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Abstract  In this work, a modified Rosenzweig-MacArthur predator-prey model 
is analyzed, which is a particular Gause type model, considering two Allee effect 
affecting the prey population.

This phenomenon may be expressed by different mathematical expressions; with 
the form here used, the existence of one limit cycle surrounding a positive equilib-
rium point is proved.

Conditions to the existence of equilibrium points and their local stability are 
established; moreover, the existence of a separatrix curve dividing the behavior of 
trajectories which can have different ω-limit sets.

Some simulations reinforced our results are given and the ecological conse-
quences are discussed.

Keywords  Predator-prey model · Functional response · Allee effect · Stability · 
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9.1 � Introduction

In current theory of predator-prey dynamics and as consequences of the advance-
ment of the ecological knowledge due to theoretical, empirical, and observational 
research, more elements are recognized as essential to the phenomenon of preda-
tion [27], being incorporated to the study of more complex non-linear mathematical 
models.
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In this work, a Gause-type predator-prey model [16] derived from the reasonably 
realistic and well-known Rosenzweig-MacArthur model [27] is analyzed, incorpo-
rating the Allee effect [13, 26] on the prey growth equation also called depensation 
in Fisheries Sciences [10, 23].

Any mechanism leading to a positive relationship between a component of indi-
vidual fitness and the number or density of conspecifics is named as a mechanism 
of the Allee effect [4], i.e., an Allee effect occurs in populations when individuals 
suffer a decrease in fitness at low densities [26].

Many ecological mechanisms producing Allee effects are known [25] and dis-
tinct causes may generate this phenomenon (Table 1 in [5] or Table 2.1 in [13]). 
Recent ecological research suggests the possibility that two or more Allee effects 
can be generated by mechanisms acting simultaneously on a single population (See 
Table 2 in [5]). The combined influence of some of these phenomena is known as 
multiple Allee effect [1, 5, 13].

The mathematical formalization of the Allee effect are varied [6, 12, 28], but it 
is possible to prove that most of them are topologically equivalent [18]. However, 
some of these forms may produce a change in the number of limit cycles through 
Hopf bifurcation surrounding a positive equilibrium point in predator-prey models 
[15, 20].

Many algebraic forms can be employed to describe the Allee effect [6, 12, 25, 
31] but it is possible to prove that many of them are topologically equivalent [18]. 
One of this equations is given by

�
(9.1)

where r scales the prey growth rate, K is the environmental carrying capacity, m is 
the Allee threshold, and the auxiliary parameter n with n > 0 and m > − n, [6, 7, 28], 
affecting the overall shape of the per-capita growth curve of the prey.

We affirm that Eq. (9.1) describes double Allee effects, expressed once in the 
factor m x x m( ) = − , similarly as in the most usual equation representing Allee ef-
fect [3, 12]; a second time is given by the term ( ) rxr x

x n
=

+
 [31], which can be 

interpreted as an approximation of a population dynamics where the differences be-
tween fertile and non-fertile are not explicitly modelled. Then, we can assume this 
factor indicates the impact of the Allee effect due to the non-fertile population n [2].

As predator-prey interactions are inherently prone to oscillations [27], it is there-
fore obvious investigate the Allee effect as a potential mechanism for the creation 
of population cycles and their related limit cycles from of mathematical point of 
view [3, 12, 29].

An important objective in these works will be to determine the quantity of limit 
cycles (trajectories closed and isolated) of this class of non-linear differential equa-
tion system associated with the modified Rosenzweig-MacArthur model. We con-
sider that this issue is a good criterion to classify these models, but we not consider 
this issue in our analysis.
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Conditions that guarantee the uniqueness of a limit cycle [21], the global stabil-
ity of the unique positive equilibrium in predator–prey systems, or non-existence 
of limit cycles [30], has been extensively studied over the last decades starting with 
the work by Cheng [8]; results on the existence and uniqueness of limit cycles have 
been obtained in some papers [8, 22], which can be used to explain many real world 
oscillatory phenomena in nature [11, 21, 30].

This paper is organized as follows: In Sect.  9.2, we present the model and a 
topologically equivalent is obtained; in Sect. 9.3, the main properties of this model 
are presented. In Sect. 9.4, some simulations for verify our results are given. Eco-
logical consequences and a comparative study of the mathematical results are given 
in Sect. 9.5.

9.2 � The Model

Considering the double Allee effect on prey described by (9.1) in the Rosenzweig-
MacArthur model [27], the autonomous nonlinear bidimensional differential equa-
tion system of Kolmogorov type [16] is given by:

�

(9.2)

where x = x( t) and y = y( t) indicate the prey and predator population sizes, respec-
tively for t ≥ 0  (number of individuals, density or biomass). The parameters are all 
positives, i. e. ( ) 7, , , , , , ,r n K q a p c mσ += ∈ ×� �, with a < K and − K < m < K, having 
the following biological meanings:

r	 is the intrinsic growth rate or biotic potential of the prey;
K	 is the prey environmental carrying capacity;
m > 0	 is the minimum of viable population (threshold of Allee effect);
n	 is the population size of sterile individuals on prey population;
q	� is the maximum number of prey that necessary can be eaten by a predator 

in each time unit;
a	 is the amount of prey needed to achieve one-half of q;
p	 is the coefficient of biomass conversion, and
c	 is the natural death rate of predators in absence of prey.

System (9.2) is defined in ( ) }{ 2, / 0, 0x y x yΩ = ∈ ≥ ≥� .
The analysis must be made separately for the strong Allee effect ( m > 0) and 

weak Allee effect ( m ≤ 0), due the number of limit cycles can change with respect to 
this parameter [20]; in this work we consider only m > 0.

1 ( )

:

dx rx x qxx m y
dt x n K x a

X
dy px c y
dt x a

σ

  = − − −   + +

   = −  +
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The results will be compared with the Rosenzweig-MacArthur model in which 
the Allee effect is absent, and with the model studied in [19, 24], where the Allee 
effect is described by a simpler form, which is topologically equivalent to that used 
in this work [18].

9.2.1 � Topologically Equivalent System

In order to simplify the calculus, we follow the methodology used in [17, 19, 20], 
making a reparameterization and a time rescaling of system (9.2), given by the func-
tion :ϕ Ω × → Ω ×� �, defined as

with Ω = ∈ ≥ ≥{ }( , ) / ,u v u v�2 0 0 . As

Then ϕ  is a diffeomorphism preserving the orientation of time [9, 14]; the vector 
field X µ  is topologically equivalent to the vector field Y Xη µϕ= ° . It take the form 

( ) ( ), ,Y P u v Q u v
u vη
∂ ∂

= +
∂ ∂

 and the associated second order differential equations 
system is

�

(9.3)

with ( ) ] [( ) ] [22, , , , 0,1 1,1B C A N Mη += ∈ × × −� , where  ( )1 ,B p c
r

= − ( ) ,acC
K p c

=
−

 

, and .a n mA N M
K K K

= = =

Clearly, B > 0 if and only if p > c, being a necessary condition for predator to 
survive; system (9.3) has no ecological sense if B < 0.

( ) ( ), , , , , ,rK ru v Ku v x y t
n aq u u
K K

ϕ τ τ

 
 

= = 
    + +        

( )
2 2

det , , 0.r KD u v
n au u u
K K

ϕ τ = >
   + +      

( )( )( ) ( )

( )( )

1

:

du u u u M u A u u N v
d

Y
dv B u N u C v
d

η

τ

τ

 = − − + − +
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
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For the strong Allee effect it has 0 < M < < 1; so, the equilibria are (0;0), ( M;0), 

(1;0) and ( C;L), where 
( )( )( )1 C C A C M

L
C N

− + −
=

+
.

The point ( C;L) lies in the first quadrant, if and only if, 0 < M < C < 1.
The Jacobian matrix of system (9.3) is

with ( ) ( ) ( ) ( )3
11; 4 3 1 2DY u v u M A A M v AM u AM Nvη = − + + − + − − + − +

9.3 � Main Results

For 0 < M < < 1, system (9.3) has the following properties:
Lemma 1. Existence of invariant set
The set ( ){ }2, / 0 1, 0u v u vΓ = ∈ ≤ ≤ ≥�  is a region of positive invariance.
Proof: Since the system (9.3) is of Kolmogorov type [16], the coordinates 

axis are invariant sets. If u = 1, then (1 ) 0.du v N
dτ

= − + <  Anything the sign of 

( )( )1 1dv B C N v
dτ

= − + , the trajectories enter to the set Γ.

Lemma 2. Boundedness of solutions. The solutions are bounded.
Proof: We use the Poincaré compactification with the change of variables given 

by u w
z

v
z

= =and 1 ;  then,

The equilibrium point (0;0) of vector field Zη is equivalent to point (0;∞) of system 
(9.3). Evaluating in (0;0) of vector field Zη, the zero matrix is obtained. Rescaling 
the time by the function :φ Ω × → Ω ×� �, defined as 3( ; ; ) ( ; ; )w z z T w zφ τ= , we 
obtain a new polynomial system given by

( ) ( ) ( )
( ) ( )( )

11,
;

2
DY u v u u N

DY u v
Bv N C u B C u u N

η
η

 − + 
=  − + − − + 

( )( )( )

( )( )( ) ( )

( )( )

3

3

1 ,

dz w z w zN w zC
d z

wZ w z w zM w zA z w zN
z

dw w zN w zC
d z

η

τ

τ

 = − + − −

= − − − + +

 = − + −

�

( )( )( )
( )( )( ) ( )

( )( )2 ,

dz w z w zN w zC
d

Z w w z w zM w zA z w zN
dw z w zN w zC
d

η

τ

τ

 = − + − −


= − − − + +

 = − + −

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The Jacobian matrix evaluated in the point (0;0) is � ( ) 20;0DZ η θ= . To desingularize the 
point (0;0), the technique of blowing-up is used [9, 14]. Using time rescaling defined by 

2

1 T
I

κ =  and the directional blowing-up given by ( ; ) ( ; ) ( ; )w I S I IS w zϕ = = , we obtain

with A C M N AMβ = − + + + and .A M AMγ = + +  We obtain again lies in the 

first quadrant, and a new directional blowing-up is considered, which is given by 

( ) ( ) ( ); ; ;S E F E EF I Sφ = = . Using the time rescaling defined by 
1
E

λ κ=  we ob-
tain:

After some calculations we obtain

Thus, det (0;0) 0DZη > and tr (0;0) 0;DZη >  then, (0;0) is a repeller point of vector 
field .Zη  By blowing-down of wϕ  and Sφ  the point (0;0) is a non-hyperbolic repel-
ler of vector fields Zη  and 

�
Z η, respectively. This implies that the point (0;∞) of Yη  

is a repeller point and solutions of vector field Yη  are bounded.�

9.3.1 � Nature of Equilibria Over the Axis

Lemma 3. The equilibrium point (0;0) is a hyperbolic attractor for all parameter 
values.

Proof: Immediate evaluating the Jacobian matrix at this point, since 
( )det 0;0 0DY ABCMNη = >  and ( ) ( )tr ; 0.DY u v AM BCNη = − + <  Therefore, 

(0;0) is a locally stable point.�

�
2 2 2 3 3

3

( ) ( )

( ) ( ),

dI I S I ASI MSI NS I S AMS CNS
dZ
dS S S I SI ASI MSI S N AMSI I
d

η

β
κ

γ
κ

 = − + − − + + − −= 
 = + − − − + − +

( ) ( ) ( )

( ) ( ) ( )
( )

2 3 4

2 3 2

4 3

1

2 1 2 2 2 1

2 ,

dE E F FE A M FN F E F E AM CN
d
dFZ F F F E A M FN F E
d

F E AM CN

η

β
λ

β γ
λ

 = + − + − + − +

= = + − + − + + +

− +


( ) 1 0
0;0 .

0 2
DZη

 
=   
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Lemma 4. The equilibrium point PM = ( M; 0) is

1.	 a hyperbolic repeller, if and only if, M C− >  0,
2.	 a hyperbolic saddle point, if and only if, M C− <  0,
3.	 a non hyperbolic repeller, if and only if, M C− =  0.

Proof: As
det ( ;0)  (1 ) (  ) (   ) ( )DY M MB M A M M N M Cη = − + + −
and tr ( ;0) ( )( ) (1 )( ).DY M B M C M N M M A Mη = − + + − +

  i.	� If M C− >  0, ( )det ;0 0DY Mη >  and tr ( ;0) 0.DY Mη >  Thus, ( M;0) is a hyper-
bolic repeller.

  ii.	 If M C− <  0,  det ( ;0) 0DY Mη < ; then, ( M;0) is a hyperbolic saddle point.
iii.	� If M C− =  0; then ( C;L) coincides with the point P2, and ( )det ;0 0DY Mη = ; 

using the Central Manifold Theorem [14], we can proved that point ( M;0) is a 
non hyperbolic repeller.�

Lemma 5. The equilibrium point (1;0) is

1.	 a saddle hyperbolic point, if and only if, 1 0− >C   ,
2.	 a hyperbolic saddle point, if and only if, 1   0,C− <
3.	 a non hyperbolic attractor, if and only if, 1 0− =C   .

Proof: We have that

  i.	 If 1 0− >C   , ( )det 1;0 0;DYη < thus (1;0) is a saddle hyperbolic point.
  ii.	� If 1 0− <C   ,  then ( )det 1;0 0DYη > and tr (1;0) 0;DYη <  then, (1;0) is a hyper-

bolic attractor point.
iii.	� If 1 0− C  = ;  then ( C;L) coincides with (1;0), and det (1;0) 0DYη = ; using the 

Central Manifold Theorem [14], it follows that the point (1;0) is a non hyperbolic 
attractor.�

9.3.2 � Existence of a Heteroclinic Curve

When the equilibria ( M;0) and (1;0) are saddle points, we will demonstrate the ex-
istence of a heteroclinic curve for a given condition of parameters.

Theorem 6. Assuming 0 < M < C < 1, the equilibria ( M;0) and (1;0) are hyperbolic 
saddle points. Then, for a subset of parameter values there exists a heteroclinic 
cycle hγ  in the first quadrant containing these equilibria.

det (1;0) ( 1)(1 )(1 )( 1) andDY B A M C Nη = − + − − +

( ) ( )( ) ( )( )tr 1;0 1 1 1 1DY A M B C Nη = + − + − +



E. González-Olivares and J. Huincahue-Arcos112

Proof: If ( M;0) and (1,0) are both saddle points, then their corresponding invari-
ant manifolds Ws( M;0) and Wu(1;0) are all one-dimensional objects. Clearly, the 
α-limit of Ws( M;0) and the ω-limit of Wu(1;0) are bounded in the direction of the 
v-axis. Neither the ω-limit of Wu(1;0) is on the u-axis.

Let u∗ be such that M < u∗ < 1. Then, there are points ( u∗;vs) ∈Ws( M;0) and ( u∗;vu) 
∈ Wu(1,0), with vs and vu depending on the parameter values, such that vs = s( η) and 
vu = u( η).

Since the vector field Yη is continuous with respect to the parameters values, then 
the stable manifold Ws( M;0) must intersect the unstable manifold Wu(1;0) for some 
parameter values. Hence, there exists a point ( ; )u v∗ ∗ ∈Γ  such that v v vs s

∗ ∗ ∗= = .
Moreover, by uniqueness of solutions of system (9.3), this intersection must oc-

cur along a whole trajectory γ1M, joining the equilibria (1;0) and ( M;0). Therefore, 
the equation s( η) = u( η) defines a codimension-one submanifold in the parameters 
space, for which the heteroclinic curve γ1M exists in � +

2 , connecting the points (1;0) 
and ( M;0).

Then, γ1M ⊂ Ws( M;0)∩Wu(1;0) and it lies entirely on a segment of the u-axis and 
exists for any parameter value such that 0 < M < C < 1.

It follows that a heteroclinic cycle γh exists for certain parameter values on the 
same submanifold. More precisely, γh = (1;0) ∪ γ1M ∪ ( M;0) ∪ γM1.�

We note that a the existence of a heteroclinic curve joining the points (1;0) and 
( M;0) is a common property on models with strong Allee effect.

9.3.3 � Nature of the Positive Equilibrium Point

In the following we consider 0 < M < C < 1. The equilibrium point ( C;L) is in the first 
quadrant and the Jacobian matrix evaluated at point ( C;L) is:

Let 2(tr ( ; )) 4det ( ; )Q DY C L DY C Lη η= − ; then,

If Q = 0, then 2B αµ=  where 
( )( )( ) .

4 1
A C

C C N C M C
α +

=
+ − −

With the above relations, we can establish the following theorem:

( ) ( ) ( )
( )( )( ); ;

0 1
A C C C N

DY C L
B C M C A Cη

µ + − + 
=  − − + 

(1 )( 2 ) ( )( 1)with ( , , , ) C C A C M C C M NA C M N
A C C N

µ − + − − +
= −

+ +

( ) ( )( )( )( )and det ; 1 0.DY C L BC C N C M C A Cη = + − − + >

( ) ( )( )( )( )2 2 4 1 .Q A C BC C N C M C A Cµ= + − + − − +
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Theorem 7. Let ( u∗;vs) ∈Ws( M;0) and ( u∗;vu) ∈ Wu(1,0).
7.1 Assuming s uυ υ> , then, ( ; )C L  is
a) a local hyperbolic attractor point, if and only if, μ < 0. Moreover,
a. 1 If 2B αµ< , is a focus attractor.
a. 2 If 2B αµ> , is a node attractor.
b) is a hyperbolic repeller point, if and only if, μ > 0. Moreover,
b. 1 If 2B αµ< , is a focus repeller, surrounded by a limit cycle.
b. 2 If 2B αµ> , is a node repeller.
c) is a weak focus, at least of order one, if and only if, μ = 0.
7.2 Assuming υs < υu; then, ( C;L) is a node repeller and (0;0) is globally asymp-

totically stable.
Proof: It is immediate from the evaluation of the Jacobian matrix.
If 0 < M < C < 1, det ( ; ) 0DY C Lη > . So, the nature of ( C;L) will be determined by 

tr ( ; )DY C Lη  and its sign is determined by μ.
i) Assuming s uυ υ> , it has:
If μ < 0, the point ( C;L) is a hyperbolic attractor, meanwhile if μ > 0, the point 

( C;L) is a hyperbolic repeller.
If Q < 0, then 2B αµ>  and ( C;L) is a node.
If Q > 0, then 2B αµ< and ( C;L) is a focus.
ii) Assuming s uυ υ> , by the existence and uniqueness theorem ensures that the 

ω-limit of Ws( M;0) or Wu(1;0) are in Γ. As (0;0), (1;0) are saddle points, all path in 
Γ  has as its ω-limit to (0;0) which is globally asymptotically stable.•

Remark 8. When s uυ υ> , the stable manifold Ws( M;0), the straight line u = 1 and 
the u-axis determines a subregion Λ  (see left poster in Fig. 9.1), which is closed 
and bounded, i.e.,

is a compact region and the Poincaré-Bendixson Theorem applies there, assuring 
the existence of a limit cycle. As the born of this limit cycle is through of the Hopf 
bifurcation, the largest is obtained when vs = vu, i.e. when the heteroclinic curve γ1M 
is reached.

Then, the increase of the diameter of this limit cycle by change of parameters, 
which will increase until to attain the heteroclinic curve.

Remark 9. To determine the weakness of the focus ( C;L), the number of limit 
cycles bifurcating of a weak (fine) focus must be obtained [9]. The weakness of a 
focus indicates the number of limit cycles appearing by multiple Hopf bifurcation, 
i.e., the number of the concentric limit cycles surroumding a weak focus [9].

There exist various methods to establish this number being one of them the cal-
culus of the Lyapunov quantities [9, 14]; however, this task that will not be assumed 
in this work. In Fig. 9.3 we show the existence of a unique limit cycle reinforced the 
result obtained in theorem 7b.1 (Fig. 9.2, 9.4, 9.5 and 9.6).

( ){ }, / 1, 0 s uu v M u v v vΛ = ∈Ω ≤ ≤ ≤ ≤ <
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Fig. 9.2   For A = 0.3, B = 0.2, C = 1.2, M = 0.05 and N = 0.1; there no exists positive equilibrium 
point. The points (1;0) and (0;0) are local attractors

 

Fig. 9.1   For 0 < M < C < 1, ( C;L) is the unique positive equilibrium point. The two possible relative 
positions between the stable manifold Ws( M;0) of the saddle point PM and the unstable manifold 
Wu(1;0) of saddle point P1 are shown. On the left side vs < vu and on the right side vs > vu. Being 
the vector field Yη continuous with respect to the parameters values, then the intersection between 
Ws( M;0) and Wu(1;0) occurs
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9.4 � Some Simulations

Fig. 9.4   For A = 1, B = 0:5, C = 0:6, M = 0:1 and N = 0:2. The vector field Yη has four equilibrium 
points in the first quadrant; (0;0) is a attractor point, ( M;0) and (1;0) are saddle equilibrium points 
and ( C;L) is a node attractor

 

Fig. 9.3   For A = 0.2, B = 0.5, C = 0.5, M = 0.15 and N = 0.4. The vector field Yη has four equilibrium 
points in the first quadrant; (0;0) is a attractor point; ( M;0) and (1;0) are a saddle point and ( C;L) 
is a repeller, surrounded by a stable limit cycle
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Fig. 9.6   For A = 0.1, B = 1, C = 0.25, M = 0.15 and N = 0.115. The vector field Yη has four equilib-
rium points in the first quadrant; (0;0) is a attractor point; ( M;0) and (1;0) are a saddle point and 
( C;L) is a repeller, and the stable limit cycle collides with the heteroclinic curve

 

Fig. 9.5   For A = 0.1, B = 0.3, C = 0.47, M = 0.08 and N = 0.2; the point ( C;L) is repeller focus 
and (0;0) is globally asymptotically stable. In this case, vs < vu for ( u*;vs) ∈Ws( M;0) and ( u*;vu) 
∈ Wu(1;0)
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9.5 � Conclusions

The existence of interesting dynamics has been shown, for a modified Rosenzweig-
MacArthur model [27], a particular case of a Gause type predator-prey model, con-
sidering a double Allee effect on prey [1, 4]. The properties are established using a 
polynomial differential equations system (9.3) topologically equivalent to original 
system (9.2).

We proved that the model proposed have multiple stable equilibria for a deter-
mined set of parameter values and, therefore, different population behaviors can 
coexist.

As in all models considering strong Allee effect, in system (9.3) there exists a 
separatrix curve determined by the unstable manifold of equilibrium point ( m,0). 
Then, there are trajectories near of this separatrix, which can have different ω-lim 
it for the same set of parameter values, showing they are highly sensitive to initial 
conditions. So, for a fixed set of parameters, the following may happen: extinction 
of two populations, the coexistence for determined population sizes or oscillations 
of both populations.

Moreover, there are parameter constraints for which the existence of a interior 
equilibrium point local asymptotically stable or the existence of at least one stable 
limit cycle generated by Hopf bifurcation has been proved.

We affirm that Eq. (9.1) can be assumed as a paradigm to represent double Allee 
effect. In fact, without assuming that the population is divided into age or sex class, 
it can be considered that x = x( t) represents the size of fertile population and n is the 
non-fertile population (juvenile or oldest individuals) [2]. Populations with strong 
Allee effects can go extinct at lower levels of mortality by predation; also, when 
mortality by predation increases and weaker Allee effects can drive population to 
extinction.

Although extinction of predator or both species are not interesting outcomes 
from the point of view of population dynamics, system (9.3) it capable for a com-
plete spectrum of dynamical behaviors that can, in principle, characterize this kind 
of models.

We think it is important for ecologists to be aware of the kind of bistability de-
scribed for system (9.3), where two potential attractors can exist: (i) the origin; (ii) 
a positive equilibrium point or a stable limit cycle.
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