
On Existence of Total Input-Output Pairs

of Abstract Time Systems

Ievgen Ivanov1,2

1 Taras Shevchenko National University of Kyiv, Ukraine
2 Paul Sabatier University, Toulouse, France

ivanov.eugen@gmail.com

Abstract. We consider a class of abstract mathematical models called
blocks which generalize some input-output system models which are fre-
quently used in system theory, cybernetics, control theory, signal process-
ing. A block can be described by a multifunction which maps a collection
of input signals (input signal bunch) to a non-empty set of collections
of output signals (set of output signal bunches). The input and output
signal bunches are defined on a subset of a continuous time domain.

We investigate and provide methods for proving the existence of a
pair of corresponding input and output signal bunches of a given block,
both components of which are defined on the entire time domain (a total
input-output pair), and the existence of a total output signal bunch
corresponding to a given total input signal bunch.

Keywords: input-output system, abstract time system, dynamical
system, signal transformer, semantics.

1 Introduction

An abstract view of a computing system as a transformation of data, a function,
or an input-output relation is rather common in computer science. In fact, this
view is rooted in foundations of computing and is notable in the works of A.
Turing and A. Church.

Nevertheless, a large amount of computing systems used today act not as
pure data transformers, but as agents interacting with physical processes. Such
systems are now frequently called cyber-physical systems [1, 2]. Examples include
automotive systems, robotics, process control, medical devices, etc. [3].

As was stressed in [4], an important aspect that cyber-physical systems must
take into account is the passage of (physical) time. The actions of such systems
must be properly timed. Besides, the computational aspect of a system must be
understood and modeled in a close relation with physical processes. However,
this is not taken into account when a system is viewed as an input-output relation
on data.

A simple way to resolve this is to view a system as an input-output relation
on time-varying quantities (signals). A view of this kind is extensively used in
signal processing and control theory [5, 6]. However, the kinds of mathematical
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models of systems usually considered in these fields (e.g. systems of linear or
non-linear difference or differential equations, transfer function representation
of linear systems, etc.) do not provide a high-level abstraction of processes that
take place in cyber-physical systems [1].

A high-level treatment of systems as input-output relations (or as relations in
general) can be found in mathematical systems theory. During the second half of
the XX century a large number of works that dealt with general mathematical
theory of systems were published by L. Zadeh [7, 8], R. Kalman [9], M. Arbib
[10], G. Klir [11], W. Wymore [12], M. Mesarovic [13], B.P. Zeigler [14], V.M.
Matrosov [15], and others [16–18].

Many of these works were inspired and influenced by the General Systems
Theory by L. Bertalanffy, Cybernetics introduced by N. Wiener, information
theory introduced by C. Shannon, circuit theory in electrical engineering, au-
tomata theory, control theory. A historical account on the mutual influence be-
tween these fields is given in [19, 11]. In particular, the approach developed by
M. Mesarovic [13] is based on formalization of a system as a relation on objects.
Other approaches such as those developed by M. Arbib [10], W. Wymore [12],
B.P. Zeigler [14] resulted from unification of the theory of systems described by
differential equations and automata theory.

With regard to the input-output view, many of the mentioned works introduce
some kind of abstract view of a system as an input-output relation on time-
varying quantities (e.g. a general time system [13, Section 2.5], external behavior
of a dynamical system [9, Section 1.1], oriented abstract object [7, Chapter 1,
Paragraph 4], I/O observational frame [14, Section 5.3]) and consider such a
relation as a mathematical representation of an observable behavior of a real-
world system. The most basic example is the definition of a Mesarovic time
system [13] as a binary relation S ⊆ I ×O, where I and O are sets of input and
output functions on a time domain T (I ⊆ AT , O ⊆ BT ).

However, one aspect that is not sufficiently investigated in works on mathe-
matical systems theory with regard to time systems is partiality of input and/or
output signals as functions of time. This aspect becomes most important, when
the input-output relation describing a real-world system results not from a direct
observation of its behavior, but as an abstraction of a lower level mathematical
model of this system. The reason is that a lower level model (e.g. a system of
differential equations, a hybrid system, etc. [20]) may describe the behavior of
a real-world system only on a bounded time interval, after which the model’s
behavior becomes undefined. This can indicate a real phenomenon (e.g. termi-
nation or destruction of the real system), or a failure of the model [21].

For example, a phenomenon of a finite time blow-up is well known in the the-
ory of differential equations and applied mathematics [21, 22]. It is characterized
by the unbounded growth of the value of one or several system variables during a
bounded time interval. A simple example is a (non-zero) solution x(t) = 1/(c−t),
c = const of the equation x′(t) = x(t)2, for which |x(t)| → +∞, when t → c. A
survey of the respective results and applications can be found in [21–23].
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Another situation when a mathematical model defines a system’s behavior
on a bounded time interval is a Zeno behavior [24, 25] which arises in hybrid
(discrete-continuous) systems [20]. In this case, a hybrid system performs an
infinite sequence of discrete steps during a bounded total time, but each step
takes a non-zero time. A simple example in which this behavior arises is a hybrid
automaton [20] which models a bouncing ball [24].

It should be noted that the problems of detection of finite time blow-up or
Zeno behaviors, their physical interpretation, and if necessary, adjustment of a
model to avoid such behaviors are non-trivial, so one cannot assume that any
available and useful model of real-world system would be free of them.

This dictates that when using an input-output abstraction of a real system
based on an available mathematical model of this system, one must take into
account partial input and outputs.

In the previous work [26] we introduced a class of input-output abstractions of
real-world systems which we called a class of blocks. A block can be thought of as
a generalization of a Mesarovic time system which takes into account partiality
of inputs and outputs as functions of time.

Basically, a block is a multifunction which maps a collection of input signals
(input signal bunch) to a (non-empty) set of collections of output signals (a set
of output signal bunches), and a signal is a partial function on a continuous
time domain. The operation of a block can be described by a set of input-
output pairs (I/O pairs) (i, o), where i is an input signal bunch and o is a
corresponding output signal bunch. The main aspects captured by this notion
are nondeterminism (multiple possible output signal bunches corresponding to
one input signal bunch), continuous time, partiality of inputs and output signals.

In the work [26] we studied the notions of causality (nonanticipation), refine-
ment, and composition for blocks.

In this work we continue to investigate properties of blocks and consider the
following questions.

We introduced the notion of a block to take into account the possibility of
partial inputs and outputs, or, in other words, to allow I/O pairs (i, o), where
dom(i) and dom(o) may not cover the whole time domain (note that dom(i) �=
dom(o) is also possible). In the work [26] we gave the following interpretation to
this partiality: the case dom(o) ⊂ dom(i) for an I/O pair (i, o) means that a block
receives an input signal bunch i, but does not process it completely. It outputs
o and terminates abnormally. On the other hand, the case dom(o) = dom(i)
means that a block processes the input signal bunch i completely, outputs o,
and terminates. In particular, if T is a time domain, (i, o) is an I/O pair, and
dom(i) = T , then if dom(o) = T , the block processes the input completely and
normally and outputs o, otherwise, it outputs o and terminates abnormally at
some time moment. In the former case, (dom(i) = dom(o) = T ) we say that
(i, o) is a total I/O pair.

One can say that in models such as Mesarovic time system all I/O pairs are
total. But in blocks total I/O pairs form only a subset of the set of all I/O pairs.

In this chapter we consider the following question about total I/O pairs:
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(A) How can one prove that a given block B has a total I/O pair (if B indeed
has a total I/O pair) ?

Using the same techniques which will used to answer this question, in this
chapter we will also give an answer to the following question:

(B) How can one prove that for a given input signal bunch i, where dom(i) = T ,
there exists an I/O pair (i, o) with dom(o) = T ?

That is, a block admits a total output for a given total input.
In this chapter we will consider (A) and (B) for strongly nonanticipative blocks

[26] only. As we argued in [26], strongly nonanticipative blocks are sufficient for
modeling physically realizable (causal) real-world systems.

The practical significance of the questions (A) and (B) follows from the inter-
pretation of the case dom(o) ⊂ dom(i) as an abnormal termination of a block on
the input i. More specifically, the methods used for solving (B) can interpreted
as methods of proving that it is possible for a block to process a given input
normally (without errors) and can be rather straightforwardly linked with such
domains as viability theory, control synthesis, real-time software verification, etc.

The chapter is organized in the following way. In Section 2 we recall the
definition of a block and other related definitions and facts from [26]. In Section
3 we show that each strongly nonanticipative block has a representation in the
form of an abstract dynamical system of a special kind called Nondeterministic
Complete Markovian System (NCMS) [27]. In Section 4 we use the facts about
existence of global-in-time trajectories of NCMS which were shown in [27] and
the representation given in Section 3 in order to prove criteria which answer the
questions (A) and (B).

2 Preliminaries

2.1 Notation

We will use the following notation: N = {1, 2, 3, ...}, N0 = N ∪ {0}, R+ is the
set of nonnegative real numbers, f : A → B is a total function from A to B,
f : A→̃B is a partial function from A to B, 2A is the power set of a set A, f |X
is the restriction of a function f to a set X . If A,B are sets, then BA denotes
the set of all total functions from A to B and AB denotes the set of all partial
function from A to B. For a function f : A→̃B the symbol f(x) ↓ (f(x) ↑) means
that f(x) is defined (respectively undefined) on the argument x.

We denote the domain and range of a function as dom(f) = {x | f(x) ↓} and
range(f) = {y | ∃x f(x) ↓ ∧ y = f(x)} respectively. We will use the the same
notation for the domain and range of a binary relation: if R ⊆ A × B, then
dom(R) = {x | ∃ y (x, y) ∈ R} and range(R) = {y | ∃x (x, y) ∈ R}.

We will use the notation f(x) ∼= g(x) for the strong equality (where f and g
are partial functions): f(x) ↓ iff g(x) ↓ and f(x) ↓ implies f(x) = g(x).

The symbol ◦ denotes a functional composition: (f ◦ g)(x) ∼= g(f(x)).
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The notation X �→ y, where X is a given set and y is a given value, means a
constant function defined on X which takes the value y.

By T we denote the (positive real) time scale [0,+∞). We assume that T is
equipped with a topology induced by the standard topology on R.

Additionally, we define the following class of sets:

T0 = {∅, T } ∪ {[0, x) |x ∈ T \{0}} ∪ {[0, x] |x ∈ T }

i.e. the set of (possibly empty, bounded or unbounded) intervals with left end 0.
The symbols ¬, ∨, ∧, ⇒, ⇔ denote the logical operations of negation, dis-

junction, conjunction, implication, and equivalence respectively.

2.2 Multi-valued Functions

A multi-valued function [28] assigns one or more resulting values to each argu-
ment value. An application of a multi-valued function to an argument is inter-
preted as a nondeterministic choice of a result.

Definition 1 ([28]). A (total) multi-valued function from a set A to a set B

(denoted as f : A
tm−→ B) is a function f : A → 2B\{∅}.

Thus the inclusion y ∈ f(x) means that y is a possible value of f on x.

2.3 Named Sets

We will use a simple notion of a named set to formalize an assignment of values
to variable names in program and system semantics.

Definition 2. ([28]) A named set is a partial function f : V →̃W from a non-
empty set of names V to a set of values W .

A named set can be considered as special case of a more general notion of
nominative data [28] which reflects hierarchical data organizations.

We will use a special notation for the set of named sets: V W denotes the set
of all named sets f : V →̃W (this notation just emphasises that V is interpreted
as a set of names). We consider named sets equal, if their graphs are equal.

An expression of the form [n1 �→ a1, n2 �→ a2, ...] (where n1, n2, ... are distinct
names) denotes a named set d such that the graph of d is {(n1, a1), (n2, a2), ...}.
A nowhere-defined named set is called an empty named set and is denoted as [].

For any named sets d1, d2 we write d1 ⊆ d2 (named set inclusion), if the graph
of a function d1 is a subset of the graph of d2.

2.4 Signals, Signal Bunches, and Blocks

Informally, a block is an abstract model of a system which receives input signals
and produces output signals (Fig. 1). The input signals can be thought of as
certain time-varying characteristics (attributes) of the external environment of
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the system which are relevant for (the operation of) this system. Each instance
of an input signal has a certain time domain on which it is defined (present). An
input signal bunch can be thought of as a collection of instances of input signals
of the system. Each input signal bunch i has an associated domain of existence
(dom(i)) which is a superset of the union of the domains of signals contained
in i. The domain of an input signal bunch can be thought of as a time span
of the existence of the external environment of the system. The output signals
can be considered as effects (results) of the system’s operation. An output signal
bunch, or simply an output of the block, can be thought of as a collection of
instances of output signals of the system. The output signals have domains of
definition (presence) and each output signal bunch o has an associated domain
of existence (dom(o)) which is a superset of the union of the domains of signals
contained in o. The domain of an output signal bunch can be thought of as a
time span during which the system operates. It is assumed that for an output
signal bunch o which corresponds to a given input signal bunch i the inclusion
dom(o) ⊆ dom(i) holds (i.e. the system does not operate when the environment
does not exist). However, in the general case, the presence of a given input signal
at a given time does not imply the presence of a certain output signal at the
same or any other time moment.

A block can operate nondeterministically, i.e. for one input signal bunch it
may choose an output signal bunch from a set of possible variants. However,
for any input signal bunch there exists at least one corresponding output signal
bunch (although the values of all signals in it may be absent at all times, which
means that the block does not produce any output values).

Normally, a block processes the whole input signal bunch, and does or does
not produce output values. However, in certain cases a block may not process
the whole input signal bunch and may terminate at some time moment before
its end. This situation is interpreted as an abnormal termination of a block.

Let W be a fixed non-empty set of values.

Definition 3 ([26])

(1) A signal is a partial function from T to W (f : T →̃W ).
(2) A V -signal bunch (where V is a set of names) is a function sb : T →̃V W such

that dom(sb) ∈ T0. The set of all V -signal bunches is denoted as Sb(V,W ).
(3) A signal bunch is a V -signal bunch for some V .
(4) A signal bunch sb is trivial, if dom(sb) = ∅ and is total, if dom(sb) = T . A

trivial signal bunch is denoted as ⊥.
(5) For a given signal bunch sb, a signal corresponding to a name x is a partial

function t �→ sb(t)(x). This signal is denoted as sb[x].
(6) A signal bunch sb1 is a prefix of a signal bunch sb2 (denoted as sb1 � sb2),

if sb1 = sb2|A for some A ∈ T0.

The relation � on V -signal bunches is a partial order (for an arbitrary V ).
It can be generalized to pairs as follows: for any signal bunches sb1, sb2, sb

′
1, sb

′
2

denote (sb1, sb2) �2 (sb′1, sb′2) iff there exists A ∈ T0 such that sb1 = sb′1|A and
sb2 = sb′2|A. The relation �2 is a partial order on pairs of signal bunches.
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Fig. 1. An illustration of a block with the input signals x1, x2, ... and the output signals
y1, y2, ... . The input and output signals are lumped into an input and output signal
bunch respectively. Solid curves represent (present) signal values. Dashed horizonal
segments denote absence of a signal value. Dashed vertical lines indicate the right
boundaries of the domains of signal bunches.

A block has a syntactic aspect (e.g. a description in a specification language)
and a semantic aspect – a partial multi-valued function on signal bunches.

Definition 4. (1) A block is an object B (syntactic aspect) together with an as-
sociated set of input names In(B), a set of output names Out(B), and a total

multi-valued function Op(B) : Sb(In(B),W )
tm−→ Sb(Out(B),W ) (operation,

semantic aspect) such that o ∈ Op(B)(i) implies dom(o) ⊆ dom(i).
(2) Two blocks B1, B2 are semantically identical, if In(B1) = In(B2), Out(B1)

= Out(B2), and Op(B1) = Op(B2).
(3) An I/O pair of a block B is a pair of signal bunches (i, o) such that o ∈

Op(B)(i). The set of all I/O pairs of B is denoted as IO(B) and is called
the input-output (I/O) relation of B.

An inclusion o ∈ Op(B)(i) means that o is a possible output of a block B on the
input i. For each input i there is some output o. The domain of o is a subset of
the domain of i. If o becomes undefined at time t, but i is still defined at t, we
interpret this as an (unrecoverable) error during the operation of the block B.
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2.5 Causal and Strongly Nonanticipative Blocks

Definition 5. A block B is deterministic, if Op(B)(i) is a singleton set for each
In(B)-signal bunch i.

Definition 6. A deterministic block B is causal iff for all signal bunches i1, i2
and A ∈ T0, o1 ∈ Op(B)(i1), o2 ∈ Op(B)(i2), the equality i1|A = i2|A implies
o1|A = o2|A.

This means that the value of the output signal bunch at time t can depend only
on the values of the input signal at times ≤ t.

Definition 7. A block B is a sub-block of a block B′ (denoted as B � B′), if
In(B) = In(B′), Out(B) = Out(B′), and IO(B) ⊆ IO(B′).

Definition 8. A block B is strongly nonanticipative, if for each (i, o) ∈ IO(B)
there exists a deterministic causal sub-block B′ � B such that (i, o) ∈ IO(B′).

Informally, the operation of a strongly nonanticipative block B can be inter-
preted as a two-step process:

1. Before receiving the input signals, the blockB (nondeterministically) chooses
a deterministic causal sub-block B′ � B (response strategy).

2. The block B′ receives input signals of B and produces the corresponding
output signals (response) which become the output signals of B.

2.6 Nondeterministic Complete Markovian Systems (NCMS)

The notion of a NCMS was introduced in [27] as a special kind of abstract
dynamical systems for the purpose of studying the relation between existence of
global and local trajectories of dynamical systems. This notion is close to the
notion of a solution system introduced by O. Hájek in [29], but there are some
more and less important differences which will be described below.

Let T = R+ be the positive real time scale. Denote by T the set of all connected
subsets of T (i.e. bounded and unbounded intervals) with cardinality greater than
one.

Let Q be a set (a state space) and Tr be some set of functions of the form
s : A → Q, where A ∈ T. Let us call its elements (partial) trajectories.

Definition 9 ([27]). A set of trajectories Tr is closed under proper restrictions
(CPR), if s|A ∈ Tr for each s ∈ Tr and A ∈ T such that A ⊆ dom(s).

Definition 10 ([27])

(1) A trajectory s1 ∈ Tr is a subtrajectory of s2 ∈ Tr (denoted as s1 � s2), if
dom(s1) ⊆ dom(s2) and s1 = s2|dom(s1).

(2) A trajectory s1 ∈ Tr is a proper subtrajectory of s2 ∈ Tr (denoted as s1 �
s2), if s1 � s2 and s1 �= s2.

(3) Trajectories s1, s2 ∈ Tr are incomparable, if neither s1 � s2, nor s2 � s1.
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The set (Tr,�) is a (possibly empty) partially ordered set (poset).

Definition 11 ([27]). A CPR set of trajectories Tr is

(1) Markovian (see Fig. 2 below), if for each s1, s2 ∈ Tr and t ∈ T such that
t = sup dom(s1) = inf dom(s2), s1(t) ↓, s2(t) ↓, and s1(t) = s2(t), the
following function s belongs to Tr:

s(t) =

{
s1(t), t ∈ dom(s1)

s2(t), t ∈ dom(s2)

(2) complete, if each non-empty chain in (Tr,�) has a supremum.

Fig. 2. Markovian property for nondeterministic systems with partial trajectories. If
one partial trajectory ends and another begins in the state q at time t (both are defined
at t), then their concatenation is a partial trajectory.

Definition 12 ([27]). A nondeterministic complete Markovian system
(NCMS) is a triple (T,Q, T r), where Q is a set (state space) and Tr (trajectories)
is a set of functions s : T →̃Q such that dom(s) ∈ T, which is CPR, complete,
and Markovian.

The main similarities and differences between a NCMS and a solution system
[29] are:

– The time domain T and the set of states Q of NCMS correspond to the time
domain R and the phase-space P of a solution system. For simplicity we
assume that T is fixed to be R+, while in [29] R can can be any subset of R.

– Trajectories of NCMS correspond to the members of a solution system (so-
lutions). However, their domains cannot be singleton sets, while solutions
can have singleton time domains.

– CPR property of NCMS basically corresponds to the Partialization property
of solution systems. The difference is that Partialization allows restrictions
on singleton sets, while CPR does not include this.

– Markovian property of NCMS basically corresponds to the Concatenation
property of solution systems. By themselves these properties are not equiv-
alent: Markovian property is weaker in the sense that it does not allow one
to make a union of two trajectories, if the intersection of their domains is
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not singleton. But using both CPR and Markovian properties, one can make
a union of two trajectories even if their domains have non-singleton inter-
section. The term “Markovian” is meant to indicate that if a system is in a
given state, the set of its possible futures does not depend in its past.

– In the stand-alone (process-independent) definition of a solution system [29,
Definition 2.1], there is no assumption which corresponds / is analogous to
the Completeness property of NCMS.

2.7 LR Representation of NCMS

In this subsection we will describe a convenient general representation of NCMS
in terms of certain predicates.

Definition 13 ([27]). Let s1, s2 : T →̃Q. Then s1 and s2 coincide:

(1) on a set A ⊆ T , if s1|A = s2|A (this is denoted as s1
.
=A s2);

(2) in a left neighborhood of t ∈ T , if either t = 0 and s1(0) = s2(0), or t > 0 and
there exists t′ ∈ [0, t), such that s1

.
=(t′,t] s2 (this is denoted as s1

.
=t− s2);

(3) in a right neighborhood of t ∈ T , if there exists t′ > t, such that s1
.
=[t,t′) s2

(this is denoted as s1
.
=t+ s2).

Let Q be a set. Denote by ST (Q) the set of pairs (s, t) where s : A → Q for
some A ∈ T and t ∈ A.

Definition 14 ([27]). A predicate p : ST (Q) → Bool is called

(1) left-local, if p(s1, t) ⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q) and s1
.
=t−

s2, and, moreover, p(s, t) whenever t is the least element of dom(s);
(2) right-local, if p(s1, t) ⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q), s1

.
=t+

s2, and, moreover, p(s, t) whenever t is the greatest element of dom(s).

Let us denote by LR(Q) the set of all pairs (l, r), where l : ST (Q) → Bool is
a left-local predicate and r : ST (Q) → Bool is a right-local predicate.

Definition 15. A pair (l, r) ∈ LR(Q) is called a LR representation of a NCMS
Σ = (T,Q, T r), if

Tr = {s : A → Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

Theorem 1. (About LR representation)

(1) Each pair (l, r) ∈ LR(Q) is a LR representation of a NCMS with the set of
states Q.

(2) Each NCMS has a LR representation.

The proof follows immediately from [27, Theorem 1] and is omitted here.
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3 Representation of Strongly Nonanticipative Blocks

In this section we will introduce a representation of a strongly nonanticipative
block in the form of an abstract dynamical system of a special kind (initial
I/O NCMS). Although we mainly concentrate on the mere existence of such a
representation, the proofs of lemmas given below actually describe a method for
constructing a particular concrete representation of a block.

Let W denote a fixed non-empty set of values.

Definition 16. An input-output (I/O) NCMS is an NCMS (T,Q, T r) such that
Q has a form IW ×X × OW for some sets I (set of input names), X �= ∅ (set
of internal states), and O (set of output names). The IW is called an input data
set and OW is called an output data set.

Informally, an I/O NCMS describes possible evolutions of triples (din, x, dout)
of input data (din ∈ IW ), internal state (x ∈ X), and output data (dout ∈ OW ).

Lemma 1. Each I/O NCMS (T,Q, T r) has a unique set of input names, inter-
nal states, and output names.

The proof follows immediately from the definitions.
For a I/O NCMS Σ we will denote as In(Σ) its unique set of input names,

as Out(Σ) its set of output names, and as IState(Σ) its internal state space.
For any I/O NCMS Σ = (T,Q, T r) and a state q ∈ Q we will denote as in(q),

istate(q), out(q) the projections of q on the first, second, and third coordinate
respectively. Correspondingly, for any s ∈ Tr, in ◦ s, istate ◦ s, out ◦ s, denote a
composition of the respective projection map with a trajectory.

For each i ∈ Sb(In(Σ),W ) let us denote

– S(Σ, i) = {s ∈ Tr | dom(s) ∈ T0 ∧ in ◦ s � i};
– Smax(Σ, i) is the set of all�-maximal (i.e. non-continuable) trajectories from

S(Σ, i);
– Sinit(Σ, i) = {s(0) | s ∈ S(Σ, i)};
– Sinit(Σ) = {s(0) | s ∈ Tr ∧ dom(s) ∈ T0}.

For each Q′ ⊆ Q let us denote:

Sel1,2(Q
′, d, x) = {q ∈ Q′ | ∃d′ q = (d, x, d′)},

i.e., selection of states from Q′ by the value of the first and second component.
For each Q′ ⊆ Q and i ∈ Sb(In(Σ),W ) let us denote:

oall(Σ,Q′, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{⊥}, Q′ = ∅ or i =⊥;

{{0} �→ out(q) | q ∈ Q′}, Q′ �= ∅ and

dom(i) = {0};
{out ◦ s | s ∈ Smax(Σ, i) ∧ s(0) ∈ Q′}∪ Q′ �= ∅ and

∪ {{0} �→ out(q) | q ∈ Q′\Sinit(Σ, i)}, {0} ⊂ dom(i),
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where {0} �→ out(q) denotes a signal bunch defined on {0} which takes a value
out(q). Also, for each Q0 ⊆ Q let us denote:

Oall(Σ,Q0, i) =

{
{⊥}, dom(i) = ∅;⋃

x∈IState(Σ) oall(Σ,Sel1,2(Q0, i(0), x), i), dom(i) �= ∅.

Definition 17. An initial I/O NCMS is a pair (Σ,Q0), where Σ = (T,Q, T r)
is a I/O NCMS and Q0 is a set (admissible initial states) such that
Sinit(Σ) ⊆ Q0 ⊆ Q.

Definition 18. A NCMS representation of a block B is an initial I/O NCMS
(Σ,Q0) such that

(1) In(B) = In(Σ) and Out(B) = Out(Σ);
(2) Op(B)(i) = Oall(Σ,Q0, i) for all i ∈ Sb(In(B),W ).

Informally, the operation of a block B represented by an initial I/O NCMS
(Σ,Q0) on an input signal bunch i can be described as follows:

(1) If i(0) is undefined, then B stops (the output signal bunch is ⊥).
(2) Otherwise, B chooses an arbitrary internal state x ∈ IState(Σ).
(3) If there is no admissible initial state q ∈ Q0 with in(q) = i(0) and istate(q) =

x (i.e. Sel1,2(Q0, i(0), x) = ∅), then B stops.
(4) Otherwise, B chooses an arbitrary q ∈ Q0 such that in(q) = i(0) and

istate(q) = x (i.e. q ∈ Sel1,2(Q0, i(0), x)).
(5) If dom(i) = {0} or there is no trajectory s which starts in q and is defined

on some interval (of positive length) from T0, then B outputs out(q) at time
0 and stops.

(6) Otherwise, B chooses an arbitrary maximal trajectory s defined on an inter-
val from T0 such that s(0) = q and in ◦ s � i and outputs the signal bunch
out ◦ s.

The main result of this section is the following:

Theorem 2. (About representation of a strongly nonanticipative block) Each
strongly nonanticipative block has a NCMS representation.

In the rest of the section we will prove several helper lemmas, and finally, give
a proof of this theorem.

Lemma 2. Let (T,Q, T r) be a NCMS, Q′ be a set, f : Q → Q′ be an injective
function, and Tr′ = {f ◦ s | s ∈ Tr}. Then (T,Q′, T r′) is a NCMS.

The proof follows immediately from the definition of NCMS and is omitted here.

Lemma 3. Let (T,Qj , T rj), j ∈ J be an indexed family of NCMS such that
Qj ∩ Qj′ = ∅, if j �= j′. Let Q =

⋃
j∈J Qj and Tr =

⋃
j∈J Trj. Then (T,Q, T r)

is a NCMS.



320 Ie. Ivanov

The proof follows immediately from the definition of NCMS and is omitted here.

Lemma 4. Let Σ be a I/O NCMS, i ∈ Sb(In(Σ),W ), and s ∈ S(Σ, i). Then
there exists s′ ∈ Smax(Σ, i) such that s � s′.

Proof. Consider a set G = {s′′ ∈ S(Σ, i) | s � s′′}. From the completeness
property of NCMS it follows that each non-empty �-chain of elements of G
has a least upper bound in the poset (Tr,�) which belongs to G. Moreover,
G �= ∅. Then Zorn’s lemma implies that G has some �-maximal element s′.
Then s′ ∈ Smax(Σ, i) and s � s′. ��

Lemma 5. If Σ = (T,Q, T r) is a I/O NCMS, Q′ ⊆ Q, i ∈ Sb(In(Σ),W ), then

(1) oall(Σ,Q′, i) ⊆ Sb(Out(Σ),W );
(2) dom(o) ⊆ dom(i) for each o in oall(Σ,Q′, i);
(3) oall(Σ,Q′, i) �= ∅.

The proof follows from the definitions and Lemma 4 and is omitted here.

Lemma 6. Each initial I/O NCMS is a NCMS representation of a unique (up
to semantic identity) block.

Proof. Uniqueness up to semantic identity is obvious from Definition 18. Let us
prove that if (Σ,Q0) is an initial I/O NCMS, where Σ = (T,Q, T r), then it is a
NCMS representation of some block.

Let i ∈ Sb(In(Σ),W ). Let us show that Oall(Σ,Q0, i) is a non-empty subset
of Sb(Out(Σ),W ) and dom(o) ⊆ dom(i) for all o ∈ Oall(Σ,Q0, i). This is obvi-
ous, if dom(i) = ∅. Consider the case when dom(i) �= ∅. Then Oall(Σ,Q0, i) =⋃

x∈IState(Σ) oall(Σ,Sel1,2(Q0, i(0), x), i). For any x ∈ IState(Σ) we have

Sel1,2(Q0, i(0), x) ⊆ Q0 ⊆ Q. Besides, IState(Σ) �= ∅. Then Lemma 5 im-
plies that Oall(Σ,Q0, i) ∈ 2Sb(Out(Σ),W )\{∅} and dom(o) ⊆ dom(i) for all o ∈
Oall(Σ,Q0, i). Thus (Σ,Q0) is a NCMS representation of a block. ��

Lemma 7. Let B be a deterministic causal block. Then B has a NCMS
representation.

Proof (Sketch). Let X = {i ∈ Sb(In(B),W ) | ∃ t ∈ T dom(i) = [0, t]} and
Q = In(B)W ×X × Out(B)W . Then X �= ∅. Let in, istate, out denote projection
maps from Q on the first, second, and third coordinate respectively. Let Tr be
the set of all functions of the form s : A → Q, where A ∈ T, such that

(a) for each t ∈ dom(s)\{0} we have dom(istate(s(t))) = [0, t] and
istate(s(t))(t) = in(s(t)) and if s(0) ↓, then istate(s(t))(0) = in(s(0));

(b) for each t ∈ dom(s) we have t ∈ dom(o) and out(s(t)) = o(t), where o is a
unique member of Op(B)(istate(s(t));

(c) if t1, t2 ∈ dom(s)\{0} and t1 ≤ t2, then istate(s(t1)) � istate(s(t2)).

It is straightforward to check that Σ = (T,Q, T r) is a NCMS.
Let i ∈ Sb(In(B),W ) and o ∈ Op(B)(i). Let us show that for each s ∈ S(Σ, i),

out ◦ s = o|dom(s), and if s ∈ Smax(Σ, i), then out ◦ s = o.
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Let s ∈ S(Σ, i). Then dom(s) ∈ T0 and in ◦ s � i by definition of S(Σ, i)
and istate(s(t))(t) = in(s(t)) = i(t) for all t ∈ dom(s)\{0} by (a). If t′, t ∈
dom(s) and 0 < t′ ≤ t, then i(t′) = istate(s(t′))(t′) = istate(s(t))(t′) by (c).
Moreover, we have s(0) ↓, whence istate(s(t))(0) = in(s(0)) = i(0) for each
t ∈ dom(s)\{0} by (a). Then for each t ∈ dom(s)\{0}, istate(s(t)) = i|[0,t],
because dom(istate(s(t))) = [0, t]. Then Op(B)(istate(s(t))) = Op(B)(i|[0,t]) =
{o|[0,t]}, because B is deterministic and causal. Then out(s(t)) = (o|[0,t])(t) and
t ∈ dom(o) for each t ∈ dom(s) by (b). This implies that dom(s) ⊆ dom(o) and
for all t ∈ dom(s), out(s(t)) = o(t). Thus out ◦ s = o|dom(s). We have {0} ⊂
dom(s) ⊆ dom(o), so dom(o) ∈ T. Because in(s(0)) = i(0) and out(s(0)) =
o(0), it is easy to see that a function s′ : dom(o) → Q such that s′(0) = s(0)
and s′(t) = (i(t), i|[0,t], o(t)) for all t ∈ dom(o)\{0} satisfies (a), (b), and (c).
Moreover, s′ ∈ Tr, dom(s′) ∈ T0, and in ◦ s′ = i|dom(o) � i. Then s′ ∈ S(Σ, i).
Besides, s′|dom(s) = s. Then if s ∈ Smax(Σ, i), then s′ = s and out ◦ s = o.

Let us denote Q0 = {(din, x, dout) ∈ Q | ∃(i, o) ∈ IO(B) {0} ∈ dom(o)∧din =
i(0) ∧ dout = o(0)}. It is straightforward to show that Sinit(Σ) ⊆ Q0. Thus
(Σ,Q0) is an initial I/O NCMS. Obviously, In(Σ) = In(B), Out(Σ) = Out(B).

It is easy to check that Q0 satisfies the following property:

(d) if (i, o) ∈ IO(B), q ∈ Q0, i �=⊥, in(q) = i(0), then o �=⊥ and out(q) = o(0).

Now let us show that (Σ,Q0) is a NCMS representation of B. It is sufficient
to show that Op(B)(i) = Oall(Σ,Q0, i) for all i ∈ Sb(In(B),W )\{⊥}.

Let i ∈ Sb(In(B),W )\{⊥} and o ∈ Op(B)(i). Consider the following cases:

(1) Sel1,2(Q0, i(0), x) = ∅ for some x ∈ IState(Σ). Then there is no (i′, o′) ∈
IO(B) such that i′(0) = i(0) and o′(0) ↓. Then o =⊥ and Sel1,2(Q0, i(0), x) =
∅ for all x ∈ IState(Σ). Then Oall(Σ,Q0, i) = {⊥} = Op(B)(i).

(2) Sel1,2(Q0, i(0), x) �= ∅ for all x ∈ IState(Σ) and dom(i) = {0}. Then o(0) ↓
and out(q) = o(0) for each q ∈ Sel1,2(Q0, i(0), x) ⊆ Q0 by the property
(d). Then oall(Σ,Sel1,2(Q0, i(0), x), i) = {{0} �→ o(0)} = {o} for all x ∈
IState(Σ), whence Oall(Σ,Q0, i) = Op(B)(i).

(3) Sel1,2(Q0, i(0), x) �= ∅ for all x ∈ IState(Σ), {0} ⊂ dom(i), and dom(o) ⊆
{0}. If in(q) = i(0) for some q ∈ Sinit(Σ, i), then q = s(0) for some s ∈
S(Σ, i), whence out ◦ s = o|dom(s) as we have shown above, but this is
impossible, because {0} ⊂ dom(s) and dom(o) ⊆ {0}. Thus in(q) �= i(0) for
each q ∈ Sinit(Σ, i). Then for each x ∈ IState(Σ), s(0) /∈ Sel1,2(Q0, i(0), x)
for all s ∈ Smax(Σ, i) and Sel1,2(Q0, i(0), x) ∩ Sinit(Σ, i) = ∅.
Then oall(Σ,Sel1,2(Q0, i(0), x), i) = {{0} �→ out(q) | q ∈ Sel1,2(Q0, i(0), x)}
for each x ∈ IState(Σ), whence Oall(Σ,Q0, i) = {{0} �→ out(q) | q ∈ Q0 ∧
in(q) = i(0)} �= ∅. Because in(q) = i(0) for some q ∈ Q0, by the property (d)
we have 0 ∈ dom(o) and Oall(Σ,Q0, i) = {{0} �→ o(0)} = {o} = Op(B)(i).

(4) Sel1,2(Q0, i(0), x) �= ∅ for all x ∈ IState(Σ) and {0} ⊂ dom(o). We have
dom(o) ∈ T. Let x ∈ IState(Σ) and q ∈ Sel1,2(Q0, i(0), x). Then in(q) =
i(0) and have out(q) = o(0) by the property (d). It is easy to see that a
function s′ : dom(o) → Q such that s′(0) = q and s′(t) = (i(t), i|[0,t], o(t))
for all t ∈ dom(o)\{0} satisfies (a), (b), and (c). Moreover, s′ ∈ Tr, dom(s′) ∈
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T0, and in◦s′ = i|dom(o) � i. Then s′ ∈ S(Σ, i). Then s′(0) = q ∈ Sinit(Σ, i).
Because q ∈ Sel1,2(Q0, i(0), x) is arbitrary, we have Sel1,2(Q0, i(0), x) ⊆
Sinit(Σ, i). Then oall(Σ,Sel1,2(Q0, i(0), x), i) = {out ◦ s | s ∈ Smax(Σ, i) ∧
s(0) ∈ Sel1,2(Q0, i(0), x)} = {o} for each x ∈ IState(Σ), because out ◦ s = o
for any s ∈ Smax(Σ, i) as we have show above and Sel1,2(Q0, i(0), x) �= ∅.
Then Oall(Σ,Q0, i) = {o} = Op(B)(i), because IState(Σ) �= ∅.

In all cases (1)-(4) we have Oall(Σ,Q0, i) = Op(B)(i). Thus (Σ,Q0) is a
NCMS representation of the block B. ��

Let Σ1 = (T,Q1, T r1) and Σ2 = (T,Q2, T r2) be I/O NCMS such that
In(Σ1) = In(Σ2) and Out(Σ1) = Out(Σ2).

Let us introduce the following notions.

Definition 19. (1) a state embedding from Σ1 to Σ2 is a function f : Q1 → Q2

such that {f ◦ s | s ∈ Tr1} = {s ∈ Tr2 | ∃t ∈ dom(s) ∃q ∈ Q1 s(t) = f(q)}
and there exists an injective function g : IState(Σ1) → IState(Σ2) such that
for all q ∈ Q1, f(q) = (in(q), g(istate(q)), out(q)).

(2) A state embedding from an initial I/O NCMS (Σ1, Q
1
0) to an initial I/O

NCMS (Σ2, Q
2
0) is a state embedding f from Σ1 to Σ2 such that for each

q ∈ Q1, q ∈ Q1
0 iff f(q) ∈ Q2

0.

Note that it follows immediately from this definition that a state embedding
from Σ1 to Σ2 is an injective function.

Lemma 8. Let Σ1 = (T,Q1, T r1) and Σ2 = (T,Q2, T r2) be I/O NCMS,
In(Σ1) = In(Σ2) and Out(Σ1) = Out(Σ2), and f be a state embedding from
Σ1 to Σ2. Let i ∈ Sb(In(Σ1),W ). Then Smax(Σ2, i) ⊇ {f ◦ s | s ∈ Smax(Σ1, i)}
and {q ∈ Sinit(Σ2, i) | ∃q′ ∈ Q1 q = f(q′)} = {f(q′′) | q′′ ∈ Sinit(Σ1, i)}.

The proof follows immediately from the definitions and is omitted here.

Lemma 9. For j = 1, 2 let (Σj , Q
j
0) be a NCMS representation of a block Bj.

Assume that In(Σ1) = In(Σ2) and Out(Σ1) = Out(Σ2) and there exists a state
embedding f from (Σ1, Q

1
0) to (Σ2, Q

2
0). Then B1 � B2.

Proof (Sketch). Assume that Σ1 = (T,Q1, T r1) and Σ2 = (T,Q2, T r2). We have
In(Σ1) = In(Σ2) and Out(Σ1) = Out(Σ2). Because f is a state embedding,
there exists an injective function g : IState(Σ1) → IState(Σ2) such that f(q) =
(in(q), g(istate(q)), out(q)) for all q ∈ Q.

Let i ∈ Sb(In(B),W ). Then for j = 1, 2, Op(Bj)(i) = Oall(Σj , Q
j
0, i).

Let us show that Oall(Σ2, Q
2
0, i) ⊇ Oall(Σ1, Q

1
0, i). This is obvious, if i =⊥, so

assume that i �=⊥. Let us fix some x1 ∈ IState(Σ1). DenoteQ′
1 = Sel1,2(Q

1
0, i(0),

x1) and Q′
2 = Sel1,2(Q

2
0, i(0), g(x1)). Because g is injective and Q2

0 ⊇ {f(q) | q ∈
Q1

0}, it is straightforward to show that Q′
2 ⊇ {f(q) | q ∈ Q′

1} and Q′
2 �= ∅ iff

Q′
1 �= ∅.
Let us show that oall(Σ2, Q

′
2, i) ⊇ oall(Σ1, Q

′
1, i). This is obvious, if Q′

1 = ∅
or Q′

2 = ∅, so assume that Q′
1 �= ∅ and Q′

2 �= ∅.
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Consider the case when dom(i) = {0}. Because Q′
2 ⊇ {f(q) | q ∈ Q′

1}, it is
easy to check that oall(Σ2, Q

′
2, i) = oall(Σ1, Q

′
1, i).

Consider the case when {0} ⊂ dom(i). By Lemma 8 we have Smax(Σ2, i) ⊇
{f ◦ s | s ∈ Smax(Σ1, i)} and {q ∈ Sinit(Σ2, i) | ∃q′ ∈ Q1 q = f(q′)} =
{f(q′′) | q′′ ∈ Sinit(Σ1, i)}. Because f is injective and Q′

2 ⊇ {f(q) | q ∈ Q′
1},

{out ◦ s | s ∈ Smax(Σ2, i) ∧ s(0) ∈ Q′
2} ⊇ {out ◦ (f ◦ s) | s ∈ Smax(Σ1, i)∧

∧ f(s(0)) ∈ Q′
2} ⊇ {out ◦ s | s ∈ Smax(Σ1, i) ∧ s(0) ∈ Q′

1}.

Because Q′
1 ⊆ Q1 and f is injective, it is straightforward to check that

Q′
2\Sinit(Σ2, i) ⊇ {f(q) | q ∈ Q′

1\Sinit(Σ1, i)}. Then from the definition of oall
it follows that oall(Σ2, Q

′
2, i) ⊇ oall(Σ1, Q

′
1, i).

Because x1 ∈ IState(Σ1) is arbitrary, it easily follows that Op(B2)(i) ⊇
Op(B1)(i). We conclude that B1 � B2. ��

Definition 20. A disjoint union of an indexed family of initial I/O NCMS
((Σj , Q

j
0))j∈J , where J �= ∅ and Σj = (T,Qj, T rj) for each j ∈ J , is a pair

(Σ,Q0), where Σ = (T,Q, T r) and

(1) Q = INW × (
⋃

j∈J{j} × IState(Σj)) × OUTW , where IN =
⋃

j∈J In(Σj),
and OUT =

⋃
j∈J Out(Σj);

(2) Tr = {fj ◦ s | j ∈ J ∧ s ∈ Trj};
(3) Q0 = {fj(q) | j ∈ J ∧ q ∈ Qj

0};

where for each j ∈ J , fj : Qj → Q is a function such that

fj(q) = (in(q), (j, istate(q)), out(q)), q ∈ Qj.

Lemma 10. Let (Σ,Q0) be a disjoint union of an indexed family of initial I/O
NCMS ((Σj , Q

j
0))j∈J , where J �= ∅. Then (Σ,Q0) is an initial I/O NCMS.

The proof is straightforward and is omitted here.

Definition 21. (1) A complete set of sub-blocks of a block B is a set B of sub-
blocks of B such that IO(B) =

⋃
B′∈B IO(B′).

(2) A complete indexed family of sub-blocks of a block B is an indexed family
(Bj)j∈J such that {Bj | j ∈ J} is a complete set of sub-blocks of B.

Definition 22. A state-restriction of a NCMS Σ = (T,Q, T r) on a set Q′,
denoted as Σ|Q′ , is a triple (T,Q ∩Q′, {s ∈ Tr | ∀t ∈ dom(s) s(t) ∈ Q′}).

Lemma 11. Σ|Q′ is a NCMS for each NCMS Σ = (T,Q, T r) and set Q′,

The proof follows immediately from the definition of NCMS and is omitted here.

Lemma 12. Let (Bj)j∈J be a complete indexed family of sub-blocks of a block
B, where J �= ∅. Assume that for each j ∈ J , Bj has a NCMS representation

(Σj , Q
j
0). Let (Σ,Q0) be a disjoint union of ((Σj , Q

j
0))j∈J . Then (Σ,Q0) is a

NCMS representation of B.
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Proof (Sketch). Assume thatΣj = (T,Qj, T rj) for each j ∈ J andΣ = (T,Q, T r).
By Lemma 10, (Σ,Q0) is an initial I/O NCMS, whence by Lemma 6, there

exists a block B′ (unique up to semantic identity) such that (Σ,Q0) is a NCMS
representation of B′.

For each j ∈ J we have In(Σj) = In(Bj) = In(B) and Out(Σj) = Out(Bj) =
Out(B), because Bj � B. Because J �= ∅, In(B′) = In(Σ) =

⋃
j∈J In(Σj) =

In(B) and Out(B′) = Out(Σ) =
⋃

j∈J Out(Σj) = Out(B).
For each j ∈ J , let gj : IState(Σj) → IState(Σ) and fj : Qj → Q be functions

such that gj(x) = (j, x) for all x ∈ IState(Σj) and fj(q) = (in(q), gj(istate(q)),
out(q)) for all q ∈ Qj .

Using Lemma 9 it is not difficult to show that B � B′.
Let us show that B′ � B. Let (i, o) ∈ IO(B′). Then o ∈ Oall(Σ,Q0, i). If

i =⊥, then o =⊥ and (i, o) ∈ IO(B) (because B is a block). Consider the case
when i �=⊥. Then there exists x∗ ∈ IState(Σ) =

⋃
j∈J{j}×IState(Σj) such that

o ∈ oall(Σ,Sel1,2(Q0, i(0), x
∗), i). Then there exists j ∈ J and x∗

j ∈ IState(Σj)
such that x∗ = (j, x∗

j ).

Let Q′
j =

In(Σ)W×({j}×IState(Σj))×Out(Σ)W , and Σ′
j = Σ|Q′

j
. By Lemma

11, Σ′
j is a NCMS. We will denote by Tr′j the set of trajectories of Σ

′
j . Moreover,

Q′
j is the set of states of Σ′

j and In(Σ′
j) = In(Σ), Out(Σ′

j) = Out(Σ). Besides,
Σ′

j is an I/O NCMS and Sinit(Σ
′
j) = Sinit(Σ|Q′

j
) ⊆ Sinit(Σ) ∩Q′

j ⊆ Q0 ∩Q′
j ⊆

Q′
j, because (Σ,Q0) is an initial I/O NCMS. Denote Q′

0,j = Q0 ∩ Q′
j. Then

(Σ′
j , Q

′
0,j) is an initial I/O NCMS. Moreover, x∗ ∈ IState(Σ′

j).
It is straightforward to show that o ∈ Oall(Σ

′
j , Q

′
0,j , i). By Lemma 6, there

exists a block B′
j such that (Σ′

j , Q
′
0,j) is a NCMS representation of B′

j . Let
g : IState(Σ′

j) → IState(Σj) and f : Q′
j → Qj be functions such that g((j, x)) =

x for x ∈ IState(Σ′
j) and f(q) = (in(q), g(istate(q)), out(q)) for all q ∈ Q′

j .
Obviously, In(Σ′

j) = In(Σj), Out(Σ′
j) = Out(Σj), and g is injective. Moreover,

f is an inverse of fj , whence {f ◦ s | s ∈ Tr′j} = Trj . Because for any s ∈ Trj ,
dom(s) �= ∅ and for each t ∈ dom(s), s(t) = f(fj(s(t))), where fj(s(t)) ∈ Q′

j ,
we have {f ◦ s | s ∈ Tr′j} = {s ∈ Trj | ∃t ∈ dom(s) ∃q ∈ Q′

j s(t) = f(q)}.
Then f is a state embedding from Σ′

j to Σj . Moreover, for each q ∈ Q′
j, q ∈

Q′
0,j = Q0 ∩ Q′

j iff q = fj(q
′) for some q′ ∈ Qj

0 iff f(q) ∈ Qj
0. Then f is

a state embedding from (Σ′
j , Q

′
0,j) to (Σj , Q

j
0). Then B′

j � Bj by Lemma 9.
Because o ∈ Oall(Σ

′
j , Q

′
0,j, i) = Op(B′

j)(i), we have o ∈ Op(Bj)(i), whence
(i, o) ∈ IO(B). Thus B′ � B. We conclude that B � B′ and B′ � B, so B and
B′ are semantically identical and (Σ,Q0) is a NCMS representation of B. ��

Now we can prove Theorem 2.

Proof (of Theorem 2).
Let B be a strongly nonanticipative block. Let us show that B has a NCMS

representation. Let R be the set of all relations R ⊆ IO(B) such that R is an
I/O relation of a deterministic causal block. For each R ∈ R let us define a block
BR such that IO(BR) = R, In(BR) = In(B), Out(BR) = Out(B). Then BR is a
deterministic causal block for each R ∈ R and IO(B) =

⋃
R∈R IO(BR), because

B is strongly nonanticipative. Then (BR)R∈R is a complete indexed family of
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sub-blocks of B and R �= ∅. By Lemma 7, for each R ∈ R there exists an initial
I/O NCMS (ΣR, Q

R
0 ) which is a NCMS representation of BR. Let (Σ,Q0) be

a disjoint union of ((ΣR, Q
R
0 ))R∈R. Then by Lemma 12, (Σ,Q0) is a NCMS

representation of B. ��

4 Existence of Total I/O Pairs of Strongly
Nonanticipative Blocks

4.1 Using NCMS Representation

The following theorems show that the questions (A) and (B) formulated in Sec-
tion 1 can be reduced to the problem of existence of total trajectories of NCMS.

Theorem 3. Let B be a strongly nonanticipative block and (Σ,Q0) be its NCMS
representation, where Σ = (T,Q, T r). Then B has a total I/O pair iff there exists
s ∈ Tr such that dom(s) = T .

Proof. Let us prove the ”If” part. Assume that s ∈ Tr and dom(s) = T . Let
q0 = s(0), x = istate(q0), i = in ◦ s, o = out ◦ s, and Q′ = Sel1,2(Q0, i(0), x).
Then q0 ∈ Sinit(Σ) ⊆ Q0, whence q0 ∈ Q′, so Q′ �= ∅. Besides, s ∈ Smax(Σ, i),
because dom(s) = T and in ◦ s = i � i. Then because s(0) ∈ Q′, we have
o = out ◦ s ∈ oall(Σ,Q′, i) by the definition of oall. Then o ∈ Oall(Σ,Q0, i) =
Op(B)(i), because i �=⊥ and (Σ,Q0) is a NCMS representation of B. Then
(i, o) ∈ IO(B) and dom(i) = dom(o) = T . Thus B has a total I/O pair.

Now let us prove the ”Only if” part. Assume that B has a total I/O pair
(i, o) ∈ IO(B). Because (Σ,Q0) is a NCMS representation of B and i �=⊥, we
have o ∈ Oall(Σ,Q0, i). Then there is x ∈ IState(Σ) such that o ∈ oall(Σ,Q′, i),
where Q′ = Sel1,2(Q0, i(0), x). Then o = out ◦ s for some s ∈ Smax(Σ, i) such
that s(0) ∈ Q′, because dom(o) = T . Then s ∈ Tr, dom(s) = T . ��

Theorem 4. Let B be a strongly nonanticipative block and (Σ,Q0) be its NCMS
representation, where Σ = (T,Q, T r).

Let i ∈ Sb(In(B),W ) and dom(i) = T . Let (l, r) be a LR representation of Σ
and l′ : ST (Q) → Bool and r′ : ST (Q) → Bool be predicates such that

l′(s, t) ⇔ l(s, t) ∧ (min dom(s) ↓= t ∨ in(s(t)) = i(t)).

r′(s, t) ⇔ r(s, t) ∧ (max dom(s) ↓= t ∨ in(s(t)) = i(t)).

Then

(1) (l′, r′) ∈ LR(Q);
(2) If (l′, r′) is a LR representation of a NCMS Σ′ = (T,Q, T r′), then {o ∈

Op(B)(i) | dom(o) = T } �= ∅ iff there exists s ∈ Tr′ such that dom(s) = T .

Proof (Sketch).

(1) It is straightforward to check that l′ is left-local and r′ is right-local.
(2) Assume that (l′, r′) is a LR representation of a NCMS Σ′ = (T,Q, T r′).

Then Tr′ = {s : A → Q | A ∈ T ∧ (∀t ∈ A l′(s, t) ∧ r′(s, t))}.
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It is straightforward to show that {s ∈ Tr′ | dom(s) ∈ T0} = S(Σ, i).
Let us show that {o ∈ Op(B)(i) | dom(o) = T } �= ∅ iff there exists s ∈ Tr′

such that dom(s) = T .

”If” Assume that s ∈ Tr′ and dom(s) = T . Then s ∈ S(Σ, i). Let q0 =
s(0), x = istate(q0), o = out ◦ s, and Q′ = Sel1,2(Q0, i(0), x). Then
q0 ∈ Sinit(Σ

′) ⊆ Sinit(Σ) ⊆ Q0, whence q0 ∈ Q′, so Q′ �= ∅. Besides, s ∈
Smax(Σ, i), because dom(s) = T . Then because s(0) ∈ Q′, we have o =
out◦s ∈ oall(Σ,Q′, i) by the definition of oall. Then o ∈ Oall(Σ,Q0, i) =
Op(B)(i), because i �=⊥ and (Σ,Q0) is a NCMS representation of B.
Besides, dom(o) = T . Thus {o ∈ Op(B)(i) | dom(o) = T } �= ∅.

”Only if” Assume that o ∈ Op(B)(i) and dom(o) = T . Because (Σ,Q0)
is a NCMS representation of B and i �=⊥, we have o ∈ Oall(Σ,Q0, i).
Then there is x ∈ IState(Σ) such that o ∈ oall(Σ,Q′, i), where Q′ =
Sel1,2(Q0, i(0), x). Then o = out ◦ s for some s ∈ Smax(Σ, i) such that
s(0) ∈ Q′, because dom(o) = T . Then s ∈ S(Σ, i), whence s ∈ Tr′ and
dom(s) = T .

��

Now we will focus on the problem of existence of total trajectories of a NCMS.

4.2 Existence of Globally Defined Trajectories of NCMS

An obvious method for proving existence of a total trajectory of a NCMS with
a given LR representation (l, r) is just guessing a function s : T → Q such that
∀t ∈ T l(s, t) ∧ r(s, t).

As an alternative to guessing an entire trajectory one can try to find/guess
for each t a partial trajectory st defined in a neighborhood of t which satisfies
l(st, t)∧r(st, t) in such a way that all st, t ∈ T can be glued together into a total
function. An important aspect here is that the admissible choices of st, st′ for
distant time moments t, t′ ∈ T (i.e. such that st, st′ appear as subtrajectories of
some total trajectory) can be dependent.

However, this method can be generalized: instead of guessing an exact total
trajectory or its exact locally defined subtrajectories, one can guess some “re-
gion” (subset of trajectories) which presumably contains a total trajectory and
has some convenient representation. It is desirable that for this region the proof
of existence of a total trajectory can be accomplished by finding/guessing locally
defined trajectories in a neighborhood of each time moment independently, or
at least so that when choosing a local trajectory in a neighborhood of a time
moment t one does not need to care about a choice of a local trajectory in a
neighborhood of a distant time moment.

We formalize the described generalized method of proving existence of total
trajectories of a NCMS as follows.

Let Σ = (T,Q, T r) be a fixed NCMS.
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Definition 23. Σ satisfies

(1) local forward extensibility (LFE) property, if for each s ∈ Tr of the form
s : [a, b] → Q (a < b) there exists a trajectory s′ : [a, b′] → Q such that
s′ ∈ Tr, s � s′ and b′ > b.

(2) global forward extensibility (GFE) property, if for each trajectory s of the
form s : [a, b] → Q there exists a trajectory
s′ : [a,+∞) → Q such that s � s′.

Theorem 5. Let (l, r) be a LR representation of Σ. Then Σ has a total trajec-
tory iff there exists a pair (l′, r′) ∈ LR(Q) such that

(1) l′(s, t) ⇒ l(s, t) and r′(s, t) ⇒ r(s, t) for all (s, t) ∈ ST (Q);
(2) ∀t ∈ [0, ε] l′(s, t) ∧ r′(s, t) for some ε > 0 and a function s : [0, ε] → Q;
(3) if (l′, r′) is a LR representation of a NCMS Σ′, then Σ′ satisfies GFE.

Proof (Sketch). Let us prove the ”If” part. Assume that (1)-(3) hold. By (2)
there exists ε > 0 and s : [0, ε] → Q such that l′(s, t) ∧ r′(s, t) for all t ∈ [0, ε].
Let Σ′ = (T,Q, T r′) be a NCMS such that (l′, r′) is a LR representation of Σ′

(which exists, because (l′, r′) ∈ LR(Q)). Then by (3), Σ′ satisfies GFE. Besides,
s ∈ Tr′. Then there exists s′ : [0,+∞) → Q such that s′ ∈ Tr′ and s � s′. Then
l′(s, t) ∧ r′(s, t) for all t ∈ T , whence s′ ∈ Tr, because of (1), so Σ has a total
trajectory.

Now let us prove the ”Only if” part. Assume that Σ has a total trajectory
s∗ ∈ Tr. Let l′ : ST (Q) → Bool and r′ : ST (Q) → Bool be predicates such that

l′(s, t) ⇔ l(s, t) ∧ (min dom(s) ↓= t ∨ s(t) = s∗(t)).

r′(s, t) ⇔ r(s, t) ∧ (max dom(s) ↓= t ∨ s(t) = s∗(t)).

It is easy to check that (l′, r′) ∈ LR(Q) and (l′, r′) satisfies (1)-(3). ��

Theorem 5 means that existence of a total trajectory of a NCMS Σ with LR
representation (l, r) can be proved using the following approach:

(1) Choose/guess a pair (l′, r′) ∈ LR(Q), where l′(s, t) ⇒ l(s, t) and r′(s, t) ⇒
r(s, t) for all (s, t) ∈ ST (Q).
By Definition 15 and Theorem 1, this pair is a LR representation of the
NCMS Σ′ = (T,Q, T r′), where

Tr′ = {s : A → Q |A ∈ T ∧ (∀t ∈ A l′(s, t) ∧ r′(s, t))} ⊆ Tr.

The set Tr′ ⊆ Tr plays the role of a region which presumably contains a
total trajectory.

(2) If it is possible to find a function s on a small segment [0, ε] which satisfies
l′(s, t) ∧ r′(s, t) for t ∈ [0, ε] (i.e. s is a trajectory of Σ′) and prove that Σ′

satisfies GFE, then Σ has a total trajectory.

To complete this method of proving existence of a total trajectory, in the next
section we will show that the GFE property of a NCMS can be proven by proving
existence of certain locally defined trajectories independently in a neighborhood
of each time moment.
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4.3 Reduction of the GFE Property to the LFE Property

As above, let Σ = (T,Q, T r) be a fixed NCMS.

Definition 24 ([27]). A right dead-end path (in Σ) is a trajectory s : [a, b) →
Q, where a, b ∈ T , a < b, such that there is no s′ : [a, b] → Q, s ∈ Tr such that
s � s′ (i.e. s cannot be extended to a trajectory on [a, b]).

Definition 25 ([27]). An escape from a right dead-end path s : [a, b) → Q (in
Σ) is a trajectory s′ : [c, d) → Q (where d ∈ T ∪ {+∞}) or s′ : [c, d] → Q
(where d ∈ T ) such that c ∈ (a, b), d > b, and s(c) = s′(c). An escape s′ is called
infinite, if d = +∞.

Definition 26 ([27]). A right dead-end path s : [a, b) → Q in Σ is called
strongly escapable, if there exists an infinite escape from s.

Lemma 13. If s : [a, b) → Q is a right dead-end path and c ∈ (a, b), then s|[c,b)
is a right dead-end path.

The proof follows immediately from the CPR and Markovian properties of Σ.

Lemma 14. Σ satisfies GFE iff Σ satisfies LFE and each right dead-end path
is strongly escapable.

The proof is analogous to the proof of Lemma 3 in [27] and is omitted here.

Definition 27
(1) A right extensibility measure is a function f+ : R × R→̃R such that A =
{(x, y) ∈ T × T | x ≤ y} ⊆ dom(f+), f(x, y) ≥ 0 for all (x, y) ∈ A, f+|A
is strictly decreasing in the first argument and strictly increasing in the second
argument, and for each x ≥ 0, f+(x, x) = x and limy→+∞ f+(x, y) = +∞.
(2) A right extensibility measure f+ is called normal, if f+ is continuous on
{(x, y) ∈ T × T | x ≤ y} and there exists a function α of class K∞ (i.e.
the function α : [0,+∞) → [0,+∞) is continuous, strictly increasing, and
limx→+∞ α(x) = +∞, α(0) = 0) such that α(y) < y for all y > 0 and the
function y �→ f+(α(y), y) is of class K∞.

Let us fix a right extensibility measure f+.

Definition 28. A right dead-end path s : [a, b) → Q is called f+-escapable (Fig.
3), if there exists an escape s′ : [c, d] → Q from s such that d ≥ f+(c, b).

An example of a right extensibility measure is f+(x, y) = 2y − x (x ≤ y). In
this case, for a right dead-end path to be f+-escapable it is necessary that there
exists an escape s′ : [c, d] → Q with d− b ≥ b− c.

Theorem 6. Assume that f+ is a normal right extensibility measure and Σ
satisfies LFE. Then each right dead-end path is strongly escapable iff each right
dead-end path is f+-escapable.
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Fig. 3. An f+-escapable right dead-end path s : [a, b) → Q (shown as a curve) and a
corresponding escape s′ : [c, d] → Q (shown as a horizonal segment) with d ≥ f+(c, b)

Proof (Sketch). The statement of this theorem is similar to the statement of
[27, Theorem 2] with the difference that here it is assumed that Σ satisfies LFE
instead of a stronger condition called weak local extensibility (WLE) [27] (which
is used in the proof of [27, Lemma 15]) and the right extensibility measure is
assumed to be normal. However, it is straightforward to check that the proof
given in [27] is valid for the statement formulated here. ��

Theorem 7 (A criterion for the GFE property). Let (l, r) be an LR rep-
resentation of a NCMS Σ and f+ be a normal right extensibility measure. Then
Σ satisfies GFE iff for each t > 0 there exists ε ∈ (0, t] such that for each
t0 ∈ [t− ε, t) and s : [t0, t] → Q:

(1) (∀τ ∈ [t0, t] l(s, τ) ∧ r(s, τ)) ⇒ ∃t1 > t
∃s′ : [t, t1] → Q s′(t) = s(t) ∧ (τ ∈ dom(s′) l(s′, τ) ∧ r(s′, τ));

(2) (∀τ ∈ [t0, t) l(s, τ) ∧ r(s, τ)) ∧ ¬l(s, t) ⇒ ∃t1 ∈ (t0, t)
∃s′ : [t1, f+(t1, t)] → Q s′(t1) = s(t1) ∧ (τ ∈ dom(s′) l(s′, τ) ∧ r(s′, τ)).

Proof. Let us prove the ”If” part. Assume that for each t > 0 there exists
ε ∈ (0, t] such that (1) and (2) hold for each t0 ∈ [t− ε, t) and s : [t0, t] → Q.

Firstly, let us show that Σ satisfies LFE. Let s̄ : [a, b] → Q be a trajectory
of Σ. Then b > a ≥ 0. Then for t = b there exists ε ∈ (0, t] such that (1) holds
for each t0 ∈ [t− ε, t) and s : [t0, t] → Q. Let t0 = max{a, t− ε} and s = s̄|[t0,t].
Then s ∈ Tr by the CPR property and l(s, τ) ∧ r(s, τ) for all τ ∈ [t0, t], and by
(1) there exists t1 > t = b and s′ : [t, t1] → Q such that s′(t) = s(t) = s̄(t) and
l(s′, τ) ∧ r(s′, τ) for all τ ∈ dom(s′). Then s′ ∈ Tr. Let us define s′′ : [a, t1] → Q
as follows: s′′(τ) = s̄(τ), if τ ∈ [a, b] and s′′(τ) = s′(τ), if τ ∈ [b, t1]. Then
s′′ ∈ Tr by the Markovian property. Also, s̄ � s′′ and t1 > b. So Σ satisfies LFE.

Secondly, let us show that each right dead-end path in Σ is f+-escapable. Let
s̄ : [a, b) → Q be a right dead-end path in Σ . Then b > 0. Then for t = b there
exists ε ∈ (0, t] such that (2) holds for each t0 ∈ [t − ε, t) and s : [t0, t] → Q.
Let t0 = max{a, t − ε} and s be some continuation of s̄|[t0,t) on [t0, t]. Then
s|[t0,t) ∈ Tr by the CPR property and l(s, τ) ∧ r(s, τ) for all τ ∈ [t0, t). Besides,
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¬l(s, t), because s̄ is a dead-end path and r(s, t) holds. Then by (2) there exists
t1 ∈ (t0, t) and s′ : [t1, f+(t1, t)] → Q such that s′(t1) = s(t1) and l(s′, τ)∧r(s′, τ)
for all τ ∈ dom(s′). Then s′ ∈ Tr. Moreover, t1 ∈ (a, b), s′(t1) = s(t1) = s̄(t1),
and max dom(s′) ≥ f+(t1, b). Thus s

′ is an escape from s̄ and s̄ is f+-escapable.
Now by Theorem 6, each right dead-end path in Σ is strongly escapable. Then

by Lemma 14, Σ satisfies GFE.
Now let us prove the ”Only if” part. Assume that Σ satisfies GFE. Let t > 0.

Let us choose an arbitrary ε ∈ (0, t]. Assume that t0 ∈ [t−ε, t) and s : [t0, t] → Q.
Let us show (1). Assume that l(s, τ) ∧ r(s, τ) for all τ ∈ [t0, t]. Then s ∈ Tr

and by GFE there exists s1 : [t0,+∞] → Q such that s1 ∈ Tr and s � s1. Let
t1 = t + 1 and s′ = s|[t,t1]. Then s′ ∈ Tr by the CPR property and s′(t) = s(t)
and l(s′, τ) ∧ r(s′, τ) for all τ ∈ dom(s′).

Let us show (2). Assume that l(s, τ) ∧ r(s, τ) for all τ ∈ [t0, t). Then s|[t0,t) ∈
Tr. Firstly, consider the case when s|[t0,t) is a right dead-end path in Σ. Then by
Lemma 14 it is strongly escapable, so there exists t1 ∈ (t0, t) and s1 : [t1,+∞) →
Q such that s1(t1) = s(t) and s1 ∈ Tr. Let s′ = s1|[t1,f+(t1,t)]. Then s′ ∈ Tr by
the CPR property and s′(t1) = s(t1) and l(s′, τ) ∧ r(s′, τ) for all τ ∈ dom(s′).

Now assume that s|[t0,t) is not a right dead-end path. Then there exists s0 :
[t0, t] → Q such that s0 ∈ Tr and s|[t0,t) � s0. Then by GFE there exists
s1 : [t0,+∞] → Q such that s1 ∈ Tr and s0 � s1. Let us choose any t1 ∈ (t0, t)
and define s′ = s1|[t1,f+(t1,t)]. Then s′ ∈ Tr by the CPR property, and s′(t1) =
s1(t1) = s0(t1) = s(t1) and l(s′, τ) ∧ r(s′, τ) for all τ ∈ dom(s′). ��

This theorem means that to prove the GFE property, it is sufficient to prove the
existence of certain locally defined trajectories in a neighborhood of each t ∈ T .

5 Conclusion

We have considered the questions of the existence of total I/O pairs of a given
strongly nonanticipative block and the existence of a total output signal bunch
for a given total input signal bunch. We have reduced them to the problem of
the existence of total trajectories of NCMS using a NCMS representation. For
the latter problem we have proposed a criterion which can be reduced to the
problem of checking the existence of certain locally defined trajectories.
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