Chapter 5
Argumentation-Enabled Web-Based Intelligent

Decision Support System (Web @IDSS)

5.1 Introduction

In any enterprise, information is one of the essential components required for decision
making. Traditional information systems have been used by enterprises to consider
the underlying information of an enterprise and assist them in this process. However,
these systems are basic and are inflexible in responding to current situations such as:

e Dealing with the huge increase of information. In recent years, there has been a
huge increase in the amount of information available, termed the tsunami of data
(Brodie 2008a, b). In order to make informed decisions, enterprises may have to
consider a huge volume of information as that may contain hidden informed knowl-
edge. So, information systems need to process this information autonomously and
make it available to decision makers to assist them in the decision-making process.

e Dealing with information that may be across and beyond an enterprise’s bound-
aries. For example, in the context of Customer Relation Management (CRM) soft-
ware, for the development of new products, considering information such as expert
knowledge, customer opinions, reviews about existing products and services etc.
in the decision-making process may lead to better results.

In order to overcome these issues, Decision Support Systems (DSS) (such as indi-
vidual DSS and Group DSS) were developed that assist in a wide range of enterprise-
wide decision-making processes (Power 2002; Power and Sharda 2009). To consider
the multi-site nature of decision making due to the widespread adoption of the WWW,
Web-based DSS (Yao et al. 2001) were developed by which decision makers that
are spread across different locations can collaborate in the decision-making process
(Vahidov and Kersten 2004; Silverman et al. 2001; Toni 2007). By using Semantic
Web technologies, Web-based DSS, with help of ontologies, can understand and
consume information which exists outside an enterprise’s boundaries. The challenge
that now confronts the current Web-based DSS systems is: how fo take into account
the information exists within an enterprise and/or in other enterprises that may

N. K. Janjua, A Defeasible Logic Programming-Based Framework to Support
Argumentation in Semantic Web Applications, Springer Theses, 115
DOI: 10.1007/978-3-319-03949-7_5, © Springer International Publishing Switzerland 2014

116 5 Argumentation-Enabled Web-Based Intelligent

= A
2 v Openness #
© b=t LA 3
EE &/ s
3 e~ S
2® 5
; °
pa 3
@
& =2
- m
Ly Web DSS T e
£x / g
52 2 E
TE Group DSS 2
28 / @
= K
£
Individual DSS S
2 . g
< 8
Stand alone LAN WAN :

Main Workspace

Fig. 5.1 Evolution towards Argumentation-enabled Web-based IDSS (extended from Lee and
Chung 2005)

be potentially incomplete and/or contradictory (within themselves and/or with the
existing information in an enterprise) and utilize it in their decision-making process.

To address this challenge, as mentioned in Sect.3.3, Web-based DSS have been
developed that are based on defeasible reasoning to represent incomplete information
and reason using pre-defined preferences from a single user’s point of view to resolve
conflicts (Antoniou and Bikakis 2007; Bassiliades et al. 2004; Grosof et al. 2002).
However, these systems fail to address the problem in the context when information
may come from different sources such as in group decision making where there is
more than one decision maker involved in the decision-making process where con-
flicts may arise between the members of the group due to their different viewpoints.
To address this challenge, I propose a framework for an Argumentation-enabled
Web-based Intelligent DSS (Web@IDSS). The proposed framework will use logic-
based language for information representation and argumentation-driven reasoning
to identify and resolve conflicts in the information coming from different sources,
followed by information integration to assist a decision maker in his decision-making
process. This will advance the research in Web-based DSS as depicted in Fig.5.1.

The organization of this chapter is as follows: in Sect.5.2, the problem to be
addressed is outlined by using a case study that highlights the requirements and chal-
lenges for Web-based DSS in an enterprise. In Sect. 5.3, an overview of the proposed
framework for Argumentation-enabled Web-based Intelligent DSS (Web@IDSS) is
given. From Sects. 5.4 to 5.6, each component of the proposed framework is explained
in detail and the ways in which it provides a solution to the problem highlighted in
the case study is discussed. Section 5.7 concludes the chapter.

http://dx.doi.org/10.1007/978-3-319-03949-7_3

5.2 Case Study for Problem Definition 117

Incomplete and/or contradictory
information representation
and reasoning

" Feedback Fourm
Whole Sale Sell
(supplier)

Fig. 5.2 Analyses of the business policies of a supplier and feedback provided by the other users
(companies) by Mr. David

5.2 Case Study for Problem Definition

To explain the problem with an example, consider a scenario where Mr David is a
marketing manager of an enterprise A. He is responsible for formulating and sug-
gesting business strategies to increase sales of the company’s products (existing and
new) and generate revenue for the Chief Executive Officer (CEO) of the enterprise A.
Enterprise A intends to manufacture a new product (say Product B). To increase the
enterprise’s revenue from this project, one of the important aspects that Mr. David
identifies is “the greater the discount that an enterprise A receives from the supplier,
the cheaper the new product”, and negotiation plays an important part in securing
the maximum discount. Mr. David identifies that the materials for manufacturing the
product will be sourced from ‘N’ different suppliers, each of whom offer varying
levels of discount. Mr David would like to select a supplier that may give his enter-
prise the maximum discount and he needs to justify his selection to the CEO of the
company.

To achieve his objective, Mr David needs to analyse the business policies of each
supplier against his company’s requirements along with the feedback provided by the
other users (companies) about the raw materials provided by the suppliers as shown
in Fig.5.2. During this process, Mr. David will come across different challenging
situations such as follows:

118 5 Argumentation-Enabled Web-Based Intelligent

e There might be conflicts between the supplier’s policies and an enterprise A’s
business requirements.

e There may be conflicts within the supplier’s business policies.

e A situation may arise where Mr. David may require some information for decision
making which is not available at the time of decision making.

In order to overcome the above mentioned challenging situations, Mr. David
requires a Web-based DSS that will assist him to overcome these challenges. The
Web-based DSS should have the following functionalities:

(a) an interface to define the requirements in the form of business rules such as
‘Purchase product from supplier only if product feedback is good’ and certain
facts or information to realize those rules;

(b) an interface to download the supplier’s product information and public policies
with details on the possible discount that can be given on their products and
services;

(c) the capability to download feedback or reviews from other users (companies) on
the suppliers’ products from a third party forum such as Amazon;

(d) situations may arise where the business policies of a supplier may be incomplete
or negotiation is required between the supplier and an enterprise A to resolve
conflicting interests. The Web-based DSS should be able to cater for these and
provide a means of resolving these conflicts, with a justified explanation, during
the reasoning process;

(e) the capability to provide a graphical representation of the reasoning process and
the result in order to make them easily understandable by non-technical persons
such as CEOs.

To have such functionalities, a Web-based IDSS is needed that is able to capture
the information outside an enterprise’s boundaries, identify the goals, identify any
conflicts in the information with respect to the goals, resolve these conflicts by
reasoning over them and show the basis of the reasoning by which a conclusion is
reached. The current Web-based DSS are not able to represent, reason and integrate
the information that is required for the abovementioned tasks. Therefore, to address
this challenge, Mr. David’s requirements, which should be incorporated in Web-based
IDSS, are formalized as follows:

e A declarative, logic-based language for specification of the business requirements
of an enterprise.

e The declarative language should have the capability to represent incomplete and
contradictory information (i.e. business rules and facts).

e An inference mechanism that can perform reasoning pertaining to incomplete
and/or contradictory information in the knowledge base.

e Graphical representation of results obtained from the reasoning process to assist
in decision making.

e Justifiable explanation of the results obtained after the reasoning and conflict res-
olution has occurred.

5.2 Case Study for Problem Definition 119

Semantic Web applications layer

bled Web-based 1DSS for over and/or G y Inf

Build-up reasoning chains

[Rete-network based Rute |

e

| Argumentative Reasoning I

i I Conflict Resolution Strategies | -
3 ____ Pypreasonngbgie_____| || |
e _g [Defeasible logic programming (DeLP) Server _|=-| |’
_ Argumentative reasoning module and k ledi module
A logic-based framework to represent, reason and it incomplete and/or dictory inf

Structured/Semantic information on WWW)/ or in an enterprise i.e. Rules in RuleML format, data
in OWL/RDF format

Fig. 5.3 Proposed conceptual framework with highlighted components exploited by Web@IDSS

Assumption

e Enterprise A, the supplier and the feedback forum share a common vocabulary
defined in RDF/XML format and the predicates defined in the vocabulary are used
for the specification of business rules and policies. Therefore, the information
taken into account by the Web-based IDSS is structured information.

To achieve the abovementioned objectives, in the next section, a Web@IDSS
framework is proposed that can represent, reason and integrate incomplete and/or
contradictory information which exists within an enterprise and/or in other enter-
prises to assist the decision maker in the decision-making process.

5.3 Proposed Framework for Argumentation-Enabled
Web-Based IDSS (Web @IDSS)

In this section, the solution for an Argumentation-enabled Web-based IDSS is pro-
posed to represent, reason and integrate incomplete and/or contradictory information
exits within an enterprise and/or in other enterprises. Figure 5.3 represents the pro-
posed framework and consists of three layers as follows:

120 5 Argumentation-Enabled Web-Based Intelligent

1. Information layer
The information layer represents the structured information identified by the
decision maker to be considered during the decision-making process. This infor-
mation may include:

e Business policies of an enterprise that provides different products and services
published on the WWW.

e Feedback of users published on the WWW about the products and services
offered by an enterprise.

2. @IRRI layer

This layer comprises a logic-based framework that enables a Web-based DSS
to deal with information which is potentially incomplete and/or contradictory, and
to process and consider it for decision making. It provides different modules to
represent or translate the information into DeLLP format, perform hybrid reasoning
for arguments construction from underlying information followed by conflicts
resolution and then integrate the information obtained from the hybrid reasoning
to assist the decision maker in the decision-making process. The modules are as
follows:

(a) The Information representation module is responsible for

e the pre-processing of potentially incomplete and/or contradictory infor-
mation, and

e the translation of pre-processed information to DeLLP format and saving
it in the knowledge base.

(b) The Argumentative reasoning module performs hybrid reasoning over infor-
mation saved in the knowledge base. The hybrid reasoning engine performs
two types of reasoning such as:

e data-driven reasoning for arguments construction, and
e goal-driven reasoning for conflicts identification followed by their reso-
lution.

(¢) The Information and knowledge integration module is responsible for
e performing integration of the output of the hybrid reasoning in the form
of a reasoning chain;
e categorization of the reasoning chains based on the types of arguments
they are built on;
e graphical representation of the reasoning chain.

3. Web-based decision support systems (Web-based DSS) layer
This layer consists of Web-based DSS such as Web@IDSS, that exploits the
@IRRI layer and the information layer to achieve its objectives.

Before explaining the working of the proposed framework, in the next sub-section,
several important definitions and concepts are introduced that are pivotal to under-
stand the working of the proposed framework for Web@IDSS.

5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 121

5.3.1 Important Definitions

In this section, the important concepts that encompass syntax and semantics for
DeLP to make it suitable for information representation, reasoning and integration
in Semantic Web applications are defined as follows:

5.3.1.1 DeLP Language

DeLP language is a set ® containing a set of predicates P, a set of functions F,
an infinite set of variables X, a finite set of symbols S, and a set of labels L.
Mathematically, language is defined as follows:

®={P,F X, LS} (5.1)

The language supports two types of negation: strong negation, represented by
the symbol ~ € S to represent contradictory knowledge, and weak negation which
represents negation as failure represented by the symbol not € S which is used to
represent incomplete information.

5.3.1.2 Working Memory

A collection of facts is known as working memory. Considering a set P of predicates
and an infinite set of variables X, a fact is a ground predicate f € P, or a negated
ground predicate ~ f € P. A set of facts, i.e. working memory is represented by
WM. Mathematically, working memory is defined as follows:

WM = {fU~f |f,~f areground predicates} 5.2)

where a ground predicate is a predicate whose input arguments are constant. The
predicate p(a, b) and not p(a, b) are ground predicates. Facts represent the current
state of the world and these provide some sort of evidence as a basis for activating
the rules of inference to infer new facts. If there are no facts in the system, then no
inference rules will be activated.

5.3.1.3 Production Rule

Production rules are rules of the form IF Condition DO Action, where Condition
queries the working memory containing the facts on which the rules operate. For-
mally, a production rule A is of the form: [rule identifier] [rule body] [type of infer-
ence rule] [conclusion]. Mathematically, a production rule is defined as follows:

[AlVEa (5.3)

122 5 Argumentation-Enabled Web-Based Intelligent

where

e [rule identifier]: A € L is used as the identifier or name of the production rule;

e [rule body] V is a pattern in the body of a production rule .A. A pattern is a tuple
of predicates i.e. V C P, and defined as V = (C;, ..., Cj) where 0 < i < j, C; is
a predicate in a pattern;

e [conclusion] « is a predicate whose instances could be intuitively considered to be
added to the working memory when the rule is fired during argument construction
defined later on; and

e [type of inference] I indicates the inference that associates the rule body with the
conclusion.

The production rule represents a reasoning step for a from a tuple of predicates
{C1, ..., Cy}. The language supports two types of inferences in production rules.
One is strict inference represented by the symbol — € S and the second is defeasible
inference represented by the symbol --» € S. Strict inference is used to represent
information about which there is no ambiguity, whereas defeasible inference is used
to represent ambiguous or tentative information. Strong negation is allowed at the
conclusion of the rule, whereas weak negation is allowed only in the body of the
rule.

5.3.1.4 Rule Base

The set of production rules is known as the rule base, denoted by R. Mathematically,
the rule base is defined as follows:

R = {production rule} 5.4

5.3.1.5 Strict Production Rule

Strict production rules are the rules in the classical sense: when a rule’s conditions
are true, apply the rules and reach a conclusion. These rules are used to represent an
inference mechanism from conditions to conclusion without any doubt. Most of the
time, these rules are constructed from terms such as ‘should be’, ‘must be’, ‘must’
and their opposite terms. Formally, a production rule S € R is a strict production
rule of the following form if the rule is based on strict inference.

[S]V = « (5.5)

The strict production rule S € R is used to represent truthful information which
contains no ambiguity. Consider rule r1 which states that ‘if a person is innocent and
has no crime history then he is not guilty’ and rule r2 which states that ‘if someone is
not guilty, then he is free’. These rules can be represented as strict production rules
thus:

5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 123

e [rllinnocent(X), hasCrimeHistory(X, no) —~ quilty(X)
e [r2]not guilty(X) — free(X).

5.3.1.6 Defeasible Production Rule

Defeasible rules or refutable rules are those that link the set of conditions to a con-
clusion with a certain doubt, and therefore could be refuted by contrary evidence.
This type of rule is indicated by words like ‘usually’, ‘presumably’, or ‘sufficiently’
or we could intuitively feel that it is refutable. Formally, a production rule D € R is
a defeasible production rule of the following form:

[D]V --» « (5.6)

A defeasible production rule D € R is used to represent tentative information which
may change in due course. Consider rule r3 that states: ‘assume that someone is
innocent whenever it has not been proven that he is guilty’ and rule r4 that states:
‘generally, do not cross the railway tracks if it cannot be proven that no train is
coming’. These rules can be represented as defeasible production rules as follows:

e [r3]not guilty(X) --+ innocent(X).
e [rd]not ~ train_is_coming --+~ cross_railway_tracks(X).

5.3.1.7 Argumentative Production System

An argumentative production system is defined as a system that allows representation
and execution (i.e. reasoning) of both strict and defeasible production rules. It consists
of a knowledge base (i.e. consisting of working memory and a rule base) and a
hybrid reasoning engine. An argumentative production system is formally defined
as follows:

P=WM,R,Args) 5.7

e where P € L is a label to identify the argumentative production system.

e WM represents the initial collection of facts in the argumentative production
system.

e R is the set of rules comprising both strict and defeasible production rules in the
argumentative production system.

e Args is an active argument set which contains arguments generated during the
argument construction phase, which will be defined later. Prior to the argument
construction phase, the Args is an empty set.

124 5 Argumentation-Enabled Web-Based Intelligent
5.3.1.8 Consistency

A set of rules is consistent if and only if there are no two rules with mutually contra-
dictory predicates as their conclusion. Mathematically, this is represented as follows:

Reonsis = {Vr,s € Rlif r = athen s ¥ ~ a} (5.8)

5.3.1.9 Arguments Construction

Arguments construction is defined as a recursive process which involves the inter-
pretation of production rules with function match WM, R) € F which looks for
rules from a rule base whose pattern matches the facts in WM and, on a successful
match, executes the production rule which then adds the rule’s conclusion i.e. ground
predicate, to the working memory and instance of the production rule i.e. argument,
to the argument set i.e. Args. Such a reasoning process is also known as data-driven
reasoning. The argument construction process continues until all the matched rules
in the knowledge base have been processed. This interpretation of a production rule
is also known as the ‘firing of a rule’.

VreR{Ver,aer,r ¢&Args|if match(V, WM)
then WMr = WM U o and Args = Args U 1’} (5.9)

where o is the ground predicate and ' is the interpreted rule by function match
WM, R) € F. The Args contains interpreted rules or fired rules known as
arguments.

5.3.1.10 Strict Argument

A fired production rule in an argument set with strict inference is called a ‘strict
argument’. Mathematically, this is represented as follows:

[S161,.... 00— « (5.10)

where

1. § € L is the label of the argument

2. «vis a ground predicate known as the ‘claim of an argument’. Function claim(S)
€ F returns the claim of a given argument S.

3. (; is a ground predicate known as the premise of an argument, supporting the
claim of an argument. Function premises(S) returns a set of argument premises
S.

4. — represents a strict inference from the set of premises to the claim.

5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 125
5.3.1.11 Defeasible Argument

A fired production rule in an argument set with defeasible inference is called a
‘defeasible argument’. Mathematically, this is represented as follows:

(D151, ..., By - « (5.11)

where

1. D € L is the label of an argument.

2. «is a ground predicate known as the ‘claim of an argument’. Function claim(D)
€ F returns the claim of a given argument D.

3. (; is a ground predicate known as the premise of an argument, supporting the
claim of an argument. Function premises(D) returns a set of argument premises
D.

4. --» represents defeasible inference from the set of premises to the claim.

To avoid any fallacies in the argumentation process, the following restrictions on
strict and defeasible argument structure are considered:

1. A premise in an argument cannot simultaneously be a conclusion i.e. 3;¢a.
2. A negation of a claim cannot become the premise of a claim i.e. 3; #~ «.
3. There is no redundancy of a premise in a pattern. 3; # 3; where 1 < i,j <n.

5.3.1.12 Counter-Argument

An argument r counter-argues argument s if and only if claim(r) is inconsistent with
claim(s) or claim(r) is inconsistent with the premises(s). Mathematically, a counter-
argument is defined as :

Vr, s {if (\Consistent (claim(s), claim(r))) then r { s} (5.12)

where ¢ is used to represent the counter-argument relationship between two argu-
ments.

If argument r counter-argues argument s such that claim(r) is inconsistent with
claim(s), it is called a ‘direct counter-argument’, and if argument r counter-argues
s such that claim(r) is inconsistent with premises(s), then it is called an ‘indirect
counter-argument’. Mathematically, direct and indirect counter-arguments are rep-
resented as follows:

Vs, r{if |Consistent(claim(s), claim(r)) then s Qgirect T} (5.13)
Vs, r{if |Consistent(claim(s), premises(r)) then s Qindirect ¥} (5.14)

A strict rule cannot counter-argue another strict rule because of the definition of
consistency.

126 5 Argumentation-Enabled Web-Based Intelligent
5.3.1.13 Static Defeat

Under certain conditions, an argument r defeats its counter-argument s by establish-
ing its priority over its counter-argument. Such defeat is known as a ‘static defeat’.
The conditions for static defeat are as follows:

e If a strict argument counter-argues a defeasible argument, the strict argument
always defeats a defeasible argument. In other words, the strict argument has
higher priority than the defeasible argument. Mathematically, this is represented
as follows:

Vd, s € Args{if s, d are strict and defeasible arguments, respectively | s Qgirectd (5.15)
then s > d} ’

e If a defeasible argument directly counter-argues a strict argument, then the strict
argument defeats the defeasible argument. Mathematically, this is represented as
follows:

Vs,d € Args{if s,d are strict and defeasible arguments, respectively | d Qgirect S (5.16)
then s > d} ’

5.3.1.14 Dialectical Tree

If an argument A counter-argues argument 3, and no static defeat exists, then a
dialectical tree (as defined by Garcia and Simari 2004) for argument A is constructed
to determine whether argument A defeats argument /5 or vice versa.

Let A be an argument. A dialectical tree for argument A is X (A, h) where h is
claim(A), is recursively defined as follows:

(1) A single node labeled with an argument (.4, h) with no counter-argument is by
itself a dialectical tree for (A, h). This node is also the root of the tree.

(2) Suppose that X (A4, h) is an argument with counter-arguments (A, hy), (A,
hp),...,(Ay, hy), the dialectical tree for (A, h), X (A, h) is constructed by labeling
the root node with (A, h) and by making this node the parent of the root of
dialectical trees for (A1, hy), (A2, hp),....,(A,, hy) ie. £(A, hy), 2(Az, hy),...,
2 (Ap, hy). Figure 5.4 depicts the graphical representation of the dialectical tree.

5.3.1.15 Marking of Dialectical Tree

To identify the priority between an argument and its counter-argument, the dialectical
tree is marked as either defeated or undefeated as shown in Fig.5.5. If the dialectical

5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 127

<<A2, h2>> CcAn, hn>>

Fig. 5.4 Pictorial representation of a dialectical tree

U_(@&m)

D@ﬁ —)D(\)D

Fig. 5.5 Pictorial representation of a marked dialectical tree

tree of an argument is marked defeated, then the argument has less priority over its
counter-argument and vice versa. The marking of the dialectical tree (as defined by
Garcia and Simari 2004) is a two-step process as follows:

(1) Leaves of X(A, h) are U-nodes.

(2) Let (B, q) be an inner node of (A, h). Then (B, q) will be a U-node iff every
child of (B, q) is a D-node. The node (5, q) will be a D-node if it has at least
one U-node as a child.

5.3.1.16 Dynamic Defeat

If an argument r counter-argues argument s and no static defeat exits, then dynamic
defeat is computed. Let X (A, h) be marked dialectical tree for argument A and
2p(B, ~h) is marked dialectical tree for its counter-argument B, then argument A
establishes its priority over its counter-argument 3 known as dynamic defeat. The
dynamic defeat results in the establishment of the priority of an argument over its
counter-argument which is known as a dynamic priority. Mathematically, dynamic
priority is defined as follows:

128 5 Argumentation-Enabled Web-Based Intelligent
Vr,s € Args{if r Os, Ly (r,h), Zp(s,~ h)} thenr > s (5.17)

If an argument .4 has an undefeated dialectical tree i.e. X/ (A, k) and it counter-
argues an argument 3 which also has an undefeated dialectical tree i.e. Xy (B, v~ h),
then neither argument A nor B can establish its priority over the other, resulting in a
blocked situation. Such arguments are referred to as blocking arguments.

5.3.1.17 Sub-Argument

Given an argument set Args, an argument s is a sub-argument of r if and only if
claim(s) C premise(r) and, if there exists say, counter-argument g, then the marked
dialectical tree of an argument s is undefeated and the marked dialectical tree of
argument g is defeated. Mathematically, the condition for a sub-argument can be
represented as follows:

Vr, s, glif (claim(s) C premise(r) and if (s O g) thens > g) thens £ r} (5.18)

where £ used to represent the sub-argument relationship between two arguments.
The sub-argument is a supporting argument and it must have the following char-
acteristics:

1. argument s is consistent w.r.t argument r;
2. There is no premise(s) such that premise(s) C claim(r).

A sub-argument that provides support to another argument results in a chaining of
arguments.

5.3.1.18 Reasoning Chain

An argument A supported by a chain of sub-arguments produces a reasoning chain
Aa = (Ar, ..., Ay) for an argument A. The claim of supported argument A, is
called a ‘result’ of the reasoning chain and the chain of sub-arguments is called a
‘support’ for the result of the reasoning chain. Mathematically, a reasoning chain is
defined as follows:

Vr, s € Args {if (s¢r) then A\ jy = A jy U s (5.19)

where £ is used to represent a sub-argument relationship and A, ;) is used to repre-
sent a reasoning chain with result j. The reasoning chain should have the following
characteristics:

1. The reasoning chain is consistent (i.e., there is no contradiction in the result and
support for the result).

2. There is no defeated argument in a reasoning chain.

3. Two blocking arguments cannot be in the same reasoning chain.

5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 129
5.3.1.19 Strict Reasoning Chain

A reasoning chain is considered to be strict if all the arguments in the reasoning chain
are strict arguments. Mathematically, a strict reasoning chain can be represented as
follows:

Vr,s € A plr, s are strict arguments) (5.20)

This reasoning chain cannot be directly counter-argued by other reasoning chains.
However, this reasoning chain can counter-argue and defeat the rest of the reasoning
chains in an argumentative production system.

5.3.1.20 Defeasible Reasoning Chain

A reasoning chain is a defeasible reasoning chain if all arguments in the reasoning
chain are defeasible arguments. Mathematically, defeasible reasoning chains can be
represented as follows:

vd,f € Mg jpld,f are defeasible arguments) 5.21)

This reasoning chain can counter-argue or can be counter-argued by other reason-
ing chains in an argumentative production system. The defeasible arguments must
be undefeated and consistent within the defeasible reasoning chain.

5.3.1.21 Mixed Reasoning Chain

A reasoning chain is a mixed reasoning chain if it has a least one defeasible and
one strict argument. Mathematically, a mixed reasoning chain can be represented as
follows:

Vr,s € A j){3r that is adefeasible argument, 3s that is a strict argument} — (5.22)

5.3.1.22 Dependent Reasoning Chains

A reasoning chain is dependent upon other reasoning chains if there is at least one
common sub-argument. If the common argument is a strict argument, then areasoning
chain is known as a strictly dependent reasoning chain; if it is defeasible argument,
then it is weakly dependent and medium dependent if it contains more than one
common argument and those common arguments include both strict and defeasible
arguments. Mathematically, this is represented as follows:

if Ay jy 0 A ,n) # D then Ny jy and A\ py are dependent reasoning chains.
(5.23)

130 5 Argumentation-Enabled Web-Based Intelligent

5.3.2 Working of the Proposed Framework for Web@IDSS

In this section, the working of the proposed framework for Web@IDSS that can
perform argumentative reasoning over incomplete and/or contradictory informa-
tion which exists within an enterprise and/or in other enterprises is discussed and
considered in decision making. As mentioned in Sect.4.4.1, the proposed frame-
work uses the DeLP language to represent incomplete and/or contradictory informa-
tion in a declarative format, and uses a hybrid reasoning engine to reason over it.
Figure 5.6 presents a flowchart diagram of the working of the proposed framework.
The sequence of steps in the proposed framework are as follows:

1. Information representation in DeLLP format

The Web@IDSS, located at the Web-based DSS layer, takes into account the
structured information located at the information layer. To achieve this objective,
Web@IDSS exploits the functionality of the information representation module
of the logic-based framework located at @IRRI layer. This module helps the
Web@IDSS to translate the structured information in RuleML format into DeL.P
rules (also called as production rules) and saves them in the rule base i.e. R.
It also translates the structured information in OWL/RDF format to DeLP facts
and saves them in the working memory i.e. WM. Two translators have been
developed to achieve this task as follows:

e RuleML translator
It translates the information specified in RuleML format to DeLP format.
In most cases, the business rules of an enterprise are specified in RuleML
format.
e OWL/RDEF translator
It translates the information specified in OWL/RDF format to DeLLP for-
mat. In most cases, the customer opinions, reviews/feedback about products
and services offered by an enterprise are specified in OWL/RDF format.

2. Argumentative production system to perform hybrid reasoning
Once the knowledge base (i.e. rule base containing DeLP rules and working
memory containing DeLP facts) is formed, Web@IDSS exploits the functionality
of the argumentative reasoning module of the logic-based framework to reason
over the information present in the knowledge base. This process involves the
following steps:

e Arguments construction using data-driven reasoning.

As mentioned previously, the information in the knowledge base may
be potentially incomplete and/or contradictory (representing different view-
points against a single issue) and current Web-based DSS are not able to
perform reasoning over it. As a result, they can’t assist the decision maker in
the decision-making process. So, there is need to perform reasoning over
such information and transform it into a format that is easily understood
by the decision maker and can assist him in the decision-making process.

http://dx.doi.org/10.1007/978-3-319-03949-7_4

5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 131

Fig. 5.6 Flowchart illustrating steps performed by Web@IDSS for information representation,
reasoning and integration

132

5 Argumentation-Enabled Web-Based Intelligent

In the proposed framework, this objective is achieved by transforming the
incomplete and/or contradictory information in the knowledge base into a
set of arguments. These arguments represent the different viewpoints in the
underlying information in a declarative format. In the proposed framework,
the construction of arguments involves two steps:

— Compilation of DeLP rules in the form of a Rete network.
— Perform data-driven reasoning by introducing certain DeLP facts from the
working memory to the Rete network.

Data-driven reasoning results in the construction of a set of arguments sup-
porting different conclusions. Two types of arguments which are constructed
during this phase are strict arguments and defeasible arguments.
Conflict identification and resolution using goal-driven reasoning

Once the construction of arguments is complete, arguments which have
counter-arguments are identified in order to resolve the conflicts between them
and determine which one of them is defeated. To achieve this objective, two
types of defeats are defined:

— static defeat: a strict argument defeats a defeasible argument;

— dynamic defeat: when there are two defeasible arguments in conflict with
each other, then goal-driven reasoning is performed that uses a ‘generalize
specificity’ conflict resolution strategy to resolve the conflict between them.
During this process, a dialectical tree is constructed against the defeasible
arguments that are in conflict and afterwards, each dialectical tree is marked
as defeated or undefeated. These marked dialectical trees are used by the
argumentative production system to resolve the conflict. The marked dialec-
tical tree is then saved for future use, such as to provide an explanation for
conflict resolution.

3. Information integration

Once the conflicts have been resolved, Web@IDSS exploits the functionality

of the information and knowledge integration module of the logic-based frame-
work to integrate the information obtained from hybrid reasoning and display it
to the decision maker. This process involves the following steps:

e Construction of reasoning chains

Once the hybrid reasoning is finished and conflicts have been resolved
between arguments, the arguments need to be linked in the form of a chain.
This module provides the functionality to link these arguments (supporting
a conclusion) in the form of a chain know as a reasoning chain. During the
construction of reasoning chains, different arguments supporting different con-
clusions result in the construction of different reasoning chains.

e Categorization of reasoning chains

After the construction of reasoning chains, the next step performed by
this module is to classify them on the basis of arguments upon which they are

5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 133

built. The four categories defined in the proposed framework to categorise the
reasoning chains are as follows:

— strict reasoning chains: composed of strict arguments only;

— defeasible reasoning chains: composed of defeasible arguments only;

— mixed reasoning chains: composed of at least one strict argument and one
defeasible argument;

— dependable reasoning chains: composed of at least one argument that is
shared with another reasoning chain.

e Graphical representation of reasoning chains
The last functionality performed by this module is the graphical represen-
tation of reasoning chains for the decision maker. This will assist the decision
maker in understanding the conclusion of the reasoning process and how that
conclusion has been reached. Additionally, such representation of a reason-
ing process will help the decision maker to easily communicate the results to
non-technical people such as the CEO of an enterprise.

In the next sections, the working of each of these steps defined in the proposed
framework for Web@IDSS will be discussed in detail.

5.4 Information Representation in DeLLP Format

As discussed in Sect.4.4.1, the DeLP language is used in the proposed framework to
represent incomplete and/contradictory information in Web@IDSS. The structured
information is in RuleML and OWL/RDF format. There is need for a translation
mechanism to translate that information into DeLP format and use it in the decision-
making process. The proposed framework addresses this drawback with the help of
the information representation module of the logic-based framework located at the
@IRRI layer. There are two ways to represent information in Web@IDSS as shown
in the Fig.5.7. They are:

1. Information pre-processing
During information pre-processing, the structured information is parsed and
translated to DeLP format by using either the RuleML or OWL/RDF translator
and is saved in the knowledge base.
2. Web-based form to specify DeLP rules and facts
There may be some situations where there is no existing information available
to be translated into DeLLP format. In such cases, the decision maker has to specify
the production rules by himself, depending on the objectives he wants to achieve.
In the proposed framework, this objective is achieved by using a Web-based form
to specify the DeLP rules and facts from scratch and saving them in the knowledge
base.

In the next-subsections, each of these will be discussed in detail.

http://dx.doi.org/10.1007/978-3-319-03949-7_4

134 5 Argumentation-Enabled Web-Based Intelligent

Information on WWW

Fig. 5.7 Flowchart illustrating steps for information representation in Web@IDSS

5.4.1 Information Pre-processing

Information processing is carried out with the help of the following two translators:

(a) RuleML translator

RuleML supports different rule types via the ‘implies’ element and allows
them to be named using the ‘oid’ element. RuleML syntax has been extended to
express defeasible rules and superiority relations (Bassiliades et al. 2004; Pham
et al. 2008). A ‘@ruletype’ attribute has been added to the ‘implies’ element,
allowing it to take one of three values: strict rule, defeasible rule or defeater.
For the translation of rules to DeLP format, the RuleML translator performs the
following steps:

e It loads the RuleML file (XML format) and starts its paring from the root
element.

e It iterates through all the rules specified in the RuIML file and by looking at
‘@ruletype’ tag, it classifies them as either strict production rules or defeasible
production rules. If ‘@ruletype’ is absent, then it considers that production
rule as strict.

e Then, it takes up each parsed production rule and starts building production
rules in DeLLP format. Information with the ‘Rel’ tag is captured as a predicate

5.4 Information Representation in DeLP Format 135

D sl.fxsd"
,M.u w3, Drg!‘zo LSchema-instan,
xsi: schenal_or_x(ion- ‘hrep: /fwww. ruleml. org/0. m}xsd hup //debii. curtin. edu. au/~naeem/delp-valid-xsd. xsd">
<Assert>
<mp1 ies rulﬁype-"defeasib‘l erule”s <oid-<Ind>d9</Ind></oid>

,.fhe -r.a(om-\:kel>pur:hase-q.-’ae'l><var>x<fvar:-<var>v<.-’\rar>4amm>

-, ads

il <body>
<atom><Rel>shopper</Rel><var>X</var></atom>
<Atom><Rel>product</Rel><var>y</var></Atom
<Atom><Rel>havefeedback</Rel><var>F</vars><varsy</vars</atom
-r.al:owo--\:P.el>revicm!atedne'lmar:-:qvar»-cvarﬂ-(fvarﬂn\:w

<f:n€ 1es

<Implies ruletype="defeasiblerule">

<oi ><:nd>d1-cf:nd><{oi >

-\‘.M:OMREI >givediscount</Rel><var>x</vars></Atom-

</hea
-d:lodw
<Atom=<Rel>shopper</Rel><varsx</vars></Atom-
<Atom=<Rel>purchase</Rel><var>x</var><varsy</vars></Atom- i
</body> .
</Implies>
<Imp ie‘s’ m::ﬂl q;ds::?sib'leru‘le >
<oid=<Ind>d, n oids
<head>

<Ne
; ga:mne‘l>given‘iscountdne‘l:{var:—kfvarx}ntm
</ Nes
q’head:- e
<body>

m:Mebsl‘wpgerdke‘l:-(Var:-xq'varx.-’nw
<Atoms<Rel>purchase</Rel><vars>X</vVars<varsy</vars</Atom
<ATOM>
<Neg>
m‘nﬂ >advancePayment</Rel><varsx</vars<varsv</vars
<,
(,{Atum

jes>

=/T
<:m-?ies rule\:yg defusib'l erule”>

a
Qh dtom-(RE'l>g'{vmiscnum:(;'kei>—<Var>x¢,l'\far>-<ﬂlto->
ead>
<body>
«to-xae'l>purchas«fhel><Var>x-=Nar><Var>Y¢Nar>-¢fhwm
<Atom><Re] xhogoen /Rel><var>x</Var></atom
q’b i <ATom-<Re]>bulkorder</Rel><Var>X</Var><varsY</vars</Atom-
o
Ties>
<Im ies ruletype="defeasiblerule”s>
-ooa:n:l:nd> -/ Inds</oid>

<Neg>

<ATom<Rel>gsTFree</Rel><vars>y</var></Atom=
</Neg>

dy-q:tomnel>produc:<!ae1><var;-v<fvar:-<!atal»
atomn »eshop</Rel><var>Z</Vars></Atom-
<ATOM>
<Ne
<Ee‘|>pa(kaging<me1><var>v<fvar><var>z<fvar>
<fatom>
</ ies>
<Implies ruletype="strictrule”s
?‘:d;-\:lnd:-sl(frnd:-qoi&

<Atom-<fel>normalDiscount</Rel><var>X</var></Atoms

Fig. 5.8 Business policy of the supplier specified in RuleML format

in the body of the production rule and information with the “Var’ tag is captured
as the subject and object variables in a predicate. If a parsed production rule
head contains the ‘Neg’ tag, this is captured with the symbol ‘~’ in the rule’s
conclusion. It this tag is found in the body of the parsed rule, it is captured
with the symbol ‘not’ in the rule’s body.

e After translation of each parsed rule to DeLP format, the production rules are
then saved in the knowledge base.

The RuleML translator also saves other information about the RuleML file such
as file URL, the number of rules translated, the owner/creator of rules etc., in a
database for their profiling.

136 5 Argumentation-Enabled Web-Based Intelligent

Table 5.1 Description of the supplier’s production rules translated by the RuleML translator

Rule label Description

d2 If a shopper does not pay in advance for the product, he may not receive a
discount

d3 If a shopper purchases a product in bulk, he may be given a discount

d4 If a product needs packaging in the shop, then GST may apply

ds5 If a product does not need packaging, then GST may not apply

s2 If GST applies and the shopper has been given a discount, then he must
receive an ordinary discount

sl If there is no information about GST, then the shopper must be given an
ordinary discount

d7 If the shopper is given a normal discount, then he may be eligible to receive a
platinum discount

d8 If the shopper plans to pay in installments (i.e. slow to pay) then he may be

not be given a platinum discount

To explain with an example, consider the case study mentioned in Sect. 5.2 where
Mr. David has to download and consider the business policies of a supplier in
the decision-making process. Figure 5.8 shows the representation of the business
policy of a supplier in RuleML.

The Web@IDSS downloads and translates the supplier’s policies specified in the
RuleML to DeLP rules and saves them in the rule base. [llustration 5.1 represents
the set of DeLP rules extracted from the supplier’s policy RuleML file.

[d2]shopper(X), product(Y), not advancePyament(X,Y) --+~ giveDiscount(X)
[d3]1shopper(X), purhcase(X, Y), bulkOrder(X,Y) --+ giveDiscount(X)
[d4]eShop(Z), packaging(Y . Z) --+ gstFree(Y)

R = [d5]eShop(Z), not packaging(Y, Z) --+~ gstFree(Y) Hlustration (5.1)
[s2]gstFree(Y), giveDiscount(X) — ordinaryDiscount(X)

[s1]not gstFree(Y), giveDiscount(X) — normalDiscount(X)

[d7]shopper(X), normalDiscount(X) --+ platinumDiscount(X)

[d8]shopper(X), normalDiscount(X), plansSlowToPay(X) - -+~ platinumDiscount(X)

‘R, in Illustration 5.1, represents the rule base comprising strict and defeasible
production rules. The rules with labels ‘s1’ and ‘s2’ are strict production rules,
whereas the rest are defeasible production rules. Table 5.1 provides a description
of each production rule in a natural language format.
(b) OWL/RDF translator
Translation of OWL/RDF information into DeLP facts using the following
steps:

(a) OWL/RDF information is transformed with the help of the SWI-Prolog RDF
Parser (Wielemaker 201 1) into an intermediate triple formati.e. rdf (Subject,
Predicate, Object).

5.4 Information Representation in DeLP Format 137

rdf:about
productlD rd
productPrice
produc

sd; integer
£1

ductID>
productPrice>

g

i
[

[

[

[

[:

I </rdf:
|cecommerc
[

[

[

[

[

[

[

[

about="#feedback">
edComments>i have used it and found it very well </

<
econmerce
e:reviewedRate>good</ecommerce:reviewedRate>
logy:Revie:

OWL/RDF translator
/.;) Intermediate format — DelP format
| irdfirawMaterial, type, Product) | Q)r_m_:l uctirawhaterial) 1

| 1
:rdf[rawMatelial, productiD, 1265} :pdeuctID[lawMaterial. 1265},
|

1

1

1

1
1 :
\rdfirawMaterial, productPrice, 236.3) | |productPrice{rawMaterial, 236.3),
] I I

1

1

1

1 : 4
irdfir A |, productName, r ial) Iproduc i jal),
I
feedback d ‘I have used it and I

! LFevi reviewedComments (feedbackl have used it and found it very
\found it very well’) \well)
I 1

(rdf{feedbac k.reviewedRate, good’)
i

1

1

1

1

1

1

1

1

1

1

I

| — !
T E o |
1

1

| i

ireviewedRate(feedback good) i

] 1

1

]

1 haveFeedback{rawMaterial feedback)

Fig. 5.9 Pictorial representation of the process for translation of information in OWL/RDF format
to DeLP facts

(b) The intermediate triple format is further processed to transform the RDF
statements into Predicate(Subject, Object) format.

(c) The facts in Predicate(Subject, Object) format are then saved in the knowl-
edge base. The type attribute is further translated using the following for-
mula: type(X, C)—C(X)

To explain with an example, consider the case study mentioned in Sect.5.2,
where Mr. David has to consider the customer’s reviews/feedback about a sup-
plier’s product in his decision-making process. Figure 5.9 details the informa-
tion representing the customer reviews/feedback about the supplier’s product in
RDF/XML format (represented as step 1). The OWL/RDF translator translates
this information into an intermediate format (represented as step 2) and then into
DeLP format (represented as step 3).

After translation of the customer’s feedback, the OWL\RDF saves the DelLP
facts in the working memory. [llustration 5.2 shows some of the DeLP facts that
Mr. David will consider during the process of decision making.

eShop(BigW), product(rawMaterial)
WM = 1 havefeedback(rawMaterial, feedback), t Hllustration (5.2)
reviwedRate(feedback, good)

Table 5.2 provides a description of each DeLP fact shown in Illustration 5.2.

138 5 Argumentation-Enabled Web-Based Intelligent

Table 5.2 Description of reviews/feedback by customer about supplier’s production translated by
OWL/RDF translator

DeLP fact Description

eShop(BigW) The eShop i.e. supplier providing the product, is BigW
product(rawMaterial) The product is raw material
havefeedback(rawMaterial, feedback) The raw material has some feedback
reviwedRate(feedback, good) The feedback is good

[lecalhost 493/ argument. %
« C [locathost

Argumentation Enabled Intelligent Web based DSS

Name Type Premises Conchasion
= |[oeteastie rute =] [_=] [Favefesdbackiv.zy =] [[[purchasey =]
And
I - “ui\uwwd?ah{z.!uud) | = I
And
[=A[zrepperca) |
Nawe PohcwRdes
[d1] shoppper(X), purchase(X.Y) — — > gveDiscomt(X) Edit Delete
[49] shoppper(X), product(Y), b Aback(Y Z), reviewedRate(Z good)— — > puhcase(X.Y) Edn Delete

DefebelPRas
Woimgmemory

: o i v o e eter]
2 product{washing)achine) Delete
3 bullcOrder{dmvid, waskingachine) Delete

Fig. 5.10 Web-based form for the decision maker to specify DeLP rules and facts

5.4.2 Web-Based Form to Specify DeLP Rules and Facts

Another way by which information can be represented in DeLLP format is by using the
Web-based form of Web@IDSS as shown in Fig. 5.10. The Web-based form provides
a GUI for the decision maker to define/edit DeLP rules and facts and saves them in the
rule base and working memory, respectively. Using this form, Mr David can define
his business requirements in the form of rules. For example, Mr David would like to
purchase a product from a supplier who has good feedback from its customers. The
following defeasible production rule captures his requirement in DeLP format:

o [d9]shopper(X), product(Y), havefeedback (Y, Z), reviewedRate(Z, good) --+
purchase(X,Y)

5.4 Information Representation in DeLP Format 139

Similarly, he wants to receive a discount on the purchase he may make. The following
defeasible production rule captures his requirement in DeLP format:

e [d1]shopper(X), purchase(X,Y) --» giveDiscount(X).

Additionally, he also wants to specify that he may purchase the product in bulk. In
DeLP language, such a parameter can be represented as a facti.e. ‘bulkOrder’ using
Web@IDSS form and saves it in the knowledge base.

5.5 Argumentative Production System to Perform
Hybrid Reasoning

Once the required information for decision making has been captured in the knowl-
edge base, then the next step is to perform reasoning over it. To address this objective,
there is need for a hybrid reasoning methodology that can reason over the captured
information and resolve any conflicts that may arise during the reasoning process.
Web@IDSS achieves this objective with the help of an argumentative production
system! that exploits the functionality of the argumentative reasoning module of
the logic-based framework located at @IRRI layer. Figure5.11 illustrates the steps
performed by the argumentative production system for hybrid reasoning over the
captured information. These steps are as follows:

1. Arguments construction using data-driven reasoning
This step is further divided into the following two sub-steps:

e The first step is the compilation of production rules in the rule base in the form
of a Rete network. In the proposed framework, the Rete network has been
extended to represent incomplete and/or contradictory information as Rete
nodes in the Rete network. Additionally, the single production rule execution
strategy of the Rete algorithm has been extended to execute all production
rules that are activated during data-driven reasoning.

e The second step is to perform data-driven reasoning over underlying informa-
tion by passing the facts in the working memory through the Rete network.
This results in the activation of production rules. The activation of production
rules is followed by the firing of production rules. However, if the activated
production rules’ body represents some predicate starting with the symbol
‘not’, then before its firing, a query is sent to the DeLP server to compute its
truthfulness by querying the knowledge base. If the query returns yes, then
the production rule is fired, otherwise the activated production rules will be
removed from the activated rule set. The firing of production rules results
in the addition of new facts to the working memory and the instance of the
production rule is stored as an argument in the ‘argument set’. Data-driven

! In Sect.3.3.1, some important definitions which will help the reader to understand the design and
working of the argumentative production system are introduced.

http://dx.doi.org/10.1007/978-3-319-03949-7_3

140 5 Argumentation-Enabled Web-Based Intelligent

©

Rule base consists of strict production
g OE IeON) s rules , defeasible production rules and
3 Semantic interoperability rules
VDL Vi

Load the knowledge
base in DelP server

Query results No therefore
remove the production rule
from set

¥

Arguments construction using data-driven Reasoning

DelP server query the knowledge base
No—- to determine its support from
knowledge base
g
g No 0
2
% Query results Yes, then fire the
] production rule
3 > |
g Rules
firing. Add
o Set of strict and
l Stop arguments construction defgasible srpuments
Pull rules to perform reasoning on
Active set of arguments
@ s
= Identify an argument who have counter-arguments
g
=
7
=
& Argumentative Reasoning to
4 compute static defeat
E If yes, then
e move to
5 Mext conflict
ERS
&
TR
m @ No DelP Server
c
-]
B I pecific-
8 Argumentative Reasoning to Genary Mf g Stme::m
£ compute dynamic defeat
3 Save marked dialectical trees
=
o
o

Argument set with establish preferences over arguments and Their
counter-arguments

Fig. 5.11 Flowchart illustrating steps performed by Web@IDSS during hybrid reasoning

5.5 Argumentative Production System to Perform Hybrid Reasoning 141

reasoning is a recursive process that continues until no further production rules
are activated.

2. Conflicts identification and their resolution using goal-driven reasoning
Conflicts identification and their resolution is a recursive process consisting
of the following three steps:

e Identification of an argument and its counter-argument.

e If static defeat exits, then the conflict between argument and its counter-
argument is resolved by establishing a preference between them and control
flows back to the first step.

o In the case where static defeat does not exist between an argument and its
counter-argument, then dynamic defeat is computed by using the ‘Generalize
Specificity’ conflict resolution strategy. The outcome of the dynamic defeat
computation is the marked dialectical trees of an argument and its counter-
argument that helps the argumentative production system to establish the pri-
ority between them. Once the priority has been established, the arguments are
saved again in the argument set.

In next sub-sections, each of these steps will be discussed in detail.

5.5.1 Arguments Construction Using Data-Driven Reasoning

The construction of arguments from the knowledge base is a two-step process as
follows:

1. Compilation of production rules in the form of a Rete network.

The arguments construction process starts with the compilation of the pro-
duction rules present in the rule base as a Rete Network. A general Rete Network
(Cirstea et al. 2004) consists of a network of nodes, each of which represents one
or more predicates that make up the body of the production rules as shown in
Fig.5.12. The three important nodes are as follows:

e One-input nodes: These nodes are located at the first level of the Rete network
and the facts from the working memory enter the Rete network through them.
The different one-input nodes are as follows:

— AssertCondition: The claim of a production rule is represented using this
type of node.

— RetractCondition: The claim can also be represented using this type of node
if it may need to be removed later on from the working memory. In simple
words, if contradictory information appears during the reasoning process,
the general Rete network allows the removal of contradictory facts from the
working memory in order to keep it consistent.

— PositiveCondition: The predicates that make up the body of a production
rule are represented using this type of node.

142

Working memory

5 Argumentation-Enabled Web-Based Intelligent

premiseX(david)

l

One input nodes

Two input nodes

Terminal nodes

premiseX(X) premiseY(Y) premiseZ(Z) premiseA(A)

Value of X Value of 2

Value of ¥ Value A

+

Value of Xand ¥ Value of Aand Z

Y

premise(X,Y) premise(A,Z)

Fig.5.12 Simplified representation of the compilation of production rules in a general Rete network

Variable x
Variable y
Variable z

Production

new Variable("x");
new Variable("y");
new Variable("z");

prodl = new Production();

prodl.LHS.Add(new PositiveCondition("", “"shopper", x));
prodl.LHS.Add(new NegativeConditionNAF("", "advancePyament", y));
prodl.RHS.Add(new AssertCondition(y, “"giveDiscount™, x));

Fig. 5.13 Code snippet that shows a production rule with NegativeConditionNAF

e Two-input nodes: These are second level nodes in the Rete network and facts
coming from the one-input node flow through to the two-input node and results
in their activation.

e Terminal nodes: These are the last level nodes, each of which represent the
claim of a production rule. When all the incoming two-input nodes to the
terminal nodes are activated, it results in the activation of terminal nodes and
the instantiated claim represented by a terminal node is added to the working

memory.

5.5 Argumentative Production System to Perform Hybrid Reasoning 143

Not
One input nodes bulkOrder(X,Y) shopper(X) product(Y) || aqvancepayment(X,¥) Purchase(X,Y)

¥ r

— = = ----"h" ¥
Two input nodes (+) ¢+) (+)-
v k. P
Terminal nodes giveDiscount(X) ~giveDiscount(X) giveDiscount(X)
L 4l— ¥
Add production rule d3 Add production rule d2 Add production rule d1 to
to Activated Rule Set to Activated Rule Set Activated Rule Set

Fig. 5.14 Compilation of production rules in the form of a Rete network in Web@IDSS

In the proposed framework, the general Rete network has been extended to rep-
resent incomplete and/or contradictory information as Rete nodes in the network.
The extensions made to one-input nodes are as follows:

e AssertCondition: The one-input nodes have been extend to represent contra-
dictory information by introduction strong negation i.e. ~, as an attribute in
the AssertCondition class.

e NegativeConditionNAF: A new type of one-input node was introduced to
indicate incomplete information represented by the symbol ‘not’.

To explain the compilation of production rules in a Rete network, consider the
rule base shown in [llustration 5.1 where defeasible production rules d2 and d3 are
translated from the supplier’s business policies and defeasible production rule d1
is specified by Mr. David using the Web-based form of Web@IDSS as shown in
Fig.5.10. Figure 5.14 shows the compilation of these three production rules in the
form of a Rete network. The predicates that make up the body of the production
rules such as bulkOrder(X, Y), shopper(X) etc are represented as one input node
and the claim of the production rules d1, d2 and d3 are depicted as terminal nodes.
The nodes in between the one-input node and the terminal nodes are represented
as two-input nodes.
. Perform data-driven reasoning over underlying information by passing the facts
in the working memory through the Rete network
Once the production rules are compiled in the form of a Rete network, the
next step is to perform data-driven reasoning by passing the facts in the working
memory through the one-input nodes in the Rete network. This process, called

144 5 Argumentation-Enabled Web-Based Intelligent

Matching Phase Execution Phase
I

Loads the
knowledge base

il

’ e Query
* (Query to DelP Server | WX

. ‘cantal Fi
Gopinest 5 i o Fire rule
Pattern-matching Pf}d\llﬂﬂ
id) Pattern- hing —H rules set Fm"llr“::n“_‘m"ﬁ‘w"'m Nlesl; *
uct{rawMaterial)
shopper(david], productirawMaterial),
i ~giveDiscountidavid)
S Argumentsset

Working memory

Fig. 5.15 Data-driven reasoning by passing the facts through the Rete network in Web@IDSS

data-driven reasoning, results in the activation of production rules called argu-
ments (as defined in Sect.5.3.1.9). Figure 5.15 illustrates the two important steps
that are performed recursively during data-driven reasoning for the construction
of arguments.

These steps are as follows:

e Matching phase: During this phase, pattern-matching is performed between
the DeLP facts and the one input-node. If a pattern is matched, then the one-
input node is activated and it forwards the value of the attributes to the two-
input node. When two input-nodes receive the attribute value from all the
incoming input nodes, it results in the activation of the respective terminal
node.

e Execution phase: Once the terminal node is activated, the respective produc-
tion rule is added to the Activated Rules set. The activation of production rules
is followed by the firing of production rules. However, if the activated pro-
duction rule’s body represents a predicate starting with the symbol ‘not’, then
before it is fired, a query is sent to the DeLP server to compute its truthfulness
by querying the knowledge base. If it returns true, then the production rule
is fired. Otherwise, it will be removed from the activated rules set. Firing the
production rule will:

— add a new fact to the working memory, and
— add an instance of the rule to the argument Set.

5.5 Argumentative Production System to Perform Hybrid Reasoning 145

Rete network Rete network
‘ Inference ¢ Argurl_'lentative
Identify single mechanism Fire rule production systems
rule
' New fact
New fact Fire rule | S
| Arguments Set
N |

Fig. 5.16 Comparison of a standard Rete with a single rule execution strategy (left) with the
extended Rete without the strategy (right)

It is important to note that in a general Rete network, data-driven reasoning
works only on the production rules specified by an individual and the reasoning
engine executes only one rule during a one match-execute cycle. If two rules
are activated, the reasoning engine fires a production rule which has a higher
preference specified by an individual at compilation time. In the proposed
framework, the single rule execution strategy of the Rete network is removed
as shown in Fig.5.16. Therefore, if two contradictory production rules are
activated, both will fire and instances of both production rules i.e. arguments,
are added to the argument set.

Data-driven reasoning will stop when no more production rules are activated.
A key issue to be noted here is that such new inferred facts may conflict with
the existing knowledge base. The purpose is to retain contradictory information
instead of eliminating it, in order to obtain better insight when deciding on busi-
ness strategies.

To explain the working of data-driven reasoning for argument construction over
underlying information as shown in Fig.5.15, consider the following production
rule in the rule base:

e [i]shopper(X), product(Y), not advancePayment(X,Y) --» ~ give
Discount (X)

Further consider a working memory that contains facts such as shopper(david)
and product(Y). During the matching phase, pattern-matching is performed
in the Rete network between the DeLP facts and one-input nodes that com-
prise the body of the production rules. On successful matching, the production
rule is activated and is added into the Activated Rules set. Once the matching
phase is finished, then execution phase is started. During the execution phase,
if the activated production rule represents some incomplete information such

146 5 Argumentation-Enabled Web-Based Intelligent

as that represented by production rule i i.e. not advancePayment(X, Y), then
the predicate representing the incomplete information is passed as a query (i.e.
not advancePayment(X, Y)) to the DeLLP server. The DeLP server loads the
knowledge base and executes the query on it. The current knowledge base does
not have any information regarding advanced payment, therefore the DeLLP query
returns true and production rule ‘i’ is fired. The firing of the production rule
adds the derived fact (e.g. derived predicate ~ giveDiscount(david) as shown
in Fig.5.15), into the working memory and the instance of the production rule
(e.g. an argument shopper(david), product(rawMaterial), notadvancePyament
(david, rawMaterial) --» giveDiscount(david) as shown in Fig.5.15), is added
to the arguments set.

Algorithm 5.1 demonstrates data-driven reasoning over underlying information
by passing the facts in the working memory through the Rete network. It takes in the
production rules specified in DeLP format and results in the construction of a set of
arguments.

Algorithm 5.1: Argument construction using data-driven reasoning

Data: DeLP rules and DelP facts.
Result: Arguments.
1 initialization;
2 Construct Rete network alpha and beta nodes etc; initialize Rete network;
3 bool constructArgument <« true;
4 ActiveRules ActiveRuleSet;
5 ActiveArgumentSet ArgsSet;

6 repeat

7 | foreach rule re € KnowledgeBase do

8 if match(re, VWM)=true then

9 ‘ ActiveRuleSet < ActiveRuleSet U re;
10 else

1 | constructArgument < false;

12 end

13 | end

14 | foreach re € ActiveRuleSet do

15 ‘ WM < WMU claim(r) ; ArgSet <— ArgSet + interpretationOf (re);
16 | end

17 until constructArgument < true;

To explain argument construction using data-driven reasoning, consider an argu-
mentative production system that captures information identified in the case study
discussed in Sect. 5.2. This argumentative production system is named a WEBIDSS.
In light of the definition of an argumentative production system in Sect.5.3.1.7,
WEBIDSS can be defined as follows:

WEBIDSS = (WM, R, Args) (5.24)

5.5 Argumentative Production System to Perform Hybrid Reasoning 147

where

shopper(david), eShop(BigW), product (rawMaterial)
WM = { havefeedback(rawMaterial, feedback), Ilustration (5.3)
reviwedRate(feedback, good), bulkOrder(david, rawMaterial)

[s2]gstFree(Y), giveDiscount(X) — ordinaryDiscount (X)
[s1]notgstFree(Y), giveDiscount(X) — normalDiscount(X)
[d1]shopper(X), product(Y), purchase(X,Y) --+ giveDiscount(X)
[d2]shopper(X), not advancePayment (X, Y) --+~ giveDiscount(X)
[d3]shopper(X), purchase(X, Y), bulkOrder(X,Y) --» giveDiscount(X)
R— [d4]eShop(Z), packaging(Y, Z) --+ gstFree(Y) Hlustration (5.4)
[d5]eShop(Z), not packaging(Y,Z) --+~ gstFree(Y)
[d7]shopper(X), normalDiscount(X) --» platinumDiscount(X)
[d8]shopper(X), normalDiscount(X), slowToPay(X)

--»~ platinumDiscount (X)

[d9]shopper(X), product(Y), havefeedback(Y ,Z)
reviwedRate(Z, good) --+ purchase(X,Y)

AT S D et Illustration (5.5)

The W.M represents the working memory of WEBIIDSS and contains DeLLP facts
as shown in Illustration 5.3. R represents the rule base of WEBIDSS and contains
production rules in DeLLP format as shown in Illustration 5.4. Args represents the
arguments set of WEBIDSS and contains no argument as shown in Illustration 5.5.

The WEBIDSS captures all the information i.e. feedback about the supplier’s
production and Mr. David’s facts in VWM, the business policies of the service provider
and Mr. David as production rules in R, and an empty arguments set. Given the
definition of consistency in Sect. 5.3.1.8, in WEBIDSS the set {s1, s2} is consistent,
whereas set {d1, d2} is inconsistent. It is important to note that production rule ‘d1’
is defined by Mr. David and argument ‘d2’ is a production rule representing the
supplier’s policy.

After arguments construction using data-driven reasoning over information in
WEBIDSS, it results in the following:

WEBIDSS = WM, R, Args) (5.25)
where WM’ represents the new state of the working memory after the addition of the

new inferred facts. The argumentative production system with the updated working
memory and populated with the argumentation is as follows:

148

WM =

Args =

Ilustration 5.8 represents the set of arguments constructed during the arguments
construction phase. From Illustration 5.8, it can be seen that argument ‘s1’ is a strict
argument and the rest of the arguments i.e. d1, d2, d3, d5, d7 and d9 are defeasible
arguments. These arguments represent the viewpoints of the supplier against Mr.
David’s business requirements in relation to whether to give him a discount and if so,
how much. To explain with help of example, consider the following three defeasible

5 Argumentation-Enabled Web-Based Intelligent

shopper(david), eShop(BigW), product(rawMaterial)
havefeedback (rawMaterial, feedback),

reviwedRate(feedback, good), bulkOrder(david, rawMaterial)
purchase(david, rawMaterial), ~ gstFree(rawMaterial),
giveDiscount(david), ~ giveDiscount(david),

normalDiscount(david), latinumDiscount (david)

[s2]gstFree(Y), giveDiscount(X) — ordinaryDiscount(X)

[s1]not gstFree(Y), giveDiscount(X) — normalDiscount(X)
[d1]shopper(X), product(Y), purchase(X,Y) --+ giveDiscount(X)
[d2]shopper(X), not advancePayment(X,Y) --+~ giveDiscount(X)
[d3]shopper(X), purchase(X, Y), bulkOrder(X,Y) --» giveDiscount(X)
[d4]eShop(Z), packaging(Y ,Z) --+ gstFree(Y)

[d5]eShop(Z), not packaging(Y, Z) --+~ gstFree(Y)

[d71shopper(X), normalDiscount(X) --+ platinumDiscount (X)
[d8]shopper(X), normalDiscount (X), slowToPay(X)

- -+~ platinumDiscount (X)

[d9]shopper(X), product(Y), havefeedback(Y , Z)

reviwedRate(Z, good) - -+ purchase(X,Y)

[d1]shopper(david), purchase(david, rawMaterial)

--» giveDiscount(david)

[d2]shopper(david), not advancePayment(david, rawMaterial)

- -+~ giveDiscount(david)

[d3]shopper(david), purchase(david, rawMaterial),

bulkOrder(david, rawMaterial) --+ giveDiscount(david).

[d5]eShop(BigW), not packaging(BigW , rawMaterial) --+

~ gstFree(rawMaterial)

[s1]notgstFree(rawMaterial), giveDiscount(david)

— normalDiscount (david)

[d7)shopper(david), normalDiscount (david) --+
platinumDiscount (david)

[d9]shopper(david), product(rawMaterial),

havefeedback(rawMaterial, feedback),

reviewRate(feedback, good) —-+ purchase(david, rawMaterial)

arguments from Illustration 5.8:

AAAAAAAAAAAAAAAAAAAAAAAAAA Mllustration (5.6)

AAAAAAAAAAAAAAAAAAAAAAAA Hlustration (5.7)

Hllustration (5.8)

e [d1]shopper(david), product(rawMaterial), purchase(david, raw
Material) --» giveDiscount(david)
e [d2]shopper(david), product(rawMaterial), not advancePayment(david,
rawMaterial) --» ~ giveDiscount(david)

5.5 Argumentative Production System to Perform Hybrid Reasoning 149

e [d3]shopper(david), purchase(david, rawMaterial), bulkOrder(david,
rawMaterial) --+» giveDiscount(X)

Argument ‘d1’ represents Mr. David’s viewpoint on receiving a discount. It states
that he purchases the raw material, and as a result, he expects a discount. However,
argument ‘d2’ from the supplier states that Mr. David purchased the product but did
not make a payment in advance, so he may not receive a discount. However, another
arguments ‘d3’ from the supplier states that Mr. David purchased the product and
placed a bulk order, so he may receive a discount.

5.5.2 Conflicts Identification and Their Resolution Using
Goal-Driven Reasoning

Once the argument construction process is complete, the conflicts identification and
resolution phase is initiated. This is a recursive process that consists of the identifi-
cation of an argument and its counter-argument and resolving the conflict between
them. During this process, the following two types of defeats are computed in order
to resolve conflicts between arguments:

1. Static defeat
As defined in Sect.5.3.1.13, a static defeat exits between an argument and
its counter-argument if a strict argument defeats its defeasible counter-argument.
This results in the establishment of the priority of a strict argument over a defeasi-
ble counter-argument. To explain static defeat with help of an example, consider
an argument s1 from Illustration 5.8 as follows:

o [sl]not gstFree(rawMaterial), giveDiscount(david) --+ normalDiscount
(david)

Further consider a defeasible argument that states that if Mr. David is eligible for
a discount, then he may not be given a normal discount as he is a bad customer.
The defeasible argument is represented as follows:

o [d11]badCustomer(david), giveDiscount(david) --+» ~ normalDiscount
(david)

Argument ‘s1’ is now in conflict with argument ‘d11’, however, there exits sta-
tic defeat between them because a strict argument always defeats its defeasible
counter-argument. Therefore, Mr. David will receive a normal discount.
2. Dynamic defeat by using the Generalize Specificity conflict resolution strategy

to resolve conflict

If static defeat does not exist between an argument and its counter-argument,
the argumentative production system resolves the conflict between them by com-
puting dynamic defeat. To achieve this objective, the argumentative production
system takes into account the DeLLP built-in General Specificity conflict resolution
strategy (Garcia and Simari 2004). In this strategy, an argument (itself or with

150 5 Argumentation-Enabled Web-Based Intelligent

the help of other arguments) is considered specific over its counter-argument if it
requires less information to reach the final result. To understand the working of
this strategy, consider the following two arguments:

(a) [plr2]executiveManager(X) --+ approveTravel(X) which states that if X
is an executive manager, then he may approve travel.

(b) [plrl]executiveManager(X), universityOfficer(Y), authorise
(X,Y) --»~ approveTravel(X) which states that if X is an executive man-
ager and he authorises Y who is a university officer to approve travel, then
X may not approve travel.

Considering the General Specificity conflict resolution strategy, the < plrl, ~
approveTravel > argument is more specific than the < p1r2, approveTravel > if
the following two conditions hold:

(1) for all strict rules i.e. H and facts F, H C F, if approveTravel(jon) is derived
defeasibly and no strict derivation of approveTravel(jon) exists, then the
defeasible derivation of ~ approveTravel(jon) exists, and

(2) there exists H C F such that on basis of H drives defeasibly ~ approve
Travel(jon) and there is no strict derivation of it and it does not drive defea-
sibly approveTravel(jon).

Using General Specificity, the conflict between each argument and its counter-
argument is resolved and the priority is saved in the knowledge base. The next
step is to build the dialectical trees (as defined in Sect.5.3.1.14) in order to iden-
tify whether this priority is supported by the entire knowledge base of the argu-
mentative production system (in simple words, is there any argument that may
counter-argue the preferred argument). This objective is achieved as follows:

e The claim of a preferred argument is submitted to the DeLP server (along with
its preference over the counter-argument) and in return, it gives the marked
dialectical tree (as defined in Sect.5.3.1.15) of an argument. Similarly, the
same procedure is performed for its counter-argument.

e Once the argumentative production system has the marked dialectical trees
for both the argument and its counter-argument, an argument is preferred
over its counter-argument if the marked dialectical tree of an argument is
undefeated and the marked dialectical tree of counter-argument is defeated.
In the case where the marked dialectical tree of both the argument and its
counter-argument are undefeated, those arguments are considered blocking
arguments and the system needs human intervention to resolve the conflict
between them.

Algorithm 5.2 provides the detailed working of dynamic defeat using the General
Specificity conflict resolution strategy to resolve conflicts by taking into account
Algorithm 5.3 i.e. building and marking dialectical trees. The marked dialectical
tree for argument d1 with undefeated status is represented as Xy (d1, giveDis-
count(david)).

5.5 Argumentative Production System to Perform Hybrid Reasoning 151

Algorithm 5.2: Dynamic defeat using the General Specificity conflict resolution
strategy

Data: Arguments set.

Result: Preference establishment
1 initialization;
2 foreach arg; in ArgSet do

3 if arg;Qargi;+ then
4 Ystatus(argi, hi) < BuildDialecticalTree(arg;, h;);
5 Ystatus(@rgiv1, hiv1) < BuildDialecticalTree(argit1, hi+1);
6 if Xp(argi,hi) and Ly (argis1,hi+1) then
7 ‘ argi4+1 > arg;,
8 end
9 if Xy (argi,h;) and Lp(argi+1,hiy1) then
10 \ arg; > argi+1;
11 end
12 if Xp(arg;, hi)andXp(argit1, hi+1) then
13 ‘ arg; <> argiy1
14 end
15 end
16 end

Algorithm 5.3: Building and marking of a dialectical tree
Data: (A, h)
Result: X5 (A, h)
1 Let C < get all counter-arguments of (A, h); if C # ¢ then
2 | while there is no y(A;, hi) € C do

3 for every argument in C do
4 Let (A;, b)) <
minimal non — labelled element BuildDialecticalTree(A;, h;) getting
result as X (A;, h;);
5 Put X (A;, h)€ (A, h);
6 end
7 if there exist some Ly (A;, h;) then
8 | Set Zp(A, h)
9 else
10 | Set Sy (A, h)
11 end
12 | end
13 else

14 | X(A h) = (A, h);
15 | Set X (A, h) < defeated
16 end

To explain conflict identification and resolution using goal-driven reasoning with
the help of an example, consider Illustration 5.8, where argument ‘d1’ counter-

152

5 Argumentation-Enabled Web-Based Intelligent

Count:

Y

B

[d1] giveDiscount(david)

[d2] ~giveDiscount(david)

Counter-argumes

[d3] giveDiscount(david)

Fig. 5.17 Pictorial representation of arguments and their counter-arguments from Illustration 5.8

d1is more specific d2
Therefore, it preferred d1

—»

[d2] ~giveDiscount(david)

[d1] giveDiscount(david)

d3 is more specific d2
Therefore, it is preferred d2

[d3] giveDiscount(david) e

[d2] ~giveDiscount(david)

Fig. 5.18 Pictorial representation of preference between arguments using Generalize Specificity

argues argument ‘d2’, and argument ‘d3’ counter-argues argument ‘d2’, as shown in

Fig.5.17.

The WEBIDSS resolves the conflicts between the arguments and their counter-
arguments using the General Specificity conflict resolution strategy. This task

involves the following two

steps:

(a) Identify conflict and establish the priority between an argument and its

(b)

counter-arguments.

In this step, an argument e.g. d2, which is more specific than its counter-
argument e.g. d1, defeats its counter-argument and results in priority establish-
ment represented as follows: d2 > d1, as shown in Fig.5.18. Similarly, argument
‘d3’ defeats argument ‘d2’ which results in its priority establishment as follows:
d3 > d2.

Building and marking of dialectical tress to obtain the priority status of an
argument over its counter-argument by considering the entire knowledge base.

During this phase, the claims of argument d1 i.e. giveDiscount(david) and
the claims of its counter-argument d2 i.e. ~giveDiscount (david), along with the
priority between them is sent to the DeLP server to perform goal-driven rea-
soning and it returns their marked dialectical trees. The construction of marked
dialectical trees is defined in Sect.5.3.1.15. Figure 5.19 shows a marked dialec-
tical tree for argument ‘d1” and ‘d2’. In the figure, an argument is represented
in the short form e.g. [d1]giveDiscount(david) where [d1] is the label of the
argument and giveDiscount (david) is the claim of the argument.

5.5 Argumentative Production System to Perform Hybrid Reasoning 153

U (d1, giveDiscount(david)) D (d2,~giveDiscount(david))

D (d2,~giveDiscount{david)) ...

u

(d3, giveDiscount(david)) U (d3, giveDiscount(david))

Fig. 5.19 Pictorial representation of undefeated marked dialectical tree for argument d1 (left),
defeated marked dialectical tree for argument d2 (right)

It is evident from the figure that the marked dialectical tree for argument ‘d1’
is undefeated and the marked dialectical tree for argument ‘d2’ is marked as
defeated in the tree. Therefore, argument d1 with the undefeated marked tree
is preferred over argument ‘d2’ which has a defeated marked dialectical tree. It
is important to note that in the undefeated marked dialectical tree for argument
‘d1’, argument ‘d2’ is marked as defeated. However, before the construction and
marking of dialectical trees (as shown in Fig. 5.18), argument ‘d2’ was preferred
over argument ‘d1’. However, during this step, argument ‘d2’ is attacked by
argument ‘d3’. Argument ‘d3’ is more specific than argument ‘d2’, therefore,
‘d3’ is preferred over argument ‘d2’ (as shown in Fig.5.18). The preference
of argument ‘d3’ over ‘d2’ results in the revival of argument ‘d1’. Therefore,
in simple words, argument ‘d3’ supports argument ‘d1’ to withstand the attack
of argument ‘d2’. As a result, the marked dialectical tree for argument ‘d1’ is
undefeated.

Once the marked dialectical trees are computed, argument ‘d1’ with the unde-
feated marked dialectical tree is preferred over its counter-argument ‘d2’ with
the defeated marked dialectical tree. Such dialectical analysis of arguments helps
decision makers such as Mr. David to understand that even though he may not
have paid in advance (i.e. represented as argument [d2]shopper(david), product
(rawMaterial), not advancePayment(david, rawMaterial) --+~ giveDiscount
(david)), by placing the bulk order (i.e. represented by argument [d3]shopper
(david), purchase(david, rawMaterial), bulkOrder(david, rawMaterial) --»
giveDiscount (X)), he may be offered a discount.

5.6 Information Integration

Once the argumentative production system has performed hybrid reasoning over the
underlying information, the next step is to integrate the results of hybrid reasoning
and display the results to the decision maker in a graphical format to assist him in the

154 5 Argumentation-Enabled Web-Based Intelligent

)

Arguments set with established preferences between arguments
and counter-arguments

Select an argument who is not sub-
argument of any other argument

Claim(A)

Search for

Next conclusion Argument supporting a

Conclusion

I— Reasoning chain |€—

Search for

Construction of reasoning chains

Yes, then
sub-argument x
= % add to
No
¥

Save reasoning chain

Categorization of reasoning chains

3
Q Graphical representation of reasoning chain

Fig. 5.20 Flowchart illustrating steps performed by Web@IDSS for information integration

decision-making process. To achieve this objective, Fig. 5.20 illustrates the following
important steps in the proposed framework for Web @IDSS to integrate information:

1. Construction of reasoning chains
During this step, the arguments are linked together in the form of a reasoning
chain. Such reasoning chains help to link the initial information that triggers the
reasoning process to reach the final conclusion. It also explains the important
steps/information derived during reasoning to reach the final conclusion.

5.6 Information Integration 155

2.

Categorization of reasoning chains

Reasoning chains represent a decision supported by an argument or chain
of arguments. Depending on the nature of argument/s supporting the decision,
the argumentative production system can categorise a reasoning chain either as
strict, defeasible, mixed or dependable. Such categorization of reasoning chains
helps the decision maker to identify the strength/weakness of the information
supporting the final decision.
Graphical representation of a reasoning chain

During this step, the reasoning chain is depicted in a graphical format provide
the decision maker with more easily comprehendible results. The graphical rep-
resentation of results also helps him to easily communicate the results to higher
authorities who may be non-technical people.

In the next subsections, each of these steps will be discussed in detail.

5.6.1 Construction of Reasoning Chains

The first step in information integration is the construction of reasoning chains. This
process involves the following steps:

1.

all sub-arguments with undefeated dialectical trees are linked together as a rea-
soning chain. This process will continue until all possible arguments are linked
to form a reasoning chain;

. the top argument i.e. conclusion of the reasoning chain is called the ‘result’ of

the reasoning chain, and the chain of arguments supporting the top argument are
called to support the conclusion;

. ensure the reasoning chain is consistent (i.e., there is no contradiction in the result

and support for the result).

Algorithm 5.4 provides the working of the construction of a reasoning chain by

Web@IDSS.

Algorithm 5.4: Construction of a reasoning chain

1
2
3

® N S A

9
10
11

Data: (A, h)
Result:)‘(.A,h)
Let S < get all sub-arguments of (A, h);
if S # ¢ then
foreach (A;, h;) € S do
if noCounterArgument(A;, h;) or Ly(A;, h;) then
BuildReasoningChain((A;, h;)) ;
Put AM(A;, h;) € (A, h);
end
end
else
| Aam = (A, hy;
end

156 5 Argumentation-Enabled Web-Based Intelligent

Result of the reasoning chain (47, platinumDiscount{david)) @

A

I
Support for the result @ !
(s1,normalDiscount(david))

() ®

(dS,~gstFree(rawmaterial)) (d3, giveDiscount(david)) (d1, giveDiscount({david))
A

rd
\ 4

! s
[3u(d3 giveDiscount(david)) |, /" [Zud1giveDiscount(david)) |
A F
\ {f
(d9,purchase(david,rawmaterial))

—— Strict Arguments
————— - Defeasible Arguments

[] Marked dialectical tree

Fig. 5.21 Pictorial representation of mixed reasoning chain generated from arguments show in
Illustration 5.8

To explain the construction of a reasoning chain, Figure 5.21 depicts a graphical
representation of a reasoning chain constructed from the arguments shown in Illus-
tration 5.8. The reasoning chain is divided into two parts, namely, the result of the
reasoning chain i.e. platinum discount for Mr. David, and support for the result i.e.
supporting information that backs the decision to give a platinum discount to Mr.
David. By using such a graphical representation, Mr. David can identify that

e he may receive a discount by placing a bulk order (i.e. [d31shopper(david), purchase(david,
rawMaterial), bulkOrder(david, rawMaterial) --+ giveDiscount(X) and is depicted as lin F]g 521),

e he can identify that the raw material he needs are not GST free, so as a result, he
may be given a normal discount (i.e. [silnot gsiFree(Y), giveDiscount(X) — normalDiscount(X)
and it is depicted as 1, 2 and 3 in Fig.5.21);

e lastly, he can identify that if he receives a normal discount, there is a chance he
may receive a platinum discount as well (i.e. [d7]shopper(david), normalDiscount(david) --»
platinumDiscount (david) S depicted as 3 and 4 in Flg 521)

As mentioned in Sect.5.3.1.18 where the formal definition of a reasoning chain
was provided, it was pointed out that a reasoning chain should adhere to the following
characteristics:

5.6 Information Integration 157

1. The reasoning chain should be consistent (i.e., there is no contradiction in the
result and support for the result). Therefore, for example, giveDiscount(david)
and ~ giveDiscount(david) will not belong to one reasoning chain, but each
one of them can belong to different reasoning chains and those reasoning chains
represent alternative paths or choices.

2. There is no defeated argument in a reasoning chain.

3. Two blocking arguments cannot be in the same reasoning chain.

5.6.2 Categorization of Reasoning Chains

A reasoning chain represents a set of small decisions linked to support the final
conclusion. Depending on the nature of the arguments that are constructed during the
reasoning process, the reasoning chains can be classified into the following different
categories:

e Strict reasoning chain
Such reasoning chains represent a decision process which cannot be chal-
lenged, even when new arguments are introduced into the argumentative produc-
tion system.
e Defeasible reasoning chain
Such reasoning chains represent decisions which can be challenged by the
introduction of new arguments in argumentative production systems.
e Mixed reasoning chain
Such reasoning chains have less weak points compared to defeasible reasoning
chains which may be challenged by the introduction of new arguments in the
argumentative production system which may result in a different conclusion.
e Dependent reasoning chain
A reasoning chain is called dependent if it shares information with other rea-
soning chains. Such shared information points provide an alternative path in the
decision-making process. If such information points are challenged by the intro-
duction of new arguments in the argumentative production system, then the con-
clusions may change dramatically. Figure 5.22 shows two reasoning chains A3
and A(y4 j) sharing a common argument i.e. (s3, g).

To explain the categorization of reasoning chains with help of an example, consider
a reasoning chain categorized as a mixed reasoning chain by WEBIDSS, and as
depicted in Fig.5.21. Such categorisation of a reasoning chain will help Mr David
to identify the weak points (defeasible arguments) providing support to the overall
conclusion. If new information arises later on, it may result in the defeat of those
defeasible arguments, leading to different conclusions. For example, if he does not
purchase in bulk, he will not only lose the opportunity to receive a discount, it will
result in his failure to receive a normal discount and eventually a platinum discount.

158 5 Argumentation-Enabled Web-Based Intelligent

{54.11
(i3, hl

o
\ {12 e)

(s1,a) (s2,b)

Fig. 5.22 Pictorial representation of dependent reasoning chains A3,y and A4, j)

—
localkost M52 arguement - %
- € | [locathost:2493/argumentation/reasaningChains 1 aspx H =

Argumentation Enabled Intelligent Web based DSS

Import Rubes | Import Data | Define Rules & Data
Fiker) All reasoning chains @ Mixed Reasoning chains ' Strict Reasoning chains ' Defeasible reasoning chains £ Dependent Reasoning chains

[Perform Argumentative Reasaning Query the Knwoledge Base

s i

‘ 9 purchase(david.ravaterial)

R T

Fig. 5.23 Graphical representation of the reasoning chain generated by Web@IDSS

5.6.3 Graphical Representation of a Reasoning Chain

The last functionality performed by the information and knowledge integration mod-
ule of the logic-based framework is the graphical representation of reasoning chains.
To explain with help of an example, consider Fig. 5.23 which represents the graphical
implementation of a reasoning chain depicted in Fig.5.21. The important features of
the graphical representation of a reasoning chain are as follows:

e The reasoning chain is represented as an inverted tree.

e An argument is represented in short form e.g. [s1]normalDiscount(david) where
[s1] is the label of the argument and normalDiscount(david) is the claim of the
argument.

5.6 Information Integration 159

e The facts are depicted as oval shapes, the arguments are depicted as rectangular
shapes. The defeasible inference is depicted with a dotted arrow and strict inference
as a straight arrow.

Such graphical representation helps Mr David to understand the whole reason-
ing process that results in a conclusion i.e. plantinumDiscount(david). He can easily
identify the weak points (represented as defeasible inference) in a reasoning process
where, if new information arises, this may result in the retraction of existing infor-
mation, eventually leading to different results.

The graphical representation of the reasoning process takes into account the busi-
ness policies of a supplier i.e. BigW, and the customer’s feedback on its products in
the decision-making process. In order to formulate a strategy for product B, Mr David
has to perform the same activity with the rest of the suppliers in order to identify the
supplier who may offer a maximum discount. As a result, he will obtain ‘n’ number
of reasoning chains, each of which provides a different degree of discount under
different conditions. By going through the graphical representations of the reason-
ing chains, Mr David can easily identify a supplier who may offer him a maximum
discount considering his business requirements and the conditions with more strict
rules. The graphical representation of the reasoning process will also help him to
communicate his decision to the enterprise’s CEO about why and how he reached
the decision to select a particular supplier for raw material for the development of a
new product.

5.7 Conclusion

In this chapter, the major shortcomings of the existing Web-based DSSs are addressed
i.e. inability to represent and handle incomplete and/or contradictory information
exists within an enterprise and/or in other enterprises. This is particularly important
for those enterprises who take into consideration the information available on the Web
for timely and accurate decision support. To overcome the limitations, the syntax and
semantics of the DeLP language to represent, reason and integration information in
Semantic Web applications is defined. A conceptual framework for ‘Argumentation-
enabled Web IDSS’ is proposed and its workings are described in detail with the help
of a case study.

In Chap.3, I outlined certain research objectives that need to be addressed in
order to support argumentation in Semantic Web applications. Some of the objectives
have been addressed in this chapter and how they can be applied in Semantic Web
applications for decision making when underlying information is inconsistent and
incomplete are as follows:

e A methodology for incomplete and inconsistent information representation

— A rule-based declarative language i.e. defeasible logic programming (DeLP)
was selected for incomplete and/or inconsistent knowledge representation on
the Semantic Web. DeLLP allows information representation i.e. specifications

http://dx.doi.org/10.1007/978-3-319-03949-7_3

160 5 Argumentation-Enabled Web-Based Intelligent

or preferences, that can be taken into account by the Web-based DSS and con-
sidered in the reasoning process to produce customized results for the decision
maker.

— A RuleML translator that translates the information defined in the RuleML to
DeLP format was proposed. Such translation enables the exploitation of infor-
mation which already exists on the Semantic Web specified in RuleML format.

— An OWL/RDF translator that translates the information defined on the Semantic
Web in the form of OWL and RDF into DeL.P facts. The translated data is
exploited by the rules during the reasoning process.

e A methodology for an argumentation driven-reasoning engine to reason over
incomplete and inconsistent information

— A hybrid reasoning engine to reason over information represented in DeL.P
format was proposed. The hybrid reasoning engine performs two types of rea-
soning: firstly, data-driven reasoning for argument construction and goal-driven
reasoning for conflict identification between arguments and resolution.

— A methodology to resolve conflicts among arguments by using the DeLLP built-in
Generalize Specificity conflict resolution strategy was proposed.

e Proposed a methodology for Information Integration

— A mechanism to integrate the information being produced by different
argumentation-driven hybrid reasoning engines was proposed and its graphical
representation was provided to the decision maker to enhance their understand-
ing of the reasoning process and results.

References

Antoniou G, Bikakis A (2007) Dr-prolog: a system for defeasible reasoning with rules and ontologies
on the Semantic Web. IEEE Trans knowl Data Eng 19(2):233-245

Bassiliades N, Antoniou G, Vlahavas I (2004) Dr-device: a defeasible logic system for the semantic
web. In: Principles and practice of semantic web reasoning, Lecture notes in computer science,
vol 3208. Springer, Berlin, pp 134-148

Brodie M (2008a) Understanding our digital universe: unleashing natural forces. In: 2nd IEEE
international conference on digital ecosystems and technologies, Phitsanulok, Thailand

Brodie ML (2008b) The end of the computing era: Hephaestus meets the olympians. In: Paige RF,
Meyer B (eds) Lecture notes in business information processing, vol 11. Springer, Berlin, pp 0-1.
doi:10.1109/DEST.2008.4635099

Cirstea H, Kirchner C, Moossen M, Moreau PE (2004) Production systems and rete algorithm
formalisation. Contrat AO4-R-546 cirstea04d. http://hal.inria.fr/inria-00099850. Last accessed
10/02/2012. http://hal.inria.fr/inria-00099850, rapport de contrat

Garcia AJ, Simari GR (2004) Defeasible logic programming: an argumentative approach. Theory
Pract Log Program 4(1-2):95-138

Grosof B, Gandhe M, Finin T et al (2002) Sweetjess: translating damlruleml to Jess. In: Proceedings
of the internationalworkshop on rule markup languages for business rules on the semantic web
at 1st international semantic web conference, Sardinia, Italy, vol 60

http://dx.doi.org/10.1109/DEST.2008.4635099
http://hal.inria.fr/inria-00099850
http://hal.inria.fr/inria-00099850

References 161

Lee KC, Chung N (2005) A Web DSS approach to building an intelligent internet shopping mall
by integrating virtual reality and avatar. Expert Syst Appl 28(2):333-346

Pham D, Governatori G, Raboczi S, Newman A, Thakur S (2008) On extending RuleML for
modal defeasible logic. In: Bassiliades N, Governatori G, Paschke A (eds) Rule Representation,
Interchange and Reasoning on the Web, Lecture notes in computer science, vol 5321. Springer,
Berlin, pp 89-103

Power DJ (2002) Decision support systems: concepts and resources for managers. Greenwood
Publishing Group, Westport

Power DJ, Sharda R (2009) Decision support systems. In: Nof SY (ed) Springer handbook of
automation. Springer, Berlin, pp 1539-1548

Silverman BG, Bachann M, Al-Akharas K (2001) Implications of buyer decision theory for design
of e-commerce websites. Int J Hum Comput Stud 55(5):815-844

Toni F (2007) E-business in argugrid. In: Veit D, Altmann J (eds) Grid economics and business
models, Lecture notes in computer science, vol 4685. Springer, Berlin, pp 164-169

Vahidov R, Kersten GE (2004) Decision station: situating decision support systems. Decis Support
Syst 38(2):283-303

Wielemaker J (2011) SWI-Prolog RDF parser. http://www.swi-prolog.org/pldoc/package/rdf2pl.
html

Yao Y, Zhong N, Liu J, Ohsuga S (2001) Web Intelligence (WI) research challenges and trends
in the new information age. In: Web intelligence: research and development, Lecture notes in
computer science, vol 2198. Springer, Berlin, pp 1-17

http://www.swi-prolog.org/pldoc/package/rdf2pl.html
http://www.swi-prolog.org/pldoc/package/rdf2pl.html

	5 Argumentation-Enabled Web-Based Intelligent Decision Support System (Web@IDSS)
	5.1 Introduction
	5.2 Case Study for Problem Definition
	5.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS)
	5.3.1 Important Definitions
	5.3.2 Working of the Proposed Framework for Web@IDSS

	5.4 Information Representation in DeLP Format
	5.4.1 Information Pre-processing
	5.4.2 Web-Based Form to Specify DeLP Rules and Facts

	5.5 Argumentative Production System to Perform Hybrid Reasoning
	5.5.1 Arguments Construction Using Data-Driven Reasoning
	5.5.2 Conflicts Identification and Their Resolution Using Goal-Driven Reasoning

	5.6 Information Integration
	5.6.1 Construction of Reasoning Chains
	5.6.2 Categorization of Reasoning Chains
	5.6.3 Graphical Representation of a Reasoning Chain

	5.7 Conclusion
	References

