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Abstract The issue of the automatic reconstruction of 3D scenes has been addressed
in several chapters over the last few years. Many of them describe techniques for
processing stereo vision or range images captured by high quality range sensors.
However, due to the high price of such input devices, most of the methods proposed
in the literature are not suitable for real-world scenarios. This chapter proposes a
method designed to reconstruct 3D scenes perceived by means of a cheap device,
namely the Kinect sensor. The scene is efficiently represented as a composition of
superquadric shapes so as to obtain a compact description of environment, however
complex it may be. The approach proposed here is intended to be used as a novel
processing module of a well-established cognitive architecture for artificial vision.
Experimental tests have been performed on real images and the results look very
promising.

1 Introduction

Over the last 40years, the issue of automatically recognizing real-world objects has
been investigated by a considerable body of research related to different fields, from
computer vision to neuroscience. The techniques proposed therein can be roughly
classified as those recognizing the objects contained in a scene in a 2D or 3D space.
Both 2D and 3D object recognition still present challenges for the computer sci-
ence community since the same object usually looks very different according to its
orientation, scale and more generally to the acquisition conditions.

A further distinction can be made between “full object recognition” and “recog-
nition by parts” approaches. In many cases the latter is preferred since a complex
object can be described as a combination of simpler primitives which can be related
to each other by logical relations (e.g., above, below, larger, smaller and so on).
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In this chapter, we describe a framework for efficiently representing a 3D scene as
a combination of superquadric curves. In particular, the object is perceived by means
of a cheap device containing both an RGB camera and a depth sensor, namely the
Microsoft Kinect. A volumetric analysis is then performed to discard noisy data and
the object is reconstructed by estimating a set of best-fitting superquadrics.

The chapter is organized as follows: related works are outlined in Sect. 2, whilst
the system architecture proposed here is described in Sect. 3. Experimental results
are detailed in Sect. 4, and conclusions are discussed in Sect. 5.

2 Related Work

A mutual relationship exists between scene reconstruction and object recognition
processes. The reason for this is that, in order to reconstruct a scene it is useful
to break the scene down into objects. Then, once a description of the scene has
been provided, it is possible to recognize the observed objects by classifying their
descriptors.

Several systems for 3D object representation have been proposed over the last few
years. Themain challenge of such approaches is to obtain satisfactory results not only
in a controlled testing environment, but also in complex scenarios with unconstrained
conditions, e.g., a home environment or an office. In many cases, range images, i.e.,
2D images in which each pixel contains the distance between the sensor and a point
in the scene, are preferred to the RGB ones since they generally provide a better
discriminable data representation.

Since range images are more robust in the face of changes in environment condi-
tions, a number of works have focused on how they should be processed.

In [13], an approach for the direct recovery of a set of volumetric models, i.e.,
superquadrics, from unsegmented range data is presented. The method is divided
into two stages: model-recovery and model-selection. During the first stage, several
seeds are placed at random points in the input image, and for each seed, a model
is iteratively built and allowed to grow. Finally, those models which produce the
simplest and most accurate approximation of the input data are selected.

A technique for part-level object recognition using superquadrics is presented
in [12]. The system is based on interpretation trees [10] and can handle flexi-
ble articulated objects, i.e., human figurines, that cannot be perfectly modeled by
superquadrics.

In [15], a framework is described for extracting some 3D primitives (i.e., spheres,
cylinders, cones) from range data captured by a laser scanner.

Several systems provide good results, although high quality range sensors are
needed to obtain high resolution input images. Since range sensors are usually very
expensive, most of the methods proposed so far have not been suitable for extensive
use in real-world scenarios. For this reason, our proposal involves the use of a cheap
device containing both an RGB camera and a depth sensor.

The method proposed here is intended to be used as a novel processing module
of the framework presented in [4, 5]. In their work, the authors describe a cognitive
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architecture for an artificial vision system, in which an effective internal represen-
tation of the environment is built up by means of processes defined over a suitable
intermediate level, the conceptual level, that acts between the sensory data, the sub-
symbolic level and the linguistic symbolic level. In particular, the conceptual level
is characterized by a conceptual space whose dimensions are the parameters of the
3D geometric primitives, i.e., superquadrics, which constitute the scene. The aim of
this work is to provide a more efficient technique for reconstructing 3D objects by
means of the Kinect sensor.

Microsoft Kinect is based on the hardware reference design and the structured-
light decoding chip provided by PrimeSense, an Israeli companywhich also provides
a framework, OpenNI [16], that supplies a set of APIs to be implemented by sensor
devices and middleware components.

The core of the Kinect is represented by the vision system composed of an RGB
camera with VGA standard resolution (i.e., 640 × 480 pixels), an IR projector that
shines a grid of infrared dots over the scene and an IR camera that captures the
infrared light. The factory calibration of the Kinect makes it possible to establish
the exact position of each projected dot against a surface at a known distance from
the camera. The deformation of this dot pattern against the scene is captured to
derive depth images of the observed scene, and capture the objects’ position in a
three-dimensional space.

Even though Kinect has only been on the market for a couple of years, it has
attracted the attention of a number of researchers, thanks to the availability of open-
source andmulti-platform libraries that reduce the cost of developing newalgorithms.
A survey of the sensor and corresponding libraries is presented in [3, 11]. In [1],
an approach based on RANSAC (Random Sample Consensus) [9], an algorithm for
robustly fittingmodels in the presence ofmany data outliers, is described. The authors
proposed a solution for 3D object localization using superquadrics to model image
data captured by the Kinect. Because it is easy to use, the Kinect sensor has also been
successfully adopted as an input device for gesture [14] or activity [6] recognition
systems in ambient intelligence scenarios.

3 System Overview

In this section a description of the system is given, explaining both the basis of
superquadric shapes and the reconstruction technique proposed here.

3.1 Superquadrics

The term superquadrics was first used by [2] to define a family of geometric shapes
that includes superellipsoids, superhyperboloids of one piece, superhyperboloids of
two pieces and Supertoroids.
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Fig. 1 System overview

The explicit form of a superquadric is given by the equation:

Sp (η, ω) =
⎡
⎣
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⎤
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⎤
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where −π/2 ≤ η ≤ π/2 and −π ≤ ω ≤ π .
The elements of the vector p = (a1, a2, a3, ε1, ε2) are the parameters of the

superquadric. In particular, a1, a2, a3 represent the size of the model along the
X, Y, Z axes, and ε1, ε2 control the shape of the model. More specifically, ε1 is
the squareness parameter in the north-south directio , while ε2 is the squareness
parameter in the east-west direction (see Fig. 2).

The inside-outside equation of the superquadric in implicit form is:
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) 2
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where F (x, y, z) assumes a value equal to 1 when the point (x, y, z) is a
superquadric boundary point, a value less than 1 when it is an inside point, and
a value greater than 1 when it is an outside point.

In order to model a superquadric in a general position, six additional parameters
are needed. In particular, px , py, pz define the translation of the model relative to



3D Scene Reconstruction Using Kinect 183

Fig. 2 Shapes obtained with ε1, ε2 in the range [0, 4]

the origin of the coordinate system, while the orientation in space is expressed by
means of the angles φ, θ, ψ .

Thus, the model parameter vector p in the general position is:

p = (
a1, a2, a3, ε1, ε2, px , py, pz, φ, θ, ψ

)
(3)

3.2 Scene Reconstruction

The method proposed in this chapter aims to reconstruct 3D scenes captured by
the Kinect as a composition of some superquadric shapes. As previously discussed,
research in the literature has addressed this problem by processing the images made
by traditional range cameras or stereo vision systems. Here, in order to obtain a more
detailed data representation, we directly process the 3D point cloud captured by the
Kinect.

In order to correctly approximate the object some data pre-processing is required.
Firstly, the whole set of 3D points (Fig. 3c) is analyzed to reduce the noise related to
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Fig. 3 Example of some processing steps. RGB image (a), depth image (b), point cloud (c),
ground removing and bounding box (d), superquadrics obtained from the initial slice (e), optimal
approximating superquadrics (f)

the acquisition process, i.e., points not belonging to the object or to the scene. The
noise reductionmethod computes the distance between a couple of points, discarding
those points whose distance is above a given threshold. The maximum distance is
dynamically computed according to the mean distance measured for the considered
point cloud.

Once the set of points has been filtered, a ground removing algorithm is applied
to separate the object from the plain it lies in. The algorithm, based on RANSAC,
computes the plane defined by 3 randomly chosen points and evaluates the number
of inliers for that plane. This process is repeated for a certain number of iterations
and the best plane, that is the plane with the greater number of inliers, is selected as
ground.

Next, an overall bounding box B BO is estimated for the whole set of points
(Fig. 3d) and, in order to correctly break up the object into slices, the point cloud is
rotated to the angle needed to arrange the bounding box parallel to the 3D axes.

As shown inFig. 1, the superquadric approximation process is based on an iterative
procedure for the creation and expansion of slices of 3D points.

The creation of a slice consists in the selection of a set of 3D points in a randomly
chosen direction. For example, a slice of height H in the z-direction is created by
selecting the (x, y, z) points of the cloud in the range zmin ≤ z ≤ zmax, where
zmax − zmin = H .

In order to find the superquadrics that best approximates the point cloud con-
tained in each slice, both the scale parameters a1, a2, a3 and the form factors ε1, ε2
need to be defined. In particular, the size of the superquadric is estimated according
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Fig. 4 Example of the slice creation and expansion process. RGB image (a), depth image (b),
point cloud (c), ground removing and bounding box (d), superquadrics obtained from a correct
slice selection (e), superquadrics obtained from an incorrect slice selection (f)

to the dimensions of the minimal bounding box B B that fits the set of 3D points
contained in a slice, that is a1 = B Bx/2, a2 = B By/2, a3 = B Bz/2. The form
factors are computed by applying the RANSAC algorithm to search for the couple
(ε1, ε2) in the range [0, 1] that best fits the input points. The remaining parameters(

px , py, pz, φ, θ, ψ
)
are computed according to the position and orientation of

B B. Note that the dimensions of B B are dependent on the number of 3D points
effectively discovered in each slice region. In fact, since the Kinect is able to capture
only those points belonging to the object surfaces, it usually happens that no points
are selected in a particular direction.

Once the superquadric has been computed, the fitting error, i.e., a measure of how
well the current model fits the points of the slice, is computed according to the least-
squares minimization of the superquadric inside-outside function (Eq.2) proposed
in [17].

During the expansion step the size of the slice is increased in the chosen direction,
e.g., the z-direction in the example given above. Then the fitting error ei at the step
i is compared with a threshold TH and the current slice is expanded until ei > T H .

Once a slice can not be expanded any further, the method continues the processing
of the remaining point cloud by iterating the slice creation-expansion steps until the
whole scene has been analyzed.

Figure4 shows the processing steps involved in the approximation of an object
composed of a box and a cylinder. In particular, the images in Fig. 4e show the
superquadrics obtained from the selection of a correct slice, while an example of
slice selection along two incorrect directions is shown in Fig. 4f.

Once the object has been approximated, it can be fully described by the whole set
of parameters of the approximating superquadrics.
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Fig. 5 The ontology representing the superquadrics

Information gathered through the reconstruction process is represented by means
of the ontology shown in Fig. 5. As discussed above, the Superquadric shape is
defined by a set of Parameters that capture properties related to the size, form, orien-
tation and position of the curve, i.e, the object. Thus, the Size parameters a1, a2, a3,
the Form parameters ε1, ε2, the Orientation parameters φ, θ, ψ and the Position
parameters px , py, pz fully describe the Superquadric in the 3-D space.

4 Experimental Results

The proposed architecture has been designed to address a specific application sce-
nario involving the management of indoor environments, e.g., offices or homes [8].
The main characteristic of such environments is that their interior design is usually
based on a number of objects (e.g., chairs, desks, bookcases) that can be success-
fully represented as a composition of simple shapes (e.g., parallelepipeds, spheres,
cylinders). In the AmI architecture adopted, a Wireless Sensor and Actuator Net-
work (WSAN), whose nodes are equipped with off-the-shelf sensors (i.e., outdoor
temperature, relative humidity, ambient light exposure and noise level) [7] is used
to monitor the whole environment, while the Kinect sensor is used to detect specific
objects placed within the office.

In order to evaluate the accuracy of the proposed scene reconstruction module in
a real world scenario, several tests were performed on data captured by means of a
Kinect device. In particular, we wanted to understand how some objects’ properties
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Fig. 6 Superquadric approximation of three simple scenes consisting of a single composite object.
RGB image (a), depth image (b), superquadrics obtained from initial slice selection (c) and (d),
optimal approximating superquadrics

(e.g., size, position, material) would eventually affect the overall performance of the
proposed method.

Tests were conducted on 3D objects that can be broken down into different config-
urations of adjacent cubes, parallelepipeds, cylinders or spheres. These basic shapes
are obtained by limiting the possible values of ε1, ε2, so the same approach could
thus easily be extended to more complex shapes by considering different values of
the ε1, ε2 parameters.

Some significant examples of scene reconstructions are shown in Figs. 6 and 7.
The set of tests shown in Fig. 6 is oriented to observe how the system deals with
objects that can be approximated with two simple superquadric shapes. The first
row shows some images related to the reconstruction of a scene consisting of a
spray placed above a box. This test serves to evaluate the ability of the proposed
approach in approximating small noisy objects, such as the spray. The second row
shows the reconstruction of two adjacent boxes. This kind of test was performed to
evaluate how efficiently partial occlusions are managed. The third row shows the
reconstruction of a scene consisting of a ball placed above a box. This test allowed
us to demonstrate that symmetric and partially occluded objects, i.e., the ball, can be
successfully processed.

The reconstruction of three more complex scenes is shown in Fig. 7. The difficulty
associatedwith these scenes ismainly represented by the limited amount of free space
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Fig. 7 Superquadric approximation of threemore complex scenes consisting of two distinct objects.
RGB image (a), depth image (b), superquadrics obtained from initial slice selection (c) and (d),
optimal approximating superquadrics

between the three pairs of captured objects. For example, the top row shows that the
smaller object (i.e., the spray) is detected and correctly approximated even though it
is close to a bigger object characterized by a larger number of points.

The method proposed was been tested on about 30 scenes with different levels
of complexity. For each scene, the whole process was run 10 times, obtaining an
average reconstruction rate of 84%.

The prototype was implemented connecting the Kinect to a personal computer
(i.e., 2.5GHzdual-core Intel Core i5, 4GBofRAMandUnixOS) runningMATLAB.
The average scene reconstruction takes about 1–2min.

From the analysis of the experimental results it emerges that some constraints
need to be satisfied during the acquisition process. In particular, we noticed that
three sides of the object should always be visible from the Kinect’s point-of-view.
This requirements has to be met to correctly drive the bounding box estimation
process. Otherwise, it would not be possible to determine the scale parameters and
consequently the form factors.

Moreover, some objects cannot be correctly captured by the Kinect because of to
thematerial they aremade of (see Fig. 8). For example, reflecting objects cause the IR
ray to be reflected and lost, whilst transparent objects are not-correctly reconstructed
since the ray is distorted when passing through them.
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Fig. 8 Example of a misreconstructed object

5 Conclusions

This chapter describes a system for the automatic reconstruction of 3D objects cap-
tured by means of the Kinect sensor.

As compared to other solutions for object reconstruction from range images or
stereo vision systems, the goal here was to demonstrate that composite objects can
be efficiently reconstructed and represented by using inexpensive devices.

The experimental results demonstrate that the quality of the images provided
by the Kinect is good enough to obtain satisfactory results, even under partially
constrained conditions.

We are already working on improving the decomposition module in order to be
able to reconstruct a greater set of composite objects, and that is, to consider a wider
range of superquadric shapes. Moreover, once we have tested the effectiveness of
our approach, we are planning a more efficient implementation of the prototype to
speed up the reconstruction time.
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