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Abstract Predicting data is a crucial ability for resource-constrained devices like
the nodes of a Wireless Sensor Network. In the context of Ambient Intelligence
scenarios, in particular, short-term sensory data prediction becomes a key enabler
for more difficult tasks such as prolonging network lifetime, reducing the amount of
communication required and improving user-environment interaction. In this chapter
we propose a software module designed for clustered wireless sensor networks, able
to predict various environmental quantities, namely temperature, humidity and light.
The software module is supported by an ontology that describes the topology of the
AmI scenario and the effects of the actuators on the environment. We applied our
module to real data gathered from a public office at our department and obtained
significant results in terms of prediction error even in presence of environmental
actuators.

1 Introduction

Ambient Intelligence (AmI) is an emergent field of AI aimed at developing smart,
distributed pervasive systems able to support human-environment interaction [8].
The basic infrastructure of an AmI system is made up of sensors, actuators and rea-
soners [2, 4, 7, 9]. The sensory components monitor the environment by measuring
physical phenomena like temperature, humidity and light, but also by acquiring dig-
ital images and sounds, detecting user presence and so on. The actuators are those
elements able to affect the environment according to the users’ needs. The reasoners
are able to learn, recognize and infer users’ needs as well as to predict environmental
phenomena.
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Fig. 1 Reference architecture of the AmI system and placement of STSDP software module

Over the last few years, AmI designers have begun to implement sensory
infrastructure by using the so-called Wireless Sensor Network (WSN) technology,
that is a network made up of sensor nodes able to sense physical phenomena and
to perform small on-board computations. The growing use of such technology has
been triggered by the presence of consolidated communication protocols like IEEE
802.15.4 and Wireless HART and a lightweight operating system like TinyOS. Nev-
ertheless, wireless sensor nodes are limited by their scarce computational resources,
storage and energy [1]. For these reasons, predicting data becomes a key enabler in
improving WSN performance as it makes it possible to reduce communications and
to prolong network lifetime. Moreover, in the context of Ambient Intelligence, pre-
dictions could be also exploited by reasoners to control actuators in order to satisfy
user needs.

The main contribution of this chapter lies in the implementation of Short-Term
Sensory Data Prediction (STSDP), i.e. a softwaremodule able to predict the physical
phenomena monitored by a Wireless Sensor Network, with the combined effect of
actuators.

Figure1 shows our chosen reference AmI architecture and the placement of the
STSDP module: we assume that the WSN is arranged as a set of clusters and that
each cluster-head runs STSDP; the computational burden of the sensor nodes is kept
as low as possible as they are only required to communicate the sensed readings
to the cluster-head. The cluster heads relay their predictions to the gateway that
is responsible for aggregating and communicating them to the upper layer. The
intelligent modules (reasoners) are responsible for performing complicated tasks
such as controlling the actuators and computing long-term data predictions. The
context (sensors, actuators and physical phenomena) is modeled using Ontology
Web Language (OWL), which allows STSDP to build an updated representation of
the environment.

The remainder of this chapter is organised as follows: Sect. 2 depicts the current
state of the art methods for predicting data in wireless sensor networks; Sect. 3
provides mathematical details of STSDP as well as the description of the OWL
ontology that models the environmental context. Section 4 describes the experiments
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we carried out to validate our software module, and finally Sect. 5 presents our
conclusions.

2 Related Works

Predicting data is a widely studied topic in wireless sensor networks as it makes it
possible to prolong network lifetime by aggregating and compressing data, lowering
network communications and reducing the amount of storage required.

Any prediction algorithm for wireless sensor networks is specified from three
different perspectives: scope, topology and methodology. The temporal and spatial
scope of a prediction algorithm are respectively short (minutes or hours/meters)
or long (days or months/kilometers). Broadly speaking, short-term prediction algo-
rithms fit the requirements of a WSN rather well, as they require a little knowledge
of the past and few computational resources. Moreover their degree of precision
within the temporal and spatial scopes designed is very high. Long-term prediction
algorithms are very complex if compared to the short-term ones and are usually per-
formed by devices with more computational resources (as an example the reasoners
of the reference AmI architecture chosen here may be good candidates for perform-
ing such complex computations). The precision of such algorithms is quite constant
over time, although it is less than that of short-term prediction algorithms designed
only for limited scopes.

The topology perspective defines “who” is responsible for carrying out predic-
tions.Centralized approaches assume that a central base station gathers readings from
the surrounding nodes and then builds a global model of the monitoring field [3, 17],
whereas distributed approaches [16] focus on local data processing and are very
precise as compared to the former methods. Their main drawback is their elavated
computational complexity, which makes them unsuitable for resource constrained
devices like wireless sensor nodes.

The methodological perspective defines how to predict data; the stochastic
approach models each physical phenomenon as a random process based on a set
of observable and unobservable parameters. Such parameters are associated with
previously learned prior probability distribution functions (PDF) and the predic-
tions are drawn from the posterior PDF conditioned on the observed variables
[11, 12, 15]. The deterministic approach assumes some kind of mathematical law
that links past readings to future ones. Common implementations are “Time Series”
[13, 16] and “Regression models” [10]. Stochastic approaches are suitable for all
those applications that require long-term predictions, but their prediction error is
very high as compared to deterministic approaches. On the other hand, deterministic
approaches require a limited amount of storage and computation and produce smaller
errors when used as short-term predictors.

We chose to implement STSDP using a centralized approach to minimize the
computational burden on sensor nodes and to prolong their lifetime as much as
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possible. The decision to use a deterministic implementation was straightforward, as
our module was specifically designed to perform short-term data prediction.

3 Proposed Approach

This Section discusses our implementation of the STSDP software module together
with the OWL ontology adopted to describe the environmental context.

Let us assume that the WSN is arranged as a set of clusters and that the nodes
behave as cluster head or leaf. Leaf nodes are characterized by their scarce computa-
tional resources and are responsible for gatheringmeasurements and relaying them to
the cluster head. Cluster heads are not limited by energy or computational resources
and act as the so called micro-servers (e.g. Stargate nodes). They are responsible
for building the spatio-temporal representation and prediction of the monitored phe-
nomena.

Each cluster is associated with an area of interest—a spatial portion of the moni-
toring field—bounded by the convex-hull defined by its own sensor nodes.Moreover,
we assume that the areas of interest do not overlap with each other.

Figure2 shows the steps followed by STSDP to predict physical phenomena. The
Context Generation submodule reads the Ontology and creates the description of the
context: sensor nodes (e.g. sampling rate, position, status), actuators (e.g. affected
phenomenon, position) and the phenomena (e.g. light, temperature or humidity). The
Prior estimates submodule creates a rough representation of the phenomenon using
the readings sensed by each node during the previous 24hours; the current readings
add fresh information and allow to build the more precise Posterior estimators; the
Fusion step mixes the Posterior estimators to generate a spatio-temporal mesh of the
area of interest from which predictions are collected. In order to make the approach
suitable for ambient intelligence scenarioswe added theActuators correctionmodule
that integrates the effect of the actuators on the monitored phenomena. Finally, the
Context Update module updates the ontology to keep track of possible changes in
the context (e.g. dead nodes, active/inactive actuators).

The mathematical details of STSDP as well as the Ontology implemented will
be described by referring to a single cluster of nodes. The generalization to more
clusters is straightforward.

3.1 Context Generation and Update Modules

Ontologies are useful tools which enable us to describe a domain of interest (concepts
and relationships between them) using a formal language (in our case we chose to
adopt the Ontology Web Language, OWL).
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Fig. 2 Sequence diagram of the STSDP module

Classes represent categories of concepts classified by using “isa” hierarchies,
whilst properties represent relationships among classes and are identified by domain
and range class.

The Simple Web Rule Language (SWRL) implements logical inference and
updates the OWL ontology as a function of changes in the environment. Each rule
is written in the form antecedent → consequent where both antecedent and con-
sequent are conjunctions of one or more atoms, where each atom is a property or a
class.

The context generation module reads the content of the ontology and gathers all
the information needed by the prediction module to carry out predictions (e.g. the
number of nodes of the cluster, their sampling rate, the active actuators and so on).
The context update module modifies the ontology as a function of any environmental
changes. For example a node with a battery level under a given threshold should be
excluded by the cluster head as its readings could be incorrect.

Table1 represents in details the ”isa” hierarchies we devised for the classes of
interest. The root classes are the Device and the Phenomenon. Any device could be
an Actuator, a Reasoner or a Node. Each Node in its turn is a Gateway, a Cluster
Head or a Sensor Node. Finally, each Phenomenon could be Light, Humidity or
Temperature.

Table2 represents the ontology properties. Whenever the range class is a raw
type (e.g. String, Float, Integer, Boolean and so on) it is conventionally named as a
data property, i.e. an internal attribute of the class. Finally, a property is said to be
functional when the mapping between domain and range is injective. For instance
the “hasID” property is functional because each device has just one identifier; the
“manages” property is not functional as a device could manage many devices (e.g.
each cluster head manages many sensor nodes).

The context update submodule implements three SWRL rules that infer: (i) the
observability of a phenomena, (ii) the working status of sensor nodes, and (iii) the
manager device of each node (not codified at design time).

The formal representation of the three rules described is as follows:
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Table 1 Ontology classes

Class name Parent class

Device –
Phenomenon –
Actuator Device
Reasoner Device
Node Device
Gateway Node
Cluster head Node
Sensor node Node
Light Phenomenon
Humidity Phenomenon
Temperature Phenomenon

Table 2 Ontology properties

Property Name Domain Range Data Funct. Description

hasID Device Integer ✓ ✓ The unique identifier
isAtX Device ✓ ✓ The X-position
isAtY Device Float ✓ ✓ The Y-position
manages Device Device ✗ ✗ Controller and

controlled device
isManagedBy Device Device ✗ ✓ Inverse of the manages

property
hasSamplingPeriod Sensor node Float ✓ ✓ Sampling period
hasBatteryLevel Sensor node Float ✓ ✓ Current battery level
hasMinBatteryLevel Sensor node Float ✓ ✓ Minimum battery level

for considering a
node as ”active”

hasStatus Device Boolean ✓ ✓ Working status (active
or inactive)

senses Sensor node Phenomenon ✗ ✗ The phenomena sensed
by a sensor node

affects Actuator Phenomenon ✗ ✗ The phenomenon
affected by the given
actuator

isObservable Phenomenon Boolean ✓ ✓ Observability of a
phenomenon

Rule 1:
Phenomenon(?x) ∧ senses(?y, ?x) ∧ hasStatus(?y,True) → isObservable(?x,True)

Rule 2:
Node(?y) ∧ hasBatteryLevel(?y,?t) ∧ hasMinBatteryLevel(?y,?z) ∧ lessOrEqual
(?t,?z) →
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hasWorkingStatus(?y,False)

Rule 3:
manages(?x,?y) → isManagedBy(?y,?x)

3.2 Prediction Submodule

Let us assume that each sensor node i gathers readings with sampling rate �t and
that ri (t) is the reading at time t . Moreover the node location is (xi , yi ).

The prior estimator f prior
xi ,yi (t) roughly assumes that the current representation of

the monitored phenomena is identical to that of the previous day; the past 24h of
readings are fitted using a Gaussian Mixture as follows:

f prior
xi , yi (t)=

K∑

k=1
wk N (t |μk, σ

2
k ) (1)

where the parameters μk , σ 2
k and wk represent the mean, the variance and the

importance weight of the k-th Gaussian. Such parameters minimize the square error
between the fitted curve and the sensed readings and are recomputed with 24-h time
steps using the Nelder-Mead optimization algorithm [14] as follows:

(μ1, σ1, w1, ..., μK , σK , wk) = argmin
μk , σk , wk
k∈[1..K ]

∑

t

[ri (t) − f prior
xi , yi (t)]2. (2)

The prior estimator enables STSDP to learn the shape of the monitored phenom-
enon and to constrain the trend of the posterior estimator. Its intrinsic limitations are
related to poor performance as a short-term predictor and to the covered space that
is the point location xi , yi .

The posterior estimator integrates the trend of the current readings to the informa-
tion provided by the above step. Let us consider the time window pinpointed by the
last W sensed readings r(t), t ∈ [t0 − (W − 1)�t, t0]; then the posterior estimator
is computed as a geometrical transformation of the prior one as follows:

f post
xi , yi (t) = β[ f prior

xi , yi (t) − γ ] + γ, (3)

where β ∈ [βl , βu] and γ ∈ [0, γu] represent respectively the scaling and translation
parameters; the upper and lower bounds should be set by a field expert and limit the
range of possible transformation of the prior estimator.

The geometrical parameters are computed for non-overlapping time windows of
size W using the same approach as Eq.2:
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Fig. 3 Geometrical transformation of a prior estimator into a posterior one

(β, γ ) = argmin
β, γ

t0∑

t=t0−(W−1)�t

{β[ f prior
xi , yi (t) − γ ] + γ − ri (t)}2 (4)

Figure3 shows how the computation works: the last W sensed readings identify
the current timewindow (on the right); the same time instants also identify the portion
of the prior estimator that is used to fit the current readings (on the left). Then, the
geometrical transformation tries to compute the best match between prior estimator
and current readings.

The posterior estimators performbetter than prior ones as they integrate the knowl-
edge from the previous day’s readings and the current behavior of the phenomenon;
however they are still limited by punctual spatial coverage.

The fusion step extends the spatial coverage of the posterior predictors to the entire
area of interest. The continuous function f f use(x, y, t) is computed as a normalized
linear interpolation of the posterior estimators as follows:

f f use(x, y, t) =

I∑

i=1

wi (x, y) f post
xi , yi (t)

I∑

i=1

wi (x, y)

, (5)

where wi (x, y)= e−[(x−xi )
2+(y−yi )

2] and I is the number of nodes within the cluster.
The function covers the convex-hull of the cluster.
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3.3 Modeling the Effect of Actuators

Environmental actuators are an important component ofAmI applications thatmanip-
ulate physical phenomena according to user needs. A crucial aspect of any predictor
is its capability of integrating the effect of the actuators on the environment to draw
more precise predictions.

The current implementation of the actuators correction submodule considers the
effect of rolling shutters and neon lights on indoor environments. We are working
to include the support for actuators affecting temperature and humidity such as air
conditioners and radiators.

We assessed experimentally that the rolling shutter gives a multiplicative contri-
bution to f f use and was modeled as a compression function R : [0, 1] → [0, 1] that
accepts as input the value of h ∈ [0, 1], i.e. the portion of the window that is not
covered by the rolling shutter( 0 means totally closed and 1 means totally open), and
gives as output c ∈ [0, 1] the compression factor. We did not include dependence
on the space position in R(h) as experimental results (Sect. 4) have shown that such
knowledge only makes a negligible contribution to reduce prediction error.

The effect of neon lights is additive, location-dependent and was modeled as a
function N (x, y) : R2 → [0,∞] that accepts as input the 2-D point of the area
of interest and gives as output the increment in light exposure. The mathematical
expression is as follows:

N (x, y) =

I∑

i=1

L∑

l=1

wi (x, y)sl Nl(xi , yi )

I∑

i=1

L∑

l=1

slwi (x, y)

, (6)

where l is the subscript that identifies the neon light, L is the number of neon lights,
wi (x, y)= e−[(x−xi )

2+(y−yi )
2] is the importanceweight, sl indicates whether the light

is turned off/on, and Nl(xi , yi ) is the punctual light increment at the node location
(xi , yi ) due to the l-th neon light.

The output of the actuator correction submodule f light (x, y, t) is therefore com-
puted accordingly to the previous considerations:

f light (x, y, t) = R(h) × f f use(x, y, t) + N (x, y). (7)
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Fig. 4 The Ambient Intelligence scenario we used for evaluating the performance of STSDP

4 Experimental Results

The aim of this Section is to evaluate the performance of the STSDP module with
respect to the spatial and temporal precision of the predicted data.

Figure4 shows the Ambient Intelligence scenario we adopted to test the per-
formance of STSDP. We deployed a single cluster within a 6m×5m office at our
department: the WSN was made up of five Mica2Dot sensor nodes equipped with
light, temperature and humidity sensors while the cluster head was a FitPC2i (mini-
computer). The monitoring field was bounded by the convex hull of the sensor nodes
belonging to the cluster and is marked by a dashed line. Sensor nodes gathered mea-
surements from 07-28-2013 to 08-02-2013 with a sampling rate of 30 s. The first
day of readings was used to learn the prior models of the sensor nodes, while from
07-29-2013 to 07-31-2013 we assessed the performances of the predictor without
the effect of the actuators. The days 08-01-2013 and 08-02-2013 were used to assess
the performance of STSDP under the effect of the light exposure actuators. We set
the number of mixing components of the prior estimators to K = 5.

4.1 Prediction Performance

In order to evaluate the ability of STSDP to predict data over space, we computed
the function f f use by relying only on the measurements gathered from nodes 1, 2
and 5. We then compared the readings from nodes number 3 and 4 with the output
provided by f f use and computed the mean and standard deviation of the prediction
error.

Light, temperature and humidity were measured respectively in Lux, Celsius
degrees and Percentage. Both the mean and standard deviation were normalized
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Fig. 5 Assessment of the performance of STSDP as spatial predictor

with respect to the minimum and maximum value of the observed phenomenon: the
light ranged from 0 to 1600 Lux, the temperature from 17 to 35 ◦C, and humidity
from 0 to 100%. Figure5 shows the results obtained: the x-axis ranges over 3days
and each step aggregates the errors of 6h (military time). The y-axis contains the
percentage mean absolute error and the standard deviation of the error. Experimental
results show that the mean and standard deviation are very low and have peaks of
about 4% for all of the phenomena observed.

The temporal prediction performance were assessed by comparing the sensed
readings and the value of the posterior predictor f post for each sensor node with
different sampling rates (from 0.5 to 60mins).

Figure6 shows the mean and standard deviation of the error: both the indicators
are above 4% for all the observed phenomena when the sampling rates range from
0.5 to 5 mins; the performance values are still acceptable for a sampling rate of
60mins. In particular temperature/humidity and light have a mean error of about 8
and 12% respectively, meaning that, in general, light exposure is less predictable and
has a greater variance than humidity or temperature, a conclusion we had already
reached in previous works [5, 6].
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Fig. 6 Assessment of the performances of STSDP as temporal predictor

Fig. 7 Effects of the light exposure actuators on the sensor nodes

4.2 Effect of Light Exposure Actuators

The performance of STSDP under the effect of light exposure actuators (neon and
rolling shutter) was evaluated during the day 08-02-2013. The functions R(h) and
N (x, y) were learned using the readings gathered the previous day. At fixed steps of
1h, we opened the rolling shutter and positioned it at five different locations (from
0 to 100% opened) and let the nodes record the differences in the sensed light. We
also carried out the same procedure for the neon light which was turned on and off.
The results obtained were averaged for each node i over the 24 recorded values and
the resulting curves Ri (h) and N (x, y) are reported in Fig. 7.

The compression functions are very similar to each other, so we excluded spatial
dependence and computed R(h) as the mean of the learned curves. The additive
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Fig. 8 Prediction of light exposure under the effect of a rolling shutter and a neon light

terms N (xi , yi ) are location dependent and based on the distance between the sensor
node and the neon light; sensor 3 and 4 present two peaks as they are closer to the
neon than the other nodes.

Figure8 shows the performance of the actuators correction module for sensor
node 5.

The rolling shutter was kept opened from 07:00 a.m. to 16:30 a.m. while the neon
light was turned on for the remaining hours. The sensed and the predicted data are
represented by the solid and dashed lines respectively.

The performance of the light exposure predictor appeared to be very encourag-
ing and showed small errors even in correspondence of the transitions caused by
actuators. At 08:20 am the predictions became unreliable, but recovered after about
20mins. The problemwas caused by a sequence of suboptimal solutions provided by
the optimization algorithm that computes the geometrical transformation parameters
(see Eq.4).

5 Conclusions

This work proposes the implementation of Short-Term Sensory Data Prediction
(STSDP), a software module for Ambient Intelligence scenarios. The module was
able to predict common physical phenomena like temperature, humidity and light
exposure even with the effect of environmental actuators.

The OWL ontology made it possible to describe the environmental context and
the relationships among the components of the AmI reference architecture whilst
keeping information about the state of the sensor network and actuators updated.
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The experimental results were achieved using real data gathered in an office at our
department and demonstrated that STSDP is able to provide reliable predictions both
in space and time with ranges of meters and minutes respectively. We also assessed
its capabilities in predicting light exposure with the effects of a neon light and a
rolling shutter.

STSDP was implemented as a set of interconnected sub-modules that could be
independently improved usingmore refinedmathematicalmodels. As a further devel-
opment we are currently integrating the support for air conditioners and radiators to
extend its applicability to more complex Ambient Intelligence scenarios.
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