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Abstract Digital image devices have experienced an enormous increment in their
capabilities, associated with a significant reduction in the economic effort. In partic-
ular, the increasing number of pixel made available for each picture allows develop-
ing software that is able to perform precise surface characterizations. In the present
chapter the interest is oriented into two directions. The firs one concerns detecting
the geometric features of surfaces through digital image comparison. The method
does not require stereo image processing but it is based on a single camera vision.
The base of this first part of the work regards the displacements of a grid virtually
applied on the surface. To this goal the real printed grid case is firstly discussed. The
grid virtually attached to the pictures identifies a finite element mesh associated to
the comparing images. The second part aims to evaluate surface strains experienced
on the specimen surface. The algorithm performs the analysis of the two comparing
images, before and after the application of loads. Two different strategies are pro-
posed: a partial grouping of pixels by equation averaging; the use of Hu’s invariants
applied to sub-images.

Keywords Strain measurements · Digital image correlation · Finite elements

1 Introduction

Image interpretation and processing is a fundamental analysis in most of medical
applications [5]. The main objective is to help the analyst in the interpretation of the
results while introducing quantitative data. In some cases, the attention is focused on
surface detection, while in other contexts, the observation is dedicated to morpho-
logical changes or surface extension (strain or deformations).
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Considering rigid body detection and surface out of planemeasurements, this item
has been extensively studied by many researchers [11]. In many cases the objective
is directed towards the recognition of objects, whatever is their spatial positioning
and minimal surface deformation. This is often accomplished by methods that make
use of patterns of key points [9].

For the reconstruction of surface deformations many efforts have been done by
researchers, in both 2D and 3D approach, some of thesemethods have been compared
in [14]. The general achievements show that many benefits are gained if the entire
acquired image is simultaneously considered; this is to say non-considering each
subset individually. In this optics, some smoothing can be achieved by B-spline reg-
ularization [3] or by finite element formulation for the acquisition of the deformation
field [7] by DIC.

In the present chapter the attention is firstly devoted on the capability to extract
the geometric shapes of a surface, originally flat. This means that the interest is not
only directed towards object recognition, but to new surface characteristics for the
identification of its off-plane displacements. In the present case the tests consider the
displacement of a sheet of paper, easily deformed in the out of plane orientation but
experiencing minor surface strains. Within the paper, it is demonstrated that using
an effective image, sufficiently variegated (such as a speckle image or any other
non-uniform and non-periodical picture) is equivalent to a regularly meshed grid [1].
This equivalence is achieved bymapping the picture through a regular or non-regular
mesh of quadrilateral sub-images (elements). These non-superimposed sub-images
are managed as four node bilinear membrane elements, well known in finite element
analysis. Each element of the gridmaintains its peculiarity because it is characterized
by a different color content and distribution (sub-image).

Another aspect, that makes use of the same image recognition methods, regards
the capability to extrapolate the strains experienced by mating surfaces using non-
invasive methods. The most promising methods involve photographic techniques,
such as digital image correlation [4, 12–14]. Usually the strain and motion analysis
procedures make use of a sequence of pictures that follows the whole strain progress
[2]. In this chapter a method that requires only two images is proposed; the first
is taken when no loads are applied, the second one when all loads and resulting
deformations are settled. This method can thus be applied in principle when a limited
number of images are available, as the initial and the final image only.

There exist 2-D digital Correlation techniques as well as 3-D ones [10]. Here we
deal with 2-D technique which is based on the use of a single camera. Most of the
techniques are based on sub-image correlations. This means that the local correla-
tion imposed on a sub-image does not have an influence on all other correlations
performed on sub-images far away from the previous one. In this chapter, according
to former approaches [1, 3], we discuss a technique that solves the displacement
fields as a whole, so that the continuity conditions is fulfilled in the whole processed
image.

When consistent displacements are faced, the correlation techniques meet con-
siderable difficulties to keep precision, as discussed in [12].
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The displacement field solution generally needs the handling of a very high num-
ber of equations; this can even attain the order of the number of pixels recorded into
the image. Therefore, a technique directed to reduce the number of equations while
increasing the efficiency is discussed.

2 Out of Plane Surface Deformation

The geometric model adopted is the simple equivalent pinhole camera. According
to this assumption, being f the distance between the pinhole and the image sensor,
the following ratios can be written:

X ′ = − f

Z
X; Y ′ = − − f

Z
Y ; Z ′ = − f (1)

The negative sign is generally changed by considering the image projected between
the viewing point and the object (Fig. 1).

In the pinhole assumption, the complex dioptric lens system is substituted by
an ideal single lens, infinitesimally thin, thus the optical system agrees with the
following assumptions [15]:

• all parallel light rays are concentrated on the focus;
• no refraction is induced to all rays passing through the lens center;
• all non-centered rays are deviated in correspondence of the middle plane.

Other assumed hypotheses, adopted when dealing with digital images are:

the optical axis is perfectly orthogonal to the sensor plane and centered on it;
the sensor gauge is organized by a two perfectly orthogonal cell disposition.

2.1 Identification of Grid Images

In this section we assume that the image is simply constituted by a regular square
grid. In the next section the association of a grid to a general image is discussed.
Figure 2 shows the projection of a simple square on the CCD plane that is reversed, as
usually. The geometry projected on the plane is given by the four vectors connecting
the observation point to the square corners.

Once the image is digitally acquired, each vector v associated to a point is known
in its direction, while its magnitude remains unknown. All unknowns are represented
by the moduli associated to the respective vectors. According to this logic, all vectors
U are computed as differences of vectors V (Fig. 2). In the following, the vectors V
will be addressed making use of respective unit vectors: V = m · v.



148 V. Lux et al.

Fig. 1 Scheme of pinhole camera view

Fig. 2 Vectors identifying the positioning of element nodes

Making reference to the 3 × 3 grid represented in Fig. 3, the first element gives
the following equations:

U1 = V5−V1 = m5v5 − m1v1
U2 = V6−V5 = m6v6 − m5v5
U3 = V2−V1 = m2v2 − m1v1
U4 = V6−V2 = m6v6 − m2v2

(2)

Being the grid formed by equal squares, several conditions can be imposed to
each of them - note that not all of them are independent - represented in Table 1.
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Fig. 3 Nomenclature of a
3 × 3 grid

Table 1 Vector and scalar
conditions for a square grid

Geom. condition Vector eq. Number of scalar eqs

U2 ‖ U3 U2 × U3 = 0 3
U1 ‖ U4 U1 × U4 = 0 3
U1 ⊥ U2 U1 · U2 = 0 1
U2 ⊥ U4 U2 · U4 = 0 1
U3 ⊥ U4 U3 · U4 = 0 1
U1 ⊥ U3 U1 · U3 = 0 1
|U1| = L U1 · U1 = L2 1
|U2| = L U2 · U2 = L2 1
|U3| = L U3 · U3 = L2 1
|U4| = L U4 · U4 = L2 1

The equations given in the previous Table 1 generates, using the modules as the
unknowns, the following 14 equations (first two are vector equations):

m1m5 (v5 × v1) − m1m6 (v6 × v1) − m2m5 (v5 × v2) − m2m6 (v6 × v2) = 0
m1m2 (v1 × v2) − m1m6 (v1 × v6) − m2m5 (v5 × v2) + m5m6 (v5 × v6) = 0

(3)
m1m5 (v1 · v2) − m1m6 (v1 · v6) − m5m5 (v5 · v5) + m5m6 (v5 · v6) = 0
−m2m6 (v2 · v6) + m2m5 (v2 · v5) − m5m6 (v5 · v6) + m6m6 (v6 · v6) = 0
m1m2 (v1 · v2) − m1m6 (v1 · v6) − m2m2 (v2 · v2) + m2m6 (v2 · v6) = 0
m1m1 (v1 · v1) − m1m2 (v1 · v2) − m1m5 (v1 · v5) + m2m5 (v2 · v5) = 0

(4)
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Table 2 List of unknowns
produced by a single element

Unknowns

1 m2
1 6 m2m6

2 m1m2 7 m2m5

3 m1m6 8 m2
5

4 m1m5 9 m5m6

5 m2
2 10 m2

6

m2
1

3∑

i=1
ν21(i) − 2m1m3

3∑

i=1

(
ν1(i)ν5(i)

)2 + m2
5

3∑

i=1
ν25(i) = L2

m2
5

3∑

i=1
ν25(i) − 2m5m6

3∑

i=1

(
ν5(i)ν6(i)

)2 + m2
6

3∑

i=1
ν26(i) = L2

m2
2

3∑

i=1
ν22(i) − 2m2m1

3∑

i=1

(
ν2(i)ν1(i)

)2 + m2
1

3∑

i=1
ν21(i) = L2

m2
6

3∑

i=1
ν26(i) − 2m6m2

3∑

i=1

(
ν6(i)ν2(i)

)2 + m2
2

3∑

i=1
ν22(i) = L2

(5)

All above equations give a non-linear (quadratic) system of equations where the
unknowns are vector magnitudes. If one considers all possible combinations of prod-
ucts of unknowns as unknowns themselves, they turn to be 10 for a single element,
with 14 equations each.As an example, for the element n. 1 of Fig. 3, the 10 unknowns
are listed in Table2.

The full system of equations is therefore over-determined and the solution can be
found solving all the quadratic unknowns involved.After the full solution, each vector
magnitude is computed by the root square of the quadratic unknowns. Furthermore,
the mixed product of the unknowns can be used to check the accuracy of the solution
gained.

2.2 Virtual Image Embedded on a Picture

If an image is present on a surface, this can be associated to a virtual grid. The point
is to guarantee that the grid follows the changes of the image, due to movements
of the surface that can be considered as a combination of rigid and deformable
displacements.

This can be accomplished by considering the grid as a mesh of bilinear finite
elements, whose movements guarantee the continuity of the surface. Each element
contains a part of the initially flat image; this information is maintained in a natural
coordinate system as shown in Fig. 4.

Such reference approach is particularly suitable to compare elements that are
initially irregular or become irregular due to large displacements on the image.
Therefore, each sub-image is interpolated though a cubic spline approach. By this
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Fig. 4 Physical/Natural coordinate systems

Fig. 5 Change from physical to natural coordinates

procedure, each element is always square-represented and keeps the same image
content. In Fig. 5 is shown an example of how interpolation deforms the image.

2.3 Results on Out of Plane Deformation

The data here presented, apart the very next subsection, refers to all effective pic-
tures taken with a focal distance equal to 29 mm, corresponding to a printed paper
positioned at 1500 mm from the ideal lens center. All images have been obtained
with an aperture equal to 1/8 to increase overall focus depth.

2.3.1 Test of the Procedure on Exact Grids

The theoretical correctness of the procedure presented has first of all been investi-
gated through the application on a simulated grid (no pictures does effectively exist)
that has been deformed applying one or two finite curvatures. We can see that the
reconstruction is perfectly accurate (no digital error on pixel definitions is present
since pixel positions are recorded with 12 digit precision) only if the local orientation
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Table 3 Noise effect on
accuracy for various
curvatures

No noise (%) Added noise (%)

Plane grid ∼1e-10 4.06
Single curvature ∼1e-10 4.87
Double curvature 23.13 24.21
D.curv. refined el. 13.61 15.93

Fig. 6 Digital pictures of the printed grid, a before and b after off-plane deformation

of the grid causes a single curvature change (Rc = 1430mm). It is interesting to
highlight that the application of a small noise (1% of the diagonal length of a single
element) reduces considerably the precision if the results are very accurate, but does
not appreciably changes the behavior if discrepancies are already encountered when
data are not affected by noise.

From the above reasons, it is clear that the assumption of square grid to maintain
its shape is very strong, difficult to obtain when double curvature are present. This
means that the size of the elements of the grid should be taken as small as the curvature
increases. As a matter of fact, the last row in Table 3 shows much better results in this
case, as expected (double curvature keeping the same equivalent value than single
curvature case).

2.3.2 Tests on Pictures of Printed Grids

The grid is printed on a sheet of paper that is first photographed in a plane orthogonal
to the focal axis, and the second picture considers the sheet deformed in various
ways, such as the one shown in Fig. 6.

Four cases are here presented; (i) it concerns a 5 − 10 − 15◦ rigid rotation of the
paper on a vertical axis as to generate a prospective view; (ii) it regards a simple
half-fold oriented as the vertical axis in the center, and folded at a corner; (iii) the
paper leaned on a cylinder (diameter = 450 mm) with a vertical axis; (iv) the paper
applied on the same cylinder with the sheet base inclined of 30◦.

In Fig. 7 two operating ways are compared: the black lines show the results when
the over-determined solution is performed on all squares at the same time, the blue
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Fig. 7 Comparison of overall result and square dispersion for; a printed grid, b virtual grid on
speckle image

Table 4 Angle identified
when varying the point of
view

Angle (◦) Grid method
results (◦)

Speckle method

16 × 16 el. (◦) 37 × 37 el. (◦)
5 4.64 3.96 4.50
10 9.72 8.23 8.69
15 14.86 9.64 11.68

lines consider the solution performed at each square, individually. Thewhole solution
is much better than the second, since pixel errors compensate.

Table4 shows the errors introduced when varying sheet inclination.
The results show that a rigid displacement on one of the grid axes can be managed

by the method in the average by both images (grid or speckle above discussed)
(Fig. 8).

The two cases of folds considered (ii) reveal a particular behavior of the algorithm.
As a matter of fact, the mean square method tends to compensate the errors so that
there is the tendency to keep flat in one direction. Referring to Fig. 9a and b the disper-
sion is illustrated when the fold is located in the center or in the corner, respectively.
The maximum determined fold displacement respects the values imposed in the test
within a 2% error. Figure10b results seem to be erroneously similar to the previous
case, as the top views show. It is clear that the identification algorithm is affected by
eventual curvatures non-aligned with the grid. In practice, since the algorithm tends
to maintain the overall length at each element, it encounters some difficulties while
managing elements that change all side-length due to curvatures imposed.

The results performed on cylindrical surfaces confirm the deficiencies previously
indicated on double curvature grids. As a matter of fact the comparison between
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Fig. 8 Top view of the profiles for case (ii): a vertical fold b corner fold, c vertical fold for speckle
image

Fig. 9 Dispersion of individually identified elements for: a vertical cylinder, b inclined cylinder

cases (a) and (b) in Fig. 9 shows a much more evident dispersion of single computed
squares (blue) when the sheet base is inclined toward horizon—relative full picture
is visible in Fig. 7b. The global results (black lines) of case (a) are quite accurate
(error in radius lower than 1%) while case (b) provides erroneous results.

2.3.3 Tests on a Printed Speckle Picture

Indeed, the application of a virtual grid introduces some additional errors by respect
to the printed grid. These errors amplify the deficiencies already evidenced before.
The algorithm used to detect the displacement of the virtual grid by means of speckle
deformed image is presented in the next session. The convergence is achieved by
means of minimum square error search. For example, one can compare the results
given in Figs. 10 and 11a and b, respectively. Case (a) identifies the virtual grid
imposed on the image to be taken as reference; case (b) in Fig. 10 shows good
identification that can also be seen in Fig. 7b through square dispersion. On the
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Fig. 10 Virtual node locations before and after 5◦ inclination

Fig. 11 Virtual node locations before and after application on inclined cylinder

contrary, one can see that the corner correspondence on Fig. 11a, b is very poor,
particularly at the left top corner where the deformations are the highest, according
to results presented in Fig. 9b.

2.3.4 Discussion on Out of Plane Deformations

It is evident that algorithm proposed here shows some difficulties when applied to
structures that deforms with effective double curvatures. As a matter of fact, when
double curvatures are present, the side lengths cannot be computed accurately by
simple node distances. A better computation should accounts of effective surface
distance through an iterative procedure that takes into account of geometry on curved
surfaces. From another point of view, the advantage of the method is that no reg-
ularization conditions are required to the identifying surface, so that no simplified
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shape is accounted for the surface out of plane deformation. An idea of the solution
accuracy can be reached from the dispersion of the results when computation regards
each square element individually. When the dispersion is high the global results is
correspondently worse. Use of speckle image instead of a printed grid is possible
and a theoretical increment of information is available. However, the differential
method, discussed hereinafter, requires a limitation of the displacements introduced
in the image to keep consistency. When the strain are less than 50 % of the virtual
grid nodes moves correctly, for higher values accuracy problems become evident.

3 Differential Method

Thedeformationfield is calculated by comparing the original image and the deformed
one. In this work a global approach is followed [2]. The problem consists in the
minimization of the error functional defined by the following formula:

E =
√∑

i

[Id(xi , yi ) − Iu(xi , yi )]2 (6)

where Iu Id represent the images before and after deformation. xi , yi are the i-th
pixel coordinates into the images. The summation comprehends all pixels. To each
element a sub-image is associated. At each sub-image (corresponding to a single
finite element) the internal spatial distribution is based on the displacements of the
four nodes bordering the element. The solution allows finding the node locations that
make it possible to overlap the undeformed image onto the deformed one. Once the
image is divided into sub-images, it is possible to write the formula (6):

E =
√∑

j

∥
∥S j (x) − S j0(x0)

∥
∥2 (7)

where S j , S j0 are the j-th sub-image, while x and x0 represent the final and initial
nodal coordinates, respectively. The rate of change between x and x0 is non-linear;
for this reason it is not possible to directly find the solution, but an iterative procedure
is needed. The algorithm consists in the linearization of the non-linear least squares
problem. It is based on Taylor series expansion, truncated to its first order, of the
sub-image when varying the generic nodal coordinate:

S j (X ′) = S0(X0) +
∑

k

∂S0

∂xk
(xk − xk0) (8)

For the sake of clarity, the same is written in matrix formulation, evidencing the
Jacobian matrix:
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⎡

⎢
⎢
⎢
⎢
⎣

∂S1,0
∂x1

∂S1,0
∂x2

· · · ∂S1,0
∂xM

∂S2,0
∂x1

∂S2,0
∂x2

· · · ∂S2,0
∂xM

...
... · · · ...

∂SN,0
∂x1

∂SN,0
∂x2

· · · ∂SN,0
∂xM

⎤

⎥
⎥
⎥
⎥
⎦

·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 − x ′
1

x2 − x ′
2

...

xM − x ′
M

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S1,0 − S1, j
′

S2,0 − S2, j
′

...

SN ,0 − SN , j
′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)

or the equivalent J · �x = �s. Each term of the Jacobian matrix is composed by
a number of elements that coincides with the number of pixels contained in the
sub-image. Therefore, the matrix shows considerable dimensions. The computation
is based on centered first derivate, evaluated by considering the pixels around each
node. For this reason, the Jacobian matrix of the reference image is computed by
respect to all possible node displacements. As mentioned before, the Jacobian matrix
is composed of partial derivatives. Each matrix derivative is calculated by the four
central point derivatives by respect to the unknowns as:

∂F(x)

∂x
= 1

12h
[F(x − 2h) − 8F(x − h) + 8F(x + h) − F(x + 8h)] (10)

where h denotes the discretization step. For example, the term F(x-2h) represents
the sub-image when a node is moved back 2h. The choice of the parameter h is
crucial. The solution requires the minimization of the error (7) through an iterative
procedure. As a matter of fact the inversion of the Jacobian matrix is required (9):

�x = J−1 · �s (11)

The Jacobian matrix is a sensitivity matrix; however, its costly inversion must be
performed just once. When the displacements of all nodes have been computed, it
is easy to gain the internal strains, known by means of the nodal displacements of
each element. This is made possible through the pre-multiplication of the vector of
element nodal displacements by the matrix B (obtain by appropriate derivative of Q4
shape functions) [16] if first order approximation is accepted, or more sophisticated
expressions if first order simplification is not applicable.

3.1 Convergence Enhancement

In this section, the optimal choice of the number of internal points, to achieve a quick
convergence of the results, is discussed. A criterion to reduce the equations and to
speed-up the solution process is introduced. As an example, for a high-definition
3000 × 4000 pixel image, meshed through almost 10000 elements having eight
degrees of freedom each, a 240 billion of equations results. In this chapter two
possible techniques have been developed; the first considers possible grouping of
pixels belonging to confined areas, the second one makes use of Hu’s invariants to
discriminate each sub-image.
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Fig. 12 Grouping technique
representation

3.1.1 Method I: Grouping Technique

The technique of grouping is helpful to reduce the number of equations to solve. As
cited before, the Jacobian presents a considerable dimension; in fact each term of the
matrix is a partial derivative of the sub-image. The grouping method introduced in
this chapter, handles the single partial derivative of the sub-image. These are divided
into sub-areas, and a sum of the values inside them is considered, as shown in Fig. 12.

By this way, the number of equations is reduced, and the iterative calculation
speeds up. The size of the grouping is important, and must be wisely chosen. A
considerable grouping amount is required for saving computational time, the data
information, is reducedmaking it difficult to gain convergence in the iteration process.

3.1.2 Method II: Hu’s Invariants

Here we refer to moments as scalar quantities able to characterize a scalar field
and possibly to point out some significant features. In statistics moments are widely
used to describe the shape of a probability density function; in classic rigid-body
mechanics to account of the mass distribution of a body, forming the inertia tensor.
In mathematical terms, the moments are projections of a function onto a polynomial
basis [6, 8]. General moments Mpq of an image I(x,y), where p, q are non-negative
integers and r = p + q is called the order of the moment, are defined as:

Mpq =
∫∫

ppq (x, y) · I (x, y) · dx dy (12)

Where p00(x, y), p10(x, y), ..., ppq (x, y), are polynomial basis functions defined
in the domain. In this chapter moments of the the image are used, consequently the
function I(x,y) is an image characterized by two coordinates x,y and a color value
(e.g. RGB uses three values between 0 and 255 each).



Determination of In-Plane and Off-Plane Surface Displacements 159

A geometric moment of a discretized image is defined as a moment having the
standard power basis ppq(x, y) = x p yq . Therefore, it results:

m pq =
∑

x

∑

y

x p · yq · I (x, y) (13)

MoreoverHu’s invariants are built up through a combination of geometricalmoments
that show the characteristics of non-changing their values when some geometrical
transformations are applied. Hu’s invariants are originally seven, but other invariants
could be computed. However, higher image invariants would increase considerably
their magnitude, so that they cannot be managed together with the first seven.

Only the first invariant moment has an intuitive meaning: polar moment of inertia.
In this section Hu’s invariants are used to characterize each sub-image. Even

using this technique, the solution requires the inversion of the Jacobian matrix; in
this case the Jacobian is not calculated through image differences, but differences
on Hu’s invariants. The image is meshed into sub-images by a grid; each sub-image
is represented be its set of Hu’s invariant moments. Hu’s invariants are seven, but
here, to increase the discriminant power, the computed invariants are doubled: they
are computed on the sub-image itself and on its negative.

The invariant moments are insensitive to translations, rotations and scaling trans-
forms. In an index compact notation they are:

ϕ1 = m20 + m02
ϕ2 = (m20 − m02)

2 + 4m2
11

ϕ3 = (m30 − 3m12)
2 + (3m21 − m03)

2

ϕ4 = (m30 + m12)
2 + (m21 − m03)

2

ϕ5 = (m30 − 3m12)(m30 + m12)
[
(m30 + m12)

2 − 3 (m21 + m03)
2] +

+(3m21 − m03)(m21 + m03)
[
3(m30 + m12)

2 − (m21 + m03)
2
]

ϕ6 = (m20 − m02)
[
(m30 + m12)

2 − (m21 + m03)
2] +

+4m11(m30 + m12)(m21 + m03)

ϕ7 = (3m21 − m03)(m30 + m12)
[
(m30 + m12)

2 − 3 (m21 + m03)
2] +

−(m30 + 3m12)(m21 + m03)
[
3(m30 + m12)

2 − (m21 + m03)
2
]

(14)

3.2 Natural Coordinate System Applied on Elements

Both methods require the image comparison to minimize the error. To this goal it is
useful referring to the natural coordinate system used in the isoparametric element
formulation [16].

Their characteristics are particularly suitable because, in the natural coordinate
system, all the elements, as well as in the reference picture as in the deformed one,
have the same shape and dimensions (a simple square as shown in Fig. 4).
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For the isoparametric four-node element, all internal points are mapped through
natural coordinates r,s in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

x(r, s) = 1
4 (1 − r)(1 − s)x1 + 1

4 (1 − r)(1 + s)x2+
+ 1

4 (1 + r)(1 − s)x3 + 1
4 (1 + r)(1 + s)x4

y(r, s) = 1
4 (1 − r)(1 − s)y1 + 1

4 (1 − r)(1 + s)y2+
+ 1

4 (1 + r)(1 − s)y3 + 1
4 (1 + r)(1 + s)y4

(15)

As a matter of fact, one of the difficulties encountered in both methods regards the
change of the edges during displacement, now overtaken by using elements having
a fixed domain shape, whatever is the image content. By this change of reference,
an interpolation is required between the pixels in each element (only on sub-images
of whole picture) and the values assumed in the r-s coordinate system. According
to the isoparametric formulation, the same interpolation used to locate any internal
point is adopted to evaluate internal displacements. The use of r-s coordinate system
allows also to manage non-regular shaped elements. And to modify the number of
unknowns considered.

3.3 Comparison Between Grouping Technique and Hu’s Invariant

In this section a comparison is proposed: (i) full pixel computation; (ii) grouping
technique by varying packaging dimension; (iii) Hu’s invariant moments. All tech-
niques have been applied on the same reference image. This image shows the surface
of a granite (Fig. 13). The use of this image is due to his particular distribution of
color that is a natural sort of speckle. The image is divided in 3× 3 elements and 16
nodes; the dimension of a single element is 100 × 100 pixels. The original image is
digitally deformed by εx = 0.02 and εy = 0.01. The (i) results (no enhancement)
are obtained when the number of packets (a packet contains adjacent pixel grouped
together) id equal to 10000 (number of pixels in each sub-image).

Several tests are performed progressively decreasing the number of packets. The
lowest number of packets considered is 9, while the maximum numbers is 10000,
representing the solutionwithout any enhancement technique.Both convergence time
and final error of the displacements are compared. All computations are performed
on an internal processor Intel� Core i7-2600K having 3.4GHz.

The error is calculated through a ratio: the numerator is the sumof the displacement
differences between the identified final nodal position and the theoretical one (known
due to strain imposed); the denominator is the sum of the differences between the
theoretical position and the initial one.

In Fig. 14 errors and convergence times are normalized by respect to the highest
values encountered. Note that this relative definition of error penalizes the lower
displacements and this must be kept in mind when comparing different deformation
magnitudes.
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Fig. 13 Reference undeformed image 500 × 500 pixel
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Fig. 14 Cpu Time versus error for the grouping technique for the grouping technique

As expected, the maximum errors are obtained with the minimum number of
packets; the worst convergence time is obtained when no enhanced technique is used.
Increasing the number of packets decreases the error convergence, but increases the
calculation time and vice versa. It is possible to detect a crossing point of minimum
error-time curves (Fig. 14, Table5). It is interesting to highlight that the red curve
(squares) identifies a well-defined knee, demonstrating that a strong grouping is
possible while shortly affecting accuracy.

The results obtained with the method of Hu’s invariant moments are s hown in
Table 6. This method does not show at the present time particularly good outcomes.
The invariants allow to greatly reducing the number of equations of the system, but
they do not ensure acceptable results both in terms of computing time and precision
of the solution. Even the use of non-speckle images helped to gain accurate results.
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Table 5 Grouping technique performace

Number of Iterations Total Jacobian Error[%] Average Error
packs times[s] Time[s] [pixel]

4 Not convergence
9 12 0,8886 0,0243 8,1729 0,2311
16 11 0,8166 0,0242 3,7483 0,1060
25 10 0,8252 0,0242 2,6902 0,0760
100 12 0,9963 0,0256 1,5607 0,0441
1600 13 1,5676 0,0531 1,4710 0,0416
2500 13 1,9551 0,0728 1,0258 0,0290
No enhancement 17 4,4014 0,2526 1,0848 0,0306

Table 6 Hu’s invariant moments technique performance

Number invariants Iterations Total Jacobian Error[%] Average
utilized time[s] time[s] error[pixel]

14 236 20,7042 0,0367 10,0316 0,2837
12 236 20,7139 0,0382 10,0397 0,2840
10 258 22,6446 0,0384 22,3302 0,6316

Table 7 Grouping technique performance

Number of packs Iterations Total time[s] Jacobian time[s] Error[%] Average error[pixel]

25 26 39,7946 0,1358 7,2077 0,4189
No enhancement 410 926,9013 10,2175 6,7912 0,3947

However, at strain values of the order of some percent, the Hu’s invariant method
works acceptably. The increase of the convergence time ismainly due to the increment
in the number of iterations required to converge (Table7).

Further tests have been performed using the grouping technique. In particular,
some tests considered large strains applied, (over 30%). It is interesting to observe
that the grouping technique is able to manage also this amount of image differences,
even when the non-enhanced technique is unable to reach convergence. Thus, the
use of packets helps to speed up the solution time, but it is also skillful to organize
information so that the convergence capability is stronger than before.As an example,
in the case analyzed andproposed inFig. 13, presenting a strongdeformation reaching
0.35 in both principal directions, calculated with 25 packages, the method returns a
solution with an error close to 0.56% and 9.84 s of convergence time, whereas when
non-using packages the solution does not converge at all (Fig. 15).

To validate the grouping technique, another example is performed: the image
used is not a speckle, but a generic image (canvas paint in Fig. 16). In this case the
deformations are not of the same magnitude of the preceding ones, but they are set
to εx = 0.03 and εy = 0.01; much more elements are used to mesh the image.
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Fig. 15 Example large deformed image and grid solution obtained by grouping technique

Fig. 16 Example deformed image and grid 10 × 10 solution obtained by grouping technique

In particular a grid of 10 × 10 elements, having 50 × 50 pixels each is used. The
study was performed both with a number of packets equal to 25, and without any
convergence enhancement technique.

This latter example shows once again the convenience of the use of packets, both in
terms of accuracy and computational time. This convenience is stronger and stronger
when increasing the number of sub-images managed. Incidentally, it is shown that
the use of packets is profitable on non-speckled images.
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4 Conclusions

In this work it has been discussed a discretization technique that is able to account
of off-plane displacements of a surface as well as in-plane deformations. For both
circumstances a differential method to determine the displacement field is presented.
In the chapter two different procedures to reduce the number of equations are dis-
cussed. The first method consists on the grouping of the Jacobian matrix. Despite
the reduction of the number of equations, the system is always over-determined, the
solution converges with an error decreasing while increasing the number of packets.
This method is robust and reliable and allows convergence even when very high
deformations occur.

A possible use is to apply this procedure as a preliminary calculation in order to
approach the exact solution, then refining the results by omitting packets grouping.
The second method uses Hu’s invariants for the assembly of the Jacobian matrix.
The number of the equations is reduces to the number of Hu’s invariant moments.
This second method designed to enhance the convergence is not as reliable as the
previous one; as a matter of fact, even though the number of equations is lower than
in the grouping method, the iterations required increase significantly. Furthermore,
the increase in the total time is not accompanied by accuracy growth.
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