
Algorithms for k-Internal Out-Branching

Meirav Zehavi

Department of Computer Science, Technion - Israel Institute of Technology,
Haifa 32000, Israel

meizeh@cs.technion.ac.il

Abstract. The k-Internal Out-Branching (k-IOB) problem asks if a
given directed graph has an out-branching (i.e., a spanning tree with
exactly one node of in-degree 0) with at least k internal nodes. The
k-Internal Spanning Tree (k-IST) problem is a special case of k-IOB,
which asks if a given undirected graph has a spanning tree with at least
k internal nodes. We present an O∗(4k) time randomized algorithm for k-
IOB, which improves the O∗ running times of the best known algorithms
for both k-IOB and k-IST. Moreover, for graphs of bounded degree Δ,

we present an O∗(2(2−
Δ+1

Δ(Δ−1)
)k
) time randomized algorithm for k-IOB.

Both our algorithms use polynomial space.

1 Introduction

In this paper we study the k-Internal Out-Branching (k-IOB) problem. The
input for k-IOB consists of a directed graph G = (V,E) and a parameter k ∈ N,
and the objective is to decide if G has an out-branching (i.e., a spanning tree
with exactly one node of in-degree 0, that we call the root) with at least k
internal nodes (i.e., nodes of out-degree ≥ 1). The k-IOB problem is of interest
in database systems [2].

A special case of k-IOB, called k-Internal Spanning Tree (k-IST), asks if a
given undirected graph G = (V,E) has a spanning tree with at least k internal
nodes. A possible application of k-IST, for connecting cities with water pipes, is
given in [14].

The k-IST problem is NP-hard even for graphs of bounded degree 3, since it
generalizes the Hamiltonian path problem for such graphs [5]; thus k-IOB is also
NP-hard for such graphs. In this paper we present parameterized algorithms for
k-IOB. Such algorithms are an approach to solve NP-hard problems by confining
the combinatorial explosion to a parameter k. More precisely, a problem is fixed-
parameter tractable (FPT) with respect to a parameter k if an instance of size
n can be solved in O∗(f(k)) time for some function f [10].1

Related Work: Nederlof [9] gave an O∗(2|V |) time and polynomial space
algorithm for k-IST. For graphs of bounded degree Δ, Raible et al. [14] gave an

O∗(((2Δ+1 − 1)
1

Δ+1)|V |) time and exponential space algorithm for k-IST.

1 O∗ hides factors polynomial in the input size.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 361–373, 2013.
c© Springer International Publishing Switzerland 2013

362 M. Zehavi

Table 1. Known parameterized algorithms for k-IOB and k-IST

Reference Variation Time Complexity The Topology of G

Priesto et al. [12] k-IST O∗(2O(k log k)) General

Gutin al. [6] k-IOB O∗(2O(k log k)) General

Cohen et al. [1] k-IOB O∗(49.4k) General

Fomin et al. [4] k-IOB O∗(16k+o(k)) General

Fomin et al. [3] k-IST O∗(8k) General

Raible et al. [14] k-IST O∗(2.1364k) Δ = 3

This paper k-IOB O∗(4k) General

k-IOB O∗(2(2− Δ+1
Δ(Δ−1)

)k
) Δ = O(1)

Table 2. Some concrete figures for the running time of the algorithm Δ-IOB-Alg

Δ 3 4 5 6

Time complexity O∗(2.51985k) O∗(2.99662k) O∗(3.24901k) O∗(3.40267k)

Table 1 presents a summary of known parameterized algorithms for k-IOB
and k-IST. In particular, the algorithms having the best known O∗ running
times for k-IOB and k-IST are due to [4], [3] and [14]. Fomin et al. [4] gave
an O∗(16k+o(k)) time and polynomial space randomized algorithm for k-IOB,
and an O∗(16k+o(k)) time and O∗(4k+o(k)) space deterministic algorithm for k-
IOB. Fomin et al. [3] gave an O∗(8k) time and polynomial space deterministic
algorithm for k-IST. For graphs of bounded degree 3, Raible et al. [14] gave an
O∗(2.1364k) time and polynomial space deterministic algorithm for k-IST.

Further information on k-IOB, k-IST and variants of these problems is given
in surveys [11,15].

Our Contribution: We present an O∗(4k) time and polynomial space random-
ized algorithm for k-IOB, that we call IOB-Alg. Our algorithm IOB-Alg improves
the O∗ running times of the best known algorithms for both k-IOB and k-IST.

For graphs of bounded degree Δ, we present an O∗(2(2−
Δ+1

Δ(Δ−1)
)k) time and

polynomial space randomized algorithm for k-IOB, that we callΔ-IOB-Alg. Some
concrete figures for the running time of Δ-IOB-Alg are given in Table 2.

Techniques: Our algorithm IOB-Alg is based on two reductions as follows. We
first reduce k-IOB to a new problem, that we call (k, l)-Tree, by using an ob-
servation from [1]. This reduction allows us to focus our attention on finding a
tree whose size depends on k, rather than a spanning tree whose size depends on
|V |. We then reduce (k, l)-Tree to the t-Multilinear Detection (t-MLD) problem,
which concerns multivariate polynomials and has an O∗(2t) time randomized
algorithm [7,17]. We note that reductions to t-MLD have been used to solve sev-
eral problems quickly (see, e.g., [8]). IOB-Alg is another proof of the applicability
of this new tool.

Our algorithm Δ-IOB-Alg, though based on the same technique as IOB-Alg,
requires additional new non-trivial ideas and is more technical. In particular, we

Algorithms for k-Internal Out-Branching 363

now use a proper coloring of the graph G when reducing (k, l)-Tree to t-MLD.
This idea might be useful in solving other problems.

Organization: Section 2 presents our algorithm IOB-Alg. Specifically, Section
2.1 defines (k, l)-Tree, and presents an algorithm that solves k-IOB by using an
algorithm for (k, l)-Tree. Section 2.2 defines t-MLD, and reduces (k, l)-Tree to
t-MLD. Then, Section 2.3 presents our algorithm for (k, l)-Tree, and thus con-
cludes IOB-Alg. Section 3 presents our algorithm Δ-IOB-Alg. Specifically, Sec-
tion 3.1 modifies the algorithm presented in Section 2.1, Section 3.2 modifies
the reduction presented in Section 2.2, and Section 3.3 modifies the algorithms
presented in Section 2.3. Finally, Section 4 presents a few open questions.

2 An O∗(4k)-time k-IOB Algorithm

2.1 The (k, l)-Tree Problem

We first define a new problem, that we call (k, l)-Tree.

(k, l)-Tree

– Input: A directed graph G = (V,E), a node r ∈ V , and parameters k, l ∈ N.
– Goal: Decide if G has an out-tree (i.e., a tree with exactly one node of in-

degree 0) rooted at r with exactly k internal nodes and l leaves.

We now show that we can focus our attention on solving (k, l)-Tree. Let
A(G, r, k, l) be a t(G, r, k, l) time and s(G, r, k, l) space algorithm for (k, l)-Tree.

Algorithm 1. IOB-Alg[A](G, k)

1: for all r ∈ V do
2: if G has no out-branching T rooted at r then Go to the next iteration. end if
3: for l = 1, 2, ..., k do
4: if A(G, r, k, l) accepts then Accept. end if
5: end for
6: end for
7: Reject.

The following observation immediately implies the correctness of IOB-Alg[A]
(see Algorithm 1).

Observation 1 ([1]). Let G = (V,E) be a directed graph, and r ∈ V such that
G has an out-branching rooted at r.

– If G has an out-branching rooted at r with at least k internal nodes, then G
has an out-tree rooted at r with exactly k internal nodes and at most k leaves.

– If G has an out-tree rooted at r with exactly k internal nodes, then G has an
out-branching with at least k internal nodes.

By Observation 1, and since Step 2 can be performed in O(|E|) time and
O(|V |) space (e.g., by using DFS), we have the following result.

364 M. Zehavi

Lemma 1. IOB-Alg[A] is an O(
∑

r∈V (|E|+∑
1≤l≤k t(G, r, k, l))) time and O(

|V |+maxr∈V,1≤l≤k s(G, r, k, l)) space algorithm for k-IOB.

2.2 A Reduction from (k, l)-Tree to t-MLD

We first give the definition of t-MLD [7].

t-MLD

– Input: A polynomial P represented by an arithmetic circuit C over a set of
variables X , and a parameter t ∈ N.

– Goal: Decide if P has a multilinear monomial of degree at most t.

Let (G, r, k, l) be an input for (k, l)-Tree. We now construct an input f(G, r, k,
l) = (Cr,k,l, X, t) for t-MLD. We introduce an indeterminate xv for each v ∈ V ,
and define X = {xv : v ∈ V } and t = k + l.

The idea behind the construction is to let each monomial represent a pair of an
out-tree T = (VT , ET) and a function h : VT → V , such that if (v, u) ∈ ET , then
(h(v), h(u)) ∈ E (i.e., h is a homomorphism). The monomial is

∏
v∈VT

xh(v).
We get that the monomial is multilinear iff {h(v) : v ∈ VT } is a set (then
h(T) = ({h(v) : v ∈ VT }, {(h(v), h(u)) : (v, u) ∈ ET }) is an out-tree).

Towards presenting Cr,k,l, we inductively define an arithmetic circuit Cv,k′,l′

overX , for all v ∈ V, k′ ∈ {0, ..., k} and l′ ∈ {1, ..., l}. Informally, the multilinear
monomials of the polynomial represented by Cv,k′,l′ represent out-trees of G
rooted at v that have exactly k′ internal nodes and l′ leaves.

Base Cases:

1. If k′ = 0 and l′ = 1: Cv,k′,l′ = xv.
2. If k′ = 0 and l′ > 1: Cv,k′,l′ = 0.

Steps:

1. If k′ > 0 and l′ = 1: Cv,k′,l′ =
∑

u s.t.(v,u)∈E xvCu,k′−1,l′ .

2. If k′ > 0 and l′ > 1: Cv,k′,l′ =∑
u s.t.(v,u)∈E(xvCu,k′−1,l′ +

∑
1≤k∗≤k′

∑
1≤l∗≤l′−1 Cv,k∗,l∗ · Cu,k′−k∗,l′−l∗).

The following order shows that when computing an arithmetic circuit Cv,k′,l′ ,
we only use arithmetic circuits that have been already computed.

Order:

1. For k′ = 0, 1, ..., k:

(a) For l′ = 1, 2, ..., l:

i. ∀v ∈ V : Compute Cv,k′,l′ .

Denote the polynomial that Cv,k′,l′ represents by Pv,k′,l′ .

Lemma 2. (G, r, k, l) has a solution iff (Cr,k,l, X, t) has a solution.

Algorithms for k-Internal Out-Branching 365

Proof. By using induction, we first prove that if G has an out-tree T = (VT , ET)
rooted at v with exactly k′ internal nodes and l′ leaves, then Pv,k′,l′ has the
(multilinear) monomial

∏
w∈VT

xw .
The claim is clearly true for the base cases, and thus we next assume that

k′ > 0, and the claim is true for all v ∈ V , k∗ ∈ {0, ..., k′} and l∗ ∈ {1, ..., l′},
such that (k∗ < k′ or l∗ < l′).

Let T = (VT , ET) be an out-tree of G, that is rooted at v and has exactly
k′ internal nodes and l′ leaves. Also, let u be a neighbor of v in T . Denote by
Tv = (Vv, Ev) and Tu = (Vu, Eu) the two out-trees of G in the forest F =
(VT , ET \ {(v, u)}), such that v ∈ Vv. We have the following cases.

1. If |Vv| = 1: Tu has k′ − 1 internal nodes and l′ leaves. By the induction
hypothesis, Pu,k′−1,l′ has the monomial

∏
w∈Vu

xw. Thus, by the definition
of Cv,k′,l′ , Pv,k′,l′ has the monomial xv

∏
w∈Vu

xw =
∏

w∈VT
xw.

2. Else: Denote the number of internal nodes and leaves in Tv by kv and
lv, respectively. By the induction hypothesis, Pv,kv ,lv has the monomial∏

w∈Vv
xw, and Pu,k′−kv ,l′−lv has the monomial

∏
w∈Vu

xw . By the defini-
tion of Cv,k′,l′ , Pv,k′,l′ has the monomial

∏
w∈Vv

xw

∏
w∈Vu

xw =
∏

w∈VT
xw .

Now, by using induction, we prove that if Pv,k′,l′ has the (multilinear) mono-
mial

∏
w∈U xw , for some U ⊆ V , then G has an out-tree T = (VT , ET) rooted

at v with exactly k′ internal nodes and l′ leaves, such that VT = U . This claim
implies that any multilinear monomial of Pv,k′,l′ is of degree exactly k′ + l′.

The claim is clearly true for the base cases, and thus we next assume that
k′ > 0, and the claim is true for all v ∈ V , k∗ ∈ {0, ..., k′} and l∗ ∈ {1, ..., l′},
such that (k∗ < k′ or l∗ < l′).

Let
∏

w∈U xw, for some U ⊆ V , be a monomial of Pv,k′,l′ . By the definition
of Cv,k′,l′ , there is u such that (v, u) ∈ E, for which we have the following cases.

1. If Pu,k′−1,l′ has a monomial
∏

w∈U\{v} xw: By the induction hypothesis, G

has an out-tree Tu = (Vu, Eu) rooted at u with exactly k′ − 1 internal nodes
and l′ leaves, such that Vu = U \ {v}. By adding v and (v, u) to Tu, we get
an out-tree T = (VT , ET) of G that is rooted at v, has exactly k′ internal
nodes and l′ leaves, and such that VT = U .

2. Else: There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that
Pv,k∗,l∗ has the monomial

∏
w∈U∗ xw, and Pu,k′−k∗,l′−l∗ has the monomial∏

w∈U\U∗ xw . By the induction hypothesis, G has an out-tree Tv = (Vv, Ev)
rooted at v with exactly k∗ internal nodes and l∗ leaves, such that Vv = U∗.
Moreover, G has an out-tree Tu = (Vu, Eu) rooted at u with exactly k′ − k∗

internal nodes and l′ − l∗ leaves, such that Vu = U \ U∗. Thus, we get that
the out-tree T = (U,E(Tv) ∪ E(Tu) ∪ (v, u)) of G is rooted at v, and has
exactly k′ internal nodes and l′ leaves.

We get that G has an out-tree rooted at r of exactly k internal nodes and l
leaves iff Pr,k,l has a mutlilinear monomial of degree at most t. �	

The definition of (Cr,k,l, X, t) immediately implies the following observation.

Observation 2. We can compute (Cr,k,l, X, t) in polynomial time and space.

366 M. Zehavi

2.3 The Algorithm IOB-Alg[Tree-Alg]

Koutis et al. [7,17] gave an O∗(2t) time and polynomial space randomized algo-
rithm for t-MLD. We denote this algorithm by MLD-Alg, and use it to get an
algorithm for (k, l)-Tree (see Algorithm 2).

Algorithm 2. Tree-Alg(G, r, k, l)

1: Compute f(G, r, k, l) = (Cr,k,l, X, t).
2: Accept iff MLD-Alg(Cr,k,l, X, t) accepts.

By Lemmas 1 and 2, and Observation 2, we have the following theorem.

Theorem 1. IOB-Alg[Tree-Alg] is an O∗(4k) time and polynomial space ran-
domized algorithm for k-IOB.

3 A k-IOB Algorithm for Graphs of Bounded Degree Δ

3.1 A Modification of the Algorithm IOB-Alg[A]

We first prove that in Step 3 of IOB-Alg[A] (see Section 2.1), we can iterate over
less than k values for l.

Given an out-tree T = (VT , ET) and i ∈ N, denote the number of degree-i
nodes in T by nT

i .

Observation 3 ([14]). If |VT | ≥ 2, then 2 +
∑

3≤i(i− 2)nT
i = nT

1 .

Observation 4. An out-tree T of G with exactly k internal nodes contains an
out-tree with exactly k internal nodes and at most k − k−2

Δ−1 leaves.

Proof. As long as T has an internal node v with at least two out-neighbors that
are leaves, delete one of these leaves and its adjacent edge from T . Denote the
resulting out-tree by T ′, and denote the tree that we get after deleting all the
leaves in T ′ by T ′′. Note that T ′ has exactly k internal nodes, and that T ′ and
T ′′ have the same number of leaves. Since T ′′ has k nodes and bounded degree
Δ, Observation 3 implies that if nT ′′

1 + nT ′′
Δ = k, then nT ′′

1 = k − k−2
Δ−1 , and if

nT ′′
1 +nT ′′

Δ < k, then nT ′′
1 < k− k−2

Δ−1 . We have that nT ′′
1 ≤ k− k−2

Δ−1 , and thus we

conclude that T ′ has exactly k internal nodes and at most k − k−2
Δ−1 leaves. �	

Thus, in Step 3 of IOB-Alg[A], we can iterate only over l = 1, 2, ..., k−� k−2
Δ−1�.

We add some preprocessing steps to IOB-Alg[A], and thus get Δ-IOB-Alg[A] (see
Algorithm 3). These preprocessing steps will allow us to assume, when presenting
algorithm A, that the underlying undirected graph of G is a connected graph
that is neither a cycle nor a clique. This assumption will allow us to compute
a proper Δ-coloring of the underlying undirected graph of G (see Section 3.3),
which we will use in the following Section 3.2.

Algorithms for k-Internal Out-Branching 367

Algorithm 3. Δ-IOB-Alg[A](G, k)

1: if k ≥ |V | or the underlying undirected graph of G is not connected then
2: Reject.
3: else if the underlying undirected graph of G is a cycle then
4: if k = |V | − 1 then Accept iff G has a hamiltonian path. else Accept iff there

is at most one node of out-degree 2 in G. end if
5: else if the underlying undirected graph of G is a clique then
6: Accept.
7: end if
8: for all r ∈ V do
9: if G has no out-branching T rooted at r then Go to the next iteration. end if
10: for l = 1, 2, ..., k − � k−2

Δ−1
� do

11: if A(G, r, k, l) accepts then Accept. end if
12: end for
13: end for
14: Reject.

We can clearly perform the new preprocessing steps in O(|E|) time and O(|V |)
space. Steps 2 and 4 are clearly correct. Since a tournament (i.e., a directed graph
obtained by assigning a direction for each edge in an undirected complete graph)
has a hamiltonian path [13], we have that Step 6 is also correct.

We have the following lemma.

Lemma 3. Δ-IOB-Alg[A] is an O(
∑

r∈V (|E|+∑
1≤l≤k−� k−2

Δ−1 � t(G, r, k, l))) time

and O(|V |+maxr∈V,1≤l≤k−	 k−2
Δ−1
 s(G, r, k, l)) space algorithm for k-IOB.

3.2 A Modification of the Reduction f

In this section assume that we have a proper Δ-coloring col : V → {c1, ..., cΔ} of
the underlying undirected graph of G. Having such col, we modify the reduction
f (see Section 2.2) to construct a ”better” input for t-MLD (i.e., an input in
which t < k + l).

The Idea Behind the Modification: Recall that in the previous construction,
we let each monomial represent a certain pair of an out-tree T = (VT , ET) and a
function h : VT → V . The monomial included indeterminates representing all the
nodes to which the nodes in VT are mapped. We can now select some color c ∈
{c1, ..., cΔ}, and ignore some occurrences of indeterminates that represent nodes
whose color is c and whose degree in h(T) is Δ. We thus construct monomials
with smaller degrees, and have an input for t-MLD in which t < k + l.

More precisely, the monomial representing T and h is
∏

v∈U xh(v), where U is
VT , excluding nodes mapped to nodes whose color is c and whose degree in T is
Δ (except the root). We add constraints on T and h to garauntee that nodes in
VT that are mapped to the same node do not have common neighbors in T .

The correctness is based on the following observation. Suppose that there
is an indeterminate xv that occurs more than once in the original monomial

368 M. Zehavi

representing T and h, but not in the new monomial representing them. Thus
the color of v is c. Moreover, there are different nodes u,w ∈ VT such that
h(u) = h(w) = v, and the degree of u in T is Δ. We get that u has a neighbor
u′ in T and w has a different neighbor w′ in T , such that h(u′) = h(w′) and the
color of h(u′) is not c. Thus xh(u′) occurs more than once in the new monomial
representing T and h. This implies that monomials that are not multilinear in
the original construction do not become multilinear in the new construction.

The Construction: Let (G, r, k, l) be an input for (k, l)-Tree. We now construct
an input f(G, r, k, l, col) = (C,X, t) for t-MLD.

We add a node r′ to V and the edge (r′, r) to E. We color r′ with some c ∈
{c1, ..., cΔ}\{col(r)}. In the following let < be some order on V ∪{nil}, such that
nil is the smallest element. Define X = {xv : v ∈ V }, and t = (2− Δ+1

Δ(Δ−1))k+8.

Denote N(v, i, o) = {u ∈ V \ {i} : (v, u) ∈ E, u > o}.
We inductively define an arithmetic circuit Cc,i,o,b

v,k′,l′ over X , for all v ∈ V, k′ ∈
{0, ..., k}, l′ ∈ {1, ..., l}, c ∈ {c1, ..., cΔ}, i such that (i, v) ∈ E, o such that
(v, o) ∈ E or o = nil, and b ∈ {F, T }. Informally, v, k′ and l′ play the same role
as in the original construction; c indicates that only indeterminates representing
nodes colored by c can be ignored; i and o are used for constraining the pairs of
trees and functions represented by monomials as noted in ”The Idea Behind the
Modification”; and b indicates whether the indeterminate of v is ignored.

Base Cases:

1. If k′ = 0, l′ = 1 and b = F : Cc,i,o,b
v,k′,l′ = xv.

2. Else if [k′ = 0] or [N(v, i, o) = ∅] or [(|N(v, i, o)| > l′ or col(v) �= c or v = r

or |N(v, i, nil)| < Δ− 1) and b = T]: Cc,i,o,b
v,k′,l′ = 0.

Steps: (assume that none of the base cases applies)

1. If l′ = 1 and b = F : Cc,i,o,b
v,k′,l′ = xv

∑
u∈N(v,i,o)(C

c,v,nil,F
u,k′−1,l′ + Cc,v,nil,T

u,k′−1,l′).
2. Else if b = F :

Cc,i,o,b
v,k′,l′ =

∑
u∈N(v,i,o)[xvC

c,v,nil,F
u,k′−1,l′ + xvC

c,v,nil,T
u,k′−1,l′+∑

1≤k∗≤k′
∑

1≤l∗≤l′−1 C
c,i,u,b
v,k∗,l∗(C

c,v,nil,F
u,k′−k∗,l′−l∗ + Cc,v,nil,T

u,k′−k∗,l′−l∗)].

3. If b = T and there is exactly one node u in N(v, i, o): Cc,i,o,b
v,k′,l′ = Cc,v,nil,F

u,k′−1,l′ .
4. Else if b = T :

(a) Denote u = min(N(v, i, o)).

(b) Cc,i,o,b
v,k′,l′ =

∑
1≤k∗≤k′

∑
1≤l∗≤l′−1 C

c,i,u,b
v,k∗,l∗C

c,v,nil,F
u,k′−k∗,l′−l∗ .

The following order shows that when computing an arithmetic circuit Cc,i,o,b
v,k′,l′ ,

we only use arithmetic circuits that have been already computed.

Order:

1. For k′ = 0, 1, ..., k:
(a) For l′ = 1, 2, ..., l:

i. ∀v ∈ V, c ∈ {c1, ..., cΔ}, i s.t. (i, v) ∈ E, o s.t. (v, o) ∈ E or o = nil,

b ∈ {F, T }: Compute Cc,i,o,b
v,k′,l′ .

Algorithms for k-Internal Out-Branching 369

Define C =
∑

c∈{c1,...,cΔ} C
c,r′,nil,F
r,k,l .

Denote the polynomial that Cc,i,o,b
v,k′,l′ (resp. C) represents by P c,i,o,b

v,k′,l′ (resp. P).

Correctness: We need the next two definitions, which we illustrate in Fig. 1.

Definition 1. Let v ∈ V , k′ ∈ {0, ..., k}, l′ ∈ {1, ..., l}, c ∈ {c1, ..., cΔ}, i such
that (i, v) ∈ E, o such that (v, o) ∈ E or o = nil. Given a subgraph T = (VT , ET)
of G, we say that

1. T is a (v, k′, l′, c, i, o, F)-tree if
(a) T is an out-tree rooted at v with exactly k′ internal nodes and l′ leaves.
(b) Every out-neighbor of v in T belongs to N(v, i, o).

2. T is a (v, k′, l′, c, i, o, T)-tree if
(a) col(v) = c, v �= r, and |N(v, i, nil)| = Δ− 1.
(b) Every node in N(v, i, o) is an out-neighbor of v in T , and N(v, i, o) �= ∅.
(c) There is at most one node i′ ∈ VT such that (i′, v) ∈ ET .

i. If such an i′ exists: (v, i′) /∈ ET , and T ′ = (VT , ET \ {(i′, v)}) is an
out-tree rooted at v.

ii. Else: T is a (v, k′, l′, c, i, o, F)-tree.

Definition 2. Given a (v, k′, l′, c, i, o, b)-tree T = (VT , ET), define I(T) =

{u ∈ VT : [u �= v ∧ (col(u) �= c ∨ u has less than (Δ− 1) out− neighbors in T)]

∨[u = v ∧ (b = F ∨ v has an in− neighbor in T)]}.

v1

v1 v1

v2 v2 v2 v3

v3

v4

v4 v4

v3 v5 v5

v5 G
T1 T2 = 3

Fig. 1. Assume that r = v1 < v2 < v3 < v4 < v5, and that shapes represent col-
ors. We have that T1 is a (v2, k

′, l′, O, v1, nil, T)-tree for any k′ and l′, and I(T1) =
{v1, v2, v3, v4, v5}. Moreover, T2 is a (v2, 3, 2, O, v1, v3, T)-tree, and I(T2) = {v1, v3, v4}.

Observation 5. Let T = (VT , ET) be a (v, k′, l′, c, i, o, b)-tree of G, such that

there is no i′ ∈ VT for which (i′, v) ∈ ET . Then, P
c,i,o,b
v,k′,l′ has the (multilinear)

monomial
∏

w∈I(T) xw.

Proof. We prove the claim by using induction on the construction. The claim
is clearly true for the base cases. Next consider a (v, k′, l′, c, i, o, b)-tree T =

(VT , ET) of G, such that Cc,i,o,b
v,k′,l′ is not constructed in the base cases. Assume

that the claim is true for all (ṽ, k̃, l̃, c̃, ĩ, õ, b̃) such that C c̃,˜i,õ,˜b

ṽ,˜k,˜l
is constructed

before Cc,i,o,b
v,k′,l′ . Denote by u the smallest out-neighbor of v in T .

370 M. Zehavi

Denote by Tv = (Vv, Ev) and Tu = (Vu, Eu) the two out-trees of G in the
forest F = (VT , ET \ {(v, u)}), such that v ∈ Vv. If u /∈ I(T) (this is not the case
if b = T , since then col(u) �= c), then denote b′ = T , and note that the set of
out-neighbors of u in Tu contains all of the neighbors of u in G, excluding v; else
denote b′ = F . We have the following cases.

1. If |Vv| = 1: Tu is a (u, k′ − 1, l′c, v, nil, b′)-tree of G. If b = F , then I(Tu) =

I(T) \ {v}; else I(Tu) = I(Tv). By the induction hypothesis Cc,v,nil,b′
u,k′−1,l′ has

the monomial
∏

w∈I(Tu)
xw. Thus, by the definition of Cc,i,o,b

v,k′,l′ , P
c,i,o,b
v,k′,l′ has

the required monomial.
2. Else: Denote the number of internal nodes and leaves in Tv by kv and lv,

respectively. Note that 1 ≤ kv ≤ k′, 1 ≤ lv < l′, Tv is a (v, kv, lv, c, i, u, b)-
tree of G, and Tu is a (u, k′ − kv, l

′ − lv, c, v, nil, b
′)-tree of G. Moreover,

I(Tv) and I(Tu) are disjoint sets whose union is I(T). By the induction hy-

pothesis, P c,i,u,b
v,kv ,lv

has the monomial
∏

w∈I(Tv)
xw, and P c,v,nil,b′

u,k′−kv ,l′−lv
has the

monomial
∏

w∈I(Tu)
xw. By the definition of Cc,i,o,b

v,k′,l′ , P
c,i,o,b
v,k′,l′ has the mono-

mial
∏

w∈I(Tv)
xw

∏
w∈I(Tu)

xw =
∏

w∈I(T) xw.
�	

Observation 6. If P c,i,o,b
v,k′,l′ has a (multilinear) monomial

∏
w∈U xw, for some

U ⊆ V , then G has a (v, k′, l′, c, i, o, b)-tree T such that I(T) = U .

Proof. We prove the claim by using induction on the construction. The claim is
clearly true for the base cases. Let

∏
w∈U xw, for some U ⊆ V , be a monomial

of P c,i,o,b
v,k′,l′ , such that Cc,i,o,b

v,k′,l′ is not constructed in the base cases. Assume that

the claim is true for all C c̃,˜i,õ,˜b

ṽ,˜k,˜l
that is constructed before Cc,i,o,b

v,k′,l′ .

First suppose that b = F . By the definition of Cc,i,o,b
v,k′,l′ , there are u ∈ N(v, i, o)

and b′ ∈ {F, T } such that one of the next conditions is fulfilled.

1. Cc,v,nil,b′
u,k′−1,l′ has the monomial

∏
w∈U\{v} xw. By the induction hypothesis, G

has a (u, k′ − 1, l′, c, v, nil, b′)-tree Tu = (Vu, Eu), such that I(Tu) = U \ {v}.
Suppose that there is i′ ∈ Vu such that (i′, u) ∈ Eu. In this case b′ = T ; thus
v /∈ Vu and the set of out-neighbors of u in Tu contains all the neighbors of
u in G, excluding v. We get that i′ is an out-neighbor of u in Tu, which a
contradiction. Thus, by adding v and (v, u) to Tu, we get a (v, k′, l′, c, i, o, b)-
tree T such that I(T) = U (since I(T) = I(Tu) ∪ {v}).

2. There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that

P c,i,u,b
v,k∗,l∗ has the monomial

∏
w∈U∗ xw, and P c,v,nil,b′

u,k′−k∗,l′−l∗ has the monomial∏
w∈U\U∗ xw . By the induction hypothesis, G has a (v, k∗, l∗, c, i, u, b)-tree

Tv = (Vv, Ev) such that I(Tv) = U∗, and a (u, k′−k∗, l′− l∗, c, v, nil, b′)-tree
Tu = (Vu, Eu) such that I(Tu) = U \ U∗. Consider the following cases.

(a) If v ∈ Vu: v /∈ I(Tu) (since v ∈ I(Tv)). Thus col(v) = c and v has
Δ − 1 out-neighbors in Tu. Note that v is not an out-neighbor of u in
Tu, and thus u is an out-neighbor of v in Tu. Therefore b

′ = T , and thus
col(u) = c, which is a contradiction (since col is a proper coloring).

Algorithms for k-Internal Out-Branching 371

(b) If there is w ∈ (Vv ∩ Vu) \ {v, u} �= ∅: Since I(Tv) ∩ I(Tu) = ∅, we get
that col(w) = c and (w has Δ neighbors in Tv or Tu). Thus there is w′

that is a neighbor of w in both Tv and Tu, such that col(w′) �= c. We get
that w′ ∈ I(Tv) ∩ I(Tu) = ∅, which is a contradiction.

(c) If u ∈ Vv: u is not an out-neighbor of v in Tv. Therefore u has less than
Δ − 1 out-neighbors in Tv, and thus u ∈ I(Tv). We get that u /∈ I(Tu),
which implies that the set of out-neighbors of u in Tu contains all the
neighbors of u in G, excluding v. Thus u has a neighbor, which is not v,
in both Tv and Tu, and we have a contradiction according to Case 2b.

We get that Vv ∩ Vu = ∅. If there is i′ ∈ Vu such that (i′, u) ∈ Eu, then
we get a contradiction in the same manner as in Case 1. We get that T =
(Vv∪Vu, Ev∪Eu∪{(v, u)}) is an out-tree of G. It is straightforward to verify
that T is a (v, k′, l′, c, i, o, b)-tree of G such that I(T) = I(Tv) ∪ I(Tu) (and
thus I(T) = U).

Now suppose that b = T . Denote by u the smallest node in N(v, i, o). By the

definition of Cc,i,o,b
v,k′,l′ , one of the next conditions is fulfilled.

1. If N(v, i, o) = {u}: P c,v,nil,F
u,k′−1,l′ has the monomial

∏
w∈U xw . By the induction

hypothesis, G has a (u, k′ − 1, l′, c, v, nil, F)-tree Tu such that I(Tu) = U .
Since v is not an out-neighbor of u in Tu, by adding v and (v, u) to Tv, we
get a (v, k′, l′, c, i, o, b)-tree T of G (which may not be an out-tree), such that
I(T) = I(Tu) = U .

2. Else: There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that

P c,i,u,b
v,k∗,l∗ has the monomial

∏
w∈U∗ xw, and P c,v,nil,F

u,k′−k∗,l′−l∗ has the monomial∏
w∈U\U∗ xw . By the induction hypothesis, G has a (v, k∗, l∗, c, i, u, b)-tree

Tv = (Vv, Ev) such that I(Tv) = U∗, and a (u, k′−k∗, l′− l∗, c, v, nil, F)-tree
Tu = (Vu, Eu) such that I(Tu) = U \ U∗. Consider the following cases.
(a) If there is w ∈ (Vv ∩Vu) \ {v, u} �= ∅: We get a contradiction in the same

manner as in the previous Case 2b.
(b) If u ∈ Vv: Since col(u) �= c, we get that u ∈ I(Tv) ∪ I(Tu) = ∅, which is

a contradiction.
We get that Vv ∩ Vu \ {v} = ∅. Denote T = (VT = (Vv ∪ Vu), ET = (Ev ∪
Eu ∪ {(v, u)})). Suppose, by way of contradiction, that there are two nodes
i1, i2 ∈ VT such that (i1, v), (i2, v) ∈ ET . Since Tv is a (v, k∗, l∗, c, i, u, b)-tree
and Tu is an out-tree, we can assume WLOG that i1 ∈ Vv and i2 ∈ Vu. We
get that v ∈ I(Tv), and thus v /∈ I(Tu). Therefore v has Δ− 1 out-neighbors
in Tu; but since Tu is an out-tree rooted at u, and v is not an out-neighbor of
u in Tu, we have a contradiction. Thus we get that T is a (v, k′, l′, c, i, o, b)-
tree of G such that I(T) = I(Tv) ∪ I(Tu) (and thus I(T) = U). �	

Observation 7. If (G, r, k, l) has a solution, then P has a multilinear monomial
of degree at most t.

Proof. Let T = (VT , ET) be a solution. Denote n(T, c) = {v ∈ VT : col(v) =
c, v has Δ neighbors in T }, and c∗ = argmaxc∈{c1,...,cΔ}{|n(T, c)|}. By Observa-
tion 4 and the pseudocode of Δ-IOB-Alg[A] (see Section 3.1), we get that

372 M. Zehavi

1. 2 +
∑

3≤i≤Δ(i− 2)nT
i = nT

1 .

2.
∑

1≤i≤Δ nT
i = k + l.

3. nT
1 − 1 ≤ l ≤ k − k−2

Δ−1 .

4. |n(T, c∗)| ≥ nT
Δ/Δ.

These conditions imply that k+l−|n(T, c∗)| ≤ (2− Δ+1
Δ(Δ−1))k+7. Since T is an

(r, k, l, c∗, r′, nil, F)-tree, the definition of C and Observation 5 imply that P has
the (multilinear) monomial

∏
w∈I(T) xw. Note that |I(T)| ≤ k+ l−|n(T, c∗)|+1,

and thus we get the observation. �	
SinceObservation 6 implies that ifP has amultilinearmonomial, then (G, r, k, l)

has a solution, and by Observation 7, we get the following lemma.

Lemma 4. (G, r, k, l) has a solution iff (C,X, t) has a solution.

The definition of (C,X, t) immediately implies the following observation.

Observation 8. We can compute (C,X, t) in polynomial time and space.

3.3 The Algorithm Δ-IOB-Alg[Δ-Tree-Alg]

Skulrattanakulchai [16] gave a linear-time algorithm that computes a proper Δ-
coloring of an undirected connected graph of bounded degree Δ, which is not
an odd cycle or a clique. In Δ-Tree-Alg (see Algorithm 4), we assume that the
underlying undirected graph of G is connected, and that it is not a cycle or a
clique, since these cases are handled in the preprocessing steps of Δ-IOB-Alg[A].

Algorithm 4. Δ-Tree-Alg(G, r, k, l)

1: Use the algorithm in [16] to get a proper Δ-coloring col of the underlying undirected
graph of G.

2: Compute f(G, r, k, l, col) = (C,X, t).
3: Accept iff MLD-Alg(C,X, t) accepts.

By Lemmas 3 and 4, and Observation 8, we have the following theorem.

Theorem 2. Δ-IOB-Alg[Δ-Tree-Alg] is an O∗(2(2−
Δ+1

Δ(Δ−1))k) time and polyno-
mial space randomized algorithm for k-IOB.

4 Open Questions

In this paper we have presented an O∗(4k) time algorithm for k-IOB, which
improves the previous best known O∗ running time for k-IOB. However, our
algorithm is randomized, while the algorithm that has the previous best known
O∗ running time is deterministic. Can we obtain an O∗(4k) time determin-
istic algorithm for k-IOB? Moreover, can we further reduce the O∗(4k) and

O∗(2(2−
Δ+1

Δ(Δ−1)
)k) running times for k-IOB presented in this paper?

Algorithms for k-Internal Out-Branching 373

References

1. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for
finding k-vertex out-trees and its application to k-internal out-branching problem.
J. Comput. Syst. Sci. 76(7), 650–662 (2010)

2. Demers, A., Downing, A.: Minimum leaf spanning tree. US Patent no. 6,105,018
(August 2013)

3. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for
maximum internal spanning tree. J. Comput. Syst. Sci. 79(1), 1–6 (2013)

4. Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and
applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706
(2012)

5. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete prob-
lems. In: Proc. STOC, pp. 47–63 (1974)

6. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related prob-
lems. Theor. Comput. Sci. 410(45), 4571–4579 (2009)

7. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

8. Koutis, I., Williams, R.: Limits and applications of group algebras for parameter-
ized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

9. Nederlof, J.: Fast polynomial-space algorithms using mobius inversion: improving
on steiner tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Ma-
tias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555,
pp. 713–725. Springer, Heidelberg (2009)

10. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press
(2006)

11. Ozeki, K., Yamashita, T.: Spanning trees: A survey. Graphs and Combina-
torics 27(1), 1–26 (2011)

12. Prieto, E., Sloper, C.: Reducing to independent set structure – the case of k-internal
spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

13. Rédei, L.: Ein kombinatorischer satz. Acta Litteraria Szeged 7, 39–43 (1934)
14. Raible, D., Fernau, H., Gaspers, D., Liedloff, M.: Exact and parameterized algo-

rithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)
15. Salamon, G.: A survey on algorithms for the maximum internal spanning tree and

related problems. Electronic Notes in Discrete Mathematics 36, 1209–1216 (2010)
16. Skulrattanakulchai, S.: Delta-list vertex coloring in linear time. Inf. Process.

Lett. 98(3), 101–106 (2006)
17. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109(6),

315–318 (2009)

	Algorithms for k-Internal Out-Branching
	1 Introduction
	2 AnO
(4k)-time k-IOB Algorithm
	2.1 The (k, l)-Tree Problem
	2.2 A Reduction from (k, l)-Tree to t-MLD
	2.3 The Algorithm IOB-Alg[Tree-Alg]

	3 Ak-IOB Algorithm for Graphs of Bounded Degree
	3.1 A Modification of the Algorithm IOB-Alg[A]
	3.2 A Modification of the Reduction f

	3.3 The Algorithm Δ-IOB-Alg[Δ-Tree-Alg]

	4 Open Questions
	References

