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Abstract The basic idea of distributed computing is that it is possible to solve
a large problem by using the resources of various computing devices connected
in a network. Each device interacts with each other in order to process a part of
a problem, contributing to the achievement of a global solution. Wireless sensor
networks (WSNs) are an example of distributed computing on low resources devices.
WSNs encountered a considerable success in many application areas. Due to the
constraints related to the small sensor nodes capabilities, distributed computing in
WSNs allows to perform complex tasks in a collaborative way, reducing power
consumption and increasing battery life. Many hardware platforms compose the
ecosystem of WSNs and some lightweight operating systems have also been designed
to ease application deployment, to ensure efficient resources management, and to
decrease energy consumption. In this chapter we focus on distributed computing
from several points of view emphasizing important aspects, ranging from hardware
platforms to applications on resource constrained devices.

1 Introduction

Distributed computing in Wireless Sensor Networks (WSNs) represents an emerging
scenario obtaining the attention of researchers. Performing individually a smaller
task, sensor nodes of a WSN collaborate exchanging information, data or partial
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results to achieve a global goal. A WSN is composed of a variable number of
autonomous sensor nodes deployed in the environment. Basically, a sensor node
includes a processor unit, a radio transceiver for data transmission, small memory
for data storage and sensor modules for data gathering. Moreover, a battery with
a limited energy budget is often the only power source. Therefore, sensor nodes
present several constraints in terms of storage, processing and energy. They are often
deployed in a hostile environment that individuals cannot easily reach and conse-
quently changing or charging batteries is unsuitable.

Due to the sensor’s small memory and to the low processing capability, solving
complex problems individually is often impossible and thus, some form of coopera-
tion is required. Therefore, distributed computing in WSN allows to achieve complex
targets by using cheap sensor nodes with a considerable cost saving and without a
single point of failure. The advantages include higher performance, reliability, col-
laboration and scalability. In spite of this, distributed computing defines a scenario
still full of challenges since resources management techniques and power saving
strategies are required. Research is thus naturally focused on the creation of new
platforms for specific application fields, and on the development of distributed com-
puting techniques and algorithms improving the performances of WSNs.

Sensor nodes have earned the attention of the market with considerable success
because of their low price and their potential in different fields. In addition to the tradi-
tional well known platforms, there are several low-cost hardware platforms and starter
kits on the market, often including lightweight operating systems (OS) that allow any-
one to create their own sensor network. In this chapter we provide an overview about
distributed computing on low resources constrained devices such as sensor nodes
of a WSN. Many chapters in literature discuss distributed computing but they focus
just on one significant aspect such as algorithms, applications, challenges or issues.
Unlike these papers, we cover several significant aspects of distributed computing
ranging from low to high level, from hardware platforms to distributed applications,
also describing the underlying algorithms and issues. We also discuss a typical dis-
tributed application showing how even a trivial problem may become complicated
on resource-constrained hardware.

The remainder of this chapter is organized as follows. Section2 presents some
recent hardware platforms for WSN, while Sect.3 describes some of the existing
operating systems for sensor node’s resources management. A common representa-
tion of sensor nodes is provided by sensor ontologies, briefly discussed in Sect. 4.
Distributed computing algorithms and applications in WSN are surveyed in Sect. 5,
while Sect.6 provides a brief characterization of distributed synchronization as a
real example of the issues and challenges related to distributed computing on low
resources devices. Finally Sect.7 concludes this chapter.
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2 Hardware Platforms

Distributed computing cannot be discussed separately from the specific underlying
hardware implementation. In recent years many hardware platforms for WSN have
been designed, tested and brought to market. These platforms present some common
features since basically they include a microcontroller, a transceiver, low memory,
power supply and expansion pins. These platforms differ in the on-board hardware
components and in their actual use in several applications. Many available platforms
have been used in several research projects such as the well-known MicaZ, Iris,
Mica2 and Telos platforms. More recently, other hardware platforms are earning the
market thanks to their low cost and high expandability through a large set of sensor
boards.

In [22], the authors presents the commercially available Atlas sensor platform
for the creation of pervasive smart spaces. It is composed of three basic layers:
the Processing Layer, the Communication Layer, and the Device Connection Layer.
Other add-ons provide additional capabilities to the node. The Processing Layer
is based on Atmega 128L microcontroller including 128 KB Flash memory, 4 KB
SRAM, 4 KB EEPROM. In addition, 64 KB of expanded SRAM is added. The Com-
munication Layer is responsible of data transfer over the network. This layer can be
based on wired 10BaseT Ethernet, Bluetooth, 802.11b WiFi and USB. The Connec-
tion Layer allows to connect up to 32 sensors and actuators to the platform. Atlas node
is configured through an interface allowing the selection of the currently connected
sensors and actuators. The authors of [6] describe Atlas and cases study based on it.

SHIMMER [7] is a platform designed for healthcare monitoring. It is based on
Texas Instruments MSP430 microcontroller including 10 KB RAM, 48KB Flash, 8
ADC channels, USART and SPI connections. SHIMMER uses a CHIPCON CC2420
radio transceiver and Roving Networks RN-41 Class 2 Bluetooth module for com-
munications. A MICRO SD Flash for additional storage is also on-board. Internal and
external connectors allows the integration of other boards adding kynematics, ECG
and GSR sensing capabilities, while a three axis accelerometer is already built-in.

Waspmote [41] is a general-purpose board to develop applications for WSNs. It
is based on an Atmegal281 microcontroller running at 14 MHz, 8 KB SRAM, 4KB
of EEPROM, 128 KB of FLASH and a 2 GB microSD. A temperature sensor and an
accelerometer, a radio socket, a SPI-UART socket, a solar socket and a battery socket
are included. A 802.15.4/Zigbee module is used for communication with other nodes
in the network and for node programming. Nodes can be programmed with Over
The Air Programming (OTA) through 802.15.4 modules or 3G/GPRS/WiFi modules
via FTP. Secure communication can also be implemented on Waspmotes by using
AES 128, RSA 1024 and AES 256 encryption library provided implementations.
Waspmote is well expandable with several modules for communication like RFID,
Bluetooth for nodes discovery, radio expansion boards (for using two radios at the
same time) and GPS. Sensor boards provide additional sensing capabilities to the
node. Case studies affect smart agriculture projects, smart water and smart cities
projects. Waspmote has also been used in the deployment of long distance WSN s [44].
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Arduino is an open source general-purpose platform for developing a wide range
of applications involving sensors, actuators and communication with other devices.
The philosophy of Arduino is based on prototyping, tinkering and patching concepts.
Arduino boards can be purchased pre-assembled or can be assembled manually.
There are 14 commercially available Arduino versions. Typically an Arduino board
includes an Atmel AVRS8 microcontroller and it is expandable using other shields.
Only Arduino Due includes an Atmel SAM3X8E ARM Cortex-M3 CPU. For exam-
ple the Arduino Uno board [2] is based on Atmega328 running at 16 MHz including
32 KB Flash memory, 2 KB SRAM and 1 KB EEPROM. The board can be powered
through either the USB connector or an external power supply. On board, digital IO
pins, analog input and output pins are available. An integrated development environ-
ment (IDE) is freely available to developers. Thanks to this IDE, programs written
in the Wiring programming language are easily cross-compiled on a host OS such
as Windows, Macintosh and Linux, and deployed on Arduino boards through USB
programming. Developers can add several Arduino kits including all the necessary
for developing applications. In addition several shields, actuators and sensors are
available for this platform. Several researches concerning WSN are based on this
platform, while projects for beginners can be found in [4].

Zolertia Z1 [45] is a low-power general-purpose platform based on Texas Instru-
ments MSP430F2617 microcontroller running at 16 MHz including 92 KB flash and
8 KB RAM. Z1 is equipped with a 2.4 GHz CC22420 transceiver, a TMP102 temper-
ature sensor and a ADXL.345 3 axis digital accelerometer, 52-pin expansion connec-
tor, 2 ports for connecting Phidget sensors, a micro-USB connector and a ceramic
antenna. It can be powered via USB or through batteries. Z1 is expandable with sev-
eral on-board sensors like a temperature-humidity sensor, a light sensor, a barometric
sensor, and it can also be connected to a wide range of sensor modules producted
by Phidget Inc. Z1 has be used in some researches and applications such as environ-
mental and agriculture monitoring, healthcare and power consumption monitoring.

3 Operating Systems for Sensor Node Devices

In this section, we briefly discuss operating systems for sensor nodes. Since sensor
devices present several constraints in terms of memory, processing and energy, oper-
ating systems for WSNs must be designed to manage resource efficiently, taking care
of specific issues arising from use cases. For instance, in most applications batteries
are often the only source of energy and changing or charging batteries is not suitable.
Consequently, an OS for sensor devices must not only limit power waste, ensur-
ing optimized energy consumption, but also be able to recover from power faults.
Over the years, several lightweight operating systems for WSNs have been created.
Although they all share the same goals, architectural and implementation choices
differ. Architecture, programming model, programming language and energy saving
support are the main varying factors. Several chapters in literature as [9, 16], survey
operating systems for WSNs while [9, 34], provide a comparative study of them.
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Some of these operating systems such as TinyOs [27] and Contiki [14] present
an event-driven programming model where processes use the same stack in order
to reduce memory requirements. Instead, a multithreaded model requires additional
resources as each thread needs its own stack. A package for multithreading sup-
port in TinyOS is presented in [23]. For multithreading, Contiki uses a lightweight
thread model called protothread. Protothreads share a stack and their implementation
requires only 2 bytes. A comparison of TinyOs and Contiki can be found in [34].
Multithreading-based operating systems are MantisOs [5], LiteOs [8]. Scheduling
management deals with resource allocation. For example, TinyOs provides a FIFO
scheduling. Tasks are enqueued and executed until their completion without pre-
emption by other tasks. A task gets preempted only if an event or interrupt occurs.
MantisOs provides a priority-based round robin scheduling within each of five avail-
able priority levels. The first scheduled thread gets the highest priority and it is
executed until it completes or its time slice expires. If any thread is ready for exe-
cution, the system goes into sleep mode. In Contiki, preemptive multithreading is
implemented as a library that can be linked with applications. LiteOs implements
both priority-based scheduling and round robin scheduling. Operating systems for
WSNs can also differ in kernel architecture. TinyOs presents a component-based
architecture where every component is specified in terms of used and offered inter-
faces, while Contiki’s kernel is composed of a lightweight scheduler and a poll
event handler supporting synchronous and asynchronous events. A Contiki system
is divided into two parts: the core system and the loaded programs. The core sys-
tem includes the kernel, libraries and the program loader. MantisOs system presents
a layered architecture where each level provides services to the higher levels. The
lower level is the hardware level. The second level includes the kernel and the sched-
uler, the communication level and the device drivers. Over this level, Mantis System
API provides services to network stack, command services and user’s threads. The
architecture of LiteOs is composed of three main components: LiteShell, LiteFS,
and the kernel on the node. LiteShell subsystem runs on a PC station and allows the
user to interact directly to a sensor node through a Unix shell providing commands
for file processing and device management. LiteFS subsystem mounts a sensor node
to the root filesystem of the base station. MansQOs [37] derives from LiteOs but it is
designed to be easy portable to new platforms. For this purpose, it presents three levels
providing different functionalities. As described in [37] the Hardware Presentation
Level (HPL) is the hardware dependent level and thus it contains the specific code
for the target hardware platform. The Hardware Abstraction Layer (HAL) contains
the representation of the platforms in terms of platform constants, pin assignments,
device assignments and function binding. The Hardware Independent Layer (HIL)
provides user hardware-independent functions abstracting the lower levels. Operat-
ing systems for WSNs must also provide support to communication. For example,
Contiki presents two communication stacks: the UIP stack for communication over
Internet and Rime aimed at low power radio applications with addressing, broadcast
and unicast communication. MantisOS handles the communication through a lay-
ered network stack implemented with user level threads. MantisOS COMM layer



126 G. Martorella et al.

Table 1 Summary table of some operating systems for sensor nodes. They differ mainly in archi-
tecture, programming model and scheduling

Architecture Programming Scheduling Language
model
TinyOs Monolithic Event-driven 2 levels scheduling NesC
(component-based)
Contiki Modular Event-driven and 2 levels scheduling C
thread-based hierarchy and
preemptive
multithreading
MantisOs  Layered architecture Thread-based Priority-based thread C
scheduling
LiteOs Partioned into three Thread-based Priotity-based and C
parts: LiteShell, Round-robin
LiteFs and Kernel

supports the MAC protocol. This layer provides a common interface for different
communication device drivers and manages packet buffering.

These operating systems support distributed computing since they provide prim-
itives needed by distributed applications. The choice of the operating system may
in fact depend on the application requirements. Table 1 shows the main differences
between some operating systems for sensor nodes.

4 Sensor Ontologies

Ontologies are used to represent formally the concepts of a domain through their
properties and the relationships existing between them. Several ontologies for sen-
sor nodes can be found in literature with the aim of providing a common represen-
tation of sensor nodes. These ontologies aim to describe characteristics, platforms,
properties, sensing capabilities of a sensor node in a WSN. SensorML is a standard
XML language for sensors definition. It is generic and therefore it supports a wide
range of sensors. It provides archiving of sensor parameters, plug-n-play, support for
tasking, observation, auto-configuration, sensor accuracy definition. CSIRO Sensor
Ontology [11] is written in the Web Ontology Language (OWL) with the aim of rep-
resenting sensors in a generic domain. A sensor is described in terms of its physical
properties (platform, serial ID, weight, dimension) and its concrete implementation.
The ontology also models the sensor’s functionalities and its sensing capabilities
(data flow, sensor’s response, input, output). In Wlreless Sensor Networks Ontology
(WISNO) [3] a sensor node is described through its physical components (radio,
memory, cpu and power supply) modeling both its properties and the existing rela-
tionship with other domain’s concepts. OntoSensor is based on SensorML and it
represents components like sensing units, radio and data acquisition board. In the
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Semantic Sensor Network (SSN) ontology [10] a sensor is considered as a device
able to detect changes or events from the environment to process them producing
a result. The ontology can also represents the concept of single observation, plat-
form, deployment, data and energy consumption. Therefore, distributed applications
in WSNs can reach a certain degree of interoperability using ontologies. Ontologies
allow to represent concept of a specific domain formally and thus heterogeneous
applications can share information having the same representation of concepts and
consequently a common base of knowledge.

5 Distributed Algorithms and Applications in WSNs

Since sensor nodes present many constraints both in storage and processing, distrib-
uted computing can overcome these limitations increasing the performance of the
entire WSN. In a distributed application, sensor nodes achieve complex tasks by a
cooperative effort. Cooperation implies that sensor nodes need to communicate with
each other to perform a given task. Radio communication, however, involves a con-
siderable energy expenditure. Furthermore, managing routing tables for a large set of
nodes is challenging. Therefore, researchers have designed several distributed rout-
ing protocols in order to increase sensor’s battery lifetime by reducing the number of
transmissions. Distributed applications are often based on clustering and grouping,
on neighbors’ discovery and localization, but also on synchronization and on data
collection algorithms. Data-centric routing protocols aims to reduce transmissions
between nodes removing the need of a node addressing mechanism using a query-
based approach involving just a neighbor-to-neighbor communication. Flooding [20],
gossiping [20] and SPIN [25] are few examples of data-centric routing protocols.
Unlike data-centric algorithms, hierarchical routing protocols are characterized by
clusters or groups of nodes and each cluster has a leader. Multi-hop communication
is allowed within the same cluster or group, and communication between different
clusters or groups is managed by the leader. Data fusion and aggregation are also
performed to reduce the number of communications to the base station. Other hierar-
chical routing protocols are described in [36]. Location-based protocols focus on the
idea that knowing the position of the nodes, a query can be addressed just to a lim-
ited region eliminating unnecessary transmissions. One significant advantage is that
these protocols consider node mobility. Other protocols are based on network flow or
Quality of Service (QoS) modeling. A survey on routing protocols for WSNs can be
found in [1]. Multicast routing protocols could reduce the number of the messages
exchanged, by transmitting simultaneously just to a subset of nodes. A multicast
distributed routing algorithm is proposed in [18]. Data aggregation is also a funda-
mental task in WSNs because aggregation eliminates redundant transmissions saving
the WSN’s global energy. When sensory data are aggregated and then transmitted,
collisions may occur during aggregation. A survey on data aggregation algorithms
can be found in [33]. The authors of [33] also discuss the influence of the network
topology and the routing protocol on data aggregation. In [43], the authors present
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adistributed scheduling algorithm to improve the energy management decreasing the
time latency. The same chapter also proposes an adaptive version of the algorithm
to deal with network topology changes. Detecting faults in WSNs makes it possible
to identify occurred error situations in order to handle them properly. A distributed
bayesian approach for fault detection is suggested in [30], where cooperation allows
anode to infer the nodes source of incorrect data. Reducing the considerable energy
consumption caused by channel listening improves node’s lifetime. For this reason,
several algorithms involving duty cycling techniques have been proposed. In this
way, a node alternates sleep and wakeup times. Some of these protocols are based on
sleep and wakeup time synchronization. Other protocols do not require synchroniza-
tion being thus more flexible. The authors of [39] propose the PW-MAC algorithm
based on prediction of receiver’s wakeup. Distributed data storage overcomes prob-
lems related to node’s low storage capability. Many approaches rely on the idea of a
distributed database. In this context, the authors of [32] propose a cooperative mid-
dleware providing a distributed data storage for WSNs. For example, in Hood [42]
the node shares its data only with some of its neighbors. In TinyPeds [19] the cluster
head receives aggregated data from its cluster’s members and stores them in a neigh-
bor cluster head. In [21], the choose of the backup node is probabilistic in order to
make the network more robust and efficient. WSNs often handle sensitive or critical
data that must be protected from malicious attacks. Since many security algorithms
rely on random number generator, the authors of [29] present a distributed algorithm
for selecting a node as a number random generator using a leader election approach.
The authors of [12] present a sample Ambient Intelligence (AmlI) system for mini-
mizing energy consumption in indoor environments according to users’ preferences
and needs. The system’s middleware is distributed on sensory devices for low-level
data gathering management, while higher level functionalities are implemented in
a centralized manner. In [31] a WSN system including collaboration in the health-
care field is presented. The proposed system is composed of wearable and ambient
sensors cooperating to monitor user’s vital signs. Ambient sensors provide informa-
tion about context and the information from wearable and ambient sensors are then
fused. In [24] an intrusion detection system involving collaboration among sensors
has been proposed. The sensor tracking is an important research aspect exploited by
many application, like animal or person tracking. Other collaborative applications
can involve data filtering techniques like Kalman filter to estimate the node position
[35]. In [26] a system for environmental monitoring is presented. The authors used
local storage and Constrained Application Protocol (CoAP) as communication pro-
tocol, concluding that a completely distributed algorithm decreases consumptions
and increases reliability. In [40] a surveillance system relies on a peer to peer distrib-
uted sensor network infrastructure implementing collaborative on-line learning and
target localization. The state of art about collaborative WSNs can be found in [28]
while a survey about collaborative tracking is provided in [13].
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6 An Example of Distributed Application: Synchronization

In this section, we aim to make the reader aware of distributed computing on resources
constrained devices, such as sensor nodes of a WSN, showing how a trivial applica-
tion, such as synchronization, becomes a complex goal on these platforms. Synchro-
nization is a typical distributed application where sensors must align their own clock
to share the same notion of time. Since sensors cooperate, having the same time axis
is fundamental. Different microcontrollers must perform an action simultaneously or
periodically together with the other nodes of the network. Even if the nodes are turned
on at the same time, their clocks will drift increasingly because of the tolerances in
clock generators. Therefore, synchronization poses some important questions such
as how to estimate the frequency drift or how frequently sensor nodes must synchro-
nize their clocks. In addition, to achieve common time knowledge, nodes cooperate
through messages and consequently the transmission delay must also be considered.
The drift and the propagation delay are thus important parameters to compute in
order to perform synchronization with relative time measure. In this case, sensor
nodes estimate their relative drift and the propagation delay adjusting their clocks
accordingly. Since distributed synchronization relies on communication, a synchro-
nization application must handle channel noise, unreliable packet delivery, packet
losses, asymmetrical links between sender and receiver, and must implement some
kind of fault tolerance. In literature, several synchronization protocols have been
proposed. Some of them are based on hierarchical network topology or they use a
probabilistic approach rather then a deterministic synchronization. Figure 1 shows
the synchronization phase of the Timing-sync Protocol for Sensor Networks [17]
occurring once the hierarchical topology in the network has been established. Syn-
chronization is performed between pairs of nodes. In [15], the authors consider some
evaluation metrics such as energy utilization, precision, lifetime, scope and availabil-
ity, cost and size. A high energy conservation is provided by post-facto synchroniza-
tion updating clocks only when it is strictly necessary. A synchronization application
can be evaluated on the basis of the time the network remains synchronized before
performing synchronization again, while cost and size indicate hardware costs. The
authors of [38] evaluate the synchronization protocols on the basis of quantitative
criteria such as precision, computational complexity, message complexity, conver-
gence time, number of nodes and sleep mode support. In this context, they provide
a comparison between some protocols based on these evaluation metrics. They also
consider qualitative parameters for synchronization evaluation such as accuracy,
scalability and overall complexity including storage requirements, communication
overhead and fault tolerance. This brief discussion about synchronization shows that
distributed computing applications on low resources devices are usually challenging.
These applications must cope with the issues related to cooperation, coordination,
scheduling but also with the typical constraints of WSNs such as limited hardware
and computing capabilities, reduced energy and bandwidth availability, and latency.
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ROOT

NODE A
(Level 0)

(Level 1)

T1

time

Fig. 1 Synchronization phase of the Timing-sync Protocol for Sensor Networks [17]. Once the
root node has sent a time-sync packet to all of its neighbors, each neighbor of level 1 waits for
a random time interval before sending a synchronization-pulse packet containing its level and its
local time to the root. The root replies with its level, the time received from node A, its local time
of arrival and its time of sending. Node A thus estimates the drift and the propagation delay and
adjusts its clock accordingly. This process propagates through the network from nodes of level 1 to
nodes of level 2 and so on

7 Conclusion

In this chapter, we provided an overview about a new emerging scenario concerning
distributed computing on limited resource devices. We discussed it from several
points of view, from recently appeared hardware platforms and operating systems
to distributed algorithms and applications. We also provided a summary description
of some existing ontologies for sensor nodes. We also briefly described a typical
distributed application to show how even simple applications may be challenging in
this scenario.
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