
On Sparsification for Computing Treewidth�

Bart M.P. Jansen

University of Bergen, Norway
bart.jansen@ii.uib.no

Abstract. We investigate whether an n-vertex instance (G, k) of Tree-
width, asking whether the graph G has treewidth at most k, can effi-
ciently be made sparse without changing its answer. By giving a special
form of or-cross-composition, we prove that this is unlikely: if there
is an ε > 0 and a polynomial-time algorithm that reduces n-vertex
Treewidth instances to equivalent instances, of an arbitrary problem,
with O(n2−ε) bits, then NP ⊆ coNP/poly and the polynomial hierarchy
collapses to its third level.

Our sparsification lower bound has implications for structural pa-
rameterizations of Treewidth: parameterizations by measures that do
not exceed the vertex count, cannot have kernels with O(k2−ε) bits
for any ε > 0, unless NP ⊆ coNP/poly. Motivated by the question of
determining the optimal kernel size for Treewidth parameterized by
vertex cover, we improve the O(k3)-vertex kernel from Bodlaender et
al. (STACS 2011) to a kernel with O(k2) vertices. Our improved kernel is
based on a novel form of treewidth-invariant set. We use the q-expansion
lemma of Fomin et al. (STACS 2011) to find such sets efficiently in graphs
whose vertex count is superquadratic in their vertex cover number.

1 Introduction

The task of preprocessing inputs to computational problems to make them less
dense, called sparsification, has been studied intensively due to its theoretical and
practical importance. Sparsification, and more generally, preprocessing, is a vital
step in speeding up resource-demanding computations in practical settings. In
the context of theoretical analysis, the sparsification lemma due to Impagliazzo
et al. [21] has proven to be an important asset for studying subexponential-
time algorithms. The work of Dell and van Melkebeek [15] on sparsification for
Satisfiability has led to important advances in the area of kernelization lower
bounds. They proved that for all ε > 0 and q ≥ 3, assuming NP �⊆ coNP/poly,
there is no polynomial-time algorithm that maps an instance of q-CNF-SAT
on n variables to an equivalent instance on O(nq−ε) bits — not even if it is an
instance of a different problem.

This paper deals with sparsification for the task of building minimum-width
tree decompositions of graphs, or, in the setting of decision problems, of de-
termining whether the treewidth of a graph G is bounded by a given integer k.

� This work was supported by ERC Starting Grant 306992 “Parameterized Approxi-
mation”.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 216–229, 2013.
c© Springer International Publishing Switzerland 2013

On Sparsification for Computing Treewidth 217

Preprocessing procedures forTreewidth have been studied in applied [10,11,26]
and theoretical settings [3,7]. A team including the current author obtained [7]
a polynomial-time algorithm that takes an instance (G, k) of Treewidth, and
produces in polynomial time a graph G′ such that tw(G) ≤ k if and only
if tw(G′) ≤ k, with the guarantee that |V (G′)| ∈ O(vc3) (vc denotes the size
of a smallest vertex cover of the input graph). A similar algorithm was given that
reduces the vertex count of G′ to O(fvs4), where fvs is the size of a smallest
feedback vertex set in G. Hence polynomial-time data reduction can compress
Treewidth instances to a number of vertices polynomial in their vertex cover
(respectively feedback vertex) number. On the other hand, the natural parame-
terization of Treewidth is trivially and-compositional, and therefore does not
admit a polynomial kernel unless NP ⊆ coNP/poly [3,17]. These results give an
indication of how far the vertex count of a Treewidth instance can efficiently
be reduced in terms of various measures of its complexity. However, they do not
tell us anything about the question of sparsification: can we efficiently make a
Treewidth instance less dense, without changing its answer?

Our Results. Our first goal in this paper is to determine whether nontrivial
sparsification is possible for Treewidth instances. As a simple graph G on n
vertices can be encoded in n2 bits through its adjacency matrix, Treewidth
instances consisting of a graph G and integer k in the range [1 . . . n] can be
encoded in O(n2) bits. We prove that it is unlikely that this trivial sparsification
scheme for Treewidth can be improved significantly: if there is a polynomial-
time algorithm that reduces Treewidth instances on n vertices to equivalent
instances of an arbitrary problem, with O(n2−ε) bits, for some ε > 0, then NP ⊆
coNP/poly and the polynomial hierarchy collapses [27]. We prove this result
by giving a particularly efficient form of or-cross-composition [9]. We embed
the or of t n-vertex instances of an NP-complete graph problem into a Tree-
width instance with O(n

√
t) vertices. The construction is a combination of

three ingredients. We carefully inspect the properties of Arnborg et al.’s [1] NP-
completeness proof for Treewidth to obtain an NP-complete source problem
called Cobipartite Graph Elimination that is amenable to composition. Its
instances have a restricted form that ensures that good solutions to the composed
Treewidth instance cannot be obtained by combining partial solutions to two
different inputs. Then, like Dell and Marx [14], we use the layout of a 2 × √

t
table to embed t instances into a graph on O(nO(1)

√
t) vertices. For each way

of choosing a cell in the top and bottom row, we embed one instance into the
edge set induced by the vertices representing the two cells. Finally, we use ideas
employed by Bodlaender et al. [8] in the superpolynomial lower bound for Tree-
width parameterized by the vertex-deletion distance to a clique: we compose
the input instances of Cobipartite Graph Elimination into a cobipartite
graph to let the resulting Treewidth instance express a logical or, rather than
an and. Our proof combines these three ingredients with an intricate analysis of
the behavior of elimination orders on the constructed instance. As the treewidth
of the constructed cobipartite graph equals its pathwidth [24], the obtained
sparsification lower bound for Treewidth also applies to Pathwidth.

218 B.M.P. Jansen

Our sparsification lower bound has immediate consequences for parameter-
izations of Treewidth by graph parameters that do not exceed the vertex
count, such as the vertex cover number or the feedback vertex number. Our re-
sult shows the impossibility of obtaining kernels of bitsize O(k2−ε) for such pa-
rameterized problems, assuming NP �⊆ coNP/poly. The kernel for Treewidth
parameterized by vertex cover (Treewidth [vc]) obtained by Bodlaender et
al. [6] contains O(vc3) vertices, and therefore has bitsize Ω(vc4). Motivated by
the impossibility of obtaining kernels with O(vc2−ε) bits, and with the aim of
developing new reduction rules that are useful in practice, we further investi-
gate kernelization for Treewidth [vc]. We give an improved kernel based on
treewidth-invariant sets : independent sets of vertices whose elimination from the
graph has a predictable effect on its treewidth. While finding such sets seems
to be hard in general, we show that the q-expansion lemma, previously em-
ployed by Thomassé [25] and Fomin et al. [19], can be used to find them when
the graph is large with respect to its vertex cover number. The resulting kernel
shrinks Treewidth instances to O(vc2) vertices, allowing them to be encoded
in O(vc3) bits. Thus we reduce the gap between the upper and lower bounds
on kernel sizes for Treewidth [vc]. Our new reduction rule for Treewidth
[vc] relates to the old rules like the crown-rule for k-Vertex Cover relates to
the high-degree Buss-rule [12]: by exploiting local optimality considerations, our
reduction rule does not need to know the value of k.

Related Work. While there is an abundance of superpolynomial kernel lower
bounds, few superlinear lower bounds are known for problems admitting poly-
nomial kernels. There are results for hitting set problems [15], packing prob-
lems [14,20], and for domination problems on degenerate graphs [13].

2 Preliminaries

Parameterized Complexity and Kernels. A parameterized problem Q is a
subset of Σ∗×N. The second component of a tuple (x, k) ∈ Σ∗×N is called the
parameter [16,18]. The set {1, 2, . . . , n} is abbreviated as [n]. For a finite set X
and integer i we use

(
X
i

)
to denote the collection of size-i subsets of X .

Definition 1 (Generalized kernelization). Let Q,Q′ ⊆ Σ∗ × N be parame-
terized problems and let h : N → N be a computable function. A generalized ker-
nelization forQ intoQ′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗×N,
takes time polynomial in |x|+ k and outputs an instance (x′, k′) such that:

– |x′| and k′ are bounded by h(k).
– (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernelization, or in short a kernel, for Q if Q′ = Q. It is a
polynomial (generalized) kernelization if h(k) is a polynomial.

Cross-Composition. To prove our sparsification lower bound, we use a variant
of cross-composition tailored towards lower bounds on the degree of the polyno-
mial in a kernel size bound. The extension is discussed in the journal version [9]
of the extended abstract on cross-composition [6].

On Sparsification for Computing Treewidth 219

Definition 2 (Polynomial equivalence relation). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in time polynomial in |x|+ |y|.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Definition 3 (Cross-composition). Let L ⊆ Σ∗ be a language, let R be a
polynomial equivalence relation on Σ∗, let Q ⊆ Σ∗ ×N be a parameterized prob-
lem, and let f : N → N be a function. An or-cross-composition of L into Q (with
respect to R) of cost f(t) is an algorithm that, given t instances x1, x2, . . . , xt ∈
Σ∗ of L belonging to the same equivalence class of R, takes time polynomial
in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

– The parameter k is bounded by O(f(t) ·(maxi |xi|)c), where c is some
constant independent of t.

– (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

Theorem 1 ([9, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N

be a parameterized problem, and let d, ε be positive reals. If L is NP-hard under
Karp reductions, has an or-cross-composition into Q with cost f(t) = t1/d+o(1),
where t denotes the number of instances, and Q has a polynomial (generalized)
kernelization with size bound O(kd−ε), then NP ⊆ coNP/poly.

Graphs. All graphs we consider are finite, simple, and undirected. An undirected
graph G consists of a vertex set V (G) and an edge set E(G) ⊆ (

V (G)
2

)
. The

open neighborhood of a vertex v in graph G is denoted NG(v), while its closed
neighborhood is NG[v]. The open neighborhood of a set S ⊆ V (G) is NG(S) :=⋃

v∈S NG(v) \ S, while the closed neighborhood is NG[S] := NG(S) ∪ S. If S ⊆
V (G) then G[S] denotes the subgraph of G induced by S. We use G−S to denote
the graph G[V (G)\S]. A graph is cobipartite if its edge-complement is bipartite.
Equivalently, a graph G is cobipartite if its vertex set can be partitioned into
two sets X and Y , such that both G[X] and G[Y] are cliques. A matching M
in a graph G is a set of edges whose endpoints are all distinct. The endpoints of
the edges in M are saturated by the matching. For disjoint subsets A and B of a
graph G, we say that A has a perfect matching into B if there is a matching that
saturates A ∪ B such that each edge in the matching has exactly one endpoint
in each set. If {u, v} is an edge in graph G, then contracting {u, v} into u is the
operation of adding edges between u and NG(v) while removing v. A graph H
is a minor of a graph G, if H can be obtained from a subgraph of G by edge
contractions.

Treewidth and Elimination Orders.While treewidth [2] is commonly defined
in terms of tree decompositions, for our purposes it is more convenient to work
with an alternative characterization in terms of elimination orders. Eliminating
a vertex v in a graph G is the operation of removing v while completing its open

220 B.M.P. Jansen

neighborhood into a clique, i.e., adding all missing edges between neighbors of v.
An elimination order of an n-vertex graph G is a permutation π : V (G) → [n] of
its vertices. Given an elimination order π of G, we obtain a series of graphs by
consecutively eliminating π−1(1), . . . , π−1(n) from G. The cost of eliminating a
vertex v according to the order π, is the size of the closed neighborhood of v at
the moment it is eliminated. The cost of π on G, denoted cG(π), is defined as
the maximum cost over all vertices of G.

Theorem 2 ([2, Theorem 36]). The treewidth of a graph G is exactly one
less than the minimum cost of an elimination order for G.

Lemma 1 ([4, Lemma 4], cf. [23, Lemma 6.13]). Let G be a graph con-
taining a clique B ⊆ V (G), and let A := V (G) \ B. There is a minimum-cost
elimination order π∗ of G that eliminates all vertices of A before eliminating any
vertex of B.

Following the notation employed by Arnborg et al. [1] in their NP-completeness
proof, we say that a block in a graph G is a maximal set of vertices with the
same closed neighborhood. An elimination order π for G is block-contiguous
if for each block S ⊆ V (G), it eliminates the vertices of S contiguously. The
following observation implies that every graph has a block-contiguous minimum-
cost elimination order.

Observation 1. Let G be a graph containing two adjacent vertices u, v such
that NG[u] ⊆ NG[v]. Let π be an elimination order of G that eliminates v be-
fore u, and let the order π′ be obtained by updating π such that it eliminates u
just before v. Then the cost of π′ is not higher than the cost of π.

3 Sparsification Lower Bound for Treewidth

In this section we give the sparsification lower bound for Treewidth. We phrase
it in terms of a kernelization lower bound for the parameterization by the number
of vertices, formally defined as follows.

n-Treewidth
Input: An integer n, an n-vertex graph G, and an integer k.
Parameter: The number of vertices n.
Question: Is the treewidth of G at most k?

The remainder of this section is devoted to the proof of the following theorem.

Theorem 3. If n-Treewidth admits a (generalized) kernel of size O(n2−ε),
for some ε > 0, then NP ⊆ coNP/poly.

We prove the theorem by cross-composition. We therefore first define a suit-
able source problem for the composition in Section 3.1, give the construction
of the composed instance in Section 3.2, analyze its properties in Section 3.3,
and finally put it all together in Section 3.4. The proofs of statements marked
with a star (�) are deferred to the full version [22] of this work due to space
restrictions.

On Sparsification for Computing Treewidth 221

3.1 The Source Problem

The sparsification lower bound for Treewidth will be established by cross-
composing the following problem into it.

Cobipartite Graph Elimination
Input: A cobipartite graph G with partite sets A and B, and a positive

integer k, such that the following holds: |A| = |B|, |A| is even, k < |A|
2 ,

and A has a perfect matching into B.
Question: Is there an elimination order for G of cost at most |A|+ k?

The NP-completeness proof extends the completeness proof for Treewidth [1].

Lemma 2 (�). Cobipartite Graph Elimination is NP-complete.

3.2 The Construction

We start by defining an appropriate polynomial equivalence relationship R. Let
all malformed instances be equivalent under R, and let two valid instances of
Cobipartite Graph Elimination be equivalent if they agree on the sizes of
the partite sets and on the value of k. This is easily verified to be a polynomial
equivalence relation.

Now we define an algorithm that combines a sequence of equivalent inputs into
a small output instance. As a constant-size no-instance is a valid output when
the input consists of solely malformed instances, in the remainder we assume
that the inputs are well-formed. By duplicating some inputs, we may assume
that the number of input instances t is a square, i.e., t = r2 for some integer r.
An input instance can therefore be indexed by two integers in the range [r].
Accordingly, let the input consist of instances (Gi,j , Ai,j , Bi,j , ki,j) for i, j ∈ [r],
that are equivalent under R. Thus the number of vertices is the same over all
partite sets; let this be n = |Ai,j | = |Bi,j | for all i, j ∈ [r]. Similarly, let k be
the common target value for all inputs. For each partite set Ai,j and Bi,j in the
input, label the vertices arbitrarily as a1i,j , . . . , a

n
i,j (respectively b1i,j , . . . , b

n
i,j).

We construct a cobipartite graph G′ that expresses the or of all the inputs, as
follows.

1. For i ∈ [r] make a vertex set A′
i containing n vertices â1i , . . . , â

n
i .

2. For i ∈ [r] make a vertex set B′
i containing n vertices b̂1i , . . . , b̂

n
i .

3. Turn
⋃

i∈[r]A
′
i into a clique. Turn

⋃
i∈[r] B

′
i into a clique.

4. For each pair i, j with i, j ∈ [r], we embed the adjacency of Gi,j into G′ as
follows: for p, q ∈ [n] make an edge {âpi , b̂qj} if {api,j , bqi,j} ∈ E(Gi,j).

It is easy to see that at this point in the construction, graph G′ is cobipartite.
For any i, j ∈ [r] the induced subgraph G′[A′

i ∪ B′
j] is isomorphic to Gi,j by

mapping â�i to a�i,j and b̂�j to b�i,j . As Gi,j has a perfect matching between Ai,j

and Bi,j by the definition of Cobipartite Graph Elimination, this implies
that G′ has a perfect matching between A′

i and B′
j for all i, j ∈ [r]. These

properties will be maintained during the remainder of the construction.

222 B.M.P. Jansen

5. For each i ∈ [r], add the following vertices to G′:
– n checking vertices C′

i = {c1i , . . . , cni }, all adjacent to B′
i.

– n dummy vertices D′
i = {d1i , . . . , dni }, all adjacent to

⋃
j∈[r] A

′
j and to C′

i.

– n
2 blanker vertices X ′

i = {x1
i , . . . , x

n/2
i }, all adjacent to A′

i.
6. Turn

⋃
i∈[r]A

′
i∪C′

i into a clique A′. Turn
⋃

i∈[r] B
′
i∪D′

i∪X ′
i into a clique B′.

The resulting graph G′ is cobipartite with partite sets A′ and B′. Define k′ :=
3rn+ n

2 + k. Observe that |A′| = 2rn and that |B′| = 2rn + rn
2 . Graph G′ can

easily be constructed in time polynomial in the total size of the input instances.

Intuition. Let us discuss the intuition behind the construction before proceeding
to its formal analysis. To create a composition, we have to relate elimination
orders in G′ to those for input graphs Gi,j . All adjacency information of the
input graphs Gi,j is present in G′. As A′ is a clique in G′, by Lemma 1 there
is a minimum-cost elimination order for G′ that starts by eliminating all of B′.
But when eliminating vertices of some B′

j∗ from G′, they interact simultaneously
with all sets A′

i (i ∈ [r]), so the cost of those eliminations is not directly related to
the cost of elimination orders of a particular instance Gi∗,j∗ . We therefore want
to ensure that low-cost elimination orders for G′ first “blank out” the adjacency
of B′ to all but one set A′

i∗ , so that the cost of afterwards eliminating B′
j∗

tells us something about the cost of eliminating G′
i∗,j∗ . To blank out the other

adjacencies, we need earlier eliminations to make B′ adjacent to all vertices
of

⋃
i∈[r]\{i∗} A

′
i. These adjacencies will be created by eliminating the blanker

vertices. For an index i ∈ [r], vertices in X ′
i are adjacent to A′

i and all of B′.
Hence eliminating a vertex inX ′

i indeed blanks out the adjacency ofB′ toA′
i. The

weights of the various groups (simulated by duplicating vertices with identical
closed neighborhoods) have been chosen such that low-cost elimination orders
of G′ starting with B′, have to eliminate r− 1 blocks of blankers X ′

i1
, . . . , X ′

ir−1

before eliminating any other vertex of B′. This creates the desired blanking-out
effect. The checking vertices C′

i (i ∈ [r]) enforce that after eliminating r−1 blocks
of blankers, an elimination order cannot benefit by mixing vertices from two or
more sets B′

i, B
′
i′ : each set B′

i from which a vertex is eliminated, introduces new
adjacencies between B′ and C′

i. Finally, the dummy vertices are used to ensure
that after one set B′

i ∪ D′
i is completely eliminated, the cost of eliminating the

remainder is small because |B′| has decreased sufficiently.

3.3 Properties of the Constructed Instance

The following type of elimination orders of G′ will be crucial in the proof.

Definition 4. Let i∗, j∗ ∈ [r]. An elimination order π′ of G′ is (i∗, j∗)-canonical
if π′ eliminates V (G) in the following order:

1. first all blocks of blanker vertices X ′
i for i ∈ [r] \ {i∗}, one block at a time,

2. then the vertices of B′
j∗ , followed by dummies D′

j∗ , followed by blankers X ′
i∗ ,

3. alternatingly a block B′
i followed by the corresponding dummies D′

i, until all
remaining vertices of

⋃
i∈[r] B

′
i ∪D′

i have been eliminated,
4. and finishes with the vertices

⋃
i∈[r]A

′
i ∪ C′

i in arbitrary order.

On Sparsification for Computing Treewidth 223

Lemma 3 shows that the crucial part of a canonical elimination order is its
behavior on B′

j∗ .

Lemma 3 (�). Let π′ be an (i∗, j∗)-canonical elimination order for G′.

1. No vertex that is eliminated before the first vertex of B′
j∗ costs more than 3rn.

2. When a vertex of D′
j∗ ∪X ′

i∗ is eliminated, its cost does not exceed 3rn+ n
2 .

3. No vertex that is eliminated after X ′
i∗ costs more than 3rn.

The next lemma links this behavior to the cost of a related elimination order
for Gi∗,j∗ . Some terminology is needed. Consider an (i∗, j∗)-canonical elimina-
tion order π′ for G′, and an elimination order π for Gi∗,j∗ that eliminates all
vertices of Bi∗,j∗ before any vertex of Ai∗,j∗ . By numbering the vertices in Bi∗,j∗

(a partite set of Gi∗,j∗) from 1 to n, we created a one-to-one correspondence
between Bi∗,j∗ and B′

j∗ , the first set of non-blanker vertices eliminated by π′.
Hence we can compare the relative order in which vertices of Bi∗,j∗ are elimi-
nated in π and π′. If both π and π′ eliminate the vertices of Bi∗,j∗ in the same
relative order, then we say that the elimination orders agree on Bi∗,j∗ .

Lemma 4. Let π′ be an (i∗, j∗)-canonical elimination order of G′. Let π be an
elimination order for Gi∗,j∗ that eliminates all vertices of Bi∗,j∗ before any vertex
of Ai∗,j∗ . If π

′ and π agree on Bi∗,j∗ , then cG′(π′) = 3rn+ n
2 − n+ cGi∗,j∗ (π).

Proof. Consider the graph G′
B obtained from G′ by performing the elimina-

tions according to π′ until we are about to eliminate the first vertex of B′
j∗ .

By Definition 4 this means that all blocks of blankers X ′
j for j �= j∗ have been

eliminated, and no other vertices. Using the construction of G′ it is easy to
verify that these eliminations have made all remaining vertices of B′ adjacent
to

⋃
i∈[r]\{i∗} A

′
i, and that no new adjacencies have been introduced to

⋃
i∈[r]C

′
i

or to A′
i∗ . Graph G′[A′

i∗ ∪ B′
j∗] was initially isomorphic to Gi∗,j∗ by the obvi-

ous isomorphism based on the numbers assigned to the vertices. As no vertex
adjacent to A′

i∗ has been eliminated yet, this also holds for G′
B[A

′
i∗ ∪B′

j∗].
Consider what happens when eliminating the first vertex v′ of B′

j∗ according
to π′. Let v ∈ Bi∗,j∗ be the corresponding vertex in Gi∗,j∗ . By the fact that the
elimination orders agree, v is the first vertex of Bi∗,j∗ to be eliminated under π.

The set NG′
B
[v′] contains C′

j∗ ,
⋃

j �=j∗ B
′
j ∪ D′

j,
⋃

i�=i∗ A
′
i, X

′
i∗ , D

′
j∗ , and the

vertices of G′[A′
i∗ ∪ B′

j∗] that correspond exactly to NGi∗,j∗ [v] by the isomor-
phism. So the cost of eliminating v′ from G′ exceeds the cost of eliminating v
from Gi∗,j∗ by exactly |C′

j∗ | + |⋃j �=j∗ B
′
j ∪ D′

j | + |⋃i�=i∗ A
′
i| + |X ′

i∗ | + |D′
j∗ | =

n + 2(r − 1)n + (r − 1)n + n
2 + n = 3rn + n

2 − n. Now observe that by the
isomorphism, eliminating v′ from G′ has exactly the same effect on the neigh-
borhoods of B′

j∗ into A′
i∗ , as eliminating v from Gi∗,j∗ has on the neighbor-

hoods of Bi∗,j∗ into Ai∗,j∗ . Thus after one elimination, the remaining vertices
of A′

i∗ ∪ B′
j∗ and Ai∗,j∗ ∪ Bi∗,j∗ induce subgraphs of G′ and Gi∗,j∗ that are

isomorphic. Hence we may apply the same argument to the next vertex that is
eliminated. Repeating this argument we establish that for each vertex in B′

j∗ ,
its elimination from G′ costs exactly 3rn+ n

2 − n more than the corresponding
elimination in Gi∗,j∗ .

224 B.M.P. Jansen

Now consider the cost of π on Gi∗,j∗ : it is at least n+1, as the first vertex to be
eliminated is adjacent to all ofBi∗,j∗ (the graph is cobipartite) and to at least one
vertex of Ai∗,j∗ (since the Cobipartite Graph Elimination instance Gi∗,j∗

has a perfect matching between its two partite sets). After all vertices of Bi∗,j∗

have been eliminated fromGi∗,j∗ , the remaining vertices cost at most n; there are
at most n vertices left in the graph at that point. Hence the cost of π on Gi∗,j∗

is determined by the cost of eliminating Bi∗,j∗ . For each vertex from that set
that is eliminated, π′ incurs a cost exactly 3rn+ n

2 − n higher. Hence cG′(π′) is
at least (3rn + n

2 − n) + (n + 1) = 3rn + n
2 + 1. By Lemma 3 the cost that π′

incurs before eliminating the first vertex of B′
j∗ is at most 3rn, the cost of

eliminating D′
j∗ ∪X ′

i∗ is at most 3rn+ n
2 , and the cost incurred after eliminating

the last vertex of B′
j∗ is at most 3rn. Hence the cost of π′ is determined by the

cost of eliminating the vertices of B′
j∗ . As this is exactly 3rn+ n

2 −n more than
the cost of π on Gi∗,j∗ , this proves the lemma.
�

The last technical step of the proof is to show that if G′ has an elimination
order of cost at most k′, then it has such an order that is canonical.

Lemma 5 (�). If G′ has an elimination order of cost at most k′, then there
are indices i∗, j∗ ∈ [r] such that G′ has an (i∗, j∗)-canonical elimination order
of cost at most k′.

3.4 Proof of Theorem 3

Having analyzed the relationship between elimination orders for G′ and for the
input graphs Gi,j (i, j ∈ [r]), we can complete the proof. By combining the
previous lemmata it is easy to show that G′ acts as the logical or of the inputs.

Lemma 6 (�). G′ has an elimination order of cost ≤ k′ ⇔ there are i, j ∈ [r]
such that Gi,j has an elimination order of cost ≤ n+ k.

Lemma 7. There is an or-cross-composition of Cobipartite Graph Elimi-
nation into n-Treewidth of cost

√
t.

Proof. In Section 3.2 we gave a polynomial-time algorithm that, given instances
(Gi,j , Ai,j , Bi,j , ki,j) of Cobipartite Graph Elimination that are equivalent
under R for i, j ∈ [r], constructs a cobipartite graph G′ with partite sets A′

and B′, and an integer k′. By Lemma 6 the resulting graph G′ has an elimination
order of cost k′ if and only if there is a yes-instance among the inputs. By the
correspondence between treewidth and bounded-cost elimination orders of Theo-
rem 2, this shows that G′ has treewidth at most k′−1 if and only if there is a yes-
instance among the inputs. The polynomial equivalence relationship ensured that
all partite sets of all inputs have the same number of vertices. For partite sets of
size n, the constructed graph G′ satisfies |A′| = 2rn and |B′| = 5rn

2 . The number
of vertices in G′ is n′ = 9rn

2 . Consider the n-Treewidth instance (G′, n′, k′−1).
It expresses the logical or of a series of r2 = t Cobipartite Graph Elimi-

nation instances using a parameter value of 9n
√
t

2 ∈ O(n
√
t). Hence the algo-

rithm gives an or-cross-composition of Cobipartite Graph Elimination into
n-Treewidth of cost

√
t.
�

On Sparsification for Computing Treewidth 225

Theorem 3 follows from the combination of Lemma 7, Lemma 2, and Theorem 1.
Since the pathwidth of a cobipartite graph equals its treewidth [24] and the graph
formed by the cross-composition is cobipartite, the same construction gives an
or-cross-composition of bounded cost into n-Pathwidth.

Corollary 1. If n-Pathwidth admits a (generalized) kernel of size O(n2−ε),
for some ε > 0, then NP ⊆ coNP/poly.

4 Quadratic-Vertex Kernel for Treewidth [VC]

In this section we present an improved kernel for Treewidth [vc], which is
formally defined as follows.

Treewidth [vc]
Input: A graph G, a vertex cover X ⊆ V (G), and an integer k.
Parameter: |X |.
Question: Is the treewidth of G at most k?

Our kernelization revolves around the following notion.

Definition 5. Let G be a graph, let T be an independent set in G, and let ĜT

be the graph obtained from G by eliminating T ; the order is irrelevant as T is
independent. Then T is a treewidth-invariant set if for every v ∈ T , the graph ĜT

is a minor of G− {v}.
Lemma 8. If T is a treewidth-invariant set in G and Δ := maxv∈T degG(v),
then tw(G) = max(Δ,tw(ĜT)).

Proof. We prove that tw(G) is at least, and at most, the claimed amount.
(≥). As ĜT is a minor of G, we have tw(G) ≥ tw(ĜT) (cf. [2]). If tw(ĜT) ≥

Δ then this implies the inequality. So assume that Δ > tw(ĜT). Let v ∈ T have
degree Δ. By assumption, ĜT is a minor of G − {v}. It contains all vertices
of NG(v) since T is an independent set. As NG(v) is a clique in ĜT , there is a
series of minor operations in G−{v} that turns NG(v) into a clique. Performing
these operations on G rather than G−{v} results in a clique on vertex set NG[v]
of size degG(v)+1 = Δ+1: the set NG(v) is turned into a clique, and v remains
unchanged. Hence G has a clique with Δ+1 vertices as a minor, which is known
to imply (cf. [2]) that its treewidth is at least Δ.

(≤). Consider an optimal elimination order π̂ for ĜT , which costs tw(ĜT)+1
by Theorem 2. Form an elimination order π for G by first eliminating all vertices
in T in arbitrary order, followed by the remaining vertices in the order dictated
by π̂. Consider what happens when eliminating the graph G in the order given
by π. Each vertex v ∈ T that is eliminated incurs cost degG(v)+1 ≤ Δ+1: as T
is an independent set, eliminations before v do not affect v’s neighborhood. Once
all vertices of T have been eliminated, the resulting graph is identical to ĜT , by
definition. As π matches π̂ on the vertices of V (G)\T , and π̂ has cost tw(ĜT)+1,
the total cost of elimination order π on G is max(Δ + 1,tw(ĜT) + 1). By
Theorem 2 this completes this direction of the proof.
�

226 B.M.P. Jansen

Lemma 8 shows that when a treewidth-invariant set is eliminated from a
graph, its treewidth changes in a controlled manner. To exploit this insight in a
kernelization algorithm, we have to find treewidth-invariant sets in polynomial
time. While it seems difficult to detect such sets in all circumstances, we show
that the q-expansion lemma can be used to find a treewidth-invariant set when
the size of the graph is large compared to its vertex cover number. The following
auxiliary graph is needed for this procedure.

Definition 6. Given a graph G with a vertex cover X ⊆ V (G), we define
the bipartite non-edge connection graph HG,X . Its partite sets are V (G) \ X

and
(
X
2

) \E(G), with an edge between a vertex v ∈ V (G) \X and a vertex x{p,q}
representing {p, q} ∈ (

X
2

) \ E(G) if v ∈ NG(p) ∩NG(q).

For disjoint vertex subsets S and T in a graph G, we say that S is saturated
by q-stars into T if we can assign to every v ∈ S a subset f(v) ⊆ NG(v) ∩ T of
size q, such that for any pair of distinct vertices u, v ∈ S we have f(u)∩f(v) = ∅.
Observe that an empty set can trivially be saturated by q-stars.

Lemma 9 (�). Let (G,X, k) be an instance of Treewidth [vc]. If HG,X

contains a set T ⊆ V (G) \ X such that S := NHG,X (T) can be saturated by
2-stars into T , then T is a treewidth-invariant set.

q-Expansion Lemma ([19, Lemma 12]). Let q be a positive integer, and
let m be the size of a maximum matching in a bipartite graph H with partite
sets A and B. If |B| > m · q and there are no isolated vertices in B, then there
exist nonempty vertex sets S ⊆ A and T ⊆ B such that S is saturated by q-stars
into T and S = NH(T). Furthermore, S and T can be found in time polynomial
in the size of H by a reduction to bipartite matching.

Theorem 4. Treewidth [vc] has a kernel with O(|X |2) vertices that can be
encoded in O(|X |3) bits.
Proof. Given an instance (G,X, k) of Treewidth [vc], the algorithm con-
structs the non-edge connection graph HG,X with partite sets A =

(
X
2

) \ E(G)
and B = V (G) \X . We attempt to find a treewidth-invariant set T ⊆ B. If B
has an isolated vertex v, then by definition of HG,X the set NG(v) is a clique
implying that {v} is treewidth-invariant. If B has no isolated vertices, we apply
the q-expansion lemma with q := 2 to attempt to find a set S ⊆ A and T ⊆ B
such that S is saturated by 2-stars into T and S = NHG,X (T). Hence such a
set T is treewidth-invariant by Lemma 9. If we find a treewidth-invariant set T :

– If maxv∈T degG(v) ≥ k + 1 then we output a constant-size no-instance, as
Lemma 8 then ensures that tw(G) ≥ degG(v) > k.

– Otherwise we reduce to (ĜT , X, k) and restart the algorithm.

Each iteration takes polynomial time. As the vertex count decreases in each
iteration, there are at most n iterations until we fail to find a treewidth-invariant
set. When that happens, we output the resulting instance. The q-expansion

On Sparsification for Computing Treewidth 227

lemma ensures that at that point, |B| ≤ 2m, where m is the size of a maximum
matching in HG,X . As m cannot exceed the size of the partite set A, which is

bounded by
(|X|

2

)
as there cannot be more non-edges in a set of size |X |, we find

that |B| ≤ 2
(|X|

2

)
upon termination. As vertex set B of the graph HG,X directly

corresponds to V (G)\X , this implies thatG has at most |X |+2
(|X|

2

)
vertices after

exhaustive reduction. Thus the instance that we output has O(|X |2) vertices.
We can encode it in O(|X |3) bits: we store an adjacency matrix for G[X], and
for each of the O(|X |2) vertices v in V (G) \ X we store a vector of |X | bits,
indicating for each x ∈ X whether v is adjacent to it.
�

5 Conclusion

In this paper we contributed to the knowledge of sparsification for Treewidth
by establishing lower and upper bounds. Our work raises a number of questions.

We showed that Treewidth and Pathwidth instances on n vertices are
unlikely to be compressible into O(n2−ε) bits. Are there natural problems on
general graphs that do allow (generalized) kernels of size O(n2−ε)? Many prob-
lems admit O(k)-vertex kernels when restricted to planar graphs [5], which can
be encoded in O(k) bits by employing succinct representations of planar graphs.
Obtaining subquadratic-size compressions for NP-hard problems on classes of
potentially dense graphs, such as unit-disk graphs, is an interesting challenge.

In Section 4 we gave a quadratic-vertex kernel for Treewidth [vc]. While
the algorithm is presented for the decision problem, it is easily adapted to the
optimization setting (cf. [11]). The key insight for our reduction is the notion
of treewidth-invariant sets, together with the use of the q-expansion lemma to
find them when the complement of the vertex cover has superquadratic size. A
challenge for future research is to identify treewidth-invariant sets that are not
found by the q-expansion lemma; this might decrease the kernel size even further.
As the sparsification lower bound proves that Treewidth [vc] is unlikely to
admit kernels of bitsize O(|X |2−ε), while the current kernel can be encoded
in O(|X |3) bits, an obvious open problem is to close the gap between the upper
and the lower bound. Does Treewidth [vc] have a kernel with O(|X |) vertices?
If not, then is there at least a kernel with O(|X |2) rather than O(|X |3) edges?

For Pathwidth [vc], a kernel with O(|X |3) vertices is known [8]. Can this
be improved to O(|X |2) using an approach similar to the one used here? The
obvious pathwidth-analogue of Lemma 8 fails, as removing a low-degree simpli-
cial vertex may decrease the pathwidth of a graph. Finally, one may consider
whether the ideas of the present paper can improve the kernel size for Tree-
width parameterized by a feedback vertex set [7].

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebra. Discr. 8, 277–284 (1987), doi:10.1137/0608024

2. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1-2), 1–45 (1998), doi:10.1016/S0304-3975(97)00228-4

228 B.M.P. Jansen

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems
without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009),
doi:10.1016/j.jcss.2009.04.001

4. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On
exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 672–683. Springer, Heidelberg (2006)

5. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M. (Meta) Kernelization. In: Proc. 50th FOCS, pp. 629–638 (2009),
doi:10.1109/FOCS.2009.46

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new tech-
nique for kernelization lower bounds. In: Proc. 28th STACS, pp. 165–176 (2011),
doi:10.4230/LIPIcs.STACS.2011.165

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A com-
binatorial analysis through kernelization. In: Aceto, L., Henzinger, M., Sgall, J.
(eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg
(2011)

8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for structural pa-
rameterizations of pathwidth. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS,
vol. 7357, pp. 352–363. Springer, Heidelberg (2012)

9. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. CoRR, abs/1206.5941, arXiv:1206.5941 (2012)

10. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete
Math. 306(3), 337–350 (2006), doi:10.1016/j.disc.2005.12.017

11. Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F.: Preprocessing rules for
triangulation of probabilistic networks. Comput. Intell. 21(3), 286–305 (2005),
doi:10.1111/j.1467-8640.2005.00274.x

12. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3),
560–572 (1993), doi:10.1137/0222038

13. Cygan, M., Grandoni, F., Hermelin, D.: Tight kernel bounds for problems on graphs
with small degeneracy. CoRR, abs/1305.4914, arXiv:1305.4914 (2013)

14. Dell, H., Marx, D.: Kernelization of packing problems. In: Proc. 23rd SODA, pp.
68–81 (2012)

15. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: Proc. 42nd STOC, pp. 251–260 (2010),
doi:10.1145/1806689.1806725

16. Downey, R., Fellows, M.R.: Parameterized Complexity. Monographs in Computer
Science. Springer, New York (1999)

17. Drucker, A.: New limits to classical and quantum instance compression. In: Proc.
53rd FOCS, pp. 609–618 (2012), doi:10.1109/FOCS.2012.71

18. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New
York, Inc. (2006)

19. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbid-
den minors: Approximation and kernelization. In: Proc. 28th STACS, pp. 189–200
(2011), doi:10.4230/LIPIcs.STACS.2011.189

20. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial
lower bounds for kernelization. In: Proc. 23rd SODA, pp. 104–113 (2012)

21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly
exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001),
doi:10.1006/jcss.2001.1774

22. Jansen, B.M.P.: On sparsification for computing treewidth. CoRR, abs/1308.3665,
arXiv:1308.3665 (2013)

On Sparsification for Computing Treewidth 229

23. Jansen, B.M.P.: The Power of Data Reduction: Kernels for Fundamental Graph
Problems. PhD thesis, Utrecht University, The Netherlands (2013)

24. Möhring, R.H.: Triangulating graphs without asteroidal triples. Discrete Appl.
Math. 64(3), 281–287 (1996), doi:10.1016/0166-218X(95)00095-9

25. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2)
(2010), doi:10.1145/1721837.1721848

26. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for
weighted treewidth. Algorithmica 47(2), 139–158 (2007), doi:10.1007/s00453-006-
1226-x

27. Yap, C.-K.: Some consequences of non-uniform conditions on uniform classes.
Theor. Comput. Sci. 26, 287–300 (1983), doi:10.1016/0304-3975(83)90020-8

	On Sparsification for Computing Treewidth
	1 Introduction
	2 Preliminaries
	3 Sparsification Lower Bound for Treewidth
	3.1 The Source Problem
	3.2 The Construction
	3.3 Properties of the Constructed Instance
	3.4 Proof of Theorem 3

	4 Quadratic-Vertex Kernel for Treewidth [VC]
	5 Conclusion
	References

