
Chapter 5
Methods

Abstract This chapter discusses the challenges of drawing causal inferences from
observational data, outlines the rationale behind the choice of statistical models used
to test theory’s implications, and discusses the data.

The first part of the chapter discusses the problems of drawing causal inferences
from observational data. Building on the counterfactual approach to causality, I
discuss the fundamental problem non-experimental research faces when attempting
to draw causal inferences, i.e. unobserved heterogeneity or, in other words, the lack
of an appropriate control group. Techniques of longitudinal data analysis, however,
offer a partial remedy for this problem. I propose to combine the advantages of fixed
effects and random effects regression models by estimating hybrid models (also
referred to as correlated random effects models in the econometric literature).

The second part of the chapter presents the study’s empirical basis. I discuss the
data source, the German Socio-Economic Panel (SOEP) and the operationalization
of the theoretical constructs. The SOEP is a representative, on-going, longitudinal
household survey in Germany. It comprises several subsamples that especially sample
immigrants and is thus particularly suited to investigate immigrant integration. It
encompasses not only a rich set of question-items relating to aspects of immigrant
integration, but also several items relating to transnational involvement, that are visits
to the country of origin, duration of such visits, sending remittances, as well as the
amount remitted.

Keywords Longitudinal analyses · Longitudinal data · Panel data · Fixed effects ·
Random effects · Unobserved heterogeneity · Hybrid models · Correlated random
effect models · SOEP · Germany

The previous chapter was devoted to developing a theoretical model which allows
us, on the one hand, to understand and explain the relationship between immigrant
integration and transnational involvement and, on the other hand, to infer concrete
hypotheses on this relation. The next step now consists of testing the model by inves-
tigating if its hypotheses conform to reality or if they are falsified. As the hypotheses
specify cause and effects, the interest therefore is in drawing causal inferences.
However, drawing causal inference from non-experimental, i.e. observational, data
is a difficult task; some even maintain that it is impossible (Kempthorne 1978). As
Hausman and Wise (1981, p. 365) put it, “[u]nbiased parameter estimates, although
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illusionary, are thought by many researchers to be the primary objective of empirical
analysis in the social sciences.” Whether or not we see this claim to be true, there
are some fundamental problems we have to be aware of when we attempt to draw
causal inferences from observational data. Ignoring these issues will for sure lead to
biased and thus incorrect inferences.

The most fundamental threat to causal inferences in non-experimental research
is endogeneity. In a broad sense, endogeneity is given if we cannot determine con-
sistently what is the cause and what is the effect. This problem may originate from
unobserved heterogeneity, simultaneity, and measurement error. Unobserved het-
erogeneity arises if cases differ with respect to unobserved characteristics that are
correlated with the observed characteristics and the outcome. Neglecting to con-
trol for these characteristics means that any relationship that is found between an
independent and a dependent variable is likely to be biased, because these omitted
variables may determine that relationship. To give a practical example of unobserved
heterogeneity, consider that we are interested in estimating the impact of transna-
tional activities on a migrant’s receiving country language skills. If we estimate this
without controlling other relevant characteristics, such as education, years of resi-
dence, ability, etc. the estimate of the causal effect is likely biased, because these
unobserved characteristics are prone to influence both transnational activities and
language proficiency. The notion of unobserved heterogeneity thus amounts to ob-
servations being conditionally different, i.e. heterogeneous, in terms of unobserved
characteristics in ways that are unaccounted for in the estimation. Unobserved het-
erogeneity is sometimes discussed in a different terminology that is selection bias or
omitted variable bias. Simultaneity, also known as reverse or reciprocal causation,
describes a situation in which the value of the dependent variable in fact causes the
value of the independent variable. In our example, this corresponds to a situation
in which the level of receiving country language proficiency causes transnational
activities. Lastly, measurement error arises if the characteristics we are interested
in are imperfectly measured. The consequences of measurement error are unfortu-
nately not straightforward and depend on the specified statistical model. In a simple
case—in the context of a linear regression—measurement error creates downward
biased estimates. This downward bias is known as the attenuation bias. In nonlinear
regression models, the direction of the bias is not that straightforward. We will pick
up this point at the end of the chapter.

It is quite likely to encounter all of these problems at once in observational data
analysis. While simultaneity cannot be easily solved with tools of data analysis—
one has to rely on a strong theoretical argument to justify the supposed direction
of a relationship—there are methods which to some degree remedy the problem of
unobserved heterogeneity and measurement error. Unfortunately, there is a trade-off
between correcting for measurement error and controlling for unobserved hetero-
geneity. Both problems are severe. One might argue that we always face the problem
of unobserved heterogeneity; no study possibly includes all relevant measures. At
the same time, measurement error is likely, but not necessarily given. Moreover, we
can aim at reducing measurement error by developing better methodology for data
collection, while some unobserved heterogeneity is likely to remain even in face of
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perfect data collection. There are some concepts that we just cannot measure. There-
fore, we can make a cautious claim that unobserved heterogeneity is the bigger of
the two problems; although there are scholars who would disagree with this stance.
Since the choice of methods is very much motivated by these problems, the follow-
ing section will discuss causality and how unobserved heterogeneity threatens causal
inferences. It might appear as a lengthy discussion, but the choice of methods should
be well justified. Far too often, it appears that methods are used without sufficient
reflection on their adequacy.

5.1 Causality

In recent years, the so-called “counterfactual approach to causality” has become very
popular in the social sciences, foremost in economics, and is becoming increasingly
popular also in sociology (Brand and Halaby 2006; Caliendo and Kopeinig 2008;
Gangl and DiPrete 2004; Morgan and Harding 2006; Morgan and Winship 2007).
This approach is mostly attributed to the work of economist Donald Rubin (1973,
1974, 1976, 2005), but others made important contributions to its development, too
(e.g. Heckman et al. 1996, 1998, 1997; Rosenbaum 1999; Rosenbaum and Rubin
1985).

Recall the example from above: We want to assess an immigrant’s receiving
country language skills dependent on her or his transnational activities. In this case,
our dependent variable, language skill level is denoted by Yit for person i at time t.
The individual causal effect is then defined as

δi = Y 1
it − Y 0

it (5.1)

where Y 1
it is person i’s language skill level being transnationally active and Y 0

it the
skill level without being transnationally active and where δi is the individual causal
effect. Clearly, we can never observe both outcomes for a given time-point t. Either a
person is transnationally active or not. This has been called the fundamental problem
of causal inference (Holland 1986, p. 947). Instead, what we can observe is

Yit = Y 1
it If Dit = 1

Yit = Y 0
it If Dit = 0

where Dit is a variable indicating whether the attribute of interest (e.g. transnational
activity) is present (Dit = 1) or not (Dit = 0). If we put it into experimental wording,
Dit is the exposure (or treatment) indicator. It is thus equal to 1 if an individual is
exposed to the cause and 0 if she or he is not exposed (Morgan and Harding 2006,
p. 8). The fundamental problem of causal inference is displayed in Table 5.1

We can only observe one of the potential outcomes. By formally stating this
relationship, we can set up an observation rule, written as (Morgan and Winship
2007, p. 35)

Yit = DitY
1
it + (1 − Dit)Y

0
it (5.2)
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Table 5.1 The fundamental
problem of causal inference.
(Source: Morgan and Winship
2007, p. 35)

Outcome

Y 0
it Y 1

it

Exposure Dit = 0 Observable Counterfactual
Dit = 1 Counterfactual Observable

If Dit = 1, i.e. a person is exposed, then we observe Y 1
it and Y 0

it is unobservable.
If Dit = 0, then we observe Y 0

it while Y 0
it is unobservable. In light of this funda-

mental problem, the question arises if causal inferences are, nevertheless, possible.
Fortunately, they are. To see how, it is best to start with situations in which causal
inferences are almost certainly impossible. Unfortunately, these situations are rather
common. Since one cannot estimate the true individual causal effect, causal effects
are oftentimes estimated by investigating differences in the expected outcomes be-
tween persons. Thus, we shift the attention to aggregate causal effects in a defined
population (Morgan and Harding 2006, p. 8).

E[δi] = E
[
Y 1

it − Y 0
it

]

E[δi] = E
[
Y 1

it ] − E[Y 0
it

]
(5.3)

For the example given above, this is the expected effect of being transnationally active
for all persons from a randomly drawn sample regardless of the treatment status. In
the counterfactual tradition, (5.3) is referred to as the average treatment effect (ATE).
The average treatment effect is a weighted average of two other treatment parameters,
the average treatment effect on the treated (ATT) and the average treatment effect
on the non-treated (ATC), with the last letters referring to ‘treatment’ and ‘control,’
respectively (Brand and Halaby 2006, p. 756; Winship and Morgan 1999, p. 665;
Morgan and Winship 2007, p. 45). The average treatment effect for the treated (ATT)
is given by

E(δ1
i

∣
∣Dit = 1) = E

[
Y 1

it − Y 0
it

∣
∣Dit = 1

]

= E
[
Y 1

it

∣
∣Dit = 1

] − E
[
Y 0

it

∣
∣Dit = 1

]
(5.4)

The superscript 1 in δ1
i indicates that this is the average treatment effect for the

treated. The average treatment effect for the non-treated (ATC) by

E
(
δ0
i

∣
∣Dit = 0

) = E
[
Y 1

it − Y 0
it

∣
∣Dit = 0

]

= E
[
Y 1

it

∣
∣Dit = 0

] − E
[
Y 0

it

∣
∣Dit = 0

]
(5.5)

Here, the superscript 0 in δ0
i indicates that this average treatment effect refers to the

non-treated. The decomposition of the average treatment effect takes the following
form, where π is the proportion of the population which receives the treatment and
1 − π the corresponding proportion which does not

E[δi] = πE
[
δ1
i

] − (1 − π )E
[
δ0
i

]

E[δi] = πE
[
Y 1

it − Y 0
it

∣
∣Dit = 1

] − (1 − π )E
[
Y 1

it − Y 0
it

∣
∣Dit = 0

]
(5.6)
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Plugging (5.4) and (5.5) into (5.6) and rearranging the terms brings about (Morgan
and Winship 2007, p. 45)

E[δi] =
(
πE

[
Y 1

it

∣
∣Dit = 1

] + (1 − π )E
[
Y 1

it

∣
∣Dit = 0

])

−
(
πE

[
Y 0

it

∣
∣Dit = 1

] + (1 − π )E
[
Y 0

it

∣
∣Dit = 0

])

Many approaches to causality do not differentiate between these three possible ef-
fects, the average treatment effect, the average treatment effect on the treated, and
the average treatment effect on the non-treated. And, at first sight, this differentiation
might appear somewhat confusing. But at second sight, it does make a lot of sense
and is of practical importance. Regarding the example from above, it is quite fruitful
to carefully consider what effect we are actually interested in. Are we interested in
the effect of transnational activities on language skills for those who typically are
transnationally active (ATT)? Are we interested in the effect of transnational activi-
ties for those who are typically not transnationally active (ATC)? Or are we interested
in the average effect with regard to both groups (ATE)? In many instances the ATT
(5.4) is the effect of interest. The biggest challenge we face in estimating (5.4) is
evidently the fundamental problem of causal inference. It implies that Eq. (5.4) in
its present form can only be estimated for i �= i. To see why this is a problem, let us
consider the example of a cross-sectional observational study. Imagine we collected
data at t = 0 from a random sample of immigrants living in Germany and we want
to investigate if transnational activities have a causal effect on a migrant’s language
skills. What we want to estimate is (5.4). What we are instead able to estimate is

E[δi] = πE
[
Y 1

it

∣
∣Dit = 1

] − (1 − π )E
[
Y 0

it

∣
∣Dit = 0

]
(5.7)

This between person comparison is called the naive estimator (Morgan and Winship
2007, p. 44). Only under very specific conditions does this estimator provide us with
an unbiased estimation of the causal effect: if the treatment assignment mechanism
is ignorable. What does this practically mean? We can easily imagine situations in
which treatment assignment is not ignorable. In our example, the question would be
whether immigrants who are transnationally active differ systematically from immi-
grants who are not. This is likely to be the case. First, there could be unobserved
characteristics, like a general orientation toward the receiving or the sending coun-
try which concurrently determines whether or not an immigrant is transnationally
active and influence a person’s language skills. Second, it could be that receiving
country language skills determine whether or not a person is transnationally active,
i.e. treatment selection is not independent from the outcome. In both cases we face
an endogeneity problem. The first is caused by unobserved heterogeneity and the
second by simultaneity.

With respect to (5.3), this means that we compare persons that are not comparable,
since they differ in relevant unobserved characteristics. As a result, the estimate
of δi also includes baseline differences in Yit. What we observe as language skill
differences attributed to transnational activities might in reality only reflect baseline
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differences.1 Treatment selection is ignorable if the selection process is independent
from the value of Yit. Which is not given in the case of endogeneity; either Yit is
causing the value of Dit (simultaneity) or there is unaccounted covariation between
Yit and Dit (unobserved heterogeneity). The independence or ignorability assumption
can formally be stated as

(
Y 1

it , Y
0
it

) ⊥ Dit (5.8)

It means that treatment assignment is independent of the potential outcome, as is the
case if Dit is completely random (Morgan and Winship 2007, p. 40). The underlying
logic here is that if treatment assignment is independent from the potential outcome,
then differences between Y 1

it and Y 0
it can be attributed to the treatment, as all other

factors that might influence the potential outcome are balanced over the two groups
(Brady and Collier 2004, p. 32). If exposure is randomly assigned, we can be sure that
all relevant factors are balanced across the treatment and the control group. Yet, in
observational data it is extremely unlikely that all confounding factors are by default
balanced across the treatment and the control group. Nevertheless, if we can identify
and observe possible confounders, we can solve this problem by conditioning on
them. Thus we can achieve a weaker version of (5.8)

(
Y 1

it , Y
0
it

) ⊥ Dit

∣
∣Sit (5.9)

where Sit is a set of observed variables (Morgan and Winship 2007, p. 75). By
conditioning on Sit, we can meet the so-called Conditional IndependenceAssumption
(CIA). It states that after controlling for Sit, the treatment assignment is ignorable.
Although practically this is almost impossible as it is unlikely to identify and measure
all relevant factors—some might be impossible or difficult to measure at all. When
it comes to simultaneity, we have no reasonable means for tackling this problem
with cross-sectional data, simply because we cannot establish causal ordering with
this data. Even with panel data this issue remains problematic as we will see later.
Coming back to the question regarding the validity of the naive estimator, we see
that if the CIA is met, the naive estimator produces an unbiased estimate.

Of course, all these problems could be solved by an experiment. By relying on
random selection into treatment and control group, unobserved characteristics will be
balanced across groups and obviously do not influence treatment assignment. More-
over, in an experiment we can manipulate treatment and thus rule out simultaneity.
The application of experiments is, unfortunately, seldom feasible for research ques-
tions in the social sciences, either due to practical or ethical issues. We just cannot
randomly assign immigrants to a treatment group and a control group, either forcing
them to be transnationally active or to abstain from these activities.

1 Sometimes this is called unit homogeneity assumption (Brady and Collier 2004, p. 29; Rubin
1974), which states that the units used for comparison should be identical to each other in all
relevant characteristics except for the treatment.
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5.2 From the Counterfactual Approach to Regression Analysis

Still, causal inferences from observational data are possible. Two modeling ap-
proaches are able to deal with problems of endogeneity: Matching and a variant
of the familiar regression analysis. The logic behind matching is intuitively very ap-
pealing and closely connected to the counterfactual approach: Persons are matched,
who are very similar and (ideally) differ only with respect to the treatment. If the
matches are indeed similar, then the difference in the outcome can be attributed to the
treatment. In our example, this would mean that we compare immigrants, who are
similar with respect to cultural, structural, social, emotional integration, and other
relevant aspects but differ in whether or not they are transnationally active. Thus,
we try to ensure that the conditional independence assumption is met by structuring
the data in a way that mimics the outcome of random assignment into treatment and
control group. The difference in language skills can then be attributed to the presence
or absence of transnational activities. These methods are quite powerful and they are
currently en vogue. One can get the impression that these methods are the panacea
to all problems of causality in non-experimental research. But this obviously is not
the case. They, too, have limitations. Although these limitations are discussed in the
theoretical literature, often enough they are plainly ignored in applications. Consider,
for instance, the assumption of conditional independence, which states that given a
set of controls S treatment assignment is ignorable. To meet this assumption, we
would have to identify all variables that predict treatment assignment or, in other
words, the value of the main independent variable D.2 This appears as a very chal-
lenging endeavor. It is neither likely that we are able to identify all relevant variables
nor is it likely that we can measure all. We are once again faced with the problem of
unobserved heterogeneity, which will bias our estimates.

Thus, I will focus on regression models, which under specific conditions can
outperform matching methods. It should be noted, however, that most of the criticism
directed at matching methods also applies to regression models.3 Any statistical
model should always be treated with great care and we are well advised to carefully
consider if the underlying assumptions are met. Although there seems to be a natural
affinity between the counterfactual approach and matching methods, it is easy to
show how the regression approach can adopt this perspective (see e.g. Heckman and
Robb 1989). Consider the observation rule in Eq. (5.2): Yit = DitY

1
it + (1 − Dit)Y 0

it .
By rearranging the right part of the equation, we get

Yit = Y 0
it + (

Y 1
it − Y 0

it

)
Dit (5.10)

Yit = Y 0
it + δiDit (5.11)

2 However, one could argue that this is a mere prediction problem, i.e. we only have to be concerned
with a very accurate prediction of the treatment regardless of whether the variables we use are
correlated with unobserved predictors.
3 And there are approaches which try to deal with “selection on unobservables” (e.g. Morgan and
Winship 2007, p. 184).
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For people used to regression analysis this should appear familiar (Morgan and
Winship 2007, p. 78). In this formulation, Y 0

it corresponds to the intercept and δi to the
regression parameter of the main independent variable. When it comes to predicting
the concrete value of Yit, the model specified in Eq. (5.11) will be imperfect, as there
are other factors that also influence its value. Thus, Eq. (5.11) becomes

Yit = Y 0
it + δiDit + μit (5.12)

where μit is the error term (Morgan and Winship 2007, p. 78). We see that the naive
estimator of the average treatment effect (ATE) equals the regression parameter of Dit

in a linear regression model. Causal interpretation of regression coefficients is based,
however, on the same assumption, although it is notated differently. Only if the core
assumptions of the regression model are met, i.e. μit ∼N (0, σ 2) and Cov(Dit, μit) =
0, then the regression coefficient will be unbiased. If Cov(Dit, μit) �= 0
we face an endogeneity problem. The standard answer to this problem is to include
additional control variables which hopefully will break the correlation between Dit

and the error term (Morgan and Winship 2007, p. 79), which equals achieving the
conditional independence assumption. Including a set of observed variables Sit into
Eq. (5.12) gives us

Yit = α + βDit + ηSit + μit (5.13)

with Sit being a matrix of control variables and η a vector of the associated regression
parameters. By including these controls we can achieve Cov(Dit, μit|Sit) = 0. The
last statement can equivalently be expressed as E(μit|Dit, Sit) = 0. It states that the
expected value of the error is zero given a set of control variables Sit; or that μit and
Dit are conditionally independent given Sit (Heckman and Robb 1989, p. 522). This
corresponds to the CIA as expressed in Eq. (5.9) (see also Morgan and Winship 2007,
p. 141).4 But this—just as the CIA—is hard to achieve if some of the characteristics
which create the correlation between Dit and the error term cannot be identified or
measured (Brady and Collier 2004, p. 34).

The choice between regression and matching is not as fundamental as it may ap-
pear. On the contrary, the methods are related and the difference is not that large.
Matching has distinct advantages over simple regression models, such as the pos-
sibility to include individual level heterogeneity of causal effects by distinguishing
between the different types of causal effects. Regression models usually assume that
δ is constant over all individuals. Moreover, it forces the researcher to more carefully
consider issues of endogeneity, most importantly selection biases, by trying to mimic
a situation in which the data is balanced as in a randomized experiment. If condi-
tions are met, matching results can provide better estimates than regression models
(Morgan and Winship 2007, p. 142 ff.). Overall, matching and the counterfactual
approach in general provoke a more thorough consideration of causality and how

4 There are numerous different ways of expressing this assumption, but they all mean the same, e.g.
E(μit|Dit = 1) − E(μit|Dit = 0) = E((μit|Dit = 1) − (μit|Dit = 0) = 0.
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causal inferences might be flawed. But all this depends on whether the assumptions
are met. If this is not the case, matching results are as biased as the results from a
poorly specified regression model.

Even more, applications of matching procedures often rely on regression models
to stratify the data, e.g. to compute propensity scores predicting treatment assign-
ment. Matching is a two stage process, which strongly depends on a good estimate
of treatment assignment. If the model in the first stage does not perform well in
predicting treatment assignment, then causal effect estimates will be biased, because
incomparable individuals will be chosen for comparison. How likely is it to meet the
assumptions of matching? Probably as likely as meeting the assumptions of regres-
sion models, i.e. not too likely. It is a strong assumption that a set of control variables
can be identified that ensures conditional independence or zero correlation between
the error and the main independent variable, respectively. In most cases this will be
hard to achieve. But there is a class of regression models which is able to consistently
estimate the ATT, even in the presence of time-constant unobserved heterogeneity.
Nevertheless, we need longitudinal data to estimate these models.

5.3 Excurse on Potential Exposure

But before we advance to discussing how longitudinal data can help us in dealing with
the problem of unobserved heterogeneity, it seems necessary to critically examine
the notion of causality within the counterfactual approach. Although its notion of
causality is logically appealing, it has been criticized for being too narrow and as
hardly applicable to many sociological research questions (e.g. Goldthorpe 2001).
The counterfactual approach shares basic assumptions with experimental research,
and, consequently, in its strict formulation accepts as causes only those characteristics
which—in principle—can be treatments in experiments. This does not mean that
the counterfactual approach rules out causes that cannot be manipulated because
of ethical or practical reasons. It is sufficient if a treatment can be manipulated
hypothetically—the counterfactual model thus rests on an idea of ‘manipulative
causality’. The basic assumption of the counterfactual approach thus is that each
unit is potentially exposable to any of the causes (Holland 1986, p. 946). Does this
hold for being transnationally active? In principle, we can imagine an immigrant
being ‘exposed’ to being transnationally active or not. However, Holland (1986,
p. 855) might disagree with this assessment, arguing that the “voluntary nature of
much human activity makes causal statements about these activities difficult in many
situations.” Instead, causal claims in a strict sense can only be made if the exposure
resembles a treatment. This then would allow for causal claims. In any case, the
counterfactual approach rules out as causes any stable attributes, such as ethnic
origin, gender, social background, etc., because they are time-invariant and cannot
be manipulated. From the counterfactual perspective, stable attributes cannot cause
other attributes. As Kempthorne (1978, p. 15) bluntly puts it, “it is [. . .] nonsense
to talk about one trait of an individual causing or determining another trait of the
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individual.” Some authors therefore suggest that the general focus of analysis in the
social sciences should change by concentrating on analyzing the effects of (time-
varying) characteristics that, in principle, can be manipulated (Allison 1994, p. 192).
But if we follow the counterfactual approach completely, this would not be enough. It
is not sufficient for causes to be (potentially) manipulable; they also have to resemble
(exogenous) treatments. Where do we go from here? Ruling out intentional human
actions as causes would make a major part of social sciences research impossible. But
there are other accounts of causality in which intentional actions even make for an
integral part. For instance, the interventionist conception of causality in philosophy.
According to this view, actors can intervene in systems and bring about changes that
would not have occurred without the intervention (Wright 1971, p. 60 ff.). Most
social scientists would agree that purposeful human action can be a cause and many,
as we have seen in the previous chapter, even assume that human agency is the
only cause for social change (e.g. Boudon 1980; Elster 1989; Esser 1999; Hedström
2005). Interestingly but not surprisingly, the term counterfactual is also used when
the interventionist conception is discussed (see e.g. Tuomela 1976, p. 185). The logic
of covering law model (or practical syllogism) applied to human agency as discussed
in Chap. 4, in which intentional actions are linked to specific outcomes via individual
motives, entails a counterfactual logic: If an action A had occurred, when in fact it
did not, it would have produced a certain outcome O.

Moreover, from a sociological perspective, many stable characteristics, such as
gender or ethnic origin, are not as stable as they first appear (Goldthorpe 2001, p. 7).
It is true that a person cannot change her or his ethnic background. But a person’s
ethnic background has an effect only because it is constructed as socially relevant.
Thus, it can be argued that immigrants do worse in the labor market not because
of their ethnic background (as an essentialist attribute), but because of the social
construction of ethnicity as a relevant criterion for differentiation. For instance, an
employer might be less inclined to hire immigrants, because she or he believes that
immigrants are less productive. In this case, the employer might use the (observable)
ethnic background of a potential employee to infer unobservable characteristics—as
assumed in the theory of statistical discrimination (Arrow 1971). Therefore, it is
not the potential employee’s ethnic background per se, but the employer’s percep-
tion and evaluation of it. From this perspective, the effect of ethnic background is
generated through a (potentially) manipulable mechanism. And in this sense, eth-
nic background becomes—hypothetically—manipulable. This conception is, by the
way, highly compatible with Alba and Nee’s (Alba and Nee 2003, p. 59; Alba 2008,
p. 39) notion of assimilation as a decline in social salience and consequences of group
membership—as discussed in Chap. 2. If we apply this perspective, making causal
claims regarding such stable attributes still is difficult, because it is not the attribute
itself but associated processes that have an effect. In many cases, a stable character-
istic tends to be correlated with unobserved characteristics and processes. But the
problem of unobserved heterogeneity is general and it applies to well manipulable
characteristics, too.
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It appears, therefore, that the strict counterfactual logic of causality (as, for
instance, proposed by Holland (1986)) is too narrow to be applicable without modifi-
cations. But there are numerous less strict formulations, which are more compatible
with sociological inquiry (see for instance Gangl 2010; Morgan and Winship 2007).
The social sciences can surely only profit if they give more thought to the way in
which stable characteristics affect outcomes. As argued above, the apparent relation
between a stable characteristic and an outcome is often produced by a process—
which can, at least in principle, be manipulated. In many cases it is thus a question
of theoretical specificity, which brings us back to the discussion of the covering
law model and insufficient explanations in Chap. 4. In any case, the counterfactual
approach is very useful because it makes us sensitive to biases that can obscure our
analysis. It emphasizes that making causal claims through applying statistical models
relies on important, and in part untestable, assumptions.

5.4 Fixed Effects and Random Effects Models

The above discussion centers around the problem that we need a within person
comparison (Y 1

it −Y 0
it ) but can only achieve a between person comparison (Y 1

it −Y 0
jt ),

as we cannot observe both outcomes for one person. The strategies discussed—
e.g. achieving conditional independence—aim at making the between person and
the within person similar by adjusting for relevant controls. If we have repeated
observations, regression methods for panel data analysis can offer an invaluable
advantage, since a certain class of methods can adjust for time-invariant unobserved
characteristics. These models are most often referred to as fixed effects models, but
sometimes also as change score models. To see how these models do so, consider
the regression equation from above

Yit = α + βDit + ηSit + μit (5.14)

The error term μit captures all unobserved characteristics that we have not included
in our model, as discussed above. We have not yet taken into account the possibility
to decompose the error into a time-variant and a time-invariant part, which we can
sensibly do if we have repeated observations. The error term can accordingly be
decomposed into

μit = γt + ui + εit (5.15)

γt is a period effect that is constant over all units, ui is a time-invariant unit-specific
effect that captures all unobserved heterogeneity (conditional on Dit), εit is a tran-
sitory idiosyncratic disturbance unique to the ith unit at time t (conditional on Dit
and ui) (Halaby 2004, p. 510). The key idea is that that ui represents causes that are
unobserved but stable over time. For now, we will ignore γt , since there are straight-
forward ways in which one can counter this problem (basically by estimating γ̂t ) as I
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discuss below. This decomposition can also be done with respect to the independent
variables in Sit

Sit = Xit + Zi (5.16)

where Zi refers equivalently to all time-invariant observed characteristics and Xit to
the time-variant ones. Equation (5.15) can now be rewritten as

Yit = α + βDit + φXit + ηZi + ui + γt + εit (5.17)

This equation might look a lot more complicated compared to Eq. (5.14), but it
actually is not. All that has been done is to decompose the observed and unobserved
characteristics into time-variant and time-invariant parts. Let us again consider the
example. The primary interest still is to estimate the effect of transnational activities
on host country language skills—thus β is the primary parameter of interest. Zi

captures all measured characteristics that might influence an immigrant’s language
skills which do not change over time. Examples might be ethnic origin, gender, age
at migration, and the like. Similarly, Xit refers to measured characteristics that can
influence an immigrant’s language skills and which do change over time. Examples
of these characteristics can encompass things like labor force participation, income,
years of residence, the ethnic composition of personal networks, and the like. Re-
garding the unobserved parts in Eq. (5.18), ui covers all time-invariant characteristics
that are not measured and not included in the model. This might be unmeasured or
immeasurable (language) ability or a general and constant orientation toward the re-
ceiving and the sending country, respectively. In this sense, ui can be interpreted as a
unit-specific term that adds to the overall intercept. Similarly, εit includes unmeasured
characteristics that change over time. The causal parameter β provides us with an un-
biased estimate if the unmeasured characteristics do not differ systematically between
treatment and control group. That is we assume that E(εit|Dit = 1) − E(εit|Dit = 0)
= E((εit|Dit = 1) − (εit|Dit = 0)) = E(εit) = 0 and E(ui |Dit = 1) − E(ui|Dit = 0)
= E((ui|Dit = 1) − (ui|Dit = 0)) = E(ui) = 0—in other words that the errors are
uncorrelated with the independent variables: Cov(Dit, εit) = 0 and Cov(Dit, ui) = 0
(disregarding Xit and Zi in the following). Now, if we consider a case in which we
have two consecutive observations for each person

Yit 0 = α + βDit 0 + φXit 0 + ηZi + ui + γt0 + εit 0 (5.18)

Yit 1 = α + βDit 1 + φXit 1 + ηZi + ui + γt1 + εit 1 (5.19)

Subtracting (5.18) from (5.19) brings

(Yit 1 − Yit 0) = β(Dit 1 − Dit 0) + φ(Xit 1 − Xit 0) + (γt 1 − γt 0) + (εit 1 − εit 0)
(5.20)

the first-difference model. Owed to the subtraction, the time-invariant unobserved
heterogeneity cancels out. This also intuitively makes sense. We started from trying



5.4 Fixed Effects and Random Effects Models 149

to estimate the true causal effect through a within comparison, i.e. through Y 1
it − Y 0

it .
If we consider the ATT given by (5.4) as

E
(
δ1
i

∣
∣Dit = 1

) = E
[
Y 1

it

∣
∣Dit = 1

] − E
[
Y 0

it

∣
∣Dit = 1

]

it is obvious, as we have seen above, that this ideal form of this intra-personal
comparison is impossible to achieve for t = t . Still, we need a within comparison,
because only the within comparison can assure that the effect estimate is not biased
by confounding factors. With longitudinal data, we can approximate the estimation
of this effect by looking at the intra-individual change in the outcome variable after
exposure. We could thus state the ATT from a longitudinal perspective as

E
(
δ1
i

∣
∣Dit1 = 1

) = E
[
Y 1

it1 − Y 0
it0

∣
∣Dit1 = 1

]
(5.21)

E
(
δ1
i

∣
∣Dit1 = 1

) = E
[
Y 1

it1

∣
∣Dit1 = 1

] − E
[
Y 0

it0

∣
∣Dit1 = 1

]

assuming that the treatment exposure occurred in t1 < t < t0. By looking at the
difference between Y 1

it1 and Y 0
it0 it is clear that unit-specific time-invariant factors

will not bias any estimate, because their influence on Yit is constant over time.
The estimate of β in (5.20) thus corresponds to the ATT, because all individuals
which do not experience a change in Dit are disregarded in the estimation (this will
be explained in more detail in the next section). But this is not really a problem,
because most of the time we are not interested in the naive estimator—a plain
between person comparison—but in some kind of intra-personal comparison. In this
sense, we are more interested in intra-individual (co)variation than inter-individual
(co)variation. Is the estimate of β unbiased? Let us again consider the three potential
sources of bias as in Eq. (5.15). The observed (read: measured) value of Yit for a
given individual i at time t in the treatment group can be stated as

Y 1
it = δi + γt + u1

i + ε1
it (5.22)

and equivalently for an individual i in the control group

Y 0
it = γt + u0

i + ε0
it (5.23)

What we eventually observe is accordingly the sum of these three, respectively four
parameters. If we state Eq. (5.1) with respect to (5.22) and (5.23) for i �= i we get

Y 1
it − Y 0

it = δi + (
u1

i − u0
i

) + (
ε1

it − ε0
it

) + (γt − γt) (5.24)

As we can see, Eq. (5.24) will, in its unconditional, simple form produce an unbiased
estimate only if u1

i = u0
i , ε1

it = ε0
it, and γ 1

t = γ 0
t . This is merely a different way

of stating the ignorability assumption. But the discussion hitherto has shown that
this condition is hard to meet. While a cross-sectional between person comparison
eliminates the influence of γt , the estimate is still likely to be biased by (u1

i − u0
i )

and (ε1
it − ε0

it). As we have seen above, longitudinal data allow, however, to partial
out (u1

i − u0
i ). Since t �= t , this amounts to

Y 1
it1 − Y 0

it0 = δi + (γt 1 − γt 0) + (
ε1

it1 − ε0
it0

)
(5.25)
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From this perspective, one might argue that there is a natural affinity between fixed
effects regression models and the counterfactual approach to causality. Bias may
still come from (γt 1 − γt 0) and (ε1

it1 − ε0
it 0). But with more than two observations,

period effects can easily be controlled by directly including them in the list of
covariates. When there are more than two observations, the fixed effects model can
be estimated by time-demeaning, i.e. by subtracting the between-model

Y i − α + βDi + ϕXi + ηZi + ui + εit (5.26)

from (5.17) leading to

(Yit1 − Y i) = β(Dit −Di) + ϕ(Xit −Xi) + γt + (εit − εi) (5.27)

The subtraction equally rids the equation of ui , eliminating this potential source of
bias. Including period dummies in (5.27) will moreover effectively control for any
for common aggregate effects. Of course, εit remains as a potential source of bias.
But there is no cure for this problem. We just have to assume that Cov(Dit, εit) = 0.

Instead of the fixed effects model, we could also estimate a so-called random
effects model as specified in (5.17). More precisely, this is a random intercept model,
because it adds a subject specific ui to the overall intercept α. It assumes that ui is
a random variable that follows a normal distribution with mean zero and a constant
variance ui ∼ N (0, σ 2). In a way we thus model unobserved characteristics with
the parameter ui . In the example from above this means that we allow for the fact
that persons have different baseline levels of language skills. Compared to the fixed
effects model, the random effect model can be more efficient, because it uses variation
between and within subjects to estimate β. The fixed effects model, in contrast, only
uses within subject variation to estimate β. One practical implication of using only
within variation is that all observations that do not change in Dit are discarded from
the analysis. If we choose a non-linear version of the fixed effects model, mode,
for instance, a conditional logistic regression model for binary outcomes (Allison
2009; Chamberlain 1980), the sample on which the estimation is based becomes
even smaller, because not only are subjects excluded from the analysis that do not
experience a change in Dit, but also all subjects are excluded that do not change
in Yit. In these situations, random effect models can be substantially more efficient
(Neuhaus and Lesperance 1996, p. 445).

However, the gain in efficiency is based on the assumption of common between
and within subject effects (Neuhaus and Kalbfleisch 1998, p. 644). Moreover, the
assumption of zero correlation between observed variables and unobserved effect—
Cov(Dit, ui) = 0, Cov(Xit, ui) = 0, and Cov(Zi , ui) = 0—is hard to justify as the
above discussion shows. Often enough the random effect will not be random and
we are dealing with latent (unobserved) classes, where unobserved and observed
characteristics are correlated. And if this crucial assumption is violated, the estimates
will again be biased. We certainly could try to include other covariates hoping to
break the correlation. But at this point it should be clear that it is almost impossible
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to find and measure all relevant confounders.5 Consequently, the advantage of fixed
effects regression models is invaluable, since we don’t have to bother searching for
time-invariant confounders any longer. Any fixed effects just cancel out. This great
advantage, however, comes at a price. As the fixed unobserved characteristics cancel
out from the model, so do the fixed observed characteristics. Therefore, we cannot
estimate the effects of time-invariant factors. In our example, this means that we
cannot include variables like ethnic origin and gender, because they do not change
over time. As mentioned above, some authors argue that the social sciences should
change their research focus, by concentrating solely on questions of change causes
change (Allison 1994, p. 192). In many instances, however, the association between
time-invariant characteristics and some property are of crucial interest, especially
if we are interested in examining the possibility of systematic differences between
groups.

Regarding this work’s research questions, it would certainly be a huge draw-
back if we could not estimate the association between the different ethnic origins
and transnational activities. Of course, any association between ethnic origin and
transnational activities cannot be interpreted causally in a strict sense. But signif-
icant differences in ethnic origins can be understood as a measure of unobserved
characteristics (processes) that are associated with the different ethnic origins. This
is certainly interesting. One possible remedy to this drawback is the inclusion of in-
teractions between time varying and time-invariant covariates in fixed effects models
(Allison 2009, p. 37). If the model includes time, i.e. t − 1 period dummies, we can
model interactions of time and ethnic origin. But these interactions do not estimate
the effect of the time-invariant covariate. Instead, they estimate a possible change in
its effect compared to a reference period. Therefore, this only models how the asso-
ciation of one ethnic background with transnational involvement changes over time.
If our intention is to compare the ‘effect’ of different ethnic backgrounds, modeling
interactions with time is, however, not what we are interested in.

5.4.1 Correlated Random Effects and Hybrid Models

Another possibility is to estimate a hybrid model (Allison 2005, 2009; Schunck
2013) or a correlated random effect model (Schunck 2013; Wooldridge 2005, 2010,
p. 286, 332, 615 ff.), first proposed by Mundlak (1978). These models are modified
random effect models which differentiate within- and between-cluster effects (in the
present case observations are clustered within persons) (Mundlak 1978; Neuhaus and

5 A different reasoning for using fixed effects models is provided by Neuhaus and Kalbfleisch (1998,
p. 644): “When between- and within-cluster covariate effects are different, models that assume that
these effects are the same do not provide estimates of any substantive interest; the misspecified
models measure neither between- nor within-cluster covariate effects.” If we rely on fixed effects
estimates, we can at least be sure that they correctly model intra-subject variation. See below for
more details on within- and between-variation.
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Kalbfleisch 1998; Neuhaus and McCulloch 2006). Thus, the models and simultane-
ously estimates the effects of within and between subject variation in explanatory
variables. This is done by decomposing the variation of time-variant variables into
between- (Xi) and within-subject (Xi − Xit) variation (Schunck 2013).6 The hybrid
models is given by

Yit = α + βW (Xit −Xi) + βBXi + ηmZi + ui + εit (5.28)

βW is the within estimator, which, in the linear case, equals the fixed effects estimator
and βB estimates the between effect (Maddala 1987; Mundlak 1978; Neuhaus and
Kalbfleisch 1998). An alternative formulation to (5.28) is the correlated random
effects model (also known as the Mundlak model), which takes the form

Yit = α + βWXit + ϕXi + ηmZi + ui + εit (5.29)

Here, the mean (Xi) picks up any correlation between the time-varying covariates and
ui , relaxing the assumption that Cov(Xit, ui) = 0. βW from (5.29) also estimates the
within effect, i.e. it is the fixed effects estimator (Mundlak 1978). Including the mean
of a time-varying covariate in a random-effects model is therefore an alternative to
cluster mean centering (Halaby 2003, p. 519). The difference between (5.28) and
(5.29) lies in the between-effect. Rewriting (5.28) as

Yit = α + βWXit + (βB − βW )Xi + ηmZi + ui + εit (5.30)

makes this obvious (Schunck 2013, p. 67). The hybrid model estimates the between
effect (βB) whereas the correlated random effect model estimates the difference of
between and within effect (ϕ = βB −βW ) (Mundlak 1978). Both models have similar
properties, but since the interpretation of βB—the between subject effect—is more
straighforeward than φ, I will use the hybrid model in the following.

We can further make use of a good feature of the hybrid model, namely testing
for equality of within and between estimates, namely if βW = βB (Allison 2009,
p. 25). This test, which can be done easily though a Wald test, is also known as an
augmented regression test (Jones et al. 2007, p. 217). It can be used as an alternative
to the Hausman specification test (Baltagi 2008, p. 73; Hausman 1978). If between
and within effects are the same, i.e. βW = βB = β, (5.29) and (5.30) will collapse
into the standard random effects model.

In general, and if between and within estimates are not equal, between estimates
can be seen as an approximation of the strength of the average association of de-
pendent and independent variable between groups, that is i.e. including selection
effects and unobserved heterogeneity. In other words, a comparison of between- and
within-estimates can give us some idea of the strength of selection effects.

It is noteworthy that differentiating between- from within-estimates is not new
and also applied in the multilevel literature, where this practice is referred to as

6 To simplify notation I abstain from including the period effect γt in the notation. Moreover, I do
not distinguish any longer between Dit and Xit, because both denote time varying covariates.
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group-mean-centering (Raudenbush and Bryk 2002, p. 135 ff.; Kreft and Leeuw
1998, p. 105 ff.; Rabe-Hesketh and Skrondal 2005, p. 42; Snijders and Bosker
2004, pp. 52–56; Kaufman 1993; Kreft et al. 1995; Raudenbush 1989). For instance,
Rabe-Hesketh and Skrondal (2005, p. 43) propose a similar method for comparing
between and within effects of time-varying variables. Draper (2008, p. 108) suggests
group-mean-centering to reduce positive autocorrelation of sampled draws.

5.4.2 Nonlinear Models

Random, fixed effects, and hybrid models can also be applied if the dependent vari-
able is limited, i.e. it is categorical or binary. A practical example of a binary variable
is whether or not an immigrant has visited her or his country of origin during the
last year, a prominent example of a transnational activity. In the binary case, the
dependent variable y is constrained to take either the value 0 or 1. We cannot apply
a linear probability model, since it would violate the assumption of homogeneity in
variance (homoscedasticity) (Giesselmann and Windzio 2012, p. 130). Moreover,
while probabilities are limited to take values between 0 and 1, the linear probability
model if applied to the binary case does not have lower or upper bounds for its predic-
tion. Thus, if we apply the linear probability model, we can get probabilities below
0 and above 1—which do not make sense. A model which avoids these problems
is the logistic regression model (Long 1997). In the following, I will thus discuss
the logistic regression with random and fixed effects. The standard (pooled) binary
logistic regression model is given as (not differentiating between time-variant and
invariant covariates for simplicity)

log

(
pit

1 − pit

)

= βXit (5.31)

with pit being the probability that the dependent variable takes the value 1, given
the values of independent variables (P (Yit = 1

∣
∣Xit)). The above equation is the log

odds formulation of the logistic regression model. Alternatively, it can be displayed
directly regarding probabilities as

P (Yit = 1
∣
∣Xit) = exp(βXit)

1 + exp(βXit)
= 1

1 + exp(−βXit)
(5.32)

The logistic regression with random effects or fixed effects, respectively, consequen-
tially is

P (Yit = 1
∣
∣Xit, ui) = 1

1 + exp(−(ui + βXit))
(5.33)

As in the linear case, the random effect logistic regression model assumes that ui is
a random variable following a normal distribution with a mean of zero and a con-
stant variance (ui ∼ N (0, σ 2)). For the estimates to be consistent, the model likewise
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requires the random effect to be uncorrelated with the (time-invariant) explanatory
variables (Cov(ui , Xit) = 0).7 As we have seen above, the assumption that all regres-
sors are strictly exogenous so that Cov(ui , Xit) = 0 is rather unrealistic. It is quite
likely that there are some characteristics influencing both the dependent and the inde-
pendent variable on which we do not have any information. As in the linear case, the
fixed effects model is, in this regard, more attractive, since it does neither require any
assumption on the distribution of ui nor its correlation with other regressors. How-
ever, the computation of the fixed effect is complicated by the so-called ‘incidental
parameter problem’ (Lancaster 2000; Neyman and Scott 1948). Unfortunately, in
contrast to the linear case, the individual fixed effects (ui) cannot be eliminated by a
simple linear transformation, such as the first-differences of time-demeaning (Hsiao
2003, p. 194). In general, maximum likelihood (ML) estimates are desirable because
of their large sample properties. It has been shown that with an increasing sample
size, ML estimates are asymptotically consistent, efficient, and normally distributed
(Long 1997, p. 33). But the ML estimates’ consistency depends on the assumption
that the number of parameters remains constant as the sample size increases (Allison
2005, p. 57). This is not the case with Eq. (5.33)—the number of ui increases with
the sample size. Without going into detail ((for detailed discussions see Giesselmann
and Windzio 2012, pp. 143–150; Wooldridge 2010, pp. 621–622)), the solution to
the problem lies in applying conditional maximum likelihood as proposed by Cham-
berlain (1980). This approach conditions the likelihood function on the total number
of events observed for each case. In the two period case, the conditional likelihood
model takes the form

log

(
P (Yi1 = 0, Yi2 = 1|Yi1 + Yi2 = 1)

1 − P (Yi1 = 0, Yi2 = 1|Yi1 + Yi2 = 1)

)

= β(Xi2 − Xi1) (5.34)

The fixed effects approach in the binary case suffers from the same drawback as in the
linear case: We cannot estimate the effect of time-invariant covariates. To remedy
this shortcoming we can again rely on the hybrid approach, which combines the
random and the fixed effects model and allows estimating the effect of time-invariant
covariates (Allison 2009, p. 39; Neuhaus and Kalbfleisch 1998, p. 640; Wooldridge
2010)

P (yit = 1
∣
∣xit, ui) = 1

1 + exp(−(ui + βW (Xit −Xi) + βBXi)
(5.35)

But equality of within and fixed effects estimator is given in the linear case. In non-
linear cases, for instance for logit models, the differentiation into within and between
effects in a random effect model approximates the fixed effects estimator (Allison
2009; Neuhaus and Kalbfleisch 1998; Neuhaus and McCulloch 2006; Wooldridge

7 The parameters in standard logistic regressions are estimated via maximum likelihood (ML), an
iterative method that produces estimates that make the observed data most likely. However, the
parameters in the random effect logistic regression (Eq. 5.33) cannot be estimated by ML. Instead,
quasi-likelihood approaches are applied (Hox 2002, p. 107 ff.) or, as some statistics programs do,
numerical integration, such as the Gauss-Hermite quadrature (StataCorp LP 2007, p. 215 ff.).
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2010, pp. 615–616, p. 620, 766). It has been shown that the estimates of coefficients
and the standard errors of the deviation variables in the hybrid model come extremely
close to those of the fixed effects model (Allison 2005, p. 67; 2009, p. 41; Neuhaus and
Kalbfleisch 1998, p. 640 ff.). One reason for this may be trace back to fixed variance
of the error in logit models, which is fixed at (π2/3) ≈ 3.29. This has peculiar
implications for the estimation of β: if by inclusion of another predictor (e.g. zi) the
explanatory power of the model becomes higher (or the explained variance increases
if we approach logistic regression with the idea of a latent, metric propensity Y ∗

i ,
that predicts whether Yi = 0 or Yi = 1 (Long 1997, p. 41, 105)), the total variance
of the dependent variable necessarily increases (see Mood 2010 for details). If the
total variance of the dependent variable increases, its scale also increases and, as a
consequence, the estimate of β has to change. It now expresses the relation between
Xit and Yit in another metric. Hence, a model in which (Xit −Xi) is the sole predictor
will provide us with a different estimate of β than a model in which we include both
(Xit −Xi) and (Xi) even though the Cov(Xit, (Xit −Xi)) = 0 by construction. This
is an important difference to linear regression models in which the error variance is
unrestricted and estimates of β only change if the predictors are correlated. This also
complicates causal interpretation of effect estimates in logistic regression models.
As is well known due to the nonlinearity of logistic regression models, the effect of
a covariate depends on the values of other covariates. This unfortunately also holds
for excluded covariates. Thus, effect estimates from logistic regression models can
be interpreted causally with respect to their effect size only in a fully, i.e. perfectly,
specified model (Kühnel and Krebs 2010, p. 885). If we were able to specify such a
model, it would, of course, be unnecessary to deal with complex panel data models,
as a cross-sectional model that perfectly predicts treatment would be sufficient. Of
course, the whole discussion so far underscores that it is impossible to specify such
a model.

Besides linear and binary logistic regression models, the statistical analyses pre-
sented in Chaps. 7 and 8 also encompass multinomial logistic regression models and
count models. Both classes of models (Long 1997; Long and Freese 2006) are also
specified as hybrid models, thus decomposing the effect of time-varying covariates
into within and between effects (Allison 2009, pp. 44–45; Wooldridge 2010, p. 766).
A fixed effects version of the multinomial logistic regression model is

log

(
Fijt

1 − Fijt

)

= μtj + βjXit + uij , j = 1, . . . , J − 1 (5.36)

where Fijt = ∑J
m=j pimt is the ‘cumulative’ probability of being in category j or

higher (Allison 2005). uij denotes the time-constant but potentially response-specific
individual fixed effect, that is the time-constant, response-specific unobserved het-
erogeneity. μtj denotes the time and category-specific intercept. In principle, this
model can be estimated equivalently to the binary case, by conditional maximum
likelihood with conditioning on the frequency counts of the different responses
(Allison 2009, p. 44). However, this is not yet implemented in any commercial
software package. To estimate a multinomial logistic regression model with individ-
ual fixed effects, we have several possibilities at hand. We could compute a series
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(J − 1) of binary comparisons (Begg and Gray 1984). But this would strip us of the
possibility of overall tests for predictors and a comparison of the relative risks of
one outcome vs. a specific other in a joint model. Therefore, Allison (2009, p. 45)
suggests to run a standard multinomial logistic regression model including the mean
as well as time-demeaning formulations of the time varying covariates and adjusting
for dependence of observations with cluster robust standard errors. This approach
will be followed in this study.8

Besides categorical variables with several response categories, the analysis will
also deal with so-called count variables that indicate how often something happened.
In principle, count variables are metric. They have a natural zero-point and the
response categories are ordered and equally spaced. However, count processes can
produce strongly skewed distributions. For instance, count processes often produce
distributions with very long right tales. This may cause overdispersion, meaning that
the variance is greater than the mean. Technically, this is presented as Var(y|x) >

E(y|x). However, the “small-mean property” (Cameron and Trivedi 2009, p. 553)
can also be caused by the presence of many zeros, i.e. many zero counts. In some
cases there can also be an “excess” of zeros. One key indicator of transnational
involvement, sending remittances, is such a count variable. And this variable is
characterized by both overdispersion and excess zeros. In our data only about 10 %
of the immigrants actually send remittances (see Chap. 6, Table 6.5). Therefore, 90 %
of the observations have a zero count. Moreover, the variance is much greater than
the mean. If we use linear regression to investigate the effect of predictors on such a
count variable, this may lead to inefficient and biased estimates (Long 1997, p. 217).
But there is a specific class of non-linear regression models—count models—which
are able to handle such outcomes. In our case, the zero-inflated negative binomial
regression model appears best suited for analyses. Zero-inflated count models assume
that there are two latent (i.e. unobserved) groups: an always zero group and a not
always zero group (Long and Freese 2006, p. 394). Therefore, zero-inflated models
assume that the counts are generated by a two stage processes. First, a distinction is
made between two latent groups, in our case non-remitting immigrants (A = 1) and
remitting immigrants (A = 0). In the first group the outcome is always zero. For the
second group a count process produces the actual count, i.e. the amount remitted
(Greene 2000). In the first step, the probability of being member of latent group A is
estimated by binary logistic regression:

P (Ait = 1
∣
∣Xit) = πit = exp(βSit)

1 + exp(βSit)
= 1

1 + exp(−βSit)
(5.37)

where πit is the predicted probability of falling into the latent group of ‘non-remitters’
and Sit a vector of explanatory variables. The probability of remitting k Euros is then
computed by mixing the probability of not-remitting and the probability of having a

8 It should be noted that the estimates from such a model are population averaged and will be
generally a bit smaller subject-specific random effects estimates (Allison 2009, p. 47).
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count k, conditional upon a specified vector of explanatory variables Xit:

Pr (yit = k
∣
∣Xit, Sit) = (πit × 0) +

(
(1 − πit) × Pr (yti = k

∣
∣Xit, Ait = 0)

)
(5.38)

= (1 − πit) × Pr (yit = k
∣
∣Xit, Ait = 0) (5.39)

This is the probability of remitting k Euros conditional of remitting, weighted by
the probability of remitting (1–π i) with regard to the overall population. Unfor-
tunately, just as for the multinomial logistic regression model, a panel model of
the zero-inflated negative binomial regression model has not been implemented in
commercial software yet. An alternative to the zero-inflated negative binomial regres-
sion would be a simple negative binomial regression—which can also be estimated
as a panel model (with random or fixed effects). However, there are two reasons
that speak against this model. First, the count process is not adequately described
by a simply negative binomial distribution. Second, the fixed-effects estimator of
the negative binomial regression model does not—contrary to other fixed-effects
models—control for all time-constant unobserved heterogeneity (Allison and Wa-
terman 2002, pp. 263–264). Because of this, I compute a zero-inflated negative
binomial regression model and include the mean as well as time-demeaning formu-
lations of the time varying covariates and adjust for dependence of observations with
cluster robust standard errors.

5.5 Endogeneity Revisited

As we have seen, we can combine the virtues of the within estimator with the inclusion
of time invariant explanatory variables in one model. But unobserved heterogeneity
is not the only problem we encounter in data analysis. Measurement error is another
major issue in statistical modeling, as mentioned at the beginning of this chapter.
But how does measurement error influence estimation of fixed effects models? In
simple linear regression models, measurement error in independent variables will
lead to the so-called ‘attenuation bias.’ If the reliability of the measure is below 1,
then the estimates will be downward biased by the factor σ 2∗ /(σ 2∗ + σ 2

η ), where σ 2∗ is
the variance of the true, unobserved variable and σ 2

η the variance of the disturbance
(Skrondal and Rabe-Hesketh 2004, p. 76). The greater the measurement error, the
stronger will be the attenuation bias, since the fraction becomes smaller. The problem
becomes more complicated in multivariate and non-linear models (see e.g. Bollen
1989, p. 159 ff.), although results from simulation studies suggest that we are also
likely to face a downward bias (Schunck 2009). In the context of fixed effects models,
it is generally assumed that reliability problems are magnified (Engel and Reinecke
1994, p. 19; Burr and Nesselroade 1990, pp. 9–10; Griliches and Hausman 1986)
although some analyses suggest the opposite (see e.g. Bound and Krueger 1991).
A related problem that fixed effects models face is dealing with the phenomenon
of ‘regression towards the mean.’ In essence, this refers to the phenomenon that
a variable that takes on an extreme value at its first measurement will tend to be
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closer to the mean of the overall distribution at a later measurement. In face of this,
fixed effects estimation may also produce biased results (Finkel 1995, p. 8). As a
solution to both problems, the literature suggests dynamic models, sometimes also
called level score models (Finkel 1995, p. 7 ff.; Burr and Nesselroade 1990, p. 9 ff.).
These models include a lagged version of the dependent variable. A simple dynamic
regression model takes the form

Yit = α + βXit + ρYit−1 + ui + εit (5.40)

The inclusion of lagged versions of dependent variables allows us to control for the
phenomenon of regression toward the mean, since we can estimate the impact of
independent variable given the value of dependent variable at a previous time point.
Moreover, the bias due to measurement error in β obtained from (5.40) will be lower
as compared to a fixed effects estimate (Rodgers 1989, p. 443; Kohler 2002, p. 238).
Furthermore, it is sometimes argued that there are substantial reasons to assume that
the value of the dependent variable at time t − 1 has a causal effect on its value
at time t (Finkel 1995, pp. 7–11). This is referred to as ‘state dependency’ as the
state (i.e. value) of the dependent variable at previous time-points determines its
present value. Taking up the example from above, this implies that an immigrant’s
language proficiency at time t is causally influenced by her or his proficiency at t −1.
Empirically, we are likely to observe state dependency rather often. But all that we
really observe is that individuals who have high (low) levels of Yit−1 also have high
(low) levels of Yit. The problem is that there rarely is a sound theoretical justification
for including the lagged dependent variable in the model (Liker et al. 1985, p. 86). We
should keep in mind that there can be various reasons for a correlation between yit−1

and yit. True state dependency is given when there is a causal mechanism so that yit−1

determines yit. But a correlation between Yit−1 and Yit can also be due to (unobserved)
confounders. In this case, Yit does not have a causal effect on Yit. Instead, additional
omitted explanatory variables determine both yit−1 and yit, producing a spurious
correlation. In many cases, an observed correlation between Yit−1 and Yit is therefore
not an indicator for a causal relationship, but for a misspecified model. If the latter can
be ruled out and we have good (theoretical) reasons to assume that there is a causal
effect of Yit−1 on Yit, then we indeed face a problem. Morgan and Winship (2007,
p. 254 ff.) provide an interesting example for an indirect (causal) relation between
Yit−1 and Yit In their example, Yit−1 does not directly determine the value Yit, but
it determines treatment selection (amongst other factors). This means, for instance,
that language proficiency at t − 1 influences transnational activities at time t. This
would be a case in point for using dynamic models. However, even in this situation
fixed effects estimates appear to provide more accurate estimates of the true causal
effect (Morgan and Winship 2007, p. 256).9 Still, why not use dynamic models if

9 However, the choice between a dynamic or a fixed effects model also depends on the (hypothetical)
evolvement of Y 0

it and Y 1
it in the absence of treatment (for a thorough discussion, see Morgan and

Winship (2007, p. 258 ff., 264)). The fixed effects model assumes that the values of Yit evolve
parallel between treatment and control group while the dynamic model assumes that the values of
Yit converge. Both assumptions might or might not hold. Neither model is, however, well suited when
it comes to estimating causal effects in the presence of diverging, increasing differences between
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they enable us to control for state dependency and even offer a partial remedy of
measurement error and regression to the mean? The problem is that dynamic models
will only provide unbiased estimates if (a) Cov(Xit, εit) = 0 and Cov(Xit, ui) = 0
and (b) additionally Cov(Yit−1, εit) = 0 and Cov(Yit−1, ui) = 0. Not only does the
discussion so far suggest that the first three criteria are unlikely met, but the fourth
criterion Cov(Yit−1, ui) = 0 is violated by definition (Wooldridge 2002, p. 256;
Stewart 2007, pp. 515–516). If Yit is a function of ui , there is necessarily a correlation
between Yit−1 and ui and Cov(Yit−1, ui) = 0 will be violated. This intuitively makes
sense, as time-constant unobserved factors by definition exert the same influence on
the level of the dependent variable at any occasion. The lagged dependent variable is
thus necessarily correlated with the time-constant error. Consequently, both estimates
of β and ρ will be biased. Yet, we cannot rule out measurement error and this can
bias our estimates, too. Indeed, if measurement error is present, dynamic models
provide more accurate estimates than fixed effects models. Thus, we have to decide
which problem we think is more pressing. Simulation studies indicate that the bias
from unobserved heterogeneity seems to outweigh the bias from measurement error
(Rodgers 1989, p. 444 ff.). Moreover, bias from measurement error usually does not
change the direction of the estimates, whereas the direction of bias from unobserved
heterogeneity is unpredictable (Palta and Seplaki 2002, p. 188) and the advantages
of within estimators become more pronounced with an increasing number of cases
(Rodgers 1989, p. 449, 452).

Nevertheless, the reader should take note that it is possible to estimate dynamic
fixed effects models if we find an instrument for Yit−1. In principle, with a sufficient
number of time points (e.g. four), this can be achieved by substituting Yit−1 with, for
instance, (Yit−2 − Yit−3) (see e.g. Wooldridge 2002, p. 299 ff.; Arellano and Bond
1991).10 In this study, with its unbalanced panel data (see Chap. 6 for details) and an
average number of observations per person usually below three, such a specification
would dramatically decrease the multivariate sample and therefore appears unsuit-
able.11

Y 0
it and Y 1

it in absence of treatment. A prime example of such a situation is the famous Mathew-
effect (Merton 1988, 1968) or mechanisms of cumulative advantages and disadvantages (DiPrete
and Eirich 2006). Arguably, such mechanisms are rather common. A potential remedy could be the
combination of the fixed effects approach with growth curve modeling, thus allowing individual
trajectories—or trajectories between treatment and control group—to develop differentially over
time. The implementation of such an approach is unfortunately beyond the scope of this work (as
it appears more complex than the mere inclusion of nonlinear time effects (Brüderl 2010, p. 984)).
Thus, as is pointed out at the end of this chapter, we have to treat statistical effect estimates with
care, as they always rely on assumptions. Some of which we cannot test.
10 Depending on the assumptions a researcher makes, two time points might be enough. Crucial
in this regard is the assumption that the initial condition is exogenous: Cov(Yit1, ui ) = 0. For an
application, see e.g. Kogan (2011). If the process in question begins with the observation period, this
assumption may be plausible. However, in most circumstances this assumption cannot be upheld
(Stewart 2007, pp. 515–516).
11 An important approach to causal modeling—the instrumental variable approach (see Angrist
and Pischke (2008) for an encompassing discussion)—has not been discussed in this work. The
reason is simple. The approach is elegant and consistently estimates causal effects if we have good
instruments at hand. However, this is rarely the case. And for the work at hand, the data does not
offer instruments.
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5.6 Conclusion

The concrete strategy for this work’s multivariate analyses should be clear. Whenever
possible, I will estimate the within- and between-effect of the explanatory variables.
The within-estimate has a natural affinity to the counterfactual understanding of
causality and will provide us with less biased estimate of the true effect, since we can
rule out all time-constant unobserved heterogeneity. The between-estimate moreover
provides an approximation of the gross association between the dependent and the
explanatory variable. Overall, this analysis strategy appears as an improvement to
the standard choice between fixed- or random-effects models.

Still, how much can we trust the estimated effects? This chapter started by pointing
to the most pressing problems in data analysis: Measurement error, unobserved het-
erogeneity, and simultaneity. Regarding unobserved heterogeneity and measurement
error, I have argued that the former is the more pressing problem and thus proposed
using methods which are geared toward dealing with it. Simultaneity, however, re-
mains a problem even if we have longitudinal data. Why is this so? Simultaneity
can obscure our analysis, because the (assumed) cause and effect are most often
measured contemporaneously. Therefore, we cannot establish a strict temporal order
between the measured concepts. If we believe that Dit has a causal impact on the
value of Yit, we need to assure that Dit forgoes Yit. With most longitudinal data, we
cannot assure this, because both Dit and Yit are measured at the same point in time.
And if we do not know when Dit and Yit occurred exactly, all we can do is to assume
that Yit follows Dit. In some cases, such an assumption can be plausibly justified.
This is the case if Dit follows a stochastic process completely external to the subjects
(Singer and Willett 2003, p. 178). If this applies, we can rule out any influence of
Yit on Dit. Many situations seem to satisfy this criterion at first glance, but at second
glance it is often easy to come up with potential paths of reverse causation. Consider
we are interested in investigating the effect of unemployment on health (behaviors)
(Schunck and Rogge 2010, 2012). There are good reasons to believe that unemploy-
ment has a causal effect on health. But does job loss really follow an exogenous,
stochastic process? And can we rule out reverse causation? If a person loses her or
his job due to an economic crisis, then this reason is exogenous. But it is equally
possible that people with worse health are selected into unemployment (e.g. Bock-
erman and Ilmakunnas 2009). Moreover, the worse a person’s health, the harder it
might be to find a new job. Therefore, we cannot rule out the possibility that there
exists a simultaneous relationship between unemployment and health. What we can
do, however, is using independent variables from t − 1 to predict the outcome of Yit.
This does not guarantee the correct causal ordering, but it makes it more likely. The
literature suggests that we have to rely on a strong theory justifying assumptions on
the causal order of events. This is indeed good advice. It applies to data analysis in
general, because statistics without theory does not allow us to distinguish between
artifacts and facts (Freedman 1991; Hedström 2008, p. 40). However, as the relation-
ship between unemployment and health shows, there are many situations in which
reciprocal causation is theoretically possible and plausible. This also holds for the
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research question at hand. As discussed in Chap. 4, we have to assume that an immi-
grant’s degree of integration affects her or his propensity to engage in transnational
activities and that transnational involvement again affects integration.

In any case, drawing causal inference from observational data is a difficult task
and we have to apply ample caution in interpreting any observed relation as causal,
since we can never rule out that measurement error, unobserved heterogeneity, or
simultaneity biases what appears to be a causal relationship. In the analyses, I will
thus abstain from interpreting the estimated effects as causal. Some may indeed
be reflecting a causal relationship, others may not. The search for the “magic bullet
estimator” (Smith and Todd 2005, p. 347) is futile. All estimators rely on assumptions
that may or may not be correct.

5.7 Data and Operationalization

Now that the theoretical and methodological analysis strategy has been laid out, this
section describes the data against which the hypotheses are evaluated. The primary
data source for this work is the German Socio-Economic Panel (hereafter SOEP).
The SOEP is a longitudinal household survey in Germany, carried out annually since
1984. What makes the SOEP especially suited for analyses on immigrant integra-
tion is the fact that it is made up of different subsamples, two of which have been
explicitly designed to capture the immigrant population in Germany. This oversam-
pling ensures a sufficiently large number of cases for multivariate analyses that a
proportional sample cannot provide. For example, in 2000 the SOEP successfully
interviewed around 3,181 first generation and 1,200 second generation immigrants,
in 2009 around 1,519 and 1,143, respectively.12 Moreover, as the SOEP has delib-
erately targeted immigrants, it also includes a wide range of items on immigrant
integration and even a few on transnational activities. Table 5.2 gives an overview of
the SOEP’s different subsamples.

When analyzing SOEP data, there are some important aspects that we have to bear
in mind. First, it is very important to take into account that the different subsamples
have been gathered via different sampling schemes. Second, when using longitudinal
data, we have to consider panel attrition. And third, we have to reflect on how
sampling and panel attrition might leave us with a specific sample and how this
might impair the possibility to generalize our findings to the greater population.

With respect to the first aspect, sampling design, we have to account for the fact that
the SOEP subsamples are not simple random samples of the German population. As
subsamples B, D, and F provide the most respondents with a migratory background,
I will focus the discussion on these samples. Detailed information on the sampling
design for the other subsamples can be found in Haisken-DeNew and Frick (2003). Of

12 Depending on how one defines the samples, the figures can vary slightly.



162 5 Methods

Table 5.2 SOEP Subsamples (Source: own computations, Kroh 2011, and Schupp and Wagner
1995)

Sample Starting year Description Initial number of households

A/1 1984 German households in the FRG
(“Germans-West”)

4,528

B/2 1984 Foreign households in the FRG
(“Foreigners-West”)

1,393

C/3 1990 Households of the GDR
(“SOEP-East”)

2,179

D/4 1994/1995 Immigrant households in Germany
(“Migrants”)

236 (D1)/304 (D2)a

E/5 1998 Households in Germany
(“Refreshment”)

1,056

F/6 2000 Households in Germany
(“Innovation”)

6,052

G/7 2002 High income households in Germany
(“High Income”)

1,224

H/8 2006 Households in Germany
(“Refreshment”)

1,506

I/9 2009 Households in Germany
(“Incentive”)

1,531

aIn 1995, 522 immigrant households were successfully interviewed. This number comprises 304
households that were first interviewed in 1995 (D2) and 218 households that were re-interviewed
in 1995 coming from D1

course, other subsamples also include immigrants, but not through special sampling
schemes.13

5.7.1 The SOEP Subsamples B, D, and F

Sample B (foreign households in FRG) covers persons in private households whose
household head was either Greek, Italian, Spanish, Turkish, orYugoslavian in 1984. It
targeted the so-called ‘Guestworkers’ and their descendants (see Chap. 6 for a short
overview of Germany’s immigration experience since 1945). Subsample B itself
consists of separate subsamples for each of the five nationalities. First, a random
selection from counties and metropolitan areas (‘Kreise und kreisfreie Städte’) was
drawn. These counties and metropolitan areas were the sampling units (PSU). 80
PSU were drawn for Turkish nationals and 40 for each of the other nationalities.
Second, within the PSU, respondents were selected by probability sampling—i.e.
systematic sampling—from official registration records (Haisken-DeNew and Frick

13 All samples except for the high income sample (sample G/7) are used in the analyses. The latter is
excluded because it makes for a very special population which is bound to differ substantially from
the rest of the German population. Respondents from this sample are hardly comparable to other
respondents. And since I will not use weights in the multivariate analyses, excluding this sample
seems the only feasible strategy.
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2003, p. 155). Overall, 1,393 and 3,169 individual respondents were interviewed
successfully in the first wave.

The sampling scheme for subsample D is rather different. Subsample B was in-
tended to cover Germany’s foreign population. Due to the availability of official
registration records on foreign population in Germany, addresses of eligible respon-
dents are in principle straightforward to obtain. Sample D, however, intended to
cover (naturalized) immigrants. As official registry data for naturalized immigrants
is unavailable, the SOEP had to implement a different sampling strategy to cover this
part of the population. Subsample D comprises yet again two subsamples, subsample
D1 (1994) and subsample D2 (1995). Subsample D1 combines a random with a non-
random (single level referral a.k.a. snowball) sample. The random sample includes
households identified in 1992 through an address screening in the context of rep-
resentative population surveys. Successfully contacted and interviewed households
then provided additional addresses of other immigrants (Schupp and Wagner 1995).
Of all 236 households in D1 that were successfully interviewed in 1994, 98 (41 %)
were contacted via referrals from the originally identified households. Schupp and
Wagner (1995, p. 18) argue that this enlargement of the sample is immune to the
standard critique brought forth against snowball samples (see also Chap. 3), as the
starting points for the snowball sample are not arbitrary. Instead, the snowball sample
starts with randomly drawn addresses from population surveys. Moreover, it is only a
single level snowball addition so that in principle the sampling process is not arbitrary
and one could even estimate sampling probabilities for the referral sample. While
this is true, the referral sample might still create biases in the overall subsample.
Any survey on immigrants is likely to oversample assimilated immigrants (Schupp
and Wagner 1995, p. 18). If we then ask those respondents to provide information
on their network (i.e. collect addresses), we are likely to increase this (assimilation-)
bias. Thus, with regard to integration into the receiving society, subsample D1 is
likely to be a positive selection. What is more, a referral sampling creates clusters in
which respondents are more similar than between clusters. Rendtel et al. (1997) thus
maintain that D2 better represents the immigrant households in 1995. Subsample D2
relies on a random sampling scheme like the one in D1 but does not include a non-
random part. Eligible respondents were identified through a screening procedure in
a large population survey in 1994 and interviewed for the SOEP in 1995. Overall,
304 households were successfully interviewed for D2 in 1995 (see Table 5.2).

Starting in 2000, the SOEP has been enlarged considerably by including the new
subsample F (see Table 5.2). Subsample F (“Innovation”) covers 6,052 households
(Haisken-DeNew and Frick 2003, p. 155). It was designed to include a share of
foreign nationals that matches its share in the overall population. The design consists
of a two stage scheme; in the first stage PSU were drawn and within these PSU,
respondents were contacted via a random-route method. To correct for the usual
underrepresentation of immigrants in population surveys, the inclusion probability
for foreign nationals in the second stage was doubled (for details see Rosenbladt
2002). This made it possible to include 445 households with non-German members
in subsample F, which makes for 7.5 % of the overall subsample. Thus, the goal of
including a share of foreign nationals in the subsample that matches the share in
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the population—around 8.8 % in 2000 (Statistisches Bundesamt 2010)—was almost
achieved.

The differences in sampling designs are often disregarded in analyses with SOEP
data, although respondents from the different subsamples may be hard to compare.
This holds in particular if we are interested in descriptive analyses across different
groups (and subsamples). Obviously, D1 may present a major problem in this regard.
One solution to this problem might lie in an appropriate weighting scheme that
accounts for these design features.

5.7.2 Cross-sectional Weighting

To meet this end, the SOEP provides cross-sectional weights for households and
individuals to compensate for differences in sampling design. A detailed descrip-
tion on the construction of the cross-sectional weights for each wave can be found in
Kroh (2009). The weights combine aspects of design-weighting, staying probabilities
(see next section for more information on the staying probability), as well as post-
stratification weighting. Design-weighting is necessary, as respondents in different
subsamples have different inclusion probabilities. For instance, the inclusion proba-
bility for respondents in subsample A was 0.0002, whereas the inclusion probability
for respondents in subsample B was four times as high (0.0008) (Haisken-DeNew
and Frick 2003, p. 19). Post-stratification weights adjust the ‘raw’ cross-sectional
weights to a set of characteristics of the underlying population in the specific years.
On the household level, this encompasses information on the number of households
per federal state (‘Bundesland’), the district magnitude, the household size, as well
as home ownership status (Kroh 2009, p. 4). On the individual level, the adjustment
is achieved with respect to the marginal distributions of age, gender, and number of
non-German nationals in the household. The adjustments are based on the German
Microcensus, which is an annual 1 % survey of the German population.

Cross-sectional weighting may appear intuitively plausible and the decision to
apply weights may appear equally straightforward. However, with longitudinal data
and, in particular, with the SOEP things are more complicated. First and foremost,
implementing an appropriate cross-sectional weighting scheme for the SOEP so that
the waves properly represent Germany’s population structure in the specific years
is far from obvious and the assumptions on which the construction is based are
debatable (for details see Diehl and Schnell 2006, p. 798). Weights may correct for
(sampling- and attrition-) bias if they are adequately constructed. But they can also
intensify bias if they are not correct. The more complex the weighting scheme, the
more pitfalls there are. Second, with regard to subsample D1, it is hardly possible to
compute design weights for the snowball sample (Rendtel et al. 1997, pp. 275–276;
Spieß 2004, p. 10) and thus cross-sectional weights for D1 are unavailable.14 At this

14 Respondents from this subsample get the value zero as a weighting factor. It would be possible
to compute sampling weights if respondents’ personal network size and information about the
recruitment process were known (Salganik and Heckathorn 2004).
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point, there are two possible strategies to deal with this problem. On the one hand, we
could use the available weights, assume that they are correct, and exclude sample D1.
On the other hand, we could treat all waves of the SOEP as independent, unweighted
samples as Diehl and Schnell (2006, p. 798) suggest. Both strategies are not optimal.
If we do not weight, we ignore design aspects and (potentially systematic) non-
response, which can bias our sample. But weighting may also aggravate problems
if the weights are incorrect. What is more, weighting will reduce the number of
respondents, as D1 will be excluded, which, in the multivariate analyses, poses a
problem as the number of cases with non-missing information on all relevant variables
is not very high.

Table 5.3 may provide some guidance. It presents the immigrants’ and the au-
tochthonous population’s estimated age distribution based on the Microcensus and
the SOEP for 2008. On average, the immigrant population is significantly younger
than the autochthonous population, as the Microcensus data clearly shows. The au-
tochthonous population’s median age lies between 45 and 54 years, while that of
the immigrants lies between 25 and 35 years. This may be due to the immigrants’
higher fertility rate (but see Milewski 2010). Table 5.3 also shows that the SOEP’s
age distribution is close to that of the Microcensus, which serves as a benchmark.
They do not match perfectly, as the percentage point differences indicate. Interest-
ingly, applying the cross-sectional weights to the SOEP reduces the difference in the
age distribution for the autochthonous population (9.9 − 4.5), measured as the sum
of the absolute differences in percentage points, but it increases the difference for
immigrants, albeit only slightly (10.5 − 12.2).

As mentioned before, Diehl and Schnell (2006, p. 798) point out that a plausible
weighting scheme for the SOEP, especially for immigrants, has yet to be developed.
This might explain that applying the cross-sectional weights results in better estimates
for non-immigrants in the sample and slightly poorer estimates for immigrants.

In the following, this work will pursue a two-fold strategy. In the descriptive anal-
yses, when immigrants are compared to the autochthonous population with regard
to their integration into the German society, cross-sectional weights will be applied.
Even if non-response adjustment by post-stratification is far from perfect, we have to
control for the differences in inclusion probabilities. For the multivariate analyses,
I will abstain from applying any weights. Some classes of models (logistic regres-
sions) estimate unbiased coefficients, even if the sample is stratified on endogenous
variables (Kalter 2006, p. 149; Hosmer and Lemeshow 1989, p. 177). Still, longitu-
dinal data forces us not only to take into account the sampling process, but also the
attrition process which refers to the loss of observations in the course of the survey.

5.7.3 Panel Attrition and Longitudinal Weighting

Not all households and respondents interviewed in wave t can be re-interviewed in
wave t + 1. This process is called panel attrition. It can occur at two levels (Kohler
2002, p. 124). On the household level, the complete household may refuse to be
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re-interviewed, or may move to an unknown destination or abroad. Similarly, on the
individual level, a respondent may refuse to be re-interviewed, may move abroad or
to an unknown destination, or may die. Even though panel maintenance schemes can
have strong impact on the amount of dropouts, panel attrition is inevitable. In the
course of the survey, subsample B, for instance, decreases from 1,393 households
in 1984 to 500 in 2009. Although it is undesirable because it decreases the sample
size, it remains rather unproblematic for the analysis if the attrition is at random. This
would require that the dropouts are a random subsample of the original sample. Panel
attrition becomes problematic, however, if it is non-random. An example would be
that unemployed respondents are more likely to drop out of the panel than employed
respondents. This could have various reasons. For instance, a new job might require
previously unemployed respondents to move and thus they drop out of the survey.
Or unemployment by itself might decrease a respondent’s willingness to participate
in the survey and thus cause the dropout. In this case, the probability to drop out
of the sample is related to relevant characteristics and we are left with a selective
sample from which it becomes more difficult to generalize to the population. If panel
attrition is following a systematic pattern, we can try to control for this process by
weighting the observations with longitudinal weights, giving more weight to those
respondents who are less likely to remain in the sample. This, of course, requires
us to understand and model the attrition process, e.g. to identify the relevant factors
which are driving attrition. The SOEP provides longitudinal weights, which are the
product of the inverse of the staying probabilities. These staying probabilities are
estimated via logit models, predicting successful follow ups and interviews at t + 1
with covariates from t (for details, see Kroh (2011) and Haisken-DeNew and Frick
(2003)).

As for cross-sectional weights, longitudinal weights can improve our estimates
if the weights are constructed correctly. If not, they, too, will increase bias. As
Brüderl (2010, p. 993) points out, weighting might not even be necessary to correct
for systematic panel attrition if attrition is driven by observables. Controlling these
observed variables in the analyses (i.e. in the regression models) can correct for the
attrition process. In addition, fixed effects estimates are also robust to attrition that is
driven by time-constant unobserved variables. Moreover, in the context of random
and fixed effects models, implementing the longitudinal weights is not straightfor-
ward. By construction, these weights differ for each wave. Standard fixed effects
estimations, however, require that these weights are constant across individual ob-
servations (Bjerk 2009, p. 409). As a consequence, I will abstain from longitudinal
weighting. We do not know whether more complicated modeling approaches really
improve our estimates, but they certainly increase potential sources of error (Brüderl
2010, p. 993).

From the above discussion it follows that I use an unbalanced panel design when
estimating the statistical models. Unbalanced means that the number of observations
may differ between respondents, as some are longer in the SOEP than others. A
balanced panel design would require each respondent being observed at every time
point. Obviously, panel attrition is one source of unbalanced observation across
respondents. But in the SOEP this is also due to the fact that it combines different
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subsamples that have been included in different years. Since a balanced panel design
would drastically reduce the number of cases, its implementation does not appear
sensible (see Wooldridge 2002, p. 577 ff. for a discussion). It may appear obvious to
assign more weight to those respondents with fewer observations, but I refrain from
doing so for the reasons enumerated above.

5.7.4 Operationalization

In the following, I will discuss the variables used in this study. In order not to prolong
this chapter unnecessarily, I will abstain from a detailed description of all variables
in the study and instead concentrate on the most important. A detailed list of all
variables used can be found in table A.1 in the appendix.

Immigrants in the SOEP are identified via country of origin and nationality. This
allows us to identify second generation immigrants who have acquired the German
nationality. This work differentiates between first generation immigrants and second
(and later) generation immigrants. The former are those who have migrated them-
selves, whereas the latter are direct descendants of immigrants. However, the second
generation also includes those who have migrated themselves but arrived in Germany
before the age of 6. This common procedure (e.g. Kalter 2006) is motivated by the
fact that these immigrants are likely to pass through the German schooling system.
Part of their secondary socialization will thus take place in the receiving country and
its core educational institutions. Among the first generation, this work differentiates
between immigrants from Greece, Italy, Poland, Spain and Portugal, Turkey, former
Yugoslavia, other Eastern European Countries, other Western European Countries,
other countries, and no answer.15 Among the second generation, it is unfortunately
not possible to unambiguously identify the parents’ country of origin. In part, this
is possible if the parents are interviewed in the SOEP, too (this is the case if the
respondents live in one household). Unfortunately, this is not the case for many
respondents. Consequently, the second generation has Germany as its country of
origin. For the later analysis, this implies that one cannot compute joint models for
first and second generation in which both generational status and country of origin
are controlled for. Similarly to the country of origin, the respondents can also be
distinguished by their nationalities, i.e. German, Greek, Italian, Polish, Spanish and
Portuguese, Turkish, former Yugoslavian, nationalities from other Eastern European
Countries, from other Western European Countries, and from other countries.

The analyses in general will put more emphasis on the first generation. This has
a number of reasons. For one, the number of cases for the second generation is
considerably lower and a detailed analysis of the second generation’s transnational

15 The latter is included as a separate category for most variables if the number of cases is high enough
to justify a separate category. This is done also for other variables, e.g. CASMIN, to efficiently use
the SOEP cases. The alternative would be listwise exclusion, which would considerably lower the
number of cases in the multivariate analysis.
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involvement is, in some instances, hard to realize. Moreover, the sample of second
generation immigrants is rather heterogeneous regarding their inclusion into the
SOEP. Some have been included directly through the sampling, while some grew
up in (first generation immigrant) households and became part of the SOEP when
reaching the 17th birthday (Wagner et al. 2007). As such, the sample of the second
generation immigrants may not be fully representative of the second generation living
in Germany.

The most important theoretical and empirical constructs of this work are certainly
those capturing immigrants’ transnational activities. Fortunately, the SOEP collects
information on a set of important transnational activities: first, on remittances sent
(abroad) to relatives and friends (Kivisto and Faist 2010, p. 140, 150 ff.; Haller and
Landolt 2005; Waldinger 2008) and, second, on regular visits to the country of origin
(O’Flaherty et al. 2007; Waldinger 2008; Haller and Landolt 2005). Remittances
are typically considered to be an important aspect of transnational involvement.
Remittance-arrangements are most likely within the context of families or extended
kinship networks, as part of a household strategy to reduce risks (Massey 1990;
Stark 1991; Stark and Bloom 1985; Landolt 2001). But they can also extend beyond
close-kinship networks (Kivisto and Faist 2010, p. 141), being motivated by other
than those quasi contractual arrangements of household risk diversification (Vanwey
2004), and may indicate emotional attachment to those left behind. Visiting the
country of origin is a very tangible aspect of border-crossing involvement which, and
as such, can be seen as a particularly important aspect of being transnationally active.
As O’Flaherty et al. (2007, p. 820) put it, being in the country of origin in person
is phenomenologically quite different from other forms of (electronically) mediated
interaction. Hence, interacting with significant others in the country of origin is
bound to be very important in evaluating investment decisions. Of course, these
two dimensions of border-crossing involvement and the relating indicators cannot
compete with the information on border-crossing involvement provided by a study
like the CIEP (e.g. Portes 2001), for instance. But they very well match indicators
used in other studies on transnational involvement, as discussed in Chap. 3 (Haller
and Landolt 2005; O’Flaherty et al. 2007; Waldinger 2008).

An issue to consider with longitudinal data is that not every item is included
annually. Some questions are asked biennially. The questions on a respondent’s self-
assessed language proficiency are, for example, included in the SOEP (after 1993)
only in the years 1993, 1995, 1997, 1999, 2001, 2003, 2005, 2007, and 2009. One
could limit the analysis to the years in which the relevant information was collected.
This, however, severely limits the analysis, because it drastically reduces the sample
and, more importantly, rules out analyses on characteristics that are included in the
survey alternately. Alternatively, we can make a virtue out of necessity and can
use leads and lags of the respective variables in the analyses, which offers some
protection against simultaneity. For instance, a set of items on visits to the country of
origin within the last two years prior to the interview has been included in the SOEP
starting 1996. Since then, it has been part of the SOEP questionnaire every two years,
i.e. 1996, 1998, . . . , 2006, 2008. Information on language proficiency is included
biennially but in odd years. Thus, we have information on language proficiency for
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the years 1995, 1997, . . . , 2007, 2009. If we are interested in estimating the effect of
visits to the country of origin on German language proficiency, then we will estimate
the effect of visits to the country of origin from t −1 (e.g. 2004) on German language
proficiency at t (e.g. 2005). If, conversely, we are interested in estimating the effect
of German language proficiency on the probability to visit the country of origin, then
we estimate the effect of language proficiency at time t (e.g. 2005) on visits to the
country of origin at t + 3 (e.g. 2008)–recall that the items on visits refer to the last
two years before the interview.16 This strategy is chosen for all variables that are
collected biennially.

The time lag between the independent and the dependent variables might appear
long. In this example, the longest possible lag between the two variables is just
under 3 years. However, this structure is necessary to ensure the correct temporal
order between independent and dependent variables. How can such a lag influence
the analyses? If there is a lag between exposure and effect, we have to rely on the
assumption that effect will be observable after the lag. In some contexts such an
assumption can be problematic. In the context of this work, however, it appears
unproblematic. The theoretical perspective laid out above (Chap. 4) is compatible
with the assumption of delayed responses. Investment decisions over the life course
are surely shaped by more than the immediate experiences and opportunity structure
prior to the decision. Quite the opposite: deciding to invest into a specific form of
capital surely depends on previously accumulated capitals and previous experiences,
as they also shape the expectations regarding gains and realization probabilities.
Thus, it is a sound assumption to say that transnational activities in the last 2 years
influence present immigrant integration (and vice versa). Besides, most variables are
measured annually so that this problem only presents itself with a few indicators.

A related and potentially more severe problem presents itself for three other (sets
of) variables (ethnic composition of one’s network, the location of relatives, and
neighborhood characteristics). Information on these items is only collected every few
years (see Table A.1 in the appendix). Either we limit the analyses to the respective
years or we have to fill in the missing values. The first option is out of question,
as this would limit the analyses to at most three time points with considerable lags
between them. With respect to the second option, if we perceive this as a missing data
problem, we could try to impute the missing data from the available information (e.g.
Allison 2000). The implementation of an elaborate imputation scheme, especially for
longitudinal data, however, goes beyond the scope of this work. Thus, an alternative
way of filling in the missing values is chosen: they are replaced by the values of
the last available measurement. This procedure is admittedly not the best choice,
although it appears to be commonly used (see e.g. Kalter 2006, p. 150). However,
this is only done when these variables are used as predictors. And, in the case of
neighborhood characteristics, additional information on moves is used to ensure that
respondents are still living in the neighborhood their answers referred to. What are

16 This example indicates that we are actually facing an endogenous causal structure, which is at
odds with the assumption of certain panel models (such as fixed effects models). See Chap. 9 for a
discussion.
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the consequences of this procedure for the analysis? This is actually a measurement
problem. By using last year’s information as a proxy for the current year, we increase
measurement error. Measurement error may bias our estimates. But measurement
error is likely to create a ‘conservative,’ i.e. downward, bias, which is in any case
preferable to an undefined bias due to unobserved heterogeneity. Thus, although this
procedure is unlikely to obscure the estimates—and in the case of neighborhoods even
seems well justified as most neighborhoods in Germany do not change completely
within 4–5 years—we have to keep this in mind when conducting the analysis.

5.8 Theoretical and Empirical Implications of the Data

Besides the methodological issues discussed above, we should also reflect on how
the data we have matches the theory we use and whether the data captures the popu-
lation of interest. The group of immigrants which is most likely to be in a survey like
the SOEP is at least partially permanent immigrants. Sojourners and pendular labor
migrants are less likely to be part of such a survey. Thus, the immigrant sample in the
data used is selective in the sense that the longer the residence in Germany, the higher
the probability of being in the sample (Rendtel et al. 1997, p. 189). Some scholars
might argue that precisely the group which has been excluded from the study is most
relevant with respect to transnational involvement. This might well be the case. Still,
it is very informative to investigate transnational activities among a population in
which they are by default less likely, i.e. more permanent immigrants. Of course,
the same line of criticism regarding the sample selection applies when investigat-
ing the relationship between transnational involvement and immigrant integration.
One might say that it is uninformative to look at those immigrants who intend to
settle permanently in the receiving country, because they are more likely to follow
conventional paths of immigrant integration. Thus, inference regarding the overall
validity and explanatory scope of the theoretical frame can be hard to justify. This
is a valid critique, which has to be carefully addressed by studies on transnational
involvement and immigrant integration. But a strength of the proposed theoretical
model in Chap. 4 is its universality. Reconstructing the integration process as in-
vestment decisions that bounded rational actors make, facing a specific opportunity
structure, can be easily extended to forms of temporary migration. Moreover, the
theoretical model’s core has been applied numerous times to explain the actual mi-
gration process (Esser 1980; Kley 2010; De Jong et al. 1983; De Jong and Gardner
1981; Huinink and Kley 2008) and even circular migration from Poland to Germany
(Kalter 2011).

There are, nonetheless, important empirical and theoretical aspects to consider.
First, the Comparative Immigrant Entrepreneurship Project (CIEP), which does not
restrict its sample to (semi)permanent immigrants, has shown that transnational
modes of making a living are uncommon among immigrants (see e.g. Portes et al.
2002). Second, although other forms of transnational involvement, be they political
or socio-cultural, are more common among immigrants than assumed by critiques of
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the concept, this is not limited to pendular migrants. Instead, permanent and semi-
permanent immigrants do engage in these activities (see e.g. O’Flaherty et al. 2007;
Portes 2003). But with respect to immigrant integration, one can as well argue that
those immigrants who (intend) to stay for longer periods of time in a receiving coun-
try make up the population of interest. When it comes to issues of integration, this
group is at the center of interest in the debates in science, politics, and media. More-
over, because a huge part of the non-autochthonous population living in immigration
countries are permanent or semi-permanent migrants, it seems indeed reasonable to
investigate transnational involvement among them.
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