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Abstract. The k-Internal Out-Branching (k-IOB) problem asks if a
given directed graph has an out-branching (i.e., a spanning tree with
exactly one node of in-degree 0) with at least k internal nodes. The
k-Internal Spanning Tree (k-IST) problem is a special case of k-IOB,
which asks if a given undirected graph has a spanning tree with at least
k internal nodes. We present an O∗(4k) time randomized algorithm for k-
IOB, which improves the O∗ running times of the best known algorithms
for both k-IOB and k-IST. Moreover, for graphs of bounded degree Δ,

we present an O∗(2(2−
Δ+1

Δ(Δ−1)
)k
) time randomized algorithm for k-IOB.

Both our algorithms use polynomial space.

1 Introduction

In this paper we study the k-Internal Out-Branching (k-IOB) problem. The
input for k-IOB consists of a directed graph G = (V,E) and a parameter k ∈ N,
and the objective is to decide if G has an out-branching (i.e., a spanning tree
with exactly one node of in-degree 0, that we call the root) with at least k
internal nodes (i.e., nodes of out-degree ≥ 1). The k-IOB problem is of interest
in database systems [2].

A special case of k-IOB, called k-Internal Spanning Tree (k-IST), asks if a
given undirected graph G = (V,E) has a spanning tree with at least k internal
nodes. A possible application of k-IST, for connecting cities with water pipes, is
given in [14].

The k-IST problem is NP-hard even for graphs of bounded degree 3, since it
generalizes the Hamiltonian path problem for such graphs [5]; thus k-IOB is also
NP-hard for such graphs. In this paper we present parameterized algorithms for
k-IOB. Such algorithms are an approach to solve NP-hard problems by confining
the combinatorial explosion to a parameter k. More precisely, a problem is fixed-
parameter tractable (FPT) with respect to a parameter k if an instance of size
n can be solved in O∗(f(k)) time for some function f [10].1

Related Work: Nederlof [9] gave an O∗(2|V |) time and polynomial space
algorithm for k-IST. For graphs of bounded degree Δ, Raible et al. [14] gave an

O∗(((2Δ+1 − 1)
1

Δ+1 )|V |) time and exponential space algorithm for k-IST.

1 O∗ hides factors polynomial in the input size.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 361–373, 2013.
c© Springer International Publishing Switzerland 2013



362 M. Zehavi

Table 1. Known parameterized algorithms for k-IOB and k-IST

Reference Variation Time Complexity The Topology of G

Priesto et al. [12] k-IST O∗(2O(k log k)) General

Gutin al. [6] k-IOB O∗(2O(k log k)) General

Cohen et al. [1] k-IOB O∗(49.4k) General

Fomin et al. [4] k-IOB O∗(16k+o(k)) General

Fomin et al. [3] k-IST O∗(8k) General

Raible et al. [14] k-IST O∗(2.1364k) Δ = 3

This paper k-IOB O∗(4k) General

k-IOB O∗(2(2− Δ+1
Δ(Δ−1)

)k
) Δ = O(1)

Table 2. Some concrete figures for the running time of the algorithm Δ-IOB-Alg

Δ 3 4 5 6

Time complexity O∗(2.51985k) O∗(2.99662k) O∗(3.24901k) O∗(3.40267k)

Table 1 presents a summary of known parameterized algorithms for k-IOB
and k-IST. In particular, the algorithms having the best known O∗ running
times for k-IOB and k-IST are due to [4], [3] and [14]. Fomin et al. [4] gave
an O∗(16k+o(k)) time and polynomial space randomized algorithm for k-IOB,
and an O∗(16k+o(k)) time and O∗(4k+o(k)) space deterministic algorithm for k-
IOB. Fomin et al. [3] gave an O∗(8k) time and polynomial space deterministic
algorithm for k-IST. For graphs of bounded degree 3, Raible et al. [14] gave an
O∗(2.1364k) time and polynomial space deterministic algorithm for k-IST.

Further information on k-IOB, k-IST and variants of these problems is given
in surveys [11,15].

Our Contribution: We present an O∗(4k) time and polynomial space random-
ized algorithm for k-IOB, that we call IOB-Alg. Our algorithm IOB-Alg improves
the O∗ running times of the best known algorithms for both k-IOB and k-IST.

For graphs of bounded degree Δ, we present an O∗(2(2−
Δ+1

Δ(Δ−1)
)k) time and

polynomial space randomized algorithm for k-IOB, that we callΔ-IOB-Alg. Some
concrete figures for the running time of Δ-IOB-Alg are given in Table 2.

Techniques: Our algorithm IOB-Alg is based on two reductions as follows. We
first reduce k-IOB to a new problem, that we call (k, l)-Tree, by using an ob-
servation from [1]. This reduction allows us to focus our attention on finding a
tree whose size depends on k, rather than a spanning tree whose size depends on
|V |. We then reduce (k, l)-Tree to the t-Multilinear Detection (t-MLD) problem,
which concerns multivariate polynomials and has an O∗(2t) time randomized
algorithm [7,17]. We note that reductions to t-MLD have been used to solve sev-
eral problems quickly (see, e.g., [8]). IOB-Alg is another proof of the applicability
of this new tool.

Our algorithm Δ-IOB-Alg, though based on the same technique as IOB-Alg,
requires additional new non-trivial ideas and is more technical. In particular, we
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now use a proper coloring of the graph G when reducing (k, l)-Tree to t-MLD.
This idea might be useful in solving other problems.

Organization: Section 2 presents our algorithm IOB-Alg. Specifically, Section
2.1 defines (k, l)-Tree, and presents an algorithm that solves k-IOB by using an
algorithm for (k, l)-Tree. Section 2.2 defines t-MLD, and reduces (k, l)-Tree to
t-MLD. Then, Section 2.3 presents our algorithm for (k, l)-Tree, and thus con-
cludes IOB-Alg. Section 3 presents our algorithm Δ-IOB-Alg. Specifically, Sec-
tion 3.1 modifies the algorithm presented in Section 2.1, Section 3.2 modifies
the reduction presented in Section 2.2, and Section 3.3 modifies the algorithms
presented in Section 2.3. Finally, Section 4 presents a few open questions.

2 An O∗(4k)-time k-IOB Algorithm

2.1 The (k, l)-Tree Problem

We first define a new problem, that we call (k, l)-Tree.

(k, l)-Tree

– Input: A directed graph G = (V,E), a node r ∈ V , and parameters k, l ∈ N.
– Goal: Decide if G has an out-tree (i.e., a tree with exactly one node of in-

degree 0) rooted at r with exactly k internal nodes and l leaves.

We now show that we can focus our attention on solving (k, l)-Tree. Let
A(G, r, k, l) be a t(G, r, k, l) time and s(G, r, k, l) space algorithm for (k, l)-Tree.

Algorithm 1. IOB-Alg[A](G, k)

1: for all r ∈ V do
2: if G has no out-branching T rooted at r then Go to the next iteration. end if
3: for l = 1, 2, ..., k do
4: if A(G, r, k, l) accepts then Accept. end if
5: end for
6: end for
7: Reject.

The following observation immediately implies the correctness of IOB-Alg[A]
(see Algorithm 1).

Observation 1 ([1]). Let G = (V,E) be a directed graph, and r ∈ V such that
G has an out-branching rooted at r.

– If G has an out-branching rooted at r with at least k internal nodes, then G
has an out-tree rooted at r with exactly k internal nodes and at most k leaves.

– If G has an out-tree rooted at r with exactly k internal nodes, then G has an
out-branching with at least k internal nodes.

By Observation 1, and since Step 2 can be performed in O(|E|) time and
O(|V |) space (e.g., by using DFS), we have the following result.
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Lemma 1. IOB-Alg[A] is an O(
∑

r∈V (|E|+∑
1≤l≤k t(G, r, k, l))) time and O(

|V |+maxr∈V,1≤l≤k s(G, r, k, l)) space algorithm for k-IOB.

2.2 A Reduction from (k, l)-Tree to t-MLD

We first give the definition of t-MLD [7].

t-MLD

– Input: A polynomial P represented by an arithmetic circuit C over a set of
variables X , and a parameter t ∈ N.

– Goal: Decide if P has a multilinear monomial of degree at most t.

Let (G, r, k, l) be an input for (k, l)-Tree. We now construct an input f(G, r, k,
l) = (Cr,k,l, X, t) for t-MLD. We introduce an indeterminate xv for each v ∈ V ,
and define X = {xv : v ∈ V } and t = k + l.

The idea behind the construction is to let each monomial represent a pair of an
out-tree T = (VT , ET ) and a function h : VT → V , such that if (v, u) ∈ ET , then
(h(v), h(u)) ∈ E (i.e., h is a homomorphism). The monomial is

∏
v∈VT

xh(v).
We get that the monomial is multilinear iff {h(v) : v ∈ VT } is a set (then
h(T ) = ({h(v) : v ∈ VT }, {(h(v), h(u)) : (v, u) ∈ ET }) is an out-tree).

Towards presenting Cr,k,l, we inductively define an arithmetic circuit Cv,k′,l′

overX , for all v ∈ V, k′ ∈ {0, ..., k} and l′ ∈ {1, ..., l}. Informally, the multilinear
monomials of the polynomial represented by Cv,k′,l′ represent out-trees of G
rooted at v that have exactly k′ internal nodes and l′ leaves.

Base Cases:

1. If k′ = 0 and l′ = 1: Cv,k′,l′ = xv.
2. If k′ = 0 and l′ > 1: Cv,k′,l′ = 0.

Steps:

1. If k′ > 0 and l′ = 1: Cv,k′,l′ =
∑

u s.t.(v,u)∈E xvCu,k′−1,l′ .

2. If k′ > 0 and l′ > 1: Cv,k′,l′ =∑
u s.t.(v,u)∈E(xvCu,k′−1,l′ +

∑
1≤k∗≤k′

∑
1≤l∗≤l′−1 Cv,k∗,l∗ · Cu,k′−k∗,l′−l∗).

The following order shows that when computing an arithmetic circuit Cv,k′,l′ ,
we only use arithmetic circuits that have been already computed.

Order:

1. For k′ = 0, 1, ..., k:

(a) For l′ = 1, 2, ..., l:

i. ∀v ∈ V : Compute Cv,k′,l′ .

Denote the polynomial that Cv,k′,l′ represents by Pv,k′,l′ .

Lemma 2. (G, r, k, l) has a solution iff (Cr,k,l, X, t) has a solution.
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Proof. By using induction, we first prove that if G has an out-tree T = (VT , ET )
rooted at v with exactly k′ internal nodes and l′ leaves, then Pv,k′,l′ has the
(multilinear) monomial

∏
w∈VT

xw .
The claim is clearly true for the base cases, and thus we next assume that

k′ > 0, and the claim is true for all v ∈ V , k∗ ∈ {0, ..., k′} and l∗ ∈ {1, ..., l′},
such that (k∗ < k′ or l∗ < l′).

Let T = (VT , ET ) be an out-tree of G, that is rooted at v and has exactly
k′ internal nodes and l′ leaves. Also, let u be a neighbor of v in T . Denote by
Tv = (Vv, Ev) and Tu = (Vu, Eu) the two out-trees of G in the forest F =
(VT , ET \ {(v, u)}), such that v ∈ Vv. We have the following cases.

1. If |Vv| = 1: Tu has k′ − 1 internal nodes and l′ leaves. By the induction
hypothesis, Pu,k′−1,l′ has the monomial

∏
w∈Vu

xw. Thus, by the definition
of Cv,k′,l′ , Pv,k′,l′ has the monomial xv

∏
w∈Vu

xw =
∏

w∈VT
xw.

2. Else: Denote the number of internal nodes and leaves in Tv by kv and
lv, respectively. By the induction hypothesis, Pv,kv ,lv has the monomial∏

w∈Vv
xw, and Pu,k′−kv ,l′−lv has the monomial

∏
w∈Vu

xw . By the defini-
tion of Cv,k′,l′ , Pv,k′,l′ has the monomial

∏
w∈Vv

xw

∏
w∈Vu

xw =
∏

w∈VT
xw .

Now, by using induction, we prove that if Pv,k′,l′ has the (multilinear) mono-
mial

∏
w∈U xw , for some U ⊆ V , then G has an out-tree T = (VT , ET ) rooted

at v with exactly k′ internal nodes and l′ leaves, such that VT = U . This claim
implies that any multilinear monomial of Pv,k′,l′ is of degree exactly k′ + l′.

The claim is clearly true for the base cases, and thus we next assume that
k′ > 0, and the claim is true for all v ∈ V , k∗ ∈ {0, ..., k′} and l∗ ∈ {1, ..., l′},
such that (k∗ < k′ or l∗ < l′).

Let
∏

w∈U xw, for some U ⊆ V , be a monomial of Pv,k′,l′ . By the definition
of Cv,k′,l′ , there is u such that (v, u) ∈ E, for which we have the following cases.

1. If Pu,k′−1,l′ has a monomial
∏

w∈U\{v} xw: By the induction hypothesis, G

has an out-tree Tu = (Vu, Eu) rooted at u with exactly k′ − 1 internal nodes
and l′ leaves, such that Vu = U \ {v}. By adding v and (v, u) to Tu, we get
an out-tree T = (VT , ET ) of G that is rooted at v, has exactly k′ internal
nodes and l′ leaves, and such that VT = U .

2. Else: There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that
Pv,k∗,l∗ has the monomial

∏
w∈U∗ xw, and Pu,k′−k∗,l′−l∗ has the monomial∏

w∈U\U∗ xw . By the induction hypothesis, G has an out-tree Tv = (Vv, Ev)
rooted at v with exactly k∗ internal nodes and l∗ leaves, such that Vv = U∗.
Moreover, G has an out-tree Tu = (Vu, Eu) rooted at u with exactly k′ − k∗

internal nodes and l′ − l∗ leaves, such that Vu = U \ U∗. Thus, we get that
the out-tree T = (U,E(Tv) ∪ E(Tu) ∪ (v, u)) of G is rooted at v, and has
exactly k′ internal nodes and l′ leaves.

We get that G has an out-tree rooted at r of exactly k internal nodes and l
leaves iff Pr,k,l has a mutlilinear monomial of degree at most t. �	

The definition of (Cr,k,l, X, t) immediately implies the following observation.

Observation 2. We can compute (Cr,k,l, X, t) in polynomial time and space.
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2.3 The Algorithm IOB-Alg[Tree-Alg]

Koutis et al. [7,17] gave an O∗(2t) time and polynomial space randomized algo-
rithm for t-MLD. We denote this algorithm by MLD-Alg, and use it to get an
algorithm for (k, l)-Tree (see Algorithm 2).

Algorithm 2. Tree-Alg(G, r, k, l)

1: Compute f(G, r, k, l) = (Cr,k,l, X, t).
2: Accept iff MLD-Alg(Cr,k,l, X, t) accepts.

By Lemmas 1 and 2, and Observation 2, we have the following theorem.

Theorem 1. IOB-Alg[Tree-Alg] is an O∗(4k) time and polynomial space ran-
domized algorithm for k-IOB.

3 A k-IOB Algorithm for Graphs of Bounded Degree Δ

3.1 A Modification of the Algorithm IOB-Alg[A]

We first prove that in Step 3 of IOB-Alg[A] (see Section 2.1), we can iterate over
less than k values for l.

Given an out-tree T = (VT , ET ) and i ∈ N, denote the number of degree-i
nodes in T by nT

i .

Observation 3 ([14]). If |VT | ≥ 2, then 2 +
∑

3≤i(i− 2)nT
i = nT

1 .

Observation 4. An out-tree T of G with exactly k internal nodes contains an
out-tree with exactly k internal nodes and at most k − k−2

Δ−1 leaves.

Proof. As long as T has an internal node v with at least two out-neighbors that
are leaves, delete one of these leaves and its adjacent edge from T . Denote the
resulting out-tree by T ′, and denote the tree that we get after deleting all the
leaves in T ′ by T ′′. Note that T ′ has exactly k internal nodes, and that T ′ and
T ′′ have the same number of leaves. Since T ′′ has k nodes and bounded degree
Δ, Observation 3 implies that if nT ′′

1 + nT ′′
Δ = k, then nT ′′

1 = k − k−2
Δ−1 , and if

nT ′′
1 +nT ′′

Δ < k, then nT ′′
1 < k− k−2

Δ−1 . We have that nT ′′
1 ≤ k− k−2

Δ−1 , and thus we

conclude that T ′ has exactly k internal nodes and at most k − k−2
Δ−1 leaves. �	

Thus, in Step 3 of IOB-Alg[A], we can iterate only over l = 1, 2, ..., k−� k−2
Δ−1�.

We add some preprocessing steps to IOB-Alg[A], and thus get Δ-IOB-Alg[A] (see
Algorithm 3). These preprocessing steps will allow us to assume, when presenting
algorithm A, that the underlying undirected graph of G is a connected graph
that is neither a cycle nor a clique. This assumption will allow us to compute
a proper Δ-coloring of the underlying undirected graph of G (see Section 3.3),
which we will use in the following Section 3.2.
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Algorithm 3. Δ-IOB-Alg[A](G, k)

1: if k ≥ |V | or the underlying undirected graph of G is not connected then
2: Reject.
3: else if the underlying undirected graph of G is a cycle then
4: if k = |V | − 1 then Accept iff G has a hamiltonian path. else Accept iff there

is at most one node of out-degree 2 in G. end if
5: else if the underlying undirected graph of G is a clique then
6: Accept.
7: end if
8: for all r ∈ V do
9: if G has no out-branching T rooted at r then Go to the next iteration. end if
10: for l = 1, 2, ..., k − � k−2

Δ−1
� do

11: if A(G, r, k, l) accepts then Accept. end if
12: end for
13: end for
14: Reject.

We can clearly perform the new preprocessing steps in O(|E|) time and O(|V |)
space. Steps 2 and 4 are clearly correct. Since a tournament (i.e., a directed graph
obtained by assigning a direction for each edge in an undirected complete graph)
has a hamiltonian path [13], we have that Step 6 is also correct.

We have the following lemma.

Lemma 3. Δ-IOB-Alg[A] is an O(
∑

r∈V (|E|+∑
1≤l≤k−� k−2

Δ−1 � t(G, r, k, l))) time

and O(|V |+maxr∈V,1≤l≤k−	 k−2
Δ−1 
 s(G, r, k, l)) space algorithm for k-IOB.

3.2 A Modification of the Reduction f

In this section assume that we have a proper Δ-coloring col : V → {c1, ..., cΔ} of
the underlying undirected graph of G. Having such col, we modify the reduction
f (see Section 2.2) to construct a ”better” input for t-MLD (i.e., an input in
which t < k + l).

The Idea Behind the Modification: Recall that in the previous construction,
we let each monomial represent a certain pair of an out-tree T = (VT , ET ) and a
function h : VT → V . The monomial included indeterminates representing all the
nodes to which the nodes in VT are mapped. We can now select some color c ∈
{c1, ..., cΔ}, and ignore some occurrences of indeterminates that represent nodes
whose color is c and whose degree in h(T ) is Δ. We thus construct monomials
with smaller degrees, and have an input for t-MLD in which t < k + l.

More precisely, the monomial representing T and h is
∏

v∈U xh(v), where U is
VT , excluding nodes mapped to nodes whose color is c and whose degree in T is
Δ (except the root). We add constraints on T and h to garauntee that nodes in
VT that are mapped to the same node do not have common neighbors in T .

The correctness is based on the following observation. Suppose that there
is an indeterminate xv that occurs more than once in the original monomial
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representing T and h, but not in the new monomial representing them. Thus
the color of v is c. Moreover, there are different nodes u,w ∈ VT such that
h(u) = h(w) = v, and the degree of u in T is Δ. We get that u has a neighbor
u′ in T and w has a different neighbor w′ in T , such that h(u′) = h(w′) and the
color of h(u′) is not c. Thus xh(u′) occurs more than once in the new monomial
representing T and h. This implies that monomials that are not multilinear in
the original construction do not become multilinear in the new construction.

The Construction: Let (G, r, k, l) be an input for (k, l)-Tree. We now construct
an input f(G, r, k, l, col) = (C,X, t) for t-MLD.

We add a node r′ to V and the edge (r′, r) to E. We color r′ with some c ∈
{c1, ..., cΔ}\{col(r)}. In the following let < be some order on V ∪{nil}, such that
nil is the smallest element. Define X = {xv : v ∈ V }, and t = (2− Δ+1

Δ(Δ−1) )k+8.

Denote N(v, i, o) = {u ∈ V \ {i} : (v, u) ∈ E, u > o}.
We inductively define an arithmetic circuit Cc,i,o,b

v,k′,l′ over X , for all v ∈ V, k′ ∈
{0, ..., k}, l′ ∈ {1, ..., l}, c ∈ {c1, ..., cΔ}, i such that (i, v) ∈ E, o such that
(v, o) ∈ E or o = nil, and b ∈ {F, T }. Informally, v, k′ and l′ play the same role
as in the original construction; c indicates that only indeterminates representing
nodes colored by c can be ignored; i and o are used for constraining the pairs of
trees and functions represented by monomials as noted in ”The Idea Behind the
Modification”; and b indicates whether the indeterminate of v is ignored.

Base Cases:

1. If k′ = 0, l′ = 1 and b = F : Cc,i,o,b
v,k′,l′ = xv.

2. Else if [k′ = 0] or [N(v, i, o) = ∅] or [(|N(v, i, o)| > l′ or col(v) �= c or v = r

or |N(v, i, nil)| < Δ− 1) and b = T ]: Cc,i,o,b
v,k′,l′ = 0.

Steps: (assume that none of the base cases applies)

1. If l′ = 1 and b = F : Cc,i,o,b
v,k′,l′ = xv

∑
u∈N(v,i,o)(C

c,v,nil,F
u,k′−1,l′ + Cc,v,nil,T

u,k′−1,l′).
2. Else if b = F :

Cc,i,o,b
v,k′,l′ =

∑
u∈N(v,i,o)[xvC

c,v,nil,F
u,k′−1,l′ + xvC

c,v,nil,T
u,k′−1,l′+∑

1≤k∗≤k′
∑

1≤l∗≤l′−1 C
c,i,u,b
v,k∗,l∗(C

c,v,nil,F
u,k′−k∗,l′−l∗ + Cc,v,nil,T

u,k′−k∗,l′−l∗)].

3. If b = T and there is exactly one node u in N(v, i, o): Cc,i,o,b
v,k′,l′ = Cc,v,nil,F

u,k′−1,l′ .
4. Else if b = T :

(a) Denote u = min(N(v, i, o)).

(b) Cc,i,o,b
v,k′,l′ =

∑
1≤k∗≤k′

∑
1≤l∗≤l′−1 C

c,i,u,b
v,k∗,l∗C

c,v,nil,F
u,k′−k∗,l′−l∗ .

The following order shows that when computing an arithmetic circuit Cc,i,o,b
v,k′,l′ ,

we only use arithmetic circuits that have been already computed.

Order:

1. For k′ = 0, 1, ..., k:
(a) For l′ = 1, 2, ..., l:

i. ∀v ∈ V, c ∈ {c1, ..., cΔ}, i s.t. (i, v) ∈ E, o s.t. (v, o) ∈ E or o = nil,

b ∈ {F, T }: Compute Cc,i,o,b
v,k′,l′ .
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Define C =
∑

c∈{c1,...,cΔ} C
c,r′,nil,F
r,k,l .

Denote the polynomial that Cc,i,o,b
v,k′,l′ (resp. C) represents by P c,i,o,b

v,k′,l′ (resp. P ).

Correctness: We need the next two definitions, which we illustrate in Fig. 1.

Definition 1. Let v ∈ V , k′ ∈ {0, ..., k}, l′ ∈ {1, ..., l}, c ∈ {c1, ..., cΔ}, i such
that (i, v) ∈ E, o such that (v, o) ∈ E or o = nil. Given a subgraph T = (VT , ET )
of G, we say that

1. T is a (v, k′, l′, c, i, o, F )-tree if
(a) T is an out-tree rooted at v with exactly k′ internal nodes and l′ leaves.
(b) Every out-neighbor of v in T belongs to N(v, i, o).

2. T is a (v, k′, l′, c, i, o, T )-tree if
(a) col(v) = c, v �= r, and |N(v, i, nil)| = Δ− 1.
(b) Every node in N(v, i, o) is an out-neighbor of v in T , and N(v, i, o) �= ∅.
(c) There is at most one node i′ ∈ VT such that (i′, v) ∈ ET .

i. If such an i′ exists: (v, i′) /∈ ET , and T ′ = (VT , ET \ {(i′, v)}) is an
out-tree rooted at v.

ii. Else: T is a (v, k′, l′, c, i, o, F )-tree.

Definition 2. Given a (v, k′, l′, c, i, o, b)-tree T = (VT , ET ), define I(T ) =

{u ∈ VT : [u �= v ∧ (col(u) �= c ∨ u has less than (Δ− 1) out− neighbors in T )]

∨[u = v ∧ (b = F ∨ v has an in− neighbor in T )]}.

 

 

 

 

v1 

v1 v1 

v2 v2 v2 v3 

v3 

v4 

v4 v4 

v3 v5 v5 

v5 G 
T1 T2 = 3 

Fig. 1. Assume that r = v1 < v2 < v3 < v4 < v5, and that shapes represent col-
ors. We have that T1 is a (v2, k

′, l′, O, v1, nil, T )-tree for any k′ and l′, and I(T1) =
{v1, v2, v3, v4, v5}. Moreover, T2 is a (v2, 3, 2, O, v1, v3, T )-tree, and I(T2) = {v1, v3, v4}.

Observation 5. Let T = (VT , ET ) be a (v, k′, l′, c, i, o, b)-tree of G, such that

there is no i′ ∈ VT for which (i′, v) ∈ ET . Then, P
c,i,o,b
v,k′,l′ has the (multilinear)

monomial
∏

w∈I(T ) xw.

Proof. We prove the claim by using induction on the construction. The claim
is clearly true for the base cases. Next consider a (v, k′, l′, c, i, o, b)-tree T =

(VT , ET ) of G, such that Cc,i,o,b
v,k′,l′ is not constructed in the base cases. Assume

that the claim is true for all (ṽ, k̃, l̃, c̃, ĩ, õ, b̃) such that C c̃,˜i,õ,˜b

ṽ,˜k,˜l
is constructed

before Cc,i,o,b
v,k′,l′ . Denote by u the smallest out-neighbor of v in T .
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Denote by Tv = (Vv, Ev) and Tu = (Vu, Eu) the two out-trees of G in the
forest F = (VT , ET \ {(v, u)}), such that v ∈ Vv. If u /∈ I(T ) (this is not the case
if b = T , since then col(u) �= c), then denote b′ = T , and note that the set of
out-neighbors of u in Tu contains all of the neighbors of u in G, excluding v; else
denote b′ = F . We have the following cases.

1. If |Vv| = 1: Tu is a (u, k′ − 1, l′c, v, nil, b′)-tree of G. If b = F , then I(Tu) =

I(T ) \ {v}; else I(Tu) = I(Tv). By the induction hypothesis Cc,v,nil,b′
u,k′−1,l′ has

the monomial
∏

w∈I(Tu)
xw. Thus, by the definition of Cc,i,o,b

v,k′,l′ , P
c,i,o,b
v,k′,l′ has

the required monomial.
2. Else: Denote the number of internal nodes and leaves in Tv by kv and lv,

respectively. Note that 1 ≤ kv ≤ k′, 1 ≤ lv < l′, Tv is a (v, kv, lv, c, i, u, b)-
tree of G, and Tu is a (u, k′ − kv, l

′ − lv, c, v, nil, b
′)-tree of G. Moreover,

I(Tv) and I(Tu) are disjoint sets whose union is I(T ). By the induction hy-

pothesis, P c,i,u,b
v,kv ,lv

has the monomial
∏

w∈I(Tv)
xw, and P c,v,nil,b′

u,k′−kv ,l′−lv
has the

monomial
∏

w∈I(Tu)
xw. By the definition of Cc,i,o,b

v,k′,l′ , P
c,i,o,b
v,k′,l′ has the mono-

mial
∏

w∈I(Tv)
xw

∏
w∈I(Tu)

xw =
∏

w∈I(T ) xw.
�	

Observation 6. If P c,i,o,b
v,k′,l′ has a (multilinear) monomial

∏
w∈U xw, for some

U ⊆ V , then G has a (v, k′, l′, c, i, o, b)-tree T such that I(T ) = U .

Proof. We prove the claim by using induction on the construction. The claim is
clearly true for the base cases. Let

∏
w∈U xw, for some U ⊆ V , be a monomial

of P c,i,o,b
v,k′,l′ , such that Cc,i,o,b

v,k′,l′ is not constructed in the base cases. Assume that

the claim is true for all C c̃,˜i,õ,˜b

ṽ,˜k,˜l
that is constructed before Cc,i,o,b

v,k′,l′ .

First suppose that b = F . By the definition of Cc,i,o,b
v,k′,l′ , there are u ∈ N(v, i, o)

and b′ ∈ {F, T } such that one of the next conditions is fulfilled.

1. Cc,v,nil,b′
u,k′−1,l′ has the monomial

∏
w∈U\{v} xw. By the induction hypothesis, G

has a (u, k′ − 1, l′, c, v, nil, b′)-tree Tu = (Vu, Eu), such that I(Tu) = U \ {v}.
Suppose that there is i′ ∈ Vu such that (i′, u) ∈ Eu. In this case b′ = T ; thus
v /∈ Vu and the set of out-neighbors of u in Tu contains all the neighbors of
u in G, excluding v. We get that i′ is an out-neighbor of u in Tu, which a
contradiction. Thus, by adding v and (v, u) to Tu, we get a (v, k′, l′, c, i, o, b)-
tree T such that I(T ) = U (since I(T ) = I(Tu) ∪ {v}).

2. There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that

P c,i,u,b
v,k∗,l∗ has the monomial

∏
w∈U∗ xw, and P c,v,nil,b′

u,k′−k∗,l′−l∗ has the monomial∏
w∈U\U∗ xw . By the induction hypothesis, G has a (v, k∗, l∗, c, i, u, b)-tree

Tv = (Vv, Ev) such that I(Tv) = U∗, and a (u, k′−k∗, l′− l∗, c, v, nil, b′)-tree
Tu = (Vu, Eu) such that I(Tu) = U \ U∗. Consider the following cases.

(a) If v ∈ Vu: v /∈ I(Tu) (since v ∈ I(Tv)). Thus col(v) = c and v has
Δ − 1 out-neighbors in Tu. Note that v is not an out-neighbor of u in
Tu, and thus u is an out-neighbor of v in Tu. Therefore b

′ = T , and thus
col(u) = c, which is a contradiction (since col is a proper coloring).
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(b) If there is w ∈ (Vv ∩ Vu) \ {v, u} �= ∅: Since I(Tv) ∩ I(Tu) = ∅, we get
that col(w) = c and (w has Δ neighbors in Tv or Tu). Thus there is w′

that is a neighbor of w in both Tv and Tu, such that col(w′) �= c. We get
that w′ ∈ I(Tv) ∩ I(Tu) = ∅, which is a contradiction.

(c) If u ∈ Vv: u is not an out-neighbor of v in Tv. Therefore u has less than
Δ − 1 out-neighbors in Tv, and thus u ∈ I(Tv). We get that u /∈ I(Tu),
which implies that the set of out-neighbors of u in Tu contains all the
neighbors of u in G, excluding v. Thus u has a neighbor, which is not v,
in both Tv and Tu, and we have a contradiction according to Case 2b.

We get that Vv ∩ Vu = ∅. If there is i′ ∈ Vu such that (i′, u) ∈ Eu, then
we get a contradiction in the same manner as in Case 1. We get that T =
(Vv∪Vu, Ev∪Eu∪{(v, u)}) is an out-tree of G. It is straightforward to verify
that T is a (v, k′, l′, c, i, o, b)-tree of G such that I(T ) = I(Tv) ∪ I(Tu) (and
thus I(T ) = U).

Now suppose that b = T . Denote by u the smallest node in N(v, i, o). By the

definition of Cc,i,o,b
v,k′,l′ , one of the next conditions is fulfilled.

1. If N(v, i, o) = {u}: P c,v,nil,F
u,k′−1,l′ has the monomial

∏
w∈U xw . By the induction

hypothesis, G has a (u, k′ − 1, l′, c, v, nil, F )-tree Tu such that I(Tu) = U .
Since v is not an out-neighbor of u in Tu, by adding v and (v, u) to Tv, we
get a (v, k′, l′, c, i, o, b)-tree T of G (which may not be an out-tree), such that
I(T ) = I(Tu) = U .

2. Else: There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that

P c,i,u,b
v,k∗,l∗ has the monomial

∏
w∈U∗ xw, and P c,v,nil,F

u,k′−k∗,l′−l∗ has the monomial∏
w∈U\U∗ xw . By the induction hypothesis, G has a (v, k∗, l∗, c, i, u, b)-tree

Tv = (Vv, Ev) such that I(Tv) = U∗, and a (u, k′−k∗, l′− l∗, c, v, nil, F )-tree
Tu = (Vu, Eu) such that I(Tu) = U \ U∗. Consider the following cases.
(a) If there is w ∈ (Vv ∩Vu) \ {v, u} �= ∅: We get a contradiction in the same

manner as in the previous Case 2b.
(b) If u ∈ Vv: Since col(u) �= c, we get that u ∈ I(Tv) ∪ I(Tu) = ∅, which is

a contradiction.
We get that Vv ∩ Vu \ {v} = ∅. Denote T = (VT = (Vv ∪ Vu), ET = (Ev ∪
Eu ∪ {(v, u)})). Suppose, by way of contradiction, that there are two nodes
i1, i2 ∈ VT such that (i1, v), (i2, v) ∈ ET . Since Tv is a (v, k∗, l∗, c, i, u, b)-tree
and Tu is an out-tree, we can assume WLOG that i1 ∈ Vv and i2 ∈ Vu. We
get that v ∈ I(Tv), and thus v /∈ I(Tu). Therefore v has Δ− 1 out-neighbors
in Tu; but since Tu is an out-tree rooted at u, and v is not an out-neighbor of
u in Tu, we have a contradiction. Thus we get that T is a (v, k′, l′, c, i, o, b)-
tree of G such that I(T ) = I(Tv) ∪ I(Tu) (and thus I(T ) = U). �	

Observation 7. If (G, r, k, l) has a solution, then P has a multilinear monomial
of degree at most t.

Proof. Let T = (VT , ET ) be a solution. Denote n(T, c) = {v ∈ VT : col(v) =
c, v has Δ neighbors in T }, and c∗ = argmaxc∈{c1,...,cΔ}{|n(T, c)|}. By Observa-
tion 4 and the pseudocode of Δ-IOB-Alg[A] (see Section 3.1), we get that
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1. 2 +
∑

3≤i≤Δ(i− 2)nT
i = nT

1 .

2.
∑

1≤i≤Δ nT
i = k + l.

3. nT
1 − 1 ≤ l ≤ k − k−2

Δ−1 .

4. |n(T, c∗)| ≥ nT
Δ/Δ.

These conditions imply that k+l−|n(T, c∗)| ≤ (2− Δ+1
Δ(Δ−1) )k+7. Since T is an

(r, k, l, c∗, r′, nil, F )-tree, the definition of C and Observation 5 imply that P has
the (multilinear) monomial

∏
w∈I(T ) xw. Note that |I(T )| ≤ k+ l−|n(T, c∗)|+1,

and thus we get the observation. �	
SinceObservation 6 implies that ifP has amultilinearmonomial, then (G, r, k, l)

has a solution, and by Observation 7, we get the following lemma.

Lemma 4. (G, r, k, l) has a solution iff (C,X, t) has a solution.

The definition of (C,X, t) immediately implies the following observation.

Observation 8. We can compute (C,X, t) in polynomial time and space.

3.3 The Algorithm Δ-IOB-Alg[Δ-Tree-Alg]

Skulrattanakulchai [16] gave a linear-time algorithm that computes a proper Δ-
coloring of an undirected connected graph of bounded degree Δ, which is not
an odd cycle or a clique. In Δ-Tree-Alg (see Algorithm 4), we assume that the
underlying undirected graph of G is connected, and that it is not a cycle or a
clique, since these cases are handled in the preprocessing steps of Δ-IOB-Alg[A].

Algorithm 4. Δ-Tree-Alg(G, r, k, l)

1: Use the algorithm in [16] to get a proper Δ-coloring col of the underlying undirected
graph of G.

2: Compute f(G, r, k, l, col) = (C,X, t).
3: Accept iff MLD-Alg(C,X, t) accepts.

By Lemmas 3 and 4, and Observation 8, we have the following theorem.

Theorem 2. Δ-IOB-Alg[Δ-Tree-Alg] is an O∗(2(2−
Δ+1

Δ(Δ−1) )k) time and polyno-
mial space randomized algorithm for k-IOB.

4 Open Questions

In this paper we have presented an O∗(4k) time algorithm for k-IOB, which
improves the previous best known O∗ running time for k-IOB. However, our
algorithm is randomized, while the algorithm that has the previous best known
O∗ running time is deterministic. Can we obtain an O∗(4k) time determin-
istic algorithm for k-IOB? Moreover, can we further reduce the O∗(4k) and

O∗(2(2−
Δ+1

Δ(Δ−1)
)k) running times for k-IOB presented in this paper?
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