,m1) and (sg, mg), the only pairs of subtrees that match are
(Ss4s Ssg)s (Ssy5 Ss,), (Ss,, Sss). No lower value of € would lead to the e-similarity
of the merge trees, making the value €,,;, = 2 the distance between merge trees.

Such optimization reduces the run time complexity from exponential to polyno-
mial. Indeed, the function ISEPSSIMILAR performs N - M iterations over the root
branches, multiplied by the sum of processing n., - n., explicit pairs of subtrees, and

Measuring the Distance Between Merge Trees 161

the complexity of a maximal matching algorithm (n., + nc,) -n., -nc,. The latter
complexity dominates the former term. Hence, assuming that a look-up operation of
previous results is done in a constant time via memoization, the resulting run time
complexity of the function ISEPSSIMILAR is O(N>M?(N + M)). This complexity
is multiplied by the number of iterations of the binary search algorithm, which
we found to be moderate, given a reasonable selection of the search range and
the precision. The worst-case memory complexity of the optimized algorithm is
O(N - M), which is computationally less prohibitive than its run time complexity.

3.4 The Number of Branch Decompositions of a Merge Tree

We provide the details of computing the number of branch decompositions of the
merge tree, used for the naive algorithm complexity analysis in the beginning of
Sect.3.3. We calculate the number of branch decompositions P(N) for a merge
tree with N minima in two steps. First, we compute the number P (N) for the case
when the merge tree is binary, in which case the tree has maximum possible number
of saddles. Second, we show that for fewer saddles the number P(/N) decreases,
leading to the worst case P(N) = 2¥~! branch decompositions for any merge tree.

Theorem 1. The number of branch decompositions of the binary merge tree with
N minima equals P(N) = 2N~1,

Proof. For any saddle s, the number of branch decompositions in its subtree is Py =
2. P, - P.,, where c; and ¢, are the children of the saddle s. Indeed, if the saddle s is
paired with a minimum in a subtree of child ¢, then for each such pairing we have
all the possible branch decompositions of a subtree of child c,, resulting in P, - P,
possibilities. Symmetrically, for the child ¢, we have P, - P, possibilities.

Using this fact we construct a proof by induction:

» For the base case of N = 1, the number of branch decompositions is one. On the
other hand, P(1) = 2'~! = 1. Hence, the formula holds.

e We assume that forall N = 1, ...,k the formula P(N) = 2¥=1 holds true.

e Now let’s consider the case with N = k + 1, for which we have to prove that
P(k+1) = 2*. For the root saddle r of the tree with k 4 1 minima, we remember
that P, = 2- P, - P,,. If to denote the number of minima in the subtree of the
child ¢; asi € [1, k], with k —i + 1 denoting the number of minima in the subtree
of the child ¢,, we can expand P(k + 1) = 2- P(i)- P(k —i + 1). Since both i
and k —i + 1 are not greater than k, we can substitute P(i) and P(k —i + 1) in
accordance with assumptions for N = 1,... k:

Pk +1)=2-PG)-Pk—i + 1)
— 2‘21'—1 _2k—i+1—l

— 2‘2i—1+k—i+1—1 — 2/(' O

162 K. Beketayev et al.

2

mq ma ms mi ma ms

Fig. 6 Splitting the higher-degree saddle (with degree >2) always creates more branch decompo-
sitions. The saddle s has three branch decompositions, while after splitting it into two saddles s'
and 52, we get four branch decompositions

We consider the case with a number of saddles less than N — 1, i.e., the merge
tree has saddles with degree higher than two. The number of minima N remains
the same, while some of the saddles have more than two children. Any saddle of
degree d > 2, can be split into d — 1 saddles of degree two, such that the structure
of the tree changes only around the selected saddle, see Fig. 6. Such split leads to
2471 possible branch decompositions instead of the d for the selected saddle. Since
d > 2, the inequality 2~! > d holds true, which means having degree-two saddles
always leads to more branch decompositions. At the extreme, if all saddles become
degree-two saddles, we obtain the binary merge tree, for which we already computed
number of branch decompositions as 2V~!.

4 Results

In this section we demonstrate the use of the proposed distance dy,. First, we apply
it to simple data sets, observing its difference from the bottleneck distance and the
L norm, as it captures additional information. We consider performance data sets
obtained for a ray tracing program, and demonstrate how the proposed distance
correctly captures the similarity of data sets.

4.1 Analytical Functions

We consider a set of simple functions that have a fixed number of maxima. Each
function is constructed by creating a random set of maxima generators. For each
maximum generator, function values decrease as the distance from the source grows,
which results in a corresponding peak. The upper envelope of such peaks results in
the required function.

We generate three bivariate (or 2D) functions fi, f2, f3, and three trivariate (or
3D) functions fi, f5, fs. We set the number of maxima to five, to keep them simple
for visual exploration; see Fig. 7. The resulting distances, presented in Table 1, lead
to two interesting observations.

Measuring the Distance Between Merge Trees 163

o, A ,
N S /\./ | N /\

Fig. 7 Analytical functions. Rendering with embedded merge tree of three 2D functions f, f2, f3
(first row), and three 3D functions f, fs5, f¢ (second row)

Table 1 Resulting distances from Fig. 7

Metric fl2D f22D f32D f43D f53D f63D
dg 4.525 8.647 7 3.011 2.598 4.031
dy 8.398 8.664 7 5.031 2.604 4.833
Loo 67.561 43.015 65.956 29.586 20.495 22.632
/ \ >
Th T, Tt

Fig. 8 Simplified view of nesting of merge trees for functions fi, f>, f3. Unmatchable red edges
cause the non-zero distance

For the 2D functions, the bottleneck distance d g for functions fi, f> is about two
times lower than for functions fi, f3 and f>, f3, suggesting relative closeness of the
first pair. However, the distance between merge trees djs suggests that all three
functions are equally different. Closer investigation confirms this hypothesis. In
Fig. 8, we see simplified depictions of merge trees having equally different nesting.

For the 3D functions, visually the function f5 seems different from the other two.
This fact is again captured by the distance between merge trees, as the resulting
distance dyy is almost two times lower for functions fy, fs, than from them to
function f5. The bottleneck distance again fails to capture this distinction.

164 K. Beketayev et al.

Fig. 9 Performance data. dg = 0.027,d); = 0.027, Lo = 0.13. The difference is small relative
to the value range of functions (about 2.7 %), implying little influence of the ray sampling option
on the overall performance of the algorithm

4.2 Tuning a Ray Tracing Algorithm

We consider the problem of tuning a ray tracing algorithm on a multicore shared-
memory system from the study by Bethel and Howison [1]. The authors explored
various tuning parameters and their effect on the performance of the algorithm,
with a focus on three parameters: the work block width {1,2,...,512} and height
{1,2,...,512}, and the concurrency level {1,2, 4, 8}.

We generated two data sets with the same parameter space, but slightly different
algorithm, based on the selection of a ray sampling method, which is either based
on nearest neighbor or trilinear approximation. For each option, the performance of
the algorithm (in terms of running time) was recorded.

In this example, one is interested in studying optimal run configurations that
correspond to low run times of the algorithm. Figure 9 shows two data sets using
isosurfaces, such that isovalues are the same for both data sets. The similarity of
data sets, implying that the selection of the chosen ray sampling method does not
significantly influence the performance of the algorithm. This fact is confirmed by
the resulting distance. The measured distances allow us to capture the similarity,
regardless of shifted optimal configurations (minima) and the noise.

5 Conclusions

We presented a novel distance between merge trees, including the definition and the
algorithm. We demonstrated the use of the proposed distance for several data sets.

We plan to perform a theoretical investigation of the proposed distance, including
the concerns about its stability. We also plan to explore the use of the proposed
distance for error analysis in the context of approximated scalar functions.

Acknowledgements The authors thank Aidos Abzhanov. This work was supported by the
Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. DOE
under Contract No. DE-AC02-05CH11231 (Berkeley Lab), and the Program 055 of the Ministry of
Edu. and Sci. of the Rep. of Kazakhstan under the contract with the CER, Nazarbayev University.

Measuring the Distance Between Merge Trees 165

References

1.

10.

11.

12.

13.

14.

15.

16.

17
18

19.

20.

21.

22.

23.

E.W. Bethel, M. Howison, Multi-core and many-core shared-memory parallel raycasting
volume rendering optimization and tuning. Int. J. High Perform. Comput. Appl. 26, 399412
(2012)

. S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, M.

Spagnuolo, Describing shapes by geometrical-topological properties of real functions. ACM
Comput. Surv. 40, 12:1-12:87 (2008)

. S. Biasotti, M. Marini, M. Spagnuolo, B. Falcidieno, Sub-part correspondence by structural

descriptors of 3D shapes. Comput. Aided Des. 38(9), 1002-1019 (2006)

. P. Bille, A survey on tree edit distance and related problems. J. Theor. Comput. Sci. 337,

217-239 (2005)

. R.L. Boyell, H. Ruston, Hybrid techniques for real-time radar simulation, in Proceedings of

the Fall Joint Computer Conference, Las Vegas (IEEE, 1963), pp. 445-458

. H. Bunke, K. Riesen, Graph edit distance: optimal and suboptimal algorithms with appli-

cations, in Analysis of Complex Networks: From Biology to Linguistics, ed. by M. Dehmer,
F. Emmert-Streib (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009), pp. 113-143

. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom.

Theory Appl. 24(2), 75-94 (2003)

. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, in Proceedings

of 21st Annual Symposium on Computational Geometry, Pisa (ACM, 2005), pp. 263-271

. H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-Smale complexes for piecewise

linear 3-manifolds, in Proceedings of the 19th Symposium on Computational Geometry,
San Diego, 2003, pp. 361-370

H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse-Smale complexes for piecewise
linear 2-manifold. Discret. Comput. Geom. 30, 87-107 (2003)

C. Flamm, L.L. Hofacker, P. Stadler, M. Wolfinger, Barrier trees of degenerate landscapes. Phys.
Chem. 216, 155-173 (2002)

S. Gerber, P.T. Bremer, V. Pascucci, R. Whitaker, Visual exploration of high dimensional scalar
functions. IEEE Trans. Vis. Comput. Graph. 16(6), 1271-1280 (2010)

C. Heine, G. Scheuermann, C. Flamm, I.L. Hofacker, P.F. Stadler, Visualization of barrier tree
sequences. IEEE Trans. Vis. Comput. Graph. 12(5), 781-788 (2006)

M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic
similarity estimation of 3D shapes, in SIGGRAPH’01, Los Angeles (ACM, 2001), pp. 203—
212

T. Jiang, E. Lawler, L. Wang, Aligning sequences via an evolutionary tree: complexity and
approximation, in Symposium on Theory of Computing, Montréal, 1994, pp. 760-769

J.W. Milnor, Morse Theory (Princeton University Press, Princeton, 1963)

. J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Redwood City, 1984)
. P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, G. Heyer, Visualization of high-

dimensional point clouds using their density distribution’s topology. IEEE Trans. Vis. Comput.
Graph. 17, 1547-1559 (2011)

V. Pascucci, K. Cole-McLaughlin, G. Scorzelli, Multi-resolution computation and presentation
of contour trees. Technical report UCRL-PROC-208680, LLNL, 2005

V. Pascucci, G. Scorzelli, P.T. Bremer, A. Mascarenhas, Robust on-line computation of Reeb
graphs: simplicity and speed. ACM Trans. Graph. 26(3), 58.1-58.9 (2007)

G. Reeb, Sur les points singuliers d’une forme de pfaff complement intergrable ou d’une
fonction numerique. C. R. Acad. Sci. Paris 222, 847-849 (1946)

D.M. Thomas, V. Natarajan, Symmetry in scalar field topology. IEEE Trans. Vis. Comput.
Graph. 17(12), 2035-2044 (2011)

G.H. Weber, P.T. Bremer, V. Pascucci, Topological landscapes: a terrain metaphor for scientific
data. IEEE Trans. Vis. Comput. Graph. 13(6), 1416-1423 (2007)

Topological Integrity for Dynamic Spline Models
During Visualization of Big Data

Hugh P. Cassidy, Thomas J. Peters, Horea Ilies, and Kirk E. Jordan

Abstract In computer graphics and scientific visualization, B-splines are common
geometric representations. A typical display method is to render a piecewise linear
(PL) approximation that lies within a prescribed tolerance of the curve. In dynamic
applications it is necessary to perturb specified points on the displayed curve. The
distance between the perturbed PL structure and the perturbed curve it represents
can change significantly, possibly changing the underlying topology and introducing
unwanted artifacts to the display. We give a strategy to perturb the curve smoothly
and keep track of the error introduced by perturbations. This allows us to refine
the PL curve when appropriate and avoid spurious topological changes. This work
is motivated by applications to visualization of Big Data from simulations on high
performance computing architectures.

1 Introduction

In geometric modeling B-splines are frequently used to model complex geometric
objects [5]. The spline models are smooth structures but PL approximations are
typically used to render the spline. Aeronautical, automotive and chemical simula-
tions rely on topological algorithms to provide mathematically correct visualization.
These topological algorithms typically enforce that the display curve (i.e. the PL
structure) will preserve crucial topological characteristics [3, 14]. A sufficiently
refined PL model will preserve topological characteristics of the initial static model.
But as points on the PL. model are perturbed over the course of the simulation, the

H.P. Cassidy (b<) » T.J. Peters * H. Ilies
University of Connecticut, Storrs, CT, USA
e-mail: hugh.cassidy @uconn.edu

K.E. Jordan
T.J. Watson Research Center, IBM, Cambridge, MA, USA

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 167
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8_ 11,
© Springer International Publishing Switzerland 2014

mailto:hugh.cassidy@uconn.edu

168 H.P. Cassidy et al.

PL model may diverge significantly from the smooth model that it represents. This
may introduce topological artifacts to the display, resulting in a flawed image that
could mislead domain scientists.

Our formal analysis is motivated by graphics experiments, which are summarized
in Experiment 1 (Sect. 3). We observed that the PL approximation used for graphics
could be perturbed for more time steps, while still preserving ambient isotopic
equivalence than might be expected from previously published bounds [8]. This
data-specific a posteriori analysis led us to question whether we could develop
rigorous, predictive methods for the permissible number of time steps. A method
based upon second centered differences is developed for that predictive capability
to support efficient frame generation, where this new method is motivated by
Experiment 1, with a formal analysis in Example 4.

Many perturbation strategies are possible, but in dynamic visualization, retaining
differentiability over time is often desirable, so our predictive method is presented
in the context of a representative differentiable perturbation strategy. However, the
formal analysis is quite general, and other perturbation strategies could easily be
integrated by a user interested in other applications. Our exposition first uses a
non-differentiable strategy to introduce some central concepts within this simplified
context, but the ensuing differentiable strategy is then used in the rest of the
development. Our distinctive contributions are analyses of the amount of error
introduced by each perturbation. This error can be monitored and the PL. model
can be refined as necessary to avoid unwanted topological changes. For ease of
notation the investigation below is performed on Bézier curves, however the analysis
is identical for general B-spline curves [5]. The motivating graphics experiments are
summarized in Sect.3 and a representative analysis is presented as Example 4 in
Sect. 7.

2 Background, Motivation and Notation

In this section we introduce some fundamental definitions and notation.

2.1 Curves and Control Polygons

Definition 1. A degree d Bézier curve with control points X = {qo,---,qa} is
given by

l dy. . d—i
cry =3 [, |Ji-0"q

i=0

where the PL curve connecting qo, - - - , g4 is called the control polygon of c.

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 169

Fig. 1 Subdivision produces refined PL approximation

A subdivision algorithm operates on X to generate two PL curves, each having
d + 1 vertices, denoted, respectively as X; and Xg, as shown in Fig. 1. The union
X1 U X is also a control polygon for ¢ but lies closer to ¢ than the original control
polygon. This process can be repeated to obtain a PL graphical approximation that
is within a prescribed distance, €4, of the curve c.

Definition 2. Given the polygon generated by X = {qo,--- .44}, the second
centered difference of a given control point g; is defined as

Aoqi = qi—1 —2qi +qit1.

We define Aygo = Axqq = 0. The maximal second centered difference of the
polygon generated by X is given by

[A2X[loc = max [|Asq;].
0si<d

[d/2]1d/2]

Here Noo(d) = —a Note that this distance is actually attained [15]. So

subdividing o times guarantees that the PL structure is within the specified tolerance

for display, €4, where
5 (i) |
a=|—=1lo _
2 2 \ 122X oo Noo(d)

2.2 Equivalence Relation

The traditional measure of topological equivalence is homeomorphism. Homeomor-
phic equivalence does not capture the embedding of a curve within R3, for example,

170 H.P. Cassidy et al.

all simple closed curves are homeomorphic even though there can be fundamentally
different embeddings.

We use the stronger equivalence of ambient isotopy to also preserve embedding
of ¢ in R3. Different knot types are not ambient isotopic.

Definition 3. Two subspaces, X and Y, of R” are said to be ambient isotopic if
there exists a continuous function H : R" x [0, 1] — R” such that

1. H(-,0) is the identity on R",
2. H(X,1) =Y, and
3. VYt €]0,1], H(-,t) is a homeomorphism.

2.3 Related Work

Molecular simulations are run on high performance computing (HPC) architectures,
often generating petabytes of data, initiating a typical ‘Big Data’ problem. This
data output is too voluminous for standard numerical analytic techniques and
dynamic visualization has become a common zero-th order analysis. The supportive
dynamic visualization techniques are well-established [12, 13] and will not be
addressed further. The vitally important and novel support from this work is to
provide rigorously proven numerical assurances that the frames being viewed have
appropriate approximation in order to avoid topological artifacts in the images that
could prove misleading to the domain scientists [4, 9]. To establish context for
this work, a brief overview will be given of the three primary facets of supportive
mathematics, geometric models and molecular simulations. The emphasis here is
upon the new mathematics to meet the new Big Data challenges posed by the
recent prevalence of these petabytes of simulation output, where this emerging
mathematics is developing a blend of theory and experimentation.

At the highest level of viewing this work, there are so many tools available for
molecular visualization, that it suffices to provide two broad summary portals [12,
13]. Often protein data is of interest, which appears publicly in an international
resource [2]. The indicated resources do not directly provide geometric models of
the molecules visualized — only images are produced.

The molecular simulation research [16, 18-21] closely aligns with the work
presented here, with [21] being of particular interest because of its use of splines
to model molecules, as also assumed here. Alternate geometric representations have
been considered [10,11,17] for molecules, but the choice of splines here is offered as
a very broad, fundamental representation, which could be examined for adaptation
to these alternate representations. The more contemporary Big Data issues had not
yet appeared when this earlier work had already been completed.

The emphasis here upon geometric representations echoes much work in
computer-aided geometric design [5]. In particular, this dynamic molecular
visualization has been synergistically pursued with an emerging virtual reality (VR)
engineering design laboratory [7]. A fascinating common use is of 1-dimensional

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 171

geometry to model the molecule writhing proteins and design features [6], where
the latter application is integrated with a constraint solver.

Motivating Applications The mathematics proven here was motivated by design
of dynamic visualization for molecular simulations in HPC. As a zero-th order
analysis, a dynamic visualization is synchronized with the ongoing simulation. The
graphics at each frame are displayed by PL approximations, raising the possibility
that an image could show an intersection on a writhing molecule where none occurs
on the more accurate spline model. The isotopic analysis presented is designed to
integrate the necessary numerical accuracy with sufficient performance for dynamic
visualization. Subdivision is chosen for the PL approximation, but the analysis
presented here could easily be adapted to other PL approximation techniques,
such as PL interpolation through selected points on the curve. Proteins are typical
objects of interest, modeled as spline curves. Public data bases [2] provide spatial
co-ordinates for interpolation to create a spline model. However, there can easily
be hundreds of thousands of such co-ordinates, so that interpolation by a single
segment spline would be also be on the order of hundreds of thousands — typically
prohibitive for interactive graphics, where much lower degree is preferred (often as
low as degree 3, but rarely higher than degree 8). Sufficiently accurate, low degree
models can be created by the composite curves [5] used here. Since these geometric
molecular models are not readily available in the public resources [2, 12, 13]
prototype software is also being developed to provide those models, but reports on
those tools will appear elsewhere.

The presented mathematical analysis has guided our algorithmic design so that
we are now confident that we can use splines of sufficiently low degree, while main-
taining desired topological characteristics. It remains to integrate these topology
preserving techniques into the supporting dynamic visualizations discussed. That
full experimental work is beyond the scope of the present paper and remains as
subject for future publications.

3 Graphics Efficiency Experiment

The efficient use of PL approximations in dynamic visualizations has previously
appeared [8], as a way to ensure correct graphics topology during animation, as
previously presented relative to isotopic equivalence. That previous strategy [8]
will now be briefly summarized, where this work adds the additional perspective
of practical limits on the number of frames where this aggressive strategy can
be invoked. As perspective on the extreme data and performance demands of
this environment, it is instructive to note the order of 30-60 frames per second
to synchronize dynamic visualization with a simulation producing peta-bytes of
output.

172 H.P. Cassidy et al.

During simulation, the molecule moves as reflected by movement of a spline.
Each frame will use PL approximation. Here are two graphics display options to
consider:

Option 1: Ateach time step, perturb the spline and create a new PL approximation
for display.

Option 2: Create a PL approximation of the spline at some initial time step.
Continue to perturb this PL approximation until it is no longer sufficiently
accurate for graphics display.

Clearly, Option 2 can eliminate the approximation algorithm at some time
steps. The previous work [8] provided existence theorems for maintaining isotopic
equivalence during continued perturbation of these PL approximations. This work
refines [8] by now providing specific numerical analyses to show exactly how many
subsequent frames can invoke this aggressive strategy, before it becomes necessary
to create a new PL approximation to ensure ongoing topological fidelity between
the spline and its graphics approximation.

A representative graphics experiment will be summarized to show implications
of Option 2. A sufficient! perturbation bound [8, Proposition 5.2] to preserve
ambient isotopy is (1/2)v, with v defined as the minimal distance between points
and edges of a PL curve [1]. With the control points here, we note that (1/2)v =
1/2. We will show, later, that this upper bound, while sufficient to preserve ambient
isotopy, leaves open the possibility of more aggressive perturbation strategies.

Experiment 1 Consider the non-self intersecting C' composite cubic Bézier curve

in R?, as depicted on the left hand side of Fig. 2. The following points together with
their reflection through the line y = 3 form the control points:

(0,6), (1,5),(2,4.5),(3,5.25), (4,6), (5,7), (6,8), (7, 9), (9, 10), (11, 11), (13, 12), (15, 13),
(17,13.35), (19, 13.7), (21, 13), (22, 12), (23, 11), (24, 10), (24.5, 8), (25, 6), (25, 4), (25, 3).

The control polygon is green with red control points, the underlying curve is black.
Perturbing p, and p, over ten time steps introduces a self intersection to the PL
structure that is not present in the underlying spline curve, as illustrated on the
right hand side of Fig. 2. For brevity of presentation, the example of Fig. 2 presents
the graphics of the original and perturbed Bézier curves to show that both are non-
self-intersecting, which can be rigorously verified [1]. We return to this example for
a detailed analysis in Sect. 6.3.

We note that the previous bound with of (1/2)v = 1/2 would have guaranteed
that the first five time steps were permissible. When these visual experiments
showed that topological fidelity could be preserved until the 10th step, we pursued
a deeper analysis to explicate identification of this longer preservation of topology.

I'There is an obvious typographical error [8, Proposition 5.2].

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 173

’/,_-¢_L"H-\.&~' /’_‘_,\.\.
e \’ : o ~ -\
o ! 4 }
: .\'_;‘- :
),L‘ ! -h-_ ’
" } N }
L A o i
‘.“""-',____'_'_'_/(- E .-\"""‘..,__ ._.‘J‘('

Fig. 2 Spurious self-intersection in PL structure

4 Notation for Perturbation Analysis

We now define the notation required for the perturbation analysis.

We shall examine n time steps denoted {t1,---,t,}, fo denotes the time at
initialization.

We assume that we are given a refined control polygon so that it is within €, of the
represented curve. Note if o subdivisions are required then, from the original set of
control points {qo, . . ., g4 }, there are generated w control points where w = 2*d +1.
Denote the subdivided, but unperturbed, control polygon by

Xo ={po. p1.*** . Pw}-

Let X; denote the perturbed control polygon at time #;. Assume we are supplied
with a (w + 1) x n perturbation matrix, /", where each row contains perturbation
vectors for a corresponding control point and each column contains the perturbation
vectors for all control points at the corresponding time step, i.e.

51 153 . I,
Po [Yor Vo2 .- Yon
pPr | Yin Yi2 .. Vin
r=.) .)
Pw Yw,)/W,Z ... Yw.n

where y; ; denotes the perturbation vector applied to p; at time f; (may be the zero
vector). Let §; p; denote the coordinates of the point that originated at p; at¢;, i.e.

J
$ijpi = pi + Zyi,k-
k=1

174 H.P. Cassidy et al.

1+ Ma

n 2~ D3+ 731

Po Xo

Fig. 3 Perturbation over a single time step

5 Non-differentiable Perturbations

In cases where maintaining differentiability of the curve is not required, we may
simply perturb each point by the prescribed vector. At) we are given Xy and I" as
described above. At each #; we can calculate X; from I" and X;_;.

Example 1. Given the points Xy = {po, p1, p2, p3} and the perturbation matrix,

0 0

Y11 V12
r=\|"
0 0

V3.1 V3.2

as depicted in Fig. 3. We can calculate

X1 ={81po,81p1,81p2,81p3} = {po. p1 + Y11, P2. p3 + V31}, and
Xo = {62p0,02p1,82p2,82p3} = {po, p1 + Y11 + Y12, P2, p3 + V31 + V32).

5.1 Perturbing a Single Point

First we consider perturbing a single point over a single time step. At initialization
we have

Xo={po.-*+.pj,"* ., Pw}-
Note that
| A2 X0llcoNoo(d) < €4

Let p; be the point being perturbed. At time 7 the point p; is perturbed to p; +y; 1
and all other points remain in their original positions.

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 175

Xy =Apo,-++.81pj.- . pw ={po. P+ Via Pl

The only second differences affected are A»(p;—1), A>(p;) and Ax(pj+1).

A2 X 1]l = max{||A2Xollco. |A2(81 ;=D 1A281 p). 1A281pj+ DI}

where

2,1pj—1) = pj—2—pj—1+ pj + Vi1 = Aapj-1) + Vi1,
Ay(81pj) = Ax(pj) — 2y, and
A:(81pj+1) = Aa(pj+1) + 7ja-

This approach extends easily to n time steps
[A2X5[loo = max{[|A2Xo[loo, [A2(8n pj—D) . [[A2(8up). | A2(8n pj+0) 11}

where A>(8,pj—1) = Aa(pj—1) + 2i—1 Vii » A2(Bupj) = Aa(pj) =211 Vi
and Ay (8, pj+1) = As(pj+1) + D71 Vii-

5.2 Perturbing Multiple Points

To perturb multiple points over multiple time steps, using the information supplied
by I, sort the points being perturbed into adjacency chains, i.e. sets of adjacent
control points denoted Qy, - -- , Qs where each Q; contains either a single point or
a list of adjacent points to be perturbed. This is necessary as chains of different
length have different effects on the second differences that involve points in that
chain. Let |Q;| = u. If u = 1 then this is treated as in the single point case above.
If u = 2 then we write Q; = {pi, pr+1}, and we compute the affected centered
differences as follows:

Ay6upiet) = Ao(pi—) +) Vi

j=1

2260pi) = Do(pi) + Y (Vi1 — 2vej)
j=1

2260 pit1) = Aa(prs) + Y (Vej — 2Vk41,))

J=1

2280 pr+2) = Aa(pi+2) + Z Yi+1.)

J=1

176 H.P. Cassidy et al.

If u > 3 then Q; = {pr, -+, pk+v} for some v = 2. The affected centered
differences are computed:

Asupet) = Ka(pi-D) + Y Vi

J=1

As@upi) = Aa(pi) + Y (Vkwrj — 2.5

J=1

Ar(8,ps) = Ax(ps) + Z(V&—l,j - zys,j + Vs+l,j)
i=1

A28 i) = Ao(picin) + O Vito—1j — 2kto.f)
j=1

A5 prtvr1) = Da(Prtott) + Y Vituj
j=1

6 Differentiable Perturbations

It may be desirable to maintain a degree of differentiability either for appearances,
analysis or both. We define a perturbation strategy that guarantees C! continuity
(assuming the original curve is at least C).

6.1 Perturbation Strategy

We are given a composite Bézier curve to perturb. Recall that a junction point is a
point where curve segments meet. We identify three types of point:

* Type I: A point adjacent to a junction point.
* Type 2: A junction point.
* Type 3: A point that is neither a junction point nor adjacent to a junction point.

To maintain C! continuity we must require that the tangent edges with a shared
junction point be collinear and have the same length [5].

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 177

dpa

—

1.}2 S —— — —— (11

Po
43

Fig. 4 Type 1

Type 1 If we perturb a Type 1 point in order to satisfy the C! criteria we perturb
the junction point to the midpoint of the line segment joining its adjacent points.
This approach is illustrated in the following example, where p, is being perturbed,
relative to the junction point of ps.

Example 2. Given a composite cubic control polygon with sub polygons {po, p1,

P2, p3} and {p3, 41, g2, q3} as depicted in Fig. 4. If we perturb p, by a vector y:

p2—>8pr=pr+y,
then to maintain C! continuity we perturb p; as follows:

. Op+aq
P3Py =

Type 2 To maintain C! differentiability when perturbing a Type 2 point we must
also perturb its adjacent points by the same vector so the tangent edges are collinear
and have the same length and are collinear.

Example 3. Here we have a composite cubic control polygon with sub polygons
{Po, P1, P2, p3} and {p3,q1, g2, q3} as shown in Fig.5. Perturbing p; by y has the
following effect:

p2—>8pp=p2+y,

ps —>8p3=p3+y.

q1 =8 =q1+y.

Type 3 Since Type 3 points do not affect tangent edges we can just perturb them as
normal without perturbing neighboring points.

178 H.P. Cassidy et al.

/ P2 \
/ \ dps s
Y, \
- Pa \
b
\
\ oy =
\ N—"" G2
N

Fig. 5 Type 2

6.2 Perturbing a Single Point

We can now examine the effect of perturbing a single point using the strategy
outlined above. Given

XO = {pOs"' s Pjsce va}-
Note that
42X0]looNoo(d) < €4

LetY = {p,} forsome j € {0,1,---,w}. At time ¢; the point p; is perturbed to
pj + V.1, note that adjacent points may be perturbed depending on the type.

Type 1. After all time steps are completed we have

Xn =

. Pi+ Yo Vik+ Pt
PO""ij‘i‘ZVj,k, J k 12] J 7.”’pw§)
k=1

The second centered differences are affected as follows:

2y8npj—1) = Aapj—1 + Zyj,k
k=1

3
A2(8upj) = (Pj—l SPit s P;+2) Zyjk

228upj+1) =0

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 179

1 3 1 ¢
A28npjv2) = (EP/’ —ZPiv2t Pj+3) +3 D Vike
k=1

Type 2. After the first time step
X1 ={po.* . pj—1 +Vj1.0j + Vi1, Pj+1+ Vi1 . Pu)s

pj—1,pj and p;; are each perturbed by y;; attime #;,i € {1,--- ,n}.
At time ¢, we have

142X |00 = max{[| Az Xolloo. max{[| A2(8, p) 1127 _,}-
The changes to the second centered differences are as follows:

AsBupj—2) = Aa(pja) + D Vik
k=1

As@upj-1) = Aa(pim) = D vik
k=1

Az(gnpj) =0

Asupj1) = Dopj—1) — Y ¥k
k=1

n
A2(npj+2) = Aapj42) + Z Vik
k=1

Type 3. If we are perturbing a Type 3 point then at time #, we have
[[A2X5[loo = max{||A2Xolloo, [A2(8n pj—D I 1A208up). 14280 pj+ 1)1}
with the changes in second centered differences:

14284 pj D lloo = 1 82(pj—1) + Y _ ¥jilloo

i=1

142684)lloo = 142(p;) =2 ¥jilloo

i=1

n
14265 pj+)Mo = 1A2(pj 1) + Y Viilloo

i=1

180 H.P. Cassidy et al.
6.3 Perturbing Multiple Points

Let p; and p; 4, be Type 1 point, so p; is a Type 2. We consider the illustrative
case where p;, P; 1 and p;, are each being perturbed over n time steps:

n
pj — pj+ Z (Vjik + Vi+1x)
k=1

1 n
Pi+1 = 5 (Pj it) ik + 21k + Vj+2,k))
k=1

n
Pita = Pit2+ Y itk + Vitok)
k=1

The effect on the second differences is as follows:

226upj—1) = Dapj1+ D (Vik + Vit1e)
k=1

3 1 (3 1
Ayupj) = pjo1—Spi+ =pjr2at Y (——)/j,k —Vi+1k + —)’j+2,k)

2 2 2 2
k=0
A2(8npj+1) =0
1 3 "\ (1 3
A2upjs2) = 5P T 5Pi+2 +tpj+3t Z (E)’j,k —Yi+1k — Eyj+2,k)
k=1

Ay(Supjvs) = Aapjrs+ D (Vitik + Vit2x)
k=1

7 An Example Predictive Analysis

Our predictive method is now applied to formalize the empirical observations of
Experiment 1, explicating extensions beyond previous bounds [8].

Example 4. The cubic Bézier curve of Example 1 was specifically synthesized to
permit more aggressive PL graphics perturbations than previously known [8]. Given
control points Xo = {(0,6),(1,5),(2,4.5),---,(2,1.5),(1,1),(0,0)}. Denote
{(Os 6)5 (15 5)5 (27 45)} by U = {pu—Zv Pu—1, pu} and {(27 15)7 (17 1)7 (07 O)} by
V = {py, Pv+1, Pv+2}- Let the display tolerance, ¢, = 1.9167. The maximal
distance between the curve and the control polygon is 5/12 which we trivially note
is less than the given €;. Say we wish to perturb the points in U and V' over 10

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 181

time steps with perturbation vectors {yu_z,k}}(o: L = -1 }}{0:1 = {yu,k}}cozl and
{Vv.,k}}{o=1 = {Vv+1,k}11{0=1 = {Vv+2.,k}11{0=1 where
uihizr = {(0.5/20).(0.4/20). (0.4/20). (0, 4/20). (0.3/20).
(0,2/20),(0,1/20), (0,1/20), (0, 1/20), (0,5/20)}, and

{Voxhiey = { (0,=5/20), (0,—4/20), (0, —4/20). (0, —4/20), (0. —3/20),
(0,-2/20), (0, —1/20), (0, —1/20), (0, —1/20), (0, —5/20)}

For this curve, 1/2v = 1/2, a value which is clearly exceeded after five steps of
this strategy. Since previous criteria [8] were only sufficient, the rest of this example
demonstrates that greater perturbation is possible to support efficiency in Strategy
2. Since the analysis for points in U and V is identical we shall focus on V. Notice
that

10

3
§)/U,k = (Oa 5) .
k=1

Since p, is a Type 2 point, the junction point p; = (3, 3/4) will also be perturbed
as described above. Denote the control point following p; by p;41.

Pv = (2’ 3/2) g 810[71) = (2’ 3)
pj = (3,3/4) = Swop; = (3,3/2)

We require that for each i,

i
1Ax X lloo + 11 Y vxjll < €.
j=1

Here) yy ; is the sum of the perturbation vectors applied to the control point that
yields || A2 X; ||oo- These quantities are easily calculated using the analysis above. It
is easy to see that [| A2 X;lloo + [22— vx.j [l < € fori = 1,---,9. At the ninth
time step we have At the tenth time step

10
142X 100100 + | Y vx,jll = 0.667 + 1.5 = 2.167 > €4
j=1

Observing this we are now aware of the need to refine the control polygon by
subdivision. Note that [3] and [14] allow us to determine the amount of subdivision
required so that an ambient isotopic approximation is guaranteed

182 H.P. Cassidy et al.

8 Conclusions and Future Work

For dynamic visualization of molecular simulations it is important to ensure that the
rendered curve and the underlying spline are ambient isotopic at each time step. That
global bounds on these perturbations can be exceeded if only local perturbations are
executed is obvious, the performance imperatives for dynamic visualization make
such data-specific refinements relevant, as is explored here. This can be achieved
by keeping track of changes to the second centered differences and applying further
subdivision as required.

The above analysis was performed for B-spline curves, the surface case was not
pursued but we expect that the results can be extended to B-spline surfaces easily.

The molecules modeled certainly have 3-dimensional structure that is not
captured by the 1-dimensional spline models. The reduction in dimension was
chosen to support the performance demands of dynamic visualization of an ongoing
simulation producing peta-bytes of output, while still being able to capture essential
topological characteristics needed for zero-th order analyses. A similar reduction
of dimension was undertaken to simplify engineering design studies [6]. The user
identifies boundaries, that are modeled as 1-dimensional curves, as abstractions
to convey design intent. This low-order geometry affords interactive manipulation
and constraint satisfaction. Emerging VR techniques rely upon hand and finger
gestures to express design variations. It would be desirable to adapt such gestures to
interactive steering of these molecular simulations, providing further opportunities
to share these research perspectives. Indeed, some of the required emphasis on
graphics manipulation is being pursued, concurrently, under associate technology
transfer projects [7] for gesture based editing during production of computer
animations in the film making industry. An ideal outcome would be the effective
merging from these three fronts of molecular simulation, engineering design and
film making — as remains the subject of planned activities.

Acknowledgements The authors thank the referees, both for the conference presentation, as
well as for this final book, for their helpful and constructive comments, which led to many
improvements. The three UConn authors were partially supported by NSF grants CMMI 1053077
and CNS 0923158. T. J. Peters was also partially supported by an IBM Faculty Award and IBM
Doctoral Fellowships. All statements here are the responsibility of the author, not of the National
Science Foundation nor of IBM.

References

1. L.-E. Andersson, T.J. Peters, N.F. Stewart, S.M. Doney, Polyhedral perturbations that preserve
topological form. Comput. Aided Geom. Des. 12(8), 785-799 (1995)

2. Anonymous, The protein data bank (2013), http://www.rcsb.org/pdb/home/home.do

3. H. Cassidy, T. Peters, K. Jordan, Dynamic computational topology for piecewise linear curves,
in Proceedings of the Canadian Conference on Computational Geometry 2012, Charlottetown,
8-10 Aug 2012, pp. 279-284

http://www.rcsb.org/pdb/home/home.do

Topological Integrity for Dynamic Spline Models During Visualization of Big Data 183

4.

10.

11.

12.

13

15.

16.

17.

18.

19.

20.

21.

T. Etiene, L.G. Nonato, C.E. Scheidegger, J. Tierny, T.J. Peters, V. Pascucci, R.M. Kirby,
C.T. Silva, Topology verification for isosurface extraction. IEEE Trans. Vis. Comput. Graph.
18(6), 952-965 (2012)

. G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practicle Guide, 2nd

edn. (Academic, San Diego, 1990)

. R. Gal, O. Sorkine, N.J. Mitra, D. Cohen-Or, iwires: an analyze-and-edit approach to shape

manipulation. ACM Trans. Graph. 28(3), 33:1-33:10 (2009)

. H. Ilies, MRI: development of a gesture based virtual reality system for research in virtual

worlds. NSF award 0923158 (2009), http://www.nsf.gov

. K.E. Jordan, L.E. Miller, E.L.F. Moore, T.J. Peters, A.C. Russell, Modeling time and topology

for animation and visualization with examples on parametric geometry. Theor. Comput. Sci.
405, 41-49 (2008)

. R.M. Kirby, C.T. Silva, The need for verifiable visualization. IEEE Comput. Graph. Appl.

28(5), 78-83 (2008)

R. Kolodny, L. Guibas, M. Levitt, P. Koehl, Inverse kinematics in biology: the protein loop
closure problem. J. Robot. Res. 24, 151-162 (2005)

R. Kolodny, P. Koehl, L. Guibas, M. Levitt, Small libraries of protein fragments model native
protein structures accurately. J. Mol. Biol. 323, 297-307 (2002)

E. Martz, T.D. Kramer, World index of molecular visualization resources (2010), http://web.
archive.org/web/20101029215032/http://molvis.sdsc.edu/visres/#srvrs

. E. Martz, T.D. Kramer, Molviz (2013), http://molvis.sdsc.edu/
14.

L. Miller, E. Moore, T. Peters, A. Russell, Topological neighborhoods for spline curves:
practice and theory, in Reliable Implementation of Real Number Algorithms: Theory and
Practice, ed. by P. Hertling et al. Volume 5045 of LNCS (Springer, New York, 2008),
pp. 149-161

D. Nairn, J. Peters, D. Lutterkort, Sharp, quantitative bounds on the distance between a
polynomial piece and its Bézier control polygon. Comput. Aided Geom. Des. 16, 613-631
(1999)

G. Ramachandran, T. Schlick, Solvent effects on supercoiled DNA dynamics explored by
Langevin dynamics simulations. Phys. Rev. E 51(6), 6188-6203 (1995)

D. Russel, L. Guibas, Exploring protein folding conformations using spanners, in Pacific
Symposium on Biocomputing, Hawaii, 2005, pp. 40-51

T. Schlick, Dynamic simulations of biomolecules, http://www.searlescholars.net/people/1991/
schlick.html

T. Schlick, Modeling superhelical DNA: recent analytical and dynamic approaches. Curr.
Opin. Struct. Biol. 5, 245-262 (1995)

T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer,
New York, 2002)

T. Schlick, W.K. Olson, Trefoil knotting revealed by molecular dynamics simulations of
supercoiled DNA. Science 21, 1110-1115 (1992)

http://www.nsf.gov
http://web.archive.org/web/20101029215032/http://molvis.sdsc.edu/visres/#srvrs
http://web.archive.org/web/20101029215032/http://molvis.sdsc.edu/visres/#srvrs
http://molvis.sdsc.edu/
http://www.searlescholars.net/people/1991/schlick.html
http://www.searlescholars.net/people/1991/schlick.html

Part IV
Time-Dependent Analysis

A Comparison of Finite-Time and Finite-Size
Lyapunov Exponents

Ronald Peikert, Armin Pobitzer, Filip Sadlo, and Benjamin Schindler

Abstract Finite-time and finite-size Lyapunov exponents are related concepts that
have been used for the purpose of identifying transport structures in time-dependent
flow. The preference for one or the other concept seems to be based more on a
tradition within a scientific community than on proven advantages. In this study,
we demonstrate that with the two concepts highly similar visualizations can be
produced, by maximizing a simple similarity measure. Furthermore, we show that
results depend crucially on the numerical implementation of the two concepts.

1 Introduction

The finite-time Lyapunov exponent (FTLE) has been proposed by Haller [13] as
an indicator of Lagrangian coherent structures (LCSs). The finite-size Lyapunov
exponent (FSLE) is an alternative and especially popular in oceanography [9, 19]. It
seems that the preference for FTLE or FSLE is based more on the tradition within a
particular scientific community than on an evaluation of the two approaches. Direct
comparisons between FTLE and FSLE have been made by Boffetta et al. [5] and by
Sadlo and Peikert [21]. Boffetta argued that the FTLE is not capable of recognizing
the relevant structures, namely the boundaries between chaos and large-scale mixing

R. Peikert (<) * B. Schindler
Department of Computer Science, ETH Zurich, Zurich, Switzerland
e-mail: peikert@inf.ethz.ch; bschindler @inf.ethz.ch

A. Pobitzer
University of Bergen, Bergen, Norway
e-mail: armin.pobitzer@uib.no

F. Sadlo
University of Stuttgart, Stuttgart, Germany
e-mail: Filip.Sadlo@visus.uni-stuttgart.de

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 187
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8_ 12,
© Springer International Publishing Switzerland 2014

mailto:peikert@inf.ethz.ch
mailto:bschindler@inf.ethz.ch
mailto:armin.pobitzer@uib.no
mailto:Filip.Sadlo@visus.uni-stuttgart.de

188 R. Peikert et al.

regime. A recent paper by Karrasch and Haller [16] lists a number of theoretical
limitations of FSLE and proposes the use of infinitesimal-time Lyapunov exponents.

We show, based on two examples, that FTLE and FSLE, if appropriately
calibrated, produce comparable results which can be interchangeably used for most
purposes in numerical flow visualization. However, in terms of computational effort
FTLE is slightly more efficient, because computation can be based on a single
precomputed flow map. In oceanographic research, FSLE and FTLE are typically
computed from particle pairs consisting of horizontal or vertical pairs of grid points.
This means a quantization of the range of directions into a set of only four directions.
As we show, the effect of this quantization is that FTLE and FSLE values are
underestimated by a factor which can be large, especially for short integration times.
We give an example where this factor is unbounded.

Another important algorithmic aspect is the correct choice of a scale, given a
grid resolution. There are two approaches to FSLE and FTLE computation, both of
which require a scale parameter. In methods based on particle pairs, this is the initial
separation of the particles. In methods based on the Cauchy-Green tensor, a scale is
needed in gradient estimation. We demonstrate the effect of the scale parameter.

We define a similarity measure for pairs of FTLE and FSLE images, based on
which image pairs can be computed using an optimization process. For a given
FTLE or FSLE image, a corresponding image of the other field can be produced.
We discuss results of this process in Sects. 5 and 6.

2 Related Work

Particle transport is a central feature of fluid flows. In this context, the investigation
of mixing properties and the existence of transport barriers is of great interest, e.g.,
for the distribution of chemicals in the atmosphere [18] or in a bay area [8].

Transport barriers and mixing can be studied by means of the local attracting or
repelling properties of trajectories. These properties are connected to the concept
of stable and unstable manifolds in dynamical systems [12,26]. Along these lines,
Haller proposed FTLE as a quantification method of these properties [12,13]. FTLE
is a finite-time version of the well-known Lyapunov exponent [11]. An alternative is
the finite-size Lyapunov exponent, as described by Boffetta et al. [5].

In the same paper, Boffetta et al. [5] compare FSLE to FTLE and two Eulerian-
based techniques for the identification of transport barriers in two-dimensional
incompressible fluids. The comparison is angled towards geophysical flows, like
ocean currents and atmospheric flows. The authors conclude that both FSLE and
FTLE are superior to the Eulerian-based methods in uncovering the transport barri-
ers. Furthermore, they find FSLE to be more expressive for large-scale transport,
while FTLE captures mainly small-scale properties of the particle dispersion. It
is worthwhile noticing that the comparison conducted by Boffetta et al. is based
on particle pairs, and may hence be affected by sampling issues. We comment
on this issue in Sect.3.3.1. Joseph and Legras [15] cite Haller [12] stating that

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents 189

the distribution of pair separation is typically a “fuzzy” view of the hyperbolic
manifolds. They claim that FSLE results in a less fuzzy distribution and allows the
manifold structures to emerge more naturally.

While FSLE is usually preferred in the analysis of mixing and transport in
oceans [9,15] and atmosphere [18], FTLE has been applied to these domains as well.
Coulliette et al. [8] make use of FTLE to investigate the existing transport barriers in
a bay area in order to achieve optimal timing for the relief of contaminants into the
bay. Beron-Vera et al. [4] identify so-called invariant tori, which act as transport
barriers, in geophysical flows by means of FTLE. Uffinger et al. [25] compare
the FTLE computation based on linearization and dense direction sampling. They
conclude that a dense sampling of directions produces more accurate results than
the classical approach based on linearizion, while preserving its advantages in the
detection of topological features.

3 Finite-Time and Finite-Size Lyapunov Exponents

Given a velocity field u(x, ¢), the flow map ®!*7(x) describes the advection of a
“particle” released at time ¢ and location x over a time span t. Both 7 and the
integration time t are considered to be parameters, hence the flow map is mapping
from the spatial domain to itself, mapping initial locations to final locations.

3.1 Intuitive Definitions

Given a particle seeded at location x and time ¢, and advected over time t, the
dispersion of a neighbor particle seeded at y is observed. The location y is chosen
on a sphere of radius d around x, such that the dispersion is maximized. This leads
to the definition of the finite-time Lyapunov exponent at location x and time ¢, for a
given integration time t, which is

1 q§t+t _ ¢t+f X
FTLE.(x,?) = lim In |27 (y) — & ()||‘
d—=0 ly—x||=d |T]| d

ey

For a given dispersion factor r, the finite-size Lyapunov exponent [1] at location
x and time ¢ is:

1
FSLE,(x,t) = lim max —Inr 2)
d—0 |ly—x|=d | 7|

where 7, is the minimum time for which

[ertrm -] /d=r. 3

190 R. Peikert et al.
3.2 Equivalent Definitions

The above equations contain a maximization over directions and a limit, which
both have to be approximated in computation. This can be avoided by using the
equivalent definitions [7]

FTLE. (x.1) = % 1 /Ao (€ (%)) @

where C!77(x) = V! 77 (x)" V! T (x) is the (right) Cauchy-Green tensor, and

1
FSLE,(x,1) = m1nr (5)

where |7,| is the minimum time for which

V Amax (CTT7 (x)) = 7. (6)

3.3 Computation Based on Particle Pairs

One approach to FTLE and FSLE computation is the explicit use of particle
pairs, according to the definitions from Sect. 3.1. The limits occurring in Egs. (1)
and (2) are approximated in practice by choosing a small d, while maximization is
approximated by testing a finite set of directions. While for a good approximation
quality sufficiently many directions are needed, it is established practice to use only
the four grid neighbors [14].

The approach based on Eqs. (1) and (2) is popular especially in the oceanography
community for FSLE computation. D’Ovidio et al. [9] describe the investigation of
mixing structures in the Mediterranean sea by FSLE, using a four neighbor-based
approximation of the maximal growth rate of particle separation. FSLE is used to
identify hyperbolic points, which indicate areas of strong mixing. The authors point
out the natural compatibility of FSLE with data collected by Lagrangian drifters,
and the possibility to suppress small-scale mixing by the dispersion factor r.

Herndndez-Carrasco et al. [14] discuss the reliability of FSLE with respect to
sampling density for particles seeding and the grid resolution of the underlying
velocity field. While noting the theoretical need to investigate “all” possible
separation directions, also their computations consider two directions only. They
find that FSLE are consistent under grid refinement for both seed point and velocity
field, while the amount of details captured increases with finer resolution.

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents 191

Fig. 1 FTLE of the velocity 17

fieldu = y,v = x, g

computed with particle pairs 0.9
on uniform grid. For larger t

they converge to the correct 0.8 -

value of 1.0 1

0.7 4

0.6

- |

= 0.5

2 |

0.4+

0.3 1

0.2 1

0.1+

O T T T T T T T T T T T T T T T T T T T 1

Fig. 2 Effects of
quantization of directions:
Same as Fig. 6a, but with
computation based on particle
pairs (four neighbors only)

3.3.1 Shortcoming of the Computation Based on Four Neighbors

Using the simple linear velocity field u = x,v = —y, we demonstrate that
computation using only four neighbors can lead to large errors in FTLE (and FSLE)
values. The flow map of the field after integration time 7 is @ (x, y) = (xe®, ye™),
its right Cauchy-Green tensor is d iag(e’,e™?"), and finally, the FTLE is the
constant 1. Two particles seeded at (0,0) and (k,0) are mapped to (0,0) and
(he',0), therefore r = e7, and the particle-based method gives the correct result. A
wrong result is obtained, however, if a 45° rotation is applied to the velocity field.
Then, the seed points (£/4,0) and (0, £/4) are mapped to (£/ cosh t, =/ sinh 1)
and (A sinh t, £/ cosh 1), respectively, therefore r = /cosh(27), and the FTLE
value is In cosh(27) /27, which deviates from 1 especially for small t, as is shown
in Fig. 1. Such quantization artifacts in an FSLE computation are shown in Fig. 2.

192 R. Peikert et al.

In order to reduce this error, one would have to use a finer quantization of
directions. This could be done by using auxiliary particles on a circle around the
reference particle as in [25].

3.4 Computation Based on the Cauchy-Green Tensor

Errors due to quantization of directions are eliminated if the definitions from
Sect. 3.2 are used. This is at the cost of errors introduced by gradient estimation,
which are typically much smaller. Therefore, computation based on the Cauchy-
Green tensor is the preferred method both in the fluid dynamics and the scientific
visualization community [7, 20, 24]. The first stage of the method is to sample the
flow map, which requires a high-quality numeric integrator. The sampling grid can
be chosen independent of the discretization of the velocity data, therefore, a uniform
regular grid is typically used. In the second stage, the flow map gradient is estimated
at each sample position, and Egs. (4) or (5) is used to generate the final values.

3.5 Scale Considerations

Both of the above approaches contain a “scale” parameter which affects the
computed scalar field. In Sect.3.3 this is the distance d between particle pairs,
while in Sect. 3.4 a distance d is needed for gradient estimation using, e.g., finite
differences. For setting the parameter d, in either one of its meanings, there are two
opposite approaches:

1. By choosing d very small, a good approximation of the FTLE or FSLE at
the point x is obtained. Accuracy can be further improved with Benettin’s
renormalization algorithm [2], where during integration particles are reset to a
fixed distance from the reference particle. Renormalization was originally used
for computing (non-finite) Lyapunov exponents. A variant of renormalization is
the L-FTLE proposed by Kasten et al. [17], where numerical integration and
differentiation are swapped. While pointwise exact, these methods may miss thin
ridges of high values passing between samples. Even without renormalization,
using a d smaller than the sampling distance creates artifacts, since it is
equivalent to first computing the FTLE or FSLE field at sampling distance d
and then doing a subsampling, which obviously causes aliasing in the presence
of high frequencies. This type of artifacts can be noticed in Fig. 5 of [5].

2. By choosing d in the order of the sampling distance, the obtained FTLE or
FSLE values are less accurate, but they are representative for the space between
samples. This results in unbroken ridges, which is a requirement for subsequent
ridge extraction. Figure 6b has been produced using gradient estimation from
a 5-point finite-difference stencil. For the fine structures, resulting from the

W

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents 19

©
]
X

10%

In(dispersion factor)

1 r=const
T= const
optimal

> O

0 3600 7200 10800 14400 18000

1 . . . 1 . . 1 . . . 1

integration time

Fig. 3 Percentiles of In(r) as functions of integration time of the Vatlestraumen data (with forward
integration). FTLE (FSLE) values are obtained by taking a vertical (horizontal) section. The actual
values are the slopes of the dashed (solid) lines passing through the origin and the respective point.
The filled circles mark a few pairs (7, r), where for a given integration time 7 the dispersion factor
r has been computed which maximizes the similarity measure

long integration time, the chosen d is barely sufficient to avoid aliasing. For
even longer integration a smaller d would be needed [10]. The same holds
if subsequent ridge extraction is needed, where it is advantageous to compute
gradients by convolution with derivatives of a Gaussian [23].

4 Comparing FTLE and FSLE Images

Computation of FSLE samples on a given grid can be done by simultaneous inte-
gration of trajectories and computing the dispersion factors r after each integration
step. This way, a function r(t) is obtained, from which both FTLE and FLSE can
be derived, by computing In(r(z))/|t| for some fixed 7 or fixed r, respectively.
Figure 3 shows percentiles of In(r), computed for the data set of Sect. 6 on a 868
by 868 grid. At each point (x, y) in this plot, the actual FTLE or FSLE value is
given by the slope y/x. Taking a vertical section (marked with triangles) yields
percentiles of FTLE values for this integration time, while a horizontal section
(marked with boxes) yields FLSE values for the corresponding r. In the example
FTLE at T = 6,300s and FSLE at In(r) = 2.7 are shown.

194 R. Peikert et al.

max
99%
98%
8 E 97%
96%
95%
94%
93%
92%
91%
90%
80%
70%
60%
50%
40%
30%
20%
10%
optimal

In(dispersion factor)
[]

" PR SR S SR N S N SN SN N SR S S S N S SN S S NS SN S S S N
0 50 100 150 200 250 300

integration time

Fig. 4 Percentiles and optimal parameter pairs for meandering jet model. (w, €) = (0.1, 0.3)

The fact that the horizontal line does not intersect some of the curves indicates
that for some of the trajectories the dispersion factor r has not been reached. At these
points, an FSLE sample cannot be computed within the given maximum integration
time (here 1,4, = 18,000), but it is known to be less than In r/7,,,,. For visualiza-
tion purposes, a value of either 0 or In 7/7,,,, can be assigned to such points.

While FSLE and FTLE values are the same at the point where the vertical and
horizontal lines intersect, their range is in general different. In our example in Fig. 3
the range between the 80- and 100-percentiles is wider for FSLE (marked with solid
lines) than for FTLE values (marked with dashed lines).

We observed this difference in all velocity fields that we tested. A similarity
measure for comparing FTLE and FSLE fields has to account for this difference.
Therefore, the straightforward choice is to define the similarity of a pair of fields
f(x) = FTLE . (x) and g(x) = FSLE,(x) as their correlation

corr(f, 8) = cov(f, g)/ v/ var(f) var(g). @)

Given one FTLE or FLSE field, a matching field of the other type can now be
found by maximizing the similarity. A few such pairs are represented in Figs. 3 and
4 by filled circles. Such optimal pairs, resulting from maximization of similarity, are
shown in Figs. 6 and 7.

In principle, it is possible to maximize similarity over both parameters simulta-
neously. However, this tends to result in extreme parameter values, which are not

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents 195

practically usable. By manually choosing one of the two parameters, the user can
balance the visualization with respect to the length and “sharpness” of structures
and the amount of folding.

Typically, only the higher FTLE or FSLE values are of interest, therefore the
transfer function should clamp data at a lower threshold. Furthermore, to account
for the different ranges of FTLE and FSLE data, the transfer function should either
be based on normalized data or on percentiles. We chose the second approach, and
we clamped the analytic data in Sect. 5 at the 50-percentile and the numerical data in
Sect. 6 at the 90-percentile, meaning that we focused on the highest 10 % of FTLE
and FSLE values. Which percentile range is of interest depends on the data, or
more precisely, on the size and frequency of transport barriers. The percentile plots
(Figs. 3 and 4) can then be used to map the chosen percentile range to a range in the
parameters t or r. Finally, a fast heuristic way to avoid the brute-force optimization
would be to define the midpoints of these two ranges as a matching parameter pair
(z, r). However we experienced that the similarity values obtained this way were in
some cases not near the optimum.

S Analytic Test Case: The Meandering Jet Model

Bower [6] introduced an analytic flow field for studying the mixing behavior of
oceanic jets. Its stream function is defined as

— Bcosk
Y = —tanh J oSty +cy. ®)

1 + (kB sinkx)?

The velocity components are then u = —Ba—w, v = %—f This flow is steady in the

moving frame where it is formulated. Samelson [22] derived an unsteady version of
it by making the meander amplitude B depend on time:

B = By + €cos(wt). 9)

The stream function of the flow, at times ¢ = 0 and ¢ = 10s (where the amplitude
takes its maximum and minimum) is shown in Fig. 5. Parameter values have been
chosenas By = 1.2,L =10.0,k =2n/L,c = 0.1, w = 0.1 and € = 0.3. In these
images, contour lines are the streamlines of the velocity field.

5.1 Comparison of FTLE and FSLE

The meandering jet flow has been used by Boffetta et al. [5] in their comparison of
FTLE and FSLE. They used Samelson’s model with parameters By = 1.2, L =
10.0, k = 2n/L and ¢ = 0.1. For the parameter pair (w, €) the two settings

196 R. Peikert et al.

Fig. 5 Stream function of the meandering jet (0 < x < 10,—4 < y < 4)att = 0 (left) and
t = 107 (right)

(0.1,0.3) and (0.4, 0.3) were investigated. The resulting images have led the authors
to the conclusion that FSLE is preferable over FTLE, because the FTLE image
(Fig. 4 in [5]) fails to discern the structures seen in the FSLE image (Fig. 5 in [5]).

We reproduced FTLE and FSLE images for the same parameter settings, but
using computation based on the Cauchy-Green tensor. In order to obtain comparable
structures, it is necessary to adjust the parameters of each technique, i.e., the
integration time t for FTLE and the dispersion factor r for FSLE. For this purpose
we used the similarity measure from Sect. 4. Starting from the FSLE parameter
r = 100, used in [5] (see their Fig.2a), we obtained first the FSLE image Fig. 6a.
Then, a maximally similar FTLE image 6b was obtained for the parameter value
t = 40x (having tested only multiples of 2x). Boffetta et al. were using an
integration time of only t = 4 for their FTLE image (see their Fig.4a in [5]).
The reason for the unsharp FTLE structures is clearly the short integration time,
which does not match well the parameter chosen for the FSLE image. Our FTLE
result for a short integration time (r = 8x) is shown in Fig. 6d, and we obtained a
similar FSLE image for In(r) = 3 in Fig. 6c.

Aliasing artifacts, which are present in Boffetta’s FSLE images, can be avoided
by using a sufficient mesh resolution. We used 1,000 by 800, as compared to the
10,000 points mentioned in [5]. Another difference to be noted is that Fig. 4a in [5]
is missing the glide reflection symmetry, which is present in the underlying velocity
field. The explanation given for this is the dependency on the phase of the flow.
However, we obtained an FTLE field having the correct symmetry for all tested
phase shifts.

Finally, FSLE computation requires as a secondary parameter a maximum
integration time |7, |. If this is exceeded, this means that the FSLE value can be
at most In(r)/|timax|, and it is set to zero (black color in Fig. 6a, ¢). Choosing |Tx|
too small results in missing structures at lower FSLE values.

By computing FTLE and FSLE from the Cauchy-Green tensor and choosing
pairs of parameters based on our proposed similarity measure, comparable struc-
tures can be found in this test data. This holds for long (Fig. 6a, b) and short (Fig. 6c,
d) integration times.

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents 197

Fig. 6 Meandering jet with (w,€) = (0.1,0.3), FSLE and FTLE computed with two methods.
(a) FSLE computed with Cauchy-Green tensor. Time ¢ = 0, dispersion factor r = 100, maximum
time 1007 (five flow periods). Color map: 0.01 (blue) to 0.1 (red). (b) FTLE computed with
Cauchy-Green tensor. Time ¢ = 0, integration time t = 40x (two flow periods). Color map:
0.01 (blue) to 0.055 (red). (c) Same as Fig. 6a, but with r = e & 20.1. (d) Same as Fig. 6b, but
with shorter integration time t = 8x

6 Numerical Test Case: Tidal Flow in a Narrow Passage

Our second test case is a CFD simulation of the tidal flow in the Vatlestraumen
passage, which is a part of the main shipping lane to the harbor of Bergen, Norway.
After a tragic naval accident in 2004, the tidal flow in the passage has been modeled
with the Bergen Ocean Model (BOM) [3]. The data set used in this comparison
study is a simulation of approximately one full tidal cycle (12 h). The simulation
itself is 3D, but only the surface layer was used for the study. The surface layer
flow is the essential one for, e.g., pollution by fuel leaking from the vessel. The time
resolution of the data set is 30 s, internally the simulation uses a time step of 1.5s.

While in this kind of application FSLE is typically used, highly similar structures
are obtained with FTLE, as Fig. 7 proves. At least the strong ridges (colored red) can
be recognized in the corresponding image, even though colors can differ.

198 R. Peikert et al.

Fig. 7 Comparison of FTLE and FSLE in tidal flow. (a) Forward (repelling) FTLE, integration
time T = 2h20’. (b) Forward (repelling) FSLE, dispersion factor r = exp(3.00). (¢) Backward
(attracting) FTLE, integration time T = —30’. (d) Backward (attracting) FSLE, dispersion factor
r = exp(3.00)

7 Conclusion

Calibration of parameters can produce similar FTLE and FSLE fields and thus
similar visualizations of the LCSs in a flow dataset. Differences still exist, and
it would be a worthwhile goal to further analyze them. However, we showed
that differences are less fundamental than was suggested in literature. Observed
differences can be due to poor choice of parameters as well as sampling artifacts.
Using our proposed calibration method, it is now possible to compare adequate pairs
of fields and focus on the inherent differences of FTLE and FSLE. For this, pairs

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents 199

of parameters t and r have to be found such that the corresponding FTLE and
FSLE fields are similar, i.e., highly correlated. An obvious, brute-force approach
is to use an optimization strategy in order to maximize correlation. However, this
requires repeated computation of such fields. For practical purposes, a faster method
is needed. An interesting problem for future work would be to find a heuristic that
is able to find near-optimal pairs of parameters.

While the actual results that can be achieved by FTLE and FSLE are rather
similar, it is worthwhile noting the subtle conceptual difference between the two
methods: The FSLE allows us, by the choice of the parameter r, to focus on local
separation above a certain threshold. Additional information about the typical time-
scale of the observed mixing/transport is also provided, which can be a valuable
additional information [9, 14]. The FTLE, on the other hand, operate with a fixed
time-scale and detect separation at all spatial scales. This allows us also to assess
the interplay of the detected structures [26]. Depending on prior knowledge about
the time- and spatial scales of interest for a specific application, as well as whether
or not the interplay of structures is of interest, FTLE may be a more appropriate
choice than FSLE, and vice versa.

Acknowledgements We wish to thank Tomas Torsvik, Uni Research, Uni Computing (Bergen,
Norway), for the tidal flow data. This work was funded in part by the Seventh Framework
Programme for Research of the European Commission, under FET-Open grant number
226042 (project SemSeg) and the Swiss National Science Foundation, under grant number
200020_140556.

References

1. E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, A. Vulpiani, Growth of noninfinitesimal
perturbations in turbulence. Phys. Rev. Lett. 77, 1262—1265 (1996)

2. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov characteristic exponent for
smooth dynamical systems and hamiltonian systems: a method for computing all of them.
Mechanica 15, 9-20 (1980)

3. J. Berntsen, User guide for a modesplit o-coordinate ocean model. Version 4.1. Technical
report, Department of Mathematics, University of Bergen, Norway, 2004

4. EJ. Beron-Vera, M.J. Olascoaga, M.G. Brown, H. Kocak, L.I. Rypina, Invariant-tori-like
lagrangian coherent structures in geophysical flows. Chaos 20(1), 1-13 (2010)

5. G. Boffetta, G. Lacorata, G. Redaelli, A. Vulpiani, Detecting barriers to transport: a review of
different techniques. Physica D 159, 58-70 (2001)

6. A. Bower, A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J.
Phys. Oceanogr. 21, 173-171 (1991)

7. S. Brunton, C. Rowley, Fast computation of finite-time Lyapunov exponent fields for unsteady
flows. Chaos 20(017503), 017503-1-017503-12 (2010)

8. C. Coulliette, F. Lekien, J.D. Paduan, G. Haller, J.E. Marsden, Optimal pollution mitigation
in monterey bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol.
41(18), 6562-6572 (2007)

9. FE d’Ovidio, V. Fernandez, E. Hernandez-Garcia, C. Lépez, Mixing structures in the Mediter-
ranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31(17), L17203-1-
L17203-4 (2004). doi:10.1029/2004GL020328

200

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Peikert et al.

R. Fuchs, B. Schindler, R. Peikert, Scale-space approaches to FTLE ridges, in Topological
Methods in Data Analysis and Visualization 1I, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs
(Springer, New York, 2012), pp. 283-296

I. Goldhirsch, PL. Sulem, S.A. Orszag, Stability and Lyapunov stability of dynamical systems:
a differential approach and a numerical method. Physica D 27(3), 311-337 (1987)

G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos
10(1), 99-108 (2000)

G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid
flows. Physica D 149, 248-277 (2001)

I. Hernandez-Carracos, C. Lopez, E. Hernandez-Garcia, A. Turiel, How reliable are finite-size
Lyapunov exponents for the assessment of ocean dynamics? Ocean Model. 36(3-4), 208-218
(2011)

B. Joseph, B. Legras, Relation between kinematic boundaries, stirring, and barriers for the
antarctic polar vortex. J. Atmos. Sci. 59, 1198-1212 (2002)

D. Karrasch, G. Haller, Do Finite-Size Lyapunov Exponents Detect Coherent Structures?
(2013). http://arxiv.org/abs/1307.7888

J. Kasten, C. Petz, 1. Hotz, B. Noack, H.C. Hege, Localized finite-time lyapunov exponent
for unsteady flow analysis, in Vision Modeling and Visualization, vol. 1, ed. by M. Magnor,
B. Rosenhahn, H. Theisel (Universitit Magdeburg, Inst. f. Simulation u. Graph., 2009),
pp. 265-274

T.Y. Koh, B. Legras, Hyperbolic lines and the stratospheric polar vortex. Chaos 12(2), 382-394
(2002)

A.J. Mariano, A. Griffa, TM. Ozgokmen, E. Zambianchi, Lagrangian analysis and predictabil-
ity of coastal and ocean dynamics 2000. J. Atmos. Ocean. Technol. 19(7), 1114-1126 (2002)
A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovi¢, H. Hauser,
The state of the art in topology-based visualization of unsteady flow. Comput. Graph. Forum
30(6), 1789-1811 (2011)

F. Sadlo, R. Peikert, Efficient visualization of lagrangian coherent structures by filtered AMR
ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(5), 1456-1463 (2007)

R. Samelson, Fluid exchange across a meandering jet. J. Phys. Oceanogr. 22, 431-440 (1992)
B. Schindler, R. Peikert, R. Fuchs, H. Theisel, Ridge concepts for the visualization of
lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization II,
ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs (Springer, New York, 2012), pp. 221-236

S.C. Shadden, F. Lekien, J.E. Marsden, Definition and properties of Lagrangian coherent
structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica
D: Nonlinear Phenom. 212(3—4), 271-304 (2005)

M. Ufﬁnger, F. Sadlo, M. Kirby, C.D. Hansen, T. Ertl, FTLE computation beyond first order
approximation, in Eurographics Short Papers, ed. by C. Andujar, E. Puppo, Eurographics
Association, Cagliari, pp. 61-64, 2012

S. Wiggins, The dynamical systems approach to lagrangian transport in oceanic flows. Annu.
Rev. Fluid Mech. 37, 295-328 (2005)

http://arxiv.org/abs/1307.7888

Development of an Efficient and Flexible
Pipeline for Lagrangian Coherent Structure
Computation

Siavash Ameli, Yogin Desai, and Shawn C. Shadden

Abstract The computation of Lagrangian coherent structures (LCS) has become a
standard tool for the analysis of advective transport in unsteady flow applications.
LCS identification is primarily accomplished by evaluating measures based on
the finite-time Cauchy Green (CG) strain tensor over the fluid domain. Sampling
the CG tensor requires the advection of large numbers of fluid tracers, which
can be computationally intensive, but presents a large degree of data parallelism.
Processing can be specialized to parallel computing architectures, but on the other
hand, there is compelling need for robust and flexible implementations for end users.
Specifically, code that can accommodate analysis of wide-ranging fluid mechanics
applications, while using a modular structure that is easily extended or modified,
and facilitates visualization is desirable. We discuss the use of Visualization Toolkit
(VTK) libraries as a foundation for object-oriented LCS computation, and how this
framework can facilitate integration of LCS computation into flow visualization
software such as ParaView. We also discuss the development of CUDA GPU kernels
for efficient parallel spatial sampling of the flow map, including optimizing these
kernels for better utilization.

1 Introduction

The computation of Lagrangian coherent structures (LCS) originated as a means
to compute stable and unstable manifold type structures in vector fields with
aperiodic time dependence. This was motivated by knowledge that the interaction

S. Ameli ¢ S.C. Shadden (<)
University of California, Berkeley, CA, USA
e-mail: sameli @berkeley.edu; shadden @berkeley.edu

Y. Desai
Georgia Tech, Atlanta, GA, USA
e-mail: yogindesai02 @gmail.com

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 201
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8_ 13,
© Springer International Publishing Switzerland 2014

mailto:sameli@berkeley.edu
mailto:shadden@berkeley.edu
mailto:yogindesai02@gmail.com

202 S. Ameli et al.

of such manifolds gives rise to chaotic dynamics, and hence understanding these
interactions helped bring an ordered understanding to chaotic advection in fluid
flow. This approach was originally applied to time periodic systems, especially
using Poincaré mappings that make the dynamics autonomous. The applicability
of traditional invariant manifold concepts breaks down for time aperiodic vector
fields for practical and conceptual reasons. Notably, asymptotic notions associated
with invariant manifold theory are neither applicable nor desirable for understanding
inherently transient phenomena associated with unsteady computational or experi-
mental fluid flow data.

LCS computational techniques do not typically solve for the stable and unstable
manifolds of explicit trajectories. A global approach was developed from obser-
vations that material points straddling stable and unstable manifolds typically
separate faster in forward and backward time than pairs of points not straddling
such manifolds. That is, the manifold geometry may be inferred by considering
the stretching associated with the hyperbolicity of these structures [14]. This
led to an alternative characterization of organizing structures in fluid flows as
invariant manifolds (material surfaces) that satisfy certain locally attracting or
repelling properties, which became the basis for formalizing the concepts of LCS.
LCS computations have been applied to diverse applications, as reviewed in [26],
demonstrating wide-ranging utility in analysis of unsteady fluid advection.

Scalar measures are often used to identify LCS, such as the (largest) finite time
Lyapunov exponent FTLE field [29]. This is accomplished by plotting the field and
visually identifying such structures, or using an algorithmic approach to extract
features such as ridges in the field [19,21,24]. The FTLE is derived from the largest
eigenvalue of the Cauchy Green (CG) strain tensor

C(xo.to,17) = VEF (x0)T- VF,/ (x0) , (1)

where F;{ :X(fp) = x(t) denotes the flow map, and x(¢) is a fluid element trajectory
with X9 = Xx(#). The full CG tensor encodes direction-dependent stretching
information that can be leveraged, for example in defining normally hyperbolic
LCS, i.e. material surfaces that are locally the most normally repelling over a chosen
time interval [9]. Therefore, the computation of the CG tensor over the flow domain
can be thought of as a common, or at least representative, target in LCS identification
strategies.

The global approach to LCS identification requires a highly resolved sampling
of the CG tensor over the fluid domain to locate potential LCS. One typically starts
with fluid velocity field data u(x, ¢), obtained from computation or measurement,
and the flow map is computed by seeding the fluid domain with tracers and
integrating the advection equation

X(x0,7) = u(x, 1), ()

Development of LCS Pipeline Using GPGPU and VTK 203

over a finite time interval (¢, f ¢) for a grid of seed points Xo. This is typically the
most computationally intensive aspect of LCS identification since the seed grid may
be composed of millions of material points especially in 3D flows. Furthermore, the
integration of Eq. (2) for each seed point typically requires thousands of integration
steps or more, and each integration step can require several space-time interpolations
of u(x, #). Furthermore, this process may be repeated for a time series of seed grids
at different ¢y to obtain the time evolution of LCS. We note that the high resolution
of seed points is needed in part for finite differencing to compute VF;Of (xp)-
Alternatively, integration of the variational equations, as performed in [15], may also
be used to obtain the linearized flow map directly. However, sufficient resolution is
still needed for LCS detection, especially when ridge extraction is performed [24].

It has been our experience that two major deterrents for wider adoption of LCS
computations for flow post-processing are (1) computational time and (2) ease of
use. With regards to (1), we will discuss the use of general purpose computing on
graphics processing units (GPGPU) for accelerating flow map computations. This
work builds on previous works of [7, 8, 13]. With regards to (2), we will discuss the
use of the Visualization Toolkit (VTK) for creating an LCS computational pipeline
that on the “front-end” is capable of handling various input data, and on the “back-
end” facilitates visualization of LCS with standard flow analysis tools. In Sect. 2
we describe the main component of the LCS computational pipeline. In Sect. 3 we
describe the implementation of the flow map computation on the GPU and results
for various applications, ranging from 2D Cartesian to 3D unstructured velocity data
processing. In Sect. 4 we will discuss some results and relationship with previous
work.

2 LCS Pipeline

Here we describe a pipeline developed to process velocity field data for the purpose
of computing LCS. This pipeline was written in C++ and will be made openly
available on GitHub (www.github.com/FlowPhysics). This pipeline was developed
using an object-oriented approach to create filters (classes that modify data) that
can be extended or modified with minimal effort. Specifically, this pipeline makes
extensive use of the popular Visualization ToolKit (www.vtk.org). VTK is a broad
collection of open-source libraries for 3D computer graphics, image processing and
visualization. The filters that we developed adhere to VTK coding standards and
conventions for modularity, portability and debugging. We also chose to develop
our pipeline using VTK for two additional reasons. First, VTK has a number of
classes for reading standard file formats and data grid types commonly used by the
fluid mechanics community. We could therefore leverage existing functionality to
better support input from a variety of applications. Second, open-source programs
for visualizing scientific data such as ParaView and Vislt are built on VTK.

www.github.com/FlowPhysics
www.vtk.org

204 S. Ameli et al.

Data Handling Computations Visualization
[Reader]—»[Cache]—»[Interpolator]—»[Flow Map]—»[Cauchy Green]7
Multi Pass
Single Pass

L———— | Seed Grid LCS Rendering

Fig. 1 Pipeline architecture

Developing an LCS pipeline in VTK facilitates integration with these programs,
and alternatively development of custom rendering for a stand-alone software.

VTK is highly object-oriented and supports a pipeline architecture that general-
izes the connection and execution of algorithms. The benefits of this methodology
are (1) a universal interface between different filters in the pipeline, (2) greater
control over information flow to better manage cache. The pipeline enables stream-
ing of data, which is important for the application here because unsteady velocity
field data are typically stored by a series of files that are often altogether too large
to be loaded in memory. Streaming requires the use of time-aware filters and for
this we developed time-related request keys, similar to the approach described by
Biddiscombe et al. [4]. This pipeline does not support spatial streaming of velocity
data for applications where individual time frames are too large for memory.

Our pipeline architecture includes the following custom filters, which are
connected as shown in Fig. 1. We note that the pipeline does not represent data
flow, but rather connectivity of filters and the management of requests.

Reader. A reader filter was developed to accept a variety of input data. VTK
contains a number of classes to load various types of data (e.g. structured and
unstructured grid data) and file formats. There are few readers in VTK that are
time-aware, and those may only support one or a few file formats. Our filter
implements an reader class that casts to the appropriate readers of both legacy
and XML file types to support 11 file formats commonly used in VTK. This filter
provides additional functionality by providing two different types of output based
on requests of the pipeline. Output can be either a single data object or a data
object that encapsulates multiple data objects depending on if the request comes
from the Seed or the Cache filter. This filter also adds metadata on output objects
such as times and indices that are needed throughout the pipeline to facilitate
temporal streaming and interpolation. Lastly, this filter provides a framework for
implementing necessary pre-processing of velocity data, such as tetrahedralization
as motivated below.

Cache. This filter is connected to the output of Reader. The Cache filter is
essentially a wrapper that manages VTK’s vtkTemporalDataSetCache class.

Development of LCS Pipeline Using GPGPU and VTK 205

It stores a window of the last requested data time frames. The amount of data cached
depends on the upstream request. This filter is used to avoid repetitive streaming
processes in the pipeline and deletes unnecessary data on memory.

Interpolator. This filter is used to interpolate the velocity field data in space
and time. Data in the pipeline before this filter are provided discretely and all
filters after Interpolator treat velocity data as continuous. Tracers are updated
altogether each time step. This ensures that tracers are requesting the same flow field
information each update step to best handle data streaming and memory utilization.
This is also consistent with our GPU implementation whereby tracers are updated
altogether to keep threads short-lived. We note that both space and time interpolation
is performed on the GPU. Specifically, a window of velocity data frames (nominally
two velocity files for linear interpolation) are loaded on the GPU’s memory, and
interpolation is performed on the GPU as necessary as integration proceeds between
these time frames.

Seed. This filter is used to initialize the seed points where the CG tensor is to be
sampled. Currently these locations are defined as structured grid data. This filter
defines their initial conditions, other attributes, and for unstructured velocity data
computes which cell in the velocity field mesh each seed point is located in. While
the seed grid are nominally the locations where the CG tensor is evaluated, highly
localized auxiliary points may also be defined about each seed point for improving
flow map gradient computation as discussed below.

Flow Map. This filter maps the seed points forward in time. Therefore it is
connected to both Seed and Interpolator. It is capable of implementing
various types of integration routines, e.g. single step (Runge Kutta) and multi step
(e.g. Adams Bashforth) methods. The same points passed from the input (Seed)
are passed to the output with the final seed point locations added as a vector
attribute to the point data. If a trajectory leaves the spatial domain of the velocity
data, two options are possible. The CG tensor evaluation can be performed early
at all locations relying on this trajectory. Alternatively, velocity extrapolation can
be performed inside the interpolation filter, however one must take care is this
regard [26,30].

Cauchy-Green. This filter calculates the finite time Cauchy-Green strain tensor
over the seed points using the initial and final point locations output from Flow
Map. Currently, this is performed using standard central difference formula for
the flow map gradient matrix entries. This differencing can be applied directly to
the evolution of the seed point grid, or by differencing auxiliary points attributed
to each seed location as described above. The auxiliary point method is more
computationally expensive, but can provide more accurate CG tensor computation
at less computational expense than an equivalent increase of seed grid resolution
when seed spacing is reduce by more than 1/2. However, an equivalent increase in
seed grid resolution also improves resolution of the CG tensor field, which is not
accomplished through the auxiliary points method. Additionally, the auxiliary point

206 S. Ameli et al.

method can result in missed structures, when LCS are not properly straddled by
points used in finite differencing [29, 31]. This filter also computes the eigenvalues
and eigenvectors of the CG tensor at each seed point, which are commonly used for
LCS detection. The seed points are passed to the output with the eigenvalue/vector
fields added as point data attributes.

LCS. This filter processes the output from the Cauchy Green filter to apply
criterion for LCS detection, for example, further processing of FTLE field data,
such as Gaussian smoothing to remove computational noise as well as C-Ridge
computation [23, 24]. While not currently implemented, strainline and shearline
computation as described in [10] could be implemented in this filter.

Visualization. This is not a separate filter in our pipeline, but we have separated
this conceptually. One important benefit of using the new pipeline functionality of
VTK is that we can compile each filer to a shared library that can be loaded by the
ParaView plugin manager, so an end user can simply import the filters as plugins
in ParaView and then use these to create a pipeline for computing and visualization
of fields defined from the CG filter (e.g. FTLE), or visualize features from the LCS
filter. We note that support for FTLE computation was recently added to Vislt [2] as
used by Ozgokmen et al. [18].

3 Flow Map Computation on the GPU

The computation of the CG tensor field requires the advection of a large set of
tracer trajectories. Since each tracer moves independently, these calculations present
a parallel workload. GPGPU was used to perform acceleration/parallelization of this
computation. On the hardware side, GPUs are widely available, cheap and scalable
and on the software side GPU programming has become widely accessible, portable
and supported by various compilers.

We used NVIDIA’s compute unified device architecture (CUDA) platform [1].
Optimization of a CUDA program depends somewhat on the GPU architecture used.
We report results run on a consumer-level graphics card with the NVIDIA GeForce
GTX 670 GPU and the higher-end NVIDIA Tesla K20 GPU. Both GPUs are based
on the Kepler architecture. GeForce GTX 670 has peak theoretical double floating
point performance of 0.19 TFlops whereas Tesla K20 has peak theoretical double
floating point performance of 1.17 TFlops. While GPU threads are plentiful and can
be launched and terminated with minimal overhead, performance of parallelized
flow map (trajectory) computation is primarily limited by memory bandwidth.

For the GPU implementation only registers, global memory and constant mem-
ory were utilized. Registers were used by individual threads to store local variables
in specific interpolation and integration kernels discussed below, and were reused in
each kernel to the greatest extent possible. Since constant memory is read only and
limited to 64 kb but can be accessed by all threads, we used this for mesh parameters

Development of LCS Pipeline Using GPGPU and VTK 207

and other constants. Tracer and velocity field arrays were always stored on global
memory.

Each streaming multiprocessor (SMX) can run up to 16 resident blocks or 2,048
resident threads concurrently for the architecture we used. A common target in
optimizing the code was to make sure every streaming processor had roughly 2,048
resident threads running at any given time. The number of registers available per
SMX limits the number of threads that can reside on a SMX. Since the number
of registers were limited to 64 K per multiprocessor, this implied that every thread
needed to use only 31 registers for 100 % occupancy. We developed our kernels, as
discussed below, to keep register usage nominally within this bound.

3.1 Implementation

For the purpose of explaining the implementation and performance results we
focus discussion on the 4th order explicit Runge-Kutta integration method (RK4).
To decrease register usage and hence improve GPU utilization, we broke up the
integration kernel into smaller kernels. For example, RK4 requires the vector field
to be evaluated at four different locations in space-time for a single update step.
These interpolations are done as separate kernels. Furthermore, for unstructured grid
data each interpolation requires a cell-search, i.e. determination of which velocity
grid cell the interpolation point is located. Therefore, for each integration step, eight
kernels are run; four kernels to evaluate the velocity field, and each of these requires
a preceding cell-search kernel call. This strategy involves the use of a large number
of threads that are short-lived, which are what GPUs are designed to handle. Using
this strategy also enables the CG tensor to be evaluated at any time step during
the integration interval (fy,) with minimal effort. This can be advantageous if
the CG tensor is to be evaluated early for trajectories that leave the fluid domain
before the full integration interval is reached. This is common with velocity data
coming from modeling or measurement over a truncated domain. But moreover,
some LCS detection strategies require certain criteria to be evaluated on the fly as
integration proceeds. This need also motivated updating tracers synchronously for
each integration step, which is consistent with maintaining efficient data flow in
our pipeline, Sect. 2. That is, the pipeline is most efficient if all upstream requests
require the same velocity data loaded in memory. We note however that velocity data
is loaded into GPU memory only every time a new velocity data file is needed, not
every integration time step. Figure 2 shows the runtime comparison of the single-
kernel code and split-kernel code. It can be seen that split-kernel strategy executes
in roughly 30 % less time for all by very small seed grid sizes.

We use an efficient local cell search strategy for unstructured grids [27]. We
have demonstrated that this method outperforms other cell search methods we have
tested such as the structured auxiliary mesh approach, and VTK’s Kd-tree and Oct-
tree methods. This method is designed for tetrahedral grids (or triangular grids
in 2D). Therefore, other grid topologies of velocity data that might need to be

208 S. Ameli et al.

2D unstructured 3D unstructured
40 30

30 20

20
10

10

percent decrease in runtime
percent decrease in runtime

[2 4 6 8 10 12 0 05 1 15 2 25 3 3.5 4 45

number of trajectories (in millions) number of trajectories (in millions)

Fig. 2 Runtime comparison between a single-kernel RK4 time step implementation and a split-
kernel RK4 time step implementation. Graphs plot the percent decrease in runtime of the split
kernel implementation from that of the single kernel implementation. Runs were performed on
both the 2D and 3D unstructured data examples described below

processed are tetrahedralized using built in VTK functionality as a preprocessing
step in the Reader filter. This enables a single, efficient cell search algorithm to be
used, which alleviates the need to develop and optimize different interpolation and
integration kernels for different velocity grid topologies. However the tradeoff is that
piece-wise linear representation using a tetrahedral grid may degrade interpolation
accuracy when the native CFD grid has higher order elements.

3.2 Performance

Most of the processing time for the CG tensor field computation is spent inside
the velocity field interpolation function. This function gets called one or more
times each integration step for each trajectory update. Efficiency of this function
is a main determinant of computational time. The interpolation function is mainly
dependent on the grid topology of the velocity data, e.g. interpolation on Cartesian
grids differs in strategy and performance than interpolation on unstructured grids.
Different kernels were developed to handle interpolation on different grid types.
The efficient cell search algorithm for tetrahedralized unstructured grid data that
is used readily facilitates spatial interpolation as described in [27]. We present
results for four different grid types considered: 2D Cartesian, 3D Cartesian, 2D
unstructured, 3D unstructured. Specifically, the example applications include the
double-gyre flow [29], which has become a standard test case for LCS computations
(2D Cartesian); the 3D Rayleigh-Bénard convection cell [17] (3D Cartesian); a
coronary stenosis model [28] (2D unstructured); and an abdominal aortic aneurysm
(AAA) model [3] (3D unstructured). These examples are shown in Fig. 3.

Figure 4 plots the performance results from the GeForce and Tesla GPUs. The
values plotted are the runtimes on the respective GPU normalized by the serial CPU

Development of LCS Pipeline Using GPGPU and VTK 209

Double gyre Vascular stenosis
Velocity .
e — o Velocity
N RN AR
s ONNT N
TISNNV L L/ooTY
o f{(NN RS ‘\xw
oa PIVNCL [
SN2 x\\\\\A////
02 \\\‘\k///// \l\ e = e — -

LCS

Convection cell
PR

Velocity LCS

Velocity LCS

Fig. 3 Snapshots of the flow fields and LCS from the four applications used for performance
testing, clockwise from upper-left: double gyre [29]; vascular stenosis [28]; abdominal aortic
aneurysm [3]; Rayleigh-Bénard convection [17]

runtime, which gives the speedup over serial CPU processing. The CPU used was
an Intel Core 17-3770 Ivy Bridge 3.5 GHz processor and the implementation was
FlowVC [25], which was written in C. We observed up to roughly 70x speedup
for computations on the 2D Cartesian data down to roughly 12x speed up for 3D
unstructured grid data. As expected, the Tesla K20 yields higher speedup due to a
higher number of streaming multiprocessors. The AAA velocity data was specified
on an unstructured tetrahedral grid of 1.01 million elements. Unstructured velocity
grids up to several million elements were tested and yielded similar speedup results
as the AAA model.

We note that we achieved significant performance improvement by properly
coalescing tracer grid arrays, which is common practice, whereby nearby threads
processed tracer data coalesced in memory. We did not notice any improvement of
performance by sorting velocity field data arrays. This is because as the trajectories
of the seed grid evolve, trajectories with nearby indices in memory (and hence
locally processed on the GPU) do not necessarily require velocity data that is
localized in space. A recent solution to this problem was proposed by Chen and Hart

210 S. Ameli et al.

1Y
o

75 40
- # - GeForce GTX 670
70 || —=—Tesla K20 (GK110) 35
j=)
E 65 6 ‘/‘/‘—/—<
) 5 30
g 60 3
j=%
s 55 g%
3 oo o g .- .
2 50 I S & 20f .- e
45 /"’ - - - GeForce GTX 670
@ 15 —s—Tesla K20 (GK110)|
40 &
1 1.5 2 2.5 3 35 4 4.5 1 1.5 2 2.5 3 35 4 45
Trajectories compute (in millions) Trajectories compute (in millions)
c d
32 18

- o - GeForce GTX 670
31 17 [| —s—Tesla K20 (GK110)

2 = 16
% 5 15 ///——
: :
14
o =
2 281 B
2 P § 13
= 27 b [o .
- # - GeForce GTX 670 T
26 —=—Tesla K20 (GK110)| 1ne-
1 1.5 2 25 3 35 4 45 1 1.5 2 25 3 35 4 4.5
Trajectories compute (in millions) Trajectories compute (in millions)

Fig. 4 Speedup of particle trajectory computation on a GeForce GTX 670 GPU and a Tesla
K20 GPU compared to serial processing on an Intel Core i7-3770 CPU. All computations were
performed using double precision for floating point variables. (a) 2D Cartesian. (b) 3D Cartesian.
(¢) 2D unstructured. (d) 3D unstructured

[6], which reorganizes particles into spatially coherent bundles as they are advected
to improve memory coherence and shared-memory GPU performance.

3.3 Verification

Computations performed on the GPU were verified against existing CPU code that
has been extensively used and tested, FlowVC. We present verification data from
the 2D Cartesian and 3D unstructured grid applications, as these cases represent
the extrema in results from the four examples considered. For each application we
released several thousand tracers in the domain and integrated their trajectories for
the nominal minimum time needed for LCS computation. Specifically, we chose this
time based on the AAA model, and scaled the other integration times by the nominal
edge size x; divided by the mean velocity magnitude (u(x,?)) at peak flow. This
defines a characteristic time scale similar to use of the CFL number. This ensured
that all cases were integrated over roughly the same number of elements in their
respective domains. We performed these computations using the GPU and CPU

Development of LCS Pipeline Using GPGPU and VTK 211

codes on the GeForce GTX 670 and Intel Core i7-3770. The average error was
defined by computing of the L, norm of the differences in tracer locations over time
between the two runs, and averaging over all tracers as follows

1 N
ep(®) = = X [xPC0 —xPC@)] -

i=1

where N is the number of trajectories, x,.D G (¢) is the trajectory of tracer i computed
on the GPU using double precision floating point numbers, xiD € (t) is the trajectory
of tracer i computed on the CPU using double precision floating point numbers,
and xP9(0) = xP€(0). In all applications the error stayed below 1 x 10710,
indicating that both GPU and CPU implementations were performing equivalent
tracer trajectory computation.

Single precision calculation can be several times faster than the double precision
calculation, however accuracy may be unacceptable. The results generated using
a single precision floating point GPU implementation were compared against the
double precision CPU results. As described above, the average L, norm of the error
in trajectories of several thousand tracers was computed from a single precision
GPU run and a double precision CPU run as

)

N
es(t) = %Z ||fo(t) — x’,DC(t)|

i=1

where xlSG(t) is the trajectory of tracer i computed on the GPU using single
precision for floating point variables. For the 2D Cartesian data, we noticed fairly
acceptable errors in tracer trajectories and subsequent LCS computation. However,
for the more complex 3D unstructured grid data, we notice unacceptable degradation
in accuracy, e.g. to a point where noticeable degradation of the FTLE field occurred.
The errors e4(¢) and e4(¢) are plotted against integration time for these two cases in
Fig. 5 using the NVIDIA GeForce GTX 670 GPU.

Because the plots in Fig.5 represent averages over many tracers, some tracer
trajectories may deviate to far greater extent than the mean values shown. Indeed,
in the AAA flow, some tracers were advected to different arterial branches based
on these errors, which has important consequences for that application. Not
surprisingly, errors can be worse near LCS due to inherent sensitivity to initial
conditions at these locations, which can be problematic for accurate LCS detection.
In addition, while we consider the double precision CPU results as a baseline for
comparison, this does not imply that these results represent the “true” trajectories.
The double precision CPU computations are subject to normal truncation and round-
off errors. However, since double precision computation represents the de facto
method for minimizing numerical error, and since no application considered nor
of practical importance has a closed-form analytic solution, this was deemed an
appropriate baseline for comparison.

212 S. Ameli et al.

(Y
o

x107

0.012

0.008

0.004

average L, norm of position errors

average L, norm of position errors

normalized time normalized time

Fig. 5 Error between single precision (solid line) and double precision (dashed line) GPU
computations compared to a double precision CPU computations versus integration time for the
double gyre flow (left) and AAA flow (right). Integration times have been normalized and the value
of 1.0 approximately represents the nominal minimum integration time needed to compute LCS
for each application. (a) 2D Cartesian. (b) 3D unstructured

4 Discussion

We have developed a modular pipeline for LCS computation that is capable of
loading a wide variety of fluid mechanics data, and that can be easily interfaced
with ParaView for visualization of LCS computational results alongside other flow
visualization tools. This pipeline was designed to be modular and flexible so that
modifications and additions can be made with minimal effort.

As the LCS method has gained considerable popularity in the past few year,
there have been several developments to improve computation and visualization of
LCS. Strategies have been devised so that tracer seeding can be adapted to cluster
sampling of the flow map near LCS for improved detection [8,16,21,22]. Also, since
vector field interpolation is computationally intensive, strategies have also been
developed to locally approximate the flow map [5], which can be beneficial when
time series of tracer grids are considered. As well, trajectory computations obtained
in a hierarchical manner have been considered for efficient FTLE computation [11].
We note that sampling the flow map (gradient) needs to be highly resolved in
space but not necessarily time for LCS computations. That is, sampling in space
is driven by LCS identification methods; mainly computation of the flow map
gradient or subsequently the CG tensor field. Sampling time is done primarily for
visualizing the evolution of the structures. Regardless of the strategy of sampling
or interpolating the flow map or its derivative over the fluid domain, this process
can be parallelized since advection of tracers can be performed for the most part
independently. Because of this high degree of parallelism, and the fact the LCS
are typically used for desktop postprocessing and flow visualization, many-core
implementation on a single workstation is desirable, as opposed to a visualization
cluster, which are less accessible.

Development of LCS Pipeline Using GPGPU and VTK 213

Jimenez and Vankerschaver [13] discussed the computation and visualization
of FTLE by GPGPU using CUDA. They also made their source code publicly
available [12]. Their implementation was, by their own admission, naive since it
only could handle FTLE computation for analytically defined vector fields. This
greatly reduced memory accesses that, as discussed above, are the bottleneck in
computing FTLE fields using GPU processing in practical applications. Garth
etal. [8] and Hlawatsch et al. [11] leveraged GPU processing for FTLE computation
as well, though these papers did not discuss details of their implementation or
performance results as this was not a main focus. The recent paper by Conti
et al. [7] described FTLE computation for bluff body flows using OpenCL, which
allows implementation on mixed architectures, e.g. AMD’s accelerated processing
units. Their implementation was specialized to remeshed vortex methods for bluff
body flows that involve mesh-particle interpolations previously tailored for GPU
implementation [20]. They were able to achieve around one order magnitude
speedup compared to serial CPU implementation, similar to what we observed here.
However, their application was specialized to a particular flow problem. Most LCS
computation is performed as a post processing step on fluid velocity field data. Since
this is the most common and general scenario, it was the one which we developed
our framework around, consistent with the design specification of our LCS pipeline.

We considered application to 3D flow and flow on unstructured grids, as [7, 13]
reported performance results for 2D flows on structured grids. As shown and
discussed above, we have run this implementation to integrate millions of tracers
on velocity grids with several million element. This represents a reasonable limit
for most LCS applications. For significantly larger velocity field grids, or tracer
grids, one will overflow the global memory for the GPU. We generally noticed
peak performance when kernels were kept within register memory bounds. This
required each trajectory update to be divided into a series of kernels. Therefore,
kernels were very short. Because of the way data is processed through our pipeline,
we perform synchronous integration between the tracers. We believe this has
advantages for LCS detection as well. For example, in truncated domains, which
represent the vast majority of fluid mechanics data, tracers leave the domain before
the finite time interval being considered for flow map computation. But perhaps
more importantly, one may want to have access to the CG tensor at various times.
Most LCS criteria are a one parameter family dependent on the chosen integration
window. Using one integration window may identify a manifold as an LCS, but
another integration window may not. Similarly, a manifold may satisfy one LCS
criterion but not the other for a particular integration time. Therefore, having access
to this information enables implementation of methods that may depend on how
strain rate or direction changes over the integration time parameter. Or alternatively,
schemes that adaptively sample the flow map based on CG tensor information may
need sequential access to this information.

While this pipeline can function as a stand alone program, it can also be
compiled as libraries to be used with ParaView. Such integration provides a natural
platform for visualizing not only LCS computations, but also integrating these
results with other existing flow visualization tools provided by this programs, and

214

S. Ameli et al.

also GPU-based visualization techniques available. Indeed, LCS as a collection of
codimension one surfaces are rarely useful in understanding the flow. Knowledge
of these manifolds must be integrated with other knowledge of the flow to gain
fundamental insight into the flow topology, and these platforms provide significant
capability in this regard.

Acknowledgements This work was supported by the National Science Foundation, award number
1047963.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. NVIDIA CUDA C Programming Guide, Version 4.2 (2012)
. VisIT — Software that delivers Parallel, Interactive Visualization. http://visit.llnl.gov/
. A. Arzani, S.C. Shadden, Characterization of the transport topology in patient-specific

abdominal aortic aneurysm models. Phys. Fluids 24(8), 081,901-1-16 (2012)

. J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, D. Thompson, Time dependent processing

in a parallel pipeline architecture. IEEE Trans. Vis. Comput. Graph. 13(6), 1376-1383 (2007)

. S.L. Brunton, C.W. Rowley, Fast computation of finite-time Lyapunov exponent fields for

unsteady flows. Chaos 20(1) (2010)

. M. Chen, J.C. Hart, Fast coherent particle advection through time-varying unstructured flow

datasets (2013, Preprint). http://graphics.cs.illinois.edu/papers/fastvection

. C. Conti, D. Rossinelli, P. Rossinelli, GPU and APU computations of finite time Lyapunov

exponent fields. J. Comput. Phys. 231, 2229-2244 (2012)

. C. Garth, F. Gerhardt, X. Tricoche, H. Hagen, Efficient computation and visualization of

coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. 13(6), 1464—
1471 (2007)

. G. Haller, A variational theory of hyperbolic Lagrangian coherent structures. Physica D 240(7),

574-598 (2011)

G. Haller, FJ. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows.
Physica D 241, 1680-1702 (2012)

M. Hlawatsch, F. Sadlo, D. Weiskopf, Hierarchical line integration. IEEE Trans. Vis. Comput.
Graph. 17(8), 1148-1163 (2011)

R. Jimenez, J. Vankerschaver, CUDA_FTLE. http://www.its.caltech.edu/~raymondj/LCS/
cuda_ftle-0.9.tar.bz2

R. Jimenez, J. Vankerschaver, Optimization of FTLE calculations using nVidia’s CUDA.
Technical report, California Institute of Technology, 2009. http://www.its.caltech.edu/~
raymondj/LCS/FTLE_on_GPU.pdf

C.K.R.T. Jones, S. Winkler, Invariant manifolds and Lagrangian dynamics in the ocean
and atmosphere, in Handbook of Dynamical Systems, vol. 2, ed. by B. Fiedler (Elsevier,
Amsterdam/Boston, 2002), pp. 55-92

J. Kasten, C. Petz, 1. Hotz, B. Noack, H.C. Hege, Localized finite-time lyapunov exponent
for unsteady flow analysis, in Vision, Modeling and Visualization, ed. by M. Magnor,
B. Rosenhahn, H. Theisel (2009), pp. 265-274

F. Lekien, S.D. Ross, The computation of finite-time Lyapunov exponents on unstructured
meshes and for non-Euclidean manifolds. Chaos 20(1) (2010)

F. Lekien, S.C. Shadden, J.E. Marsden, Lagrangian coherent structures in n-dimensional
systems. J. Math. Phys. 48, 065,404-1-19 (2007)

T.M. Ozgdkmen, A.C. Poje, PF. Fischer, H. Childs, H. Krishnan, C. Garth, A.C. Haza, E.
Ryan, On multi-scale dispersion under the influence of surface mixed layer instabilities and
deep flows. Ocean Model. 56, 16-30 (2012)

http://visit.llnl.gov/
http://graphics.cs.illinois.edu/papers/fastvection
http://www.its.caltech.edu/~raymondj/LCS/cuda_ftle-0.9.tar.bz2
http://www.its.caltech.edu/~raymondj/LCS/cuda_ftle-0.9.tar.bz2
http://www.its.caltech.edu/~raymondj/LCS/FTLE_on_GPU.pdf
http://www.its.caltech.edu/~raymondj/LCS/FTLE_on_GPU.pdf

Development of LCS Pipeline Using GPGPU and VTK 215

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

R. Peikert, F. Sadlo, Height ridge computation and filtering for visualization, in Pacific
Visualization Symposium, Kyoto, ed. by 1. Fujishiro, H. Li, K.L. Ma (2008), pp. 119-126

D. Rossinelli, C. Conti, P. Koumoutsakos, Mesh-particle interpolations on graphics processing
units and multicore central processing units. Philos. Trans. R. Soc. A — Math. Phys. Eng. Sci.
369(1944), 2164-2175 (2011)

F. Sadlo, R. Peikert, Efficient visualization of Lagrangian coherent structures by filtered AMR
ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(5), 1456-1463 (2007)

F. Sadlo, A. Rigazzi, R. Peikert, Time-dependent visualization of lagrangian coherent struc-
tures by grid advection, in Topological Methods in Data Analysis and Visualization, ed. by
V. Pascucci, X. Tricoche, H. Hagen, J. Tierny (Springer, Dordrecht, 2010), pp. 151-165

B. Schindler, R. Fuchs, S. Barp, J. Waser, A. Pobitzer, R. Carnecky, K. Matkovic, R. Peikert,
Lagrangian coherent structures for design analysis of revolving doors. IEEE Trans. Vis.
Comput. Graph. 18(12), 2159-2168 (2012)

B. Schindler, R. Peikert, R. Fuchs, H. Theisel, Ridge concepts for the visualization of
lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization
II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs (Springer, Heidelberg/New York, 2012),
pp- 221-236

S.C. Shadden, FlowVC (Version 1) [Computer software]. Retrieved from http://shaddenlab.
berkeley.edu/software/

S.C. Shadden, Lagrangian coherent structures, in Transport and Mixing in Laminar Flows:
From Microfluidics to Oceanic Currents, chap. 3, ed. by R. Grigoriev (Wiley, Weinheim, 2012)
S.C. Shadden, M. Astorino, J.F. Gerbeau, Computational analysis of an aortic valve jet with
Lagrangian coherent structures. Chaos 20, 017,512-1-10 (2010)

S.C. Shadden, S. Hendabadi, Potential fluid mechanic pathways of platelet activation.
Biomech. Model. Mechanobiol. 12(3), 467-474 (2013)

S.C. Shadden, F. Lekien, J.E. Marsden, Definition and properties of Lagrangian coherent
structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys.
D: Nonlinear Phenom. 212(3—4), 271-304 (2005)

W. Tang, P.W. Chan, G. Haller, Accurate extraction of Ics over finite domains, with applications
to flight data analyses over Hong Kong International Airport. Chaos 20(1), 017,502-1-8 (2010)
M. Ufﬁnger, F. Sadlo, M. Kirby, C. Hansen, T. Ertl, FTLE computation beyond first-order
approximation, in Short Paper Proceedings of Eurographics 2012, Cagliari, pp. 61-64

http://shaddenlab.berkeley.edu/software/
http://shaddenlab.berkeley.edu/software/

Topological Features in Time-Dependent
Advection-Diffusion Flow

Filip Sadlo, Grzegorz K. Karch, and Thomas Ertl

Abstract Concepts from vector field topology have been successfully applied to
a wide range of phenomena so far—typically to problems involving the transport
of a quantity, such as in flow fields, or to problems concerning the instantaneous
structure, such as in the case of electric fields. However, transport of quantities in
time-dependent flows has so far been topologically analyzed in terms of advection
only, restricting the approach to quantities that are solely governed by advection.
Nevertheless, the majority of quantities transported in flows undergoes simultaneous
diffusion, leading to advection-diffusion problems. By extending topology-based
concepts with diffusion, we provide an approach for visualizing the mechanisms in
advection-diffusion flow. This helps answering many typical questions in science
and engineering that have so far not been amenable to adequate visualization. We
exemplify the utility of our technique by applying it to simulation data of advection-
diffusion problems from different fields.

1 Introduction

Vector field topology is a powerful tool for the analysis of vector fields, since it
reveals their overall structure and provides insights into their intrinsic dynamics.
In the visualization community, the problem of extracting topological features
has been extensively researched for more than two decades. Visualization by
traditional (stationary) 2D vector field topology builds on the concept of critical
points which represent isolated zeros of the vector field, i.e., isolated points where
velocity magnitude vanishes. By additionally extracting separatrices, i.e., sets of
stream lines that converge to these points in forward or reverse time, one obtains

F. Sadlo (<) * G.K. Karch ¢ T. Ertl

University of Stuttgart, Stuttgart, Germany

e-mail: Filip.Sadlo@visus.uni-stuttgart.de; karchgz @visus.uni-stuttgart.de;
ertl @visus.uni-stuttgart.de

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization I, 217
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__14,
© Springer International Publishing Switzerland 2014

mailto:Filip.Sadlo@visus.uni-stuttgart.de
mailto:karchgz@visus.uni-stuttgart.de
mailto:ertl@visus.uni-stuttgart.de

218 E. Sadlo et al.

the overall structure of a vector field, i.e., these sets of lines divide the domain
into regions of qualitatively different behavior. Nevertheless, there arise some
issues regarding the extraction of topological structures from time-dependent vector
fields. The separatrices no longer provide information on the true transport of
massless particles, since stream lines (or stream surfaces in 3D) only capture the
instantaneous structure of the field. Thus, an alternative approach has recently
gained importance that obtains a time-dependent counterpart to separatrices called
Lagrangian coherent structures (LCS). The LCS represent transport barriers in
time-dependent flow and can be obtained as ridges of the finite-time Lyapunov
exponent (FTLE) [7], which measures the separation of neighboring particles as
they are advected by the flow. This approach allows for qualitative analysis of
time-dependent flows, as the LCS separate regions of different behavior over time.

So far, however, only advective transport has been taken into account in
topology-based flow visualization, neglecting additional mechanisms that can cause
transport, such as diffusion. Diffusion is present in a wide range of physical and
mathematical processes including flows, where it leads to advection-diffusion flow
problems. Traditional LCS computed from the velocity field by means of the
FTLE obviously cannot depict the true transport of species of interest, such as
temperature or solubles, in time-dependent advection-diffusion flow. These LCS
exhibit substantial cross-flux of the species due to the involved diffusion and hence
cannot separate regions of qualitatively different advection-diffusion. By including
diffusion flux of the quantity under examination into the flow map computation,
we obtain FTLE ridges that are consistent with the true transport of the respective
quantity in advection-diffusion flow. Beyond the resulting LCS, we also show
the utility of combining the velocity field with the involved diffusion fluxes. The
resulting advection-diffusion field represents the instantaneous transport of the
quantity of interest—and because it represents a vector field, the entire body of
literature on flow visualization can be applied to it. We demonstrate this for the
example of temperature diffusion (thermal conduction) in flows by extracting,
additional to LCS, vortex core lines from this field and by providing respective
interpretations.

This chapter is organized as follows: In Sect. 2 we discuss related work. In Sect. 3
we introduce the advection-diffusion field that provides a basis for generic visualiza-
tion of advection-diffusion processes. Two existing feature extraction techniques are
briefly described in Sect. 4, while in Sect. 5 these features are extracted from three
advection-diffusion CFD datasets and discussed. Section 6 concludes this work.

2 Related Work

Flow visualization by topological features has proven successful in a wide range of
applications. The field was founded by the works of Perry and Chong [25], Helman
and Hesselink [9, 10], and Globus et al. [5]. About a decade later an increase in
research in this field has taken place, in the works of Loffelmann et al. [18] regarding

Topological Features in Time-Dependent Advection-Diffusion Flow 219

dynamical systems, and Weinkauf et al. with respect to new topological features—
starting with saddle connectors [40], and followed by connectors of boundary switch
curves [45]. They also proposed a first approach [41] to topological features that are
able to reflect the true transport behavior in time-dependent vector fields—motivated
by the incapability of traditional vector field topology in this respect due to its
definition by (instantaneous) stream lines. By introducing the concept of the local
Lyapunov exponent [19], later called direct Lyapunov exponent by Haller [7], and
finally called finite-time Lyapunov exponent (FTLE), into the field of visualization,
Garth et al. [4] and Sadlo and Peikert [29] provided a nowadays popular basis
for scientific visualization by means of topological features in time-dependent
vector fields. As proposed by Haller [7] and subsequently defined by Shadden
et al. [36], the local maximizing curves in the FTLE field, called Lagrangian
coherent structures (LCS), represent a time-dependent counterpart to separatrices.
Several (and even contradicting) definitions for these curves have been proposed by
Haller [7], Shadden et al. [36], and others. In the field of visualization, Sadlo and
Peikert [28, 29] proposed the extraction of LCS by means of height ridges [2].

It has to be noted that FTLE ridges can fail to represent LCS due to two
reasons: insufficient advection time [30, 36] or shear. More recently, Sadlo and
Weiskopf [31] have generalized 2D vector field topology to time-dependent vector
fields by replacing the role of stream lines by streak lines in the concept, and
Uffinger et al. [44] have extended this approach to 3D. It is worth noticing that
these approaches (and the recent work by Haller [8]) obtain only LCS caused
by hyperbolic mechanisms—avoiding those caused by shear flow which do not
necessarily represent transport barriers even if long advection times are used for the
FTLE computation (resulting in sharp ridges). We refer the reader to the state of the
art report by Pobitzer et al. [26] for further details on topology-based visualization in
time-dependent vector fields. The FTLE has further been extended to tensor fields by
Tricoche et al. [43] and Hlawatsch et al. [11]. Furthermore, it has been applied to a
wide range of problems including video analysis by Kuhn et al. [16]. More recently
the FTLE has been extended to uncertain vector fields by Schneider et al. [35],
while Otto et al. [20] extended the traditional instantaneous vector field topology to
uncertain vector fields.

Further works beyond hyperbolic topological structures include those focusing
on critical point analogues by Kasten et al. [15] and Fuchs et al. [3], and those by
Peikert and Sadlo [22-24] to reveal the structure in recirculating flow, in particular
vortex breakdown bubbles. These have been followed up by techniques due to
Tricoche et al. [42] and Sanderson et al. [32] for visualizing the structure of the
recurrent magnetic field in Tokamak fusion reactors. More recently, [34] applied
FTLE ridges for analyzing the air flow in revolving doors. In contrast to our results,
[34] reports only a very loose relation between FTLE ridges and temperature,
possibly because thermal conduction (numerical diffusion in the solver) or sub-scale
mixing due to turbulence was not taken into account.

Only few works have so far been presented related to advection-diffusion flow.
The most closely related work is by Karch et al. [14], where we present an
interactive dye advection technique that can take into account diffusion fluxes,

220 E. Sadlo et al.

i.e., can move the virtual dye according to the true advection-diffusion transport
of quantities. Other works have made use of diffusion-related concepts for visual-
izing advection-only flow, such as the reaction-diffusion technique by Sanderson
et al. [33], or the anisotropic diffusion approach by Biirkle et al. [1].

3 Advection-Diffusion Field

In [14] we achieved a visualization of the transport of quantities in advection-
diffusion flow by moving virtual dye according to the combination of advective
fluxes (i.e., the velocity field) and diffusion fluxes. While we formulated the dye
advection by means of the finite volume method, i.e., in terms of fluxes at the
boundaries of each sampling cell, we derive here the so-called advection-diffusion
field, a vector field describing the true transport of the respective quantity, such as
temperature or solubles, due to advection-diffusion.

The advection-diffusion vector field is derived from the dye advection formula-
tion [14] as follows. Pure advection of the virtual dye concentration ¢ = ¢(x,¢)
with respect to the simulated velocity field u = u(x, ¢) is modeled by

¢

— 4+ (Vp)u = 0.

5+ (V)
Including passive diffusion, i.e., the motion of the dye with respect to the diffusion
fluxes of the simulated quantity ¥ = ¥ (x,), such as temperature or a soluble, with
its constant of diffusivity Dy, according to Fick’s law of diffusion, reads

0
Lt (V= (V)Dy VY

and leads to Eq. 7 from [14]

d¢

m + (Vg)(u—DyVy) =0.

This represents again a pure advection problem, however, now with respect to the
advection-diffusion field

Uy =u—D,,,V1ﬂ. (1)

Hence, uy describes the transport of the quantity ¥ by means of advection-
diffusion. Since uy represents a vector field, all techniques from flow visualization
can be applied to it, however, with the difference that they then reveal the transport of
Y with respect to advection-diffusion, instead of the transport of massless particles
due to u, as in the majority of traditional flow visualization.

Topological Features in Time-Dependent Advection-Diffusion Flow 221

In this work we present the extraction of topological features from uy and show
how they can be interpreted. The contribution of this chapter is not in terms of
techniques for the extraction of topological features per se, but the introduction
of the advection-diffusion field and in particular the application of topological
feature extraction to this field. To the best of our knowledge, there has not been
any work on the visualization of features in advection-diffusion flow yet, and due
to the wide presence of advection-diffusion problems and the importance of the
visualization of the involved transport of quantities, we see this as an important
contribution to the field of scientific visualization. The extraction of LCS, for
example, enables answering questions such as where heat is transported from by
advection-diffusion—since the LCS represent transport barriers with respect to
advection-diffusion. While the potential of visualization by LCS from uy, is evident,
we also provide examples how the topology-related concept of vortex core lines in
uy, can provide insight into the transport behavior of the quantity under examination.

The advection-diffusion field uy (x) can either be computed on the fly during
visualization, i.e., u(x) and Vir(x) can be interpolated/evaluated at required posi-
tions x and then combined according to Eq. 1, or it can be precomputed at the
nodes of the simulation grid and directly fed into existing visualization algorithms.
In this work we follow the latter approach since interchanging interpolation and,
e.g., multiplication is a common approach in visualization, in particular in feature
extraction (see, e.g., [39]). However, it has to be noted that it introduces (typically
negligible) error, which did not represent a problem in our experiments. We estimate
the gradient Vi (x) using least squares fitting according to [28]. Note that the
constant of diffusivity Dy that was used in the CFD simulation has to be available
for visualization, however, it is typically uniform and hence only a single number.

4 Feature Extraction

We exemplify feature extraction from the advection-diffusion field uy using LCS
by means of FTLE ridges (Sect. 4.1) and vortex core lines (Sect.4.2). In Sect. 5 we
present the results obtained from applying the feature extraction techniques to three
CFD results of advection-diffusion flow.

4.1 Lagrangian Coherent Structures

Lagrangian coherent structures serve as a replacement for separatrices from tra-
ditional vector field topology, with the important difference that they are able
to correctly depict transport in time-dependent vector fields. Several—and even
contradicting—definitions for coherent structures exist. Hussain [12] defined them
in terms of the curl of the velocity field, while Robinson [27] provided a more
general definition based on correlation of flow variables—both defining coherent

222 E. Sadlo et al.

structures as volumes in 3D vector fields. In contrast, in the definitions of Haller [6]
and Ide et al. [13], Lagrangian coherent structures represent the counterpart to
invariant manifolds, i.e., they separate regions of qualitatively different behavior.
As discussed in Sect. 2 it was proposed by Haller [7] and subsequently defined by
Shadden et al. [36] that ridges in the finite-time Lyapunov exponent (FTLE) field
represent LCS. In this work we follow the approach by Sadlo and Peikert [28] and
extract LCS from the FTLE field by means of height ridges [2]. To assure sufficiently
sharp ridges—according to Shadden et al. [36] a prerequisite for FTLE ridges
to represent LCS—we reject ridge regions where the modulus of the respective
eigenvalue of the FTLE Hessian is too small or where the FTLE value itself does not
reach a user-defined threshold. Due to space limitations, we refer the reader to [28]
for all details of our LCS extraction.

The FTLE is a scalar field that describes the separation of neighboring trajecto-
ries after a finite advection time interval 7. The FTLE at point x and time #, with
respect to the time interval 7" reads

1 1 I
000 10.7) = A (V91T ()T Vi)

where /Amax(+) represents the spectral norm || - || of a matrix with Ay.x(A) being
the major eigenvalue of matrix A. V¢;§+T (x) is the gradient of flow map ¢;8+T (x)
which maps starting points x(#y) of trajectories to their end points at time ¢y + 7'

to+T

;8+T(X) = x(%) + / u(x(7), 7) dr.

fo

Depending on the sign of 7, i.e., if forward or reverse trajectories are used for
the computation of the FTLE, the FTLE ridges represent either repelling (7" > 0)
or attracting (7 < 0) LCS. We color repelling LCS red and attracting ones blue.
It has to be noted that the FTLE field can be sampled independently from the
simulation grid on which u, or uy, is given. In this work we use uniform sampling
grids, although some of the used advection-diffusion CFD simulations are given
on unstructured grids. The integration of the trajectories is accomplished by the
4th-order Runge-Kutta scheme.

4.2 Vortex Core Lines

Vortex core lines—sometimes also denoted as vortex axes—are in close relation
to topological features for several reasons. First of all, they are typically identical
to critical points of type center and focus in 2D flow. While in 3D the so-called
topological vortex cores due to Globus et al. [5] directly represent 1D manifolds of
spiral saddle critical points, the relation is less obvious for other definitions of vortex

Topological Features in Time-Dependent Advection-Diffusion Flow 223

core lines. Since not all vortex core lines represent stream lines, it is nowadays
more common to extract them according to the definitions by Levy et al. [17] or
Sujudi and Haimes [38]. In this work we use the definition by Sujudi and Haimes,
which identifies those points as part of a core line where velocity is parallel or
antiparallel to a real eigenvector of the velocity gradient and the other eigenvectors
are complex. If the flow is projected on the eigenplane spanned by the complex
eigenvectors, this definition corresponds to a critical point of type center or focus in
the projected field—further supporting the proximity of vortex core lines and vector
field topology. Due to the same reasons, spiral saddle and spiral source critical points
typically reside on vortex core lines according to Sujudi and Haimes. As with the
other feature extractions, we apply the concept to uy instead of u for analyzing the
transport of the quantity that is governed by advection-diffusion.

We extract the vortex core lines using the parallel vectors operator due to
Peikert and Roth [21], according to their algorithm that triangulates the faces of
each cell and solves for the points where the core lines intersect the faces. These
points are then connected by piecewise linear segments to obtain the final polyline
representation of the core lines.

5 Results

We demonstrate our approach using three advection-diffusion CFD simulations—a
static mixer (Sect. 5.1), a flow around a heating coil (Sect. 5.2), and a buoyant flow in
a room that is heated at its bottom and cooled at the top (Sect. 5.3). The FTLE field
(and its ridges) is computed on a uniform grid in the regions marked by black boxes,
while the u and uy, fields are evaluated at the original grid without resampling.

5.1 Static Mixer

The first simulation is steady-state and was conducted on a unstructured grid
consisting of 2,266,894 tetrahedra. It represents a mixing device that mixes a hot
and a cold fluid by means of a strong vortex that is maintained by the tangential
inflows. The mixed fluid is provided at an axial outlet at the top, see Fig. 1a. The
upper half of the solid boundary is not visualized to reveal the interior flow—the
removed part is illustrated by its edges and a half in wireframe representation. Hot
air at 700 K enters at the left lower inlet while cold air at 300 K enters at the lower
right inlet.

While in Fig. 1a the path lines follow the velocity field u, they follow the
advection-diffusion field uy, in Fig. 1b. It is apparent that the lines of the hot fluid
are attracted toward the center (which exhibits average temperature due to mixing)
in (b), starting right after they have left the inlet tube. This directly visualizes the
transport of heat by advection-diffusion from the left inlet, in contrast to (a) where

224 F Sadlo et al.

Fig. 1 Static Mixer flow example. (a) Visualization of u (advection only) by path lines (red:
hot; blue: cold; seeds by spheres), a vortex core line (green), and two transparent isosurfaces
(red: 550 K; blue: 450 K, same in (a)—(d)). (b) Same as (a), but path lines and vortex core line
visualizing advection-diffusion field uy. Hot path lines are initially forced toward the center by
heat diffusion while blue path lines are initially forced toward the wall due to heat diffusion from
the hot flow. (¢) Attracting LCS of u (light blue) are close to the isosurfaces (a subset of respective
reverse FTLE trajectories in gray). (d) Attracting LCS of uy, (light blue) depict regions where heat
is transported to by advection-diffusion (with a subset of respective reverse FTLE trajectories in
gray)

the lines only show the advection part—using (a) for the interpretation of heat
transport would give the wrong picture. Surprisingly, there is an asymmetry with
respect to the cold flow in (b). Since there is no negative heat, the blue lines of the
cold fluid are not attracted toward the center as they enter the mixer from the right
inlet—instead, they are pushed against the outer wall (see that these lines approach
the center vortex slower than the blue lines in (a)) because heat from the mixed fluid
at the center of the mixer is diffusing into the cold fluid. Hence, the blue lines in (b)
depict how heat contained in the cold fluid is transported by advection-diffusion—
it is ‘avoiding’ the heat from the warmer fluid. Because the center of the vortex
consists of mixed fluid, there is no detectable deviation between the vortex core line
in (a) and (b), i.e., heat is transported there almost purely by advection and therefore
the vortex core lines are basically identical.

To investigate the transport of heat from the inlets, we have computed LCS using
reverse-time FTLE on a regular sampling grid of 17 x 47 x 15 nodes from both the u

Topological Features in Time-Dependent Advection-Diffusion Flow 225

Fig. 2 Heating Coil flow example. (a) Path lines of u (white, advection only) seeded at circles
around coil (white spheres). (b) Path lines of uy (white, advection-diffusion) and of —D, Vyr
(red, diffusion only). Compared to (a), the white lines in (b) are attracted by the inner and outer
wall. This is due to thermal conduction (diffusion of heat) from the heated coil to the cooled walls

(Fig. 1c) and uy, (Fig. 1d) fields in the regions of interest marked by the black boxes.
Consistent with the observations and interpretation so far, the LCS of the hot flow
deviates toward the center in (d) while the LCS of the cold flow is attracted toward
the wall in (d). The LCS of the hot flow in (d) separates the region (bottom of the
image) where heat is transported from the left inlet by advection-diffusion. The LCS
of the cold flow in (d) separates the region (top of the image) that does not obtain
any heat on its way from the inlet. In contrast, the LCS in (c) are very similar to the
isosurfaces. Please note that the isosurface of average temperature (500 K) extends
to the center of the mixer in a helical manner.

5.2 Heating Coil

This dataset is quasi-stationary and consists of an unstructured grid of 93,227 cells,
including tetrahedra, pyramids, and prisms. Hence, we used a single time step for
a steady-type analysis. The simulation represents a heat exchanger—a heated coil
is immersed into an air flow with the inlet at its bottom and the outlet at the top
while the inner and outer boundaries (the two vertical tubes) are cooled, see Fig. 2.
Buoyant forces have not been employed, resulting in a rather simple flow.

In Fig.3c a subset of the reverse-time trajectories of u is shown that were
used for FTLE computation on a regular grid of 41 x 41 x 161 nodes within the
region of interest (ROI, black box). Figure 3a shows some vortex core lines (green)
extracted from u and some stream lines that have been seeded in their vicinity
(white tubes). In Fig. 3b, d, the same has been conducted for the advection-diffusion

226 F Sadlo et al.

Fig. 3 Heating Coil flow example, region of interest (black box) from Fig.2. (a) Vortex core
lines (green), some forward and reverse stream lines (white) seeded therefrom, and cross section
visualizing divergence (red: —0.5, blue: 0.5), all computed from u (advection only). (b) Same as
(a) but computed from advection-diffusion field uy,. The strong heat flux from the coil dominates
the recirculations at the downstream edge of the coil, hence these vortices disappear. (¢) LCS (cyan)
from reverse FTLE of u for comparison with a subset of used trajectories (gray). (d) LCS (cyan)
from reverse FTLE of uy, with a subset of used trajectories (gray). It is apparent that in (d) LCS
are repelled from the coil due to thermal conduction from the coil to the cooled walls. The LCS
separate the region that obtains heat by advection-diffusion from the respective part of the coil

field uy . It is apparent that the vortices along the coil are not present in (b). This is
because the transport of heat away from the coil by diffusion (see also stream lines
of —Dy V) is stronger than the advective recirculation at the downstream edge of

Topological Features in Time-Dependent Advection-Diffusion Flow 227

Fig. 4 Buoyant Flow example at time 24.474 s with transparent isosurfaces (red at 318.5 K; blue
at 308.5 K; same as in Fig.5), region of interest (black) used in Fig.5, and hot and cold plate.
(a) Path lines of u show advection. (b) Path lines of uy show transport of heat due to advection-
diffusion

the coil, resulting in heat transport that has no upstream component. The same can
be observed at the top left vortex. It is still present because it is a longitudinal vortex
oriented in direction of heat diffusion—however, one can see that the longitudinal
component is much stronger with respect to heat transport. Nevertheless, it is an
example where heat transport by advection-diffusion exhibits a vortex. The cross
sections in Fig.3a, b visualize V-u and V -uy, respectively. The 25th and 75th
percentiles of V -uy, are —0.276 and 0.0191, respectively (i.e., rather low compared
to 0.05 m/s average speed and 0.5 m ROI width). The direct impact of V -uy on
LCS (see below) is rather low since V -uy, is substantially smaller at the LCS.

We investigated the transport of heat from the heating coil by computing LCS
from reverse-time FTLE using u (Fig. 3c) and uy, (Fig. 3d). It is apparent that in (d)
the LCS are repelled from the heating coil toward the inner and outer walls. The
LCS region at the lowest turn of the coil in (d) separates the region that is reached
by the heat from the coil by means of advection-diffusion. The levels where the LCS
reach the inner and outer walls depict the points where heat is transported from the
heated coil to the cooled walls.

5.3 Buoyant Flow

The final example is a time-dependent simulation of buoyant flow consisting of
2,000 time steps simulated on a uniform grid of 60 x 30 x 60 cells. There is a region
heated at 348.15 K at its bottom and a cooled region at 278.15 K at its top, and
gravity is pointing downward. The rest of the walls are adiabatic. The buoyant flow
exhibits transient aperiodic convection, see Fig. 4.

Figure 5a shows some of the reverse-time trajectories used for FTLE computation
on a regular sampling grid of 41 x 41 x 41 nodes (black box) from u, while (b)
shows those computed from the advection-diffusion field uy. It is apparent that

228 F Sadlo et al.

Fig. 5 Buoyant flow example. (a) Trajectories in u. (b) Trajectories in uy . (¢) Reverse-time LCS
in u. (d) Reverse-time LCS in uy, depict region that obtains heat from hot bottom plate

many trajectories that show the transport of heat in (b) leave the domain at the hot
plate. The reason for this is that heat enters the domain in this region. In (a) there
is a vortex of u (green) located about the center between the cold and hot plumes
(visualized by the transparent red and blue isosurfaces). In (b) the vortex of uy, is
shifted toward the bottom of the domain and it is intensified (see white stream lines
of uy seeded in its vicinity). Here, the heat flux due to diffusion in the advection-
diffusion flow originating at the bottom hot plate rises and then diffuses partially into
the cold plume, causing the vortex to shift downward and accelerating the vortex.
Such vortices in heat transport can represent undesired configurations in advection-
diffusion flow because they can hinder the overall transport of heat.

In Fig. 5¢c, d we have computed reverse-time LCS from u and uy, respectively.
In (c) the LCS attaches to the center of the hot plate at the bottom—hence it partially
separates the domain in two regions: the region that obtains its flow from the bottom
right front corner of the domain and the region that obtains the flow from the bottom

Topological Features in Time-Dependent Advection-Diffusion Flow 229

left back corner region. In contrast, in (d) the LCS wraps the complete hot flow that
is generated by the bottom plate. In other words, the LCS in (c) shows where the flow
comes from, while in (d) the LCS shows where the heat comes from—it separates
the region that obtains heat from the bottom hot plate by advection-diffusion.

6 Conclusion

We proposed visualization of the advection-diffusion field, a field that describes
the transport of quantities due to advection-diffusion, and presented the extrac-
tion of topological features therefrom. These features give valuable insights into
transport processes due to advection-diffusion. We applied our approach to three
CFD datasets and provided interpretations that gave insight into the underlying
phenomena. We believe that visualization by means of topological features in
the advection-diffusion field has a high potential in many fields of science and
engineering, e.g., in heat exchanger design. As future work, we plan to apply our
approach to real-world problems and to extend it to advection-diffusion of vector
quantities. Future work could also follow [37] and compare path lines of u with
stream lines of —Dy V.

Acknowledgements This work was supported by the Cluster of Excellence in Simulation
Technology (EXC 310/1) and the Collaborative Research Center SFB-TRR 75 at University of
Stuttgart.

References

1. D. Biirkle, T. Preufier, M. Rumpf, Transport and anisotropic diffusion in time-dependent flow
visualization, in Proceedings of the IEEE Visualization, San Diego, 2001, pp. 61-67

2. D. Eberly, Ridges in Image and Data Analysis. Computational Imaging and Vision (Kluwer,
Boston, 1996)

3. R. Fuchs, J. Kemmler, B. Schindler, F. Sadlo, H. Hauser, R. Peikert, Toward a Lagrangian
vector field topology. Comput. Graph. Forum 29(3), 1163-1172 (2010)

4. C. Garth, G.-S. Li, X. Tricoche, C.D. Hansen, H. Hagen, Visualization of coherent structures
in transient 2d flows, in Topology-Based Methods in Visualization II, ed. by H.-C. Hege,
K. Polthier, G. Scheuermann (Springer, Berlin, 2009), pp. 1-13

5. A. Globus, C. Levit, T. Lasinski, A tool for visualizing the topology of three-dimensional
vector fields, in Proceedings of the IEEE Visualization, San Diego, 1991, pp. 3340, 408

6. G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos
10(1), 99-108 (2000)

7. G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid
flows. Physica D 149(4), 248-277 (2001)

8. G. Haller, A variational theory of hyperbolic Lagrangian coherent structures. Phys.
D: Nonlinear Phenom. 240(7), 574-598 (2011)

9. J. Helman, L. Hesselink, Representation and display of vector field topology in fluid flow data
sets. IEEE Comput. 22(8), 27-36 (1989)

230

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

F Sadlo et al.

J. Helman, L. Hesselink, Visualizing vector field topology in fluid flows. IEEE Comput. Graph.
Appl. 11(3), 36-46 (1991)

M. Hlawatsch, J. Vollrath, F. Sadlo, D. Weiskopf, Coherent structures of characteristic curves
in symmetric second order tensor fields. IEEE Trans. Vis. Comput. Graph. 17(6), 781-794
(2011)

F. Hussain, Coherent structures and turbulence. J. Fluid Mech. 173, 303-356 (1986)

K. Ide, D. Small, S. Wiggins, Distinguished hyperbolic trajectories in time-dependent fluid
flows: analytical and computational approach for velocity fields defined as data sets. Nonlinear
Process. Geophys. 9(3/4), 237-263 (2002)

G.K. Karch, F. Sadlo, D. Weiskopf, C.-D. Munz, T. Ertl, Visualization of advection-diffusion
in unsteady fluid flow. Comput. Graph. Forum 31(3), 1105-1114 (2012)

J. Kasten, I. Hotz, B. Noack, H.-C. Hege, On the extraction of long-living features in
unsteady fluid flows, in Topological Methods in Data Analysis and Visualization. Theory,
Algorithms, and Applications, ed. by V. Pascucci, X. Tricoche, H. Hagen, J. Tierny (Springer,
Berlin/Heidelberg, 2010), pp. 115-126

A. Kuhn, T. Senst, I. Keller, T. Sikora, H. Theisel, A Lagrangian framework for video analytics,
in Proceedings of the IEEE Workshop on Multimedia Signal Processing, Banff, 2012

Y. Levy, D. Degani, A. Seginer, Graphical visualization of vortical flows by means of helicity.
ATAA 28(8), 1347-1352 (1990)

H. Loffelmann, H. Doleisch, E. Groéller, Visualizing dynamical systems near critical points, in
Proceedings of the Spring Conference on Computer Graphics and Its Applications, Budmerice,
1998, pp. 175-184

E.N. Lorenz, A study of the predictability if a 28-variable atmospheric model. Tellus 17,
321-333 (1965)

M. Otto, T. Germer, H. Theisel, Uncertain topology of 3d vector fields, in Proceedings of the
IEEE Pacific Visualization Symposium, Hong Kong, 2011, pp. 67-74

R. Peikert, M. Roth, The “parallel vectors” operator — a vector field visualization primitive, in
Proceedings of the IEEE Visualization, San Francisco, 1999, pp. 263-270

R. Peikert, F. Sadlo, Topology-guided visualization of constrained vector fields, in Topology-
Based Methods in Visualization, ed. by H. Hauser, H. Hagen, H. Theisel (Springer, Berlin/New
York, 2007), pp. 21-34

R. Peikert, F. Sadlo, Visualization methods for vortex rings and vortex breakdown bubbles, in
Proceedings of the Joint Eurographics/IEEE VGTC Conference on Visualization, Norrkoping,
2007, pp. 211-218

R. Peikert, F. Sadlo, Flow topology beyond skeletons: visualization of features in recirculating
flow, in Topology-Based Methods in Visualization II, ed. by H.-C. Hege, K. Polthier,
G. Scheuermann (Springer, Berlin, 2009), pp. 145-160

A.E. Perry, M.S. Chong, A description of eddying motions and flow patterns using critical-
point concepts. Annu. Rev. Fluid Mech. 19, 125-155 (1987)

A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovi¢, H. Hauser,
On the way towards topology-based visualization of unsteady flow — the state of the art, in
Eurographics 2010 State of the Art Reports, Norrkoping, 2010, pp. 137-154

S.K. Robinson, Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23,
601-639 (1991)

F. Sadlo, R. Peikert, Efficient visualization of Lagrangian coherent structures by filtered amr
ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(6), 1456-1463 (2007)

F. Sadlo, R. Peikert, Visualizing Lagrangian coherent structures and comparison to vector
field topology, in Topology-Based Methods in Visualization II, ed. by H.-C. Hege, K. Polthier,
G. Scheuermann (Springer, Berlin, 2009)

F. Sadlo, M. Uffinger, T. Ertl, D. Weiskopf, On the finite-time scope for computing Lagrangian
coherent structures from Lyapunov exponents, in Topological Methods in Data Analysis and
Visualization II, ed. by R. Peikert et al. (Springer, Heidelberg/New York, 2012), pp. 269-281
F. Sadlo, D. Weiskopf, Time-dependent 2-d vector field topology: an approach inspired by
Lagrangian coherent structures. Comput. Graph. Forum 29(1), 88-100 (2010)

Topological Features in Time-Dependent Advection-Diffusion Flow 231

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

A. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, J. Breslau, Analysis of recurrent
patterns in toroidal magnetic fields. IEEE Trans. Vis. Comput. Graph. 16(6), 1431-1440 (2010)
A. Sanderson, C.R. Johnson, R.M. Kirby, Display of vector fields using a reaction-diffusion
model, in Proceedings of the IEEE Visualization, Austin, 2004, pp. 115-122

B. Schindler, R. Fuchs, S. Barp, J. Waser, A. Pobitzer, R. Carnecky, K. Matkovic, R. Peikert,
Lagrangian coherent structures for design analysis of revolving doors. IEEE Trans. Vis.
Comput. Graph. 18(12), 2159-2168 (2012)

D. Schneider, J. Fuhrmann, W. Reich, G. Scheuermann, A variance based ftle-like method for
unsteady uncertain vector fields, in Topological Methods in Data Analysis and Visualization
11, ed. by R. Peikert et al. (Springer, Heidelberg/New York, 2012), pp. 255-268

S.C. Shadden, F. Lekien, J.E. Marsden, Definition and properties of Lagrangian coherent
structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys.
D: Nonlinear Phenom. 212, 271-304 (2005)

K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovic, H.-C. Hege, H.-P. Seidel, Path line
attributes — an information visualization approach to analyzing the dynamic behavior of 3D
time-dependent flow fields, in Topology-Based Methods in Visualization 11, ed. by H.-C. Hege,
K. Polthier, G. Scheuermann (Springer, Berlin, 2009), pp. 75-88

D. Sujudi, R. Haimes, Identification of swirling flow in 3d vector fields, in Proceedings of the
12th AIAA Computational Fluid Dynamics Conference, 1995, pp. 95-1715

H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, H.-P. Seidel, Extraction of parallel vector
surfaces in 3D time-dependent fields and application to vortex core line tracking, in
Proceedings of the IEEE Visualization, Minneapolis, 2005, pp. 631-638

H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, Saddle connectors — an approach to
visualizing the topological skeleton of complex 3d vector fields, in Proceedings of the IEEE
Visualization, Seattle, 2003, pp. 225-232

H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, Stream line and path line oriented topology
for 2d time-dependent vector fields, in Proceedings of the IEEE Visualization, Austin, 2004,
pp. 321-328

X. Tricoche, C. Garth, A. Sanderson, K. Joy, Visualizing invariant manifolds in area-preserving
maps, in Topological Methods in Data Analysis and Visualization I1, ed. by R. Peikert et al.
(Springer, Heidelberg/New York, 2012), pp. 109-124

X. Tricoche, M. Hlawitschka, S. Barakat, C. Garth, Beyond topology: a Lagrangian metaphor
to visualize the structure of 3d tensor fields, in New Developments in the Visualization and
Processing of Tensor Fields, ed. by D. Laidlaw, A. Vilanova (Springer, Berlin/New York, 2012)
M. Uffinger, F. Sadlo, T. Ertl, A time-dependent vector field topology based on streak surfaces.
IEEE Trans. Vis. Comput. Graph. 19(3), 379-392 (2013)

T. Weinkauf, H. Theisel, H.-C. Hege, H.-P. Seidel, Boundary switch connectors for topological
visualization of complex 3D vector fields, in Proceedings of the VisSym, Konstanz, 2004,
pp. 183-192

Part V
Applications

Definition, Extraction, and Validation of Pore
Structures in Porous Materials

Ulrike Homberg, Daniel Baum, Alexander Wiebel, Steffen Prohaska,
and Hans-Christian Hege

Abstract An intuitive and sparse representation of the void space of porous
materials supports the efficient analysis and visualization of interesting qualitative
and quantitative parameters of such materials. We introduce definitions of the
elements of this void space, here called pore space, based on its distance function,
and present methods to extract these elements using the extremal structures of the
distance function. The presented methods are implemented by an image-processing
pipeline that determines pore centers, pore paths and pore constrictions. These pore
space elements build a graph that represents the topology of the pore space in a
compact way. The representations we derive from uCT image data of realistic
soil specimens enable the computation of many statistical parameters and, thus,
provide a basis for further visual analysis and application-specific developments.
We introduced parts of our pipeline in previous work. In this chapter, we present
additional details and compare our results with the analytic computation of the pore
space elements for a sphere packing in order to show the correctness of our graph
computation.

1 Introduction

Soil materials of different particle size distributions form pore structures exhibiting
different properties that impact the transport processes of particles through the
pore space. Kinds of internal erosion like suffusion comprise such transport
processes and may weaken the particle structure of the soil and, thus, its stability.
To investigate the risk of suffusion, it is important to know which parts of the pore

U. Homberg (<) » D. Baum * A. Wiebel ¢ S. Prohaska « H.-C. Hege
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
e-mail: homberg @zib.de; baum @zib.de; wiebel @zib.de; prohaska@zib.de; hege @zib.de

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 235
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__15,
© Springer International Publishing Switzerland 2014

mailto:homberg@zib.de
mailto:baum@zib.de
mailto:wiebel@zib.de
mailto:prohaska@zib.de
mailto:hege@zib.de

236 U. Homberg et al.

space can be reached by particles of what size. The sizes as well as the portions of
such mobile particles provide information on the stability of the soil.

For the assessment of soil properties, an understanding of the three-dimensional
formations and arrangements of its particles and its pore structure may be of great
benefit. To gain insight into soil structures, CT scans of realistic and undisturbed
soil material can be acquired and analyzed.

An analysis of the pore space and possible transport pathways needs information
on pore space elements like pores, constrictions, and paths. While the pores
and their connecting paths determine where particles can move, the constrictions
define the size of the particles that can move from one pore to another. Thus,
a complete representation that preserves the arrangement and the connectivity of
these pore space elements enables an efficient analysis of transport paths, blocking
constrictions and sizes of potentially mobile particles.

We previously described [10] the pore space elements based on the extremal
structures of the distance map of the pore space and presented methods to extract
these structures. The proposed methods start from a segmentation of the soil
structure [11] and generate a graph that is a geometric embedding into the pore
space and compactly represents the topology of the pore space. This approach avoids
anabranches that are caused by irregular particles. A hierarchical merge process
enables a clustering of pores by the significance of their connecting constrictions.

In this chapter, we present a validation of the extracted pore structures. For this
purpose, we first recall parts of our approach with additional details and then present
a comparison with the result of an exact Voronoi graph algorithm applied to a sphere
packing to measure the quality of our results.

2 Related Work

Existing methods analyze the pore space at different levels of detail. Statistical
approaches use simple methods for phase segmentation and to compute parameters
and distributions on the pore-solid relations [3, 9, 16, 20]. In these methods,
measurements of the captured pore space as a whole are proposed, but a localization
and differentiation of pores is not considered.

Other approaches differentiate the pore space elements and investigate the
networks they build. One possibility is to use the maximal inscribed spheres map,
which is equal to the distance map [12] of the pore space. Sweeney and Martin [23]
and Silin and Patzek [22] accomplish the differentiation of pores and constrictions
by evaluating and classifying the neighboring spheres. Both works compute a stick-
and-ball diagram representing the pore bodies and their connectivity. However,
computing the pore volumes based on spheres leads to an underestimation of the
pore size.

Skeleton-based methods [6, 14, 15] determine the medial axes of the pore space
and use morphological tools to classify the skeleton voxels as belonging to a path
or a constriction. Their representations enable the construction of a geometrically

Definition, Extraction, and Validation of Pore Structures in Porous Materials 237

embedded graph and the determination of parameters like numbers and sizes of con-
strictions. These approaches, however, need removal processes to avoid surface-like
structures or anabranches caused by isolated particles or irregular particle surfaces.

Some approaches make use of concepts from Morse theory. For example,
Ushizima et al. [25] use Reeb graphs to analyze the permeability and maximum flow
of gas through porous networks. In contrast to the method we describe, their method
depends on the orientation of the data set, that is, on height information in the data
set. Gyulassy et al. [8] compute and simplify the Morse-Smale complex of the
distance map to extract filament structures in porous solids, which results in a medial
axes-related representation. The result depends on the degree of simplification and
may produce a superset of the structures we aim to extract.

Another way to analyze pores and constrictions is based on Delaunay/Voronoi
partitions. While Reboul et al. [19] uses Delaunay tetrahedrons and their faces to
specify the pore bodies and constrictions for sphere packings, Lindow et al. [13]
compute the paths from the Voronoi cells of a sphere packing. Glantz and Hilpert [7]
proposes an extension to irregular shaped particles in voxel data where the cor-
ners of the pore space boundary are tessellated. This results in time-consuming
computations and produces many anabranches. Thompson et al. [24] generates a
Delaunay tessellation of the particle centers obtained from distance extremes within
the particle regions. However, this is not applicable to the realistic soil material of
our samples, because the particles have irregular shapes and, thus, multiple distance
extremes.

Some authors address the problem of fragmented pores and propose pairwise
merge criteria that are based on overlapping spheres [1, 19,22, 24] or on relations
of radii and distances of pores [15]. Such relations allow one to cluster fragmented
pores, but elongated pores may stay separated. Also, these pairwise considerations
may cluster pores even if there is a significant constriction in the middle. This is, for
example, the case when several neighboring pores gradually increase and decrease
in size with minor constrictions in between.

3 Determination of the Pore Structure

The methods we present here have been developed to process CT scans of
specimens produced from soil aggregates. These scans are acquired at a resolution
of 39 um [2]. Figure 1a shows a volumetric visualization of the dual soil structures
of such a CT scan, that is, the particles and pore structure (Fig. 1b). To assess
the complex pore space, we follow the intuition of particle transport where a
pathway locally runs with maximal distance to the surrounding soil structure and
the bottlenecks determine the maximal size of particles that can move along the
path. We start with the three-dimensional image domain / C R?, which can be
separated into foreground (particle structure) F* C I and background (pore space)
B = I\ F. For the computation of the pore space elements, we need a particle
segmentation (Fig. 1c) where all particles are well separated and each particle has
its own identifier [11].

238 U. Homberg et al.

Fig. 1 CT scan of soil material: (a) volumetric image data, (b) particles and pore space,
(c) separated particles colored according to their identifier

Cc

Pore Structure Extremal Structure

pore center Cimax
pore body S(cmax) "B
pore path Ulcsz)
il pore constriction cs2

Fig. 2 Illustration of the pore space elements (b) between particles (a): Pore centers (blue), paths
(white), constrictions (red), pore bodies (red region). The figures are two-dimensional for clarity
of the illustration. (¢) Link between pore structures and extremal structures of the distance map

3.1 Defining the Elements of the Pore Structure

Most of the approaches in the literature use methods that encode the distance
relations within the pore space. We follow this idea and describe the features of the
pore space by the three-dimensional signed distance map [12] d : I — R according
to the boundaries between the segmented foreground F' and background B where
each image point is assigned the distance as follows:

min ||p —q|, ifp € B

d(p)y=14 " (1)
—min|p—gql.ifpeF
qE€B

To describe the pore structures, we use the extremal structures of the distance
map (Fig.2). These are the critical points ¢ where the gradient of the distance
function vanishes, that is Vd(c) = 0, as well as the integral lines y of the gradient
that allow a grouping into stable and unstable manifolds [4]. The critical points of
a 3D function are the maxima ¢y, the minima c,,;,, and the two types of saddle
points (index-1 cgj, index-2 cgs,). The integral lines are defined as y : R — R3
whose tangential vectors are parallel to the gradients of d, y = Vd(y(t)) for each
t € R, and connect two critical points where orig(y) = lim,__ y(¢) is called

Definition, Extraction, and Validation of Pore Structures in Porous Materials 239

Fig. 3 Pore graph computation: (a) slice of labeled particles and distance information, (b) prop-
agated particle regions, (¢) pore graph constructed from the boundaries of the propagated regions.
The colors of the graph elements correspond to Fig. 2

the origin and dest(y) = lim,—o y(¢) the destination. Each regular point r where
Vd(r) # 0, is part of an image of y and can be assigned to the critical points that
are connected by y. These assignments describe the manifolds where the direction
or opposite direction distinguishes between stable or unstable manifolds:

stable manifolds: S(c) ={c} U {red|reimy, dest(y) =c} 2)
unstable manifolds: U(c)={c} U {red|reimy, orig(y) =c} 3)

Because the distance values of d are positive within the pore space B, the max-
ima ¢y, mark those points where the distance is maximal to the surrounding par-
ticles. We define these points to be the pore centers. The index-2-saddle points cg,
of the 3d distance map and their unstable manifolds U(cg,) connect two maxima.
They depict the paths from one pore center to another along the maximal distance to
the surrounding particles. An index-2-saddle point is the point along a path between
two connected maxima having the smallest distance and it corresponds, in terms of
pore structure elements, to the pore constriction, which determines the maximal size
of particles that can move from one pore to another. Finally, a pore body consists
of all points in the pore space B that end in the same maximum when following the
steepest ascent. The table in Fig. 2c summarizes these correspondences.

3.2 Voxel-Based Determination of the Pore Space Skeleton

The defined pore space elements, that is, pore centers, paths, and constrictions,
form a network representing the pore space topology. We previously proposed the
following voxel-based processing pipeline to extract these elements [10]. Starting
point is the segmentation result where the foreground F' covers the whole particle
structure and decomposes it into separated particles F;, which are labeled by their
identifier i.

In the processing pipeline illustrated in Fig.3, we use the correspondence
between our distance-based definitions and a Voronoi decomposition. In case of a

240 U. Homberg et al.

set of points, a Voronoi cell of a Voronoi point consists of all points whose distance
is not greater than their distance to any other Voronoi point. The distances on the
facets, edges, and vertices of the Voronoi cells are maximal to the closest two, three,
or four Voronoi points, respectively. Looking at the distance function according to
the Voronoi points, the Voronoi vertices are located at the maxima, and the Voronoi
edges are located at the index-2-saddles and their unstable manifolds. The process-
ing pipeline detects these locations between the particles according to the boundary
voxels of the segmented particles instead of according to single Voronoi points.

Decomposition. The three-dimensional signed distance map with regard to the
boundaries between foreground and background is computed according to Eq. 1.
Distance values within the foreground F are negative while distances within the
background B are positive. The labeled particles are used as seeds for a watershed
transformation [21] that propagates the particles according to increasing distance.
As a result, each voxel of the pore space is assigned the identifier of its nearest
particle, such that the image volume / is completely partitioned into the propagated
particle regions V;, which meet at points having equal distances to the particles:

Vi={F} U {peB|min|p—gq| <min|p—s|, Vj#i €]
qeF; SEF;

Skeleton. Next, the boundaries of the particle regions are evaluated in order to
determine the pore space skeleton. We identify voxel neighborhoods of size 2 x2 x2
that contain labels of three or more particle regions V;, because these are the
neighborhoods that contain points having equal distance to at least three particles.
For each such neighborhood, we mark a representative voxel (the bottom, left,
front voxel) in the resulting volume. All other voxels of the result are marked as
background. With this approach, we remove paths that are only surrounded by two
or less particles. These paths can occur in case of neighboring concave particles and
build isolated and/or small anabranches. Particles that can move there do not change
the soil structure and its stability. Therefore, these paths are negligible.

Pore graph. The identified skeleton may have segments with a thickness of more
than one voxel. In order to remove these, we apply thinning [18]. Finally, we
construct a graph structure by converting this skeleton into vertices, edges and
edge points [17]. The resulting graph represents the pore centers by its vertices and
the paths by its edges. The edges additionally have edge points and contain radius
information at each point. This allows one to mark the point with the smallest radius
on each edge as constriction and provides information about the spatial course of the
paths and the distances.

3.3 Merging Unstable Pores

Due to the irregular shape and arrangement of particles, multiple local maxima resp.
pore centers may appear, as denoted in Fig. 4. The yellow, orange, and green pore

Definition, Extraction, and Validation of Pore Structures in Porous Materials 241

Fig. 4 Hierarchical merge of (a) pores (colored vertices and black circles) separated by their
constrictions (white points and dotted circles): (b) the green and orange pores merge; the green
pore and the common constriction are assigned the orange representative; the constriction between
green and purple is now between the orange representative and the purple one. (¢) Merge of the
non-overlapping yellow and orange pores

centers seem to belong to a single pore. This may lead to an under- or overestimation
of parameters like pore size and constriction number. Therefore, we merge such pore
centers in the following post-processing step.

The method is inspired by topological persistence and simplification [5]. Topo-
logical persistence assesses the features of a function by their significance. We
use the radius differences of a constriction and their connected pore centers as
persistence measure. If the difference is high, the pores are significantly separated
by their connecting pore constriction and stay separated. In turn, pore centers that
are connected by a constriction having almost the same radius as the pore centers
will be merged. The degree of the merge depends on a user-defined threshold.

The algorithm hierarchically merges and updates neighboring pairs of pore
centers and their radius differences (Algorithm 1). Each edge, its adjacent vertices
and a difference value will be represented by an edge tuple where the difference
value is given by the minimum radius difference of the two vertices to the con-
striction on this edge. The pore center having the larger radius is set to be the
representative vertex of the edge tuple. When an edge and a vertex are merged to
their representative, the incident edges of the merged vertex will be updated: The
edges and the representatives of their vertices build new edge tuples.

Finally, adjacent vertices having the same representative and their connecting
edges will be labeled as belonging to the same pore. As a result, merged pore
centers, paths and constrictions can be specifically included or excluded from
the quantification tasks. The maximal diameter of a pore is then given by the
distance information of the representative vertex of the merged pore.

4 Evaluation

The voxel-based pipeline described in Sect. 3 enables us to analyze the pore space
of realistic data containing particles of irregular shape. However, the voxel-based
methods suffer from inaccuracies due to the discrete nature of the data. The

242 U. Homberg et al.

Algorithm 1 Hierarchical merge

1: input: Graph G(V, E), threshold ¢

2: UnionFindSet UFS < {v, :v, € V,n=1,...,N} > With radius as rank

3: Heap H < { (v, v2, e,diff) : v1,v5 € V,e € E,radius(v;) < radius(v,),

4 diff = radius(v;) — radius(e) } > Edge tuples sorted by diff
5: currTuple < H.extractMin()
6
7
8

: while currTuple.diff <t do
UF S.union(currTuple.vy,currTuple.v,)
for all incTuple < incidentTo(currTuple.v;,G) and incTuple # currTuple do
9: vy <= UFS.find(incTuple.vy)

10: vy <= UFS.find(incTuple.vy)

11: e <—incTuple.e

12: if radius(v;) > radius(v,) then swap(v, v,)
13: newDiff <— (radius(v,) — radius(e))

14: newTuple < (v, vy, e, newDiff)

15: H.remove(incTuple)

16: H.insert(newTuple)

17: end for

18: if H.empty() then break

190 currTuple < H.extractMin()

20: end while

21: relabel(G,UFS) > Labels vertices & connecting edges according to the UF S components

inaccuracies may even accumulate during processing a pipeline of voxel-based
methods. Because we generally apply our pipeline to realistic data, there is no
possibility to measure the quality of our pipeline on these data sets, because we
do not have any ground truth for the realistic data.

As mentioned above, our pipeline generates a decomposition of the voxel
data set such that each voxel is assigned to its nearest segmented particle. This
decomposition is related to a Voronoi decomposition. Hence, we call the extraction
pipeline Voronoi-like pore space computation.

In order to evaluate the results of our method, we have therefore chosen a
sphere packing as comparison basis for two reasons. First, sphere packings are
commonly used to simulate porous materials in the area of geotechnics. Second, for
sphere packings, it is possible to compute an analytic description of the topology of
the distance transform of the spheres by applying an algorithm that computes the
Voronoi diagram of spheres (see, for example, Lindow et al. [13]). By considering
the result of the analytic algorithm as ground truth, we are able to evaluate the results
of our voxel-based Voronoi-like pore graph computation.

4.1 Evaluation Strategy

The input to the analytic Voronoi diagram algorithm is a set of weighted points
given by the sphere centers of the sphere packing where the weights are the radii
of the spheres. The output of the algorithm is an analytic description of the edge

Definition, Extraction, and Validation of Pore Structures in Porous Materials 243

Fig. 5 Comparison data: sphere packing (a) and voxelized spheres (b), Voronoi graph (c¢) and pore
graph (d) with radius information

graph of the Voronoi diagram (Fig. 5c). This is given by the Voronoi vertices, that
is, the vertices where four Voronoi regions meet, and the Voronoi edges between
these vertices. To compare the Voronoi graph with the pore graph resulting from
the voxel-based pore space computation, we sample the edges of the Voronoi graph,
such that neighboring points on the edges have a maximum distance smaller than
a given threshold D;. For each of these sample points, which we call edge points,
as well as for the Voronoi vertices, we also store the minimal distance to any of the
neighboring spheres. This distance corresponds to the radius of the maximal ball
located at these points without intersecting the spheres.

To compute the pore graph of the sphere packing, we first have to compute a
voxel representation of the sphere packing (Fig. 5b). The result is a labeled voxel
data set where each voxel is assigned the label of the sphere it belongs or O if
it belongs to the pore space. The pipeline then computes the pore graph (Fig. 5d)
of the sphere packing, consisting of the pore centers, which correspond to the
Voronoi vertices, and the pore paths, which correspond to the Voronoi edges. We
did not sample the pore paths, because they already have edge points on them with
a distance corresponding to the voxel size.

4.2 Graph Matching

Now we have two graphs G| = (V1, E1, Py) and G, = (V3, E,, P;) representing
the Voronoi graph and the pore graph, respectively. Here, V| and V, are the sets
of vertices corresponding to the local maxima of the distance transformation, both
in the analytical and the discrete case. E| and E; are the sets of edges, which are
not directly considered in the comparison but only via the sets P; and P,, which
represent the edge points. We further define the radius functions d; : V; U P; — R
that assign to each vertex or edge point the minimal distance to any of the
neighboring particles or spheres.

To measure the difference of G| to G,, we are interested in two things. (I) How
much differ the two graphs geometrically? The geometric distance can be calculated

244 U. Homberg et al.

Fig. 6 Pore graph (a) with and (b) without the particle structure computed from a CT scan of soil

by determining the shortest distance of each vertex in V| to any vertex in V,.
Similarly, we need to determine the shortest distance of each point in P; to any
pointin P,. (II) How much differs the radius information on the graphs? The radius
gives the size of the constrictions, which are of particular interest to us. For this,

we need matchings my, @ Vi — V2 with my2(v) = argmin, ||[v — w|| and
mpp © P1 — Py with mp;p(p) = argminq||p — q|| where v € Vi,w € V,,
p € P1,q € P, and || || denotes the Euclidean length. Note that the matchings

my1, and mpj are, in general, not bijections. This is not a problem, because
the matchings are only a means to compute the geometric differences between the
graphs. Given the matchings, we can then compute the differences between the
radius information of the matched vertices and edge points as |d; (v) — d; (m2(v))|
and |d; (p) —d;(m12(p))|, respectively where | - | denotes the absolute value. We use
an octree to efficiently compute my1, and m py;.

5 Results and Discussion

In this section, we compare our voxel-based pipeline to the Voronoi graph compu-
tation on the basis of a sphere packing. We will not discuss results of the pipeline
applied to realistic data. Such results are available in our previous work [10]. (Fig. 6)

The comparison was carried out using a sphere packing of 1,250 spheres of
varying radii (1.5-5.2 mm), which were placed in a box of 50 x 50 x 50 mm. For the
voxel-based pipeline, we scan-converted the sphere packing into a voxel data set.
We chose a sampling rate of 50 voxels per minimal sphere diameter. This resulted
in a voxel size of 40 x 40 x 40 pum corresponding to the resolution of our CT scans.
The resulting data set had a size of 1,250 1,250 x 1,250 voxels. The computation of
the Voronoi graph took less than 2 s while the voxel-based pipeline took 52 min. The
edges of the Voronoi graph were sampled with a maximal distance Dy = 0.05 mm.

Definition, Extraction, and Validation of Pore Structures in Porous Materials 245

Fig. 7 Differences between pore graph and Voronoi graph. (a) Color-coded distances between the
matched points and vertices. (b) Close-up of the bottom left corner in (a): pore graph (red) and
Voronoi graph (blue). (¢) Distances color-coded on the same close-up. (d) The graphs are trimmed
by 5 mm from each side. (e) and (f) Close-ups with many pore centers and Voronoi vertices

We applied the matching procedure described in Sect. 4. Figure 7 depicts images
showing the vertex and edge point distances between the two graphs. If we consider
the complete graphs (Fig. 7a), we can observe that the main differences lie at the
border in regions where there is a large empty space (also see Fig. 5a). The reason for
this large empty space is that no spheres were placed in this region due to restrictions
caused by the border. As a result, we get long pore paths ending at the border
(see, for example, the left bottom corner in Fig. 7a which has been zoomed in to
in Fig. 7b, c). The further away the pore path is from the nearest spheres, the smaller
is the difference in the distances when looking orthogonally around the pore path.
Hence, small differences in the distances to the nearest spheres correspond to large
differences in the position of the pore path. Thus, small errors in the computation
of the distances can result in large errors of the pore path position. For the statistics
we want to carry out later, trimming the graph gives us much more realistic data.
The graphs in Fig. 7d were trimmed by 5 mm from each side. The major differences
that remain between the graphs after trimming appear in regions where many pore
centers/Voronoi vertices occur (see, for example, the close-ups in Fig. 7e, f). Here,
small errors in the distances to the nearest spheres might result in either pores being

246 U. Homberg et al.

T T

I Point distance (trimmed) i
Radius difference (trimmed)

I Point distance (complete)
Radius difference (complete)|]

Percentage

-

0 0.02 0.04 0.06 0.08 0.1 0.12

Difference [mm]

Fig. 8 Differences between matched edge points of the pore graph and the Voronoi graph. Only
the bins summing up to 99 % of each of the distribution are plotted

merged or split. Hence, too many pore centers or Voronoi vertices, respectively, as
well as pore paths or Voronoi edges occur, which results in the observed differences.
The distances between the pore centers and the Voronoi vertices are largest, because
they can only get matched to one another.

Figure 8 shows the histogram of the comparison measures for the complete
pore graph in red and the pore graph with trimmed boundary region in blue. The
distances are plotted in dark and the radius differences in light red and light blue. As
mentioned above, we trimmed the pore graph by 5 mm from each side to eliminate
boundary effects. This is important for the final analysis of the pore space, because
the constrictions on edges near the boundaries exhibit unrealistic radius values due
to the restricted growth of the distance map towards the boundary. This, in turn,
would lead to biased statistics on the pore constrictions.

It is obvious that the accuracy of the voxel-based computation depends on the
resolution of the data set. Taking into account the voxel size, we binned the data
points with a bin size of 0.02mm. This corresponds to half the voxel length.
Regarding the distances between the edge points (dark colored bars), this means,
that the matched edge points of the first group can be assumed to lie within the same
voxel and the points of the second and third group within the direct neighborhood.
Furthermore, we assume the radius differences (bright colored bars) within the three
first groups to lie on the same or on the very next distance iso-value, whether they
share the same position or not.

Accumulating the first three bins shows that 94.9 % of the edge points of the
untrimmed and 98.6 % of the trimmed graph match the edge points of the Voronoi
graph at least within the direct neighborhood. According to this, the edge points
of the first three bins exhibit a radius difference to the Voronoi edge points of less
than 0.06 mm. This concerns 97.8 % of the edge points of the untrimmed graph and
99.5 % of the trimmed graph. It is worth noting that regarding the aim of analyzing
the transport pathways for particles of certain sizes, the radius information along

Definition, Extraction, and Validation of Pore Structures in Porous Materials 247

a path is even more important than the exact position of points along the path way.
The maximal error is 0.79 and 0.34 mm in point distance and radius difference of the
trimmed pore graph. Such discrepancies mainly occur at the boundary (Fig. 7c) and
only make up a very small fraction of the whole set of edge points. Above all, the
presented matching procedure is only able to provide an upper bound of the error.
Because it matches each edge point from one graph to the other even if there is no
direct correspondence, large differences in the distance and the radius comparison
measure may be acquired in these cases. In Fig. 8 we can see that the error of 99 %
of our edge points is below 0.12 mm which is less than a tenth of the radius of the
smallest sphere in the packing. We can assume that the errors of the remaining 1 %
of edge points do not invalidate conclusions that can be drawn from derived statistics
of the extracted pore structures.

6 Conclusion

We have described a method to extract the topology of the pore space in a porous
material and validated the results of our method based on an analytic example.
Regarding the given details, the presented description of the method goes beyond
what is available in our previous work. Thus, it allows for a straightforward
implementation of the pipeline. Comparing our pore graph to the Voronoi graph of
the analytic sphere-packing example allowed us to analyze the accuracy and validity
of our approach. The analysis has shown that differences between the graphs are
mostly in the scale of one voxel and, thus, the accuracy is very high. Together with
a simultaneous visual inspection of the two graphs, the high accuracy allowed us
to illustrate the validity of our approach. Since the computation of the pore space
elements for a sphere packing does not differ from that for a realistic data set, we
conclude that our method works also correct for realistic data.

Acknowledgements This work was partly funded by the German Research Foundation (DFG)
in the project “Conditions of suffosive erosion phenomena in soil”. Special thanks go to Norbert
Lindow for providing his implementation of the Voronoi graph algorithm.

References

1. R. Al-Raoush, K. Thompson, C.S. Willson, Comparison of network generation techniques for
unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687-1700 (2003)

2. R. Binner, U. Homberg, S. Prohaska, U. Kalbe, K.J. Witt, Identification of descriptive
parameters of the soil pore structure using experiments and CT data, in Proceedings of the
5th International Conference Scour and Erosion (ICSE-5), San Francisco, 2010, pp. 397407

3. M.E. Coles, R.D. Hazlett, P. Spanne, W.E. Soll, E.L. Muegge, K.W. Jones, Pore level imaging
of fluid transport using synchrotron X-ray microtomography. J. Pet. Sci. Eng. 19(1-2), 55-63
(1998)

248

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

U. Homberg et al.

H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse complexes for piecewise linear
2-manifolds, in Proceedings of the 17th Annual Symposium on Computational Geometry,
Medford (ACM, 2001), pp. 70-79

. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification.

Discret. Comput. Geom. 28(4), 511-533 (2002)

. R. Glantz, Porennetzwerke von Erdstoff-Filtern: mathematisch-morphologische Beschreibung

kernspintomographischer Aufnahmen. Ph.D. thesis, University Karlsruhe, Karlsruhe, 1997

. R. Glantz, M. Hilpert, Dual models of pore spaces. Adv. Water Resour. 30(2), 227-248 (2007)
. A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham,

B. Hamann, Topologically clean distance fields. IEEE Trans. Vis. Comput. Graph. 13(6), 1432—
1439 (2007)

. M. Hadwiger, L. Fritz, C. Rezk-Salama, T. Hollt, G. Geier, T. Pabel, Interactive volume

exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis.
Comput. Graph. 14(6), 1507-1514 (2008)

U. Homberg, D. Baum, S. Prohaska, U. Kalbe, K.J. Witt, Automatic extraction and analysis
of realistic pore structures from pCT data for pore space characterization of graded soil, in
Proceedings of the 6th International Conference Scour and Erosion (ICSE-6), Paris, 2012,
pp. 66-73

U. Homberg, R. Binner, S. Prohaska, V.J. Dercksen, A. Kuf}, U. Kalbe, Determining geometric
grain structure from X-ray micro-tomograms of gradated soil, in Internal Erosion, ed. by
K.J. Witt. Schriftenreihe Geotechnik, Bauhaus-Universitdt Weimar, vol. 21 (2009), pp. 37-52
M.W. Jones, J.A. Barentzen, M. Sramek, 3D distance fields: a survey of techniques and
applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581-599 (2006)

N. Lindow, D. Baum, H.C. Hege, Voronoi-based extraction and visualization of molecular
paths. IEEE Trans. Vis. Comput. Graph. 17(12), 2025-2034 (2011)

W.B. Lindquist, S.M. Lee, D.A. Coker, K.W. Jones, P. Spanne, Medial axis analysis of void
structure in three-dimensional tomographic images of porous media. J. Geophys. Res. 101(B4),
8297-8310 (1996)

W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, T. Wong, Pore and throat size distributions
measured from synchrotron X-ray tomographic images of fontainebleau sandstones. J. Geo-
phys. Res. 105(B9), 21509-21527 (2000)

A. Pierret, Y. Capowiez, L. Belzunces, C.J. Moran, 3d reconstruction and quantification of
macropores using X-ray computed tomography and image analysis. Geoderma 106(3—4), 247—
271 (2002)

S. Prohaska, Skeleton-based visualization of massive voxel objects with network-like architec-
ture. Ph.D. thesis, University of Potsdam, 2007

C. Pudney, Distance-ordered homotopic thinning: a skeletonization algorithm for 3d digital
images. Comput. Vis. Image Underst. 72(3), 404—413 (1998)

N. Reboul, E. Vincens, B. Cambou, A statistical analysis of void size distribution in a simulated
narrowly graded packing of spheres. Granul. Matter 10(6), 457-468 (2008)

F. Rezanezhad, W.L. Quinton, J.S. Price, D. Elrick, T.R. Elliot, R.J. Heck, Examining the
effect of pore size distribution and shape on flow through unsaturated peat using 3-d computed
tomography. Hydrol. Earth Syst. Sci. 13(10), 1993-2002 (2009)

J.B.T.M. Roerdink, A. Meijster, The watershed transform: definitions, algorithms and paral-
lelization strategies. Fundam. Inform. 41(1-2), 187-228 (2001)

D. Silin, T. Patzek, Pore space morphology analysis using maximal inscribed spheres. Phys. A:
Stat. Theor. Phys. 371(2), 336-360 (2006)

S.M. Sweeney, C.L. Martin, Pore size distributions calculated from 3-D images of DEM-
simulated powder compacts. Acta Mater. 51(12), 3635-3649 (2003)

K.E. Thompson, C.S. Willson, C.D. White, S. Nyman, J.P. Bhattacharya, A.H. Reed, Applica-
tion of a new grain-based reconstruction algorithm to microtomography images for quantitative
characterization and flow modeling. SPE J. 13(2), 164—176 (2008)

D.M. Ushizima, D. Morozov, G.H. Weber, A.G.C. Bianchi, E.W. Bethel, Augmented topologi-
cal descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Graph. 18(12),
2041-2050 (2012)

Visualization of Two-Dimensional Symmetric
Positive Definite Tensor Fields Using the Heat
Kernel Signature

Valentin Zobel, Jan Reininghaus, and Ingrid Hotz

Abstract We propose a method for visualizing two-dimensional symmetric pos-
itive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is
derived from the heat kernel and was originally introduced as an isometry invariant
shape signature. Each positive definite tensor field defines a Riemannian manifold
by considering the tensor field as a Riemannian metric. On this Riemmanian
manifold we can apply the definition of the HKS. The resulting scalar quantity is
used for the visualization of tensor fields. The HKS is closely related to the Gaussian
curvature of the Riemannian manifold and the time parameter of the heat kernel
allows a multiscale analysis in a natural way. In this way, the HKS represents field
related scale space properties, enabling a level of detail analysis of tensor fields.
This makes the HKS an interesting new scalar quantity for tensor fields, which
differs significantly from usual tensor invariants like the trace or the determinant.
A method for visualization and a numerical realization of the HKS for tensor fields
is proposed in this chapter. To validate the approach we apply it to some illustrating
simple examples as isolated critical points and to a medical diffusion tensor data set.

V. Zobel (IX)
Zuse Institute Berlin, Berlin, Germany
e-mail: zobel @zib.de

J. Reininghaus
Institute of Science and Technology Austria, Klosterneuburg, Austria
e-mail: jan.reininghaus @ist.ac.at

1. Hotz
German Aerospace Center (DLR), Braunschweig, Germany
e-mail: ingrid.hotz@dlr.de

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 249
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__16,
© Springer International Publishing Switzerland 2014

mailto:zobel@zib.de
mailto:jan.reininghaus@ist.ac.at
mailto:ingrid.hotz@dlr.de

250 V. Zobel et al.
1 Introduction

The Heat Kernel Signature (HKS), introduced by Sun et al. in [8], is known to be a
powerful shape signature. In [8] it is shown that the HKS is not only an isometric
invariant but contains almost all intrinsic information of a surface. Thus it is well
suited for detecting similar shaped regions of surfaces. The HKS is derived from the
process of heat diffusion and consequenlty equipped with a time parameter. This
multiscale property allows to adjust the size of the neighborhood that influences
the value of the HKS at a point. Additionally, the HKS is not sensitive to small
perturbations of the underlying surface, e.g. a tunnel between small sets of points.
Several methods employ the HKS to detect similar shaped surfaces globally, see
[1,4-6]. Also from a visual point of view the HKS characterizes a surface very
well, since, for small time values, it is closely related to the Gaussian curvature of
the surface. For large time values it can be considered as the curvature on a larger
scale. Our idea is to use the HKS for the visualization of tensor fields. Since positive
definite tensor fields can be considered as Riemannian metrics, i.e. together with
its domain as Riemannian manifolds, the definition of the HKS is still applicable
for positive definite tensor fields. Consequently, we obtain a scalable Gaussian
curvature of the Riemannian manifold associated with tensor field.

For a better understanding we illustrate the relation between the HKS of a two
dimensional surface M and a positive definite tensor field (i.e. the metric tensor field
of the surface) in Fig. 1. If g is the metric of the surface M and f : RZ? D U - R*a
parametrization of M, i.e. f(U) = M, we can compute the pull back of the metric
gon U by f, denoted by f*g. The metric f*g is a positive definite tensor field
on U which is well characterized by the HKS of the surface. In this chapter we
propose a method for computing the HKS directly for a positive definite tensor field
defined on U C R2, interpreting the tensor field as the metric of a surface. We do
not demand that there exists a simple embedding of the surface in some Euclidean
space. We restrict ourselves to 2D positive definite tensor fields in this chapter, but
the definition of the HKS and the numerical realization presented here is also valid
in higher dimensions. However, the computational complexity will be a problem in
higher dimensions, see also the remark in Sect. 6.

In Sect.2 we give a short introduction to the HKS. The application of the HKS
to tensor fields is explained in Sect. 3. To compute the HKS we need to compute
the eigenvalues of a the Laplacian on a Riemannian manifold (M, g). In case of
surfaces the embedding in the Euclidean space can be utilized, whereas, in the case
of tensor fields, all computations must be done by using the tensor only. A finite
element method to achieve this for tensor fields on a uniform grid is proposed in
Sect. 4, alongside with some numerical tests. Results of our method are shown in
Sect. 5.

Visualization of Tensor Fields Using the Heat Kernel Signature 251

N TR TS -e

NN NN ~ s

se=>s=>:x>a3>ss

.~ —— - -

TS en - !

-man . - - - R

rE~r e~

zameime iy

Input: Metric f*g on U C R? Surface (M, g)
(this chapter) l HKS

T e e e e

L] - - . - . - . - . a
22D I
[- - - - a —
L N N N N

Output: HKS:R* DU — R HKS:M—R

Fig. 1 Commutative diagram illustrating the relation between the HKS of a surface and a positive
definite tensor field. Metric of the surface depicted as ellipses (fop left), the parametrized surface
(top right), HKS on the surface (bottom right) and the HKS on U (bottom right)

2 Heat Kernel Signature

The Heat Kernel Signature (HKS) is typically used for the comparison of surfaces.
It is derived from the heat equation and assigns each point of the surface a time
dependent function [0, co) — R which depends only on the metric of the surface.
Conversely, all information about the metric are contained in the HKS under quite
weak assumptions. For smaller time values the HKS at a point is governed by
smaller neighbourhoods, i.e. one can control the portion of surface which should
be taken into account. This makes the HKS a powerful tool for the identification of
similar shaped parts with different level of detail by comparing the HKS for different
time values. However, the HKS is not restricted to surfaces, it is defined for arbitrary
Riemannian manifolds. We employ this fact to apply the HKS on positive definite
tensor fields. A short introduction to the HKS is given in this section. For details we
refer the reader to [8]. A detailed treatment of the heat operator and the heat kernel
can be found in [7].

Let (M, g) be a compact, oriented Riemannian manifold and A the Laplace-
Beltrami operator (also called just Laplacian) on M which is a equivalent to the
usual Laplacian in case of flat spaces. Given an initial heat distribution i (x) =
h(0,x) € C*°(M) on M, considered to be perfectly insulated, the heat distribution
h(t,x) € C®(RTxM) at time ¢ is governed by the heat equation

3 + A)h(t.x) =0 .

252 V. Zobel et al.

One can show that there exists a function k(¢, x, y) € C®(R* x M x M) satisfying
0 + A k(t,x,y) =0,

lim / k(t.x. y)h(y) dy = h(x) .

where A, denotes the Laplacian acting in the x variable. The function k(¢, x, y) is
called heat kernel. Let now H, be the integral operator defined by

Hyh(x) = /M k(tox.)h() dy .

then h(z, x) = H;h(x) satisfies the heat equation. Consequently H; takes an initial
heat distribution /(x) to the heat distribution %(z, x) at time ¢. The operator H, is
called heat operator.

The heat kernel can be computed by the formula

k(t.x,9) =Y e gi(x)i(y) . (1)

where A; and ¢; are the eigenvalues and eigenfunctions of A. Since A is invariant
under isometries, Eq. (1) shows that this is also true for the heat kernel. Moreover,
the metric can be computed from the heat kernel by the formula

. L,
tl_l)lgotlogk(t,x,y) = _Zd (x,y) .,

where d(x, y) denotes the geodesic distance between two points x,y € M. Thus,
for a given manifold M, the information contained by the heat kernel and the
metric are equivalent. Another important property of the heat kernel is its multi-
scale property. For the heat kernel ¢ plays the role of a spatial scale of influence,
i.e. k(t,x, -) depends mainly on small neighborhoods of x for small ¢, whereas
k(t,x, -) is influenced by larger neighborhoods of x for larger ¢.

The HKS is defined in [8] to be the function HKS € C®(R™ x M) given by

HKS(t,x) = k(t,x,x) . 2)

Since the heat kernel is much more complex than the HKS, one might expect to
loose a lot of information when regarding the HKS instead of the heat kernel. But,
as shown in [8], the metric can be reconstructed from the HKS under quite weak
assumptions. This means that the HKS of a positive definite tensor field contains
almost all information of the tensor field itself and is consequently much more
informative than usual scalar quantities like the trace or the determinant.

Visualization of Tensor Fields Using the Heat Kernel Signature 253
2.1 Relation to Curvature

In order to obtain a more intuitive understanding of the HKS we study its relation to
the curvature of the manifold M . For small values of the time parameter ¢ the HKS
has the row expansion

1 & .
HES(t, x) = — > uir (3)
i=1

The general form of the functions u; (x) is discussed in [7]. For the two-dimensional
manifolds considered in this chapter the first three functions can be written as

up(x) =1,

() = 1K) |

1
uy(x) = 5 (4K()c)2 — SAK(x)) ,
where K is the Gaussian curvature of M. Consequently, for a small value of 7, the
value of the HKS consists mainly of %K plus a constant. The derivation of the stated
u; from the general case can be found in the Appendix.

3 HKS for Tensor Fields

The HKS introduced in Sect.2 is defined for any compact, oriented Riemannian
manifold. Thus the HKS is not restricted to surfaces embedded in R". If we have a
metric tensor g, i.e. a symmetric positive definite tensor field, defined on a region
U C R, then (U, g) forms a Riemannian manifold. Since there is a Riemannian
manifold associated with a positive definite tensor field in this way, we can compute
the HKS for any positive definite tensor field. In this section we illustrate the relation
of the HKS for surfaces and tensor fields by considering a parametrized surface and
the pullback of its metric.

Let f : R2 DU - R¥*bea parametrized surface. On the one hand, we can
compute the HKS for the surface f(U). On the other hand, we can define a metric
gon U by

g L,U)xT,U)—-R, (v.wr{(Jwv, J@w) , “)
where J(u) denotes the Jacobian of f at u € U and (-, -) the standard scalar

product on R3. That is, g is the pullback f*(-,-) of (-, -) by f. The components
of g are givenby g;; = (JTJ);;.

254 V. Zobel et al.

This makes (U,g) a Riemannian manifold which is isometric to f(U)
(equipped with the metric induced by R3) and f the associated isometry. Now
we can compute the HKS directly on U by using g as metric. This is equivalent
to computing the HKS on the surface f(U) and then pull it back to the parameter
space U by f, i.e.

HKSy (t,u) = HKS ruy (¢, f(w))

where HKSy and HKS ;) denote the HKS on U and f(U), respectively. In other
words: The diagram in Fig. | commutes.

Figure 1 also shows that the HKS of (U, g) (bottom left) is a meaningful
visualization of the metric. Thus we are interested in a method for computing the
HKS directly for tensor fields, so that no embedded surface with the tensor field as
metric tensor needs to be constructed. We propose such a method in Sect. 4.

4 Numerical Realization

To our knowledge, the HKS has only been used for triangulated surfaces, so far.
We want to use the HKS for the visualization of two-dimensional symmetric positive
definite tensor fields 7' defined on a rectangular region U C R2. Thus we need a
method to compute the HKS of T' or, more precisely, of the Riemannian manifold
(U, T) associated with 7. A finite element method for solving this problem is
proposed in this section. Moreover, we discuss the boundary conditions and check
the correctness of our results numerically.

From Egq. (1) follows that we can compute the heat kernel signature by the
formula

HKS(t,x) = Ze—*i’fqb,-(x)q&i (x) ,

where A; and ¢; are the eigenvalues and eigenfunctions of the Laplacian A on
(U, T). Thus we need a suitable discretization of A. Our first idea was to adapt
the Laplacian from the framework of discrete exterior calculus, see [3], which
is closely related to the cotangent Laplacian and widely used for triangulated
surfaces. However, this discretization makes intensive use of edge lengths, whereas
triangulating the domain U and computing edge lengths by the metric g results in
triangles which might not even satisfy the triangle inequality. Thus there seems to be
no easy modification of this approach. Instead we propose a finite element method
to compute the eigenvalues of the Laplacian.

According to Sect.3 we can think of 7' as the metric of a surface in local
coordinates. In this case the Laplacian is given by

1

Af = —
S =

div(7] T‘IVf)

Visualization of Tensor Fields Using the Heat Kernel Signature 255

for any function f € C° (M), where div and V denote the divergence and the
gradient on U, respectively. Hence we have to solve the eigenvalue equation

1
——div(V/|T|T7'Ve) = A¢ ,
g o)

or equivalently

div(|T|T—1v¢) =A/IT| ¢ .

The weak formulation of this problem is given by

/(jdiv(ﬁT_IVq&)wdx:/\/U\/mmﬁdx

while this equation must hold for every smooth function . We can rewrite the left
hand side to

/div (\/WT_IVq&)wdx
U
:Ldiv(ﬁT_l(V(]ﬁ)l//) dx—/U IT| T~V - Vi dx

:/ (|T|T_1(V¢)1//) -ndx—/U\/WT_IVQS-Vde,

U

where 1 denotes the outward pointing normal of the boundary. If we apply Neumann
boundary conditions, i.e. V¢p-n = 0, the first term vanishes. Finally, we have to
solve the equation

/U\/WT—IVqs-vwdx:—/\/U\/mqwdx.

Choosing basis functions #4; the stiffness matrix L and the mass matrix M are
given by

L,’j =/ \/|T|T_1Vhi-thdx B
U
—/ \/|T|h,-hjdx ,
U

and we solve the generalized eigenvalue equation

Lv=AMv .

256 V. Zobel et al.

min

Fig. 2 The result on the left is strongly influenced by the boundary. This effect can be reduced
significantly by reflecting a portion of the tensor field on the boundary (middle) and cropping the
result (right)

In our examples the tensor fields are given on regular grids and we use bilinear basis
functions /.

Usual boundary conditions like Dirichlet or Neumann boundary conditions
influence the HKS significantly. In particular for large time values the influence
is not limited to the immediate vicinity of the boundary. Neumann boundary
conditions cause the HKS to have higher values close to the boundary; their physical
meaning is that the heat is perfectly insulated. Dirichlet boundary conditions cause
the HKS to have a fixed value at the boundary. To overcome this problem we reflect a
part of the field at the boundary. Now we can use Neumann boundary conditions for
the sake of simplicity and obtain a significantly reduced influence of the boundary,
see Fig. 2. The physical meaning of these reflected boundaries is that the heat at the
boundary can diffuse outwards in the same way than inwards.

4.1 Numerical Verification

We check the correctness of the FEM described above experimentally by comparing
the HKS for a surface with the pull back of its metric, i.e. the commutativity of Fig. 1
is reflected by our verification. Consider a bumpy torus parametrized by

cos(u) (r1(u) + ra(v)cos(v))
S, v) = | sin(u) (ri(u) + r2(v)cos(v)) |

r2(v)sin(v)

where the radii are modulated, i.e. major radius and minor radius are given by
r(u) =3+ %cos(lOu) and r,(v) = 1+ %cos(Sv), respectively. This results in
the surface that is also used in Fig. 1. We compute the metric of the bumpy torus

Visualization of Tensor Fields Using the Heat Kernel Signature 257

Table 1 Relative difference between HKS for tensors and surfaces

Resolution 502 100? 2007 4002
Relative difference 0.38369 0.07599 0.00920 0.00075

on [0, 27r]? by formula (4) and sample the resulting tensor field with four different
resolutions of 502, 1002, 200? and 400 points. For this four datasets we compute
the HKS with the FEM described above. The results are compared with the HKS
for the bumpy torus given as a triangulated surface with 400? points, while the HKS
is computed by the standard FEM Laplacian for triangulated surfaces, see e.g. [9].
If we denote the HKS for the tensor field by HKS7 and for surfaces by HKSs, the
relative difference for = 1 is given by

1
2

IS, (1,)~ HKSs (1,)lly (Joaep HKST(13) — HKSs (1,2)) d)

|HKSs (1,)1, (Joonp (HKSs (1, x))? dx)%

See Table 1 for the relative difference between HKSt for different resolutions and
HKSg5. It is obvious that HKSt approaches HKSs quickly for increasing resolutions.

5 Results

We show several results of our method in this section. In the following we investigate
the significance of the HKS and the meaning of Gaussian curvature in the general
tensor context. To get a more intuitive understanding, we analyze the influence
of the eigenvalues and eigenvectors on the HKS, and consider synthetic tensor
fields with constant eigenvectors and eigenvalues, respectively. As central structural
components of tensor fields we also consider isolated degenerate points in our
analysis. As real world example we apply the method to a diffusion tensor data set
of the brain. During the whole section we use the colormap shown in Fig. 2, which
ranges from the minimum to the maximum over all results in one figure, unless
otherwise stated.

In Fig. 3 we analyze easy examples of diagonal tensor fields, i.e. T, = 0. These
fields serve as examples of tensor fields with variable eigenvalues but constant
eigenvectors. For the tensor field 7!, where component T}, is a Gaussian function
depending on u; and T, is constant, the HKS is constant. The field 7 is very
similar to 7!, the only difference is that T121 depends on u,. In this case the HKS is
not constant anymore. To understand this we consider the formula (3) forz = 1, i.e.

HKS(1,x) = % (1 + %K(x) + % (4K(x)* = 3AK(x)) +) . (5

258 V. Zobel et al.

r= ())

Fig. 3 HKS of diagonal tensor fields for small 7. The function f is givenby f(x) =1+ 10e=~*
and the tensor fields are defined for u € [—5, 5]

-

)

‘4-'

z
2
x
2

cos (insin(Zﬂ:x)) cos (
(ilmmee))

sin (3 7sin(27x)) sin (

sin(27x) sin(27y))) (cos (msin(27x) sin(2xy)))
)

sin(27x) sin(27y)) sin (7 sin(27x) sin(27y)

Fig. 4 Tensor fields defined on [0, 1]? by constant eigenvalues and an analytic major eigenvector
field (see caption). The HKS is shown for small ¢ and the major eigenvector field is visualized by
some integral lines. The dependency of the HKS on the eigenvectors demonstrates a significant
difference to other scalar quantities like trace, determinant and anisotropy. The colormap ranges
from the minimum to the maximum of the single images

while the Gaussian curvature for diagonal T is given by

K= 1 (3 0, Ta _ 0, T) (6)
2JTiuTn \ " VTiuTn “NVTiuTn)

Consequently, if d,, 72> = 0 and d,,71;1 = 0 we have K = 0 and thus HKS(1, x)
is constant for T''. The tensor field T3 has components 77, and T3, depending on
uy and u,, respectively, consequently both diagonal components have influence on
the HKS. The field T* satisfies T}, = T, where T}, and T, depend radially on u.
As expected, the HKS depends also radially on u.

The HKS for tensor fields with constant eigenvalues and variable eigenvectors
are shown in Fig.4. These fields are defined by choosing fixed eigenvalues and
a variable major eigenvector field, which is visualized by some integral lines.
We observe that the HKS is also influenced by the eigenvectors and has high values
in compressing regions and low values in expanding regions. This shows also that
the HKS and other scalar quantities like trace, determinant and anisotropy, which
depend only on the eigenvalues.

Visualization of Tensor Fields Using the Heat Kernel Signature 259

DRSS

ind =1 ind=1.5

Fig. 5 HKS of degenerate points with different index ind for small z. The tensor field is defined
on u € [—1, 1] and the eigenvalues are given by 10 + 3|u| and 10 — 3|u]|

] b .'}."‘_.. ", - . - - -
R | v b ¥ L \ > “
¥ - ~ N .,
"I' . .
/._'1/ \1.1 \
S 2 Fa N ' 15
] b :
A : N ' "
WU e s A v
LN e e A - e - ‘
t=10 t=100 t=500

Fig. 6 HKS of a brain dataset for different . The colormap ranges from the minimum to the
maximum of the single images (Brain dataset courtesy of Gordon Kindlmann at the Scientific
Computing and Imaging Institute, University of Utah, and Andrew Alexander, W.M. Keck
Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-Madison)

In Fig. 5 we consider degenerate points of tensor fields with indices between —2
and 3. The index ind is defined to be the number of rotations of the eigenvector
fields along a curve enclosing the degenerate point (and no other degenerate points).
For a more formal definition see [2]. The results show that the HKS also hints at
topological features like degenerate points, although there seems to be no obvious
way to derive the tensor field topology from the HKS.

As a last example Fig. 6 shows a diffusion tensor dataset of a brain. Again, the
HKS is evaluated for different timesteps. Although the extraction of a slice might
cut valuable information the structure of the brain becomes obvious by the HKS.

260 V. Zobel et al.

The reason for this is that the heat transfer is based on the same mathematical
foundations as the diffusion process which is described by the diffusion tensor
field. This means that also the HKS has an immediate link to the diffusion process,
which makes the HKS a promising quantity for the analysis of diffusion tensor data.
It suggests, that the curvature has also a deeper meaning for Riemannian manifolds
associated with a diffusion tensor dataset. Moreover, the time parameter ¢ allows to
focus on smaller and larger structures.

6 Conclusion and Future Work

By applying the HKS to tensor fields we have developed a new method for the
visualization of tensor fields. Compared to common scalar invariants like the trace
or the determinant it provides additional information, as Fig.4 shows. A special
strength of the method is its inherent level of detail properties. Thus, it is possible to
emphasize smaller or larger structures. In contrast to naive Gaussian smoothing the
scaling is directly driven by the tensor data itself. For diffusion tensor data the results
are very promising. For the future we plan on further investigating the significance
of the HKS for further applications. It might be of interest to compare the scaling
properties to ideas of anisotropic diffusion. We will also work on an extension to 3D,
since due to the projection of 3D tensors on 2D slices much valuable information
is lost.

From a theoretical point of view the method can be generalized easily to 3D
tensor fields. With the exception of the formulas indicating the relation to Gaussian
curvature, all formulas are valid in higher dimensions. The problem is that the
computation of the eigenvalues of the Laplacian takes very long for most 3D data.
The computation of the first 500 eigenvalues for a dataset with 2562 points already
takes a few minutes, thus the computation time for a dataset with 256* points will
not be feasible. For tensor fields defined on surfaces a generalization is also no
problem from a theoretical point of view, but in this case the interpretation is even
more difficult. The HKS of the standard metric on the surface results in the usual
HKS for surfaces, i.e. the HKS is influenced not only by the tensor field but also by
the surface itself.

Acknowledgements This research is partially supported by the TOPOSYS project FP7-ICT-
318493-STREP.

Appendix

The row expansion of the HKS for small values of ¢ is given by

- .
HES(1,x) = — > w0t
T

i=1

Visualization of Tensor Fields Using the Heat Kernel Signature 261
In the general case the functions u; are given by

u(x) =1,

() = 2R

1 N :
ur(x) = — (2Rijus RV¥ (x) + 2Rk R7* (x) + 5R*(x) — 12AR(x))

360
where R;jj; is the Riemann curvature Tensor, R, = Rj.,. « the Ricci tensor and
R = R§ the Ricci scalar or scalar curvature. For surfaces these tensors can be

written in terms of the Gaussian curvature by

Rijii = K(gikgji — gi1&jk) -
Rjk = Kgjk ,
R =2K .

Thus we find

Riji R = K(gingy — gugin) K(g* g/ — g''g'%)
=K (gikgjlgikgjl —gigng ¢ —guging™ g’ + gilgjkg”gjk)
= K*(818] — 8,5 — 818 +5/8))

=K’ (4—2-2+44)=4K",
RjR* = K?g; g% = K] = 2K* .
And consequently the functions u; can be expressed in terms of K by

up(x) =1,

() = 3K .

ur(x) = 41—5 (4K(x)* —=3AK(x)) .

262 V. Zobel et al.

References

1. M. Bronstein, I. Kokkinos, Scale-invariant heat kernel signatures for non-rigid shape recog-
nition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010,
San Francisco (IEEE, 2010), pp. 1704-1711

2. T. Delmarcelle, L. Hesselink, The topology of symmetric, second-order tensor fields, in
Proceedings of the Conference on Visualization’94, Washington, DC (IEEE, 1994), pp. 140-
147

3. M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for computational modeling,
in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses (ACM, New York, 2006), pp. 39-54.
doi:http://doi.acm.org/10.1145/1185657.1185665

4. T. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang, Persistent heat signature for pose-oblivious
matching of incomplete models, in Computer Graphics Forum, vol. 29 (Wiley Online Library,
2010), pp. 1545-1554

5. M. Ovsjanikov, A. Bronstein, M. Bronstein, L. Guibas, Shape google: a computer vision
approach to isometry invariant shape retrieval, in IEEE 12th International Conference on
Computer Vision Workshops (ICCV Workshops), 2009, Kyoto (IEEE, 2009), pp. 320-327

6. D. Raviv, M. Bronstein, A. Bronstein, R. Kimmel, Volumetric heat kernel signatures, in
Proceedings of the ACM Workshop on 3D Object Retrieval, Firenze (ACM, 2010), pp. 3944

7. S. Rosenberg, The Laplacian on a Riemannian Manifold: An Introduction to Analysis on
Manifolds (Cambridge University Press, Cambridge, 1997)

8. J. Sun, M. Ovsjanikov, L. Guibas, A concise and provably informative multi-scale signature
based on heat diffusion, in Proceedings of Eurographics Symposium on Geometry Processing
(SGP), Berlin, 2009

9. H. Zhang, O. van Kaick, R. Dyer, Spectral mesh processing, in Computer Graphics Forum
(Wiley, 2010)

http://doi.acm.org/10.1145/1185657.1185665

Topological Features in Glyph-Based Corotation
Visualization

Sohail Shafii, Harald Obermaier, Bernd Hamann, and Kenneth 1. Joy

Abstract This chapter introduces a novel method for vortex detection in flow
fields based on the corotation of line segments and glyph rendering. The corotation
measure is defined as a point-symmetric scalar function on a sphere, suitable
for direct representation in the form of a three-dimensional glyph. Appropriate
placement of these glyphs in the domain of a flow field makes it possible to depict
vortical features present in the flow. We demonstrate how topological analysis of this
novel glyph-based representation of vortex features can reveal vortex characteristics
that lie beyond the capabilities of visualization techniques that consider vortex
direction and magnitude information only.

1 Introduction

The extraction and visualization of vortical features, such as vortex cores, has a long
and successful history in fields such as aerodynamics. As new vortex definitions
emerge, their visualizations are able to convey more characteristics associated with
vortices. While the visualization of individual vortex cores by means of core line
or hull extraction is successful in illustrating vortex direction and extent, it is
limited in its capability to visualize more complex interactions between vortical
features. We take advantage of a relatively new vortex descriptor, based on the
concept of local corotation [1], to create a glyph-based visualization. This shape-
based representation is an encoding of a spherical function that denotes strength of
local corotation for arbitrary directions in space, and allows for the examination
of vortices by means of a topological analysis. Automatic extraction and visual

S. Shafii (b<) » H. Obermaier * B. Hamann « K.I. Joy

Department of Computer Science, Institute for Data Analysis and Visualization,
University of California, Davis, CA 95616-8562, USA

e-mail: ssshafii@ucdavis.edu; hobermaier @ucdavis.edu; bhamann@ucdavis.edu;
kijoy @ucdavis.edu

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 263
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8_ 17,
© Springer International Publishing Switzerland 2014

mailto:ssshafii@ucdavis.edu
mailto:hobermaier@ucdavis.edu
mailto:bhamann@ucdavis.edu
mailto:kijoy@ucdavis.edu

264 S. Shafii et al.

analysis of maxima and corresponding topological regions in this representation
provides insight into possible splitting or merging behavior.

This chapter is structured as follows. We first provide a summary of related work
(Sect.2) and analyze residual vorticity as a measure of local corotation (Sect. 3).
Topological analysis of the created glyphs is presented in Sect. 4. We conclude by
visualizing and analyzing two data sets.

2 Related Work

The work presented in this chapter spans the areas of glyph rendering and vortex
visualization with a focus on analysis of topology. In the following we give a brief
summary of related literature in these fields.

2.1 Vortex Extraction

Volumetric vortex features in flow fields may be extracted by a number of
different vortex classifiers, such as the Q-criterion [2], the A-criterion [3-5] or
the A,-criterion [6]. Kolaf [7] introduced a residual vorticity method that not only
removes the effects of shear by using the triple decomposition of the velocity-
gradient tensor, but is also applicable to compressible flow fields. A similar paper
by Koléf et al. [1] derived a simplification of this method using the corotation of
line segments, which is the method that we discuss in this chapter. Since region-
based methods do not readily create global vortical features, many have developed
line-based techniques as an alternative. Examples are based on the parallel vec-
tors operator [8], eigenvector analysis [9, 10], pressure-based predictor corrector
schemes [11-13], ridge extraction [14, 15], or variations thereof [16-19]. Note
that isosurface and medial-axis based representations allow for the visualization
of complex vortex behaviors such as splitting. For a summary of various vortex
detection methods, we refer to Post et al. [20] and Jiang et al. [21].

2.2 Vortex Visualization

The visualization of vortical features is mainly based on isosurfaces, line-like
features from predictor-corrector, and skeleton or ridge extraction techniques [12].
Others [22, 23] use (flow) surface or voxel visualization techniques to verify and
illustrate vortex cores. Topological analysis and visualization of vortex structures in
combination with volume rendering was performed by Tricoche et al. [24].

Topological Features in Glyph-Based Corotation Visualization 265
2.3 Glyph Visualization

Glyphs, such as superquadrics [25], are frequently used to encode relevant quantities
in vector [26, 27] and tensor fields [28]. Especially in medical visualization,
topological properties of tensor glyphs are helpful to identify salient features in the
data, such as fiber crossings in DW-MRI data [29,30]. These glyphs can be rendered
as discrete meshes or, using modern graphics hardware, be ray-traced [31, 32].
A survey of gylph-based visualization techniques is discussed by Borgo et al. [33].
Our work introduces spherical glyphs as a novel approach to corotation-based vortex
visualization. Topological features of these glyphs are evaluated and classified
automatically to provide the means for a robust analysis of rotational properties
and topological characteristics in vortical features. While previous vortex extraction
approaches indicate the strength and directional components of vortices, they do
not indicate all possible vortex directions that may exist at a point in a data set. Our
glyphs provide a visual representation of vortex axes besides the dominant one that
exists at a vortex, as that may indicate branching or merging behavior.

3 Corotation on a Sphere

The extraction of vortex cores relies on the availability of robust mathematical
measures of flow rotation. In this work we investigate topological features of glyphs
that are derived from a novel rotation measure known as local corotation or residual
vorticity, as described in the following sections.

3.1 Physical Interpretation

Given a point p € R?, the classic vorticity vector has two main properties. First,
its direction corresponds to the normal of the plane along which two arbitrary line
segments exhibit the maximal average angular velocity in the flow field [7]. Second,
its magnitude represents twice the angular speed of the average rotation of these line
segments. Residual vorticity [1], on the other hand, makes use of a similar physical
interpretation with one significant difference: The residual vorticity vector is normal
to the plane with maximal local corotation of line segments in a plane at p, for all
possible planes at p. Instead of maximizing an average rotation speed, the residual
vorticity technique maximizes a minimal common rotation speed. The difference of
these two concepts is depicted in Fig. 1. Note that this alternative notion of rotation
reduces the effect of strain and shear components on the computation of rotation
directions.

266 S. Shafii et al.

Max <=~ Average “~, Average
/

Min

Corotation Contrarotation

Fig. 1 An illustration of corotation and contrarotation of two line segments at a point p, based on
Fig. 1 from Kol4r et al. [1]. “Max” is the maximal rotation speed, while “average” and “min” are
average and minimum rotational speeds in the corotation example, respectively. On the left we have
corotation, where residual vorticity is the least absolute value angular velocity of the line segments
shown (min). Average is just ordinary vorticity for both cases. Vorticity is still proportional to the
average of all rotation speeds in the contrarotation example, which does not correspond to physical
rotation in the plane

3.2 Local Corotation

The fact that residual vorticity is evaluated by maximizing local corotation over
all possible plane orientations in 3D space makes it possible to analyze rotation
in directions that do not correspond to the orientation with the globally maximal
corotation. In the following we establish the mathematical background by describing
how local corotation is defined for arbitrary orientations in 3D space.

Given a position p € R? in a velocity field £ : R* — R? with local gradient
V f and an arbitrary orientation v(«, f) = (cos(a) - sin(B), sin(«) - sin(B), cos(B)),
quasiplanar residual vorticity as a measure of local corotation [1] is defined as:

Wres(at, B) = sign(w (e,) (|o(e, B)| — |sp (. B)I). ey

where w and Sp are the two-dimensional vorticity and deviatoric strain on the plane
with normal v. Additionally, if |w| < |sp| then w,,; = 0. Two-dimensional vorticity
and deviatoric strain are computed as follows.

The quasiplanar effects of the velocity gradient tensor on an arbitrary plane with
normal v is obtained by projecting the three-dimensional velocity gradient tensor
into a two-dimensional coordinate frame orthogonal to v:

cos(a) - cos(B) —sin(a) 4 cos(a) - cos(B) —sin(x)
Vf* =| sin(a)- cos(B) cos(a) V£ | sin(@)- cos(B) cos() |. (2)
—sin(pB) 0 —sin(pB) 0

With this two-dimensional velocity gradient tensor, quasiplanar vorticity and
deviatoric strain are defined as:

Topological Features in Glyph-Based Corotation Visualization 267

_ VOV -V (VA VED?
2

V=V

3)

As a result, local corotation in the form of residual vorticity can be defined for
all positions v on a unit-sphere, with corotation scalar magnitude representing the
minimal common angular rotation of line elements on a corresponding plane. In the
following we visualize and analyze the spherical function given by ;.

4 Corotation Visualization and Topological Features

The fact that w,.s is capable of not only revealing the direction with maximal
rotation, as commonly used for vortex core extraction, but the amount of rotation
present in other directions in space makes it a prime candidate for detailed rotation
analysis. We now discuss how we visualize the corotation function using spherical
glyphs, and explain the various topological properties of these shapes.

4.1 Glyph Creation

Since positions on a unit sphere encode all possible orientations in 3D space,
the complete domain of w,, can be visualized by modifying such a spherical
representation. Note that the spherical function w,,; may in theory be approximated
as a higher-order tensor, allowing the application of existing glyph generation
techniques, such as the one specified by Schultz and others [29, 30]. Such an
approximation, however, is outside the scope of this chapter. The spherical meshes
used in this work are created using icosahedron subdivision, as the resulting
triangles of this mesh have equal areas and are suitable for easy level-of-detail
control as shown by Schultz and Kindlmann [34]. Unlike a triangulation based on
spherical coordinates, these triangles do not become distorted around the poles of
the sphere.

A depiction of a spherical glyph is shown in Fig. 2, where corotation values are
indicated by offsetting vertices of a unit sphere along the normal according to the
local magnitude of w,.;. For this purpose, we first convert the Cartesian coordinates
of each mesh vertex (relative to the center of the sphere) into a spherical coordinate
representation, obtaining azimuthal and polar angles « and 3, respectively. Next, we
compute the mesh offset as the corotation scalar magnitude for the angle pair (¢,),
and normalize the offset based on the range of corotation values over the entire
sphere. We choose this type of local offset normalization over a global data-set-wide
normalization, since exceptionally strong vortical features in flow simulations tend
to lead to an unbalanced scaling. The offset value used per angle pair is the absolute
value of w,.;, as we are interested in highest values of corotation magnitude that
exist on the sphere.

268 S. Shafii et al.

Fig. 2 Example of a spherical glyph, where its vertices are offset at positions where the corotation
scalar magnitude is larger than zero. The arrows in the figure indicate where these non-zero values
exist, while the base sphere (which corresponds to zero) is drawn with a dashed line. The colormap
of the glyph varies from blue (weak corotation) to red (strong corotation)

4.2 Glyph and Function Properties

The scalar residual vorticity function and the resulting glyph representation have
many interesting characteristics, some of which influence the applicability of
topological methods as described in the next section. The w,.; function that defines
the glyphs is specified in the domain [0,] for the angles @ and B, and is periodic
beyond that domain. As a result, the spherical glyph is point-symmetric with respect
to its center, meaning that each extremum exists twice.

The variable behavior of the gradient magnitude of residual vorticity can often
make the glyph-based representation difficult to predict. As a consequence, the
shape of maximal regions in a glyph can vary strongly, and can include nearly flat
regions with small gradient values, and peaks with extreme gradients. In addition,
the use of absolute value and sign operators in the computation of residual vorticity
introduces discontinuous derivatives. This can be observed in the form of C°
continuous regions in glyph shapes. Large regions of the function may be zero,
for directions where the field is not rotating, or deviatoric strain exceeds quasiplanar
vorticity.

In general, i.e., when the flow field is not irrotational, w, has at least one
maximum pointing along the direction of maximal rotation (two opposing maxima
on the glyph representation). There are, however, multiple cases when additional
local maxima can occur. The analysis of glyph topology with respect to the number
of maxima present and shape characteristics of the corresponding topological
regions can aid in understanding vortical features in the data set as described in
the following section.

Topological Features in Glyph-Based Corotation Visualization 269
4.3 Topological Analysis of Individual Glyphs

The analysis of the topological properties of the glyph has the potential to indicate
the existence of one or multiple related vortex directions. For instance, a glyph with
two (opposing) peaks with two associated topological regions indicates that there
is a vortex that runs through the center of the glyph, with the axis of the vortex
being parallel to those peaks. Peaks that are associated with larger and less sharp
topological regions indicate multiple rotation directions with a less distinct vortex
core direction. If a glyph has additional maxima, then there exist additional vortex
directions at those positions of the glyph, especially if the additional peaks are large
relative to other peaks that exist. In the following we discuss methods for topological
analysis of these glyphs and provide details about a sample implementation.

As mentioned in the previous section, the w,.; function and therefore the topology
of the glyph shape may contain multiple local maxima. This property, coupled
with the lack of C'-continuity, precludes us from finding the maxima analytically.
Furthermore, it is difficult to perform gradient ascent on this function because of the
existence of sharp ridges (due to a discontinuous gradient), and because an w,.; func-
tion for a given V f tensor may have multiple maxima. In the latter case, it is chal-
lenging to find an appropriate seed point for gradient ascent that gives us the location
of the global maximum. An alternative to finding a maximum explicitly could be
based on ray-tracing, which is often used to represent the shape of a glyph. While
it is possible to ray-trace the glyph in order to examine the topology of the glyph
in image space, one will require a high-resolution image to make this analysis work
and the analysis would be view-dependent. For these reasons, we employ an approx-
imation of topological structures by directly examining the glyph meshes. One
possible solution is to find local w,.; maxima within a neighborhood of the mesh.
Unfortunately, it is difficult to perform such a maxima search with fixed neighbor-
hood sizes due to the possible existence of high frequency features in the mesh.

We employ a watershed approach [35] instead, which effectively propagates the
labels of maxima to other mesh vertices. We first sort all of the vertices of the
mesh by function value, and identify the first vertex as a labeled maximum. As we
move along the sorted list, we effectively move downwards in corotation value
and identify vertices or “nodes” which are adjacent to labeled regions and which
propagate those labels, or vertices where new maxima come into existence. We also
track the merging behavior of regions with different labels by creating saddle points,
which are assigned the label of the maximum with the largest w,.; value. We identify
regions with nearly identical function values, or “plateaus,” and treat these regions as
single nodes during the labeling process. If there are multiple maxima connected via
a large plateau, the plateau receives the label of the largest maximum and effectively
connects it to the other maxima. After the watershed algorithm is completed, we
create watershed graphs, which are similar to the “split trees” defined by Carr
et al. [36]. We can filter the maxima of this tree that result from sampling artifacts,
and color resulting descending manifolds of a glyph. An example of a glyph, and its
corresponding unfiltered and filtered trees are shown in Fig. 3.

270 S. Shafii et al.

V'Y

Unfiltered glyph. Filtered glyph.
c d
Unfiltered watershed tree. Filtered watershed tree.

Fig. 3 Example of a glyph (a) along with its normal watershed tree (c¢), and the corresponding
“filtered” representations (b), (d). The unfiltered versions contains small peaks, which include the
diminutive, teal-colored maximum close to the center of the glyph in (a) and other (hidden from
view) maxima. All maxima are connected to a large plateau (base icosahedron sphere). In the
filtered versions, we removed small branches of the tree corresponding to these spurious maxima
and subsequently recompute the topological regions

4.4 Topological Analysis of Multiple Glyphs

If multiple glyphs are positioned along a grid of a flow field, one can observe how
their topological regions change as the field is traversed. In order to detect these
changes, we first identify canonical glyph examples of various topologies that exist
in the test data sets used in this chapter. In Fig. 4, we show these glyphs, and discuss
how it is possible to have glyphs with well-defined or ambiguous directions for
two or four peaks. Since the corotation function is symmetric, values beyond the
domains [0, 7] for o and B are repeated in the graphs for this figure.

In Fig.4a, c, e, g, we show visualizations and plots of large topological regions
for two and four peaks, respectively. Each peak in these cases indicates multiple
directions with strong rotations in large areas of the sphere. This is in stark
contrast to Fig. 4b, d, f, h, where the pronounced peaks indicate unambiguous vortex
directions for the two and four peak cases, respectively. It is notable how this glyph
representation allows for the analysis of rotation in multiple directions, a feature
that is not possible in classic direction and magnitude-based vortex visualizations.

Glyphs are likely to have two peaks that point along the forward and backward
directions of the vortex core’s axis at certain positions along a vortex core line, as
seen in Fig. 4a, b. In other cases, glyphs might have four peaks (Fig. 4c, d), indicating

Topological Features in Glyph-Based Corotation Visualization 271

vy

Two large topological Two small topological Four large topological Four small topological
regions. regions. regions. regions.
e
@ @
& 8
8 8
o 1
@ D
@ @
-3 -2 -1] 1 2 3 3 2 1 0 1 2 3
Alpha (radians) Alpha (radians)
Two large topological regions. Two small topological regions.
)] 048 h 0.03
a |
b 404
1 0,025
26 | { 0.35
) Fq03 @ 1 002
§ ° |]
] 025 55
E 1.5 o5 E 0.015
= ’ =
3 1 0.15 :?j‘ 0.01
o1
05 i 0,005
0.05
0 0 0
-3 2 4 0 1 2 3 3 2 E 0 1 2 3
Alpha (radians) Alpha (radians)
Four large topological regions. Four small topological regions.

Fig. 4 Visualizations of various types of glyph topologies that we have observed, as well as their
corresponding graphs (where the range of scalar corotation values is indicated by a color gradient
of black to yellow). The corotation function is periodic, which explains why the visualizations
and graphs portray symmetry. One can see that there may exist multiple directions with strong
rotation close to the maximal corotation values in (a), (e), while in (b), (f) the maximum point is
unique. Similarly, we observe four large topological regions in (c), (g), while we observe sharp,
unambiguous peaks in (d), (h)

multiple orientations with maximal corotation. If the number of topological regions
along a vortex increases from two to four, more vortex directions will start to appear.
If two of the glyph’s four peaks begin to wane, then the remaining two peaks will
indicate dominating vortex directions. Additionally, the widening or narrowing of

272 S. Shafii et al.

individual topological regions indicate an increasing or decreasing number of vortex
directions in the region of each peak, respectively.

5 Results

We have used our rendering technique to observe the topological behaviors of
glyphs in our data sets. Our data sets include the “Blunt Fin” [37] and a von Kdrmén
vortex street. The blunt fin data set is represented by a 40 x 32 x 32 structured
curvilinear grid, while the vortex street is represented by a 167 x 34 x 34 structured
curvilinear grid. The glyphs rendered are scaled based on the dimensions of the data
set cell that they reside in. In these visualizations, topological regions are assigned
individual colors. Sampled glyphs are excluded assuming their individual corotation
ranges did not exceed a pre-specified threshold value.

5.1 Blunt Fin

We rendered our glyphs by uniformly sampling the data set as seen Fig.S5.
In Fig. 5b, c, one can see that the many four-peak glyphs reside next to their two-
peak counterparts. In Fig. 5d, e, we observe more instances of four-peak glyphs.
The presence of this type of glyph indicates additional vortex directions that exist
at this position. A standard vortex core line extraction technique only portrays the
dominant vortex axis per point. In the future we hope to employ a sophisticated
extraction technique to portray splitting or merging behaviors that could be related
to these additional vortex directions.

5.2 Von Kdrmadn Vortex Street

We visualized glyphs in the Von Karman Vortex Street data set by uniformly
sampling the grid as seen in Fig.6. We observed glyphs near five stable vortex
regions parallel to the y-axis of the data set, and the glyphs’ peaks are aligned
with the y-axis as we expected. Most of the glyphs’ topologies are similar to their
neighbors, and they mostly point in the same direction. This indicates a lack of
additional vortex directions per glyph, a behavior that was present in the Blunt Fin
data set.

Topological Features in Glyph-Based Corotation Visualization 273

Overall visualization of Blunt Fin vortex cores and glyphs.

b c

Close-up view of a Blunt Fin core with peaks Close-up view of a Blunt Fin core with
identified. corotation colormap.

d

Close-up view of a Blunt Fin core with peaks Close-up view of a Blunt Fin core with
identified. corotation colormap.

Fig. 5 Visualization of glyphs sampled uniformly in the Blunt Fin data set. The vortices in this
data set are parallel with the blunt fin boundary and are parallel with the longest dimension of the
data set. A visualization of most of the glyphs is shown in (a). The first close-up visualization is
shown in (b), (¢), where there exist many glyphs that possess four peaks. Figure (d), (e) show more
four-peak glyphs

274 S. Shafii et al.

Overall visualization of von Karmén glyphs.

Close-up view of a von Kdrmén glyphs, with Close-up view of a von Karmdn glyphs, with
peaks identified. corotation colormap.

Fig. 6 Visualization of glyphs sampled uniformly in the von Kdrman vortex street, as visualized
in (a). A close-up view of various glyphs is shown in (b), (¢), which show that there exist glyphs
that correspond to the canonical “two-peak” examples that mostly point along a uniform direction

6 Conclusions and Future Work

In this work we have introduced glyph-based visualization of corotation-based
vortices. We have shown how topological analysis of these glyphs both visually and
in an automatic fashion can reveal complex vortex behaviors, such as interactions
between rotational components present in a single core. In the future we hope to
represent the corotation function using multiple levels of detail in order to sample
the function more effectively, and investigate how one can extract glyphs in time-
dependent flows as the current method applies to discrete time steps. Furthermore,
we hope to visually represent vortex core splits and merges in conjunction with the
glyphs to investigate a possible relationship between the two.

Topological Features in Glyph-Based Corotation Visualization 275

Acknowledgements This work was partially supported by the Materials Design Institute, funded
by the UC Davis/LANL Research Collaboration (LANL Agreement No. 75782-001-09). It was
also supported by the NSF under contracts IIS 0916289 and IIS 1018097, the Office of Advanced
Scientific Computing Research, Office of Science, of the US DOE under Contract No. DE-FCO02-
06ER25780 through the SciDAC programs VACET, and contract DE-FC02-12ER26072, SDAV
Institute. We thank Simon Stegmaier for making available his software [16].

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

V. Kolar, P. Moses, J. Sistek, Local corotation of line segments and vortex identification, in
Proceedings of the Seventeenth Australasian Fluid Mechanics Conference, Auckland, ed. by
G. Mallinson, J. Cater (2010), pp. 251-254

. J.C.R. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows.

Center for Turbulence Research Report CTR-S88, 1988, pp. 193-208

. U. Dallmann, Topological structures of three-dimensional vortex flow separation, in /6th

American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conference,
Danvers, 1983

. H. Vollmers, H. Kreplin, H. Meier, Separation and vortical-type flow around a prolate spheroid-

evaluation of relevant parameters, in Proceedings of the AGARD Symposium on Aerodynamics
of Vortical Type Flows in Three Dimensions, Rotterdam, 1983, pp. 14-1-14-14

. M. Chong, A. Perry, B. Cantwell, A general classification of three-dimensional flow fields.

Phys. Fluids 2, 765-777 (1990)

. J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69-94 (1995)
. V. Koldf, Vortex identification: new requirements and limitations. Intern. J. Heat Fluid Flow

28(4), 638-652 (2007)

. M. Roth, R. Peikert, A higher-order method for finding vortex core lines, in Proceedings of

the Conference on Visualization’98, Minneapolis (IEEE, 1998), pp. 143—-150

. D. Sujudi, R. Haimes, Identification of swirling flow in 3D vector fields, in AIAA 12th

Computational Fluid Dynamics Conference Paper, San Diego, 1995, pp. 95-1715.

D. Kenwright, R. Haimes, Automatic vortex core detection. IEEE Comput. Graph. Appl. 18,
70-74 (1998)

B. Singer, D. Banks, A predictor-corrector scheme for vortex identification. Technical report,
TR-94-11, 1994

D. Banks, B. Singer, Vortex tubes in turbulent flows: identification, representation, reconstruc-
tion, in Proceedings of the Conference on Visualization’94, Washington, DC (IEEE, 1994),
pp. 132-139

D.C. Banks, B.A. Singer, A predictor-corrector technique for visualizing unsteady flow. IEEE
Trans. Vis. Comput. Graph. 1, 151-163 (1995)

J. Sahner, T. Weinkauf, H. Hege, Galilean invariant extraction and iconic representation of
vortex core lines, in IEEE VGTC Symposium on Visualization, Leeds, 2005, pp. 151-160

J. Sahner, T. Weinkauf, N. Teuber, H.C. Hege, Vortex and strain skeletons in eulerian and
lagrangian frames. IEEE Trans. Vis. Comput. Graph. 13(5), 980-990 (2007)

S. Stegmaier, U. Rist, T. Ertl, Opening the can of worms: an exploration tool for vortical flows,
in IEEE Visualization Conference, Minneapolis, 2005, pp. 463—470

T. Schafhitzel, D. Weiskopf, T. Ertl, Interactive investigation and visualization of 3D vortex
structures, in Electronic Proceedings of 12th International Symposium on Flow Visualization,
Gottingen, Sept 2006

T. Schathitzel, J. Vollrath, J. Gois, D. Weiskopf, A. Castelo, T. Ertl, Topology-preserving
A2-based vortex core line detection for flow visualization, in Computer Graphics Forum,
vol. 27 (Wiley Online Library, 2008), pp. 1023—-1030

276

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

S. Shafii et al.

K. Baysal, T. Schathitzel, T. Ertl, U. Rist, Extraction and visualization of flow features,
in Imaging Measurement Methods for Flow Analysis. Volume 106 of Notes on Numerical
Fluid Mechanics and Multidisciplinary Design, ed. by W. Nitsche, C. Dobriloff (Springer,
Berlin/Heidelberg, 2009), pp. 305-314

F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, H. Doleisch, The state of the art in flow
visualisation: feature extraction and tracking. Comput. Graph. Forum 22, 775-792 (2003)

M. Jiang, R. Machiraju, D. Thompson, Detection and visualization of vortices, in The
Visualization Handbook, ed. by C.D. Hansen, C.R. Johnson (Elsevier, Amsterdam, 2005),
pp- 295-309

C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, G. Scheuermann, Surface techniques for vortex
visualization, in VisSym, Konstanz, 2004, pp. 155-164

M. Jankun-Kelly, M. Jiang, D. Thompson, R. Machiraju, Vortex visualization for practical
engineering applications. IEEE Trans. Vis. Comput. Graph. 12(5), 957-964 (2006)

X. Tricoche, C. Garth, G. Kindlmann, E. Deines, G. Scheuermann, M. Ruetten, C. Hansen,
Visualization of intricate flow structures for vortex breakdown analysis, in Proceedings of the
Conference on Visualization, VIS’04, Washington, DC (IEEE, 2004), pp. 187-194

C.D. Shaw, D.S. Ebert, J.M. Kukla, A. Zwa, I. Soboroff, D.A. Roberts, Data visualization using
automatic perceptually motivated shapes, in SPIE Conference on Visual Data Exploration and
Analysis, San Jose, 1998, pp. 208-213

FH. Post, EJ. Post, T.V. Walsum, D. Silver, Iconic techniques for feature visualization, in
Proceedings of the 6th Conference on Visualization, VIS’95, Washington, DC (IEEE, 1995),
pp. 288-295

A. Wiebel, S. Koch, G. Scheuermann, Glyphs for non-linear vector field singularities, in Topo-
logical Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr,
R. Fuchs. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2012), pp. 177-190
G. Kindlmann, Superquadric tensor glyphs, in Proceedings of the Sixth Joint Eurographics —
IEEE TCVG Conference on Visualization, VISSYM'04, Aire-la-Ville (Eurographics Associa-
tion, 2004), pp. 147-154

T. Schultz, C.F. Westin, G. Kindlmann, Multi-diffusion-tensor fitting via spherical deconvolu-
tion: a unifying framework, in Proceedings of the 13th International Conference on Medical
Image Computing and Computer-Assisted Intervention: Part I, MICCAI’ 10, Beijing (Springer,
Berlin/Heidelberg, 2010), pp. 674-681

T. Schultz, Towards resolving fiber crossings with higher order tensor inpainting, in New
Developments in the Visualization and Processing of Tensor Fields, ed. by D.H. Laidlaw,
A. Vilanova. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2012), pp. 253-265
T. Peeters, V. Prckovska, M. van Almsick, A. Vilanova, B. ter Haar Romeny, Fast and
sleek glyph rendering for interactive hardi data exploration, in Visualization Symposium,
PacificVis’09, Beijing (IEEE, Apr 2009), pp. 153-160

M. van Almsick, T.H. Peeters, V. Prckovska, A. Vilanova, B. ter Haar Romeny, GPU-based
ray-casting of spherical functions applied to high angular resolution diffusion imaging. IEEE
Trans. Visual. Comput. Graph. 17(5), 612-625 (2011)

R. Borgo, J. Kehrer, D.H.S. Chung, E. Maguire, R.S. Laramee, H. Hauser, M. Ward, M. Chen,
Glyph-based visualization: foundations, design guidelines, techniques and applications, in
Eurographics State of the Art Reports (EG STARs, Eurographics Association, May 2013),
pp. 39-63. http://diglib.eg.org/EG/DL/conf/EG2013/stars/039-063.pdf

T. Schultz, G. Kindlmann, A maximum enhancing higher-order tensor glyph. Comput. Graph.
Forum 29(3), 1143-1152 (2010)

S. Beucher, FE. Meyer, The morphological approach to segmentation: the watershed transfor-
mation (Mathematical morphology in image processing). Opt. Eng. 34, 433481 (1993)

H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom.
Theory Appl. 24(2), 75-94 (2003)

C. Hung, P. Buning, Simulation of blunt-fin-induced shock-wave and turbulent boundary-layer
interaction. J. Fluid Mech. 154(1), 163-185 (1985)

http://diglib.eg.org/EG/DL/conf/EG2013/stars/039-063.pdf

Index

A

Advection-diffusion, 217-229

Advection-diffusion field, 218, 220-221, 223,
224,226, 227, 229

Ambient isotopy, 168, 170, 172, 181, 182

Attracting LCS, 224

B

Betti number, 105

Bezier curve, 168, 172, 176, 180

Big data, 167-182

Boundary, 4, 5, 7, 8, 10, 12, 27, 28, 32, 34, 41,
49, 105, 106, 219, 223, 237, 240,
246, 247, 254-256, 273

Boundary matrix, 104, 106-108, 113-115

Branch decomposition, 153, 156-162

Brouwer degree, 7, 8, 10, 11

C
Cauchy Green strain tensor, 202, 205
Cauchy-Green tensor, 188, 190-192, 196, 197,
202, 205-208, 212, 213
Cell graph, 57, 123-126, 139, 141
Chain, 86, 104, 105, 175
Chaotic advection, 202
Chunk, 103-116
Clearing, 9, 35, 49, 67, 74, 100, 103-116, 121,
155, 172, 181, 196
Combinatorial
critical points, 6, 139, 140
gradient field, 121, 136-142, 144
hierarchy, 138
separatrix, 136, 140-142
topology, 57
Compression, 4, 32, 82, 103-116, 258, 264

Compute unified device architecture (CUDA),
206, 213

Connected component labeling, 100

Consistency, 4-6, 12, 13, 15, 41, 45, 47, 48,
84, 97, 98, 120, 124, 126, 149, 190,
205, 207, 213, 218, 225

Contour tree, 20, 70, 73-75, 78-86, 89-101,
142, 154, 156

Control polygon, 168-169, 172, 173, 177, 180,
181

Corotation, 263-274

Critical points, 5, 7, 10-16, 20-35, 41, 56, 57,
98, 136-149, 152, 154, 156, 219,
222,223, 238, 239

CUDA. See Compute unified device
architecture (CUDA)

Curvature, 250, 253, 257, 258, 260, 261

Cycles, 4, 5, 40, 44, 56, 57, 62-64, 67, 96, 97,
105, 126, 154, 197

D

Degree, 7-11, 21-25, 80, 83, 92, 145, 156,
162, 168, 171, 176, 212, 237, 241

Diffusion tensor field, 260

Distance between merge trees, 151-164

Distance function, 89, 238, 240

Distributed memory, 90, 127, 128

E
Essential column, 106-108

F
Feature tracking, 19-35
Finite element method, 254

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization IlI, 277
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8 ,
© Springer International Publishing Switzerland 2014

278

Finite-size Lyapunov exponent (FSLE),
187-199

Finite time Lyapunov exponent (FTLE), 56-62,
67, 187-199, 202, 206, 211-213,
218, 219, 221-227

Flow, 4, 6, 20, 32, 4044, 56, 58-60, 65,
120-123, 129, 136-143, 145, 146,
154, 195-198, 202-205, 207-214,
217-229, 264-268, 270

Flow map, 58-62, 188, 189, 191, 192, 202,
203, 205-213, 218, 222

Flow visualization, 57, 188, 212, 213, 218, 220

FSLE. See Finite-size Lyapunov exponent
(FSLE)

FTLE. See Finite time Lyapunov exponent
(FTLE)

Functional programming, 73-86

G

Gaussian curvature, 250, 253, 257, 258, 260,
261

Glyph, 263-274

GPU computing, 203, 206-212

H

Haskell, 74-79, 81, 82, 84-86

Heat diffusion, 224, 225, 227, 228, 250

Heat equation, 251, 252

Heat exchanger design, 225, 229

Heat Kernel Signature (HKS), 249-261

Heat operator, 251, 252

HKS. See Heat Kernel Signature (HKS)

Homology group, 22, 34, 62, 96, 105, 106,
154

I
Invariant manifold, 202, 222

J
Join tree, 21, 79-83, 85

L

Lagrangian coherent structures (LCS), 61,
187, 201-214, 218, 219, 221-222,
224-229

Laplace-Beltrami operator, 251

Laplacian, 250-252, 254, 257, 260

LCS. See Lagrangian coherent structures
(LCS)

Index

Local-global representation, 91-95, 98-101
Lower star filtration, 113

M
Manifolds, 20, 21, 42, 49, 56-58, 62, 65, 139,
145, 155, 188, 189, 201, 202, 213,
214, 222, 238-240, 252, 253, 269
stable, 239
Matching, 20, 30, 34, 76, 77, 80, 90, 99,
121, 139, 141, 142, 144, 146, 152,
153, 155-158, 160, 161, 194, 195,
243-245, 247
augmentation, 141, 142
MCG. See Morse connection graph (MCG)
Merge tree, 21-23, 31, 75, 90-95, 97, 99-101,
151-164
Metric tensor, 250, 251, 253, 254
Molecular simulation, 90, 170, 171, 182
Morse connection graph (MCG), 6, 40-50, 52
Morse decomposition, 39-52, 121, 122
Morse set, 40, 42, 44, 45, 48-51, 121
Morse set merger, 39-52
Morse-Smale complex
connectivity, 136, 137, 143-145, 148
geometric embedding, 136, 142-144, 149
hierarchy, 136, 138, 142-144, 148
monotonicity, 145-147
simplification
explicit, 136-138, 140, 142-145, 147
implicit, 136-138, 140-145, 147, 148

N

Negative column, 106, 108-110

Normalized velocity separation (NVS), 56,
60-67

Numerical integration, 41, 42, 56, 121, 192

NVS. See Normalized velocity separation

(NVS)

P

Parallel algorithms, 75, 94, 100, 101, 105,
130

Parallelism, 74, 85, 86, 130, 212

Passive diffusion, 220

Performance, GPU, 206, 208-210

Periodic orbits, 40, 49, 55-67, 128

Persistence, 20, 62, 63, 90, 104-107, 109,
112-114, 116, 145, 152-155, 241

Persistence pair, 104, 106-111, 113

Persistent homology, 20, 21, 56, 62-64, 67, 93,
103-116, 145, 153155

Index

Perturbation strategy, 168, 172, 176-178,
181
Piecewise constant vector field, 6, 39, 41-43,
119-131
Pipeline architecture, 204
Pivot index, 106-110
Pore
body, 238, 239
center, 238-241, 243, 245, 246
constriction, 236-239, 241, 246
path, 236, 238, 239, 241, 243, 245, 246
structures, 90, 235-247
Positive column, 106, 108, 110, 111
Post-processing, 203, 213, 241

R

Reduced matrix, 107, 109, 113

Repelling LCS, 202, 222

Riemannian manifold, 250, 251, 253, 254,
260

Robustness, 4-6, 13, 19-35, 152

S

Saddle periodic orbits, 49, 55-67

Separation, 55-65, 67, 136, 142, 144-149,
188-190, 199, 218, 222

Simplex, 7, 9-15, 24, 96, 97, 105, 106, 109,
112,114

Simplexwise filtration, 106

Simulation of Simplicity (SoS), 5, 12-14

Singularities, 3-16

SoS. See Simulation of Simplicity (SoS)

Spectral sequence algorithm, 104, 109, 110

Split tree, 79-81, 85, 91, 269

Stream lines, 4, 5, 20, 56, 57, 61, 63-66, 149,
195, 217-219, 223, 225, 226, 228,
229

Symmetric difference, 141

279

T

Tensor field, 205, 206, 208, 212, 219, 249-261,
265

Thermal conduction, 218, 219, 225, 226

3D vector fields, 14, 40, 57, 122, 222

Time-aware filter, 204

Time-dependent flow, 56, 58, 59, 217-229

Topological similarity, 152

Transition graph, 41-50, 122-128, 131

Transport barrier, 188, 189, 195, 218, 219, 221

Transport topology, 57, 189, 218, 219

U

Unsteady flow, 202

Unstructured grid, 204, 207-211, 213, 222,
223,225

\'%

Vector fields, 3-16, 20-25, 28, 30, 32, 34,
35, 39-44, 49, 55-58, 61, 64, 66,
67, 119-131, 201, 207, 212, 213,
217-222

Vector field topology, 39-41, 56, 120, 121,
217,219, 221

Velocity field data, 202, 203, 205, 209, 213

Visualization Toolkit (VTK), 203, 204,
206-208

Voronoi decomposition, 239, 242

Voronoi diagram, 242, 243

Vortex, 20, 50, 213, 219, 223, 224, 227, 228,
263-265, 267, 269-274

Vortex core line, 218, 221-226, 270, 272

VTK. See Visualization Toolkit (VTK)

W

Watershed transformation, 240
Well diagrams, 21-24, 34
Well groups, 20-22, 34

	Preface
	Acknowledgements
	Contents
	Part I Robust Topological Analysis
	Robust Detection of Singularities in Vector Fields
	1 Introduction
	2 Related Work
	3 Foundations
	3.1 Degree Theory
	3.2 Sampled Vector Fields

	4 Critical Point Detection
	4.1 Main Result
	4.2 Robust Computation Using the Simulation of Simplicity

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Interpreting Feature Tracking Through the Lens of Robustness
	1 Introduction
	2 Background
	3 Critical Point and Sublevel Set Tracking Through the Lens of Robustness
	4 Experiments
	5 Discussion
	References

	Simplification of Morse Decompositions Using Morse Set Mergers
	1 Introduction
	2 Prior Work
	3 Morse Decompositions and Morse Connection Graphs
	3.1 PC Vector Fields: Basics
	3.2 Transition Graph
	3.3 Morse Decompositions and Morse Connection Graphs

	4 Morse Set Mergers
	4.1 Mergers on the Transition Graph Level
	4.2 Impact of Mergers on the MCG
	4.3 Consistency

	5 Construction of the Hierarchy
	5.1 Admissibility and Cost: An Example

	6 Experimental Results
	7 Conclusion
	References

	Toward the Extraction of Saddle Periodic Orbits
	1 Introduction
	2 Related Work
	3 Foundation
	3.1 Periodic Orbits
	3.2 Saddle Periodic Orbits
	3.3 Finite-Time Lyapunov Exponent (FTLE)

	4 Normalized Velocity Separation
	5 Method
	6 Results
	6.1 Single Saddle Periodic Orbit No. 1
	6.2 Single Saddle Periodic Orbit No. 2
	6.3 Truncated Fourier Series with Random Coefficients

	7 Conclusion
	References

	Part II Efficient Computation of Topology
	Computational Topology via Functional Programming: A Baseline Analysis
	1 Introduction
	2 Computational Topology and Functional Programming
	3 Functional Programming
	4 Step I: The Functional Contour Tree
	5 Step II: The Fast Functional Contour Tree
	6 Step III: Towards Parallel Functional Contour Trees
	7 Conclusions and Prospects
	References

	Distributed Contour Trees
	1 Introduction
	2 Background
	3 Local–Global Representation
	4 Contour Tree
	4.1 Levelset Component
	4.2 Interlevel Set
	4.3 Contour Tracking

	5 Experiments
	6 Conclusion
	References

	Clear and Compress: Computing Persistent Homology in Chunks
	1 Introduction
	2 Background
	2.1 Homology
	2.2 Persistence
	2.3 Boundary Matrix
	2.4 The Reduction Algorithm

	3 Speed-Ups
	3.1 Clearing Positive Columns
	3.2 Compression

	4 Reduction in Chunks
	4.1 Local Chunk Reduction
	4.2 Global Column Compression
	4.3 Submatrix Reduction

	5 Analysis
	5.1 General Complexity
	5.2 Choosing Chunks
	5.3 Cubical Complexes

	6 Experiments
	7 Conclusion and Outlook
	References

	Parallel Computation of Nearly Recurrent Components of Piecewise Constant Vector Fields
	1 Introduction
	2 Related Work
	3 Piecewise Constant Vector Fields: Background
	3.1 Naive Parallelization
	3.2 Contribution

	4 Algorithm
	4.1 Transition Graph Representation
	4.2 Transition Graph Construction
	4.2.1 Coarse Graph
	4.2.2 Refinement

	5 Implementation and Results
	5.1 Implementations
	5.2 Preliminary Results
	5.3 Discussion

	6 Conclusion
	References

	Part III Simplification, Approximation, and Distance Measures
	Notes on the Simplification of the Morse-Smale Complex
	1 Introduction
	2 Related Work
	3 Simplification of the Morse-Smale Complex
	3.1 Combinatorial Gradient Field and Morse-Smale Complex
	3.2 Explicit Simplification of the Morse-Smale Complex
	3.3 Implicit Simplification of the Morse-Smale Complex

	4 Differences in the Simplifications of the Morse-Smale Complex
	4.1 Geometric Embedding of Separatrices
	4.2 Connectivity of Critical Points
	4.3 Iterative Simplification
	4.4 Monotonicity of the Simplification
	4.5 Computational Complexity and Memory Consumption

	5 Discussions and Conclusions
	References

	Measuring the Distance Between Merge Trees
	1 Introduction
	2 Related Work
	2.1 Scalar Field Topology
	2.2 Persistent Homology
	2.3 Distance Between Graphs
	2.4 Using Topology of Real Functions for Shape Matching

	3 Defining a Distance Between Merge Trees
	3.1 Definition
	3.2 Distance Computation
	3.3 Optimized Algorithm with Memoization
	3.4 The Number of Branch Decompositions of a Merge Tree

	4 Results
	4.1 Analytical Functions
	4.2 Tuning a Ray Tracing Algorithm

	5 Conclusions
	References

	Topological Integrity for Dynamic Spline Models During Visualization of Big Data
	1 Introduction
	2 Background, Motivation and Notation
	2.1 Curves and Control Polygons
	2.2 Equivalence Relation
	2.3 Related Work

	3 Graphics Efficiency Experiment
	4 Notation for Perturbation Analysis
	5 Non-differentiable Perturbations
	5.1 Perturbing a Single Point
	5.2 Perturbing Multiple Points

	6 Differentiable Perturbations
	6.1 Perturbation Strategy
	6.2 Perturbing a Single Point
	6.3 Perturbing Multiple Points

	7 An Example Predictive Analysis
	8 Conclusions and Future Work
	References

	Part IV Time-Dependent Analysis
	A Comparison of Finite-Time and Finite-Size Lyapunov Exponents
	1 Introduction
	2 Related Work
	3 Finite-Time and Finite-Size Lyapunov Exponents
	3.1 Intuitive Definitions
	3.2 Equivalent Definitions
	3.3 Computation Based on Particle Pairs
	3.3.1 Shortcoming of the Computation Based on Four Neighbors

	3.4 Computation Based on the Cauchy-Green Tensor
	3.5 Scale Considerations

	4 Comparing FTLE and FSLE Images
	5 Analytic Test Case: The Meandering Jet Model
	5.1 Comparison of FTLE and FSLE

	6 Numerical Test Case: Tidal Flow in a Narrow Passage
	7 Conclusion
	References

	Development of an Efficient and Flexible Pipeline for Lagrangian Coherent Structure Computation
	1 Introduction
	2 LCS Pipeline
	3 Flow Map Computation on the GPU
	3.1 Implementation
	3.2 Performance
	3.3 Verification

	4 Discussion
	References

	Topological Features in Time-Dependent Advection-Diffusion Flow
	1 Introduction
	2 Related Work
	3 Advection-Diffusion Field
	4 Feature Extraction
	4.1 Lagrangian Coherent Structures
	4.2 Vortex Core Lines

	5 Results
	5.1 Static Mixer
	5.2 Heating Coil
	5.3 Buoyant Flow

	6 Conclusion
	References

	Part V Applications
	Definition, Extraction, and Validation of Pore Structures in Porous Materials
	1 Introduction
	2 Related Work
	3 Determination of the Pore Structure
	3.1 Defining the Elements of the Pore Structure
	3.2 Voxel-Based Determination of the Pore Space Skeleton
	3.3 Merging Unstable Pores

	4 Evaluation
	4.1 Evaluation Strategy
	4.2 Graph Matching

	5 Results and Discussion
	6 Conclusion
	References

	Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature
	1 Introduction
	2 Heat Kernel Signature
	2.1 Relation to Curvature

	3 HKS for Tensor Fields
	4 Numerical Realization
	4.1 Numerical Verification

	5 Results
	6 Conclusion and Future Work
	Appendix
	References

	Topological Features in Glyph-Based Corotation Visualization
	1 Introduction
	2 Related Work
	2.1 Vortex Extraction
	2.2 Vortex Visualization
	2.3 Glyph Visualization

	3 Corotation on a Sphere
	3.1 Physical Interpretation
	3.2 Local Corotation

	4 Corotation Visualization and Topological Features
	4.1 Glyph Creation
	4.2 Glyph and Function Properties
	4.3 Topological Analysis of Individual Glyphs
	4.4 Topological Analysis of Multiple Glyphs

	5 Results
	5.1 Blunt Fin
	5.2 Von Kármán Vortex Street

	6 Conclusions and Future Work
	References

	Index

