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Abstract Many artificial intelligent systems exploit a wide set of sensor devices
to monitor the environment. When the sensors employed are low-cost, off-the-shelf
devices, such as Wireless Sensor Networks (WSN), the data gathered through the
sensory infrastructure may be affected by noise, and thus only partially correlated to
the phenomenon of interest. One way of overcoming these limitations might be to
adopt a high-level method to perform multi-sensor data fusion. Bayesian Networks
(BNs) represent a suitable tool for performing refined artificial reasoning on hetero-
geneous sensory data, and for dealing with the intrinsic uncertainty of such data.
However, the configuration of the sensory infrastructure can significantly affect the
performance of the whole system, both in terms of the uncertainty of the inferred
knowledge and in term of the hardware performance of the sensory infrastructure
itself. This chapter proposes an adaptive Bayesian System whose goal is to infer
an environment feature, such as activities performed by the user, by exploiting a
wide set of sensory devices characterized by limited energy resources. The system
proposed here is able to adaptively configure the sensory infrastructure so as to
simultaneously maximize the inference accuracy and the network lifetime by means
of a multi-objective optimization.

1 Motivations and Related Work

Artificial intelligence systems often adopt a sensory infrastructure characterized by
elevated device heterogeneity both in terms of the energy consumption profile and
the type of measurements collected. One of the application scenarios in artificial
intelligence,where this feature ismore evident isAmbient Intelligence, characterized
by the adoption of pervasive and ubiquitous sensors for monitoring relevant ambient
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features. Data fusion, by enabling high-level context information to be obtained from
raw sensory data, may offer a solution to the need to cope with such heterogeneity,
and to manage data that may be only partially correlated with the phenomenon of
interest [1, 2]. Considerable attention has been devoted to context information, such
as user presence in monitored areas [3–5] or current user activities [6, 7].

When dealing with multi-sensor data fusion, one of the most relevant issues is the
management of the non-negligible level of uncertainity and noise in data gathered
by low-cost devices. To deal with this problem, several papers in the literature have
suggested adopting a probabilistic approach, such as Naive Bayes classifiers, Hidden
MarkovModels (HMMs) and Conditional RandomFields (CRF), as described in [7],
which compares the performance of these three approaches in different type of
datasets, adopting a semi-supervised learning scheme. In [8] a distributed and adap-
tive Bayesian network is proposed for the detection of data anomalies in WSN
data.

In line with state of the art research, we propose a Bayesian adaptive system
devoted to inferring user activity through a set of low-cost sensors, embedded into a
Wireless Sensor Network (WSN) [9], as preliminarly described in [10] for detecting
user presence [11].AWSNcomprises a huge set ofwireless sensor nodes, pervasively
deployed in the environment and capable of performing on-board computations.
These devices are characterized by limited, non-renewable, energy resources. This
latter feature makes the maximization of the network lifetime a crucial goal, with the
proviso that its achievement should not excessively sacrifice the inference accuracy.
The proposed system aims to dynamically find the best trade-off between these
two contrasting goals, maximizing both the WSN lifetime and the quality of the
information gathered. This problem dealt with by minimizing both the uncertainty
of inferred knowledge and the energy consumption of the sensory infrastructure.

In order to solve our multi-objective problem, two objective functions have to be
formally defined. For the uncertainty function we used the classic definition provided
in [12]. The definition of an objective function for representing energy consumption
of sensor nodes is a rather more complex problem. Several papers have dealt with the
issue of minimizing the energy consumption of a WSN [13–15]. In [14] the author
describes PAMAS, a MAC layer protocol which reduces the cost of routing packets
over the shortest-hop routing. In [13] the authors propose a node cost model for their
clustering-based protocol that utilizes randomized rotation of local cluster base-
stations (cluster heads) to distribute the energy load among sensor nodes. In [15], the
authors offer an analysis of the power consumption model for the communication
module of a generic WSN node. To the best of our knowledge, most of the research
in the literature deals with the problem of maximizing the WSN lifetime either at
MAC level or at routing level. In contrast, our system manages the entire sensory
infrastructure at a higher level, making our approach independent from low-level
details.

This chapter is structured as follows. Section2.1 provides a general descrip-
tion of the system proposed here, in terms of the concepts involved and the rela-
tions among them. Section2 provides a formal definition of the Bayesian Network
(BN) adopted, and of the quality indices exploited to evaluate system performance.
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The self-configuration problem through which the system is able to adapt its sensory
infrastructure is described in Sect. 2.6. Section3 details the results of the experimen-
tal evaluation of the proposed system, and finally, Sect. 4 states our conclusions and
proposes some future developments of our work.

2 Proposed System

We propose the adoption of an AmI system whose sensory infrastructure is based
on Wireless Sensor Networks composed of off-the-self and low-cost devices. This
featuremakes it possible tomaintain a low intrusiveness for the users and for themon-
itored premises, but implies that the signals gathered are, in general, only partially
correlated with the feature of interest.

To overcome this problem, the adopted system exploits Bayesian network (BN)
as a framework for performing multi-sensor data fusion. In particular, the BN aims
to detect the activity performed by the user in the monitored premises.

With a view to evaluating the behavior of the current sensory infrastructure, we
defined two quality indices, expressing the actual energy consumption of sensory
devices and the quality of the gathered information. These quality indices are con-
tinuously monitored in order to detect anomalous situations, and whenever one of
them goes over a given threshold an alarm is triggered. In such cases, the system
then reconfigures the sensory infrastructure.

Ameta-level for self-configuration is implemented over theBN, as shown inFig. 1.
Such high-level component try to achieve the best trade-off between the degree of
confidence of the Bayesian network and the energy consumption of the sensory
infrastructure; a plan is produced stating which sensory devices have to be activated
or de-activated.

2.1 Conceptual Representation

We formally modeled the concepts characterizing our domain and the relationships
between them through an ontology. This formalism allows us to understand the struc-
ture and the behavior of our system better, and to support the automatic interaction
with other AmI components. The proposed ontology also makes it is possible to
describe the components of our system, namely the sensory infrastructure, the infer-
ence engine and the optimization module. The relationships among these components
are showed in Fig. 2: the optimization module changes the configuration of the sen-
sory infrastructure in order to find the best trade-off between energy consumption
and quality of the information obtained, thus affecting the accuracy of the inference
engine.
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Fig. 1 Block diagram for the proposed system

Fig. 2 Taxonomy of system components and their relationships, as described in the proposed
ontology

The role of the optimization module is represented by the concepts and relation-
ships depicted in Fig. 3. At each time step, the optimization module observes the
inference accuracy characterizing the inference engine and the power consumption
caused by the sensory infrastructure. These two indices are verified against two fixed
thresholds, and whenever one index exceeds its threshold, an alarm is fired, thus
triggering the reconfiguration of the sensory infrastructure. The formal definition of
such indices is provided in the following section.
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Fig. 3 Description of concepts involved in the functioning of the optimization module

S

Fig. 4 The ontology proposed represents the indirect dependency between the status of the sensory
infrastructure and both energy consumption and inference accuracy

As demonstrated in Fig. 4, the system knows that the sensory infrastructure is
composed of several sensors, and that each of these sensors consumes energy and
contributes to the energy consumption of the whole sensory infrastructure. Switching
a sensor on or off affects not only such consumption, but also the set of sensory
readings gathered in a given time step. Because the inference engine uses as input
the sensory readings gathered, each change in the state of the sensory infrastructure
indirectly affects the accuracy of the inference process.

2.2 Basic Definitions

Before describing the structure of the BN,we provide some formal definitions, which
are required to formally state both the structure of the Bayesian system and the multi-
objective problem.
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X : the set of activity IDs (numerical);
nX : the number of all possible activities, i.e., nX = �(X );
x : a generic activity, i.e. x ∈ X ;
xt : a generic activity performed at time step t, i.e. xt ∈ X ;
T : the set of all possible time steps;
t : a generic time step, i.e. t ∈ T ;
S : the set of sensor IDs (numerical);
nS : the number of all sensors, i.e. nS = �(S);
s : a generic sensor, i.e., s ∈ S;
cs,t : the state of sensor s at time t; cs,t ∈ {0, 1}, where 0 means that sensor s is OFF;
ct : the binary vector encoding the configuration of the sensory infrastructure at the time step

t, i.e. ct ∈ {0, 1}nS ;
I(ct) : the subset of sensors ON in the configuration ct , i.e., I(ct) = {

s ∈ S | cs,t = 1
}
;

E : the set of numerical IDs, one for each possible value of sensory readings;
es

t : the reading gathered by sensor s at time t, i.e. es
t ∈ E;

eI(ct )
t : the set of readings gathered by active sensors at time t, i.e., eI(ct )

t = {
es

t | s ∈ I(ct)
}

(ordered by sensor ID);
eI(ck )
1:t : the set of sensory readings gathered from the initial time step to t, i.e., eI(ck )

1:t ={
es

k | 1 ≤ k ≤ t , s ∈ I(ck)
}
.

The definitions given above are used in the rest of the chapter, in order to
formally define the inference process of the proposed BN. In particular, to define
the BN, it is necessary to consider the state transition model, expressing the prob-
ability that the user will perform a particular activity in the next timestep, given
the current activity, i.e., p(xt |xt−1). Moreover, it is necessary to define the sensor
model, expressing the probability that a specific set of sensor readings is gathered
by the sensory infrastructure, given a specific activity performed by the user, i.e.,
p(eI(ct)

t |xt). The state of the sensory infrastructure is fully specified by the binary
vector ct = (c1, t, c2, t, . . . , cnS ,t), if we assume that the location of each device
does not change over the time. It is worth noting the relevance of I(ct), which can
be seen as an operator which, given a sensory infrastructure, returns the set of active
sensors at time t, thus making it possible to indicate which sensors really contribute
to inferring context knowledge.

2.3 Inference Engine

Given the structure of the Bayesian network shown in Fig. 5, the probabilistic state
transition model, i.e., p(xt |xt−1), and the probabilistic sensor model, i.e., p(eI(ct)

t |xt),
fully define the Bayesian network. The Bayesian network allows the inference engine
to build its own belief about the activity currently being performed by the user, taking
as input the whole observation set, as follows:

Bel(xt; ct) = p(xt |eI(ck)
1:t ), (1)
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Fig. 5 Structure of the Bayesian Network for detecting user activity

This belief is evaluated over a state xt ∈ X , and it is parametric with respect
to the configuration of the sensory infrastructure ct . The evaluation of such belief
requires knowledge both of the evolution of sensory infrastructure over the time, i.e.
c1, c2, . . . , ct , and of the whole set of sensory readings gathered over the time in
question. Equation1 can be expressed as a recursive equation thanks to the assump-
tion of independence between the different measures given a state value, and to the
validity of the Markov assumption [16].

Indeed, by using the Bayes rule, it is possible to derive the following equation:

Bel(xt; ct) = p(xt |eI(ck)
1:t ) = p(xt |eI(ct)

t , eI(ck)
1:t−1) = (2)

= η × p(eI(ct)
t |xt, eI(ck)

1:t−1) × p(xt |eI(ck)
1:t−1),

where η is a normalizing factor.
TheMarkov assumptionmakes it possible to neglect the sensory readings gathered

up to t −1, when the knowledge of the state xt.1 is given, thus the following equation
holds:

p(eI(ct)
t |xt, eI(ck)

1:t−1) = p(eI(ct)
t |xt). (3)

The assumption of measures independence, given the state xt , allows factorization
as follows:

p(eI(ct)
t |xt) =

∏

s∈I(ct)

p(es
t |xt). (4)

Consequently, the belief can be expressed through the following equation:

Bel(xt; ct) = η
∏

s∈I(ct)

p(es
t |xt)p(xt |eI(ck)

1:t−1). (5)
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The last term in Eq.5 can be further decomposed as follows:

p(xt |eI(ck)
1:t−1) =

∑

xt−1∈X
p(xt, xt−1|eI(ck)

1:t−1)

= γ
∑

xt−1∈X
p(xt |xt−1, eI(ck)

1:t−1)p(xt−1|eI(ck)
1:t−1) (6)

= γ
∑

xt−1∈X
p(xt |xt−1, eI(ck)

1:t−1)Bel(xt−1; ct−1),

where γ is a normalizing factor.
The substitution of equation (6) in equation (5) and a further application of the

Markov assumption lead to the following recursive definition of the belief:

Bel(xt; ct) = η
∏

s∈I(ct)

p(es
t |xt)

∑

xt−1∈X
p(xt |xt−1)Bel(xt−1; ct−1), (7)

where γ is integrated in the normalization factor η. It is worth noting that such
expression of the belief is directly reflected in the graphical representation of the
proposed BN shown in Fig. 5.

2.4 Uncertainty Index

Wedefine the uncertainty index at the timestep t, on the basis of the classical definition
of entropy for the a priori probability distribution of a random variable:

U(ct) = −
∑

xt∈X
Bel(xt; ct) log2(Bel(xt; ct)). (8)

By varying the configuration ct of the sensory infrastructure, it is possible to
decrease belief uncertainty and thus to improve the information inferred at next
timestep. This index makes it is possible, at least, to predict a better configuration of
the sensory infrastructure and to obtain a lower degree of uncertainty for the inferred
knowledge.

2.5 Power Consumption Index

Generally, sensor nodes are able to monitor their own residual energy. If Es(t)
indicates the quantity of residual energy of node s at the timestep t, typically associ-
ated with its battery charge, the residual energy for the entire sensory infrastructure
can be expressed as follows:
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Fig. 6 Structure of the communication module of a WSN sensor node [15]

E(t) =
nS∑

s=1

Es(t). (9)

In what followswewill omit an explicit indication of the dependency ofE on t. By
supposing that E is differentiable for small timesteps, the following approximation
of the energy variation with a first order differential equation holds:

dE =
nS∑

s=1

dEs. (10)

By dividing both members by dt, it is possible to obtain the following expression:

dE

dt
=

nS∑

s=1

dEs

dt
⇒ P =

nS∑

s=1

Ps, (11)

where P = P(t) is the total power consumption of the sensory infrastructure and
Ps = Ps(t) is the power consumption of the sensor s at t.

Obviously, the power consumption depends heavily on the configuration of the
sensory infrastructure, thus we express the power consumption as a parametric func-
tion, as follows:

P(ct) =
∑

s∈I(ct)

Ps. (12)

In the literature, there is a considerable body of work on the form of Ps for a
single WSN node. By adopting one of these models, it is possible to compute the
power consumption of the whole sensory infrastructure. In this chapter, the model
presented in [15] is adopted. Figure6 illustrates the internal structure of the com-
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munication module of a typical WSN node, and defines the power consumption of
each component. The total power consumption for transmitting and receiving, are
denoted by PT (d) and PR; it is worth noting that the consumption required for trans-
mitting depends on the transmission range. These values are computed Based on the
structure and power consumption of each component of the communication module,
according to the following equations:

PT (d) = PTB + PTRF + PA(d) = PT0 + PA(d),

PR = PRB + PRRF + PL = PR0. (13)

In Eq. (13) the term PA(d) represents the power consumption of the amplifier, and it
is the only term depending on the transmission range. Other terms can be modeled
as constant values: PT0 for the constant part of the power consumption of the trans-
mitting circuit, and PR0 for the power consumption of the receiving circuit. PA(d)

depends on several physical features, like antenna and propagation medium features.
For example, by supposing that signals propagate in free space, i.e. in a vacuum
without obstacles, the term PA(d) can be expressed as follows:

PA(d) = PR

GT GR

(
4πd

λ

)2

, (14)

where GT and GR are the gains for the transmitting antenna and for the receiving
antenna respectively, PR is the power required by the receiving antenna, λ is the
wavelength adopted, and d is the distance between antennas. Equation (14) is the
well-known Friis Formula [17] and summarizes the features of the medium and
physical characteristics of the device. There are more general versions of such equa-
tions, which take into account the non vacuum space, namely both the presence
of obstacles and different media [17]. Equation (14) shows heavy interdependence
between transmission power, device features and the environment in which the sen-
sory infrastructure is deployed.

2.6 Self-Configuration Behavior

The self-configuration capability of the proposed system allows it to find the optimal
configuration of the sensory infrastructure autonomously, based on the uncertainty
of the inference engine and on the energy consumption of the sensor nodes. In order
to quantify these contrasting goals we propose to exploit the uncertainty indexU(ct),
described in Sect. 2.4 , and the power consumption indexP(ct), described in Sect. 2.5.

The configuration problem is a multi-objective problem with two objective func-
tions to be minimized:

{
f1(ct) = U(ct)

f2(ct) = P(ct).
(15)
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In order to avoid drastic changes in the sensory infrastructure, the configuration
is forced to change at most the status of a single sensor at each time step. Formally,
this dynamic constraint is expressed as follows:

ct+1 ∈ Γ (ct), (16)

where Γ (ct) defines the region containing possible configurations of the sensory
infrastructure, given the current one. This set of configuration is obtained from ct ,
by switching on or off only one sensor. Formally, it is defined as follows:

Γ (ct) =
{

ĉt :
nS∑

i=1

∣
∣ci,t − ĉi,t

∣
∣ ≤ 1

}

(17)

In order to solve the multi-objective problem the multi-objective problem defined
in Eq. (15), we chose to look for the Pareto optimal solutions, as proposed in [18] in
the context of multi-objective genetic algorithms.

The pseudocode for the self-configuration algorithm is shown inAlgorithm 1. The
algorithm proposed here consists of three parts: (i) the delimitation of the admissible
region, according to Eq.17, (ii) the identification of the Pareto optimal solutions, and
(iii) the selection from the admissible and Pareto-optimal solutions, of the one that
improves the index which triggered the alarm.

2.7 System Overview

The overall behavior of the proposed system is described by the pseudocode
in Algorithm 2. Two main parts are identifiable: the belief update and the self-
configuration. Belief update is performed according to the classical equations of a
Bayesian filter, as described in Sect. 2.3. This involves verifying whether the current
sensory configuration triggers some alarms. Then, if necessary, self-configuration is
performed, as described in Sect. 2.6.

3 Experimental Evaluation

3.1 Experimental Setting

In order to evaluate the performance of the proposed system we used a synthetic
dataset built on the basis of the WSU CASAS Datasets [7], which consists of rows,
as follows:

<day, time, sensor_name, sensor_measure, activity,
label>.

Each term in a row is expressed according to the following BNF grammar:
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Algorithm 1 Pseudo-code of the self-configuration algorithm.
1: function Reconfigure_Infrastructure(ct)
2: Γ (ct) ← ct
3: for i = 1 → nS do � Find the eligible region
4: Γ (ct) ← Γ (ct) ∪ {

c1:i−1,t c̄i,t ci:nS ,t
}

5: end for
6: F ← ∅
7: for all q ∈ Γ (ct) do � Find the non dominated front
8: nq ← 0
9: for all p ∈ Γ (ct) do
10: if U(p) < U(q) ∧ P(p) < P(q) then
11: nq ← nq + 1
12: end if
13: end for
14: if nq == 0 then
15: F ← F ∪ {q}
16: end if
17: end for
18: if alarm is about “Uncertainty” then � Select a solution
19: Ω ← {q ∈ F | U(q) ≤ U(ct)}
20: if Ω == ∅ then
21: ĉt ← argminq∈F U(q)

22: else
23: ĉt ← argmaxq∈Ω U(q)

24: end if
25: else
26: Ω ← {q ∈ F | P(q) ≤ P(ct)}
27: if Ω == ∅ then
28: ĉt ← argminq∈F P(q)

29: else
30: ĉt ← argmaxq∈ıOmega P(q)

31: end if
32: end if
33: return ĉt
34: end function

day → yy-mm-dd
time → hh:mm:ss
sensor_name → M0[01-31] | D001 | D002 | D004
sensor_measure → ON | OFF | OPEN | CLOSE
activity → activity_label | ε
label → begin | end | ε

It is worth noting that our synthetic dataset only contains readings of movement
sensors and sensors about the state of doors, whereas temperature readings present
in the original DB have been discarded because of the low correlation between this
physical phenomenon and the activity performed by the user.

On the basis of the dataset adopted, it is possible to properly define the setsX ,S, T
and E as required in Sect. 2.2. In the case under consideration, the definition of X
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Algorithm 2 Main System Pseudocode

1: function Update_Belief(Bel(xt−1; ct−1), ct, p(xt |xt−1), p(eI(ct )
t |xt))

2: for all xt ∈ X do
3: Bel(xt; ct) = η

∏
s∈I(ct )

p(es
t |xt)

∑
xt−1∈X p(xt |xt−1)Bel(xt−1; ct−1)

4: end for
5: P(ct) ← compute the power consumption of ct
6: U(ct) ← compute the uncertainty of information with ct
7: ct+1 ← ct
8: if P(ct) > Pth || U(ct) > Uth then
9:
10: ct+1 ← Reconfigure_Infrastructure(ct)

11: end if
12: return (Bel(xt; ct), ct+1)

13: end function

simply requires distinct activity labels to be considered, and for each of them to be
associated with a unique numerical ID. An analogous procedure involving sensors
is required to define S. In order to define T we considered the number of seconds
in a 24h day and then we divided them into interval of 30 s. Finally, we assigned
a unique numerical ID to each interval. In order to define set E , a preprocessing of
the original DB was required. Let us suppose that the DB contains two distinct rows
(denominated rowi and rowj, where i < j), associated to the same sensor s, and that
the label is ON for rowi and OFF for rowj. If t1 and t2 are the value of the time
field of row1 and row2 respectively, then our DB has to contain an entry for each
t ∈ [t1, t2] indicating that the sensor s is active, i.e., es

t = 1.

3.2 Experimental Results

The original DB contains some unclassified sensory readings and the authors of [7]
adopted a semi-supervised approach [19] to deal with this lack of information. To
fulfill the same purpose, we used the Expectation Maximization (EM) algorithm.
In order to evaluate the performance of our system we adopted the cross validation
method dividing our DB into ten parts.

We compared the performance of three different systems. The first system is
obtained by deactivating self-configuring behavior and favors minimization of the
uncertainty index, thus setting all sensors permanently to on. The second system is
obtained also by deactivating self-configuring behavior, but it favors minimization
of the power consumption index, thus setting only a minimal subset of sensors to on;
this set is fixed and it consists of 10 of the 34 sensors available. The third system is
obtained by activating the self-configuring behavior.

The performance of these three systems are compared in Fig. 7. Figure7 shows
the trend of the uncertainty index during a given day, with Fig. 7 showing the trend
of the power consumption index during the same day. As expected, with the first
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(a)

(b)

Fig. 7 Comparison of the trend of the uncertainty index and of the power consumption index during
a given day for the system proposed with the two base-line systems considered here

base-line system, when all sensors are on, it is possible to obtain the lowest level of
uncertainty, but the maximum level of power consumption. In contrast, the second
base-line system, with a fixed and limited set of on sensors, is characterized by
the highest level of uncertainty and the minimum level of power consumption. The
proposed adaptive system, able to self-configure the sensory infrastructure, shows an
uncertainty level close to that of the first base-line system,with a significant reduction
in power consumption. Table1 and Table 2 summarize the mean accuracy for all of
the tests in the cross validation phase.
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Table 1 Mean accuracy, for all of the tests considered in the cross, of the proposed Adaptive System
compared with the two base-line systems considered (All Sensors On and Subset of Sensors On)

All sensors on (%) Subset of sensors on (%) Adaptive system (%)

78.03 69.88 75.20
82.69 75.27 76.42
78.42 32.85 71.70
70.87 47.22 70.64
56.91 33.08 63.07
52.89 32.50 59.97
56.54 36.34 62.06
54.59 32.62 63.85
69.25 34.63 72.46
78.65 41.60 71.08

Table 2 Overal mean accuracy of the proposed Adaptive System compared with the two base-line
systems considered (All Sensors On and Subset of Sensors On)

All sensors on (%) Subset of sensors on (%) Adaptive system (%)

67.92 43.60 68.65

4 Conclusions

This chapter describes formal and practical details of the design and implementation
of an adaptive Bayesian system for performing multi-sensor data fusion in an Ambi-
ent Intelligence scenario. The adaptivity consists of dynamic self-configuration of
the underlying sensor network, with the aim of finding the best trade-off between
the uncertainty of the inferred knowledge and the power consumption of sensory
devices.

The proposed system has been evaluated on a synthetic dataset based on a well-
known dataset for Smart Homes, available in the literature. The experimental results
show a clear energy saving as comparedwith a static approachwhere all sensor nodes
are always on, at the cost of a small reduction in inference accuracy. On the other
hand, the capability of dynamically selecting which sensors to hold on was found to
produce a clear advantage in terms of inference accuracy over a static approach in
which only a fixed subset of sensor nodes are on.
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