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Abstract Pervasive computing and Ambient Intelligence (AmI) demonstrate that
computer systems which directly interact with users are characterized by increas-
ing size and complexity, so that the human user will still not be able to adequately
manage them for a long time to come. As a response to this trend, the Autonomic
Computing paradigm aims to design and develop systems able to self-configure and
self-manage. The research reported here is part of an AmI project that proposes a
multi-tier cognitive architecture for aggregating sensory information at different lev-
els of abstraction. In such an architecture, a central reasoning component is able to
understand the environmental state and the user’s preferences and consequently to
plan the opportune actions to be performed. This chapter describes an ontology able
to provide a formal representation of the environment in which the AmI system is
placed, as well as a representation of the system itself and of its interaction with
the environment. By exploiting this knowledge, the AmI system can develop con-
sciousness of itself and of its cognitive processes, and consequently the capability
of autonomously managing its own functioning. In particular, this task is performed
by a rule-based planning module, integrated within the multi-level architecture, and
capable of managing and configuring the sensory infrastructure. By means of this
module, the AmI system can manage its own monitoring activity to obtain a good
understanding of the context while minimizing system energy consumption.

1 Introduction

Ambient Intelligence (AmI) [2, 8] is based on the integration of the Internet of Things
(IoT) [1] and Artificial Intelligence. This paradigm defines an application scenario
where the user is the focus of a pervasive environment augmented with sensors and

A. De Paola (B)

University of Palermo, Viale delle Scienze, ed 6, 90128 Palermo, Italy
e-mail: alessandra.depaola@unipa.it

S. Gaglio and G. Lo Re (eds.), Advances onto the Internet of Things, 1
Advances in Intelligent Systems and Computing 260, DOI: 10.1007/978-3-319-03992-3_1,
© Springer International Publishing Switzerland 2014



2 A. De Paola

actuators, enabling an intelligent system to monitor the environmental conditions
and to perform actions aimed at satisfying user requirements [25].

Although the main goal of AmI is not the development of pervasive sensory and
actuator devices, their availability is necessary to developAmI systems, because such
devices enable the development of a pervasive sensory infrastructure, while main-
taining a low degree of intrusiveness, and with low costs of production, deployment
and maintenance.

The adoption of such sensory infrastructure poses new challenges, involving both
the informationmanagement process and the analysis of data gathered to detect anom-
alous behavior [9]. In order to take full advantage of the raw information gathered by
pervasive devices, information has to be properly represented to extract meaningful
knowledge. For this purpose, the work reported here adopts a multi-level cognitive
architecture [5], whose sensory infrastructure is based on Wireless Sensor Networks
(WSN) [29, 31]. Sensor nodes gather environmental data and forward them towards
a central intelligent engine, where high-level reasoning occurs. Sensory information
is then aggregated and processed inside the reasoning engine by a stack of modules,
adopting the most appropriate representation according to the level of abstraction at
which information is processed. The knowledge achieved in this way is exploited to
perform high-level inferences about the perceived context and about user’s prefer-
ences and needs, in order to plan the most suitable actions to be performed to meet
system goals.

Within such a scenario, this work proposes an ontology capable of supporting
the design and the development of AmI systems based on the adopted multi-tier
architecture. A methodology for developing autonomic behavior to self-manage the
monitoring system is also proposed. The ontology described here provides a formal
representation both of the specific application domain and of the AmI system itself.
In addition to driving the process of knowledge abstraction, from raw sensory data
up to higher-level concepts, it enables the AmI system to gain consciousness of itself,
of its own interactions with the environment and of its own cognitive activity, thus
enabling the autonomic management of its own behavior.

An ad-hoc module exploits the system’s ontological representation to self-
configure itsmonitoring activities. In particular, bymeans of an introspective analysis
of its own state and of its cognitive activity, the system is able to define symbolic
plans to be translated into commands to be given to the actuators, to self-configure
the sensory infrastructure.

The case study selected to verify the potential of the proposed approach is a
BuildingManagement System (BMS) for controlling ambient conditions of an office
environment, in terms of heating, ventilation, air conditioning (HVAC) and lighting,
with the goal of maximizing user comfort while reducing energy consumption of the
sensory infrastructure.

The chapter is organized into six sections. Section2 introduces AmI and Auto-
nomic Computing paradigms, highlighting the ways they relate to each other, and
briefly describing some relevant approaches proposed in the literature. Section3 de-
scribes the main features of multi-tier architecture adopted, specifying the role of the
proposed ontology and introducing self-management features. Section4 explains the
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proposed ontology and examines some architectural details of the system. Section5
describes the component devoted to the dynamic self-configuration of the sensory
infrastructure, exploiting a rule-based reasoning engine. Finally, Sect. 6 sets out the
conclusions drawn by the author and outlines possible future developments.

2 Ambient Intelligence and Autonomic Computing

Ambient Intelligence andAutonomicComputing are twoemergingparadigms,which
have many features in common. Some relevant desirable features for AmI systems,
such as self-management capability, adaptivity to highly dynamic scenarios, context-
awareness, monitoring and analysis capability, represent the essence of Autonomic
Computing. The development of autonomic systems can therefore be considered a
technological prerequisite for designing AmI applications.

Many approaches presented in the AmI literature exploit artificial intelligence
(AI) techniques to manage the huge set of devices deployed in the environment, to
cope with the intrinsic uncertainty and imprecision of environmental models, and to
adapt the system to changes in environmental conditions and user behavior.

Among the most widely adopted AI techniques, are neural networks, fuzzy sys-
tems and Bayesian networks [14]. The authors of [7] propose a non-supervised
learning method for a fuzzy system devoted to the control of environment actuators,
such as artificial lighting, windows andHVAC systems. The system is able tomonitor
environmental quantities such as light and temperature, besides the user interactions
with actuators. In their Neural Network House, the authors of [22] propose the use
of neural networks, together with rules for occupancy detection, to predict the binary
occupational state of monitored sites. Input data for the neural network is provided
by sensory readings from binary motion sensors. The authors of [20] use a Bayesian
network to identify the sequence of actions to be performed on the actuators in order
to carefully imitate a user’s past behavior.

Independently of the approaches adopted, an AmI system has to include knowl-
edge of itself and the environment in which it acts. Some works [13, 19, 24] have
focused on the forms of representation and communication of this knowledge, and
on the semantic enrichment of data processed by the system through the use of
ontologies. This self-consciousness enables complex systems to autonomously per-
form configuration, maintenance, management and optimization, which are all tasks
typically assigned to human operators. This development trend is desirable because
AmI systems are becoming increasingly complex, distributed and heterogeneous,
and consequently designers are no longer able to predict in advance all possible
patterns of interaction between components [16]. This philosophy is driven by the
initiative launched by IBM in 2001 [18], which called it “Autonomic Computing”,
in reference to the human autonomic nervous system.
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Fig. 1 The monitor-analyze-plan-execute cycle of autonomic computing [32]

The main Autonomic Computing functionalities are listed below:

• self-configuration: the system is able to self-configure according to high-level
policies defined by human operators, autonomously composing new diverse sub-
systems;

• self-optimization: the system is able to tune its own parameters in order to optimize
its own behaviour;

• self-healing: the system is able to identify problems and causes of failure, and to
solve them , thus returning the system to normal functioning;

• self-protection: the system is able to protect itself against malicious attacks and to
anticipate possible failures.

In order to enable those functionalities, a system needs a sensory infrastructure to
monitor its behavior, analysis modules to detect relevant events from sensory data,
and reasoning modules to plan the sequence of actions to be performed using a set of
actuators [15, 16, 32]. The resulting monitor-analyze-plan-execute cycle is showed
in Fig. 1.

The features and goals of Autonomic Computing grow in importance as Ambient
Intelligence becomes more pervasive and dynamic. In such a scenario, in order to
make the AmI system invisible to the user, the system needs to be capable of au-
tonomously interacting with the environment, of self-managing only on the basis of
high-level policy, and of dynamically learning user preferences.

It is thus evident how autonomic capabilities are a basic requirement for mak-
ing future AmI systems capable of effectively coping with diverse contexts, without
become a burden for human operators and users. In other words, AmI represents
a vision of a future world in which the IoT and the Artificial Intelligence cooper-
ate in a scenario which requires complex features, such as dynamism, adaptability,
non-intrusiveness and self-management, all facilitated by the Autonomic Computing
paradigm, which thus becomes a necessary condition for its realization.
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3 A Multi-Level Approach for AmI Applications

This chapter proposes the adoption of the cognitive multi-tier architecture for AmI
systems described in [4, 5]. Such an architecture adopts a distributed sensory in-
frastructure for gathering environmental and context information, and different lev-
els of abstraction for representing and processing knowledge. In such a framework,
intelligent modules make it possible to understand user needs, to plan the sequence
of actions to be performed, and to self-configure system behavior.

The architecture adopted consists of four subsystems, each of them characterized
by a modular and configurable structure, as defined below:

• Sensing subsystem: based onWireless Sensor Networks (WSNs), it perceives rele-
vant ambient information, and sends rawdata toward the understanding subsystem;

• Understanding subsystem: it processes data through different levels of abstraction
to extract high-level knowledge; at the highest level it provides a concise and
meaningful description of the current context;

• Planning subsystem: it exploits the ambient description provided by the under-
standing subsystem to plan the most appropriate sequence of actions to be per-
formed to satisfy user needs and optimize the system’s behavior;

• Actuation subsystem: consisting of all actuators able to modify the environment
status, i.e., heating, ventilation, air conditioning (HVAC) and lighting systems;
available actuators receive control commands from the planning subsystem.

The understanding subsystem is split intomultiple levels, according to amulti-tier
structure of interconnected modules for representing knowledge. In particular, there
are three types of module, namely “subsymbolic”, “conceptual”, and “symbolic”
modules. Knowledge flows through those tiers, assuming the suitable form required
by each module. A more detailed view of the system structure and of the role played
by each component, is provided in Sect. 4 together with a description of the ontology
proposed here.

In the case study considered here, the sensing subsystem is composed of a WSN,
whose nodes are deployed in different locations inside the controlled premises, for
monitoring relevant physical quantities, namely, temperature, humidity and lighting
level.Moreover, a set of sensors on actuators make it possible tomonitor user activity
and obtain implicit feedback relating to comfort levels. The sensory data gathered are
processed by the understanding subsystem, which builds a concise representation of
current environmental condition and context, such as information about user presence
or activity, about current user comfort, and about energy consumption. To take one
example, let’s consider a set of sensors able to catch the switching on/off of the
artificial lighting system. This raw information allows the system (i) to infer the
current status of the artificial lighting system and to correlate it to the corresponding
lighting level, (ii) to learn the correspondence between the actuator status and its
current energy consumption, and (iii) to infer the appreciation level of users about
the current lighting conditions.
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4 The Proposed Ontology

As highlighted by a considerable body of research in the literature, an AmI sys-
tem needs to acquire, implicitly or explicitly, the knowledge of the scenario being
considered and of its own interaction with it [13, 19, 24]. Moreover, if the auto-
nomic capability of self-management is required, the AmI system needs to have an
internal representation of its own structure and of interactions between its own mod-
ules [16, 27, 30, 32]. A formal and explicit representation of such knowledge can be
obtained by defining an ontology, which represents an unambiguous vocabulary con-
sisting of the definitions of classes in the domain of interest and of relations among
them [12, 26].

The ontology proposed here serves several purposes:

• to provide an unique definition of the concepts on which the system is based, to
support the design phase;

• to make it possible to define a generic framework, easily configurable for different
application of the AmI system;

• to allow the system administrator to express only high-level goals and neglect
low-level details;

• to facilitate automatic interaction between system modules able to describe their
own services;

• to support the development of the autonomic capabilities of the systems.

Thus, the ontology defines the environment and its properties, the user and his
interaction with it, as well as system components, their interconnections and their
relationships with the environment. For instance, it is possible to represent how data
flows within the system, or what relationship exists between sensory devices and the
environmental properties perceived by them.

The representation employed here can be sub-divided into two ontologies: the
General Ontology and the Domain Ontology. The former represents the structure of
a generic system and its possible relationships with the environment. It is not tied to
a specific application scenario, and does not therefore have a specific configuration
of system modules. The Domain Ontology, on the other hand, includes knowledge
about an instance of the system for a specific scenario, in our case the BMS for
environmental comfort in an office.

Both ontologies are described by theOWLDL language, and the domain ontology
is anchored to general one through the import mechanism allowed by the OWL [21].
The choice of OWL DL allows the designer to exploit the services of automatic
control of consistency, of classification and inference, and of verification of the
correctness of the coded knowledge.

A set of logical rules related to the proposed ontology makes it possible to infer
new knowledge directly by processing the ontology. These rules are expressed by
means of the Semantic Web Rule Language (SWRL) [17], as new OWL axioms,
with the classic form antecedents → consequent. SWRL rules can be used
to define a property as a composition of other properties, thus expressing the idea that
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a set of basic properties imply a composite property. They can also be used to transfer
the value of a given property from certain individuals to another related individual.

The use of a rule engine capable of processing ontologies and their logical rules,
makes it possible to perform automated reasoning on the domain. A tool for this pur-
pose is the inference engine Jess [10] integrated with the development environment
Protégé [11] used to define the ontology. This inference engine, integrated into the
symbolic planning module, allows the system to reason both about the environment
and the system itself, and then to take the appropriate actions.

4.1 The General Ontology

TheGeneral Ontology defines classes and properties required to describe the compo-
nents of the multi-tier architectures, their interconnections, and the data flow inside
the system. Moreover, it describes the basic elements constituting the sensory and
actuator subsystem.

4.1.1 Environmental Properties and Physical Devices

What the AmI system is able to monitor is defined as an AmbientProperty; this
class is further specialized into three separate subclasses: PhysicalProperty,
representing physical observable phenomena such as temperature and humidity,
Status, representing the status of a particular environmental element, such as
a door in the CLOSED state, and Event, representing observable events such as a
device fault or the entry of the user into a monitored room.

Physical devices controllable by the AmI system, and composing the sensory
and actuator infrastructure, are modeled by means of the Device class. This class
is subdivided into three specialized subclasses, namely Sensor, Actuator, and
Node. Each device is deployed in a specific room, and this topological relationship
is also represented inside the ontology.

The Planning subsystem controls a generic device by sending an opportune com-
mand. This dependency is expressed inside the ontology which also models the data
flow inside the system by means of a set of properties. In particular, the property
hasInputFrommakes it possible to code the fact that a Device is able to receive
input only from an ActuatorModule, that is a specific module of the multi-tier
architecture. Analogously, the ontologymodels the fact that a Sensor is able to pro-
duce input data for a specific type of module, namely for a SubsymbolicModule.

Besides these properties, the ontology models other characteristics of a sensor,
such as sampling rate, continuity of monitoring, energy consumption, and the node
over which the sensor is installed. Similarly, each actuator is also characterized by
the set of commands that it is able to receive.
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Fig. 2 Taxonomy of the SystemModule class in the proposed ontology. Graph nodes represent
ontology classes, and arrows represent properties, going from a class of the property domain toward
a class of the property co-domain

An important relationship is the connection between an ambient property and
sensors able to perceive it. This relation is exploited by a SWRL rule to determine
which properties are observable or not:

AmbientProperty(?x) ∧ Sensor(?y) ∧ senses(?y, ?x)
→ ObservableProperty(?x)

A similar but specular relationship exists between actuators and ambient properties.
i.e., actsOn, making it possible to model which actuators are able to modify a
particular environmental condition.

4.1.2 Architecture Modules

Architecture modules are modeled inside the ontology by means of the
SystemModule class, whose descending taxonomy is shown in Fig. 2. The main
distinction is functional, distinguishing between UnderstandingModule and
PlanningModule, as described in Sect. 3.

The interconnections between modules are coded by means of the
hasInputFrom and hasOutputTo properties. The knowledge representation
for eachmodule, in terms of coding for input and output, is described bymeans of the
hasInputData and hasOutputData properties, with instances of DataType
classes as their dominion.

The UnderstandingModule is further specialized in the following classes:
SubsymbolicModule, ConceptualModule, and SymbolicModule. The
organization into levels of increasing abstraction is constrained by the
hasOutputTo property, which can take values from the SubsymbolicModule
class for the Sensor and Node classes, from the ConceptualModule class for
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Fig. 3 Three-tier organization of the understanding subsystem, as coded by the proposed ontology

the SubsymbolicModule class, and from the SymbolicModule class for the
ConceptualModule class. Data produced by a SymbolicModule are directly
usable by a PlannerModule. This type of module acts at the highest level of
abstraction, with the aim of reasoning on symbolic representations of environment
and context, and thus producing high level plans designed to achieve system goals.
Plans are processed by ActuatorModules, which translate them into low-level
commands for Actuators, tomodify environmental conditions, and for Nodes and
Sensors, to modify the behavior of the sensing subsystem. This interconnection
pattern is shown in Fig. 3.

4.2 The Domain Ontology

The domain ontology imports and extends the general ontology, by defining
subclasses and individuals to describe a specific instance of the AmI system. The
application scenario considered in this chapter is Sensor9k [6], a testbed, designed
for an office environment, and for reasoning about user comfort and energy saving.
Different nodes are equipped with several types of sensors capable of monitoring the
environment. The understanding subsystem is capable of estimating the number of
users in the monitored office, and evaluating the current lighting level. This infor-
mation is then combined to evaluate the adequateness of the lighting level. A simple
planning module uses such high level evaluation to determine which action needs to
be performed in order to achieve an adequate lighting level with minimum energy
consumption.
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4.2.1 Environmental Properties and Physical Devices

In the domain under consideration, the PhysicalProperty class has the fol-
lowing instances: Light, Sound, Pressure, Temperature, Humidity. The
Event class has the following instances: Activity, representing the occurrence
of an interaction between the user and some of the manual actuators deployed in
the environment, such as a light switch; RFIDPassing, representing the proxim-
ity of an RFID tag to an RFID reader (this event is correlated with the presence
of the user in a monitored room); WorkstationActivity, representing the in-
teraction of the user with his/her workstation. The Status class has the follow-
ing instances: DoorStatus, representing the closed / open / locked status of a
door; UserInOffice, representing the presence of the user in his/her own of-
fice; RoomOccupancy, representing the number of people in a monitored room;
UserInBuilding, representing the presence of the user in the building being
monitored.

The domain ontology obviously contains a set of individuals for topological
classes, and the correct values for properties that make it possible to specify the
placement of each device. Moreover, each sensor or actuator is linked with the am-
bient property that it is able to monitor or modify.

4.2.2 Architecture Modules

The software architecture is specified by means of the definition of a set of sub-
classes and individuals of the SystemModule class. Each class inherited from
the general ontology is further divided into specialized sub-classes for modules ca-
pable of performing a specific type of reasoning. The taxonomic organization of
SystemModules in the general ontology reflects the level of abstraction at which
the knowledge is processed, whilst the further decomposition coded in the domain
ontology reflects the topological and semantic organization of the monitored envi-
ronment.

Figure 4 shows an example of such organization. Suppose that the target building
consists of two rooms, room_1 and room_2, and that each of these rooms contains
light sensors. The software architecture includes a class of subsymbolic modules
devoted to processing lighting information, called Light_ssM, and two instances
of this class, namely Light_ssM_1 and Light_ssM_2. These two modules
require as input the same type of sensory data, i.e., LightReading, and produce
as output the same type of qualitative data, LightLevel.

5 Autonomic Self-Configuration

The AmI system proposed here is based on the monitor-analyze-plan-execute cycle
of a typical autonomous system.This paradigm is exploited not only in controlling the
environment surrounding the user, but also in dynamically controlling the behavior
of the system itself.
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Fig. 4 Example of an AmI system that includes two instances of the Light_ssM class; these
modules accept as input the same instance of SensoryDataType even though the sensory read-
ings come from different sensors; these modules provide, as output, data belonging to the same
instance of QualitativeDataType class

The application described above for controlling the lighting system is an exam-
ple of the implementation of such a paradigm for environmental management. The
system monitors the environment by gathering sensory readings, analyzes them to
obtain a high-level representation of the overall lighting level, plans the sequences
of actions to be performed in order to achieve an adequate lighting level, and then
executes those actions by means of the actuators available to it.

The implementation of the Autonomous Computing paradigm for controlling the
system’s behavior is embodied in the dynamic configuration of the monitoring ac-
tivity. The system is able to receive a set of requirements and high-level policies,
such as the goal of minimizing the energy consumption of the sensing infrastructure
when users are not present in target premises.

Thanks to its capacity for introspection, the system evaluates the quality of its
own analysis functionality, and knows which hardware and software elements con-
tribute to inferring a given concept. A planning module, called SensingPlanner,
exploits this knowledge to optimize the monitoring functionality of the system; this
module is based on a set of rules that embodies high-level policies for system man-
agement. Information about the system state and inference accuracy flow through
different levels of the multi-tier architecture.

In particular, data about sensors’ energy consumption are classified by opportune
conceptual modules which state whether the consumption is high, medium or
low. These linguistic labels are then represented in a symbolic form, by means of
the assertion of facts inside the rule engine. Symbolic plans produced by the planning
module are provided as input to actuation modules able to translate them into a set of
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configuration commands for the sensors. Information about the node states is only
relevant for devices fed by batteries, and include some indication of residual energy.
Information about the sensor state includes the on/off state, and the sampling rate
adopted. The sampling rate is classified by an opportune conceptual module, that
gives it a linguistic label in the following set: {min, low, medium, high, max}.

The SensingPlanner exploits these facts and its rules to produce commands for
sensors (e.g., request to decrease or increase the sampling rate, switching on/off
requests), or even alerts for the system administrator.

5.1 Rule-Based Reasoning

The SensingPlanner bases its reasoning on the Jess rule engine. Java Expert System
Shell (Jess) is a rule-based environment, that makes it possible to define logical rules
in a LISP-like syntax. A Jess application consists of a working memory, a set of rules
and an inference engine responsible for applying rules to the working memory.

Theworkingmemory consists of a set of facts, which are true statements about the
dominion under consideration, and represents the system’s knowledge of the world.
Facts can be asserted to and retracted fromworkingmemory. Each fact has a template
(the relation between facts and templates corresponds to the relation between objects
and classes in the OOP).

Rules react to changes in working memory, and can exploit auxiliary functions
and queries. Each rule is activated when all its antecedents are satisfied, that is when
the working memory contains facts matching rule antecedents. Activated rules are
fired when the inference engine is executed, thus causing the function execution.
Each rule is executed once for any given set of facts in the working memory; a new
execution requires that new facts have been asserted.

The templates and rules of the proposed SensingPlanner are described below.
The following templates represent static knowledge:

(deftemplate room (slot id))
(deftemplate node (slot id) (slot office)(slot batteryPowered))
(deftemplate nodeSensor (slot nodeId)(slot sensorId))
(deftemplate sensor (slot id) (slot ambientProperty)
(slot energyConsumption) (slot continuousSampling))
(deftemplate user (slot name)(slot office))
(deftemplate ambientProperty (slot id)(slot observable))
(deftemplate affects (slot affectedProperty)
(slot affectingProperty))

Facts corresponding to these templates allow the SensingPlanner to know things
about the premises being monitored, the users and their offices, and the placement
of nodes and sensors. Moreover, these last two templates make it possible to specify
which ambient properties can be monitored, and the cause-effect relationship among
properties. For example, using these types of facts, the SensingPlanner is able to
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know that information about the sound level and the workstation activity provides
indirect information about a user’s presence.

The following set of templates represents facts about the state of the sensory
infrastructure and the context. These facts are dynamically updated on the basis of
the current states of devices, of the inferred presence of the user in his office or in
the building, and of the accuracy of the monitoring activity.

(deftemplate nodeState (slot id)(slot batteryLevel))
(deftemplate sensorState (slot id)(slot sampling))
(deftemplate sensingAccuracy (slot room)(slot ambientProperty)
(slot accuracy))
(deftemplate userInOffice (slot user) (slot present))
(deftemplate userInBuilding (slot user) (slot present))
(deftemplate peopleInRoom (slot room) (slot number))

Finally, a set of templates define the structure for facts which represent the output
of planning. Plans for tuning sensors, indicating a new value for the sampling rate,
{on, off, max, min, up, down}, correspond to the following template:

(deftemplate tuneSensor (slot sensorId) (slot newSampling))

Alerts for system administrators can be expressed according to the following
templates:

(deftemplate insufficient-sensing (slot room)
(slot ambientProperty))
(deftemplate short-sensing-life (slot room)
(slot ambientProperty))

An Insufficient-sensing fact indicates that, although the sampling rate
for available sensors is at its maximum sustainable value, the monitoring is not suffi-
ciently accurate and a structural intervention by the system administrator is probably
required. A short-sensing-life fact indicates that all sensors involved in
monitoring a given ambient property in a given room have low residual energy, and
so a system administrator intervention is necessary to guarantee that there will be no
interruption in the monitoring functionality.

The main rules of the SensingPlanner module are described below.
The first rule states that, for a given room, if all corresponding users are not present

in the entire building, then it is possible to switch all sensors off with the exception
of those responsible for monitoring the UserInOffice property; for these sensors
monitoring is minimized.

(defrule stopRoomSensing

(and

(room (id ?p))

(not (and (user (name ?u) (office ?p))

(or (userInBuilding (user ?u)(present "true"))

(userInOffice (user ?u)(present "true")))))

)=>

(stopRoomSensing ?p)

(minimizeRoomSensing-ap ?p "UserInOffice"))



14 A. De Paola

where minimizeRoomSensing-ap is an auxiliary function which receives as
input an ambient property and a room, selects all sensors perceiving this ambient
property, directly or indirectly, and sets their sampling rate to the minimum value.

The second ruleminimizesmonitoring for all ambient properties in a empty room,
provided that users normally occupying that room are present in the building.

(defrule minimizeRoomSensing
(and

(room (id ?p))
(not (and (user (name ?u) (office ?p))

(userInOffice (user ?u) (present "true"))))
(exists (and (user (name ?u) (office ?p))

(userInBuilding (user ?u)(present "true"))))
)=>
(minimizeRoomSensing ?p ))

Another two rules deal with increasing and decreasing the sampling rate based on
the accuracy of monitoring, inferred by an opportune symbolic module. According
to the policy adopted here, an increase in accuracy is considered a goal only if there
are people in their offices, so these rules have a lower priority than the previous two.
The increaseRoomSensing rule is detailed below.

(defrule increaseRoomSensing
(and

?accuracyLowFact <- (sensingAccuracy (room ?p)
(ambientProperty ?ap) (accuracy "low"))

(exists (and (user (name ?u)(office ?p))
(userInOffice (user ?u)(present "true"))))

)=>
(if (increaseRoomSensing-ap ?p ?ap)

then
(retract ?accuracyLowFact)
else
(assert (insufficient-sensing (ambientProperty ?ap)

(room ?p)))))

This rule increases the monitoring rate of an ambient property characterized by a
low level of accuracy, by means of the increaseRoomSensing-ap auxiliary
function. This function tries to increase the sampling rate of sensors, starting from
sensors with low energy consumption. If none of sensors has any margin for increas-
ing its sampling rate, the increaseRoomSensing-ap function returns the value
false, thus causing the assertion of an insufficient-sensing fact, used to
trigger a notification to the system administrator.
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6 Conclusions and Future Research

This chapter proposes an ontology-based autonomic system for self-configuring the
sensory infrastructure of an ambient intelligence system. The ontology makes it
possible to define concepts characterizing the environment, the ambient properties
upon which the AmI system reasons, and the structure of the system itself.

The cognitive paradigm adopted is characterized by a flexible scheme easily im-
plementable in new scenarios. The system configuration process can take advantage
of an ontological representation of system structure and of its interaction with the en-
vironment. Within such a predefined and structured framework of basic knowledge,
the designer can easily represent the application domain and specify the configuration
of system modules, thus reducing the risk of errors.

Moreover, the knowledge of its own structure and of the current context is ex-
ploited by a rule-based planner whose goal is to tune the sampling rate of sensors,
in order to maximize the accuracy of the reasoning while minimizing the energy
consumption of the system.

The system proposed here may be further expanded with the capability of self-
instantiating only on the basis of the high-level description provided by the ontology.
This outcome would require the development of a library of parametric modules
which cover most of the possible types of processing, besides the possibility of
extending the library and the ontology with new functionalities.

Another potential future development concerns communication with final users
about the cognitive processing which has occurred, and about the reasons that drive
the system to take certain decisions [23, 28]. Such a possibility is enabled by the
explicit representation of its knowledge.

Finally, it is possible to imagine a cooperative network of intelligent buildings,
able to communicate to each other the knowledge about their structure and about
what they have learned, in terms of optimal configurations. Naturally, this type of
scenario would require integration with a communication protocol able to identify
reliable agents [3] with which it would be opportune to cooperate, with the main goal
of protecting user privacy.
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