Algorithms for *k***-Internal Out-Branching**

Meirav Zehavi

Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel meizeh@cs.technion.ac.il

Abstract. The k*-Internal Out-Branching (*k*-IOB)* problem asks if a given *directed* graph has an *out-branching* (i.e., a spanning tree with exactly one node of in-degree 0) with at least k internal nodes. The k*-Internal Spanning Tree (*k*-IST)* problem is a special case of k-IOB, which asks if a given *undirected* graph has a spanning tree with at least k internal nodes. We present an $O^*(4^k)$ time randomized algorithm for k-IOB, which improves the O^* running times of the best known algorithms for both k-IOB and k-IST. Moreover, for graphs of bounded degree Δ , we present an $O^*(2^{(2-\frac{\Delta+1}{\Delta(\Delta-1)})k})$ time randomized algorithm for k-IOB. Both our algorithms use polynomial space.

1 [I](#page-12-0)ntroduction

In this paper we study the k*-Internal Out-Branching (*k*-IOB)* problem. The input for k-IOB consists of a *directed* graph $G = (V, E)$ and a parameter $k \in \mathbb{N}$, and the objective is to decide if G has an *out-branching* (i.e., a spanning tree wi[th](#page-12-1) exactly one node of in-degree 0, that we call the root) with at least k internal nodes (i.e., nodes of out-degree \geq 1). The k-IOB problem is of interest in database systems [2].

A special case of k-IOB, called k*-Internal Spanning Tree (*k*-IST)*, asks if a given *undirected* graph $G = (V, E)$ has a spanning tree with at least k internal nodes. A possible application of k -IS[T, f](#page-12-2)[or](#page-0-0) connecting cities with water pipes, is given in [14].

The k-IS[T](#page-12-3) problem is NP-hard even for graphs of bounded degree 3, since it generalizes the Hamiltonian path problem for such [gra](#page-12-4)phs $[5]$; thus k -IOB is also NP-hard for such graphs. In this paper we present parameterized algorithms for k -IOB. Such algorithms are an approach to solve NP-hard problems by confining the combinatorial explosion to a parameter k. More precisely, a problem is *fixedparameter tractable (FPT)* with re[spec](#page-12-5)t to a parameter k if an instance of size *n* can be solved in $O[*](f(k))$ time for some function f [10].¹

Related Work: Nederlof [9] gave an $O^*(2^{|V|})$ time and polynomial space algorithm for k-IST. For graphs of bounded degree Δ , Raible et al. [14] gave an $O^*(((2^{4+1}-1)^{\frac{1}{4+1}})^{|V|})$ time and exponential space algorithm for k-IST.

 1 O^{*} hides factors polynomial in the input size.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 361–373, 2013.

c Springer International Publishing Switzerland 2013

Reference			Variation Time Complexity The Topology of G	
Priesto et al. [12]	k -IST	$O^*(2^{O(k\log k)}$	General	
Gutin al. [6]	k -IOB	$O^*(2^{O(k\log k)}$	General	
Cohen et al. $[1]$	k -IOB	$O^*(49.4^k)$	General	
Fomin et al. $[4]$	k -IOB	$O^*(16^{k+o(k)})$	General	
Fomin et al. [3]	k -IST	$O^*(8^k)$	General	
Raible et al. [14]	k -IST	$O^*(2.1364^k)$	$\Delta = 3$	
This paper	$k-IOB$	$O^*(4^k)$	General	
	$k-IOB$	$ 0^*(2^{(2-\frac{\Delta+1}{\Delta(\Delta-1)})k}) $	$\Delta = O(1)$	

Table 1. Known parameterized algorithms for k -IOB and k -IST

Table 2. Some concre[te](#page-12-6) fi[gu](#page-12-7)res for [the](#page-12-4) running time of [th](#page-12-6)e algorithm ^Δ-IOB-Alg

Time complexity $O^*(2.51985^k)$ $O^*(2.99662^k)$ $O^*(3.24901^k)$ $O^*(3.40267^k)$		

Table 1 presents a summary of known parameterized algorithms for k-IOB and k-IST. In particular, the algorithms having the best known O^* running times for k -IOB and k -IST are due to $[4]$, $[3]$ and $[14]$. Fomin et al. $[4]$ gave an $O^*(16^{k+o(k)})$ time and polynomial space randomized algorithm for k-IOB, and an $O^*(16^{k+o(k)})$ time and $O^*(4^{k+o(k)})$ space deterministic algorithm for k-IOB. Fomin et al. [3] gave an $O[*](8^k)$ time and polynomial space deterministic algorithm for k-IST. For graphs of bounded degree 3, Raible et al. [14] gave an $O[*](2.1364^k)$ time and polynomial space deterministic algorithm for k-IST.

Further information on k -IOB, k -IST and varian[ts](#page-1-0) of these problems is given in surveys [11,15].

Our Contribution: We present an $O^*(4^k)$ time and polynomial space randomized algorithm for ^k-IOB, that we call IOB-Alg. Our algorithm IOB-Alg improves the O^* running times of the best known algorithms for both k -IOB and k -IST.

For graphs of bounded degree Δ , we present an $O^*(2^{(2-\frac{\Delta+1}{\Delta(\Delta-1)})k})$ time and polynomial space randomized algorithm for ^k-IOB, that we call ^Δ-IOB-Alg. Some concrete figures for the running time of Δ -IOB-Alg are given in Table 2.

Techniques: [O](#page-12-8)ur algorithm IOB-Alg is based on two reductions as follows. We first reduce k -IOB to a new problem, that we call (k, l) -*Tree*, by using an observation from [1]. This reduction allows us to focus our attention on finding a tree whose size depends on k , rather than a spanning tree whose size depends on |V |. We then reduce (k,l)-Tree to the t*-Multilinear Detection (*t*-MLD)* problem, which concerns multivariate polynomials and has an $O[*](2^t)$ time randomized algorithm $[7,17]$. We note that reductions to t -MLD have been used to solve several problems quickly (see, e.g., [8]). IOB-Alg is another proof of the applicability of this new tool.

Our algorithm Δ -IOB-Alg, though based on the same technique as IOB-Alg, requires additional new non-trivial ideas and is more technical. In particular, we now use a proper coloring of the gr[aph](#page-2-0) G when [redu](#page-6-0)cing (k, l) -Tree to t-MLD. T[his](#page-5-0) [id](#page-5-0)ea might [be](#page-3-0) [u](#page-3-0)se[ful](#page-11-1) in solvi[ng](#page-11-0) [o](#page-11-0)ther problems.

Organization: Section 2 presents our algorithm IOB-Alg. Specifically, Section 2.1 defines (k,l)*-Tree*, and presents an algorithm that solves k-IOB by using an algorithm for (k, l) -Tree. Section 2.2 defines t-MLD, and reduces (k, l) -Tree to t -MLD. Then, Section 2.3 presents our algorithm for (k, l) -Tree, and thus concludes IOB-Alg. Section 3 presents our algorithm ^Δ-IOB-Alg. Specifically, Section 3.1 modifies the algorithm presented in Section 2.1, Section 3.2 modifies the reduction presented in Section 2.2, and Section 3.3 modifies the algorithms presented in Section 2.3. Finally, Section 4 presents a few open questions.

2 An *O∗***(4***^k***)-time** *k***-IOB Algorithm**

2.1 The (*k, l***)-Tree Problem**

We first define a new problem, that we call (k,l)*-Tree*.

 (k, l) **-Tree**

- $−$ Input: A directed graph $G = (V, E)$, a node $r \in V$, and parameters $k, l \in \mathbb{N}$.
- **–** Goal: Decide if G has an *out-tree* (i.e., a tree with exactly one node of indegree 0) rooted at r with exactly k internal nodes and l leaves.

We now show that we can focus our attention on solving (k, l) -Tree. Let $A(G, r, k, l)$ be a $t(G, r, k, l)$ time and $s(G, r, k, l)$ space algorithm for (k, l) -Tree.

Algorithm 1. $IOB-Alg[A](G, k)$

1: **for all** $r \in V$ **do** 2: **if** G has no out-branching T rooted at r **then** Go to the next iteration. **end if** 3: **for** $l = 1, 2, ..., k$ **do** [4:](#page-12-9) **if** $A(G, r, k, l)$ accepts **then** Accept. **end if**
5: **end for** 5: **end for** 6: **end for** 7: Reject.

The following observation immediately implies the correctness of IOB-Alg[A] (see Algorithm 1).

[Ob](#page-2-1)servation 1 ([1[\]\).](#page-2-2) Let $G = (V, E)$ be a directed graph, and $r \in V$ such that G *has an out-branching rooted at* r*.*

- **–** *If* G *has an out-branching rooted at* r *with at least* k *internal nodes, then* G *has an out-tree rooted at* r *with exactly* k *internal nodes and at most* k *leaves.*
- **–** *If* G *has an out-tree rooted at* r *with exactly* k *internal nodes, then* G *has an out-branching with at least* k *internal nodes.*

By Observation 1, and since Step 2 can be performed in $O(|E|)$ time and $O(|V|)$ space (e.g., by using DFS), we have the following result.

Lemma 1. IOB-Alg[A] *is an* $O(\sum_{r \in V}(|E| + \sum_{1 \leq l \leq k} t(G, r, k, l)))$ *time and* $O((\sum_{r \in V} t(G, r, k, l)))$ *time and* $O((\sum_{r \in V} t(G, r, k, l)))$ $|V| + \max_{r \in V, 1 \leq l \leq k} s(G, r, k, l)$ *space algorithm for k-IOB.*

2.2 A Reduction from (*k, l***)-Tree to** *t***-MLD**

We first give the definition of t -MLD [7].

t**-MLD**

- **–** Input: A polynomial P represented by an arithmetic circuit C over a set of variables X, and a parameter $t \in \mathbb{N}$.
- **–** Goal: Decide if P has a multilinear monomial of degree at most t.

Let (G, r, k, l) be an input for (k, l) -Tree. We now construct an input $f(G, r, k, l)$ $l=(C_{r,k,l}, X, t)$ for t-MLD. We introduce an indeterminate x_v for each $v \in V$, and define $X = \{x_v : v \in V\}$ and $t = k + l$.

The idea behind the construction is to let each monomial represent a pair of an out-tree $T = (V_T, E_T)$ and a function $h: V_T \to V$, such that if $(v, u) \in E_T$, then $(h(v), h(u)) \in E$ (i.e., h is a homomorphism). The monomial is $\prod_{v \in V_T} x_{h(v)}$. We get that the monomial is multilinear iff $\{h(v) : v \in V_T\}$ is a set (then $h(T) = (\{h(v) : v \in V_T\}, \{(h(v), h(u)) : (v, u) \in E_T\})$ is an out-tree).

Towards presenting $C_{r,k,l}$, we inductively define an arithmetic circuit $C_{v,k',l'}$ over X, for all $v \in V, k' \in \{0, ..., k\}$ and $l' \in \{1, ..., l\}$. Informally, the multilinear monomials of the polynomial represented by $C_{v,k',l'}$ represent out-trees of G rooted at v that have exactly k' internal nodes and l' leaves.

Base Cases:

1. If $k' = 0$ and $l' = 1$: $C_{v,k',l'} = x_v$. 2. If $k' = 0$ and $l' > 1$: $C_{v,k',l'} = 0$.

Steps:

1. If $k' > 0$ and $l' = 1$: $C_{v,k',l'} = \sum_{u \text{ s.t.}(v,u) \in E} x_v C_{u,k'-1,l'}$. 2. If $k' > 0$ and $l' > 1$: $C_{v,k',l'} =$ $\sum_{u \text{ s.t.}(v,u) \in E} (x_v C_{u,k'-1,l'} + \sum_{1 \leq k^* \leq k'} \sum_{1 \leq l^* \leq l'-1} C_{v,k^*,l^*} \cdot C_{u,k'-k^*,l'-l^*}).$

The following order shows that when computing an arithmetic circuit $C_{v,k',l'}$, we only use arithmetic circuits that have been already computed.

Order:

1. For
$$
k' = 0, 1, ..., k
$$
:
\n(a) For $l' = 1, 2, ..., l$:
\ni. $\forall v \in V$: Compute $C_{v, k', l'}$.

Denote the polynomial that $C_{v,k',l'}$ represents by $P_{v,k',l'}$.

Lemma 2. (G, r, k, l) *has a solution iff* $(C_{r, k, l}, X, t)$ *has a solution.*

Proof. By using induction, we first prove that if G has an out-tree $T = (V_T, E_T)$ rooted at v with exactly k' internal nodes and l' leaves, then $P_{v,k',l'}$ has the (multilinear) monomial $\prod_{w \in V_T} x_w$.

The claim is clearly true for the base cases, and thus we next assume that $k' > 0$, and the claim is true for all $v \in V, k^* \in \{0, ..., k'\}$ and $l^* \in \{1, ..., l'\}$, such that $(k^* < k'$ or $l^* < l'$).

Let $T = (V_T, E_T)$ be an out-tree of G, that is rooted at v and has exactly k' internal nodes and l' leaves. Also, let u be a neighbor of v in T. Denote by $T_v = (V_v, E_v)$ and $T_u = (V_u, E_u)$ the two out-trees of G in the forest $F =$ $(V_T, E_T \setminus \{(v, u)\})$, such that $v \in V_v$. We have the following cases.

- 1. If $|V_v| = 1$: T_u has $k' 1$ internal nodes and l' leaves. By the induction hypothesis, $P_{u,k'-1,l'}$ has the monomial $\prod_{w\in V_u} x_w$. Thus, by the definition of $C_{v,k',l'}$, $P_{v,k',l'}$ has the monomial $x_v \prod_{w \in V_u} x_w = \prod_{w \in V_T} x_w$.
- 2. Else: Denote the number of internal nodes and leaves in T_v by k_v and l_v , respectively. By the induction hypothesis, P_{v,k_v,l_v} has the monomial l_v , respectively. By the induction hypothesis, P_{v,k_v,l_v} has the monomial $\prod_{w \in V_v} x_w$. By the definition of $C_{v,k',l'}$, $P_{v,k',l'}$ has the monomial $\prod_{w\in V_v} x_w \prod_{w\in V_u} x_w = \prod_{w\in V_T} x_w$.

Now, by using induction, we prove that if $P_{v,k',l'}$ has the (multilinear) monomial $\prod_{w\in U} x_w$, for some $U \subseteq V$, then G has an out-tree $T = (V_T, E_T)$ rooted at v with exactly k' internal nodes and l' leaves, such that $V_T = U$. This claim implies that any multilinear monomial of $P_{v,k',l'}$ is of degree exactly $k' + l'$.

The claim is clearly true for the base cases, and thus we next assume that $k' > 0$, and the claim is true for all $v \in V$, $k^* \in \{0, ..., k'\}$ and $l^* \in \{1, ..., l'\}$, such that $(k^* < k'$ or $l^* < l'$).

Let $\prod_{w \in U} x_w$, for some $U \subseteq V$, be a monomial of $P_{v,k',l'}$. By the definition of $C_{v,k',l'}$, there is u such that $(v, u) \in E$, for which we have the following cases.

- 1. If $P_{u,k'-1,l'}$ has a monomial $\prod_{w\in U\setminus\{v\}} x_w$: By the induction hypothesis, G has an out-tree $T_u = (V_u, E_u)$ rooted at u with exactly $k' - 1$ internal nodes and l' leaves, such that $V_u = U \setminus \{v\}$. By adding v and (v, u) to T_u , we get an out-tree $T = (V_T, E_T)$ of G that is rooted at v, has exactly k' internal nodes and l' leaves, and such that $V_T = U$.
- 2. Else: There are $k^* \in \{1, ..., k'\}, l^* \in \{1, ..., l' - 1\}$ and $U^* \subseteq U$, such that P_{v,k^*,l^*} has the monomial $\prod_{w \in U^*} x_w$, and $P_{u,k'-k^*,l'-l^*}$ has the monomial $\prod_{w \in U \setminus U^*} x_w$. By the induction hypothesis, G has an out-tree $T_v = (V_v, E_v)$ $\prod_{w\in U\setminus U^*} x_w$. By the induction hypothesis, G has an out-tree $T_v = (V_v, E_v)$ rooted at v with exactly k^* internal nodes and l^* leaves, such that $V_v = U^*$. Moreover, G has an out-tree $T_u = (V_u, E_u)$ rooted at u with exactly $k' - k^*$ internal nodes and $l' - l^*$ leaves, such that $V_u = U \setminus U^*$. Thus, we get that the out-tree $T = (U, E(T_v) \cup E(T_u) \cup (v, u))$ of G is rooted at v, and has exactly k' internal nodes and l' leaves.

We get that G has an out-tree rooted at r of exactly k internal nodes and l leaves iff $P_{r,k,l}$ has a mutlilinear monomial of degree at most t.

The definition of $(C_{r,k,l}, X, t)$ immediately implies the following observation.

Observation 2. We can compute $(C_{r,k,l}, X, t)$ in polynomial time and space.

2.3 The Algorithm IOB-Alg[Tree-Alg]

Koutis et al. [7,17] gave an $O^*(2^t)$ time and polynomial space randomized algorithm for t -MLD. We denote this algorithm by MLD-Alg, and use it to get an alg[or](#page-3-1)ithm for (k, l) (k, l) -Tr[e](#page-4-0)e (see Algorithm 2).

By Lemmas 1 and 2, and Observation 2, we have the following theorem.

Theore[m](#page-2-3) 1. I[O](#page-2-0)B-Alg[Tree-Alg] *is an* $O^*(4^k)$ *time and polynomial space randomized algorithm for* k*-IOB.*

[3](#page-12-4) A *k***-IOB Algorithm for Graphs of Bounded Degree** *Δ*

3.1 A Modification of the Algorithm IOB-Alg[A]

We first prove that in Step 3 of **IOB-Alg[A]** (see Section 2.1), we can iterate over less than k values for l .

Given an out-tree $T = (V_T, E_T)$ and $i \in \mathbb{N}$, denote the number of degree-i nodes in T by n_i^T .

Observation 3 ([14]). *If* $|V_T| \ge 2$, *then* $2 + \sum_{3 \le i} (i - 2)n_i^T = n_1^T$.

Observation 4. *An out-tree* T *of* G *with exactly* k *internal nodes contains an out-tree with exactly* k *internal nodes and at most* $k - \frac{k-2}{\Delta-1}$ *leaves.*

Proof. As long as T has an internal node v with at least two out-neighbors that are leaves, delete one of these leaves and its adjacent edge from T. Denote the [r](#page-2-3)esulting out-tree by T' , and denote the tree that we get after deleting all the leaves in T' by T'' . Note that T' has exactly k internal nodes, and that T' and T'' have the same number of leaves. Since T'' has k nodes and bounded degree Δ, Observation 3 implies that if $n_1^{T''} + n_2^{T''} = k$, then $n_1^{T''} = k - \frac{k-2}{\Delta-1}$, and if $n_1^{T''} + n_{\Delta}^{T''} < k$ $n_1^{T''} + n_{\Delta}^{T''} < k$, then $n_1^{T''} < k - \frac{k-2}{\Delta-1}$. We have that $n_1^{T''} \le k - \frac{k-2}{\Delta-1}$, and thus we conclude that T' has ex[actly](#page-6-0) k internal nodes and at most $k - \frac{k-2}{\Delta-1}$ leaves. \square

Thus, in Step 3 of IOB-Alg[A], we can iterate only over $l = 1, 2, ..., k - \lceil \frac{k-2}{\Delta-1} \rceil$. We add some preprocessing steps to IOB -Alg[A], and thus get Δ -IOB-Alg[A] (see Algorithm 3). These preprocessing steps will allow us to assume, when presenting algorithm A, that the underlying undirected graph of G is a connected graph that is neither a cycle nor a clique. This assumption will allow us to compute a proper Δ -coloring of the underlying undirected graph of G (see Section 3.3), which we will use in the following Section 3.2.

Algorithm 3. Δ -IOB-Alg[A](G, k)

1: **if** $k \geq |V|$ or the underlying undirected graph of G is not connected **then** 2: Reject. 3: **else if** the underlying undirected graph of G is a cycle **then** 4: **if** $k = |V| - 1$ **then** Accept iff G has a hamiltonian path. **else** Accept iff there is at most one node of out-degree 2 in G. **end if** 5: **else if** the underlying undirected graph of G is a clique **then** 6: Accept. 7: **end if** 8: **for all** r ∈ V **do** 9: **if** G has no out-branching T rooted at r **then** Go to the next iteration. **end if** [10](#page-6-1): **for** $l = 1, 2, ..., k - \left\lceil \frac{k-2}{\Delta - 1} \right\rceil$ **do**
11. **if** $\Delta(G, r, k, l)$ accepts they 11: **if** $A(G, r, k, l)$ accepts **then** Accept. **end if** 12: **end for** [end](#page-12-10) for 13: **end for** 14: Reject.

We can clearly perform the new preprocessing steps in $O(|E|)$ time and $O(|V|)$ space. Steps 2 and 4 are clearly correct. Since a tournament (i.e., a directed graph obtained by assigning a direction for each edge in an undirected complete graph) has a hamiltonian path [13], we have that Step 6 is also correct.

We have the following lemma.

[L](#page-3-0)emma 3. Δ -IOB-Alg[A] *is an* $O(\sum_{r \in V}(|E| + \sum_{1 \leq l \leq k - \lfloor \frac{k-2}{2} \rfloor} t(G, r, k, l)))$ *time* and $O(|V| + \max_{r \in V, 1 \leq l \leq k - \lceil \frac{k-2}{\Delta-1} \rceil} s(G, r, k, l)$ *space algorithm for k-IOB.*

3.2 A Modification of the Reduction *f*

In this section assume that we have a proper Δ -coloring $col : V \to \{c_1, ..., c_{\Delta}\}\$ the underlying undirected graph of G. Having such col, we modify the reduction f (see Section 2.2) to construct a "better" input for t -MLD (i.e., an input in which $t < k + l$).

The Idea Behind the Modification: Recall that in the previous construction, we let each monomial represent a certain pair of an out-tree $T = (V_T, E_T)$ and a function $h: V_T \to V$. The monomial included indeterminates representing *all* the nodes to which the nodes in V_T are mapped. We can now select some color $c \in$ ${c_1, ..., c_{\Delta}}$, and ignore some occurrences of indeterminates that represent nodes whose color is c and whose degree in $h(T)$ is Δ . We thus construct monomials with smaller degrees, and have an input for t-MLD in which $t < k + l$.

More precisely, the monomial representing T and h is $\prod_{v\in U} x_{h(v)}$, where U is V_T , excluding nodes mapped to nodes whose color is c and whose degree in T is Δ (except the root). We add constraints on T and h to garauntee that nodes in V_T that are mapped to the same node do not have common neighbors in T .

The correctness is based on the following observation. Suppose that there is an indeterminate x_v that occurs more than once in the original monomial representing T and h , but not in the new monomial representing them. Thus the color of v is c. Moreover, there are different nodes $u, w \in V_T$ such that $h(u) = h(w) = v$, and the degree of u in T is Δ . We get that u has a neighbor u' in T and w has a *different* neighbor w' in T, such that $h(u') = h(w')$ and the color of $h(u')$ is not c. Thus $x_{h(u')}$ occurs more than once in the new monomial representing T and h . This implies that monomials that are not multilinear in the original construction do not become multilinear in the new construction.

The Construction: Let (G, r, k, l) be an input for (k, l) -Tree. We now construct an input $f(G, r, k, l, col) = (C, X, t)$ for t-MLD.

We add a node r' to V and the edge (r', r) to E. We color r' with some $c \in$ ${c_1,...,c_{\Delta}}\{\{col(r)\}\.$ In the following let \lt be some order on $V \cup \{nil\}$, such that *nil* is the smallest element. Define $X = \{x_v : v \in V\}$, and $t = \left(2 - \frac{\Delta + 1}{\Delta(\Delta - 1)}\right)k + 8$. Denote $N(v, i, o) = \{u \in V \setminus \{i\} : (v, u) \in E, u > o\}.$

We inductively define an arithmetic circuit $C_{v,k',l'}^{c,i,o,b}$ over X, for all $v \in V, k' \in$ $\{0, ..., k\}, l' \in \{1, ..., l\}, c \in \{c_1, ..., c_{\Delta}\}, i \text{ such that } (i, v) \in E, o \text{ such that }$ $(v, o) \in E$ or $o = nil$, and $b \in \{F, T\}$. Informally, v, k' and l' play the same role as in the original construction; c indicates that only indeterminates representing nodes colored by c can be ignored; i and o are used for constraining the pairs of trees and functions represented by monomials as noted in "The Idea Behind the Modification"; and b indicates whether the indeterminate of v is ignored.

Base Cases:

- 1. If $k' = 0, l' = 1$ and $b = F: C_{v,k',l'}^{c,i,o,b} = x_v$.
- 2. Else if $[k' = 0]$ or $[N(v, i, o) = \emptyset]$ or $[(|N(v, i, o)| > l'$ or $col(v) \neq c$ or $v = r$ or $|N(v, i, nil)| < \Delta - 1$ and $b = T$: $C_{v, k', l'}^{c, i, o, b} = 0$.

Steps: (assume that none of the base cases applies)

- 1. If $l' = 1$ and $b = F: C_{v,k',l'}^{c,i,o,b} = x_v \sum_{u \in N(v,i,o)} (C_{u,k'-1,l'}^{c,v,nil,F} + C_{u,k'-1,l'}^{c,v,nil,T}).$ 2. Else if $b = F$:
- $C_{v,k',l'}^{c,i,o,b} = \sum_{u \in N(v,i,o)} [x_v C_{u,k'-1,l'}^{c,v,nil,F} + x_v C_{u,k'-1,l'}^{c,v,nil,T} +$ $\sum_{1 \leq k^* \leq k'} \sum_{1 \leq l^* \leq l'-1} C_{v,k^*,l^*}^{c,i,u,b}(C_{u,k'-k^*,l'-l^*}^{c,v,nil,F}+C_{u,k'-k^*,l'-l^*}^{c,v,nil,T})].$
- 3. If $b = T$ and there is exactly one node u in $N(v, i, o)$: $C_{v, k', l'}^{c, i, o, b} = C_{u, k'-1, l'}^{c, v, nil, F}$ 4. Else if $b = T$:
	- (a) Denote $u = \min(N(v, i, o)).$
	- (b) $C_{v,k',l'}^{c,i,o,b} = \sum_{1 \leq k^* \leq k'} \sum_{1 \leq l^* \leq l'-1} C_{v,k^*,l^*}^{c,i,u,b} C_{u,k'-k^*,l'-l^*}^{c,v,nil,F}.$

The following order shows that when computing an arithmetic circuit $C_{v,k',l'}^{c,i,o,b}$, we only use arithmetic circuits that have been already computed.

Order:

1. For
$$
k' = 0, 1, ..., k
$$
:
\n(a) For $l' = 1, 2, ..., l$:
\ni. $\forall v \in V, c \in \{c_1, ..., c_{\Delta}\}, i \text{ s.t. } (i, v) \in E, o \text{ s.t. } (v, o) \in E \text{ or } o = nil,$
\n $b \in \{F, T\}$: Compute $C_{v, k', l'}^{c, i, o, b}$.

Define $C = \sum_{c \in \{c_1, ..., c_A\}} C_{r,k,l}^{c,r',nil,F}.$

Denote the polynomial that $C_{v,k',l'}^{c,i,o,b}$ (resp. C) represents by $P_{v,k',l'}^{c,i,o,b}$ (resp. P).

Correctness: We need the next two definitions, which we illustrate in Fig. 1.

Definition 1. Let $v \in V$, $k' \in \{0, ..., k\}$, $l' \in \{1, ..., l\}$, $c \in \{c_1, ..., c_{\Delta}\}$, i such *that* $(i, v) \in E$, *o such that* $(v, o) \in E$ *or* $o = nil$ *. Given a* subgraph $T = (V_T, E_T)$ *of* G*, we say that*

- *1. T is a* (v, k', l', c, i, o, F) *-tree if*
- (a) T *is an out-tree rooted at* v *with exactly* k' *internal nodes and* l' *leaves. (b)* Every out-neighbor of v in T belongs to $N(v, i, o)$.
- 2. *T* is a (v, k', l', c, i, o, T) *-tree if*
	- *(a)* $col(v) = c, v \neq r, and |N(v, i, nil)| = \Delta 1.$
	- *(b)* Every node in $N(v, i, o)$ is an out-neighbor of v in T, and $N(v, i, o) \neq \emptyset$.
	- (c) There is at most one node $i' \in V_T$ such that $(i', v) \in E_T$.
		- *i.* If such an i' exists: $(v, i') \notin E_T$, and $T' = (V_T, E_T \setminus \{(i', v)\})$ is an *out-tree rooted at* v*.*
			- *ii.* Else: T is a (v, k', l', c, i, o, F) -tree.

Definition 2. *Given a* (v, k', l', c, i, o, b) *-tree* $T = (V_T, E_T)$ *, define* $I(T) =$

 ${u \in V_T : [u \neq v \wedge (col(u) \neq c \vee u \text{ has less than } (\Delta - 1) \text{ out - neighbors in } T]}$

 $\vee [u = v \wedge (b = F \vee v \text{ has an in } - \text{neighbor in } T)]$.

Fig. 1. Assume that $r = v_1 < v_2 < v_3 < v_4 < v_5$, and that shapes represent colors. We have that T_1 is a $(v_2, k', l', O, v_1, nil, T)$ -tree for any k' and l' , and $I(T_1) =$ $\{v_1, v_2, v_3, v_4, v_5\}.$ Moreover, T_2 is a $(v_2, 3, 2, 0, v_1, v_3, T)$ -tree, and $I(T_2) = \{v_1, v_3, v_4\}.$

Observation 5. Let $T = (V_T, E_T)$ be a (v, k', l', c, i, o, b) -tree of G, such that *there is no* $i' \in V_T$ *for which* $(i', v) \in E_T$ *. Then,* $P_{v,k',l'}^{c,i,o,b}$ *has the (multilinear) monomial* $\prod_{w \in I(T)} x_w$.

Proof. We prove the claim by using induction on the construction. The claim is clearly true for the base cases. Next consider a (v, k', l', c, i, o, b) -tree T = (V_T, E_T) of G, such that $C_{v,k',l'}^{c,i,o,b}$ is not constructed in the base cases. Assume *Proof.* We prove the claim by using induction on the construct
is clearly true for the base cases. Next consider a (v, k', l', c, i)
 (V_T, E_T) of G, such that $C_{v, k', l'}^{c, i, o, b}$ is not constructed in the base
that the claim i b $\begin{array}{c} l' \ l \bar{c}, \ \widetilde{v}, \end{array}$ $l',c,\ \rm{bas} \ \tilde{c},\tilde{i},\tilde{o},\ \tilde{v},\tilde{k},\tilde{l}$ $\tilde{\tilde{i}}$ is constructed before $C_{v,k',l'}^{c,i,o,b}$. Denote by u the smallest out-neighbor of v in T.

Denote by $T_v = (V_v, E_v)$ and $T_u = (V_u, E_u)$ the two out-trees of G in the forest $F = (V_T, E_T \setminus \{(v, u)\})$, such that $v \in V_v$. If $u \notin I(T)$ (this is not the case if $b = T$, since then $col(u) \neq c$, then denote $b' = T$, and note that the set of out-neighbors of u in T_u contains all of the neighbors of u in G, excluding v; else denote $b' = F$. We have the following cases.

- 1. If $|V_v| = 1$: T_u is a $(u, k' 1, l'c, v, nil, b')$ -tree of G. If $b = F$, then $I(T_u) =$ $I(T) \setminus \{v\}$; else $I(T_u) = I(T_v)$. By the induction hypothesis $C_{u,k'-1,l'}^{c,v,nil,b'}$ has the monomial $\prod_{w \in I(T_u)} x_w$. Thus, by the definition of $C_{v,k',l'}^{c,i,o,b}, P_{v,k',l'}^{c,i,o,b}$ has the required monomial.
- 2. Else: Denote the number of internal nodes and leaves in T_v by k_v and l_v , respectively. Note that $1 \leq k_v \leq k'$, $1 \leq l_v < l'$, T_v is a $(v, k_v, l_v, c, i, u, b)$ tree of G, and T_u is a $(u, k' - k_v, l' - l_v, c, v, nil, b')$ -tree of G. Moreover, $I(T_v)$ and $I(T_u)$ are disjoint sets whose union is $I(T)$. By the induction hypothesis, $P_{v,k_v,l_v}^{c,i,u,b}$ has the monomial $\prod_{w \in I(T_v)} x_w$, and $P_{u,k'-k_v,l'-l_v}^{c,v,nil,b'}$ has the monomial $\prod_{w \in I(T_u)} x_w$. By the definition of $C_{v,k',l'}^{c,i,o,b}, P_{v,k',l'}^{c,i,o,b}$ has the mono- $\text{mial } \prod_{w \in I(T_v)} x_w \prod_{w \in I(T_u)} x_w = \prod_{w \in I(T)} x_w.$ \Box

Observation 6. If $P_{v,k',l'}^{c,i,o,b}$ has a (multilinear) monomial $\prod_{w\in U} x_w$, for some $U \subseteq V$, then G has a (v, k', l', c, i, o, b) -tree T such that $I(T) = U$.

Proof. We prove the claim by using induction on the construction. The claim is clearly true for the base cases. Let $\prod_{w \in U} x_w$, for some $U \subseteq V$, be a monomial of $P_{v,k',l'}^{c,i,o,b}$, such that $C_{v,k',l'}^{c,i,o,b}$ is not constructed in the base cases. Assume that *Proof.* We prove the claim by clearly true for the base cases.

of $P_{v,k',l'}^{c,i,o,b}$, such that $C_{v,k',l'}^{c,i,o,b}$ is

the claim is true for all $C_{\tilde{\alpha}, \tilde{\mu}, \tilde{\delta}}^{\tilde{\alpha}, \tilde{\delta}, \tilde{\delta}}$ b $\begin{bmatrix} \begin{smallmatrix} c \ c \end{smallmatrix} \end{bmatrix}$, $\begin{bmatrix} \begin{smallmatrix} c \ c \end{smallmatrix} \end{bmatrix}$, $\begin{bmatrix} \begin{smallmatrix} \widetilde{c} \ \widetilde{v} \end{smallmatrix} \end{bmatrix}$ $\begin{array}{c} \text{cas} \ o,b \ \prime,l' \ \widetilde{c},\widetilde{i} \ \widetilde{v},\widetilde{k} \end{array}$ ses. Let $\prod_{w \in U} x_w$, for some $U \subseteq V$, \mathfrak{h}^b , is not constructed in the base cases $\tilde{i}_{\lambda} \tilde{o}_{\lambda} \tilde{o}$ that is constructed before $C_{v,k',l'}^{c,i,o,b}$.

First suppose that $b = F$. By the definition of $C_{v,k',l'}^{c,i,o,b}$, there are $u \in N(v,i,o)$ and $b' \in \{F, T\}$ such that one of the next conditions is fulfilled.

- 1. $C_{u,k'-1,l'}^{c,v,nil,b'}$ has the monomial $\prod_{w\in U\setminus\{v\}} x_w$. By the induction hypothesis, G has a $(u, k' - 1, l', c, v, nil, b')$ -tree $T_u = (V_u, E_u)$, such that $I(T_u) = U \setminus \{v\}$. Suppose that there is $i' \in V_u$ such that $(i', u) \in E_u$. In this case $b' = T$; thus $v \notin V_u$ and the set of out-neighbors of u in T_u contains all the neighbors of u in G, excluding v. We get that i' is an out-neighbor of u in T_u , which a contradiction. Thus, by adding v and (v, u) to T_u , we get a (v, k', l', c, i, o, b) tree T such that $I(T) = U$ (since $I(T) = I(T_u) \cup \{v\}$).
- 2. There are $k^* \in \{1, ..., k'\}, l^* \in \{1, ..., l' 1\}$ and $U^* \subseteq U$, such that $P_{v,k^*,l^*}^{c,i,u,b}$ has the monomial $\prod_{w\in U^*} x_w$, and $P_{u,k'-k^*,l'-l^*}^{c,v,nil,b'}$ has the monomial $\prod_{w\in U\setminus U^*} x_w$. By the induction hypothesis, G has a (v,k^*,l^*,c,i,u,b) -tree $\prod_{w\in U\setminus U^*} x_w$. By the induction hypothesis, G has a $(v, k^*, l^*, c, i, u, b)$ -tree $T_v = (V_v, E_v)$ such that $I(T_v) = U^*$, and a $(u, k' - k^*, l' - l^*, c, v, nil, b')$ -tree $T_u = (V_u, E_u)$ such that $I(T_u) = U \setminus U^*$. Consider the following cases.
	- (a) If $v \in V_u$: $v \notin I(T_u)$ (since $v \in I(T_v)$). Thus $col(v) = c$ and v has $\Delta - 1$ out-neighbors in T_u . Note that v is not an out-neighbor of u in T_u , and thus u is an out-neighbor of v in T_u . Therefore $b' = T$, and thus $col(u) = c$, which is a contradiction (since *col* is a proper coloring).
- (b[\)](#page-10-0) If there is $w \in (V_v \cap V_u) \setminus \{v, u\} \neq \emptyset$: Since $I(T_v) \cap I(T_u) = \emptyset$, we get that $col(w) = c$ and (w has Δ neighbors in T_v or T_u). Thus there is w' th[a](#page-9-0)t is a neighbor of w in both T_v and T_u , such that $col(w') \neq c$. We get that $w' \in I(T_v) \cap I(T_u) = \emptyset$, which is a contradiction.
- (c) If $u \in V_v$: u is not an out-neighbor of v in T_v . Therefore u has less than $\Delta - 1$ out-neighbors in T_v , and thus $u \in I(T_v)$. We get that $u \notin I(T_u)$, which implies that the set of out-neighbors of u in T_u contains all the neighbors of u in G , excluding v . Thus u has a neighbor, which is not v , in both T_v and T_u , and we have a contradiction according to Case 2b.

We get that $V_v \cap V_u = \emptyset$. If there is $i' \in V_u$ such that $(i', u) \in E_u$, then we get a contradiction in the same manner as in Case 1. We get that $T =$ $(V_v \cup V_u, E_v \cup E_u \cup \{(v, u)\})$ is an out-tree of G. It is straightforward to verify that T is a (v, k', l', c, i, o, b) -tree of G such that $I(T) = I(T_v) \cup I(T_u)$ (and thus $I(T) = U$.

Now suppose that $b = T$. Denote by u the smallest node in $N(v, i, o)$. By the definition of $C^{c,i,o,b}_{v,k',l'}$, one of the next conditions is fulfilled.

- 1. If $N(v, i, o) = \{u\}$: $P_{u, k'-1, l'}^{c, v, nil, F}$ has the monomial $\prod_{w \in U} x_w$. By the induction hypothesis, G has a $(u, k' - 1, l', c, v, nil, F)$ -tree T_u such that $I(T_u) = U$. Since v is not an out-neighbor of u in T_u , by adding v and (v, u) to T_v , we get a (v, k', l', c, i, o, b) (v, k', l', c, i, o, b) (v, k', l', c, i, o, b) -tree T of G (which may not be an out-tree), such that $I(T) = I(T_u) = U.$
- 2. Else: There are $k^* \in \{1, ..., k'\}, l^* \in \{1, ..., l' - 1\}$ and $U^* \subseteq U$, such that $P_{v,k^*,l^*}^{c,i,u,b}$ has the monomial $\prod_{w \in U^*} x_w$, and $P_{u,k'-k^*,l'-l^*}^{c,v,nil,F}$ has the monomial $\prod_{w \in U\setminus U^*} x_w$. By the induction hypothesis, G has a (v,k^*,l^*,c,i,u,b) -tree $T_v = (V_v, E_v)$ such that $I(T_v) = U^*$, and a $(u, k' - k^*, l' - l^*, c, v, nil, F)$ -tree $T_u = (V_u, E_u)$ such that $I(T_u) = U \setminus U^*$. Consider the following cases.
	- (a) If there is $w \in (V_v \cap V_u) \setminus \{v, u\} \neq \emptyset$: We get a contradiction in the same manner as in the previous Case 2b.
	- (b) If $u \in V_v$: Since $col(u) \neq c$, we get that $u \in I(T_v) \cup I(T_u) = \emptyset$, which is a contradiction.

We get that $V_v \cap V_u \setminus \{v\} = \emptyset$. Denote $T = (V_T = (V_v \cup V_u), E_T = (E_v \cup$ $E_u \cup \{(v, u)\})$. Suppose, by way of contradiction, that there are two nodes $i_1, i_2 \in V_T$ such that $(i_1, v), (i_2, v) \in E_T$. Since T_v is a $(v, k^*, l^*, c, i, u, b)$ -tree and T_u is an out-tree, we can assume WLOG that $i_1 \in V_v$ and $i_2 \in V_u$. We get that $v \in I(T_v)$, and thus $v \notin I(T_u)$. Therefore v has $\Delta - 1$ out-neighbors in T_u ; but since T_u is an out-tree rooted at u, and v is not an out-neighbor of u in T_u , we have a contradiction. [Thu](#page-5-1)s we get that T is a (v, k', l', c, i, o, b) tree of G such that $I(T) = I(T_v) \cup I(T_u)$ (and thus $I(T) = U$).

Observation 7. *If* (G, r, k, l) *has a solution, then* P *has a multilinear monomial of degree at most* t*.*

Proof. Let $T = (V_T, E_T)$ be a solution. Denote $n(T, c) = \{v \in V_T : col(v) =$ c, v has Δ neighbors in T}, and $c^* = \text{argmax}_{c \in \{c_1, ..., c_{\Delta}\}} \{|n(T, c)|\}$. By Observation 4 and the pseudocode of Δ -IOB-Alg[A] (see Section 3.1), we get that

1.
$$
2 + \sum_{3 \leq i \leq \Delta} (i - 2)n_i^T = n_1^T
$$
.
\n2. $\sum_{1 \leq i \leq \Delta} n_i^T = k + l$.
\n3. $n_1^T - 1 \leq l \leq k - \frac{k-2}{\Delta - 1}$.
\n4. $|n(T, c^*)| \geq n_{\Delta}^T/\Delta$.

These conditions imply that $k+l-|n(T, c^*)| \leq (2-\frac{\Delta+1}{\Delta(\Delta-1)})k+7$. Since T is an $(r, k, l, c^*, r', nil, F)$ -tree, the definition of C and Observation 5 imply that P has the (multilinear) monomial $\prod_{w \in I(T)} x_w$. Note that $|I(T)| \leq k + l - |n(T, c^*)| + 1$, and thus we get the observation. \square

Since Observation 6 implies that if P has a multilinear monomial, then (G, r, k, l) has a solution, and by Observation 7, we get the following lemma.

L[em](#page-12-11)ma 4. (G, r, k, l) *has a solution iff* (C, X, t) *has a solution.*

The definition of (C, X, t) immedia[tel](#page-11-2)y implies the following observation.

Observation 8. *We can compute* (C, X, t) *in polynomial time and space.*

3.3 The Algorithm *^Δ*-IOB-Alg[*Δ*-Tree-Alg]

Skulrattanakulchai [16] gave a linear-time algorithm that computes a proper Δ color[ing](#page-12-11) of an undirected connected graph of bounded degree Δ , which is not an odd cycle or a clique. In Δ -Tree-Alg (see Algorithm 4), we assume that the underlying undirected graph of G is connected, and that it is not a cycle or a clique, since these cases are handled in the preprocessing steps of Δ -IOB-Alg[A].

Algorithm 4. Δ -Tree-Alg (G, r, k, l)

- 1: Use the algorithm in [16] to get a proper Δ -coloring col of the underlying undirected graph of G.
- 2: Compute $f(G, r, k, l, col) = (C, X, t).$

3: Accept iff MLD- $\mathsf{Alg}(C, X, t)$ accepts.

By Lemmas 3 and 4, and Observation 8, we have the following theorem.

Theorem 2. Δ-IOB-Alg[Δ -Tree-Alg] *is an* $O^*(2^{(2-\frac{\Delta+1}{\Delta(\Delta-1)})k})$ *time and polyno-*
mial space randomized algorithm for k-IOB *mial space randomized algorithm for* k*-IOB.*

4 Open Questions

In this paper we have presented an $O[*](4^k)$ time algorithm for k-IOB, which improves the previous best known O^* running time for k-IOB. However, our algorithm is randomized, while the algorithm that has the previous best known O^* running time is deterministic. Can we obtain an $O^*(4^k)$ time deterministic algorithm for k-IOB? Moreover, can we further reduce the $O^*(4^k)$ and $O*(2^{(2-\frac{\Delta+1}{\Delta(\Delta-1)})k})$ running times for k-IOB presented in this paper?

References

- 1. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem. J. Comput. Syst. Sci. 76(7), 650–662 (2010)
- 2. Demers, A., Downing, A.: Minimum leaf spanning tree. US Patent no. 6,105,018 (August 2013)
- 3. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal spanning tree. J. Comput. Syst. Sci. 79(1), 1–6 (2013)
- 4. Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)
- 5. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proc. STOC, pp. 47–63 (1974)
- 6. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related problems. Theor. Comput. Sci. 410(45), 4571–4579 (2009)
- 7. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)
- 8. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)
- 9. Nederlof, J.: Fast polynomial-space algorithms using mobius inversion: improving on steiner tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 713–725. Springer, Heidelberg (2009)
- 10. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press (2006)
- 11. Ozeki, K., Yamashita, T.: Spanning trees: A survey. Graphs and Combinatorics 27(1), 1–26 (2011)
- 12. Prieto, E., Sloper, C.: Reducing to independent set structure the case of k -internal spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)
- 13. R´edei, L.: Ein kombinatorischer satz. Acta Litteraria Szeged 7, 39–43 (1934)
- 14. Raible, D., Fernau, H., Gaspers, D., Liedloff, M.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)
- 15. Salamon, G.: A survey on algorithms for the maximum internal spanning tree and related problems. Electronic Notes in Discrete Mathematics 36, 1209–1216 (2010)
- 16. Skulrattanakulchai, S.: Delta-list vertex coloring in linear time. Inf. Process. Lett. 98(3), 101–106 (2006)
- 17. Williams, R.: Finding paths of length k in $O^*(2^k)$ time. Inf. Process. Lett. 109(6), 315–318 (2009)