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Chapter 1
Noise Reduction at the Fan Outlet

Karel Adámek, Jan Kolář, Petr Půlpán and Martin Pustka
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M. Pustka
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Abstract  The paper deals with numerical flow simulation in the fan outlet of a large 
painting shop. The received results of pressure fluctuations in numerical models are 
evaluated using both frequency analysis of pressure fluctuations and measuring and 
evaluation of a really operating system. From the conclusion there is defined the 
hypothesis of noise origin and more, it is proposed a more suitable design of the 
system without creation of pressure fluctuations.

Keywords  Noise reduction · Fan outlet · Numerical flow simulation

1.1 � Introduction

The paper deals with numerical flow simulation in the outlet system of a large paint-
ing shop. The increased noise level is spread into the surroundings. Several models 
were used for the identification of noise sources.

The relatively simple geometry of the large volume of about 100 m3 consists 
from rectangular volumes made from thin metallic sheets with a cylindrical outlet, 
see following Figs. 1.1, 1.2 and 1.3. Due to the high and quick volume flow, the 
walls of the channel are vibrating and thundering, mostly in the central horizontal 
part of the observed system. The aim of the numerical flow modeling is to survey 
the pressure/velocity fields in the system and to define the source of the noise.

N. Mastorakis, V. Mladenov (eds.), Computational Problems in Engineering,  
Lecture Notes in Electrical Engineering 307, DOI 10.1007/978-3-319-03967-1_1,  
© Springer International Publishing Switzerland 2014
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Fig. 1.2   Velocity field—
steady 3D solution
 

Fig. 1.1   Pressure field—
steady 3D solution
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1.2 � Resolution

1.2.1 � Numerical Model in General

The simple three-dimensional (3D) geometry is evident from the following 
Figs. 1.1, 1.2 and 1.3, where the longitudinal plane of symmetry can be used. The 
rectangular inlet is situated on the right side from below; the cylindrical outlet is 
situated on the left side upwards. Both parts are connected by a horizontal prismatic 
part. The defined pressure difference of 1,000 Pa creates the inlet velocity, which 
corresponds well with the real air flow of 58 m3/s in the real size of inlet cross-
section. The k-ε used standard commercial code for incompressible ideal gas and 
model of turbulence.

1.2.2 � Steady 3D Solution—Results

On both pressure and velocity fields, see Figs. 1.1 and 1.2, it is visible that in the 
system with the rectangular changes of both cross-sections and flow direction, there 
are present intensive pressure and velocity gradients, the large areas of flow separa-
tion with backflows etc., which could be the reason of the pressure forces, causing 
the vibrations of the relative thin structure of air channels. Another view on the 
uneven flow field, there are the streamlines in Fig. 1.3. Generally said, the cross-
section of the model volume is not fully filled by air flow.

Fig. 1.3   Streamlines—steady 
3D solution
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The idealized evaluation of the results leads to significant force effects—the inlet 
velocity of 22 m/s represents the momentum of about 1,500 N and the impact power 
of such flow reaches a value of about 30 kW respectively, idealized as full impact 
effect. Of course, real flow is not fully stopped, so such excessive values are the 
theoretically possible maximum, only.

1.2.3 � Unsteady Solution—Harmonic Analysis

From the following unsteady simulation, some pressure fluctuations were detected 
in the selected points. Figure 1.4 shows pressure fluctuations, recorded in the cen-
ter on the wall of the horizontal part of the system (the geometry see the previous 
Figs. 1.1, 1.2 and 1.3).

The result of the frequency analysis of the recorded pressure fluctuations is pre-
sented in Fig. 1.5. It is visible the highest amplitude of 0.5 Pa approx. at the fre-
quency of about 5 Hz, but it is not any audible frequency. Simply calculated, on 
the large wall surface of 12 m2, made from a thin metallic sheet, there acts the total 
pressure force of 6.5 N approx. Excessively said, it looks like when on this sheet 
surface a 0.6 kg hammer is falling 5 times per second. It should be a really intense 
noise! Of course, due to real stiffening by the channel frame, the real force effect 
would be smaller.

The possible deformation of such a thin rectangular sheet, loaded by uniform 
pressure, is shown in Fig. 1.6—boundary conditions simplified as two sides free, 
two sides fixed and at constant pressure value.

Fig. 1.5   Frequency 
analysis of recorded pressure 
fluctuations

 

Fig. 1.4   Detected pressure 
fluctuations (time step of 
2 ms)
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From the above presented results, the hypothesis was determined that such pri-
mary low frequencies (pressure fluctuations) of the flow, separated from walls of 
the rectangular channel, could cause any secondary audible vibrations of the thin 
metallic sheets, which could be further amplified in the following outlet volume as 
in any trumpet.

1.2.4 � Planar (2D) Model with Fine Mesh

To be sure that the above observed pressure fluctuations are not caused—maybe—
by the relatively coarse mesh, used in this large model, the next model was created 
in 2D, only, but with the refined mesh and with boundary layers, too. The results 
are very similar so that in Fig. 1.7 similar to Fig. 1.2, it is presented the velocity 
field, only, as an example. Thus the reason of the detected pressure fluctuations 

Fig. 1.7   Velocity field in the 
2D model, fine mesh
 

Fig. 1.6   Deformation of 
the thin sheet by constant 
pressure
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and subsequently of generated sound frequencies, too, could be the flow separation 
from the walls in the sharp changes of the flow direction.

1.2.5 � Simulation of the Rotating Fan Rotor Influence

The rotating blade wheel of the exhaust fan creates other pressure fluctuations in 
the observed system. The generation of such fluctuations was simply simulated as a 
flap, rotating in the inlet cross-section of the previous model. As an illustration, in 
Fig. 1.8 there is the pressure field around such rotating flap in any random position.

The recorded pressure fluctuations are presented in Fig.  1.9 and the relevant 
result of the frequency analysis in Fig. 1.10. The maximum amplitude at the fre-
quency of 4.5 Hz approx. remains the same as above (see Fig. 1.5); the next local 
amplitude maximum at the frequency of about 43 Hz corresponds with the fourth 
harmonic frequency of the rotating blade wheel.

Of course, the real rotating blade wheel could be simulated, too, but for the rep-
resentation of periodical inlet excitations of the flow field the elementary rotating 
flap is sufficient.

1.2.6 � Field Measurements

The results of the field measurements on the site [1] are very similar to the above 
presented results of numerical flow simulations. Measured in the air flow, the fre-
quencies of 2.6—3.5—4.5 Hz were detected, depending on the actual position of 
the measuring point. The measured values are very similar to the above mentioned 
simulated values. It is hardly to get any better coincidence because the exact fixa-
tion of the pressure sensor in the strong air flow is difficult. And more, the next 
detected frequencies are very expressive harmonic multiples of the basic frequency 
11.5 Hz of the rotating blade wheel.

As an illustration, only, Fig. 1.11 presents the result of harmonic analysis in one 
position of the pressure detector, where the first amplitude maximum at the fre-
quency of 4.5 Hz corresponds with the basic pressure fluctuations found by numeric 
simulation and the second amplitude maximum at the frequency of 92.2 Hz is the 
eighth harmonic of the fan rotation frequency etc. Other local amplitude maximums 
are situated at frequencies approx. 45—66—88  Hz, corresponding to other har-
monic multiples of the basic rotational frequency of 11 Hz.

1.3 � New Design

It is clear that for suppressing the above identified pressure fluctuations it should be 
to improve the flow field in the system. In other words, it is necessary to design and 
to use a better shape of the exhaust channel, which complies better with the natural 
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image of the simulated flow field. In the former channel of rectangular both cross-
section and changes of the flow direction, the flow fills only a part of the whole 
cross-section, due to the large areas of the flow separation from the wall just behind 
each of rectangular bends.

Using a smaller and circular cross-section, designed after results of above pre-
sented simulations, the flow field becomes smoother, practically without flow sep-
aration—there are not any sharp changes of the flow direction. For comparison 
with Figs.  1.1, 1.2 and 1.3, here, there are presented analogous Figs.  1.12, 1.13 
and 1.14—the pressure field with typical maximum at the outer diameter of the 
channel bend and minimum at the inner diameter of each bend, the velocity field 

Fig. 1.9   Pressure fluctuations after the rotating flap (time step of 1 ms)

 

Fig. 1.8   Pressure field around the rotating flap at the inlet
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Fig. 1.12   Pressure field—
smooth shape
 

Fig. 1.11   Field measurement—record of frequency analysis

 

Fig. 1.10   Frequency analysis of pressure fluctuations after the rotating flap
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Fig. 1.13   Velocity field—
smooth shape
 

Fig. 1.14   Streamlines—
smooth shape
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with typically inverse values after the Bernoulli’s equation (maximum value at the 
minimum radius and minimum value at the maximum radius) and the streamlines, 
differed by color, well following the channel shape without separation.

After the start-up period of simulation, the observed pressure fluctuations are 
going practically to zero, see Fig. 1.15. So it is possible to expect the flow field 
without pressure fluctuations, given by the above mentioned strong flow separation.

1.4 � Conclusion

The used standard method of numerical flow simulation, here together with veri-
fication of results by frequency analysis of recorded pressure fluctuations, gives a 
suitable guide how to suppress the noise level spreading from the outlet of a fan in 
the surroundings.

The results of the flow simulation show the possible primary reason of the pres-
sure fluctuations in the air flow, probably subsequently modified into vibrations of 
thin metallic structure, which are the secondary source of the noise, spread into the 
surroundings. Pressure fluctuations of the air flow, recorded in numerical models, 
are verified by real in situ measurements. From the following data analysis it is 
evident a good coincidence of both methods.

On the basis of the results of numerical flow modeling, there are proposed some 
arrangements of the geometry—rounded transitions of cross-sections instead of 
former rectangular ones. The resulting flow field does not show so large pressure 
fluctuations, which are usually the source of the increased noise level, particularly 
of the induced noise, generated by the interaction of such disturbed flow with thin 
metallic walls.

The presented study conserves the actual shape of the system. On the basis of 
next survey it is clear that significant shape modifications could be made, too, as 
for instance after Fig. 1.16. An absolutely straight (vertical) duct, equipped by a 
noise silencer at the outlet end, is designed as a labyrinth and/or louvers and made 
as walls resistant to vibrations. Due to the radial (horizontal) flowing in such a 

Fig. 1.15   Pressure fluctua-
tions—smooth shape (time 
step of 2 ms)

 



111  Noise Reduction at the Fan Outlet

silencer, the velocity value is decreasing so that the outlet value is a fraction, only, 
of the inlet one.

Such solution is not only ecologic—reduced noise level, but economic, too—
simple shape. Generally said, an ecologic solution without economic effect is not 
the right solution.

In general, firstly, it should be used a pure technical solution, presented in this 
paper. The used better shape could suppress or remove the actual reason of the 
increased noise level. And secondly, only, it should be used any additional noise 
insulation of the existing system, in principle characterized by some operational 
defects, leading to increased noise level, as presented above.

References
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Fig. 1.16   Labyrinth as a 
noise silencer
 



13

Chapter 2
Performance Evaluation of Gibbs Sampling  
for Bayesian Extracting Sinusoids

M. Cevri and D. Üstündag

N. Mastorakis, V. Mladenov (eds.), Computational Problems in Engineering,  
Lecture Notes in Electrical Engineering 307, DOI 10.1007/978-3-319-03967-1_2, 
© Springer International Publishing Switzerland 2014

M. Cevri ()
Faculty of Science, Department of Mathematics, Istanbul University, Istanbul, Turkey
e-mail: cevri@istanbul.edu.tr

D. Üstündag
Faculty of Science and Letters, Department of Mathematics, Marmara University,  
Istanbul, Turkey
e-mail: dustundag@marmara.edu.tr

Abstract  This chapter involves problems of estimating parameters of sinusoids 
from white noisy data by using Gibbs sampling (GS) in a Bayesian inferential 
framework which allows us to incorporate prior knowledge about the nature of sinu-
soidal data into the model. Modifications of its algorithm is tested on data generated 
from synthetic signals and its performance is compared with conventional estima-
tors such as Maximum Likelihood (ML) and Discrete Fourier Transform (DFT) 
under a variety of signal to noise ratio (SNR) conditions and different lengths of 
data sampling (N), regarding to Cramér–Rao lower bound (CRLB) that is a limit on 
the best possible performance achievable by an unbiased estimator given a dataset. 
All simulation results show its effectiveness in frequency and amplitude estimation 
of noisy sinusoids.

Keywords  Bayesian inference · Parameter estimation · Gibbs sampling · Cramér–Rao 
lower bound and Power spectral density

2.1 � Introduction

The sinusoidal frequency model embedded in noise is extensively important be-
cause of its wide applicability in many areas of science and engineering such as, 
modeling and manipulation of time-series from speech, audio to radar, seismology, 
nuclear magnetic resonance, communication problems and underwater acoustics 
[28].

We therefore address here a problem of estimating parameters of noisy sinusoids 
within a Bayesian inferential framework that provides a rigorous mathematical foun-
dation for making inferences about them and a basis for quantifying uncertainties in 
their estimates. Under an assumption that a number of sinusoids is known a priori, 
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several algorithms have already been applied to spectral analysis and parameter 
estimation problems, such as least-square fitting [33], maximum likelihood(ML) 
[25], discrete Fourier transform (DFT) [29, 8], and periodogram [27]. After Jayness’ 
work [21], researchers in different fields of science have given much attention to 
the relationship between Bayesian inference and parameter estimation. Bretthorst 
and the others [4, 16, 6, 11, 12, 1, 38, 36, 37, 39] have done excellent works in this 
area for the last 16 years.

In Bayesian framework, it is necessary to evaluate high dimensional integrals 
that can be difficult and complex to tackle with. In order to solve these problems, 
different stochastic sampling algorithms have already been suggested and imple-
mented by the different researches. Therefore, we introduce here one of the stochas-
tic algorithms called Gibbs sampling [11, 12, 7] for recovering sinusoids from noisy 
data and compare its performance with classical estimators, regarding to Cramér–
Rao lower bound (CRLB), that is widely used in statistical signal processing as a 
benchmark to evaluate unbiased estimators given a dataset [30]. For this purpose, 
a series of simulation studies with a variation in levels of noise and length of data 
sampling for a single sinusoid is set up.

The outline of this chapter is as follows. In Sect. 2.2, the harmonic signal models 
are introduced. In Sect.  2.3, we briefly outline Bayesian data analysis and sum-
marize Gibbs sampling estimator in Sect. 2.4. Cramer–Rao lower bound (CRLB) 
is introduced in Sect.  2.5. Computer simulation results are given in Sect.  2.6 to 
evaluate the performance of the Gibbs sampling estimator by comparing with that 
of classical estimators in different conditions. Finally, conclusions from these simu-
lations are drawn.

2.2 � Harmonic Signal Model

In many experiments, a discrete data set D = { , ,..., }d d dN
T

1 2  denoted as an output 
of a physical system that we want to be modeled is sampled from an unknown func-
tion y t( )  at discrete times{ ,...., }t tN

T
1 :

( )
( ; ) , ( 1, , ),

i i

i i

d y t
f t e i N

=
= θ + = …�

(2.1)

where θ  is a vector containing parameters that characterize behavior of physical 
system ( ; )f t θ  and that are usually unknown. The term ei  is assumed to be drawn 
from a known random process. The choice of the model function ( , )f t θ  depends on 
the specific application, but we will consider here a superposition of k  sinusoids:

1

( , ) cos( ) sin( ),
j j

k

c j s j
j

f t a t a tω ω
=

θ = +∑
�

(2.2)
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where 2{ , }
j j

k
c sa a ∈�  and (0, )jω π∈  are amplitudes and angular frequencies, 

respectively. Hence, Eq. (2.1) can be written in the matrix-vector form:

D Ga e= + ,� (2.3)

where D  is ( )N ×1  matrix of data points and e  is ( )N ×1  matrix of independent 
identically distributed Gaussian noise samples. G  is ( )N k× 2  matrix whose each 
column is a basis function evaluated at each point of time series. The linear coeffi-
cient a  is a ( )2 1k × matrix whose components are arranged in order of coefficients 
of cosine and sine terms { , ,..., , }a a a ac s c sk k1 1

. Then, the goal of data analysis is usu-
ally to infer 1{( , , )}

j j

k
c s j ja a ω =θ =  from D  and it is a non-linear optimization, due 

to frequencies. In signal processing literature, numerous approaches are based on 
frequentists statistics whereas only a few of them based on Bayesian statistics.

2.3 � Bayesian Data Analysis

Bayesian inference can be provided from the product rule of probability calculus 
which can be originated rigorously starting with the formulation of a small number 
of desiderata required to define a rational theory of inference as first enunciated by 
Cox [9], with a more complete treatment given by Jaynes [22]. This formulation 
directs to the ordinary rules of probability calculus and indicates that every allowed 
(consistent) theory for inference must be mathematically equivalent to probability 
theory, or else inconsistent.

By using Bayes’ rule [2, 3, 18], the context of the current problem can be ex-
pressed as follows:

( ) ( | , )( | , ) ,
( )

p p Ip I
p

=
DD
D

θ θ
θ

�
(2.4)

where ( )p θ  is the prior probability density function (PDF) of the parameter vector 
θ that encapsulates our state of knowledge of the parameters before observing D; 

( | , )p ID θ  is called the likelihood function when considered as a function of θ, but 
it is known as the sampling distribution when considered as a function of D. p( )D  
is denoted as an evidence or the marginal likelihood and ( , )p IDθ  is the posterior 
PDF of the parameters θ  of interest, which summarizes the last information about 
it:

( , ) ( ) ( | , ).p I p p I∝D Dθ θ θ
�

(2.5)

It is noted that for parameter estimation, the evidence p( )D  is θ-independent be-
cause of constant and simply plays role of a normalization factor. To proceed further 
in the specification of the posterior PDF, we now need to assign functional forms 
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for ( )p θ  and ( | , )p ID θ . After computing ( , )p IDθ , the problem turns out to search 
a vector θ  that satisfies

� { }arg max ( , ) ,p I
∈

= D
θ Θ

θ θ
�

(2.6)

where Θ is a parameter space.

2.4 � Gibbs Sampling

In order to avoid computing the multivariate maximization problem described in 
Sect. 2.3, an alternative way is the one, proposed by Dou and Hogdson [11, 12], 
which combines Gibbs sampling (GS) with Bayesian inference theory. Gibbs sam-
pling is an iterative Monte Carlo sampling process [14, 26, 20] and a special case 
of Metropolis–Hastings sampling [27, 19] wherein the random value is always ac-
cepted. It was also used by Geman and Geman [15] in image restoration. Statisti-
cians [35, 13] began to utilize the method for Bayesian computations. It is based 
on supposing that the target distribution is a posterior probability distribution but, 
it can be applied to any target distribution, when their full conditional probability 
distributions are available. We extend here its derivation for multiple frequency sig-
nals and briefly summarize it below, but refer to the papers [12, 1] for more detail 
information.

For linear parameters a  in Eq.  (2.3), when 2σ  is known and there is no any 
specific information about { , }a ac s  prior to the observation D, then Eq. (2.5) turns 
out to be the following form:

2 2( , , , , ) ( , , , , ),c s c sp I p Iσ σω ∝ ωa a D D a a
�

(2.7)

where p c s( , )a a ∝ constant  as an uninformative uniform prior PDF for{ , }a ac s . 
The marginal posterior distribution of a given ω and D  becomes a multivariate 
normal distribution 2 1ˆ( , ( ) )T

m σ −a G GN [11, 12]:

2
11/2 ( ) ( )2 2| |( | , , )

( 2 )

T TT

m
p e σσ

πσ
− − −

ω =
a a G G a aG Ga D
� �

�
(2.8)

where â is best estimate for a  and 2( | , )p σa D is maximized at â. When the vari-
ance 2σ  is unknown, by using Jeffreys prior

2
2

1( )p σ
σ

=
�

(2.9)

and integrating this joint posterior PDF in (2.7) with respect to 2σ ,
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∝
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�
(2.10)

the marginal posterior distribution of a given ω and D  in Eq. (2.8) turns into the 
multivariate Student’s t distribution 2 1ˆ( , ( ) , )T

mt s ν−a G G [11, 12]:

�

(2.11)

where N mν = − is degrees of freedom and 2 1 ˆ ˆ( ) ( )Ts
v

= − −D D D D  is sampling 
variance.

Suppose that ac j
is the only unknown parameter among the others{ , , }

jc s−
a a ω

where ac c c c cj j j k
a a a a

− − +
= { , ..., , ,..., }

1 1 1
. Under the assumption of known distribution 

of the noise, Eq. (2.8) for the conditional PDF of ac j
 given that , , ,

jc s−
a a Dω and 2σ  

have already been known becomes a univariate Gaussian distribution:

�
(2.12)

where

�

(2.13)

and

{ }(1) (1) (1) (1)
1 2, ,...,ˆ

Nd d d=D
�

(2.14)

whose components are defined by 
1

cos( ) sin( ),
l l

k

i c l i lj s l i
l

d a t a tω δ ω
=

− +∑
( 1, 2,3..., )i N= . The 

1
0lj

l j
l j

δ
≠

=  =
 helps to eliminate the contribution, which 

comes from the cosine term of the j th sinusoid. When 2σ is unknown, Eq. (2.12) 
becomes a univariate Student’s t distribution:

( )2 2 1ˆ( , , , , ) , ( ) , 1 ,
j j j c c cj j j

T
c c s c a a ap a a s Nσ

−

−ω ∝ −a a D X Xt� (2.15)

[ ] ( )/ 21/2

2

( ) / 2 | | ˆ ˆ( ) ( )( | , ) 1
(1/ 2) ( / 2 ( )

mT m T T

m m

m s
p

s

νν
νν ν

− +−Γ +  − −
ω = +  Γ Γ   

G G a a G G a aa D

( )2 2 1ˆ( , , , , ) , ( ) ,
j j j c cj j

T
c c s c a ap a aσ σ

−

−ω ∝a a D X XN

(1) 1cos ( )ˆ
ˆ ,

cos ( )

c j

j c j
c cj j

j
a

c aT
a a

j N

t
a

t

ω

ω

 
 = =  
  

D X
X

X X

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with

�
(2.16)

When { }, ,
jc s−

a a ω is given, in a similar way, the conditional PDF of as j
given that 

, , ,
jc s−

a a Dω  and 2σ  have already been known is

( )2 2 1ˆ( , , , , ) , ( ) ,
j j j s sj j

T
s c s s a ap a aσ σ

−

−ω ∝a a D X XN

�
(2.17)

where

(2) 1sin( )ˆ
ˆ ,

sin( )

s j

j s j
a ss jj

j
a

s aT
a

j N

t
a

t

ω

ω

 
 = =  
  

D X
X

X X


�

(2.18)

and

{ }(2) (2) (2) (2)
1 2, ,... ,ˆ , Nd d d=D

�
(2.19)

whose components are defined by (2)

1

ˆ cos( ) sin( ) ,
l l

k

i i c l i s l i lj
l

d d a t a tω ω δ
=

= − +∑
( 1,..., )i N= .

When 2σ  is unknown, Eq. (2.17) turns out to be

2 2 1ˆ( , , , , ) ( , ( ) , 1)
j j j s s sj j j

T
s s c s a a ap a a s Nσ

−

−ω ∝ −aa D X Xt
�

(2.20)

with

2 (2) (2)1 ˆ ˆˆ ˆ( ) ( ).
1s j s j sj j j

T
a s a s as a a

N
= − −

−
D X D X

�
(2.21)

To be able to use the theory of GS for the nonlinear parameter ω, we need to introduce 
some reasonable approximations to linearize the nonlinear model function ( , )if t ω  
with respect to ω  under the condition of the known amplitudes{ , }a ac s . This can be 
done by expanding it around ω̂  in a region where the posterior PDF is concentrated:

( )
1

ˆ ˆ ˆ( , ) cos( ) sin( )

ˆ ˆ ˆsin( ) cos( ) ( ),

l l

j j

k

i c l i s l i
l

c i j i s i j i j j

f t a t a t

a t t a t t

ω ω

ω ω ω ω
=

≅ +

+ − + −

∑ω

�

(2.22)

2 (1) (1)1 ˆ ˆˆ ˆ( ) ( )
1c j c j cj j j

T
a c a c as a a

N
= − −

−
D X D X
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where 2

ˆ 1

ˆ arg min ( ( , ))
N

j i i
i

d f t
ω

ω
∈ =

= −∑
ω

ω  and { }1 1 1ˆ ˆ,..., , , ,...,j j j kω ω ω ω ω− +=ω . Thus, 

the conditional PDF of jω  given that , , ,j c s− a a Dω  and 2σ  have already been 
known is a univariate Gaussian distribution:

2 2 1ˆ( , , , , ) ( , ( ) ),
j j

T
j j c s jp ω ωω σ ω σ −

− ∝a a D X XNω
�

(2.23)

where

1 1 1 1ˆ ˆsin( ) sin( )

.
ˆ ˆsin( ) sin( )

j j

j

j j

c j s j

c N j N s N j N

a t t a t t

a t t a t t
ω

ω ω

ω ω

− + 
 

=  
 − + 

X �

�

(2.24)

If 2σ  is unknown, Eq. (2.23) becomes is a univariate Student’s t distribution

( )2 2 1ˆ( , , , , ) , ( ) , 1 .j j j

T
j j c s jp s Nω ω ωω σ ω −

− ∝ −a a D X Xω t
�

(2.25)

with

� (2.26)

where �
1 2

ˆ ˆ ˆ{ ( ), ( ),..., ( )}Nd t d t d t=D whose components are defined by 

1

ˆ ˆ ˆ( ) cos( ) sin( )
l l

k

i c l i s l i
l

d t a t a tω ω
=

= +∑
A systematic form of GS algorithm [11, 12, 10] contains choosing initially ar-

bitrary starting values { }(0) (0) (0), ,c sa a ω  and drawing successively random samples 
from the full conditional distributions:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

1 1 0 0 0 0(1)

1 1 1 0 0 0(1)

1 1 1 1 1 0 0
1 1 1

( { ,...., , ,...., }, , , )

( ,{ ,...., , ,...., }, , )

( , ,{ ,...., , ,...., }, ), ( 1,..., ).

j j j j k j

j j j j j k

j j

c c c c c c s

s s c s s s s

j j c s j j k

a p a a a a a

a p a a a a a

p j kω ω ω ω ω ω

− +

− +

− +

ω

ω

=

a D

a D

a a D

∼

∼

∼
�

(2.27)

At each iteration of the Gibbs sampler, we cycle through the set of conditional dis-
tributions and draw one sample from each. When a sample is drawn from one con-
ditional distribution, the succeeding distributions are updated with the new value of 
that sample. At the ′K th  iteration we obtain the following drawings:

2 1 ˆ ˆ( ) ( ),
1j

Ts
Nω = − −

−
D D D D
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�

(2.28)

For a large enough K a ac
K

s
K, ,( ) ( )+ +1 1  and ( 1)Kω +  can be considered as random vari-

ables drawn from their posterior PDF distributions. Therefore we are able to gener-
ate samples of these posterior PDFs for each parameter. Using these samples, all 
of the estimates about the their corresponding can then be found, such as the most 
probable values for them, the mean value, the marginal variances with respect to 
the most probable value etc. When 2σ  is unknown, we do the same thing as above 
except that the random numbers are drawn from the Student’s t distribution.

2.5 � Cramer–Rao Lower Bound

Given an estimation problem, one may ask: What is the variance of the best possible 
unbiased estimator? The answer is given by the Cramer–Rao lower bound (CRLB) 
[24, 17], which we will study in this section and it provides a theoretical lower limit 
for variance of estimator. If we consider the parameter vector θ  and the signal to 
noise ratio (SNR), then the CRLB to the variance of unbiased estimator of the pa-
rameters θ for the signal model is determined in the form:

� (2.29)

where Fisher information matrix ( )θJ [24] is defined as an expectation of the sec-
ond derivatives of the log likelihood function with respect to θ:

2

2

 ∂ θ
θ = − ∂θ 

ln ( , )
( ) .

P I
E

D
J

�
(2.30)

for large N , ( )θJ  is a diagonal matrix and its inversion is straightforward. The 
diagonal elements of its inversion yield the lower bound on the variance of the esti-
mates asymptotically. When the noise is white Gaussian, we can use the an alterna-
tive form of CRLB which is easier than the general case in Eq. (2.30). In this case 
the Fisher information matrix becomes

2
1

1
σ =

∂ (θ) ∂ θ 
(θ) =  ∂θ ∂θ ∑

( )
.

TN
j j

j

f f
J

�
(2.31)

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1

1 1

1 1 1

1 1 1 1
, 1

1 1 1 1 1
1

( { ,...., , ,...., }, , , )
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a D

a D
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∼

∼
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� 1Var ( ) CRLB( ) ( ),−θ ≥ θ = θJθ
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2.6 � Computer Simulations

To demonstrate the proposed approach with examples which are used by previous 
researches [4, 11, 12, 38, 36, 37], we firstly created data samples according to a 
signal model with a single frequency:

d t t e ii i i i= + + =2 0 3 4 0 3 1 512cos( . ) sin( . ) ( ,..., )� (2.32)

Here i  runs in a symmetric time interval −T  and T (2T+1=N ) and e Ni ~ ( , )0 1 . We 
obtained noisy data samples (N = 512), shown in Fig. 2.1 and carried out Bayes-
ian analysis. The proposed method requires initial values for the parameters to 
start the iteration. Instead of choosing them randomly from a uniform distribution 
[16], we first performed a Fast Fourier Transformation (FFT) of the data and then 
chose the locations of the peaks in the power spectrum density [4, 16], which is 
a squared magnitude of FFT, as an initial estimate for the frequencies. Once, ini-
tial frequencies were obtained, we carried on calculating the coefficients ac  and 
as  as initial values for the amplitudes, respectively. The algorithm of GS, intro-
duced in the paper was coded in Mathematica programming language and run on 
a workstation in two cases where the standard deviation of noise is known or not. 
In the case where the deviation of noise is unknown, the output of the computer 
simulation is illustrated in Table 2.1. The estimated parameter values are quoted  

Fig. 2.1   Recovering signal from noisy data produced from a single harmonic frequency signal 
model
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as ( value) ± ( standard deviation) and used to regenerate the given signal model, 
shown in Fig. 2.1.

It can be seen that a single frequency and its corresponding amplitudes are re-
covered very well.

In order to determine its convergence, there are several diagnostic tests [5, 34] 
we can do, both visual and statistical, to see if the chain appears to be converged. 
One intuitive and easily implemented diagnostic tool is a trace plot (or history plot) 
[34] which is a plot of the iteration number against the value of the draw of the pa-
rameter. If it has converged, the trace plot will move up and down around the mode 
of the distribution and the distribution of the parameters settles down to the target 
posterior PDF from which statistical inferences about the parameters can be made. 
A clear sign of non-convergence occurs when we observe some trending in the trace 
plot. In this case we can see whether our chain gets stuck in certain areas of the pa-
rameter space, which indicates bad mixing. Figure 2.2 shows the scatter plots of the 
model parameters, 1ω , ac1

 and as1
, respectively and indicates that the GS samples 

are densely placed around the estimated values of these parameters.
In our second example, we consider a signal model with two close harmonic 

frequencies:

ω

Fig. 2.2   MCMC parameter iterations

 

Table 2.1   Computer simulations for a single harmonic frequency model
Parameters True values Estimated values

1ω 0.3 0.2999 ± 0.00009
ac1

2 2.041 ± 0.0623
as1

4 3.992 ± 0.0628
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d t t
t

i i i

i

= −
− −

0 5403 0 3 0 8415 0 3
0 4161 0 31 0 9

. cos( . ) . sin( . )
. cos( . ) . 0093 0 31sin( . ),ti�

(2.33)

In a similar way, we produced the same size data corrupted by the zero mean Gauss-
ian noise with 1σ = , ran Mathematica code again in the case where the deviation of 
noise is unknown and obtained the results shown in Table 2.2. It indicates that all 
values of the parameters within the calculated accuracy are clearly recovered.

On the other hand, Fig. 2.3 shows the power of the method for recovering the 
signal from the noisy data using the estimated values of the parameters of sinusoids.

In general, we consider a signal model with five harmonic frequencies

Table 2.2   Computer simulations for two closed harmonic frequency model
Parameters True values Estimated values

1ω 0.3 0.3001±0.0004

1ω 0.31 0.3108±0.0004
ac1

0.5403 0.4821±0.0645
ac2

− 0.4161 − 0.3852±0.0642
as1

− 0.8415 − 0.83±0.0644
as2

− 0.9093 − 0.9005±0.0647

Fig. 2.3   Recovering signals from noisy data produced from two closed harmonic frequency signal 
model

 



24 M. Cevri and D. Üstündag

d t
t t

i i i

i

= + + +
+ + +

 cos(0.1 t  1 2 0 15 2
5 0 3 3 2 0 31

) cos( . )
cos( . ) cos( . ii i it e+ + +4 3) cos( +5)�

(2.34)

The best estimates and the standard deviations with true values for all the param-
eters are tabulated in Table 2.3.

It is obvious that our results are closer to the true values and all the frequencies 
have been well resolved, even the third and fourth frequencies which are too closed 
are not to be separated by the Fourier power spectral density shown in Fig. 2.4.

These estimated values of parameters are used to regenerate the given signal 
model, shown in Fig. 2.4. In the case where the standard deviation of the noise is 
known, we obtained almost similar results.

The usual way the result from a spectral analysis is displayed is in the form of a 
power spectral density. Therefore, a comparison of Bayesian and Fourier spectral 
densities shown in Fig. 2.4 indicate separation of frequencies. DFT spectral density 
shows only four peaks among five frequencies but, Bayesian spectral density indi-
cates five frequencies with high accuracies.

Moreover, we initially assumed that the values of the random noise in data were 
drawn from the Gaussian density. Figure 2.5 shows the exact and estimated PDF of 
the random noise in data. It is seen that the estimated (dotted) PDF is closer to the 
true (solid) PDF and the histogram of the errors, which is known as nonparametric 
estimator is also much closer to its true probability density. These results demon-
strate how powerful Bayesian method is to separate noise from data.

Table 2.3   Computer simulations for five harmonic frequency signal model
Parameters True values Estimated values

1ω 0.1 0.09979 ± 0.0003

2ω 0.15 0.1498 ± 0.0002

3ω 0.3 0.2999 ± 0.0008

4ω 0.31 0.3095 ± 0.0002

5ω 1 1.000 ± 0.0001

1c
a 0.540302 0.6542 ± 0.0618

2ca − 0.832294 − 0.8582 ± 0.0620

3ca − 4.94996 − 4.756 ± 0.0624

4ca − 1.30729 − 1.4 ± 0.06225

5ca 0.850087 0.7496 ± 0.0629
as1

− 0.841471 − 0.9683 ± 0.0627
as2

− 1.81859 − 1.82 ± 0.0631

3sa − 0.7056 − 0.8228 ± 0.0624

4sa 1.5136 1.443 ± 0.0627

5sa 2.87677 2.8227 ± 0.0630
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The computational complexity of the GS algorithm is dependent on the length of 
data samples, a number of the parameters and few parameters that control conver-
gence of the GS such as iteration number and size of samples needed to summarize 
the marginal posterior distribution of each parameter. Figure 2.6 shows only CPU time 
of different simulations for a variety of number of data samples and parameters and 
indicates that an increase in these numbers causes larger consumption of CPU time.

In order to evaluate the performance of GS, computer simulations were per-
formed and compared with the classical estimators such as ML and DFT, as well as 
CRLBs of ω  and α 1 expressed in decibel (dB):

1
1 1

2 2
c sa aα = +

Fig. 2.4   Spectral analysis of multiple frequency model
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� (2.35)

which are a function of N and SNR. We fixed α  to 2  and properly scaled e ti( )  to 

obtain different SNRs, defined as 
2

2SNR 10
2

Log α
σ

= . Unless stated otherwise, the 

angular frequency is chosen as 0.3ω π=  and SNR = 20dB.

3

2

( ) 10 ( /12)
( ) 10 ( ) 10 (1/2 ),

CRLB SNR Log N
CRLB Log N Log

ω
α σ

+
+

�
�

Fig. 2.6   Different simula-
tion times with respect to 
number of parameters and 
data samples

 

Fig. 2.5   Comparison of exact and estimate probability densities of noise in data
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We generated N = 100  data samples from a single real tone frequency signal 
model in a variety of noise levels. After 50 independent trials under the same noise 
level, MSEs of the estimated frequency and amplitude were obtained for each meth-
od. Their logarithmic values were plotted with respect to SNR ratios, which vary 
from −10 to 30 dB and shown in Figs. 2.7 and 2.8. They indicate the MSE perfor-
mances for different estimators. The error curves in these figures were separated 
into two regions. The first one, on the left, shows that the estimator variances in-
crease stronger than the CRLB and contain smaller threshold effects in Fig. 2.8 than 
that of Fig. 2.7. The second one, on the out of left indicates that the errors follow the 
CRLB and the curves close to it. In Fig. 2.7, it can be seen that GS, ML and DFT 
estimators have threshold about −5, −4 and −2 dB of the SNR, respectively and 
follow nicely with the CRLB after −1 dB. As expected, with increasing SNR, MSE 
values approaches to the CRLB but, with decreasing SNR, they get worse from it. 
This implies the higher the SNR, the lower CRLB. Moreover, all three estimators 
have same characters at high SNRs. The above argument treats only with the case 
in which a size of data samples N = 100  is used for the estimation. Therefore, one 
may ask how to vary accuracy of the estimation with N . To answer it, we set up 
an experiment in which the algorithms of three methods were run for 50 simulated 
data with different lengths. In this case Figs. 2.9 and 2.10 show the MSE perfor-
mances of three estimators with different data length which varies from N = 25  to 
N = 300  at 0.3ω π=  under SNR = 20 dB.

Fig. 2.7   Mean square frequency error versus SNR at 0.3ω π=
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They indicate that the larger data samples give the lower MSEs of frequencies 
than that of amplitudes. This implies that all three estimators are more effective for 
the frequency estimation, rather than amplitude estimation. On the other hand, if the 
estimator reaches the CRLB, it is called efficient. Therefore an efficiency parameter 
[31], defined as

Fig. 2.9   Mean square 
frequency error versus N at 

0.3ω π=

 

Fig. 2.8   Mean square amplitude error versus SNR at a = 2
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100,i
i

i

CRLB
MSE

η = ×
�

(2.36)

indicates the closeness of estimators to the CRLB. Tables 2.4 and 2.5 contain the 
MSEs and the efficiency values η  for the frequency and amplitude estimation ob-
tained at the last states where SNR dB= 30 and N = 300.

It can be seen that the efficiency value for the GS at SNR dB= 30  and for 
N = 300  is much closer to the CRLB than that of the other methods in both fre-
quency and amplitude estimation. Thus, it is said that GS is more effective than the 
others for higher SNR and larger data sample.

Table 2.4   Performance comparison of Bayesian methods for frequency estimation in single fre-
quency signal model
SNR = 30 dB N = 300
Methods MSE(dB) Efficiency MSE(dB) Efficiency
GS − 79.175 100.041 − 83.484 100.045
ML − 79.079 100.162 − 82.850 100.81
DFT − 79.103 100.133 − 83.401 100.144
CRLB − 79.208 100 − 83.521 100

Table 2.5   Performance comparison of Bayesian methods for amplitude estimation in single fre-
quency signal model
SNR = 30 dB N = 300
Methods MSE(dB) Efficiency MSE(dB) Efficiency
GS − 46.9800 100.021 − 41.7415 100.046
ML − 45.6409 102.955 − 40.8652 102.192
DFT − 46.0871 101.958 − 40.8450 100.381
CRLB − 46.9897 100 − 41.7609 100

Fig. 2.10   Mean square 
amplitude error versus N at 
a = 2
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2.7 � Conclusions

In this chapter we have presented a numerical procedure, namely Gibbs sampling, 
based on Bayesian inference for estimating parameters of multiple sinusoids em-
bedded in noise. Overall results show that Bayesian approach can not only give 
us the best estimates for the parameters but, it can also tell us uncertainties associ-
ated with their estimated values. Experiments with synthetic signals show that GS 
performs frequency estimations with a high-resolution, according to the CRLB. On 
the other hand, it requires a maximization of full conditional marginal probability 
density of frequencies that can be difficult if SNR is low. Comparing with classical 
estimators such as ML and DFT, all three methods can give similar performance in 
higher SNRs and larger N.

The problem of detection of number of sinusoids which is a big part of spectral 
analysis is not included in this work but, Bayesian inference helps us to accomplish 
it. Therefore, it will deserve further investigations.
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Abstract  Based on Lyapunov stabilization theory, this paper proposes a propor-
tional plus integral time-delayed controller to stabilize unstable equilibrium points 
(UPOs) embedded in chaotic attractors. The criterion is successfully applied to 
the classic Chua’s circuit. Theoretical analysis and numerical simulation show the 
effectiveness of this controller.

Keywords  Chaotic systems · Proportional plus integral time-delayed controller · 
Taylor approximation

3.1 � Introduction

Dynamic chaos is a very interesting non-linear effect which has been intensively 
studied in science and engineering. The effect is very common, it has been detected 
in a large number of dynamic systems of various physical nature. However, this 
effect is usually irregular, complex and undesirable in practice, and it restricts the 
operating range of many electronic and mechanic devices. Recently, controlling this 
kind of complex dynamical systems has attracted a great deal of attention within 
the engineering society. Chaos control, in a broader sense, can be divided into two 
categories: one is to suppress the chaotic dynamical behavior [1–12] and the other 
is to generate or enhance chaos in nonlinear systems [13, 14]. Nowadays, different 
techniques and methods have been proposed to achieve chaos control. Among many 
methods, the time delayed feedback control DFC method [1]. This method utilizes 
the difference between the states and the delayed states as an input control provided 
that the delayed time is determined as the period of the unstable periodic orbits UPO 
to be stabilized. Furthermore [2, 3] also proposed a DFC based controller to stabi-
lize the UPOs by virtue of the iterative learning control strategy. A time-delayed 
integrity controller is proposed in [4] to ensure the stabilization of UPOs in the 
case of sensor failures. Sliding mode control of uncertain unified chaotic systems is 
proposed in [5] based on a proportional plus integral sliding surface dislocated and 
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enhancing feedback control [6, 7] which multiply the independent variable of the 
system function with coefficient and take the result as feedback gain (the same coef-
ficient for all states) based on Jacobi matrix, speed feedback control [6–8] multiply 
the derivative of independent variable with coefficient. And other feedback control 
techniques [9–12]. At the same time, chaos synchronization also is an important 
topic, and has obtained a lot of availability results [15–19].

The aim of this paper is to proposed new scheme of time-delayed controller 
based on proportional plus integral (PI) to stabilize unstable equilibrium points 
(UPOs) embedded in chaotic attractors based on Lyapunov stabilization theory.

The reset of the letter is organized as follows. In Sect. 3.2 the control problem is 
stated. In Sect. 3.3 PI time-delayed controller is proposed to stabilize UPOs using 
Lyapunov stabilization theory. The proposed controller is applied with numerical 
simulation to the classic Chua’s circuit in Sect. 3.4. Finally, some conclusions are 
given in Sect. 3.5.

3.2 � Problem Statement

Considering a chaotic system with state equation in the form

� (3.1)

Where x Rn∈  is the state vector, A Rnxn∈  is constant matrix and g x( )  is a nonlinear 
vector on the state vector x.

Assuming that

� (3.2)

For a bounded matrix M x x, �  in which the elements are dependent on x and �x. Most 
of the chaotic systems can be described by Eqs. (3.1 and 3.2).

General speaking, chaotic systems can be decomposed into a linear part and 
nonlinear function vector part.

Among many chaotic systems,
Lorenz system [14]

�

(3.3)

�x Ax g x= + ( )

g x g x M x xx x( ) ( ) ( ),− = −� ��

0 0
1 0

0 0

x x
y r y xz
z z xy

σ σ

ρ

−       
       = − + −       
       −       

�
�
�
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RÖssler system [14]

�

(3.4)

Chua system [14]

�

(3.5)

With

�
(3.6)

Have the same form as Eq. (3.1).
Our problem undertaken here is to construct a controller

u t u t u t u t Rn
T n( ) ( ), ( ),....., ( )= ( ) ∈ ×

1 2
1

To stabilize the UPOs within chaotic attractors. Therefore the controlled chaotic 
system can be described by

� (3.7)

Suppose that the UPO to be stabilized is T-periodic, i.e.

�
(3.8)

Defining the state error as

The error dynamics is

Based on Eq. (3.2)

�
(3.9)

0 1 1 0
1 0 0
0 0

x x
y a y
z b z c xz

− −       
       = +       
       − +       

�
�
�

0 ( )
1 1 1 0
0 0 0

x x f x
y y
z z

α α α

β

−       
       = − +       
       −       

�
�
�

f x bx a b x x( ) ( )( )= + − + − −
1
2

1 1

�x t Ax t g x t u t( ) ( ) ( ( )) ( )= + +

�x t T Ax t T g x t T( ) ( ) ( ( ))− = − + −

e t x t x t T( ) ( ) ( )= − −

�e t Ae t g x t g x t T u t( ) ( ) ( ( )) ( ( )) ( )= + − − +

�e t A M e t u tx t x t T( ) ( ) ( ) ( )( ), ( )= + +−
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With the help of the controller u( t), the problem of stabilization of the T-periodic 
orbit becomes the problem of stabilization of Eq. (3.9) to either a periodic or equi-
librium points.

3.3 � Controller Design

A proportional plus integral time-delayed controller is proposed to stabilize UPOs 
embedded in chaotic attractors.

Controller u( t) is chosen as

�

(3.10)

Where kp and ki are diagonal matrices with diagonal gain elements 
k k k k k kp p pn i i in1 2 1 2, ,....., , ,.....,and respectively.

Theorem 1  if controller u( t) is constructed as Eq.  (3.10), then the error system 
Eq. (3.9) is globally exponentially stable for T << 1. if there exists a positive defi-
nite symmetric constant matrix P such that

� (3.11)

Where µ denotes a negative constant, and I is the identity matrix

Proof  For T x t T x t x t T o t<< − = − +1 2, ( ) ( ) ( ) ( )� , then by Taylor approximation, we 
have x t x t T x t T( ) ( ) ( )− − = � , so the controller u( t) of Eq. (3.10) becomes

�
(3.12)

For t t2 = and t t T1 = −

�

(3.13)

By constructing (3.13) into (3.9)

� (3.14)

Now choose the Lyapunov function

�
(3.15)
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p i

p i
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tt)
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Where P is a positive definite symmetric constant matrix. Then its derivative is

(3.16)

Where ⋅  denotes the Euclidean norm.

3.4 � Numerical Simulation

To demonstrate the use of chaos control criterion proposed herein, Chua’s circuit is 
considered as an example of chaotic systems.

3.4.1 � Chua’s Circuit

Chua’s circuit can be described by (5) and (6), where 0, 0, 0, (.)a b fα β> > < <  
is a piecewise linear function. Chua’s circuit exhibits a chaotic behavior for 

9.78, 14.97, 1.31 and 0.75a bα β= = = − = −  as shown in Fig. 3.1, and in Eq. (3.6), 
we have

� (3.17)

Where ( ), ( )x t x t Tk −  is dependent on x( t) and x t T( )− , and varies in the interval [ , ]a b  
for t ≥ 0  that is, kx t x t T( ), ( )−  is bounded by the condition of a k bx t x t T≤ ≤ <−( ), ( ) 0  
graphical representation of f( x) in [14].
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2
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T T

T T
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− −
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= + − − + + − −
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Fig 3.1   The attractors of Chua’s circuit
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System (1.5) has the same form of Eq. (3.1) with

Consider

�

(3.18)
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( ), ( )

( ), ( )

0 0
0 0 0
0 0 0

x t x t T

x t x t T

k
M

α −

−

− 
 =  
  

From Eqs. (3.14 and 3.18), we get

�
(3.19)

Choosing
�

(3.20)

where p1, p2 and p3 are positive constants, then

�

(3.21)

0 ( ( ))
1 1 1 , ( ( )) 0
0 0 0

f x t
A g x t

α α α

β

− −   
   = − =   
   −   

[ ]
( ), ( )

( ), ( )

( ), ( )

( ( )) ( ( )) ( ( ( ) ( ( )) 0 0

( ( ) ( )) 0 0

0 0 ( ) ( )
= 0 0 0 ( ) ( ) ( )

0 0 0 ( ) ( )

T

T

x t x t T

x t x t T

x t x t T

g x t g x t T f x t f x t T

k x t x t T

k x t x t T
y t y t T M e t
z t z t T

α

α

α
−

−

−

− − = − − −

 = − − − 
− − −   

   − − =   
   − −   

( ), ( )

1 1 ( ), ( )

2 2

3 3

0
1 1 1
0

x t x t T p i

p i x t x t T

p i

p i

A M k Tk

k Tk k
k Tk

k Tk

α α α

β

−

−

+ − −

 − − − −
 = − − − 
 − − − 

1

2

3

0 0
0 0
0 0

p
P p

p

 
 =  
  

( ), ( ) ( ), ( )

1 1 1 ( ), ( ) 1 2
1

1 2 2 2 2 2 3
2

2 3 3 3 3
3

( ) ( )

2 0
2

2 1
2

0 2
2

T
x t x t T p i x t x t T p i

p i x t x t T

p i

p i

A M k Tk P P A M k Tk I

p k Tk k p p
p

p p p k Tk p p
p

p p p k Tk
p

µ

µα α α

µα β

µβ

− −

−

+ − − + + − − −

  
− + + + + +    

   = + − + + + −   
 
  

− − + +     



393  Controlling Chaotic Systems Via Time-Delayed Control

In Eq. (3.21), we have

�
(3.22)

�

(3.23)
�

(3.24)

Assuming that 1 2 3 2 30, 0, 0 and p p β∆ < ∆ > ∆ < =  for simplicity we obtain
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�

(3.25)

Since ( ), ( )0, 0, 0x t x t Ta k bα β −> > ≤ ≤ < , we know that, if we choose suitable 
k k k k k kp p p i i i1 2 3 1 2 3, , , , ,  such that
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then (3.11) will be satisfied
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kp3  = 0, k k ki i i1 2 320 40 0= = =, ,  to satisfy (3.26). Figure 3.2 show the effectiveness 
of the proposed controller which is activated from t = 20  s.

3.5 � Conclusions

In this paper, proportional plus integral time-delayed feedback scheme for chaos 
control based on Lyapunov stabilization theory is proposed. In particular, we can 
find many unstable periodic orbits and stabilized them through PI time-delayed 
feedback control. Theoretical analysis and numerical simulation for classic Chua’s 
circuit show the effectiveness of this technique.
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Abstract  In this article a multilayer parking system of size n = 3 is studied. We 
prove that the asymptotic limit of the particle density in the center approaches a 
maximum of 1/2 in higher layers. This means a significant increase of capacity 
compared to the first layer where this value is 1/3. This is remarkable because the 
process is solely driven by randomness. We conjecture that this result applies to all 
finite parking systems with n ≥ 2.

Keywords  Car parking problem · Multi-layer car parking · Particle deposition · 
Random sequential adsorption

4.1 � Introduction

Suppose we have a lattice L(x, r) consisting of sites (x, r) with positions x ∈ {−2, −1, 
0, 1, 2} and heights r ∈ N. At each position particles arrive according to indepen-
dent Poisson processes Nt(x). We impose boundary conditions Nt(−2) = Nt(2) = 0. 
The particles pile up across the layers but they are not allowed to “interfere” with 
particles earlier deposited in neighboring sites at the same layer. In other words, 
the horizontal distance between two particles has to be at least 2. Furthermore, the 
model has no screening i.e. the particles are always deposited in the lowest possible 
layer (see Fig. 4.1).

Our model can be formulated more precisely in the following way.

1.	 The state-space is F L N: ( , ){ , }= + 0 1

2.	 The process κt (x, r) = 1 if there is a particle at (x, r) at time t and 0 otherwise.
3.	 When a particle arrives at site x at time t, it will be deposited at ht (x) : = min 

{r: κt (y, r) = 0, ∀y ∈ Nx}, where neighborhood set Nx consists of site x and the sites 
with distance 1 from it.
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The density ρt (x, r) of a site at (x, r) ∈ L is defined as the expectation of the occupan-
cy of that site at time t, or ρt (x, r): = E κt (x, r). The end-density of a site is ρ∞ (x, r).

Our models can be viewed either as particle deposition, car parking [1, 2], or as 
models for random sequential adsorption [3]. In this article we will use the termi-
nology of particle deposition. We focus on the densities of the sites in the center, i.e. 
those with coordinates (0, r), r ∈ N+. The majority of the existing literature in which 
discrete parking is analytically treated is about monolayer models [2, 4, 5], while 
most literature about multi-layer models is based on simulations [6, 7]. However, 
in [8] it was shown that in an infinite parking system the second layer has a higher 
capacity than the first layer and in [9] time-dependent density formulas for the first 
few layers of small finite parking systems are calculated.

In this paper we continue the work on calculating the particle densities in a small 
multi-layer parking model. We hope our result will lead to further insights also in 
systems with bigger sizes.

4.2 � Particle Densities in the Case of Deposition at Three 
Vertices on an Interval

In this section we will analytically calculate the end-densities in the case of a system 
with three vertices.

Theorem 4.1: Consider a multilayer parking system with three vertices. The aver-
age density at vertex 0 at height h + 1 ≥ 1 and at time t obeys the following formula

�

(4.1)

( )( )( ) ( ) ( )( )
( )( )( ) ( ) ( )( )

1 11(h 1)

0 0

1 11 3

0 0 0 0
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…

4

3
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1 X X

r

-2        -1          0               1          2
x

Fig. 4.1   Parking lattice consisting of three positions where parking is allowed. Three particles 
have already arrived consecutively at positions 0, −1, and 0. The next particle will be deposited 
either in A, B, or C depending on the position (−1, 0, or 1 respectively) where it arrives. The ‘×’ 
symbols at −2 and 2 indicate that at those x-positions no particles arrive
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4.2.1 � Proof of Theorem 4.1

The proof of this result is based on the fact that a new particle that arrives at x at 
time t will always be deposited in layer ht (x) + 1. Therefore the derivative of the 
density at a height y + 1 at time t is equal to the probability that Ht (x) = y.

For the height stochastic variable Ht (0) we can state that
Lemma 4.1:

H N N Nt t t t( ) ( ) ( ( ), ( ))0 0 1 1= + −max� (4.2)

where Nt (x) is the number of Poisson arrivals at site x at time t.
Proof:
Recall from the Introduction that the height Ht (0) at position 0 is defined as the 

total number of layers containing one or two particles. So, we may write
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(4.3)

The value of the last term may be written as

1
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Or more simply

k r k r N Nt t
r

t t( , ) ( , ) min ( ), ( )− = −( )
=

∞

∑ 1 1 1 1
1�

(4.5)

Combining this result with Eq. 4.3 completes the proof of the lemma.
The next step is to calculate the probability Pr(Ht (0) = h). Therefore we first need 

to derive the density of the term max(Nt (−1), Nt (1)).
Lemma 4.2:
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Proof:
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The combination of lemma 4.1 and lemma 4.2 provides us a useful expression for 
the height. Since the probability that Ht(x) = y equals the derivative of the density of 
the site at height y + 1 at time t we can continue as follows.
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Integrating this expression results in the time-dependent densities ρt
h + 1 for layer 

h + 1. So, we have
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Now we use the identity
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This may be rewritten as (with r = h + 1).
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For the first few layers Theorem 4.1 provides:
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1 1
3 3
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(4.13)

A plot of these functions is shown in Fig. 4.2. Confer [9] where the first three layers 
were calculated using a different approach.

4.3 � Calculation of the End-Densities

Close inspection of Eq. 4.13 reveals that as time goes to infinity the densities of 
the first four layers tend towards 1/3, 11/27, 35/81, and 971/2187 respectively. Cal-
culating end-densities for higher layers can be done directly from Theorem 4.1. 

Fig. 4.2   Particle densities at the sites (0, r) as a function of time in the cases r is 1, 2, 3, and 4 
according to Eq. 4.13

 



4  Analytical Results for a Small Multiple-Layer Parking System 49

See Table 4.1 for the exact values of the end-densities of the first 10 layers and its 
decimal approximations.

A plot of these constants for the first 100 layers is shown in Fig. 4.3. It can be 
seen clearly that the graph of these end-densities appears to approach the value of 
1/2. In this section we will prove that this is indeed the case.

Define ρ(r): = 
t
lim
→∞

 ρt (0, r). Then we have the following result.
Theorem 4.2: The density at high layers converges in time to the value

( ) 1lim
2

r
tr

ρ
→∞

=
�

(4.14)

To prove this we can take the result of Theorem 4.1 and focus on the constant term.

Table 4.1   End-densities calculated using Theorem 4.1
Layer End-density Approximately
1 1/3 0.3333
2 11/27 0.4074
3 35/81 0.4321
4 971/2187 0.4440
5 8881/19683 0.4512
6 80811/177147 0.4562
7 733209/1594323 0.4599
8 6640491/14348907 0.4628
9 60067809/129140163 0.4651
10 542880971/1162261467 0.4671

Fig. 4.3   End-densities as a function of the layer created by 107 simulations. The analytic results 
from Table 4.1 are plotted as well to demonstrate its concurrence
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We may rewrite this more conveniently as
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Where we used the notation r = h + 1 ∈ N + , Xn, p ~ B(n, p) or Pr( , )X p kn =  

=






− −n
k

p pn k k( )1 , and also Yr, p ~ NB(r, p) or Pr( ) ( ),Y k
r k

k
p pr p

r k= =
+ −





−
1

1 . 

We will treat the first and second term of Eq.  4.16 separately in the following 
lemmas.

The first term of Eq. 4.16 converges to zero when r → ∞, or
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This represents the probability that the number of successes (with Pr(Success) = 1/3) 
after r failures equals the number of successes in a Binomial experiment of r − 1 tri-
als and Pr(Success) =  1

2. When we let r → ∞ both X r − 1, 1/2 and Y r, 1/3 will converge 
to continuous Gaussian distributions, so that this probability vanishes.

Lemma 4.3: The second term of Eq. 4.16 converges to 1
2, or
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Now we will use the symmetry of the negative binomial distribution for large r. 
Note that Pr(Y r, p < r − k) = Pr(Y r, p > k) in this case where p = 1/3.

�

(4.21)

4.3.1 � Alternative Proof

We note however that this result also follows from the following consideration. 
After a while the differences in height between position −1 and 1 increase to the 
order of the square root of the total number of dropped particles. This follows by 
application of the Central Limit Theorem to Kt : = |Nt (−1) – Nt (1)|.

The probability that a new particle drops at a side vertex happens with probabil-
ity 2/3. So, the probability that this particle raises the height equals 1/2 times 2/3, 
which is 1/3. This equals the probability that a particle drops on the center vertex, by 
which the height always increases. For 1/3 of the dropped particles the height does 
not increase. Thus half of the newly filled layers contain an occupied center vertex, 
and half will contain two occupied side vertices, which implies density one half.

4.3.2 � Larger Parking Systems

The calculation of (end-)densities in larger systems is much more complicated. It is 
always possible to calculate the densities on the first layer [4] or the first few lay-
ers [9] but going beyond the first few layers in systems with bigger sizes probably 
requires more advanced methods.

However, it is interesting to ask oneself whether the behavior of the small system 
demonstrated in this article does also appear in larger systems. Do systems of bigger 
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sizes also generally have higher end-densities in higher layers than in lower layers, 
and if so, do those end-densities ultimately approach the maximum value of ½ as 
well?

We conjecture that this is the case for all finite-sized systems. Although we 
are not able to give hard evidence for this we can provide some simulation results 
(Fig. 4.4) supporting our view and justifying further research.

4.4 � Conclusions

In this paper we introduced a parking system consisting of three positions. The 
formula for the time dependent densities of the center position for all layers was 
analytically derived.

Although similar work has been done on the model with screening (see [10, 11]) 
to our knowledge this is the first time that densities in a multi-layer particle deposi-
tion model without screening were calculated analytically.

Fig. 4.4   The fact that the end-densities of the sites in the center converge to 1/2 in the case of 
three positions is not unique. Simulation results of bigger systems suggest that this behavior is not 
uncommon for finite-sized systems. However, it appears that the bigger the system, the more lay-
ers it takes to approach the limit of 1/2
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We paid special attention to the densities of the center sites when t→∞, the so 
called end-densities. We proved that they increase as a function of the layer number 
and eventually approach the density 1/2.

We showed that in the case of a small system with three positions it can be easily 
understood why the end-density converges to this value. But this is not the case with 
larger systems although our simulation results do suggest similar end-density be-
havior. Although not yet fully understood, it thus seems that these randomly driven 
finite parking systems tend to use the parking space of the center positions more 
efficiently over time.
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Abstract  This study investigates the pulsatile simulations of non_Newtonian flows 
in a stenotic vessel. Four non-Newtonian blood models, namely the Power Law, 
Casson, Carreau and the Generalized Power Law, as well as the Newtonian model 
of blood viscosity, are used to investigate the flow effects induced by these different 
blood constitutive equations. The aim of this study are three fold: firstly, to inves-
tigate the variation in wall shear stress in an artery with a stenosis at different flow 
rates and degrees of severity; secondly, to compare the various blood models and 
hence quantify the differences between the models and judge their significance and 
lastly, to determine whether the use of the Newtonian blood model is appropriate 
over a wide range of shear rates.

Keywords  Fluid flows · Blood · Stenosis · Non-Newtonian · Pulsatile · Simulations

5.1 � Introduction

This paper presents the second of a two-part study on the numerical simulations of 
blood flow in a representative model of an arterial stenosis in the common carotid 
artery for various degree of severity using five blood rheological models.

The partial obstruction of arteries due to a stenosis is one of the most frequent 
anormalies in blood circulation. It is well known that, once such an obstruction is 
formed, the blood flow is significantly altered and fluid dynamic factors such as 
velocity, pressure or shear stress play an important role as the stenosis continues 
to develop [1]. So far, the specific role of these factors is not yet well understood. 
The ability to accurately describe the flow through a stenosed vessel would pro-
vide the possibility of diagnosing these diseases in its earlier stages. Furthermore, 
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the presence of the anomaly itself may produce flow disturbances such as vortex 
formation, which has been reported as a contributing factor to atherogenesis and 
thrombogenesis [2].

The aim of this study are three fold: firstly, to investigate the variation in wall 
shear stress in an artery with a stenosis at different flow rates and degrees of sever-
ity; secondly, to compare the various blood models and hence quantify the dif-
ferences between the models and judge their significance and lastly, to determine 
whether the use of the Newtonian blood model is appropriate over a wide range of 
shear rates.

5.2 � Analysis and Modelling

5.2.1 � Governing Equations

The blood flow is assumed to be laminar and incompressible and therefore the Na-
vier-Stokes equations for 3D incompressible flow are given by

∇ =·V 0� (5.1)

· ·V V V p
t

ρ τ∂ + ∇ = −∇ − ∇  ∂
� (5.2)

where V is the 3D velocity vector, p is the pressure, ρ is th density and τ the shear 
stress term.

Four different non-Newtonian blood flow models as well as the simple New-
tonian model are considered in this study. The effects of these models on the flow 
field and the wall shear stress in the vicinity of a stenosis are examined. These 
models are given below [3].

5.2.1.1 � Blood Models

a.	 Newtonian model

0.00345 ·Pa sµ =� (5.3)

b.	 Power Law Model

1
0 ( )nµ µ γ −= �� (5.4)
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c.	 Casson Model

2

yτ η γ
µ

γ

 + =
�

�� (5.5)

d.	 Carreau Model

( 1)/22
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e.	 Generalized Power Law Model
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5.2.1.2 � Geometry

The flow geometry comprises a tube of diameter D and can be divided into three 
regions, the inlet, the deformed and the outlet region. In the case of the stenosis, the 
lengths of these regions are 4D, 2D and 20D, respectively. The radius of the unde-

formed inlet and outlet is R D
0 2

= .

In the case of the stenosis, the radius of the constricted region is given by

2
0 min

0
0

1 cos( / )1 0 2
2

R R x DR R x D
R

π 
 
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 



− − = − ≤ ≤     
� (5.8)

where Rmin  is the minimum radius at the centre of the stenosis. In this study, three 
different degrees of stenosis were used, 20, 50 and 80 %.
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5.2.1.3 � Assumptions and Boundary Conditions

It is assumed that the arterial walls are rigid and no-slip condition is imposed at the 
walls. At the outlet, stress-free conditions are applied and the pressure is set to zero. 
Finally, the velocity profile at the inlet is regarded to be that of fully developed flow 
in a straight tube and can be derived analytically for both the Newtonian and the 
Power Law fluids [4]. The forms are

2

0
0

 1 0ru u r R
R

  
 = − ≤ ≤    

� (5.9)

where u is the velocity component in the x  direction for the Newtonian flow and
1

0
0

 3 1 1 0
1

n
nn ru u r R

n R

+  +   = − ≤ ≤     +  
  � (5.10)

for the non-Newtonian flow. In transient flow, the pulsatile flow at the inlet is given 
by a time varying forcing function given in Fig. 5.1 below. This forcing function 
was scaled to yield a maximum inflow velocity of u  with a heart rate of approxi-
mately 60 beats per minute.

5.2.1.4 � Solution Methodology

The governing equations are highly nonlinear and must be solved numerically us-
ing techniques of computational fluid dynamics. In this study, these equations are 
solved using the finite element method as implemented by COMSOL (COMSOL 
Inc., Los Angeles, CA). The flow geometries for the stenosis was first created using 
Matlab. Then a finite element mesh was placed on this geometry. Briefly, an inlet 
plane of the artery is meshed in 2D using triangles and this mesh is extruded along 
the centerline of the artery to create a 3D mesh consisting of hexadrel elements. The 
mesh used for all computations consisted of 9,708 elements and 15,048 nodes for 
the stenosis.

The governing equations were solved completely using the boundary conditions 
for fully developed flow (5.9) and (5.10) at the inlet along with the pulsatile forcing 
function for the transient case.

5.3 � Results and Discussion

Transient simulations were performed using all five models given above. Three 
different degrees of stenosis were used namely 20, 50 and 80 %.
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Figure 5.2 below shows that all of the non-Newtonian models considered here 
except the Power Law model produce a higher pressure difference than the New-
tonian model. Specifically, the highest pressure drop is induced by the Generalized 
Power Law model and the lowest by the Power Law model. Similar pattern in pres-
sure differences are obtained at higher flow rates.

The distribution of the wall shear stress (WSS) is one of the most important 
hemodynamic parameter due to its direct relevance in artherosclerosis formation. 
Figure 5.3 shows the distributions of maximum shear stress for various degrees of 
severity of the stenosis for all models. It is evident that WSS increases with increas-
ing severity. All models show close agreement with the Newtonian model except 
for the Power Law model. At 50 % stenosis, the WSS predicted by this model is 
significantly lower than the rest. Figure 5.4 shows the distribution of WSS along 
the geometry at various times. Maximum shear stresses are reached just before the 
throat of the stenosis. The magnitude of this value increases with higher flow rates. 
This peak is followed by a negative value indicating the presence of backflow. Fur-
ther downstream, the WSS steadily regains its undisturbed value.

Fig. 5.1   Physiological flow waveform in the carotid artery used to drive the inlet velocity bound-
ary conditio as a function of time
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The Power Law model gives a much lower max
Wτ  value because it exhibits a low-

er viscosity at the throat of the stenosis where the shear stress is high. As the flow 
rate increases, these WSS differences from various models become more prominent 
indicating significant differences in model behaviour.

Fig. 5.3   Wall Shear stress versus percent stenosis for various models, with 0.11196 m/s inflow 
rate

 

Fig. 5.2   Pressure difference versus flow rate
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Transient simulations were performed using the Generalized Power Law Model 
for the stenosis and each simulation was from t  = 0 to 10.0 s, yielding a heart rate of 
approximately 60 beats per minute.

Figure 5.5 shows the distribution of maximum WSS with shear rate in a stenosis. 
Again, WSS increases with increasing shear rate with the Power Law model deviat-
ing significantly from the rest.

The maximum wall shear stress occurs in the middle of the cycle corresponding 
to the maximum inflow velocity. The distribution of shear rates in a 50 % stenosed 
artery is shown in Fig. 5.6. The regions of high shear are confined to the throat of 
the stenosis and immediately downstream of the stenosis.

The maximum and minimum WSS values are in close agreement for the Gener-
alized Power Law, Carreau and the Newtonian models. The Power Law model gives 
a much lower value because it exhibits a lower viscosity at the throat of the stenosis 
where the shear stress is high. As the flow rate increases, these WSS differences 
from the first three models become less prominent indicating insignificant differ-
ences in model behavior at high shear rates.

Similar result are obtained when the diameter of the common carotid artery is 
assumed to be as large as 0.8 cm. The maximum wall shear stress and shear rates 

Fig. 5.4   Wall shear stress for 50 % stenosis pulsatile Generalized Power Law model at various 
time intervals, with 0.11196 m/s max inflow rate
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values are lower when compared to the 0.64 diameter artery but the differences in 
model behaviour are analogous.

It is evident from these results that the Power Law model tends to break down 
at higher shear rates in that it reduces the viscosity of the blood to levels below the 
Newtonian level which theoretically should not be possible. This is noticeable in the 
80 % stenosed model. The pressure difference predicted by this model is less than 

Fig. 5.6   Shear rate distribution in a 50 % stenosed vessel

 

Fig. 5.5   WSS versus shear rate in a stenosis
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the Newtonian model, indicating a lower than Newtonian viscosity. This method 
also show very low wall shear stress levels, dropping below Newtonian levels at 
fairly low shear rates, for example at the medium flow rate at 50 % stenosed, the 
WSS levels are less than Newtonian levels. This model is relatively easy to use but 
predict decreasing viscosity at higher strain, contrary to the generally accepted ob-
servation that blood behaves as a Newtonian fluid for strains above 100s–1.

At low shear rates the Casson model shows near Newtonian behavior with the 
behavior becoming less Newtonian as the shear rate increases for a period, then 
reverting to near Newtonian behavior as the rate continues to increase. This model 
takes the haematocrit factor H (the volume fraction of red blood cells in whole 
blood) into account, with the parameters given (obtained from data fitting) suggest-
ing a value of H of 37 %. However, it is reported that this yields a limiting viscosity 
at high shear slightly above the usual Newtonian value. The results obtained here 
suggest the same with WSS values above the Newtonian values at low and very 
high shear rates. This model appears to be fairly accurate at high shear rates, but not 
at low shear rates.

The Carreau model produces values that are in close agreement with that of the 
Newtonian model at shear rates well above 100s–1. Our results indicate this to be 
the case. Both the WSS and the pressure difference tends to the Newtonian values 
at shear rates in excess of 1,000s−1. This model by design reverts to Newtonian 
numbers as shear rates approach infinity. The basis for this model is the constant 
Newtonian viscosity, modified to non-Newtonian such that the modification tends 
to zero as the limit of the shear rate goes to infinity.

Finally, the Generalized Power Law model gave results that are in closest agree-
ment with the Newtonian values at mid-range and high shear rates. At low shear 
rates, this model gives values that are close to that of the Power Law and the Carreau 
models. While the Power Law model breaks down at high shear, our results show 
a close agreement between the Generalized Power Law and the Carreau models 
even at high shear rates as shown in Fig. 5.5. The Generalized Power Law model is 
widely accepted as a general model for non-Newtonian blood viscosity. It includes 
the Power Law model at low shear rate and the Newtonian model at mid-range and 
high shear rates. There is also good agreement between the Generalized Power Law 
and the Carreau model for low shear rates.

5.4 � Conclusions

A study of the effects of modeling blood flow through a stenosis using five dif-
ferent blood rheological models is presented. The flow field and wall shear stress 
distributions produced by each model are investigated for various flow rates and 
degrees of abnormality. The results show that there are significant differences be-
tween simulating blood as a Newtonian or non- Newtonian fluid. It is found that the 
Newtonian model is a good approximation in regions of mid-range to high shear but 
the Generalized Power Law model provides a better approximation of wall shear 
stress at low shear.
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These conclusions are presented under the assumption that the arterial walls are 
rigid and zero pressure is assumed at the outlet. A more realistic simulation would 
include elastic walls and incorporate the effects of upstream and downstream parts 
of the circulatory system into the boundary conditions. This is a long term objective 
of this study.
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Abstract  In this chapter, we will propose an analysis method of the descriptor sys-
tems using the regularizing polynomial matrix. The regularizing matrix compen-
sates the singularity of the descriptor systems, like an interactor matrix. We will 
show that the degree of the regularizing polynomial matrix presents a structure 
aspect of a given descriptor system.

Keywords  Linear multivariable systems · Descriptor systems · Polynomial matrix · 
Regularizing matrix

6.1 � Introduction

The descriptor systems [1] are convenient and natural modeling process for the 
practical plants. The state space method [2] and the geometric approach [3] are used 
to study the structure properties and to design the controllers. Comparing these 
methods, there are not so many literatures using the polynomial matrix approach 
[4]. Since the impulsive modes in the descriptor systems cause the improper transfer 
function, it is natural to to discuss the treatment of the improper transfer function 
using the polynomial matrices.

In this chapter, we will propose an analysis method of the descriptor systems 
using the regularizing polynomial matrix. The regularizing polynomial matrix com-
pensates the singularity of the descriptor systems, like an interactor matrix for ra-
tional function matrices [5]. In fact, the regularizing matrix is almost equivalent to 
an interactor. Although some derivation methods of the interactor were proposed, 
almost of all were complex. Mutoh and Ortege proposed the algebraic equation, 
which the coefficient matrices of the interactor should be satisfied [6]. But the so-
lution method in [6] was not adequate for computer calculations. The authors pro-
posed a solution of the equation in [6] using Moore-Penrose pseudo-inverse [7]. 
Since a function to calculate the pseudo-inverse is available in some standard soft-
wares for control engineering, the method is adequate for computer calculations.
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We will show that the degree of the regularizing polynomial matrix presents a 
structural aspect of a given descriptor system. That is, there exists the regularizing 
matrix of degree one if a given system has no impulsive mode. There exists the 
regularizing matrix of degree two if a given system has some impulsive modes. We 
will also discuss a condition for the impulsive controllability of the descriptor sys-
tems using the analysis. We will also discuss the feedback controller design which 
removes the impulsive modes of the descriptor systems.

6.2 � Regularizing Polynomial Matrix

Consider the following q m×  (q m≤ ) polynomial matrix D s( ):

�
(6.1)

where

0 1

( ) 1
m

T

I

D D D

S s s s

µ

µ µ

 =  

 =  

�

�

D

�

(6.2)

D s( )  is called regular if Dµ  has full rank q. The problem considered in this Sect is 
to find a q q×  nonsingular polynomial matrix L s( )  which makes µ -th degree’s 
coefficient matrix of L s D s( ) ( ) be full rank and the coefficient matrices which de-
grees are greater than µ  be zeros. L s( )  is called a regularizing polynomial matrix 
of D s( ). The existence of such matrix is clear by considering the interactor for 

1( )/D s sµ+ . In the following, we will consider the direct derivation of L s( )  not using 
the interactor.

Assume that L s( )  has the following structure

[ ]
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L =� (6.3)

where the integer w will be defined later. Then, L s D s( ) ( )  can be written by

�

(6.4)
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where 0wDµ − =  if wµ < . Assume that the µ -th degree’s coefficient matrix of 
L s D s( ) ( )  is K q m∈ℜ × . If L s( )  is the regularizing matrix, then the following equal-
ity must hold from the above relation:

� (6.5)

where

�

(6.6)

Considering the structure of J , set

� (6.7)

where (1: ,:)w m+T  denote the submatrix constituted of the first m-th rows of w
+T . 

Substituting the above equation to Eq. 6.5,

� (6.8)

Define Λ  by

�

(6.9)

the first m-th columns of Eq. 1.8 can be written by

�
(6.10)

That is, if Eq. 6.5 is solvable, its special solution is given by Eq. 6.7 and K must 

satisfy Eq. 6.10. Let 
0

0 0
TU V

Γ 
 
 

 denote the singular value decomposition (SVD) 

of wT using some nonsingular matrix Γ and unitary matrices U and V. Then, w
+T  is 

given by

w =LT J
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and

0
.

0 0
T

w w

I
V V+  

=  
 

T T

Therefore, Λ  can be written by

� (6.11)

Eq. 6.10 means that K is the left eigenvectors of Λ  which correspond to the eigen-
values at 1λ = . Since Λ  is a real symmetric matrix, the geometric multiplicity of 
the eigenvalue one in Λ  equals to the algebraic multiplicity. Thus we can find a set 
of linearly independent eigenvectors for the eigenvalue one. Therefore,

1.	 w is the least integer when Λ  has p multiple eigenvalue at 1λ = .
2.	 K is constituted of corresponding left eigenvectors.

Example 1  Consider the following polynomial matrix:

1 2 3
( ) .

4 5 6
s s s

D s
s s s

+ + + 
=  + + + 

For the above case, q = 2, m = 3 and µ  = 1. D0  and D1  are given by

0 1

1 2 3 1 1 1
, .

4 5 6 1 1 1
D D

   
= =   

   

Setting w = 2, 2T  is given by

1

2 0 1

0 1

0 0
0

0

D
D D

D D

 
 =  
  

T

and then Λ  is given by

5 2 1
1 2 2 2
6

1 2 5

− 
 Λ =  
 − 

which has the eigenvalue at λ  = 1 with multiplicity 2 = p. The left eigenvectors of 
Λ  corresponding to λ  = 1 are given by [1 0 –1] and [0 1 2] and thus K is given by

1 0 1
.

0 1 2
K

− 
=  

 

0
(1: :) (:,1: ) 0.

0
TI

V m, V m
I

 
Λ = ≥ 
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Therefore, L s( )  can be calculated by

[ ] 2

2

( ) 0 0 ( )

.5385 .5385 1.3077 .3077 1 1
.3846 .3846 1.0769 .0769 1 13

IL s K S s

ss

+=

− −     
= + +     − − − −     

2T

6.3 � Applications to Descriptor Systems

The descriptor system is given by the following equations:

�

(6.12)

where x t n( ) ∈ℜ  is the descriptor vector, u t m( ) ∈ℜ  is a control input vector, 
y t q( ) ∈ℜ  is an output vector, and E, A n n∈ℜ × , B n m∈ℜ ×  and C q n∈ℜ ×  are con-
stant matrices. It is assumed that rank E r n= <  and ( E, A) is regular, i.e., det 
( )sE A− ≠ 0 for almost of all s.

It is known that there are three modes for the descriptor system 6.12. In the fol-
lowings, we will analyze the impulsive mode using the regularizing matrix.

Let ( )sϕ  denote the characteristic polynomial of ( E, A), i.e.,

�
(6.13)

The zeros of the above polynomial are called dynamics mode of the system 6.12. 
Since E is singular, the system 6.12 has infinite mode. If r d= , then the infinite 
mode is called static. If d r< , then the system 6.12 has impulsive mode.

Lemma 1:  If the regularizing polynomial matrix of sE A−  can be described as a 
first order polynomial matrix, i.e.,

� (6.14)

then the system 6.12 has no impulsive modes. Conversely, if the system 6.12 has 
no impulsive modes, then there exists a first order regularizing polynomial matrix.

(Proof). Consider the SVD of E as follows:

�
(6.15)

wher E1  is nonsingular. According to the above decomposition, A and L s( )  are 
decomposed by

Ex t Ax t Bu t
y t Cx t
�( ) ( ) ( ),
( ) ( )

= +
=

( ) det( ), deg ( ) : .s sE A s dϕ ϕ= − =

0 1 1( ) , 0,L s L sL L= + ≠

1 0
, ,  ,

0 0
T n nE

E U V U V × 
= ∈ℜ 

 
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�

(6.16)

It is known that the system 6.12 has no impulsive modes if and only if A22  is 
nonsingular. Thus, it will be shown that nonsingularity of A22  if L s( )  is given by 
Eq. 6.14. Now,

�

(6.17)

Since L s( )  is a regularizing matrix, the second degree coefficient matrix must be 
zero. Thus, L E11 1 0= . Since E1  is nonsingular,

� (6.18)

Then, Eq. 6.17 can be written by

11 12
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21 22

12 21 01 1 12 22
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− −

Again, since L s( )  is a regularizing matrix, the first degree coefficient matrix must 
be nonsingular. Thus, L A12 22 must have column full rank. Therefore, A22  must be 
nonsingular.

Conversely, if A22  is nonsingular, define L s( )  by

�
(6.19)

Lemma 2:  If the system 6.12 has some impulsive modes, then there exists a regu-
larizing polynomial matrix which degree is greater than or equals to two. Con-
versely, if the regularizing polynomial matrix of sE A−  cannot be described as a 
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first degree polynomial matrix, but there exists a regularizing polynomial matrix 
which degree is greater than or equals to two, i.e.,

L s L sL s L L( ) , ,= + + ≠0 1
2

2 2 0 

then the system 6.12 has some impulsive modes.
(Proof). Consider the Weierstrass form of ( E, A) as follows:

�
(6.20)

where S and T are nonsingular, and N is given by

�

(6.21)

If the system has some impulsive modes, then ki ≥ 2  for some i. In this case Ni ≠ 0 
and thus N ≠ 0. Then, there exists a unimodular matrix U s2 ( )  which degree is 
max(ki −1) such that

� (6.22)

Then, a regularizing polynomial matrix L s( )  is given by

�
(6.23)

Since U s2 ( )  is at least first order polynomial matrix, the order of L s( )  is greater 
than or equals to two.

Conversely, assume that the regularizing polynomial matrix of sE A−  cannot be 
described as a first degree polynomial matrix, but there exists a regularizing polyno-
mial matrix which degree is greater than or equals to two. From the definition of the 
regularizing polynomial matrix, there exists an n n×  matrix A  such that

Then, ( )sI A− −1  can be written by
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Since L s( )  is assumed to be the polynomial matrix which degree is greater than 
one,

( ) { ( )( )} ( )
( ) ( )

sE A L s sE A L s
sI A L s

− = −
= −

− −

−

1 1

1

is improper and thus ( E, A) has some impulsive modes.
The system 6.12 is said to be impulsive mode controllable if there exists a feed-

back gain matrix F such that sE A BF− + has no impulsive mode. From the above 
Lemmas, we can obtain a necessary and sufficient condition for impulsive control-
lability.

Theorem 1:  The system 6.12 is impulsive controllable if and only if there exists a 
feedback gain matrix F m n∈ℜ ×  such that

0
0

rank rank .
0n

E
E

A BF E
A BF E

I

 
  − =    −   

�

(6.24)

 (Proof). From Lemma 1, the closed-loop system

( ) ( ) ( ) ( ),
( ) ( )

Ex t A BF x t Bu t
y t Cx t

= − +
=

has no impulsive modes if there exists a first degree regularizing polynomial matrix. 
In this case, w = 1, and then T2  and J  are given by

2

0
, [    0].n

E
I

A BF E
 

= = − + 
T J

Eq. 6.7 is solvable if and only if

2
2rank rank .

 
= 

 

T
T

J

Thus, Eq. 6.24 can be obtained from the above equation.
Conversely, if Eq. 6.24 holds, then there exists a first degree regularizing matrix. 

Then, from Lemma 1, the closed-loop system has no impulsive modes, i.e., the 
open-loop system is impulsive controllable.

Lemma 3:  Define the SVD of E by Eq. 6.15. Corresponding decomposition of A is 
defined by Eq. 6.16 and decomposition of B and F are defined by

�

(6.25)
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Then, the system 6.12 is impulsive controllable if and only if there exists a gain 
matrix F2  which makes A B F22 2 2−  be nonsingular.

(Proof). Since E1  is nonsingular,

1

11 1 1 12 1 2 1

21 2 1 22 2 2

1

1

22 2 2

0 0 0
0 0 0 0

0
0

rank rank
0 0

0
0 0 0

0 0 0

0 0
0 0
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0 0
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 
  
 
 
 =
 −
 
 

Thus, Eq.  6.25 holds if and only if there exists a gain matrix K2  which makes 
A B F22 2 2−  be nonsingular.

From the view point of the transfer function matrix, ( )sE A B− −1  is proper if and 
only if sE A−  is row proper. Thus, the problem is to find the feedback gain matrix 
which makes sE A BF− +  be row proper. By an elementary row operation matrix 
W, sE can be decomposed by

�

(6.26)

According to the decomposition, A and B are also decomposed by

�

(6.27)

Theorem 2:  Let

�

(6.28)

The descriptor system is impulsive controllable if and only if there exists a feedback 
gain matrix F  such that A BF−  does not have any uncontrollable eigenvalues at 
the origin.
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Example 2:  Consider the following E, A and B:

0 1 1 0 0
,      ,      .

0 0 0 1 1
E A B

     
= = =     −     

Then, a regularizing polynomial matrix L s( )  of sE A−  is given by

2

( )
0.5 0.5

s s
L s

s
 − −

=  − 

and thus there exist some impulsive modes for a given system by Lemma 2. In fact, 
sE A−  is a unimodular polynomial matrix and thus d = 0. Since rank E d= >1 , the 
system has an impulsive mode.

Set F f f= [ ]1 2 . Then,

1 2

1 2

0 1 0 0
0 0 0 00

rank rank
1 0 0 1

1 0 0

0 1 0
rank 1 0 1 .

1 0

E
A BF E

f f

f f

 
    =   −   + 
 
 =  
 + 

If we choose f1 0≠  and f2  arbitrary, Eq. 6.25 holds. Therefore, the system is im-
pulsive controllable by Theorem 1.

On the other hand,

0 1 0 1
,      ,      .

0 1 1 1
A B AB

−     
= = =     − −     

Since the pair ( , )A B  is controllable, we can find a feedback gain matrix F  which 
makes A BF−  be nonsingular.

6.4 � Conclusins

In this chapter, a regularizing polynomial matrix was proposed. Using the matrix, an 
approach to the descriptor systems by polynomial matrix was proposed. A feedback 
controller design which removes the impulsive modes was shown.
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Abstract  The electric field distribution in an air gap between a wire-cylinder elec-
trode configuration, has been studied by implementing Finite Element Analysis. 
The electrodes were assumed to be surrounded by air at normal conditions, while 
high dc voltage has been applied across them, with positive polarity at the wire. 
Numerical analysis on the maximum electric field intensity along the wire-cylinder 
gap axis, as well as on the potential distribution in the air surrounding the elec-
trodes has been carried out, considering different geometrical characteristics of the 
electrodes. The applied mesh parameters were optimized, in terms of accuracy and 
processing power. The maximum field intensity was mainly associated with the 
wire radius r and the electrode gap length d. The cylindrical electrode radius R had 
a limited impact on the maximum electric field intensity but, on the other hand, it 
had a strong effect in the distribution of the electric field lines. Finally, a formula for 
the estimation of the maximum electric field intensity is proposed.

Keywords  Finite element analysis · HV electrodes · Modeling · Numerical analysis

7.1 � Introduction

The study of the electric field strength distribution is of great importance for the de-
sign and dimensioning of high voltage equipment [1–3]. The electric field strength 
is the key parameter that defines the behaviour of insulating materials under high 
electric field stress. There are numerous applications of high voltage technology in 
electrical power systems, in industry and research. The experimental measurement 
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of the field strength in air gaps is in fact difficult and not quite accurate, due to 
the presence of sensing elements which may affect the distribution of the electric 
field. On the other hand, computer methods can provide instant and accurate re-
sults and are capable of solving problems in more complex conditions. Some of the 
most commonly used software applications implement the Finite Element Analysis 
( FEA).

FEA modelling in electrostatics is based on the application of a set of differential 
equations that describe the problem, considering certain boundary conditions, in 
order to come to a unique solution. FEA modelling breaks the problem down into 
a large number of regions, each with a simple geometry (e.g. triangles), defined by 
a mesh with a very large number of nodes. Then the problem is transformed from a 
small but difficult to solve problem into a big but relatively easy to solve problem, 
involving a very large number of unknown quantities.

Despite the large number of computational studies of the electric field distribu-
tion in uniform and non-uniform electric fields at different electrode configurations 
(e.g. parallel planes, tip-plane, concentric cylinders, wire-wire etc.) found in litera-
ture [4–10], there is no study available for the wire-cylinder electrode arrangement. 
On the other hand, experimental investigations, by means of corona discharge cur-
rent [11], [12] and current distribution [13], have already been conducted for wire-
cylinder electrode pairs.

The goal of this study is the fine modeling and analysis of the electric field 
strength in a wire-cylinder electrode arrangement in atmospheric air at normal con-
ditions, considering the geometrical characteristics of the electrodes. In this study 
the wire radius r ranged from 1 to 500μm, the cylinder radius R from 1 to 20 mm 
and the gap d between the electrodes ranged from 1 to 10 cm. These dimensions are 
quite common in experimental studies of corona discharge currents and the corre-
sponding electro-hydrodynamic ( ehd) effects, which can be found in bibliography 
[11–13].

This analysis was based on FEA techniques. On this purpose, open source FEA 
modeling software F.E.M.M. ver. 4.2 has been implemented. The mesh parameters 
have been fully investigated in order to optimize the applied mesh around the spe-
cific areas of interest, such as the inter-electrode region and especially at points 
along the line defining the shortest distance d between the electrodes, thus ensuring 
the accuracy of the results.

7.2 � Governing Equations

In our case we have a typical electrostatics problem which is governed by the well-
known Gauss’s and Poisson’s equations, assuming homogenous field and steady 
state conditions [1–3]:

E V= −∇� (7.1)
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0
V ρ

ε∇ = −� (7.2)

where E is the electric field intensity, V is the applied voltage, ρ is the space charge 
density and ε0 is the dielectric permittivity of air. The electric field should satisfy 
the charge conservation law:

0j∇⋅ =� (7.3)

where j is the current density. The latter is defined as:

j u Eρ ρ µ= ⋅ = ⋅ ⋅� (7.4)

where u is the ion drift velocity and μ is the ion mobility. (7.1), (7.2), (7.3) and (7.4) 
can be combined to obtain:

( )( ){ }2 0V V∇ ∇ ∇ =� (7.5)

In theory, the physical problem is reduced to the mathematical problem of solving 
(7.5) with the appropriate boundary conditions. The FEA model provides numerical 
results for the voltage distribution at each node of the applied mesh. The electric 
field strength may then be easily determined by (7.1) around the user-defined do-
main, where the mesh is constructed.

In such a computational analysis, the solver precision, the boundary conditions, 
the bounding box size defining the domain and the mesh distribution are of great 
importance for the accuracy of the results [14–18].

7.3 � Electrode Geometry

The wire-cylinder electrode pair under consideration is shown in Fig. 7.1. A thin 
cylindrical wire of radius r is placed parallel to a cylinder with significantly larger 
radius R, at distance d. The wire radius r, the cylinder radius R and the air gap d be-
tween the electrodes are critical parameters which define the geometry and, in this 
way, determine the electric field strength. In this study, r was ranging between 1 and 
500μm, R between 1 and 20 mm, while the gap d between the electrodes was ranging 
between 1 and 10 cm. In addition, it has been assumed that positive potential has 
been applied to the wire while the cylinder is grounded.

Theoretically, these electrodes may have infinite length, but due to the longitu-
dinal axis symmetry, the electric field or potential distribution may only change in 
the radial direction, perpendicular to the wire or the cylinder surface, along the gap. 
Therefore, this three-dimensional problem may be minimized into a two-dimen-
sional problem that requires a much smaller number of nodes and less computing 
power.

7  Analysis of the Electric Field Distribution in a Wire-Cylinder …
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7.4 � Modelling Parameters

F.E.M.M. solves (7.5) for the potential V, over the user defined domain with the user 
defined sources and boundary conditions. It discretizes the problem domain using 
triangular elements, which form a mesh consisting of a large number of nodes. The 
solution over each element is approximated by a linear interpolation of the values 
of potential at the three vertices of the triangle [19]. In our case, a two-dimensional 
planar electrostatic problem was defined with a solver precision 10-8.

Due to the symmetry of the electrode geometry along the gap axis, half-plane 
modeling has been applied. The problem’s domain was defined by the bounding 
box shown in Fig. 7.2. This box sets the limits of the surrounding dielectric medium, 
which in our case was atmospheric air. The bounding box size was defined by the 
fixed distances A = k∙D between its sides and the electrodes, where D = 2r + d + 2R 
was the total length of the electrodes assembly (air gap included) and k was a scal-
ing constant.

The determination of the bounding box size is generally critical, since a small 
box may affect the electric field distribution and lead to errors, or, on the other hand, 
a large box may unnecessarily lead to a very large number of nodes, demanding 
more processing power. Preliminary analysis with different k values, has shown that 
a suitable choice would be k = 3 [20]. This value had been kept constant throughout 
all simulations.

Dirichlet conditions [21] were explicitly defined on the problem’s boundaries. 
The wire and cylinder outer surfaces were considered to be equipotentials with 
fixed voltages 1 kV and 0 V, respectively. Subsequently, all electric field strength 
results were defined per kV of the applied voltage. Since the applied voltage may 
vary in practice, valid results may be easily obtained in any case, by just multiplying 
the electric field strength at 1 kV, by the number of applied kilovolts. This can be 

Fig. 7.1   a Perspective plan of the electrodes arrangement in space and b simplified planar model, 
due to longitudinal axis symmetry
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easily explained by (7.1). For example, considering any fixed pair of wire-cylinder 
electrodes with 1 kV voltage difference, then, if V1(x, y) is the potential and E1(x, y) 
is the corresponding electric field strength at any point (x, y), then, at αkV, the po-
tential would be Va(x, y) = a∙V1(x, y) and the corresponding electric field strength 
Ea(x, y) could be determined by (7.1) as follows:

� (7.6)

It becomes clear that the electric field strength at αkV equals α times the electric 
field at 1 kV.

There is a set of key parameters to the F.E.M.M. model so as to ensure proper 
mesh formation. The mesh discretization at distances very close to the electrode 
surfaces depends mainly on two parameters, the maximum arc segment degrees and 
the minimum angle. These determine the size of the triangular elements near the 
outer surface of the electrodes, where the electric field and voltage gradients get 
their maximum values, thus demanding very fine analysis by a dense mesh. On the 
other hand, the mesh distribution along the gap is a function of the local element 
size along line parameter. The density of the mesh elements in other areas such as 
the inter-electrode space away from the electrode surfaces are functions of another 
key parameter, the mesh size.

Analytical study of the influence of each one of the mesh parameters has been 
carried out, by running a large number of simulations, using different maximum arc 
segment angles, minimum angles of the triangular mesh, local elements size along 
line and mesh sizes, in order to accomplish convergence of the results. In this way 
an optimal mesh has been configured, in terms of accuracy and processing power 
consumption, with the key parameter values given in Table 7.1.

( ) ( ) ( )( ) ( )( )1 1 1, , , , ( , )a aE x y V x y a V x y a V x y a E x y= −∇ = −∇ ⋅ = ⋅ −∇ = ⋅

Fig. 7.2   The model of the two electrodes and the bounding box of the surrounding air, where the 
mesh is applied
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An example of the optimized mesh is shown in Fig. 7.3 for a wire-cylinder elec-
trode setup with r = 25μm, R = 15 mm and d = 3 cm. The mesh is denser in the areas 
of interest, i.e. near the high voltage and the grounded electrode, as well as along 
the gap axis.

For verification purposes, the optimized mesh has been used in order to esti-
mate the maximum field intensity Emax, at well-known geometries, similar to the 
wire-cylinder pair, such as two identical cylindrical conductors in parallel (where 
R/r = 1), for which analytical formulas can be found in bibliography. In this way, the 
accuracy of the optimized mesh could be easily tested.

Table 7.1   Comparison between the default values of the F.E.M.M. key parameters and the selected 
optimized values
F.E.M.M. key parameter Default

values
Selected values
(optimized)

Minimum angle (degrees) 30 31
Maximum arc segment (degrees) 5 0.5
Local element size along line (μm) Auto 10
Mesh size (μm) Auto Auto
Nodes 3632 22523
Elements 6906 41026

Fig. 7.3   Optimized mesh layout and detailed area of interest. Wire-cylinder configuration with 
geometrical parameters: r = 25μm, R = 15 mm and d = 3 cm. (Here A = 3D)
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In the case of two parallel cylindrical conductors Emax is given by the analytical 
formula [14]:

( ) ( )
( ) ( ) ( )

2

max 2

2

ln 1 2 2

d d
V r rE
d d d d

r r r

+
= ⋅

 
+ + +  

� (7.7)

where V is the applied voltage, d is the distance between the two electrodes and r is 
the electrode radius.

F.E.M.M. simulations, that have been conducted with the optimized mesh for 
two parallel cylindrical wires with r and d values within the limits of our study 
( r = 1-500μm and d = 1-10 cm), have provided results which are in good agreement 
with theoretical expectations, in all cases. Such results are given in Table 7.2, where 
both theoretical and simulation values for Emax are shown, along with the corre-
sponding relative error.

7.5 � Simulation Results for the Wire-Cylinder Electrodes

As expected, the simulation results have shown that the maximum electric field 
strength Emax is located at the outer surface of the wire electrode, at the least dis-
tant point from the cylinder (see Figs.  7.4a, 7.5a and 7.6), while the minimum 
field strength Emin has been identified at distance x, depending on the R/r ratio (see 
Fig. 7.6).

On the other hand, the potential distribution across the gap d is shown in Fig. 7.4b 
and 7.5b, where it becomes clear that equipotentials are in fact cylindrical surfaces 
with displaced centers along the axis of the electrode gap.

The variation of the electric field intensity across the gap, for different R/r ra-
tios is given in Fig. 7.6, where the normalized field E(x)/Emax is shown, at distance 
x from the wire’s surface, expressed as a percentage of the total electrode gap 
length d.

Table 7.2   Comparison between the electric field intensity (theoretical and F.E.M.M. results) for 
two identical parallel conductors at 1 kV potential difference
r(μm) d(cm) Theoretical Emax 

(V/m)
Optimized Mesh 
results Emax (V/m)

Relative error (%)

1 1 54,296 × 106 54,183 × 106 0.21
25 3   2,825 × 106   2,803 × 106 0.78
100 5 807250 799771 0.93
250 7 357014 353483 0.99
500 10 190261 187465 1.47

7  Analysis of the Electric Field Distribution in a Wire-Cylinder …
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Fig. 7.4   a Electric field strength and b potential distribution. Wire-cylinder electrodes with 
r = 25μm, R = 15 mm and d = 3 cm, at 1 kV potential difference

 

Fig. 7.5   a Electric field strength and b potential distribution. Wire-cylinder electrodes with 
r = 5 mm, R = 15 mm and d = 3 cm, at 1 kV potential difference
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Fig. 7.6   Normalized electric 
field intensity along the 
gap axis, and detail where 
Emin is shown. In this case 
r = 100μm, d = 3 cm and 
a R/r = 1, b R/r = 10, and 
c R/r = 100. Similar results 
can be obtained for different 
d and r values as well
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It can be seen that the field intensity gets its maximum value at the wire’s surface 
(where x = 0 or x/d = 0 %) then diminishes along the gap until its minimum value 
and, finally, increases at a certain level depending on the R/r ratio, at the cylinder’s 
surface (where x = d or x/d = 100 %). From another point of view, R/r ratio may be 
considered as a measure of the electric field inhomogeneity, since larger R/r ratios 
result in a more inhomogeneous field distribution along the gap axis (see Fig. 7.6).

The dependence of the maximum electric field intensity Emax on the wire radius 
r, the cylinder radius R and the electrode gap d has also been examined. Figure 7.7 
shows typical curves of Emax versus d/r ratio, for different gaps d and cylinder radii 
R, while Fig. 7.8 shows the variation of Emax versus d/R ratio for different wire radii 
r and gaps d. From these results, it becomes clear that Emax is strongly affected by 
the d/r ratio, in a linear way, and secondly, by the d/R, ratio.

Gap distance d remains a critical parameter in all cases. Generally, maximum 
electric field intensities can be reached by using thin wires, small electrode gaps and 
large cylinder radii, which is a reasonable finding, since the electric field distribu-
tion is thus becoming strongly inhomogeneous.

On the other hand, Fig. 7.9 and Fig. 7.10 show how the minimum field strength 
Emin along the gap axis, is affected by d/r, d/R and the electrode gap d. Here it seems 
that the gap distance d is the dominant parameter, while the wire radius r comes 
next.

Fig. 7.7   Variation of Emax with the d/r ratio. Electrode gap at 1 cm, 5 cm and 10 cm and potential 
difference 1 kV in all cases
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Fig. 7.8   Emax variation with the d/R ratio. Wire radius at 25μm, 250μm and 500μm and potential 
difference at 1 kV in all cases
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Fig. 7.9   Variation of Emin with the d/r ratio. Electrode gap at 1 cm, 5 cm and 10 cm and potential 
difference at 1 kV in all cases
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7.6 � Proposed Formula for Emax in the Case of a Wire-
Cylinder Electrode Arrangement

According to simulation results, Emax increases linearly with d/r ratio. On the other 
hand, it is also dependent on the d/R ratio. The gap distance d is found to be critical 
in determining the electric field in all cases. This comes in agreement with theoreti-
cal expectations, since the ratio V/d is frequently used in bibliography as a standard 
measure of the mean value of the electric field strength in any gap [22–26]. Besides, 
most of the formulas for Emax in well-known geometries are usually expressed as the 
product of V/d by a geometrical constant, as in (7.7) [1–3].

According to the above, an effort has been made to introduce a formula for the 
maximum electric field strength Emax in the wire-cylinder arrangement. Detailed 
analysis of all simulation results has shown that the maximum electric field inten-
sity EmaxW-C within the limits of this study can be approximated by the following 
formula:

( )
1

max
1 2ln 2W C

VE
d

γ
γ γ− = ⋅

 + � (7.8)

Fig. 7.10   Emin variation with the d/R ratio. Wire radius at 25μm, 250μm and 500μm and potential 
difference at 1 kV in all cases
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where V is the applied voltage, γ1 = d/r and γ2 = d/R (dimensionless factors).
On the other hand, similarly defining γ’ = d/2r in (7.7), we have:

( )
( ) ( )max

' ' 2

ln ' 1 ' ' 2

VE
d

γ γ

γ γ γ

+
= ⋅

 + + + 
� (7.9)

It should be noted that in the case of two identical cylindrical conductors in parallel 
r = R ( γ1 = γ2 = γ) and for d > > r we have γ > > 1, γ + 2 ≈ γ.

Then (7.8) becomes:

( )max 2 ln
VE
d

γ
γ

= ⋅
⋅

� (7.10)

In fact (7.10) equals (7.9) for d > > r, since γ’ > > 1, γ’ + 1 ≈ γ’ and γ’ + 2 ≈ γ’ (also 
considering that γ‘ = γ/2).

7.7 � Discussion

The results of (7.8) for all possible combinations of the critical geometrical param-
eters r, R and d, within the limits of this study ( r ≤ 500μm, R ≥ 1 mm and d ≥ 1 cm), 
are in good agreement with the corresponding maximum field intensity Εmax values 
estimated by the FEA simulation.

Typical graphs of the change in relative error for Εmax with the geometrical pa-
rameters r, R and d are given in Fig. 7.11. These graphs show that the error dimin-
ishes as d and R increase with respect to the wire radius r.

According to Fig. 7.11, the relative error remains small, below 4 % (worst case) 
and decreases with increasing gap and cylinder radius.

Practically speaking, the proposed formula for Emax can be effectively used for 
electrode pairs constructed by thin wires parallel to cylinders of considerably larger 
radii at distances of a few centimetres or more. Such electrode arrangements have 
been used in previous work [11–13] and are suitable for corona or ionic wind ap-
plications, due to the high inhomogeneity of the produced electric field. The de-
termination of the maximum electric field in these cases is always one of the most 
critical design parameters.

Moreover, the electric field utilization factor n = Eav/Emax, (where Eav = V/d), 
which is frequently used to indicate the electric field inhomogeneity [27], can be 
easily defined from (7.8) as:

( )1 2

1

ln 2
W Cn

γ γ
γ−

 + =� (7.11)
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7.8 � Conclusions

The electric field distribution in a typical wire-cylinder electrode configuration in 
air, under high voltage dc application has been studied with the aid of dedicated 
simulation software implementing the Finite Element Analysis. The applied mesh 
parameters have been optimized and validated, in order to ensure the accuracy of 
the results. The maximum electric field strength Emax, as well as the minimum elec-
tric field strength Emin, has been examined, considering geometrical characteristics 
of the electrodes such as the wire radius r, the electrode spacing d and the cylindri-
cal electrode radius R.

Simulations have shown that Emax is mainly associated with the wire electrode 
radius r. Generally, smaller wire radii result in higher field intensities around the 
wire, especially at the wire’s surface, where Emax is observed. In addition, Emax was 
found to be inversely proportional to the electrode gap d. Moreover, larger cylinder 
radii R lead to higher Emax values, for constant r and d. On the other hand, Emin is 
strongly related to the electrode gap d, while the wire radius r and the cylindrical 
electrode radius R have a limited impact on the minimum electric field intensity.

Finally, an empirical formula for the estimation of the maximum electric field 
intensity has been proposed. The correlation of the simulated data with the empiri-
cal formula results was found to be satisfactory, with an absolute error lower than 
4 % in all cases.

Fig. 7.11   Representation of the relative error between simulated data and the empirical formula 
results for Emax according to (7.8)
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Oblique Newtonian Fluid Flow with Heat 
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Abstract  Oblique stagnation point flow and heat transfer towards a stretching 
sheet of a viscous fluid is investigated. The governing equations are transformed to 
a system of ordinary differential equations and then solved numerically for various 
values of the parameters. It is observed that the dual solution exists for velocity and 
temperature for certain values of velocity ratio parameter.

Keywords  Oblique · Stagnation point · Heat transfer · Stretching sheet

8.1 � Introduction

The viscous fluid flow over a stretching sheet is important because of its practi-
cal application in engineering processes and in different industries such as glass-
fibred production, paper production, wire drawing and extraction of polymer sheet 
and so on [1]. A closed form solution for steady, two dimensional stretching sheet 
was found by Crane [2] where the velocity varies linearly with the distance from a 
fixed point. Following Crane’s work many researchers such as Gupta and Gupta [3], 
Brady and Acrivos [4], Wang [5–7] and Usha and Sridharan [8] considered the case 
of a stretching sheet in their work. Moreover, stagnation point flow over stretching 
sheet was investigated by Mahapatra and Gupta [9], Ishak et al. [10], Layek et al. 
[11] and Nadeem et al. [12]. There exist also a very interesting series of papers by 
Liao [13, 14], Xu and Liao [15], and Tan et al. [16] on dual solutions of boundary 
layer flows over a stretching surface. Lok et al. [17] investigated steady flow of a 
viscous fluid impinging at some angle of incidence on stretching sheet and found 
that the free stream obliqueness is the shift of the stagnation point towards the in-
coming flow and it depends on the inclination angle, while Stuart [18], Tamada 
[19], Dorrepaal [20, 21] and Labropulu et al. [22] also contributed to oblique stag-
nation point flow. A very good analysis of the oblique stagnation point flow can be 
found in the book by Pozrikidis [23]. Also, Blyth and Pozrikidis [24] and Tooke and 
Blyth [25] have presented an interesting analysis of oblique stagnation point at a 
plane wall. Their analysis shows that oblique flow consists of orthogonal stagnation 
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point flow to which is added a shear flow whose vorticity is fixed at infinity. Study 
of the oblique stagnation point flow of a viscous fluid towards a stretching gives a 
different perspective to the behaviour of stagnation point flow.

The objective of the present study is to analyze the oblique stagnation point flow 
of a viscous fluid towards a stretching sheet with heat transfer.

8.2 � Basic Equations

Consider the steady oblique stagnation point f low of a viscous fluid towards a 
stretching sheet. Following Tooke and Blyth [25], we assume that u u x ye~ ( , ) and 
v v ye~ ( )  have the form ( ),  ( )e eu ax b y v a yβ α= + − = − −  where a b> >0 0, , α  
and β  are dimensional constants. It is also assumed that the surface is stretched in 
its own plane with velocity u x cxw ( ) = , where c  is a constant and that the plate has 
a constant temperature T xw ( ) , while the uniform temperature of the ambient fluid is 
T∞ , where T x Tw ( ) > ∞. Under these assumptions the steady, two-dimensional, forced 
convection flow of a viscous fluid can be written as

�
(8.1)

� (8.2)

�
(8.3)

� (8.4)

where u  and v  are the velocity components along the x −  and y −  axes, respec-
tively, T  is the fluid temperature, p is the pressure, ρ  is the density, υ  is the ki-
nematic viscosity, *α  is the thermal diffusivity of the fluid ∇2  is the Laplacian in 
Cartesian coordinates ( , )x y . Equations (8.1) to (8.4) will be solved subject to the 
following boundary conditions.

�

(8.5)
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Introducing the non-dimensional variables

�

(8.6)

and substituting them into Eqs. (8.1) to (8.4) yield

�
(8.7)

� (8.8)

� (8.9)

�
(8.10)

The boundary conditions (8.5) become

�

(8.11)

where /c aε =  is the constant velocity ratio parameter corresponding to the oblique 
stagnation point flow towards a stretching surface, /b aγ =  represents the shear in 
the free stream and Pr  is the Prandtl number.

Using Eqs. (8.8) and (8.9), and boundary conditions (8.11), the non-dimensional 
pressure p pe=  of the inviscid or far flow can be expressed as

�
(8.12)

The physical quantities of interest are the skin friction and the local heat flux from 
the flat plate which can be written in dimensional form as

�
(8.13)
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� (8.14)

We seek solutions of Eqs. (8.7) to (8.10) of the form

�

(8.15)

where the functions F y( ) and G y( ) are referring as the normal and tangential com-
ponents of the flow, respectively, and prime denotes differentiation with respect to y. 
Substituting Eq. (8.15) into Eqs. (8.8) to (8.10) and eliminating the pressure p using 
p pxy yx= , we obtain the following differential equations after one integration

�
(8.16)

� (8.17)

� (8.18)

� (8.19)

The boundary conditions become

�
(8.20)

� (8.21)

� (8.22)

� (8.23)

Employing (8.15), the dimensionless skin friction and the heat transfer can now be 
written as

�
(8.24)

� (8.25)

where the values of ′′F ( )0  and ′′G ( )0  can be calculated from Eqs. (8.16) and (8.17) 
with the boundary conditions (8.20) and (8.21) and the values of 1(0)θ′  and 2 (0)θ′  

q T
yw

y

= −
∂
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
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
 =0

1 2
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(0) 0, (0) , ( ) 1F F Fε= = ∞ =′ ′
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2 2(0) 0, ( ) 0θ θ= ∞ =

(0) (0)w xF Gτ γ= +′′ ′′

1 2[ (0) (0)]wq x θ γ θ= − +′ ′
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can be calculated from Eqs. (8.18) and (8.19) with boundary conditions (8.22) and 
(8.23) for different values of the parameters involved.

In particular, the dividing streamline 0ψ =  and the curve / 0u yψ= ∂ ∂ =  in-
tersect the wall at the stagnation point where 0wτ = . Therefore, the location of the 
stagnation point is given by

�
(8.26)

if (8.24) is used.

8.3 � Results and Discussion

Equation (8.16) subject to the boundary condition (8.20) has been solved numeri-
cally for various values of ε  using the matlab function bvp4c. A description of this 
method can be found in [26]. To validate the accuracy of the numerical method a 
comparison of the obtained results corresponding to the skin friction coefficient 

′′F ( )0  is made with the results obtained by Wang [27] in Table 8.1 and are found 
to be in excellent agreement. It can also be seen from Table 8.1 that the numerical 
values of ′′F ( )0  depend entirely on the velocity ratio parameter ε . For 0 1ε≤ ≤  one 
can see that as ε  is increasing skin friction coefficient is decreasing and a similar 
result happens for 1ε > .

Having solved Eq. (8.16), Eq. (8.17) subject to the boundary condition (8.21) is 
solved numerically for various values of β  where the values of α  are taken from 
Labropulu et al. [22]. The values of (0)G ′′  for various values of ε  and β  are shown 
in Table 8.2. As it can be seen from this table, there is a good agreement between 
the present values and those obtained by Li et al. [28] when 0.ε =  Table 8.2 shows 
that for a specified value of ε , ′′G ( )0  is increasing if β  is decreasing. On the other 
hand, for 0 1ε≤ ≤  and for given values of β , increase in ε  results in an increase 
of ′′G ( )0 .

Figure 8.1 shows a comparison of skin friction coefficient ′′F ( )0  between the 
present result and the result obtained by Wang [27] and we can see that both results 
are showing the same behaviour. Figure 8.2 shows the effect of ε  and β  on ′′G ( )0 , 
where we have similar behaviour as described in Table 8.2.

(0)
(0)s

Gx
F

γ ′′= −
′′

ε Present results Wang [27]
0 1.2325 1.232588
0.1 1.1465 1.14656
0.2 1.0511 1.05113
0.5 0.7133 0.71330
1 0.0000 0.0000
2 −1.8873 −1.88731
5 −10.2647 −10.26475

Table 8.1   Comparison of the 
values of ′′F ( )0  for various 
values of ε
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Finally, Eqs.  (8.18) and (8.19) subject to the boundary conditions (8.22) and 
(8.23) have been solved for various values of the Prandtl number Pr. The numerical 
values of 1 (0)θ− ′ , 2 (0)θ− ′  and 1( )yθ , 2 ( )yθ  are plotted in Fig. 8.3–8.6 respectively. 
Figure 8.3 shows that as Prandtl number is increasing the convective heat transfer 
increases accordingly. Figure 8.4 depicts the variation of 1( )yθ  for various values 
of ε  when Pr .= 0 5 and shows that the temperature function 1( )yθ  is increasing 
as ε  is increasing. The variation of 2 (0)θ− ′  for various values of Pr  when β α=  
is given in Fig. 8.5 and it can be seen that an increase in Pr  results in an increase 
of 2 (0)θ− ′ . Figure 8.6 is shown the variation of 2 ( )yθ  for various values of ε  when 
Pr .= 0 5  and β α= .

Figures 8.7 and 8.8 depict the streamline patterns (Fig. 8.9).

Table 8.2   Numerical values of ′′G ( )0  for various values of ε  and β . The values obtained by Li 
et al. [28] are shown in brackets

ε 5β = β α= 0β = β α= −
0
0.1
0.2
0.5
1

− 4.7562 {− 4.756}
− 4.7177
− 4.6819
− 4.5866
− 4.4546

0.6079 {0.6077}
0.6478
0.6875
0.8056
1.0000

1.4065 {1.4063}
1.4466
1.4869
1.6084
1.8120

2.2051 {2.2049}
2.2454
2.2864
2.4111
2.6241

Fig. 8.1   Skin friction coefficient ′′F ( )0  for several values of ε
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Fig. 8.2   Variation of ′′G ( )0  for various values of β  and ε

 

Fig. 8.3   Variation of 1 (0)θ− ′  for various values of ε  and Pr
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Fig. 8.4   Variation of 1 ( )yθ  for various values of ε  and Pr = 0.5

 

Fig. 8.5   Variation of 2 (0)θ− ′  for various values of ε , Pr and β α=
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Fig. 8.6   Variation of 2 ( )yθ  for various values of ε , Pr .= 0 5  and β α=

 

Fig. 8.7   Streamlines pattern for oblique flow when 0.5,ε β α= =  and 3γ =
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Fig. 8.8   Streamlines pattern for oblique flow when 0.75,ε β α= =  and 3γ =

 

Fig. 8.9   Streamlines pattern for oblique flow when 1.5,ε β α= =  and 3γ =
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Abstract  In this work, a modified Rosenzweig-MacArthur predator-prey model 
is analyzed, which is a particular Gause type model, considering two Allee effect 
affecting the prey population.

This phenomenon may be expressed by different mathematical expressions; with 
the form here used, the existence of one limit cycle surrounding a positive equilib-
rium point is proved.

Conditions to the existence of equilibrium points and their local stability are 
established; moreover, the existence of a separatrix curve dividing the behavior of 
trajectories which can have different ω-limit sets.

Some simulations reinforced our results are given and the ecological conse-
quences are discussed.

Keywords  Predator-prey model · Functional response · Allee effect · Stability · 
Bifurcation · Limit cycle

9.1 � Introduction

In current theory of predator-prey dynamics and as consequences of the advance-
ment of the ecological knowledge due to theoretical, empirical, and observational 
research, more elements are recognized as essential to the phenomenon of preda-
tion [27], being incorporated to the study of more complex non-linear mathematical 
models.
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In this work, a Gause-type predator-prey model [16] derived from the reasonably 
realistic and well-known Rosenzweig-MacArthur model [27] is analyzed, incorpo-
rating the Allee effect [13, 26] on the prey growth equation also called depensation 
in Fisheries Sciences [10, 23].

Any mechanism leading to a positive relationship between a component of indi-
vidual fitness and the number or density of conspecifics is named as a mechanism 
of the Allee effect [4], i.e., an Allee effect occurs in populations when individuals 
suffer a decrease in fitness at low densities [26].

Many ecological mechanisms producing Allee effects are known [25] and dis-
tinct causes may generate this phenomenon (Table 1 in [5] or Table 2.1 in [13]). 
Recent ecological research suggests the possibility that two or more Allee effects 
can be generated by mechanisms acting simultaneously on a single population (See 
Table 2 in [5]). The combined influence of some of these phenomena is known as 
multiple Allee effect [1, 5, 13].

The mathematical formalization of the Allee effect are varied [6, 12, 28], but it 
is possible to prove that most of them are topologically equivalent [18]. However, 
some of these forms may produce a change in the number of limit cycles through 
Hopf bifurcation surrounding a positive equilibrium point in predator-prey models 
[15, 20].

Many algebraic forms can be employed to describe the Allee effect [6, 12, 25, 
31] but it is possible to prove that many of them are topologically equivalent [18]. 
One of this equations is given by

�
(9.1)

where r scales the prey growth rate, K is the environmental carrying capacity, m is 
the Allee threshold, and the auxiliary parameter n with n > 0 and m > − n, [6, 7, 28], 
affecting the overall shape of the per-capita growth curve of the prey.

We affirm that Eq. (9.1) describes double Allee effects, expressed once in the 
factor m x x m( ) = − , similarly as in the most usual equation representing Allee ef-
fect [3, 12]; a second time is given by the term ( ) rxr x

x n
=

+
 [31], which can be 

interpreted as an approximation of a population dynamics where the differences be-
tween fertile and non-fertile are not explicitly modelled. Then, we can assume this 
factor indicates the impact of the Allee effect due to the non-fertile population n [2].

As predator-prey interactions are inherently prone to oscillations [27], it is there-
fore obvious investigate the Allee effect as a potential mechanism for the creation 
of population cycles and their related limit cycles from of mathematical point of 
view [3, 12, 29].

An important objective in these works will be to determine the quantity of limit 
cycles (trajectories closed and isolated) of this class of non-linear differential equa-
tion system associated with the modified Rosenzweig-MacArthur model. We con-
sider that this issue is a good criterion to classify these models, but we not consider 
this issue in our analysis.

dx
dt

rx x
K

m n
x n

= −





−
+
+







1 1
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Conditions that guarantee the uniqueness of a limit cycle [21], the global stabil-
ity of the unique positive equilibrium in predator–prey systems, or non-existence 
of limit cycles [30], has been extensively studied over the last decades starting with 
the work by Cheng [8]; results on the existence and uniqueness of limit cycles have 
been obtained in some papers [8, 22], which can be used to explain many real world 
oscillatory phenomena in nature [11, 21, 30].

This paper is organized as follows: In Sect.  9.2, we present the model and a 
topologically equivalent is obtained; in Sect. 9.3, the main properties of this model 
are presented. In Sect. 9.4, some simulations for verify our results are given. Eco-
logical consequences and a comparative study of the mathematical results are given 
in Sect. 9.5.

9.2 � The Model

Considering the double Allee effect on prey described by (9.1) in the Rosenzweig-
MacArthur model [27], the autonomous nonlinear bidimensional differential equa-
tion system of Kolmogorov type [16] is given by:

�

(9.2)

where x = x( t) and y = y( t) indicate the prey and predator population sizes, respec-
tively for t ≥ 0  (number of individuals, density or biomass). The parameters are all 
positives, i. e. ( ) 7, , , , , , ,r n K q a p c mσ += ∈ ×� �, with a < K and − K < m < K, having 
the following biological meanings:

r	 is the intrinsic growth rate or biotic potential of the prey;
K	 is the prey environmental carrying capacity;
m > 0	 is the minimum of viable population (threshold of Allee effect);
n	 is the population size of sterile individuals on prey population;
q	� is the maximum number of prey that necessary can be eaten by a predator 

in each time unit;
a	 is the amount of prey needed to achieve one-half of q;
p	 is the coefficient of biomass conversion, and
c	 is the natural death rate of predators in absence of prey.

System (9.2) is defined in ( ) }{ 2, / 0, 0x y x yΩ = ∈ ≥ ≥� .
The analysis must be made separately for the strong Allee effect ( m > 0) and 

weak Allee effect ( m ≤ 0), due the number of limit cycles can change with respect to 
this parameter [20]; in this work we consider only m > 0.

1 ( )

:

dx rx x qxx m y
dt x n K x a

X
dy px c y
dt x a

σ

  = − − −   + +

   = −  +
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The results will be compared with the Rosenzweig-MacArthur model in which 
the Allee effect is absent, and with the model studied in [19, 24], where the Allee 
effect is described by a simpler form, which is topologically equivalent to that used 
in this work [18].

9.2.1 � Topologically Equivalent System

In order to simplify the calculus, we follow the methodology used in [17, 19, 20], 
making a reparameterization and a time rescaling of system (9.2), given by the func-
tion :ϕ Ω × → Ω ×� �, defined as

with Ω = ∈ ≥ ≥{ }( , ) / ,u v u v�2 0 0 . As

Then ϕ  is a diffeomorphism preserving the orientation of time [9, 14]; the vector 
field X µ  is topologically equivalent to the vector field Y Xη µϕ= ° . It take the form 

( ) ( ), ,Y P u v Q u v
u vη
∂ ∂

= +
∂ ∂

 and the associated second order differential equations 
system is

�

(9.3)

with ( ) ] [( ) ] [22, , , , 0,1 1,1B C A N Mη += ∈ × × −� , where  ( )1 ,B p c
r

= − ( ) ,acC
K p c

=
−

 

, and .a n mA N M
K K K

= = =

Clearly, B > 0 if and only if p > c, being a necessary condition for predator to 
survive; system (9.3) has no ecological sense if B < 0.

( ) ( ), , , , , ,rK ru v Ku v x y t
n aq u u
K K

ϕ τ τ

 
 

= = 
    + +        

( )
2 2

det , , 0.r KD u v
n au u u
K K

ϕ τ = >
   + +      

( )( )( ) ( )

( )( )

1

:

du u u u M u A u u N v
d

Y
dv B u N u C v
d

η

τ

τ

 = − − + − +



 = + −

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For the strong Allee effect it has 0 < M < < 1; so, the equilibria are (0;0), ( M;0), 

(1;0) and ( C;L), where 
( )( )( )1 C C A C M

L
C N

− + −
=

+
.

The point ( C;L) lies in the first quadrant, if and only if, 0 < M < C < 1.
The Jacobian matrix of system (9.3) is

with ( ) ( ) ( ) ( )3
11; 4 3 1 2DY u v u M A A M v AM u AM Nvη = − + + − + − − + − +

9.3 � Main Results

For 0 < M < < 1, system (9.3) has the following properties:
Lemma 1. Existence of invariant set
The set ( ){ }2, / 0 1, 0u v u vΓ = ∈ ≤ ≤ ≥�  is a region of positive invariance.
Proof: Since the system (9.3) is of Kolmogorov type [16], the coordinates 

axis are invariant sets. If u = 1, then (1 ) 0.du v N
dτ

= − + <  Anything the sign of 

( )( )1 1dv B C N v
dτ

= − + , the trajectories enter to the set Γ.

Lemma 2. Boundedness of solutions. The solutions are bounded.
Proof: We use the Poincaré compactification with the change of variables given 

by u w
z

v
z

= =and 1 ;  then,

The equilibrium point (0;0) of vector field Zη is equivalent to point (0;∞) of system 
(9.3). Evaluating in (0;0) of vector field Zη, the zero matrix is obtained. Rescaling 
the time by the function :φ Ω × → Ω ×� �, defined as 3( ; ; ) ( ; ; )w z z T w zφ τ= , we 
obtain a new polynomial system given by

( ) ( ) ( )
( ) ( )( )

11,
;

2
DY u v u u N

DY u v
Bv N C u B C u u N

η
η

 − + 
=  − + − − + 

( )( )( )

( )( )( ) ( )

( )( )

3

3

1 ,

dz w z w zN w zC
d z

wZ w z w zM w zA z w zN
z

dw w zN w zC
d z

η

τ

τ

 = − + − −

= − − − + +

 = − + −

�

( )( )( )
( )( )( ) ( )

( )( )2 ,

dz w z w zN w zC
d

Z w w z w zM w zA z w zN
dw z w zN w zC
d

η

τ

τ

 = − + − −


= − − − + +

 = − + −

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The Jacobian matrix evaluated in the point (0;0) is � ( ) 20;0DZ η θ= . To desingularize the 
point (0;0), the technique of blowing-up is used [9, 14]. Using time rescaling defined by 

2

1 T
I

κ =  and the directional blowing-up given by ( ; ) ( ; ) ( ; )w I S I IS w zϕ = = , we obtain

with A C M N AMβ = − + + + and .A M AMγ = + +  We obtain again lies in the 

first quadrant, and a new directional blowing-up is considered, which is given by 

( ) ( ) ( ); ; ;S E F E EF I Sφ = = . Using the time rescaling defined by 
1
E

λ κ=  we ob-
tain:

After some calculations we obtain

Thus, det (0;0) 0DZη > and tr (0;0) 0;DZη >  then, (0;0) is a repeller point of vector 
field .Zη  By blowing-down of wϕ  and Sφ  the point (0;0) is a non-hyperbolic repel-
ler of vector fields Zη  and 

�
Z η, respectively. This implies that the point (0;∞) of Yη  

is a repeller point and solutions of vector field Yη  are bounded.�

9.3.1 � Nature of Equilibria Over the Axis

Lemma 3. The equilibrium point (0;0) is a hyperbolic attractor for all parameter 
values.

Proof: Immediate evaluating the Jacobian matrix at this point, since 
( )det 0;0 0DY ABCMNη = >  and ( ) ( )tr ; 0.DY u v AM BCNη = − + <  Therefore, 

(0;0) is a locally stable point.�

�
2 2 2 3 3

3

( ) ( )

( ) ( ),

dI I S I ASI MSI NS I S AMS CNS
dZ
dS S S I SI ASI MSI S N AMSI I
d

η

β
κ

γ
κ

 = − + − − + + − −= 
 = + − − − + − +

( ) ( ) ( )

( ) ( ) ( )
( )

2 3 4

2 3 2

4 3

1

2 1 2 2 2 1

2 ,

dE E F FE A M FN F E F E AM CN
d
dFZ F F F E A M FN F E
d

F E AM CN

η

β
λ

β γ
λ

 = + − + − + − +

= = + − + − + + +

− +


( ) 1 0
0;0 .

0 2
DZη

 
=   
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Lemma 4. The equilibrium point PM = ( M; 0) is

1.	 a hyperbolic repeller, if and only if, M C− >  0,
2.	 a hyperbolic saddle point, if and only if, M C− <  0,
3.	 a non hyperbolic repeller, if and only if, M C− =  0.

Proof: As
det ( ;0)  (1 ) (  ) (   ) ( )DY M MB M A M M N M Cη = − + + −
and tr ( ;0) ( )( ) (1 )( ).DY M B M C M N M M A Mη = − + + − +

  i.	� If M C− >  0, ( )det ;0 0DY Mη >  and tr ( ;0) 0.DY Mη >  Thus, ( M;0) is a hyper-
bolic repeller.

  ii.	 If M C− <  0,  det ( ;0) 0DY Mη < ; then, ( M;0) is a hyperbolic saddle point.
iii.	� If M C− =  0; then ( C;L) coincides with the point P2, and ( )det ;0 0DY Mη = ; 

using the Central Manifold Theorem [14], we can proved that point ( M;0) is a 
non hyperbolic repeller.�

Lemma 5. The equilibrium point (1;0) is

1.	 a saddle hyperbolic point, if and only if, 1 0− >C   ,
2.	 a hyperbolic saddle point, if and only if, 1   0,C− <
3.	 a non hyperbolic attractor, if and only if, 1 0− =C   .

Proof: We have that

  i.	 If 1 0− >C   , ( )det 1;0 0;DYη < thus (1;0) is a saddle hyperbolic point.
  ii.	� If 1 0− <C   ,  then ( )det 1;0 0DYη > and tr (1;0) 0;DYη <  then, (1;0) is a hyper-

bolic attractor point.
iii.	� If 1 0− C  = ;  then ( C;L) coincides with (1;0), and det (1;0) 0DYη = ; using the 

Central Manifold Theorem [14], it follows that the point (1;0) is a non hyperbolic 
attractor.�

9.3.2 � Existence of a Heteroclinic Curve

When the equilibria ( M;0) and (1;0) are saddle points, we will demonstrate the ex-
istence of a heteroclinic curve for a given condition of parameters.

Theorem 6. Assuming 0 < M < C < 1, the equilibria ( M;0) and (1;0) are hyperbolic 
saddle points. Then, for a subset of parameter values there exists a heteroclinic 
cycle hγ  in the first quadrant containing these equilibria.

det (1;0) ( 1)(1 )(1 )( 1) andDY B A M C Nη = − + − − +

( ) ( )( ) ( )( )tr 1;0 1 1 1 1DY A M B C Nη = + − + − +
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Proof: If ( M;0) and (1,0) are both saddle points, then their corresponding invari-
ant manifolds Ws( M;0) and Wu(1;0) are all one-dimensional objects. Clearly, the 
α-limit of Ws( M;0) and the ω-limit of Wu(1;0) are bounded in the direction of the 
v-axis. Neither the ω-limit of Wu(1;0) is on the u-axis.

Let u∗ be such that M < u∗ < 1. Then, there are points ( u∗;vs) ∈Ws( M;0) and ( u∗;vu) 
∈ Wu(1,0), with vs and vu depending on the parameter values, such that vs = s( η) and 
vu = u( η).

Since the vector field Yη is continuous with respect to the parameters values, then 
the stable manifold Ws( M;0) must intersect the unstable manifold Wu(1;0) for some 
parameter values. Hence, there exists a point ( ; )u v∗ ∗ ∈Γ  such that v v vs s

∗ ∗ ∗= = .
Moreover, by uniqueness of solutions of system (9.3), this intersection must oc-

cur along a whole trajectory γ1M, joining the equilibria (1;0) and ( M;0). Therefore, 
the equation s( η) = u( η) defines a codimension-one submanifold in the parameters 
space, for which the heteroclinic curve γ1M exists in � +

2 , connecting the points (1;0) 
and ( M;0).

Then, γ1M ⊂ Ws( M;0)∩Wu(1;0) and it lies entirely on a segment of the u-axis and 
exists for any parameter value such that 0 < M < C < 1.

It follows that a heteroclinic cycle γh exists for certain parameter values on the 
same submanifold. More precisely, γh = (1;0) ∪ γ1M ∪ ( M;0) ∪ γM1.�

We note that a the existence of a heteroclinic curve joining the points (1;0) and 
( M;0) is a common property on models with strong Allee effect.

9.3.3 � Nature of the Positive Equilibrium Point

In the following we consider 0 < M < C < 1. The equilibrium point ( C;L) is in the first 
quadrant and the Jacobian matrix evaluated at point ( C;L) is:

Let 2(tr ( ; )) 4det ( ; )Q DY C L DY C Lη η= − ; then,

If Q = 0, then 2B αµ=  where 
( )( )( ) .

4 1
A C

C C N C M C
α +

=
+ − −

With the above relations, we can establish the following theorem:

( ) ( ) ( )
( )( )( ); ;

0 1
A C C C N

DY C L
B C M C A Cη

µ + − + 
=  − − + 

(1 )( 2 ) ( )( 1)with ( , , , ) C C A C M C C M NA C M N
A C C N

µ − + − − +
= −

+ +

( ) ( )( )( )( )and det ; 1 0.DY C L BC C N C M C A Cη = + − − + >

( ) ( )( )( )( )2 2 4 1 .Q A C BC C N C M C A Cµ= + − + − − +
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Theorem 7. Let ( u∗;vs) ∈Ws( M;0) and ( u∗;vu) ∈ Wu(1,0).
7.1 Assuming s uυ υ> , then, ( ; )C L  is
a) a local hyperbolic attractor point, if and only if, μ < 0. Moreover,
a. 1 If 2B αµ< , is a focus attractor.
a. 2 If 2B αµ> , is a node attractor.
b) is a hyperbolic repeller point, if and only if, μ > 0. Moreover,
b. 1 If 2B αµ< , is a focus repeller, surrounded by a limit cycle.
b. 2 If 2B αµ> , is a node repeller.
c) is a weak focus, at least of order one, if and only if, μ = 0.
7.2 Assuming υs < υu; then, ( C;L) is a node repeller and (0;0) is globally asymp-

totically stable.
Proof: It is immediate from the evaluation of the Jacobian matrix.
If 0 < M < C < 1, det ( ; ) 0DY C Lη > . So, the nature of ( C;L) will be determined by 

tr ( ; )DY C Lη  and its sign is determined by μ.
i) Assuming s uυ υ> , it has:
If μ < 0, the point ( C;L) is a hyperbolic attractor, meanwhile if μ > 0, the point 

( C;L) is a hyperbolic repeller.
If Q < 0, then 2B αµ>  and ( C;L) is a node.
If Q > 0, then 2B αµ< and ( C;L) is a focus.
ii) Assuming s uυ υ> , by the existence and uniqueness theorem ensures that the 

ω-limit of Ws( M;0) or Wu(1;0) are in Γ. As (0;0), (1;0) are saddle points, all path in 
Γ  has as its ω-limit to (0;0) which is globally asymptotically stable.•

Remark 8. When s uυ υ> , the stable manifold Ws( M;0), the straight line u = 1 and 
the u-axis determines a subregion Λ  (see left poster in Fig. 9.1), which is closed 
and bounded, i.e.,

is a compact region and the Poincaré-Bendixson Theorem applies there, assuring 
the existence of a limit cycle. As the born of this limit cycle is through of the Hopf 
bifurcation, the largest is obtained when vs = vu, i.e. when the heteroclinic curve γ1M 
is reached.

Then, the increase of the diameter of this limit cycle by change of parameters, 
which will increase until to attain the heteroclinic curve.

Remark 9. To determine the weakness of the focus ( C;L), the number of limit 
cycles bifurcating of a weak (fine) focus must be obtained [9]. The weakness of a 
focus indicates the number of limit cycles appearing by multiple Hopf bifurcation, 
i.e., the number of the concentric limit cycles surroumding a weak focus [9].

There exist various methods to establish this number being one of them the cal-
culus of the Lyapunov quantities [9, 14]; however, this task that will not be assumed 
in this work. In Fig. 9.3 we show the existence of a unique limit cycle reinforced the 
result obtained in theorem 7b.1 (Fig. 9.2, 9.4, 9.5 and 9.6).

( ){ }, / 1, 0 s uu v M u v v vΛ = ∈Ω ≤ ≤ ≤ ≤ <
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Fig. 9.2   For A = 0.3, B = 0.2, C = 1.2, M = 0.05 and N = 0.1; there no exists positive equilibrium 
point. The points (1;0) and (0;0) are local attractors

 

Fig. 9.1   For 0 < M < C < 1, ( C;L) is the unique positive equilibrium point. The two possible relative 
positions between the stable manifold Ws( M;0) of the saddle point PM and the unstable manifold 
Wu(1;0) of saddle point P1 are shown. On the left side vs < vu and on the right side vs > vu. Being 
the vector field Yη continuous with respect to the parameters values, then the intersection between 
Ws( M;0) and Wu(1;0) occurs
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9.4 � Some Simulations

Fig. 9.4   For A = 1, B = 0:5, C = 0:6, M = 0:1 and N = 0:2. The vector field Yη has four equilibrium 
points in the first quadrant; (0;0) is a attractor point, ( M;0) and (1;0) are saddle equilibrium points 
and ( C;L) is a node attractor

 

Fig. 9.3   For A = 0.2, B = 0.5, C = 0.5, M = 0.15 and N = 0.4. The vector field Yη has four equilibrium 
points in the first quadrant; (0;0) is a attractor point; ( M;0) and (1;0) are a saddle point and ( C;L) 
is a repeller, surrounded by a stable limit cycle
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Fig. 9.6   For A = 0.1, B = 1, C = 0.25, M = 0.15 and N = 0.115. The vector field Yη has four equilib-
rium points in the first quadrant; (0;0) is a attractor point; ( M;0) and (1;0) are a saddle point and 
( C;L) is a repeller, and the stable limit cycle collides with the heteroclinic curve

 

Fig. 9.5   For A = 0.1, B = 0.3, C = 0.47, M = 0.08 and N = 0.2; the point ( C;L) is repeller focus 
and (0;0) is globally asymptotically stable. In this case, vs < vu for ( u*;vs) ∈Ws( M;0) and ( u*;vu) 
∈ Wu(1;0)
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9.5 � Conclusions

The existence of interesting dynamics has been shown, for a modified Rosenzweig-
MacArthur model [27], a particular case of a Gause type predator-prey model, con-
sidering a double Allee effect on prey [1, 4]. The properties are established using a 
polynomial differential equations system (9.3) topologically equivalent to original 
system (9.2).

We proved that the model proposed have multiple stable equilibria for a deter-
mined set of parameter values and, therefore, different population behaviors can 
coexist.

As in all models considering strong Allee effect, in system (9.3) there exists a 
separatrix curve determined by the unstable manifold of equilibrium point ( m,0). 
Then, there are trajectories near of this separatrix, which can have different ω-lim 
it for the same set of parameter values, showing they are highly sensitive to initial 
conditions. So, for a fixed set of parameters, the following may happen: extinction 
of two populations, the coexistence for determined population sizes or oscillations 
of both populations.

Moreover, there are parameter constraints for which the existence of a interior 
equilibrium point local asymptotically stable or the existence of at least one stable 
limit cycle generated by Hopf bifurcation has been proved.

We affirm that Eq. (9.1) can be assumed as a paradigm to represent double Allee 
effect. In fact, without assuming that the population is divided into age or sex class, 
it can be considered that x = x( t) represents the size of fertile population and n is the 
non-fertile population (juvenile or oldest individuals) [2]. Populations with strong 
Allee effects can go extinct at lower levels of mortality by predation; also, when 
mortality by predation increases and weaker Allee effects can drive population to 
extinction.

Although extinction of predator or both species are not interesting outcomes 
from the point of view of population dynamics, system (9.3) it capable for a com-
plete spectrum of dynamical behaviors that can, in principle, characterize this kind 
of models.

We think it is important for ecologists to be aware of the kind of bistability de-
scribed for system (9.3), where two potential attractors can exist: (i) the origin; (ii) 
a positive equilibrium point or a stable limit cycle.
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Abstract  The paper deals with elastic buckling of plates, having warping and elas-
tically restrained against torsion supports, under uniaxial compression. The mini-
mum energy principle is applied, regarding the isolated plate as part of an infinitely 
wide stiffened panel, reinforced by longitudinal stiffeners and transverse beams, 
despite of classical solutions, where two coupled transcendental equations are 
solved. The displacement field is developed into double sine trigonometric series 
and the solution convergence, in terms of buckling coefficients, is investigated. 
Simple design buckling formulas for isolated plate panels, as function of supporting 
members’ torque and warping rigidity ratios, are derived by curve fitting. Finally, 
several stiffened panels are analysed and the proposed formulas are compared with 
the relevant results obtained by some FE eigenvalue buckling analyses, carried out 
by ANSYS.

Keywords  Buckling analysis · Energy principle · Elastically restrained plates

10.1  Introduction

Ship structures, constituted by multi bay longitudinally stiffened panels supported 
by transverse beams, have to be checked for buckling criteria under the combined 
action of compressive and shear stresses, due to hull girder and local loads. From 
this point of view the isolated plate panel buckling analysis is generally carried out 
assuming, on the safety side, the simple support boundary conditions at all edges. 
Anyway, if the plate boundary conditions differ significantly from the simple sup-
port ones, more appropriate restraints may be applied assuming the plate is clamped 
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at long and/or short sides. Really, these idealized boundary conditions never oc-
cur, because longitudinal stiffeners and transverse beams have finite rotational and 
warping restraints, so that the elementary plate panel buckling analysis may be 
carried out accounting for the effective amount of supporting members’ torsional 
and warping rigidities. Besides, it is assumed that the supporting member bending 
rigidities should be so as to avoid stiffened panel’s overall buckling occurs before 
local plate buckling [7], according to the general adopted scantling design.

In the past a lot of authors, such as Lundquist and Stowell [5], Timoshenko and 
Gere [9], Gerard and Becker [3], Evans [2] and others investigated the buckling 
behaviour of uniaxially compressed plates, elastically restrained against torsion at 
long (short) sides and simply supported at short (long) ones, from now on SSLR 
(SRLS) platings. Anyway, the most extensive study is probably that one carried 
out by Paik and Thayamballi [6], who derived simple design buckling formulas for 
isolated plate panels, as function of supporting members’ torsional rigidity ratio and 
panel aspect ratio, by solving two coupled transcendental equations, derived by the 
imposed boundary conditions. In the following the minimum energy principle is 
applied to the buckling analysis of uniaxially compressed plates, rotationally and 
warping restrained at long and short sides, assuming the isolated plate as part of an 
infinitely long stiffened panel, reinforced by longitudinal ribs and transverse beams, 
so accounting for the strain energy due to torque and warping rigidities of internal 
supporting members. The vertical displacement field is modelled as a double sine 
trigonometric series and new buckling formulas, as function of stiffeners’ torque 
and warping rigidity ratios, are derived. Finally, different stiffened panels are anal-
ysed, comparing the new formulas with those ones proposed by Paik and Thayam-
balli and with the relevant results obtained by some eigenvalue buckling analyses 
carried out by ANSYS.

10.2  Theoretical Background

Most current practical design guidelines for buckling and ultimate strength of plat-
ings are mainly based on boundary conditions in which all edges are simply sup-
ported or perfectly clamped. In real platings, idealized edge conditions as simply 
supported or clamped ones never occur, because of finite rotational restraints. So, 
for a more advanced design of steel platings against buckling, it is hence important 
to better understand the relevant buckling strength characteristics, as a function of 
the torsional rigidity of supporting members along the edges.

In the classical methods the characteristic equation for buckling of platings with 
elastic restraints along either long or short edges, with other edges simply sup-
ported, is generally derived analytically, starting from the well-known deflection 
equation of platings subjected to combined in-plane loads. The solution indicates 
the plating deflected form under the corresponding load, which represents equilib-
rium but unstable position. The buckling strength is then defined by the load at the 
bifurcation point where beside the plane equilibrium form, a deflected but unstable 
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form of equilibrium occurs. Anyway, it is normally not an easy task to directly 
solve for platings with elastically restrained boundary conditions at all edges, or 
under combined axial and shear stresses, the previously proposed problem, [6]. So 
it seems that a more flexible technique may be derived.

In the following the more general solution based on multiple stiffened panels 
is adopted. From this point of view various numerical techniques are available. 
Hasegawa et al. [4] used the finite strip method, developing the displacement field 
of a finite element strip, comprised between adjacent supporting members, into a 
half-wave sine curve in the loaded direction and a cubic polynomial in the trans-
verse one, so defining a displacement field with four degrees of freedom. The com-
putational economy is superior to finite element analysis or finite difference analy-
sis, because of rapid convergence. Furthermore the number of finite strip elements 
doesn’t depend on the number and configuration of stiffeners in an entire multiple 
stiffened panel, as the location of a finite element strip may be arbitrarily defined. In 
the following the finite strip method is adopted, developing the displacement field 
into double sine trigonometric series, in order to derive the characteristic buckling 
formula for platings with rotationally restrained edges. The proposed method is 
particularly flexible and may be extended to more complex loading conditions, that 
cannot be easily solved by classical techniques.

10.3  Buckling Strength Analysis

10.3.1  Plates Rotationally Restrained at Long Edges

Let us consider an isolated plate panel, having dimensions a × b, comprised between 
two adjacent transverse beams and longitudinal stiffeners, and let us assume x and y 
axes are taken in the long and short directions respectively, so that the panel aspect 
ratio α is always greater than one. The panel, simply supported at short edges, is 
rotationally and warping restrained at long sides by longitudinal stiffeners having 
the same material properties as the isolated plate panel’s ones (SSLR plating). Let 
us also assume the longitudinal stiffeners’ bending rigidity is sufficiently high to 
avoid overall buckling from occurring before local plate buckling, so that relative 
supporting members lateral deflection may be neglected, assuming the plate edges 
remain straight until buckling occurs [8]. As previously said, the isolated plate may 
be regarded as part of an infinitely wide stiffened panel, reinforced by ns equally 
spaced longitudinal stiffeners, having the same geometrical and mechanical proper-
ties. The stiffened panel, having dimensions a × B, is loaded by compressive forces 
acting in x-direction (see Fig. 10.1) and is simply supported at all edges.

The number of panels ns has been suitably chosen to obtain consistent results in 
terms of buckling coefficients. The vertical displacement field may be developed 
into appropriate double sine trigonometric series, as follows:
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so that, considering the M and N partial sums of the above trigonometric series, 
Eq. (10.1) may be so rewritten:

�
(10.2)

To evaluate the Euler stress at which buckling occurs, the energy method is applied, 
assuming the stiffened panel undergoes some small lateral bending, consistent with 
the given boundary conditions. If the in-plane forces work is smaller than the plate 
and attached stiffeners strain energy, the equilibrium is stable, otherwise it is un-
stable and buckling occurs. The general equilibrium equation is [10]:

�
(10.3)

having denoted by ΔUp ( ΔUL
s,k) the strain energy due to plate bending (due to torque 

and warping of the k-th stiffener) and by ΔTp the compressive forces work on the 
plate in x-direction. The strain energy due to plate bending is:

�
(10.4)

finally becoming:

�
(10.5)

The strain energy of the k-th stiffener, located at y = kb from the edge y = 0, is the 
sum of two terms due to torque and warping rigidities respectively, the last one to 
be accounted for only if stiffeners are restrained against warping:
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Fig. 10.1   SSLR plate scheme
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�
(10.6)

having denoted by Φk
L the k-th stiffener rotation around its connection to the at-

tached plating, by Jk
L and Iw,k

L the stiffeners’ St. Venant and warping moments of 
inertia. Imposing the deflection angle continuity condition along the junction be-
tween the plate and the longitudinal stiffeners, the following congruence condition 
must be verified:

� (10.7)

so that Eq. (10.6) may be simplified as follows:

�

(10.8)

The compressive forces work is:

�
(10.9)

finally becoming:

�
(10.10)

By the minimum condition, the coefficients of series (10.1) can be determined by 
solving the following eigenvalue problem:

�
(10.11)

that can be finally rewritten as follows:
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with µ L and ψL torque and warping rigidity ratios:

�
(10.13)

�

(10.14)

In Eq.  (10.13) the ratio between stiffener JL and plating JP St. Venant moments 
of inertia may be assumed not greater than one, on the safety side, to account for 
supporting members torsional buckling. In Eq. (10.14) Iw is the stiffener sectorial 
moment of inertia about its connection to the attached plating, Iζ ( Iζ − p) is the stiff-
ener (plating) moment of inertia respect to its vertical neutral axis, while hw is the 
stiffener web height. The equation system (10.12) has been solved by a dedicated 
program developed in Matlab MathWorks. The number of harmonics in x-direction 
was taken equal to the number of half-waves into which the isolated plate buckles, 
while the one in y-direction equal to 299, due to the curvature of the plating buckled 
shape. Based on curve fitting of a large amount of data, buckling coefficients and 
Euler stresses may be expressed as follows:

�

(10.15)

In Fig. 10.2 the buckling coefficient kb − SSLR is plotted versus µL, for fixed values 
of ψL, namely 0.00, 0.05, 0.10, 0.20 and 0.30; the sixth curve refers to the formula 
by Paik & Thayamballi [6], while the last one (SSLC) is the limit value for plates 
simply supported at short sides and clamped at long ones.

10.3.2  Plates Rotationally Restrained at Short Edges

The buckling of plates under uniaxial compression, simply supported at long edges 
and elastically restrained at short ones (SRLS plates), may be treated as the previ-
ous case. The isolated plate may be regarded as part of an infinitely long stiffened 
panel, simply supported at all edges and reinforced by nt equally spaced transverses, 
having the same mechanical properties as the attached plate’s ones (see Fig. 10.3).

The vertical displacement field is developed into appropriate double sine trigo-
nometric series, satisfying the simple support boundary conditions:
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The general equilibrium equation is:

�

(10.17)

having denoted by ΔUp ( ΔUT
s,k) the strain energy due to plate bending (due to torque 

and warping of the k-th transverse) and by ΔTp the work done by compressive forces 
acting in x-direction on the plate. Also in this case the strain energy due to warping 
may be accounted only if transverses’ warping is restrained. The strain energy due 
to plate bending and the work done by compressive forces acting in x-direction on 
the plate may be expressed as in Eqs. (10.5) and (10.10), respectively. The strain 
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Fig. 10.2   Buckling coefficient distribution for SSLR plates
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energy due to torque and warping rigidities of the k-th attached transverse, with 
similar notation, is:

�
(10.18)

Imposing the deflection angle continuity condition along the junction between the 
plating and the transverses, the following congruence condition must be verified:

�
(10.19)

so that Eq. (10.17) may be finally rewritten as follows:

�

(10.20)

and the following eigenvalue problem may be solved:

�

(10.21)

Based on computed results, a closed-form buckling formula for SRLS plates has 
been derived, as a function of transverses’ torque rigidity µT and panel aspect ratios 
α:

� (10.22)
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where µT is defined as follows:

�
(10.24)

The ratio between stiffener JT and plating JP − T St. Venant moments of inertia may 
be assumed not greater than one, on the safety side, to account for supporting mem-
bers torsional buckling. In Fig. 10.4 buckling coefficients are plotted versus α for 
several values of transverses rigidity ratio µT, namely 0.0, 0.2, 0.4, 0.8 and 5.0. The 
curve by Paik & Thayamballi and the relevant one for plates clamped at short edges 
and simply supported at long ones (SCLS) are shown, too.

10.4  Test Examples

In the following the proposed formulas are applied and compared with the relevant 
results obtained by some eigenvalue buckling analyses carried out by ANSYS for 
different stiffened panels. All panels, as well as attached stiffeners, are within prac-
tical proportions from a design point of view and are made of high strength steel 
with ReH = 315 N/mm2, E = 206 GPa,ν = 0.30. The convergence of solution has been 
studied, decreasing the mean shell dimensions. Three models have been built: the 
coarse mesh, the fine mesh and the very fine mesh ones, with mean panel dimen-

( )2 1T T
T

P T

GJ J
Da J

µ ν
−

= = −
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sions of 0.20, 0.10 and 0.05 m, respectively. The St. Venant supporting members 
moment of inertia has been evaluated by the following formula for T-sections, de-
rived by thin-walled beam theory:

�

(10.25)

where hw and tw are the stiffener web height and thickness, while bf and tf are the 
flange breadth and thickness, respectively. It has also been verified [1] that warp-
ing stresses due to restrained torsion for thin-walled beams can be evaluated by 
classical theories with good confidence, especially for thin- walled structures with 
monoconnected cross-section.

10.4.1  Plates Rotationally Restrained at Long Edges

Stiffened panels’ geometrical properties, shown in Table 10.1, have been varied so 
that torque and warping rigidity ratios lie in the range 0.10–1.40 and 0.20–2.00, 
respectively. In all cases stiffener dimensions have been chosen to avoid overall 
buckling from occurring before local plate buckling. In Table 10.2 FE buckling co-
efficients are compared with the new formula and that one by Paik & Thayamballi, 
for the unrestrained warping case. The restrained warping case has also been ana-
lysed, comparing the FE buckling values with the relevant results obtained by the 
new proposed formula. Theoretical values are, in all cases, very close to FE ones.

10.4.2  Plates Rotationally Restrained at Short Edges

In Table 10.3 the geometrical properties of 33 stiffened panels are listed: also in this 
case stiffener dimensions, as well as plating thickness, have been suitably varied 
so that the torque rigidity ratio lies in the range 0.05–1.10. Stiffeners’ geometrical 
properties have been always chosen to avoid overall buckling from occurring before 
local plate buckling. In Table 10.4 a comparison with the relevant results obtained 
by ANSYS is carried out. As in the previous case, theoretical values are very close 
to FE ones.

10.5  Conclusions

The minimum energy principle is applied to the buckling analysis of plates on rota-
tionally and warping restrained supports, regarding the isolated plate as part of an 
infinitely wide stiffened panel. Simple design formulas have been derived by curve 
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N a (mm) b (mm) t (mm) hw (mm) tw (mm) bf (mm) tf (mm) µL ψL

1 2400 800 12 250 12 100 15 0.747 0.987
2 2400 800 15 250 12 100 15 0.382 0.632
3 2400 800 20 250 12 100 15 0.161 0.355
4 2400 800 12 250 12 100 20 1.146 0.987
5 2400 800 12 250 12 100 25 1.400 0.987
6 2400 800 12 250 15 100 20 1.400 0.987
7 2400 800 12 250 15 100 25 1.400 0.987
8 2400 800 12 150 12 80 15 0.504 0.355
9 2400 800 15 150 12 80 15 0.258 0.228
10 2400 800 12 150 12 80 20 0.809 0.355
11 2400 800 12 150 12 80 25 1.279 0.355
12 2400 800 12 150 15 80 20 1.059 0.355
13 2400 800 12 150 15 80 25 1.400 0.355
14 2400 800 12 350 12 150 15 1.093 1.935
15 2400 800 15 350 12 150 15 0.560 1.239
16 2400 800 20 350 12 150 15 0.236 0.697
17 2400 800 12 350 12 150 20 1.400 1.935
18 2400 800 12 350 12 150 25 1.400 1.935
19 2400 800 12 350 15 150 20 1.400 1.935
20 2400 800 12 350 15 150 25 1.400 1.935
21 3000 1000 12 250 12 100 15 0.598 0.987
22 3000 1000 15 250 12 100 15 0.306 0.632
23 3000 1000 20 250 12 100 15 0.129 0.355
24 3000 1000 12 250 12 100 20 0.916 0.987
25 3000 1000 12 250 12 100 25 1.400 0.987
26 3000 1000 12 250 15 100 20 1.250 0.987
27 3000 1000 12 250 15 100 25 1.400 0.987
28 3000 1000 12 150 12 80 15 0.403 0.355
29 3000 1000 15 150 12 80 15 0.206 0.228
30 3000 1000 12 150 12 80 20 0.647 0.355
31 3000 1000 12 150 12 80 25 1.023 0.355
32 3000 1000 12 150 15 80 20 0.847 0.355
33 3000 1000 12 150 15 80 25 1.224 0.355
34 3000 1000 12 350 12 150 15 0.874 1.935
35 3000 1000 15 350 12 150 15 0.448 1.239
36 3000 1000 20 350 12 150 15 0.189 0.697
37 3000 1000 12 350 12 150 20 1.381 1.935
38 3000 1000 12 350 12 150 25 1.400 1.935
39 3000 1000 12 350 15 150 20 1.400 1.935
40 3000 1000 12 350 15 150 25 1.400 1.935
41 4000 800 12 250 12 100 15 0.747 0.987
42 4000 800 15 250 12 100 15 0.382 0.632
43 4000 800 20 250 12 100 15 0.161 0.355
44 4000 800 12 250 12 100 20 1.146 0.987
45 4000 800 12 250 12 100 25 1.400 0.987
46 4000 800 12 250 15 100 20 1.400 0.987
47 4000 800 12 250 15 100 25 1.400 0.987
48 4000 800 12 150 12 80 15 0.504 0.355

Table 10.1   SSLR plates—geometrical properties  
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N a (mm) b (mm) t (mm) hw (mm) tw (mm) bf (mm) tf (mm) µL ψL

49 4000 800 12 150 12 80 20 0.809 0.355
50 4000 800 12 150 12 80 25 1.279 0.355
51 4000 800 12 150 15 80 20 1.059 0.355
52 4000 800 12 150 15 80 25 1.400 0.355
53 4000 800 12 350 12 150 15 1.093 1.935
54 4000 800 15 350 12 150 15 0.560 1.239
55 4000 800 20 350 12 150 15 0.236 0.697
56 4000 800 12 350 12 150 20 1.400 1.935
57 4000 800 12 350 12 150 25 1.400 1.935
58 4000 800 12 350 15 150 20 1.400 1.935
59 4000 800 12 350 15 150 25 1.400 1.935
60 4000 800 12 350 15 150 30 1.400 1.935

Table 10.1   (continued)

N Unrestrained warping Restrained warping
kb-NEW kb-PAIK kb-FE kb-NEW/

kb-FE
kb-PAIK/
kb-FE

kb-NEW 
-W

kb-FE  
-W

kb-NEW -W/
kb-FE-W

1 5.122 5.077 5.251 0.975 0.967 6.734 6.694 1.006
2 4.654 4.612 4.874 0.955 0.946 6.595 6.376 1.034
3 4.296 4.275 4.494 0.956 0.951 6.392 6.091 1.049
4 5.488 5.469 5.295 1.036 1.033 6.821 6.715 1.016
5 5.663 5.664 5.334 1.062 1.062 6.864 6.729 1.020
6 5.663 5.664 5.656 1.001 1.001 6.864 7.008 0.979
7 5.663 5.664 5.709 0.992 0.992 6.864 7.024 0.977
8 4.826 4.779 5.156 0.936 0.927 6.450 6.576 0.981
9 4.459 4.428 4.754 0.938 0.931 6.111 6.298 0.970
10 5.187 5.145 5.237 0.991 0.982 6.555 6.656 0.985
11 5.585 5.576 5.296 1.054 1.053 6.688 6.706 0.997
12 5.419 5.393 5.557 0.975 0.970 6.632 6.927 0.957
13 5.663 5.664 5.626 1.007 1.007 6.715 6.982 0.962
14 5.446 5.423 5.296 1.028 1.024 6.890 6.695 1.029
15 4.900 4.852 4.926 0.995 0.985 6.720 6.396 1.051
16 4.423 4.394 4.535 0.975 0.969 6.611 6.104 1.083
17 5.663 5.664 5.329 1.063 1.063 6.934 6.707 1.034
18 5.663 5.664 5.356 1.057 1.058 6.934 6.716 1.032
19 5.663 5.664 5.729 0.989 0.989 6.934 7.017 0.988
20 5.663 5.664 5.769 0.982 0.982 6.934 7.025 0.987
21 4.948 4.900 5.240 0.944 0.935 6.700 6.613 1.013
22 4.537 4.501 4.847 0.936 0.929 6.588 6.307 1.045
23 4.240 4.222 4.472 0.948 0.944 6.399 6.039 1.060
24 5.293 5.257 5.289 1.001 0.994 6.773 6.690 1.012
25 5.663 5.664 5.335 1.062 1.062 6.864 6.714 1.022
26 5.564 5.554 5.625 0.989 0.987 6.840 6.982 0.980
27 5.663 5.664 5.683 0.997 0.997 6.864 7.008 0.979
28 4.684 4.641 5.042 0.929 0.921 6.419 6.526 0.984

Table 10.2   SSLR plates—numerical comparison with FE results  
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N Unrestrained warping Restrained warping
kb-NEW kb-PAIK kb-FE kb-NEW/

kb-FE
kb-PAIK/
kb-FE

kb-NEW 
-W

kb-FE  
-W

kb-NEW -W/
kb-FE-W

29 4.373 4.347 4.665 0.937 0.932 6.097 6.235 0.978
30 5.008 4.960 5.144 0.974 0.964 6.499 6.598 0.985
31 5.389 5.360 5.225 1.031 1.026 6.622 6.662 0.994
32 5.226 5.186 5.448 0.959 0.952 6.567 6.864 0.957
33 5.545 5.533 5.544 1.000 0.998 6.675 6.936 0.962
34 5.253 5.214 5.278 0.995 0.988 6.852 6.708 1.021
35 4.749 4.703 4.934 0.962 0.953 6.702 6.396 1.048
36 4.344 4.319 4.533 0.958 0.953 6.620 6.084 1.088
37 5.651 5.651 5.318 1.063 1.063 6.932 6.722 1.031
38 5.663 5.664 5.353 1.058 1.058 6.934 6.734 1.030
39 5.663 5.664 5.699 0.994 0.994 6.934 7.034 0.986
40 5.663 5.664 5.747 0.985 0.986 6.934 7.044 0.984
41 5.122 5.077 5.137 0.997 0.988 6.734 6.892 0.977
42 4.654 4.612 4.807 0.968 0.960 6.595 6.566 1.004
43 4.296 4.275 4.484 0.958 0.953 6.392 6.341 1.008
44 5.488 5.469 5.167 1.062 1.058 6.821 6.871 0.993
45 5.663 5.664 5.195 1.090 1.090 6.864 6.917 0.992
46 5.663 5.664 5.517 1.027 1.027 6.864 7.134 0.962
47 5.663 5.664 5.553 1.020 1.020 6.864 7.187 0.955
48 4.826 4.779 5.080 0.950 0.941 6.450 6.785 0.951
49 5.187 5.145 5.138 1.010 1.001 6.555 6.833 0.959
50 5.585 5.576 5.187 1.077 1.075 6.688 6.883 0.972
51 5.419 5.393 5.429 0.998 0.993 6.632 7.072 0.938
52 5.663 5.664 5.488 1.032 1.032 6.715 7.128 0.942
53 5.446 5.423 5.146 1.058 1.054 6.890 6.934 0.994
54 4.900 4.852 4.820 1.017 1.007 6.720 6.618 1.015
55 4.423 4.394 4.511 0.981 0.974 6.611 6.472 1.021
56 5.663 5.664 5.168 1.096 1.096 6.934 6.966 0.995
57 5.663 5.664 5.192 1.091 1.091 6.934 6.977 0.994
58 5.663 5.664 5.547 1.021 1.021 6.934 7.269 0.954
59 5.663 5.664 5.578 1.015 1.015 6.934 7.284 0.952
60 5.663 5.664 5.611 1.009 1.009 6.934 7.295 0.951

MEAN 1.003 0.999 0.997
COV% 4.368 4.607 3.432

Table 10.2   (continued)

N a (mm) b (mm) t (mm) hw (mm) tw (mm) bf (mm) tf (mm) µT

1 2400 800 12 250 12 100 15 0.249
2 2400 800 12 250 12 100 20 0.3819
3 2400 800 12 250 12 100 25 0.5902
4 2400 800 12 250 15 100 20 0.5209
5 2400 800 12 250 15 100 25 0.7292
6 2400 800 12 150 12 80 15 0.1679
7 2400 800 12 150 12 80 20 0.2695

Table 10.3   SRLS plates—geometrical properties  
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N a (mm) b (mm) t (mm) hw (mm) tw (mm) bf (mm) tf (mm) µT

8 2400 800 12 150 12 80 25 0.426
9 2400 800 12 150 15 80 20 0.353
10 2400 800 12 150 15 80 25 0.510
11 2400 800 12 350 12 150 15 0.364
12 2400 800 12 350 12 150 20 0.575
13 2400 800 12 350 12 150 25 0.912
14 2400 800 12 350 15 150 20 0.770
15 2400 800 12 350 15 150 25 1.107
16 3000 1000 12 250 12 100 15 0.199
17 3000 1000 15 250 12 100 15 0.102
18 3000 1000 12 250 12 100 20 0.306
19 3000 1000 12 250 12 100 25 0.472
20 3000 1000 12 250 15 100 20 0.417
21 3000 1000 12 250 15 100 25 0.583
22 3000 1000 12 150 12 80 15 0.134
23 3000 1000 15 150 12 80 15 0.069
24 3000 1000 12 150 12 80 20 0.216
25 3000 1000 12 150 12 80 25 0.341
26 3000 1000 12 150 15 80 20 0.282
27 3000 1000 12 150 15 80 25 0.408
28 3000 1000 12 350 12 150 15 0.291
29 3000 1000 15 350 12 150 15 0.149
30 3000 1000 12 350 12 150 20 0.460
31 3000 1000 12 350 12 150 25 0.730
32 3000 1000 12 350 15 150 20 0.616
33 3000 1000 12 350 15 150 25 0.886

Table 10.3   (continued)

N kb-NEW kb-PAIK kb-FE kb-NEW/kb-FE kb-PAIK/kb-FE
1 4.232 4.242 4.100 1.032 1.035
2 4.279 4.285 4.102 1.043 1.045
3 4.314 4.323 4.104 1.051 1.053
4 4.305 4.312 4.150 1.037 1.039
5 4.326 4.343 4.152 1.042 1.046
6 4.185 4.196 4.121 1.015 1.018
7 4.242 4.251 4.125 1.028 1.031
8 4.289 4.295 4.129 1.039 1.040
9 4.271 4.278 4.166 1.025 1.027
10 4.303 4.310 4.170 1.032 1.034
11 4.274 4.281 4.090 1.045 1.047
12 4.312 4.321 4.091 1.054 1.056
13 4.337 4.347 4.092 1.060 1.062
14 4.329 4.346 4.141 1.045 1.049
15 4.345 4.347 4.142 1.049 1.049
16 4.205 4.216 4.149 1.014 1.016
17 4.141 4.138 4.107 1.008 1.008

Table 10.4   SRLS plates—numerical comparison with FE results  



13510  Buckling of Plates on Rotationally and Warping Restrained Supports

fitting of a large amount of data and several stiffened panels have been analysed 
by ANSYS, where some eigenvalue buckling analyses have been carried out. In all 
cases a good agreement between theoretical and FE values was found. The influ-
ence of supporting members’ torsional and warping rigidity is always appreciable 
and it may not be neglected in a refined buckling strength check of platings under 
uniaxial compression.

Acknowledgements  The work has been financed by the University of Naples “Parthenope”, 
Department of Science and Technology.

References

1.	 Campanile A, Mandarino M, Piscopo V (2010) On the exact solution of non-uniform torsion 
for beams with asymmetric cross-section. World Academy of Science, Engineering and Tech-
nology, Issue 31, July 2009, pp. 46–53

2.	 Evans JH (1960) Strength of wide plates under uniform edge compression. Trans SNAME, 
1960 n. 68, pp. 585–621

3.	 Gerard G, Becker H (1954) Handbook of structural stability, Part I. Buckling of flat plates, 
NACA Technical Note, 1954, No. 3781

4.	 Hasegawa A, Asce AM, Ota K, Nishino F, Asce M (1976) Buckling strength of multiple stiff-
ened panels. Proceedings of the Specialist Conference “Methods of structural analysis”

5.	 Lundquist E, Stowell EZ (1942) Critical compressive stress for flat rectangular plates elasti-
cally restrained. NACA Technical Note, 1942, No. 733

6.	 Paik JK, Kim JY (2000) Bucking strength of steel plating with elastically restrained edges. 
Thin-walled Structures, 37

N kb-NEW kb-PAIK kb-FE kb-NEW/kb-FE kb-PAIK/kb-FE
18 4.256 4.264 4.151 1.025 1.027
19 4.297 4.304 4.156 1.034 1.035
20 4.287 4.293 4.179 1.026 1.027
21 4.313 4.322 4.181 1.032 1.034
22 4.161 4.169 4.116 1.011 1.013
23 4.150 4.101 4.071 1.019 1.007
24 4.215 4.226 4.121 1.023 1.025
25 4.267 4.275 4.125 1.035 1.036
26 4.247 4.256 4.162 1.020 1.023
27 4.285 4.291 4.166 1.028 1.030
28 4.250 4.260 4.102 1.036 1.038
29 4.172 4.182 4.059 1.028 1.030
30 4.295 4.301 4.104 1.047 1.048
31 4.326 4.343 4.105 1.054 1.058
32 4.316 4.327 4.153 1.039 1.042
33 4.336 4.347 4.155 1.043 1.046

MEAN 1.034 1.036
COV% 1.291 1.387

Table 10.4   (continued)



136 V. Piscopo and A. Scamardella

  7.	 Piscopo V (2010) Refined buckling analysis of rectangular plates under uniaxial and biaxial 
compression. World Academy of Science, Engineering and Technology, Issue 46, October 
2010, pp. 554–561

  8.	 Piscopo V (2012) Local and Overall Buckling of Uniaxially Compressed Stiffened Panels, 
Sustainable Maritime Transportation and Exploitation of Sea Resources - Proceedings of the 
14th International Congress of the International Maritime Association of the Mediterranean, 
IMAM 2011

  9.	 Timoshenko SP, Gere JM (1985) Theory of elastic stability. Mc-Graw Hill International Book 
Company, 17th edition

10.	 Timoshenko SP, Woinowsky-Krieger S (1959) Theory of Plates and Shells. Mc-Graw Hill 
International Book Company



137

Chapter 11
Analytic Programming—A New Tool for 
Synthesis of Controller for Discrete Chaotic 
Lozi Map

R. Senkerik, Z. Kominkova Oplatkova, M. Pluhacek and I. Zelinka

N. Mastorakis, V. Mladenov (eds.), Computational Problems in Engineering, 
Lecture Notes in Electrical Engineering 307, DOI 10.1007/978-3-319-03967-1_11, 
© Springer International Publishing Switzerland 2014

R. Senkerik () · Z. K. Oplatkova · M. Pluhacek
Department of Informatics and Artificial Intelligence, Tomas Bata University in Zlin, 
Nad Stranemi 4511, 760 05 Zlin, Czech Republic
e-mail: senkerik@fai.utb.cz

I. Zelinka
Department of Computer Science, VŠB-Technical University of Ostrava, 
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
e-mail: ivan.zelinka@vsb.cz

Abstract  In this chapter, it is presented a utilization of a novel tool for symbolic 
regression, which is analytic programming, for the purpose of the synthesis of a new 
feedback control law. This new synthesized chaotic controller secures the fully sta-
bilization of selected discrete chaotic systems, which is the two-dimensional Lozi 
map. The paper consists of the descriptions of analytic programming as well as 
selected chaotic system, used heuristic and cost function design. For experimen-
tation, Self-Organizing Migrating Algorithm (SOMA) and Differential evolution 
(DE) were used. Two selected experiments are detailed described.

Keywords  Analytic programming · Symbolic regression · Chaos control · 
Evolutionary algorithms · Lozi map

11.1 � Introduction

During the recent years, usage of new intelligent systems in engineering, technology, 
modeling, computing and simulations has attracted the attention of researchers world-
wide. The most current methods are mostly based on soft computing, which is a disci-
pline tightly bound to computers, representing a set of methods of special algorithms, 
belonging to the artificial intelligence paradigm. The most popular of these methods 
are neural networks, evolutionary algorithms, fuzzy logic and tools for symbolic re-
gression like genetic programming. Currently, evolutionary algorithms are known as 
a powerful set of tools for almost any difficult and complex optimization problem.
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The interest about the interconnection between evolutionary techniques and con-
trol of chaotic systems is spread daily. First steps were done in [1] representing the 
utilization of differential evolution algorithm for the synchronization and control of 
chaotic systems. The papers [2, 3] were concerned to tune several parameters inside 
the original control technique for discrete chaotic systems. The evolutionary tuned 
control technique was based on Pyragas method: Extended delay feedback con-
trol—ETDAS [4]. Another example of interconnection between deterministic chaos 
and evolutionary algorithms represents the research focused on the embedding of 
chaotic dynamics into the evolutionary algorithms [5–7].

This chapter shows a possibility how to generate the whole control law by means 
of analytic programming (AP) (not only to optimize several parameters) for the pur-
pose of stabilization of the selected discrete chaotic system. The synthesis of control 
is inspired by the Pyragas’s delayed feedback control technique [8, 9].

AP is a superstructure of EAs and is used for synthesis of analytic solution ac-
cording to the required behaviour. Control law from the proposed system can be 
viewed as a symbolic structure, which can be synthesized according to the require-
ments for the stabilization of the chaotic system.

This chapter represents an extension of work [10] and cumulation of experiences 
from the previous work [2, 11–13].

Firstly, AP is explained, and then a description of used soft-computing tools is 
proposed. The next sections are focused on the problem design and the description 
of cost function utilized within the evolutionary process. Results and conclusion 
follow afterwards.

11.2 � Motivation

This work is focused on the expansion of AP application for synthesis of a whole 
robust control law instead of parameters tuning for existing and commonly used 
control technique to stabilize desired Unstable Periodic Orbits (UPO) of selected 
discrete chaotic system.

This work represents an extension of previous research [14, 15], with the appli-
cation to the chaotic discrete Lozi map.

In general, this research is concerned to stabilize Lozi map chaotic system at p-1 
UPO, which is a stable state, utilizing the synthesized control law.

11.3 � Analytic Programming

Basic principles of the AP were developed in 2001. Until that time only genetic 
programming (GP) and grammatical evolution (GE) had existed. GP uses genetic 
algorithms (GA) while AP can be used with any EA, independently on an individual 
representation. Various applications of AP are described in [16–18].
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The core of AP is based on a special set of mathematical objects and opera-
tions. The set of mathematical objects is a set of functions, operators and so-called 
terminals (as well as in GP), which are usually constants or independent variables. 
This set of variables is usually mixed together and consists of functions with dif-
ferent number of arguments. Because of the variability of the content of this set, 
it is termed the “general functional set”—GFS. The structure of GFS is created 
by subsets of functions according to the number of their arguments. For example, 
GFSall is a set of all functions, operators and terminals, GFS3arg is a subset contain-
ing functions with only three arguments, GFS0arg represents only terminals, etc. The 
subset structure presence in GFS is vitally important for AP. The hierarchy of GFS 
is depicted in Fig. 11.1. It is used to avoid the synthesis of pathological programs, 
i.e. programs containing functions without arguments, etc. The content of GFS is 
dependent only on the user. Various functions and terminals can be mixed together 
[17].

The second part of the AP core is a sequence of mathematical operations used 
for the program synthesis. These operations are used to transform an individual of 
a population into a suitable program. Mathematically stated, it is mapping from an 
individual domain into a program domain. The mapping consists of two main parts. 
The first part is called Discrete Set Handling (DSH) (Fig. 11.2; [17]) and the second 
one stands for security procedures which do not allow synthesizing pathological 
programs. The method of DSH, when used, allows handling arbitrary objects in-
cluding nonnumeric objects such as linguistic terms {hot, cold, dark…}, logic terms 
(True, False) or other user defined functions. In the AP, DSH is used to map an indi-
vidual into GFS and together with security procedures creates the above-mentioned 
mapping, which transforms an arbitrary individual into a program.

AP needs some EA [17] that consists of a population of individuals for its run. 
Individuals in the population consist of integer parameters, i.e. an individual is an 
integer index pointing into GFS. The creation of the program can be schematically 
observed in Fig. 11.3. The individual contains numbers which are indices for GFS. 

Fig. 11.1   Hierarchy in the 
GFS
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Figure 11.3 demonstrates an artificial example as to how a final function is created 
from an integer individual via Discrete Set Handling (DSH).

The number 1 in the position of the first parameter means that the operator plus 
(+) from GFSall is used (the end of the individual is far enough). Because the op-
erator + must have at least two arguments, the next two index pointers 6 (sin from 
GFS) and 7 (cos from GFS) are dedicated to this operator as its arguments. The two 
functions, sin and cos, are one-argument functions, therefore the next unused point-
ers 8 (tan from GFS) and 9 ( t from GFS) are dedicated to the sin and cos functions. 
As an argument of cos, the variable t is used, and this part of the resulting function 
is closed ( t has zero arguments) in its AP development. The one-argument function 
tan remains, and there is one unused pointer 11, which stands for Mod in GFSall. 
The modulo operator needs two arguments but the individual in the example has no 
other indices (pointers, arguments). In this case, it is necessary to employ security 
procedures and jump to the subset with GFS0arg. The function tan is mapped on t 
from GFS0arg which is on the 11th position, cyclically from the beginning.

Fig. 11.3   The main principle 
of AP
 

Fig. 11.2   Discrete set 
handling
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AP exists in 3 versions—basic without constant estimation, APnf—estimation by 
means of nonlinear fitting package in Wolfram Mathematica (www.wolfram.com) 
environment and APmeta—constant estimation by means of another evolutionary al-
gorithms; the term “meta” implies meta-evolution.

APbasic stands for the version where constant estimation is done in the same way 
as in genetic programming. In the case that data approximation requires estimation 
of coefficients in the approximated polynomial or moving the basic curve from the 
axes origin, the user has to assign a set of constant values into GFS. This results in a 
huge enlargement of the functional sets and deceleration of the evolutionary proce-
dure. Therefore two other strategies were adopted—APnf and APmeta. These two ver-
sions of AP use the constant K, which is indexed during the evolution (11.1). When 
K is needed, a proper index is assigned—K1, K2, … Kn (11.2). Numeric values to 
indexed Ks are estimated (11.3) either by means of nonlinear fitting methods—APnf 
or by means of the second evolutionary algorithm—APmeta.
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APmeta is a very time consuming process and the number of cost function evalua-
tions, which is one of the comparative factors, is usually very high. This is given by 
two evolutionary processes (Fig. 11.4.) required for obtaining of a new synthesized 
symbolic formula.

EAmaster represents the main evolutionary algorithm for AP, EAslave is the second-
ary evolutionary algorithm within AP for the process of constants (coefficients) 
estimation. Thus the total number of cost function evaluation (CFE) required for the 
obtaining of solution is given by (11.4):

CFE CFE EA CFE EAmaster slave= ( )· ( )� (11.4)

Fig. 11.4   Schema of APmeta procedures
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Despite this disadvantage of very high CFE required, because of the character of the 
problem, many simulations simply cannot utilize nonlinear fitting methods in the 
Mathematica environment or predefined huge set of possible constants.

11.4 � Used Soft-Computing Tools

This section gives the brief overview and the description of used soft-computing 
tools. This research utilized the symbolic regression tool, which is analytic pro-
gramming and two evolutionary algorithms: Self-Organizing Migrating Algorithm 
[19]; and Differential Evolution [20].

Future simulations expect a usage of soft computing GAHC algorithm (modifi-
cation of HC12) [21] and a CUDA implementation of HC12 algorithm [22].

11.4.1 � Self-Organizing Migrating Algorithm (SOMA)

Self-Organizing Migrating Algorithm is a stochastic optimization algorithm that 
is modeled on the basis of social behavior of cooperating individuals [19]. It was 
chosen because it has been proven that the algorithm has the ability to converge 
towards the global optimum [19] and due to the successful applications together 
with AP [23, 24].

SOMA works on a population of candidate solutions in loops called migration 
loops. The population is initialized randomly distributed over the search space at the 
beginning of the search. In each loop, the population is evaluated and the solution 
with the highest fitness becomes the leader L. Apart from the leader, in one migra-
tion loop, all individuals will traverse the input space in the direction of the leader. 
Mutation, the random perturbation of individuals, is an important operation for evo-
lutionary strategies (ES). It ensures the diversity amongst the individuals and it also 
provides the means to restore lost information in a population. Mutation is different 
in SOMA compared with other ES strategies. SOMA uses a parameter called PRT 
to achieve perturbation. This parameter has the same effect for SOMA as mutation 
has for genetic algorithms.

The novelty of this approach is that the PRT Vector is created before an indi-
vidual starts its journey over the search space. The PRT Vector defines the final 
movement of an active individual in search space.

The randomly generated binary perturbation vector controls the allowed dimen-
sions for an individual. If an element of the perturbation vector is set to zero, then 
the individual is not allowed to change its position in the corresponding dimension.

An individual will travel a certain distance (called the PathLength) towards the 
leader in n steps of defined length. If the PathLength is chosen to be greater than 
one, then the individual will overshoot the leader. This path is perturbed randomly.
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11.4.2 � Differential Evolution

DE is a population-based optimization method that works on real-number-coded 
individuals [25–27]. DE is quite robust, fast, and effective, with global optimization 
ability. It does not require the objective function to be differentiable, and it works 
well even with noisy and time-dependent objective functions. Description of used 
DERand1Bin strategy is presented in (11.5). Please refer to [20, 27] for the descrip-
tion of all other strategies.

, 1 1, 2, 3,·( )i G r G r G r Gu x F x x+ = + −� (11.5)

11.5 � Lozi Map

Lozi map is the selected example of chaotic systems, which represents the simple 
discrete two-dimensional chaotic map. The x, y plot of the Lozi map is depicted in 
Fig. 11.5. The map equations are given in (11.6). The parameters are: a = 1.7 and 
b = 0.5 as suggested in [28, 29]. The chaotic behavior of the uncontrolled Lozi map 
is depicted in Fig. 11.6.
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Fig. 11.5   x, y plot of the Lozi 
map
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11.6 � Original Chaos Control Method

This work is focused on explanation of application of AP for synthesis of a whole 
control law instead of demanding tuning of any original method control law to 
stabilize desired Unstable Periodic Orbits (UPO). In this research desired UPO is 
only p − 1 (the fixed point, which represents the stable state). Original Time-Delay-
Auto-Synchronization (TDAS) delayed feedback control method was used in this 
research as an inspiration for synthesizing a new feedback control law by means of 
evolutionary techniques and for preparation of sets of basic functions and operators 
for AP.

The original control method—TDAS has form (11.7) and its discrete form is 
given in (11.8).

( )( ) ( )F t K x t x tτ=  − −  
�

(11.7)

( )n n m nF K x x−= −� (11.8)

Where: K is adjustable constant, F is the perturbation, dτ  is a time delay; and m is 
the period of m-periodic orbit to be stabilized. The perturbation nF  in Eq. (11.8) 
may have arbitrarily large value, which can cause diverging of the system. There-
fore, Fn  should have a value between −Fmax, Fmax. In this work a suitable Fmax value 
was taken from the previous research.

Fig. 11.6   Iterations of the uncontrolled Lozi map (variable x)
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11.7 � Cost Function Design

The proposal of the basic cost function (CF) is in general based on the simplest CF, 
which could be used problem-free only for the stabilization of p − 1 orbit. The idea 
was to minimize the area created by the difference between the required state and 
the real system output on the whole simulation interval—τi. This CF design is very 
convenient for the evolutionary searching process due to the relatively favorable CF 
surface. Nevertheless, this simple approach has one big disadvantage, which is the 
including of initial chaotic transient behavior of not stabilized system into the cost 
function value. As a result of this, the very tiny change of control method setting for 
extremely sensitive chaotic system causing very small change of CF value, can be 
suppressed by the above-mentioned including of initial chaotic transient behavior.

But another universal cost function had to be used for stabilizing of extremely 
sensitive chaotic system and for having the possibility of adding penalization rules. 
It was synthesized from the simple CF and other terms were added.

This CF is in general based on searching for desired stabilized periodic orbit and 
thereafter calculation of the difference between desired and found actual periodic 
orbit on the short time interval—τs (40 iterations for higher order UPO) from the 
point, where the first minimal value of difference between desired and actual sys-
tem output is found (i.e. floating window for minimization—see Fig. 11.7.).

Such a design of universal CF should secure the successful stabilization of either 
p − 1 orbit (stable state) or higher periodic orbits anywise phase shifted. Further-
more, due to CF values converging towards zero, this CF also allows the using of 
decision rules, avoiding very time demanding simulations. This rule stops EA im-
mediately, when the first individual with good parameter structure is reached, thus 
the value of CF is lower then the acceptable (CFacc) one. Based on the numerous 
experiments, typically CFacc = 0.001 at time interval τs = 20 iterations, thus the dif-
ference between desired and actual output has the value of 0.0005 per iteration—

Fig. 11.7   “Floating window” 
for minimization
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i.e. successful stabilization for the used control technique. The CFBasic has the form 
(11.9):

2

1
1

Basic t t
t

CF pen TS AS
τ

τ=

= + −∑
�

(11.9)

where:

TS	 target state,
AS	 actual state
τ1	 the first min value of difference between TS and AS
τ2	 the end of optimization interval ( τ1 + τs)
pen1 =	 0 if τi − τ2 ≥ τs
pen1 =	 10*( τi − τ2) if τi − τ2 < τs (i.e. late stabilization).

11.8 � Results

Analytic Programming requires some EA for its run. In this paper, APmeta version 
was used. Meta-evolutionary approach means usage of one main evolutionary al-
gorithm for AP process and the second algorithm for coefficient estimation, thus to 
find optimal values of constants in the evolutionary synthesized control law.

SOMA algorithm was used for the main AP process and DE was used in the 
second evolutionary process. Settings of EA parameters for both processes given in 
Tables 11.1 and 11.2 were based on performed numerous experiments with chaotic 
systems and simulations with APmeta.

The data set for AP required only constants, operators like plus, minus, power and 
output values xn  and xn−1 . The set of elementary functions for AP was inspired in 
the original delayed feedback chaos control method TDAS (See Sects. 11.6; (11.7) 
and (11.8)). Thus AP dataset consists only of simple functions (operators) with two 
arguments and functions with zero arguments, i.e. terminals (constants and system 
output values). Functions with one argument, e.g. Sin, Cos, etc.; were not required.

Basic set of elementary functions for AP:
GFS2arg = +, −, /, *, ^

SOMA Parameter Value
PathLength 3
Step 0.11
PRT 0.1
PopSize 50
Migrations 4
Max. CF Evaluations (CFE) 5,345

Table 11.1  SOMA settings 
for AP
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GFS0arg = datan − 1 to datan, K
Total number of cost function evaluations for AP was 5,345, for the second EA it 

was 6,000, together 32.07 millions per each simulation.
Following description of two selected experiments results contains illustrative 

examples of direct output from AP—synthesized control laws without coefficients 
estimated (11.10) and (11.12); further the notations with simplification after es-
timation by means of second algorithm DE (11.11) and (11.13), Table 11.3 with 
corresponding CF values and the average error value between actual and required 
system output, and finally Figs. 11.8, 11.9, 11.10 and 11.11 with simulation results.

11.8.1 � Experiment 1

1 1 12 ( 2 )( )n n n n n nF K x x x x x− −= − − −
� (11.10)

1 11.18253( 2 )( )n n n n n nF x x x x x− −= − − −� (11.11)

11.8.2 � Experiment 2

1 1 1 2 1 1 12( )n n n n n n nF K x x K x x x x− − − − −= − + + +
�

(11.12)

1 1 1 1 116.1492 2( 7.8473)n n n n n n nF x x x x x x− − − − −= − + + +
�

(11.13)

DE Parameter Value
PopSize 40
F 0.8
CR 0.8
Generations 150
Max. CF Evaluations (CFE) 6,000

Table 11.2  DE settings for 
meta-evolution

Experiment no. CF value Avg. error per iteration
Experiment 1 6.2992·10−15 3.1496·10−16

Experiment 2 1.4567·10−6 7.2836·10−8

Table 11.3  Cost Function 
values and simple statistics
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11.9 � Conclusions

This chapter deals with a synthesis of a new universal robust control law by means 
of AP for stabilization of selected discrete chaotic system at fixed point. Two-di-
mensional Lozi map as the example of discrete chaotic systems were used in this 
research.

Obtained results reinforce the argument that AP is able to solve this kind of dif-
ficult problems and to produce a new robust synthesized control law in a symbolic 

Fig. 11.9   Simulation results—Experiment 1, variable y of Lozi map

 

Fig. 11.8   Simulation results—Experiment 1, variable x of Lozi map
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way securing desired behaviour and precise stabilization of the selected chaotic 
systems.

Presented two simulation examples show two different results. Extremely pre-
cise stabilization and simple control law in the first case and not very precise and 
slow stabilization and relatively complex notation of chaotic controller in the sec-
ond case. This fact lends weight to the argument, that AP is a powerful symbolic 
regression tool, which is able to strictly and precisely follow the rules given by cost 
function and synthesize any symbolic formula, in the case of this research—the 
feedback controller for chaotic system.

Fig. 11.10   Simulation results—Experiment 2, variable x of Lozi map

 

Fig. 11.11   Simulation results—Experiment 2, variable y of Lozi map
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The future research will include the development of better cost functions, testing 
of different AP data sets, and performing of numerous simulations to obtain more 
results and produce better statistics, thus to confirm the robustness of this approach.
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Abstract  Inspired by the intelligent foraging behaviour of honeybees swarm, Arti-
ficial Bee Colony (ABC) has been introduced by Karagoba in 2005. ABC algorithm 
has exhibited superior performance compared to other algorithms such as Genetic 
Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization 
(PSO) algorithms. Despite its outstanding performance, ABC suffers from slow 
convergence rate and premature convergence. Hence, researchers have proposed 
various ABC variants but none among the variants could have averted both prob-
lems simultaneously. Hence, a new ABC algorithm has been proposed which aims 
to overcome the limitations. The proposed algorithm focuses on enhancing average 
fitness of population by mutating poor possible solutions around the fittest solution. 
The presented results show that the proposed algorithm is capable to avert local 
optima traps at faster convergence speed.

Keywords  ABC variants · Metaheuristic · Swarm intelligence · Computational 
intelligence

12.1 � Introduction

Computational Intelligence (CI) is a sub-branch of Artificial Intelligence (AI). CI 
is a study of adaptive mechanisms which adapt to new situations for facilitating 
intelligent behavior in dynamic environments [1]. CI techniques tend to imitate 
living beings abilities such as decision making, reasoning and optimizing [2]. CI 
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techniques have been successfully applied in various real-world applications [1]. 
The techniques include mainly bio-inspired algorithms such as artificial neural net-
works, evolutionary computation, and swarm-intelligence-based optimization algo-
rithms [1].

Optimization basically refers to make a system or design as effective as possible. 
Recently, bio-inspired optimization algorithms have been the area of researchers’ 
interest. The algorithms have been applied successfully to solve real-world prob-
lems such as real power loss minimization [3], induction motor’s parameter esti-
mation [4], controlled islanding of distribution system [5], non-smooth economic 
dispatch [6], reactive power optimization [7–8] and many more.

Artificial Bee Colony (ABC) is a metaheuristic swarm-intelligence-based opti-
mization algorithm. It has been introduced by Karaboga in 2005 [9]. Since then, it 
has captured much attention of researchers [10–13]. Researchers have verified that 
it is competitive with other prominent population-based algorithms such as Genetic 
Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO) 
algorithm and few other optimization algorithms [14–16]. ABC simulates honey-
bees’ intelligent foraging behavior. It is simple and flexible as it implies lesser num-
ber of control parameters than other prominent optimization algorithms [16]. Nev-
ertheless, ABC algorithm also faces few problems, i.e. slow convergence rates and 
premature convergence [17–18]. This is due to a limitation in the solution-search 
equation which is focusing more on exploration but lacking in exploitation and have 
excessive self reinforcement. A robust optimization algorithm should be balanced 
in terms of exploration and exploitation in order to exhibit good convergence over 
a range of optimization problems [19].

Due to these problems, researchers have come out with ABC variants [17–23] 
aimed at overcoming the problems. However, the variants suffer from poor explora-
tion [17, 19, 22], poor exploitation [21], converges slowly [23] and computationally 
intensive [18, 20]. The flaws of the ABC algorithms motivate towards ABC variant 
proposed in this research work.

12.2 � Artificial Bee Colony (ABC)

ABC optimization algorithm is a population-based optimization algorithm that sim-
ulates the foraging behavior of honeybees. Basically, ABC requires three different 
phases to complete a generation. The phases are; employed-bees, onlooker-bees 
and scout-bee phases. The task of employed-bees is to explore the neighborhood of 
the assigned food sources and then share the information with onlooker-bees. The 
nectar amount of the food sources represents the fitness value of the possible solu-
tions. The employed-bees repeat the process for each of the possible solutions [23] 
whereas the onlooker-bees select possible solutions which have higher fitness value 
[22]. Onlooker-bees employ fitness-proportional selection scheme for selecting 
possible solutions to be updated during onlooker-bees phase. Thus, onlooker-bees 
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do not update all possible solutions. The employed and onlooker-bees update the 
assigned possible solutions using the following mutation equation:

� (12.1)

where zij is the candidate solution of food sources, yij is the j-th dimension of the i-th 
food sources and ykj is the k-th food sources that are randomly chosen from a neigh-
borhood of i-th food sources, k Є [1, 2….., SN] where SN is the number of food 
sources. k and i are mutually exclusive food sources, k and j are chosen randomly 
and j Є [1, 2….., D]. D represents the dimension of the search space and Φijis the 
control parameter that represents random number from [−1, 1], inclusively.

A mutation equation is also called search equation. The equation governs the 
interaction among possible solutions for emerging higher level output. The equation 
selects a possible solution ( yi) to be updated and also selects another possible solu-
tion ( yk) for the mutation. yk is a randomly chosen possible solution irrespective of 
its fitness value. If yk is a fitter possible solution then, there exists higher probability 
that the candidate solution will be even fitter and vice-versa. As, yk is randomly 
selected therefore, the algorithm may consume more mutations for obtaining the 
optimal solutions. This will lead to slow convergence rate. ABC algorithm employs 
greedy selection mechanism in order to select between the existing and candidate 
possible solution during onlooker and employed-bees phases. If the candidate pos-
sible solution is fitter than the existing then, ABC selects the candidate possible 
solution otherwise retains the existing possible solution. A possible solution which 
does not show improvement over a preset number of generations, is to be aban-
doned [23]. This number of preset generation is a control parameter called limit 
[19]. The determination of the possible solution that has to be abandoned is done 
during the scout-bee phase of an ABC algorithm. The scout-bee is an employed-bee 
whose possible solution is abandoned. Employed-bee becomes scout-bee and will 
search the environment randomly for discovering a new possible solution to replace 
the abandoned possible solution [16]. Flow chart of the standard ABC algorithm is 
given in Fig. 12.1, except the highlighted stages. More details of ABC optimization 
algorithm can be found in [16].

12.3 � Proposed ABC Algorithm

It has been mentioned earlier that the standard ABC algorithm converges slowly 
because the neighborhood of a selected possible solution is explored on the ba-
sis of randomly selected possible solution. Hence, the algorithm consumes more 
generations or fitness function evaluation (FFEs) for obtaining the desired objec-
tive function value. However, the mutation equation has excellent capability to ex-
plore the neighborhood for a possible solution. Therefore, if a population of fitter 
yet diverse possible solutions is generated then the algorithm may converge faster. 

ij ij ij ij kjz = y + (y y )Φ −
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The algorithm proposed in this research works by mutating poor possible solutions 
around global best (gbest) possible solution, at the end of every generation. This 
increases average fitness value of the population. ABC algorithm having a fitter yet 
diverse population of possible solutions may be able to converge faster and avoid 
premature convergence.

Randomly initialize
food-sources equal to

(colony-size/2)   

Start

Termination criterion
satisfied ?  

Calculate fitness of each food-
source 

Explore for neighborhood of 
selected-food-source assigned

 to an onlooker-bee  

Explore for neighborhood of all
food-sources assigned to

employed-bees   

Replace the abandoned food-
source using Scout Bee 

Memorize the best food-source

Terminate

Yes

No

Calculate selection-probability
of all food-sources  

Apply greedy selection

Apply greedy selection

Identify 10% of all possible
solution that have lowest fitness value  

Update the poor food sources
around global best food

source  

Fig. 12.1   Modified ABC 
(JA-ABC) algorithm
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The proposed algorithm has been named JA-ABC optimization algorithm. The 
flow chart of the proposed algorithm is shown in Fig. 12.1. The proposed phases are 
highlighted. In these phases, 10 % of all possible solutions are to be updated, which 
have the lowest fitness value. Hence, the proposed phases only update poor possible 
solutions. The mutation equation for the proposed phases is:

ij best,j ij pj kjz = y + (y y )Φ −
�

(12.2)

where zij is the candidate solution of new food sources, ybest, j is the global best food 
source with j-th dimension, ypj is the p-th food sources of j-th dimension and ykj is 
the k-th food sources of j-th dimension. p and k are randomly chosen food sources 
and they are mutually exclusive. Meanwhile the parameter Φij is a control parameter 
that represents random numbers within [− 1, 1].

As poor possible solutions are mutated around the gbest possible solution, the 
modified poor possible solutions would be fitter. This way, the number of fit pos-
sible solutions increases with increasing generation. Now, there exist higher prob-
ability that a selected possible solution ( yi) will be mutated with a fit possible solu-
tion ( yk) during employed and onlooker-bees phases, as fitness of every possible 
solution is higher in the proposed algorithm. Hence, the produced candidate solu-
tion will be fitter than the existing possible solution. Therefore, the algorithm may 
converge faster.

12.4 � Experimental Setup

The proposed ABC algorithm (JA-ABC) has been tested on Griewank ( f1), Rastri-
gin ( f2), Rosenbrock ( f3) Ackley ( f4), Schwefel ( f5), Himmelblau ( f6), Sphere ( f7), 
Step ( f8), Bohachevsky 2 ( f9) and Schwelfel’s 2.22 ( f10) benchmark functions. The 
input dimension of the benchmark functions has been set to 30. The performance 
of the proposed algorithm has been compared with the standard ABC (ABC) [16], 
gbest-guided ABC (GABC) [23] and best-so-far ABC (BsfABC) [20]. For all al-
gorithms, the population size has been set to 50, number of generation has been 
limited to 1,000 and parameter limit has been set as 1,500. As for GABC, C-value 
has been set to 1.5. Each algorithm has been run for 30 times on each benchmark 
function to ensure validity of the global solution [17].

12.5 � Results and Discussion

The obtained results illustrate the superiority of the proposed algorithm compared 
to others, on all benchmark functions particularly on f2 and f5. The comparison of 
the algorithms is illustrated by Fig. 12.2. The figures clearly illustrate better conver-
gence rates of the proposed algorithm compared to the other ABC algorithms on the 
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benchmark functions. This clearly verifies the robustness of the proposed algorithm 
as compared to the others algorithms.

BsfABC algorithm has yielded the worst performance compared to other algo-
rithms since mutation equation of BsfABC algorithm during onlooker-bees phase 
is highly local in nature. GABC algorithm seems to perform better than BsfABC 
and ABC algorithm. However, GABC shows inferior performance compared to the 
proposed algorithm since it suffers from slow convergence rate [18].

The results summarized in Table 12.1 show the average and standard deviation 
among 30 runs for each algorithm. The results reveal that the performance of the 
proposed algorithm is the best among other compared optimization algorithms. 
Therefore, it can be concluded that the proposed algorithm has the ability to locate 
global optimum compared to the other optimization algorithms.

12.6 � Conclusions

A new ABC algorithm named JA-ABC has been proposed in this research work. 
It is based on enhancing average fitness of population by mutating poor possible 
solutions around the gbest possible solution. This leads to fitter yet diverse popula-
tion. Thus, the algorithm possesses higher convergence rate and the ability to avoid 
premature convergence efficiently. The proposed algorithm has been compared 
with the existing ABC variants on ten commonly used benchmark functions. The 
presented results have shown the superior performance of the proposed algorithm to 
the other compared algorithms on all of the benchmark functions. Therefore, it can 
be concluded that theoretically the proposed algorithm can be successfully applied 
to any optimization problems.
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GABC 6.35E − 12 1.76E − 11 GABC 6.07E − 16 1.03E − 16
BsfABC 1.07E + 01 1.71E + 00 BsfABC 7.16E − 02 5.62E − 02
JA-ABC 0.00E + 00 0.00E + 00 JA-ABC 6.66E − 16 8.21E − 17

f3 ABC 9.03E − 01 1.11E + 00 f8 ABC 4.82E − 10 5.12E − 10
GABC 4.96E + 00 1.03E + 01 GABC 5.73E − 16 1.10E − 16
BsfABC 5.27E + 01 1.67E + 01 BsfABC 7.79E − 02 5.13E − 02
JA-ABC 9.79E − 02 1.95E − 01 JA-ABC 6.55E − 16 9.46E − 17

f4 ABC 1.82E − 05 1.12E − 05 f9 ABC 3.85E − 08 4.32E − 08
GABC 1.76E − 10 8.73E − 11 GABC 5.26E − 16 1.27E − 16
BsfABC 7.95E − 01 3.69E − 01 BsfABC 9.72E − 01 4.83E − 01
JA-ABC 5.34E − 13 2.47E − 13 JA-ABC 2.76E − 16 1.68E − 16

f5 ABC 2.96E + 02 1.20E + 02 f10 ABC 1.07E − 05 5.44E − 06
GABC 1.23E + 02 1.19E + 02 GABC 1.60E − 10 6.40E − 11
BsfABC 1.00E + 03 2.12E + 02 BsfABC 1.13E − 01 3.94E − 02
JA-ABC 3.82E − 04 8.72E − 13 JA-ABC 9.77E − 14 6.36E − 14
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Abstract  A substantial part of the economic theories is based on conversion and 
exchange process. These processes can be arranged in a value chain, which can be 
considered as a cyclic model with complex attributes. There is a serious problem 
how to express resources and their conversions in a complex cyclic model during 
the simulation and how to identify these converted resources in every step of the 
simulation. This paper introduces the Object- valued Petri (OV-PN) modification as 
a new formalism to create a cyclic model of the value chain. According to the modi-
fication we had to define a new path and pass of the OV-PN. We also had to deter-
mine new properties. Properties are based on the OV-PN and reflect needs of model 
requirements. A new formalism is verified on a common enterprise value chain.

Keywords  Value chain · Object-valued Petri nets · Cycle Petri nets · Simulation · 
Model validation

13.1 � Introduction

The value chain is a modeling technique to formalize and monitor the competitive-
ness of the business. It focuses on the flow of resources between internal business 
processes that are interconnected to each other. A product increases its value when 
it passes through a flow of production chain. That is the fundamental notion in 
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value chain analysis [7]. The REA value chain is a network of the REA exchange 
and conversion processes. The purpose of the network is to directly or indirectly 
contribute to the creation of the desired features of the final product or service, and 
to exchange it with other economic agents for a resource that has a greater value for 
the enterprise [6]. The value chain definition implies that it is important to find a 
suitable formalism for the simulation of the model run for practical realization. Ex-
isting theories such as state machines, Petri nets [12], or neural networks were con-
sidered while searching for a correct formalism. Value chains have specific require-
ments for descriptive formalism allowing their validation and simulation (according 
to [1]). Specific type of the value chain is supply chain [8]. State machines are not 
expressive enough to solve this problem. Despite the fact that neural networks are 
expressive enough for describing processes in the value chain there is significant 
complexity in simulation. Two independent neural networks must be created for the 
simulation of the value chain. The first network is able to validate the model and the 
second implements simulation steps. In both cases, the neural network must learn 
these properties. Therefore the process becomes time and implementation consum-
ing. On the other hand the neural network approach is very flexible and can be used 
to solve multilevel problems (for example multilevel SPAM control [13]).

The Petri Net theory matches the description of the model states more closely, 
but its expressivity, especially for P/T Petri nets, is very limited [10]. General token 
is not able to capture such a complex structure, for example an object representing 
the resource. Therefore this article suggests using the object- valued Petri nets (OV-
PN) to ensure the simulation and the validation of value chains. It also discusses 
some specific properties of the OV-PN and defines new properties for the value 
chain domain. Main advantage of using the Petri net theory is possibility to create 
an automatic deterministic process of the code generation [4].

13.2 � The Value Chain and its Simulation Process

The value chain consists of two main parts: processes and links that form a chain 
with other processes (similar to supply chain described in [15]). These parts create 
the interconnected network of processes increasing the value of the resources. The 
value chain creates a cyclic bond that means all processes have their inputs and out-
puts connected together and form a full closed chain. Each process can have more 
than one input and more than one output. Multiple types of resources can form the 
input and the output. In Fig. 13.1 there are two significant examples of resource 
distribution. Resources Plan and Money, needed for purchasing the Material, enter 
to the Purchase process. Sales process produces output Money that enters into two 
another processes—Purchase process and Acquisition process.

The simulation of the value chain process is used to monitor the competitive-
ness of the business. Model elements show processes that increasing the value of 
corporate resources. Each step of the process increases the value of the company 
output, and therefore it can be understood as a value chain [5]. The value chain is 
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the set of mutually interdependent activities that are interrelated together by their 
inputs and outputs.

Enterprise value system shows the flow of resources between participants within 
the enterprise and it can be obtained by analysis of the company value chains. The 
value chain shows the flow of resources across business processes [14].

Figure 13.1 shows an example of the value chain depicting the flow of resources 
between the enterprise and business partners. The model example consists of 5 pro-
cesses:

•	 Purchase process expresses the purchase of the raw material from vendors.
•	 Production process is internal conversion process creating the product.
•	 Sales process illustrates the sales of the created product to the customer.
•	 Acquisition process arranges labour for Planning process.
•	 Planning process prepares purchase plan.

For purposes of the planning and detailed analysis of business value chains it is nec-
essary to record the flow of resources and their changes in time. For these cases, it is 
possible to use the simulation of the flow of resources across business processes. In 
every step of the simulation an exchange process performs exchanging of resources 
and the conversion process creates a new product or modifies characteristics of 
an existing product. In case of complex value chain the simulation can determine 
which links are inefficient and where is the place for the subsequent optimization. 
The simulation can be also used for analysis of the economic situation of the en-
terprise, such as stores status, financial estimates, an efficiency of the production, 
or logistics. You can also simulate the way of a product from an initial purchase of 
raw materials, through its production and finishing by sale to determine the total 
financial and time costs for one product.

Object-valued Petri net is an extension of P/T Petri net. This extension has been 
introduced in [17]. Object-valued Petri nets are used as formalism for validation and 
synchronization of complex object models.

Fig. 13.1   Enterprise value chain
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Definition 3.1: Object-valued Petri net  Petri net is extended to a 6-tuple (P, T, F, 
V, R, C), where:

•	 P is a finite nonempty set of places,
•	 N is a finite nonempty set of transitions,
•	 T P∩ = ∅ ( P and T are disjoint),
•	 ( ) ( )F PxT TxP⊆ ∪  is a finite set of arcs (flow relation),
•	 V is a finite set of object data types,
•	 R is a finite set of transforming functions : ( )R P T Vψ∪ → , where ( )Vψ  is the 

power of the set of object data types.
•	 C is a set of capacity function. : ,   C P N N andω ω→ ∪ ⊆ Ν  denotes infinite.
•	 0 : MSM P V→  is the initial marking of the token. 0: ( ) ( ) ,MSp P M p R p∀ ∈ ∈  

where R(p)ms, is the multiple set of the object data type tokens in p.

The main idea of the Object-valued Petri net is an object-valued token that provides 
adequate expressivity to describe resources represented by complex object struc-
tures. The token carries basic information to identify the specific object instance. 
Initial marking consists of the multiple set of object data types deployed across the 
net. Firing of each token means change in marking of the net and also change of 
the token type. However token identification remains and therefore we can identify 
the token in every step of the simulation process. If the model is partly linked with 
the Object-valued Petri net theory we have to define the path of tokens. Formalism 
itself defines necessary basis to create the model, unfortunately that does not en-
sures the sequence of movements into desirable result. Object-valued Petri net real-
izes transition as soon as the transition is feasible. Nevertheless the real model can 
require other conditions to realize the transition (for instance lazy constructions). 
Therefore we have to state the new definition of the path and pass of the model.

Definition 3.2: Path of the OV-PN  Let OV-PN = ( P, T, F, V, R, C) be an Object-val-
ued Petri net with initial marking M0. The path from the place 1u P T∈ ∪  to follow-
ing place nu P T∈ ∪  is the sequence 1 2 1( , ,..., ), ( , )n i iu u u where u u − , for 1 ≤ i ≤ n.

Definition 3.3: Pass of the OV-PN  Object-valued Petri net OV-PN = ( P, T, F, V, R, 
C) with initial marking M0 is feasible when:

1.	 Must exist an initial place  i P where i∈ • = ∅ .
2.	 Must exist exactly one final place i P whereo∈ • = ∅ .
3.	 Every place u P T∈ ∪  lies on the pass between initial place i and final place o.

In this context the first condition is understood as a marking of the input of the 
model that can be represented by more than one input parameter. If this condition 
is set to be strict to the value of input marks the model cannot realize calling of the 
method with more than one input parameter. The output of the model is usually 
one because of the standard method construction in object-oriented paradigm [11]. 
Third condition expresses the fact that every place and every transition exists on 
the path between the initial place and the final place. Therefore the Object-valued 
Petri net should not have blind paths and every call in the model should be reach-
able form initial place by passing finite number of transitions representing a flow 
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relation F (similarly to [3]). Similarly to the initial place, every place in the model 
exists in the flow relation F and is able to reach the final place of the model.

Boundedness and Safeness  The ordinary Petri net (P/T Petri net) defines the 
boudedness mechanism to limit the tokens in all reachable markings. A place in 
the Petri net is called k-bounded if it does not contain more than k tokens in every 
making in the net, including the initial marking. Moreover the Petri net is bounded 
if and only if its reachability graph is finite. The special case of the boundedness is 
safeness attribute. If the net is 1-bounded it is called safe.

Object model synchronized by Petri net mechanism can be bounded at the places 
level as the ordinary Petri net. Every method can produce more than one output dur-
ing the simulation. Places may store these outputs as Object-valued tokens (similar 
to colour evaluation in [18]). By applying safeness rule the places in model stores 
only one object-valued token and the model becomes less complex.

Conservation  Created model cannot be strictly conservative. In the first step in 
Fig. 13.1 the Purchase process consumes two inputs and produces one output. The 
Sales process consumes only one input and produces two outputs—two object-
valued tokens parameterized as Money. Moreover the Purchase process requires 
a synchronization mechanism. The model cannot have a constant token count for 
every marking from set of the reachability set.

0 0( ) : ( ) ( ).S i S ii iM M P M Pρ ρ∈ ∈ℜ ≠∑ ∑

Liveness and Deadlock  All methods in object-oriented paradigm can be executed 
more than once [16]. However by executing some method an internal state of the 
object can be altered. That means if we need to apply liveness property to whole 
model, every method must be considered as an atomic operation.

Generally the transition t T∈  is alive if:

: ( )   : ( ) .p t M p and p t M p∀ ∈• ≠ ∅ ∈ • = ∅

It means that transition becomes active, if there are tokens on all transition’s en-
trances and the place that follows the transition is empty. The net is alive if there 
is at least one live transition in every step of simulation process otherwise a dead-
lock occurs. Deadlock is solved on a higher abstraction level and requires user 
intervention.

13.3 � Object-Valued Petri Net Extensions

The main condition of the value chain is cyclicality. However the Object-valued 
Petri net has two definitions that limit the path of the net (definition 3.2) and pass of 
the net (definition 3.3). First definition says that OV-PN with a specific marking M0 
has a specific sequence from one place to another. The value chain has also specific 
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sequence that defines the path of the chain. Moreover the cyclic chain consists of 
many single paths connected to each other. To express a general value chain prin-
ciple with the Petri net theory we have to define a cyclic Petri net:

Definition 4.1: Cyclic Object-valued Petri net  A marked Petri net (OV-PN, M0) 
is cyclic Petri net if from every reachable marking M it is possible to return into M0 
( i.e. 0 0( , ) ( , )M OV PN M M OV PN M∈ℜ − ⇒ ∈ℜ − ). 
   According to [2] we must also define the inverse of an ordinary Petri net:

Definition 4.2: The inverse of an Object-valued Petri net  For a Petri net OV-PN, 
its inverse ( ), ,OV PN P T F− =  is given by:

•	 { }T t t T= ∈  and

•	 ( ) ( ), ( , ) , ( , ) .F p t F t p and F p t F t p for every p P and t T= = ∈ ∈

The definition of the inversion of the Object-valued Petri net is presented for com-
pleteness only. In the real model of the value chain there is usually no backward 
path. For instance the company cannot convert the product to the raw material. On 
the other hand this definition gives the robust tool to verify cyclicality of the net. Al-
gorithms to verify cyclicality could be simplified to perform the token verification. 
Every token in the Object-valued Petri net have the unique instantiation number. 
The inner value of the Object-valued token is changed during the pass of the net, 
however instantiation number stays unchanged despite the value transformation. 
The modeling tool can set up the initial marking and make finite steps of the firing. 
If the net is cyclic the specific instantiation returns to the initial marking.

According to the facts above we can redefine the original Object-valued Petri net 
tuple for modelling the value chain:

Definition 4.3: Petri net for a value chain simulation  Petri net for value chain 
simulation is a 5-tuple (P, T, F, S, R), where:

•	 P is a finite nonempty set of places,
•	 T is a finite nonempty set of transitions,
•	 T P∩ = ∅  (P and T are disjoint),
•	 ( ) ( )F PxT TxP⊆ ∪  is a finite set of arcs (flow relation),
•	 S is a finite set of resources,
•	 R is a finite set of transforming functions : ( )R P T Sψ∪ → , where ( )Sψ  is the 

power of the set of resources.

Moreover we must claim boundedness of elements:

•	 : ( , ) ,p P t T F p t F∀ ∈ ∃ ∈ ∈
•	 : ( , ) ,p P t T F t p F∀ ∈ ∃ ∈ ∈
•	 : ( , ) ,p T p P F p t F∀ ∈ ∃ ∈ ∈
•	 : ( , )p T p P F t p F∀ ∈ ∃ ∈ ∈

and their connection to cyclic model:
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•	 0 0: ( ) ( ), ( ( )),p P M p M M M p∀ ∈ ∈ℜ ∈ℜ

•	 every t T∈  is reachable from any p P∈  in limited count of steps.

Naturally we also must specify the properties of the new definition:

Boundedness and Safeness  In the value chain the one resource can be transferred 
into the more than one process (i.e. money to buy a new material and money to fund 
innovations).

The safeness of the net is the matter of discussion. In fact there are two possibili-
ties. The net can be safe and that means one place stores only one object-valued 
token. That property can be convenient to verify the whole conversion process and 
user can focus to one resource and transformation process. This simulation is simi-
lar to redefining business processes in the company. By applying the safeness prop-
erty the whole model became simple to understand and verification of the process 
flow is much easier.

The second view on the value chain simulation is to get statistic data and opti-
mize workflow parameters. The model must simulate the conversion process with 
more than one Object-valued token. A typical example is a production process cre-
ating the specific product. At the beginning of the simulation the company needs to 
know how many products must be created to cover money for a product develop-
ment. In the short term the first view can set the margin of the seller and express 
the production process. The simulation of the second view takes longer and works 
with multiple tokens. The price of the product decreases with time and by the long 
term simulation the company can reveal if the price model has been set correctly. 
Therefore the second view cannot be safe form a Petri net point of view.

Liveness and Deadlock  Object-valued Petri net must fulfill liveness property 
because of the object-oriented paradigm construction. Cyclic Petri nets are based 
on general OV-PN, but it differs on boudedness and safeness property. Therefore 
liveness property must be changed.

Transition t T∈  is alive if:

•	 : ( )p t M p∀ ∈• ≠ ∅

•	 : ( ) ( ) ( ), ( )p t M p U t K p where U t∈ • + ≤ , is a number of resources produced by 
transition t

The net is live if there is at least one live transition in every step of the simulation 
process.

The value chain consists of processes and links. Process itself consists of atomic 
operations that can be repeated infinitely with the same result. For example: a pro-
duction process is defined by precise methodology how to produce a product on the 
serial assembly. The parameters of the process are set at the beginning of the serial 
assembly (i.e. speed of the line) and usually remains unchanged during production. 
Therefore we naturally apply the liveness property to the Object-Valued Petri net 
model of the value chain. All processes remain the same despite the fact that the 
Object-valued token flow through the process.
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The process itself can have more than one input link. In Fig. 13.1 the Purchasing 
process requires the Money and the Plan. Plan process takes more time to create 
a specific purchasing plan and sales process delivers the Money immediately after 
the product has been sold. In this specific step of the model simulation the deadlock 
occurs. That means the execution of the Purchasing process is delayed until both 
inputs provided with links are available. These cases can be problematic and gener-
ally can be solved on a higher abstraction level, i.e. modelling tool. If the model is 
validated a deadlock cannot occur because of the cyclicality property of the value 
chain. Moreover that implies that every process must be reachable.

Conservation  The conservation property means that one object-valued token can-
not be duplicated when it passes the transition and the transition has the same num-
ber of inputs and outputs. In other words the count of the Object-valued tokens is 
same in every step of the simulation. The basic models of the value chain can be 
conservative. However most models in the real world are more complex and there 
is big challenge to apply the conservation rule to express a chain of resources. For 
example money in the real world is an input to more than one process—produc-
tion process, planning, development, etc. From a Petri net point of view we must 
duplicate tokens with specific inner attributes and sends them to other transitions. 
Therefore the model does not have the constant token count for every marking from 
the reachability set.

13.4 � Value Chain Simulation Example

During the transformation the value chain elements are mapped into the modified 
cyclic Object-Valued Petri net elements. Similar transformation process can be 
found in [9]. Processes that exist in the value chain will be represented as transitions 
and all properties mentioned above will be applied. Links that exist in the value 
chain will be composed of two arcs and one place. The Arc indicates the direction 
of an Object-valued token and the Place carries the Object-valued token(s) that 
represents information.

For example we used the value chain from Fig. 13.1. The transformed result is 
shown in Fig. 13.2. The Petri Net consists of five transitions and six places. The 
simulation starts with the Token set on the place Product and it takes five cycles 
before repeating:

1.	 The company has product to sell. The Product enters into the Sales process. That 
generates Money for the Purchase process and the Acquisition process (token is 
divided into two places).

2.	 Money enters into the Acquisition process and creates the Computer work. The 
Purchase process is not executed because of insufficient Plan input.

3.	 The Computer work enters into the Planning process and generates the Plan.
4.	 The Purchase process transition has all needed inputs to perform firing. Money 

and Plan tokens are exchanged for Material.
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5.	 In the last step the Material enters into the Production process and creates a new 
Product.

The model is cyclic. That means the cycle 1 does not have to be the first and all steps 
are realized infinitely. The order is only that matters. The key in the value chain 
simulation process, except the synchronization primitives, is the Object-valued to-
ken. In the beginning of the simulation the Object-valued token is parameterized as 
a Product. In the first step the token is transformed into the Money and split into 
the two tokens with specific ratio used to determine the inner value. The associa-
tion of the tokens to the value chain can be identified through the instantiation ID, 
and inner values can be changed as needed. Moreover in the second cycle, one of 
tokens enters to Acquisition process and transforms (parameterizes) into the Com-
puter work. That means the token has different inner values and even a data struc-
ture. Analogical transformation changes the Computer work into the Plan structure 
in the third cycle. In the fourth cycle two tokens are merged together by Purchase 
process and the result is the Object-valued token parameterized as a Material. The 
merge process can be performed because of the same token instantiation ID. In the 
last step the token is transformed to the Product by the Production process and the 
chain is closed.

There is only one token in Fig. 13.2 and all links are limited to 1. We can simu-
late the whole conversion process with more than one token and we can establish 
a capacity function on every place in the net. All splits and merges of tokens are 
identified by instantiation ID and therefore they are distinguishable. That means we 
can recognize the specific token as a part of the cyclic chain and the base for opti-
mization of processes in the model.

13.5 � Conclusion

The paper introduced a new formalism based on the Object-Valued Petri net to cre-
ate, synchronize and manage cyclic models of the value chain. The paper described 
a basic theory of economic models based on conversion and exchange processes 

Fig. 13.2   Transformed value 
chain
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and introduced a value chain term in the first part. The paper also described why 
current formalisms such as neural network and state machines are not suitable to 
build a value chain model. Paragraph 3 shows an Object-value Petri net theory fo-
cused on the path and pass of the net. This theory is suitable to build a value chain 
model because the Object-valued token can be used to express resources of the 
value chain and their transformations. However Object-valued Petri net are not cy-
clic and have strictly defined pass and path of the net. The definition of an extended 
Object-valued Petri net formalism—definition 4.3—solves this problem and adds 
the cyclicality. All basic properties are discussed and redefined for the new cy-
clic object-oriented model. An extended Object-Valued Petri net formalism solves 
all problems mentioned in the second paragraph and can be applied to any cyclic 
model. The proposed formalism has been verified on the ordinary value chain and 
basic steps of the simulation are described in paragraph 4.
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Abstract  We propose combined method, based on using of both the conservative 
finite-difference scheme and non-conservative Rosenbrock method, for solving a 
linear or non-linear 1D Schrödinger equation. The computer simulation results, 
obtained by using of combined method, are compared with corresponding results 
obtained using the conservative finite-difference scheme or Rosenbrock method. 
For 2D nonlinear problem the proposed method can significantly increase a com-
puter simulation performance due to eliminating of using an iterative process, 
which is necessary for the conservative finite-difference scheme realization. The 
efficiency of this combined method with artificial boundary conditions is demon-
strated by numerical experiments.

Keywords  Rosenbrock method · Conservative finite-difference scheme · 
Schrödinger equation · Artificial boundary conditions

14.1 � Introduction

As it well known, a Schrödinger equation is widely investigated because of this 
equation using for describing of many physical phenomena: structure of molecules 
and atoms; propagation of laser beams and pulses; Bose-Einstein condensate. The 
main method for solving this equation is computer simulation because of nonlinear-
ity of the Schrödinger equation in many cases. Generally, there are two approaches 
for finite-difference scheme construction. The first one is based on a conservatism 
principle. This results in nonlinearity of corresponding finite-difference schemes. 
For nonlinear optics problems such approach was proposed in the paper [1] and 
developed in [2] for various nonlinear optics problems. Other approach is based on 
using of split-step method for finite-difference schemes construction [3, 4]. This 
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approach does not allow the Hamiltonian preserving for nonlinear Schrödinger 
equation. As a consequence, laser beam wave-front distortion or laser pulse fre-
quency modulation distortion grows with increasing of a laser beam propagation 
distance. Therefore, good accuracy achieving of computer simulation results re-
quires using a small value of mesh step on a coordinate, along which laser beam 
propagation takes place.

One more method for computer simulation of various differential equations was 
proposed by H. H. Rosenbrock in 1963 y. [5] (It should be stressed that the Rosen-
brock method was applied for numerical solution of various differential equations 
with success [6–9]). This method is explicit one and, hence, it is non-conservative 
method with respect to Hamiltonian of the Schrödinger equation. Nevertheless, it 
has some advantages, and we believe that a conservative finite-difference scheme 
using together with Rosenbrock method may lead to increasing of computer simula-
tion efficiency. It is very promising way if artificial boundary conditions [10–23] 
are used also at computer simulation of laser pulse propagation in nonlinear me-
dium. That is why we develop the combined method based on using of both conser-
vative finite-difference scheme and Rosenbrock method.

14.2 � Problem Statement

Let’s consider the 1D nonlinear Schrödinger equation, describing of femtosecond 
laser pulse propagation in photonic crystal and written below in dimensionless vari-
ables

�
(14.1)

with initial condition

�
(14.2)

and artificial boundary condition, formulated in following way

�

(14.3)
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In Eq.  14.1 a function A A t z= ( , )  is the complex amplitude; t is a time; z de-
notes a spatial coordinate; Lt , Lz are maximal values of time and space coordinates, 
Lc is a coordinate of the laser beam center at initial time. , , , ,D β γ χ Ω  are real 
coefficients, which satisfy the conditions 4 , , 2 .D πχ β πχ πχ= = Ω =1╱  For definite 
we choose 1.χ =

14.3 � Finite-Difference Scheme Based on Rosenbrock 
Method

To construct a finite-difference scheme based on the Rosenbrock method we repre-
sent the complex amplitude by using real and imaginary parts (note that the modern 
computer can calculate in complex arithmetic, and this representation is not neces-
sary for a method implementation)

� (14.4)

In the interval 0 ≤ ≤z Lz  we introduce an uniform grid

� (14.5)

Let’s define the grid functions

�
(14.6)

in the nodes of the grid ωz and write the difference Laplace operator

�
(14.7)

Using Eqs. 14.4–14.7 we can write the following set of ODE for a solution of the 
problem Eqs. 14.1–14.3

�
(14.8)
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�

(14.9)

The next step in finite-difference scheme constructing is discretization of the time 
interval. For this purpose we introduce uniform grid along the time

� (14.10)

After that we define the grid functions

�

(14.11)

Below for brevity, we omit the index h in notation of the mesh functions.
According to Rosenbrock method, the solution on the next layer on time is cal-

culated in following way

� (14.12)

where Re k is a real part of the vector k, which is a solution of linear equations

� (14.13)

Above E is the identity matrix, GU is the Jacobian matrix for set of equations 
Eq. 14.8 and β is a complex parameter, which takes one of two values: complex 
β = 0.5 + 0.5ı or real β = 0.5.

To write the set of equations, corresponding to Eq. 14.12 let’s represent the vec-
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�
(14.14)

Using these notations one can rewrite Eq. 14.13 in the form

�

(14.15)

This set of equations can be rewritten in matrix form

�

(14.16)

As it well known, an effective method for solving this set of equations is Thomas 
algorithm, with accordance to which the solution of Eq. 14.16 is represented as

� (14.17)

where αj is a matrix, ζj is a vector and they are calculated in following way

�
(14.18)

It should be stressed that this method is conditionally conservative one, has second 
order approximation in spatial coordinate and first order approximation in time co-
ordinate and it is explicit.

14.4 � Conservative Finite-Difference Scheme

Let’s use the same grids, which are written above for the Rosenbrock method, and 
define the mesh functions
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For the problem Eqs. 14.1–14.3 we write the following conservative finite-differ-
ence scheme

�

(14.20)

The problem Eq. 14.20 is nonlinear one, that is why for its solution we use an itera-
tion process. For example, this process can be implemented in following way

�

(14.21)

The value of the mesh function on the upper layer at zero iteration (s = 0) is chosen 
as

�
(14.22)

The iteration process is stopped if the following condition, for example, is valid

�
(14.23)

Let’s rewrite the equation Eq. 14.21 in a matrix kind

�
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As well as for solution of the equations Eq. 14.16 we use the Thomas algorithm for 
solution of the set of equations Eq. 14.24.

The finite-difference scheme developed above is conservative on energy invari-
ant, Hamiltonian and invariant of laser beam impulse, has the property of symmetry 
and second order approximation in any coordinate, and it is implicit one. The last 
circumstance requires the iterative procedure using.

14.5 � Combined Finite-Difference Scheme

The main idea of a combined method consists in using of Rosenbrock method in 
the domain near the boundaries. It means that we introduce two subdomains near 
left and right boundaries (see Fig. 14.1). These domains belong to nodes [ , ]0 NR  and 
[ , ]N N Nz R z−  correspondingly.

In order to obtain numerical solution on the next time layer we need to find a so-
lution in domains [ , ]0 NR  and [ , ]N N Nz R z−  using Rosenbrock method (Eqs. 14.8–
14.16) with artificial conditions (Eq. 14.3) in boundary points of spatial grid. Let’s 
define this solution as ˆ .RA  Then obtained solution in boundary points of spatial 
grid we use as boundary conditions for conservative finite-difference scheme 
(Eqs. 14.20, 14.21)

� (14.25)

where ˆ
cA  denotes as solution obtained by the conservative finite-difference scheme 

use solution ˆ
cA  on the next time layer as initial condition for Rosenbrock method.

Thus, we obtain an explicit combined method for solving of the nonlinear 
Schrödinger equation.

14.6 � Computer Simulation Results

We consider three schemes: Ros—Rosenbrock method with parameter β = 0.5 + 0.5ı, 
C—conservative finite-difference scheme, R&C—combined method. The results of 
computer simulation using a combined method will be compared with the results 
of calculations made using the conservative finite-difference scheme or the Rosen-
brock method or exact solution ( Ex) of a linear Schrödinger equation.

0 0

ˆ ˆ ˆ ˆ, ,
N Nz zR CC RA A A A= =

NR Nz - NR Nz z0

Fig. 14.1   Template of Rosenbrock method using for combined method
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Let’s define the maximum value of reflected amplitude as

�

(14.26)

and parameter values 20.0, 0.01,  0.0796, 3.14,zL h D β= = = =  for which a com-
puter simulation is made.

•	 Linear problem

Comparison of the intensity distributions, obtained using the Rosenbrock method 
or the conservative finite-difference scheme or combined method for solution of a 
linear problem 0γ =  with parameters 0.01, 100,10RNτ = =  is shown in Figs. 14.2 
and 14.3 correspondingly.
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Fig. 14.2   Intensity profile 
| |A 2  for time moment 
t a b= 7 5 10 0. ( ), . ( )
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As it follows from Figs. 14.2 and 14.3, the deviation of the solutions obtained on 
the base of the combined method from the corresponding solution obtained using 
other schemes becomes significant with decreasing a number of nodes for subdo-
mains, in which Rosenbrock method is used if a time step is constant. Therefore, 
one should to decrease a mesh step on time coordinate. The corresponding com-
parison, which is a similar to Fig.  14.3, is depicted in Fig.  14.4 for parameters 

10, 0.001.RN τ= =
As we can see in Fig. 14.4, in this case the solution obtained using the combined 

method tends to the corresponding solution obtained using other schemes.
For an estimation of efficiency of proposed combined method let’s write the first 

invariant for the problem Eqs. 14.1–14.3.

�
(14.27)2
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Fig. 14.3   Intensity profile 
| |A 2  for time moment 
t a b= 7 5 10 0. ( ), . ( )
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In Table 14.1 we present the difference of the first invariant values calculated for 
used finite-difference schemes and exact solution. We see that for combined meth-
od this difference is two times more than corresponding values for other schemes. 
However, its value does not exceed the theoretical estimation.

Let’s compare the maximum value of reflected beam amplitude for combined 
method and corresponding amplitude calculated using conservative finite-differ-
ence scheme or Rosenbrock method (see Fig. 14.5).

Very important question consists in a possibility of getting the coinciding results 
at using of both combined method and conservative finite-difference scheme. In 
Fig. 14.6 the corresponding dependence is shown.

From Fig. 14.6 we can see that decreasing a number of mesh step on spatial co-
ordinate NR  we have to decrease the step on time coordinate for combined method 
to achieve the accuracy, which coincides with accuracy of the conservative finite-
difference scheme.

Fig. 14.4   Intensity profile 
| |A 2  for time moment 
t a b= 7 5 10 0. ( ), . ( )
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•	 Self-focusing of laser beam

Comparison of the intensity distributions, calculated using the Rosenbrock method 
or the conservative finite-difference scheme or the combined method for nonlinear 
problem 1.0,γ =  is depicted in Fig. 14.7. It should be stressed that we take the solu-

Table 14.1   Difference between the first invariant values computed using considered methods and 
the exact solution of a linear problem with parameters 20.0, 10, 0.01, 0.01zL t h τ= = = =
Method First invariant difference value
R 0.000548643
C 0.000556224
R&C 0.001128941

Fig. 14.5   Evolution of the 
maximum amplitude of 
reflected beam for time inter-
val 0 10≤ ≤t

 

Fig. 14.6   Dependence of 
mesh step for time coordinate 
on mesh number for subdo-
mains, in which Rosenbrock 
method is used. Time interval 
is equal t = 10 0.
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Fig. 14.7   Intensity profile 
| |A 2  for time moment 
t a b c= 5 0 7 5 10 0. ( ), . ( ), . ( )  
computed for mesh 
step and number of 
nodes for subdomains 

0.01,0.001, =100,10RNτ =
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tion, obtained by the conservative finite-difference scheme with zero-value bound-
ary condition for sufficient bigger size of area as exact solution in nonlinear case.

As we can see in Fig. 14.7a, the difference between solution obtained by the 
combined method and exact solution has the order 0.1, but this error is not pre-
served in time. However, the wave, reflected from artificial boundary condition, is 
absent at all. At the next time moments (Fig. 14.7b, c) this difference becomes es-
sentially less. It is approximately about 10−3 and 10−4 correspondingly. Also the so-
lutions, calculated by combined method and conservative finite-difference scheme, 
have the same approximation order and the maximum amplitude value of reflected 
beam has the order about 10−4.

•	 Defocusing of laser beam

Comparison of the intensity distributions, obtained using Rosenbrock method or the 
conservative finite-difference scheme or the combined method for nonlinear prob-
lem 1.0γ = −  with parameters 10, 0.001RN τ= = , is shown in Fig. 14.8.

Fig. 14.8   Intensity profile 
| |A 2  for time moment 
t a b= 7 5 10 0. ( ), . ( )
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As we can see in Fig. 14.8, the difference between the solution obtained using 
the combined method tends to the corresponding solution obtained using the con-
servative finite-difference scheme. It should be stressed that the maximum ampli-
tude value of reflected beam in Fig. 14.8b has the order about 10−2 and its worst than 
in self-focusing case. It is takes place because of the parameter Ω is constant in time 
and nonlinear distortion of wave-front of laser beam, propagating in defocusing 
medium, is stronger than for previous case.

14.7 � Conclusion

In this paper we have proposed a new method for solving of 1D nonlinear Schröding-
er equation with artificial boundary conditions. This method is explicit. It means 
that the solution on next time layer can be found without iterative process using.

It was shown above that the computer simulation results obtained using the com-
bined method has the same accuracy in comparison with the corresponding results 
obtained using the conservative finite-difference scheme if mesh steps are chose in 
certain way.

The time of computer simulation using combined method is less than a time of 
computer simulation using Rosenbrock method and more than a time of computer 
simulation using the conservative finite-difference scheme.

Also was considered the dependency of invariant values deviation for three 
methods. So, we can say that the combined method is more suitable for solving the 
Schrödinger equation than Rosenbrock method.
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Abstract  Implementation of the heartbeat biometric system consists of four main 
stages which are heartbeat data acquisition, pre-processing and feature extraction, 
modeling and classification. In this study a new approach for classification method 
based on Sparse Representation Classifier (SRC) is proposed. By introducing ker-
nel trick into SRC, the classification performance of the classifier can be further 
improved by implicitly map features data into a high-dimensional kernel feature 
space. Based on heart sound data, experimental results have shown a promising per-
formance of KSRC with 85.45 % of accuracy has been achieved and a better perfor-
mance has been observed by this classifier compared to Support Vector Machines 
(SVM), SRC and K-Nearest Neighbor (KNN). This achievement has proved the 
possibility of heartbeat as a biometric trait for human authentication system. Due 
to this, an extension in term of heartbeat data acquisition toward real time imple-
mentation is then proposed in this paper. Here, a wrist-mounted heartbeat sensor 
to sense the heartbeat signal is designed. This developed sensor is an electrometer 
which is capable to measure the properties of electrocardiogram (ECG) signal. The 
developed hardware has also shown its viability toward execution of heartbeat data 
acquisition in real time.

Keywords  Biometrics · Heartbeat · ECG · Kernel trick · Sparse representation 
classifier
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15.1 � Introduction

Automated security is one of the major concerns of modern time where secure 
and reliable authentication is in great demand. However, traditional authentication 
methods such as password and smart card are now outdated due to they can be 
lost, stolen and shared. In this project, biometric system based on heartbeat signal 
is proposed. Heartbeat is chosen as modality due to an individual’s heart sound 
parameters cannot be faked. Compared to fingerprint, it can be fooled with fake 
fingers, face can be extracted using user’s photo and voice can be imitated easily. 
Besides, as heart sound is reflection of the mechanical movement of the heart and 
cardiovascular system, these features contains both physiological and pathological 
information.

Recent research [2, 12] have been proved that heartbeat or heart sound can be 
used as the biometric trait for human authentication. Human heart sounds are noises 
generated by the beating heart and the resultant flow of blood through it. Two heart 
sounds are normally produced during each cardiac cycle namely S1 and S2. The 
first heart sound S1 is normally longer, low-pitch tone and sound like “lup” whereas 
the second heart sound S2 is shorter, high-pitch and sound like “dup”. These natu-
ral signals have been applied in auscultation by doctors for health monitoring and 
diagnosis.

Since heart sounds contain information about an individual’s physiology, it can 
be potentially used as a biometric traits and provide unique identity for each person. 
Besides, heart sound is very difficult to counterfeit or imitate by others and there-
fore reduces falsification in authentication systems. In 2006, the possibility of using 
heart sound as biometric trait for human identification is investigated and a pre-
liminary results indicate an identification rate of up to 96 % for a database consists 
of 7 individuals, with heart sounds collected over a period of 2 months [12]. Their 
system is based on the cepstral analysis with a specified configuration called Linear 
Frequency Bands Cepstral (LFBC) as feature extraction method, combined with 
Gaussian Mixture Modeling (GMM) and Vector Quantization (VQ) as classifier.

In 2007 [2], a heart sound biometric system is proposed by the authors using a 
feature extraction method called chirp-Z transform (CZT) and K-Nearest Neighbor 
(KNN) based on Euclidean distance as the classifier. Their system achieved 0 % 
false rejection rate (FRR) and 2.2 % false acceptance rate using a database contain-
ing heart sound recorded from 20 different people. The weakness of the CZT feature 
extraction method is that the locations of the S1 and S2 heart sounds have to be well 
aligned for each sample.

In 2010 [7], three different types of features are extracted which are auto-corre-
lation, cross-correlation and cepstrum. The classifiers applied in their systems are 
Mean Square Error (MSE) and KNN. KNN classifier achieved 93 % identification 
rate evaluated using a database of 400 heart sound that were recorded from 40 indi-
viduals by 10 heart sound recordings for each individuals.

In 2013 [17], a new feature set called marginal spectrum is extracted from the 
heart sounds and classifier VQ based on Linde-Buzo-Gray algorithm (LBG-VQ) 
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is used for classification the heart sounds. The identification rate of their system 
achieved 94.40 % evaluated using a database of 280 heart sounds from 40 partici-
pants.

In this paper, a heart sound authentication system based on Mel Frequency Ceps-
tral Coefficient (MFCC) and Sparse Representation Classifier (SRC) are used as 
feature extraction and classification method respectively. Thus, this research aims 
to develop a robust and reliable heart sound authentication system which can work 
well with noisy heart sound sample. The proposed system is composed of four main 
phases; data acquisition, signal pre-processing, feature extraction, and training and 
classification phases. Consequently, heartbeat data acquisition toward real time im-
plementation of heartbeat biometric system is then proposed in this paper. Here, a 
wrist-mounted heartbeat sensor to sense the heartbeat signal is designed.

This paper is organized as the following order. Section 15.2 briefly explains the 
methodology in extracting the features of heartbeat data. Then, Sect. 15.3 presents 
the classification process using SRC and KSRC. The proposed design of wrist-
mounted heartbeat sensor is then given in Sect. 15.4. Consequently, the result and 
discussion are described Sect. 15.5. Finally, Sect. 15.6 sums up the overall conclu-
sion.

15.2 � Methodology

15.2.1 � Database

An open heart sounds database HSCT-11 collected by the University of Catania Italy 
is applied to evaluate the performance of proposed heart sound authentication sys-
tem. This database is a collection of heart sounds to be used for biometric research 
purpose and freely available on the internet [13]. It contains heart sounds collected 
from 206 people, i.e. 49 female and 157 male. Only 10 female and 5 male heart 
sounds are randomly selected have been used in this research. The heart sounds 
recordings are recorded in WAV format at a sampling frequency of 11.025 kHz, near 
the pulmonary valve and contains only sequences recorded in resting condition.

15.2.2 � Pre-processing, Segmentation and Feature Extraction

The recorded heart sound signals corrupted by various types of noise can reduce 
the accuracy of identification. To overcome this problem, a fifth order Chebyshev 
type I lowpass filter with cutoff frequency at 880 Hz is applied on the signals. In 
this context, background noise or sound with frequency that higher than the filter 
cut off frequency will be eliminated and the signals are then normalized before the 
segmentation process takes place.



W. C. Tan et al.192

The heart produces two strong and audible sounds namely S1 and S2. These two 
heart sounds contain important features for human identity verification. Therefore, 
the heart sound segmentation is the first step of this automatic heart sound biometric 
system [15].

The segmentation technique employed in this system is based on zero-crossing 
rate (ZCR) and short-term amplitude (STA). First, the noise-filtered and normalized 
signal is blocked into frames of 5 m length with 66.7 % overlapped. Next, the short-
term amplitude and zero-crossing rate of each frame are calculated. This simple 
feature can be used for detecting silent part in audio signals which is especially 
helpful for detecting speech from noisy background and for start and end point 
detection. Then, the values of upper and lower of STA and ZCR thresholds are set 
as given in Table 15.1.

These threshold values are obtained from trial and error process. After defining 
the threshold values, the frames of the signal is evaluated by the following rules;

Rule 1: the frame’s STA greater than STA1 threshold is considered as a part of 
heart sound and the starting point of the heart sound will be calculated.

Rule 2: the frame’s with STA greater than STA2 threshold or ZCR greater than 
ZCR threshold is considered as possible heart sound signal and will be further eval-
uated next frames. If the next frame matches rule 2, the evaluation will be repeated 
until it matches rule 1 or rule 3. Once the next frame matches rule1, the starting 
point of the heart sound will be equal to the starting point of the very first frame 
which matches rule 2. The ending point of this heart sound is evaluated when the 
following frame matches rule 3. If the next frames does not matches rule 1 and 
directly matches rule 3, this sequence of frames will not consider as a heart sound.

Rule 3: the frame’s with STA lower than STA2 threshold and ZCR lower than 
ZCR threshold is considered as not a heart sound. The flow chart of the segmenta-
tion technique is shown in Fig. 15.1.

The extraction of the best parametric representation of acoustic signals is an im-
portant task in designing of any sound-based biometric recognition system so that 
a better identification performance can be produced. Mel Frequency Cepstral Coef-
ficients (MFCC) is one of the most commonly used feature extraction method in 
speech recognition. MFCC takes human hearing perception sensitivity with respect 
to frequencies into consideration [9, 11]. After the heart sound signal is segmented, 
framed, and windowed, MFCC is used to extract meaningful parameter in the heart 
sound signal.

The steps to implement MFCC in this system are summarized as in Fig. 15.2. 
The result from first and second derivatives is also added as new features. Hence, 
a 39-dimensional MFCC features per frames is extracted from the digitized heart 
sound signal. The features extracted forms S2 heart sound will be appended to the 

Segmentation threshold parameter Initialize value
Upper short-term amplitude threshold, STA1 3
Lower short-term amplitude threshold, STA2 0.5
Zero-crossing rate threshold, ZCR 5

Table 15.1  Threshold value 
for heart sound segmentation 
process
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features extracted from S1 sound so that features of a complete heart sound cycle 
are used in classification process.

15.3 � Sparse Representation Classifier (SRC)

Sparse representation is originally applied for signal representation and reconstruc-
tion. Sparse representation of signal is an expression of the signal as a linear com-
bination of atoms in an overcomplete dictionary in which many of the coefficients 
are zero. The original goal of sparse representation is to represent and compress 
a signal using lower sampling rates than the Shannon-Nyquist rate [5]. Thus, the 
performance of the compress algorithm is based on the degree of sparsity of the 
representation to the original signal. Among all the atoms in an overcomplete dic-
tionary, the sparse representation selects the subset of the atoms which most com-
pactly expresses the input signal and rejects all other less compact representation. 

Fig. 15.1   Heart sound segmentation flow chart based on ZCR and STA
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Therefore, the sparsest representation of a signal is naturally discriminative and can 
be developed for signal classification purpose. Equation 15.1 shows the input signal 
y is linearly represented by a dictionary, D and sparse representation, x.

1 1m m n ny D x× × ×=
�

(15.1)

Sparse representation classifier is a nonparametric learning method which can di-
rectly predict or assign a class label to a test sample based on dictionary composed of 
training samples. This method is similar to Nearest Neighbor and Nearest Subspace 
classifier which do not have a training process for classification process. Sparse 
representation for classification is first introduced in 2009 in face recognition re-
search [14]. Experimental results proved that sparse representation classifier (SRC) 
has better classification performance than nearest neighbor and nearest subspace.

In sparse representation classifier, the dictionary is constructed from training 
samples from various classes. The jth class training samples are arranged as column 
of a matrix Dj as shown in Eq. 15.2. The columns of dictionary is refered as atoms.

,1 ,, , j

j

m n
j j j nD d d R × = … ∈ 

�

(15.2)

Fig. 15.2   Heartbeat feature extraction flow chart based on MFCC processing
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where dj,i denotes the training sample belonging to the jth class, and nj is the number 
of the training samples for jth class. The dictionary, D is form using all the dictionary 
from each class as shown in Eq. 15.3.

[ ]1 2, , , m n
cD D D D R ×= … ∈� (15.3)

where 1

c
jj

n n
=

= ∑ . and c is the number of class.

Based on the Eq. 15.1, for SRC problem, the sparse representation x, is the vec-
tor of coefficients associated with the training sample in the dictionary matrix. The 
entries of x that is corresponding to the class which the test sample y belongs to is 
expected to be nonzero while the entries of x that corresponding to other classes is 
expected to be zero.

,1 ,0, , 0, , , , 0, ., 0
j

T

j j nx x x = … … … �
(15.4)

where ,j ix R∈  is the coefficient corresponding to the training sample ,j id . The 
sparse representation based classification method looks for the sparsest representa-
tion by solving the following 0l  minimization problem.

0min . .x s t y Dx=� �� (15.5)

where 0x� �  denotes the 0l  norm, which count the number of nonzero elements of 
sparse representation, x. Equation 15.5 is known as NP (nondeterministic polyno-
mial) hard problem and difficult to approximate. The developed theory from sparse 
representation and compressive sensing research reveals that the sparsest solution 
from Eq. 15.5 can be obtained by replacing the 0l  norm with the 1l  norm given that 
the solution, x is sparse enough [3, 4, 6].

1min . . x s t y Dx=� �
�

(15.6)

where 1x� �  denotes the 1l  norm, which sum the absolute values of all elements 
in the sparse representation, x. The advantage of sparse representation based clas-
sification is their ability to deal with corrupted or noisy data within the same frame-
work. This property of sparse representation classifier provide the advantage for 
heart sound biometric authentication system because usually the heart sound con-
tains noise signal. To deal with noisy data, Eq. 15.1 is modified as

1 1 1m m n n my D x +ξ× × × ×=
� (15.7)

where 1
m

m Rξ × ∈  denotes the noise vector with bounded energy 1 2mξ ε× <� � , where 
2⋅� �  denotes the 2l  norm. While Eq. 15.6 can be modified as

1 2min . .x s t y Dx ε− ≤� � � �
�

(15.8)
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Equation 15.15 is one standard formulation for sparse reconstruction problems in 
compressive sensing, called the quadratically constrained 1l  minimization problem 
[1, 8].

Both the 1l  minimization problems are solved using spectral projected gradient 
method, SPGL1 toolbox in this research. The minimum of the representation error 
or the residual error of class c is calculated by keeping the coefficients associated 
with that class and while setting the other entries to zero. This is done by introduc-
ing a characteristic function, ζ  as follow.

� (15.9)

where ( )cr y  denotes the residual error. The vector ζ  has value one at locations as-
sociated to the class i and zero for other entries. The class, d of the test signal, y is 
computed as the one that produces smallest residual error.
�

(15.10)

The algorithm summarizes the complete classification procedure of SRC is de-
scribed below.

Algorithm 1: Sparse Representation Classifier (SRC)

1.	 The input for SRC are a matrix of training samples form a dictionary 
[ ]1 2, , , m n

cD D D D R ×= … ∈  for c classes, a test sample my R∈  and an optional 
error tolerance 0ε > .

2.	 Normalize the atoms of D to have unit 2l  norm.
3.	 Solve the 1l  minimization problem in Eq. 15.13 or 15.15 using SPGL1 toolbox:
4.	 Compute the residuals 

2
 1, , .( )i ir y y D x for i cζ= − = … …

5.	 The class of the given test sample, y is determined by ( ) .( )min i iidentity y r y=

After implementing algorithm 1, kernel tricks is then applied to the classifier to 
change the distribution of samples. This can be done by mapping it into a high 
dimensional kernel feature space [16] in order to change the linear inseparable 
samples in the original feature space into linear separable in the high dimensional 
feature space. This means a test sample can be represented as linear combination of 
training samples from same class accurately by applying kernel trick into SRC. The 
classification performance of SRC will be improved as the nonzero entries of sparse 
representation, x of the test sample are more associated with training samples from 
same class as itself. In this work, radial basis function (RBF) kernel is employed in 
KSRC as follows.

� (15.11)

where 0t <  is the parameter for RBF kernels. KSRC classification method is also 
able to overcome the disadvantages of SRC which cannot classify samples in the 
same direction which belong to different classes [10].

( ) 2c ir y y D xζ= −� �

( )min ii
d r y=

2

( , ) t x yk x y e− −= � �
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In KSRC, kernelized dictionary and testing sample is computed by the following 
equation.

( ),kernel i j n n
D k d d

×
 =  

�
(15.12)

( )
1

,kernel j n
y k y d

×
 =  

�
(15.13)

where , 1, , , andi j n n= … , is the number of training samples. The kernelized dic-
tionary dimension of the training samples is reduced by kernel mapping if the num-
ber of atoms is smaller than feature dimension in original dictionary and vice-versa. 
In KSRC, the classification task is executed by replacing andD y  in SRC problem 
with andkernel kernelD y . Hence, the 1l  minimization problem for KSRC is expressed 
as following equations.

1min . . kernel kernelx s t y D x=� �
�

(15.14)

1 2min . . kernel kernelx s t y D x ε− ≤� � � �
�

(15.15)

The algorithm summarizes the complete classification procedure of KSRC is shown 
as follows.

Algorithm 2: Kernel Sparse Representation Classifier (KSRC)

1.	 Step 1: The input for KSRC are a matrix of training samples form a dictionary 
[ ]1 2, , , m n

cD D D D R ×= … ∈  for c classes, a test sample my R∈  and an optional 
error tolerance 0ε > .

2.	 Kernelize of andD y  to yield andkernel kernelD y
3.	 Normalize the atoms of andkernel kernelD y  to have unit 2l  norm.
4.	 Solve the 2l  minimization problem in equation 21 or 22 using SPGL1 toolbox:
5.	 Compute the residuals ( )

2
 1, , .i kernel kernel kernel ir y y D x for i cζ= − = ……

6.	 The class of  the given test sample, y is determined by ( ) min ( ).kernel i i kernelidentity y r y=

15.4 � Wrist-mounted ECG Sensor Design

In order to measure the heartbeat signal from part of the body, this study proposes 
two sensors in contact with the skin hence by touching one sensor electrode with 
each hand. The design of the proposed heartbeat data acquisition is illustrated as in 
Fig. 15.3 as a wrist-mounted device containing two electrodes. The first electrode is 
laid on the back of the proposed device which will permanently contact with user’s 
wrist whereas the second electrode is front-facing. This electrode will contact with 
finger of the other hand. By touching the second electrode, the data is then mea-
sured and will be passed to mobile device or PC via Bluetooth.



W. C. Tan et al.198

After the heartbeat data is collected, the digitization process is executed and the 
same steps as discussed in the methodology part i.e. pre-emphasis, and segmenta-
tion are followed. Consequently, instead of using MFCC techniques, any frequency 
transform methods such as wavelet transform can be used to obtain the ECG pa-
rameters. Sample of one ECG signal obtained from the proposed heartbeat data 
acquisition is shown in Fig. 15.4 below.

15.5 � Result and Discussion

In this section, performances of the system based on KSRC and the feasibility of 
using the wrist-mounted sensor design are evaluated and discussed. The result of 
segmentation of S1 and S2 heart sounds is illustrated in Fig. 15.5. According to the 
figure, the STA and ZCR based segmentation method is able to correctly segment 
out S1 and S2 heart sounds.

The heart sounds used in this paper consists of heart sounds from 15 participants 
which are randomly selected from HSCT11 open database. A total of 775 heart 
sounds samples are divided in to two groups which are training sample and testing 
samples. Twenty samples of heart sounds from each participant are used as train-
ing samples while the rest are used as testing samples. Support Vector Machine 
(SVM) and K-Nearest Neighbor (KNN) are also implemented so as to validate the 
performances of SRC and KSRC method. In this work, the value of k = 3 is used for 
kNN and polynomial kernel is adopted for SVM.

Fig. 15.3   Architecture of 
wrist-mounted heartbeat data 
acquisition
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The recognition methods have been tested as a function of two parameters i.e., 
the number of training samples per participant and the feature dimension of heart 
sound samples. In first experiment, N numbers of training samples are randomly 
selected from the heart sound data while the remaining is used for testing. The clas-
sification performances of heart sounds for various numbers of training samples 
using SVM, SRC, KSRC and KNN are shown in Table 15.2.

In second experiment, the effect of feature dimensions is also investigated by 
using three different feature lengths i.e., 200, 392 and 450. The classification perfor-
mances of heart sounds for various feature dimensions of heart sound using SVM, 
SRC, KSRC and KNN are shown as in Table 15.3.

The results in Table 15.2 and 15.3 reveal that KSRC achieves the highest recog-
nition rate compared to the other classifier for 20 training samples and 392 feature 
dimensions. KSRC shows very good results which have proved its ability in clas-
sification application not only on image data but heart sound (mono-dimensional) 
data as well.

Consequently, Fig. 15.6 below presents the performances of heartbeat biometric 
system based on ECG data which has been collected by using the suggested waist-
mounted heartbeat sensor. A promising result has been observed for the preliminary 
data collected using the proposed design where 2 out of 5 subjects are able to be 
verified with accuracy almost 100 %.

Fig. 15.4   ECG signal obtained from the wrist-mounted heartbeat data acquisition
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15.6 � Conclusions

Two new techniques i.e. KSRC classifier and wrist-mounted sensor have been suc-
cessfully implemented in this study. A good result obtained by KSRC in classifying 
heart’s sound data proves that its capability as classifier to be used in heartbeat 

Fig. 15.5   Segmentation of S1 and S2 heart sounds from three different participants. Each row 
represents each participant

 

Table 15.2   Classification performances based on various numbers of training samples and vari-
ous classifiers
Classifier Number of training samples from each participant

10 (%) 15 (%) 20 (%)
SVM 76.96 81.09 84.87
SRC 75.52 81.18 84.45
KSRC 78.72 82.00 85.45
KNN (K = 3) 70.40 69.82 78.78
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based biometric system. Due to this promising performance, a proposed wrist-
mounted sensor to measure ECG signals has been designed and evaluated in this 
study. Further work toward the feasibility of system to be used in real time imple-
mentation has been proved in this study.
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Abstract  This work, first part of this study, describes five numerical tools to per-
form perfect gas simulations of the laminar and turbulent viscous flow in two-
dimensions. The Van Leer, Harten, Frink, Parikh and Pirzadeh, Liou and Steffen 
Jr. and Radespiel and Kroll schemes, in their first- and second-order versions, are 
implemented to accomplish the numerical simulations. The Navier–Stokes equa-
tions, on a finite volume context and employing structured spatial discretization, are 
applied to solve the supersonic flow along a ramp in two-dimensions. Three turbu-
lence models are applied to close the system, namely: Cebeci and Smith, Baldwin 
and Lomax and Sparlat and Allmaras. The convergence process is accelerated to the 
steady state condition through a spatially variable time step procedure. The results 
have shown that, with the exception of the Harten scheme, all other schemes have 
yielded the best result in terms of the prediction of the shock angle at the ramp.

Keywords  Laminar and turbulent flows · TVD algorithms · Cebeci and Smith 
turbulence model · Baldwin and Lomax turbulence model · Sparlat and Allmaras 
turbulence model

16.1  Introduction

Conventional non-upwind algorithms have been used extensively to solve a wide 
variety of problems [1]. Conventional algorithms are somewhat unreliable in the 
sense that for every different problem (and sometimes, every different case in the 
same class of problems) artificial dissipation terms must be specially tuned and 
judicially chosen for convergence. Also, complex problems with shocks and steep 
compression and expansion gradients may defy solution altogether.

Upwind schemes are in general more robust but are also more involved in their 
derivation and application. Some upwind schemes that have been applied to the 
Euler equations are, for example, [2–6]. To comments about these methods and to 
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the motivation of this study the reader is encouraged to read the first part of this 
study, THEORY, in [7].

This work, first part of this study, describes five numerical tools to perform per-
fect gas simulations of the laminar and turbulent viscous flow in two-dimensions. 
The [2–6] schemes, in their first- and second-order versions, are implemented to 
accomplish the numerical simulations. The Navier–Stokes equations, on a finite 
volume context and employing structured spatial discretization, are applied to solve 
the supersonic flow along a ramp in two-dimensions. Three turbulence models are 
applied to close the system, namely: [8–10]. On the one hand, the second-order 
version of the [2, 4–6] schemes are obtained from a “MUSCL” extrapolation proce-
dure, whereas on the other hand, the modified flux function approach is applied in 
the Harten [3] scheme for the same accuracy. The convergence process is acceler-
ated to the steady state condition through a spatially variable time step procedure, 
which has proved effective gains in terms of computational acceleration (see [11, 
12]). The results have shown that the [2, 4–6] schemes have yielded the best results 
in terms of the prediction of the shock angle at the ramp. Moreover, the wall pres-
sure distribution is also better predicted by the [3] scheme. This work treats the 
laminar first- and second-order and the [8–10] second-order results obtained by the 
five schemes.

16.2  Results

One problem was studied in this work, namely: the viscous supersonic flow along 
a ramp geometry. The ramp configuration is detailed as also the type of boundary 
contours. These characteristics are described in Figs. 16.1 and 16.2.

Fig. 16.1   Ramp 
configuration
  



20516  Laminar and Turbulent Simulations of Several TVD Schemes …

Numerical experiments were run on a Notebook computer with Intel Core i7 
processor of 2.3 GHz of clock and 8.0 GBytes of RAM. The criterion adopted to 
reach the steady state was to consider a reduction of three (3) orders of magnitude 
in the value of the maximum residual in the calculation domain, a typical CFD com-
munity criterion. The maximum residual is defined as the maximum value obtained 
from the discretized equations in the overall domain, considering all conservation 
equations. The initial conditions to the ramp problem are described in Table 16.1. 
Figure 16.3 exhibits the mesh employed in the calculation of the viscous flow to the 
ramp problem. An exponential stretching of 10.0 % was applied close to the wall, in 
the η direction, to capture the viscous phenomena. A total of 3,540 rectangular cells 
and 3,660 nodes, which is equivalent to a mesh of 61 × 60 nodes on a finite differ-
ence context, is employed.

The Reynolds number is equal to 1.613 × 105, a turbulent flow. Three turbulence 
models were studied, namely: [8–10]. Two algebraic and an one-equation models 
are implemented.

Fig. 16.2   Ramp computa-
tional domain

Fig. 16.3   Ramp viscous 
mesh
  

  



206 E. S. G. Maciel

16.2.1  Laminar Viscous Results

The laminar viscous results are divided in two solution groups: the first order and 
the second order solutions. The first order results are presented here to serve as a 
benchmark to compare the second order viscous results, aiming to distinguish the 
excessive diffusion characteristics resulting from the former, as referenced by the 
CFD literature.

16.2.1.1  First-Order Results

Figures 16.4, 16.5, 16.6, 16.7 and 16.8 presents the pressure contours obtained by 
the [2–6] schemes, respectively. All schemes capture a strong viscous interaction 
typical of viscous flow simulations, at the ramp entrance. A weak shock wave is 
formed ahead of the ramp due to the boundary layer detachment. The [3] scheme 
captures the biggest detachment region of the boundary layer, resulting in the big-
gest circulation bubble formation. Moreover, the [2] scheme captures the most se-
vere pressure field, characterizing this one as more conservative than the others 
schemes.

Figure  16.9 presents the wall pressure distributions of all schemes. They are 
compared with the oblique shock wave theory results and with the Prandtl–Meyer 

Table 16.1   Initial conditions to the studied problem
Problem Property Value
Ramp Freestream Mach, M∞ 2.0

Attack angle, ° 0.0
Ratio of specific heats, γ 1.4

Fig. 16.4   Pressure contours 
(VL-1st Order)
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expansion fan results. It is important to observe that this theoretical profile is the 
correct to be obtained in a viscous simulation, because of the pressure gradient in 
the normal direction from the wall is equal to zero, according to the boundary layer 
theory. Hence, the pressure at the boundary layer edge is imposed to the wall pres-
sure.

As can be seen, the [2] solution is closer to the pressure profile than the other so-
lutions. The [3] scheme predicted the smallest severe shock than the others schemes. 
The expansion fan is better captured by the [5] scheme. Finally, the circulation 
bubble closes to the ramp corner is exhibited in Figs. 16.10, 16.11, 16.12, 16.13 and 
16.14. The [4–5] solutions show bigger circulation bubbles than the other solutions.

Fig. 16.5   Pressure contours 
(H-1st Order)

Fig. 16.6   Pressure contours 
(FPP-1st Order)
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16.2.1.2  Second-Order Results/TVD

For the second order results, a minmod non-linear limiter was employed in the 
[2–6] schemes. The [5–6] schemes did not present converged results. Figures 16.15, 
16.16 and 16.17 exhibit the pressure contours obtained by the [2–4] schemes. All 
solutions present a weak shock ahead of the ramp corner. This shock wave is formed 
far ahead the ramp corner. The pressure field is also more severe in the solution 
obtained by the [2] scheme, indicating this one as the most conservative.

Figure  16.18 shows the wall pressure distributions generated by the [2–4] 
schemes in their TVD versions. All solutions capture the circulation bubble for-
mation, resulting from the boundary layer detachment. The [2] solution presents a 

Fig. 16.7   Pressure contours 
(LS-1st Order)

Fig. 16.8   Pressure contours 
(RK 1st Order)
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pressure distribution closer to the pressure plateau, whereas the [4] solution shows 
a more extent separation region.

Figures 16.19, 16.20 and 16.21 presents the formation of circulation bubble clos-
es to the ramp corner obtained by [2–4] schemes. The circulation bubbles obtained 
by the [3], and [4] schemes are larger than the respective of the [2] scheme. As a 
resume of the present simulations, the [2] scheme was more conservative and more 
correct in physical terms, representing accurately the flow physics.

Fig. 16.9   Wall pressure 
distributions

Fig. 16.10   Circulation 
bubble (VL-1st Order)
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16.2.2  Turbulent Viscous Results

16.2.2.1  Cebeci and Smith Results/TVD

Figures 16.22, 16.23, 16.24, 16.25 and 16.26 show the pressure contours obtained 
by the [2–6] schemes, respectively, as using the [8] turbulence model. All solutions 
practically ignore the existence of the weak shock ahead of the ramp corner. It in-
dicates that the boundary layer detachment is negligible in all solutions and that the 

Fig. 16.11   Circulation 
bubble (H-1st Order)

Fig. 16.12   Circulation 
bubble (FPP-1st Order)
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circulation bubble is reduced in size. The pressure field generated by the [3] scheme 
is the most severe in relation to those generated by the other schemes.

Figure 16.27 exhibits the wall pressure distributions obtained by the [2–6] algo-
rithms, as using the [8] turbulence model. As can be observed, all solutions are very 
similar and agree better with the theoretical solution than in the laminar cases. The 
expansion fan pressure is better predicted by the [6] algorithm.

Figures 16.28, 16.29, 16.30, 16.31 and 16.32 show the circulation bubble forma-
tion close to the ramp corner. All solutions predicted a small circulation bubble, 
although that generated by the [2] scheme is larger than those generated by the other 
schemes. In resume, as can be observed the [8] turbulence model predicts a more 

Fig. 16.13   Circulation 
bubble (LS-1st Order)

Fig. 16.14   Circulation 
bubble (RK-1st Order)
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energized boundary layer. With it, the weak shock wave ahead of the ramp corner is 
negligible and the circulation bubble presents a discrete formation.

16.2.2.2  Baldwin and Lomax Results/TVD

In this case, only the [2–4] schemes have presented converged results. Figures 16.33, 
16.34 and 16.35 exhibit the pressure contours obtained by the [2–4] schemes, re-
spectively, as using the [9] turbulence model. A weak shock wave is formed ahead 
of the ramp corner in all solutions. It is important to remember that such weak shock 

Fig. 16.15   Pressure contours 
(VL-TVD)

Fig. 16.16   Pressure contours 
(H-TVD)
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wave is due to the boundary layer detachment which induces a false thick geometry 
at the ramp and the flow only see this thick geometry, originating the oblique shock 
wave. So, it is possible to distinguish that the effect of increasing boundary layer 
thickness is more pronounced in the [4] solution than in the other solutions. It also 
induces the expected behavior of a larger circulation bubble formed in the [4] solu-
tion. In terms of the pressure field, the [2] scheme presents the most severe pressure 
field, characterizing this algorithm as more conservative.

Figure 16.36 presents the wall pressure distributions generated by all algorithms. 
As noted, all solutions capture the circulation bubble formation close to the ramp 
corner, but all solutions differs from the theoretical solution (all under-predict 

Fig. 16.17   Pressure contours 
(FPP-TVD)

Fig. 16.18   Wall pressure 
distributions
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the shock plateau). Figures 16.37, 16.38 and 16.39 exhibit the circulation bubble 
formed close to the ramp corner generated by the [2–4] algorithms. The [4] scheme 
presents a bigger circulation bubble in extent and size than the others.

16.2.2.3  Sparlat and Allmaras Results/TVD

Only the [5] scheme did not present converged results. Figures 16.40, 16.41, 16.42 
and 16.43 present the pressure contours obtained by the [2–4, 6] schemes, respec-
tively, as using the [10] turbulence model. The [2] solution captures a small bound-

Fig. 16.19   Circulation 
bubble (VL-TVD)

Fig. 16.20   Circulation 
bubble (H-TVD)
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ary layer detachment, which results in a less intense weak shock wave. The [4] 
solution captures the biggest boundary layer detachment, which results in a more 
intense weak shock wave. The pressure field generated by the [2] scheme is again 
the most severe in relation to those generated by the others schemes.

Figure 16.44 shows the wall pressure distributions obtained by the [2–4, 6] al-
gorithms. All solutions capture the circulation bubble at the ramp corner. Moreover, 
the [2] pressure peak is close to the theoretical pressure plateau.

It is important to be mentioned here that the best behaviour to the pressure pla-
teau was obtained by the [8] turbulence model in spite of the loss of physical mean-
ing of the flow (loss of the circulation bubble formation).

Fig. 16.21   Circulation 
bubble (FPP-TVD)

Fig. 16.22   Pressure contours 
(VL-CS)
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Figures 16.45, 16.46, 16.47 and 16.48 exhibit the circulation bubble captured by 
the [2–4, 6] schemes, respectively, as using the [10] turbulence model. As can be 
seen, the [4] solution generates the largest bubble region than the other solutions.

16.2.3  Quantitative Analysis

One way to quantitatively verify if the solutions generated by each scheme are 
satisfactory consists in determining the shock angle of the oblique shock wave, β, 
measured in relation to the initial direction of the flow field. [13] (pages 352 and 
353) presents a diagram with values of the shock angle, β, to oblique shock waves. 

Fig. 16.23   Pressure contours 
(H-CS)

Fig. 16.24   Pressure contours 
(FPP-CS)
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The value of this angle is determined as function of the freestream Mach number 
and of the deflection angle of the flow after the shock wave, φ. To φ = 20° (ramp 
inclination angle) and to a freestream Mach number equals to 2.0, it is possible to 
obtain from this diagram a value to β equals to 53.0°. Using a transfer in Figs. 16.4, 
16.5, 16.6, 16.7 and 16.8 (laminar, first order), Figs. 16.15, 16.16 and 16.17 (lami-
nar, second order), Figs. 16.22, 16.23, 16.24, 16.25 and 16.26 (CS), Figs. 16.33, 
16.34 and 16.35 (BL), and Figs. 16.40, 16.41, 16.42 and 16.43 (SA), it is possible to 
obtain the values of β to each scheme and to each studied case, as well the respec-
tive errors, shown in Table 16.2. It is possible to distinguish that only the [3] scheme 
did not capture the exact value of the oblique shock wave angle. All other schemes 
capture this exact value in a particular case. The [9] turbulence model was the most 
exact because allows the [2] and [4] schemes to capture accurately the shock angle.

Fig. 16.25   Pressure contours 
(LS-CS)

Fig. 16.26   Pressure contours 
(RK-CS)
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Fig. 16.27   Wall pressure 
distributions

Fig. 16.28   Circulation 
bubble (VL-CS)

Table 16.2   Values of the oblique shock wave angle and percentage errors
Case Lam., 1st Lam., 2nd CS, TVD BL, TVD SA, TVD
VL 51.0 56.4 51.0 53.0 51.6
Error (%) 3.77 6.42 3.77 0.00 2.64
H 49.3 55.0 52.5 55.0 51.7
Error (%) 6.98 3.77 0.94 3.77 2.45
FPP 52.4 51.6 51.4 53.0 55.0
Error (%) 1.13 2.64 3.02 0.00 3.77
LS 53.0 – 52.0 – –
Error (%) 0.00 – 1.89 – –
RK 51.0 – 51.2 – 53.0
Error (%) 3.77 – 3.40 – 0.00
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Fig. 16.29   Circulation 
bubble (H-CS)

Fig. 16.30   Circulation 
bubble (FPP-CS)
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16.3  Conclusions

This work, first part, describes five numerical tools to perform perfect gas simu-
lations of the laminar and turbulent viscous flow in two-dimensions. The [2–6] 
schemes, in its first- and second-order versions, are implemented to accomplish 
the numerical simulations. The Navier–Stokes equations, on a finite volume con-
text and employing structured spatial discretization, are applied to solve the super-
sonic flow along a ramp in two-dimensions. Three turbulence models are applied to 
close the system, namely: [8–10]. On the one hand, the second-order version of the 

Fig. 16.31   Circulation 
bubble (LS-CS)

Fig. 16.32   Circulation 
bubble (RK-CS)
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[2, 4–6] schemes are obtained from a “MUSCL” extrapolation procedure, whereas 
on the other hand, the modified flux function approach is applied in the [3] scheme 
for the same accuracy. The convergence process is accelerated to the steady state 
condition through a spatially variable time step procedure, which has proved effec-
tive gains in terms of computational acceleration (see [11, 12]). The results have 
shown that the [2, 4–6] schemes have yielded the best results in terms of the predic-
tion of the shock angle at the ramp.

Fig. 16.33   Pressure contours 
(VL-BL)

Fig. 16.34   Pressure contours 
(H-BL)
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Fig. 16.35   Pressure contours 
(FPP-BL)

Fig. 16.36   Wall pressure 
distributions
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Fig. 16.37   Circulation 
bubble (VL-BL)

Fig. 16.38   Circulation 
bubble (H-BL)
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Fig. 16.39   Circulation 
bubble (FPP-BL)

Fig. 16.40   Pressure contours 
(VL-SA)
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Fig. 16.41   Pressure contours 
(H-SA)

Fig. 16.42   Pressure contours 
(FPP-SA)
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Fig. 16.44   Wall pressure 
distributions

Fig. 16.43   Pressure contours 
(RK-SA)
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Fig. 16.45   Circulation 
bubble (VL-SA)

Fig. 16.46   Circulation 
bubble (H-SA)
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Fig. 16.47   Circulation 
bubble (FPP-SA)

Fig. 16.48   Circulation 
bubble (RK-SA)
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Abstract  In some medical studies, there is often an interest in the number of 
patients who are not susceptible to the event of interest (recurrence of disease) and 
expected to be cured. This article investigates the cure rate estimation based on 
non-mixture cure model in the presence of left, right and interval censored data. 
The model proposed based on log-normal distribution that incorporates the effects 
of covariates on the cure probability. The maximum likelihood estimation (MLE) 
approach is employed to estimate the model parameters and a simulation study is 
provided for assessing the efficiency of the proposed estimation procedure under 
various conditions.

Keywords  Censored data · Cure fraction · Interval · Lognormal distribution · MLE 
method · Non-mixture cure model

17.1 � Introduction

Cure fraction models are survival models that account for the probability of a sub-
ject being cured. Recently, these models are broadly used for analysing data from 
cancer clinical trials and from other diseases. In the literature there are two major 
approaches to model survival data with cure fraction. The first one is the cure rate 
model, which is a mixture of two separate regression models for the survival func-
tion of uncured individuals and the cure fraction of the cured subjects. This model 
proposed by [1] with subsequent extensive investigations in the literature [2–6], 
among others.
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The second approach for modeling the cure fraction is known by the non-mixture 
cure model. This model proposed by [7] as an alternative to the cure rate model to 
keep the proportional hazards structure for the whole population, while allowing 
for a straight-forward interpretation of the covariate effects on the probability of 
cure [8–10]. The non-mixture cure model was motivated by the underlying biologi-
cal mechanism and developed based on assumption that the treatment leaves the 
subject with a number of tumor cells that may grow slowly over time and produce 
a detectable cancer [7, 11, 12]. Both mixture and non-mixture cure models have re-
ceived considerable attention based on right-censored data. However, the literature 
on the cure models with interval-censored data is not many and only a few recent 
studies have investigated the cure models with this type of data.

Interval censoring is frequently encountered in medical and biological researches. 
With this type of survival data the failure time cannot be directly observed, and it is 
only known to lie within an interval obtained from a sequence of examinations times. 
Interval-data have been extensively studied but without involving the cure fraction. The 
interested readers can refer, to some reviews articles by authors such as [13–15]. On 
interval-censoring with a cured subject, the published studies include [10, 16, 17].

In this present article, a parametric non-mixture cure model in the presence of 
interval, right and left censored data is considered. The estimation method is based 
on the maximum likelihood approach in which lognormal distribution is used to 
model failure time for the uncured subjects. The paper is organized as follows. In 
Sect. 17.2, the non-mixture cure model is described, and its performance under right 
censoring is evaluated via simulation studies in Sect. 17.2.1. Section 17.3 provides 
the MLE estimation for the model in the presence of interval, right and left censored 
data. Simulation studies are reported in Sect. 17.4. We conclude with a brief discus-
sion in Sect. 17.5.

17.2 � Model Specification

Chen et al. [7] defined a non-mixture formulation as follows. Let N  denote the 
number of carcinogenic cells that remain active and capable of developing a cancer 
for the ith subject. Assume that N  has a Poisson distribution with a mean of θ . 
Let Zj , j = 1, 2, ..., N  express the random time for the j th cancer cell which can 
produce a detectable cancer mass where Zj is assumed to be independently and 
identically distributed with F (.) . Then, the recurrence of cancer can be defined by 
the random variable T  such that { }min , 0jT Z j N= ≤ ≤ . The survival function for 
the population is given by:
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(17.1)

where p  is the probability of cure which can be defined as

p = S(∞) = lim
t→∞

e−θF (t) = e−θ

�
(17.2)

For the ith individual, with i = 1, 2, ..., n, consider yi = min (Ti , Ci), where Ci  is 
a right censored variable. Let δi  represents the censoring indicator which equals 1 
if yi  is an actual failure time (uncensored) and 0 if it is right censored. Considering 
that censoring times are independent and non-informative, [6, 7, 20] show that the 
contribution of the ith subject for the likelihood is given by

Li =
n∏

i=1

[− log (p)f (ti)]
δi S(ti)

�
(17.3)

The model can be further extended by incorporating covariates X  into the cure 
probability p and the survival function for uncured subjects. Moreover, a para-
metric model can be specified for the failure time. In this work, we consider that 
the cure probability linked into covariates through θ  by setting θ = eX′β , where 
β  are the regression coefficients, and that a log-normal distribution for modeling 
the event time of the uncured individuals. The density and cumulative distribution 
function for this distribution are defined as
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where � is the standard normal distribution function.
Then, the log likelihood associated with n  observed data can be written as

1

2

2
1

log( log ) log ( ) (log ) ( )

(ln ) ln
log(exp( ' )) log( 2 ) exp( ' )

2
i

n

i i i
i

n
i

i i
i

L p f t p F t

t t
x t x

δ

µ µδ β σ π β
σσ

=

=

 = − + +∑  

 − −  = − − − Φ∑     
  

� (17.4)

The MLE of the parameters can be obtained by usual optimization methods such as 
the Newton-Raphson method.

17.2.1 � Simulation Studies

Simulations studies using 1,000 samples each with n = 100 , n = 300  and 
n = 500  were conducted for the model for both censored and uncensored indi-

viduals with one covariate. The covariate values were generated from a uniform 
distribution within (− 1, 0). The values of 0, 0.1, 0.3 and 0.1 were chosen as the 
parameters of β0, β1, µ  and σ. Random numbers ui  were simulated from uniform 
distribution within (0, 1) to determine whether someone is cured. If subject is cured 
(u ≤ p) , then T = ∞. If the subject is not cured the failure time T  was set to the 
solution of u = exp ( − exp (β0 + β1x)F (t)) . The censoring times were generated 
from lognormal distribution (µ, σ ) , where the values of µ and σ  would be ad-
justed to get the desired approximate censoring rate in the data.

Table (17.1) presents the bias, SE, and MSE of the parameters estimates at two 
different levels of censoring. The simulation results show that the biases of the es-
timators are very small. The SE and MSE values increase with the increase in the 
rate of censoring and decrease in the sample size, which indicates that lower level of 
censoring and large sample size make estimates more efficient and rather accurate.

17.3 � The Model with Interval Censored Data

Under interval censoring mechanisms, the failure time T  cannot be observed ex-
actly, but instead is known to have occurred within an interval (Li , Ri]  where 
Ti ∈ (Li , Ri] , and Li ≤ Ri . Here, Li  is the latest examination time before the 
event and Ri  is the earliest examination time after the event. The ith subject is 
left-censored if she/he has met the event of interest at unknown time prior to Ri ; 
Ti ∈ (0, Ri]. The subject is right censored if she/he has been event-free at the last 
known time, Ti ∈ (Li , ∞) . Left and right censored can be considered as special 
cases of interval censored data [18, 19]. For convenience of notation, let us intro-
duce the left, interval and right censoring indicators as
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δLi = 1  If subject is left censored, 0 otherwise;
δIi = 1  If subject is interval censored, 0 otherwise;
δRi = 1  If subject is right censored, 0 otherwise,

Note that δRi = 1 − (δLi + δIi) . Then, the likelihood function for the n  observed 
interval data will be

�

(17.5)
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True Bias SE MSE
Moderate censoring (35–40)

n = 100 β0
0 0.004 0.263 0.069

β1
0.1 0.002 0.469 0.221

µ 0.3 − 3e−04 0.014 1.69e−04

σ 0.1 0.001 0.009 8.20e−05

n = 300
β0

0 − 0.005 0.149 0.022

β1
0.1 − 0.001 0.255 0.065

µ 0.3 2e−04 0.008 6.40e−05

σ 0.1 − 4e−04 0.005 2.52e−05

n = 500
β0

0 − 0.002 0.116 0.013

β1
0.1 0.014 0.204 0.042

µ 0.3 3e−04 0.006 3.61e−05

σ 0.1 2e−04 0.004 1.60e−05

Heavy censoring (60–65)

n = 100 β0
0 − 0.008 0.327 0.107

β1
0.1 0.006 0.588 0.346

µ 0.3 3e−04 0.019 3.60e−04

σ 0.1 0.001 0.012 1.48e−04

n = 300
β0

0 − 0.008 0.183 0.034

β1
0.1 − 0.022 0.328 0.108

µ 0.3 − 2e−04 0.011 1.21e−04

σ 0.1 0.001 0.007 4.96e−05

n = 500
β0

0 − 0.003 0.157 0.025

β1
0.1 − 1e−04 0.263 0.069

µ 0.3 2e−04 0.008 6.40e−05

σ 0.1 0.001 0.005 2.55e−05

Table 17.1   Bias, SE, and 
MSE of the MLE estimators 
for two censoring rate
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The maximum likelihood estimation of the parameters can be obtained by using the 
Newton-Raphson iterative procedure.

17.4 � Simulation Studies

Simulation studies were conducted using 1,000 runs each with sample sizes of 100, 
300, and 500 for this model. One covariate X  was considered and generated from a 
uniform distribution in (− 1, 0). The random survival times T  were generated under 
the cure model (1). Thus, a uniform (0,1) random variable u  was generated and the 
subject is cured if u ≤ p. Otherwise, the failure times T were set to the solution of 
u = exp (−eβ0+β1xF (t)). The true value of µ  and σ  were chosen to be 0.3 and 

0.1 respectively. The value of β0  was chosen to be 0 or 1, while β1  as 0.1 and 
0.5, which results in a cure rate of about 33 % and 0.06 %. On average, about 30 % 
observations were left censored, 40 % were interval censored and 30 % were right 
censored.

The visiting or examination times were simulated independent of X  and T  
following Goulin [21], assuming that the number of visiting times is 10 visits for 
each subject, and that the time between two visits has a uniform distribution within 
(0, c), where c  is a constant controlling censoring rate.

In each simulation, we assessed the bias, standard error (SE), and mean square 
error (MSE) of the estimates and the results are collectively presented in Tables 17.2 
and 17.3.

The simulation studies suggest that the proposed method has very small biases. 
The SE decreased with increasing sample sizes for all considered parameters. Given 
the consistency of the estimator and the increased precision with increasing samples 
size, the mean square errors (MSE) also decreased with increasing sample size.

17.5 � Conclusions

In the analysis of lifetime data, usually we could have a fraction of the population 
not exposed to the event of interest, especially in medical fields. Non-mixture cure 
model is considered as a major approach to handle this kind of data. In this paper, 
a parametric non-mixture cure model is proposed for interval censored data in the 
presence of covariates. The maximum likelihood estimates (MLE) method is used 
to estimate the parameters. For various sample sizes, we implemented a simulation 
process to generate samples with cure fraction, and then under this setup the MLE’s 
for the model were obtained. The values of the bias and the MSE that were obtained 
from simulation studies show that the proposed estimation method performs well in 
the situations considered.
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True Bias SE MSE

100n =
β0

0 − 0.013 0.356 0.127

β1
0.1    0.064 0.314 0.103

µ 0.3 − 0.005 0.203 0.041

σ 0.1 − 0.032 0.178 0.033

n = 300
β0

0 − 0.009 0.335 0.112

β1
0.1    0.031 0.275 0.077

µ 0.3    0.019 0.163 0.027

σ 0.1 − 0.008 0.087 0.008

n = 500
β0

0 − 0.006 0.305 0.093

β1
0.1    0.003 0.266 0.071

µ 0.3    0.002 0.143 0.020
σ 0.1    0.009 0.083 0.007

SE mean of standard errors, MSE mean square errors for MLE 
estimators

True Bias SE MSE

n = 100
β0

1 − 0.024 0.163 0.027

β1
0.5    0.036 0.220 0.050

µ 0.3    0.016 0.374 0.140

σ 0.1    0.027 0.169 0.029

n = 300
β0

1 − 0.008 0.105 0.011

β1
0.5    0.012 0.143 0.021

µ 0.3    0.003 0.249 0.062

σ 0.1 − 0.024 0.118 0.015

n = 500
β0

1    0.002 0.085 0.007

β1
0.5    0.006 0.126 0.016

µ 0.3    0.005 0.175 0.031
σ 0.1    0.016 0.083 0.007

SE mean of standard errors, MSE mean square errors for MLE 
estimators

Table 17.2   Bias, SE, and 
MSE of the MLE estimators

Table 17.3   Bias, SE, and 
MSE of the MLE estimators
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Abstract  This article gives a brief description of a role that an Information 
technology has in one power system company that operates in an open utility mar-
ket. When we consider open energy market, it is well known that Utility sector 
in European Union has already been liberalized and all the steps in joining that 
market are defined in legislatives. When it comes to IT role in such a company, 
IT plays a significant role in adopting to a new market. This work describes some 
of IT segments critical for achieving those goals, that have already been or will be 
implemented in public company for producing, distributing and supplying electrical 
energy in Bosnia and Herzegovina. As mentioned, some of IT projects have already 
been implemented in order to prepare the company for the upcoming open market. 
However, some information systems still need to be implemented, as a crucial for a 
competitive position of a company in a new market.

Keywords  Customer information system · Billing · Customer relationship 
management · Disaster recovery

18.1 � Introduction

All business areas in utility sectors, such as producing, transmitting, distributing 
and retail of electrical energy traditionally have been defined as monopolistic areas 
which have no competition. In that manner, all business processes were defined 
and managed by unified, centralized and vertically integrated subject which has a 
monopol on regional market of electrical energy. However, the only segment that 
actually should be protected from the competitors is network operator. All the other 
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segments such as producing and supplying of electrical energy can and should be 
considered as potential concurrent services.

Inside the European Union, utility sector has been liberalized and defined in EU 
law regulations (Directions 96/92/EC and 2003/54/EC), in order to make the energy 
market open for the competitors. According to these directives, all states that are 
members of EU must establish full market competition, as well as the possibility for 
customers to choose their supplier. Deadline for these obligations were July 2007. 
In Bosnia and Herzegovina, all customers except households are in a position to 
choose supplier of electrical energy. Households will have the same opportunity 
from the January 2015. In order to establish successful competition in power supply 
process, it will be necessary to change the role and the position of Distributed Sys-
tem Operator. In EU states, Operators that have more than 100,000 customers using 
their network must implement all mechanisms of separations, while operators with 
less customers have to implement separation of accounting data and information [1].

18.2 � Problem Formulation

Business and technical information systems must be fast, flexible, scalable and se-
cure in order to provide all needed support for business in a deregulated market of 
electrical energy. Sluggishness and slow changes will not be tolerated as it used to 
be in a privileged position of a company. Information systems must be able to trans-
form themselves and to adjust to changes in business and organizational aspect, as 
well as in terms of providing new services to customers.

On the customer service side, CIS should support multiple client interaction 
channels—such as call center, interactive voice response/voice response units (IVR/
VRUs) and SMS—as well as customer self-service needs [2].

In a competitive market, a CIS also needs to enable data exchanges with other 
market participants (such as metering service companies, network companies, com-
petitive retailers/suppliers and market operators).

The CIS product requirements defined by electric utilities tend to be more com-
plex because of the intricate nature of the business. Issues such as the inability to 
store and manage commodity (electricity), more complex market structures (such 
as retail competition and unbundling), smart grids and the deployment of advanced 
metering infrastructure (AMI) tend to keep the electric utility at the forefront of 
business innovation in the CIS market, compared with other utility sectors [2].

Key elements of Customer Information system in supply company that operates 
on open market support are:

•	 Billing system
•	 Customer Relationship Management (CRM)
•	 Those systems will directly be in charge for customer services support. Besides, 

other information systems that will play important role in supporting open mar-
ket changes are:
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•	 Meter Data Management (MDM)
•	 Financial Management Information System (SAP)
•	 Distributed information system for new customers
•	 Database of electrical objects (DEEO).

18.3 � Billing

When considering Billing system in terms of open market, it is necessary to point 
out that electrical energy supplier that works in open market must be competitive. 
It has to be fast when serving customers, at the same time providing new services 
and solving all problems customer has while using the service. Supplier must work 
proactively having in mind the competition. Billing application must provide the 
following functions when serving customer needs in open market [3]:

•	 Signing, analysis and monitoring contracts with qualified customers
•	 Signing, analysis and monitoring contracts with producers/dealers
•	 Collecting/archiving accounting data for qualified customers
•	 Accounting and bill delivery to qualified customers
•	 Charging, financial monitoring of debits and interests
•	 Customer data analysis, financial cards, reclamations, complaints.

Data exchange with other interested acters in the open market, in order to provide 
support for new processes, such as: change of supplier and customer moving. 
Figure  18.1 shows data exchange workflow between CRM, MDM and Billing 
modules, including new services.

New Customer Information system should support many advanced and sophisti-
cated applications and modules that are related to open market, such as:

•	 Contracts
•	 Marketing strategy
•	 Accounting and billing
•	 Selling and services
•	 Advanced Metering Management
•	 Energy consumption metering
•	 Customer accounts and finance metering.

18.4 � Customer Relationship Management

In terms of Customer Relationship management, communication with customers 
should be analyzed and implemented in a closely coordination with supply process 
and its requirements. In a Public company for supplying electrical energy, CRM 
solution that was recently implemented is Oracle Siebel Energy & Media.
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For companies that compete for customers in open market, CRM is extremely 
important segment of business. It should provide high available access to the ser-
vice, reliable and accurate data, as well as professional and kind staff that serves 
customer needs.

According to Gartner researches, some of the strongest new areas of CRM fo-
cus, that should be implemented in supply company that operates on open market 
are [4]:

•	 Cross-channel CRM customer engagement applications, including customer-
controlled communication

•	 Social networking systems that improve customer service through input taken 
directly from customers

•	 Video customer service and delivery systems, especially for the support of mo-
bile consumers

•	 Mobile-based, location and context-sensitive technologies
•	 Customer service analytics, including big data

e-bill

Fig. 18.1   Customer Information system diagram in a Utility company [3]
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•	 BPM tools that enable the entire migration of increasingly complex customer 
service tasks and interactions for Web customer service

•	 Applications that optimize customer service agent interactions through advances 
in skills management, knowledgebase, search and real-time decision support

•	 Technologies that support rapid iterations and improvements in business 
processes

•	 Analytical tools that predict the most likely intent of customers’ requests for 
service, as well as emerging needs for services and the optimization of each 
interaction to cross-sell or upsell products and services.

All those functions and tools should provide a competitive advantage for the 
company.

Some of new functions that a modern and innovative CRM system in our com-
pany will have to provide at the start point are [5]:

•	 Multi-channel outgoing campaigns (call, SMS, e-mail):
−	 Planned shutdowns of energy objects notifications
−	 Warning for customers who do not pay bills

•	 E-bill service: Paying bills using web services
•	 SMS services:

−	 Notification of accounting data
−	 Notification of planned shutdowns
−	 Notification of planned reconstructions.

For any of those services, it is necessary to define marketing campaign for promot-
ing services, in which customers are enforced to choose a specific service they 
are interested in, as well as to provide contact information necessary for using the 
service.

Methods for implementing previously defined services are:

•	 Notification of planned shutdowns by sms
−	 CRM filters all the customers that will be covered by the planned shutdown
−	 We define the type of the campaign (call/email/sms)
−	 CRM filters customers that have contact data such as phone number, email 

address
−	 CRM sends generic sms message such as “Your area will be out the electricity 

for a period…, thank you for the understanding…”
•	 Warning for customers who do not pay bills

−	 Billing system send the list of customers who did not pay the bill
−	 We define the type of the campaign (call/email/sms)
−	 CRM filters that have contact data such as phone number, email address
−	 CRM sends generic message such as “We kindly ask you to pay the bill for the 

electricity, otherwise your power supply will be shutdown…”
•	 Outgoing phone call campaigns for planned shutdowns

−	 CRM will have one daily task that will be in charge for generating this list of 
customers that will be covered by planned shutdown in the period of 3 days
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−	 Detailed information regarding planned shutdowns CRM will be receiving 
from the Dispathing application that is primarly responsible for managing 
those data.

−	 Generated list of customers that will be in a planned shutdown will be 
imported to Contact center and CRM, together with data such as: phone num-
ber, date and time of shutdown.

−	 Contact center will automatically make phone calls to the customers from the 
list and present predefined message “Your area will be out the electricity for 
a period…, thank you for the understanding…”

Figure 18.2 shows CRM data model that CRM uses for exchanging data with other 
information systems in a company.

Key entities of CRM data exchange model should be:

•	 Customer Account
•	 Service Account
•	 Service Point
•	 Service Request
•	 Contact.

CRM data model is based on existing relations between Customer Account and 
Service account data, as well as between Service account and Service point data. 
Customer account entity keeps basic information about customers before they start 

CUSTOMER ACCOUNT

CONTACT
OPPORTUNITY

SERVICE REQUEST

SERVICE ACCOUNT

SERVICE ASSET SERVICE POINT

Fig. 18.2   CRM Data exchange model [5]

 



24518  Information Technology Model for Supporting Open Utility Market

using electrical energy, while Service Account entity keeps information about cus-
tomers who are already connected to electrical power network.

The following table gives availability parameters in a company (Table 18.1).

18.5 � Conclusions

Full benefit of implementing new IT model will be completely achieved after the 
market deregulation. However, results that have been achieved until now are:

•	 Central database repository and management of customer data, as well as ex-
changing relevant customer data sets with corresponding databases.

•	 Full visibility and monitoring of database traffic in the system.
•	 Centralized management of security and event information in the system.

The process of market deregulation acompained with the market competition re-
quires one completely new approach and crucial changes in organization and man-
agement at the same time. IT role in that process is very important for the following 
reasons:

•	 IT should provide technical, logistic and administrative support for improving 
existing and implementing new customer services at deregulated market (outgo-
ing campaigns, e-services, m-services,…)

Table 18.1   Availability parameters in CRM [5]
Service 
availability

 Monday–Friday  Each day

Availability 
hours during 
working 
week

 7–17 h  0–24 h

Availability 
hours during 
working 
weekends 
and holidays

 7–17 h  0–24 h

Regular 
maintenance

Every second Wednesday in a month

Time of regular 
maintenance

7–7:45 h

Required 
availability 
weekly

 75 %  90 %  95 %  99 %  99.9 %

Required 
availability 
monthly

 75 %  90 %  95 %  99 %  99.9 %

Reaction time  5 min  15 min  30 min
Correction time  15 min  30 min  60 min  150 min
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•	 IT should help in achieving better competitive position on the market
•	 From the position of support process IT should evolve to strategic position which 

will allow IT to participate in defining strategic goals and new IT services that 
will be provided to customers.

The main goal of IT is to balance user needs and business priorities while maintain-
ing control.

Business process reengineering, adoption to legislative, as well as the internal 
reorganization of the company will not be possible without IT support. IT will even-
tually be involved in all aspects of planning and defining business goals, choosing 
appropriate IT solution, up to the final implementation.
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Abstract  Engine performance highly depends on the thermodynamic properties 
of the working fluid involved in different processes of engine cycles. However, as 
engines run with broad range of fuels and fuel air/ratios it is usually not possible to 
reach thermodynamic tables of products of combustion in the exhaust gas content 
for a specific fuel/air ratio and at a relevant temperature and pressure. This study 
addresses a MATLAB adaptable code to investigate engine performance according 
to the specifically defined thermodynamic properties of the exhaust mixture. Spe-
cific heat, enthalpy, entropy and isentropic exponent values are calculated precisely 
according to the chemical equilibrium approach, assuming there are 10 products of 
combustion in the exhaust gas content. Graphical illustrations are considered to be 
reference for future engine performance studies which are derived for different fuels 
and fuel air ratios under various temperatures and pressures.

Keywords  Exhaust gas · Internal combustion engines · Thermodynamic properties ·  
Engine performance

19.1  Introduction

According to Heywood [1]; Rashidi [2] and Rakopoulos et al. [3], it is a good ap-
proximation for performance estimates in engines to regard the burned gases pro-
duced by the combustion of fuel and air as in chemical equilibrium and therefore 
knowledge of the exact gas composition inside the combustion chamber is critical 
to the accurate calculation of the thermodynamic cycle models of internal combus-
tion engines.

Numerous authors studied on prediction of emissions for particular engine pa-
rameters. Some of those concerning reciprocating internal combustion engines are 
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given in [4–9]. Apart from those some research on emission prediction from gas 
turbine engines are given in [10–14].

As these studies usually concentrate on some particular emissions they are not 
able to predict the full equilibrium scheme. Additionally, existing engine combus-
tion studies usually make an assumption of complete combustion of a CαHβ fuel 
with excess air, so they treat the exhaust stream as a mixture of complete combus-
tion products only comprising of CO2, H2O and N2. This approach may lack in 
precision although there is sufficient oxygen which can completely oxidize all the 
fuel because of the dissociations of combustion products at high temperatures. For 
example, if the temperature of a mass of carbon dioxide gas in a vessel is increased 
sufficiently, some of the CO2 molecules dissociate into CO and O2 molecules. If the 
mixture of CO2, CO and O2 is in equilibrium, this means CO2 molecules are disso-
ciating into CO and O2 at the same rate as CO and O2 molecules are recombining in 
the proportions required to satisfy the equation CO + ½ O2 = CO2. When hydrocar-
bon fuels are subjected to combustion at low temperatures, for the rich case the ma-
jor product species present are N2, H2O, CO2, CO and H2 where for the lean case N2, 
H2O, CO2, and O2. But at higher temperatures (greater than about 2,200 K), these 
major species dissociate and react to form additional species in significant amounts 
[1]. So actual combustion reactions do not go to completion and it will be useful to 
develop an equilibrium product composition [15] by which individual species in the 
burned gases react together, produce and remove each species at equal rates but no 
net change in species composition results [1].

In this study the thermodynamic change of the working fluid will be calculated 
for 10 main products as suggested by Ferguson [16] to get more accurate values of 
gas properties which may lead considerable changes in performance results in com-
parison to those made by an assumption of complete combustion. Reaction can be 
easily remodelled if more reactant or product species is required and it is possible 
to estimate the new properties of the working fluid to be used in the performance 
estimation of any combustion engine.

In order to obtain the equilibrium compositions and thermodynamic properties, 
the chemical equilibrium routines of Olikara and Borman [17] presented by Fer-
guson [16] based on equilibrium constant approach are used in this present work.

19.2  Problem Formulation

In the analytical model presented for the adiabatic combustion in this section it is 
assumed that all gases are ideal gases and their enthalpies only change with temper-
ature. Considering that for < 3φ  and there are 10 constituents, the high temperature 
combustion model is given.

The air supplied for the combustion is assumed to be completely dry without 
any moisture and containing only 0.21 moles of O2 and 0.79 moles of N2. Standard 
reference temperature and pressure are 25 °C and 1 atm. respectively.
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The chemical equation for the combustion model is given below:

( )2 2 1 2 2 2 3 2 4 2

5 6 2 7 8 9 10

C H O N 0.21O 0.79 N + CO H O N O

CO H H O OH NO

+ + + + + +
+ + + + +

α δβ γεφ → ν ν ν ν

ν ν ν ν ν ν
� (19.1)

Here ν1 to ν10 represents the number of moles for each species, α, β, γ, δ are the 
numbers of carbon, hydrogen, oxygen and nitrogen atoms present in the fuel. φ is 
equivalence ratio and ε is the molar air-fuel ratio obtained from the stoichiometric 
combustion of the fuel which are calculated as below:

s

FA
FA

=φ
�

(19.2)

0.21

4 2

ε β γα
=

+ −
�

(19.3)

In order to solve for the 10 unknown mole numbers of Eq. (19.3), 10 equations are 
needed which six of them can be provided by the criteria of equilibrium among the 
products expressed by the following chemical relations in Table 19.1 [16]:

where the unit pressure p is in atmospheres and K1–K6 are the equilibrium con-
stants (based on partial pressures) of each reactions.

There are four more equations which come from the combustion model atom 
balancing:

( )1 5y y Nεφα = +C
� (19.4)

( )2 6 7 92 2y y y y Nεφβ = + + +H
� (19.5)

( )1 2 4 5 8 9 102 0.21 2 2y y y y y y y Nεφγ + ⋅ = + + + + + +O
� (19.6)

Table 19.1   Chemical relations of equilibrium

21 2H H→←
1 7 6K = y p y 1 1Kc p= y y7 6= c1

21 2O O→←
2 8 4K = y p y 2 2Kc p= y y8 2 4= c

2 21 2H 1 2O OH→+ ← ( )3 9 4 6K = y y y c3 3= K y y y9 3 4 6= c

2 21 2O 1 2 N NO→+ ← ( )4 10 4 3K = y y y c4 4= K y y y10 4 4 3= c

2 2 2H 1 2O H O→+ ← ( )5 2 6 4K = y y y p c p5 5= K
2 5 6 4= cy y y

2 2CO 1 2O CO→+ ← ( )6 1 5 4K = y y y p c p6 6= K
1 6 5 4= cy y y
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( )3 102 0.79 2y y Nεφδ + ⋅ = +N
� (19.7)

where yi stands for the mole fractions of 10 species and N is the total number of 
moles of the species:

10

1

i
i

i
i

y
υ

υ
=

=
∑

�

(19.8)

10

1
i

i

N υ
=

= ∑
�

(19.9)

With the added N, total number of unknowns are now 11 and but we have 10 equa-
tions so far. From the definition of mole fraction one can write the following equa-
tion which makes the total number of unknowns and total number of equations 
equal.

yi
i=
∑ − =

1

10

1 0
�

(19.10)

We obtain a series of equations non-linear equations which can be solved by New-
ton–Raphson iteration to obtain the mole fractions at the equilibrium [16] and can 
be written as follows: Details of the solution procedure can be found in [17, 18].

f yi i= =( ) 0�
(19.11)

At constant pressure, temperature variation is effective on specific heat because of 
the dissociations of species at high temperatures. The effect of temperature on mole 
fractions should be accounted for the equilibrium specific heat calculation differen-
tiating Eq. (19.11) with respect to temperature which can be written as:

∂
∂

+
∂
∂

∂
∂

=
f
T

f
y

y
T

j j

i

i 0
�

(19.12)

The solution matrix from the above equation is used in finding the specific heat of 
the combustion products in Eq. (19.18).

Molar specific heat, enthalpy and entropy values of each species can be obtained 
from following expressions by using curve fit coefficients (a1…an) for thermody-
namic properties of (C–H–O–N) systems [19]:

o
i 2,i 3,i 4,i 5,i 6,i2 3 4

1,i
u

a a a a ah = a + T + T + T + T
R T 2 3 4 5 T

+
�

(19.13)
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p,i 2 3 4
1,i 2,i 3,i 4,i 5,i

u

c
= a + a T + a T + a T + a T

R�
(19.14)

i

o
3,i 4,i 5,i2 3 4

1,i 2,i 7,i
u

s a a a
= a In T + a T + T + T + T a

R 2 3 4
+

�
(19.15)

At constant pressure, enthalpy of the mixture change due to the dissociations as the 
mole fractions of the mixture change with temperature. This will change the ulti-
mate specific heat of the gas mixture defined as follows:

h = y h kJ/kmol]i i
o

i 1

10

=
∑ [ .

�
(19.16)

10 o
ii

i=1

1h = y h [kJ kg].
M ∑

�
(19.17)
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Using Eq. (19.13–19.17), rearranging Eq. (19.18) gives:

[ ]
10 o oT

i ii i
1

M1 y h y h .
M M

kJ/kg K
g i

i
p p

iP

yh c c
T T=

 ∂∂  = = + −    ∂ ∂ 
∑

�
(19.19)

Where

M MT i=
∂
∂

=
∂
∂=

∑M
T

Y
Ti

i

1

10

�
(19.20)

T is the combustion temperature in Kelvin at which the mole fractions of each equi-
librium species, yi are produced, Mi is the molecular weight of species i, and M is 
the the molecular weight of the mixture as follows:

M= m  = y  Mi i i
i i= =
∑ ∑

1

10

1

10

�
(19.21)

From the law of conservation of mass, the mass of the products is equal to the mass 
of reactants (mR). A definition can be made as follows:

m  m  mR a f= +� (19.22)
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The total number of moles of the products can be found by dividing the mass of 
reactants into the molecular weight of the combustion products as follows:

N  = 
m
M

R

�
(19.23)

Lastly, the number of moles ν1, ν2 …ν10 are obtained from:

i i = y  Nυ� (19.24)

19.3  Results and Discussion

Figures 19.1, 19.2, 19.3, 19.4 and 19.5 are for the thermodynamic properties for 
constant unburned gas temperature and Figs. 19.5, 19.6, 19.7, 19.8, 19.9 and 19.10 
are the thermodynamic properties for constant pressure. For the constant unburned 
mixture temperature case the unburned temperature is assumed to be 300 K before 
combustion. For the constant pressure case the pressure is assumed to be 1 bar dur-
ing combustion. The dedicated temperatures for different equivalence ratios are the 
adiabatic flame temperatures for each case which are presented in Figs. 19.5 and 
19.10.

Figure 19.1 shows the change of constant pressure specific heat vs. pressure for 
different fuels and equivalence ratios. It can be seen that cp changes with pressure 
significantly for stoichiometric mixture. For other equivalence ratios the change is 
minor especially after pressure of 10 bar. cp increases with equivalence ratio for the 
lean case. Increasing equivalence ratio after its stoichiometric value decreases cp.

Figure 19.2 shows the change of specific entropy vs. pressure for different fuels 
and equivalence ratios. It can be seen that s decrease with pressure. Highest s is for 
methane for the equivalence ratio 1.2. In general s increase with equivalence ratio 
for all fuels. Highest entropy values are for fuel methane and lowest are for diesel.

Figure 19.3 shows the change of specific enthalpy vs. pressure for different fuels 
and equivalence ratios. No net change in h with pressure is observed. Lowest en-
thalpy values are for fuel methane and highest are for diesel.

Figure 19.4 shows the change of ratio of specific heats vs. pressure for different 
fuels and equivalence ratios. I It can be seen that k changes with pressure signifi-
cantly for stoichiometric mixture. For other equivalence ratios the change is minor 
especially after pressure of 10 bar. k decreases with equivalence ratio for the lean 
case. Decreasing equivalence ratio after its stoichiometric value increases k for each 
fuel. Highest k values are for fuel methane and lowest are for diesel.

Figure 19.5 shows the change of burned gas temperature vs. pressure for differ-
ent fuels and equivalence ratios. The temperature values are the temperature val-
ues at which Figs. 19.1–19.4 are obtained. The change of burned gas temperature 
with pressure is only significant at stoichiometric combustion at pressure less than 
10 bar.
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Figure 19.6 shows the change of constant pressure specific heat vs. unburned 
temperature for different fuels and equivalence ratios. Increasing unburned tem-
perature increases the dedicated adiabatic flame temperature and accordingly the 
constant pressure specific heat. cp increases with equivalence ratio for the lean case. 
Increasing equivalence ratio after its stoichiometric value decreases cp. For this 
case, highest cp values are for fuel diesel and lowest are for methane.

Figure 19.7 shows the change of specific entropy vs. unburned temperature for 
different fuels and equivalence ratios. It can be seen that s increase with unburned 
temperature. Highest s is for methane for the equivalence ratio 1.2. In general s 
increase with equivalence ratio for all fuels. Highest entropy values are for fuel 
methane and lowest are for diesel.

Figure 19.8 shows the change of specific enthalpy vs. unburned temperature for 
different fuels and equivalence ratios. It can be seen that h increase with unburned 
temperature. Lowest enthalpy values are for fuel methane and highest are for diesel.

Figure 19.9 shows the change of ratio of specific heats vs. pressure for different 
fuels and equivalence ratios. It can be seen that k decrease with increasing unburned 
mixture. Highest k values are for fuel methane and lowest are for diesel.

Figure 19.10 shows the change of burned gas temperature vs. unburned tempera-
ture for different fuels and equivalence ratios. The burned gas temperature always 

Fig. 19.1   Change of constant pressure specific heat vs. pressure



254 H. K. Kayadelen and Y. Ust

Fig. 19.2   Change of specific entropy vs. pressure

Fig. 19.3   Change of specific enthalpy vs. pressue
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Fig. 19.4   Change of isentropic exponent vs. pressure

Fig. 19.5   Change of burned gas temperature vs. pressure
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Fig. 19.6   Change of constant pressure specific heat vs. unburned temperature

Fig. 19.7   Change of specific entropy vs. unburned temperature
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Fig. 19.8   Change of specific enthalpy vs. unburned temperature

Fig. 19.9   Change of isentropic exponent vs. unburned temperature
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increases with unburned mixture temperature. The temperature values are the tem-
perature values at which Figs. 19.6–19.9 are obtained.
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Abstract  This paper discusses the use of feed-forward artificial neural network to 
predict the reactivity of organic molecules in the bimolecular radical reactions in 
the liquid phase and the use of the fuzzy knowledge base to identify the empirical 
dependence of the activation energy of reactions phenyl radical (C6H

º
5, 4-CH3– 

C6H
º
5, 4-Br–C6H

º
5, 4-Cl–C6H

º
5 etc.) with hydrocarbons in the liquid phase from 

thermochemical data. Also artificial neural network was used to predict the values 
of C–H bonds dissociation energies of hydrocarbons on experimental data of radical 
reactions Rº + RH.

Keywords  Feed-forward artificial neural network · Subject-oriented science 
intelligence system · Reactivity of organic molecules · Radical reaction · Fuzzy 
knowledge base · Rate constant · Activation energy · Bond dissociation energy

20.1 � Introduction

Currently artificial neural network (ANN) is widely used in solving applied prob-
lems of automated processing of scientific data. The main fields of ANN application 
in chemical and biochemical studies are given in a review [1]. Most works in this 
area are devoted to the correlation between the structure of chemical compounds 
and the physicochemical properties or biological activity they showed. In the physi-
cal chemistry, the main directions of ANN application are the simulation of chemi-
cal processes and the simulation of the dynamic properties of the molecules and the 
systems.

On the one hand, the physical chemistry of radical reactions accumulated large 
amount of experimental data on the reactivity (specific reaction rate or activation 
energies) of molecules in radical reactions [2, 3]. On the other hand, the experiments 
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to quantify the reactivity of molecules in radical reactions are an expensive and 
time-consuming task. Carrying out the quantum chemical calculations is time con-
suming, and the resulting data for these calculations are not sufficiently reliable. 
Therefore, the development of ANN based on existing experimental data to predict 
the reactivity of organic molecules in radical reactions is the vital task.

Knowledge of the reactivity of organic molecules in the radical reactions is nec-
essary for the development of new organic materials, the design of new drugs, de-
sign of technological processes, planning and conducting a scientific experiment, 
the training of students and graduate students.

This paper discusses the use of feed-forward artificial neural network to predict 
the reactivity of organic molecules in the bimolecular radical reactions in the liquid 
phase and the use of the fuzzy knowledge base to identify the empirical dependence 
of the activation energy of reactions phenyl radical (C6H

º
5, 4-CH3–C6H

º
5, 4-Br–

C6H
º
5, 4-Cl–C6H

º
5 etc.) with hydrocarbons in the liquid phase from thermochemical 

data.

20.2 � Problem Formulation

Experimentally, the activation energy ( Е) or a classical potential barrier ( Ee) deter-
mines the reactivity of organic molecules in a radical reaction:

0.5( )e iE E hL RTν= − −� (20.1)

νi is a frequency of the stretching vibrations for the bond being broken, R is the gas 
constant, h is the Planck constant, L is the Avogadro number, and T is the reaction 
temperature (K).

Specific rate constant ( k) of chemical reaction is calculated by the formula:

0 exp( / )k nA E RT= −� (20.2)

where: A0 is collision frequency per one equireactive bond, n is the number of equi-
reactive bonds in a molecule.

When designing the information space for ANN predictions of the reactivity the 
functional relationship between the reactivity of the chemical reaction and the ther-
mochemical properties (enthalpy of reaction—ΔH) is used.

N.N. Semenov was the first to pay attention to the functional relationship be-
tween the reactivity and reaction enthalpy (known as Polanyi—Semenov’s ratio 
[4]):

E B Hγ= − ∆� (20.3)

where B and γ—empirical coefficients.
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The works [5, 6] proposed the empirical models of elementary radical reaction, 
which allowed constructing non-linear correlation dependences between the classi-
cal potential barrier of the radical reaction and its thermochemical properties:

•	 approximation of the above mentioned dependence in the work [5] by the pa-
rabola:

e e e ebr E H Eα= − ∆ −� (20.4)

•	 approximation of the above mentioned dependence in the work [6] in the form of 
the tacitly set curve:

1/21/2
1/2 1/2

1/2 1/2 1/2 1/2ln ln
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Under the proposed empirical models assuming the harmonic stretching vibrations, 
the reaction of the radical abstraction Rº + R1H  RH + Rº1 (where Rº⋅and Rº1—al-
kyl radicals, and RH and R1H—hydrocarbon molecules) has the following param-
eters [5]:

1.	 Enthalpy ΔHe = Di − Df + 0.5 ( hLνi − hLνf) including the energy difference of zero-
point vibrations of broken and formed bonds (it represents a change in the poten-
tial energy of the system). Here vi—frequency of vibration of the molecule along 
the broken bond, vf—frequency of vibration of the molecule along the formed 
bond, Di—bond dissociation energy of the broken bond, Dei = Di + 0.5hLνi, Df—
bond dissociation energy of the formed bond, Def = Df + 0.5hLνf .

2.	 The classical potential barrier of the activation Ee (1), which includes the zero-
point energy of the broken bond.

3.	 The parameters b = π(2µi  )1/2vi and bf = π(2µf  )1/2vf  , that describe the potential 
energy dependence of the atoms vibration amplitude along the breaking ( i) and 
forming ( f) valence linkage. 2b2—the force constant of the linkage, mi—the 
reduced mass of the atoms due to breaking bond, mf—the reduced mass of the 
atoms due to forming bond.

4.	 The parameter re, which is the integrated stretching of breaking and forming 
bonds in the transition state.

5.	 Pre-exponential factor A0 per equireactive bond in the molecule.
6.	 According to statistically determined value of bre, based on formula (4), it is pos-

sible to estimate the value of the classical potential barrier by the formula:
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Thus, we can assume that the dependence of the classical potential barrier Ee of the 
thermochemical characteristics of the reagents and the kinetic characteristics of the 
radical reactions can be represented as the functional relation:

0( , , , )e eE F H T nA α= ∆� (20.7)

Then the task of ANN works in predicting the values of the classical potential bar-
rier Ee as a functional relation of the thermochemical and kinetic characteristics of 
the reagents with subsequent calculation of the activation energies and specific re-
action rate by the formulae (1.1) and (1.2) reduce to the approximation of unknown 
functional relation (1.7).

20.3 � Problem Solution

20.3.1 � Artificial Neural Networks for the Prediction  
of Reactivity of Molecules

To approximate the dependence (1.7) we used feed-forward artificial neural net-
work [7] with a typical architecture shown in Fig. 20.1. We used the ANN having 
four inputs, three inner layers, each of seven neurons and one output.

ANN work is set by the formulae:
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Input layers Hidden Layers Output layer

Fig. 20.1   Typical architec-
ture of feed-forward artificial 
neural network
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where the index i will always denote the input number, j—number of neurons in 
the layer, l—number of the layer; xijl—i-th input of j-th neuron in the layer l; wijl—
weighting factor of the i-th input neuron number j in layer l; NETjl—signal NET 
j-th neuron in layer l; OUTjl—the output signal of the neuron; θjl—the threshold of 
neuron j in the layer l; xjl—the input column vector of the layer l.

ANN input vector is set as the vector x0 = {T, Dei , Def  , nA0 , α}, output data is 
equal to Ee.

The method of back propagation of the error [7] was used as training procedure. 
Activation function is a sigmoid function and is set by the following formula: 

1( )
1 xf x

e β−=
+

� (20.9)

The parameter β > 0 was chosen experimentally.
For ANN training 3000 iterations were required on training set of 295 samples. 

Training set was constructed from the elemental radical reactions R’ + RH in the 
liquid phase, where R’—a radical and RH—a hydrocarbon molecule.

Table 20.1 shows the comparison of the predictions of the values of the classi-
cal potential barrier of the reaction using ANN ( EANN), the experimental values of 
activation energy ( E) and the values calculated by the formula (6) of the classical 
potential barrier ( Ee).

The error of the values prediction of the classical potential barrier of the radical 
reaction using ANN in the control sample (of 20 samples) was 3.34 ± 2.0 kJ/mol, 
which is within the experimental error (± 4 kJ/mol). The error of values prediction 
of the classical potential barrier for the radical reaction (1.6) on the same control 
sample was 9.5 ± 7.0 kJ/mol. ANN predicts better than the calculation by formula 
(1.6). This is due to the size of the statistical error bre, which defines the class of 
radical reactions. Thus, the ANN better approximates the functional dependence 
(1.7) by calculating the weight matrix relations.

Reaction E Ee EANN

CºH3 + CH2ClBr 27.17 36.57 30.97
C6Hº5 + (CH3)4C 23.82 43.17 19.00
CºCl3 + CH3(CH2)5CH3 46.88 67.35 52.35
CºH3 + cyclo-[(CH2)6] 44.17 46.80 42.13
C6Hº5 + cyclo -[(CH2)5] 27.99 31.04 27.48
CºH3 + cyclo-[CH(CH3)(CH2)4] 30.23 39.67 33.18
CºCl3 + C6H5CH3 44.30 52.62 40.88
C6Hº5 + C6H5CH3 20.67 24.45 16.01

Table 20.1   Training results of 
ANN
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20.3.2 � Fuzzy Knowledge Base for Predicting the Reactivity 
of Phenyl Radical Reactions with Hydrocarbons

The artificial neural network (1.8) doesn’t consider influence of solvent and the re-
actionary center on a prediction of value of a classical potential barrier. To consider 
such influence an attempt to use the fuzzy knowledge base was made.

In this paper to determine the parameter space (input) for the identification of 
the activation energy of radical reaction Eэкс the model intersecting terms Morse is 
used, and it is determined by the correlation ratio [6]:

It is assumed that classical potential barrier activation is given with nonlinear 
object (parameter α is constant for the entire sample):

( )1 2, , ,e ef eiE F D D S S=� (20.10)

For modeling relation two qualitative parameters are used, where S1—characteristic 
hydrocarbon reaction center (defined class of compounds considered 40 classes) 
and S2—characteristic of the solvent (non-polar, polar, polar with complexing, non-
polar with complexing) [2]. The sample (647 reactions) is obtained from the data-
base of rate constants of radical liquid-phase reactions object-oriented system of 
scientific knowledge in physical chemistry of radical reactions [6]. The character-
istic of the sample is the combination of quantitative and qualitative parameters in 
a model of identification.

In the process of building the fuzzy knowledge base, input and output variables 
in this ration (1.10) are considered as linguistic variables defined on the correspond-
ing universal sets. As a member of the membership function for indecipherable 
terms G is selected:
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where initial values of the parameters b and c were chosen by expert manner. The 
fuzzy knowledge base by a system of logical statements in the form:

( ) { }4
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where x1 ÷ x4—linguistic evaluation of input variables Dei, Def, S1, S2; dj—linguistic 
evaluation of the output variable Ee, wjp—weight matrix rules.

For experimental samples for the reactions of phenyl radicals with hydrocarbons 
the fuzzy knowledge base has been set up with the help of genetic algorithm [7]. At 
this time it includes 634 fuzzy rules. The comparison of classical potential barrier of 
activation for the reactions of phenyl radicals with hydrocarbons Ee (in Table 20.2), 
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is obtained using the fuzzy knowledge base with the calculated from the experimen-
tal values of the activation energy Ekl_eks corresponding reactions.

As can be seen from Table 20.2, there is good agreement between experimental 
values of classical potential barrier and values obtained by the fuzzy inference.

20.3.3 � Estimate of Dissociation Energy of C–H Bonds 
of Hydrocarbons by Artificial Neural Network

The bond dissociation energy of organic molecules is one of its most important 
thermochemical characteristics. Determination of dissociation energies of organic 
molecules is a complex and time-consuming experimental task; as a rule, the results 
of quantum chemical calculations don’t have sufficient reliability. Presently this 
characteristic is known not for many compounds [8]. Therefore, estimate of bond 
dissociation energies of complex organic molecules on the basis of the use of the 
ANN is an actual scientific problem.

The purpose of this section is to develop the ANN to estimate the dissociation 
energy C-H bonds in hydrocarbons on kinetic and thermochemical data radical re-
actions, assuming that the training sample feature space is constructed on the em-
pirical model intersecting terms Morse for bimolecular radical reactions [6] is given 
by the nonlinear correlation relationship (1.5).

It can be assumed that the dependence of the dissociation energy bonds on pa-
rameters on radical reaction can be represented as a function of four variables:

( ), , ,ei ef e i f
D F D E ν ν=� (20.13)

Table 20.2   Comparison of classical potential barrier of activation for the reactions of phenyl 
radicals with hydrocarbons
Radical Hydrocarbon Solvent Ee 

(kJ/mole)
Ekl_eks 
(kJ/mole)

C6H5º cyclo-
[CH = CHCH = CH(CH2)2]

Non-polar with complexing 12.01 11.96

C6H5º C6H5CH(CH3)2 Polar 21.10 21.06
C6H5º (CH3)2CHOH Polar 21.40 21.37
C6H5º (CH3)2CHOH Polar 21.46 21.44
C6H5º cyclo-[CH = CH(CH2)4] Polar 21.78 21.91
C6H5º C6H5CH2OH Polar with complexing 21.90 21.86
4-NO2-C6H5º C6H5CH(CH3)2 Non-polar with complexing 24.00 23.98
C6H5º C6H5CH(CH3)2 Non-polar with complexing 24.00 23.98
4-Br-C6H5º C6H5CH(CH3)2 Non-polar with complexing 24.41 24.38
C6H5º C6H5CH(CH3)2 Polar 24.43 24.42
C6H5º CH3CH2OH Polar with complexing 24.50 25.51
C6H5º C6H5C(CH3)2CH(O) Non-polar with complexing 25.58 25.55
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Then the problem of the ANN to assess the value of bond dissociation energy of the 
organic molecule is reduced to the approximation of the unknown function (1.12).

For approximation of the dependence (1.2) the multilayer ANN back propaga-
tion Hopfield was used [7]. This ANN has three layers: the first layer has four neu-
rons (equals the number of input parameters), the second layer has 10 neurons, the 
third layer has one neuron (result Dei), sigmoidal parameter of normalization 0.5. 
Training continues as long as the error parameter is more than 0.00001. Functioning 
of ANN is given by (1.7).

For ANN training 900023 iterations took place on the training set of 667 sam-
ples. The training sample was constructed from the elementary radical reactions 
R’ + RH in the liquid phase, where R’—radical and RH—hydrocarbon molecule.

Compares the estimates of C-H bonds dissociation energy of hydrocarbons by 
using the ANN ( Dann) and the experimental values of bond dissociation energy ( D) 
taking into account the zero-point energy connection (for C–H bond is 17.4 kJ/mol) 
is given in Table 20.3.

Absolute error of predicted values of C–H bond dissociation via ANN on kinetic 
and thermochemical data of radical reactions doesn’t exceed 10.0 kJ/mol (according 
to catalog’s data [8] the error in determination of bond dissociation energy can reach 
up to 12.5 kJ/mol). Standard deviation is 4.3 kJ/mol, which is within experimental 
error (± 4  kJ/mol). In this way, the developed ANN estimates bond dissociation 
energies with acceptable accuracy, which means a good approximation of the func-
tional dependence (1.12).

Molecule Dann D [8] ΔD
cyclo-[(CH2)5] 416.3 425.8 −9.5
trans-CH3CH = CHCH3 374.7 374.2 0.5
cis-CH3CH = CHCH3 374.8 373.2 1.6
C6H5CH3 392.8 392.4 0.4
C6H5CH2CH3 383.2 381.5 1.7
C6H5CH(CH3)2 368.5 369.0 −0.5
CH3CH(O) 396.0 391.2 3.5
(CH3)3CCH(O) 392.5 392.5 0.0
CH3(O)CH2CH3 402.6 410.0 −7.4
cyclo-[C(O)(CH2)5] 407.4 411.5 −4.1
cyclo-[O(CH2)4] 405.6 409.0 −3.4
C6H5OCH3 400.8 402.4 −1.6
CH3C(O)OCH3 409.8 410.3 −0.5
(CH3)2CHOH 403.8 407.9 −4.1
(CH3)2CHC(O)OH 401.6 405.7 −4.1
cyclo-[(CH2)5CH(OH)] 402.2 405.8 3.6
CH3CH2CN 405.5 404.6 0.9
C6H5SCH3 407.0 406.5 0.5

Table 20.3   Training results of 
ANN
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20.4 � Conclusions

It was the first time when feed-forward ANN was used for the approximation on the 
experimental data of the functional dependence of the classical potential barrier of 
the chemical reaction from the thermochemical characteristics of the reagents and 
reaction kinetic parameters.

The results of the prediction of the reactivity of liquid-phase reactions of the 
hydrocarbons with hydrocarbon radicals are within the limits of the experimental 
error.

For the first time (on the example the reactions of phenyl radicals with hydrocar-
bons) the attempt to identify the dependence of the activation of classical potential 
barrier of the reactions of phenyl radicals with hydrocarbons fuzzy knowledge base 
built on the basis of quantitative and qualitative parameters was done.

For the first time ANN was used to predict the values of C-H bonds dissociation 
energies of hydrocarbons on experimental data of radical reactions Rº + RH. The 
predict results of C-H bonds dissociation energy of hydrocarbons on kinetic and 
thermochemical data of radical reactions are within the experimental error.
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Abstract  Plasma-fuel systems for thermochemical treatment for combustion, gas-
ification, pyrolysis, hydrogenation, radiation-plasma, and complex conversion of 
solid fuels, including uranium-containing slate coal, and cracking of hydrocarbon 
gases, are presented. The use of these plasma technologies for obtaining target prod-
ucts (hydrogen, hydrocarbon black, hydrocarbon gases, synthesis gas, and valuable 
components of the coal mineral mass) meet the modern environment and economic 
requirements. Plasma coal conversion technologies are characterized by a small 
time of reagents retention in the plasma reactor and a high rate of the original sub-
stances conversion to the target products without catalysts. Thermochemical treat-
ment of fuel for combustion is performed in a plasma-fuel system, representing a 
reaction chamber with a plasma generator, while other plasma fuel conversion tech-
nologies are performed in a combined plasma reactor of 100 kW nominal power, 
in which the area of heat release from the electric arc is combined with the area of 
chemical reactions.

Keywords  Fuel · Processing · Plasma generator · Conversion efficiency · 
Environment

21.1 � Introduction

The global energy sector is oriented to use—currently and in the foreseeable future 
(till 2100)—organic fuels, basically, low-grade coal, the share of which is 40.6 % in 
electricity engineering and 24 % in heat engineering. Therefore, the development of 
technologies for efficient and environmentally clean use of such coal is a priority 
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problem of today. The analyzed plasma fuel conversion technologies meet these 
requirements. The plasma fuel conversion technologies have become very urgent 
recently due to depletion of oil and gas deposits, reduced quality of solid fuels, and 
increasing NPP capacities.

This work presents the results of long-term studies of plasma technologies of 
pyrolysis, hydrogenation, thermochemical treatment for combustion, gasification, 
hybrid (radiation-plasma) and complex conversion of solid fuels, as well as crack-
ing of liquefied petroleum gas [1–9]. The use of these technologies for production 
of target products (hydrogen, hydrocarbon black, hydrocarbon gas, synthetic gas, 
valuable components of coal mineral mass, including rare earth elements) corre-
sponds to contemporary environmental and economic requirements to the main 
industrial sectors. Plasma solid fuel conversion technologies differ, primarily, in 
concentrations of the reducing gas (air, water vapor, carbon dioxide, and oxygen), 
conditioned by different values of the excess oxidant coefficient α. The value α = 0 
corresponds to coal pyrolysis, while the value α = 1 corresponds to complete coal 
gasification. It should be noted that the theoretical quantity of air required for com-
bustion of 1000 kg of such coal makes 5250 kg, which is almost 2.5 times higher 
than the quantity required for its complete gasification.

21.2 � Plasma Technologies Discussion

During plasmachemical gasification of a low-grade coal with the ash content 40 % 
and the combustion heat 16,632 kJ/kg at α = 0.5 the gaseous phase is basically repre-
sented by the synthetic gas (СО + Н2). With increasing temperature (1800–2600 K), 
all mineral components go to the gaseous phase in the form of gaseous substances, 
such as Al, Si, SiS, Fe, Al2O, SiC2, and others.

The plasmachemical cracking technology includes the heating of hydrocarbon 
gases in an electric-arc combined reactor to the temperatures of their pyrolysis 
(1900–2300 K), generating a highly dispersed hydrocarbon black and hydrogen in 
a single technological process. In the temperature range 2500–5000 K, the gaseous 
phase includes a number of hydrocarbons (C3H, C2H2, C4H2, etc.) which, with in-
crease in temperature, dissociate into their components, hydrogen and carbon. All 
condensed carbon goes to the gaseous phase at temperatures exceeding 3200 K.

Plasmachemical hydrogenation of solid fuels, representing coal pyrolysis in the 
hydrogen medium, makes it possible to produce acetylene and other unsaturated hy-
drocarbons (ethylene C2H4, propylene C3H6, ethane C2H6, etc.) from cheap low-grade 
coals by way of hydrogen plasma treatment [4]. Plasmachemical hydrogenation of 
coal is a new little-studied process of direct production of acetylene and alkenes in the 
gaseous phase, in contrast to traditional processes of coal hydrogenation (liquefying).

The experiments on hydrogenation of low-grade coal in a plasma reactor 
(Fig. 21.1), with the power of 50 kW and the consumption of coal 3 kg/h and of 
the propane–butane mixture 150 l/h, allowed the production of the following gas 
composition, wt.%: C2H6 = 50, C2H2 = 30, С2Н4 = 10.
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Plasma ignition of coal is based on plasmachemical fuel conversion for combus-
tion, resulting in the production from a low-grade coal of a two-component fuel 
(combustible gas and carbon residue). This high-reactivity two-component fuel is 
generated already at Т = 900–1200 K. Thus, this process can be performed at a com-
paratively low specific power consumption (0.05–0.4 kW h/kg of coal) and can be 
used efficiently by thermal power plants for no-oil start-up of boilers and stabilized 
combustion of the pulverized coal flame [3, 7–9].

Plasma gasification, radiation-plasma, and complex coal conversion for the 
production of synthetic gas and valuable components from mineral coal were in-
vestigated using a versatile experimental plant (Fig.  21.1). In terms of environ-
mental protection, these technologies are the most promising. The essence of these 
technologies is to heat the coal dust by electric-arc plasma, the oxidizing agent, to 
the complete gasification temperature, when the coal organic mass is converted 
to experimentally clean fuel, i.e., a synthetic gas free from ash particles as well as 
nitrogen and sulfur oxides.

Complex coal conversion includes, parallel to organic mass gasification, the re-
duction of mineral coal oxides in the same reduction volume by the carbon in the 
carbon residue and the generation of valuable components, such as hydrocarbon 
black, aluminum and carbon, as well as rare earth microelements: uranium, molyb-
denum, vanadium, etc.

Fig. 21.1   The schematic diagram of the setup for plasmachemical fuel conversion: 1 plas-
machemical reactor 2 diaphragm and chamber for gas and slag separation, 3 slag collector, 4 
oxidation chamber, 5 diaphragm, 6 water scrubber, 7 solid fuel feeding, 8 water cooling system, 
9, 10 power supply system, 11, 12 central electrode feeding system, 13 steam generator, 14 safety 
valve, 15 slag collector lift
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The material and thermal balances helped to find the integral indicators for the 
process. Table 21.1 presents typical results of plasma-steam gasification of low-
grade brown coal with the ash content 28 % and the calorific value 13,180 kJ/kg. 
The synthetic gas yield was 95.2 %, the carbon gasification (XC) was 92.3 %, and 
coal desulfurization (XS) was 95.2 %.

The reduction of solid residue samples from various units of the plant for plas-
machemical fuel conversion and the special melt bathtub near graphite diaphragm 
2 (Fig. 21.1) is shown in Table 21.2. As can be seen from the table, the reduced 
material was found in the slag in the form of ferrosilicon as well as silicon and iron 
carbides. The maximum reduction of the coal mineral oxides was observed in the 
slag from the walls of the reactor electric-arc chamber in the areas with maximum 
temperatures, reaching 47 %.

In the case of radiation-plasma conversion, the coal dust was pre-activated by an 
electron beam and then processed in plasmachemical reactor 1 (Fig. 21.1). The ex-
periments were performed in a plasma gas generator with the rated power 100 kW. 
Measurements of the process material and heat balances gave the following inte-
grated indicators: the mass-average temperature 2200–2300 K and the carbon gas-
ification rate 82.4–83.2 %. It was found that the preliminary electronic activation of 
the coal dust fuel had a noticeable positive effect on the yield of the synthetic gas 
during its treatment. The yield of the synthetic gas during thermochemical treat-
ment of the untreated coal dust before combustion was 24.5 %, and after electronic 
activation of coal the yield of the synthetic gas reached 36.4 %, i.e., a 48 % increase.

The essence of plasma technologies for the production of uranium, molybde-
num, and vanadium oxides from solid fuel is the processing of its mixture by water 
steam in plasmachemical reactor 1 (Fig. 21.1) [1, 4–6]. The process of extraction 
of uranium, molybdenum, and vanadium from coal (slate coal) using plasma heat-
ing is as follows. The coal dust from hopper and water steam from steam boiler, 
with the coal-to-water steam weight ratio 8:12, is fed to plasmachemical reactor. 
In the reactor, the water steam plasma heats the coal dust to 2500–2900 K. When 
the coal is heated, the organic mass of the raw material is gasified and the uranium, 
molybdenum, and vanadium compounds in the mineral part are volatilized to the 
gaseous phase, containing synthetic gas, basically. Then the two-phase plasma flow 
(the gaseous phase + melted slag) is fed to chamber for separation of gas and slag, 

T (K) Qsp (kW⋅h/kg) CO H2 XC (%) XS (%)
Volume (%)

3100 5.36 45.8 49.4 92.3 95.2
Qsp specific power consumption

Sampling places T (K) Θ (%)
Slag from the melt bathtub 2600–2800   8.5–44.0
Slag from the arc chamber wall 2600–2900 16.5–47.3
Material from the slag collector 2000–2200   6.7–8.3

Table 21.1   The integrated char-
acteristics of plasma gasification 
of a low-grade brown coal

Table 21.2   The reduction (Θ) of 
the coal mineral mass
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wherefrom the slag is fed to slag collector, while the gaseous phase is sent to the 
series of heat exchangers for a two-step cooling and separate condensation of the 
target products. Table 21.3 presents the experimental results of plasma treatment of 
the uranium-containing slate coal with 0.02 % of uranium.

The experiments on plasma pyrolysis (cracking) of the propane–butane gas mix-
ture were performed in a plasmachemical reactor with the rated power 100  kW 
(Fig. 21.1).

In these experiments, the consumption of the propane–butane mixture was 300 l/
min and the electrical power of the plasmachemical reactor was 60 kW [4]. During 
the experiments, hydrogen and soot were separated in the water-cooled chamber for 
separation of the gaseous and condensed phases 2. Hydrogen was removed to oxi-
dation chamber 4, while hydrocarbon black was precipitated on the reactor walls, 
water-cooled spiral copper collectors under the lid and the reactor output diaphragm 
as well as in soot collector 3. After the experiments, samples were taken from the 
above units of the reactor. Physical and chemical analysis of the hydrocarbon black 
samples was made by means of a transmission electron microscope, which showed 
that the products of plasma pyrolysis of the propane–butane gas mixture, condensed 
on the graphite electrodes of the plasma reactor, represented different nano-carbon 
structures, mostly, in the form of “huge” nanotubes (Fig. 21.2), having high electric 
conductivity and mechanical strength, 30 times higher than that of Kevlar fabric 
[4]. As shown on negative 9091, the sample mainly included large “wooly” carbon 
nanotubes about 100 nm in diameter and more than 5 μm in length. Negative 9094 
shows huge carbon nanotubes with a drop-shaped inclusion in the metal phase. 
Their diameter reaches 300 nm. Negative 9104 shows a “stepped” carbon nanotube 
with the diameter 200  nm or more and an inner partition. Huge nanotubes may 
represent structures in the form of an octopus (negative 9110). The diameter of 
such octopus at the place of branching is about 400 nm. It is typical that the wall 
thickness of the hug nanotubes can vary from 30 nm (negative 9104) to 100 nm 
(negatives 9094 and 9110).

The experimental results confirmed that it is possible to produce hydrogen and 
condensed carbon containing nanostructures in the form of huge carbon nanotubes. 
These results were used to find a technical solution to create a pilot plant rated 
1 MW with the capacity of the original natural gas 330 nm3/h in order to perform 
plasmachemical cracking of hydrocarbon gases. The expected yield of the target 

Table 21.3   Integrated indicators of plasma processing of uranium-containing slate coal
No Gf (kg/h) Gsteam 

(kg/h)
Gsteam/Gf Тav (K) Qsp  

(kW h/kg)
XU (%) XMo (%) XV (%) XС (%)

1 5.82 0 0 2900 2.84 48.0 54.5 58.6 56.2
2 8.40 0 0 2500 1.93 25.7 34.5 41.7 54.6
3 6.60 0.60 0.09 2700 2.20 78.6 79.0 81.3 66.4
4 4.33 0.40 0.09 3150 3.04 23.6 24.3 29.0 70.4
Gf consumption of fuel, Gsteam steam rate, Тav averaged temperature, XU uranium extraction, XMo 
molybdenum extraction, XV vanadium extraction
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products will make 74 % of hydrocarbon black (171 kg/h) and 25 % of hydrogen 
(58 kg/h).

Plasmachemical conversion for combustion of coal from the original low-grade 
coal produces a high-reactivity two-component fuel that actively ignites when 
mixed with secondary air in the boiler furnace and burns stably without combustion 
of additional high-reactivity fuel, crude oil or gas, traditionally used for boiler firing 
and lighting of the dust-coal flame at thermal power plants (Table 21.4).

During complex coal conversion, the conversion of its mineral part requires 
high temperatures (2200–3100 K), increasing the specific power consumption to 
2–4 kW h/kg. It gives a high degree of coal conversion (90–100 %).

Plasma-steam gasification ensures the transfer to the gaseous phase of the or-
ganic coal mass, basically, which does not require very high temperatures as dur-
ing complex treatment, thus allowing the process with comparatively low specific 
power consumption rates (0.5–1.5 kW h/kg) and high conversion rates (90–100 %).

Radiation-plasma coal conversion increases the original fuel conversion rate by 
48 %.

Fig. 21.2   Photos of carbon nanotubes produced by means of a transmission electron microscope
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Plasma treatment of uranium-containing slate coal reached the following indica-
tors: at temperatures 2700–2900 K the slate coal gasification rate was 56.2–66.4 %, 
the conversion of microelements to the gaseous phase reached 48.0–78.6 % for ura-
nium, 54.5–79.0 % for molybdenum, and 58.6–81.3 % for vanadium, which agreed 
with the TERRA calculations in terms of quality [1].

Plasma hydrogenation of coal requires high temperatures (2800–3200 K), which 
results in high power consumption for this process (6.5–8 kW h/kg), thereby allow-
ing high conversion rates (70–100 %) for direct (one stage) production of acetylene 
and alkenes in the gaseous phase.

In order to ensure high conversion rates (98–100 %) of the hydrocarbon gas in a 
combined plasma reactor, such high temperatures are not needed, which allows the 
process with relatively low specific power consumption (2.2–3.8 kW h/kg).

21.3 � Conclusions

Plasmachemical conversion for combustion of coal from the original low-grade 
coal produces a high-reactivity two-component fuel that actively ignites when 
mixed with secondary air in the boiler furnace and burns stably without combustion 
of additional high-reactivity fuel, crude oil or gas, traditionally used for boiler firing 
and lighting of the dust-coal flame at thermal power plants.

During complex coal conversion organic mass of coal is transformed to synthesis 
gas and its mineral mass—to the set of valuable components including uranium 
Molybdenum, and vanadium ones.

Table 21.4   Optimal ranges of the recommended technological parameters for plasmachemical 
fuel conversion
Fuel/Plasma gas Т (К) Specific power 

consumption  
(kW h/kg of 
fuel)

Fuel conver-
sion rate (%)

Concentration (mg/Nm3)

NOx SOx

1. Plasmochemical preparation of coal for combustion ( air)
1.5–2.5 800–1200 0.05–0.40 15–30 1–10 1–2
2. Complex processing of coal ( water steam)
1.3–2.75 2200–3100 2–4 90–100 1–2 1
3. Plasma gasification of coal ( water steam)
2.0–2.5 1600–2000 0.5–1.5 90–100 10–20 1–10
4. Radiant-plasma processing of coal ( air)
1.5–2.5 800–1200 0.1–0.45 22–45 1–10 1–2
5. Plasma processing of uranium-bearing solid fuels ( water steam)
8–12 2500–3150 2–4 55–70 1–3 1–2
6. Plasmochemical hydrogenation of coal ( hydrogen)
10 2800–3200 6.5–8 70–100 0 0
7. Plasmochemical cracking of a propane-butane mixture
18 м3/ч 1500–2500 2.2–3.8 98–100 0 0
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Plasma-steam and plasma-air gasification ensures production of high quality 
synthesis gas, which can be used to synthesize methanol, and as a high potential 
reducing gas instead of metallurgical coke.

Radiation-plasma coal conversion can increases the original fuel conversion rate 
by 48 %.

Plasma hydrogenation of coal is resource-saving technology for direct produc-
tion of acetylene and alkenes from solid fuel.

Plasma cracking allows getting hydrogen and black carbon from hydrocarbon 
gas.

References

1.	 Gorokhovski M, Karpenko EI, Lockwood FC, Messerle VE, Trusov BG, Ustimenko AB (2005) 
Plasma technologies for solid fuels: experiment and theory. Journal of the Energy Institute 78 
(4): 157–171

2.	 Zhukov MF, Kalinenko RA, Levitski AA, Polak LS (1990) Plasmochemical processing of coal 
(in Russian). Moscow: Science

3.	 Messerle VE, Ustimenko AB (2012) Plasma ignition and combustion of solid fuel. (Scientific-
and-technological basics) (in Russian). Saarbrucken, Germany: Palmarium Academic Publish-
ing

4.	 Messerle VE, Ustimenko AB (2012) Plasma technologies for fuel Conversion. High Tempera-
ture Material Processes 16 (2): 97–107

5.	 Galvita V, Messerle VE, Ustimenko AB (2007) Hydrogen production by coal plasma gasifica-
tion for fuel cell technology. International Journal of Hydrogen Energy 32 (16): 3899–3906

6.	 Messerle VE, Ustimenko AB (2007) Solid Fuel Plasma Gasification. In: Syred N, Khalatov A 
(eds.) Advanced Combustion and Aerothermal Technologies. Springer, pp 141–156

7.	 Gorokhovski MA, Jankoski Z, Lockwood FC, Karpenko EI, Messerle VE, Ustimenko AB 
(2007) Enhancement of Pulverized Coal Combustion by Plasma Technology. Combustion Sci-
ence and Technology 179 (10): 2065–2090

8.	 Messerle VE, Karpenko EI, Ustimenko AB, Lavrichshev OA (2013) Plasma preparation of 
coal to combustion in power boilers. Fuel Processing Technology 107: 93–98

9.	 Karpenko EI, Messerle VE, Ustimenko AB (2007) Plasma-Aided Solid Fuel Combustion. Pro-
ceedings of the Combustion Institute 31: 3353–3360



279

Chapter 22
Computer Modeling of Optimal Technology  
in Material Engineering

V. A. Rusanov, S. V. Agafonov, A. V. Daneev and S. V. Lyamin

N. Mastorakis, V. Mladenov (eds.), Computational Problems in Engineering,  
Lecture Notes in Electrical Engineering 307, DOI 10.1007/978-3-319-03967-1_22,  
© Springer International Publishing Switzerland 2014

V. A. Rusanov ()
Institute for System Dynamics and Control Theory (ISDCT SB RAS), Lermontova str. 134, 
Irkutsk, Russia
e-mail: v.rusanov@mail.ru

S. V. Agafonov
Irkutsk State Agricultural Academy (ISAA), Baikalskay str. 257, Irkutsk, Russia
e-mail: agafonov@yandex.ru

A. V. Daneev · S. V. Lyamin
Irkutsk State Railway University (ISRU), Chernishevskogo str. 15, Irkutsk, Russia
e-mail: daneev@mail.ru

S. V. Lyamin
e-mail: slyamin@forus.ru

Abstract  A technique of nonlinear mathematical programming good for grounding 
an optimal technological process of nitrogenization in a distributed environment of 
electrostatic field is proposed. The technique is based on the quadratic approxima-
tion for deviations of the vector argument of deviations of the vector argument of 
physics-chemical factors of metal working from some given regime of nitrogen-
ization and imposes minimal requirements to experimental data in the process of 
identification of the mathematical model of the process of obtaining an nitrogenized 
layer.

Keywords  Nonlinear vector regression · Optimization of metal working

22.1 � Introduction

A classical view to mathematical modeling implies a descriptive approach charac-
teristic of a physicist: the functions bound up with natural phenomena are subject 
to definite universal principles (laws), and the problem is to discover them. But the 
practice of descriptive sciences is different. The central conception sooner presumes 
that mathematical modeling consists in following the principle: the desired optimal 
model is simply the most exact model within the limits of a given admissible level 
of complexity or the least complex model, which approximates the (experimental) 
data observed with a precision up to a given admissible discoordination.
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The idea of formalization of considerations of model’s complexity, which re-
lates to the theory of identification of systems, was investigated in [1, 2]. From the 
viewpoint put forward by L. Ljung [3, 4], the idea that identification algorithms 
(by all means) have interpretation in the language of optimal approximation, is the 
main one. In the present paper have we essentially employed both of the indicated 
approaches, i.e. we have outline a combined methodology, which forms the ground 
of the procedure of optimal nonlinear approximation in the process of mathemati-
cal modeling of the process of nitrogenization of a mechanical part’s surface to be 
processed under the conditions of effect of some inversive electrostatic field (with a 
non-stationary potential), within the frames of some linear-quadratic representation 
of vector regression equations.

22.2 � Statement of the Problem of Synthesis of Optimal 
Multi-dimensional Regression

In principle, static models of the type “input–output” may be obtained from dynam-
ic ones by applying experimental stationary finite values (or, what is equivalent, for 
the zero frequency). Unfortunately, the dynamic model is generally linearized, what 
is inadmissible for the static model, when this model is to be used for the purpose of 
optimization within a substantial band. Furthermore, the static model must be more 
detailed than the dynamic one (optimization, which improves the productivity by 
some 1 %, already represents a substantial interest from the application viewpoint), 
so, the structural-parametric identification of the multi-dimensional static nonlinear 
system of the type “input–output” in the absence of complete a priori understanding 
(knowledge) of the physics-mathematical principles of its functioning, a so called 
mathematical model of “black box”, deserves an attentive deep consideration, es-
pecially when we have to ground the admissible level of complexity of the process 
under scrutiny.

From now on, R is the field of real numbers; Rn is an n-vector space over R 
(with the Euclidean norm denoted by ||· || ; ( ),R M Rn

n m  is the space of all the n × m-
matrices (i.e. the matrices of dimension n × m) with the elements from R and with 
the Frobenius matrix norm || || : ( ) , [ ]/D d D dF ij ij= =∑ 2 1 2  (what is equivalent to 
D M R D D Dn m F

T∈ ⇒ =,
/( ) ( ) )tr. 1 2 ; as usually, the symbol: = denotes the equal-

ity by definition; det is a matrix determinant; tr G gii:= ∑  is the trace of quadratic 
matrix G (the sum of its diagonal elements); ‘‘T’’ is the operation of transposition 
of a matrix; En is a unit n × n-matrix; col ( a1,…,an) is a column vector with real ele-
ments a1,…,an.

A normal approach in the theory of identification of complex systems of the 
type of “input–output” methodologically consists in [5] a priori fixation of some 
partially parametrized class of stationary models and then, on the basis of fixed a 
posteriori data, to choose the parameters of the model’s equations, which would 
minimize some formal criterion. In essence, this approach may be considered as 
application of the first method (denoted in the Introduction), in which “adjustment 
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of the model’s parameters” (under a fixed number of free coefficients in its equa-
tions) is conducted. In this case, the criterion is defined by the model’s complexity 
chosen a priori. So, for the purpose of further consideration, let us identify a class of 
stationary static interconnected nonlinear systems of the type “input–output”, which 
are described by the vector-matrix regression equation of the form

T T
1diag[ , , ]col(1, ,1) ( );ny c Au u B u u B u uε= + + … … +� (22.1)

y ∈ Rn is the vector of system’s output signals, u ∈ Rm is the vector of system’s assign-
ing influences, c ∈ Rn, A ∈ Mn,m( R), Bi ∈ Mm,m( R), Bi

T = Bi ( i = 1,…,n) and diag […] is 
the diagonal n × n-matrix of corresponding bi-linear controlling influences (effects) 
uTBiu. As far as the vector function ε( u) is concerned, we presume that the structure 
of its analytical representation is a priori unknown, but on the whole, it inexplicitly 
depends on the choice of the linear—c + Au and bi-linear—diag [uTB1u,…,uTBnu] 
col(1,…,1) components of the input signal—because the nonlinear component ε( u) 
of Eq. (22.1) may always be considered as a residual (“under-modeled”) term of the 
expansion of its right-hand side.

It is clear, the result y, predicted by the linear-quadratic form (LQF) 
c + Au + diag[uTB1u,…,u TBnu]col(1,…,1) of the right-hand side of Eq. (22.1), shall 
differ from the real signal, because the nonlinear law ε( u) introduces some influ-
ence. On the other hand, as noted above, the analytical representation of the term 
ε( u) depends on the choosing (fixation) of coefficients of the LQF. As a result, on 
the stage of identification, correction consists in varying the parameters of the LQF 
so that the results obtained, and those predicted on the basis of the LQF, would 
maximally coincide with each other. Obviously, new forecasts and parametric cor-
rection may then be conducted operatively (furthermore, additional information is 
used mainly for conducting partial or complete analysis of adequacy of the model 
on the basis of the latest current measurements). In other words, speaking more 
formally, the methodological paradigm of the a posteriori-optimal parametric syn-
thesis of LQF shall provide for min || ( ) || n

Ruε  on the family of the representative 
sample of the field experiments conducted. When we proceed to the “language of 
formulas”, this paradigm acquires the form of the following optimization problem.

S t a t e m e n t of the problem of a posteriori-optimal parametric synthesis of 
LQF for the equation of nonlinear regression: find a vector-matrix solution c, A, Bi, 
i = 1,…,n bi-criterion problem

T T 2 1/2
1, , 1

2 2 2 1/2
1, ,

min ( )- - ( )-diag [ ( ), , ( )]col(1, ,1)( (|| ( ) ( ) || ) )

((|| || ) (|| || ) (|| || ) )

,

,

n
l k n R

R i
n

F n i F

y l c Au l u B u l u B u l

mi c A

l l

n B
= …

= …

∑ … …

+ + ∑



�

(22.2)

where y( l) ∈ Rn, u( l) ∈ Rm are vectors of experimental data (here y( l) is the “reac-
tion” to the input influence u( l)), k is the number of experiments completed; note-
worthy, there are no methodological constraints imposed on the value of k.

R e m a r k 1. The first condition—min ∑… in the mathematical statement (22.2) 
guarantees—by the general sample of k field experiments—the optimal linear-qua-
dratic approximation of the scrutinized physical process in terms of the nonlin-
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ear regression model (22.1); the second condition—provides (in the case of non-
uniqueness of the solution for the first min ∑…) for parametric concretization of 
such a model with the property of the minimal matrix norm.

22.3 � Parametric Identification of the LQF-Structure  
of Equations of Nonlinear Vector Regression

Let us relate the identification algorithm in the multi-criterion problem statement 
(22.2) for the interconnected stationary nonlinear system “input–output” of class 
(22.1) to the concept of normal pseudo-solution (or, what is equivalent, of canonical 
solutions by the method of least squares) for the system of linear algebraic equa-
tions.

Definition 1 [6, p. 501]. Vector x ∈ Rp is called the normal pseudo-solution of the 
system of linear equations

Dx = d, D ∈ Mq,p( R), d ∈ Rq. This vector has the smallest Euclidean norm || ||x R
p 

among all the vectors, which make minimum the value of || ||Dx d R
q− .

Let D ∈ Mq,p( R) and D+ be the inverted reciprocal (pseudo-inverse) Moore-Pen-
rose matrix [6, p. 500] for matrix D. The asymptotic construction of the pseudo-
inverse matrix has the following analytical form:

T T 1lim{ ( ) : 0}.qD D DD Eτ τ+ −= + →

From now on, the mnemonic sign “+” denotes the operation of pseudo-inverting of 
the respective matrix.

Lemma 1 [7, p. 35]. Vector x = D+d represents a normal pseudo-solution of the 
linear system Dx = d, D ∈ Mq,p( R), d ∈ Rq.

For the purpose of “interrelation” between the variables of input effects on the 
data of the general sample, let us denote by û( l) the (1 + m( m + 3)/2)-vector, which 
has the following coordinate representation:

( 3)/2
1 1 1

1

ˆ( ): col(1, ( ), , ( ), ( ) ( ), , ( ) ( ), , ( ) ( )) ,
1 ,

col( ( ), , ( )): ( ) ,
1 .

m m
m r s m m

m
m

u l u l u l u l u l u l u l u l u l R
r s m

u l u l u l R
l k

+= … … … ∈
≤ ≤ ≤

… = ∈
≤ ≤� (22.3)

Let us call ,1 ( 3)/2ˆ ˆ: [ (1),..., ( )] ( )T
K M MU u u k M R+ += ∈  the full matrix of experimental 

data related to input effects, respectively, βi: = col ( yi(1),…,yi( k)) ∈ Rk—the fill vec-
tor of experimental data related to output signal yi ( i = 1,…,n). Next, orienting to the 
linear-parametric description of the coefficients for the nonlinear model of the type 
“input–output” for the output signal yi, let us write down—due to system (22.1)—
the linear-quadratic form of its regression equation
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1 1 , ( 1, , ).i j m ij j q p m iqp q pc a u b u u i n≤ ≤ ≤ ≤ ≤+ ∑ + ∑ = …
�

(22.4)

Now introduce the (1 + m( m + 3)/2)-vector of regression model’s parameters. Obvi-
ously, due to (22.4), any fixed set of n such vectors completely defines the represen-
tation of the LQF with respect to some “input–output” model of type (22.1):

1 ( 3)/2
1 11: col( , , , , , , , , ) ,1 .m m

i i i im i iqp immz c a a b b b R q p m+ += … … … ∈ ≤ ≤ ≤
�

(22.5)

Proposition 1. The optimization problem (22.2) has the solution (22.5)

* , 1, , ;i iz U i nβ+= = …

here U is a complete matrix of experimental data related to input effects, βi is the 
full vector of experimental data related to output signal yi ( i = 1,…,n).

Proof. According to relations (22.3) and (22.4), system (22.1) acquires the fol-
lowing compact form for each l-th experiment

Tˆ( ) ( ) ( ), 1, , .i i iy l u l z l i nε= + = …� (22.6)

Therefore, if the optimization problem of the form (22.2) is reformulated (obvi-
ously) in the vector-matrix terms zi, βi, U, we arrive at the following multi-criterion 
problem statement with regard to vectors zi, i = 1,…,n:

1 1
1 ( 3)/2

1

1 ( 3)/2

1 ( 3)/2

min || || ,

min || || ,

min || || ,

min || || ,

min || || ,

min || || .

k
R

m m
R

k
i i R

m m
i R

k
n n R

m m
n R

Uz

z

Uz

z

Uz

z

β

β

β

+ +

+ +

+ +

 −


 −


 −



Obviously, due to Lemma 1, this multi-criterial system has a unique normal pseudo-
solution (22.5) with respect to zi, i = 1,…,n.

Corollary 1. Let zi
* = U+βi, ( i = 1,…,n), hence each vector z of parameters of LQF 

(22.4) is such that z ≠ zi
*, satisfies one of the two conditions

*) || || || - ||k k
i R i i Ra Uz Uzβ β− >

or
* 1 ( 3)/2 * 1 ( 3)/2) || || || || || || || || .k k m m m m

i R i i R R i Rb Uz Uz and z zβ β + + + +− = − >

R e m a r k 2. Qualitative estimates a), b) from Corollary 1 depend mainly on the vol-
ume of a posteriori information (number of experiments k), i.e. if k > 1 + m( m + 3)/2, 
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then, as a rule, realized is item a); if k ≤ 1 + m( m + 3)/2 then it is quite probable that 
realized is item b).

22.4 � Modeling of the Linear-Quadratic Structure  
of Equations of Vector Regression for the Process  
of Nitrogenization

Without any loss of generality, in the capacity of the initial (zero) position of the 
vector of input control influences u it is possible to accept some empirically identi-
fied (from the general set of experimental data) point ω of space Rm; obviously, in 
this case, coordinates u1,…,um of vector u shall be considered as deviations with 
respect to the regime ω.

The process of nitrogenization in the environment of inversive electrostatic field 
in a series of field experiments ( k = 12) may be described in terms of the following 
variables:

vector y col y y y R= ∈( , , )1 2 3
3 of controlled characteristics of nitrogenization: 

y1—Vickers surface hardness number 10−1 [HV],
y2—specific wear 10−1 [mg/cm2],
y3—depth of the nitrogenized layer 102 [mm];
vector u col u u u u R= ∈( , , , )1 2 3 4

4  of variations of the regime’s parameters ω = col 
(ω1, ω2, ω3, ω4):

u1—variation (w.r.t. ω1) of the degree of dissociation of ammonium 10−1 [%],
u2—variation (w.r.t. ω2) of the temperature of the process 10−1 [°С], u3—varia-

tion (w.r.t. ω3) of the duration of the process 10−1 [h],
u4—variation (w.r.t. ω4) of the voltage on the electrodes 10−3 [V].
Note, direct application of analytical methods developed above, results in not 

very complex but bulky computations (below the computation was conducted in the 
environment of MATLAB [8]); for example, according to Table 22.1, matrix U has 
the dimension of k × 1 + m( m + 3)/2 = 12 × 15, and the matrix pseudo-inverse with 
respect to U + has, respectively, the dimension of 15 × 12.

U is the complete matrix of experimental data:

1 0 0 1 0,4 0 0 0 0 0 0 0 1 0,4 0,16
1 1 5 1 0,4 1 5 1 0,4 25 5 2 1 0,4 0,16
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 3,4 1 0 0 3,4 0 0 0 0 0 11,56
1 0 5 0 3,4 0 0 0 0 25 0 17 0 0 11,56
1 1 0 1 3,8 1 0 1 3,8 0 0 0 1 3,8 14,44
1 0 5 1 3,8 0 0 0 0 25 5 19 1 3,8 14,44
1 1 5 0 0 1 5 0 0 25 0 0 0 0 0
1 0,4 3 0,4 0,18 0

− −
− − − −

− − −
− − −

− ,16 1,2 0,16 0,072 9 1,2 0,54 0,16 0,072 0,0324
1 0,3 3,5 0,3 0,16 0,09 1,05 0,09 0,048 12,25 1,05 0,56 0,09 0,048 0,0256
1 0,2 4 0,2 0,14 0,04 0,8 0,04 0,028 16 0,8 0,56 0,04 0,028 0,0196
1 0 5 0 0,1 0 0 0 0 25 0 0,5 0 0 0,01

− − −
− − − −
− − − −
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U+ is the matrix pseudo-inverse with respect to U:

0 0 1 0 0 0 0 0 0 0 0 0
0,2555 0,26 0,291 0,2335 0,2408 0,231 0,2403 0, 2397 5,8631 2,3343 5,604 2,64
0,0641 0,152 0,4173 0,055 0,0398 0,0517 0,04 0,04 0,4082 0,3125 0,1758 0,22
0,4685 0,002 0,5228 0,018 0,0204 0,0199 0,0203 0,0202 0,

− − − −
− − − − −
− − 1598 0,0192 0,0999 0,03

0,2684 0,045 0,2496 0,0522 0,05239 0,02 0,053 0,052 0,7959 0,3416 0,79 0,38
0,2422 0,228 0,2058 0,2448 0,2491 0,241 0,2486 0,248 5,7779 2,3993 5,6402 2,687

0,1 0,1 0,1 0,1 0,1061 0,0943 0,1 0,1 2, 2982 0,9

−
− − − −

− −
− − 476 2,2036 1,25

0,4601 0,414 0,4467 0,4537 0,4237 0,438 0,4193 0,4143 0,3385 0,1372 0,3271 0,15
0,0997 0,2145 0,1332 0,116 0,1908 0,1544 0,202 0,214 0,8461 0,343 0,8177 0,38
0,0127 0,0299 0,0433 0,0118 0,0096 0,01 0,0084 0,00

−
− − −

− − − −
− 84 0,0876 0,0627 0,0261 0,082

0,0804 0,094 0,0774 0,122 0,1282 0,1012 0,105 0,094 0,2097 0,0838 0,2045 0,073
0,0491 0,0149 0,0564 0,055 0,0705 0,0031 0,012 0,015 0,5244 0,2096 0,5112 0,183
0,4819 0,0335 0,4377 0,0298 0,0121 0,0

− − −
− − −

− 31 0,012 0,012 0,0747 0,0842 0,1361 0,081
0,1418 0,1198 0,1545 0,1981 0,1234 0,146 0,121 0,118 0,4192 0,1665 0,3999 0.19
0,0066 0,034 0,0093 0,0638 0,0296 0,0013 0,0327 0,0362 0,5241 0,2081 0,4998 0,24

− −
− − − −

− −

Taking into account the solution of the parametric optimization problem (22.4)–
(22.6) and equation of the model of linear-quadratic vector regression (which de-
scribes in terms of a multi-dimensional polynomial approximation the intercon-
nected process of nitrogenization in the environment of inversive electrostatic field, 
which possesses the variation of the potential due to the parametric representation 
of the vector structure U+, and also, according to Table 22.1, of vectors βi, i = 1,…,3) 
have the form:

Table 22.1   Experimental data of the process of obtaining the nitrogenized layer are (ω1 = 45 %, 
ω2 = 500 оС,ω3 = 25 h,ω4 = − 1,900 V)
Experiment no Assigning influences Nitrogen layer parameters

u1 u2 u3 u4 y1 y2 y3

1 0 0 − 1 0,4 80,3 80,3 6,0
2 1 5 − 1 0,4 93,3 93,3 3,4
3-ω 0 0 0 0 97,4 97,4 13,1
4 1 0 0 3,4 84,7 84,7 12,2
5 0 5 0 3,4 79,2 79,2 10,3
6 1 0 − 1 3,8 54,8 54,8 42,4
7 0 5 − 1 3,8 87,0 87,0 11,9
8 1 5 0 0 89,4 89,4 3,5
9 0,4 3 − 0,4 0,18 87,0 87,0 4,2
10 0,3 3,5 − 0,3 0,16 92,0 92,0 3,8
11 0,2 4 − 0,2 0,14 98,8 98,8 4,0
12 0 5 0 0,1 89,4 89,4 3,6
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2
1 1 2 3 4 1 1 2

2 2
1 3 1 4 2 2 3 2 4 3

2
3 4 4

2
2 1 2 3 4 1

97,4 65,075 3,706 9,369 5,991 64,313 25,339

11,2136 7,159 0,529 8,346 6,161 8,607

6,29 6,227 ;

13,1 9,098 2,232 4,435 2,235 8,648
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y u u u u u u u

u u u u u u u u u u

u u u

y u u u u u

u

u

= − − + + − + +

+ + + − − − +
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2 2

1 3 1 4 2 2 3 2 4 3
2

3 4 4
2

3 1 2 3 4 1 1 2
2 2

1 3 1 4 2 2 3 2 4 3

31

15,604 5,491 0,067 2,361 0,502 3,986

5,336 0,5 ;

17 0,398 0,964 1,388 0,437 0,226 0,424

5,264 1,84 0,507 0,091 0,772 1

)

, 6

(

5

u u

u u u u u u u u u u

u u u

y u u u u u u u

u u u u u u u u u u

u

−

+ + + + − −

− +

= + + + − + − +

+ − + + − −
2

3 4 40,027 0,702 .u u u

−

+� (22.7)

Critical analysis of the “predicted efficiency” of the proposed model intended for 
nonlinear mathematical description of the physics-chemical properties of the pro-
cess of nitrogenization expressed in terms of quasi-linear vector-matrix regression 
equations (22.1), i.e. by the system (22.7), allows to conduct the relative compari-
son of the latter three columns of Table 22.1 with the following table obtained due 
to (22.7).

In the next section, we are going down to the multi-dimensional geometric in-
vestigation of “minimax” properties of solutions for the nonlinear vector regression, 
which describes electrostatic nitrogenization of the processed part surface, to the 
end of finding the regime of wear resistance and corrosion resistance for the geom-
etry of its part. An interesting trait of the analytical results obtained is their explicit 
algebraic dependence on the parameters of system (22.7).

Table 22.2   Nonlinear regression model
Number in the forecast 
no

Forecast for the nonlinear regression model
y1( u) y2( u) y3( u)

1 80,3 6,0 14
2 93,3 3,4 22
3 97,4 13,1 17
4 84,7 12,2 18
5 79,2 10,3 28
6 54,8 42,4 11
7 87 11,9 25
8 89,4 3,5 33
9 86,226 4,129 21,782
10 94,066 3,989 24,582
11 97,251 3,858 27,564
12 89,658 3,624 34,073
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22.5 � Interpolation of the Physics-Technological 
Characteristics of the Nitrogen Layer. Optimization 
of the Process of Nitrogenization

After all, the main objective of mathematical modeling is to answer the question 
“How it can the scrutinized physical process proceed and how it must proceed actu-
ally under some external controlling influence?”. The answer to the second part of 
the question gives the solution of the optimization problem (22.9), while the answer 
to the first presumes the following fact:

Proposition 2. The indicator of quality of nitrogenization Ji( u): = yi( u) ( i = 1,…,n) 
may have the internal maximum or minimum in the identified LQF-structure of 
equations of nonlinear regression only at point u Ri

m* ∈ :

u B A ei i
T

i* / ,= − −1 2� (22.8)

{e1,…,en}—basis in Rn. Furthermore, when uTBiu is a negative definite quadratic 
form, the indicator Ji( u) has maximum at point (22.8); when uTBiu is a positive 
definite quadratic form, the indicator Ji( u) has minimum at ui*. In the case, when 
uTBiu assume both positive and negative values, we encounter the stationary point 
of more complex type, i.e. the so called saddle point.

Proof. For the quality indicator Ji( u) on the set of values of the linear-quadratic 
model (22.1), the necessary condition of local extremum is

col T T T T( ( ) / , , ( ) / ) ,∂ + ∂ … ∂ + ∂ = ∈e Au u B u u e Au u B u u Ri i i i n
n

1 0

geometric coordinates (22.8) for the stationary point ui* with respect to the accepted 
functional of the quality indicator Ji( u) are defined in the space Rm, while the sign-
definiteness of the second differential

d J u J u u u u ui q m p m i q p u q p
2

1 1
2( ) ( ) / | *= ∂ ∂ ∂∑ ∑≤ ≤ ≤ ≤

defines sufficient conditions of extremum in the stationary point ui*.
Corollary 2. If matrix Bi is positive definite (similarly, negative definite) then the 

minimum (resp. maximum) value of the quality indicator Ji( u) is

c e AB A ei i
T

i
T

i− −1 4/ .

When turning back to the system of quadratic equations of synthesis of the physi-
cal structure of the surface (“embedment”) content of the nitrogen layer (22.7), we 
obtain the numerical implementations of matrices A, Bi ( i = 1,…,3):

should be used to present the results of investigations and large sets of figures 
clearly.
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1

2

65,075 3706 9,369 5,991
9,098 2,232 4,485 2,235 ,
0,398 0,964 1,388 0,437

64,313 12,67 5,607 3,579
12,67 0,529 4,173 3,095

,
5,607 4,173 8,607 3,145
3,579 3,095 3,145 6,227

8,648 1,766 7,8

A

B

B

− − 
 = − − − 
 − 
− 

 − − =
 − −
 − 

− −

=

3

02 2,745
1,766 0,067 1,18 0,251

,
7,802 1,18 3,986 2,668
2,745 0,251 2,668 0,5

0,226 0,212 2,632 0,92
0,212 0,507 0,046 0,386

.
2,632 0,046 1,56 0,013

0,92 0,386 0,013 0,702

B

 
 
 
 − − −
 − 

− − 
 − − =
 − −
 − − − 

Now we can solve the analytical problem, which has been the stimulus to investiga-
tion of positiveness (or negativity) of quadratic forms from equation (22.7), i.e. to 
answer the question—when the stationary point (22.8) is the point of relative mini-
mum, maximum or the saddle point.

Speaking more formally, the problem of defining the positive (or negative) alge-
braic definiteness of the quadratic forms uTBiu has been reduced to the geometric 
problem of rather general type—computing of eigenvalues λij ( i = 1,…,3; j = 1,…,4) 
of symmetric matrices Bi ( i = 1,…,3):

→λ11 = − 67.5644, λ12 = − 9.2743, λ13 = 1.8251, λ14 = 8.8491, what speaks about 
the existence of a stationary saddle point for the goal functional y1( u): R4→R;

→λ21 = − 14.7856, λ22 = − 2.6697, λ23 = 0.362, λ24 = 5.0252, what speaks about the 
existence of a stationary saddle point for the goal functional y2( u): R4→R;

→λ31 = − 3.5248, λ32 = 0.0847, λ33 = 0.8665, λ34 = 2.4482, what speaks about the 
existence of a stationary saddle point for the goal functional y3( u): R4→R.

The graphic illustration of variations of quality indicators Ji( u), i = 1,…,3 under a 
stationary temperature and duration of the process of nitrogenization depending on 
the scaled (according to data of Table 22.1) variations (with respect to the regime of 
nitrogenization ω) of the degree of dissociation of ammonium (Q 40 %) and voltage 
of the electrostatic field (± 1000 V).

While combining previous results, the standard regime of nitrogenization, which 
provides for maximum hardness, wear resistance and the thickness of the physical 
structure of nitrogen layer of the processed surface of a mechanical part, let us relate 
them to the solution of the optimization problem of the following form
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max{ ( ) : },
( ) : ( ) ( ) ( ),

F u u R
F u r J u r J u r J u

∈
= + +

4

1 1 2 2 3 3� (22.9)

where the weighting coefficients ri, i = 1,…,3 of the goal functional F( u) must be 
chosen, while proceeding from the considerations of proper expert assessment of 
the differentiated effect of the quality indicators Ji( u), i = 1,…,3 [9]. We have con-
sidered the following weighting coefficients: r1 = 0.5, r2 = − 0.3, r3 = 0.2; the sign “−” 
with the coefficient r2 means that the problem statement (22.9) actually provides for 
relative minimization (!) of the parameter of specific wear y2 (what is equivalent, 
displacement to the point of min J2( u) in the linear structure of functional F( u)).

This allows us to write down the goal functional (22.9) in the following analyti-
cal form:

F u u u u u u( ) , , , , , ,

,

= − − + + − +

+

48 17 29 729 0 99 3 632 3 579 29 517

11 5
1 2 3 4 1

2

226 11 341 1 564 0 346 4 863

3 4 3
1 2 1 3 1 4 2

2
2 3

2 4

u u u u u u u u u

u u

+ + + − −

− −

, , , ,

, ,, , , .42 4 74 3 13
2

3 4 4
2u u u u+ +� (22.10)

The geometry of the six variants of the functional dependence for the quality indi-
cator (22.10) depending on the coordinate variation of two identified components 
(while the other two are “frozen”) of the 4-dimentional vector u in terms of devia-
tions from the regime ω. In this case, parameters of the variations have constituted 
the following intervals (in terms of relative physics units):

1 2 3 440 %, 50 C, 5 h, 1000 .u u u u V= ± = ± ° = ± = ±

Development of new techniques of alloying metals necessitates existence of an ad-
equate mathematical model, which would be capable of predicting the reciprocal 
influence of different factors of the physics-chemical environment on the process 
of metal working, as well as revealing the influence of mechanical and geometric 
characteristics of the processed part’s surface upon the results obtained. As far as 
the multi-factor process of nitrogenization is concerned, the mathematical model of 
optimization (22.9) gives such a possibility, i.e. the possibility to reveal the most 
critical parameters and give the defining directions of improving the exploited and 
developed technological installations intended for obtaining the nitrogenized layer. 
Proposition 2, and also formula (22.8), which allow to compute the geometric coor-
dinates of the stationary point for the optimization problem (22.9), define (in terms 
of system (22.1)) the following highly efficient technological parameters of the 
regime of nitrogenization:

Proposition 3. The stationary point u R* ∈ 4  in the problem related to optimiza-
tion of the regime of electrostatic nitrogenization (22.9) has the algebraic solution

u r B r B r B e e e r r r A* ( ) [ , , ] ) / ,(( )= − + + + +−
1 1 2 2 3 3

1
1 2 3 1 2 3 2T Tdiag � (22.11)
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in this case, the sufficient condition ( that the given point ensures satisfaction of max 
{F( u): u∈R4}) is the requirement that it is elliptic:

det[ ]b qij q < = …0 1 4, , ,
�

(22.12)

or, what is equivalent, for the eigen-numbers λi of matrix ( r1B1 + r2B2 + r3B3) we 
have λi < 0, i = 1,…,4; here [bij]q∈Mq,q( R) are the main sub-matrices [6, с.  30] of 
matrix ( r1B1 + r2B2 + r3B3).

22.6 � Discussion

Let us start from the remark that if condition (22.12) is not satisfied the stationary 
point (22.11) is possibly the saddle (hyperbolic) point of functional F( u) and, conse-
quently, additional analysis of coordinates (22.11) is required; when speaking more 
formally, the availability of the saddle point is guaranteed by the replacement—at 
least in one relation (but not in all relations)—of the inequality “<” from (22.12) 
with “>”. In this case, a similar replacement of “<” with “≤” possible provokes the 
structure of the parabolic point.

Due to system (22.1) (or, what is equivalent, due to equation (22.10)) the station-
ary point (22.11) in the coordinate representation (of the vector-row) writes

u * [ , , , , ],T = −0 1761 3 7794 0 5622 1 8787

or, the same, in terms of physical dimensions and “counting” from the regime ω, 
we have:

u * , % , , , .[ ]T o C  h  V= −46 76 537 794 19 378 21 3

Let us show that the mathematical result (in particular, the coordinates of the sta-
tionary point of the regime of nitrogenization (22.11)) obtained above are in good 
correspondence with the logic of our physics related reasoning. Since the eigen-
numbers of matrix ( r1B1 + r2B2 + r3B3) are, respectively, λ1 = − 31.8762, λ2 = 0.5298, 
λ3 = − 3.276, λ4 = 5.1355, this gives evidence that functional F( u) has a stationary 
saddle point: R4→R for the weighting coefficients ri, i = 1,…,3, chosen above.

According to (22.10), at the stationary point u* obtained the functional F( u) 
reaches its “max” with respect to variables u1 and u3 and “min”, respectively, with 
respect to u2 and u4. The physical sense of this proposition implies the following: 
as far as the structure F( u) is concerned, it is not possible to exceed (make larger) 
the degree of dissociation of ammonium by more than 46,76 %, and the duration 
nitrogenization by more than 19,378 h, and, furthermore, in this case, simultane-
ously, it is better not to decrease the temperature of the gas mixture below the level 
of 537.794 °С, it is also better not to make the general potential of the electrostatic 
field smaller than 21.3 V. Otherwise, violation of these parameters shall provoke the 
reduction of efficiency of the process of nitrogenization in the aspect of reaching 
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the technological indicator F( u), which provides for the maximum surface hardness 
and the depth of the nitrogenized layer side by side with minimization of specific 
wear of the part processed.

If computed (predicted) coordinates of the stationary point (22.11) go beyond 
the confidence region of adequacy of the mathematical model (22.7) in virtue of 
some physics-technological factors-parameters, than it is necessary to conduct an 
additional practical experiment bound up with nitrogenization, which is “maximally 
close” to the coordinates (22.11) and introduce (in the capacity of the regime ω) 
the data of this experiment into the extended matrix of experimental data U, after 
what it is possible to conduct recomputation of all the stages of optimization of the 
process of obtaining the nitrogenized layer, which is described above (if there is the 
need, such an experiment and the process of identification of model (22.1) are to 
be repeated); this important improvement, in essence, methodologically extends the 
standard [10] procedure of planning the experiment.

22.7 � Conclusions

We have described the process of constructing a nonlinear mathematical model of 
the type “input–output” for the process of nitrogenization in the distributed envi-
ronment of electrostatic field. This model is used for technological computation of 
hardness parameters for the material of the metal part, whose surface is processed. 
It can be used for assessment of the specific mechanical wear, the depth of the ni-
trogenized layer, etc. This regression model uses the identified (on the basis of ex-
perimental data obtained) multi-dimensional quadratic equations, what allows the 
researcher to adequately describe the process of nonlinear diffusion in the process 
of “nitrogen-alloying” within a wide band of variations of (I) the degree of dissocia-
tion of ammonium, (II) the temperature, (III) the duration of the process and (IV) 
the electric voltage at the pair “anode–cathode”.

Deviations in the computed (predicted) values of the synthesized nitrogenized 
layer and experimental data revealed are hardly ever of principal character. This has 
given us the opportunity to propose an efficient mathematical technique (“a finite 
chain” of algebraic formulas) for computing optimal properties and parameters of 
nonlinear multi-factor regime of nitrogenization.

The ideas explicated in the present paper may be developed in several directions 
of theoretical-applied investigations oriented to improvement of the algorithms of 
computing an optimal technology of nitrogenization in an electrostatic field pro-
posed above, as well as to extending the frames of adequacy of regression equations 
of nitrogenization at the expense of additional investigation of the factors of its 
nonlinearity; these can be oriented to:

determination and algorithmization of the procedure of choosing the weighting 
coefficients ri, 1 ≤ i ≤ 3 in (22.9), while proceeding from satisfaction of the algebraic 
conditions (22.12), which provide for the elliptic character of the stationary point 
of the goal functional (22.9); extension of the linear-quadratic form of regression 
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equations (22.1) by the “Taylor expansion” of the vector function y of higher order; 
account (in the capacity of extended coordinates of the vector function y of the re-
gression model) of such physics-mechanical parameters of the synthesized nitroge-
nized layer in the environment of some electrostatic field, such as the coefficient of 
dry friction for the surface processed and for the brittle nitrogenized layer obtained; 
constructing the process of identification of a nonlinear a posteriori–adaptive math-
ematical model of nitrogenization with an additional condition of presence of high-
frequency electromagnetic field; determination (under such a problem statement) 
of high technological multi-factor parameters of the process of nitrogenization, and 
also obtaining optimal values for the length and the amplitude of the waves of elec-
tromagnetic oscillations.
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Abstract  Our contribution is based on a research aimed to a “quick” resolution 
of an integrated problem oriented towards the self-localization and perimetration 
through mobile devices. The adopted methodology is applied on a real case study by 
using the following surveying tools: a kinematic Global Positioning System (GPS) 
and a Laser Scanner supporting a “mobile platform”. A GPS receiver provided by 
Leica Geosystem and a two-dimensional Laser Scanner provided by the Automa-
tion and Control Laboratory of the University “Mediteranea” of Reggio Calabria 
were positioned on an experimental mobile system specifically designed to simulate 
the behaviour of a future and fully automated platform. The research is aimed to 
conduct the traditional land surveying through a Laser Scanner alongside with GPS 
receivers in a three dimensional centimetric resolution within one single system of 
reference made up of individual scans operated by a “Stop-and-Go” device.

Keywords  Laser scanner  · Self-localization · GPS · Survey

23.1 � Introduction—The Experimental Campaign

As part of a collaboration between the Geomatics Lab and the Automation and 
Controls Laboratory of the Mediterranean University of Reggio Calabria, aimed to 
the possible development and implementation of an algorithm based on the use of a 
laser-scanner sensor for applications mobile robotics, we carried out a first experi-
ment in the yard behind the university (Fig. 23.1).

This experiment was aimed to an automated kinematic perimetering of the area 
under investigation with simultaneous auto-location detection sensor through the 
integration of laser scanner and GPS measurements.
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In particular, we used a rudimentary “moving platform” (trolley mobile), 
equipped with a laser-scanner (which currently allows to perform scans only within 
the planimetric) mounted on a trolley with wheels (Fig. 23.2); on the same carriage, 
above the laser sensor, was placed the GPS receiver (Fig. 23.3).

The sensor is connected to the USB port of a laptop that sends to the LRF in-
structions to be executed through the use of the programming language Matlab 
(programming language used for all the algorithms implemented for the manage-
ment and implementation of the system).

It should be noted preliminarily that the automation of the procedure is not yet 
currently available and that today the operations are carried out manually.

In particular, there has been a 360° rotation of the basket by making the acquisi-
tions at regular intervals of time trying to ensure the continuity of motion, simulat-
ing a behavior as much as possible regular.

Before of the integration operations between the different survey methods, was 
independently carried out a perimeter of the study area through GPS survey in clas-
sic mode Real Time Kinematic; processing of the acquired data performed with the 
commercial program of the Leica LGO allowed to obtain the coordinates of the 

Fig. 23.2   Mobile platform 

Fig. 23.1   Survey area behind 
the university building
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points shown in the diagram of Fig. 23.4 representing the perimeter of the study 
area.

The same data were subsequently reported on georeferenced map; these data, con-
nected each other, allowed therefore to delimit the perimeter of interest (Fig. 23.5).

These data are considered as data “reliable” to be used for comparison with the 
survey methods later proposed. In particular, it has been positioned in this regard 
(integrated laser scanner—GPS—mobile cart) on the platform above the laser scan-
ner sensor, a GPS antenna (Fig. 23.6) in such a way to obtain simultaneous mea-
surements [1–3].

23.2 � Measurement by Laser Scanner

We made seven scans with the “equipped mobile trolley”, manually moving it 
(360°), with a view to its future and complete automation [4, 5].

Scans are shown below (Fig. 23.7).

Fig. 23.4   GPS data 

Fig. 23.3   Survey operations 
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For each scan was carried out at the same position detected by GPS measure-
ments useful for linking the different scans through the measurement of external 
targets.

Single scans were processed and linked together by means of an algorithm im-
plemented in Matlab (lab AeC), in the testing phase and the subsequent develop-
ment by deriving a series of segments that describe, with little margin for error, the 
geometry of the square (Fig. 23.8).

23.3 � The Algorithm

The algorithm implemented in Matlab and used in this experiment does not use the 
common return target detected externally but makes a connection of several scans 
through statistical autocorrelation methods by using the distinctive features that the 

Fig. 23.6   Simultaneous 
positioning laser scanner and 
GPS on “mobile equipped 
trolley”

 

Fig. 23.5   GPS data in map 
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Fig. 23.7   Laser scanner scans nn. 1–7
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robot (mobile equipped trolley) is able to perceive the environment through the use 
of the laser scanner sensor [6–8].

These characteristics may be the geometric shapes, such as edges, circles or 
rectangles, or additional data such as barcodes. The features must have a precise 
and fixed position within the environment and should be easily detectable by 
the sensor [9].

The methodology used can be divided into two phases: extraction of features 
from the measurements made by the sensors; coupling between features belonging 
to different measures so as to determine the deviation between the two measures in 
terms of a shift (Dx, Dy) and a rotation Dα.

We thus applied an algorithm of “SLAM” [10–12] based exclusively on 
information from a laser scanner. This algorithm introduces a new model for the 
prediction of the future state (described in Fig. 23.9).

The methods of location-based laser odometry differs depending on what data 
are used to search the correspondence between scans. The algorithm that will be 
described below is based on matching through the use of features and is shown 
schematically in Fig. 23.10. The implementation of the algorithm created for test-
ing builds on the following general considerations (Feature extraction—Matching 
between features—Optimization Process) performing particularly well-known in 
the literature in closed environments and adapted in the present work for a trial in 
open environments.

Fig. 23.9   Prediction model of future state

 

Fig. 23.8   Result of localiza-
tion algorithm
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From the knowledge of the current pose of the robot, xk, its covariance, cov(xk), 
the extracted features to scan the k-th and k + 1-th scan and the covariance associ-
ated with the features you want to calculate the pose of the robot to the next step, 
xk + 1, and its covariance, cov(xk + 1). To do this you must perform three steps:

•	 Extraction of set of features belonging to scan S1 and of set of features F2 belong-
ing to the scan S2 subsequent respect to S1;

•	 Matching between features of the two scans that will be a subset of those ex-
tracted;

•	 Optimization process: calculation of the deviation between the two scans through 
the calculation of the transformation excellent in terms of rotational translation.

23.3.1 � Feature Extraction

As is known in the literature the matching techniques through the use of features 
presuppose a preliminary phase concerning the extraction of features from the scan. 
The features are divided into two types: “jump-edges” and “corners”.

To detect the features jump-edges, a scan is divided into groups (called “clus-
ters”) of consecutive scan points. In this way, each cluster consists of a starting 
point, pi, and an end point, pj, and the k-th cluster is defined in the following way:

{ | , }c p p S i m jm mk = ∈ ≤ ≤� (23.1)

The start and end points of each cluster are candidates to become features jump-
edges as long as these points are invariant with respect to the movement of the 
robot.

To extract the features “corners” within a scan is instead necessary to extract 
lines from each cluster using an algorithm such as “split-and-merge”.

Each line extracted is characterized by the following parameters: lq = [αq, nq, 
lenq], where αq is the angle between the line and the x-axis; nq is the number of 
points that constitute the line and lenq is the length of lq.

If the intersection of two successive lines is such that |αq + 1- αq| > Δαth and that, for 
both for lq that lq + 1, or len > lenth or nq > nth (where lenth is the minimum length and 
nth is the minimum number of points of the lines that make up the corner) then pcc, 
which is the end point of lq, is a candidate to become a feature corner.

A problem that could cause a wrong operation of the algorithm of localization is 
the presence of a small number of features between scans.

Fig. 23.10   Diagram of 
localization algorithm based 
on use of features
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Consider the only feature that is extracted from a corner of the environment. 
Starting from this feature are created two other features by making of the compass 
opening centered in the feature to start. The two new features are the intersections 
of this circle with two lines that form the angle (Fig. 23.11a). A further enrichment 
of the features can be carried out by considering two circles centered in the feature 
starting having two different radii (Fig. 23.11b). In this case the number of features 
extracted is quintupled.

23.3.2 � Matching Between Features

Once extracted, by two successive scans, the features that represent the same physi-
cal point of the environment, is necessary to couple. We use a matching algoritm 
well known in the literature and adapted to the particular testing in open environ-
ments, which is based on a function of dissimilarity, d. We define this function for 
two points pi and pj, belonging to two successive scans:

2
( ) || ||' 'd p , p p , pi i j Bj = +� (23.2)

If |αnext – α’next j| o |αpre, i– α’pre, j| exceeds a certain threshold, pi and pj are not coupled 
and B becomes equal to infinity, otherwise B is equal to zero. Once constructed 
the matrix containing all the functions of dissimilarity (called dissimilarity matrix), 
the smallest value of this matrix is eliminated and the corresponding features are 
coupled. This is done at each step, until all the elements of the matrix are eliminated 
or until the remaining elements have a value above a certain threshold.

23.3.3 � Optimization Process

Particularly useful for optimization process is the implementation of the various 
steps below, realized, under updating and further experimentation that take their 
cues from what is known in the literature and shown below. To calculate the new 
installation of the robot in an optimal way is necessary to establish a model of 
uncertainty for the features extracted, i.e. a model which takes account of errors 
(such as the noise of the measurement process, eob, and the quantized nature of the 

Fig. 23.11   Enrichment of the 
number of features through 
the use of one (a) and two (b) 
circumferences
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angles of the rays, eq); it could cause that the actual position of the feature differs 
from that calculated.

The position of the k-th feature must therefore be written as:

ik i ob qif p e e= + +� (23.3)

And the expected value of the position of features, fk, is given by:

ˆ ( ) (e ) ( )obf E f p E E eqik k= = + +� (23.4)

where E(·) is the expected value operator.
At this point it is necessary to calculate the covariance of fk:

( ) ( )ˆ ˆ ˆ( ) . ( ) ( )
T

Cov f E f f f f Cov e Cov eqk k k k k ob ii

 
= − − = +  

� �� (23.5)

Using the measurement of the features and their corresponding covariance, the al-
gorithm calculates the displacement (defined in terms of translation, T, and rotation, 
R) effected by the robot between the two scans. To find the optimal values of T and 
R the following error function must be minimized:

t 1ˆ ˆ ˆ ˆ( ( + )) ( ( + )), , , ,1

m
E f Rf T C f Rf Tj pre j new j j pre j newj

−= − −∑
=

� (23.6)

Where m is the number of features coupled, fj, pre and fj, new are two new features 
coupled refer respectively to the previous scan and the current one; vj = (fj.pre– 
(Rfj, new + T)) is the j-th vector innovation and Cj is its covariance.

Assuming that the errors in the scans are independent, we can write:

cov( ) cov( )pre pre new new t
j ob q ob qC e e R e e R= + + +� (23.7)

There is the possibility of writing the variables in vector form. In such form, the 
displacement of the robot can be indicated in the following way:

( )1 21 2X q q t t t=� (23.8)

Where t1 and t2 are respectively the translations along the x direction and the y di-
rection. The rotation R and translation T matrices become defined as follows:

2 2
11 2 1 2

2 2
21 2 1 2

2
2

tq q q q
R T

tq q q q
 − −  

= =     − 
� (23.9)

The optimization problem is solved using the SQP method, “Sequential Quadratic 
Programming”.
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Assuming that X* is the deviation between the two scans that minimizes the 
function E described above, for calculating the covariance of X* should exist Jaco-
bian, J, projecting the uncertainty of the features in the uncertainty of X*. If there is 
an explicit function, g, which relates X* to F, which is the vector of all the features 
coupled, we have X* = g(F). The Taylor series expansion of g in the neighborhood 
of E(F) will be:

*
* 2ˆ ˆ ˆ( ) ( ) ( )XX g F F F O F F

F
∂

= + − + −
∂

� (23.10)

The last summand represents the higher order terms.
The Jacobian between X* and F projects the uncertainty of X* in F, namely:

*cov( ) cov( ) TX J F J=� (23.11)

However, there is an explicit relationship between F and X*, then they are related 
by an implicit function, I(X*,F) = 0, which is derived from ∂E/∂X = 0. You can ob-
tain this Jacobian using the equation:

11 2 2

2

E EJ J
F F XX X

γ γ
−−

∗

   ∂ ∂ ∂ ∂   = − ⇒ = −          ∂ ∂ ∂∂ ∂   
� (23.12)

with X = X*.
Conducting additional steps and substitutions you can get the desired Jacobian 

matrix. The independence of the features of a scan brings to obtain a total diagonal 
covariance matrix.

Furthermore, assuming that the features extracted by two successive scans are 
independent, the covariance of each pair will be:

( ) ,1

,

cov( ) 0cov( ) 0cov ( ) , cov
0 cov( ) 0 cov ( )j

j new

m j pre

fFF F
F f

  
  
     

= =� (23.13)

Substituting the expressions of J and cov(F) we get cov(X*), i.e. the uncertainty of 
the deviation.

The pose of the robot at the generic instant k can be defined as:

1 2 3, , , ,[ ]r k r k r k r kx x x x=� (23.14)

where xr1,k e xr2,k represent the translations along the x and y axes, while xr3,k is the 
orientation. The new robot pose is then determined by the equation:

3

1

, 1 , 2 ,

ˆ ˆcos sin 0
ˆ ˆ ˆˆ ˆ ˆsin cos 0 ,

0 0 1

k k

r k r k k k k r k

t
x x t x

θ θ

θ θ θ
θ

+

 −  
   = + =     ∆  

� (23.15)
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where t1 and t2 are the translations along the x and y between the instants k and k + 1 
while Δθ is the rotation in the same time interval.

The calculation of the covariance of Xr, k + 1 requires its differentiation with re-
spect to the random parameters of the right side of the equation just written:

, 1

, 1 2 1 2( , , , , )
r k

P
r k

x
J

x q q t t
+∂

=
∂� (23.16)

Given the independence between xr, k and X, the covariance of the parameters of the 
right side of the equation xr, k + 1 will be:

3 4
*

4 3

cov( ) 0
'

0 cov( )
k x

x

p
p

X
 

=   � (23.17)

The covariance of xr, k + 1 can be calculated in the following way:

, 1cov( ) t
r k P px J P J+ = ′� (23.18)

The state vector xk of the system is composed of the state of the robot, xr, k, and the 
state of all the features, xf, k. The state vector and its covariance before the predic-
tion will be:

, ,

, ,

ˆ cov( ) cov( , )
ˆ ,cov( )ˆ cov( , ) cov( )

r k r,k r,k f k
k k

f k f,k r,k f k

x x x x
x x

x x x x
   

= =      
� (23.19)

The movement of the robot does not affect the status of the features, so we have:

, 1 1 ,
1 1

, ,

ˆ cov( ) cov( , )
ˆ ,cov( )ˆ cov( , ) cov( )

T
r k r,k r, k f k P

k k
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x x x x J
x x

x J x x x
+ +

+ +

 ′ 
= =    ′   

� (23.20)

J’p is the truncated form of Jp and includes only the differentiation of xr, k + 1 with 
respect to xr, k.

The next step is the association of the data and update the map. For data bind-
ing, the positions of features belonging to the map must be predicted relative to the 
robot. This is done by a model of the observation that, for the i-th feature, is:

( , )r map
i i r if h x f=� (23.21)

The superscript r and map refer respectively to the coordinates of the robot and 
global ones.

In the present case, the model hi is:

2 2
1 1 2 2

1
2

2
1

( ) ( )
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map map
i r i rr

i map
r i

i rmap
i
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f
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 − −
   =      −    �

(23.22)
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The total observation model, h, is obtained considering all the features in a single 
vector. The features that are not coupled with any feature in the map are added to 
the latter through data binding. The features which would be coupled with map 
features create new relationships between persistent objects in the map. In this case 
the state vector of the system and the covariance matrix do not increase in size, but 
are updated [11, 13].

The obtaining of information from sensors in the current scan is described by a 
function of measurement:

ˆ ˆˆ ˆ( , ) ( )
cov( ) cov( )

r map
r

r
x x

F h x F h x
F H x H

= =
=� (23.23)

where:
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h xH
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+=
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∂

The models of the process and observation are not linear, so the noise variables are 
assumed to be taken from normal distributions.

For the filtering step is chosen the iterated extended Kalman filter (IEKF), ie:
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where:
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23.3.4 � Checks and Comparison

The algorithm, implemented on the basis of the above points and adapted to the 
specific experiment in open environments, has allowed us to analyze the first four 
scans, while the last three we had difficulties due to external phenomena of noise 
that prevented proper data collection.

In any case, after a “cleaning” of the data from any nuisance parameters (GPS 
and laser scanner), overlaying the drawing of the survey to cartography is obtained 
as shown in Fig.  23.12.

To check the validity of these results, we do a comparison between the results 
Laser Scanner and those GPS (red line on maps considered as “certain”), preferring 
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the graphic display able to better show the differences between the two methods 
(Fig. 23.13) rather than the creation of complex tables and graphs summarizing and/
or various statistical parameters on the accuracy of the processing, because the aim 
of “expeditious” of this proposal.

Although there is the same precision of the GPS data in terms of return, however, 
is highlighted as the algorithm proposed for the processing of the given laser scan-
ner is able to provide by itself discrete results, as evidenced by the partial planimet-
ric correspondence of the two tracks GPS and Laser Scanner shown in Fig. 23.13.

This is a good omen for the continuation of the trial.

23.4 � Integration of GPS and Laser Scanner  
for Connecting Subsequent Scans

As known, the main problem for laser scanner data is the assembly of the scans 
in order to determine a unique reference system in which “immerse” the obtained 
model [14–17]. The acquisition of the scans results in an immediate point cloud 

Fig. 23.12   Overlaying result 
of algorithm on mapping
 

Fig. 23.13   Comparison 
between the two methods
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ordered in the plane, whose coordinates are known with respect to the center of 
“taking”.

The scan is then locally oriented with respect to a reference system that derives 
from the arbitrary choice of the pickup point, which will be taken as the origin of 
the reference system of the scan. The assembly of multiple scans thus requires the 
knowledge of the parameters of rototranslation: these parameters can be calculated 
if the position of the origin of the reference system of each scan with respect to a 
single system is known through the measurement of the external “target”. Such a 
problem for geo—topographic applications is solved by having remarkable points 
(targets), of which the coordinates are known, in all the scans: in this way each scan 
can be oriented independently of the other. Their georeferencing can be done by 
using the techniques of GPS tracking [18].

From the above considerations, the idea of experimenting with a rudimentary 
expeditious survey able to repeat what has already been experienced with the ve-
hicle fully equipped (equipment includes two GPS, a laser scanner and a target all 
mounted on a vehicle in motion) that, by combining the two receivers GPS with 
the sensor laser scanner and a target audience, can overcome the issues raised; the 
whole mounted on a moving body that allows easy movement between the mea-
surement sessions.

By performing measurements laser scanner and GPS simultaneously with sta-
tionary body is thus ensured a high quality of fit and positioning into a single refer-
ence system.

The system is to mount on movable equipped trolley (rigidly and coaxially) the 
laser scanner surmounted by a GPS and connect the trolley through a rigid arm 
(adjustable in length) to a “target” coaxially surmounted by other GPS reference 
(which will serve as the orientation of the scan), left free to rotate anyway so as to 
guide the laser target to the sensor. In this way, the problem of defining the coordi-
nates of the acquisition point (Laser Scanner) and target orientation is overcome by 
fitting precisely coaxially two GPS receivers, respectively, the Laser Scanner and 
the target [19, 20].

The receivers, while the laser sensor scans, acquire measurements from GNSS 
satellite constellations providing coordinates, both geographic both local coordi-
nates of the laser sensor and the target orientation into a single reference system.

Once we have defined the ideal location for the first scan, we must place and 
stop the mobile equipped trolley at the point defined by performing both those mea-
sures GPS and Laser Scanner with the characteristics of density required by the 
survey. After a few minutes we must close the measures and shall move the trolley 
equipped cabinet in the next position chosen for the second major station, operating 
as before and repeating the process until completion of the survey. The processing 
of GPS data will allow to obtain homogeneous coordinates for all points of outlet 
(station laser scanner) and for all orientation target with sub-centimeter accuracy. 
These coordinates are assigned to stations and targets thereby allowing the software 
used for the management of the scans to unite and georeference all the scans made 
even in the absence of homologous points or targets positioned on the ground [21].
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In this way, in addition to speed up and facilitate the steps of the survey in the 
field by eliminating the need of affixed targets and the necessity of their internal vis-
ibility between a measurement session and the other, will be easier georeferencing 
also individual scans with no points in common, decreasing processing time of 
“point clouds” resulting from the scans.

Taking into account what was said above, namely we have tried to make an initial 
experimentation in order to achieve “coarse” and “expeditious” what has already been 
experimented on equipped machine (cf. Leica experiment reported in bibliography).

Specifically, it was built by placing a measuring system on the mobile trolley 
equipped (rigidly and coaxially) the laser scanner superimposed by a GPS and con-
necting the trolley through a rigid arm (simulating the modulation length through 
the ability to extend and contract) to a “target” coaxially superimposed by other 
GPS reference.

In particular, measures have been simulated with arms of 3, 2, 1.50, 1, 0.5 m 
(Fig. 23.14)

The overall reconstruction of the data, although simulated, is very interesting 
in particular for the test carried out with the arms of 3 and 2 m (note in this regard 
the result of the perimeter displayed in color and overlaid on the map as reported in 
Fig. 23.16). Instead, less accurate appear the results obtained with simulated arm of 
1.5 m, while it was not possible to make reliable reconstructions with simulated arm 
of 1 m or less. (Fig. 23.15).

Fig. 23.15   Variation of the 
percentage error compared 
to GPS method (in the test 
simulated) by varying the 
arm in question

 

Fig. 23.14   System with 
target and dual GPS
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The algorithm we used is then enriched in such a way as to be able to solve a 
problem of mapping.

For all the scans in input will be repeated the following steps:

•	 Initialization;
•	 Calculation of the i-th pose;
•	 Updating the Map.

The initialization is carried out between a number of scans by Laser Scanner defin-
ing the initial pose, related to the first scan performed, which is taken as reference 
pose. In this phase, are initialized the vectors xtmp, ytmp and θtmp that will contain the 
offset of the i-th scan with respect to the initial reference pose.

Thereafter, for the calculation of the i-th pose is essential the algorithm chosen to 
solve the problem of the localization that is used for the calculation of all deviations.

Finally, to update the map of the environment is sufficient to plot the i-th scan (of 
which we know the absolute pose) in the reference system of the first scan.

As known, the drift phenomenon that affects the localization consists in the fact 
that the errors made in the estimation of the robot pose tend to be additive in time. 
This means that, if the segment of the route taken by the robot between successive 
updates of the pose is sufficiently large, even after a short period of time after the 
start, the error of the pose estimation is high compared to its real location. This 
phenomenon can be found primarily in cases in which a localization is performed 
based only on odometric sensors and is due to systematic errors, such as the pres-
ence of wheels with different diameters or the misalignment between the wheels, 
and non-systematic errors such as slippage of the wheels or the presence of irregular 
contact surfaces [22].

We could then face the drift problem by comparing a highest possible number 
of laser scans. There are various solutions to the drift problem, most of which are 
based on the “sensor fusion”, doing measurements by multiple sensors that interact 
in order to obtain an estimate of the pose that is as close as possible to the real one.

Fig. 23.16   Integration of the 
two different methodological 
approaches
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There are several methods to achieve this goal, among which the most popular 
are the so-called “Bayesian filters” that estimate a state x from noisy sensory mea-
surements. This category includes the “Kalman Filter” (with its extensions) and 
“particle filters”. Looking at the problem from a probabilistic point of view, the 
robot does not have, instant by instant, the certainty of where he is, but can believe 
(“belief”) to be in a certain position with a certain uncertainty. On the basis of this 
statement, the localization problem consists in the estimation of the probability den-
sity related to all possible positions, with the aim of obtaining as much knowledge 
as possible accurate position. Ideally, this occurs when the “belief” has a single peak 
at the position of the robot and is zero elsewhere.

Returning to the “Kalman Filter”, recursive algorithm that estimates the state of 
a linear dynamic system affected by noise, this has access to the measurements of 
sensors which have a linear dependence with the state of the system. It is shown 
that the Kalman filter converges to the optimal estimation, the one that minimizes 
the variance of the error of the estimate, assuming the linearity of the system model 
and measurement, and the corresponding noise is Gaussian with zero mean. There-
fore we can say that the Kalman filter calculates the so-called “belief” (which is 
supposed to have a gaussian) of the state through two phases: the prediction, which 
calculates the “a priori belief”, i.e. the conditional probability of being in state xk 
known the measures until the time k-1, while in the correction phase calculates 
the “belief a posteriori”, i.e. the conditional probability of being in state xk known 
measures up to the instant k.

We are currently working on “particle filters” that allow to derive the estimate 
of the state (typically a function of the probability density not Gaussian and multi-
modal) in a system characterized by a nonlinear model.

The algorithm of the particle filter is recursive and consists of two phases: the 
prediction and updating. Following each action performed by the robot starts the 
prediction phase in which each particle is modified according to the existing model 
with the addition of noise to the variable of interest. During the upgrade, any weight 
of each particle is evaluated according to the new measurements from the sensors. 
The goal yet to be achieved is to get to the implementation of occupancy grid, which 
involves the construction, starting from the knowledge of the pose of all scans re-
ferred to the reference scan, an occupancy grid map.

The method used for the construction of the grid will be the one already de-
scribed and the result of this operation will be the partition of the map in a grid 
in which each element of the grid itself is associated with a probabilistic value of 
occupancy. By using the occupancy grid more information from different sensors 
can be integrated in the same representation of the environment, even if they use 
different methods of data acquisition.
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23.5 � Conclusions

Of course, although we must emphasize that the results obtained from the integra-
tion are to now only been achieved in a “simulated” way and the automation of the 
procedure is still under study and implementation (having now moved to the cart 
only by hand), yet the results seem encouraging in view of the realization of a “ex-
peditious” process for the auto positioning and perimetering by using mobile and 
automated tools.

The results certainly push to further study both in terms of actual full realization 
of the experiment, both in terms of optimization of the algorithms used for the com-
pensation of the integrated data.
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