
On Subexponential and FPT-Time
Inapproximability�

Edouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th. Paschos��

PSL Research University, Université Paris-Dauphine, LAMSADE, CNRS UMR 7243
{escoffier,eun-jung.kim,paschos}@lamsade.dauphine.fr

Abstract. Fixed-parameter algorithms, approximation algorithms and
moderately exponential algorithms are three major approaches to algo-
rithms design. While each of them being very active in its own, there is
an increasing attention to the connection between these different frame-
works. In particular, whether Independent Set would be better approx-
imable once endowed with subexponential-time or FPT-time is a central
question. In this article, we provide new insights to this question using
two complementary approaches; the former makes a strong link between
the linear PCP conjecture and inapproximability; the latter builds a class
of equivalent problems under approximation in subexponential time.

1 Introduction

Fixed-parameter algorithms, approximation algorithms and moderately expo-
nential/subexponential algorithms are major approaches for efficiently solving
NP-hard problems. These three areas, each of them being very active in its own,
have been considered as foreign to each other until recently. Polynomial-time
approximation algorithm produces a solution whose quality is guaranteed to lie
within a certain range from the optimum. One illustrative problem indicating
the development of this area is Independent Set. The approximability of In-

dependent Set within constant ratios has remained as the most important
open problems for a long time in the field. It was only after the novel charac-
terization of NP by PCP theorem [2] that such inapproximability was proven
assuming P �= NP. Subsequent improvements of the original PCP theorem led
to much stronger result for Independent Set: it is inapproximable within ra-
tios Ω(nε−1) for any ε > 0, unless P = NP [3].

Moderately exponential (subexponential, respectively) computation allows ex-
ponential (subexponential, respectively) running time for the sake of optimality.
In this case, the endeavor lies in limiting the growth of the running time function
as slow as possible. Parameterized complexity provides an alternative framework
to analyze the running time in a more refined way [4]. Given an instance with
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a parameter k, the aim is to get an O(f(k) · nc)-time (or equivalently, FPT-
time) algorithm for some constant c, where the constant c is independent of k.
As these two research programs offer a generous running time when compared
to that of classic approximation algorithms, a growing amount of attention is
paid to them as a way to cope with hardness in approximability. The first one
yields moderately exponential approximation. In moderately exponential approx-
imation, the core question is whether a problem is approximable in moderately
exponential time while such approximation is impossible in polynomial time.
Suppose a problem is solvable in time O∗(γn), but it is NP-hard to approxi-
mate within ratio r. Then, we seek for r-approximation algorithms of running
time significantly faster than O∗(γn). This issue has been considered for several
problems [5,6,7,13,17].

The second research program handles approximation by fixed parameter al-
gorithms. We say that a minimization (maximization, respecitvely) problem Π ,
together with a parameter k, is parameterized r-approximable if there exists an
FPT-time algorithm which computes a solution of size at most (at least, re-
spectively) rk whenever the input instance has a solution of size at most (at
least, respectively) k. This line of research was initiated by three independent
works [15,9,11]. For an excellent overview, see [22]. In what follows, parameteriza-
tion means “standard parameterization”, i.e., where problems are parameterized
by the cost of the optimal solution.

Several natural questions can be asked dealing with these two programs. In
particular, the following ones have been asked several times [22,15,17,7].

Q1: can a problem, which is highly inapproximable in polynomial time, be well-
approximated in subexponential time?
Q2: does a problem, which is highly inapproximable in polynomial time, become
well-approximable in FPT-time?

Few answers have been obtained until now. Regarding Q1, negative results
can be directly obtained by gap-reductions for certain problems. For instance,
Coloring is not approximable within ratio 4/3 − ε since this would allow to
determine whether a graph is 3-colorable or not in subexponential time. This
contradicts a widely-acknowledged computational assumption [19]:

Exponential Time Hypothesis (ETH): There exists an ε > 0 such that no
algorithm solves 3Sat in time 2εn, where n is the number of variables.

Regarding Q2, [15] shows that assuming FPT �= W[2], for any r the Indepen-

dent Dominating Set problem is not r-approximable1 in FPT-time.
Among interesting problems for which Q1 and Q2 are worth being asked are

Independent Set, Coloring and Dominating Set. They fit in the frame of
both Q1 and Q2 above: they are hard to approximate in polynomial time while
their approximability in subexponential or in parameterized time is still open.

In this paper, we study parameterized and subexponential (in)approximabi-
lity of natural optimization problems. In particular, we follow two guidelines:
1 Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for

any function g.
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(i) getting inapproximability results under some conjecture and (ii) establishing
classes of uniformly inapproximable problems under approximability preserving
reductions.

Following the first direction, we establish a link between a major conjecture in
PCP theorem and inapproximability in subexponential-time and in FPT-time,
assuming ETH. Just below, we state this conjecture while the definition of PCP
is deferred to the next section.

Linear PCP Conjecture (LPC): 3Sat ∈ PCP1,β[log |φ|+D, E] for some
β ∈ (0, 1), where |φ| is the size of the 3Sat instance (sum of lengths of
clauses), D and E are constant.

Unlike ETH which is arguably recognized as a valid statement, LPC is a wide
open question. In Lemma 1 stated in Section 2, we claim that if LPC turns out
to hold, it implies that one of the most interesting questions in subexponential
and parameterized approximation is answered in the negative. In particular, the
followings hold for Independent Set on n vertices, for any constant 0 < r < 1
assuming ETH:

(i) There is no r-approximation algorithm in time O(2n1−δ

) for any δ > 0.
(ii) There is no r-approximation algorithm in time O(2o(n)), if LPC holds.
(iii) There is no r-approximation algorithm in time O(f(k)nO(1)), if LPC holds.

Remark that (i) is not conditional upon LPC. In fact, this is an immediate
consequence of near-linear PCP construction achieved in [14]. Note that similar
inapproximability results under ETH for Max-3Sat and Max-3Lin for some
subexponential running time have been obtained in [24].

Following the second guideline, we show that a number of problems are equiv-
alent with respect to approximability in subexponential time. Designing a fam-
ily of equivalent problems is a common way to provide an evidence in favor of
hardness of these problems. One prominent example is the family of problems
complete under SERF-reducibility [19] which leads to equivalent formulations
of ETH. More precisely, for a given problem Π , let us formulate the following
hypothesis, which can be seen as the approximate counterpart of ETH.

Hypothesis 1 (APETH(Π)). There exist two constants ε > 0 and r (r <
1 if Π is a maximization problem, r > 1, otherwise), such that Π is not r-
approximable in time 2εn.

We prove that several well-known problems are equivalent with respect to the
APETH (APETH-equivalent). To this end, a notion called the approximation
preserving sparsification is proposed. A recipe to prove that two problems A and
B are APETH-equivalent consists of two steps. The first is to reduce an instance
of A into a family of instances in "bounded" version (bounded degree for graph
problems, bounded occurrence for satisfiability problems), which are equivalent
with respect to approximability. This step is where the proposed notion comes
into play. The second is to use standard approximability preserving reductions
to derive equivalences between bounded versions of A and B. In this paper,
we consider L-reductions [25] for this purpose. Furthermore, we show that if
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APETH fails for one of these problems, then any problem in MaxSNP would be
approximable for any constant ratio in subexponential FPT-time 2o(k), which is
also an evidence toward the validity of APETH. This result can be viewed as
an extension of [10], which states that none of MaxSNP hard problems allows
2o(k)-time algorithm under ETH.

Some preliminaries and notation are given in Section 2. Results derived from
PCP and LPC are given in Section 3. The second direction on equivalences
between problems is described in Section 4.

2 Preliminaries and Notation

We denote by PCPα,β[q, p] (see for instance [2] for more on PCP systems) the
set of problems for which there exists a PCP verifier which uses q random bits,
reads at most p bits in the proof and is such that: (1) if the instance is positive,
then there exists a proof such that V(erifier) accepts with probability at least α;
(2) if the instance is negative, then for any proof V accepts with probability at
most β. The following theorem is proved in [14] (see also Theorem 7 in [24]),
presenting a further refinement of the characterization of NP.

Theorem 1. [14] For every ε > 0,

3Sat ∈ PCP1,ε[(1 + o(1)) log n + O(log(1/ε)), O(log(1/ε))]

A recent improvement [24] of Theorem 1 (a PCP Theorem with two-query projec-
tion tests, sub-constant error and almost-linear size) has some important corol-
laries in polynomial approximation. In particular:

Corollary 1. [24] Under ETH, for every ε > 0, and δ > 0, it is impossible
to distinguish between instances of Max-3Sat with m clauses where at least
(1− ε)m are satisfiable from instances where at most (7/8 + ε)m are satisfiable,
in time O(2m1−δ

).

Under LPC, a stronger version of this result follows from standard argument2.

Lemma 1. If LPC3 and ETH hold, then there exists r < 1 such that for every
ε > 0 it is impossible to distinguish between instances of Max-3Sat with m
clauses where at least (1 − ε)m are satisfiable from instances where at most
(r + ε)m are satisfiable, in time 2o(m).

This (conditional) hardness result of approximating Max-3Sat will be the basis
of the negative results of parameterized approximation in Section 3.1.

Let us now present two useful gap amplification results for Independent

Set. First, as noted in [16], the so-called self-improvement property [18] can be
proven for Independent Set also in the case of parameterized approximation.

2 All missing proofs can be found in the extended version of the paper [1].
3 Note that LPC as expressed in this article implies the result even with replacing

(1 − ε)m by m. However, we stick with this lighter statement (1 − ε)m in order, in
particular, to emphasize the fact that perfect completeness is not required in the
LPC conjecture.
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Lemma 2. [16] If there exists a parameterized r-approximation algorithm for
some r ∈ (0, 1) for Independent Set, then this is true for any r ∈ (0, 1).

It is also well known that the very powerful tool of expander graphs allows to
derive the following gap amplification for Independent Set (see [1]).

Theorem 2. Let G be a graph on n vertices (for a sufficiently large n) and
a > b be two positive real numbers. Then for any real r > 0 one can build in
polynomial time a graph Gr and specify constants ar and br such that: (i) Gr

has N � Cn vertices, where C is some constant independent of G (but may
depend on r); (ii) if ω(G) � bn then ω(Gr) � brN ; (iii) if ω(G) � an then
ω(Gr) � arN ; (iv) br/ar � r.

Finally, we will use in the sequel the well known sparsification lemma [19]. Intu-
itively, this lemma allows to work with 3-SAT formula with linear lengths (the
sum of the lengths of clauses is linearly bounded in the number of variables).

Lemma 3. [19] For all ε > 0, a 3-SAT formula φ on n variables can be written
as the disjunction of at most 2εn 3-SAT formula φi on (at most) n variables
such that φi contains each variable in at most cε clauses for some constant cε.
Moreover, this reduction takes at most p(n)2εn time.

3 Some Consequences of (Almost-)Linear Size PCP
System

3.1 Parameterized Inapproximability Bounds

It is shown in [12] that, under ETH, for any function f no algorithm running in
time f(k)no(k) can determine whether there exists an independent set of size k,
or not (in a graph with n vertices). A challenging question is to obtain a similar
result for approximation algorithms for Independent Set. In the sequel, we
propose a reduction from Max-3Sat to Independent Set that, based upon
the negative result of Corollary 1, only gives a negative result for some function f
(because Corollary 1 only avoids some subexponential running times). However,
this reduction gives the inapproximability result sought, if the consequence of
LPC given in Lemma 1 (which strengthens Corollary 1 and seems to be a much
weaker assumption than LPC) is used instead. We emphasize the fact that the
results in this section are valid as soon as a hardness result for Max-3Sat as
that in Lemma 1 holds.

The proof of the following theorem essentially combines the parameterized
reduction in [12] and a classic gap-preserving reduction.

Theorem 3. Under LPC and ETH, there exists r < 1 such that, no parameter-
ized approximation algorithm for Independent Set running in time f(k)no(k)

can achieve approximation ratio r in graphs of order n.

The following result follows from Lemma 2 and Theorem 3.
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Corollary 2. Under LPC and ETH, for any r ∈ (0, 1) there is no r-approxi-
mation parameterized algorithm for Independent Set (i.e., an algorithm that
runs in time f(k)p(n) for some function f and some polynomial p).

Let us now consider Dominating Set which is known to be W[2]-hard [4].
The existence of parameterized approximation algorithms for this problem is
open [15]. Here, we present an approximation preserving reduction (fitting the
parameterized framework) which, given a graph G(V, E) on n vertices where V
is a set of K cliques C1, · · · , CK , builds a graph G′(V ′, E′) such that G has an
independent set of size α if and only if G′ has a dominating set of size 2K − α.
Using the fact that the graphs produced in the proof of Theorem 3 are of this
form (vertex set partitioned into cliques), this reduction will allow us to obtain
a lower bound (based on the same hypothesis) for the approximation of min

dominating set from Theorem 3.
The graph G′ is built as follows. For each clique Ci in G, add a clique C′

i of
the same size in G′. Add also: an independent set Si of size 3K, each vertex
in Si being adjacent to all vertices in C′

i and a special vertex ti adjacent to all
the vertices in C′

i. For each edge e = (u, v) with u and v not in the same clique
in G, add an independent set We of size 3K. Suppose that u ∈ Ci and v ∈ Cj .
Then, each vertex in We is linked to ti and to all vertices in C′

i but u, and tj
and all vertices in C′

j but v.
Informally, the reduction works as follows. The set Si ensures that we have

to take at least one vertex in each C′
i, the fact that |We| = 3K ensures that it

is never interesting to take a vertex in We. If we take ti in a dominating set,
this will mean that we do not take any vertex in the set Ci in the corresponding
independent set in G. If we take one vertex in C′

i (but not ti), this vertex will be
in the independent set in G. Let us state this property in the following lemma.

Lemma 4. G has an independent set of size α if and only if G′ has a dominating
set of size 2K − α.

Theorem 4. Under LPC and ETH, there exists an r > 1 such that there is
no r-approximation algorithm for Dominating Set running in time f(k)no(k)

where n is the order of the graph.

Such a lower bound immediately transfers to Set Cover since a graph on n ver-
tices for Dominating Set can be easily transformed into an equivalent instance
of Set Cover with ground set and set system both of size n.

Corollary 3. Under LPC and ETH, there exists r > 1 such that there is no r-
approximation algorithm for Set Cover running in time f(k)mo(k) in instances
with m sets.

3.2 On the Approximability of Independent Set and Related
Problems in Subexponential Time

As mentioned in Section 2, an almost-linear size PCP construction [24] for 3Sat

allows to get the negative result stated in Corollary 1. In this section, we present
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further consequences of Theorem 1, based upon a combination of known reduc-
tions with (almost) linear size amplifications of the instance.

First, Theorem 1 combined with the reduction in [2] showing inapproximabil-
ity results for Independent Set in polynomial time and the gap amplification
of Theorem 2, leads to the following result.

Theorem 5. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for Independent Set running in time O(2n1−δ

),
where n is the order of the input graph.

Since (for k � n), nk1−δ

= O(2n1−δ′
), for some δ′ < δ, the following holds.

Corollary 4. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for Independent Set (parameterized by k) running
in time O(nk1−δ

), where n is the order of the input graph.

The results of Theorem 5 and Corollary 4 can be immediately extended to prob-
lems that are linked to Independent Set by approximability preserving reduc-
tions (that preserve at least constant ratios) that have linear amplifications of
the sizes of the instances, as in the following proposition.

Proposition 1. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for either Set Packing or Bipartite Subgraph

running in time O(2n1−δ

) in a graph of order n.

Dealing with minimization problems, Theorem 5 and Corollary 4 can be extended
to Coloring, using the reduction given in [21]. Note that this reduction uses
the particular structure of graphs produced in the inapproximability result in [2]
(as in Theorem 5). Hence, the following result can be derived.

Proposition 2. Under ETH, for any r > 1 and any δ > 0, there is no r-
approximation algorithm for Coloring running in time O(2n1−δ

) in a graph of
order n.

Concerning the approximability of Vertex Cover and Min-Sat in subexpo-
nential time, the following holds.

Proposition 3. Under ETH, for any ε > 0 and any δ > 0, there is no (7/6 −
ε)-approximation algorithm for Vertex Cover running in time O(2n1−δ

) in
graphs of order n, nor for Min-Sat running in time 2m1−δ

in CNF formulæ
with m clauses.

All the results given in this section are valid under ETH and rule out some ratios
in subexponential time of the form 2n1−δ

. It is worth noticing that if LPC holds,
then all these results would hold for any subexponential time. Note that this is in
some sense optimal since it is easy to see that, for any increasing and unbounded
function r(n), Independent Set is approximable within ratio 1/r(n) in subex-
ponential time (simply consider all the subsets of V of size at most n/r(n) and
return the largest independent set among these sets).

Corollary 5. If LPC holds, under ETH the negative results of Theorem 5 and
Propositions 1, 2 and 3 hold for any time complexity 2o(n).
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4 Subexponential Approximation Preserving Reducibility

In this section, we study subexponential approximation preserving reducibility.
Recall that APETH(Π) (Hypothesis 1) states that it is hard to approximate in
subexponential time problem Π , within some constant ratio r. We exhibit that
a set of problems are APETH-equivalent using the notion of approximation
preserving sparsification. We then link APETH with approximation in subexpo-
nential FPT-time.

4.1 Approximation Preserving Sparsification and APETH
Equivalences

Recall that the sparsification lemma for 3Sat reduces a formula φ to a set
of formulae φi with bounded occurrences of variables such that solving the in-
stances φi would allow to solve φ. We attempt to build an analogous construction
for subexponential approximation using the notion of approximation preserving
sparsification. Given an optimization problem Π and some parameter of the in-
stance, Π-B denotes the problem restricted to instances where the parameter is
at most B. For example, we can prescribe the maximum degree of a graph or
the maximum number of literal occurrences as the parameter. Then Π-B would
be the problems restricted to instances with the parameter bounded by B.

Definition 1. An approximation preserving sparsification from a problem Π to
a bounded parameter version Π-B of Π is a pair (f, g) of functions such that,
given any ε > 0 and any instance I of Π:

1. f maps I into a set f(I, ε) = (I1, I2, . . . , It) of instances of Π, where t � 2εn

and ni = |Ii| � n; moreover, there exists a constant Bε (independent on I)
such that any Ii has parameter at most Bε;

2. for any i � t, g maps a solution Si of an instance Ii (in f(I, ε)) into a
solution S of I;

3. there exists an index i � t such that if a solution Si is an r-approximation
in Ii, then S = g(I, ε, Ii, Si) is an r-approximation in I;

4. f is computable in time O∗(2εn), and g is polynomial with respect to |I|.
With a slight abuse of notation, let APETH(Π-B) denote the hypothesis: ∃B
such that APETH(Π-B), meaning that Π is hard to approximate in subex-
ponential time even for some bounded parameter family of instances. Then the
following holds4.

Theorem 6. If there exists an approximation preserving sparsification from Π
to Π-B, then APETH(Π) if and only if APETH(Π-B).
4 Note that we could consider a more general definition, leading to the same theorem,

by allowing (1) a slight amplification of the size of Ii (ni � αn for some fixed α in
item 1), (2) an expansion of the ratio in item 3 (if Si is r-approximate S is h(r)
approximate where h(r) goes to one when r goes to one) and (3) a computation
time O∗(2εn) for g in item 4.
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We now illustrate this technique on some problems. It is worth noticing that
the sparsification lemma for 3Sat in [19] is not approximation preserving5; one
cannot use it to argue that approximating Max-3Sat (in subexponential time)
is equivalent to approximating Max-3Sat with bounded occurrences.

Proposition 4. There exists an approximation preserving sparsification from
Independent Set to Independent Set-B and one from Vertex Cover to
Vertex Cover-B.

Proof. Let ε > 0. It is well known that the positive root of 1 = x−1 + x−1−B

goes to one when B goes to infinity. Then, consider a Bε such that this root is
at most 2ε. Our sparsification is obtained via a branching tree: the leaves of this
tree will be the set of instances Ii; f consists of building this tree; a solution of
an instance in the leaf corresponds, via the branching path leading to this leaf,
to a solution of the root instance, and that is what g makes.

More precisely, for Independent Set, consider the following usual branching
tree, starting from the initial graph G: as long as the maximum degree is at least
Bε, consider a vertex v of degree at least Bε, and branch on it: either take v in
the independent set (and remove N [v]), or do not take it. The branching stops
when the maximum degree of the graph induced by the unfixed vertices is at
most Bε−1. When branching, at least Bε+1 vertices are removed when taking v,
and one when not taking v; thus the number of leaves is t � 2εn (by the choice
of Bε). Then, f and g satisfy items 1 and 2 of the definition. For item 3, it is
sufficient to note that g maps Si in S by adding adequate vertices. Then, if we
consider the path in the tree corresponding to an optimal solution S∗, leading
to a particular leaf Gi, we have that |S∗| = |S∗ ∩ Gi| + k for some k � 0, and
the solution S computed by g is of size |S| = |Si| + k. So, |S|

|S∗| � |Si|
|S∗∩Gi| � r

if Si is an r-approximation for Gi. The same argument holds also for Vertex

Cover. ��
Analogous arguments apply more generally to any problem where we have

a “sufficiently good” branching rule when the parameter is large. Indeed, sup-
pose we can ensure the decrease in instance size by g(B) for nondecreasing and
unbounded function g in all (possibly except for one) branches. Then such a
branching rule can be utilized to yield an approximation preserving sparsifica-
tion as in Proposition 4.

We give another approximation preserving sparsification, where there is no
direct branching rule allowing to remove a sufficiently large number of vertices.
Let Generalized Dominating Set be defined as follows: given a graph G =
(V, E) where V is partitioned into V1, V2, V3, we ask for a minimum size set of
vertices V ′ ⊆ V1 ∪ V2 which dominates all vertices in V2 ∪ V3. Of course, the
case V2 = V corresponds to the usual Dominating Set problem. Note that
Generalized Dominating Set is also a generalization of Set Cover, with
V2 = ∅, V3 being the ground set and V1 being the set system.
5 One of the reasons is that when a clause C is contained in a clause C′, a reduction rule

removes C′, that is safe for the satisfiability of the formula, but not when considering
approximation.
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Proposition 5. There exists an approximation preserving sparsification from
Generalized Dominating Set to Generalized Dominating Set-B.

Combining Proposition 5 with some reductions, the following can be shown.

Lemma 5. APETH(Dominating Set) implies APETH( Independent Set-
B).

Note that similarly, APETH(Set Cover) implies APETH(Independent Set-
B), when the complexity of Set Cover is measured by n + m.

Then, we have the following set of equivalent problems.

Theorem 7. Set Cover, Independent Set, Independent Set-B, Ver-

tex Cover, Vertex Cover-B, Dominating Set, Dominating Set-B, Max

Cut-B, 3Sat-B, Max-kSat-B (for any k � 2) are APETH-equivalent.

Proof. The equivalences between Vertex Cover-B, Independent Set-B,
Max Cut-B, 3Sat-B, Max-2Sat-B, Dominating Set-B follow immediately
from [25]. Indeed, for these problems [25] provides L-reductions with linear
size amplification. The equivalence between Max-kSat-B problems is also well
known (just replace a clause of size k by k − 1 clauses of size 3).

The equivalence between Independent Set and Independent Set-B, Ver-

tex Cover and Vertex Cover-B follows from Proposition 4. Finally, Lemma 5
allows us to conclude for Dominating Set. ��

4.2 APETH and Parameterized Approximation

The equivalence drawn in Theorem 7 gives a first intuition that the corresponding
problems should be hard to approximate in subexponential time for some ratio.
In this section we show another argument towards this hypothesis: if it fails, then
any MaxSNP problem admits for any r < 1 a parameterized r-approximation
algorithm in subexponential time 2o(k), which would be quite surprising. The
following theorem can be construed as an extension of [10].

Theorem 8. The following statements are equivalent:

(i) APETH(Π) holds for one (equivalently all) problem(s) in Theorem 7;
(ii) there exist a MaxSNP-complete problem Π, some ratio r < 1 and a con-

stant ε > 0 such that there is no parameterized r-approximation algorithm
for Π with running time O(2εkpoly(|I|));

(iii) for any MaxSNP-complete problem Π, there exist a ratio r < 1 and an
ε > 0 such that there is no parameterized r-approximation algorithm for Π
with running time O(2εkpoly(|I|)).

As an interesting complement of the above theorem, we show that trade-offs
between (exponential) running time and approximation ratio do exist for any
MaxSNP problem. In [8], it is shown that every MaxSNP problem Π is fixed-
parameter tractable in time 2O(k) for the standard parameterization, while in [25]
it is shown that Π is approximable in polynomial time within a constant ratio
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ρΠ . We prove here that there exists a family of parameterized approximation
algorithms achieving ratio ρΠ + ε, for any ε > 0, and running in time 2O(εk).
This is obtained as a consequence of a result in [20].

Proposition 6. Let Π be a standard parameterization of a MaxSNP-complete
problem. For any ε > 0, there exists a parameterized (ρΠ + ε)-approximation
algorithm for Π running in time γεk · poly(|I|) for some constant γ.

5 Conclusion

More interesting questions remain untouched in the junction of approximation
and (sub)exponential-time/FPT-time computations. This paper is only a first
step in this direction and we wish to motivate further research. Among a range
of problems to be tackled, we propose the followings.

– Our inapproximability results are conditional upon Linear PCP Conjecture.
Is it possible to relax the condition to a more plausible one?

– Or, we dare ask whether (certain) inapproximability results in FPT-time
imply strong improvement in PCP theorem. For example, would the converse
of Lemma 1 hold?

– Can we design approximation preserving sparsifications for problems like
Max Cut or Max-3Sat? It seems to be difficult to design a sparsifier based
on branching rules, so a novel idea is needed.

Note that we have considered in this article constant approximation ratios. As
noted earlier, ratio 1/r(n) is achievable in subexponential time for any increasing
and unbounded function r. However, dealing with parameterized approximation
algorithms, achieving a non-constant ratio is also an open question. More pre-
cisely, finding in FPT-time an independent set of size g(k) when there exists
an independent set of size k is not known for any unbounded and increasing
function g.

Finally, let us note that, in the same vein of the first part of our work, Math-
ieson [23] recently studied a proof checking view of parameterized complexity.
Possible links between these two approaches are worth being investigated in
future works.
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