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Preface

The International Symposium on Parameterized and Exact Computation (IPEC,
formerly IWPEC) is an international symposium series that covers research in
all aspects of parameterized and exact algorithms and complexity. Started in
2004 as a biennial workshop, it became an annual event in 2008. This volume
contains the papers presented at IPEC 2013: the 8th International Symposium
on Parameterized and Exact Computation held during September 4–6, 2013,
in Sophia Antipolis, France. The symposium was part of ALGO 2013, which
also hosted six other workshops and symposia, including the Annual European
Symposium on Algorithms (ESA 2013). The seven previous meetings of the
IPEC/IWPEC series were held in Bergen, Norway (2004), Zürich, Switzerland
(2006), Victoria, Canada (2008), Copenhagen, Denmark (2009), Chennai, India
(2010), Saarbrücken, Germany (2011), and Ljubljana, Slovenia (2012).

The IPEC 2013 invited plenary keynote talk was given by Ramamohan Pa-
turi (University of California, San Diego) on “Exact Complexity and Satisfiabil-
ity” who won, together with his coauthors Chris Calabro (Google Inc.), Russell
Impagliazzo (University of California, San Diego), Valentine Kabanets (Simon
Fraser University), and Francis Zane (Alcatel Lucent), the EATCS-IPEC Nerode
Prize 2013. The prize was delivered during the symposium. These proceedings
contain an extended abstract of this talk. We had two additional invited tuto-
rial speakers: Marek Cygan (University of Warsaw) speaking on treewidth and
Daniel Lokshtanov (University of Bergen) speaking on representative sets. We
thank the speakers for accepting our invitation.

In response to the call for papers, 58 papers were submitted. Each submis-
sion was reviewed by at least three reviewers. The reviewers were either Program
Committee members or invited external reviewers. The ProgramCommittee held
electronic meetings using the EasyChair system, went through extensive discus-
sions, and selected 29 of the submissions for presentation at the symposium and
inclusion in this LNCS volume. The numbers of submitted and accepted papers
are the highest in the history of the IPEC/IWPEC series. The Program Com-
mittee decided to award three Excellent Student Paper Awards: The winners
are Bart M.P. Jansen (Utrecht University) for “On Sparsification for Treewidth
Computations,” Lukas Mach (Warwick University) and Tomas Toufar (Charles
University) for “Amalgam Width of Matroids,” and Mateus de Oliveira Oliveira
(KTH Royal Institute of Technology) for “Subgraphs Satisfying MSO Proper-
ties on z-Topologically Orderable Digraphs.” We thank Frances Rosamond for
sponsoring the award.

We are very grateful to the Program Committee, and the external reviewers
they called on, for the hard work and expertise which they brought to the difficult
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selection process. We also wish to thank all the authors who submitted their
work for our consideration. Last but not least we would like to thank the local
organizers of ALGO, in particular to Monique Teillaud.

September 2013 Gregory Gutin
Stefan Szeider
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Exact Complexity and Satisfiability

(Invited Talk)

Russell Impagliazzo� and Ramamohan Paturi�

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0404, USA
{russell,paturi}@cs.ucsd.edu

All NP-complete problems are equivalent as far as polynomial time solv-
ability is concerned. However, their exact complexities (worst-case complex-
ity of algorithms that solve every instance correctly and exactly) differ
widely. Starting with Bellman [1], Tarjan and Trojanowski [9], Karp [5], and
Monien and Speckenmeyer [7], the design of improved exponential time al-
gorithms for NP-complete problems has been a tremendously fruitful en-
deavor, and one that has recently been accelerating both in terms of the
number of results and the increasing sophistication of algorithmic techniques.
There are a vast variety of problems where progress has been made, e.g.,
k-sat, k-Colorability, Maximum Independent Set, Hamiltonian Path,
Chromatic Number, and Circuit Sat for limited classes of circuits. The
“current champion” algorithms for these problems deploy a vast variety of al-
gorithmic techniques, e.g., back-tracking search (with its many refinements and
novel analysis techniques), divide-and-conquer, dynamic programming, random-
ized search, algebraic transforms, inclusion-exclusion, color coding, split and list,
and algebraic sieving. In many ways, this is analogous to the diversity of approx-
imation ratios and approximation algorithms known for different NP-complete
problems. In view of this diversity, it is tempting to focus on the distinctions
between problems rather than the interconnections between them. However, over
the past two decades, there has been a wave of research showing that such con-
nections do exist. Furthermore, progress on the exact complexity ofNP-complete
problems is linked to other fundamental questions in computational complexity,
such as circuit lower bounds, parameterized complexity, data structures, and the
precise complexity of problems within P. We are honored that our work helped
to catalyze this wave of research, and humbled by the extent to which later
researchers went far beyond our dreams of what might be possible.

We are severely constrained by space restrictions here, so we will not be able
to give due credit or even describe many of the significant results. We will confine
ourselves to informally defining the questions to be investigated, describing the
initial steps to answer them, and giving some open problems.

The basic issue is to understand the extent to which “exhaustive search”
can be beaten. However, for a decision problem, there might be several ways to

� This research is supported by NSF grant CCF-1213151 from the Division of Com-
puting and Communication Foundations.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 1–3, 2013.
c© Springer International Publishing Switzerland 2013



2 R. Impagliazzo and R. Paturi

associate a search problem, and hence a trivial algorithm. We decided to finesse
this issue by utilizing parameterized complexity [2], introducing a complexity
parameter in addition to the usual size parameter. If the number of bits required
to describe solutions is bounded by the complexity parameter, then we use the
label “brute-force” to describe an algorithm that is exponential in the complexity
parameter and polynomial in the size. For example, for the k-sat problem, we
will typically use the number of variables as a complexity parameter. However,
we could also consider another parameterization for the k-sat problem where
the number of clauses is the complexity parameter. In either case, the size of
the instance, in terms of bits used to represent it, will typically be significantly
larger than this parameter.

For NP-hard problems with input sizem and complexity parameter n, we call
an algorithm brute-force if it runs in time poly(m)2n. We say that algorithm
is an improvement if its running time is bounded by poly(m)2μn for some μ <
1. An exponential improvement is one where μ ∈ 1 − Ω(1), and a nontrivial
improvement is one where μ = 1− ω(logm/n). If μ = o(1), then the algorithm
is sub-exponential.

Many NP-complete problems have exponential improvements, and a few such
as chromatic number or Hamiltonian path for planar graphs have subexponential
improvements. On the other hand, for problems likeCircuit Sat, we do not even
know of any nontrivial improvements. It is not clear whether the series of improve-
ments for problems such as k-sat and k-Colorability will lead to subexponen-
tial algorithms.Forwhatproblems, canwe expect improvedalgorithms? Is progress
on various problems connected? Canwe give complexity-theoretic reasonswhy im-
provements or further improvements might not be possible for some problems?

To understand the difficulty of connecting the exact complexities, consider the
standard reduction from k-sat to k-Colorability. It maps a k-sat instance F
of sizem and n variables to a graph on O(m+n) variables and O(m+n) vertices.
Since m = O(nk), a subexponential time algorithm for k-Colorability would
not a priori let us conclude anything useful about k-sat.

In [4], progress was made to resolve this issue where it is shown subexpo-
nentital time solvability of both the problems is equivalent. The key new ideas
include the notion of subexponential time Turing reductions and the Sparsifica-
tion Lemma, which states that any k-cnf can be expressed as the subexponential
disjunction of linear (in the number of variables) size k-cnf in subexponential
time. From this lemma, we can derive a way to convert a subexponential time
algorithm for k-Colorability into a subexponential time algorithm for k-sat.
More generally, in [4], it is shown that all the SNP-complete problems (under
subexponential time Turing reductions), are equivalent as far as subexponen-
tial time complexities are concerned. SNP is a subclass of NP which includes
k-sat and k-Colorability, and is defined as the class of problems expressible
by second order existential quantifiers followed by a first order universal quanti-
fiers followed by a basic formula, introduced by Papadimitriou and Yannakakis
[8]. The result also extends to size-constrained SNP where the second order
quantified variables are restricted in size.
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The result provides evidence that k-sat (equivalently, 3-sat) may not have
subexponential time algorithms since otherwise the entire logically defined class
SNP would have subexponential time algorithms. While we are not in a position
to resolve this issue, it is interesting to explore the state of affairs assuming the
likelihood. Let sk = inf{δ|∃ 2δn algorithm for k-sat}. We define the Exponen-
tial Time Hypothesis (ETH) to be the statement: s3 > 0. We call it a hypothesis
rather than a conjecture, because we are agnostic about whether it is actually
true, but think that its truth value has interesting ramifications either way.

We understand very little about exponential time algorithms.ETHwill be use-
ful if it helps factor out the essential difficulty of dealing with exponential time al-
gorithms forNP-complete problems.More concretely, the usefulness ofETH is its
explanatory value regarding the exact complexities of variousNP-complete prob-
lems, ideally, by providing lower bounds that match the best known upper bounds.

One of the first nontrivial consequences of ETH is that the exponential com-
plexities sk of k-sat strictly increase infinitely often as k increases [3]. This result
tempts one to posit the Strong Exponential Time Hypothesis (SETH) that says
s∞ := limk→∞ sk = 1. There have been numerous lower bounds on the exact
complexities of NP-complete problems based on ETH and SETH. Lokshtanov,
Marx, and Saurabh provide a systematic summary of these in results in [6].

However, a number of questions remain regarding the explanatory power
of ETH. Assuming ETH or other well known complexity assumption, can
we obtain a positive constant lower bound on s3? Can we prove that ETH
implies SETH? Assuming SETH, can we prove a 2(n−o(n)) lower bound for
Chromatic Number?
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The Parameterized Complexity of Fixpoint Free

Elements and Bases in Permutation Groups

Vikraman Arvind

The Institute of Mathematical Sciences
Chennai 600 113, India
arvind@imsc.res.in

Abstract. In this paper we study the parameterized complexity of two
well-known permutation group problems which are NP-complete.

1. Given a permutation group G = 〈S〉 ≤ Sn and a parameter k, find
a permutation π ∈ G such that |{i ∈ [n] | π(i) �= i}| ≥ k. This
generalizes the NP-complete problem of finding a fixed-point free
permutation in G [7,14] (this is the case when k = n). We show that
this problem with parameter k is fixed-parameter tractable. In the
process, we give a simple deterministic polynomial-time algorithm
for finding a fixed point free element in a transitive permutation
group, answering an open question of Cameron [8,7].

2. A base for G is a subset B ⊆ [n] such that the subgroup of G that
fixes B pointwise is trivial. We consider the parameterized complex-
ity of checking if a given permutation group G = 〈S〉 ≤ Sn has a base
of size k, where k is the parameter for the problem. This problem
is known to be NP-complete [4]. We show that it is fixed-parameter
tractable for cyclic permutation groups and for permutation groups
of constant orbit size. For more general classes of permutation groups
we do not know whether the problem is in FPT or is W[1]-hard.

1 Introduction

Let Sn denote the group of all permutations on a set of size n. The group Sn is
also called the symmetric group of degree n. We refer to a subgroup G of Sn,
denoted by G ≤ Sn, as a permutation group (of degree n). Let S ⊆ Sn be a
subset of permutations. The permutation group generated by S, denoted by 〈S〉,
is the smallest subgroup of Sn containing S. A subset S ⊆ G of a permutation
group G is a generating set for G if G = 〈S〉. It is easy to see that every finite
group G has a generating set of size at most log2 |G|.

Let G = 〈S〉 ≤ Sn be a subgroup of the symmetric group Sn, where G is given
as input by a generating set S of permutations. Each permutation ψ ∈ S can be
described as a list of n ordered pairs 〈i, j〉 ∈ [n]× [n].

Algorithmic problems on permutation groups, where the groups are given
as input by their generating sets are well studied in the literature (e.g. see
[19,12,15,17]). Some of them have efficient algorithms, some others are NP-
complete, and yet others have a status similar to Graph Isomorphism: they

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 4–15, 2013.
c© Springer International Publishing Switzerland 2013
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are neither known to be in polynomial time and unlikely to be NP-complete
(unless the Polynomial-Time Hierarchy collapses). The reader may refer to [15]
for different examples. Efficient permutation group algorithms have played an
important role in the design of algorithms for the Graph Isomorphism problem
[1,2]. In fact, the algorithm with the best running time bound for general Graph
Isomorphism is group-theoretic [3,21].

We recall some group-theoretic definitions and notation. An excellent modern
reference on permutation groups is Cameron’s book [5]. Algorithmic permutation
group problems are well treated in [15,17]. More details can be found in these
references.

The symmetric group Sn is a group under permutation composition. We eval-
uate the composition gh of permutations g, h ∈ Sn from left to right, following
the standard convention in permutation groups. That is to say, given a point i
in the domain [n] we will apply g first and then h. The notation ig will denote
the g-image of i. This is more convenient for a left to right evaluation; notice
that igh = (ig)h. We denote the identity permutation in Sn by id.

Let π ∈ Sn be a permutation. A fixpoint of π is a point i ∈ [n] such that
iπ = i and a permutation π is fixpoint free if iπ �= i for all i ∈ [n].

Let G ≤ Sn and Δ ⊆ [n] be a subset of the domain. The subgroup of G that
is the pointwise stabilizer of Δ is GΔ = {g ∈ G | ig = i for all i ∈ Δ}.

For groups G and H , the expression H < G means that H is a subgroup of G
(not necessarily a proper subgroup). For π ∈ G the subset Hπ = {hπ : π ∈ H}
of G is a right coset of H in G. Any two right cosets of H in G are either disjoint
or identical. Thus, the right cosets of H in G form a partition of G and we can
write

G = Hπ1 ∪Hπ2 ∪ . . . ∪Hπm.

Each coset of H has exactly |H | elements and {π1, π2, . . . , πm} is a complete
set of distinct coset representatives for H in G. For each i ∈ [n], G[i] = {g ∈ G :
∀j ∈ [i], jg = j} is the pointwise stabilizer of the subset [i].

As developed by Sims [19], pointwise stabilizers are fundamental in the design
of algorithms for permutation group problems. The structure used is the tower
of stabilizers subgroups in G:

{id} = G[n−1] < G[n−2] < . . . < G[1] < G[0] = G.

The union of the right coset representative sets Ti for the groups G[i] in
G[i−1], 1 ≤ i ≤ n− 1, forms a generator set for G called a strong generating set
for G [19,20].

Theorem 1 (Schreier-Sims). [19] Let G < Sn be a permutation group input
by some generating set. There is a polynomial-time algorithm for computing a
strong generating set

⋃n−1
i=1 Ti, where Ti is the set of coset representatives for

G(i) in G(i−1), 1 ≤ i ≤ n− 1 with the following properties:

1. Each π ∈ G can be uniquely written as a product π = π1π2 . . . πn−1 with
πi ∈ Ti,

2. Membership in G of a given permutation can be tested in polynomial time.
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A subset B ⊆ [n] is called a base for G if the pointwise stabilizer subgroup
GB is trivial. Thus, if B is a base for G then each element of G is uniquely
determined by its action on B. The problem of computing a base of minimum
cardinality is known to be computationally very useful. Important algorithmic
problems on permutation groups, like membership testing, have nearly linear
time algorithms in the case of small-base groups (e.g. see [17]). We will discuss
the parameterized complexity of the minimum base problem in Section 3.

Basic definitions and results on parameterized complexity can be found in
Downey and Fellows’ classic text on the subject [9]. Another, more recent, ref-
erence is [11].

2 Fixpoint Free Elements

The starting point is the Orbit-Counting lemma. Our discussion will follow
Cameron’s book [5]. For each permutation g ∈ Sn let fix(g) denote the num-
ber of points fixed by g. More precisely,

fix(g) = |{i ∈ [n] | ig = i}|.

A permutation group G ≤ Sn induces, by its action, an equivalence relation
on the domain [n]: i and j are in the same equivalence class if ig = j for some
g ∈ G. Each equivalence class is an orbit of G. G is said to be transitive if there
is exactly one G-orbit. Let orb(G) denote the number of G-orbits in the domain
[n].

Lemma 1 (Orbit Counting Lemma). [6] Let G ≤ Sn be a permutation
group. Then

orb(G) =
1

|G|
∑
g∈G

fix(g). (1)

In other words, the number of G orbits is the average number of fixpoints over
all elements of G.

Proof. It is useful to recall a proof sketch. Define a |G| × n matrix with rows
indexed by elements of G and columns by points in [n]. The (g, i)th entry is
defined to be 1 if ig = i and 0 otherwise. Clearly, the gth row has fix(g) many 1’s
in it. Let Gi denote the subgroup of G that fixes i. The ith column clearly has
|Gi| many 1’s. Counting the number of 1’s in the rows and columns and equating
them, keeping in mind that, by the Orbit-Stabilizer lemma [5], |G|/|Gi| is the
size of the orbit containing i yields the lemma.

We now recall a theorem of Jordan on permutation groups [13]. See [18,8] for
very interesting accounts of it. A permutation group G ≤ Sn is transitive if it
has exactly one orbit.

Theorem 2 (Jordan’s theorem). If G ≤ Sn is transitive then G has a fixpoint
free element.
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The theorem follows directly from the Orbit counting lemma. Notice that the
left side of Equation 1 equals 1. The right side of the equation is the average
over all fix(g). Now, the identity element id fixes all n elements. Thus there is
at least one element g ∈ G such that fix(g) = 0. Cameron and Cohen [6] do a
more careful counting and show the following strengthening.

Theorem 3. [6] If G ≤ Sn is transitive then there are at least |G|/n elements
of G that are fixpoint free.

We discuss their proof, because we will build on it to obtain our results. If G
is transitive, the orbit counting lemma implies

|G| =
∑
g∈G

fix(g).

Take any point α ∈ [n]. We can write the above equation as

|G| =
∑
g∈Gα

fix(g) +
∑

g∈G\Gα

fix(g).

By the orbit counting lemma applied to the group Gα we have∑
g∈Gα

fix(g) = orb(Gα) · |Gα|.

Let A ⊂ G be the set of all fixpoint free elements of G. Clearly, the sum∑
g∈G\Gα

fix(g) ≥ |G\A| as A ⊆ G\Gα and each element of G\A fixes at least
one element. Combining with the previous equation we get

|A| ≥ orb(Gα) · |Gα| = orb(Gα) ·
|G|
n

≥ |G|
n
.

2.1 The Algorithmic Problem

We now turn to the problem of computing a fixpoint free element in a permuta-
tion group G ≤ Sn and a natural parameterized version.

As observed by Cameron and Wu in [7], the result of [6] gives a simple ran-
domized algorithm to find a fixpoint free element in a transitive permutation
group G ≤ Sn, where G is given by a generating set S: Using the Schreier-
Sims polynomial-time algorithm [19] we can compute a strong generating set S′

for G in polynomial time. And using S′ we can sample uniformly at random
from G. Clearly, in O(n) sampling trials we will succeed in finding a fixpoint
free element with constant probability. We will show in the next section that
this algorithm can be derandomized to obtain a deterministic polynomial time
algorithm (without using CFSG). This answers an open problem of Cameron
discussed in [7,8].

This result is to be contrasted with the fact that computing fixed point free
elements in nontransitive groups G ≤ Sn is NP-hard. The decision problem
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is shown NP-complete in [7]. This is quite similar to Lubiw’s result [14] that
checking if a graph X has a fixpoint free automorphism is NP-complete.

We will now introduce the parameterized version of the problem of computing
fixpoint free elements in permutation groups. First we introduce some terminol-
ogy. We say that a permutation π moves a point i ∈ [n] if iπ �= i.

k-MOVE Problem

INPUT: A permutation group G = 〈S〉 ≤ Sn given by generators and a number
k.

PROBLEM: Is there an element g ∈ G that moves at least k points?

For k = n notice that k-MOVE is precisely the problem of checking if there is
a fixpoint free element in G. The parameterized version of the problem is to treat
k as parameter. We will show that this problem is fixed-parameter tractable.

Let move(g) denote the number of points moved by g. We define two numbers
fix(G) and move(G):

fix(G) = |{i ∈ [n] | ig = i for all g ∈ G}|
move(G) = |{i ∈ [n] | ig �= i for some g ∈ G}|

That is to say, fix(G) is the number of points fixed by all of G and move(G)
is the number of points moved by some element of G. Clearly, for all g ∈ G,
move(g) = n − fix(g) and move(G) = n − fix(G). Furthermore, notice that
orb(G) ≤ fix(G) + move(G)/2, and we have n − orb(G) ≥ move(G)/2. Let
G = 〈S〉 ≤ Sn be an input instance for the k-MOVE problem. Substituting
n−move(g) for fix(g) in Equation 1 and rearranging terms we obtain

move(G)/2 ≤ n− orb(G) =
1

|G|
∑
g∈G

move(g) = Eg∈G[move(g)], (2)

where the expectation is computed for g picked uniformly at random from G.
We will show there is a deterministic polynomial time algorithm that on input

G = 〈S〉 ≤ Sn outputs a permutation g ∈ G such that move(g) ≥ n− orb(G) ≥
move(G)/2. Using this algorithm we will obtain an FPT algorithm for the k-
MOVE problem. We require the following useful lemma about computing the
average number of points moved by uniformly distributed elements from a coset
contained in Sn.

Lemma 2. Let Gπ ⊆ Sn be a coset of a permutation group G = 〈S〉 ≤ Sn,
where π ∈ Sn. There is a deterministic algorithm that computes Eg∈G[move(gπ)]
in time polynomial in |S| and n.

Proof. We again use a double counting argument. We define a matrix whose
rows are indexed by gπ, g ∈ G and columns by i ∈ [n]. The (gπ, i)th entry of
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this matrix is 1 if igπ �= i and 0 otherwise. Thus, the number of 1’s in the ith

column of the matrix is |G| − |{g ∈ G | igπ = i}|. Now, |{g ∈ G | igπ = i}| =
|{g ∈ G | ig = iπ

−1

, which is zero if iπ
−1

and i are in different G-orbits and is
|Gi| if they are in the same G-orbit. In polynomial time we can compute the
orbits of G from its given generating set [19,12] and check this condition. Also,
the number |G| − |{g ∈ G | igπ = i}| is computable in polynomial time since
|Gi| is computable in polynomial time. Call this number Ni. It follows that the
total number of 1’s in the matrix is

∑n
i=1Ni, which is computable in polynomial

time. Since
∑n

i=1Ni =
∑

g∈G move(gπ), it follows that 1
|G|

∑
g∈G move(gπ) =

Eg∈G[move(gπ)] can be computed exactly in polynomial time.

Theorem 4. There is a deterministic polynomial-time algorithm that takes as
input a permutation group G = 〈S〉 ≤ Sn given by generating set S and a
permutation π ∈ Sn and computes an element g ∈ G such that move(gπ) ≥
Eg∈G[move(gπ)].

Proof. By Lemma 2 we can compute in polynomial time the following quantity:

μ =
1

|G|
∑
g∈G

move(gπ) = Eg∈G[move(gπ)].

Now, we can write G as a disjoint union of cosets G =
⋃r

i=1G1gi, where G1 is
the subgroup of G that fixes 1 and gi are the coset representatives, where the
number of cosets r ≤ n. Using Schreier-Sims algorithm [19] we can compute all
coset representatives gi and a generating set for G1 from the input in polynomial
time.

Now, we can write the summation 1
|G|

∑
g∈G move(gπ) as a sum over the cosets

G1giπ of G1:

1

|G|
∑
g∈G

move(gπ) =
1

|G|

r∑
i=1

∑
g∈G1

move(ggiπ).

For 1 ≤ i ≤ r let

μi =
1

|G1|
∑
g∈G1

move(ggiπ).

Since |G|/|G1| = r, it follows that μ = 1
r

∑r
i=1 μi is an average of the μi. Let μt

denote max1≤i≤r μi. Clearly, μ ≤ μt and therefore there is some g ∈ G1gtπ such
that move(g) ≥ μt ≥ μ and we can continue the search in the coset G1gt since
we can compute all the μi in polynomial time by Lemma 2. Continuing thus for
n− 1 steps, in polynomial time we will obtain a coset Gn−1τ containing a single
element τ such that move(τ) ≥ μ. This completes the proof.

Cameron, in [7] and in the lecture notes [8], raises the question whether the
randomized algorithm, based on uniform sampling, for finding a fixpoint free
element in a transitive permutation group (given by generators) can be deran-
domized. In [7] a deterministic algorithm (based on the classification of finite
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simple groups, CFSG) is outlined. The algorithm does a detailed case analysis
based on the CFSG and is not easy to verify. Here we show that the randomized
algorithm can be easily derandomized yielding a polynomial-time algorithm. The
derandomization is essentially a simple application of the “method of conditional
probabilities” [10,16].

Corollary 1. Given a transitive permutation group G = 〈S〉 ≤ Sn by a gen-
erating set S, we can compute a fixpoint free element of G in deterministic
polynomial time.

Proof. Notice that Eg∈G[move(g)] = n− 1 to begin with. However, since G1 has
at least two orbits, we have by orbit counting lemma that Eg∈G1 [move(g)] ≤ n−2.
Hence, for some coset G1gi of G1 in G we must have Eg∈G1gi [move(ggi)] > n−1.
The polynomial-time algorithm of Theorem 4 applied toG will therefore continue
the search in cosets where the expected value is strictly more than n− 1 which
means that it will finally compute a fixpoint free element of G.

Given G = 〈S〉 ≤ Sn by its generating set S there is a trivial exponential time
algorithm for finding a fixpoint free element in G: compute a strong generating
set for G in polynomial time [19]. Then enumerate G in time |G|.nO(1) using
the strong generating set, checking for a fixpoint free element. This algorithm
could have running time n! for large G. We next describe a 2nnO(1) time algo-
rithm for finding a fixpoint free element based on inclusion-exclusion and coset
intersection.

Theorem 5. Given a permutation group G = 〈S〉 ≤ Sn and π ∈ Sn there is
a 2(n+O(

√
n lgn))nO(1) time algorithm to test if the coset Gπ has a fixpoint free

element and if so compute it.

Proof. For each subset Δ ⊆ [n], using the Schreier-Sims algorithm [19,12] we
can compute in polynomial time the pointwise stabilizer subgroup GΔ. This will
take time 2nnO(1) overall. For each i ∈ [n], let (Gπ)i denote the subcoset of Gπ
that fixes i. Indeed,

(Gπ)i = {gπ | g ∈ G, igπ = i} = Giτiπ,

if there is a τi ∈ G such that iτi = iπ
−1

and (Gπ)i = ∅ otherwise.
Clearly, Gπ has a fixpoint free element if and only if the union

⋃n
i=1(Gπ)i is a

proper subset of Gπ. Hence we need to check if |
⋃n

i=1(Gπ)i| < |Gπ| = |G|. Now,
|
⋃n

i=1(Gπ)i| can be computed in 2(n+O(
√
n lg n))nO(1) time using the inclusion

exclusion principle: there are 2n terms in the inclusion-exclusion formula. Each
term is the cardinality of a coset intersection of the form

⋂
i∈I(Gπ)i, for some

subset of indices I ⊆ [n], which can be computed in nO(
√
n) time [2]. Hence,

we can decide in 2(n+O(
√
n lgn))nO(1) time whether or not Gπ has a fixpoint

free element. Notice that this fixpoint free element must be in one of the n− 1
subcosets of Gπ that maps 1 to j for j ∈ {2, 3, . . . , n}. The subcoset of Gπ
mapping 1 to j can be computed in polynomial time [19]. Then we can apply
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the inclusion-exclusion principle to each of these subcosets, as explained above,
to check if it contains a fixpoint free element and continue the search in such a
subcoset. Proceeding thus for n− 1 steps we will obtain a fixpoint free element
in Gπ, if it exists, in 2(n+O(

√
n lgn))nO(1) time.

We now prove the main result of this section.

Theorem 6. There is a deterministic 3(2k+O(
√
k lg k))kO(1) + (n|S|)O(1) time

algorithm for the k-MOVE problem and hence the problem is fixed-parameter
tractable. Furthermore, if G = 〈S〉 ≤ Sn is a “yes” instance the algorithm com-
putes a g ∈ G such that move(g) ≥ k.

Proof. Let G = 〈S〉 ≤ Sn be an input instance of k-MOVE with parameter k.
By Equation 2 we know that Eg∈G[move(g)] ≥ move(G)/2. We first compute
move(G) in (n|S|)O(1) time by computing the orbits of G. If move(G) ≥ 2k
then the input is a “yes” instance to the problem and we can apply Theo-
rem 4 to compute a g ∈ G such that move(g) ≥ k in (n|S|)O(1) time. Oth-
erwise, move(G) ≤ 2k. In that case, the group G is effectively a permutation
group on a set Ω ⊆ [n] of size at most 2k. For each subset Δ ⊆ Ω of size at
most k, we compute the pointwise stabilizer subgroup GΔ of G in polynomial
time [19]. Note that effectively the permutations of GΔ have support only in
Ω \ Δ. Now, if the input is a “yes” instance of k-MOVE, some GΔ will con-
tain an element that is fixpoint free in Ω \ Δ. We can apply the algorithm

of Theorem 5 to compute this element in time 2(|Ω\Δ|+O(
√
k lg k))kO(1). Since

1 ≤ |Δ| = d ≤ k, the overall running time of these steps can be bounded by

2O(
√
k lg k)kO(1)

∑
1≤d≤k

(
2k
d

)
22k−d ≤ 32k2O(

√
k lg k))kO(1).

Remark 1. We note from the first few lines in the proof of Theorem 6 that the
application of Theorem 4 is actually a polynomial time reduction from the given
k-MOVE instance to an instance for which move(G) ≤ 2k. Given G = 〈S〉 ≤ Sn

such that move(G) ≤ 2k, note that G is effectively a subgroup of S2k. We can
apply the Schreier-Sims algorithm [19] to compute from S a generating set of
size O(k2) for G, therefore yielding a polynomial time computable, kO(1) size
kernel (see [11] for definition) for the k-MOVE problem.

3 The Parameterized Minimum Base Problem

In this section we turn to another basic algorithmic problem on permutation
groups.

Definition 1. Let G ≤ Sn be a permutation group. A subset of points B ⊆ [n]
is called a base if the pointwise stabilizer subgroup GB of G (subgroup of G that
fixes B pointwise) is the identity.

Since permutation groups with a small base have fast algorithms for various
problems [17], computing a minimum cardinality base for G is very useful. The
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decision problem is NP-complete. On the other hand, the optimization problem
has a lg lgn factor approximation algorithm [4].

In this section we study the parameterized version of the problem with base
size as parameter. We are unable to resolve if the general case is FPT or not, we
give FPT algorithms in the case of cyclic permutation groups and for permuta-
tion groups with orbits of size bounded by a constant.

k-BASE Problem

INPUT: A permutation group G = 〈S〉 ≤ Sn given by generators and a number
k.

PROBLEM: Is there a base of size at most k for G?

A trivial nk+O(1) algorithm would cycle through all candidate subsets B of
size at most k checking if GB is the identity.

Remark 2. If the elements of the group G ≤ Sn are explicitly listed, then the
k-BASE problem is essentially a hitting set problem, where the hitting set B
has to intersect, for each g ∈ G, the subset of points moved by g. However, the
group structure makes it different from the general hitting set problem and we
do not know how to exploit it algorithmically in the general case.

3.1 Cyclic Permutation Groups

We give an FPT algorithm for the special case when the input permutation group
G = 〈S〉 is cyclic. While this is only a special case, we note that the minimum
base problem is NP-hard even for cyclic permutation groups [4, Theorem 3.1].

Theorem 7. The k−BASE problem is fixed-parameter tractable for cyclic per-
mutation groups.

Proof. Let G = 〈S〉 ≤ Sn be a cyclic permutation group as instance for k-
BASE. First, using the Schreier-Sims algorithm we compute |G|. We can assume
|G| ≤ nk, Otherwise, G does not have a size k base and the algorithm can
reject the instance. Then we check that G is abelian in polynomial time by
checking if gh = hg for all g, h ∈ S. Suppose |G| = pr11 p

r2
2 . . . pr�	 where the

pi are distinct primes. Using known polynomial-time algorithms [19,15] we can
compute a decomposition of G into a direct product of cyclic groups:

G = 〈g1〉 × 〈g2〉 × . . .× 〈g	〉,

where gi has order p
ri
i , 1 ≤ i ≤ 
. We write gi as a product of disjoint cycles. The

length of each such cycle is a power of pi that divides p
ri
i , and there is at least

one cycle of length prii . Any base for G must include at least one point of a prii -
cycle (i.e. cycle of length prii ) of gi. Otherwise, the subgroup 〈gi〉 will not become
identity when the points in the base are fixed. For each index i : 1 ≤ i ≤ 
, let
Si = {α ∈ [n] | α is in some prii cycle of gi}.
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Claim. Let B ⊆ [n] be a subset of size k. Then B is a base for G if and only if
B is a hitting set for the collection of sets {S1, S2, . . . , S	}.

Proof of Claim. Clearly, it is a necessary condition. Conversely, suppose |B| =
k and B ∩ Si �= ∅ for each i. Consider the partition of [n] into the orbits of G:

[n] = Ω1 ∪Ω2 ∪ · · · ∪Ωr.

For each gi, a cycle of length prii in gi is wholly contained in some orbit of
G. Indeed, each orbit of G must be a union of a subset of cycles of gi. Since
B ∩ Si �= ∅, some prii -cycle Ci of gi will intersect B.

Assume, contrary to the claim, that there is a g ∈ GB such that g �= id. We
can write g = ga1

1 ga2
2 . . . ga�

	 for nonnegative integers ai < prii . Suppose g
aj

j �= id.

Then raising both sides of the equation g = ga1
1 ga2

2 . . . ga�

	 to the power |G|
p
rj
j

, we

have

g′ = g

|G|
p
rj
j = g

βj

j ,

where βj < p
rj
j . Moreover, βj =

|G|aj

p
rj
j

(mod p
rj
j ) is nonzero because aj �=

0(mod p
rj
j ) and |G|/prjj does not have pj as factor.

By assumption, some p
rj
j -cycle Cj of gj intersects B. Since βj is nonzero and

strictly smaller than p
rj
j , none of the points of Cj are fixed by g

βj

j which contra-
dicts the assumption that g and hence g′ is in GB. This proves the claim.

We now describe the FPT algorithm. First compute |G| using the Schreier-
Sims algorithm. If |G| > nk then there is no base of size k. Hence we can assume

|G| ≤ nk. If k lg k > lg lg n then nk ≤ 2k
k+1

. Hence the brute-force search
algorithm for a base of size k is already an FPT algorithm with running time

2k
k+1

.
Hence, we can assume k lg k ≤ lg lg n. By the above claim, it suffices to solve

the k-hitting set problem for a collection of 
 sets {S1, S2, . . . , S	}. This is a
problem of k-coloring the indices {1, 2, . . . , 
} such that for each color class I we
have ∩i∈ISi �= ∅ and we can pick any one point in the hitting set for each such
intersection. Notice that there are at most k	 many colorings. Since

(
/e)	 ≤ 
! ≤ p1p2 · · · p	 ≤ nk,

it follows that 
 lg 
 = O(k lg n) and hence lg 
 = O(lg k + lg lgn). Since we are
considering the case when k lg k ≤ lg lgn, we have lg 
 = O(lg lgn), which implies

 = O( k lgn

lg lgn ).

It follows that the total number of k-colorings k	 = 2O( k lg k lg n
lg lg n ) = 2O(lgn) =

nO(1). Hence, we can cycle through all these k-colorings in polynomial time and
find a good k-coloring if it exists.
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3.2 Bounded Orbit Permutation Groups

We give an FPT algorithm for another special case of the k-BASE problem: Let
G = 〈S〉 ≤ Sn such that G has orbits of size bounded by a fixed constant b. More
precisely, [n] =

⊎m
i=1Ωi, where Ωi are the G-orbits and |Ωi| ≤ b for each i. This

is again an interesting special case as the minimum base problem is NP-hard
even for orbits of size bounded by 8 [4, Theorem 3.2].

Suppose G has a base B = {i1, i2, . . . , ik} of size k. Then G has a pointwise
stabilizer tower G = G0 ≥ G1 ≥ . . . ≥ Gk = {1} obtained by successively fixing
the points of B. More precisely, Gj is the subgroup of G that pointwise fixes

{i1, i2, . . . , ij}. Now, |Gj−1|
|Gj| is the orbit size of the point ij in the group Gj−1.

Furthermore, b is also a bound on this orbit size. Therefore, |G| ≤ bk. Hence
in bknO(1) time we can list all elements of G. Let G = {g1, g2, . . . , gN}, where
N ≤ bk, where g1 is the identity element.

For each gi ∈ G, i ≥ 2, let Si = {j ∈ [n] | jgi �= j} denote the nonempty
subset of points not fixed by gi. Then a subset B ⊂ [n] of size k is a base for G
if and only if B is a hitting set for the collection S2, S3, . . . , SN . The next claim
is straightforward.
Claim. There is a size k hitting set contained in [n] for the sets {S2, S3 . . . , SN}
if and only if there is a partition of {2, 3, . . . , N} into k parts I1, I2, . . . , Ik such
that ∩j∈IrSj �= ∅ for each r = 1, 2, . . . , k.

As N ≤ bk, the total number of k-partitions of {2, 3, . . . , N} is bounded by

kN ≤ kb
k

. We can generate them and check if any one of them yields a hitting
set of size k by checking the condition in the above claim. The overall time taken

by the algorithm is given by the FPT time bound kb
k

nO(1). We have shown the
following result.

Theorem 8. Let G = 〈S〉 ≤ Sn such that G has orbits of size bounded by b, be
an instance for the k-BASE problem with k as parameter. Then the problem has

an FPT algorithm of running time kb
k

nO(1).

4 Concluding Remarks

The impact of parameterized complexity on algorithmic graph theory research,
especially its interplay with graph minor theory, has been very fruitful in the last
two decades. This motivates the study of parameterized complexity questions in
other algorithmic problem domains like, for example, group-theoretic compu-
tation. To this end, we considered parameterized versions of two well-known
classical problems on permutation groups. We believe that a similar study of
other permutation group problems can be a worthwhile direction.

Acknowledgments. I thank the referees for valuable remarks and suggestions.
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Abstract. Motivated by recent results of Mathieson and Szeider (J.
Comput. Syst. Sci. 78(1): 179–191, 2012), we study two graph modi-
fication problems where the goal is to obtain a graph whose vertices
satisfy certain degree constraints. The Regular Contraction prob-
lem takes as input a graph G and two integers d and k, and the task
is to decide whether G can be modified into a d-regular graph using at
most k edge contractions. The Bounded Degree Contraction prob-
lem is defined similarly, but here the objective is to modify G into a
graph with maximum degree at most d. We observe that both problems
are fixed-parameter tractable when parameterized jointly by k and d.
We show that when only k is chosen as the parameter, Regular Con-

traction becomes W[1]-hard, while Bounded Degree Contraction

becomes W[2]-hard even when restricted to split graphs. We also prove
both problems to be NP-complete for any fixed d ≥ 2. On the positive
side, we show that the problem of deciding whether a graph can be modi-
fied into a cycle using at most k edge contractions, which is equivalent to
Regular Contraction when d = 2, admits an O(k) vertex kernel. This
complements recent results stating that the same holds when the target
is a path, but that the problem admits no polynomial kernel when the
target is a tree, unless NP ⊆ coNP/poly (Heggernes et al., IPEC 2011).

1 Introduction

Graph modification problems play an important role in algorithmic graph theory
due to the fact that they naturally appear in numerous practical and theoretical
settings. Typically, a graph modification problem takes as input a graph G and
an integer k, and the task is to decide whether a graph with certain desirable
structural properties can be obtained from G by applying at most k graph oper-
ations, such as vertex deletions, edge deletions, edge additions, or a combination
of these. The problems Vertex Cover, Feedback Vertex Set, Minimum

Fill-In and Cluster Editing are just a few famous examples of problems
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that fall into this framework. Graph modification problems have received a huge
amount of interest in the literature for many decades, and due to the fact that
the vast majority of such problems turn out to be NP-hard [11, 15], the area has
also been intensively studied from a parameterized complexity point of view.

Moser and Thilikos [14] studied the parameterized complexity of the problem
of deciding, given a graph G and an integer k, whether there is a subset of at
most k vertices in G whose deletion yields an r-regular graph, where r is a fixed
constant. They showed that, for every value of r, this problem is fixed-parameter
tractable when parameterized by k, and admits a kernel of size O(kr(k+r)2). On
the other hand, they showed that the problem becomes W[1]-hard for every fixed
r ≥ 0 with respect to the dual parameter |V (G)|−k. Mathieson and Szeider [13]
showed that the aforementioned positive result by Moser and Thilikos crucially
depends on the fact that r is a fixed constant, as they proved the problem to
be W[1]-hard when r is given as part of the input. This result by Mathieson
and Szeider is a particular case of a much more general result in [13] on graph
modification problems involving degree constraints. We refer to [13] for more
details, and only mention here that the Classification Theorem in [13] shows that
the behavior of the investigated graph modification problems heavily depends
on the graph operations that are allowed.

Motivated by the results of Moser and Thilikos [14] and Mathieson and
Szeider [13], we study the parameterized complexity of two graph modification
problems involving degree constraints when edge contraction is the only allowed
operation. The parameterized study of graph modification problems with respect
to this operation has only recently been initiated, but has already proved to be
very fruitful [7–10]. In general, for every graph class H, the H-Contraction

problem takes as input a graph G and an integer k, and asks whether there
exists a graph H ∈ H such that G is k-contractible to H, i.e., such that H can
be obtained from G by contracting at most k edges. A general result by Asano
and Hirata [1] shows that this problem is NP-complete for many natural graph
classes H. On the positive side, when parameterized by k, the problem is known
to be fixed-parameter tractable when H is the class of paths or trees [9], bipartite
graphs [10, 12], or planar graphs [7]. Interestingly, the problem admits a linear
vertex kernel when H is the class of paths, but does not admit a polynomial
kernel when H is the class of trees, unless NP ⊆ coNP/poly [9].

Before we formally define the two problems studied in this paper and state
our results, let us mention one more recent paper that formed a direct motiva-
tion for this paper. For any integer d ≥ 1, let H≥d denote the class of graphs
with minimum degree at least d. Golovach et al. [8] studied the Degree Con-

tractibility problem, which takes as input a graph G and two integers d and
k, and asks whether there exists a graph H ∈ H≥d such that G is k-contractible
to H . They proved that this problem is fixed-parameter tractable when parame-
terized jointly by d and k, but becomes W[1]-hard when only k is the parameter.
They also showed that the problem is para-NP-complete when parameterized by
d by proving the problem to be NP-complete for every fixed value of d ≥ 14.
These results by Golovach et al. [8] raise the question what happens to the
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complexity of the problem when the objective is not to increase the minimum
degree of the input graph, but to decrease the maximum degree instead.

Our Contribution. For any integer d ≥ 1, let H≤d denote the class of graphs
that have maximum degree at most d, and let H=d denote the class of d-regular
graphs. In this paper, we study the complexity of different parameterizations of
the following two decision problems:

Bounded Degree Contraction

Instance: A graph G and two integers d and k.
Question: Is there a graph H ∈ H≤d such that G is k-contractible to H?

Regular Contraction

Instance: A graph G and two integers d and k.
Question: Is there a graph H ∈ H=d such that G is k-contractible to H?

Throughout the paper, we will use n and m to denote the number of ver-
tices and edges, respectively, of the input graph G. Moreover, since edge con-
tractions leave the number of connected components of a graph unchanged, we
assume throughout the paper that the input graph G in each of our problems is
connected.

In Section 2, we first observe that both problems can be solved in O((d +
k)2k · (n+m)) time using a simple branching algorithm. This implies that both
problems are fixed-parameter tractable when parameterized jointly by d and k,
and that both problems are in XP when parameterized by k only. This naturally
raises the following two questions:

1. Are the two problems fixed-parameter tractable when parameterized by k?
2. Are the two problems in XP when parameterized by d?

In the remainder of Section 2, we provide strong evidence that the answer
to both these questions is “no”. We first show that Regular Contraction

is W[1]-hard when parameterized by k, before proving that Bounded Degree

Contraction is W[2]-hard with the same parameter, even when restricted to
the class of split graphs. This implies that neither of the two problems is in
FPT, assuming that FPT �= W[1] and FPT �= W[2], respectively. The negative
answer to question 2, this time under the assumption that P �= NP, is given in
Theorem 3, where we show that both problems are NP-complete for every fixed
value of d ≥ 2, and hence para-NP-complete when parameterized by d. Note that
both problems are trivially solvable in polynomial time when d = 1. The results
of Section 2 are summarized in Table 1.

To complement our hardness results, we show in Section 3 that Regular

Contraction admits a kernel with at most 6k+6 vertices when d = 2. Equiv-
alently, we show that theH-Contraction problem admits a linear vertex kernel
whenH is the class of cycles. We point out that this problem is para-NP-complete
with respect to the dual parameter |V (G)| − k, i.e., when parameterized by the
length of the obtained cycle, since the problem of deciding whether or not a
graph can be contracted to the cycle C	 is NP-complete for every fixed 
 ≥ 4 [2].
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Table 1. An overview of the results presented in Section 2

Parameter Regular Contraction Bounded Degree Contraction

d, k FPT FPT

k W[1]-hard W[2]-hard on split graphs

d para-NP-complete para-NP-complete

Our kernelization result complements the aforementioned known results stat-
ing that H-Contraction admits a linear vertex kernel when H is the class
of paths, but admits no polynomial kernel when H is the class of trees, unless
NP ⊆ coNP/poly [9].

Preliminaries. All graphs considered in this paper are finite, undirected and
simple. We refer to the textbook by Diestel [4] for graph terminology and nota-
tion not defined below. For a thorough background on parameterized complexity,
we refer to the monographs by Downey and Fellows [5].

Let G = (V,E) be a graph and let U be a subset of V . We write G[U ] to
denote the subgraph of G induced by U . We write G−U = G[V \U ], or simply
G − u if U = {u}. We say that two disjoint subsets U ⊆ V and W ⊆ V are
adjacent if there exist two vertices u ∈ U and w ∈ W such that uw ∈ E. The
contraction of edge uv in G removes u and v from G, and replaces them by a
new vertex made adjacent to precisely those vertices that were adjacent to u or
v in G. Instead of speaking of the contraction of edge uv, we sometimes say that
a vertex u is contracted onto v, in which case we use v to denote the new vertex
resulting from the contraction. For a set S ⊆ E, we write G/S to denote the
graph obtained from G by repeatedly contracting an edge from S until no such
edge remains. Note that, by definition, edge contractions create neither self-loops
nor multiple edges.

Let H be a graph. We say that H is a contraction of G if H can be obtained
from G by a sequence of edge contractions. We say that G is k-contractible to
H if H can be obtained from G by at most k edge contractions. An H-witness
structure W is a partition of V (G) into |V (H)| nonempty sets W (x), one for
each x ∈ V (H), called H-witness sets, such that each W (x) induces a connected
subgraph of G, and for all x, y ∈ V (H) with x �= y, the sets W (x) and W (y)
are adjacent in G if and only if x and y are adjacent in H . Clearly, H is a
contraction of G if and only if G has an H-witness structure; H can be obtained
by contracting each witness set into a single vertex.

2 Contracting to Graphs with Degree Constraints

We start by observing that the problems Bounded Degree Contraction

and Regular Contraction are FPT when parameterized jointly by k and d.

Theorem 1. The problems Bounded Degree Contraction and Regular

Contraction can be solved in time O((d + k)2k · (n+m)).
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Proof. We first present an algorithm for Bounded Degree Contraction,
and then describe how it can be modified to solve Regular Contraction in
the same running time.

Let (G, d, k) be an instance of Bounded Degree Contraction. We first
check if G has a vertex of degree at least d + k + 1. If so, then (G, d, k) is a
trivial no-instance, since the contraction of any edge in G decreases the degree
of each vertex in G by at most 1. Hence we output “no” in this case. Suppose
every vertex in G has degree at most d + k, but G has a vertex v such that
dG(v) ≥ d+1. In order to contract G to a graph of maximum degree at most d,
we must either contract v onto one of its neighbors, or contract all the edges of a
path between two of the neighbors of v. In either case, we must contract an edge
e incident with a neighbor of v. Since Δ(G) ≤ d+ k, there are at most (d+ k)2

such edges e. We branch on each of them, calling our algorithm recursively for
G′ = G/e with parameter k′ = k − 1. Since the parameter decreases by 1 at
every step, this branching algorithm runs in time O((d + k)2k · (n+m)).

We can also obtain an algorithm for Regular Contraction with same
running time by replacing the branching rule with the following one: if there is
a vertex v with dG(v) �= d, then we branch over all the edges e that are incident
with a vertex in NG(v). For each branch, we contract the edge e and decrease
k by 1. The correctness of this branching rule follows from the observation that
if we contract any edge e′ that is not incident with a neighbor of v, then the
degree of v before and after the contraction is the same. ��

We now show that Regular Contraction becomes W[1]-hard when only
k is chosen as the parameter. In the proof of Theorem 2 below, we will reduce
from the following problem:

Regular Multicolored Clique

Instance: A regular graph G, an integer k, and a partition X1, . . . , Xk of
V (G) into k independent sets of size p each.

Question: Does G have a clique K ⊆ V (G) such that |K ∩Xi| = 1
for every i ∈ {1, . . . , k}?

It is well-known that the Clique problem, asking whether a given graph has a
clique of size k, isW[1]-hard when parameterized by k [5]. Cai [3] proved that this
remains true on regular graphs. Using this fact and the standard parameterized
reduction from Clique to Multicolored Clique due to Fellows et al. [6], we
obtain the following result.

Lemma 1. (�)1 The Regular Multicolored Clique problem is W[1]-hard
when parameterized by k for d-regular graphs when k < d < p.

We now use the above lemma to prove our first hardness result.

Theorem 2. The Regular Contraction problem is W[1]-hard when param-
eterized by k.

1 Proofs marked with a star have been omitted due to page restrictions.
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Proof. We reduce from the restricted version of the Regular Multicolored

Clique problem described in Lemma 1. Let (G, k,X1, . . . , Xk) be an instance of
this problem where G is a d-regular graph, p = |X1| = . . . = |Xk|, and k < d < p.
We construct an instance (G′, d′, k) of Regular Contraction as follows:

– construct a copy of G with the corresponding partition X1, . . . , Xk of the
vertex set;

– for each i ∈ {1, . . . , k}, construct a vertex xi and then make the set Xi∪{xi}
into a clique by adding edges;

– make the set {x1, . . . , xk} into a clique by adding edges.

Let G′ denote the obtained graph, and let d′ = d+ p− 1.
Suppose that G has a clique K = {y1, . . . , yk} such that yi ∈ Xi for i ∈

{1, . . . , k}. It is straightforward to verify that contracting the edges xiyi for
i ∈ {1, . . . , k} in G′ results in a d′-regular graph.

Assume now that (G′, d′, k) is a YES-instance of Regular Contraction,
i.e., there is a set S of at most k edges such that G′/S is a d′-regular graph.
Notice that each xi in G′ has degree p+ k − 1 < p + d− 1 = d′. Therefore, for
each i ∈ {1, . . . , k}, S contains at least one edge incident to xi. Suppose that S
contains an edge xixj for 1 ≤ i < j ≤ k. Let G′′ be the graph obtained from G′

by the contraction of xixj , and denote by z the vertex obtained from xi, xj . The
degree of z in G′′ is 2p+k−2 > p+d+k−2 = d′+k−1. It means that we have
to contract at least k edges to obtain a vertex of degree d′ from z. It contradicts
the assumption that |S| ≤ k. Hence, for each i ∈ {1, . . . , k}, S contains an edge
xiyi for yi ∈ Xi. Since |S| ≤ k, S = {x1y1, . . . , xkyk}. We claim that {y1, . . . , yk}
is a clique in G. To see this, assume that some yi, yj are not adjacent in G. Then
yi, yj are not adjacent in G′ but are adjacent in G′/S, and the degree of the
vertex obtained from xi and yi in G′/S is at least d+ p > d′. This contradiction
to the assumption that G′/S is d′-regular completes the proof of Theorem 2. ��

We expect that the arguments in the proof of Theorem 2 can also be used to
show that Bounded Degree Contraction is W[1]-hard when parameterized
by k. However, we obtain a stronger result below by proving that Bounded

Degree Contraction is W[2]-hard when parameterized by k, even when re-
stricted to split graphs. This result will be a corollary of the following lemma.

Lemma 2. The problem of deciding whether the maximum degree of a split
graph can be reduced by at least 1 using at most k edge contractions is W[2]-
hard when parameterized by k.

Proof. We give a reduction from the problem Red-Blue Dominating Set,
which takes as input a bipartite graph G = (R ∪ B,E) and an integer k, and
asks whether there exists a red-blue dominating set of size at most k, i.e., a
subset D ⊆ B of at most k vertices such that every vertex in R has at least one
neighbor in D. This problem, which is equivalent to Set Cover and Hitting

Set, is well-known to be W[2]-complete when parameterized by k [5].
Let (G, k) be an instance of Red-Blue Dominating Set, where G = (R ∪

B,E) is a bipartite graph with partition classes R and B. We assume that every
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vertex in G has degree at least 1. We create a split graph G′ from G by making
the vertices of R pairwise adjacent, and by adding, for each vertex u ∈ R,
(Δ(G) − dG(u)) + k + 2 new vertices that are made adjacent to u only. Let
B′ = V (G′) \ (R ∪B) be the set of all vertices of degree 1 that were added to G
this way. Clearly, G′ is a split graph, since its vertex set can be partitioned into
the clique R and the independent set B ∪B′. Observe that each vertex in R has
degree Δ := Δ(G′) > k + 2.

We claim that G has a red-blue dominating set of size k if and only if G′ can
be contracted to a split graph of maximum degree at most Δ− 1 using at most
k edge contractions.

First, suppose there is a red-blue dominating set D ⊆ B such that |D| ≤ k.
For every v ∈ D, we choose an arbitrary neighbor w of v in R and contract
v onto w. Note that contracting v onto w is equivalent to deleting v from the
graph due to the fact that NG′ [v] ⊆ NG′ [w]. Since every vertex in R is adjacent
to at least one vertex in D, these |D| ≤ k edge contractions decrease the degree
of every vertex in R by at least 1. Since the degree of each vertex in B ∪ B′ in
G′ was already at most Δ(G) ≤ Δ− 1, the obtained graph has maximum degree
at most Δ− 1.

For the reverse direction, suppose there exists a set S ⊆ E(G′) of at most k
edges such that G′/S has maximum degree at most Δ−1. We claim that S does
not contain any edge whose endpoints both belong to R. To see this, observe that
contracting any such edge would create a vertex of degree at least Δ+k+1, and
the degree of such a vertex cannot be decreased to Δ by contracting at most k−1
other edges. Suppose S contains an edge uv such that u ∈ R and v ∈ B′, and let
w be an arbitrary neighbor of u in B. Note that contracting v onto u decreases
the degree of u by 1 but leaves the degrees of all other vertices in R unchanged,
whereas contracting w onto u decreases the degree of every neighbor of w in R,
and of u in particular. Hence we may assume, without loss of generality, that
every edge in S is incident with one vertex of R and one vertex of B′. Since the
degree of every vertex in R decreases by at least 1 when we contract the edges in
S, every vertex in R must be incident with at least one edge in S. This implies
that D := V (S) ∩B is a red-blue dominating set of G, where V (S) denotes the
set of endpoints of the edges in S. The observation that |D| ≤ |S| ≤ k completes
the proof. ��

Since an instance (G, k) of the problem defined in Lemma 2 is a yes-instance
if and only if (G,Δ(G)−1, k) is a yes-instance of Bounded Degree Contrac-

tion, we immediately obtain the following result.

Corollary 1. The Bounded Degree Contraction problem is W[2]-hard on
split graphs when parameterized by k.

To conclude this section, we also consider the complexity of our two problems
when we take only d to be the parameter. The following result shows that both
our problems are para-NP-complete with respect to this parameter. Note that
both problems can trivially be solved in polynomial time when d = 1.



Parameterized Complexity of Two Edge Contraction Problems 23

Theorem 3. (�) The problems Regular Contraction and Bounded De-

gree Contraction are NP-complete for any fixed d ≥ 2.

3 A Linear Vertex Kernel

In this section, we show that the problem Regular Contraction admits a
kernel with at most 6k+6 vertices in case d = 2. Since this problem is equivalent
to the H-Contraction problem when H is the class of cycles, we will refer to
the problem as Cycle Contraction throughout this section.

We first introduce some additional terminology. Let G and H be two graphs,
and suppose that there exists an H-witness structure W of G. If a witness set
of W contains more than one vertex of G, then we call it a big witness set; a
witness set consisting of a single vertex of G is called small.

Observation 1 ([9]) If a graph G is k-contractible to a graph H, then any
H-witness structure W of G satisfies the following three properties:

– no witness set of W contains more than k + 1 vertices;
– W has at most k big witness sets;
– all the big witness sets of W together contain at most 2k vertices.

Let G be a graph. A cycle C is optimal for G if G can be contracted to
C but cannot be contracted to any cycle longer than C. Note that if G is a
connected graph that is not a tree, then an optimal cycle for G always exists.
The following structural lemma will be used in the correctness proof of our
kernelization algorithm.

Lemma 3. Let (G, k) be a yes-instance of Cycle Contraction, let C be an
optimal cycle for G, and let W be a C-witness structure of G. If G is 2-connected
and G contains two vertices u and v such that dG(u) = dG(v) = 2 and G −
{u, v} has exactly two connected components G1 and G2, then the following three
statements hold:

(i) either {u} and {v} are small witness sets of W, or u and v belong to the
same big witness set of W;

(ii) if u and v belong to the same big witness set W ∈ W, then W contains all
the vertices of G1 or all the vertices of G2;

(iii) if G1 and G2 contain at least k + 1 vertices each, then {u} and {v} are
small witness sets of W.

Proof. Suppose G is 2-connected and contains two vertices u and v such that
dG(u) = dG(v) = 2 and G − {u, v} has exactly two connected components G1

and G2. Let p and q denote the two neighbors of u, and let x and y denote
the two neighbors of v. Without loss of generality, suppose p, x ∈ V (G1) and
q, y ∈ V (G2).
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To prove statement (i), suppose, for contradiction, that u belongs to a big
witness set W ∈ W and v /∈ W . Let W1 = (W \ {u}) ∩ V (G1) and W2 =
(W \ {u}) ∩ V (G2). Since u has degree 2 in G and G[W ] is connected by the
definition of a witness set, the graphsG[W1] and G[W2] are connected. Moreover,
by the definition of G1 and G2, there is no edge between W1 and W2 in G. Let
W ′ be the C′-witness structure of G obtained from W by replacing W with the
sets W1, {u}, and W2. Then C′ is a cycle that has two more vertices than C.
This contradicts the assumption that C is an optimal cycle for G.

We now prove statement (ii). Suppose u and v both belong to the same witness
set W ∈ W . Note that V (G) \ W induces a connected subgraph of G, and
assume, without loss of generality, that (V (G) \ W ) ⊆ V (G1). Then we must
have V (G2) ⊆ W .

To prove statement (iii), suppose |V (G1)| ≥ k + 1 and |V (G2)| ≥ k + 1.
Suppose, for contradiction, that u and v belong to the same big witness set of
W . Then W contains all the vertices of either G1 or G2 by statement (ii). This
implies that W contains at least k+3 vertices, contradicting the fact that every
big witness set of W contains at most k + 1 vertices due to Observation 1. ��

We now describe four reduction rules that will be used in our kernelization
algorithm for Cycle Contraction. Each of the reduction rules below takes
as input an instance (G, k) of Cycle Contraction and outputs a reduced
instance (G′, k′) of the same problem, and the rule is said to be safe if the two
instances (G, k) and (G′, k′) are either both yes-instances or both no-instances.

Rule 1 If G is 3-connected and |V (G)| ≥ 2k + 4, then return a trivial no-
instance.

Lemma 4. Rule 1 is safe.

Proof. LetG be a 3-connected graph on at least 2k+4 vertices. We show that G is
not k-contractible to a cycle. For contradiction, suppose G is k-contractible to a
cycle C. LetW be a C-witness structure. ThenW has at most three small witness
sets, as otherwise for any two small witness sets {u} and {v} such that u and v
are non-adjacent, the graph G−{u, v} would be disconnected, contradicting the
assumption that G is 3-connected. Since all the big witness sets of W contain at
most 2k vertices in total due to Observation 1, this implies that |V (G)| ≤ 2k+3.
This yields the desired contradiction to the assumption that |V (G)| ≥ 2k+4. ��

Rule 2 If G contains a block B on at least k+2 vertices and V (G) \V (B) �= ∅,
then return a trivial no-instance if |V (G)\V (B)| ≥ k+1, and return the instance
(G′, k − |V (G) \ V (B)|) otherwise, where G′ is the graph obtained from G by
exhaustively contracting a vertex of V (G) \ V (B) onto one of its neighbors.

Lemma 5. Rule 2 is safe.

Proof. Suppose G contains a block B on at least k+2 vertices and V (G)\V (B) �=
∅. Then G is not 2-connected and contains at least two blocks.
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Suppose (G, k) is a yes-instance, and letW be C-witness structure of G, where
C is a cycle to which G is k-contractible. Since |V (B)| ≥ k+2, there must be at
least two witness sets of W that contain vertices of B due to Observation 1. This
implies that for every block B′ �= B of G, all the vertices of B′ must be contained
in one witness set of W , as otherwise there would be two vertex-disjoint paths
in G between vertices of B and B′. For the same reason, every witness set of
W contains at least one vertex of B. Consequently, no vertex of |V (G) \ V (B)|
appears in a small witness set of W .

The above arguments, together with Observation 1, imply that (G, k) is a
no-instance if |V (G) \ V (B)| ≥ k + 1. It also implies that the instances (G, k)
and (G′, k − |V (G) \ V (B)|) are equivalent otherwise. ��

Rule 3 If G contains a block B on at most k+ 1 vertices and |V (G) \ V (B)| ≥
k + 2, then return the instance (G′, k − |V (B)|), where G′ is the graph obtained
from G by exhaustively contracting a vertex of V (B) onto one of its neighbors.

Lemma 6. Rule 3 is safe.

Proof. Let (G, k) be an instance of Cycle Contraction, and suppose G has a
block B on at most k+1 vertices such that |V (G)\V (B)| ≥ k+2. Suppose (G, k)
is a yes-instance, and let W be a C-witness structure of G for some cycle C to
which G is k-contractible. Using arguments similar to the ones in the proof of
Lemma 5, it can be seen that all the vertices of B must be contained in a single
witness set ofW , and this witness set contains at least one vertex of V (G)\V (B).
This shows that the instances (G′, k − |V (B)|) and (G, k) are equivalent. ��

Rule 4 If G is 2-connected and G contains two vertices u and v such that
dG(u) = dG(v) = 2, the two neighbors p and q of u both have degree 2 in G,
and the graph G− {u, v} has exactly two connected components that contain at
least k + 2 vertices each, then return the instance (G′, k), where G′ is the graph
obtained from G by contracting u onto p.

Lemma 7. Rule 4 is safe.

Proof. Let (G, k) be an instance of Cycle Contraction on which Rule 4 can
be applied. Suppose (G, k) is a yes-instance. Let C be an optimal cycle for G,
and let W be a C-witness structure of G. Due to statement (iii) in Lemma 3,
{u} and {v} are small witness sets of W . Then W ′ = W \ {u} is a C′-witness
structure of G′, where C′ is a cycle containing one less vertex than C. Since the
big witness sets of W ′ and W coincide, G′ is k-contractible to C′. Hence (G′, k)
is a yes-instance of Cycle Contraction.

For the reverse direction, suppose (G′, k) is a yes-instance. Let C′ be an op-
timal cycle for G′, and let W ′ be a C′-witness structure of G′. Consider the
vertices p and v in G′. Note that dG′(p) = dG′(v) = 2, and that G′ − {p, v} has
exactly two connected components G′

1 and G′
2 that contain at least k+1 vertices

each. Hence {p} and {v} are small witness sets of W ′ due to statement (iii) in
Lemma 3. For similar reasons, considering the pair (q, v) instead of (p, v), we
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find that {q} is a small witness set of W ′. In particular, p and q are in separate
small witness sets of W ′. Now let W be the partition of V (G) obtained from W ′

by adding the set {u}. Then W clearly is a C-witness structure of G, where C
is a cycle that has one more vertex than C′. Since the big witness sets of W and
W ′ coincide, we conclude that G is k-contractible to C, and hence (G, k) is a
yes-instance of Cycle Contraction. ��

Theorem 4. The Cycle Contraction problem admits a kernel with at most
6k + 6 vertices.

Proof. We describe a kernelization algorithm for Cycle Contraction. Given
an instance of Cycle Contraction, the algorithm starts by exhaustively ap-
plying the four reduction rules defined above. Let (G, k) be the obtained in-
stance. If G is 3-connected, then |V (G)| ≤ 2k + 3, as otherwise Rule 1 could
be applied. Suppose G is not 2-connected. Since G is connected by assumption,
G has at least two blocks. Let B be any block of G. Then |V (B)| ≤ k + 1, as
otherwise Rule 2 could be applied. Moreover, |V (G) \ V (B)| ≤ k + 1 due to the
assumption that Rule 3 cannot be applied. Hence |V (G)| ≤ 2k+2. Now suppose
G is 2-connected. We then apply a final reduction rule: if |V (G)| ≥ 6k+7, then
return a trivial no-instance. Before showing why this final reduction rule is safe,
let us point out that after the application of this final reduction rule, we have
obtained an instance (G′, k′) such that G′ has at most 6k + 6 vertices.

To see why the final reduction rule is safe, suppose, for contradiction, that
(G, k) is a yes-instance of Cycle Contraction such that G is a 2-connected
graph on at least 6k+7 vertices. Let C be an optimal cycle for G, and let W be
a C-witness structure of G. By Observation 1, at most 2k vertices of G belong to
big witness sets, which implies that at least 4k+7 vertices of G belong to small
witness sets. Since W has at most k big witness sets by Observation 1, there
are at most 2k vertices in small witness sets that have degree more than 2 in G,
namely the ones adjacent to big witness sets. Consequently, there are at least
2k + 7 vertices in small witness sets that have degree exactly 2, and there must
be three small witness sets {p}, {u}, {q} such that dG(p) = dG(u) = dG(q) = 2
and p and q are the two neighbors of u. Let {v} be a small witness set of W such
that v /∈ {p, u, q} and dG(v) = 2, and such that the two connected components
G1 and G2 of the graph G−{u, v} contain at least k+2 small witness sets of W
each. Since, apart from the vertices p, u, q and v, there are at least 2k+3 other
vertices that have degree 2 in G and belong to small witness sets, such a set {v}
exists. This implies that Rule 4 could have been applied on (G, k), yielding the
desired contradiction.

The correctness of our algorithm follows directly from Lemmas 4–7 and from
the above proof that the final reduction rule is safe. It remains to argue that our
kernelization algorithm runs in polynomial time. It is clear that every reduction
rule can be applied in polynomial time. When applying any of the reduction rules,
either the number of vertices in the graph or the parameter strictly decreases.
This implies that we only apply the reduction rules a polynomial number of
times, so the algorithm runs in polynomial time. ��



Parameterized Complexity of Two Edge Contraction Problems 27

4 Concluding Remarks

We showed that Regular Contraction has a linear vertex kernel when d = 2.
We expect that we can use similar arguments to obtain the same result for
Bounded Degree Contraction when d = 2. A more interesting question is
whether both problems admit polynomial kernels when d = 3.

Acknowledgments. We would like to thank Marcin Kamiński and Dimitrios
M. Thilikos for fruitful discussions on the topic. We also thank the three anony-
mous referees for insightful comments.
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Abstract. Many computationally hard problems become tractable if the graph
structure underlying the problem instance exhibits small treewidth. A recent ap-
proach to put this idea into practice is based on a declarative interface to specify
dynamic programming over tree decompositions, delegating the computation to
dedicated solvers. In this paper, we prove that this method can be applied to any
problem whose fixed-parameter tractability follows from Courcelle’s Theorem.

1 Introduction

Many computationally hard problems become tractable if the graph structure underly-
ing the problem instance at hand exhibits certain properties. An important structural
parameter of this kind is treewidth. By using a seminal result due to Courcelle [1] sev-
eral fixed-parameter tractability results have been proven in the last decade. To turn
such theoretical tractability results into efficient computation in practice, two contrary
approaches can be found in the literature (see also the excellent upcoming survey [2]).
Either the user designs a suitable dynamic programming algorithm that works directly
on tree decompositions of the instances (see, e.g., [3]), or a declarative description of
the problem in terms of monadic second-order logic (MSO) is used with generic meth-
ods that automatically employ a fixed-parameter tractable algorithm where the concepts
of tree decomposition and dynamic programming are used “inside”, i.e., hidden from
the user (see, e.g., [4,5] or the recent approach [6,7]). The obvious disadvantage of the
first strategy is its purely procedural nature, thus a practical implementation requires
considerable programming effort. The second approach lacks possibilities to incorpo-
rate domain-specific knowledge which is typically exploited in tailor-made dynamic
programming solutions and thus crucial for efficient solutions.

In order to combine the best of the two worlds, a recent LISP-based approach called
Autograph (see, e.g., [8]) allows to specify the problem at hand via combinations of
(pre-defined) fly-automata; hereby, domain-specific knowledge is incorporated on the
automata level. Another recent approach employs Answer Set Programming (ASP) [9]
in combination with a system called D-FLAT1 [10]. In this approach, it is possible to
entirely describe the dynamic programming algorithm by declarative means. D-FLAT
heuristically generates a tree decomposition of an input structure and provides the data
structures that are propagated during dynamic programming. The task of solving each

1 Dynamic Programming Framework with Local Execution of ASP on Tree Decomposi-
tions. Available as free software at http://www.dbai.tuwien.ac.at/research/
project/dynasp/dflat/.
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subproblem is delegated to an efficient ASP system that executes a problem-specific
encoding. Such specifications typically reflect the problem solving intuition due to the
possibility of using a Guess & Check technique, and the rich ASP language (including,
e.g., aggregates) allows for concise, easy-to-read encodings.

So far, D-FLAT has only been applied to some sample problems lying in NP [10].
It has been left open if this approach is more generally applicable. In this work, we
present a slight extension of the D-FLAT approach and prove that this new method can
indeed be used to solve any MSO-definable problem parameterized by the treewidth
in fixed-parameter linear time. We introduce semantic trees as a tool for MSO model
checking (MC). Semantic trees are closely related to the approaches from [6,11] but
have properties that better suit our needs. Complementing the practically oriented ex-
position of D-FLAT in [10], the current work gives a theoretical result: We present an
ASP-based description of a dynamic programming algorithm of the MSO MC problem
via semantic trees and thus show the general applicability of the D-FLAT method.

2 Semantic Trees and Tree Decompositions

In this section we present our approach to MSO MC based on semantic trees, which are
closely related to the game-theoretic techniques of [6] and the so-called characteristic
trees of [11]. Below, we recall some basic notions and then highlight our method.

MSO Model Checking over Finite Structures. Let σ = {R1, . . . , RK} be a set of
relation symbols. A finite structure A over σ (i.e., a “σ-structure”, for short) is given by
a finite domain dom(A) = A and relations RA

i ⊆ Aα, where α denotes the arity of Ri.
We study the MSO model checking problem (i.e., the problem of evaluating an MSO

sentence) over σ-structures. To simplify the presentation, we consider MSO sentences
of the form φ = ∃Y1∃z1∀Y2∀z2 . . . ∃Yn−1∃zn−1∀Yn∀znψ, s.t. n is even and ψ is a
quantifier-free formula. Note that an atom in φ can either be of the formR(zi1 , . . . , ziα)
for some R ∈ σ or of the form Yi(zj). Let At(φ) denote the set of atoms occurring in φ.

An interpretation I of ψ over A is given by a tuple (C1, . . . , Cn, d1, . . . , dn), where
Ci ⊆ dom(A) is the interpretation of set-variable Yi and di ∈ dom(A) is the inter-
pretation of the individual variable zi. In a partial interpretation, we may assign the
special value undef to the individual variables zi in ψ. The truth value I(p) of an atom
p in a partial interpretation I is defined in the obvious way: If at least one individual
variable in the atom p is assigned the value undef in I , then we also set I(p) = undef .
Otherwise, I(p) yields true or false exactly as for complete interpretations.

In order to systematically enumerate all possible interpretations for the quantifier-
free part ψ of φ and to represent the truth value of ψ in each of these interpretations, we
introduce the notion of semantic trees.

Definition 1. For an MSO-formula φ and σ-structure A, we define the semantic tree
for φ and A as the following rooted, node-labeled tree with 2n+ 2 levels:

– Level 0 consists of the root.
– The nodes at levels 1 through 2n correspond to the variables Y1, z1, Y2, z2, . . . , Yn,
zn in this order.

– Each of the nodes at level 2n+ 1 corresponds to the result of evaluating the atoms
in ψ in one partial interpretation.
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The rank and label 
 of each node N must satisfy the following conditions: the root has
an empty label; every node at level 0, 2, 4, . . . , 2n − 2 has |2dom(A)| child nodes, s.t.
each subset B ⊆ dom(A) occurs as the label of one of these child nodes; every node at
level 1, 3, 5, . . . , 2n−1 has |dom(A)|+1 child nodes, s.t. each d ∈ dom(A)∪{undef }
occurs as the label of one of these child nodes; for every node N at level 2n, we define
I(N) as the partial assignment where the labels along the path from the root to N
are assigned to the variables Y1, z1, Y2, z2, . . . , Yn, zn. Then every such node N has
exactly one child node, whose label is a pair (At+,At−), s.t. At+ and At− are the sets
of atoms in ψ that evaluate to true or, respectively, false in I(N).

For an MSO-formula φ and σ-structure A, we can use the corresponding semantic
tree S to get a naive MSO MC procedure: first delete the subtree rooted at every node
N from S whenever 
(N) = undef ; then reduce the MSO MC problem to a Boolean
circuit evaluation problem by replacing the nodes in S by ∨ or ∧ depending on whether
the corresponding quantifier in the quantifier prefix of φ is existential or universal. The
leaf nodes of the Boolean circuit are labeled “true” or “false” depending on the truth
value of ψ in the interpretation represented by this branch.

Compression of Semantic Trees for a Given Tree Decomposition. Of course, the MC
procedure via semantic trees requires exponential time in the size of A. We now show
how semantic trees can be compressed in the presence of a tree decomposition of A.

A tree decomposition of a structure A is a pair (T, χ) where T = (V,E) is a (rooted)
tree and χ : V → 2dom(A) maps nodes to so-called bags such that (1) for every a ∈
dom(A), there is a t ∈ V with a ∈ χ(t), (2) for every relation symbol Ri and every
tuple (a1, . . . , aα) ∈ RA

i there is a t ∈ V with {a1, . . . , aα} ⊆ χ(t), and (3) for
every a ∈ dom(A), the set {t ∈ V | a ∈ χ(t)} induces a connected subtree of T .
The latter is also known as the connectedness condition. The width of (T, χ) is defined
as maxt∈V (|χ(t)|) − 1. The treewidth of A is the minimum width over all its tree
decompositions. The notation t ∈ T expresses that t is a node of a tree decomposition
T . We write Tt and At to denote the subtree of T rooted at t, and the substructure of A
induced by the domain elements occurring in the bags in Tt, respectively.

By [12], we may assume that each node t ∈ T is of one of the following four
types: It is either a leaf node, an introduce node (having one child t′ with χ(t′) ⊆ χ(t)
and |χ(t) \ χ(t′)| = 1), a forget node (having one child t′ with χ(t′) ⊇ χ(t) and
|χ(t′) \ χ(t)| = 1) or a join node (having two children t1, t2 with χ(t) = χ(t1) =
χ(t2)). Moreover, we may assume that the root of T has an empty bag.

The idea of our decision procedure for A |= φ is to compute the semantic tree for
every substructure At of A. At the root node r of the tree decomposition, we thus get
the semantic tree for the unrestricted structure A, which we can then use for checking
A |= φ by a reduction to the Boolean circuit evaluation problem. We formally define
this semantic tree for substructure At below.

Definition 2. Consider an MSO-formula φ and σ-structure A with tree decomposition
T . For t ∈ T , we say that St is the local semantic tree at t if St is the semantic tree of
the MSO-formula φ and the induced substructure At of A.

To reach a fixed-parameter tractable algorithm w.r.t. treewidth, we introduce a com-
pression of the semantic tree at each node t in the tree decomposition. The compression
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proceeds in two steps: First, we restrict the labels of the semantic trees to the domain
elements present in χ(t). Second, if some node in a semantic tree has two child nodes
with identical subtrees, then it suffices to retain only one of these subtrees.

Note that the concrete values of the labels at the internal nodes (i.e., the nodes cor-
responding to set variables or individual variables) in a semantic tree are irrelevant.
Indeed, in the above reduction to Boolean circuits, only the tree structure of the seman-
tic tree and the truth values (At+,At−) at the leaf nodes matter. As will be explained
below, it is also convenient to slightly manipulate the truth values of some atoms which
should be undefined according to the above definition of partial truth assignments. Since
all subtrees with an undefined variable in one of the labels are ultimately removed from
the semantic tree anyway, this has no effect on the evaluation of formulaφ over structure
A. In summary, we get the following notion of compressed, local semantic trees.

Definition 3. Consider an MSO-formula φ and σ-structure A with tree decomposition
T . For t ∈ T , let St denote the local semantic tree at t. We call Ct a compressed, local
semantic tree at t if Ct is obtained from St by applying rule L followed by rule A and
then exhaustively applying rule R defined below:

Rule L (changing Labels)

– For every node corresponding to a set variable (i.e., levels 1, 3, . . . , 2n − 1), the
label B ⊆ dom(A) is replaced B ∩ χ(t).

– For every node corresponding to an individual variable (i.e., levels 2, 4, . . . , 2n),
the label d is replaced by a special symbol � if d ∈ dom(A) \ χ(t), and left un-
changed otherwise, i.e. if d ∈ χ(t) ∪ {undef , �}.

Rule A (modification of Atom set At−). For every node at level 2n+1, let I denote the
interpretation along the path from the root to this node. In the label (At+,At−), replace
At− by At− ∪ {R(z1, . . . , zα) ∈ At(φ) | ∃i, j s.t. I(zi) = undef and I(zj) = �}.

Rule R (eliminating Redundancy). Let N be a node in St and letN1, N2 be two distinct
child nodes of N . If the subtree rooted at N1 and the subtree rooted at N2 are identical,
then we delete N2 and the entire subtree rooted at N2 from St.

The intuition of rule A is the following: Recall that the meaning of I(zj) = � is that
zj is set to some value occurring in the subtree below node t in the tree decomposition
but not in χ(t). The idea of letting I(zi) = undef is to set zi to some value neither
occurring χ(t) nor in the subtree below t. But then, by the connectedness condition of
tree decompositions, we know that such atoms can never become true, no matter how
the undefined variable will eventually be interpreted.

MSO Model Checking via Compressed, Local Semantic Trees. Given a finite struc-
ture A with a tree decomposition T and an MSO sentence φ, our MC procedure works
in two steps: First, we compute a compressed, local semantic tree at every node t in T
by a bottom-up traversal of T . Then we evaluate φ over A by reducing the compressed,
local semantic tree at the root node r of T to a Boolean circuit. Fixed-parameter linear-
ity (w.r.t. the treewidth) of this algorithm is obtained as follows:
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Theorem 1. For the MSO model checking problem A |= φ, let T be a tree decompo-
sition of A. Then we can compute in time O(f(τ(T ), φ) · ||T ||) a compressed, local
semantic tree Ct at every node t in T . Here, τ(T ) denotes the width of T and f is a
function not depending on A.

Proof (Sketch). The computation of a compressed, local semantic tree Ct for every node
t ∈ T proceeds in a bottom-up manner from the leaf nodes of T to the root. For this
computation, we distinguish the four possible types that a node t of T can have:

(1) If t is a leaf node, it can be shown that Ct simply coincides with the local semantic
tree St at t, i.e., none of the rules L, A, and R is applicable.

(2) Let t be an introduce node with child node t′, s.t. χ(t′) = χ(t) \ {b}. Then Ct is
obtained from Ct′ by copying subtrees of Ct′ and modifying the labels of the copies as
follows. Every node N in Ct′ with 
(N) ⊆ χ(t′) gives rise to two nodes in Ct: one with
unchanged label 
(N) and one with label 
(N) ∪ {b}. Similarly, every node N in Ct′
with 
(N) = undef gives rise to two nodes in Ct: one with unchanged label undef and
one with label b. Note that this corresponds to the intended meaning of the value undef ,
which is that a value shall be assigned to this individual variable “outside” the current
subtree of the tree decomposition. For the adaptation of the truth values (At+,At−)
at the leaf nodes of Ct, the connectedness condition of tree decompositions is crucial.
Finally, Ct is compressed via rule R.

(3) Let t be a forget node with child node t′, s.t. χ(t) = χ(t′) \ {b}. Then Ct is obtained
from Ct′ by first applying rule L. This means that we delete b from every set B in Ct′ .
Moreover, if an individual variable is interpreted as b in Ct′ , we replace this interpreta-
tion by �. For the truth values (At+,At−) at the leaf nodes of Ct, it is now important to
apply rule A from Definition 3. Finally, Ct is compressed via rule R.

(4) Finally, let t be a join node with child nodes t1 and t2. By definition of join nodes, we
have χ(t) = χ(t1) = χ(t2). The nodes of Ct are obtained by combining “compatible”
nodes of Ct1 and Ct2 . For an odd level i < 2n in Ct (i.e., the labels of these nodes
provide the interpretation of a set variable in φ), a node N1 in Ct1 and a node N2 in Ct2
are compatible if 
(N1) = 
(N2). Compatibility in case of an even level 0 < i < 2n in
Ct (i.e., a node whose label interprets an individual variable) holds if either (a) 
(N1) =

(N2) and 
(Ni) �= � or (b) one of 
(N1), 
(N2) is undef . In case (a), the node N in
Ct resulting from combining N1 and N2 simply gets the label 
(N) = 
(N1) = 
(N2).
In case (b), the label of the resulting node N is set to 
(Ni) with 
(Ni) �= undef .
Note that in (a), it is important to exclude the combination of nodes N1 and N2 with

(N1) = 
(N2) = �. This is due to the intended meaning of �, which stands for some
domain element in the subtree below t in the tree decomposition s.t. this value no longer
occurs in the bag of t. Hence, the two occurrences of � in Ct1 and Ct2 stand for different
values. The label (At+,At−) at a leaf node of Ct is obtained from the labels of the
corresponding nodes in Ct1 and Ct2 by taking the component-wise union. Finally, we
compress Ct via rule R. ��

Our approach via (compressed) semantic trees has close links to the approaches
based on extended MC games in [6] and on characteristic trees in [11]. The most signif-
icant difference is that we explicitly introduce a special symbol � for domain elements
not present anymore in a given bag of a tree decomposition. This allows us to define our
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reduction of semantic trees by a simple equality test, while the reduce-operation in [6]
is based on an isomorphism criterion (which would not allow for a simple ASP realiza-
tion). The characteristic trees in [11] are used in the context of structures of bounded
rank-width and are computed by a bottom-up traversal of a given t-labeled parse tree
decomposition. The reduction of characteristic trees is also based on an equality crite-
rion. However, in contrast to tree decompositions, the notions of a “bag” and of a special
symbol � (for domain elements not present anymore in some bag) are not applicable.

3 ASP and D-FLAT

In this section, we give brief introductions to Answer Set Programming (ASP) [9] and
the D-FLAT system [10]. We thus set the stage for presenting our main result, i.e., that
D-FLAT possesses enough expressive power for solving any MSO-definable problem
parameterized by the treewidth in fixed-parameter linear time.

ASP is a declarative language where a program Π is a set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn.

The constituents of a rule r ∈ Π are h(r) = {a1, . . . , ak}, b+(r) = {b1, . . . , bm} and
b−(r) = {bm+1, . . . , bn}. Intuitively, r states that if an answer set contains all of b+(r)
and none of b−(r), then it contains some element of h(r). A set of atoms I satisfies a
rule r iff I ∩ h(r) �= ∅ or b−(r) ∩ I �= ∅ or b+(r) \ I �= ∅. I is a model of a set of rules
iff it satisfies each rule. I is an answer set of a program Π iff it is a subset-minimal
model of the program ΠI = {h(r) ← b+(r) | r ∈ Π, b−(r) ∩ I = ∅} [13].

ASP programs can be viewed as succinctly representing problem solving specifi-
cations following the Guess & Check principle. A “guess” can, for example, be per-
formed using disjunctive rules which non-deterministically open up the search space.
Constraints (i.e., rules r with h(r) = ∅), on the other hand, amount to a “check” by
imposing restrictions that solutions must obey.

In this paper, we use the language of the grounder Gringo [14,15] where programs
may contain variables that are instantiated by all ground terms (elements of the Her-
brand universe, i.e., constants and compound terms containing function symbols) before
a solver computes answer sets according to the propositional semantics stated above.

Example 1. The following program solves the INDEPENDENT DOMINATING SET prob-
lem for graphs that are given as facts using the predicates vertex and edge.

1{ in(X) : vertex(X) }.
2← edge(X,Y), in(X;Y).
3dominated(X) ← in(Y), edge(Y,X).
4← vertex(X), not in(X), not dominated(X).

Let (V,E) denote the input graph and recall that a set S ⊆ V is an independent domi-
nating set of (V,E) iff E ∩ S2 = ∅ and for each x ∈ V either x ∈ S or there is some
y ∈ S with (y, x) ∈ E. Note that this program not only solves the decision variant of
the problem, which is NP-complete, but also allows for solution enumeration.

Informally, the first rule (a so-called choice rule having an empty body) states that in
is to be guessed to comprise any subset of V . The colon controls the instantiation of the
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Fig. 1. Control flow in D-FLAT

variable X such that it is only instantiated with arguments of vertex from the input.
The rule in line 2 – where in(X;Y) is shorthand for in(X), in(Y) – checks the
independence property. Lines 3 and 4 finally ensure that each vertex not in the guessed
set is dominated by this set.

In order to take advantage of this Guess & Check approach in a decomposed setting,
we make use of the D-FLAT system [10]. To perform dynamic programming on tree
decompositions, D-FLAT needs data structures to propagate the partial solutions. To
this end, it equips each node t in a tree decomposition T of an input structure A with
a so-called i-tree. By this we mean a tree where each node is associated with a set of
ground terms called items. D-FLAT executes a user-supplied ASP program at each node
t ∈ T (feeding it in particular the i-trees of children of t as input) and parses the answer
sets to construct the i-tree of t. This procedure is depicted in Figure 1. To keep track of
its origin, each i-tree node N is associated with a set of extension pointers, i.e., tuples
referencing i-tree nodes from the child nodes of t that have given rise toN . For instance,
if t has k children, the set of extension pointers of N consists of tuples (N1, . . . , Nk),
where each Nj is an i-tree node of the jth child of t. This allows us to obtain complete
solutions by combining the item sets along a chain of extension pointers.

As input to the user’s encoding, D-FLAT declares the fact final if the current node
t ∈ T is the root; current(v) for any v ∈ χ(t); if t has a child t′, introduced(v)
or removed(v) for any v ∈ χ(t) \ χ(t′) or v ∈ χ(t′) \ χ(t), respectively; root(r)
if t has a child whose i-tree is rooted at r; sub(N,N ′) for any pair of nodes N,N ′ in
a child’s i-tree, if N ′ is a child of N ; and childItem(N, i) if the item set of node
N from a child’s i-tree contains the element i. Finally, D-FLAT also provides the input
structure as a collection of ground facts.

The answer sets specify the i-tree of the current tree decomposition node. Each an-
swer set describes a branch in the i-tree. Atoms of the following form are relevant for
this: length(l) declares that the branch consists of l+ 1 nodes; extend(l, j) causes
that j is added to the extension pointers of the node at depth l of the branch. item(l, i)
states that the node at depth l of the branch contains i in its item set. All atoms us-
ing extend and item with the same depth argument constitute what we call a node
specification.

To determine where branches diverge, D-FLAT uses the following recursive condi-
tion: Two node specifications coincide (i.e., describe the same i-tree node) iff (1) their
depths, item sets and extension pointers are equal, and (2) both are at depth 0, or their
parent node specifications coincide. In this way, an i-tree is obtained from the answer
sets. It might however contain sibling subtrees that are equal w.r.t. item sets. If so, one
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of the subtrees is discarded and the extension pointers associated to its nodes are added
to the extension pointers of the corresponding nodes in the remaining subtree. D-FLAT
exhaustively performs this action to eliminate redundancies.

Example 2. Listing 1.1 shows a D-FLAT encoding for INDEPENDENT DOMINATING

SET. All i-trees have height 1 (due to line 1); their roots are always empty and their
leaves contain items involving the function symbols in and dominated. Note that
lines 7–10 resemble the program from Example 1, while the rest of the program is
required for appropriately extending and combining partial solutions from child nodes.

Suppose D-FLAT is currently processing a forget node. Then there is one child i-tree.
For illustration, assume it consists of two branches whose respective leaf item sets are
∅ and {in(a),dominated(b)}. This i-tree is provided to the program in Listing 1.1
by means of the following input facts:
root(r). sub(r,s1). sub(r,s2).
childItem(s2,in(a)). childItem(s2,dominated(b)).

Each answer set of the program corresponds to a branch in the new i-tree, and each
branch extends one branch from the child i-tree. The root of the new i-tree therefore
always extends the root of the child i-tree (line 2). Which branch is extended is guessed
in line 3. Lines 5 and 6 derive which vertices are “in” or “dominated” according to this
guess, and line 10 enforces the dominance condition. Note that it is not until a vertex
is removed that it can be established to violate this condition, since as long as a vertex
is not removed potential neighbors dominating it could still be introduced. So, if the
vertex c has been removed, then the constraint in line 10 would eliminate the answer set
extending branch “s2”, since c is neither “in” nor “dominated”. Lines 11 and 12 fill the
leaf item set with only those items that apply to vertices still in the current bag. (This
ensures that the maximum size of an i-tree only depends on the decomposition width.)
So if the branch with leaf “s2” is extended and vertex a is forgotten, these lines cause
that the answer set specifies the item dominated(b), but not in(a).

In introduce nodes, line 7 guesses whether the introduced vertex is “in” the partial
solution or not. Line 8 enforces the independence condition and line 9 determines dom-
inated vertices. Line 4 ensures that in join nodes a pair of branches is only extended if
these branches agree on which of the common vertices are “in”.

4 MSO MC on Tree Decompositions with ASP

We now present an encoding for MSO MC in the style of the approach from Section 2 in
order to show that ASP with D-FLAT can solve any MSO-definable problem in linear
time for bounded treewidth. In the following, let A and T denote the input structure
and one of its tree decompositions, respectively. For the sake of readability, we only
consider the case where A is a graph, given by the predicates vertex and edge. As
in Section 2, we assume the MSO formula φ for which A |= φ is to be decided to
be of the form ∃Y1∃z1∀Y2∀z2 . . . ∃Yn−1∃zn−1∀Yn∀znψ. Here we additionally assume
that ψ is in CNF. Our encoding can, however, be easily generalized. In particular, the
quantifier alternation is not required in principle but facilitates presentation. Much could
be done to improve the MSO model checker that emerges from this work; but this is
outside the scope of this paper whose focus is on the general applicability of D-FLAT.
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1length(1).
2extend(0,R) ← root(R).
31 { extend(1,S) : sub(R,S) } 1 ← extend(0,R).
4← extend(1,S;T), childItem(S,in(X)), not childItem(T,in(X)).
5in(X) ← extend(1,S), childItem(S,in(X)).
6dominated(X) ← extend(1,S), childItem(S,dominated(X)).
7{ in(X) : introduced(X) }.
8← edge(X,Y), in(X;Y).
9dominated(X) ← in(Y), edge(Y,X).
10← removed(X), not in(X), not dominated(X).
11item(1,in(X)) ← in(X), current(X).
12item(1,dominated(X)) ← dominated(X), current(X).

Listing 1.1. Computing independent dominating sets with D-FLAT

The formula φ is specified in ASP as follows. If the quantifier rank is i, then the fact
length(i+1) is declared. (This will cause each i-tree branch to have length i+1.) Each
individual variable x or set variable X bound by the ith quantifier is declared by a fact
of the form iVar(i, x) or sVar(i,X), respectively. The atoms x ∈ X and membership
in the edge relation are represented as in(x,X) and edge(x, y), respectively. Facts of
the form pos(c, a) or neg(c, a) respectively denote that the atom a occurs positively
or negatively in the clause c. For convenience, we supply a fact clause(c) for each
clause c, and var(i, x) for each individual or set variable x bound by the ith quantifier.

Let t be the current node during a bottom-up traversal of a tree decomposition T
of A. The i-tree at t shall represent a compressed, local semantic tree. In particular,
an item set of a (non-leaf) i-tree node shall encode the label of the respective semantic
tree node. With each i-tree branch b we can thus associate a (partial) interpretation
Ib of the variables in φ. Ib assigns � to variables with values not in χ(t), but we can
extend it to all possible assignments I+b without � values by following the extension
pointers. As we assume φ to be in CNF, in the leaf of b we simply keep track of the
clauses that have been satisfied by I+b so far. We only use items of the following form:
assign(x, nn) denotes that Ib(x) = �; assign(x, v) with v ∈ χ(t) denotes that
Ib(x) = v; assign(X, v) denotes that v ∈ Ib(X); true(c), which only occurs in leaf
item sets, indicates that the clause c is true under I+b . For any individual variable x, the
absence of any assign item whose first argument is x means that x is still undefined.

Listing 1.2 shows the ASP encoding that is to be executed at each node t ∈ T to
construct an i-tree representing Ct, the compressed, local semantic tree at t. As input,
the encoding is provided with a set of facts describing φ as well as T together with the
i-trees from the children of t (see Section 3). We say that D-FLAT accepts the input A
if the program executed at the root node of T has at least one answer set.

Theorem 2. An MSO MC instance A |= φ is positive iff D-FLAT, when executed on
Listing 1.2 together with φ (represented in ASP as a set of facts), accepts input A.

Proof (Sketch). Let A be the input graph with a tree decomposition T , let t ∈ T be the
node currently processed by D-FLAT during the bottom-up traversal, and let Ct denote
the compressed, local semantic tree at t after executing the encoding at t. Again, St de-
notes the (non-compressed) local semantic tree at t, while S is the (complete) semantic
tree for φ and A. We first show that Ct is always constructed as desired according to the
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1assignedIn(X,S) ← childItem(S,assign(X,_)).
2% E v a l u a t i o n ( on ly i n t h e r o o t )

3itemSet(0,R) ← final, root(R).
4itemSet(L+1,S) ← itemSet(L,R), sub(R,S).
5exists(S) ← itemSet(L,S), L #mod 4 < 2, sub(S,_).
6forall(S) ← itemSet(L,S), L #mod 4 > 1, sub(S,_).
7invalid(S) ← iVar(L,X), itemSet(L,S), not assignedIn(X,S).
8bad(S) ← length(L), itemSet(L,S), clause(C),

not childItem(S,true(C)).
9bad(S) ← forall(S), not invalid(S), sub(S,T), bad(T).
10bad(S) ← exists(S), not invalid(S), not good(S).
11good(S) ← exists(S), sub(S,T), not invalid(T), not bad(T).
12% Guess a branch f o r each c h i l d i−t r e e

13extend(0,R) ← root(R).
141 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), sub(R,_).
15← extend(_,S), bad(S).
16← extend(_,S), invalid(S).
17% P r e s e r v e and e x t e n d a s s i g n m e n t

18{ assign(X,V) : var(_,X) } ← introduced(V).
19assign(X,V) ← extend(_,S), childItem(S,assign(X,V)),

not removed(V).
20assign(X,_nn) ← extend(L,S), childItem(S,assign(X,V)),

removed(V), iVar(L,X).
21% Check : Only j o i n c o m p a t i b l e b r a n c h e s ; t h e r e s u l t i n g a s s i g n m e n t must be v a l i d

22← iVar(L,X), assign(X,V;W), V �= W.
23← extend(L,S;T), S �= T, childItem(S;T,assign(X,_nn)).
24← extend(L,S;T), var(L,X), childItem(S,assign(X,V)),

not childItem(T,assign(X,V)), vertex(V).
25% Dete rmine c l a u s e s t h a t have become t r u e

26assigned(X) ← iVar(L,X), extend(L,S), assignedIn(X,S).
27true(C) ← extend(_,S), childItem(S,true(C)).
28true(C) ← pos(C,edge(X,Y)), assign(X,V), assign(Y,W),

edge(V,W).
29true(C) ← neg(C,edge(X,Y)), assign(X,V), assign(Y,W),

vertex(V;W), not edge(V,W).
30true(C) ← neg(C,edge(X,Y)), extend(_,S),

childItem(S,assign(X,V)), removed(V), not assigned(Y).
31true(C) ← neg(C,edge(X,Y)), extend(_,S),

childItem(S,assign(Y,V)), removed(V), not assigned(X).
32true(C) ← pos(C,in(X,Y)), assign(X,V), assign(Y,V).
33true(C) ← neg(C,in(X,Y)), assign(X,V), vertex(V),

not assign(Y,V).
34% D e c l a r e r e s u l t i n g i t em s e t s

35item(L,assign(X,V)) ← var(L,X), assign(X,V).
36item(L,true(C)) ← length(L), true(C).

Listing 1.2. MSO model checking with D-FLAT
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proof of Theorem 1. Then we show that from Ct we can always construct St, and that
this gives us S at the root of T . The computation of Ct depends on the type of t.

(1) If t is a leaf, we guess a valid (partial) variable assignment without any � values
(lines 18 and 22) and declare the appropriate item sets (line 35). Additionally, we add
the clauses that are satisfied by the assignment (cf. rules deriving true) into the leaf
item set (line 36). Eventually, D-FLAT’s processing of the resulting answer sets (see
Section 3) yields an i-tree representing St, which coincides with Ct.
(2) If t is an introduce node with child t′, we guess a predecessor branch of the i-tree of
t′ (lines 13 and 14) whose assignment is preserved (line 19) and non-deterministically
extended (lines 18 and 22). Already satisfied clauses remain so (line 27). Again, clauses
that become satisfied are determined and the appropriate item sets are filled.
(3) If t is a forget node, we also guess a predecessor branch. We retain each assign
item unless it involves the removed vertex (line 19), and we set the value of each indi-
vidual variable that was assigned this vertex to � (line 20). Determining satisfied clauses
and declaring item sets proceed as before. This yields an i-tree where the removed ver-
tex is eliminated from the interpretation of each set variable, and individual variables
previously set to that value are now assigned �. Note that clauses might become satisfied
due to the reasons for rule A from Section 2.
(4) If t is a join node with children t1 and t1, χ(t) = χ(t1) = χ(t2) holds. Here, we
guess a pair of predecessor branches (lines 13 and 14). We generate Ct by combining
“compatible” branches b1 and b2 from Ct1 and Ct2 , respectively. The notion of com-
patibility is the same as in the proof of Theorem 1, and enforced in lines 23 and 24.
Thus the two assignments corresponding to b1 and b2 can simply be unified to yield the
assignment of the new branch b (line 19). The set of clauses true under the assignment
of b is now simply the union of the clauses true in b1 and the clauses true in b2 (line 27).
(5) If t is the root node of T (by assumption a forget node with an empty bag; see
Section 2), the child i-tree nodes are organized with exists, forall, invalid and
bad. Following the assumed form of the quantifier prefix of φ, non-leaf i-tree nodes at
levels 4j and 4j+1 (for j ≥ 0) are marked with “exists”, while those at levels 4j+2 and
4j + 3 are marked with “forall”. A non-leaf node at level l is “invalid” if the lth quan-
tifier binds an individual variable left uninterpreted by that node, and it is “bad” if the
subformula of φ starting after the lth quantifier cannot be true. For this purpose, we start
by labeling each leaf with “bad” if it does not report all clauses to be satisfied (line 8).
By following extension pointers, it can be verified that none of the interpretations rep-
resented by the respective branch satisfies the matrix of φ due to our bookkeeping of
satisfied clauses. All leaves that are neither “invalid” nor “bad” conversely correspond
to interpretations satisfying the matrix of φ. We then propagate truth values toward the
root (lines 9–11): A “forall” node is “bad” iff one of its children is “bad”, and an “ex-
ists” node is “bad” iff it has only “bad” or “invalid” children. To ensure correctness and
to only enumerate interpretations without undefined individual variables, the guessed
predecessor branch must contain neither “bad” nor “invalid” nodes (lines 15 and 16).

Finally, we show that A |= φ holds iff the root of the i-tree at the child of the root of T
is not “bad”. The i-tree of any t ∈ T below the root of T can be used to construct St by
means of the extension pointers, as can be seen by induction. Furthermore, the clauses
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satisfied by the interpretation corresponding to a branch of St are exactly those in the
respective leaf item set. If t is the child of the root node, we obtain S in this way. If t is
the root of T , the propagation of truth values in the child i-tree (lines 1–11) corresponds
to the propagation of truth values in the Boolean circuit used for evaluation. If this
propagation finally yields “false”, line 15 ensures that no answer set exists because the
i-tree root at the child of t is then “bad”. Otherwise, there is a branch consisting only of
nodes that are neither “bad” nor “invalid”, and D-FLAT accepts the input. ��

Given an input structure A whose treewidth is below some fixed integer, one can con-
struct a tree decomposition of A in linear time. The total runtime for deciding A |= φ
for fixed φ is then linear, since the tree decomposition has linear size and the search
space in each ASP call is bounded by a constant. Note that Theorems 1 and 2 together
thus amount to an alternative proof of Courcelle’s Theorem.

5 Conclusion

There is vivid interest in turning theoretical tractability results obtained via Courcelle’s
Theorem into concrete computation which is feasible in practice [2]. In this paper, we
have shown that the ASP-based D-FLAT approach is one candidate for reaching this
goal, having provided a realization of a suitable dynamic programming algorithm for
the MSO model checking problem. Since MSO model checking is often impractical de-
spite bounded treewidth [16], it is advisable to implement problem-specific algorithms.
Experiments reported in [10] suggest that D-FLAT is a promising means to do so. In
contrast to recent MSO-based systems [6,7] where the problem is expressed in a mono-
lithic way, D-FLAT allows to define the dynamic programming algorithm on a tree
decomposition via ASP. Like in the Datalog approach [17], this admits a declarative
specification while still being able to take advantage of domain knowledge. However,
the approach in [17] aims at a single call to a Datalog engine, thus the very restrictive
language of monadic Datalog is required to guarantee linear running times. Therefore,
encoding the dynamic programming algorithm at hand is rather tedious (for instance,
to handle set operations) making this approach less practical. In contrast, D-FLAT calls
an ASP-solver in each node of the tree decomposition. This not only ensures the linear
running times (assuming that D-FLAT encodings only use information from the cur-
rent bag) but also allows one to take advantage of a richer modeling language, reducing
the actual effort for the user. This leads to implementations of algorithms that leverage
bounded treewidth in a natural way, as the examples in Section 3 and [10] show. In the
current paper, we have shown that these were not just lucky coincidences – D-FLAT is
indeed applicable to any MSO-definable problem. Future work in particular includes a
comparison of the ASP-based D-FLAT approach with the LISP-based Autograph ap-
proach [8] regarding both the range of theoretical applicability and practical efficiency.
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Abstract. We study implementation details for dynamic programming
over tree decompositions. Firstly, a fact that is overlooked in many papers
and books on this subject is that it is not clear how to test adjacency
between two vertices in time bounded by a function of k, where k is
the width of the given tree decomposition. This is necessary to obtain
linear time dynamic programming algorithms. We address this by giving
a simple O(kn) time and space preprocessing procedure that enables
adjacency testing in time O(k), where n is the number of vertices of the
graph.

Secondly, we show that a large class of NP-hard problems can be
solved in time O(qk+1n), where qk+1 is the natural size of the dynamic
programming tables. The key improvement is that we avoid a polynomial
factor in k. This holds for all problems that can be formulated as a Min
Weight Homomorphism problem: given a (di)graph G on n vertices and a
(di)graph H on q vertices, with integer vertex and edge weights, is there a
homomorphism from G toH with total (vertex and edge image) weight at
most M? This result implies e.g. O(2kn) algorithms for Max Independent
Set and Max Cut, and a O(qk+1n) algorithm for q-Colorability. The table
building techniques we develop are also useful for many other problems.

1 Introduction

Dynamic programming over tree decompositions has become an important algo-
rithmic technique, that is used as a central subroutine in many parameterized,
exact and approximation algorithms for NP-hard problems. The key property
that is often used is that for any constant k, many NP-hard graph problems can
be solved in linear time, if a tree decomposition of the graph of width at most k is
provided. Examples of early results of this kind are [3,4,7,9,19]. Good introduc-
tions can be found in [6,8,15]. Recent breakthrough results appear in [5,10,16].
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In this paper, we study implementation details of dynamic programming over
tree decompositions. Throughout, denote by n the number of vertices of the in-
put graph, and by k the width of the given tree decomposition. (k is viewed as
a parameter, not a constant.) Firstly, a fact that has been overlooked in many
papers and books on this subject, is that it is not clear how to test adjacency
between two vertices in time bounded by any function of k. This is necessary to
obtain linear time algorithms. Note that we cannot simply assume that an adja-
cency matrix is given: graphs of bounded treewidth are sparse (they have fewer
than kn edges), and therefore an n2 bit adjacency matrix cannot be constructed
in linear time from a typical O(kn logn) bit input encoding, e.g. based on ad-
jacency lists. (Note that for all cases where this method is relevant, k is much
smaller than n.) We remark that if using quadratic space is allowed, then there
is an easy linear time preprocessing procedure that enables constant time adja-
cency testing, using a lazy (i.e. uninitialized) adjacency matrix [1, Exercise 2.12].
However, there seems to be no straightforward way of obtaining linear time and
space dynamic programming algorithm. In Section 3 we discuss these claims in
more detail, and also present our first result: a simple O(kn) time and space pre-
processing procedure that, given a graph on n vertices and a tree decomposition
on O(n) nodes of width k, enables adjacency testing in time O(k). This is not
very deep, but also not obvious, and solves a gap in the existing literature.

There are more examples of seemingly trivial problems on sparse graphs where
the fact that adjacency testing cannot be done in constant time is surprisingly
problematic. For instance, it is well-known that a graph is a series parallel graph
if and only if it can be reduced to a K2 by iteratively suppressing vertices of
degree two, and replacing multi-edges by single edges. Assuming that adjacency
testing can be done in constant time, this characterization would easily yield a
linear time algorithm for recognizing series parallel graphs. Nevertheless, with-
out this assumption, a significantly more sophisticated algorithm is needed; see
Valdes et al [18, Section 3.3].

Secondly, we consider the dependency of the complexity on the parameter
k. For many NP-hard problems, O(poly(k)ckn) time algorithms are known, for
some constant c (poly(k) denotes a polynomial factor in k). For problems where
solutions can be characterized using local properties, this has been known for a
long time, see e.g. [17]. In recent breakthrough results, such a complexity has
also been obtained for problems with global connectivity constraints [5,10]. How-
ever, we study the simpler local problems here. For various of these problems,
O(poly(k)ckn) algorithms are known, where ck is the natural size of the dy-
namic programming tables. For various problems such as Max Independent Set,
Max Cut and q-Colorability (problems without complex join operations), such a
complexity is relatively easy to prove (see e.g. [6,15]). For other problems, such
as in particular Min Dominating Set, this is significantly harder, but a (3kk2n)
complexity has been achieved using the fast subset convolution technique [16],
improving on the previous O(4kn) algorithm [2].

Assuming the Strong Exponential Time Hypothesis [12], it has been shown
in [14] that the constant c in the exponential factor ck cannot be improved for the
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aforementioned problems. Therefore, we study the question whether the poly(k)
factor can be removed. For problems addressed by the fast subset convolution
technique, this seems impossible. However, for a large class of other problems
this can be done: in Section 4 we consider the Minimum Weight Homomorphism
(MWH) problem: given a graph G on n vertices, and a graph H on q vertices
with integer vertex and edge weights, find a minimum weight homomorphism
from G to H , or decide that none exists. This weight is the sum of the vertex
and edge image weights. The graphs G and H may be directed and may have
loops. MWH generalizes well-studied problems such as Max Independent Set,
Max Cut and q-Colorability, and many others. We give an O(qk+1n) dynamic
programming algorithm for MWH in Section 5.

Removing the poly(k) factor requires precise treatment of various dynamic
programming details that can usually be ignored, such as bag and table ordering,
fast table building, and enabling constant time adjacency checking. One of the
few papers that also discusses some of these in detail is the paper by Alber
and Niedermeier [2], presenting an O(4kn) algorithm for Min Dominating Set
(see also [15]). To be precise, only the join operation requires time O(4k) in [2].
For the case of path decompositions, where no join operation is required, they
give an O(k3kn) algorithm. To illustrate that our techniques can be applied
to a wider variety of problems, in the full version of this paper we will show
that the O(k) factor can be removed in this result. More precisely, using our
techniques an O(3kn) algorithm for Min Dominating Set can be constructed,
when a path decomposition of width k is given. In [6], another algorithm without
poly(k) factor is presented: a O(2kn) time algorithm for Max Independent Set is
sketched, although various details are omitted. This inspired the current study.

We remark that from a purely theoretical asymptotic analysis viewpoint, re-
moving poly(k) factors seems irrelevant. Indeed, abusing the O-notation, for any
ε > 0 one may for instance write O(k23kn) ⊆ O((3 + ε)kn). Nevertheless, we
note that e.g. k23k < 4k only holds when k ≥ 22. Since at this point, dynamic
programming tables cannot be stored in a normal computer memory anymore,
we conclude that the previous O(4kn) MDS algorithm by Alber and Nieder-
meier [2] is still the most efficient one in practice! (Compared to [16].) Similarly,
the complexity improvements we present are important in practice. We start in
Section 2 with basic definitions. Statements for which proofs will be given in the
full version are marked with a star.

2 Preliminaries

For basic graph theory notations, see [11]. By uv and (u, v) we denote undi-
rected and directed edges, respectively. By N(u), N+(u) and N−(u) we denote
the (undirected) neighborhood, out-neighborhood and in-neighborhood of u,
respectively.

Definition 1. A tree decomposition of a (di)graph G is a 2-tuple (T,X) where
T is a tree and X = {Xv : v ∈ V (T )} is a set of subsets Xv of V (G) such that
the following properties hold:
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1. For every xy ∈ E(G) (resp. (x, y) ∈ E(G)), there is a v ∈ V (T ) with
{x, y} ⊆ Xv.

2. For every x ∈ V (G), the subgraph of T induced by X−1(x) = {v ∈ V (T ) :
x ∈ Xv} is non-empty and connected.

To distinguish between vertices of G and T , the latter are called nodes. For
v ∈ V (T ), the setXv is also called the bag of v. The width of a tree decomposition
is maxv∈V (T ) |Xv| − 1. The treewidth tw(G) of a graph G is the minimum width
over all tree decompositions of G. A rooted tree decomposition (T,X), r of G is
obtained by additionally choosing a root r ∈ V (T ), which defines a child/parent
relation between every pair of adjacent nodes, and ancestors/descendants in the
usual way. A node without children is called a leaf.

Definition 2. A rooted tree decomposition (T,X), r of G is nice if every node
u ∈ V (T ) is of one of the following types:

Leaf: u has no children.
Forget: u has one child v with Xu ⊂ Xv and |Xu| = |Xv| − 1.
Introduce: u has one child v with Xv ⊂ Xu and |Xu| = |Xv|+ 1.
Join: u has two children v and w with Xu = Xv = Xw.

The tree decomposition is called very nice if in addition, for every leaf node u it
holds that |Xu| = 1.

If u is an introduce node with child v and Xu \ Xv = {x}, then we say x is
introduced in u. The following fact is well-known and easy to prove: if G is
a graph on n vertices with tree width k, then G has at most kn edges. For
dynamic programming (DP) over tree decompositions, the following definitions
are important. Let (T,X), r be a rooted tree decomposition of G. For a node
u ∈ V (T ), we denoteX(u) = ∪vXv, where the union is taken over all descendants
v of u, including u itself. The subgraph G(u) is then defined as G(u) = G[X(u)].
DP algorithms rely on the following two key properties, which follow easily from
Definition 1: firstly, G(r) = G. Secondly, for every u ∈ V (T ), the only vertices
of G(u) that (in G) may be incident with edges that are not in G(u) are vertices
in Xu.

Computation Model and Assumptions. We use the standard computation model
(i.e. the RAM model, see e.g. [1]). The memory consists of an unbounded number
of registers ri, i ∈ N, which can hold integer values. In constant time, we can
read or write any ri, execute an elementary program control instruction, or carry
out a basic arithmetic operation. As basic arithmetic operations, we only require
addition, subtraction, multiplication, and testing whether an integer is positive.

For convenience, we assume that for all graphs G we consider, V (G) =
{1, . . . , n}. The following standard (but usually implicit) assumption is impor-
tant when discussing linear time (space) algorithms: if for an algorithmic result,
no input encoding is specified, the result should hold for all “reasonable input en-
codings”. For the case of a graph G with n vertices and m edges, and tw(G) = k,
this implies in particular that for designing linear time algorithms, we cannot
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assume that an adjacency matrix is given. This is because an n2 bit adjacency
matrix cannot be constructed in linear time (which is O(m) ⊆ O(kn)) from ad-
jacency lists, or edge lists. On the other hand, an adjacency list representation
of G can be constructed in linear time from all other reasonable representations,
so we may assume that an adjacency list encoding of G is given. Similarly, if a
tree decomposition (T,X) of G is given, we should assume that the bags Xu are
given as unordered lists of vertices of G, and that no additional information is
available (such as a list of edges of G[Xu]).

3 Enabling Fast Adjacency Testing

We first discuss the useful and simple quadratic space solution using lazy adja-
cency matrices. Note that we may not assume that all registers are initialized
to zero at the beginning of the computation, so using an n2 bit adjacency ma-
trix requires (non-linear) initialization time Θ(n2). However this can be avoided
using the following known trick (see e.g. [1, Exercise 2.12]): Store a list of edge
objects in a consecutive memory block of size O(m) ⊆ O(kn). Reserve n2 reg-
isters for the adjacency matrix, called ai,j for i, j ∈ V (G), but do not initialize
these. Instead, for every edge e = {i, j}, initialize ai,j and aj,i with a pointer to
the register containing the edge object e. Observe that this now allows constant
time adjacency checking.

Nevertheless, if we insist on using linear space, there is no obvious reason why
known dynamic programming algorithms can be implemented in linear time. For
instance, graphs of treewidth k may contain vertices for which the degree is not
bounded by any function of k. Furthermore, it may be that in any low width nice
tree decomposition, such high degree vertices are introduced many times. So if
for every introduce node, one considers the entire neighbor list of the introduced
vertex, this does not yield a linear time algorithm.

Let T be a tree with root r. For any set S ⊆ V (T ), define a node v ∈ S to
be a top node if the unique (r, v)-path contains no vertices from S other than v.
We will need the following basic properties of top nodes.

Proposition 3. Let T, r be a rooted tree, and S ⊆ V (T ) with T [S] connected.

(i) S contains exactly one top node; denote this node by �(S).
(ii) Let u ∈ S with parent v. Then u = �(S) if and only if v �∈ S.

(iii) For any S′ ⊆ V (T ) with T [S′] connected and S ∩ S′ �= ∅: �(S′) ∈ S or
�(S) ∈ S′.

Proof: (i): Suppose to the contrary that S contains two top nodes u and v. Let
Pu and Pv be the unique (r, u)-path and (r, v)-path in T , respectively. Let w be
the last vertex on Pu that is also in Pv (i.e. the lowest common ancestor of u
and v). Combining the subpath of Pu from u to w and the subpath of Pv from
w to v yields a path Puv from u to v with an internal vertex w, with w �∈ S. But
then Puv is the unique path from u to v in T , so deleting w separates u from v,
contradicting that T [S] is connected.
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(ii): The forward direction is trivial. For the backward direction, suppose to
the contrary that the unique (r, u)-path contains another vertex w with w ∈ S.
Then the unique path from u to w contains v �∈ S, contradicting that S is
connected.

(iii): Consider a top node u of S ∩S′. Then the parent v of u is not in S ∩S′.
If v �∈ S, then by (ii), u = �(S). Analogously, if v �∈ S′, then v = �(S′). �

Theorem 4. Given a rooted tree decomposition of width k on O(n) nodes, of
a (di)graph G with V (G) = {1, . . . , n}, there is an O(kn) time preprocessing
procedure that enables testing whether x ∈ N(y) (resp. x ∈ N+(y) or x ∈ N−(y))
in time O(k), for all x, y ∈ V (G).

Proof: Let (T,X), r be the given tree decomposition of width k, of a graph G
on n vertices. For x ∈ V (G), denote �(x) = �(X−1(x)), i.e. the top node of all
nodes that contain x in their bag. We now argue that in time O(kn), �(x) can
be computed for every x ∈ V (G). For every node u ∈ V (T ): if u has a parent
v, then mark all x ∈ Xv. Next, set �(x) = u for all unmarked x ∈ Xu. This
is correct by Proposition 3(ii). Finally, reset the markings for all x ∈ Xv. For
a single node, this procedure takes time O(k). During this process, we can also
compute for every node u ∈ V (T ) a list L(u) of vertices x with �(x) = u.

For x ∈ V (G), define Ntop(x) = N(x)∩X
(x). We argue that in time O(kn),

Ntop(x) can be computed for every x ∈ V (G). For every node u, first mark all

vertices inXu. Next, for every vertex x ∈ L(u), constructNtop(x) by considering

all neighbors and adding those that are marked to Ntop(x). Finally, reset the

markings for all x ∈ Xu. For a single node u this procedure takes time O(k) +
O(

∑
x∈L(u) d(x)). Since G has at most O(kn) edges, this yields a complexity of

O(kn).
We argue that for any two vertices x, y ∈ V (G), xy ∈ E(G) if and only if

x ∈ Ntop(y) or y ∈ Ntop(x). Suppose xy ∈ E(G). By Definition 1, both X−1(x)

and X−1(y) are connected, and X−1(x) ∩X−1(y) �= ∅. So by Proposition 3(iii),
�(x) ∈ X−1(y) or �(y) ∈ X−1(x) holds. Thus y ∈ Ntop(x) or x ∈ Ntop(y).

Finally, since every bag contains at most k + 1 vertices, |Ntop(x)| ≤ k + 1

holds for all x ∈ V (G). So testing whether x ∈ Ntop(y) or y ∈ Ntop(x) can be

done in time O(k).
A simple modification of the above proof yields the statement for the case

of digraphs. (The key statement then is that (x, y) ∈ E(G) if and only if x ∈
N−
top(y) or y ∈ N+

top(x).) �

4 Dynamic Programming Rules for Min-Weight
Homomorphism

LetG andH be digraphs, possibly with loops. A homomorphism fromG toH is a
function f : V (G) → V (H) such that for all (u, v) ∈ E(G), (f(u), f(v)) ∈ E(H).
Let a : V (H) → N and b : E(H) → N be weight functions. The weight of a
homomorphism f from G to H is then
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w(f) =
∑

v∈V (G)

a(f(v)) +
∑

(u,v)∈E(G)

b(f(u), f(v)).

The problem Min-Weight Homomorphism (MWH) is defined as follows: given
digraphs G and H , with vertex and edge weights a and b, decide whether a
homomorphism from G to H exists, and if so, compute one of minimum weight.
Note that the analog problem where both G and H are undirected is a special
case, since undirected edges can be replaced by a pair of oppositely directed
edges. This problem generalizes many well-studied problems, such as:

– Max Independent Set (Min Vertex Cover): choose H to be an undirected
graph on two vertices u and v, with an edge between them and a loop on u.
The two edges and v have weight zero, u has weight one.

– q-Colorability: choose H to be a complete undirected graph on q vertices.
The weights are irrelevant, since this is a decision problem.

– Max-Cut (Min Edge Bipartization): choose H to be an undirected graph on
two vertices, with an edge between them and loops on both. The loops both
receive weight one, and the other edge and both vertices receive weight zero.

For notational convenience, we modify H as follows: for every u, v ∈ V (H)
(including u = v), if (u, v) �∈ E(H) then add an edge (u, v) with weight ∞. So
the original graph admits a homomorphism if and only if the new graph admits
a homomorphism of finite weight. From now on, assume that (u, v) ∈ E(H) for
all u, v, possibly with infinite weight.

Let (T,X), r be a rooted tree decomposition of G. For a node u ∈ V (T ), our
DP computes values valu(f) for every f : Xu → V (H), defined as follows:

valu(f) = min{w(h) | h : X(u) → V (H) s.t. h|Xu = f}.

So val(f) is the minimum weight of a homomorphism from G(u) to H that
coincides with f . Then since G(r) = G, the minimum weight of a homomorphism
from G to H is computed by taking the minimum value of valr(f) over all
f : Xr → V (H). The values valu(f) can be computed as follows, in case (T,X), r
is a nice tree decomposition:

Lemma 5 (*). Let (T,X), r be a nice tree decomposition, and let u ∈ V (T ).

Leaf: If u is a leaf node, then valu(f) = w(f).
Forget: If u is a forget node with child v, then valu(f) = min{valv(h) | h :

Xv → V (H) s.t. h|Xu = f}.
Introduce: If u is an introduce node with child v and Xu \Xv = {x}, then

valu(f) = valv(f |Xv ) + a(f(x))+∑
y∈N+(x)∩Xu

b(f(x), f(y)) +
∑

y∈N−(x)∩Xv

b(f(y), f(x)).

Join: If u is a join node with children v and x, then valu(f) = valv(f)+valx(f)−
w(f).

(For the introduce case, summing over y ∈ N+(x) ∩Xu and y ∈ N−(x) ∩Xv is
done to guarantee that a possible loop on x is only considered once.)
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5 Implementation

We now show how the above rules can be implemented to yield a total DP
complexity of O(qk+1n). First note that we use nice tree decompositions, and
not very nice tree decompositions, i.e. we do not require for leaf nodes u that
|Xu| = 1. This has the downside that the computation for leaf nodes becomes
more complicated. However, the problem with very nice tree decompositions is
that they may have more than O(n) nodes (recall that we do not view k as a
constant!): Consider the graph Gn with vertex set {x1, . . . , xn} ∪ {y1, . . . , yn},
and edges xixj for all i, j, and xiyj for all i �= j. This graph has treewidth n− 1:
it has a tree decomposition (T,X) where T is a K1,n, where the central node u
has Xu = {x1, . . . , xn}, and every yi is contained in the bag for exactly one leaf.
All bags have size n. It can be verified that any very nice tree decomposition
of this graph, of width k = tw(Gn) = n − 1, has Ω(kn) nodes. This makes
it hard to prove the desired complexity, so we use nice tree decompositions
instead, for which it is well-known that they have at most 4n nodes (see e.g. [13,
Lemma 13.1.2]). Algorithmically, using the fact that for any uv ∈ E(T ), Xu \Xv

and Xv \Xu can be computed in time O(k) (see Section 3), one can prove the
following:

Lemma 6 (*). Let G be a graph on n vertices. Given a tree decomposition
(T,X) of G of width k, on O(n) nodes, in time O(kn), a nice tree decomposition
(T ′, X ′) of G of width k can be constructed, with at most 4n nodes.

(We remark that in the end, this distinction is not so important; our compu-
tation method for leaf nodes can also be viewed as a way of analyzing very nice
tree decompositions that have a specific form, which can always be guaranteed.)
So now it suffices to prove that for any single node u, all values valu(f) can be
computed in time O(qk+1). Since there may be qk+1 functions f : Xu → V (H),
this requires that every value can be computed in (amortized) constant time.
In the case of a join node (which is the most challenging to implement), the
value valv(f)+valw(f)−w(f |Xu) should be be computed in constant time. This
provides two challenges: computing w(f |Xu) in constant time for every f , and
looking up the matching values valv(f) and valw(f) in constant time. The latter
challenge is addressed by storing the values valu(f) and valv(f) for all f in two
tables (for u and for v), which have to be ordered the same way. We first discuss
details related to this ordering.

Ordered Bags and Tables. W.l.o.g. we assume throughout that V (H) = Q =
{0, . . . , q − 1}. Let u ∈ V (H) and Xu = {x1, . . . , xp}. Functions f : Xu → Q
will be represented by a vector (c1, . . . , cp) where ci = f(xi). This requires a
complete order on the bag vertices. We assume that the vertices of Xu are or-
dered (x1, . . . , xp) such that for all i < j, xi < xj holds. (Recall that V (G) =
{1, . . . , n}.) Ordered bags are denoted as tuples instead of sets. The values
valu(f) are then stored in a table (array) Tu of length qp, according to the
order given by index(f) =

∑p
i=1 q

i−1ci. So Tu[index(f)] = valu(f). (Note that
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index(f) is a bijection from all possible functions f to {0, . . . , qp − 1}.) If this
ordering method is used, we say that Tu is a table representing all functions
f : Xu → Q, ordered according to (x1, . . . , xp). For a join node u with children
v and w, we now have for every i that Tu[i] = Tv[i] + Tw[i] − w(f |Xu) (where
i = index(f)), so we can easily find matching values in the tables of v and w.
The desired order on the vertices of each bag can be guaranteed using a simple
preprocessing step: Using any O(k log k) time sorting algorithm, this can be done
within time O(nk log k) for all nodes.

However, this introduces a small problem for forget and introduce nodes: e.g.
for an introduce node u with child v, it is convenient to assume that Xu =
(x1, . . . , xp+1) and Xv = (x1, . . . , xp), i.e. the newly introduced vertex is the last
one. This means that the tables may need to be reordered. Since this reordering
corresponds to ‘swapping only one coordinate’, this can be done in time O(qp),
as shown in the next lemma.

Lemma 7. Let X = {x1, . . . , xp}, and Q = {0, . . . , q − 1}. Let T and T ′ be
tables representing all functions f : X → Q, ordered according to (x1, . . . , xp)
and (x1, . . . , xi−1, xi+1, . . . , xp, xi), respectively. Then T and T ′ can be computed
from each other in time O(qp).

Proof: For f : X → Q with f(xi) = ci for all i, recall that index(f) =∑p
j=1 q

j−1cj . Define index′(f) =
∑i−1

j=1 q
j−1cj +

∑p
j=i+1 q

j−2cj + qp−1ci. This

way, for every f it holds that T [index(f)] = T ′[index′(f)].

Define x(f) =
∑i−1

j=1 q
j−1cj , y(f) =

∑p−i
j=1 q

j−1cj+i and z(f) = ci. Then we

can alternatively write index(f) = x(f) + qiy(f) + qi−1z(f) and index′(f) =
x(f) + qi−1y(f) + qp−1z(f). In addition, observe that for every combination of
values x ∈ {0, . . . , qi−1 − 1}, y ∈ {0, . . . , qp−i − 1} and z ∈ {0, . . . , q− 1} there is
a function f with x(f) = x, y(f) = y and z(f) = z. Therefore, the tables T and
T ′ can be computed from each other by looping over all possible combinations of
values x, y and z, and using the equality T [x+qiy+qi−1z] = T ′[x+qi−1y+qp−1z].
The values qi, qi−1 and qp−1 can be computed beforehand, which ensures that
the computation for a single combination of x, y and z requires only a constant
number of elementary arithmetic operations (addition and multiplication). Since
there are exactly qp combinations of x, y and z, this proves the statement. �

Table Computation We now show for every type of node u how the table Tu can
be computed efficiently.

Lemma 8. Let u be a forget node with child v, for which the table Tv is known.
Let p = |Xv|. Then in time O(qp), the table Tu can be computed.

Proof: First suppose that Xu = (x1, . . . , xp−1) and Xv = (x1, . . . , xp), i.e. the
last vertex in the (ordered) bag Xv is forgotten. Then we compute the values
Tu[i] as follows. First, initialize Tu[i] = ∞ for all i ∈ {0, . . . , qp−1 − 1}. Next,
for all combinations of i ∈ {0, . . . , q − 1} and j ∈ {0, . . . , qp−1 − 1}, reassign
Tu[j] := Tv[j + iqp−1], if the latter value is smaller than the current value of
Tu[j]. Because of the way the tables are ordered, and because Xv \Xu = {xp},
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this correctly computes Tu[index(f)] = minh Tv[index(h)] over all h : Xv → Q
with h|Xu = f . This computation takes constant time for one entry of Tv (using
the precomputed value qp−1), so time O(qp) in total.

In the case that Xv = (x1, . . . , xp) and Xu = (x1, . . . , xi−1, xi+1, . . . , xp) for
i < p, we can first translate the table Tv into a table T ′ ordered according to
(x1, . . . , xi−1, xi+1, . . . , xp, xi), in time O(qp) (Lemma 7), and then apply the
above procedure. �

Next, we show how to efficiently compute the table Tu for an introduce node
u. Recall that if u is an introduce node with child v and Xu \Xv = {x}, then
valu(f) can be computed by adding to valv(f |Xv ) a correction term of a(f(x))+∑

y∈N+(x)∩Xu
b(f(x), f(y)) +

∑
y∈N−(x)∩Xv

b(f(y), f(x)). We will show how to

compute this correction term in (amortized) constant time. This involves looping
over all y ∈ Xu, and deciding whether y ∈ N+(x) or y ∈ N−(x), respectively.
This needs to be done in constant time, instead of time O(k), as given by the
method from Section 3. To this end, we use an initial preprocessing step that
computes a local adjacency matrix Au for every node u. To define Au, we use
the bag order introduced above again. Let Xu = (x1, . . . , xp). Then for i, j ∈
{1, . . . , p}, Au

i,j = 1 if and only if (xi, xj) ∈ E(G), and Au
i,j = 0 otherwise. Using

the techniques from Section 3, one can easily prove the next statement.

Proposition 9 (*). Let (T,X) be a tree decomposition on O(n) nodes of width
k, of a graph G on n vertices, with ordered bags. In time O(k2n), local adjacency
matrices can be computed for every node.

Furthermore, for H we store a vertex weight vector and edge weight matrix
in the memory, to ensure that for any x, y ∈ V (H), the values a(x) and b(x, y)
can be retrieved in constant time. (Recall that V (H) = {0, . . . , q − 1}). This
introduces at most a negligible term O(q2) to the complexity.

Lemma 10. Let u be an introduce node with child v, for which the table Tv is
known. Let p = |Xu|. Then in time O(qp), the table Tu can be computed.

Proof: We assume that Xu = (x1, . . . , xp) and Xv = (x1, . . . , xp−1), so xp is the
vertex that is introduced to the bag. This assumption is justified after using an
O(qp−1) preprocessing step, similar to the case of forget nodes (see above).

For α ∈ Q and j ∈ {0, . . . , p− 1}, define Xj
u = {x1, . . . , xj , xp} (in particular

X0
u = {xp}) and

corαj (f) = a(α) +
∑

y∈N+(xp)∩Xj
u

b(α, f(y)) +
∑

y∈N−(xp)∩Xj
u\{xp}

b(f(y), α),

for any function f : Xj
u → Q with f(xp) = α. Define Cα

j to be a table containing
these values, ordered according to (x1, . . . , xj). (More precisely: Cα

j [index(f)] =

corαj (f), where index(f) =
∑j

i=1 q
i−1f(xi). The table Cα

j has length qj .)

The table Tu can then be computed using the equality Tu[i+qp−1α] = Tv[i]+
Cα

p−1[i], for all i ∈ {0, . . . , qp−1 − 1} and α ∈ {0, . . . , q− 1}. So it now suffices to
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show how, for every α ∈ Q, the table Cα
p−1 can be computed in time O(qp−1).

These tables can be computed as follows: Cα
0 has a single entry, with value a(α)

if there is no loop on xp, and value a(α) + b(α, α) otherwise. For every j ≥ 1,
Cα

j can be computed from Cα
j−1 as follows. Loop over all values β := f(xj) ∈

{0, . . . , q−1}. For every such β, the next segment of Cα
j (of length qj−1) consists

of a copy of the table Cα
j−1, with a term val− +val+ added to each entry, where

– val− = b(β, α) if xj ∈ N−(xp), and val− = 0 otherwise, and
– val+ = b(α, β) if xj ∈ N+(xp), and val+ = 0 otherwise.

We use the entries Au
j,p and Au

p,j of the local adjacency matrix Au to decide
in constant time whether xj ∈ N−(xp) or xj ∈ N+(xp). Recall that using a
precomputed edge weight matrix, the value b(β, α) can be retrieved in constant
time. Since every entry computation now takes constant time, Cα

j can be com-

puted from Cα
j−1 this way in time O(qj), for every j ∈ {0, . . . , p − 1}. In total,

this gives a complexity of q + q2 + . . .+ qp−1 = qp−1
q−1 − 1 ∈ O(qp−1). �

Lemma 11. Let u be a leaf, with p = |Xu|. Then in time O(qp), the table Tu

can be computed.

Proof: Let Xu = (x1, . . . , xp). Essentially, computing Tu is done by turning the
nice tree decomposition into a very nice tree decomposition: the leaf u is replaced
by a path up, up−1, . . . , u1 (rooted at up), with Xui = (x1, . . . , xi). In particular,
Xup = Xu.

The table for node u1 can be trivially computed in time O(q). For i ≥ 2, ui
is an introduce node, and by Lemma 10, the table Tui can be computed in time

O(qi). Since q + q2 + . . .+ qp = qp+1−1
q−1 − 1 ∈ O(qp), this shows that computing

the table Tup = Tu can be done in time O(qp). �

Lemma 12. Let u be a join node, with p = |Xu|, and children v and x for
which the tables Tv and Tx are known. Then in time O(qp), the table Tu can be
computed.

Proof: Recall that valu(f) = valv(f)+ valx(f)−w(f) holds for every f : Xu →
Q. Because the tables for Tv and Tx are ordered the same way, the only remaining
challenge lies in computing the correction terms w(f). Essentially, this is done
by introducing a new leaf child 
 for u, with X	 = Xu (ordered the same way
as Xu). Then we can write valu(f) = valv(f) + valx(f)− val	(f) for every f . In
other words, Tu[i] = Tv[i] + Tx[i] − T	[i] for every index i. By Lemma 11, the
table T	 can be computed in time O(qp), which concludes the proof. �

Now we can prove our main result.

Theorem 13. Let G be a digraph on n vertices, for which a tree decomposition
(T,X) on O(n) nodes is given, of width k. Let H be a digraph with |V (H)| =
q ≥ 2, and nonnegative integer vertex and edge weights. Then in time O(nqk+1),
it can be decided whether a homomorphism f : V (G) → V (H) exists, and if so,
one of minimum weight can be computed.
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Proof: The algorithm can be summarized as follows. First, in time O(kn) we
transform the given tree decomposition into a nice tree decomposition of width
k, on O(n) nodes (Lemma 6). Next, we order the bags for every node, in time
O(nk log k). Then we use the O(kn) time preprocessing procedure from The-
orem 4 to ensure that (directed) adjacency testing can be done in time O(k).
Finally, we use this to compute local adjacency matrices for every node, as de-
fined above, in total time O(k2n) (Proposition 9). This preprocessing phase has
a total complexity of O(k2n). ForH , we precompute a vertex weight vector, edge
weight matrix and power vector, to ensure that for every x, y ∈ V (H), the values
a(x) and b(x, y) can be retrieved in constant time, and for every i ∈ {0, . . . , k},
the value qi can be retrieved in constant time. This adds only a negligible term
to the total complexity. Define b(x, y) = ∞ if (x, y) �∈ E(H).

At this point, the tree decomposition is in the desired form, and auxiliary
data structures have been built, so that Lemmas 8–12 can be applied. Since bags
contain at most k+1 vertices, and there are at most O(n) nodes, this shows that
computing all tables can be done in time O(qk+1n). Let r be the root node of
the nice tree decomposition. By definition of the tables, and because G(r) = G,
there exists a homomorphism f from G to H of weight at most m if and only
if the table Tr contains a value of at most m. This gives the algorithm for the
decision problem, with a total complexity of O(k2n) + O(qk+1n) ⊆ O(qk+1n).
Constructing a minimum weight homomorphism f can subsequently be done
in a standard way: mark a minimum entry in the table for Tr, and use this to
mark the corresponding entries in all other nodes, in a top down way (for forget
nodes, see the proof of Lemma 8). Then for every vertex x ∈ V (G), f(x) can be
computed by considering the marked entry in �(x). This can be implemented
such that the complexity does not increase by more than a constant factor. �

6 Discussion

The fast DP table building techniques we use here can be used for many other DP
problems. For instance, in the full version of this paper we will use them to show
that Min Dominating Set can be solved in time O(3kn), if a path decomposition of
width k is given. (For join nodes, no O(3k) implementation seems possible.) This
is somewhat surprising since values in introduce nodes tables are the minimum
of multiple values in the child table. These can nevertheless be computed in
constant time on average, by computing a table of correction pointers, similar
to the table of correction terms in Lemma 10.
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Abstract. Fixed-parameter algorithms, approximation algorithms and
moderately exponential algorithms are three major approaches to algo-
rithms design. While each of them being very active in its own, there is
an increasing attention to the connection between these different frame-
works. In particular, whether Independent Set would be better approx-
imable once endowed with subexponential-time or FPT-time is a central
question. In this article, we provide new insights to this question using
two complementary approaches; the former makes a strong link between
the linear PCP conjecture and inapproximability; the latter builds a class
of equivalent problems under approximation in subexponential time.

1 Introduction

Fixed-parameter algorithms, approximation algorithms and moderately expo-
nential/subexponential algorithms are major approaches for efficiently solving
NP-hard problems. These three areas, each of them being very active in its own,
have been considered as foreign to each other until recently. Polynomial-time
approximation algorithm produces a solution whose quality is guaranteed to lie
within a certain range from the optimum. One illustrative problem indicating
the development of this area is Independent Set. The approximability of In-

dependent Set within constant ratios has remained as the most important
open problems for a long time in the field. It was only after the novel charac-
terization of NP by PCP theorem [2] that such inapproximability was proven
assuming P �= NP. Subsequent improvements of the original PCP theorem led
to much stronger result for Independent Set: it is inapproximable within ra-
tios Ω(nε−1) for any ε > 0, unless P = NP [3].

Moderately exponential (subexponential, respectively) computation allows ex-
ponential (subexponential, respectively) running time for the sake of optimality.
In this case, the endeavor lies in limiting the growth of the running time function
as slow as possible. Parameterized complexity provides an alternative framework
to analyze the running time in a more refined way [4]. Given an instance with
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a parameter k, the aim is to get an O(f(k) · nc)-time (or equivalently, FPT-
time) algorithm for some constant c, where the constant c is independent of k.
As these two research programs offer a generous running time when compared
to that of classic approximation algorithms, a growing amount of attention is
paid to them as a way to cope with hardness in approximability. The first one
yields moderately exponential approximation. In moderately exponential approx-
imation, the core question is whether a problem is approximable in moderately
exponential time while such approximation is impossible in polynomial time.
Suppose a problem is solvable in time O∗(γn), but it is NP-hard to approxi-
mate within ratio r. Then, we seek for r-approximation algorithms of running
time significantly faster than O∗(γn). This issue has been considered for several
problems [5,6,7,13,17].

The second research program handles approximation by fixed parameter al-
gorithms. We say that a minimization (maximization, respecitvely) problem Π ,
together with a parameter k, is parameterized r-approximable if there exists an
FPT-time algorithm which computes a solution of size at most (at least, re-
spectively) rk whenever the input instance has a solution of size at most (at
least, respectively) k. This line of research was initiated by three independent
works [15,9,11]. For an excellent overview, see [22]. In what follows, parameteriza-
tion means “standard parameterization”, i.e., where problems are parameterized
by the cost of the optimal solution.

Several natural questions can be asked dealing with these two programs. In
particular, the following ones have been asked several times [22,15,17,7].

Q1: can a problem, which is highly inapproximable in polynomial time, be well-
approximated in subexponential time?
Q2: does a problem, which is highly inapproximable in polynomial time, become
well-approximable in FPT-time?

Few answers have been obtained until now. Regarding Q1, negative results
can be directly obtained by gap-reductions for certain problems. For instance,
Coloring is not approximable within ratio 4/3 − ε since this would allow to
determine whether a graph is 3-colorable or not in subexponential time. This
contradicts a widely-acknowledged computational assumption [19]:

Exponential Time Hypothesis (ETH): There exists an ε > 0 such that no
algorithm solves 3Sat in time 2εn, where n is the number of variables.

Regarding Q2, [15] shows that assuming FPT �= W[2], for any r the Indepen-

dent Dominating Set problem is not r-approximable1 in FPT-time.
Among interesting problems for which Q1 and Q2 are worth being asked are

Independent Set, Coloring and Dominating Set. They fit in the frame of
both Q1 and Q2 above: they are hard to approximate in polynomial time while
their approximability in subexponential or in parameterized time is still open.

In this paper, we study parameterized and subexponential (in)approximabi-
lity of natural optimization problems. In particular, we follow two guidelines:
1 Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for

any function g.
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(i) getting inapproximability results under some conjecture and (ii) establishing
classes of uniformly inapproximable problems under approximability preserving
reductions.

Following the first direction, we establish a link between a major conjecture in
PCP theorem and inapproximability in subexponential-time and in FPT-time,
assuming ETH. Just below, we state this conjecture while the definition of PCP
is deferred to the next section.

Linear PCP Conjecture (LPC): 3Sat ∈ PCP1,β[log |φ|+D, E] for some
β ∈ (0, 1), where |φ| is the size of the 3Sat instance (sum of lengths of
clauses), D and E are constant.

Unlike ETH which is arguably recognized as a valid statement, LPC is a wide
open question. In Lemma 1 stated in Section 2, we claim that if LPC turns out
to hold, it implies that one of the most interesting questions in subexponential
and parameterized approximation is answered in the negative. In particular, the
followings hold for Independent Set on n vertices, for any constant 0 < r < 1
assuming ETH:

(i) There is no r-approximation algorithm in time O(2n1−δ

) for any δ > 0.
(ii) There is no r-approximation algorithm in time O(2o(n)), if LPC holds.
(iii) There is no r-approximation algorithm in time O(f(k)nO(1)), if LPC holds.

Remark that (i) is not conditional upon LPC. In fact, this is an immediate
consequence of near-linear PCP construction achieved in [14]. Note that similar
inapproximability results under ETH for Max-3Sat and Max-3Lin for some
subexponential running time have been obtained in [24].

Following the second guideline, we show that a number of problems are equiv-
alent with respect to approximability in subexponential time. Designing a fam-
ily of equivalent problems is a common way to provide an evidence in favor of
hardness of these problems. One prominent example is the family of problems
complete under SERF-reducibility [19] which leads to equivalent formulations
of ETH. More precisely, for a given problem Π , let us formulate the following
hypothesis, which can be seen as the approximate counterpart of ETH.

Hypothesis 1 (APETH(Π)). There exist two constants ε > 0 and r (r <
1 if Π is a maximization problem, r > 1, otherwise), such that Π is not r-
approximable in time 2εn.

We prove that several well-known problems are equivalent with respect to the
APETH (APETH-equivalent). To this end, a notion called the approximation
preserving sparsification is proposed. A recipe to prove that two problems A and
B are APETH-equivalent consists of two steps. The first is to reduce an instance
of A into a family of instances in "bounded" version (bounded degree for graph
problems, bounded occurrence for satisfiability problems), which are equivalent
with respect to approximability. This step is where the proposed notion comes
into play. The second is to use standard approximability preserving reductions
to derive equivalences between bounded versions of A and B. In this paper,
we consider L-reductions [25] for this purpose. Furthermore, we show that if
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APETH fails for one of these problems, then any problem in MaxSNP would be
approximable for any constant ratio in subexponential FPT-time 2o(k), which is
also an evidence toward the validity of APETH. This result can be viewed as
an extension of [10], which states that none of MaxSNP hard problems allows
2o(k)-time algorithm under ETH.

Some preliminaries and notation are given in Section 2. Results derived from
PCP and LPC are given in Section 3. The second direction on equivalences
between problems is described in Section 4.

2 Preliminaries and Notation

We denote by PCPα,β[q, p] (see for instance [2] for more on PCP systems) the
set of problems for which there exists a PCP verifier which uses q random bits,
reads at most p bits in the proof and is such that: (1) if the instance is positive,
then there exists a proof such that V(erifier) accepts with probability at least α;
(2) if the instance is negative, then for any proof V accepts with probability at
most β. The following theorem is proved in [14] (see also Theorem 7 in [24]),
presenting a further refinement of the characterization of NP.

Theorem 1. [14] For every ε > 0,

3Sat ∈ PCP1,ε[(1 + o(1)) log n + O(log(1/ε)), O(log(1/ε))]

A recent improvement [24] of Theorem 1 (a PCP Theorem with two-query projec-
tion tests, sub-constant error and almost-linear size) has some important corol-
laries in polynomial approximation. In particular:

Corollary 1. [24] Under ETH, for every ε > 0, and δ > 0, it is impossible
to distinguish between instances of Max-3Sat with m clauses where at least
(1− ε)m are satisfiable from instances where at most (7/8 + ε)m are satisfiable,
in time O(2m1−δ

).

Under LPC, a stronger version of this result follows from standard argument2.

Lemma 1. If LPC3 and ETH hold, then there exists r < 1 such that for every
ε > 0 it is impossible to distinguish between instances of Max-3Sat with m
clauses where at least (1 − ε)m are satisfiable from instances where at most
(r + ε)m are satisfiable, in time 2o(m).

This (conditional) hardness result of approximating Max-3Sat will be the basis
of the negative results of parameterized approximation in Section 3.1.

Let us now present two useful gap amplification results for Independent

Set. First, as noted in [16], the so-called self-improvement property [18] can be
proven for Independent Set also in the case of parameterized approximation.

2 All missing proofs can be found in the extended version of the paper [1].
3 Note that LPC as expressed in this article implies the result even with replacing

(1 − ε)m by m. However, we stick with this lighter statement (1 − ε)m in order, in
particular, to emphasize the fact that perfect completeness is not required in the
LPC conjecture.
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Lemma 2. [16] If there exists a parameterized r-approximation algorithm for
some r ∈ (0, 1) for Independent Set, then this is true for any r ∈ (0, 1).

It is also well known that the very powerful tool of expander graphs allows to
derive the following gap amplification for Independent Set (see [1]).

Theorem 2. Let G be a graph on n vertices (for a sufficiently large n) and
a > b be two positive real numbers. Then for any real r > 0 one can build in
polynomial time a graph Gr and specify constants ar and br such that: (i) Gr

has N � Cn vertices, where C is some constant independent of G (but may
depend on r); (ii) if ω(G) � bn then ω(Gr) � brN ; (iii) if ω(G) � an then
ω(Gr) � arN ; (iv) br/ar � r.

Finally, we will use in the sequel the well known sparsification lemma [19]. Intu-
itively, this lemma allows to work with 3-SAT formula with linear lengths (the
sum of the lengths of clauses is linearly bounded in the number of variables).

Lemma 3. [19] For all ε > 0, a 3-SAT formula φ on n variables can be written
as the disjunction of at most 2εn 3-SAT formula φi on (at most) n variables
such that φi contains each variable in at most cε clauses for some constant cε.
Moreover, this reduction takes at most p(n)2εn time.

3 Some Consequences of (Almost-)Linear Size PCP
System

3.1 Parameterized Inapproximability Bounds

It is shown in [12] that, under ETH, for any function f no algorithm running in
time f(k)no(k) can determine whether there exists an independent set of size k,
or not (in a graph with n vertices). A challenging question is to obtain a similar
result for approximation algorithms for Independent Set. In the sequel, we
propose a reduction from Max-3Sat to Independent Set that, based upon
the negative result of Corollary 1, only gives a negative result for some function f
(because Corollary 1 only avoids some subexponential running times). However,
this reduction gives the inapproximability result sought, if the consequence of
LPC given in Lemma 1 (which strengthens Corollary 1 and seems to be a much
weaker assumption than LPC) is used instead. We emphasize the fact that the
results in this section are valid as soon as a hardness result for Max-3Sat as
that in Lemma 1 holds.

The proof of the following theorem essentially combines the parameterized
reduction in [12] and a classic gap-preserving reduction.

Theorem 3. Under LPC and ETH, there exists r < 1 such that, no parameter-
ized approximation algorithm for Independent Set running in time f(k)no(k)

can achieve approximation ratio r in graphs of order n.

The following result follows from Lemma 2 and Theorem 3.
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Corollary 2. Under LPC and ETH, for any r ∈ (0, 1) there is no r-approxi-
mation parameterized algorithm for Independent Set (i.e., an algorithm that
runs in time f(k)p(n) for some function f and some polynomial p).

Let us now consider Dominating Set which is known to be W[2]-hard [4].
The existence of parameterized approximation algorithms for this problem is
open [15]. Here, we present an approximation preserving reduction (fitting the
parameterized framework) which, given a graph G(V, E) on n vertices where V
is a set of K cliques C1, · · · , CK , builds a graph G′(V ′, E′) such that G has an
independent set of size α if and only if G′ has a dominating set of size 2K − α.
Using the fact that the graphs produced in the proof of Theorem 3 are of this
form (vertex set partitioned into cliques), this reduction will allow us to obtain
a lower bound (based on the same hypothesis) for the approximation of min

dominating set from Theorem 3.
The graph G′ is built as follows. For each clique Ci in G, add a clique C′

i of
the same size in G′. Add also: an independent set Si of size 3K, each vertex
in Si being adjacent to all vertices in C′

i and a special vertex ti adjacent to all
the vertices in C′

i. For each edge e = (u, v) with u and v not in the same clique
in G, add an independent set We of size 3K. Suppose that u ∈ Ci and v ∈ Cj .
Then, each vertex in We is linked to ti and to all vertices in C′

i but u, and tj
and all vertices in C′

j but v.
Informally, the reduction works as follows. The set Si ensures that we have

to take at least one vertex in each C′
i, the fact that |We| = 3K ensures that it

is never interesting to take a vertex in We. If we take ti in a dominating set,
this will mean that we do not take any vertex in the set Ci in the corresponding
independent set in G. If we take one vertex in C′

i (but not ti), this vertex will be
in the independent set in G. Let us state this property in the following lemma.

Lemma 4. G has an independent set of size α if and only if G′ has a dominating
set of size 2K − α.

Theorem 4. Under LPC and ETH, there exists an r > 1 such that there is
no r-approximation algorithm for Dominating Set running in time f(k)no(k)

where n is the order of the graph.

Such a lower bound immediately transfers to Set Cover since a graph on n ver-
tices for Dominating Set can be easily transformed into an equivalent instance
of Set Cover with ground set and set system both of size n.

Corollary 3. Under LPC and ETH, there exists r > 1 such that there is no r-
approximation algorithm for Set Cover running in time f(k)mo(k) in instances
with m sets.

3.2 On the Approximability of Independent Set and Related
Problems in Subexponential Time

As mentioned in Section 2, an almost-linear size PCP construction [24] for 3Sat

allows to get the negative result stated in Corollary 1. In this section, we present
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further consequences of Theorem 1, based upon a combination of known reduc-
tions with (almost) linear size amplifications of the instance.

First, Theorem 1 combined with the reduction in [2] showing inapproximabil-
ity results for Independent Set in polynomial time and the gap amplification
of Theorem 2, leads to the following result.

Theorem 5. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for Independent Set running in time O(2n1−δ

),
where n is the order of the input graph.

Since (for k � n), nk1−δ

= O(2n1−δ′
), for some δ′ < δ, the following holds.

Corollary 4. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for Independent Set (parameterized by k) running
in time O(nk1−δ

), where n is the order of the input graph.

The results of Theorem 5 and Corollary 4 can be immediately extended to prob-
lems that are linked to Independent Set by approximability preserving reduc-
tions (that preserve at least constant ratios) that have linear amplifications of
the sizes of the instances, as in the following proposition.

Proposition 1. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for either Set Packing or Bipartite Subgraph

running in time O(2n1−δ

) in a graph of order n.

Dealing with minimization problems, Theorem 5 and Corollary 4 can be extended
to Coloring, using the reduction given in [21]. Note that this reduction uses
the particular structure of graphs produced in the inapproximability result in [2]
(as in Theorem 5). Hence, the following result can be derived.

Proposition 2. Under ETH, for any r > 1 and any δ > 0, there is no r-
approximation algorithm for Coloring running in time O(2n1−δ

) in a graph of
order n.

Concerning the approximability of Vertex Cover and Min-Sat in subexpo-
nential time, the following holds.

Proposition 3. Under ETH, for any ε > 0 and any δ > 0, there is no (7/6 −
ε)-approximation algorithm for Vertex Cover running in time O(2n1−δ

) in
graphs of order n, nor for Min-Sat running in time 2m1−δ

in CNF formulæ
with m clauses.

All the results given in this section are valid under ETH and rule out some ratios
in subexponential time of the form 2n1−δ

. It is worth noticing that if LPC holds,
then all these results would hold for any subexponential time. Note that this is in
some sense optimal since it is easy to see that, for any increasing and unbounded
function r(n), Independent Set is approximable within ratio 1/r(n) in subex-
ponential time (simply consider all the subsets of V of size at most n/r(n) and
return the largest independent set among these sets).

Corollary 5. If LPC holds, under ETH the negative results of Theorem 5 and
Propositions 1, 2 and 3 hold for any time complexity 2o(n).
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4 Subexponential Approximation Preserving Reducibility

In this section, we study subexponential approximation preserving reducibility.
Recall that APETH(Π) (Hypothesis 1) states that it is hard to approximate in
subexponential time problem Π , within some constant ratio r. We exhibit that
a set of problems are APETH-equivalent using the notion of approximation
preserving sparsification. We then link APETH with approximation in subexpo-
nential FPT-time.

4.1 Approximation Preserving Sparsification and APETH
Equivalences

Recall that the sparsification lemma for 3Sat reduces a formula φ to a set
of formulae φi with bounded occurrences of variables such that solving the in-
stances φi would allow to solve φ. We attempt to build an analogous construction
for subexponential approximation using the notion of approximation preserving
sparsification. Given an optimization problem Π and some parameter of the in-
stance, Π-B denotes the problem restricted to instances where the parameter is
at most B. For example, we can prescribe the maximum degree of a graph or
the maximum number of literal occurrences as the parameter. Then Π-B would
be the problems restricted to instances with the parameter bounded by B.

Definition 1. An approximation preserving sparsification from a problem Π to
a bounded parameter version Π-B of Π is a pair (f, g) of functions such that,
given any ε > 0 and any instance I of Π:

1. f maps I into a set f(I, ε) = (I1, I2, . . . , It) of instances of Π, where t � 2εn

and ni = |Ii| � n; moreover, there exists a constant Bε (independent on I)
such that any Ii has parameter at most Bε;

2. for any i � t, g maps a solution Si of an instance Ii (in f(I, ε)) into a
solution S of I;

3. there exists an index i � t such that if a solution Si is an r-approximation
in Ii, then S = g(I, ε, Ii, Si) is an r-approximation in I;

4. f is computable in time O∗(2εn), and g is polynomial with respect to |I|.
With a slight abuse of notation, let APETH(Π-B) denote the hypothesis: ∃B
such that APETH(Π-B), meaning that Π is hard to approximate in subex-
ponential time even for some bounded parameter family of instances. Then the
following holds4.

Theorem 6. If there exists an approximation preserving sparsification from Π
to Π-B, then APETH(Π) if and only if APETH(Π-B).
4 Note that we could consider a more general definition, leading to the same theorem,

by allowing (1) a slight amplification of the size of Ii (ni � αn for some fixed α in
item 1), (2) an expansion of the ratio in item 3 (if Si is r-approximate S is h(r)
approximate where h(r) goes to one when r goes to one) and (3) a computation
time O∗(2εn) for g in item 4.
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We now illustrate this technique on some problems. It is worth noticing that
the sparsification lemma for 3Sat in [19] is not approximation preserving5; one
cannot use it to argue that approximating Max-3Sat (in subexponential time)
is equivalent to approximating Max-3Sat with bounded occurrences.

Proposition 4. There exists an approximation preserving sparsification from
Independent Set to Independent Set-B and one from Vertex Cover to
Vertex Cover-B.

Proof. Let ε > 0. It is well known that the positive root of 1 = x−1 + x−1−B

goes to one when B goes to infinity. Then, consider a Bε such that this root is
at most 2ε. Our sparsification is obtained via a branching tree: the leaves of this
tree will be the set of instances Ii; f consists of building this tree; a solution of
an instance in the leaf corresponds, via the branching path leading to this leaf,
to a solution of the root instance, and that is what g makes.

More precisely, for Independent Set, consider the following usual branching
tree, starting from the initial graph G: as long as the maximum degree is at least
Bε, consider a vertex v of degree at least Bε, and branch on it: either take v in
the independent set (and remove N [v]), or do not take it. The branching stops
when the maximum degree of the graph induced by the unfixed vertices is at
most Bε−1. When branching, at least Bε+1 vertices are removed when taking v,
and one when not taking v; thus the number of leaves is t � 2εn (by the choice
of Bε). Then, f and g satisfy items 1 and 2 of the definition. For item 3, it is
sufficient to note that g maps Si in S by adding adequate vertices. Then, if we
consider the path in the tree corresponding to an optimal solution S∗, leading
to a particular leaf Gi, we have that |S∗| = |S∗ ∩ Gi| + k for some k � 0, and
the solution S computed by g is of size |S| = |Si| + k. So, |S|

|S∗| � |Si|
|S∗∩Gi| � r

if Si is an r-approximation for Gi. The same argument holds also for Vertex

Cover. ��
Analogous arguments apply more generally to any problem where we have

a “sufficiently good” branching rule when the parameter is large. Indeed, sup-
pose we can ensure the decrease in instance size by g(B) for nondecreasing and
unbounded function g in all (possibly except for one) branches. Then such a
branching rule can be utilized to yield an approximation preserving sparsifica-
tion as in Proposition 4.

We give another approximation preserving sparsification, where there is no
direct branching rule allowing to remove a sufficiently large number of vertices.
Let Generalized Dominating Set be defined as follows: given a graph G =
(V, E) where V is partitioned into V1, V2, V3, we ask for a minimum size set of
vertices V ′ ⊆ V1 ∪ V2 which dominates all vertices in V2 ∪ V3. Of course, the
case V2 = V corresponds to the usual Dominating Set problem. Note that
Generalized Dominating Set is also a generalization of Set Cover, with
V2 = ∅, V3 being the ground set and V1 being the set system.
5 One of the reasons is that when a clause C is contained in a clause C′, a reduction rule

removes C′, that is safe for the satisfiability of the formula, but not when considering
approximation.
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Proposition 5. There exists an approximation preserving sparsification from
Generalized Dominating Set to Generalized Dominating Set-B.

Combining Proposition 5 with some reductions, the following can be shown.

Lemma 5. APETH(Dominating Set) implies APETH( Independent Set-
B).

Note that similarly, APETH(Set Cover) implies APETH(Independent Set-
B), when the complexity of Set Cover is measured by n + m.

Then, we have the following set of equivalent problems.

Theorem 7. Set Cover, Independent Set, Independent Set-B, Ver-

tex Cover, Vertex Cover-B, Dominating Set, Dominating Set-B, Max

Cut-B, 3Sat-B, Max-kSat-B (for any k � 2) are APETH-equivalent.

Proof. The equivalences between Vertex Cover-B, Independent Set-B,
Max Cut-B, 3Sat-B, Max-2Sat-B, Dominating Set-B follow immediately
from [25]. Indeed, for these problems [25] provides L-reductions with linear
size amplification. The equivalence between Max-kSat-B problems is also well
known (just replace a clause of size k by k − 1 clauses of size 3).

The equivalence between Independent Set and Independent Set-B, Ver-

tex Cover and Vertex Cover-B follows from Proposition 4. Finally, Lemma 5
allows us to conclude for Dominating Set. ��

4.2 APETH and Parameterized Approximation

The equivalence drawn in Theorem 7 gives a first intuition that the corresponding
problems should be hard to approximate in subexponential time for some ratio.
In this section we show another argument towards this hypothesis: if it fails, then
any MaxSNP problem admits for any r < 1 a parameterized r-approximation
algorithm in subexponential time 2o(k), which would be quite surprising. The
following theorem can be construed as an extension of [10].

Theorem 8. The following statements are equivalent:

(i) APETH(Π) holds for one (equivalently all) problem(s) in Theorem 7;
(ii) there exist a MaxSNP-complete problem Π, some ratio r < 1 and a con-

stant ε > 0 such that there is no parameterized r-approximation algorithm
for Π with running time O(2εkpoly(|I|));

(iii) for any MaxSNP-complete problem Π, there exist a ratio r < 1 and an
ε > 0 such that there is no parameterized r-approximation algorithm for Π
with running time O(2εkpoly(|I|)).

As an interesting complement of the above theorem, we show that trade-offs
between (exponential) running time and approximation ratio do exist for any
MaxSNP problem. In [8], it is shown that every MaxSNP problem Π is fixed-
parameter tractable in time 2O(k) for the standard parameterization, while in [25]
it is shown that Π is approximable in polynomial time within a constant ratio
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ρΠ . We prove here that there exists a family of parameterized approximation
algorithms achieving ratio ρΠ + ε, for any ε > 0, and running in time 2O(εk).
This is obtained as a consequence of a result in [20].

Proposition 6. Let Π be a standard parameterization of a MaxSNP-complete
problem. For any ε > 0, there exists a parameterized (ρΠ + ε)-approximation
algorithm for Π running in time γεk · poly(|I|) for some constant γ.

5 Conclusion

More interesting questions remain untouched in the junction of approximation
and (sub)exponential-time/FPT-time computations. This paper is only a first
step in this direction and we wish to motivate further research. Among a range
of problems to be tackled, we propose the followings.

– Our inapproximability results are conditional upon Linear PCP Conjecture.
Is it possible to relax the condition to a more plausible one?

– Or, we dare ask whether (certain) inapproximability results in FPT-time
imply strong improvement in PCP theorem. For example, would the converse
of Lemma 1 hold?

– Can we design approximation preserving sparsifications for problems like
Max Cut or Max-3Sat? It seems to be difficult to design a sparsifier based
on branching rules, so a novel idea is needed.

Note that we have considered in this article constant approximation ratios. As
noted earlier, ratio 1/r(n) is achievable in subexponential time for any increasing
and unbounded function r. However, dealing with parameterized approximation
algorithms, achieving a non-constant ratio is also an open question. More pre-
cisely, finding in FPT-time an independent set of size g(k) when there exists
an independent set of size k is not known for any unbounded and increasing
function g.

Finally, let us note that, in the same vein of the first part of our work, Math-
ieson [23] recently studied a proof checking view of parameterized complexity.
Possible links between these two approaches are worth being investigated in
future works.
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Abstract. We study the parameterized complexity of a broad class of
problems called “local graph partitioning problems” that includes the
classical fixed cardinality problems as max k-vertex cover, k-densest
subgraph, etc. By developing a technique that we call “greediness-for-
parameterization”, we obtain fixed parameter algorithms with respect to
a pair of parameters k, the size of the solution (but not its value) and Δ,
the maximum degree of the input graph. In particular, greediness-for-
parameterization improves asymptotic running times for these problems
upon random separation (that is a special case of color coding) and
is more intuitive and simple. Then, we show how these results can be
easily extended for getting standard-parameterization results (i.e., with
parameter the value of the optimal solution) for a well known local graph
partitioning problem.

1 Introduction

A local graph partitioning problem is a problem defined on some graph G =
(V, E) with two integers k and p. Feasible solutions are subsets V ′ ⊆ V of
size exactly k. The value of their solutions is a linear combination of sizes of
edge-subsets and the objective is to determine whether there exists a solution
of value at least or at most p. Problems as max k-vertex cover, k-densest
subgraph, k-lightest subgraph, max (k, n−k)-cut and min (k, n−k)-cut,
also known as fixed cardinality problems, are local graph partitioning problems.
When dealing with graph problems, several natural parameters, other than the
size p of the optimum, can be of interest, for instance, the maximum degree Δ of
the input graph, its treewidth, etc. To these parameters, common for any graph
problem, in the case of local graph partitioning problem handled here, one more
natural parameter of very great interest can be additionally considered, the size k
of V ′. For instance, most of these problems have mainly been studied in [1,2],
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from a parameterized point of view, with respect to parameter k, and have been
proven W[1]-hard. Dealing with standard parameterization, the only problems
that, to the best of our knowledge, have not been studied yet, are the max
(k, n − k)-cut and the min (k, n − k)-cut problems.

In this paper we develop a technique for obtaining multi-parameterized results
for local graph partitioning problems. Informally, the basic idea behind it is
the following. Perform a branching with respect to a vertex chosen upon some
greedy criterion. For instance, this criterion could be to consider some vertex v
that maximizes the number of edges added to the solution under construction.
Without branching, such a greedy criterion is not optimal. However, if at each
step either the greedily chosen vertex v, or some of its neighbors (more precisely,
a vertex at bounded distance from v) are a good choice (they are in an optimal
solution), then a branching rule on neighbors of v leads to a branching tree
whose size is bounded by a function of k and Δ, and at least one leaf of which
is an optimal solution. This method, called “greediness-for-parameterization”, is
presented in Section 2 together with interesting corollaries about particular local
graph partitioning problems.

The results of Section 2 can sometimes be easily extended to standard param-
eterization results. In Section 3 we study standard parameterization of the two
still unstudied fixed cardinality problems max and min (k, n−k)-cut. We prove
that the former is fixed parameter tractable (FPT), while, unfortunately, the sta-
tus of the latter one remains still unclear. In order to handle max (k, n−k)-cut
we first show that when p � k or p � Δ, the problem can be solved in polyno-
mial time. So, the only “non-trivial” case occurs when p > k and p > Δ. That
case is handled by greediness-for-parameterization. Unfortunately, this method
concludes inclusion of min (k, n−k)-cut in FPT only for some particular cases.
Note that in a very recent technical report by [3], Fomin et al., the following
problem is considered: given a graph G and two integers k, p, determine whether
there exists a set V ′ ⊂ V of size at most k such that at most p edges have exactly
one endpoint in V ′. They prove that this problem is FPT with respect to p. Let
us underline the fact that looking for a set of size at most k seems to be radically
different from looking for a set of size exactly k (as in min (k, n − k)-cut). For
instance, in the case k = n/2, the former becomes the min cut problem that is
in P, while the latter becomes the min bisection problem that is NP-hard.

In Section 4.1, we mainly revisit the parameterization by k but we handle
it from an approximation point of view. Given a problem Π parameterized by
parameter � and an instance I of Π , a parameterized approximation algorithm
with ratio g(.) for Π is an algorithm running in time f(�)|I|O(1) that either finds
an approximate solution of value at least/at most g(�)�, or reports that there is
no solution of value at least/at most �. We prove that, although W[1]-hard for
the exact computation, max (k, n − k)-cut has a parameterized approximation
schema with respect to k and min (k, n − k)-cut a randomized parameterized
approximation schema. These results exhibit two problems which are hard with
respect to a given parameter but which become easier when we relax exact com-
putation requirements and seek only (good) approximations. To our knowledge,
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the only other problem having similar behaviour is another fixed cardinality
problem, the max k-vertex cover problem, where one has to find the sub-
set of k vertices which cover the greatest number of edges [4]. Note that the
existence of problems having this behaviour but with respect to the standard
parameter is an open (presumably very difficult to answer) question in [4]. Let
us note that polynomial approximation of min (k, n − k)-cut has been studied
in [5] where it is proven that, if k = O(log n), then the problem admits a ran-
domized polynomial time approximation schema, while, if k = Ω(log n), then it
admits an approximation ratio (1 + εk

log n ), for any ε > 0. Approximation of max
(k, n − k)-cut has been studied in several papers and a ratio 1/2 is achieved
in [6] (slightly improved with a randomized algorithm in [7]), for all k.

Finally, in Section 4.2, we handle parameterization of local graph partitioning
problems by the treewidth tw of the input graph and show, using a standard
dynamic programming technique, that they admit an O∗(2tw)-time FPT algo-
rithm, where the O∗(·) notation ignores polynomial factors. Let us note that the
interest of this result, except its structural aspect (many problems for the price
of a single algorithm), lies also in the fact that some local partitioning problems
(this is the case, for instance, of max and min (k, n − k)-cut) do not fit Cour-
celle’s Theorem [8]. Indeed, max and min bisection are not expressible in MSO
since the equality of the cardinality of two sets is not MSO-definable. In fact, if
one could express that two sets have the same cardinality in MSO, one would be
able to express in MSO the fact that a word has the same number of a’s and b’s,
on a two-letter alphabet, which would make that the set E = {w : |w|a = |w|b}
is MSO-definable. But we know that, on words, MSO-definability is equivalent
to recognizability; we also know by the standard pumping lemma (see, for in-
stance, [9]) that E is not recognizable [10], a contradiction. Hence, max and
min (k, n−k)-cut are not expressible in MSO; consequently, the fact that those
two problems, parameterized by treewidth (tw) are FPT cannot be obtained
by Courcelle’s Theorem. Furthermore, even several known extended variants
of MSO which capture more problems [11], do not seem to be able to express
the equality of two sets either.

For reasons of limits to the paper’s size, some of the results of the paper are
given without proofs that can be found in [12].

2 Greediness-for-Parameterization

We first formally define the class of local graph paritioning problems.

Definition 1. A local graph partitioning problem is a problem having as input
a graph G = (V, E) and two integers k and p. Feasible solutions are subsets
V ′ ⊆ V of size exactly k. The value of a solution, denoted by val(V ′), is a
linear combination α1m1 +α2m2 where m1 = |E(V ′)|, m2 = |E(V ′, V \V ′)| and
α1, α2 ∈ R, where E(X) is the set of edges in the subgraph G[X ] induced by X,
and E(X, Y ) is the set of edges having one endpoint in X and one endpoint in
Y . The goal is to determine whether there exists a solution of value at least p
(for a maximization problem) or at most p (for a minimization problem).
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Note that α1 = 1, α2 = 0 corresponds to k-densest subgraph and k-sparsest
subgraph, while α1 = 0, α2 = 1 corresponds to (k, n−k)-cut, and α1 = α2 = 1
gives k-coverage. As a local graph partitioning problem is entirely defined by
α1, α2 and goal ∈ {min, max} we will unambiguously denote by L(goal , α1, α2)
the corresponding problem. For conciseness and when no confusion is possible,
we will use local problem instead. In the sequel, k always denotes the size of
feasible subset of vertices and p the standard parameter, i.e., the solution-size.
Moreover, as a partition into k and n − k vertices, respectively, is completely
defined by the subset V ′ of size k, we will consider it to be the solution. A partial
solution T is a subset of V ′ with less than k vertices. Similarly to the value of a
solution, we define the value of a partial solution, and denote it by val (T ).

Informally, we devise algorithms for local problems that add vertices to an ini-
tially empty set T (for “taken” vertices) and stop when T becomes of size k, i.e.,
when T itself becomes a feasible solution. A vertex introduced in T is irrevocably
introduced there and will be not removed later.
Definition 2. Given a local graph partitioning problem L(goal , α1, α2), the con-
tribution of a vertex v within a partial solution T (such that v ∈ T ) is defined
by δ(v, T ) = 1

2 α1|E({v}, T )| + α2|E({v}, V \ T )|.
Note that the value of any (partial) solution T satifies val (T ) = Σv∈T δ(v, T ).
One can also remark that δ(v, T ) = δ(v, T ∩ N(v)), where N(v) denotes the
(open) neighbourhood of the vertex v. Function δ is called the contribution func-
tion or simply the contribution of the corresponding local problem.
Definition 3. Given a local graph partitioning problem L(goal , α1, α2), a con-
tribution function is said to be degrading if for every v, T and T ′ such that
v ∈ T ⊆ T ′, δ(v, T ) � δ(v, T ′) for goal = min (resp., δ(v, T ) � δ(v, T ′) for
goal = max).
Note that it can be easily shown that for a maximization problem, a contribution
function is degrading if and only if α2 � α1/2 (α2 � α1/2 for a minimization
problem). So in particular max k-vertex cover, k-sparsest subgraph and
max (k, n − k)-cut have a degrading contribution function.
Theorem 1. Every local partitioning problem having a degrading contribution
function can be solved in O∗(Δk).

Proof. With no loss of generality, we carry out the proof for a minimization local
problem L(min, α1, α2). We recall that T will be a partial solution and eventually
a feasible solution. Consider the following algorithm ALG1(T ,k) which branches
upon the closed neighborhood N [v] of a vertex v minimizing the greedy criterion
δ(v, T ∪ {v}):

– set T = ∅;
• if k > 0 then:

∗ pick the vertex v ∈ V \ T minimizing δ(v, T ∪ {v});
∗ for each vertex w ∈ N [v] \ T run ALG1(T ∪ {w},k − 1);

• else (k = 0), store the feasible solution T ;
• output the best among the solutions stored.
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The branching tree of ALG1 has depth k, since we add one vertex at each recursive
call, and arity at most maxv∈V |N [v]| = Δ + 1, where N [v] denotes the closed
neighbourhood of v. Thus, the algorithm runs in O∗(Δk).

For the optimality proof, we use a classical hybridation technique between
some optimal solution and the one solution computed by ALG1.

Consider an optimal solution V ′
opt different from the solution V ′ computed by

ALG1. A node s of the branching tree has two characteristics: the partial solution
T (s) at this node (denoted simply T if no ambiguity occurs) and the vertex
chosen by the greedy criterion v(s) (or simply v). We say that a node s of the
branching tree conforms with the optimal solution V ′

opt if T (s) ⊆ V ′
opt. A node

s deviates from the optimal solution V ′
opt if none of its sons conforms with V ′

opt.
We start from the root of the branching tree and, while possible, we move

to a conform son of the current node. At some point we reach a node s which
deviates from V ′

opt. We set T = T (s) and v = v(s). Intuitively, T corresponds to
the shared choices between the optimal solution and ALG1 made along the branch
from the root to the node s of the branching tree. Setting Vn = V ′

opt \T , Vn does
not intersect N [v], otherwise s would not be deviating.

Vn

T

v

z

N [v] \ T

Fig. 1. Situation of the input graph at a deviating node of the branching tree. The
vertex v can substitute z since, by the hypothesis, N [v] \ T and Vn are disjoint and the
contribution of a vertex can only decrease when we later add some of its neighbors in
the solution.

Choose any z ∈ V ′
opt \ T and consider the solution induced by the set Ve =

V ′
opt∪{v}\{z}. We show that this solution is also optimal. Let Vc = V ′

opt\{z}. We
have val (Ve) = Σw∈Vcδ(w, Ve) + δ(v, Ve). Besides, δ(v, Ve) = δ(v, Ve ∩ N(v)) =
δ(v, T ∪{v}) since Ve\(T ∪{v}) = Vn and according to the last remark of the pre-
vious paragraph, N(v)∩Vn = ∅. By the choice of v, δ(v, T ∪{v}) � δ(z, T ∪{z}),
and, since δ is a degrading contribution, δ(z, T ∪ {z}) � δ(z, V ′

opt). Summing
up, we get δ(v, Ve) � δ(z, V ′

opt) and val (Ve) � Σw∈Vcδ(w, Ve) + δ(z, V ′
opt). Since

v is not in the neighborhood of V ′
opt \ T = Vn only z can degrade the contri-

bution of those vertices, so Σw∈Vcδ(w, Ve) � Σw∈Vcδ(w, V ′
opt), and val (Ve) �

Σw∈Vcδ(w, V ′
opt) + δ(z, V ′

opt) = val (V ′
opt).

Thus, by repeating this argument at most k times, we can conclude that the
solution computed by ALG1 is as good as V ′

opt.
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Corollary 1. max k-vertex cover, k-sparsest subgraph and max (k, n−
k)-cut can be solved in O∗(Δk).

As mentioned before, the local problems mentioned in Corollary 1 have a de-
grading contribution.
Theorem 2. Every local partitioning problem can be solved in O∗((Δk)2k).

Proof (Sketch of proof). Once again, with no loss of generality, we prove the
theorem in the case of minimization, i.e., L(min, α1, α2). The proof of Theorem 2
involves an algorithm fairly similar to ALG1 but instead of branching on a vertex
chosen greedily and its neighborhood, we will branch on sets of vertices inducing
connected components (also chosen greedily) and the neighborhood of those sets.

Let us first state the following straightforward lemma that bounds the number
of induced connected components and the running time to enumerate them.
Lemma 1. One can enumerate the connected induced subgraphs of size up to k
in time O∗(Δ2k).
Consider now the following algorithm ALG2(T ,k):

– set T = ∅;
• if k > 0 then, for each i from 1 to k:

∗ find Si ∈ V \ T minimizing val(T ∪ Si) with Si inducing a connected
component of size i;

∗ for each i, for each v ∈ Si, run ALG2(T ∪ {v},k − 1);
• else (k = 0), stock the feasible solution T ;

output the stored feasible solution T minimizing val(T ).

The branching tree of ALG2 has size O(k2k). Computing the Si in each node takes
time O∗(Δ2k) according to Lemma 1. Thus, the algorithm runs in O∗((Δk)2k).

For the optimality of ALG2, we use the following lemma.
Lemma 2. Let A,B,X,Y be pairwise disjoint sets of vertices such that val (A ∪
X) � val (B ∪ X), N [A] ∩ Y = ∅ and N [B] ∩ Y = ∅. Then, val (A ∪ X ∪ Y ) �
val (B ∪ X ∪ Y ).
We now show that ALG2 is sound, using again hybridation between an optimal
solution V ′

opt and the one solution found by ALG2. We keep the same notation
as in the proof of the soundness of ALG1. Node s is a node of the branching
tree which deviates from V ′

opt, all nodes in the branch between the root and s
conform with V ′

opt, the shared choices constitute the set of vertices T = T (s)
and, for each i, set Si = Si(s) (analogously to v(s) in the previous proof, s is
now linked to the subsets Si computed at this node). Set Vn = V ′

opt \ T . Take
a maximal connected (non empty) subset H of Vn. Set S = S|H| and consider
Ve = V ′

opt \ H ∪ S = (T ∪ Vn) \ H ∪ S = T ∪ S ∪ (Vn \ H). Note that, by
hypothesis, N [S] ∩ Vn = ∅ since s is a deviating node. By the choice of S at
the node s, val (T ∪ S) � val (T ∪ H). So, val (Ve) = val (T ∪ S ∪ (Vn \ H)) =
val (T ∪H ∪(Vn \H)) = val (T ∪Vn) = val (V ′

opt) according to Lemma 2, since by
construction neither N [H ] nor N [S], do intersect Vn \H . Iterating the argument
at most k times we get to a leaf of the branching tree of ALG2 which yields a
solution as good as V ′

opt. The proof of the theorem is now completed.
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Vn \ H

S

T

H

Hc

Fig. 2. Illustration of the proof, with filled vertices representing the optimal solution
V ′

opt and dotted vertices representing the set S = S|H| computed by ALG2 which can
substitute H , since Vn does not interact with Hc nor with S

Corollary 2. k-densest subgraph and min (k, n − k)-cut can be solved in
O∗((Δk)2k).

Here also, simply observe that the problems mentioned in Corollary 2 are local
graph partitioning problems.

Theorem 1 improves the O∗(2(Δ+1)k ((Δ + 1)k)log((Δ+1)k)) time complexity
for the corresponding problems given in [13] obtained there by the random sep-
aration technique, and Theorem 2 improves it whenever k = 2o(Δ). Recall that
random separation consists of randomly guessing if a vertex is in an optimal
subset V ′ of size k (white vertices) or if it is in N(V ′) \ V ′ (black vertices).
For all other vertices the guess has no importance. As a right guess concerns
at most only k + kΔ vertices, it is done with high probability if we repeat ran-
dom guesses f(k, Δ) times with a suitable function f . Given a random guess,
i.e., a random function g : V → {white,black}, a solution can be computed in
polynomial time by dynamic programming. Although random separation (and
a fortiori color coding [14]) have also been applied to other problems than local
graph partitioning ones, greediness-for-parameterization seems to be quite gen-
eral and improves both running time and easiness of implementation since our
algorithms do not need complex derandomizations.

Let us note that the greediness-for-parameterization technique can be even
more general, by enhancing the scope of Definition 1 and can be applied to prob-
lems where the objective function takes into account not only edges but also ver-
tices. The value of a solution could be defined as a function val : P(V ) → R such
that val (∅) = 0, the contribution of a vertex v in a partial solution T is δ(v, T ) =
val (T ∪v)−val (T ). Thus, for any subset T , val (T ) = val (T \{vk})+δ(vk, T \{vk})
where k is the size of T and vk is the last vertex added to the solution. Hence,
val (T ) = Σ1�i�kδ(vi, {v1, . . . , vi−1}) + val (∅) = Σ1�i�kδ(vi, {v1, . . . , vi−1}).
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Now, the only hypothesis we need to show Theorem 2 is the following: for each
T ′ such that (N(T ′) \ T ) ∩ (N(v) \ T ) = ∅, δ(v, T ∪ T ′) = δ(v, T ).

Notice also that, that under such modification, max k-dominating set, ask-
ing for a set V ′ of k vertices that dominate the highest number of vertices in
V \ V ′ fulfills the enhancement just discussed. We therefore derive the following.

Corollary 3. max k-dominating set can be solved in O∗((Δk)2k).

V1 V2

v′

?
?

v
Swap

(a) Vertices v ∈ V2 and v′ ∈ V1
(that has at least one neighbor in
V1) will be swapped.

V1 V2

v

?
?

v′

(b) With the swapping the cut size
increases.

Fig. 3. Illustration of a swapping

3 Standard Parameterization for Max and Min
(k, n − k)-Cut

3.1 Max (k, n − k)-Cut

In the sequel, we use the standard notation G[U ] for any U ⊆ V to denote
the subgraph induced by the vertices of U . In this section, we show that max
(k, n − k)-cut parameterized by the standard parameter, i.e., by the value p of
the solution, is FPT. Using an idea of bounding above the value of an optimal
solution by a swapping process (see Figure 3), we show that the non-trivial case
satisfies p > k. We also show that p > Δ holds for non trivial instances and
get the situation illustrated in Figure 4. The rest of the proof is an immediate
application of Corollary 1.

n
2 nk n − kp

Δ

Fig. 4. Location of parameter p, relatively to k and Δ
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Lemma 3. In a graph with minimum degree r, the optimal value opt of a max
(k,n-k)-cut satisfies opt � min{n − k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V, E) into two sub-
sets V1 and V2 of size k and n − k, respectively. Then, for every vertex v ∈ V2,
we check if v has a neighbor in V1. If not, we try to swap v and a vertex v′ ∈ V1
which has strictly less than r neighbors in V2 (see Figure 3). If there is no such
vertex, then every vertex in V1 has at least r neighbors in V2, so determining a
cut of value at least rk. When swapping is possible, as the minimum degree is r
and the neighborhood of v is entirely contained in V2, moving v from V2 to V1
will increase the value of the cut by at least r. On the other hand, moving v′

from V1 to V2 will reduce the value of the cut by at most r − 1. In this way, the
value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is
possible), or every vertex in V2 has increased the value of the cut by at least 1
(either immediately, or after a swapping process), which results in a cut of value
at least n − k, and the proof of the lemma is completed.

Corollary 4. In a graph with no isolated vertices, the optimal value for max
(k, n − k)-cut is at least min{n − k, k}.

Then, Corollary 1 suffices to conclude the proof of the the following theorem.

Theorem 3. The max (k, n − k)-cut problem parameterized by the standard
parameter p is FPT.

3.2 Min (k, n − k)-Cut

Unfortunately, unlike what have been done for max (k, n − k)-cut, we have not
been able to show until now that the case p < k is “trivial”. So, Algorithm ALG2
in Section 2 cannot be transformed into a standard FPT algorithm for this
problem.

However, we can prove that if p � k, then min (k, n − k)-cut parameterized
by the value p of the solution is FPT. This is an immediate corollary of the
following proposition.

Proposition 1. min (k, n − k)-cut parameterized by p + k is FPT.

Proof. Each vertex v such that |N(v)| � k +p has to be in V \V ′ (of size n−k).
Indeed, if one puts v in V ′ (of size k), among its k + p incident edges, at least
p + 1 leave from V ′; so, it cannot yield a feasible solution. All the vertices v such
that |N(v)| � k + p are then rejected. Thus, one can adapt the FPT algorithm
in k + Δ of Theorem 2 by considering the k-neighborhood of a vertex v not in
the whole graph G, but in G[T ∪ U ]. One can easily check that the algorithm
still works and since in those subgraphs the degree is bounded by p + k we get
an FPT algorithm in p + k.
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In [5], it is shown that, for any ε > 0, there exists a randomized (1 + εk
log n )-

approximation for min (k, n − k)-cut. From this result, we can easily derive
that when p < log n

k then the problem is solvable in polynomial time (by a
randomized algorithm). Indeed, fixing ε = 1, the algorithm in [5] is a (1+ k

log(n) )-
approximation. This approximation ratio is strictly better than 1+ 1

p . This means
that the algorithm outputs a solution of value lower than p + 1, hence at most
p, if there exists a solution of value at most p.

We now conclude this section by claiming that, when p � k, min (k, n−k)-cut
can be solved in time O∗(np).

Proposition 2. If p � k, then min (k, n−k)-cut can be solved in time O∗(np).

4 Other Parameterizations

4.1 Parameterization by k and Approximation of Max and Min
(k, n − k)-Cut

Recall that both max and min (k, n − k)-cut parameterized by k are W[1]-
hard [2,1]. In this section, we give some approximation algorithms working in
FPT time with respect to parameter k.

Proposition 3. max (k, n − k)-cut, parameterized by k has a fixed-parameter
approximation schema. On the other hand, min (k, n − k)-cut parameterized
by k has a randomized fixed-parameter approximation schema.

Finding approximation algorithms that work in FPT time with respect to param-
eter p is an interesting question. Combining the result of [5] and an O(log1.5(n))-
approximation algorithm in [7] we can show that the problem is O(k3/5)
approximable in polynomial time by a randomized algorithm. But, is it possible
to improve this ratio when allowing FPT time (with respect to p)?

4.2 Parameterization by the Treewidth

When dealing with parameterization of graph problems, some classical param-
eters arise naturally. One of them, very frequently used in the fixed parameter
literature is the treewidth of the graph.

It has already been proven that min and max (k, n − k)-cut, as well as k-
densest subgraph can be solved in O∗(2tw) [15,16]. We show here that the
algorithm in [15] can be adapted to handle the whole class of local problems,
deriving so the following result.

Proposition 4. Any local graph partitioning problem can be solved in time
O∗(2tw).

Corollary 5. Restricted to trees, any local graph partitioning problem can be
solved in polynomial time.
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Corollary 6. min bisection parameterized by the treewidth of the input graph
is FPT.

It is worth noticing that the result easily extends to the weighted case (where
edges are weighted) and to the case of partitioning V into a constant number of
classes (with a higher running time).

Perspectives. Of course, the main remaining open question is the parameter-
ized complexity of min (k, n−k)-cut with respect to the value of the solution p.
Another problem of interest is to look for a better algorithm for local graph par-
titioning problem in general. For instance, we can not rule out a time-complexity
in O∗((aΔ)bk), with a and b two constants, which would be really closer to the
O∗(Δk) complexity of the degrading contribution case.
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In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 601–
612. Springer, Heidelberg (2008)

12. Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter complex-
ity analysis for constrained size graph problems: using greediness for parameteri-
zation. CoRR abs/1306.2217 (2013)

13. Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solv-
ing fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)



Multi-parameter Complexity Analysis for Constrained Size Graph Problems 77

14. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42, 844–856
(1995)

15. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and
approximation algorithms for densest k-subgraph. In: Ghosh, S.K., Tokuyama,
T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 114–125. Springer, Heidelberg
(2013)

16. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)



Chain Minors Are FPT

Jaros�law B�lasiok1 and M. Kamiński2
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Abstract. Given two finite posets P and Q, P is a chain minor of Q if
there exists a partial function f from the elements of Q to the elements
of P such that for every chain in P there is a chain CQ in Q with the
property that f restricted to CQ is an isomorphism of chains.

We give an algorithm to decide whether a poset P is a chain minor of
a poset Q that runs in time O(|Q| log |Q|) for every fixed poset P . This
solves an open problem from the monograph by Downey and Fellows
[Parameterized Complexity, 1999] who asked whether the problem was
fixed parameter tractable.

Keywords: partially ordered sets, parameterized complexity, data struc-
tures and algorithms.

1 Introduction

It is widely believed that NP-hard problems do not admit polynomial-time de-
terministic algorithms. Nevertheless, such problems tend to appear in practical
applications and it is necessary to deal with them anyway. Among many ap-
proaches to NP-hard problems parameterized complexity has recently received a
lot of attention. It was first studied systematically by Downey and Fellows in [2].
The main idea of parameterized complexity is to equip the instance of a problem
with a parameter and confine the superpolynomial behaviour of the algorithm
to the parameter. Here we can efficiently solve large instances of the problem as
long as the parameter is small.

Parameterized complexity. More formally, an instance of a parameterized prob-
lem is a pair (I, k) where k ∈ N. XP is the class of parameterized problems such
that for every k there is an algorithm that solves that problem in time O(|I|f(k)),
for some function f (that does not depend on I). One example is the Clique

problem parameterized by the size of the clique defined as follows: given (G, k)
where G is graph and k is a natural number, is there a clique of size k in G?
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One can simply enumerate all k-subsets of vertices to solve the problem in time
O(nk+2), hence, in time polynomial for every fixed k.

Much more desirable parameterized complexity is FPT. A parameterized
problem is called fixed parameter tractable (FPT) if there is an algorithm that
for every instance (I, k) solves the problem in time O(f(k)|I|c) for some function
f (that does not depend on |I|). That is, for a fixed parameter k, the problem is
solvable in polynomial time and the degree of the polynomial does not depend
on k. Satisfability of boolean formulae parameterized by number of variables
is FPT; it can be solved by a brute force algorithm in time O(2km) where m is
size of the instance.

In their monograph [2], Downey and Fellows included a list of open problems,
asking whether they admit an FPT solution (“FPT suspects”) or are hard by
means of parameterized complexity (“tough customers”). Recently, Fomin and
Marx have revised this list of problems [3]. Many of the problems from the
original list have been solved since the publication of [2], yet Chain minor

remains open. It was listed as a “tough customer” – suspecting it is not fixed
parameter tractable. However, we prove otherwise.

Chain minors. Chain minors were introduced by Möring and Müller in [6] in the
context of scheduling stochastic project networks and first studied systematically
by Gustedt in [4] and in his PhD thesis [5]. Gustedt proved that finite posets
are well quasi ordered by chain minors, that is, in any infinite sequence of posets
there is a pair of posets such that one is a chain minor of the other. A consequence
of this fact is that any class of posets closed under taking chain minors can be
characterized by a finite family of minimal forbidden posets.

The Chain minor problem is to decide, given two posets P and Q, whether P
is a chain minor of Q. The parameterized approach to Chain Minor is justified
as Gustedt showed in [4] that Chain Minor is NP-hard (giving a reduction
from Precendence Constrained Scheduling). Note that it is not known
whether Chain Minor is NP-complete. There is no obvious nondeterministic
polynomial-time algorithm for that problem, except for a very simple case —
Gustedt in his PhD thesis has proved that Chain Minor is NP-complete when
restricted to posets of height at most 3.

Our results. Gustedt also gave an XP algorithm for the Chain Minor problem
[5]. More specifically, he gave an algorithm that checks whether P is a chain
minor of Q in time O(|P |2|Q||P | + f(|P |)). We improve his result, giving two
fixed parameter tractable algorithms (parameterized by |P |) — randomized and
deterministic — where the former one runs in O(f(|P |)|Q|) time and the latter
in O(f(|P |)|Q| log |Q|) time. Both algorithms need linear memory.

The technique that we use to design the FPT algorithm is called color coding
and was originally developed by Alon, Yster, and Zwick in [1] to give the first
FPT algorithm for the k-Path problem (= finding a path of size k in a given
graph). Since then, this technique has been successfully applied many times, yet
in most of those examples colors where introduced artificially (as in k-Path).
In our case, they are naturally derived from the problem definition.
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2 Definitions and Basic Facts

A finite partially ordered set (poset) is a pair (V,<) where V is a finite set and
< is a binary relation on V that is transitive, irreflexive, and antisymmetric.
A chain in a poset is a sequence of elements (v1, v2, . . . vn), vi ∈ V such that
vi < vj , for all 1 ≤ i < j ≤ n.

Given two finite posets P = (VP , <P ) and Q = (VQ, <Q), we say that P
is a chain minor of Q (P � Q) if and only if there exists a partial function
f : VQ −→ VP with a property that for every chain (c1, c2, . . . , cn) in P there is
a chain (c′1, c

′
2, . . . c

′
n) in Q such that f(c′i) = ci. In this case, we call f a witness

for P � Q and we write P �f Q. It is easy to check that � is a quasi-order
(transitive and antisymmetric). One can easily check that if VP ⊆ VQ and <P is
induced by <Q (that is, P is subposet of Q), then P is also a chain minor of Q.

0,3

1,4,7

2,8

6

5,9

0

7

8

6

9

1

2

3

4

5

Fig. 1. The left poset P is a chain minor of the right poset Q as certified by the witness
function from the elements of the Q to the elements of P

3 Algorithm

Our goal is to present a deterministic FPT algorithm. We will start with a
randomized algorithm and use a standard technique (of splitters) to derandomize
it at the price of slightly worse time complexity. However, we need some auxiliary
lemmas first.

Lemma 1. There is a deterministic algorithm which given two posets P and
Q and a partial function f : VQ −→ VP determines whether P �f Q in time
O(2|P ||Q|).

Proof. For q ∈ Q, let pred(q) be the set of elements less or equal to q in Q, that
is, pred(q) = {q′ ∈ Q : q′ ≤ q}. It is enough to iterate over all chains of P ,
and for every chain (c1, c2, . . . , cp) consider only those vertices of VQ which are
mapped by f to any of ci — let us call them Q′. Let us now consider vertices



Chain Minors Are FPT 81

from Q′ in topological order. For every vertex q, let us compute the maximum j
such that one can find a chain c′1, c

′
2, . . . , c

′
j in set pred(q) (we require f(c′i) = ci).

Let us call that value maxc(q).
To calculate maxc(q) knowing maxc of every predecessor, we just take

maxc(q) =

{
j if maxv<q maxc(v) = j − 1 ∧ f(q) = cj
maxv<q maxc(v) otherwise

The solution can be read off from maxc values. ��
Lemma 2. Let P and Q be finite posets and k = |P |. If P �f Q, then there is
a subposet Q0 of Q of size at most 2kk such that if f ′ is equal to f on Q0, then
P �f ′

Q.

Proof. Let P �f Q and let C be the set of all chains in P . C has at most 2k

elements (as any subset of the elements from VP forms at most one chain). For
every chain c = (c1, . . . , cnc) ∈ C, take an arbitrary chain (c′1, . . . , c

′
nc
) in Q such

that f(c′i) = ci, for i = 1, . . . , nc.
Now let VQ0 be

⋃
c{c′1, c′2, . . . , c′nc

}. Notice that |VQ0 | ≤
∑

c∈C nc ≤
∑

c∈C k ≤
2kk. If f ′ is equal to f on Q0, we have to check that given a chain c1, c2, . . . cnc

in P one can find preimages with respect to f ′ of the elements of that chain such
that the preimages form a chain in Q. It suffices to take the elements c′i from
above; they belong to Q0 by definition, thus f ′(c′i) = f(c′i) = ci for i = 1, . . . , nc

and the elements c′1, . . . , c
′
n were chosen to be a chain. ��

3.1 Randomized Algorithm

Now we will state and prove a key lemma for Theorem 1.

Lemma 3. If P � Q, then a function g : VQ −→ VP taken uniformly at random
from the set of all such functions is a witness for P � Q with probability at least

k−2kk, where k = |P |.
Proof. Let f be a witness for P � Q. Now take Q0 as in Lemma 2. It follows
from Lemma 2 that it is sufficient to show that a function g taken uniformly at
random is equal to f on Q0 with high probability, as the probability of g being a
witness for P � Q is at least as large. Now the lemma follows from the following
simple calculation.

P(P �g Q) ≥ P(g|Q0 = f |Q0)

=
∏
v∈Q0

P(g(v) = f(v))

=
∏
v∈Q0

1

k

= k−2kk.

��
Now we are ready to prove Theorem 1.
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Theorem 1. There is a randomized algorithm for Chain Minor with time

complexity O(|P |2
|P ||P |

2|P ||Q|) and linear space complexity.

Proof. Let k = |P |. It is enough to repeat the following procedure k2
kk times:

take a random function g and check whether it is a witness for P � Q. If any of
those function is a witness, return Yes; otherwise, return No. The desired time
and space complexity follow from Lemma 1. Lemma 3 bounds the probability of
an error by a constant. Indeed, if P � Q, then the probability that the algorithm

answers No is not greater then (1− 1/pk)
pk , where pk = k2

kk, which is bounded
by (1− 1/2)2, for k ≥ 2 (and tends to 1/e as k tends to infinity). ��

3.2 Deterministic Algorithm

We will derandomize the algorithm from Theorem 1 using a well-known deran-
domization technique of splitters. A (n, k, l)-splitter is a family of functions F ,
F � f : {1, . . . n} −→ {1, . . . , l}, such that for every W ⊆ {1 . . . n} of size at
most k there is some function f ∈ F which is injective on W . We will need the
following theorem by Naor, Schulman, and Srinivasan from [7].

Theorem 2. ([7]) There exists a (n, k, k)-splitter that can be constructed in time
O(ekkO(log k)n logn).

Theorem 3. There is a deterministic algorithm for Chain Minor with time

complexity O(|P |2|P ||P |2|P |+O(log2 |P |)|Q| log |Q|) and linear space complexity.

Proof. Given P and Q, let us take k = |P |, n = |Q|. Fix a bijection between
{1 . . . n} and VQ. Let’s fix a (n, 2kk, 2kk) splitter, and iterate through every func-
tion from that splitter and every function from the set {1, . . . , 2kk} to P . Then
check whether the composition of these two functions is a witness for P � Q.

To prove correctness of the algorithm, let us consider P �f Q and take Q0 as
in Lemma 2. It follows from the definition of splitters that there exists a function
f , such that f is injective on Q0. Then, just because we iterate over all functions
from the set {1, . . . k2k} to P at some point we take one, such that the composition
equals f when restricted to Q0. This pair yields a witness for P � Q. ��

4 Conclusions

1. It is easy to prove that every class of posets closed under taking of chain
minors can be characterized by a set of minimal forbidden chain minors.
Gustedt proved in [5] that posets are well quasi ordered. Consequently, each
such set of forbidden chain minors is finite. Gustedt also gave an XP al-
gorithm to decide whether a poset H is a chain minor of a poset Q when
parameterized by the number of elements of H . These two results show that
for every class of posets P closed under taking chain minors there exists a
polynomial-time algorithm deciding whether the input poset Q is in P . (The
exponent of the polynomial depends on the class.)
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We give an FPT algorithm to test whether a posetH is a chain minor of a
poset Q when parameterized by the number of elements of H . A consequence
of our result is that for every class of posets P closed under taking chain
minors there exists a O(|Q| log |Q|) algorithm deciding whether the input
poset Q is in P .

2. The project of Graph Minors of Robertson and Seymour is arguably one of
the most significant achievements in modern graph theory. Robertson and
Seymour proved that graphs are well quasi ordered under graph minors and
gave an FPT algorithm to decide whether a graph H is a minor of a graph
G when parameterized by H . They were also able to describe the structure
of graphs that do not contain a fixed graph as a minor.

Is there a parallel theory possible for chain minors in posets? Gustedt
proved in [5] that chain minors are well quasi ordered and this work gives
an FPT algorithm for the Chain Minor problem. However, neither of the
two elucidates the structure of posets with a forbidden chain minor. Is a
structural characterization possible?

In particular, it looks that characterizing posets without pCq as a chain
minor is already the first challenge. (pCq is a poset consisting of p disjoint
chains each on q vertices.) Note that any poset of size p and height q is a
chain minor of 2pCq. It is also quite straightforward that posets without Cq

chain minor are just posets of height less then q but even a characterization
of posets without 2Cq as a chain minor seems elusive.

3. Let us recall that Gustedt showed in [5] that the Chain Minor problem is
NP-hard but it is not known whether the problem is NP-complete. This is
an interesting question. In particular, given two posets P , Q and a function
w : Q −→ P , is there a polynomial-time deterministic algorithm deciding
whether w is a witness for P � Q? Such algorithm would naturally give rise
to an NP algorithm for Chain Minor.

4. Finally, both our algorithms are double exponential in the parameter. Could
this be improved to get a single exponential dependence?
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Abstract. Given a fixed graph H , the H-Free Edge Deletion (resp.,
Completion, Editing) problems ask whether it is possible to delete
from (resp., add to, delete from or add to) the input graph at most k
edges so that the resulting graph is H-free, i.e., contains no induced
subgraph isomorphic to H . These H-free edge modification problems are
well known to be FPT for every fixed H . In this paper, we study the
nonexistence of polynomial kernels for them in terms of the structure
of H , and completely characterize their nonexistence for H being paths,
cycles or 3-connected graphs. As a very effective tool, we have introduced
a constrained satisfiability problem Propagational Satisfiability to
cope with the propagation of edge additions/deletions, and we expect the
problem to be useful in studying the nonexistence of polynomial kernels.

1 Introduction

Edge modification problems are concerned with adding edges to or deleting edges
from input graphs to obtain graphs with desired properties, and have been
studied extensively under frameworks of both traditional complexity and pa-
rameterized complexity. In this paper, we focus on edge modification problems
concerning the property of being H-free for a fixed graph H , i.e., our desired
graph contains no induced subgraph isomorphic to H . Such problems are fun-
damental as any hereditary property is H-free for every graph H in a set of
forbidden induced subgraphs. We consider the following H-free edge modifica-
tion problems.

H-Free Edge Deletion

Instance: Graph G, and parameter k.
Question: Can we delete from G at most k edges to make it H-free?

H-Free Edge Completion and H-Free Edge Editing are defined simi-
larly by replacing “delete from” with “add to” and “delete from or add to”
respectively.
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The above H-free edge modification problems are FPT for every fixed H fol-
lowing a general result of the first author [6]. In IWPEC’06 [2], the same author
raised the issue of determining the existence of polynomial kernels for H-Free

Edge Deletion in terms of the structure of H . Kratsch and Wahlström [11]
constructed the firstH for which neither H-Free Edge Deletion norH-Free

Edge Editing admits polynomial kernels, and Guillemot et al. [10] established
the nonexistence of polynomial kernels for H-Free Edge Deletion when H
is a path Pl with l ≥ 13 or a cycle Cl with l ≥ 12, provided that coNP �⊆
NP/poly. On the other hand, Gramm et al. [9] obtained polynomial kernels
for P3-Free Edge Deletion, Completion and Editing, and Guillemot et
al. [10] presented polynomial kernels for P4-Free Edge Deletion, Comple-

tion and Editing. Other than the above results, very little was known regarding
polynomial kernels of H-free edge modification problems.

In this paper, we study the nonexistence of polynomial kernels for H-free edge
modification problems in terms of the structure of H . We fully characterize 3-
connected H for which H-free edge modification problems admit no polynomial
kernel, and determine exactly when Pl- or Cl-free edge modification problems
admit no polynomial kernel, assuming coNP �⊆ NP/poly.

– For 3-connected H , H-Free Edge Deletion and Editing admit no poly-
nomial kernel iff H is not a complete graph.

– For 3-connected H , H-Free Edge Completion admits no polynomial ker-
nel iff H misses at least two edges.

– For H being a path or cycle, H-Free Edge Deletion, Completion and
Editing admit no polynomial kernel iff H has at least 4 edges.

We assume that the reader is familiar with the general framework for kernel-
ization lower bounds [1, 3–5, 8]. In the paper, our kernels refer to generalized
kernels [4] (called bikernels by Alon et al. [1]).

Definition 1. [1, 4] A generalized kernelization from a parameterized problem
Π into another parameterized problem Π ′ is an algorithm that takes any instance
(I, k) ∈ Π as input, runs in time polynomial in |I|+ k, and outputs an instance
(I ′, k′) ∈ Π ′ such that

(a) (I, k) is a yes-instance of Π iff (I ′, k′) is a yes-instance of Π ′, and
(b) both |I ′| and k′ are bounded by a function g(k) on k alone.

The output (I ′, k′) is called a generalized kernel, and it is a polynomial kernel
if g(k) is a polynomial.

A polynomial parameter transformation (Bodlaender et al. [5]) from a param-
eterized problem Π into another parameterized problem Π ′ is the same as a
generalized kernelization with condition (b) changed to “the value of parame-
ter k′ is bounded by a polynomial of k”. For simplicity, we call a parameterized
problem incompressible if it has no polynomial kernel unless coNP �⊆ NP/poly.

To obtain our results, first we introduce a constrained satisfiability problem
Propagational Satisfiability and prove its incompressibility (Section 2).
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Then we use it as our seed problem for polynomial parameter transformations
to establish the incompressibility of some “quarantined” H-free edge modifica-
tion problems where we have a restriction on edges that can be added/deleted
(Section 3). Finally we lift the quarantine by using “enforcers” (Section 4), and
discuss some open problems (Section 5).

Our results significantly improve our knowledge on the incompressibility of
H-free edge modification problems, and our Propagational Satisfiability

problem is very useful in coping with the propagation of edge deletions/additions
and thus the incompressibility of edge modification problems. We hope that our
ideas will be useful in the discovery of a dichotomy theorem on the incom-
pressibility of H-free edge modification problems, and we also expect Propaga-
tional Satisfiability to be useful in studying the nonexistence of polynomial
kernels in general.

2 Satisfiability of Propagational Formulas

One main complication of H-free edge modification problems lies in the possi-
bility of introducing new induced copies of H when we add/delete edges, which
causes a propagation of edge additions/deletions. To cope with this, we introduce
in this section a constrained satisfaction problem Propagational satisfiabil-

ity and establish its incompressibility, and we will use the problem extensively
to show the incompressibility of our edge modification problems.

Definition 2. A ternary Boolean function f(x, y, z), where x, y and z are either
Boolean variables or constants 0 or 1, is propagational if it satisfies f(1, 0, 0) = 0
and f(0, 0, 0) = f(1, 0, 1) = f(1, 1, 0) = f(1, 1, 1) = 1.

In other words, f(x, y, z) is propagational if it is true when either x = y =
z = 0 or “x = 1 implies y = 1 or z = 1”. There are eight different propagational
functions f in total due to the freedom of defining the value of f for the other
three assignments of variables.

Example 3. The following three functions are propagational:

f1(x, y, z) = x ∨ y ∨ z,

f2(x, y, z) = x XOR (y NOR z),

Not-1-in-3(x, y, z) = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z).

Propagational functions f(x, y, z) generalize function Not-1-in-3 of Kratsch
and Wahlström [11], and capture the relation that “whatever happens to x must
happen to either y or z”, which is of great use when we deal with edge modifica-
tion problems because of propagations of edge deletions/additions. The following
example of C4-Free Edge Deletion explains such a connection. Suppose that
we want to delete some light edges from the graph in Fig. 1 to obtain a C4-free
graph. When we delete edge x, we create a new induced C4 in the graph, and
we must delete either edge y or edge z or both in order to destroy the new C4.
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x

y

z

Fig. 1. Realization of a propagational function f(x, y, z) by C4-free edge deletion

Therefore we can use the graph to realize a propagational function f(x, y, z),
which also represents the propagation of edge deletions from x to y or z.

For a Boolean function f(x, y, z), a conjunctive formula ϕ is of the form

f(x1, y1, z1) ∧ f(x2, y2, z2) ∧ · · · ∧ f(xm, ym, zm).

Each f(xi, yi, zi) is a clause of ϕ, and the Hamming weight of an assignment of
0’s and 1’s to variables is the number of 1’s in the assignment. For ϕ, the degree of
a variable is its number of occurrences in ϕ, and the degree of ϕ is the maximum
degree of its variables. We say that ϕ is t-regular if all its variables have degree t.

Propagational Satisfiability

Instance: Conjunctive formula ϕ of a propagational function f , parameter k.
Question: Does ϕ have a satisfying assignment of Hamming weight ≤ k?

We will establish the incompressibility of the above problem in two steps: first
prove its NP-completeness, and then show that it is OR-compositional.

Lemma 4. For any propagational function f(x, y, z), Propagational Satis-

fiability is NP-complete on degree-6 conjunctive formulas with one occurrence
of constant 1.

Proof. The problem is clearly in NP, and we give a polynomial reduction from the
classical Vertex Cover problem. For an arbitrary instance (G, k) of Vertex

Cover, we first construct a conjunctive formula ϕ′: each vertex of G is a variable
and each edge uv of G corresponds to a clause f(1, u, v), which forces us to choose
either u or v in order to satisfy f(1, u, v). Clearly G has a vertex cover of size
≤ k iff ϕ′ can be satisfied with ≤ k true variables.

Next we convert ϕ′ into a degree-6 conjunctive formula ϕ with one occurrence
of constant 1. Note that two clauses f(x, y, 0) and f(y, x, 0) ensure that x and
y have the same value, and we write (x = y) as a short hand for f(x, y, 0) ∧
f(y, x, 0). Given any p = 2q, we can make variables w1, . . . , w2p−1 take the same
value by adding the following set F (w) of clauses

(w1 = w2) ∧ (w1 = w3)∧
(w2 = w4) ∧ (w2 = w5) ∧ (w3 = w6) ∧ (w3 = w7)∧

...
...

(wp/2 = wp) ∧ (wp/2 = wp+1) ∧ · · · ∧ (wp−1 = w2p−2) ∧ (wp−1 = w2p−1).
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Among these clauses, w1 appears four times, wp, . . . , w2p−1 appear twice, and
other variables appear six times (recall that (wi = wj) means two appearances
of wi and wj each). The variables w1, wp, . . . , w2p−1 can be used in other clauses.

Letm be the number of edges of G, and choose p = 2q between 3m and 6m−1.
We construct from ϕ′ a degree-6 formula ϕ with one occurrence of constant 1.

1. Add a variable w1 not occurring in ϕ′ and the clause f(1, w1, 0), which forces
w1 to take value 1.

2. Add variables w2, . . . , w2p−1 not occurring in ϕ′ to represent occurrences of
1 in ϕ′, and add clauses F (w) to force all w2, . . . , w2p−1 to take value 1.

3. For every variable v of ϕ′, add variables v1, . . . , v2p−1 and clauses F (v) to
force all v1, . . . , v2p−1 to have the same value.

4. For the i-th clause f(1, u, v) of ϕ′, add clause f(wp+3i−3, up+3i−2, vp+3i−1).
Since i ≤ m and 3m ≤ p, we will never run out of variables.

If ϕ′ is satisfiable with ≤ k true variables, we can satisfy ϕ with (k+1)(2p−1) ≤
12(k + 1)m true variables, consisting of w1, . . . , w2p−1 and those v1, . . . , v2p−1

for v = 1 in the satisfying assignment to ϕ′. The converse is also true. ��

Lemma 5. For any propagational function f(x, y, z), Propagational Satis-

fiability is OR-compositional on degree-6 conjunctive formulas with one oc-
currence of constant 1.

Proof. We describe a composition algorithm very similar to the one in Lemma 2
of Kratsch and Wahlström [11]. Let (ϕ1, k), . . . , (ϕt, k) be t instances of the
problem such that each ϕi has degree 6 and one occurrence of 1. Note that
each ϕi can be solved in O(3k|ϕi|) time by bounded search tree. If t > 2k, we
have enough time to solve each ϕi and output a dummy yes- or no-instance
accordingly.

Therefore we assume t ≤ 2k, and let p = 2q be the power of two between t
and 2t− 1. Construct a conjunctive formula ϕ′ as follows.

1. Rename variables of ϕ1, . . . , ϕt so that they are all distinct.
2. Add all clauses of ϕ1, . . . , ϕt to ϕ

′.
3. For each ϕi, replace the occurrence of 1 with a distinct variable wi+p−1.
4. Add the following clauses so that ≥ q variables from w2, . . . , w2p−1, including

one of wp, . . . , w2p−1, are forced to take value 1:

f(1, w2, w3)∧
f(w2, w4, w5) ∧ f(w3, w6, w7)∧

...
...

f(wp/2, wp, wp+1) ∧ · · · ∧ f(wp−1, w2p−2, w2p−1).

Set k′ = k+ q ≤ 2k. If some (ϕi, k) is a yes-instance, then we can satisfy ϕ′ with
q true variables from w2, . . . , w2p−1 including wi+p−1 and ≤ k additional true
variables satisfying clauses of ϕi, for a total of k′ true variables. The clauses of
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ϕj with j �= i are satisfied with 0 in all 3 positions. Conversely, if (ϕ′, k′) is a yes-
instance, then ≥ q variables from w2, . . . , w2p−1 are forced to be true, including
some wi+p−1. Then clauses of ϕi are satisfied with the remaining quota of ≤ k
true variables. ��
Theorem 6. For any propagational function f(x, y, z), Propagational Sat-

isfiability on 6-regular conjunctive formulas is incompressible.

Proof. By Lemma 4 and Lemma 5 and the work in [4], Propagational Satisfi-

ability is incompressible on degree-6 conjunctive formulas with one occurrence
of 1. We can easily modify a degree-6 conjunctive formula into an equivalent 6-
regular conjunctive formula: For each variable x of degree d, add (6− d) clauses
of the form f(1, 1, x). ��

3 Incompressibility: Quarantined Edge Modification

To ease the complication in tackling H-free modification problems, we first add
a restriction to edges that can be added or deleted, which forms “quarantined”
edge modification problems. We then use our incompressible propagational sat-
isfiability problems to show that “quarantined” edge modification problems are
incompressible for H being a 4-cycle, 5 cycle, or 3-connected graph, which forms
the base for our main results.

Quarantined H-Free Edge Deletion

Instance: Graph G, forbidden set F ⊆ E(G), and parameter k.
Question: Can we delete at most k edges from E(G)− F to make G H-free?

Edges in F are forbidden edges, edges in E(G) − F are allowed edges, and
allowed edges form the allowed subgraph.

Quarantined H-Free Edge Completion.
Instance: Graph G, forbidden set F ⊆ E(G), and parameter k.
Question: Can we add at most k edges from E(G)− F to make G H-free?

Note that G is the complement of G. Edges in F are forbidden nonedges,
edges in E(G)− F are allowed nonedges, and allowed nonedges form the allowed
complement of G.

Theorem 7. Quarantined C4-Free Edge Deletion is incompressible on
graphs whose allowed subgraphs contain no C4 as a partial subgraph.

Proof. We give a polynomial parameter transformation from Propagational

Satisfiability on 6-regular conjunctive formulas of propagational function
Not-1-in-3. We need the three components in Fig. 2, where an edge marked
with a letter, say x, will be referred to as an x-edge.

For an arbitrary instance (ϕ, k) of our Propagational Satisfiability, we
construct an instance (G,F, k′) of Quarantined C4-Free Edge Deletion as
follows (see Fig. 3 for an example).
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(a)
(b)

(c)

Fig. 2. Components for Quarantined C4-Free Edge Deletion with thick edges
indicating forbidden edges in F : (a) truth-setting component T(x), (b) satisfaction-
testing component S(x, y, z), and (c) communication component C(x). Note that
S(x, y, z) realizes Not-1-in-3(x, y, z) as S(x, y, z) itself is C4-free and we need to delete
at least two edges from {x, y, z} to ensure that S(x, y, z) stays C4-free.

1. Create a truth-setting component T (x) for each variable x of ϕ, and a
satisfaction-testing component S(x, y, z) for each clause f(x, y, z) of ϕ.

2. For each clause f(x, y, z), consider each v ∈ {x, y, z}. If v ∈ {0, 1}, then the
v-edge in S(x, y, z) is deleted if v = 1 and marked as forbidden if v = 0.
Otherwise v is a variable, and we add a communication component C(v),
identify the v-edge of T (v) with the v-edge of C(v) and identify the v′-edge
of C(v) with the v-edge of S(x, y, z).

3. Let G be the resultant graph, F the set of forbidden edges in all components,
and set k′ = 37k.

x

x

x

y

z z

z

yy

S(1,x,y)
S(z,0,1)

S(x,y,z)

T(x)

T(y)

T(z)

0 1
1

Fig. 3. Graph G for ϕ = f(1, x, y) ∧ f(x, y, z) ∧ f(z, 0, 1) using components in Fig. 2.
For clarity of illustration, ϕ is not 6-regular here. Thick edges are forbidden edges F ,
and dashed lines indicate deleted edges of components S(x, y, z).

It is easy to see that the allowed subgraph of G contains no C4 as a partial
subgraph, and the transformation is a polynomial parameter transformation. We
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show that ϕ is satisfiable with ≤ k true variables iff G can be made C4-free by
deleting ≤ k′ allowed edges.

(⇒) Consider a satisfying assignment of ϕ with ≤ k true variables, and let
E′ be allowed edges of all copies of communication components in G for all true
variables. Each variable x has 6 communication components with one shared
x-edge and contributes 37 edges to E′, implying |E′| ≤ 37k = k′. It is easily
checked that G− E′ is C4-free.

(⇐) Let E′ be a set of ≤ k′ allowed edges in G whose deletion results in
a C4-free graph. Observe that for a communication component C(x) in G, as
far as C4-freeness is concerned, deleting its x-edge will force the deletion of
all its allowed edges, including x′-edge. It follows that for every truth-setting
component T (x), the 37 allowed edges of communication components attached
to T (x) are either all deleted or none deleted. Assign x = 1 if the x-edge of T (x)
is in E′ and assign x = 0 otherwise, and we have set ≤ k variables true. For
each clause f(x, y, z), it is ensured by the C4-freeness of its satisfaction-testing
component S(x, y, z) after deleting E′ that f(x, y, z) satisfies Not-1-in-3 and
thus is true. ��

With the above theorem, we can easily give a polynomial parameter trans-
formation from Quarantined C4-Free Edge Deletion to P5-Free Edge

Deletion, where P5 is the same as the house graph C5 + e [7].

Corollary 8. P5-Free Edge Deletion is incompressible.

The construction and proof in Theorem 7 highlight the basic ideas in estab-
lishing the incompressibility of Quarantined H-Free Edge Deletion and
Completion:

1. Use T (x) to decide whether to assign 0 or 1 to x.
2. Use S(x, y, z) to realize a propagational function f .
3. Use C(x) to represent the propagation of edge deletions/additions from x-

edges to x′-edges, and connect T (x) with satisfaction-testing components.

Indeed, we can establish the incompressibility of Quarantined C4-Free

Edge Completion in a way almost identical to the proof of Theorem 7: use
the components in Fig. 4, instead of those in Fig. 2. We also use a different
propagational function f(x, y, z) = x XOR (y NOR z), instead of Not-1-in-3.

Theorem 9. Quarantined C4-Free Edge Completion is incompressible
on graphs whose allowed complements have girth greater than 4.

As in the case of P5-free edge deletion, we can use Theorem 9 to construct an
easy polynomial parameter transformation for the incompressibility of P5-free
edge completion [7].

Corollary 10. Quarantined P5-Free Edge Completion is incompressible.

Very similar constructions also work for C5-Free Edge Deletion and Com-

pletion. Here we only give the key components, satisfaction-testing components
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x

x x’

(a)
(b) (c)

x

y z

Fig. 4. Components for Quarantined C4-Free Edge Completion (where allowed
nonedges are denoted by dashed lines and forbidden nonedges are invisible): (a) truth-
setting component T(x), (b) satisfaction-testing component S(x, y, z), and (c) com-
munication component C(x). Note that S(x, y, z) realizes f(x, y, z) = x XOR (y NOR z):
when we add some edges in {x, y, z}, the resulting graph is C4-free iff the string xyz is
000, 101, 110 or 111.

x

y z

(b)(a)
x

y z

Fig. 5. Satisfaction-testing components S(x, y, z) for (a) C5-Free Edge Deletion and
(b) C5-Free Edge Completion. Both realize propagational function Not-1-in-3.

S(x, y, z), in Fig. 5, and full proofs are available in [7] where it describes a general
scheme for this type of constructions.

We now turn to 3-connectedH for which similar constructions also work. Here,
again we only give the construction of satisfaction-testing components S(x, y, z),
and full proofs are available in [7] and will be given in the full paper.

Quarantined H-Free Edge Deletion for H being 3-connected but not com-
plete. H contains an induced P3 = a, b, c. Let x be the nonedge ac, y edge ab and
z edge bc; and we set S(x, y, z) to H + x. Regard edges x, y and z as Boolean
variables. For an edge e ∈ {x, y, z}, assign to it value 1 iff it is deleted from
S(x, y, z), and define Boolean function f(x, y, z) = 1 iff the graph obtained from
S(x, y, z) is H-free when we delete from S(x, y, z) edges in {x, y, z} with value
1. It is easily checked that f(0, 0, 0) = f(1, 0, 1) = f(1, 1, 0) = f(1, 1, 1) = 1 but
f(1, 0, 0) = 0, implying that f is propagational.

Quarantined H-Free Edge Completion for H being 3-connected with at
least 2 nonedges. Let x be an arbitrary edge and y, z two nonedges of H , and we
delete edge x from H to form S(x, y, z). For an edge e ∈ {x, y, z}, assign to it
value 1 iff it is added to S(x, y, z), and define Boolean function f(x, y, z) = 1 iff
the graph obtained from S(x, y, z) is H-free when we add to S(x, y, z) edges in
{x, y, z} with value 1. Again, f(0, 0, 0) = f(1, 0, 1) = f(1, 1, 0) = f(1, 1, 1) = 1
but f(1, 0, 0) = 0, and we get a propagational f .
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We now summarize our results of the section in the following theorem, which
will be used in the next section to obtain our main results.

Theorem 11. Quarantined H-Free Edge Deletion is incompressible if H
is C4, C5, P5, or a 3-connected graph with at least one nonedge. Quarantined

H-Free Edge Completion is incompressible if H is C4, C5, P5, or a 3-
connected graph with at least two nonedges.

4 Lifting the Quarantine

In the previous section, we have shown the incompressibility of quarantined
H-free edge deletion/completion problems. We now discuss how to lift the quar-
antine so that our results extends to our original unquarantined H-free edge
deletion/completion problems. Furthermore, our tools will also allow us to eas-
ily extend incompressibility of edge deletion/completion to edge editing.

We need a way to prevent an edge from being deleted for edge deletion and a
nonedge from being added for edge completion. This is in fact pretty straightfor-
ward: for each forbidden edge e ∈ F attach k+1 vertex-disjoint copies of H+ e′

(where e′ is any nonedge of H) by identifying e′ with e, and for each forbidden
nonedge e ∈ F attach k+1 vertex-disjoint copies of H− e′ (where e′ is any edge
of H) by identifying e′ with e. The trick is to prevent the introduction of new
induced H in the process.

Definition 12. An H-free deletion enforcer is an H-free graph H ′ with a distin-
guished edge e′ such that (a) H ′−e′ has an induced H, and (b) the identification
of e′ with any edge e of a vertex-disjoint H-free graph produces an H-free graph.

Definition 13. An H-free completion enforcer is an H-free graph H ′ with a
distinguished nonedge e′ such that (a) H ′ + e′ has an induced H, and (b) the
identification of e′ with any nonedge e of a vertex-disjoint H-free graph produces
an H-free graph.

It is clear that the above notion of enforcers will enable us to lift quarantine
by attaching k+1 enforcers to prevent an edge from being deleted or a nonedge
from being added, without introducing unwanted copies of induced H . As a
bonus, completion (resp., deletion) enforcers establish incompressibility of edge
editing problems directly from that of edge deletion (resp., completion) prob-
lems: by forbidding all nonedge with completion enforcers, editing is forced to be
deletion; and by forbidding all edges with deletion enforcers, editing is forced to
be completion.

Lemma 14. H-Free Edge Deletion (resp. H-Free Edge Completion)
is incompressible if Quarantined H-Free Edge Deletion (resp. Quar-

antined H-Free Edge Completion) is incompressible and there exists an
H-free deletion (resp. completion) enforcer.
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Lemma 15. H-Free Edge Editing is incompressible if either H-Free Edge

Deletion is incompressible and there exists an H-free completion enforcer or
H-Free Edge Completion is incompressible and there exists an H-free dele-
tion enforcer.

The following claims can be easily verified.

1. For any t ≥ 4, adding any chord e′ to Ct yields a Ct-free deletion enforcer,
and deleting any edge e′ from Ct yields a Ct-free completion enforcer.

2. If H is 3-connected and has a nonedge e′, then H + e′ is an H-free deletion
enforcer.

3. If H is 3-connected then for any edge e′, H − e′ is an H-free completion
enforcer.

We also need the following easy to see but very useful facts.

Lemma 16. H-Free Edge Deletion is equivalent to H-Free Edge Com-

pletion, and H-Free Edge Editing is equivalent to H-Free Edge Editing.

Now we are ready to state our characterization for 3-connected H .

Theorem 17. Let H be 3-connected and assume coNP �⊆ NP/poly.

1. H-Free Edge Completion admits no polynomial kernel iff H has ≥ 2
nonedges.

2. H-Free Edge Deletion and H-Free Edge Editing admit no polyno-
mial kernel iff H is not a complete graph.

Proof. Incompressibility follows from Theorem 11, the existence of enforcers,
Lemma 14, and Lemma 15.

For the cases that admit polynomial kernels, H-Free Edge Completion is
trivial for H being a complete graph, and easily solved in O(knt) for H being
Kt − e for some constant t (for each H found in G just add the missing edge):
both solvable in polynomial time and thus have trivial kernels.

When H is a complete graphKt for some constant t,Kt-Free Edge Editing

is equivalent to Kt-Free Edge Deletion. The latter admits a polynomial
kernel by reducing it to Hitting Set where each subset has size

(
t
2

)
, and we

can make the kernel an instance of Kt-Free Edge Deletion if one insists [7].
��

Theorem 18. Let H be a path or cycle and assume coNP �⊆ NP/poly. H-Free

Edge Deletion, Completion and Editing have no polynomial kernel iff H
has at least 4 edges.

Proof. For H = Pt with t ≤ 4, polynomial kernels for these problems are found
by Gramm et al. [9] and Guillemot et al. [10]. Since C3 = K3, polynomial kernels
exist for these problems when H = C3 as discussed in the proof of Theorem 17.

For the incompressibility part, if H = Ct or Pt with t ≥ 6 then H is 3-
connected with at least two nonedges, and the incompressibility of these prob-
lems follow from Theorem 17, Lemma 14 and Lemma 16. For the remaining
three cases H = C4, C5 or P5, their incompressibility follow from Theorem 11,
Lemma 14, Lemma 15, and Lemma 16. ��
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5 Conclusion: Towards a Dichotomy Theorem

Our incompressibility for 3-connected H is actually much more powerful than it
looks in Theorem 17. Because of Lemma 16, Theorem 17 implies the following
result which covers a very extensive range of H .

Corollary 19. For any fixed H, H-Free Edge Deletion (resp. Comple-

tion, and Editing) is incompressible whenever H or H is 3-connected with at
least two nonedges.

From this we can deduce that for most trees H and for most disconnected
H , H-free edge modification problems are incompressible as H is 3-connected
for most such H . In fact for trees H , we know that H-free edge modification
problems are incompressible for all but a small number of trees [7]. In this
regards, H = K1,3 (the claw graph) is a very challenging case.

Problem 20. Determine whether claw-free edge modification problems admit
polynomial kernels.

For generalH , we pretty much know how blocks and connected components in
H affect the incompressibility of H-free modification problems [7]. This leaves 2-
connectedH a very important case. Note thatDiamond-Free Edge Deletion

admits a polynomial kernel [7].

Conjecture 21. For any fixed 2-connected H, H-Free Edge Deletion and
Editing are incompressible unless H is complete or the diamond graph K4 − e,
and H-Free Edge Completion is incompressible unless H misses at most
one edge.

Since most hereditary families of graphs are characterized by several forbidden
subgraphs, it is also meaningful and important to study the incompressibility of
their corresponding edge modification problems.

Problem 22. Let F be a family of graphs. What is the relation between the
incompressibility of F-free edge modification problems and that of H-free edge
modification problems for every H ∈ F? In particular, does the incompressibility
of H1- and H2-free edge modification problems imply that of {H1, H2}-free edge
modification problem?

We hope that our work in the paper will be useful towards a dichotomy
theorem on incompressibility of H-free edge modification problems, or perhaps
even a dichotomy theorem for the general F -free edge modification problems.
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Abstract. For a given graph property Π (i.e., a collection Π of graphs),
the Π-Contraction problem is to determine whether the input graph
G can be transformed into a graph satisfying property Π by contracting
at most k edges, where k is a parameter. In this paper, we mainly focus
on the parameterized complexity of Π-Contraction problems for Π
being H-free (i.e., containing no induced subgraph isomorphic to H) for
various fixed graphs H .

We show that Clique Contraction (equivalently, P3-Free Con-

traction for connected graphs) is FPT (fixed-parameter tractable) but
admits no polynomial kernel unless NP ⊆ coNP/poly, and prove that
Chordal Contraction (equivalently, {Cl : l ≥ 4}-Free Contrac-

tion) is W[2]-hard. We completely characterize the parameterized com-
plexity of H-Free Contraction for all fixed 3-connected graphs H :
FPT but no polynomial kernel unless NP ⊆ coNP/poly if H is a com-
plete graph, and W[2]-hard otherwise. We also show that H-Free Con-

traction is W[2]-hard whenever H is a fixed cycle Cl for some l ≥ 4 or
a fixed path Pl for some odd l ≥ 5.

1 Introduction

Edge contraction is a fundamental operation in graph theory, and plays a crucial
role in the celebrated graph minor theory. An edge contraction in a graph iden-
tifies two endpoints of an edge, and eliminates loop and multiple edges in the
resulting graph. For a given graph propertyΠ (i.e., a collectionΠ of graphs), the
Π-Contraction problem asks whether the input graph can be modified into
a Π-graph, i.e. a graph satisfying property Π , by at most k edge contractions.

The complexity of edge contraction problems has been studied in the litera-
ture, but does not receive as much attention as graph modification problems in
terms of vertex and edge addition/deletion. Watanabe et al. [15] and Asano and
Hirata [1,2] proved that Π-Contraction is NP-complete if Π is finitely charac-
terized by 3-connected forbidden subgraphs, or Π is hereditary on contractions
and is determined by biconnected components.

� Partially supported by GRF grant CUHK410409 of the Research Grants Council of
Hong Kong.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 97–109, 2013.
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Recently, researchers have studied edge contraction problems from the per-
spective of parameterized complexity. Heggernes et al. [11] have obtained an
FPT algorithm for Bipartite Contraction that asks whether a graph can be
modified into a bipartite graph by at most k edge contractions. Later Heggernes
et al. [10] presented a 4.98knO(1) time algorithm for Tree Contraction and a
2k+o(k)+nO(1) time algorithm for Path Contraction. Golovach et al. [7] con-
sidered Π-Contraction for Π being the class of graphs of minimum degree at
least d and showed that the problem is FPT when both d and k are parameters,
but W[1]-hard when only k is the parameter and NP-complete when d = 14.
Furthermore, Golovach et al. [8] showed that Planar Contraction is FPT.

In this paper, we focus on the parameterized complexity of the following
H-Free Contraction problems, where a graph is H-free if it contains no
induced copy of H , i.e., an induced subgraph isomorphic to H . We note that
several important graph classes (e.g., cographs, triangle-free graphs, and claw-
free graphs) are characterized by H-freeness.

H-Free Contraction

Instance: Graph G, positive integer k as parameter.
Question: Can we obtain an H-free graph from G by at most k edge

contractions?

It is easy to see that whenever H is a fixed complete graph Kt, H-Free

Contraction is FPT as the only way to destroy a copy of Kt is to contract
some edges in the copy, which implies an FPT algorithm by the bounded search
tree method. However, the situation for H other than complete graphs is very
complicated as contractions can occur for edges not involved in any induced
copies of H . In this paper, we try to determine the parameterized complexity
of H-Free Contraction in terms of the structure of H , and we have made
important progress towards this goal by the following results:

• Clique Contraction (equivalently, P3-Free Contraction for connected
graphs) is FPT but admits no polynomial kernel unless NP ⊆ coNP/poly,
and Pl-Free Contraction is W[2]-hard for every fixed path Pl with odd
l ≥ 5.

• C3-Free Contraction is FPT but admits no polynomial kernel unless
NP ⊆ coNP/poly, and Cl-Free Contraction is W[2]-hard for every fixed
cycle Cl with l ≥ 4.

• Chordal Contraction is W[2]-hard, which is in contrast to that both
Chordal Completion and Chordal Deletion are FPT [3, 12, 13].

• For every fixed 3-connected graph H , H-Free Contraction is W[2]-hard
whenever H is not a complete graph. Otherwise, it is FPT but admits no
polynomial kernel unless NP ⊆ coNP/poly.

Our FPT algorithm forClique Contraction first finds a large “seed clique”
in the input graph, and then uses a branch-and-search algorithm to contract
other edges into the clique. This idea is useful for other edge contraction prob-
lems such as Split Contraction, which will appear in our future paper. For
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the W[2]-hardness proofs, all FPT reductions in this paper are from the classi-
cal Dominating Set problem that takes an integer k as parameter, and asks
whether an input graph G contains a dominating k-set, i.e., at most k vertices
V ′ s.t. every vertex in V (G)− V ′ is adjacent to some vertex in V ′.

All graphs in the paper are simple, finite, and undirected. For a graph G, we
denote its vertex set and edge set by V (G) and E(G) respectively. A graph is
chordal if it has no induced cycle of size greater than 3. For an integer t, Kt is
a complete graph on t vertices, Ct is a cycle on t vertices, and Pt is a path on t
vertices. The contraction of edge uv in G removes u and v from G, and replaces
them by a new vertex adjacent to precisely those vertices that were adjacent to
at least one of u or v. For a set of edges F ⊆ E(G), we use G/F to denote the
graph obtained from G by sequentially contracting all edges in F . If a graph
H with vertex set {h1, · · · , hl} can be obtained from graph G by a sequence of
edge contractions, then G is contractible to H . In this case, G has a H-witness
structure: a partition of V (G) into l sets W (h1), · · · ,W (hl), called witness sets,
such that each W (hi) induces a connected subgraph of G and for any two W (hi)
and W (hj), there is an edge between W (hi) and W (hj) in G iff hihj ∈ E(H).
We obtain H from G by contracting vertices in each W (hi) into a single vertex.

2 Path-Free Contraction

We start with Pl-Free Contraction problems for fixed l ≥ 3. Since edge con-
tractions preserve the connectedness of a graph and a graph is a complete graph
iff it is P3-free and connected, P3-Free Contraction for connected graphs is
equivalent to Clique Contraction that asks whether we can transform the
input graph into a clique (i.e., complete graph) by contracting at most k edges.

We note that transforming a n-vertex graph G into a clique by contracting
k edges is equivalent to finding a (n− k)-clique minor of G as an edge contrac-
tion reduces the number of vertices by one. Thus Clique Contraction is a
parametric dual of Maximum Clique Minor that takes as input a graph G
and an integer h, and asks whether G contains a clique Kh as a minor. Maxi-

mum Clique Minor is NP-complete as shown by Eppstein [6], and FPT when
parameterized by h following a celebrated result on graph minors by Robert-
son and Seymour [14]. The NP-completeness of Clique Contraction directly
follows from that of Maximum Clique Minor. Here we present an FPT algo-
rithm for Clique Contraction, which combines bounded search tree with a
kernelization of the problem from the second author’s PhD dissertation [9].

Theorem 1. Clique Contraction can be solved in O(27kk2k+5 +m) time,
but admits no polynomial kernel unless NP ⊆ coNP/poly.

Proof. For a vertex set A, we denote by E[A] the set of edges whose both end-
points are in A. For any two disjoint vertex sets B and C, we use E[B,C] to
denote the set of edges whose one endpoint is in B and the other is in C.

Since each edge contraction affects only two vertices, a n-vertex graph G
must contain a clique of (n − 2k) vertices Vc in order for G to be contractible
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to a clique by at most k contractions. We start by using an FPT algorithm for
Vertex Cover to find such vertex set Vc. Next, we construct a bounded search
tree and consider all possible edges in the solution set. In the search tree, we
branch out by contracting edges of E(G − Vc), edges of E[Vc, V (G) − Vc], and
edges of E[Vc] in sequence. See Fig. 1 for an illustration. Note that the number
of edges in E[Vc, V (G) − Vc] or E[Vc] might be very large. However, we do not
need to consider all edges. The trick is to compress the possible choices into a
special set of edges whose size is bounded by a function of k. Our algorithm
consists of the following steps:

1. Determine whether there is a set Vc of n− 2k vertices that induces a clique
in G. If yes, find Vc and let Vk = V (G)− Vc; otherwise, return “NO”.

2. We construct a search tree and label the root by the input instance (G, k).
We branch out at the root by contracting every possible set of at most k
edges in E[Vk] and label the new node of the tree by the resulting instance
(G′, k′), where k′ is the number of remaining edge contractions.

3. For each node (G′, k′) obtained in Step 2, we assume that vertices of Vk are
contracted into vertices V ′

k in G′. We branch out by every possible partition
V ′
k = (Vp, R) (Vp corresponds to the subset of V ′

k consisting of vertices not
involved in edge contractions). Let T = {v ∈ Vc | ∃w ∈ Vp, wv /∈ E(G′)}. If
|R| > k′ or |T | > 2k′, discard this node.
We continue to branch by contracting every possible set of |R| edges in
E[R, T ] that covers all vertices in R and label the new node of the tree by
the resulting instance (G′′, k′′). Here k′′ = k′ − |R|, and vertices in R are
merged into the large clique G′′[Vc].

4. For each node (G′′, k′′) obtained in Step 3, we arbitrarily choose a vertex
u ∈ Vc − T . We branch by contracting every k′′-subset of E[T ∪ {u}].

5. If there exists a leaf in this search tree labelled with a clique (in Step 4),
then return “YES”; otherwise, return “NO”.

Vk

Vc

Step 2

Vp
R

Vc
T

Step 3

Vp

Vc
T

u

Step 4

Fig. 1. Edges being considered for contractions (thick edges) in Step 2-4
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In Step 1, finding a (n − 2k)-clique is equivalent to finding a 2k-vertex cover
in the complement graph of G, which costs O(1.27382k + kn) time following a

known algorithm by Chen et. al. [4]. In Step 2, the root has at most
∑

k′

((|Vk|
2 )

k−k′

)
≤∑

k′(2k2)k−k′
children. In Step 3, the total number of different partitions V ′

k =

(Vp, R) is 2|V
′
k| ≤ 22k, and for each partition we branch into at most |R||T | ≤ 2k′2

nodes. In Step 4, for each node we branch into atmost (
(|T |+1

2

)
)k

′′ ≤ (2k2)k
′
leaves.

Therefore the size of this search tree is bounded by
∑

k′(2k2)k−k′
22k2k′2(2k2)k

′
=

O(23kk2k+3), and each node of the tree takes O(m) time to generate. Thus, the
total running time of our branching algorithm is O(1.27382k + kn)+O(23kk2k+3)
O(m) = O(23kk2k+3m). Following a general result in the second author’s PhD dis-
sertation [9],CliqueContraction has a kernel ofO(22kk) vertices,which canbe
constructed in linear time. Combining this exponential kernel with our branching
algorithm, we obtain an FPT algorithm running in time O(27kk2k+5 +m).

For the correctness of the algorithm, it is easy to see that (G, k) has a solu-
tion when our algorithm outputs “YES”. On the other hand, suppose that G
contains a solution set S of size k. Our branching algorithm indeed simulates
the procedure of contracting S in G. First after contracting edges S ∩ E[Vk],
vertex set Vk is modified into a set V ′

k = Vp ∪ R where Vp consists of vertices
that are not involved in any edges of S \E[Vk]. Note that T is the set of vertices
in Vc that are not adjacent to at least one vertex of Vp. To make G into a clique,
every vertex in T must be incident with some edge in S \ E[Vk], implying that
T ≤ 2k′ where k′ = |S \E[Vk]|. For an arbitrary vertex u ∈ Vc−T , we construct
an edge set S∗ from S by removing edges {xy ∈ S : x, y ∈ Vc−T } and replacing
every xy in S with x ∈ T and y ∈ Vc − T by xu. It can be shown that S∗ is
also a solution of (G, k), and by Step 4 there always be a leaf in the search tree
labelled with G/S∗, implying that the algorithm outputs “YES”. The complete
proof will be given in the full paper.

We now turn to the non-existence of polynomial kernels for Clique Con-

traction. Due to space limit, we will only sketch the main idea here and
give the complete proof in the full paper. First we show that the following
One-Sided Dominating Set problem admits no polynomial kernel unless
NP ⊆ coNP/poly: Given a bipartite graph G = (X,Y ;E) and an integer t with
|X | being the parameter, does X have a subset of at most t vertices that dom-
inates Y ? The NP-completeness of the unparameterized version of the problem
easily follows from that of Dominating Set, and we can show that One-Sided

Dominating Set is OR-compositional, implying that it admits no polynomial
kernel unless NP ⊆ coNP/poly. Note that this problem is different from Red-

Blue Dominating Set (defined by Dom et al. [5]) whose solution set is in Y
instead of X .

Next we give a polynomial parameter transformation from One-Sided Dom-

inating Set to Clique Contraction. The main idea of the transforma-
tion is as follows: First we construct a bipartite graph G′ = (X ′, Y ′;E′) from
G = (X,Y ;E) by adding |X | − t new vertices Z to X and make them adjacent
to every vertex of Y , and adding a new vertex w to Y and make it adjacent to
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every vertex of X (see Fig. 2). Note that each vertex in Z must combine with
some vertices in X to form a dominating set for Y ′ = Y ∪ {w}. It is easy to see
that X has a dominating t-set for Y iff X ′ can be partitioned into |X | − t + 1
disjoint dominating sets for Y ′.

Then we replace Y ′ by 2(|X ′| − t′) + 1 = 2|X | − 1 copies Y1, · · · , Y2|X|−1

of Y where t′ = |X | − t + 1, connect every a ∈ Yi to b ∈ X ′ iff ab ∈ E′ for
i = 1, · · · , 2|X | − 1, and make X ′ and Y1 ∪ · · · ∪ Y2|X|−1, respectively, into two
cliques to form graph G′′ (see Fig. 2). If X ′ can be partitioned into t′ disjoint
sets S1, · · · , St′ each of which dominates Y ′, then we can contract vertices in
each Si into a single vertex to make G′′ into a clique. The total number of edge
contractions we use is Σi(|Si| − 1) = (Σi|Si|) − t′ = |X ′| − t′. Conversely if G′′

contains |X ′| − t′ edges whose contractions yield a clique, then obviously there
exists some Yj whose vertices are not involved in edge contractions. It is easy
to see that vertices in each witness set of X ′ form a dominating set for Yj and
the number of different witness sets in X ′ is at least t′, implying that X ′ can be
partitioned into t′ disjoint dominating sets for Y ′.

X

Y

G

X

Y

Z

w

G′

· · ·

X ′

Y1 Y2|X|−1

G′′

Fig. 2. An example of the transformation from One-Sided Dominating Set to
Clique Contraction with t = 1

Since X has a dominating t-set for Y in G iff G′′ can be modified into a clique
by using |X ′| − t′ = |X | − 1 edge contractions, Clique Contraction admits
no polynomial kernel unless NP ⊆ coNP/poly. ��

Because P3-Free Contraction on connected graphs is equivalent toClique

Contraction, we immediately have the following result.

Corollary 2. P3-Free Contraction is FPT but admits no polynomial kernel
unless NP ⊆ coNP/poly.

On the other hand, Pl-Free Contraction is hard for every odd l ≥ 5.

Theorem 3. For every fixed odd l ≥ 5, Pl-Free Contraction is W[2]-hard.

Proof. First we note the following easy FPT reduction from Pl-Free Contrac-

tion to Pl+2-Free Contraction for every l ≥ 3: For any graph G and positive
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integer k, we construct a graph G′ by attaching k + 1 leaves to each vertex v of
G, i.e., adding k + 1 new vertices and connecting them to v with new edges. It
is easy to see that (G, k) is a yes-instance of Pl-Free Contraction iff (G′, k)
is a yes-instance of Pl+2-Free Contraction.

Therefore we need only prove the theorem for the base case l = 5.
For this purpose, we give an FPT reduction from Dominating Set to P5-Free

Contraction.
Given an instance (G, k) with V (G) = {v1, · · · , vn}, we construct in polyno-

mial time a graph G′ as follows (see Fig. 3 for an illustration):

• Create an independent set {x1, · · · , xn} and a clique {y1, · · · , yn}.
• Make xi adjacent to yj iff i = j or vivj ∈ E(G).
• Create a new vertex u and make it adjacent to every vertex of {y1, · · · , yn}.
• Create a (k + 1)-clique {z1, · · · , zk+1}, where each zi is made adjacent to u

and has a new vertex wi attaching to it.

v1

v2 v3

v4

y1
y2 y3

y4

x1

x2 x3
x4

u

z1 z2
z3

w1 w2
w3

y1 y4

x1

x2 x3
x4

{u, y2, y3}

z1 z2
z3

w1 w2
w3

(a) (b) (c)

Fig. 3. (a) Graph G with dominating set {v2, v3}; (b) Graph G′ obtained from G; (c)
P5-free graph G∗ obtained from G′ by contracting {uy2, uy3}

We claim that G has a dominating k-set iff G′ can be made into P5-free by
contracting at most k edges.

Suppose that T is a dominating k-set in G. We contract k edges {uyi : vi ∈ T }
in G′ to obtain a graph G∗. Note that u is made adjacent to every vertex of
{x1, · · · , xn} in G∗. It is easy to see that G∗ contains no induced 5-path.

Conversely, suppose that G′ contains at most k edges F whose contraction
results in a P5-free graph. We show that there exists a dominating k-set in G.
We may assume k < n, otherwise G always has a dominating k-set. Observe
that at least one induced path (u, zr, wr) for some 1 ≤ r ≤ k + 1 survives after
contracting F , which implies that each induced 3-path from some xi to u must
be destroyed to make G′ P5-free. Thus distance dG′/F (u, xi) ≤ 1 for i = 1, · · · , n.

We now use F to obtain a dominating set of G. Let R = {xi : ∃v, vxi ∈ F}
and R∗ = {yi : xi ∈ R}. Let S be a set of vertices in {y1, · · · , yn} that are
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finally in the same witness set with u in the graph G′/F . It is easy to see that
|R∗| + |S| = |R| + |S| ≤ |F | ≤ k. Since for each 1 ≤ i ≤ n, dG′/F (u, xi) ≤ 1,
vertex xi is either contained in R or adjacent to some vertex of S in G′. This
implies that R∗ ∪ S dominates {x1, · · · , xn}, and thus G has a dominating set
of at most k vertices. ��

The reduction in Theorem 3 does not work for even number l, and new ideas
are needed to deal with even l.

3 Cycle-Free Contraction

In this section, we consider contraction problems concerning cycles. We show that
Cl-Free Contraction is W[2]-hard for every fixed l ≥ 4, and the reduction
in our proof also implies that Chordal Contraction, which is the same as
{Cl : l ≥ 4}-Free Contraction, is also W[2]-hard. It is worth noting that
two related graph modification problems Chordal Completion and Chordal

Deletion are both FPT [3,12,13], which gives us some evidence that contraction
seems harder than edge and vertex addition/deletion.

Theorem 4. Cl-Free Contraction is FPT for l = 3, but W[2]-hard for every
fixed l ≥ 4.

Proof. For l = 3, the problem is the same as K3-Free Contraction which
can be easily solved in O(3kn3) time using bounded search tree.

For every fixed l ≥ 4, we provide an FPT reduction from Dominating Set

to Cl-Free Contraction.
Given a graph G with V (G) = {v1, · · · , vn}, we construct in polynomial time

a graph G′ as follows:

• Create an independent set {x1, · · · , xn} and a clique {y1, · · · , yn}.
• Make xi adjacent to yj iff i = j or vivj ∈ E(G).
• Create a new vertex u and make it adjacent to every vertex of {y1, · · · , yn}.
• For each xi, create a length-2 path and a length-(l− 2) path whose two ends

are identified with u and xi, these two paths form an induced l-cycle Hi.

For convenience, we refer to these n induced l-cycles H1, · · · , Hn as u-cycles.
We claim that G has a dominating k-set iff G′ can be made into a Cl-free graph
by contracting at most k edges.

Suppose that T is a dominating k-set in G, we contract k edges {uyi : vi ∈
T } in G′. In the resulting graph G∗, u is made adjacent to all vertices of
{x1, · · · , xn}. Therefore all u-cycles are destroyed and the size of the largest
induced cycle in G∗ is l− 1, implying that G′ is Cl-free.

Conversely, suppose that G′ contains at most k edges F whose contraction
results in a Cl-free graph. In particular, all u-cycles are destroyed in G′/F . We
may assume k < n, otherwise G always has a dominating k-set.

We consider the intersection between F and u-cycles. Let Fi = F ∩ E(Hi)
for i = 1, · · · , n. Observe that the only u-cycle destroyed by contraction of Fi is
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Hi, which can also be destroyed by contracting xiyi. Thus for every Fi that is
non-empty, we replace Fi by a single edge {xiyi}, and then obtain a set F ∗ from
F whose contraction destroys all u-cycles in G′. Since none edge of F ∗ lies in
any u-cycle, then for each 1 ≤ i ≤ n, u is either made adjacent to xi or identified
with xi by contracting F ∗, i.e., dG′/F∗(u, xi) ≤ 1. Using the same argument in
Theorem 3, we can use F ∗ to obtain a dominating set of G containing at most
|F ∗| ≤ k vertices. ��

Our proof in Theorem 4 actually shows that Π-Contraction is W[2]-hard
for Π being the class of graphs without induced cycles of length ≥ l for any
fixed l ≥ 4. We note that for l = 3, Π coincides with forests, and the problem
becomes FPT as shown by Heggernes et al. [10]. For l = 4, Π is exactly the
class of chordal graphs, and thus we have the following theorem for Chordal

Contraction.

Theorem 5. Chordal Contraction is W[2]-hard.

4 H-Free for 3-Connected H

Asano and Hirata [1] showed that Π-Contraction is NP-complete whenever
Π is characterized by a finite forbidden set of 3-connected graphs. However, their
reduction is not an FPT reduction and not useful in dealing with the parameter-
ized complexity of H-Free Contraction. In this section, we fully characterize
the parameterized complexity of H-Free Contraction for 3-connected H .

Theorem 6. Let H be a fixed 3-connected graph. If H is a complete graph,
then H-Free Contraction is FPT but admits no polynomial kernel unless
NP ⊆ coNP/poly. Otherwise H-Free Contraction is W[2]-hard.

Proof. If H is a complete graph Kt with t ≥ 3, we can easily obtain an FPT

algorithm running in O(
(
t
2

)k
nt) time by bounded search tree as the only way

to destroy a copy of Kt is to contract some edges in the copy. To show that
the problem has no polynomial kernel, we introduce a constrained satisfiabil-
ity problem Restricted-1s-In-4 Sat, prove that it is NP-complete and OR-
compositional and thus admits no polynomial kernel unless NP ⊆ coNP/poly,
and then give a polynomial parameter transformation from it to our problem
Kt-Free Contraction. Due to space limit, we omit the lengthy proofs here,
which are available from the PhD dissertation (§5.2) of the second author [9].

For the W[2]-hardness part of the theorem, we consider two cases in terms of
the structure of H .

Case 1. H is not chordal. We give an FPT reduction fromDominating Set to
H-Free Contraction. For a graph G with V (G) = {v1, · · · , vn}, we construct
a graph G′ as follows (see Fig. 4 for an illustration):

• Create an independent set {x1, · · · , xn} and a clique {y1, · · · , yn}.
• Make xi adjacent to yj iff i = j or vivj ∈ E(G).
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• Create a new vertex u and make it adjacent to every vertex of {y1, · · · , yn}.
• Replicate n copies H1, · · · , Hn of H . For each Hi, arbitrarily choose two

non-adjacent vertices s and t in its largest induced cycle, and identify u with
s, and xi with t.

v1

v2

x1 x2

y1 y2

u

H G G′

Fig. 4. An example of the reduction from Dominating Set to H-Free Contraction

when H is 3-connected and non-chordal

We claim that G has a dominating k-set iff G′ can be made into an H-free
graph by contracting at most k edges. Suppose that T is a dominating k-set in
G. We contract k edges {uyi : vi ∈ T } in G′ to obtain a graph G∗, where u is
made adjacent to all vertices of {x1, · · · , xn}. We show that G∗ is H-free.

Let l (≥ 4) be the size of the largest induced cycle in H , and t (≥ 1) be the
number of different induced l-cycles in H . If G∗ contains an induced subgraph
H∗ that is isomorphic to H , then H∗ also has t different induced Cl. Observe
that G∗ − (H1 ∪ · · · ∪ Hn) is chordal, and each Hi in G∗ contains at most
t − 1 induced Cl because u and xi is adjacent now. Thus there exists p �= q
such that V (H∗) ∩ V (Hp) �= ∅ and V (H∗) ∩ V (Hq) �= ∅, which implies that
xp, xq, u ∈ V (H∗). However, removal of u, xp will disconnect H∗, contradicting
to the fact that H∗ is 3-connected. Therefore G∗ is an H-free graph.

Conversely, suppose that G′ contains at most k edges F whose contraction
results in a H-free graph. Similar to the proof in Theorem 4, there exists a set
F ∗ of at most k edges such that contraction of F ∗ destroys all induced copies
H1, · · · , Hn of H , and none edge of F ∗ lies in these copies. We can use F ∗ to
obtain a dominating set of G containing at most |F ∗| ≤ k vertices.

Case 2. H is chordal. The reduction for Case 1 does not work for 3-connected
chordal H , because the constructed graph G′ is a chordal graph. We will modify
the reduction by subdividing the clique {y1, · · · , yn} ∪ {u} and forcing contrac-
tions to occur in a specified set of edges.

Given an arbitrary instance (G, k) of Dominating Set, we construct an in-
stance (G′, 2k) ofH-Free Contraction in FPT time. Let V (G) = {v1, · · · , vn}
and we construct graph G′ as follows:
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• Create two independent sets: {x1, · · · , xn} and {y1, · · · , yn}.
• Make xi adjacent to yj and mark this edge iff i = j or vivj ∈ E(G).
• Create a new vertex u.
• For every pair of vertices {a, b} in {y1, · · · , yn} ∪ {u}, create a degree-2

vertex wa,b which is made adjacent to a and b. All these vertices constitute
the subdivision of a (n+ 1)-vertex clique.

• Replicate n copies H1, · · · , Hn of H . For each Hi, arbitrarily choose two
non-adjacent vertices s and t, and identify u with s, and xi with t. Mark all
edges in Hi.

For every marked edge e, we will prevent it from being contracted. For this
purpose, we need the following operation of attaching an expanded-H to an edge
e of a graph: subdivide an edge uv of a copy of H by a vertex w, and identify
edge uw with edge e. Note that after this operation, the contraction of e will
generate a copy of H . We attach 2k + 1 vertex-disjoint expanded-H ’s to e to
prevent e from being contracted since contracting e will generate 2k+1 induced
copies of H that cannot be destroyed by 2k edge contractions. Thus we can only
contract edges in {awa,b, bwa,b : a, b ∈ {y1, · · · , yn} ∪ {u}}.

We claim that G has a dominating k-set iff G′ can be made into an H-free
graph by at most 2k edge contractions. Suppose that T is a dominating k-set in
G. We contract 2k edges {uwu,yi, yiwu,yi : vi ∈ T } of G to obtain a graph G∗.
Note that u is identified with {yi : vi ∈ T } in G∗ and therefore is adjacent to
every vertex of {x1, · · · , xn}, implying that H1, · · · , Hn are destroyed. We show
that G∗ is H-free.

Assume that G∗ contains an induced subgraph H∗ isomorphic to H . By the
3-connectivity of H∗, it is clear that H∗ is entirely inside the part of G′ before
attaching expanded-H ’s. Since the subgraph of G∗ induced by {x1, · · · , xn} ∪
{y1, · · · , yn}∪{u}∪{wa,b : a, b ∈ {y1, · · · , yn}∪{u}} is triangle-free,H∗ intersects
Hi for some 1 ≤ i ≤ n. If H∗ contains a vertex outside Hi, then deleting u and
xi will disconnect this 3-connected graph H∗, implying a contradiction. Thus,
the vertex set V (H∗) is exactly the set V (Hi). However, the subgraph induced
by V (Hi) in G∗ has one more edge uxi than H , contradicting to the fact that
H∗ is isomorphic to H . Therefore G∗ is an H-free graph.

Conversely, suppose that G′ contains at most 2k edges F whose contraction
results in an H-free graph. Note that subgraphs H1, · · · , Hn in G′ are destroyed
by contracting F , which implies that u is made adjacent to each xi in G

′/F . Let
S be a set of vertices in {y1, · · · , yn} that are finally in the same witness set with
u in G′/F . We have 2|S| ≤ |F | and S dominates {x1, · · · , xn}, implying that G
has a dominating set of at most |S| ≤ k vertices. ��

5 Concluding Remarks

We have studied H-Free Contraction problems in an attempt to obtain a
dichotomy theorem for their parameterized complexity in terms of the structure
of H , and we believe that techniques in the paper will be useful for further study
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of Π-Contraction problems. There are many natural and interesting problems
about H-Free Contraction and Π-Contraction in general, and we will
now discuss some open problems and propose some conjectures.

Unlike edge and vertex addition/deletions, edge contraction changes the struc-
ture of a graph less locally, and we feel that this nature makes edge contraction
problems much more harder than edge and vertex modification problems. In
general, we believe that H-Free Contraction is fixed-parameter intractable
unless H has a very special structure which limits the change.

Conjecture 7. For any fixed connected graph H, H-Free Contraction is
W[2]-hard unless H is a complete graph or some graph with at most 5 vertices.

In light of the above conjecture, it will be important to determine whether H-

Free Contraction is FPT for small graphs, in particular for H being P4 and
K1,3. Note that K1,t-Free Contraction is W[2]-hard for every fixed t ≥ 4 [9].

Problem 8. Determine whether P4-Free Contraction (or Cograph Con-

traction) and Claw-Free Contraction are FPT.

In connection with Conjecture 7, a confirmation of the following conjecture
will be useful.

Conjecture 9. Let H ′ be an induced subgraph of H. Then H-Free Contrac-

tion is W[2]-hard whenever H ′
-Free Contraction is.

For Pl-Free Contraction with even l ≥ 6, we feel that it is useful to
investigate how to prevent an edge from being contracted in order to settle the
following conjecture.

Conjecture 10. For every fixed l ≥ 6, Pl-Free Contraction is W[2]-hard.

Let F be a family of forbidden graphs. The F-Free Contraction problem
asks whether we can contract at most k edges in G to obtain a graph that is
H-free for all H ∈ F . Our work on H-Free Contraction may shed light on
this general problem, and the following problem may serve as a good starting
point.

Problem 11. Is it true that {H1, H2}-Free Contraction is W[2]-hard when
both H1-Free Contraction and H2-Free Contraction are W[2]-hard, and
FPT when both are FPT?

Finally, we believe that FPT algorithms for Clique Contraction and Kt-

Free Contraction can be improved.

Problem 12. Design faster FPT algorithms for Clique Contraction and
Kt-Free Contraction.
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7. Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Increasing the mini-
mum degree of a graph by contractions. Theoretical Computer Science 481, 74–84
(2013)

8. Golovach, P.A., van’t Hof, P., Paulusma, D.: Obtaining planarity by contracting
few edges. Theoretical Computer Science 476, 38–46 (2013)

9. Guo, C.: Parameterized Complexity of Graph Contraction Problems. PhD The-
sis, The Chinese University of Hong Kong, Hong Kong S.A.R, China (2013),
http://www.cse.cuhk.edu.hk/~cwguo/PhdThesis.pdf
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1 Introduction

Parameterized Complexity is a two-dimensional generalization of “P vs. NP” where
in addition to the overall input size n, one studies the effects on the computational
complexity of a secondary measurement that captures additional relevant information.
This additional information can be, for example, a structural restriction on the input
distribution considered, such as a bound on the treewidth of an input graph or the size
of a solution. For general background on the theory see [4]. For decision problems
with input size n, and a parameter k, the two dimensional analogue (or generalization)
of P, is solvability within a time bound of O(f(k)nO(1)), where f is a function of
k alone. Problems having such an algorithm are said to be fixed parameter tractable
(FPT). The W -hierarchy is a collection of computational complexity classes: we omit
the technical definitions here. The following relation is known amongst the classes in
the W -hierarchy: FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ . . .. It is widely believed that
FPT �= W[1], and hence if a problem is hard for the class W [i] (for any i ≥ 1) then it
is considered to be fixed-parameter intractable. We say that a problem is W-hard if it is
hard for the class W[i] for some i ≥ 1. When the parameter is the size of the solution
then the most famous examples of W[1]-hard and W[2]-hard problems are Clique and
Set Cover respectively. We define these two problems below:

Clique
Input : An undirected graph G = (V,E), and an integer k
Problem: Does G have a clique of size at least k?
Parameter: k

Set Cover
Input: Universe U = {u1, u2, . . . , un} and a collection S = {S1, S2, . . . , Sm} of
subsets of U such that

⋃m
j=1 Sj = U .

Problem: Is there a subcollection S ′ ⊆ S such that S ′ ≤ k and
⋃

Si∈S′ Si = U?
Parameter: k

The next natural question is whether these fixed-parameter intractable problems at
least admit parameterized approximation algorithms.

1.1 Parameterized Approximation Algorithms

We follow the notation from Marx [15]. Any NP-optimization problem can be described
as O = (I, sol, cost, goal), where I is the set of instances, sol(x) is the set of feasible
solutions for instance x, the positive integer cost(x; y) is the cost of solution y for
instance x, and goal is either min or max. We assume that cost(x, y) can be computed
in polynomial time, y ∈ sol(x) can be decided in polynomial time, and |y| = |x|O(1)

holds for every such y.

Definition 1. Let ρ : N → R≥1 be a computable function such that ρ(k) ≥ 1 for every
k ≥ 1; if goal=min then k · ρ(k) is nondecreasing and if the goal=max then k/ρ(k) is
unbounded and nondecreasing. An FPT approximation algorithm with approximation
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ratio ρ forO is an algorithm A that, given an input (x, k) ∈ Σ∗×N satisfying sol(x) �=
∅ and {

opt(x) ≤ k if goal = min

opt(x) ≥ k if goal = max
(*)

computes y ∈ sol(x) such that{
cost(x, y) ≤ k · ρ(k) if goal = min

cost(x, y) ≥ k/ρ(k) if goal = max
(**)

We require that on input (x, k) the algorithm A runs in f(k) · |x|O(1) time for some
computable function f .

Note that if the input does not satisfy (*), then the output can be arbitrary.

Remark 1. Given an output y ∈ sol(x) we can check in FPT time if it satisfies (**).
Hence we can assume that an FPT approximation algorithm always1 either outputs a
y ∈ sol(x) that satisfies (**) or outputs a default value reject. We call such an FPT
approximation algorithm that has this property as normalised.

Classic polynomial-time approximation algorithms determine the performance ratio
by comparing the output with the optimum. In FPT approximation algorithms there
is a subtle difference: we compare the output to the parameter to determine the ap-
proximation ratio. Fellows [6] asked about finding an FPT approximation algorithm for
W[2]-hard Dominating Set (which is a special case of Set Cover), or ruling out such a
possibility. The following conjecture due to Marx (personal communication) is widely
believed in the FPT community:

Conjecture 1. Both Set Cover and Clique do not admit an FPT algorithm with approx-
imation ratio ρ, for any function ρ.

However to the best of our knowledge there has been no progress towards proving
this conjecture, even under assumptions from complexity theory. In this paper we take a
first step towards proving Conjecture 1, under well-known and reasonable2 assumptions
from complexity theory like the Exponential Time Hypothesis (ETH) of Impagliazzo et
al. [11] and the Projection Games Conjecture (PGC) of Moshkovitz [18].

For both minimization and maximization problems, the most interesting and prac-
tical case is the input (x, k) when k = OPT (x). This motivates the definition of the
following variant of FPT approximation algorithms:

Definition 2. Let ρ : N → R≥1 be a computable function such that ρ(k) ≥ 1 for
every k ≥ 1; if goal=min then k · ρ(k) is nondecreasing and if goal=max then k/ρ(k)
is unbounded and nondecreasing. An FPT optimum approximation algorithm for O

1 Even if the input does not satisfy (*).
2 It is very important to only work under well-believed assumptions, since otherwise we will be

able to prove pretty much what we want, but it is of no value.
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with approximation ratio ρ is an algorithm A′ that, given an input x ∈ Σ∗ satisfying
sol(x) �= ∅ outputs a y ∈ sol(x) such that{

cost(x, y) ≤ OPT (x) · ρ(OPT (x)) if goal = min

cost(x, y) ≥ OPT (x)/ρ(OPT (x)) if goal = max
(1)

We require that on input x the algorithm A runs in f(OPT (x)) · |x|O(1) time for some
computable function f .

In Section 2.2, we show the following theorem:

Theorem 1. Let O be a minimization problem in NP, and A be an FPT approximation
algorithm for O with ratio ρ. On input (x, k) let the running time of A be f(k) · |x|O(1)

for some non-decreasing computable function f . Then O also has an FPT optimum
approximation algorithm A′ with approximation ratio ρ, and whose running time on
input x is also f(OPT (x)) · |x|O(1)

Hence for minimization problems, it is enough to prove hardness results only for
the notion of FPT optimum approximation algorithms (see Definition 2). We do not
know any relation between the two definitions for maximization problems, and hence
we prove hardness results for both Definition 1 and Definition 2.

2 Our Results

We make the first progress towards proving Conjecture 1, under standard assumptions
from complexity theory. In particular for Set Cover we assume the Exponential Time
Hypothesis (ETH) [11] and the Projection Games Conjecture (PGC) [18]3. The PGC
gives a reduction from SAT to Projection Games. Composing this with the standard
reduction from Projection Games to Set Cover gives a reduction from SAT to Set Cover.
Since the ETH gives a lower bound on the running time of SAT, we are able to show
the following inapproximability result in Section 3:

Theorem 2. Under the ETH and PGC,

1. There exist constantsF1, F2 > 0 such that the Set Cover problem does not admit an
FPT optimum approximation algorithm with ratio ρ(OPT ) = OPTF1 in 2OPTF2 ·
poly(N,M) time, where N is the size of the universe and M is the number of sets.

2. There exist constants F3, F4 > 0 such that the Set Cover problem does not admit
an FPT approximation algorithm with ratio ρ(k) = kF3 in 2k

F4 ·poly(N,M) time,
where N is the size of the universe and M is the number of sets.

In Section 4, we consider the Clique problem. We use the result of Zuckerman [21]
which states that it is NP-hard to get an O(n1−ε)-approximation for Clique. Given any
problem X ∈ NP, by using the Zuckerman reduction from X to Clique allows us to
show the following result.

3 The PGC is stated in Section 3.1. The ETH is the hypothesis that 3-SAT cannot be solved in
2o(n) time where n is the number of variables. [11]
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Theorem 3. Unless NP ⊆ SUBEXP, for every 1 > δ > 0

1. There exists a constant F (δ) > 0 such that Clique has no FPT optimum approx-
imation with ratio ρ(OPT ) = OPT 1−δ in 2OPTF · poly(n) time, where n is the
number of vertices in the graph.

2. There exists a constant F ′(δ) > 0 such that Clique has no FPT approximation with

ratio ρ(k) = k1−δ in 2k
F ′

· poly(n) time, where n is the number of vertices in the
graph.

2.1 Polytime f(OPT )-Approximation for W-Hard Problems

We also deal with the following question: given that a problem is W-hard, can we maybe
get a good polynomial-time approximation for the problem? Any problem inNP can be
solved in 2n

O(1)

time by simply enumerating all candidates for the witness. If the param-
eter k is at least logn, then we immediately have 2k ≥ n and the problem can be solved

in 2n
O(1) ≤ 22

kO(1)

time which is FPT time in k. So for large values of the parameter
the brute force algorithm itself becomes an FPT algorithm. Hence the intrinsic hardness
to obtain FPT algorithms for intractable problems is when the parameter k is small (say
at most logn). In this case, we show how to replace the impossible FPT solution by a
good approximation, namely f(OPT ) approximation for some small function f . We
systematically design polynomial-time f(OPT ) approximation algorithms for a num-
ber of W[1]-hard minimization problems such as Minimum Size Edge Cover, Strongly
Connected Steiner Subgraph, Directed Steiner Forest and Directed Steiner Network.
Each of the aformentioned problems is known to have strong inapproximability (in
terms of input size). Since we can assume OPT is small, this implies f(OPT ) is small
as well. Therefore for these W[1]-hard problems, if the parameter is large then we can
get an FPT algorithm, otherwise if the parameter is small (then OPT is small as well,
otherwise we can reject for these minimization problems)and we obtain a reasonable
approximation in polynomial time. These results point towards a separation between
the classes W[1] and W[2] since we do not know any W[2]-hard problem which has a
polynomial-time f(OPT )-approximation, for any function f . In fact, Marx (personal
communication) conjectured that the W[2]-hard Set Cover problem does not have a
polynomial-time f(OPT )-approximation for any function f .

Finally in Section 6 we show that the well-studied W[1]-hard Strongly Connected
Steiner Subgraph problem has an FPT 2-approximation algorithm. This answers a ques-
tion by Marx [14] regarding finding a problem which is fixed-parameter intractable,
does not have a constant factor approximation in polynomial time but admits a constant
factor FPT approximation. To the best of our knowledge no such W[2]-hard problem
(parameterized by solution size) is known, and this indicates another potential differ-
ence between W[1] and W[2].

2.2 Proof of Theorem 1

Let x ∈ Σ∗ be the input for A′. The algorithm A′ runs the algorithm A on the instances
(x, 1), (x, 2), . . . until the first k such that the output of A on (x, k) is a solution of cost
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at most k ·ρ(k). Then A′ outputs A(x, k). By Definition 1, we know that k ≤ OPT (x).
Hence k · ρ(k) ≤ OPT (x) · ρ(OPT (x)). It remains to analyze the running time of A′.

Since k ≤ OPT (x), the running time of A′ is upper bounded by
∑k

i=1 f(i) ·
|x|O(1) ≤

∑OPT (x)
i=1 f(i) · |x|O(1) =

(∑OPT (x)
i=1 f(i)

)
· |x|O(1) ≤ OPT (x) ·

f(OPT (x))·|x|O(1) = f(OPT (x))·|x|O(1) , since f is non-decreasing andOPT (x) ≤
|x|.

3 An FPT Inapproximability Result for Set Cover

The goal of this section is to prove Theorem 2.

3.1 The Projection Games Conjecture

First we define a projection game. Note that with a loss of factor two we can assume
that the alphabet is the same for both sides. The input to a projection game consists of:

– A bipartite graph G = (V1, V2, E)
– A finite alphabets Σ
– Constraints (also called projections) given by πe : Σ → Σ for every e ∈ E.

The goal is to find an assignment φ : V1 ∪ V2 → Σ that satisfies as many of the
edges as possible. We say that an edge e = {a, b} ∈ E is satisfied, if the projection
constraint holds, i.e., πe(φ(a)) = φ(b). We denote the size of a projection game by
n = |V1|+ |V2|+ |E|.

Conjecture 2. (Projection Games Conjecture [18]) There exists c > 0 such that for
every ε > 0, there is a polynomial reduction RED-1 from SAT4 to Projection Games
which maps an instance I of SAT to an instance I1 of Projection Games such that:

1. If a YES instance I of SAT satisfies |I|c ≥ 1
ε , then all edges of I1 can be satisfied.

2. If a NO instance I of SAT satisfies |I|c ≥ 1
ε , then at most ε-fraction of the edges of

I1 can be satisfied.
3. The size of I1 is almost-linear in the size of I , and is given by |I1| = n = |I|1+o(1) ·

poly(1ε ).
4. The alphabet Σ for I1 has size poly(1ε ).

A weaker version of the conjecture is known, but the difference is that the alphabet
in [19] has size exp(1ε ). As pointed out in [18], the Projection Games Conjecture is an
instantiation of the Sliding Scale Conjecture of Bellare et al. [2] from 1993. Thus, in
fact this conjecture is actually 20 years old. But we have reached a state of knowledge
now that it seems likely that the Projection Games Conjecture will be proved not long
from now (see Section 1.2 of [18]). Thus it seems that posing this conjecture is quite
reasonable. In contrast to this is the Unique Games Conjecture [12]. On the positive
side, it seems that the Unique Games Conjecture is much more influential than the
Projection Games Conjecture. But it seems unlikely (to us) that the Unique Games
Conjecture will be resolved in the near future.

4 SAT is the standard Boolean satisfiability problem.



116 R. Chitnis, M. Hajiaghayi, and G. Kortsarz

3.2 Reduction from Projection Games to Set Cover

The following reduction from Projection Games to Set Cover is known, see [1,13]. For
completeness, we give a proof in the full version of the paper 5.

Theorem 4. There is a reduction RED-2 from Projection Games to Set Cover which
maps an instance I1 = (G = (V1, V2, E), Σ, π) of Projection Games to an instance I2
of Set Cover such that:

1. If all edges of I1 can be satisfied, then I2 has a set cover of size |V1|+ |V2|.
2. If at most ε-fraction of edges of I1 can be satisfied, then the size of a minimum set

cover for I2 is at least |V1|+|V2|√
32ε

3. The instance I2 has |Σ|× (|V1|+ |V2|) sets and the size of the universe is 2O( 1√
ε
)×

|Σ|2 × |E|
4. The time taken for the reduction is upper bounded by 2O( 1√

ε
)×poly(|Σ|)×poly(|E|+

|V1|+ |V2|)

3.3 Composing the Two Reductions

Composing the reductions from Conjecture 2 and Theorem 4 we get:

Theorem 5. There exists c > 0, such that for every ε > 0 there is a reduction RED-3
from SAT to Set Cover which maps an instance I of SAT to an instance I2 of Set Cover
such that

1. If a YES instance I of SAT satisfies |I|c ≥ 1
ε , then I2 has a set cover of size β.

2. If a NO instance I of SAT satisfies |I|c ≥ 1
ε , then I2 does not have a set cover of

size less than β√
32ε

.

3. The size N of the universe for the instance I ′ is 2O( 1√
ε
) × poly(1ε )× poly(|I|).

4. The number M of sets for the set cover instance I ′ is poly(1ε )× poly(|I|).
5. The total time required for RED-3 is emph(|I|) + 2

O( 1√
ε
) × poly(1ε )× poly(|I|).

where β ≤ |I1| = |I|1+o(1) · poly(1ε ). Note that the number of elements is very large
compared to the number of sets.

Proof. We apply the reduction from Theorem 4 with |Σ| = poly(1ε ) and |V1|+ |V2|+
|E| = n = |I|1+o(1) ·poly(1ε ). Substituting these values in Conjecture 2 and Theorem 4,
we get the parameters as described in the given theorem. We work out each of the values
below:

1. If I is a YES instance of SAT satisfying ε ≥ 1
|I|c , then RED-1maps it to an instance

I1 = (G = (V1, V2, E), Σ, π) of Projection Games such that all edges of I1 can be
satisfied. Then RED-2 maps I1 to an instance I2 of Set Cover such that I2 has a set
cover of size β = |V1|+ |V2| ≤ |V1|+ |V2|+ |E| = |I1| = |I|1+o(1) · poly(1ε ).

5 A full version of the paper is available at http://arxiv.org/abs/1308.3520
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2. If I is a NO instance of SAT satisfying ε ≥ 1
|I|c , then RED-1 maps it to an instance

I1 = (G = (V1, V2, E), Σ, π) of Projection Games such that at most ε-fraction
of the edges of I1 can be satisfied. Then RED-2 maps I1 to an instance I2 of Set
Cover such that I2 does not have a set cover of size β√

32ε
, where β is as calculated

above.
3. By Theorem 4(3), the size of the universe is 2O( 1√

ε
) × |Σ|2 × |E|. Observing that

|Σ| = poly(1ε ) and |E| ≤ |I1| = |I|1+o(1) · poly(1ε ), it follows that the size of the

universe is 2O( 1√
ε
) × poly(1ε )× poly(|I|).

4. By Theorem 4(3), the number of sets is |Σ| × (|V1|+ |V2|). Observing that |Σ| =
poly(1ε ) and |V1|+ |V2| ≤ |I1| = |I|1+o(1) · poly(1ε ), it follows that the number of
sets is poly(1ε )× poly(|I|).

5. Since RED-3 is the composition of RED-1 and RED-2, the time required for
RED-3 is the summation of the times required for RED-1 and RED-2. By Con-
jecture 2, the time required for RED-1 is poly(|I|). By Theorem 4(4), the time

required for RED-2 is at most 2O( 1√
ε
) × poly(|Σ|)× poly(|E|+ |V1|+ |V2|). Ob-

serving that |Σ| = poly(1ε ) and |V1| + |V2| + |E| = |I1| = |I|1+o(1) · poly(1ε ), it

follows that the time required for RED-2 is at most 2O( 1√
ε
) × poly(1ε )× poly(|I|).

Adding up the two, the time required for RED-3 is at most poly(|I|) + 2
O( 1√

ε
) ×

poly(1ε )× poly(|I|).

Finally we are ready to prove Theorem 2.

3.4 Proof of Theorem 2(1)

The roadmap of the proof is as follows: suppose to the contrary there exists an FPT
optimum approximation algorithm, say A, for Set Cover with ratio ρ(OPT ) = OPTF1

in 2OPTF2 · poly(N,M) time, where N is the size of the universe and M is the number
of sets (recall Definition 2). We will choose the constantF1 such that using RED-3 from
Theorem 5 (which assumes PGC), the algorithm A applied to the instance I2 will be
able to decide the instance I1 of SAT. Then to violate ETH we will choose the constant
F2 such that the running time of A summed up with the time required for RED-3 is
subexponential in |I|.

Let c > 0 be the constant from Conjecture 2. Fix some constant 1 > δ > 0 and let
c∗ = min{c, 2− 2δ}. Note that c∗

2 ≤ 1− δ. Choosing ε = 1
|I|c∗ implies ε ≥ 1

|I|c , since
c ≥ c∗. We carry out the reduction RED-3 given by Theorem 5. From Conjecture 2(3),
we know that |I1| = |I|1+o(1) · poly(1ε ). Let λ > 0 be a constant such that the poly(1ε )
is upper bounded by (1ε )

λ. Then Theorem 5 implies β ≤ |I|1+o(1) · (1ε )λ. However we
have chosen ε = 1

|I|c∗ , and hence asymptotically we get

β ≤ |I|2 · |I|λc
∗
= |I|2+λc∗ (2)

Choose the constant F1 such that
c∗

4(2 + λc∗)
≥ F1. Suppose Set Cover has an FPT op-

timum approximation algorithm A with ratio ρ(OPT ) = OPTF1 (recall Definition 2).
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We show that this algorithm A can decide the SAT problem. Consider an instance I of
SAT, and let I2 =RED-3(I) be the corresponding instance of Set Cover. Run the FPT
approximation algorithm on IG, and let A(I2) denote the output of ALG. We have the
following two cases:

– β√
32ε

≤ A(I2): Then we claim that I is a NO instance of SAT. Suppose to the con-

trary that I is a YES instance of SAT. Then Theorem 5(1) implies β ≥ OPT (I2).
Hence β√

32ε
≤ A(I2) ≤ OPT · ρ(OPT ) = OPT 1+F1 = β1+F1 ⇒ 1√

32ε
≤ βF1 .

However, asymptotically we have 1√
32ε

= |I|
c∗
2√
32

> |I| c
∗
4 ≥ (|I|2+λc∗)F1 = βF1 ,

where the last two inequalities follows from the choice of F1 and Equation 2 re-
spectively. This leads to a contradiction, and therefore I is a NO instance of SAT.

– β√
32ε

> A(I2): Then we claim that I is a YES instance of SAT. Suppose to the

contrary that I is a NO instance of SAT. Then Theorem 5(2) implies OPT (I2) ≥
β√
32ε

. Therefore we have β√
32ε

> A(I2) ≥ OPT (I2) ≥ β√
32ε

.

Therefore we run the algorithm A on the instance I2 and compare the output β√
32ε

with nε. As seen above, this comparison allows us to decide the SAT problem. We
now choose the constant F2 such that the running time of A summed up with the time
required for RED-3 is subexponential in |I|. By Theorem 5(5), the total time taken

by RED-3 is poly(|I|) + 2
O( 1√

ε
) × poly(1ε ) × poly(|I|) = poly(|I|) + 2O(|I|

c∗
2 ) ×

poly(|I| c
∗
2 ) × poly(|I|) = poly(|I|) + 2o(I) · poly(|I|) since c∗

2 ≤ 1 − δ. Hence total
time taken by RED-3 is subexponential in I . We now show that there exists a constant
F2 such that the claimed running time of 2OPTF2 · poly(N,M) for the algorithm A
is subexponential in |I|, thus contradicting ETH. We do not have to worry about the
poly(N,M) factor: the reduction time is subexponential in |I|, and hence max{N,M}
is also upper bounded by a subexponential function of |I|. Hence, we essentially want
to choose a constant F2 > 0 such that OPTF2 ≤ MF2 = o(|I|). From Theorem 5(4),
we know that M ≤ |Σ|× |V1+V2|. Since |Σ| = poly(1ε ), let α > 0 be a constant such
that the |Σ| ≤ (1ε )

α. We have seen earlier in the proof that |V1 + V2| ≤ |I1| ≤ |I|2 ·
(1ε )

λ = |I|2+c∗λ. Therefore MF2 ≤ (|I|2+c∗λ+c∗α)F2 . Choosing F2 < 1
2+λc∗+2αc∗

gives OPTF2 = o(|I|), which is what we wanted to show. ��

3.5 Proof of Theorem 2(2)

Observe that due to Theorem 1, Theorem 2(1) implies Theorem 2(2).

4 An FPT Inapproximability Result for Clique

We use the following theorem due to Zuckerman [21], which in turn is a derandomiza-
tion of a result of Hȧstad [10] .

Theorem 6. [10,21] Let X be any problem in NP. For any constant ε > 0 there exists
a polynomial time reduction from X to Clique so that the gap between the clique sizes
corresponding to the YES and NO instances ofX is at least n1−ε, where n is the number
of vertices of the Clique instances.
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4.1 Proof of Theorem 3(1)

Fix a constant 1 > δ > 0. Set 0 < ε = δ
δ+2 , or equivalently δ = 2ε

1−ε . Let X be any
problem in NP. Let the Hastad-Zuckerman reduction from X to Clique [10,21] which
creates a gap of at least n1−ε map an instance I of X to the corresponding instance
IG of Clique. Since the reduction is polynomial, we know that n = |IG| = |I|D for
some constantD(ε) > 0. Note thatD depends on ε, which in turn depends on δ. Hence,
ultimately D depends on δ. If I is a YES instance of X , then IG contains a clique of
size at least n1−ε since each graph has a trivial clique of size one and the gap between
YES and NO instances of Clique is at least n1−ε. Similarly, observe that a graph on
n vertices can have a clique of size at most n. To maintain the gap of at least n1−ε, it
follows if I is a NO instance of X then the maximum size of a clique in IG is at most
nε. To summarize, we have

– If I is a YES instance, then OPT (IG) ≥ n1−ε

– If I is a NO instance, then OPT (IG) ≤ nε

Suppose Clique has an FPT optimum approximation algorithm A with ratio
ρ(OPT ) = OPT 1−δ (recall Definition 2). We show that this algorithm A can de-
cide the problem X . Consider an instance I of X , and let IG be the corresponding
instance of Clique. Run the FPT approximation algorithm on IG, and let A(IG) denote
the output of A. We have the following two cases:

– nε ≥ A(IG): Then we claim that I is a NO instance of X . Suppose to the contrary

that I is a YES instance of X , then we have nε ≥ A(IG) ≥ OPTIG

ρ(OPT (IG))) =

(OPT (IG))
δ ≥ (n1−ε)δ = n2ε, which is a contradiction.

– nε < A(IG): Then we claim that I is a YES instance ofX . Suppose to the contrary
that I is a NO instance of X , then we have nε < A(IG) ≤ OPT (IG) ≤ nε, which
is a contradiction.

We run the algorithm A on the instance IG and compare the output A(IG) with nε. As
seen above, this comparison allows us to decide the problem X . We now show how
to choose the constant F such that the running 2OPTF · poly(n) is subexponential in
|I|. We claim that F = 1

D+1 works. Note that OPT (IG) ≤ n always. Hence 2OPTF ·

poly(n) ≤ 2n
F · poly(n) = 2(|I|

D)F · poly(|I|D) = 2|I|
DF · poly(|I|) = 2|I|

D
D+1 ·

poly(|I|) = 2o(I) ·poly(|I|). This implies we can could solve X in subexponential time
using A. However X was any problem chosen from the class NP, and hence NP ⊆
SUBEXP. ��

4.2 Proof of Theorem 3(2)

Fix a constant 1 > δ > 0. Set 0 < ε = δ
δ+1 , or equivalently δ = ε

1−ε . Let X be any
problem in NP. Let the Hastad-Zuckerman reduction from X to Clique [10,21] which
creates a gap of at least n1−ε map an instance I of X to the corresponding instance
IG of Clique. Since the reduction is polynomial, we know that n = |IG| = |I|D for
some constantD(ε) > 0. Note thatD depends on ε, which in turn depends on δ. Hence,
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ultimately D depends on δ. If I is a YES instance of X , then IG contains a clique of
size at least n1−ε since each graph has a trivial clique of size one and the gap between
YES and NO instances of Clique is at least n1−ε. Similarly, observe that a graph on
n vertices can have a clique of size at most n. To maintain the gap of at least n1−ε, it
follows if I is a NO instance of X then the maximum size of a clique in IG is at most
nε.

Suppose Clique has an FPT approximation algorithm ALG with ratio ρ(k) = k1−δ

(recall Definition 1). We show that this algorithm ALG can decide the problem X . Set
k = nε. On the input (IG, nε) to ALG, there are two possible outputs:

– ALG outputs reject⇒ OPT (IG) < nε ⇒ I is a NO instance of X
– ALG outputs a clique of size ≥ k

ρ(k) ⇒ OPT (IG) ≥ k
ρ(k) = k

k1−δ = kδ =

(nε)δ = n1−ε

⇒ I is a YES instance of X

Therefore the FPT approximation algorithm ALG can decide the problem X ∈ NP.
We now show how to choose the constant F ′ such that the running exp(kF

′
) · poly(n)

is subexponential in |I|. We claim that F ′ = 1
ε·D+1 works. This is because 2k

F ′
·

poly(n) = 2n
εF ′

· poly(n) = 2|I|
εDF ′

· poly(|I|D) = 2|I|
εD

εD+1 · poly(|I|) = 2o(I) ·
poly(|I|). This implies we can could solveX in subexponential time using ALG. How-
ever X was any problem chosen from the class NP, and hence NP ⊆ SUBEXP. ��

5 Polytime f(OPT )-Approximation for W[1]-Hard Problems

In Section 2.1 we have seen the motivation for designing polynomial time f(OPT )-
approximation algorithms for W[1]-hard problems such as Minimum Size Edge Cover,
Strongly Connected Steiner Subgraph, Directed Steiner Forest and Directed Steiner Net-
work. Our results are summarized in Figure 1 (all the proofs are deferred to the full
version):

W[1]-hardness Polytime Approx. Ratio
Strongly Connected Steiner Forest Guo et al. [7] OPT ε

Directed Steiner Forest Follows from [7] OPT 1+ε

Directed Steiner Network Follows from [7] OPT 2

Minimum Edge Cover Cai [3] OPT − 1

Directed Multicut Marx and Razgon [17] 3 ·OPT [8]

Fig. 1. Polytime f(OPT )-approximation for W[1]-hard problems

6 Constant Factor FPT Approximation for SCSS

In this section we show that SCSS has an FPT 2-approximation. We define the problem
formally:
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Strongly Connected Steiner Subgraph (SCSS)
Input : An directed graph G = (V,E), a set of terminals T = {t1, t2, . . . , t	} and
an integer p
Problem: Does there exists a set E′ ⊆ E such that |E′| ≤ p and the graph G′ =
(V,E′) has a ti → tj path for every i �= j
Parameter: p

Lemma 1. Strongly Connected Steiner Subgraph has an FPT 2-approximation.

Proof. Let Grev denote the reverse graph obtained from G, i.e., reverse the orienta-
tion of each edge. Any solution of SCSS instance must contain a path from t1 to
each terminal in T \ t1 and vice versa. Consider the following two instances of the
Directed Steiner Tree problem: I1 = (G, t1, T \ t1) and I2 = (Grev, t1, T \ t1), and
let their optimum be be OPT1, OPT2 respectively. Let OPT be the optimum of given
SCSS instance and k be the parameter. If OPT > k then we output anything (see
Definition 1). Otherwise we have k ≥ OPT ≥ max{OPT1, OPT2}. We know that
the Directed Steiner Tree problem is FPT parameterized by the size of the solution [5].
Hence we find the values OPT1, OPT2 in time which is FPT in k. Clearly the union
of solutions for I1 and I2 os a solution for instance I of SCSS. The final observation is
OPT1 +OPT2 ≤ OPT +OPT = 2 ·OPT . ��

Guo et al. [7] show that SCSS is W[1]-hard parameterized by solution size plus num-
ber of terminals. It is known that SCSS has no log2−ε n-approximation in polynomial
time for any fixed ε > 0, unless NP has quasi-polynomial Las Vegas algorithms [9].
Combining these facts with Lemma 1 implies that SCSS is a W[1]-hard problem that
is not known to admit a constant factor approximation in polynomial time but has a
constant factor FPT approximation. This answers a question by Marx [14]. Previously
the only such problem known was a variant of the Almost-2-SAT problem [20] called
2-ASAT-BFL, due to Marx and Razgon [16].
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Abstract. We introduce the notion of z-topological orderings for digraphs. We
prove that given a digraph G on n vertices admitting a z-topological ordering,
together with such an ordering, one may count the number of subgraphs of G
that at the same time satisfy a monadic second order formula ϕ and are the union
of k directed paths, in time f(ϕ, k, z) · nO(k·z). Our result implies the polyno-
mial time solvability of many natural counting problems on digraphs admitting
z-topological orderings for constant values of z and k. Concerning the relation-
ship between z-topological orderability and other digraph width measures, we
observe that any digraph of directed path-width d has a z-topological ordering
for z ≤ 2d+1. On the other hand, there are digraphs on n vertices admitting a z-
topological order for z = 2, but whose directed path-width is Θ(log n). Since
graphs of bounded directed path-width can have both arbitrarily large undi-
rected tree-width and arbitrarily large clique width, our result provides for the
first time a suitable way of partially transposing metatheorems developed in the
context of the monadic second order logic of graphs of constant undirected tree-
width and constant clique width to the realm of digraph width measures that are
closed under taking subgraphs and whose constant levels incorporate families of
graphs of arbitrarily large undirected tree-width and arbitrarily large clique width.

Keywords: Slice Theory, Digraph Width Measures, Monadic Second Order Logic
of Graphs, Algorithmic Meta-theorems.

1 Introduction

Two cornerstones of parametrized complexity theory are Courcelle’s theorem [13] stat-
ing that monadic second order logic properties may be model checked in linear time
in graphs of constant undirected tree-width, and its subsequent generalization to count-
ing given by Arnborg, Lagergren and Seese [2]. The importance of such metatheorems
stem from the fact that several NP-complete problems such as Hamiltonicity, colorabil-
ity, and their respective #P-hard counting counterparts, can be modeled in terms of
MSO2 sentences and thus can be efficiently solved in graphs of constant undirected
tree-width.

In this work we introduce the notion of z-topological orderings for digraphs and
provide a suitable way of partially transposing the metatheorems in [13,2] to digraphs
admitting z-topological orderings for constant values of z. In order to state our main
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result we will first give a couple of easy definitions: Let G = (V,E) be a directed
graph. For subsets of vertices V1, V2 ⊆ V we let E(V1, V2) denote the set of edges
with one endpoint in V1 and another endpoint in V2. We say that a linear ordering
ω = (v1, v2, ..., vn) of the vertices of V is a z-topological ordering of G if for every
directed simple path p = (Vp, Ep) in G and every i with 1 ≤ i ≤ n, we have that
|Ep ∩ E({v1..., vi}, {vi+1, ..., vn})| ≤ z. In other words, ω is a z-topological ordering
if every directed simple path of G bounces back and forth at most z times along ω. The
terminology z-topological ordering is justified by the fact that any topological ordering
of a DAG G according to the usual definition, is a 1-topological ordering according
to our definition. Conversely if a digraph admits a 1-topological ordering, then it is a
DAG. We denote by MSO2 the monadic second order logic of graphs with edge set
quantification. An edge-weighting function for a digraph G = (V,E) is a function
w : E → Ω where Ω is a finite commutative semigroup of size polynomial in |V |
whose elements are totally ordered. The weight of a subgraph H = (V ′, E′) of G is
defined as w(H) =

∑
e∈E′ w(e). A maximal-weight subgraph of G satisfying a given

property ϕ is a subgraph H = (V ′, E′) such that H |= ϕ and such that for any other
subgraph H ′ = (V ′′, E′′) of G for which H ′ |= ϕ we have w(H) ≥ w(H ′). Now we
are in a position to state our main theorem:

Theorem 1.1 (Main Theorem). For each MSO2 formula ϕ and each positive integers
k, z ∈ N there exists a computable function f(ϕ, z, k) such that: Given a digraph
G = (V,E) on n vertices, a z-topological ordering ω of G, an edge-weighting function
w : E → Ω, and a positive integer l ≤ n, we can count in time f(ϕ, z, k) · nO(z·k) the
number of subgraphs H of G simultaneously satisfying the following four properties:

(i) H |= ϕ
(ii) H is the union of k directed paths1

(iii) H has l vertices
(iv) H has maximal weight

Our result implies the polynomial time solvability of many natural counting problems
on digraphs admitting z-topological orderings for constant values of z and k. We ob-
serve that graphs admitting z-topological orderings for constant values of z can already
have simultaneously unbounded tree-width and unbounded clique-width, and therefore
the problems that we deal with here cannot be tackled by the approaches in [13,2,15].
For instance any DAG is 1-topologically orderable. In particular, the n×n directed grid
in which all horizontal edges are directed to the left and all vertical edges oriented up
is 1-topologically orderable, while it has both undirected tree-width Ω(n) and clique-
width Ω(n).

2 Applications

To illustrate the applicability of Theorem 1.1 with a simple example, suppose we wish
to count the number of Hamiltonian cycles on G. Then our formula ϕ will express that

1 A digraph H is the union of k directed paths if H = ∪k
i=1pi for not necessarily vertex-disjoint

nor edge-disjoint directed paths p1, ..., pk.
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the graphs we are aiming to count are cycles, namely, connected graphs in which each
vertex has degree precisely two. Such a formula can be easily specified in MSO2 . Since
any cycle is the union of two directed paths, we have k = 2. Since we want all vertices
to be visited our l = n. Finally, the weights in this case are not relevant, so it is enough
to set the semigroup Ω to be the one element semigroup {1}, and the weights of all
edges to be 1. In particular the total weight of any subgraph of G according to this
semigroup will be 1. By Theorem 1.1 we can count the number of Hamiltonian cycles
in G in time f(ϕ, k, z) · n2z . We observe that Hamiltonicity can be solved within the
same time bounds for other directed width measures, such as directed tree-width [33].

Interestingly, Theorem 1.1 allow us to count structures that are much more complex
than cycles. And in our opinion it is rather surprising that counting such complex struc-
tures can be done in XP. For instance, we could choose to count the number of maximal
Hamiltonian subgraphs of G which can be written as the union of k directed paths. We
can repeat this trick with virtually any natural property that is expressible in MSO2 .
For instance we can count the number of maximal weight 3-colorable subgraphs of G
that are the union of k-paths. Or the number of subgraphs of G that are the union of k
directed paths and have di-cuts of size k/10. Observe that, as it should be expected, our
framework does not allow one to find in polynomial time a maximal di-cut of the whole
graph G nor to determine in polynomial time whether the whole graph G is 3-colorable
since these problems are already NP-complete for DAGs, i.e., for z = 1.

If H = (V,E) is a digraph, then the underlying undirected graph of H is obtained
from H by forgetting the direction of its edges. A very interesting application of The-
orem 1.1 consists in counting the number of maximal-weight subgraphs of G which
are the union of k paths and whose underlying undirected graph satisfy some structural
property, such as, connectedness, planarity, bounded genus, bipartiteness, etc.

Corollary 2.1. Let G = (V,E) be a digraph on n vertices and w : E → Ω be an edge
weighting function. Then given a z-topological ordering ω of G one may count in time
O(nk·z) the number of maximal-weight subgraphs of G that are the union of k directed
paths and whose underlying undirected graph satisfy any combination of the follow-
ing properties: 1) Connectedness, 2) Being a forest, 3) Bipartiteness, 4) Planarity, 5)
Constant Genus g, 6) Outerplanarity, 7) Being Series Parallel, 8) Having Constant
Treewidth t 9) Having Constant Branchwidth b, 10) Satisfy any minor closed property.

Another family of applications for Theorem 1.1 arises from the fact that the monadic
second order alternation hierarchy is infinite [37]. Additionally, each level r of the poly-
nomial hierarchy has a very natural complete problem, the r-round-3-coloring problem,
that also belongs to the r-th level of the monadic second order hierarchy (Theorem 11.4
of [1]). Thus by Theorem 1.1 we may count the number of r-round-3-colorable sub-
graphs of G that are the union of k directed paths in time f(ϕr, z, k) · nO(z·k).

We observe that the condition that the subgraphs we consider are the union of k
directed paths is not as restrictive as it might appear at a first glance. For instance one
can show that for any a, b ∈ N the a × b undirected grid is the union of 4 directed
paths. Additionally these grids have zig-zag number O(min{a, b}). Therefore counting
the number of maximal grids of height O(z) on a digraph of zig-zag number z is a
neat example of problem which can be tackled by our techniques but which cannot
be formulated as a linkage problem, namely, the most successful class of problems that
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has been shown to be solvable in polynomial time for constant values of several digraph
width measures [33].

3 Overview of the Proof of Theorem 1.1

We will prove Theorem 1.1 within the framework of regular slice languages, which
was originally developed by the author to tackle several problems within the partial
order theory of concurrency [17,18]. The main steps of the proof of Theorem 1.1 are
as follows. To each regular slice language L we associate a possibly infinite set of di-
graphs LG . In Section 6 we will define the notion of z-dilated-saturated regular slice
language and show that given any digraph G together with a z-topological ordering
ω = (v1, v2, ..., vn) of G, and any z-dilated-saturated slice language L, one may ef-
ficiently count the number of subgraphs of G that are isomorphic to some digraph in
LG ( Theorem 6.2). Then in Section 7 we will show that given any monadic second
order formula ϕ and any natural numbers z, k one can construct a z-dilated-saturated
regular slice language L(ϕ, z, k) representing the set of all digraphs that at the same
time satisfy ϕ and are the union of k directed paths (Theorem 7.1). The construction of
L(ϕ, z, k) is done once and for all for each ϕ,k and z, and is completely independent
from the digraphG. Finally, the proof of Theorem 1.1 will follow by plugging Theorem
7.1 into Theorem 6.2. Proofs of intermediate results omitted for a matter of clarity or
due to lack of space can be found in the full version of this work [19].

4 Comparison with Existing Work

Since the last decade, the possibility of lifting the metatheorems in [13,2] to the directed
setting has been an active line of research. Indeed, following an approach delineated
by Reeds [39] and Johnson, Robertson, Seymour and Thomas [33], several digraph
width measures have been defined in terms of the number of cops needed to capture
a robber in a certain evasion game on digraphs. From these variations we can cite for
example, directed tree-width [39,33], DAG width [6], D-width [40,29], directed path-
width [4], entanglement [7,8], Kelly width [32] and Cycle Rank [21,31]. All these width
measures have in common the fact that DAGs have the lowest possible constant width
(0 or 1 depending on the measure). Other width measures in which DAGs do not have
necessarily constant width include DAG-depth [24], and Kenny-width [24].

The introduction of the digraph width measures listed above was often accompa-
nied by algorithmic implications. For instance, certain linkage problems that are NP-
complete for general graphs, e.g. Hamiltonicity, can be solved efficiently in graphs of
constant directed tree-width [33]. The winner of certain parity games of relevance to the
theory of μ-calculus can be determined efficiently in digraphs of constant DAG width
[6], while it is not known if the same can be done for general digraphs. Computing
disjoint paths of minimal weight, a problem which is NP-complete in general digraphs,
can be solved efficiently in graphs of bounded Kelly width. However, except for such
sporadic successful algorithmic implications, researchers have failed to come up with
an analog of Courcelle’s theorem for graph classes of constant width for any of the di-
graph width measures described above. It turns out that there is a natural barrier against
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this goal: It can be shown that unless all the problems in the polynomial hierarchy
have sub-exponential algorithms, which is a highly unlikely assumption, MSO2 model
checking is intractable in any class of graphs that is closed under taking subgraphs and
whose undirected tree-width is poly-logarithmic unbounded [34,35]. An analogous re-
sult can be proved with respect to model checking of MSO1 properties if we assume a
non-uniform version of the extended exponential time hypothesis [26,25]. All classes
of digraphs of constant width with respect to the directed measures described above
are closed under subgraphs and have poly-logarithmically unbounded tree-width, and
thus fall into the impossibility theorem of [34,35]. It is worth noting that Courcelle,
Makowsky and Rotics have shown that MSO1 model checking is tractable in classes
of graphs of constant clique-width [15,16], and that these classes are poly-logarithmic
unbounded, but they are not closed under taking subgraphs.

We define the zig-zag number of a digraph G to be the minimum z for which G
has a z-topological ordering, and denote it by zn(G). The zig-zag number is a digraph
width measure that is closed under taking subgraphs, poly-logarithmically unbounded
and that has interesting connections with some of the width measures described above.
In particular we can prove the following theorem stating that families of graphs of
constant zig-zag number are strictly richer than families of graphs of constant directed
path-width.

Theorem 4.1. LetG be a digraph of directed path-width d. Then G has zig-zag number
z ≤ 2d+ 1. Furthermore, given a directed path decomposition of G one can efficiently
derive a z-topological ordering of G. On the other hand, there are digraphs on n ver-
tices whose zig-zag number is 2 but whose directed path-width is Θ(log n).

Theorem 4.1 legitimizes the algorithmic relevance of Theorem 1.1 since path decompo-
sitions of graphs of constant directed path-width can be computed in polynomial time
[42]. The same holds with respect to the cycle rank of a graph since constant cycle-
rank decompositions2 can be converted into constant directed-path decompositions in
polynomial time [30]. Therefore all the problems described in Section 1 can be solved
efficiently in graphs of constant directed path-width and in graphs of constant cycle
rank. We should notice that our main theorem circumvents the impossibility results of
[34,35,26,25] by confining the monadic second order logic properties to subgraphs that
are the union of k directed paths.

A pertinent question consists in determining whether we can eliminate either z or k
from the exponent of the running time f(ϕ, k, z) · nO(k·z) stated in Theorem 1.1. The
following two theorems say that under strongly plausible parameterized complexity
assumptions [20], namely that W [2] �= FPT and W [1] �= FTP , the dependence of
both k and z in the exponent of the running time is unavoidable.

Theorem 4.2 (Lampis-Kaouri-Mitsou[36]). Determining whether a digraph G of cy-
cle rank z has a Hamiltonian circuit is W [2] hard with respect to z.

Since by Theorem 4.1 constant cycle rank is less expressive than constant zig-zag num-
ber, the hardness result stated in Theorem 4.2 also works for zig-zag number. Given a se-
quence of 2k not necessarily distinct vertices σ = (s1, t1, s2, t2, ..., sk, tk), a σ-linkage

2 By cycle-rank decomposition we mean a direct elimination forest[30].
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is a set of internally disjoint directed paths p1, p2, ..., pk where each pi connects si
to ti.

Theorem 4.3 (Slivkins[41]). Given aDAGG, determining whetherG has a σ-linkage
σ = (s1, t1, s2, t2, ..., sk, tk) is hard for W [1].

It is not hard to see that σ-linkages are expressible in MSO2 . Additionally, since a σ-
linkage is clearly union of k-paths, Theorem 4.3 implies that the dependence on k in
the exponent of the running time in Theorem 1.1 is necessary even if z is fixed to be 1.

Below we compare the zig-zag number with several other digraph width measures.
If G is a digraph, we write dtw(G) for its directed tree-width [33], Dw(G) for its D-
width [30], dagw(G) for its DAG-width [6], dpw(G) for its directed path-width [4],
kellyw(G) for its Kelly-width [24], ddp(G) for its DAG-depth [24], Kw(G) for its
K-width [24], s(G) for its weak separator number [30] and r(G) for its cycle rank [30].
We write A � B to indicate that there are graphs of constant width with respect to the
measure A but unbounded width with respect to the measure B. We write A � B to
express that A is not asymptotically greater than B.

zn(G) � dpw(G)
[30]

� cr(G)
[25]

�
{
Kw(G)
ddp(G)

cr(G)

logn

[30]

� s(G) (1)

zn(G)

logn
� s(G)

[30]

� Dw(G)
[30]

� dagw(G)
[6]

� dpw(G) (2)

√
zn(G)

logn
� dtw(G)

[32]

� kellyw(G)
√
Dw(G)

[23]

� dtw(G)
[23]

� Dw(G) (3)

The numbers above � and � point to the references in which these relations where
established. The only new relations are zn(G) � dpw(G), zn(G)/ logn � s(G) and√
zn(G)/ logn � dtw(G) which follow from Theorem 4.1 together with the already

known relations between directed path-width and the other digraph width measures.

5 Regular Slice Languages

A slice S = (V,E, l, s, t) is a digraph comprising a set of vertices V , a set of edges
E, a vertex labeling function l : V → Γ for some set of symbols Γ , and functions
s, t : E → V which respectively associate to each edge e ∈ E, a source vertex es

and a target vertex et. We notice that an edge might possibly have the same source and
target (es = et). The vertex set V is partitioned into three disjoint subsets: an in-frontier
I ⊆ V a center C ⊆ V and an out-frontier O ⊆ V . Additionally, we require that each
frontier-vertex in I ∪O is the endpoint of exactly one edge in E and that no edge in E
has both endpoints in the same frontier. The frontier vertices in I ∪ O are labeled by
l with numbers from the set {1, ..., q} for some natural number q ≥ max{|I|, |O|} in
such a way that no two vertices in the same frontier receive the same number. Vertices
belonging to different frontiers may on the other hand be labeled with the same number.
The center vertices in C are labeled by l with elements from Γ\{1, ..., q}. We say that
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a slice S is normalized if l(I) = {1, ..., |I|} and l(O) = {1, ..., |O|}. Non-normalized
slices will play an important role in Section 6 when we define the notion of sub-slice.
Since we will deal with weighted graphs, we will also allow the edges of a slice to be
weighted by a function w : E → Ω where Ω is a finite commutative semigroup.

A slice S1 with frontiers (I1, O1) can be glued to a slice S2 with frontiers (I2, O2)
provided l1(O1) = l2(I2) and that for each i ∈ l(O1) there exist edges e1 ∈ S1 and
e2 ∈ S2 such that either et1 ∈ O1, es2 ∈ I2 and l1(et1) = l2(e

s
2) or es1 ∈ O1, et2 ∈ I2 and

l1(e
s
1) = l2(e

t
2). In this case the glueing gives rise to the slice S1 ◦ S2 with frontiers

(I1, O2) which is obtained by fusing each such pair of edges e1, e2. The fusion of e1
with e2 proceeds as follows. First we create an edge e12. If et1 ∈ O1, e

s
2 ∈ I2, we set

es12 = es1, e
t
12 = et2 and delete e1, e2, et1, e

s
2. Otherwise, if es1 ∈ O1, e

t
2 ∈ I2, we set

es12 = es2, e
t
12 = et1 and delete e1, e2, es1, e

t
2. Thus in the process of gluing two slices,

the vertices in the glued frontiers disappear. If S1 and S2 are weighted by functions w1

and w2, then we add the requirement that the glueing of S1 with S2 can be performed
if the weights of the edges touching the out-frontier of S1 agree with the weights of
their corresponding edges touching the in-frontier of S2. In the opposite direction, any
slice can be decomposed into a sequence of atomic parts which we call unit slices,
namely, slices with at most one vertex on its center. Thus slices may be regarded as a
graph theoretic analog of the knot theoretic braids [3], in which twists are replaced by
vertices. Within automata theory, slices may be related to several formalisms such as
graph automata [43,11], graph rewriting systems [12,5,22], and others [28,27,10,9]. In
particular, slices may be regarded as a specialized version of the multi-pointed graphs
defined in [22] but subject to a slightly different composition operation.

The width of a slice S with frontiers (I, O) is defined as w(S) = max{|I|, |O|}. In
the same way that letters from an alphabet may be concatenated by automata to form
infinite languages of strings, we may use automata or regular expressions over alphabets
of slices of a bounded width to define infinite families of digraphs. Let Σc,q

S
denote the

set of all unit slices of width at most c and whose frontier vertices are numbered with
numbers from {1, ..., q} for q ≥ c. We say that a slice is initial if its in-frontier is empty
and final if its out-frontier is empty. A slice with empty center is called a permutation
slice. Due to the restriction that each frontier vertex of a slice must be connected to
precisely one edge, we have that each vertex in the in-frontier of a permutation slice is
necessarily connected to a unique vertex in its out-frontier. The empty slice, denoted by
ε, is the slice with empty center and empty frontiers. We regard the empty slice as a
permutation slice. A subset L of the free monoid (Σc,q

S
)∗ generated by Σc,q

S
is a slice

language if for every sequence of slices S1S2...Sn ∈ L we have that S1 is an initial
slice, Sn a final slice and Si can be glued to Si+1 for each i ∈ {1, ..., n − 1}. We
should notice that at this point the operation of the monoid in consideration is just the
concatenation S1S2 of slice symbols S1 and S2 and should not be confused with the
composition S1 ◦ S2 of slices. The unit of the monoid is just the empty symbol λ and
not the empty slice, thus the elements of L are simply sequences of slices, regarded as
dumb letters. To each slice language L over Σc,q

S
we associate a graph language LG

consisting of all digraphs obtained by composing the slices in each string in L.

LG = {S1 ◦ S2... ◦ Sn|S1S2...Sn ∈ L} (4)
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However we observe that a set LG of digraphs may be represented by several different
slice languages, since a digraph in LG may be decomposed in several ways as a string
of unit slices. We will use the term unit decomposition of a digraph H to denote any
sequence of unit slices U = S1S2...Sn whose composition S1 ◦ S2 ◦ ... ◦ Sn yields
H . We say that the unit decomposition U is dilated if it contains permutation slices,
including possibly the empty slice. The slice-width of U is the minimal c for which
U ∈ (Σc,q

S
)∗ for some q. In other words, the slice width of a unit decomposition is the

width of the widest slice appearing in it.
A slice language is regular if it is generated by a finite automaton or regular expres-

sions over slices. We notice that since any slice language is a subset of the free monoid
generated by a slice alphabet Σc,q

S
, we do not need to make a distinction between reg-

ular and rational slice languages. Therefore, by Kleene’s theorem, every slice language
generated by a regular expression can be also generated by a finite automaton. Equiv-
alently, a slice language is regular iff it can be generated by the slice graphs defined
below [17]:

Definition 5.1 (Slice Graph). A slice graph over a slice alphabet Σc,q
S

is a labeled
directed graph SG = (V , E ,S, I, T ) possibly containing loops but without multiple
edges where I ⊆ V is a set of initial vertices, T ⊆ V a set of final vertices and the
function S : V → Σc,q

S
satisfies the following conditions:

– S(v) is a initial slice for every vertex v in I,
– S(v) is final slice for every vertex v in T and,
– (v1, v2) ∈ E implies that S(v1) can be glued to S(v2).

We say that a slice graph is deterministic if none of its vertices has two out-neighbors
labeled with the same slice and if there is no two initial vertices labeled with the same
slice. In other words, in a deterministic slice graph no two distinct walks are labeled
with the same sequence of slices. We denote by L(SG) the slice language generated
by SG, which we define as the set of all sequences slices S(v1)S(v2) · · · S(vn) where
v1v2 · · · vn is a walk on SG from an initial vertex to a final vertex. We write LG(SG) for
the language of digraphs derived from L(SG).

6 Counting Subgraphs Specified by a Slice Language

A sub-slice of a slice S is a subgraph of S that is itself a slice. If S′ is a sub-slice
of S then we consider that the numbering in the frontiers of S′ are inherited from the
numbering of the frontiers of S. Therefore, even if S is normalized, its sub-slices might
not be. If U = S1S2...Sn is a unit decomposition of a digraph G, then a sub-unit-
decomposition of U is a unit decomposition U′ = S′

1S
′
2...S

′
n of a subgraph H of G

such that S′
i is a sub-slice of Si for 1 ≤ i ≤ n. We observe that sub-unit-decompositions

may be padded with empty slices. A unit decomposition U = S1S2...Sn may have ex-
ponentially many sub-unit-decompositions of a given slice-width c. However, as we will
state in Lemma 6.1 the set of all such sub-unit decompositions of U may be represented
by a slice graph of size polynomial in n. A normalized unit decomposition is a unit de-
composition U = S1S2...Sn such that Si is a normalized slice for each i ∈ {1, ..., n}.
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A slice language is normalized if all unit decompositions in it are normalized. A slice-
graph is normalized if all slices labeling its vertices are normalized. We notice that a
regular slice language is normalized if and only if it is generated by a normalized slice
graph.

Lemma 6.1. Let G be a digraph with n vertices, U = S1S2...Sn be a normalized unit
decomposition of G of slice-width q, and let c ∈ N be such that c ≤ q. Then one can
construct in time n·qO(c) an acyclic and deterministic slice graph SUBc(U) on n·qO(c)

vertices whose slice language L(SUBc(U)) consists of all sub-unit-decompositions of
U of slice-width at most c.

Let ω = (v1, v2, ..., vn) be a linear ordering of the vertices of a digraph H . We say that
a dilated unit decomposition U = S1S2...Sm of H is compatible with ω if vi is the
center vertex of Sji for each i ∈ {1, ..., n} and if ji > ji−1 for each i ∈ {1, ..., n− 1}
(observe that we need to use the subindex ji instead of simply i because U is dilated
and therefore some slices in U have no center vertex). Notice that for each ordering
ω there might exist several unit decompositions of H that are compatible to ω. If ω
is a z-topological ordering of a digraph G and if U is a dilated unit decomposition of
G that is compatible with ω, then we say that U has zig-zag number z. The zig-zag
number of a slice language L is the maximal zig-zag number of a unit decomposition
in L. If a dilated unit decomposition U has zig-zag number z then any of its sub-unit
decompositions has zig-zag number at most z.

Proposition 6.1. Let U be a unit decomposition of zig-zag number z. Then any sub-
unit-decomposition in L(SUBc(U)) has zig-zag number at most z.

A slice language L is z-dilated-saturated, if L has zig-zag number at most z and if for
every digraph H ∈ LG , every z-topological ordering ω of H and every dilated unit
decomposition U of H that is compatible with ω we have that U ∈ L. We should
emphasize that the intersection of the graph languages generated by two slice graphs is
not in general reflected by the intersection of their slice languages. Indeed, it is easy to
define slice languagesL,L′ for which LG = L′

G but for whichL∩L′ = ∅! Additionally,
a reduction from the Post correspondence problem [38] established by us in [17] implies
that even determining whether the intersection of the graph languages generated by slice
languages is empty, is undecidable. However this is not an issue if at least one of the
intersecting languages is z-dilated-saturated, as stated in the next proposition.

Proposition 6.2. Let L and L′ be two slice languages over Σc,q
S

, such that L has zig-
zag number z and such that L′ is z-saturated. If we let L∩ = L∩L′, thenL∩

G = LG∩L′
G .

IfS is a normalized slice inΣc,q
S

with in-frontier I and out-frontierO then a q-numbering
of S is a pair of functions in : I → {1, ..., q}, out : O → {1, ..., q} such that for each
two vertices v, v′ ∈ I , l(v) < l(v′) implies that in(l(v)) < in(l(v′)) and, for each two
vertices v, v′ ∈ O, l(v) < l(v′) implies that out(l(v)) < out(l(v′)). We let (S, in, out)
denote the slice obtained fromS by renumbering each frontier vertexv ∈ I with in(l(v))
and each out frontier vertex v ∈ O with the out(l(v)). The q-numbering-expansion of a
normalized slice S is the set N (S) of all q-numberings of S.

Let SG = (V , E ,S, I, T ) be a slice graph over Σc,q
S

. Then the q-numbering expan-
sion of SG is the slice graph N q(SG) = (V ′, E ′,S ′, I ′, T ′) defined as follows. For each
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vertex v ∈ V and each slice (S(v), in, out) ∈ N q(S(v)) we create a vertex vin,out in
V ′ and label it with (S, in, out). Subsequently we connect vin,out to v′in′,out′ if there
was an edge (v, v′) ∈ E and if (S, in, out) can be glued to (S′, in′, out′).

Theorem 6.1. Let G be digraph, U = S1S2...Sn be a normalized unit decomposition
of G of slice-width q and zig-zag number z, SG be a normalized z-dilated-saturated
slice graph over Σc,q

S
and N q(SG) be the q-numbering expansion of SG. Then the set

of all sub-unit-decompositions of U of slice-width at most c whose composition yields a
graph isomorphic to some graph in LG(SG) is represented by the regular slice language
L(SUBc(U)) ∩ L(N q(SG)).

Let SG = (V , E ,S, I, T ) be a slice graph and (Ω,+) be a finite commutative semi-
group with an identity element 0. Then the Ω-weight expansion of SG is the slice graph
WΩ(SG) = (V ′, E ′,S ′, I ′, T ′) defined as follows: For each vertex v ∈ V labeled
with the slice S(v) = (V,E, l), we add the set of vertices {vw,tot}w to V ′ where w
ranges over all weighting functions w : E → Ω and tot ranges over Ω. We label each
vw,tot with the tuple (S(v), w, tot). Then we add an edge (vw,tot, v

′
w′,tot′) to E ′ if and

only if (v, v′) ∈ E , if the slice (S(v), w) can be glued to the slice (S(v′), w′) and if
tot′ = tot +

∑
e∈E′out w(e). The set of final vertices T ′ consists of all vertices in V ′

which are labeled with a triple (S, w, tot) where S is a final slice. The set of initial
vertices I ′ consists of all vertices in V ′ which are labeled with a triple (S, w, 0) where
S is an initial slice. Intuitively if SG generates a language of graphs LG , then WΩ(SG)
generates the language L′

G of all possible weighted versions of graphs in LG(SG). In
Theorem 6.2 below q is the cut-width of G and therefore it can be as large as O(n2).
The parameter c on the other hand is the slice-width of the subgraphs that are being
counted.

Theorem 6.2 (Subgraphs in a Saturated Slice Language). Let G = (V,E) be a
digraph of cut-width q with respect to a z-topological ordering ω = (v1, v2, ..., vn) of
its vertices, and let SG be a deterministic normalized z-dilated-saturated slice graph
over Σc,q

S
on r vertices. Let w : E → Ω be an weighting function on E and l ≤ n

be a positive integer. Then we may count in time rO(1) · nO(c) · qO(c) the number of
subgraphs of G of size l, that are isomorphic to some subgraph in LG(SG) and have
maximal weight.

Proof. Let U = S1S2...Sn be any normalized unit decomposition that is compatible
with ω, i.e., such that vi is the center vertex of Si for i = 1, ..., n. Clearly such a unit de-
composition can be constructed in polynomial time in n. Since SG is dilated saturated,
by Theorem 6.1 the set of all subgraphs of G that are isomorphic to some digraph in
LG(SG) is represented by the regular slice language L(SUBc(U))∩L(WΩ(N q(SG))).
By Lemma 6.1 SUBc(U) has n · qO(c) vertices and can be constructed within the same
time bounds. The numbering expansionN q(SG) of SG has

(
q

O(c)

)
·r = r ·qO(c) vertices

and can be constructed within the same time bounds. The Ω-expansion WΩ(N q(SG))
of N q(SG) has |Ω|O(c) · r · qO(c) = nO(c) · r · qO(c) vertices and can be constructed
within the same time bounds. Let SG∩ = WΩ(N q(SG)) ∩ SUBc(U). Since SG∩ can
be obtained by a product construction, it has r ·nO(c) ·qO(c) vertices. Since SUBc(U) is
acyclic, SG∩ is also acyclic. Therefore counting the subgraphs in G isomorphic to some
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graph in LG(SG) amounts to counting the number of simple directed paths from an ini-
tial to a final vertex in SG∩. Since we are only interested in counting subgraphs with
l vertices, we can intersect this acyclic slice graph with the slice graph SGl generating
all unit decomposition over Σc,q

S
containing precisely l unit slices that are not permuta-

tion slices. Again the slice graph SG∩ ∩ SGl will be acyclic. Finally since we are only
interested in counting maximal-weight subgraphs, we delete from T ′ those vertices la-
beled with triples (S, w, tot) in which tot is not maximal. The label of each path from
an initial to a final vertex in this last slice graph identifies unequivocally a subgraph of
G of size l and maximal weight. By standard dynamic programming we can count the
number of paths in a DAG from a set of initial vertices to a set of final vertices in time
polynomial on the number of vertices of the DAG. Thus we can determine the number
of l-vertex maximal-weight subgraphs of G which are isomorphic to some digraph in
L(SG) in time rO(1)nO(c)qO(c). �

7 Subgraphs Satisfying a Given MSO Property

In this section we will only give the necessary definitions to state Lemma 7.1 and The-
orem 7.1, which are crucial steps towards the proof of Theorem 1.1. For an extensive
account on the monadic second order logic of graphs we refer the reader to the treatise
[14] (in special Chapters 5 and 6). As it is customary, we will represent a digraph G by
a relational structure G = (V,E, s, t, lV , lE) where V is a set of vertices, E a set of
edges, s, t ⊆ E × V are respectively the source and target relations, lV ⊆ V ×ΣV and
lE ⊆ V ×ΣE are respectively the vertex-labeling and edge-labeling relations. We give
the following semantics to these relations: s(e, v) and t(e, v′) are true if v and v′ are
respectively the source and the target of the edge e; lV (v, a) is true if v is labeled with
the symbol a ∈ ΣV while lE(e, b) is true if e is labeled with the symbol b ∈ ΣE . We al-
ways assume that e is oriented from its source to its target. Let {x, y, z, z1, y1, z1, ...} be
an infinite set of first order variables and {X,Y, Z,X1, Y1, Z1, ...} be an infinite set of
second order variables. Then the set of MSO2 formulas is the smallest set of formulas
containing:

– the atomic formulas x ∈ X , V (x), E(x), s(x, y), t(x, y), lV (x, a) for each a ∈
ΣV , lE(x, b) for each b ∈ ΣE ,

– the formulas ϕ∧ψ, ϕ∨ψ, ¬ϕ, ∃x.ϕ(x) and ∃X.ϕ(X), where ϕ and ψ are MSO2

formulas.

If X is a set of second order variables, and G = (V,E) is a graph, then an interpretation
of X over G is a function M : X → 2V that assigns to each variable in X a subset
of vertices of V . The semantics of a formula ϕ(X ) over free variables X being true on
a graph G under interpretation M is the usual one. A sentence is a formula ϕ without
free variables. For a sentence ϕ and a graph G, if it is the case that ϕ is true in G,
then we say that G satisfies ϕ and denote this by G |= ϕ. Now we are in a position to
state a crucial Lemma towards the proof of Theorem 1.1. Intuitively it states that for
any MSO2 formula ϕ the set of all unit decompositions of a fixed width of digraphs
satisfying ϕ forms a regular set.
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Lemma 7.1. For any MSO2 sentenceϕ over digraphs and any c ∈ N , the set L(ϕ,Σc
S
)

of all slice strings S1S2...Sk over Σc
S

such that S1 ◦ S2 ◦ ... ◦ Sk = G and G |= ϕ is a
regular subset of (Σc

S
)∗.

Lemma 7.1 gives a slice theoretic analog of Courcelle’s model checking theorem: In
order to verify whether a digraph G of existential slice-width at most c satisfies a given
MSO property ϕ, one just needs to find a slice decomposition U = S1S2...Sn of
G and subsequently verify whether the deterministic finite automaton (or slice graph)
acceptingL(ϕ,Σc

S
) accepts U. However the goal of the present work is to make a rather

different use of Lemma 7.1. Namely, next in Theorem 7.1 we will restrict Lemma 7.1
in such a way that it concerns only z-dilated-saturated regular slice languages, so that it
can be coupled to Theorem 6.2, yielding in this way a proof of Theorem 1.1.

Theorem 7.1. For any MSO2 formula ϕ and any k, z ∈ N , one may effectively con-
struct a z-dilated-saturated slice graph SG(ϕ, k, z) over the slice alphabet Σk·z

S
whose

graph language LG(SG(ϕ, k, z)) consists precisely of the digraphs of zig-zag number
at most z that satisfy ϕ and that are the union of k directed paths.

Finally we are in a position to prove Theorem 1.1. The proof will follow from a combi-
nation of Theorems 7.1 and 6.2.

Proof of Theorem 1.1 Given a monadic second order formula ϕ, and positive integers
k and z, first we construct the dilated-saturated slice graph SG(ϕ, z, k) over Σk·z

S
as in

Theorem 7.1. Since the slice-width of a digraph is at mostO(n2) if we plug q = O(n2),
r = |SG(ϕ, z, k)| and SG(ϕ, z, k) into Theorem 6.2, and if we let f(ϕ, z, k) = rO(1),
then we get an overall upper bound of f(ϕ, z, k) · nO(k·z) for computing the number of
subgraphs of G that satisfy ϕ and that are the union of k-directed paths. �

8 Final Comments

In this work we have employed slice theoretic techniques to obtain the polynomial time
solvability of many natural combinatorial questions on digraphs of constant directed
path-width, cycle rank, K-width and DAG-depth. We have done so by using the zig-zag
number of a digraph as a point of connection between these directed width measures,
regular slice languages and the monadic second order logic of graphs. Thus our results
shed new light into a field that has resisted algorithmic metatheorems for more than a
decade. More precisely, we showed that despite the severe restrictions imposed by the
impossibility results in [34,35,26,25], it is still possible to develop logic-based algorith-
mic metatheorems for digraph width measures that are able to solve in polynomial time
a considerable variety of interesting problems.
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Abstract. A connected graph has tree-depth at most k if it is a sub-
graph of the closure of a rooted tree whose height is at most k. We give
an algorithm which for a given n-vertex graph G, in time O∗(1.9602n)
computes the tree-depth of G. Our algorithm is based on combinatorial
results revealing the structure of minimal rooted trees whose closures
contain G.

1 Introduction

The tree-depth of a graphG, denoted td(G), is the minimum number k such that
there is a rooted forest F , not necessarily a subgraph of G, with the following
properties.

– V (G) = V (F ),
– Every tree in F is of height at most k, i.e. the longest path between the root

of the tree and any of its leaves contains at most k vertices,
– G is a subgraph of the closure of F , which is the graph obtained from F by

adding all edges between every vertex of F and the vertices contained in the
path from this vertex to the root of the tree that it belongs to.

This parameter has increasingly been receiving attention since it was defined
by Nešetřil and Ossona de Mendez in [13] and played a fundamental role in
the theory of classes of bounded expansion [14–17]. Tree-depth is a very natu-
ral graph parameter, and due to different applications, was rediscovered several
times under different names as the vertex ranking number [2], the ordered col-
oring [10], and the minimum height of an elimination tree of a graph [20].

From the algorithmic perspective, it has been known that the problem of com-
puting tree-depth isNP-hard evenwhen restricted to bipartite graphs [2, 13]. How-
ever, it also admits polynomial time algorithms for specific graph classes [6, 12].
For example, when the input graph is a tree its tree-depth can be computed in lin-
ear time [20]. Moreover, as tree-depth is closed under minors, the results of Robert-
son and Seymour [18, 19] imply that the problem is in FPT when parameterized
by the solution size. In [2], Bodlaender et al. showed that the computation of tree-
depth is also in XP when parameterized by treewidth. From the point of view of

� Supported by European Research Council (ERC) Grant ”Rigorous Theory of Pre-
processing”, reference 267959.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 137–149, 2013.
c© Springer International Publishing Switzerland 2013



138 F.V. Fomin, A.C. Giannopoulou, and M. Pilipczuk

approximation, tree-depth can be approximated in polynomial time within a fac-
tor of O(log2 n) [4], where n is the number of vertices of the input graph. More-
over, there is a simple approximation algorithm that, given a graph G, returns a
forest F such thatG is contained in the closure of F and the height of F is at most
2td(G) [17]. Finally, it is easy to see (and will be described in Section 3) that there
exists an exact algorithm for the computation of tree-depth running in O∗(2n)
time1.

We are interested in tree-depth from the perspective of exact exponential
time algorithms. Tree-depth is intimately related to another two well studied
parameters, treewidth and pathwidth. The treewidth of a graph can be defined
as the minimum taken over all possible completions into a chordal graph of the
maximum clique size minus one. Similarly, path-width can be defined in terms of
completion to an interval graph. One of the equivalent definitions of tree-depth
is that it is the size of the largest clique in a completion to a trivially perfect
graph. These graph classes form the following chain

trivially perfect ⊂ interval ⊂ chordal,

corresponding to the parameters tree-depth, pathwidth, and treewidth.
However, while for the computation of treewidth and pathwidth there exist

O∗(cn), c < 2, time algorithms [7, 8, 11, 21], to the best of our knowledge no such
algorithm for tree-depth has been known prior to our work. In this paper, we
construct the first exact algorithm which for any input graphG computes its tree-
depth in time O∗(cn), c < 2. The running time of the algorithm is O∗(1.9602n).
The approach is based on the structural characteristics of the minimal forest
that defines the tree-depth of the graph.

The rest of the paper is organized as follows. In Section 2 we give some
basic definitions and preliminary combinatorial results on the minimal trees for
tree-depth and in Section 3, based on the results from Section 2, we present the
O(1.9602n) time algorithm for tree-depth. Finally, in Section 4 we conclude with
open problems. Due to space constraints the proofs of the Lemmata marked with
(�) have been omitted.

2 Minimal Rooted Forests for Tree-Depth

2.1 Preliminaries

For a graph G = (V,E), we use V (G) to denote V and E(G) to denote E.
If S ⊆ V (G) we denote by G \ S the graph obtained from G after removing
the vertices of S. In the case where S = {u}, we abuse notation and write
G \ u instead of G \ {u}. We denote by G[S] the subgraph of G induced by
the set S. For S ⊆ V (G), the open neighborhood of S in G, NG(S), is the set
{u ∈ G \ S | ∃v ∈ S : {u, v} ∈ E(G)}. Again, in the case where S = {v} we
abuse notation and write NG(v) instead of NG({v}). Given two vertices v and
u we denote by distG(v, u) their distance in G. We use C(G) to denote the set
of connected components of G.

1 The O∗(·) notation suppresses factors that are polynomial in the input size.
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2.2 Tree-Depth

A rooted forest is a disjoint union of rooted trees. The height of a vertex x in
a rooted forest F is the number of vertices of the path from the root (of the
tree to which x belongs) to x and is denoted by height(x, F ). The height of
F is the maximum height of the vertices of F and is denoted by height(F ).
Let x, y be vertices of F . The vertex x is an ancestor of y if x belongs to
the path linking y and the root of the tree to which y belongs. The closure
clos(F ) of a rooted forest F is the graph with vertex set V (F ) and edge set
{{x, y} | x is an ancestor of y in F, x �= y}. For every vertex y of F we denote
by Py the unique path linking y and the root of the tree to which y belongs, and
denote by p(y) the parent of y in F , i.e. the neighbor of y in Py. Vertices whose
parent is y are called the children of y. We call a vertex x of F a branching point
if x is not a root of F and degF (x) > 2 or if x is a root of F and degF (x) ≥ 2.
For a vertex v of a rooted tree T , we denote by Tv the maximal subtree of T
rooted in v. For example, if v is the root of T , then Tv = T .

Let G be a graph. The tree-depth of G, denoted td(G), is the least k ∈ N
such that there exists a rooted forest F on the same vertex set as G such that
G ⊆ clos(F ) and height(F ) = k. Note that if G is connected then F must be a
tree, and the tree-depth of a disconnected graph is the maximum of tree-depth
among its connected components. Thus, when computing tree-depth we may
focus on the case when G is connected and F is required to be a rooted tree.

With every rooted tree T of height h we associate a sequence (t1, t2, t3, . . . ),
where ti = |{v | height(v, T ) = i}|, i ∈ N, that is, ti is the number of vertices of
the tree T of height i, i ∈ N. Note that since T is finite, this sequence contains
only finitely many non-zero values.

Let T1 and T2 be two rooted trees with heights h1 and h2, and corresponding
sequences (t11, t

1
2, t

1
3, . . . ) and (t21, t

2
2, t

2
3, . . . ), respectively. We say that T1 ≺ T2 if

and only if there exists an i ∈ N such that t1i < t2i and t1j = t2j , for every j > i.
Note in particular that if h1 < h2, then taking i = h2 in this definition proves
that T1 ≺ T2.

Definition 1. Let G be a connected graph. A rooted tree T is minimal for G if

1. V (T ) = V (G) and G ⊆ clos(T ), and
2. there is no tree T ′ such that V (T ′) = V (G), G ⊆ clos(T ′), and T ′ ≺ T .

The next observation follows from the definitions of ≺ and of tree-depth.

Observation 1. Let G be a connected graph and T be a rooted tree for G such
that V (T ) = V (G), G ⊆ clos(T ), and height(T ) > td(G). Then there exists
a rooted tree T ′ such that V (T ′) = V (G), G ⊆ clos(T ′), and height(T ′) <
height(T ), and thus T ′ ≺ T .

The following combinatorial lemmata reveal the structures of minimal trees
which will be handy in the algorithm.

Lemma 1 (�). Let T 1 be a rooted tree with root r, v ∈ V (T 1), and T ∗ be a
rooted tree with root r∗ such that T ∗ ≺ T 1

v . If T 2 is the rooted tree obtained from
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T 1 after considering the union of T 1\V (T 1
v ) with T ∗ and adding an edge between

r∗ and p(v) (if p(v) exists), then T 2 ≺ T 1.

Lemma 2. Let G be a connected graph. If T is a minimal tree for G with root
r then for every v ∈ V (T ),

1. G[V (Tv)] is connected,

2. Tv is a minimal tree for G[V (Tv)], and

3. if v′ ∈ V (Tv) is a branching point with minimum distTv (v, v
′) then NG(v)∩

V (Tu) �= ∅, for every child u of v′.

Proof. We first prove (1). Assume in contrary that there exists a vertex v ∈ V (T )
such that the graph G[V (Tv)] is not connected. Notice that we may choose v
in such a way that distT (r, v) is maximum. We first exclude the case where
v = r. Indeed, notice that if v = r, then G[V (Tr)] = G is connected by the
hypothesis. Thus, v �= r. Notice also that if v is a leaf of T then Tv is the graph
consisting of one vertex, so it is again connected. Therefore, v is not a leaf of T .
Let v1, v2, . . . , vp be the children of v. The choice of v (maximality of distance
from r) implies that G[V (Tvi)] is a connected component of G[V (Tv)]\v, i ∈ [p].
Moreover, from the fact that G[V (Tv)] is not connected, it follows that there
exists at least one i0 ∈ [p] such that NG(v) ∩ V (Tvi0

) = ∅. Let T ′ be the tree
obtained from T by removing the edge {v, vi0} and adding the edge {p(v), vi0}.
Observe that G ⊆ clos(T ′). Moreover, notice that by construction of T ′, we may
consider T ′ as the tree obtained from the union of T \ V (Tp(v)) with T ′

p(v) after

adding the edge {p(v), p(p(v))} (if p(v) �= r). It is easy to see that T ′
p(v) ≺ Tp(v).

Therefore, from Lemma 1, we end up with a contradiction to the minimality of
T .

To prove (2), we assume in contrary that there exists a vertex v ∈ V (T )
such that Tv is not a minimal tree for G[V (Tv)]. By the hypothesis that T is
a minimal tree for G, it follows that v �= r. As Tv is not a minimal tree for
G[V (Tv)], there exists a rooted tree T ′ with root r′ such that V (T ′) = V (Tv),
G[V (Tv)] ⊆ clos(T ′), and T ′ ≺ Tv. Let now T ∗ be the rooted tree obtained
from the union of T \ V (Tv) with T ′ after adding an edge between p(v) and r′.
Notice then that G ⊆ clos(T ∗). Moreover, from Lemma 1, we get that T ∗ ≺ T ,
a contradiction to the minimality of T .

We now prove (3). Let v be a vertex of T and v′ be a branching point of Tv such
that distTv (v, v

′) is minimum, that is, v′ is the highest branching point in Tv.
Assume in contrary that there exists a child u of v′ such that NG(v)∩V (Tu) = ∅.
Let T ′ be the tree obtained from T by switching the position of the vertices v
and v′, where T ′ = T if v = v′. Notice that clos(T ) = clos(T ′) and T and T ′

are isomorphic, hence T ′ is also a minimal tree for G. Moreover, children of v
in T ′ are exactly children of v′ in T . Observe also that if w is a child of v′ in
T , hence also a child of v in T ′, then Tw = T ′

w and NG[V (T ′
v)]

(V (T ′
w)) ⊆ {v}.

As NG(v) ∩ V (Tu) = ∅, we obtain that G[V (T ′
v)] is not connected. However,

T ′ is a minimal tree for G and therefore, from (1), G[V (T ′
v)] is connected, a

contradiction. This completes the proof of the last claim and of the lemma. ��
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3 Computing Tree-Depth

3.1 The Naive DP, and Pruning the Space of States

To construct our algorithm, we need an equivalent recursive definition of tree-
depth.

Proposition 1 ([13]). The tree-depth of a connected graph G is equal to

td(G) =

⎧⎨⎩1 if |V (G)| = 1

1 + min
v∈V (G)

max
H∈C(G\v)

td(H) otherwise (1)

Proposition 1 already suggests a dynamic programming algorithm computing
tree-depth of a given graph G in O∗(2n) time. Assume without loss of general-
ity that G is connected, as otherwise we may compute the tree-depth of each
connected component of G separately. For every X ⊆ V (G) such that G[X ] is
connected, we compute td(G[X ]) using (1). Assuming that the tree-depth of all
the connected graphs induced by smaller subsets of vertices has been already
computed, computation of formula (1) takes polynomial time. Hence, if we em-
ploy dynamic programming starting with the smallest sets X , we can compute
td(G) in O∗(2n) time. Let us denote this algorithm by A0.

The reason why A0 runs in pessimistic O∗(2n) time is that the number of sub-
sets of V (G) inducing connected subgraphs can be as large as O(2n). Therefore,
if we aim at reducing the time complexity, we need to prune the space of states
significantly. Let us choose some ε, 0 < ε < 1

6 , to be determined later, and let G
be a connected graph on n vertices. We define the space of states Sε as follows:

Sε = {S ⊆ V (G) | 1 ≤ |S| ≤
(
1
2 − ε

)
n and G[S] is connected, or

∃X ⊆ V (G) : |X | ≤
(
1
2 − ε

)
n and G[S] ∈ C(G \X)}.

Observe that thus all the sets belonging to Sε induce connected subgraphs of
G. The subsets S ∈ Sε considered in the first part of the definition will be called
of the first type, and the ones considered in the second part will be called of the
second type. Note that V (G) ∈ Sε since it is a subset of second type for X = ∅.

Lemma 3 (�). If G is a graph on n vertices, then |Sε| = O∗
((

n
( 1

2−ε)n
))

. More-

over, Sε may be enumerated in O∗
((

n(
1
2 − ε

)
n

))
time.

In our algorithms we store the family Sε as a collection of binary vectors
of length n in a prefix tree (a trie). Thus when constructing Sε we can avoid
enumerating duplicates, and then test belonging to Sε in O(n) time.

We now define the pruned dynamic programming algorithm Aε that for every
X ∈ Sε computes value td∗(G[X ]) defined as follows:

td∗(G[X ]) =

⎧⎨⎩1 if |X | = 1

1 +min
v∈X

max
H∈C(G[X]\v), V (H)∈Sε

td∗(H) otherwise (2)
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We use the convention that td∗(G[X ]) = +∞ if X /∈ Sε. The algorithm Aε can
be implemented in a similar manner as A so that its running time is O∗(|Sε|).
We consider sets from Sε in increasing order of cardinalities (sorting |Sε| with
respect to cardinalities takes O∗(|Sε|) time) and simply apply formula (2). Note
that computation of formula (2) takes polynomial time, since we need to consider
at most n vertices v, and for every connected component H ∈ C(G \ v) we can
test whether its vertex set belongs to Sε in O(n) time.

For a set S ∈ Sε and T being a minimal tree for G[S], we say that T is covered
by Sε if V (Tv) ∈ Sε for every v ∈ S. The following lemma expresses the crucial
property of td∗.

Lemma 4. For any connected graph G and any subset S ⊆ V (G), it holds that
td∗(G[S]) ≥ td(G[S]). Moreover, if S ∈ Sε and there exists a minimal tree T
for G[S] that is covered by Sε, then td∗(G[S]) = td(G[S]).

Proof. We first prove the first claim by induction with respect to the cardinality
of S. If td∗(G[S]) = +∞ then the claim is trivial. Therefore, we assume that S ∈
Sε, there exists some r ∈ S such that td∗(G[S]) = 1 + maxH∈C(G[S]\r) td∗(H),
and V (H) ∈ Sε for each H ∈ C(G[S] \ r). By the induction hypothesis, since
|V (H)| ≤ |S| for each H ∈ C(G[S] \ r), we infer that td∗(H) ≥ td(H) for
each H ∈ C(G[S] \ r). On the other hand, by (1) we have that td(G[S]) ≤
1 + maxH∈C(G[S]\r) td(H). Therefore,

td(G[S]) ≤ 1 + max
H∈C(G[S]\r)

td(H)

≤ 1 + max
H∈C(G[S]\r)

td∗(H) = td∗(G[S]),

and the induction step follows.
We now prove the second claim, again by induction with respect to the cardi-

nality of S. Let T be a minimal tree for G[S] that is covered by Sε. Let r be the
root of T and let v1, v2, . . . , vp be the children of r in T . By (2) of Lemma 2, we
have that Tvi is a minimal tree for G[V (Tvi)], for each i ∈ [p]. Moreover, since
T was covered by Sε, then so does each Tvi . By the induction hypothesis we
infer that td∗(G[V (Tvi)]) = td(G[V (Tvi)]) for each i ∈ [p], since |V (Tvi)| < |S|.
Moreover, since T and each Tvi are minimal, we have that

td(G[S]) = height(T ) = 1 +max
i∈[p]

height(Tvi) = 1 +max
i∈[p]

td(G[V (Tvi)])

= 1 +max
i∈[p]

td∗(G[V (Tvi)]) ≥ td∗(G[S]).

The last inequality follows from the fact that, by (1) of Lemma 2, G[V (Tvi)] are
connected components of G[S] \ r and moreover that their vertex sets belong
to Sε. Hence, vertex r was considered in (2) when defining td∗(G[S]). We infer
that td(G[S]) ≥ td∗(G[S]), and td(G[S]) ≤ td∗(G[S]) by the first claim, so
td∗(G[S]) = td(G[S]). ��

Lemma 4 implies that the tree-depth is already computed exactly for all con-
nected subgraphs induced by significantly less than half of the vertices.
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Corollary 1. For any connected graph G on n vertices and any S ∈ Sε, if
|S| ≤ (12 − ε)n, then td∗(G[S]) = td(G[S]).

Proof. If T is a minimal tree for G[S], then for every v ∈ V (T ), G[V (Tv)] is
connected by (1) of Lemma 2, and |V (Tv)| ≤ (12−ε)n. Hence, for every v ∈ V (T )
it holds that V (Tv) ∈ Sε and the corollary follows from Lemma 4. ��

Finally, we observe that for any input graph G the algorithm Aε already
computes the tree-depth of G unless every minimal tree for G has a very special
structure. Let T be a minimal tree for G. A vertex v ∈ V (G) is called problematic
if (i) |V (Tv)| > (12 − ε)n, and (ii) |V (Pp(v))| > (12 − ε)n. We say that a minimal
tree T for G is problematic if it contains some problematic vertex.

Corollary 2. For any connected graph G, if G admits a minimal tree that is
not problematic, then td∗(G) = td(G).

Proof. We prove that any minimal tree T for G that is not problematic, is in
fact covered by Sε. Then the corollary follows from Lemma 4.

Take any v ∈ V (G); we need to prove that V (Tv) ∈ Sε. First note that
G[V (Tv)] is connected by (1) of Lemma 2. Hence if |V (Tv)| ≤

(
1
2 − ε

)
n, then it

trivially holds that V (Tv) ∈ Sε by the definition of Sε. Otherwise we have that
|V (Pp(v))| ≤

(
1
2 − ε

)
n, since v is not problematic. Note then that NG(V (Tv)) ⊆

V (Pp(v)) and so G[V (Tv)] is a connected component of V (G) \ V (Pp(v)). Conse-
quently, V (Tv) is a subset of second type for X = V (Pp(v)). ��

3.2 The Algorithm

Corollary 2 already restricts cases when the pruned dynamic program Aε misses
the minimal tree: this happens only when all the minimal trees for the input
graph G are problematic. Therefore, it remains to investigate the structure of
problematic minimal trees to find out, if some problematic minimal tree could
have smaller height than the minimal tree computed by Aε.

Let G be the input graph on n vertices. Throughout this section we assume
that G admits some problematic minimal tree T . Let v be a problematic vertex
in T . Let moreover v′ be the highest branching point in Tv (possibly v′ = v
if v is already a branching point in T ), or v′ be the only leaf of Tv in case Tv

does not contain any branching points. Let Z = V (Pv′); observe that since v is
problematic, we have that |Z| >

(
1
2 − ε

)
n. Let Q1, Q2, . . . , Qa be all the subtrees

of T rooted in NT (Z \{v′}), that is, in the children of vertices of Z \{v′} that do
not belong to Z, and let R1, R2, . . . , Rb be the subtrees of T rooted in children
of v′. Note that trees Q1, Q2, . . . , Qa, R1, R2, . . . , Rb are pairwise disjoint, and
by the definition of a minimal tree we have that NG(V (Qi)), NG(V (Rj)) ⊆ Z
for any i ∈ [a], j ∈ [b].

Let Q =
⋃a

i=1 V (Qi) and R =
⋃b

j=1 V (Rj). For any problematic mini-
mal tree T and a problematic vertex v in it, we say that v defines the sets
Z,Q1, Q2, . . . , Qa, R1, R2, . . . , Rb, Q,R in T .

Observation 2. If b > 0, then Z = NG(V (Rj) ∪Q) for any j ∈ [b].
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Proof. As NG(V (Qi)), NG(V (Rj)) ⊆ Z for any i ∈ [a], j ∈ [b], we have that
Z ⊇ NG(V (Rj) ∪

⋃a
i=1 V (Qi)). We proceed to proving the reverse inclusion.

Take any z ∈ Z, and let z′ be the highest branching point in Tz; note that z′

is always defined since b > 0 and thus v′ is a branching point. If z′ = v′, then by
(3) of Lemma 2 we infer that z ∈ NG(V (Rj)), j ∈ [b]. Otherwise, we have that if
z′ ∈ Z \ {v′}. Since z′ is a branching point, there exists some subtree Qi rooted
in a child of z′. We can again use (3) of Lemma 2 to infer that z ∈ NG(V (Qi)),
so also z ∈ NG(Q). ��

Observe that if b = 0, then we trivially have that Z = V (G) \Q.

Observation 3. |Q| < 2εn.

Proof. Since v is problematic, we have that |V (Pp(v))| >
(
1
2 − ε

)
n and |V (Tv)| >(

1
2 − ε

)
n. Observe also that V (Pp(v)) ∪ V (Tv) = Z ∪ R by the definition of Z.

Since V (Pp(v)) ∩ V (Tv) = ∅ we have that:

|Z ∪R| = |V (Pp(v)) ∪ V (Tv)| > (1− 2ε)n.

Since Q = V (G) \ (Z ∪R), the claim follows. ��

Observation 4. |R| <
(
1
2 + ε

)
n− |Q|.

Proof. Since R = V (G) \ (Z ∪Q) and |Z| >
(
1
2 − ε

)
n, we have that

|R| = |V (G) \ (Z ∪Q)| = n− |Z| − |Q| <
(
1

2
+ ε

)
n− |Q|. ��

Observation 5. If b > 0, then b ≥ 2 and min
j∈[b]

|V (Rj)| <
(
1

4
+
ε

2

)
n− |Q|

2
.

Proof. If b > 0 then v′ is a branching point and it has at least two children. It
follows that b ≥ 2. For the second claim, observe that since b ≥ 2 we have that
minj∈[b] |V (Rj)| ≤ |R|/2 and the claim follows from Observation 4. ��

We can proceed to the description of our main algorithm, denoted further A.
Similarly as before, without loss of generality let us assume that G is connected.
First, the algorithm constructs the family Sε using Lemma 3, and runs the algo-

rithm Aε on it. Note that these steps can be performed in time O∗
((

n
( 1

2−ε)n
))

.

We can therefore assume that the value td∗(G[S]) is computed for every S ∈ Sε,
and in particular for S = V (G).

Now the algorithm proceeds to checking whether a better problematic minimal
tree T with problematic vertex v can be constructed. We adopt the notation in-
troduced in the previous paragraphs for a problematic minimal tree T . We aim at
identifying set Z and sets V (Q1), V (Q2), . . . , V (Qa), V (R1), V (R2), . . . , V (Rb).
Without loss of generality assume that if b > 0, then V (R1) has the smallest car-
dinality among V (R1), V (R2), . . . , V (Rb), i.e., |V (R1)| ≤ |V (R2)|, . . . , |V (Rb)|.
Let then Y = Q ∪R1 if b > 0, and Y = Q if b = 0.
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The algorithm branches into at most (n+ 1) subbranches, in each fixing the
expected cardinality y of Y . Note that by Observations 3 and 5 and the fact

that ε < 1
6 we may assume that y < |Q|+

(
1
4 + ε

2

)
n− |Q|

2 = |Q|
2 +

(
1
4 + ε

2

)
n <(

1
4 + 3ε

2

)
n. Then the algorithm branches into

(
n
y

)
subbranches, in each fixing a

different subset of vertices of size smaller than y as the set Y . Note that sets
V (Q1), V (Q2), . . . , V (Qa), V (R1) are then defined as vertex sets of connected
components of G[Y ]. The algorithm branches further into (n + 1) cases. In one
case the algorithm assumes that b = 0 and therefore concludes that Q = Y . In
other cases the algorithm assumes that b > 0 and picks one of the components
of G[Y ] assuming that its vertex set is V (R1), thus recognizing Q as Y \V (R1),
i.e., the union of vertex sets of remaining components of G[Y ].

In the case when b = 0 the algorithm concludes that Z = V (G) \ Q. In the
cases when b > 0, the algorithm concludes that Z = NG(Y ) using Observation 2.
Having identified Z, the sets V (R1), V (R2), . . . , V (Rj) can be recognized as ver-
tex sets of connected components of V (G) \ (Z ∪ Q). Observations 2, 3, and 5
ensure that for every problematic minimal tree T for G, there will be at least one
subbranch where sets Z, V (Q1), V (Q2), . . . , V (Qa), V (R1), V (R2), . . . , V (Rb) are
fixed correctly. Observe also that in each of at most (n + 1) branches where
y has been fixed, we produced at most (n + 1) ·

(
n
y

)
subbranches. We per-

form also sanity checks: whenever any produced branch does not satisfy any
of Observations 2, 3, 4 or 5, or the fact that V (R1) is a smallest set among
V (R1), V (R2), . . . , V (Rj), we terminate the branch immediately.

The algorithm now computes td(G[V (Qi)]) and td(G[V (Rj)]) for all i ∈ [a],
j ∈ [b]. Recall that by Corollary 1, for any set X ⊆ V (G) such that G[X ] is
connected and |X | ≤ (12 − ε)n, we have that td(G[X ]) = td∗(G[X ]), and hence
the value td(G[X ]) has been already computed by algorithm Aε. Since |Q| ≤ 2εn
and ε < 1

6 , we infer that this is the case for every set V (Qi) for i ∈ [a], and values
td(G[V (Qi)]) are already computed. The same holds for every Rj assuming that
|V (Rj)| ≤ (12 − ε)n.

Assume then that there exists some j0 such that |V (Rj0 )| > (12 − ε)n, i.e.,
we have no guarantee that the algorithm Aε computed td(G[V (Rj0)]) correctly.
Note that by Observation 4 and the fact that ε < 1

6 , there can be at most one
such j0. Furthermore, if this is the case, then by Observation 5 we have that
b ≥ 2 and V (Rj0 ) cannot be the smallest among sets V (R1), V (R2), . . . , V (Rb);
hence, j0 �= 1 and V (Rj0) ⊆ V (G)\ (Z∪Y ). Therefore, we must necessarily have
that y = |Y | ≤ |V (G)| − |Z| − |V (Rj0 )| < n−

(
1
2 − ε

)
n−

(
1
2 − ε

)
n = 2εn, and

moreover |V (Rj0)| ≤ |V (G)| − |Z| − |Y | < n−
(
1
2 − ε

)
n− y =

(
1
2 + ε

)
n− y.

Formally, if none of these assertions holds, the branch would be terminated
by the sanity check. To compute td(G[V (Rj0)]) we employ the naive dynamic
programming routine on G[V (Rj0 )], i.e., algorithm A0. Observe, however, that
in this application we do not need to recompute the values for subsets of size at
most (12−ε)n, since the values for them were already computed by the algorithm
Aε. Therefore, since |Rj0 | ≤

(
1
2 + ε

)
n−y and ε < 1

6 , the application of algorithm

A takes at most O∗(
(( 1

2+ε)n−y

( 1
2−ε)n

)
) time.
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Summarizing, for every choice of y (recall that y <
(
1
4 + 3ε

2

)
n), the algo-

rithm produced at most (n+ 1) ·
(
n
y

)
branches, and in branches with y < 2εn it

could have used extra O∗(
(( 1

2+ε)n−y

( 1
2−ε)n

)
) time for computing values td(G[V (Rj)])

whenever there was no guarantee that algorithm Aε computed them correctly.
We arrive at the situation where in each branch the algorithm already identi-

fied set Z, sets V (Q1), V (Q2), . . . , V (Qa), V (R1), V (R2), . . . , V (Rb), and values
td(G[V (Qi)]) and td(G[V (Rj)]) for i ∈ [a], j ∈ [b]. Note, however, that the
algorithm does not have yet the full knowledge of the shape of tree T , because
we have not yet determined in which order the vertices of Z appear on the path
Pv′ , and thus we do not know where the trees Qi and Rj are attached to this
path. Fortunately, it turns out that finding an optimum such ordering of vertices
of Z is polynomial-time solvable.

For i ∈ [a + b] let Mi = Qi if i ≤ a and Mi = Ri−a otherwise, and let
hi = td(G[V (Mi)]). Note that since T is minimal, by (2) of Lemma 2 we have
that hi = height(Mi) for each i ∈ [a+ b]. Let also Zi = NG(V (Mi)); note that
since G ⊆ clos(T ), we have that Zi ⊆ Z. Let σ be an ordering of Z, i.e., σ is a
bijective function from Z to [|Z|]. Finally, we define the weight of σ as follows:

μ(σ) = max

(
|Z|, max

i∈[a+b]
(max(σ(Zi)) + hi)

)
. (3)

The following lemma is implied by the definitions of tree-depth and of measure
μ, and is crucial for the final part of our algorithm.

Lemma 5 (�). Let G be the input graph, and let Z, {V (Mi)}i∈[a+b] be any par-
titioning of vertices of G such that Zi = NG(V (Mi)) is a subset of Z for any
i ∈ [a+ b]. Moreover, let hi = td(G[V (Mi)]) and for σ being an ordering of Z,
let μ(σ) be defined by (3). Then td(G) ≤ μ(σ) for any ordering σ of Z. However,
if G admits a problematic minimal tree T and Z, {V (Mi)}i∈[a+b] are defined by
any problematic vertex in this tree, then td(G) = minσ μ(σ).

We are left with the following scheduling problem. Given a set Z of size at most
n, a family number of subsets Zi ⊆ Z for i ∈ [a+ b] and corresponding integers
hi ≤ n, we would like to compute the minimum possible μ(σ) among orderings
σ of Z. Let this problem be called Minimum Ordering with Independent

Delays (MOID, for short).

Lemma 6. Minimum Ordering with Independent Delays is polynomial-
time solvable.

Proof. Observe that since |Z| ≤ n and hi ≤ n, for any ordering σ we have that
μ(σ) ≤ 2n. We therefore iterate through all possible values M from |Z| to 2n,
and for each M we check whether there exists some σ with μ(σ) ≤ M . The first
M for which this test returns a positive outcome is equal to minσ μ(σ).

For a given M , construct an auxiliary bipartite graph H with Z on one side
and {1, 2, . . . , |Z|} on the other side. We put an edge between an element z and
an index j if and only if the following holds: for every Zi to which z belongs, it
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holds that j + hi ≤ M . It is easy to verify that orderings σ of Z with μ(σ) ≤ M
correspond one-to-one to perfect matchings in H . Indeed, if we are given an
ordering σ with μ(σ) ≤ M , then we have that for every z ∈ Z and Zi to
which z belongs, it holds that σ(z) + hi ≤ M by the definition of μ(σ). Hence,
{z, σ(z)} is an edge in H and {{z, σ(z)} | z ∈ Z} is a perfect matching in H .
On the other hand, if we are given a perfect matching {{z, jz} | z ∈ Z} in H ,
then we may define an ordering σ of Z by putting σ(z) = jz . Then for every
z ∈ Z and Zi to which z belongs, we have that {z, σ(z)} is an edge in H and,
consequently, σ(z) + hi ≤ M . As we chose z and Zi arbitrarily, it follows that
maxi∈[a+b] (max(σ(Zi)) + hi) ≤ M and so μ(σ) ≤ M .

Therefore, to solve the MOID problem it suffices to constructH in polynomial
time and run any polynomial-time algorithm for finding a perfect matching in
H . ��

We remark that Minimum Ordering with Independent Delays can be
also solved in O(n+

∑a+b
i=1 |Zi|) time using greedy arguments. Since we are not

interested in optimizing polynomial factors, in the proof of Lemma 6 we used
the more concise matching argument to keep the description simple. We leave
finding a faster algorithm for MOID to the reader as an interesting exercise.

Concluding, in every subbranch algorithm A constructs an instance of MOID

and solves it in polynomial time using the algorithm of Lemma 6. Lemma 5
ensures that none of the values found in subbranches will be larger than td(G),
and that if G admits a problematic minimal tree T then td(G) will be found in at
least one subbranch. Therefore, by Corollary 2 we can conclude the algorithm A
by outputting the minimum of td∗(G), computed by Aε, and the values returned
by subbranches.

Let us proceed with the analysis of the running time of algorithm A. First,
we have enumerated Sε and run the algorithm Aε, which took

T1(n) = O∗
((

n(
1
2 − ε

)
n

))
time. Then we created a number of subbranches. For every subbranch with
y ≥ 2εn we have spent polynomial time, and the number of these subbranches
is bounded by (n + 1)2 ·

(
n

( 1
4+

3ε
2 )n

)
since y <

(
1
4 + 3ε

2

)
n and ε < 1

6 . Hence, on

these subbranches we spent

T2(n) = O∗
((

n(
1
4 + 3ε

2

)
n

))
time in total. Finally, for every subbranch with y < 2εn we have spent at most

O∗(
(( 1

2+ε)n−y

( 1
2−ε)n

)
) time. As the number of such branches is bounded by (n+1)·

(
n
y

)
,

the total time spent on these branches is

T3(n) = O∗

(
max
y<2εn

((
n

y

)
·
(
(12 + ε)n− y

(12 − ε)n

)))
.
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If we now let ε = 1
10 , then T1(n), T2(n) = O∗(

(
n
2
5n

)
) = O∗(1.9602n). It can be

also easily shown that for any y < 1
5n, it holds that

(
n
y

)
·
( 3

5n−y
2
5n

)
= O∗(1.9602n).

To prove this, we can use the following simple combinatorial bound:
(
n1

k1

)
·
(
n2

k2

)
≤(

n1+n2

k1+k2

)
. This inequality can be proved by combinatorial interpretation as follows:

every choice of k1 elements from a set of size n1 and of k2 elements from a set
of size n2, defines uniquely a choice of k1 + k2 elements from the union of these

sets, which is of size n1+n2. Therefore, we obtain:
(
n
y

)
·
( 3

5n−y
2
5n

)
=
(
n
y

)
·
( 3

5n−y
1
5n−y

)
≤( 8

5n−y
1
5n

)
≤
( 8

5n
1
5n

)
= O∗(1.828n). Consequently, T1(n), T2(n), T3(n) = O∗(1.9602n),

and the whole algorithm runs in O∗(1.9602n) time.

4 Conclusion

In this work we gave the first exact algorithm computing the tree-depth of a
graph faster than O∗(2n). As Bodlaender et al. [3] observe, both pathwidth and
treewidth can be reformulated as vertex ordering problems and thus computed
by a simple dynamic programming algorithm similar to the classical Held-Karp
algorithm in time O∗(2n) [9]. For example, computing the optimum value of
treewidth is equivalent to finding an elimination ordering which minimizes the
sizes of cliques created during the elimination process. As far as tree-depth is
concerned, Nešetřil and Ossona de Mendez [17] give an alternative definition of
tree-depth in terms of weak-colorings, which in turn are defined also via vertex
orderings; however, it is unclear whether this definition can be used for an algo-
rithm working in O∗(2n) time. Interestingly enough, for many of vertex order-
ing problems, like Hamiltonicity, treewidth, or pathwidth, an explicit algorithm
working in time O∗(cn) for some c < 2 can be designed, see [1, 7, 21]. On the
other hand, for several other vertex ordering problems no such algorithms are
known. The two natural problems to attack are (i) the computation of cutwidth,
and (ii) the Minimum Feedback Arc Set in Digraph problem; see [3, 5] for def-
initions and details. It is known that the cutwidth of a graph can be computed
in time O∗(2t), where t is the size of a vertex cover in the graph [5]; thus the
problem is solvable in time O∗(2n/2) on bipartite graphs. We leave existence of
faster exponential algorithms for these problems as an open question.
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Abstract. Many problems on graphs can be expressed in the following language:
given a graph G = (V, E) and a terminal set T ⊆ V , find a minimum size set
S ⊆ V which intersects all “structures” (such as cycles or paths) passing through
the vertices in T . We call this class of problems as terminal set problems. In
this paper we introduce a general method to obtain faster exact exponential time
algorithms for many terminal set problems. More precisely, we show that

– NODE MULTIWAY CUT can be solved in time O(1.4766n).
– DIRECTED UNRESTRICTED NODE MULTIWAY CUT can be solved in time

O(1.6181n).
– There exists a deterministic algorithm for SUBSET FEEDBACK VERTEX SET

running in time O(1.8980n) and a randomized algorithm with expected run-
ning time O(1.8826n). Furthermore, SUBSET FEEDBACK VERTEX SET on
chordal graphs can be solved in time O(1.6181n).

– DIRECTED SUBSET FEEDBACK VERTEX SET can be solved in time
O(1.9993n).

A key feature of our method is that, it uses the existing best polynomial time, fixed
parameter tractable and exact exponential time algorithms for the non-terminal
version of the same problem (i.e. when T = V ), as subroutines. Therefore faster
algorithms for these special cases will imply further improvements in the run-
ning times of our algorithms. Our algorithms for NODE MULTIWAY CUT, and
SUBSET FEEDBACK VERTEX SET on chordal graphs improve the current best
algorithms for these problems and answers an open question posed in [15]. Fur-
thermore, our algorithms for DIRECTED UNRESTRICTED NODE MULTIWAY

CUT and DIRECTED SUBSET FEEDBACK VERTEX SET are the first exact al-
gorithms improving upon the brute force O∗(2n)-algorithms.

1 Introduction

The goal of the design of moderately exponential time algorithms for NP-complete
problems is to establish algorithms for which the worst-case running time is provably
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faster than the one of enumerating all prospective solutions, or loosely speaking, al-
gorithms better than brute-force enumeration. For example, for NP-complete problems
on graphs on n vertices and m edges whose solutions are either subsets of vertices or
edges, the brute-force or trivial algorithms basically enumerate all subsets of vertices or
edges. This mostly leads to algorithms of time complexityO∗(2n) or O∗(2m), based on
whether we are enumerating vertices or edges1. Thus the goal of exact algorithms for
graph problems is to improve upon the algorithms running in time O∗(2n) or O∗(2m).
See the book [11] for an introduction to exact exponential algorithms.

One of the most well studied directions in exact algorithms is to delete vertices of the
input graph such that the resulting graph satisfies some interesting properties. More pre-
cisely, a natural optimization problem associated with a graph class G is the following:
given a graph G, what is the minimum number of vertices to be deleted from G to ob-
tain a graph in G? For example, when G is the class of empty graphs, forests or bipartite
graphs, the corresponding problems are VERTEX COVER (VC), FEEDBACK VERTEX

SET (FVS) and ODD CYCLE TRANSVERSAL (OCT), respectively. The best known al-
gorithms for VC, FVS and OCT run in time O∗(1.2108n) [24], O∗(1.7347n) [12] and
O∗(1.4661n) [20,24] respectively. The other problems in this class for which non-trivial
exact algorithms are known include finding an induced r-regular subgraph [16], induced
subgraph of bounded degeneracy [21] and induced subgraph of bounded treewidth [12].

In this paper we study another class of graph problems which we call as terminal
set problems. In these problems, the input is a graph G = (V,E) and a terminal set
T ⊆ V , and the goal is to find a minimum size set S ⊆ V that intersects certain
structures such as cycles or paths passing through the vertices in T . In this paper we
introduce a general method to obtain faster exact exponential time algorithms for many
terminal set problems. The general algorithmic technique is the following. Let the size
of the terminal set T be k. We first observe that the size of the optimum solution is
at most k (or a function of k). Let S be an optimum solution to the problem and let
X = S ∩ (V \ T ). We guess X and delete it from G. Since S \ X ⊆ T , we create
an auxiliary graph on T and determine the rest of the solution using either a known
polynomial time algorithm, or a fixed parameter tractable algorithm, or a non-trivial
exact algorithm for the non-terminal version (when T = V ) of the same problem. We
now provide a list of problems for which we give improved or new algorithms using
our method together with a short overview of previous work on each application.

NODE MULTIWAY CUT and DIRECTED UNRESTRICTED NODE MULTIWAY CUT:
A fundamental min-max theorem about connectivity in graphs is Menger’s Theorem,
which states that the maximum number of vertex disjoint paths between two vertices s
and t, is equal to the minimum number of vertices whose removal separates these two
vertices. Indeed, a maximum set of vertex disjoint paths between s, t and a minimum
size set of vertices separating these two vertices can be computed in polynomial time.
A known generalization of this theorem, commonly known as Mader’s T -path Theo-
rem [18] states that, given a graph G and a subset T of vertices, there are either k vertex
disjoint paths with only the end points in T (such paths are called T -paths), or there
is a vertex set of size at most 2k which intersects every T -path. Although computing
a maximum set of vertex disjoint T -paths can be done in polynomial time by using

1 Throughout this paper we use the O∗ notation which suppresses polynomial factors.
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matching techniques, the decision version of the dual problem of finding a minimum
set of vertices that intersects every T -path is NP-complete for |T | > 2. Formally, this
problem is the following classical NODE MULTIWAY CUT problem.

NODE MULTIWAY CUT (NMC)
Input: An undirected graph G = (V,E) and a set of terminals T = {t1, t2, . . . , tk}.
Question: Find a set S ⊆ V (G) \ T of minimum size such that G \ S has no path
between a ti, tj pair for any i �= j.

This is a very well studied problem in terms of approximation, as well as parameterized
algorithms [5,8,14,19]. A variant of this problem where S is allowed to intersect the
set T , is known as UNRESTRICTED NODE MULTIWAY CUT (UNMC). The best known
parameterized algorithm for NODE MULTIWAY CUT decides in time O∗(2	) whether
there is a solution of size at most 
 or not. Fomin et al. [10] designed an exact algorithm
for UNMC running in time O∗(1.8638n). In this paper we design an algorithm with
running time O(1.4766n) for both NMC and UNMC.

Next we consider the directed variant of NODE MULTIWAY CUT, namely DIRECTED

NODE MULTIWAY CUT (DNMC) where the input is a directed graph and a set T =
{t1, . . . , tk} of terminals and the objective is to find a set of minimum size which inter-
sects every ti → tj path for every ti, tj ∈ T with i �= j. For the unrestricted version of
this problem, namely DIRECTED UNRESTRICTED NODE MULTIWAY CUT (DUNMC),
we design an exact algorithm with running time O(1.6181n).

SUBSET FEEDBACK VERTEX SET and DIRECTED SUBSET FEEDBACK VERTEX SET:
An exact algorithm for FEEDBACK VERTEX SET (FVS) – finding a minimum sized
vertex subset such that its removal results in an acyclic graph – remained elusive for
several years. In a breakthrough paper Razgon [22] designed an exact algorithm for
this problem running in time O∗(1.8899n). Later, Fomin et al. [9] building upon the
work in [22] designed an exact algorithm for FVS running in time O∗(1.7548n). The
current best known algorithm for this problem uses potential maximal clique machinery
and runs in time O∗(1.7347n) [13]. Razgon studied the directed version of FVS and
obtained an exact algorithm running in time O∗(1.9977n) [23]. This is the only known
non-trivial exact algorithm for DIRECTED FEEDBACK VERTEX SET (DFVS). A natural
generalization of the FEEDBACK VERTEX SET problem is when we only want to hit
all the cycles passing through a specified set of terminals. This leads to the following
problem.

SUBSET FEEDBACK VERTEX SET (SFVS)
Input: An undirected graph G = (V,E), a set of terminals T ⊆ V of size k
Question: Find a minimum set of vertices which hits every cycle passing through T

Fomin et al. [10] designed an algorithm for SFVS on general graphs which runs in
time O∗(1.8638n). It is important to note that their algorithm not only finds a mini-
mum sized solution, but also enumerates all minimal solutions in the same time. Using
our methodology we design an algorithm for SFVS which runs in time O∗(1.8980n).
However, if we are allow randomization then we can design an algorithm with an ex-
pected running time of O∗(1.8826n). Golovach et al. [15] initiated the study of exact
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algorithms for SFVS on special graph classes by giving an enumeration algorithm for
SFVS on chordal graphs which runs in time O∗(1.6708n). They left it as an open ques-
tion whether there exists algorithms for SFVS on chordal graphs (even on split graphs)
which are faster than O∗(1.6708n). Though our algorithm using the described method-
ology for SFVS in general does not improve on the best known algorithm, it answers
this question in the affirmative for SFVS on chordal graphs and we obtain an algo-
rithm with running time O(1.6181n). More generally, our algorithm for SFVS runs
in O(1.6181n) on any graph class G which is closed under vertex deletions and edge
contractions, and where the weighted FVS problem can be solved in polynomial time.
Finally, we also consider the directed variant of the SFVS problem, namely DIRECTED

SUBSET FEEDBACK VERTEX SET (DSFVS), and obtain an algorithm with running
time O(1.9993n).

2 Preliminaries

Let C be a cycle in a graph G. A chord of C is an edge e /∈ C which connects two
vertices of C. A graph G is called a chordal graph if every cycle on four or more
vertices has a chord.

Now we define the contraction of an edge or a subgraph in G. LetG be an undirected
graph and let (u, v) be an edge in G. Let G′ be the graph obtained from G in the
following manner. We add a new vertex w. For every edge (u, z) where z �= v we add
an edge (w, z), and for every edge (y, v) where y �= u we add an edge (y, w). Finally
we delete the vertices u and v, and any parallel edges from the graph. We say that G′ is
obtained from G by contracting the edge (u, v). Let H be a subgraph of G. Consider
the graph G′ obtained from G by contracting every edge of H in an arbitrary order. We
say that G′ is obtained from G by contracting the subgraph H .

Now we define the torso graph of a subset of vertices in G. Let G = (V,E) be
an undirected graph and T and V ′ be subsets of V . We denote by torso(T, V ′) the
graph defined in the following manner. The vertex set of this graph is T and the edge
set comprises of all pairs (ti, tj) such that there is a ti − tj path in G whose internal
vertices lie in V ′ \ T or there is an edge (ti, tj) ∈ E.

3 NODE MULTIWAY CUT

In this section we design an exact algorithm for the NODE MULTIWAY CUT problem.
We begin by giving an algorithm for unrestricted version of this problem.

3.1 UNRESTRICTED NODE MULTIWAY CUT

The following observation follows from the fact that the set of terminals in an instance
of UNRESTRICTED NODE MULTIWAY CUT itself is a potential solution.

Observation 1. Let (G, T ) be an instance of UNRESTRICTED NODE MULTIWAY CUT

and S be an optimum solution to this instance . Then |S| ≤ |T |.
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Now we design an algorithm for UNRESTRICTED NODE MULTIWAY CUT using
the FPT algorithm for NODE MULTIWAY CUT and Observation 1. This algorithm uses
the FPT algorithm for multiway cut of Cygan et al.[8]. We will use this algorithm for
the instances where k is“small”.

Lemma 1. [�]2 Let (G, T ) be an instance of UNRESTRICTED NODE MULTIWAY CUT

where |T | = k. Then we can find an optimum solution to this instance in time O∗(2k).

Next, we design another algorithm for UNRESTRICTED NODE MULTIWAY CUT

which will be used for the instances where k is “large”.

Lemma 2. Let (G, T ) be an instance of UNRESTRICTED NODE MULTIWAY CUT

where G = (V,E) and let S be an optimum solution to this instance. Let X =
S ∩ (V \ T ) and Y = S \X . Then Y is a vertex cover of the graph torso(T, V \X).
Conversely, if Y ′ is any vertex cover for the graph torso(T, V \ X), then the set
X ∪ Y ′ is a solution to this instance.

Proof. We first show that Y is indeed a vertex cover of G′ = torso(T, V \ X). Let
E′ be the edge set of G′. Suppose that Y is not a vertex cover of G′ and there is an edge
(ti, tj) ∈ E′ which is not covered by Y . Observe that (ti, tj) /∈ E, since this would
contradict the assumption of S being a solution. Therefore, it must be the case that there
is a path P between ti and tj in G[V \X ] whose internal vertices are disjoint from T .
Since this path is disjoint from both X and Y , it is also present in the graph G \ S, a
contradiction. Hence, we conclude that Y is indeed a vertex cover of torso(T, V \X).

We now show that for any vertex cover Y ′ of G′, the set X ∪ Y ′ is a solution to the
instance (G, T ) of UNRESTRICTED NODE MULTIWAY CUT. Suppose to the contrary
that there is a vertex cover Y ′ of G′ such that the set S′ = X∪Y ′ is not a solution to the
instance (G, T ). That is, there is a ti-tj path in G \S′ for some ti, tj ∈ T . Observe that
this implies the existence of a ti′ -tj′ path P for some ti′ , tj′ ∈ T such that the internal
vertices of P are disjoint from T ∪S′. Therefore the edge (ti′ , tj′) is not covered by Y ′

in G′, a contradiction. east one of ti or tj must be in the set Y ′. ��

Using the above lemma and the FPT algorithm for Vertex Cover of Chen et al.[4],
we are able to show the following lemma.

Lemma 3. There is an algorithm that, given an instance (G = (V,E), T ) of UNRE-

STRICTED NODE MULTIWAY CUT, runs in time O
(
1.7850n

(
1.2738
1.7850

)k)
and returns

an optimum solution where k = |T | and n = |V |.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \T ) such that
|X | ≤ k, we construct the graph GX = torso(T, V \ X) and compute a minimum
vertex cover YX for GX . We compute the minimum vertex cover by using the FPT
algorithm of [4], which runs in time O∗(1.2738	) where 
 is the size of an optimum
vertex cover. Finally, we return the set X ∪ YX which is a smallest solution over all
choices of X . The correctness of this algorithm follows from Lemma 2.

2 The proofs of results labeled with 	 are deferred to the full version of the paper due to space
constraints.



Faster Exact Algorithms for Some Terminal Set Problems 155

In order to bound the running time of this algorithm, first observe that for each X ,
the set YX has size at most k− |X |. Therefore, the FPT algorithm we use to compute a
minimum vertex cover of torso(T, V \X) runs in time O∗(1.2738k−|X|). Summing
over all choices of X , the time taken by our algorithm is upper bounded by

k∑
x=0

(
n− k

x

)
O∗(1.2738k−x)

= O∗(1.2738k)
k∑

x=0

(
n− k

x

)(
1

1.2738

)x

= O∗(1.2738k)

(
1 +

1

1.2738

)n−k

= O

(
1.7850n

(
1.2738

1.7850

)k
)

��

Now we are ready to prove the main theorem of this section.

Theorem 2. There is an algorithm that, given an instance (G = (V,E), T ) of UNRE-
STRICTED NODE MULTIWAY CUT, runs in time O(1.4766n) and returns an optimum
solution where n = |V |.
Proof. Let (G, T ) be the given instance of UNRESTRICTED NODE MULTIWAY CUT

and |T | = k. Recall that we have described two different algorithms for UNRESTRICTED

NODE MULTIWAY CUT. We now choose either of these algorithms based on the values
of k and n. If k ≤ 0.5622n, then we use the algorithm described in Lemma 1. In this
case, the running time is upper bounded by O∗(2k) ≤ O∗(20.5622n) ≤ O(1.4766n).
If k > 0.5622n, then we use the algorithm described in Lemma 3. This algorithm

runs in time O
(
1.7850n

(
1.2738
1.7850

)k)
which is a decreasing function of k. Substituting

k = 0.5622n, we get an upper bound on the running time as O(1.4766n). This com-
pletes the proof of the theorem. ��

3.2 NODE MULTIWAY CUT

In this subsection, we give an exact algorithm for the NODE MULTIWAY CUT problem.
We start with the following observation which follows from the fact that any solution
to an instance of NODE MULTIWAY CUT is disjoint from the set of terminals in the
instance.

Observation 3. Let (G, T ) be an instance of NODE MULTIWAY CUT. If T is not an
independent set in G, then there is no solution to the instance (G, T ). Furthermore, if
two terminals t1 and t2 have a common neighbor v, then v must be in every solution for
the given instance.

Due to Observation 3, we may assume that the terminal set is independent and the
neighborhoods of the terminals in G are pairwise disjoint. This reduces the restricted
NODE MULTIWAY CUT to the following generalization of the UNRESTRICTED NODE

MULTIWAY CUT, also known as the GROUP MULTIWAY CUT problem.
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GROUP MULTIWAY CUT

Input: An undirected graph G = (V,E) and pairwise disjoint sets of terminals
{T1, T2, . . . , T	}.
Question: Find a set S ⊆ V (G) of minimum size such that G \ S has no u− v path
for any u ∈ Ti, v ∈ Tj and i �= j.

We have the following theorem, whose proof is along the same lines as the proof of
Theorem 2.

Theorem 4. [�] There is an algorithm that, given an instance (G = (V,E), T1, . . . , T	)
of GROUP MULTIWAY CUT, runs in timeO(1.4766n) and returns an optimum solution,
where n = |V |.

The following theorem follows from Theorem 4 and Observation 3.

Theorem 5. There is an algorithm that, given an instance (G = (V,E), T ) of NODE

MULTIWAY CUT, runs in time O(1.4766n) and returns an optimum solution, where
n = |V |.

4 DIRECTED UNRESTRICTED NODE MULTIWAY CUT

In this section, we consider the DIRECTED UNRESTRICTED NODE MULTIWAY CUT

problem.

DIRECTED UNRESTRICTED NODE MULTIWAY CUT

Input: A directed graph D = (V,A) and a set of terminals T = {t1, t2, . . . , tk}.
Question: Find a set S ⊆ V of minimum size such that G \ S has no ti → tj path
for any i �= j.

Since we consider the version where the terminals can be deleted, we have the fol-
lowing observation.

Observation 6. Let (G, T ) be an instance of DIRECTED UNRESTRICTED NODE MUL-
TIWAY CUT and S be an optimum solution to this instance . Then, |S| ≤ |T |.

The proof of the next lemma is identical to the proof of Lemma 2 and therefore, we
do not repeat it.

Lemma 4. Let (D,T ) be an instance of DIRECTED UNRESTRICTED NODE MUL-
TIWAY CUT where D = (V,A) and let S be an optimum solution to this instance.
Let X = S ∩ (V \ T ) and Y = S ∩ X . Then Y is a vertex cover of the graph
torso(T, V \X). Conversely if Y ′ is any vertex cover of the graph torso(T, V \X),
then the set X ∪ Y ′ is a solution to this instance.

Now we describe our algorithm for DIRECTED UNRESTRICTED NODE MULTIWAY

CUT.

Theorem 7. DIRECTED UNRESTRICTED NODE MULTIWAY CUT can be solved in
time O∗(1.6181n).
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Proof. The description of the algorithm is as follows. For every X ⊆ (V \T ) such that
|X | ≤ k, we construct the graph DX = torso(T, V \ X) and compute a minimum
vertex cover YX for DX . We compute the minimum vertex cover by using the FPT
algorithm of Chen et al. [4], which runs in time O∗(1.2738	) where 
 is the size of an
optimum vertex cover. Finally, we return the set X ∪ YX which is a smallest solution
over all choices of X . The correctness of this algorithm follows from Lemma 4.

Let T be the running time of our algorithm. We have the following claim.

Claim. T = O(1.6181n).

For every choice of X we run the FPT algorithm for vertex cover, which takes time
O∗(1.2738k−|X|). Therefore we have,

Proof

T =

k∑
x=0

(
n− k

x

)
O∗(1.2738k−x)

=

k∑
x=0

(
n− k

x

)
O∗(1.618k−x)

= O∗(1.618k)
k∑

x=0

(
n− k

x

)(
1

1.618

)x

= O∗(1.618k)

(
1

1.618
+ 1

)n−k

= O∗(1.618k)× (1.6181)n−k

= O(1.6181n) ��

This completes the proof of the theorem. ��

5 SUBSET FEEDBACK VERTEX SET

In this section we design an exact algorithm for SUBSET FEEDBACK VERTEX SET.
We actually design two different algorithms for the problem, and then use these two
algorithms to construct our final exact algorithm.

Let (G, T ) be the given instance of SUBSET FEEDBACK VERTEX SET. Recall that
we are allowed to pick terminal vertices into a solution. The following observation
follows from the fact that the set of terminals itself is a solution.

Observation 8. Let (G, T ) be an instance of SUBSET FEEDBACK VERTEX SET, and
let S be an optimum solution to this instance. Then |S| ≤ |T |.

Lemma 5. 1. There is an algorithm that, given an instance (G = (V,E), T ) of SUB-

SET FEEDBACK VERTEX SET, runs in time O
(
1.2n

(
5
12

)k)
and returns an opti-

mum solution where k = |T | and n = |V |.
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2. There is an algorithm that, given an instance (G = (V,E), T ) of SUBSET FEED-

BACK VERTEX SET, runs in time O
(
2n
(
1.7548

2

)k)
and returns an optimum solu-

tion where k = |T | and n = |V |.

Proof. For every X ⊆ (V \ T ) such that |X | ≤ k, let TX be the set of terminals t such
that, G \X contains a cycle passing through t which contains no other terminal vertex.
Let GX be the graph obtained from G\ (X ∪TX) by contracting every connected com-
ponent of G \ (T ∪X)3. Let YX be a minimum feedback vertex set for GX containing
only vertices of T .

For the first algorithm, we compute YX in the following manner. We assign a weight
of k+1 to the vertices not in T and 1 to the vertices in T . We then use an FPT algorithm
to compute a minimum feedback vertex set of GX of weight at most k. We use the FPT
algorithm of Chen et. al. [3] which runs in time O∗(5p), where p is the minimum weight
of an feedback vertex set.

For the second algorithm we compute YX by computing a maximum induced forest
ofGX which contains all the non-terminal vertices and taking its complement. Let F be
the set of all non-terminal vertices in GX and let q = n−|F | be the number of terminal
vertices in GX . We use the algorithm of Fomin et al. [9](Section 3) on (GX , F ) and
compute a maximum induced forest of GX containing F . The arguments of Fomin et
al. imply that the algorithm runs in time O∗(1.7548q).

Let SX = X ∪ TX ∪ YX . We compute SX for every X and output the one with the
smallest number of vertices as our solution.

Correctness. The correctness of both the algorithm follow from the following claims.

Claim. [�] Let S be an optimum solution to the given instance of SUBSET FEEDBACK

VERTEX SET and let X = S ∩ (V \ T ). Let TX be the set of terminals t such that,
G \ X contains a cycle passing through t which contains no other terminal vertices.
Then TX ⊆ S.

The above claim shows the correctness of adding TX to the solution. The following
lemma shows that once TX is added to the solution, it suffices to compute a minimum
feedback vertex set for the graph GX .

Claim. [�] Let S be an optimum solution to the given instance of SUBSET FEEDBACK

VERTEX SET and let X = S \ T and Y = S \X . Furthermore, suppose that there are
no cycles in G containing a unique vertex of T . Let GX be obtained from G \ X by
contracting every connected component of G\(T ∪X). Then Y is a minimum feedback
vertex set ofGX . Conversely if Y ′ is any feedback vertex set of GX , then the set X∪Y ′

is a solution for the given instance of SUBSET FEEDBACK VERTEX SET.

Running Time. Let T1 be the running time of the first algorithm and, T2 be the running
time of the second algorithms. The following two claims establish the running times of
both the algorithms.

Claim. [�] T1 = O
(
1.2n × ( 5

1.2 )
k
)

.

3 We can compute both TX and GX in polynomial time.
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Claim. [�] T2 = O
(
2n × (1.75482 )k

)
.

This completes the proof of the lemma. ��

Theorem 9. There is an algorithm that, given an instance (G = (V,E), T ) of SUBSET

FEEDBACK VERTEX SET, runs in time O(1.9161n) and returns an optimum solution
where n = |V |.

Proof. Let (G, T ) be the given instance of SUBSET FEEDBACK VERTEX SET, where
G is a graph on n vertices and |T | = k. Based on the values of n and k we run one of
the two algorithms described above.

If k ≤ 0.32789n, then we run the first algorithm described in Lemma 5. The running

time is upper bounded by O
(
1.2n × ( 5

1.2 )
0.32789n

)
= O(1.9161n). Otherwise if k >

0.32789n, then we run the second algorithm described in Lemma 5. This algorithm

runs in time O
(
2n × (1.75482 )k

)
which is a decreasing function of k. Substituting k =

0.32789n, we get an upper bound of O(1.9161n) on the running time in this case as
well. ��

We remark that, there are faster FPT [2,7] and Exact algorithms [12] known for FVS
on undirected graphs (we can modify these algorithms in order to handle input instances
with undeletable vertices). If we use the fastest known deterministic and randomized
algorithms, then we obtain the following theorem.

Theorem 10. SUBSET FEEDBACK VERTEX SET can be solved in O∗(1.8980n) deter-
ministic time, or in O∗(1.8826n) randomized time.

5.1 SUBSET FEEDBACK VERTEX SET on Chordal Graphs

In this section we give an algorithm for SUBSET FEEDBACK VERTEX SET on chordal
graphs which improves upon the previous best algorithm of Golovach et al. [15], and
is much simpler. The main difference between this algorithm and the algorithm for
SUBSET FEEDBACK VERTEX SET described earlier is that we use a polynomial time
algorithm to solve weighted FEEDBACK VERTEX SET on chordal graphs ([6,25]), in-
stead of an FPT or an exact algorithm. It is well known (see also [1]) that chordal graphs
are closed under vertex deletions and edge contractions.

We are now ready to prove the main theorem of this section:

Theorem 11. There is an algorithm that, given an instance (G = (V,E), T ) of SUB-
SET FEEDBACK VERTEX SET on Chordal Graphs, returns an optimum solution in
O(1.6181n) time, where n = |V |.

Proof. The algorithm is the same as the two algorithms described in Lemma 5 except
that we use the polynomial time algorithm for FEEDBACK VERTEX SET on chordal
graphs instead of the FPT or the exact exponential algorithm. For every choice of X ,
we compute TX and GX in polynomial time. Observe that the graph GX is obtained
from G by vertex deletions and edge contractions, implying that GX is also a chordal
graph. Assign weight 1 to each terminal vertex and weight k + 1 to each non-terminal
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vertex, and compute in polynomial time a minimum weight feedback vertex set YX of
GX using the result of Corneil and Fonlupt [6]. We now analyze the running time of
our algorithm.

Let S be any optimum solution and let X = S \ T . Observe that |X | ≤ |S| ≤ |T |.
The next lemma 6 shows that the number of choices of X is at most O(1.6181n).

Lemma 6. [�] Let V be a set of n elements and T is a subset of V . Then the number of
distinct sets X ⊆ V such that S ∩ T = ∅ and |X | ≤ |T | is O(1.6181n).

Since after choosing X we do only a polynomial time computation, the running time
of our algorithm is O(1.6181n). ��

We remark that we can use the above method to obtain faster exact algorithm for
SUBSET FEEDBACK VERTEX SET on other graph classes, such as AT-free graphs [17],
which are closed under vertex deletions and edge contractions, and FEEDBACK VER-
TEX SET is solvable in polynomial time on them.

6 DIRECTED SUBSET FEEDBACK VERTEX SET

In this section we give an exact algorithm for the DIRECTED SUBSET FEEDBACK VER-
TEX SET problem running in time O∗(1.9993n). The problem is defined as follows.

DIRECTED SUBSET FEEDBACK VERTEX SET

Input: A directed graph D = (V,A) and a set of terminal vertices T of size k.
Question: Find a minimum set of vertices in D which intersects every cycle in D
which contains at least one vertex of T .

Next we observe the following property of directed graphs.

Observation 12. Let D = (V,A) be a directed graph. For any vertex v ∈ V , the
following holds: v belongs to a closed walk in D if and only if v belongs to a cycle in
D.

Lemma 7. Let (D = (V,A), T ) be an instance of DIRECTED SUBSET FEEDBACK

VERTEX SET. Let S be an optimum solution to this instance andX = S\T , Y = S\X .
Furthermore, suppose that every cycle in D \X that intersects T , contains at least two
vertices of T . Then Y is a feedback vertex set in the graph torso(T, V \ X) if and
only if X ∪ Y is a subset feedback vertex set for the instance (D,T ).

Proof. SupposeX∪Y is a solution in D where Y ⊆ T . If Y is not a feedback vertex set
in DX = torso(T, V \X), then there is a cycle CX in DX \ Y . From CX in DX we
can obtain a closed walkC′ in D in the following manner. We replace every edge (ti, tj)
of CX which is not present in A, with a path Pij from ti to tj in D \X whose internal
vertices lie in V \ (T ∪X). Therefore we get a closed walk C′ in D \ (X ∪ Y ) which
contains a terminal. By Observation 12, there is a cycle in D which passes through a
terminal in D, which is not covered by X ∪ Y . This is a contradiction.

Conversely, let Y be a feedback vertex set in DX , but X ∪ Y is not a solution in
D. Then there is a cycle C in D \ (X ∪ Y ) and note that this cycle contains at least
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two vertices of T . Further assume that C is the shortest such cycle. Observe that every
minimal subpath Pij of C from terminals ti to tj whose internal vertices lie in V \ T ,
implies an edge (ti, tj) in DX . Therefore we can obtain a cycle C′ in DX from C by
replacing the subpath Pij with the edge (ti, tj), for every pair of terminals ti, tj in C.
Observe that this cycle is not covered by Y . This is a contradiction.

This completes the proof of the lemma. ��

The following observation is immediate since the set T forms a potential solution.

Observation 13. Let (D,T ) be an instance of DIRECTED SUBSET FEEDBACK VER-
TEX SET and let S be an optimum solution for this instance. Then, |S| ≤ |T |.

We are now ready to prove the main theorem of this section.

Theorem 14. [�] There is an algorithm that, given an instance (D = (V,A), T ) of
DIRECTED SUBSET FEEDBACK VERTEX SET, runs in time O(1.9993n) and returns
an optimum solution where n = |V |.

7 Conclusion

We introduced a methodology of obtaining non-trivial exact exponential algorithms for
several terminal set problems. We conclude with open problems which seems to be
evasive to our approach. Designing an algorithm faster than O∗(2n) for DIRECTED

NODE MULTIWAY CUT remains an interesting question. Another interesting problem
is SUBSET ODD CYCLE TRANSVERSAL, where the task is to find a vertex subset of
minimum size hitting all cycles of odd length containing at least one terminal. Again,
the problem is trivially solvable in O∗(2n) but no faster algorithm for this problem is
known. We conclude by remarking that an approach based on our methodology might
result in such an algorithm since ODD CYCLE TRANSVERSAL is solvable in time
O∗(1.4661n) [20,24]. Finally designing an algorithm for MULTICUT on both undi-
rected and directed graphs, faster than the trivial O∗(2n) algorithm, remains an inter-
esting open problem.
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Abstract. It is known that a number of natural graph problems which
are FPT parameterized by treewidth become W-hard when parameter-
ized by clique-width. It is therefore desirable to find a different structural
graph parameter which is as general as possible, covers dense graphs but
does not incur such a heavy algorithmic penalty.

The main contribution of this paper is to consider a parameter called
modular-width, defined using the well-known notion of modular decom-
positions. Using a combination of ILP and dynamic programming we
manage to design FPT algorithms for Coloring and Partitioning into
paths (and hence Hamiltonian path and Hamiltonian cycle), which are
W-hard for both clique-width and its recently introduced restriction,
shrub-depth. We thus argue that modular-width occupies a sweet spot as
a graph parameter, generalizing several simpler notions on dense graphs
but still evading the “price of generality” paid by clique-width.

1 Introduction

The topic of this paper is the exploration of the algorithmic properties of some
structural graph parameters. This area is typically dominated by an effort to
achieve two competing goals: generality and algorithmic tractability. A good
example of this tension is the contrast between treewidth and clique-width.

A large wealth of problems are known to be FPT when parameterized by
treewidth [6,5,4]. One drawback of treewidth, however, is that this parameter-
ization excludes a large number of interesting instances, since, in particular,
graphs of small treewidth are necessarily sparse. The notion of clique-width
(and its cousins rank-width [22] and boolean-width [7]) tries to ameliorate this
problem by covering a significantly larger family of graphs, including many dense
graphs. As it turns out though, the price one has to pay for this added generality
is significant. Several natural problems which are known to be fixed-parameter
tractable for treewidth become W-hard when parameterized by these measures
[18,17,16].
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It thus becomes an interesting problem to explore the trade-offs offered by
these and other graph parameters. More specifically, one may ask: is there a nat-
ural graph parameter which covers dense graphs but still allows FPT algorithms
for the problems lost to clique-width? This is the main question motivating this
paper. We first attempt to use the recently introduced notion of shrub-depth
for this role [20]. Shrub-depth is a restriction of clique-width which shows some
hope, since it has been used to obtain improved algorithmic meta-theorems. Un-
fortunately, as we will establish, the hardness constructions for Coloring and
Hamiltonian path used in [18] go through with small modifications for this
restricted parameter as well.

The main contribution of this paper is then the consideration of a parameter
called modular-width which, we argue, nicely fills this niche. One way to define
modular-width is by using the standard concept of modular decompositions (see
e.g. [24]), as the maximum degree of the optimal modular decomposition tree.
As a consequence, a graph’s modular-width can be computed in polynomial
time. Note that the concept of modular-width was already briefly considered in
[8], but was then abandoned in that paper in favor of the more general clique-
width. To the best of our knowledge, modular-width has not been considered
as a parameter again, even though modular decompositions have found a large
number of algorithmic applications, including in parameterized complexity (see
[21] for a general survey and [26,10,1] for example applications in parameterized
complexity).

We give here the first evidence indicating that modular-width is a structural
parameter worthy of further study. On the algorithmic side, modular-width offers
a significant advantage compared to clique-width, a fact we demonstrate by
giving FPT algorithms for several variants of Hamiltonicity and Chromatic

number, all problems W-hard for clique-width. At the same time, we show
that modular-width significantly generalizes several simpler parameters, such as
neighborhood diversity [23] and twin-cover [19], which also allow FPT algorithms
for these problems.

Our main algorithmic tool is a form of dynamic programming on the modular
decomposition of the input graph. Unlike dynamic programming on the more
standard tree decompositions, the main obstacle here is in combining the DP
tables of the children of a node to compute the table for the node itself. This is
in general a hard problem, but we show that it can sometimes be made tractable
if every node of the decomposition has small degree, hence the parameterization
by modular-width.

Even if the modular decomposition has small degree, combining the DP ta-
bles is still not necessarily a trivial problem. A second idea we rely on (in the
case of Hamiltonicity) is to use an Integer Linear Program, whose number of
variables is bounded by the number of modules we are trying to combine. It is
our hope that this technique, which seems quite general, will be applicable to
other problems as well.
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Full Version Proofs of statements marked with (�) are shortened or omitted due
to space restrictions. Detailed proofs can be found in the full version, available
at arxiv.org/abs/1308.2858.

2 Preliminaries

We use standard notation from graph theory as can be found in, e.g., [9]. Let G
be a graph. We denote the vertex set of G by V (G) and the edge set of G by
E(G). Let X ⊆ V (G) be a set of vertices of G. The subgraph of G induced by X ,
denoted G[X ], is the graph with vertex set X and edges E(G)∩ [X ]2. By G \X
we denote the subgraph of G induced by V (G) \X . Similarly, for Y ⊆ E(G) we
define G \ Y to be the subgraph of G obtained by deleting all edges in Y from
G. For a graph G and a vertex v ∈ V (G), we denote by NG(v) and NG[v] the
open and closed neighborhood of v in G, respectively.

2.1 Considered Problems

We consider the following problems on graphs. Let G be a graph. A coloring of
G is a function λ : V (G) → N such that for every edge {u, v} ∈ E(G) it holds
that λ(u) �= λ(v). We denote by λ(G) the set of colors used by the coloring λ,
i.e., λ(G) = {λ(v) : v ∈ V (G) }, and by Λ(G) the set of all colorings of G that
use at most |V (G)| colors. The chromatic number of G, denoted by χ(G), is the
smallest number c such that G has a coloring λ with |λ(G)| ≤ c.

Graph Coloring

Input: A graph G.
Question: Compute χ(G).

Let G be a graph. A partition of G into paths is a set of (vertex-)disjoint
paths of G whose union contains every vertex of G. We denote by ham(G) the
least integer p such that G has a partition into p paths.

Partitioning Into Paths

Input: A graph G.
Question: Compute ham(G).

Hamiltonian Path

Input: A graph G.
Question: Does G have a Hamiltonian Path?

Hamiltonian Cycle

Input: A graph G.
Question: Does G have a Hamiltonian Cycle?

2.2 Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory.
For more details, we refer to text books on the topic [12,15,25]. An instance of a

arxiv.org/abs/1308.2858
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parameterized problem is a pair (I, k) where I is the main part of the instance,
and k is the parameter. A parameterized problem is fixed-parameter tractable if
instances (I, k) can be solved in time f(k)|I|c, where f is a computable func-
tion of k, and c is a constant. FPT denotes the class of all fixed-parameter
tractable problems. Hardness for parameterized complexity classes is based on
fpt-reductions. A parameterized problem L is fpt-reducible to another parame-
terized problem L′ if there is a mapping R from instances of L to instances of
L′ such that (i) (I, k) ∈ L if and only if (I ′, k′) = R(I, k) ∈ L′, (ii) k′ ≤ g(k) for
a computable function g, and (iii) R can be computed in time O(f(k)|I|c) for a
computable function f and a constant c. Central to the completeness theory of
parameterized complexity is the hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ . . . . Each in-
tractability class W[t] contains all parameterized problems that can be reduced
to a certain parameterized satisfiability problem under fpt-reductions.

2.3 Treewidth

The treewidth of a graph is defined using the following notion of a tree decompo-
sition (see, e.g., [3]). A tree decomposition of an (undirected) graph G = (V,E) is
a pair (T, χ) where T is a tree and χ is a labeling function that assigns each tree
node t a set χ(t) of vertices of the graph G such that the following conditions
hold: (1) Every vertex of G occurs in χ(t) for some tree node t, (2) For every
edge {u, v} of G there is a tree node t such that u, v ∈ χ(t), and (3) For every
vertex v of G, the tree nodes t with v ∈ χ(t) form a connected subtree of T .
The width of a tree decomposition (T, χ) is the size of a largest bag χ(t) minus 1
among all nodes t of T . A tree decomposition of smallest width is optimal. The
treewidth of a graph G is the width of an optimal tree decomposition of G.

2.4 Shrub-depth

The recently introduced notion of shrub-depth [20] is the “low-depth” variant of
clique-width, similar to the role that tree-depth plays with respect to treewidth.

Definition 1. We say that a graph G has a tree-model of m colors and depth
d ≥ 1 if there exists a rooted tree T (of height d) such that

1. the set of leaves of T is exactly V (G),
2. the length of each root-to-leaf path in T is exactly d,
3. each leaf of T is assigned one of m colors (this is not a graph coloring,

though),
4. and the existence of a G-edge between u, v ∈ V (G) depends solely on the

colors of u, v and the distance between u, v in T .

The class of all graphs having a tree-model of m colors and depth d is denoted
by TMm(d).

Definition 2. A class of graphs G has shrub-depth d if there exists m such that
G ⊆ TMm(d), while for all natural m it is G �⊆ TMm(d− 1).
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Note that Definition 2 is asymptotic as it makes sense only for infinite graph
classes. Particularly, classes of shrub-depth 1 are known as the graphs of bounded
neighborhood diversity in [23], i.e., those graph classes on which the twin relation
on pairs of vertices (for a pair to share the same set of neighbors besides this
pair) has a finite index.

2.5 Modular-Width

For our algorithms we consider graphs that can be obtained from an algebraic
expression that uses the following operations:

(O1) create an isolated vertex;
(O2) the disjoint union of 2 graphs denoted by G1 ⊕G2, i.e., G1 ⊕G2 is the
graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2);
(O3) the complete join of 2 graphs denoted by G1 ⊗ G2, i.e., G1 ⊗ G2 is
the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪
{ {v, w} : v ∈ V (G1) and w ∈ V (G2) };
(O4) the substitution operation with respect to some graph G with vertices
v1, . . . , vn, i.e., for graphs G1, . . . , Gn the substitution of the vertices of G by
the graphs G1, . . . , Gn, denoted by G(G1, . . . , Gn), is the graph with vertex
set

⋃
1≤i≤n V (Gi) and edge set

⋃
1≤i≤nE(Gi)∪{ {u, v} : u ∈ V (Gi) and v ∈

V (Gj) and {vi, vj} ∈ E(G) }. Hence, G(G1, . . . , Gn) is obtained from G by
substituting every vertex vi ∈ V (G) with the graph Gi and adding all edges
between the vertices of a graph Gi and the vertices of a graph Gj whenever
{vi, vj} ∈ E(G).

Let A be an algebraic expression that uses only the operations (O1)–(O4). We
define the width of A as the maximum number of operands used by any occur-
rence of the operation (O4) in A. It is well-known that the modular-width of a
graph G, denoted mw(G), is the least integer m such that G can be obtained
from such an algebraic expression of width at mostm. Furthermore, an algebraic
expression of width mw(G) can be constructed in linear time [27].

2.6 Integer Linear Programming

For our algorithms, we use the well-known result that Integer Linear Pro-

gramming is fixed-parameter tractable parameterized by the number of
variables.

Integer Linear Programming Feasibility Parameter: p
Input: A matrix A ∈ Zm×p and a vector b ∈ Zm.
Question: Is there a vector x ∈ Zp such that Ax ≤ b?

Proposition 1 ([14]). Integer Linear Programming Feasibility is fixed-
parameter tractable and can be solved in time O(p2.5p+o(p) · L) where L is the
number of bits in the input.
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3 Hardness for Problems on Shrub-depth

In this section we give evidence that the recently introduced parameter shrub-
depth is not restrictive enough to obtain fixed-parameter algorithms for problems
that are W[1]-hard on graphs of bounded cliquewidth. In particular, we show
that Graph Coloring and Hamiltonian Path are W[1]-hard parameterized
by the number of colors (used in a tree-model of the input graph) on classes of
graphs of shrub-depth 5. Note that restricting the shrub-depth means restricting
the height of the tree-model that can be employed and for every restriction on
the height of the tree-model the number of colors needed to model the graph
gives a different parameter. In particular, if we restrict the shrub-depth to 1 the
number of colors of the tree-model corresponds to the neighborhood diversity of
a graph. This implies that Graph Coloring and Hamiltonian Path become
fixed-parameter tractable when parameterized by the number of colors (used
in a tree-model of the input graph) on classes of graphs of shrub-depth 1 [23].
It is an interesting open question what is the least possible shrub-depth that
allows for fixed-parameter algorithms for the problems Graph Coloring and
Hamiltonian Path.

Theorem 1 (�). Graph Coloring parameterized by the number of colors
(used in a tree-model of the input graph) is W[1]-hard on classes of graphs of
shrub-depth 5.

Theorem 2 (�). Hamiltonian Path parameterized by the number of colors
(used in a tree-model of the input graph) is W [1]-hard on class of graphs of
shrub-depth 5.

4 Modular-Width and Other Parameters

In this section we study the relationships of modular-width, shrub-depth and
other important width parameters. Of particular importance is the observation
that modular-width generalizes the recently introduced parameters neighbor-
hood diversity [23] and twin-cover [19]. Both of these parameters have been in-
troduced to obtain FPT algorithms on dense graphs for problems that are hard
for clique-width. Figure 1 summarizes these relationships. Most of these relation-
ships are well-known or have recently been shown in [23,19,20,8]. Consequently,
we only show the relationships whose proofs cannot been found anywhere else.

Theorem 3. Let G be a graph. Then mw(G) ≤ nd(G) and mw(G) ≤ 2tc(G) +
tc(G). Furthermore, both inequalities are strict, i.e., there are graphs with bounded
modular-width and unbounded neighborhood diversity (or unbounded twin-cover
number).

Proof. Let G be a graph. Using the definition of neighborhood diversity from [23]
it follows that G has a partition {V1, . . . , Vnd(G)} of its vertex set such that
for every 1 ≤ i ≤ nd(G) it holds that the graph G[Vi] is either a clique or
an independent set and for every 1 ≤ i < j ≤ nd(G), either all vertices in
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vc

nd tc

mw sd tw

cw

Fig. 1. Relationship between vertex cover (vc), neighborhood diversity (nd), twin-cover
(tw), modular-width (mw), shrub-depth (sd), treewidth (tw), and clique-width (cw).
Arrows indicate generalizations, e.g., modular-width generalizes both neighborhood
diversity and twin-cover.

Vi are adjacent to all vertices of Vj or G contains no edges between vertices
in Vi and vertices in Vj . Let G′ be the graph with vertex set v1, . . . , vnd(G)

and an edge between vi and vj if and only if the graph G contains all edges
between vertices in Vi and vertices in Vj . Then G = G′(G[V1], . . . , G[Vnd(G)]).
Furthermore, because for every 1 ≤ i ≤ nd(G), Vi is either a clique or an
independent set, we can obtain the graph G[Vi] from an algebraic expression Ai

that uses only the operations (O1)–(O3). Substituting the algebraic expressions
Ai for every G[Vi] into G′(G[V1], . . . , G[Vnd(G)]) gives us the desired algebraic
expression for G of width nd(G).

Let G be a graph. Using the definition of twin-cover from [19] it follows that
there is a set C of at most tc(G) vertices of G such that every component C′

of G \ C is a clique and every vertex in C′ is connected to the same vertices
in C. Let C1, . . . , Cl be sets of components of G \ C such that 2 components of
G\C are contained in the same set Ci if and only if their vertices have the same
neighbors in C. Because there are at most 2|C| possible such neighborhoods, we
obtain that l ≤ 2|C|. Let G′ be the graph with vertices C∪{c1, . . . , cl} and edges
E(G[C])∪{ {ci, vi} : vi ∈ NG(Ci) }. Then G = G′(v1, . . . , v|C|, G[C1], . . . , G[Cl]).
Furthermore, because the graphs G[Ci] are disjoint unions of cliques, we can
obtain each of these graphs from an algebraic expression Ai that uses only the
operations (O1)–(O3). Substituting the algebraic expressions Ai for every G[Ci]
into G′(v1, . . . , v|C|, G[C1], . . . , G[Cl]) gives us the desired algebraic expression

for G of width 2|C| + |C| ≤ 2tc(G) + tc(G).
To see that both inequalities are strict we refer the reader to [20, Example 5.4

a)]. The example exhibits a family of co-graphs, i.e., graphs of modular-width 0,
with unbounded neighborhood diversity and unbounded twin-cover number. ��

The following theorem shows that modular-width and shrub-depth are orthogo-
nal to each other.
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Theorem 4 (�). There are classes of graphs with unbounded modular-width and
bounded shrub-depth and vice versa.

The next theorem shows that also shrub-depth generalizes neighborhood diver-
sity and twin-cover.

Theorem 5. Let G be a class of graphs. If G has bounded neighborhood diversity
or bounded twin-cover number then G has shrub-depth at most 2. Furthermore,
there are classes of graphs that have unbounded neighborhood diversity and twin-
cover number but shrub-depth 2.

Proof. Suppose that G has bounded neighborhood diversity, i.e., there is some
natural number c such that nd(G) ≤ c for everyG ∈ G. We show that every graph
G ∈ G has a tree-model of height at most 1 that uses at most nd(G) ≤ c colors.
Using the definition of neighborhood diversity from [23] it follows that G has a
partition {V1, . . . , Vnd(G)} of its vertex set such that for every 1 ≤ i ≤ nd(G)
it holds that the graph G[Vi] is either a clique or an independent set and for
every 1 ≤ i < j ≤ nd(G), either all vertices in Vi are adjacent to all vertices of
Vj or G contains no edges between vertices in Vi and vertices in Vj . Then the
tree-model for G consists of a root r and 1 leave for every vertex v in G with
color i if v ∈ Vi.

Now, suppose that G has bounded twin-cover, i.e., there is some natural num-
ber c such that tc(G) ≤ c for every G ∈ G. We show that every graph G ∈ G
has a tree-model of height at most 2 that uses at most 2tc(G) + tc(G) ≤ 2c + c
colors. Using the definition of twin-cover from [19] it follows that there is a set
W = {w1, . . . , wtc(G)} of tc(G) vertices of G such that every component C′ of
G \ W is a clique and every vertex in C′ is connected to the same vertices in
W . Let C1

1 , . . . , C
1
p1
, . . . , Cl

1, . . . , C
l
pl

be all the components of G \W such that

2 components Cj1
i1

and Cj2
i2

have the same neighborhood in W if and only if

j1 = j2. Because there are at most 2|W | possible such neighborhoods, we obtain
that l ≤ 2|W |. We construct a tree-model of G as follows. We start with the
root node r, which has 1 child, say Cj

i , for every component of G \W , and 1
child (which is also a leaf of the tree-model), say wi, with color l + i for every
1 ≤ i ≤ |W |. Finally, every node Cj

i has |V (Cj
i )| children (which are also leaves

of the tree-model) with color j. This finishes the construction of the tree-model
for G.

To see that there are classes of graphs that have unbounded neighborhood
diversity and twin-cover number but shrub-depth 2, consider the class S from
the proof of Theorem 4. As shown in Theorem 4 S has unbounded modular-width
but shrub-depth 2. It now follows from Theorem 3 that S has also unbounded
neighborhood diversity and unbounded twin-cover number. ��

5 Algorithms on Modular-Width

In this section we show that Partitioning Into Paths, Hamiltonian Path,
Hamiltonian Cycle, and Coloring are fixed-parameter tractable parameter-
ized by the modular-width of the input graph. Our algorithms use a bottom-up
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dynamic programming approach along the parse-tree of an algebraic expression
as defined in Section 2.5. That is for every node of such a parse-tree we compute
a solution (or a record representing a solution) given solutions (or records) for
the children of the node in the parse-tree. The running time of our algorithms is
then the number of nodes in the parse-tree times the maximum time spend at
any node of the parse-tree. Because the number of nodes of a parse-tree is linear
in the number of vertices of the created graph, it suffices to bound the maximum
time spend at any node of the parse-tree. Furthermore, because the operations
(O1)–(O3) can be replaced by one operation of type (O4) that uses at most 2
operands, we only need to bound the time spend to compute a record for the
graph obtained by operation (O4). To avoid cumbersome run-time bounds we
use the notation O+ to suppress poly-logarithmic factors, i.e., we write O+(f)
when we have O(f logd f) for some constant d.

5.1 Coloring

This section is devoted to a proof of the following theorem. Recall the definition
of Graph Coloring and related notions from Section 2.1.

Theorem 6. Graph Coloring parameterized by the modular-width of the in-
put graph is fixed-parameter tractable.

As outlined above we only need to bound the time spend to compute a record
for a node of type (O4) of the parse-tree. In the case of Graph Coloring a
record is simply the chromatic number of the graph. Hence, we will have shown
the theorem after showing the following lemma.

Lemma 1. Let G be a graph with vertices v1, . . . , vn, G1, . . . , Gn be graphs, and
H := G(G1, . . . , Gn). Then χ(H) can be computed from χ(G1), . . . , χ(Gn) in
time O+(2nn2 max1≤i≤n χ(Gi)).

We will prove the lemma by reducing the coloring problem to the following
problem.

Max Weighted Partition

Input: An n-element set N and functions f1, . . . , fk from the subsets of N
to integers from the range [−M,M ].
Question: A k-partition (S1, . . . , Sk) of N that maximizes f1(S1) + · · · +
fk(Sk).

Proposition 2. ( [2, Theorem 4.]) Max Weighted Partition can be solved
in time O+(2nk2M).

To simplify the reduction to Max Weighted Partition we need the following
Proposition and Lemma.

Proposition 3 ([23]). Let G be a graph with vertices v1, . . . , vn and s1, . . . , sn be
natural numbers. Then χ(G(Ks1 , . . . ,Ksn)) = minλ∈Λ(G)(

∑
c∈λ(G)max{ si : vi ∈

λ−1(c) }).
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Lemma 2 (�). Let G be a graph with vertices v1, . . . , vn, G1, . . . , Gn be graphs,
HK := G(Kχ(G1), . . . ,Kχ(Gn)), and H := G(G1, . . . , Gn). Then χ(HK) = χ(H).

We can now proceed with a proof of Lemma 1.

Proof (of Lemma 1).
We reduce the coloring problem to the Max Weighted Partition problem

as follows: We set N := V (G) and f1(S) = · · · = fk(S) = −max{χ(Gi) : vi ∈
S } for every subset S of N . It follows from Proposition 3 and Lemma 2 that
the maximum weight of a partition of this instance corresponds to the chromatic
number χ(H). Hence, the lemma follows from Proposition 2. ��

5.2 Partitioning into Paths

This section is devoted to a proof of the following theorem. Recall the definition
of Partitioning Into Paths and related notions from Section 2.1.

Theorem 7. Partitioning Into Paths (and hence also Hamiltonian Path

and Hamiltonian Cycle) parameterized by the modular width of the input
graph is fixed-parameter tractable.

As outlined above we only need to bound the time spend to compute a record for
a node of type (O4) of the parse-tree. In the case of Partitioning Into Path a
record of a graph G is the pair (ham(G), |V (G)|). Hence, we will have shown the
theorem after showing the following lemma. From now on we will assume that G
is a graph with vertices v1, . . . , vn, G1, . . . , Gn are graphs, H = G(G1, . . . , Gn),
and m = |E(G)|.

Lemma 3. Given the graph G and the pairs
(ham(G1), |V (G1)|), . . . , (ham(Gn), |V (Gn)|), then the pair (ham(H), |V (H)|) can

be computed in time O+
(
ham (H)

(
(m+ n)2n + n (2(m+ n))

5(m+n)+o(m+n)
))

.

The remainder of this section is devoted to a proof of this lemma.
For a graph G and a positive integer i we define the graph G⊕ i as the graph

with vertex set V (G)∪{1, . . . , i} and edge set E(G)∪{ {v, j} : v ∈ V (G) and 1 ≤
j ≤ i }, i.e., the graph G⊕ i is obtained from G by adding i vertices and connect
them to every vertex in G.

Proposition 4 (�). Let G be a graph and
h(G) = min{ i : G⊕ i has a Hamiltonian cycle }. Then ham(G) = h(G).

A slightly less general version of the following lemma has already been proven
in [23].

Lemma 4. Let Hamiltonian Cycle be the ILP with variables
{ eij, eji : {vi, vj} ∈ E(G) } and constraints:
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For every 1 ≤ i ≤ n:
(1)

∑
j∈{ l : vl∈NG(vi) } eij =

∑
j∈{ l : vl∈NG(vi) } eji (“incoming = outgoing”)

(2)
∑

j∈{ l : vl∈NG(vi) } eij ≤ |V (Gi)| (at most |V (Gi)|)
(3) ham(Gi) ≤

∑
j∈{ l : vl∈NG(vi) } eij (at least ham(Gi))

For every partition of V (G) into vertex sets A and B:
(4)

∑
1≤i<j≤n : {vi,vj}∈E(G)∧|e∩A|=1 eij + eji ≥ 1 (“connectivity”)

For every variable eij:
(5) eij ≥ 0.

Then H has a Hamiltonian cycle if and only if the ILP Hamiltonian Cycle

is feasible. Furthermore, the size of the ILP is at most O+(m2n) and it has 2m
variables.

Proof. The size bound on the ILP Hamiltonian Cycle is obvious. Suppose
that H has a Hamiltonian cycle C. W.l.o.g. we can assume that C is directed.
For every {vi, vj} ∈ E(G) we set eij to be the number of arcs (x, y) in C such
that x ∈ V (Gi) and y ∈ V (Gj) and similarly we set eji to be the number of
arcs (x, y) in C such that x ∈ V (Gj) and y ∈ V (Gi). Then, because C is a
Hamiltonian cycle of H , this assignment of eij and eji satisfies the constrains
(1)–(5), as required.

For the reverse direction, suppose that the ILP Hamiltonian Cycle is fea-
sible and let β be an assignment of the variables eij and eji witnessing this.
Let G′ be the directed multigraph obtained from G by replacing every edge
{vi, vj} with β(eij) parallel arcs from vi to vj and β(eji) parallel arcs from vj
to vi. Because of the constrains (1), (4), and (5), it follows that G′ contains a
directed eularian tour T , i.e., a closed directed walk that visits all the arcs of
G′ exactly once. Clearly, when fixing any vertex of G′, the tour T defines an
ordering of the arcs of G′. Let π be any such ordering of the arcs of G′. For ev-
ery 1 ≤ i ≤ n, let Pi = (P i

1 , . . . , P
i
pi
) be a partition of Gi into pi disjoint paths,

where pi =
∑

j∈{ l : vl∈NG(vi) } eij . Because of the constrains (2) and (3) we know

that such a partition exists for every 1 ≤ i ≤ n. For every arc a = (vi, vj) in
T where a is the l-th arc leaving vi in T and a is the l′-th arc entering vj in T
(according to the ordering π), we denote by e(a) the edge of H from the second
endpoint of P i

l to the first endpoint of P j
l′ . Then the edges in { e(a) : a ∈ T }

together with the edges of all the path P 1
1 , . . . , P

n
pn

form a Hamiltonian cycle in
H , as required. ��
Lemma 5. Given the graph G and the pairs (ham(G1), |V (G1)|), . . . ,
(ham(Gn), |V (Gn)|) it can be decided whether the graph H has a Hamiltonian
cycle in time O+(m2n + (2m)5m+o(m)n).

Proof. To decide whether the graphH has a Hamiltonian cycle we construct and
solve the ILP Hamiltonian Cycle from Lemma 4. The running time of this al-
gorithm is then the time it takes to construct the ILP, i.e.,O+(m2n), plus the time
needed to solve the ILP, i.e., O+((2m)5m+o(m) log(m2n)) ∈ O+((2m)5m+o(m)n)
using Proposition 1. This concludes the proof of the Lemma. ��
We are now ready to show Lemma 3.
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Proof (Proof of Lemma 3). Clearly, |V (H)| =
∑

1≤i≤n |V (Gi)| so it remains to
show how to compute ham(H). Because of Proposition 4 ham(H) is equal to
the minimum positive integer 1 ≤ l ≤ |V (H)| such that the graph H ⊕ l has
a Hamiltonian cycle. For every 1 ≤ l ≤ |V (H)| the graph H ⊕ l is equal to
the graph G′(G1, . . . , Gn, Il) where G

′ is the graph obtained from G by adding
one vertex vn+1 and making it adjacent to all vertices of G, and the graph Il
is the independent set on l vertices. Because ham(Il) = |V (Il)| = l we can use
Lemma 5 to decide whether the graph H ⊕ l has an Hamiltonian cycle in time
O(m′2n

′
+ (2m′)5m

′+o(m′)n′) where n′ = n+ 1 and m′ = m+ n. This concludes
the proof of the lemma. ��

6 Conclusion

We examined some of the algorithmic properties of modular-width, a natural
structural parameter. Our results indicate that this is a notion which may be
worthy of further study independently of its more famous cousin, clique-width,
since it its decreased generality does offer some algorithmic pay-off.

As a direction for further research, it would be interesting to see if more prob-
lems which are hard for clique-width (or even for treewidth) become tractable
for modular-width. Two prime suspects in this category are Edge Dominating

Set and Partition into Triangles.
Beyond that, it would be interesting to investigate if the techniques of this

paper can be further generalized, perhaps eventually leading to meta-theorem-
like results. In particular, our ILP-based solution for Hamiltonicity may be
applicable (with some modifications) to other problems. One may ask: what
properties must a problem possess for us to be able to give a straightforward DP
algorithm that uses ILP to combine the tables?

The main property that a problem should satisfy for these ideas to apply is
that the sets of partial solutions arising in the dynamic programming formulation
should be convex. Convexity is important here, since we would like to be able to
express the information contained in the DP tables using linear constraints, in
order to use an ILP. Convexity was easy to establish in the case of Partition
into Paths and similar problems, since the set of feasible partial solutions is
the set of integers k such that there exists a partition of a subgraph into k paths.
If one knows the minimum feasible k, all larger integers are also feasible and this
is trivially a convex set. The question then becomes, are there any other natural
problems where convexity can be established (perhaps non-trivially) and used
in this way?
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176 J. Gajarský, M. Lampis, and S. Ordyniak

21. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Computer Science Review 4(1), 41–59 (2010)

22. Oum, S.: Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95(1), 79–100
(2005)

23. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica 64(1), 19–37 (2012)

24. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation.
Discrete Mathematics 201(1–3), 189–241 (1999)

25. Niedermeieri, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford (2006)

26. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to
parameterized cluster editing problems. Theory of Computing Systems 44(1), 91–
104 (2009)

27. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular de-
composition via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I.,
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Abstract. The Bipartite Contraction problem is to decide, given a
graph G and a parameter k, whether we can can obtain a bipartite graph
from G by at most k edge contractions. The fixed-parameter tractability
of the problem was shown by Heggernes et al. [13], with an algorithm
whose running time has double-exponential dependence on k. We present
a new randomized FPT algorithm for the problem, which is both con-

ceptually simpler and achieves an improved 2O(k2)nm running time, i.e.,
avoiding the double-exponential dependence on k. The algorithm can be
derandomized using standard techniques.

1 Introduction

A graph modification problem aims at transforming an input graph into a graph
satisfying a certain property, by at most k operations. These problems are typi-
cally studied from the viewpoint of fixed-parameter tractability, where the goal
is to obtain an algorithm with running time f(k)nc (or FPT algorithm). Here,
f(k) is a computable function depending only on the parameter k, which confines
the combinatorial explosion that is seemingly inevitable for an NP-hard prob-
lem. The most intensively studied graph modification problems involve vertex-
or edge-deletions as their base operation; fixed-parameter tractability has been
established for the problems of transforming a graph into a forest [11,8,3], a
bipartite graph [26,11,18,15,24], a chordal graph [20], a planar graph [22], or
an interval graph [27,2]. Results have also been obtained for problems involving
directed graphs [5] or group-labeled graphs [10,7].

Recently, there has been an interest in graph modification problems involving
edge contractions. These problems fall in the following general framework. Given
a graph property Π , the problem Π-Contraction is to decide, for a graph G
and a parameter k, whether we can obtain a graph in Π , by starting from
G and performing at most k edge contractions. For each graph property Π
admitting a polynomial recognition algorithm, it is then natural to ask whether
Π-Contraction admits an FPT algorithm. Such algorithms have been given
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when Π is the class of paths, the class of trees [12], the class of planar graphs
[9], or the class of bipartite graphs [13].

For the case of bipartite graphs, the problem is called Bipartite Contrac-

tion, and Heggernes et al. [13] obtained an FPT algorithm with a running time
double-exponential in k. The algorithm combines several tools from parameter-
ized algorithmics, such as the irrelevant vertex technique, important separators,
treewidth reduction, and Courcelle’s theorem. In this note, we present a new
FPT algorithm for the problem, which is both conceptually simpler and faster.
Similar to the compression routine forOdd Cycle Transversal in [26], we re-
duce Bipartite Contraction to several instances of an auxiliary cut problem.
Our main effort is spent on obtaining an FPT algorithm for this cut problem.
This is achieved by using the notion of important separators from [19], together
with the randomized coloring technique introduced by Alon et al. [1]. We obtain
the following result:

Theorem 1. Bipartite Contraction has a randomized FPT algorithm
with running time 2O(k2)nm and a deterministic algorithm with running time
2O(k2)nO(1).

This paper is organized as follows. We first introduce the relevant notation and
definitions in Section 2. We explain in Section 3 how Bipartite Contraction

can be reduced to several instances of a suitable cut problem called Rank-Cut.
In Section 4, we define a constrained version of the Rank-Cut problem and
show that it is polynomial-time solvable. In Section 5, we present a randomized
reduction of Rank-Cut to its constrained version. Finally, in Section 6 we
derandomize this reduction and we complete the proof of Theorem 1. Section 7
concludes the paper.

2 Preliminaries

Given a graph G, we let V (G) and E(G) denote its vertex set and edge set,
respectively. We let n = |V (G)| and m = |E(G)|. Given X ⊆ V (G), we denote
by G[X ] the subgraph of G induced by X , and we denote by G\X the subgraph
of G induced by V (G) \X . Given a set F ⊆ E(G) of edges, we denote by V (F )
the endpoints of the edges in F , and we say that F spans the vertices in V (F ).
Given F ⊆ E(G), we denote by G[F ] the graph with vertex set V (F ) and edge
set F ; we denote by G\F the graph with vertex set V (G) and edge set E(G)\F .
For an edge e, we denote by G/e the graph obtained by contracting edge e, that
is, by removing the endpoints u and v of e and introducing a new vertex that
is adjacent to every vertex that is adjacent to at least one of u or v. Given
F ⊆ E(G), we denote by G/F the graph obtained from G by contracting all the
edges of F ; it is easy to observe that the graph G/F does not depend on the
order in which we perform the contractions.

Fix two disjoint subsets of vertices X,Y of a graph G. An (X,Y )-walk in
G is a sequence W = v0v1 . . . v	 of vertices such that v0 ∈ X, v	 ∈ Y , and
vivi+1 ∈ E(G) for 0 ≤ i < 
; the length of W is 
, and we call W an (X,Y )-
path in G if the vertices vi are pairwise distinct. We will simply use the term
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“path” when the sets X,Y are irrelevant. An (X,Y )-cut in G is defined as a
set C ⊆ E(G) such that G \ C has no (X,Y )-path; an (X,Y )-separator in G is
defined as a set S ⊆ V (G) \ (X ∪ Y ) such that G \ S has no (X,Y )-path. Note
that the (X,Y )-separator is by definition disjoint from X and Y . An (X,Y )-cut
(resp. (X,Y )-separator) C is inclusion-wise minimal if no proper subset of C is
an (X,Y )-cut (resp. (X,Y )-separator).

A bipartite modulator of G is a set F ⊆ E(G) such that G\F is bipartite. The
rank of a graph G is the number of edges of a spanning forest of G. The rank
of a set F ⊆ E(G) of edges, denoted by r(F ) is the rank of G[F ]. As observed
in [21], we can alternatively define Bipartite Contraction as the following
problem: given a graph G and an integer k, find a bipartite modulator F of G
such that r(F ) ≤ k. We reproduce the proof here for completeness.

Lemma 2. The following statements are equivalent:

(i) There exists a set F ⊆ E(G) such that |F | ≤ k and G/F is bipartite;
(ii) there exists a set F ⊆ E(G) such that r(F ) ≤ k and G \ F is bipartite.

Proof. (i) ⇒ (ii): Let F ′ denote the edges of G having both endpoints in a same
connected component of G[F ]. Observe that r(F ′) ≤ k, as F contains a spanning
forest of G[F ′]. We claim that G \F ′ is bipartite. Observe that the vertex set of
each connected component of G[F ] is an independent set in G \ F ′. Therefore,
a proper 2-coloring of G/F can be turned into a proper 2-coloring of G \ F ′ if
we color every vertex in a connected component K of G[F ] by the color of the
single vertex corresponding to K in G/F .

(ii) ⇒ (i): Let us fix a proper 2-coloring of G \ F . We can assume that
F is a minimal set of edges such that G \ F is bipartite. Therefore, in each
connected component of G[F ], every vertex has the same color in the 2-coloring
of G \ F . Hence, contracting each connected component of F to a single vertex
gives a bipartite graph. This graph can be obtained by contracting the edges of
a spanning forest of F , which has r(F ) ≤ k edges. ��

3 Reduction to a Cut Problem

Wefirst define a compression version of the problem, namedBipartiteContrac-

tion Compression: given a graph G, an integer k, and a set X ⊆ V (G) with
|X | ≤ 2k such that G \X is bipartite, is there a bipartite modulator F of G with
r(F ) ≤ k? The following lemma establishes how a compression routine for the
problem entails the fixed-parameter tractability of Bipartite Contraction.

Lemma 3. Suppose that Bipartite Contraction Compression is solvable in
time T (k, n,m). Then Bipartite Contraction is solvable in time O(9kknm +
T (k, n,m)).

Proof. An instance I = (G, k) of Bipartite Compression is solved the follow-
ing way. First, we run the algorithm of Reed et al. [26] to look for a setX ⊆ V (G)
of size ≤ 2k such that G \X is bipartite; the running time of the algorithm is



180 S. Guillemot and D. Marx

O(32kknm) (see also [18])1. If there is no such set, then we answer “no”. Oth-
erwise, we run the algorithm for Bipartite Contraction Compression on
(G, k,X). This takes time O(9kknm + T (k, n,m)) as claimed. The correctness
of this algorithm follows by observing that, if F is a solution for instance I of
Bipartite Contraction, then X = V (F ) is a set of size at most 2k such that
G \X is bipartite. ��

In the rest of this section, we concentrate on the Bipartite Contraction

Compression problem. We solve the problem similarly to the compression rou-
tine for Odd Cycle Transversal [26]. First, we adapt the construction of
[26] to the case of edge sets.

Suppose that we are given a graph G in which a bipartite modulator has
to be found, along with a set X ⊆ V (G) such that G \ X is bipartite. We
construct a graph G′ as follows. Let S1, S2 be a bipartition of G \ X , and let
< be an arbitrary total ordering of V (G). We let V (G′) = (V (G) \ X) ∪ X ′

with X ′ = {x1, x2 : x ∈ X}, and E(G′) = E(G \ X) ∪ {uv3−i : uv ∈ E, u ∈
Si, v ∈ X} ∪ {u1v2 : uv ∈ E, u, v ∈ X, u < v}. Observe that G′ is bipartite, with
bipartition S′

1 = S1 ∪ {x1 : x ∈ X} and S′
2 = S2 ∪ {x2 : x ∈ X}. Furthermore,

if we identify x1 with x2 for every x ∈ X in G′, then we get the graph G; in
particular, G and G′ have the same number of edges.

Define a bijection Φ : E(G) → E(G′) which preserves each edge of E(G \X),
maps each edge uv ∈ E(G) (u ∈ Si, v ∈ X) to the edge uv3−i, and maps each
edge uv ∈ E(G) (u, v ∈ X, u < v) to the edge u1v2. We say that a partition of
X ′ into two sets X ′

A, X
′
B is valid if for each x ∈ X , exactly one of {x1, x2} is in

X ′
A. The following lemma is similar to Lemma 1 of [26].

Lemma 4. For every F ⊆ E(G), the following statements are equivalent:

(i) G \ F is bipartite,
(ii) there is a valid partition X ′

A, X
′
B of X ′ such that Φ(F ) is an (X ′

A, X
′
B)-cut

in G′.

Proof. (i) ⇒ (ii). Suppose that G \F is bipartite with bipartition V1, V2. Define
the partition X ′

A, X
′
B of X ′ such that: for u ∈ X , u1 ∈ X ′

A iff u ∈ V1. Observe
that X ′

A, X
′
B is a valid partition of X ′. We claim that C = Φ(F ) is an (X ′

A, X
′
B)-

cut in G′. Towards a contradiction, assume that G′ \C contains an X ′
A, X

′
B-path

P ′. Suppose that the endpoints of P ′ are ui ∈ X ′
A, vj ∈ X ′

B; then u ∈ Vi, v ∈
V3−j . The path P ′ corresponds to a u, v-path P in G \ F , of the same length.
If j = i, then ui, vj both belong to S′

i, and we obtain that P is a path of even
length between Vi and V3−i, contradiction. If j = 3− i, then ui ∈ S′

i, vj ∈ S′
3−i,

and we obtain that P is a path of odd length between Vi and Vi, contradiction.
We conclude that C is an (X ′

A, X
′
B)-cut in G′, as claimed.

1 Very recently, two linear-time algorithms for Odd Cycle Transversal were an-
nounced [25,14]. However, using these linear-time algorithms here would not improve
the overall asymptotic running time of our algorithm, as the dominating term comes
from the Rank-Cut algorithm of Theorem 12.
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(ii) ⇒ (i). Suppose that C ⊆ E(G′) is an (X ′
A, X

′
B)-cut in G′, for some

valid partition X ′
A, X

′
B of X ′. We claim that F = Φ−1(C) is such that G \ F

is bipartite. We define a 2-coloring χ of G \ F as follows: (1) If u ∈ X , then
χ(u) = 1 iff u1 ∈ X ′

A; (2) If u ∈ V \ X is reachable from X ′
A in G′ \ C, then

χ(u) = 1 iff u ∈ S1; (3) If u ∈ V \X is not reachable from X ′
A in G′ \ C, then

χ(u) = 1 iff u ∈ S2. We verify that χ is a proper 2-coloring of G\F . Consider an
edge uv ∈ E(G) \ F , there are three cases. If u, v /∈ X , then u ∈ Si, v ∈ S3−i; as
u, v are either both in case (2) or both in case (3), it follows that χ(u) �= χ(v).
If u ∈ Si, v ∈ X , then uv3−i is an edge of G′ \C; if v3−i ∈ X ′

A then χ(v) = 3− i
by (1), and χ(u) = i by (2); if v3−i ∈ X ′

B then χ(v) = i by (1), and χ(u) = 3− i
by (3). If u, v ∈ X with u < v, then u1v2 is an edge of G′ \C, and thus we have
u1, v2 both in X ′

A or both in X ′
B, which implies that χ(u) �= χ(v). We conclude

that G \ F is bipartite, as claimed. ��

Lemma 4 turns the problem of finding a bipartite modulator into several
instances of a cut problem (one for each valid partition). The same way as
Lemma 2 shows the equivalence of Bipartite Contraction with the problem
of finding a bipartite modulator with a rank constraint, we show that Lemma 4
allows us to solve Bipartite Contraction Compression by solving a cut
problem with a rank constraint. However, there is a technical detail related to
the fact that two vertices x1, x2 ∈ X ′ correspond to each vertex x ∈ X in the
construction of G′; we need the following definition to deal with this issue. Let
M,F ⊆ E(G) be two subsets of edges. We define the M -rank rM (F ) of F as the
rank of the graph G[F ∪M ]/M . Our auxiliary problem is defined as follows.

Rank-Cut

Input: A graph G, an integer k, two sets X,Y ⊆ V (G), and a set
M ⊆ E(G) with |M | ≤ 2k

Question: Is there an (X,Y )-cut C in G such that rM (C) ≤ k?

The following simple observation will be useful later:

Lemma 5. If |M | ≤ 2k and rM (C) ≤ k, then C ∪M spans at most 6k vertices.

Proof. Each contraction can decrease rank by at most one, hence the rank of
G[C ∪M ] is at most 3k. As G[C ∪M ] has no isolated vertices by definition, it
follows that G[C ∪M ] has at most 6k vertices. ��

We now describe how an FPT algorithm for Rank-Cut yields an FPT al-
gorithm for Bipartite Contraction Compression; Sections 4–6 show the
fixed-parameter tractability of Rank-Cut itself.

Lemma 6. Suppose that Rank-Cut is solvable in time T (k, n,m). Then Bi-

partite Contraction Compression is solvable in O(4k(T (k, n,m)+n+m))
time.
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Proof. Consider an instance I = (G, k,X) of Bipartite Contraction Com-

pression. FromG andX , we construct the graphG′ as described above Lemma 4.
We let H be obtained from G′ by adding the edge x1x2 for every x ∈ X ; letM ⊆
E(H) be the set of these new edges.

We solve Bipartite Contraction Compression by the following algo-
rithm. For each valid partition X ′

A, X
′
B of X ′, we run the algorithm for Rank-

Cut on the instance I ′ = (H, k,X ′
A, X

′
B,M). We answer “yes” if and only if

one of the instances I ′ was a yes-instance of Rank-Cut. Note that, as |X | ≤ 2k
by assumption, we have |M | ≤ 2k and thus each instance I ′ is a valid instance
of Rank-Cut. As there are 2|X| ≤ 4k valid partitions of X ′, the claimed run-
ning time follows. We show that it correctly solves Bipartite Contraction

Compression.
Suppose that I admits a solution F with r(F ) ≤ k, then G \ F is bipartite.

Thus, by Lemma 4 there exists a valid partition X ′
A, X

′
B of X ′ such that Φ(F )

is an (X ′
A, X

′
B)-cut in G′. Hence, C = Φ(F ) ∪M is an (X ′

A, X
′
B)-cut in H , and

since H [C]/M is isomorphic to G[F ], we have rM (C) = r(F ) ≤ k. It follows
that C is a solution for Rank-Cut on the instance I ′ = (H,X ′

A, X
′
B,M, k).

Conversely, suppose that C is a solution of Rank-Cut on the instance I ′ =
(H,X ′

A, X
′
B,M, k), for some valid partition X ′

A, X
′
B of X ′. Observe that M ⊆ C

(as each edge of M is between X ′
A and X ′

B), and that C \M is an (X ′
A, X

′
B)-cut

in H \M = G′. Thus, if we define F = Φ−1(C \M), we obtain that G \ F is
bipartite by Lemma 4. Observe that contracting the edges of M in H [C] gives a
graph isomorphic to G[F ]. Therefore, r(F ) = rM (C) ≤ k, and we conclude that
F is a solution for the instance I. ��

4 Solving a Constrained Version of Rank-Cut

In this section, we introduce a constrained variant of Rank-Cut, and show its
polynomial-time solvability. We give a randomized reduction of Rank-Cut to
this variant in the next section. In the constrained problem, the cut has to be
constructed as the union of disjoint components prescribed in the input:

Constrained Rank-Cut

Input: A graph G, an integer k, two subsets X,Y ⊆ V (G), a set
M ⊆ E(G), and a partition P = (V1, . . . , V	) of V (G) such
that

(i) G[Vi] is connected for every 1 ≤ i ≤ 
, and
(ii) there is no edge of M between Vi and Vj for any i �= j.

Question: Is there a set Z ⊆ {1, . . . , 
} such that CZ = ∪i∈ZE(G[Vi])
is an (X,Y )-cut in G with rM (CZ) ≤ k?

Note that a Vi can consist of a single vertex, in which case E(G[Vi]) = ∅ and
it does not matter if i is in Z or not. We show that the constrained problem can
be reformulated as a weighted separator problem.
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Lemma 7. Constrained Rank-Cut can be solved in O(k(n +m)) time.

Proof. Let I = (G, k,X, Y,M, P ) be an instance of Constrained Rank-Cut

with P = (V1, . . . , V	). Starting with G, we build a weighted graph G′ as follows:

– we remove the edges of ∪	
i=1E(G[Vi]);

– we give an infinite weight to the vertices of V (G);
– for each 1 ≤ i ≤ 
, we add a vertex vi of weight rM (E(G[Vi])), and we make
vi adjacent to the vertices of Vi.

We answer “yes” if and only if G′ has an (X,Y )-separator of weight at most
k. We claim that this algorithm takes O(k(n + m)) time. First, observe that
G′ has at most n + m edges: for each i ∈ {1, . . . , 
}, we replace the edges of
E(G[Vi]) by a number of edges equal to |Vi| ≤ |E(G[Vi])|+ 1. As we are trying
to find an (X,Y )-separator of weight at most k in G′, we can accomplish this by
performing at most k rounds of the Ford-Fulkerson max-flow min-cut algorithm,
giving the running time O(k(n+m)).

Given a set Z ⊆ {1, . . . , 
}, let us define edge set CZ = ∪i∈ZE(G[Vi]) and
vertex set SZ = {vi : i ∈ Z}. The following claim establishes the correctness of
the algorithm.

Claim. For any Z ⊆ {1, . . . , 
},
(i) rM (CZ) equals the weight of SZ ;
(ii) CZ is an (X,Y )-cut in G iff SZ is an (X,Y )-separator in G′.

To prove (i), note first that the vertex set of each connected component of
G[CZ ] is some Vi. Furthermore, as the two endpoints of each edge in M is
in the same Vi, it is also true in the graph G[CZ ∪ M ] that the vertex set
of each connected component is some Vi. Thus, each connected component of
G[CZ ∪M ]/M is obtained from a set Vi by identifying some vertices. We obtain
that rM (CZ) =

∑
i∈Z rM (E(G[Vi])) equals the weight of SZ .

To prove (ii), suppose that CZ is an (X,Y )-cut in G; we need to show that SZ

is an (X,Y )-separator in G′. By way of contradiction, assume that G′ contains
an (X,Y )-path W avoiding SZ . For each segment of W of the form xviy with
x, y ∈ Vi, i /∈ Z, we replace it by an x, y-path in G[Vi] (recall that the neighbors
of vi are in Vi). We obtain an (X,Y )-walk in G avoiding CZ , a contradiction.

Conversely, suppose that SZ is an (X,Y )-separator in G′, and let us show
that CZ is an (X,Y )-cut in G. By way of contradiction, assume that G contains
an (X,Y )-path W avoiding CZ . Then W can be partitioned as W1W2 . . .Wr,
where each Wj is a maximal subpath of W included in a set Vi (possibly, Wj

contains a single vertex). Each Wj that has at least two vertices is an x, y-path
included in a component Vi with i /∈ Z; we replace it by a path of the form xviy,
to obtain an (X,Y )-walk in G′ avoiding SZ , a contradiction. ��

5 Reduction to the Constrained Version

In this section, we describe a randomized reduction mapping an instance I =
(G, k,X, Y,M) of Rank-Cut to an instance I ′ = (G, k,X, Y,M, P ) of Con-

strained Rank-Cut.
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The first step of the reduction identifies a set of relevant edges Erel ⊆ E(G)
that spans a graph of bounded degree. It relies on the notion of important
separators introduced in [19], which we recall now. Fix two disjoint sets X,Y ⊆
V (G), and let S be an (X,Y )-separator in G. We denote by ReachG(X,S) the set
of vertices ofG reachable fromX inG\S; note that ReachG(X,S) is disjoint from
Y . We say that S is an important (X,Y )-separator if (i) S is an inclusion-wise
minimal (X,Y )-separator, (ii) there is no (X,Y )-separator S′ with |S′| ≤ |S|
and ReachG(X,S) ⊂ ReachG(X,S

′). We have the following result:

Lemma 8 ([19,4,6]). Let k be a nonnegative integer. There are at most 4k

important (X,Y )-separators of size ≤ k, and they can be enumerated in time
O(4kk(n+m)).

We now describe the construction of the set Erel. Starting with G, we construct
a graphG′ by subdividing each edge e with a vertex ze. Given two subsetsX,Y ⊆
V (G), we denote byCk(X,Y ) the union of the important (X,Y )-separators of size
at most k in the extended graph G′. As there are are at most 4k such separators
by Lemma 8, we have |Ck(X,Y )| ≤ k · 4k. Given a vertex u ∈ V (G), we denote
by E(u) the set of edges of G incident to u. We define the set Erel ⊆ E(G) as
follows: (i) for each u ∈ V (G), let Erel(u) = {e ∈ E(u) : ze ∈ C6k(X, {u}) ∪
C6k(Y, {u})}; (ii) Erel consists of those edges uv ∈ E(G) such that uv ∈ Erel(u)∩
Erel(v). By Lemma 8, Erel can be constructed in time O(46kk · n(n+m)), as we
need to enumerate important separators for n vertices. Furthermore, the graph
G[Erel] has maximum degree d = 12k · 46k, as each set Erel(u) comes from the
union of two sets C6k(X, {u}) and C6k(Y, {u}), each of which has size at most
6k · 46k. The interest of the set Erel is that it contains any minimal solution for I.

Lemma 9. Any minimal solution C of a Rank-Cut instance I is included in
Erel.

Proof. We show that for every e = uv ∈ C, we have e ∈ Erel(v); this will imply
that e ∈ Erel(u) by symmetry, and thus e ∈ Erel. As C is a minimal (X,Y )-
cut, if we define U to be the set of vertices reachable from X in G \ C, then
X ⊆ U ⊆ V (G) \ Y holds and C is the set of edges with exactly one endpoint in
U . Let CX denote the endpoints of C inside U , and let CY denote the endpoints
of C inside V (G) \ U . We suppose that v ∈ CY , as the case v ∈ CX is similar.
Let us define the vertex set S of G′ as S = (CY \ v) ∪ {ze : e ∈ C ∩ E(v)}. We
make the following observations:

– S is an (X, v)-separator in G′, as each (X, v)-path in G either goes through
CY \v, or goes through an edge of C incident to v (note also that S is disjoint
from X ∪ {v}).

– u ∈ ReachG′(X,S): as C is a minimal (X,Y )-cut, there has to be an (X, u)-
path in G disjoint from C, that is, fully contained in U , which means that
the corresponding path in G′ avoids S.

– |S| ≤ 6k. By Lemma 5, there are at most 6k vertices in C. Every vertex of
C can appear in CY or can be adjacent to v, but not both. Therefore, each
vertex spanned by C contributes at most one to S and |S| ≤ 6k follows.
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By the definition of important separators, there exists an important (X, v)-
separator S′ in G′ such that ReachG′(X,S) ⊆ ReachG′(X,S′) and |S′| ≤ |S|.
As ze is adjacent to u and v, as u ∈ ReachG′(X,S′) and as S′ is an (X, v)-
separator in G′, it follows that ze ∈ S′. Now, S′ ⊆ C6k(X, {v}) implies that
ze ∈ C6k(X, {v}), and we conclude that e ∈ Erel(v). ��

We construct an instance I ′ of Constrained Rank-Cut from the instance
I of Rank-Cut, by the following random process. Let p = 1

6kd = 2−O(k). We
color edges of Erel \M with color black with probability p, and with color red
otherwise. Let Eb denote the set containing the edges of Erel colored black, as
well as the edges of M . Consider the subgraph Gb of G containing only the
edges in Eb and let partition P = (V1, . . . , V	′) represent the way the connected
components of this subgraph partition V (G) (note that P can have classes that
contain only a single vertex). By definition, G[Vi] is connected for every i and the
two endpoints of each edge in M is in the same Vi. Therefore, the Constrained

Rank-Cut instance I ′ = (G, k,X, Y,M, P ) is a valid instance, as it satisfies both
(i) and (ii).

Lemma 10. The following two statements hold:

1. If I is a no-instance of Rank-Cut, then I ′ is a no-instance of Con-

strained Rank-Cut.
2. If I is a yes-instance of Rank-Cut, then I ′ is a yes-instance of Con-

strained Rank-Cut with probability ≥ 2−O(k2).

Proof. Clearly, if I ′ has a solutionZ, thenCZ is a solution for instance I of Rank-

Cut. Conversely, suppose that I has a minimal solution C ⊆ E(G) with rM (C) ≤
k. Let U1, . . . , U	′ denote the vertex sets of the connected components ofG[C∪M ]
(note that this is not necessarily a partition of V (G), as it is possible to have ver-
tices that are not incident to any edge of C ∪M). Let F be a spanning forest of
G[C ∪M ] containing as many edges ofM as possible. Let B = F \M ; as all these
edges are in C, we have B ⊆ Erel by Lemma 9, and since we have rM (C) ≤ k
it follows that |B| ≤ k. Let R = ∪	′

i=1Erel(Ui), where Erel(Ui) denotes the set of
edges in Erel with exactly one endpoint in Ui. By Lemma 5, C ∪M spans at most

6k vertices, thus
∑	′

i=1 |Ui| ≤ 6k. As each vertex of V (G) has at most d incident

edges in Erel, we have |R| ≤ d
∑	′

i=1 |Ui| ≤ 6kd = 2O(k). Now, (i) with probability

at least pk = 2−O(k2), every edge ofB is colored black, (ii) with probability at least
(1− 1

6kd )
6kd ≥ 1

4 , every edge ofR is colored red (indeed, the function x  → (1− 1
x )

x

is increasing on [1,+∞[ and is thus ≥ 1
4 for x ≥ 2). These two events are inde-

pendent, as they involve disjoint sets of edges. Suppose that both events happen.
Then, Eb contains all edges of F , but no edge of R. Consider the subgraph Gb of
G containing only the edges in Eb and let partition P = (V1, . . . , V	) represent the
way the connected components of this subgraph partition V (G). Then every Ui is
one class of this partition. Thus C′ = ∪	′

i=1E(G[Ui]) is a solution for instance I ′

(as C′ ⊇ C ∪M and rM (C′) = rM (C) ≤ k). We conclude that I ′ is a yes-instance

with probability ≥ 2−O(k2). ��
From Lemmas 7 and 10, we obtain:
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Theorem 11. Rank-Cut has a randomized FPT algorithm with running time
2O(k2)nm.

Proof. Let I = (G, k,X, Y,M) be an instance of Rank-Cut. We first remove
all isolated vertices of G in O(n+m) time, obtaining a graph G for which each
connected component has at least two vertices, ensuring that n +m = O(m).
We then compute the set Erel in time O(46kknm), and we construct the instance
I ′ of Constrained Rank-Cut by random selection as described above. This
instance I ′ can be solved in time O(k(n+m)) by Lemma 7. By Lemma 10, the

probability of a false “no” answer is at least pe = 2−O(k2). Thus repeating this
process 1

pe
= 2O(k2) times yields a randomized FPT algorithm for Rank-Cut

running in time 2O(k2)nm and having success probability (1− pe)
1
pe ≥ 1

4 . ��

6 Derandomization

We now derandomize the proofs of Lemma 10 and Theorem 11 using the standard
technique of splitters. Given integers n, s, t, an (n, s, t)-splitter is a family F of
functions f : [n] → [t] such that for every S ⊆ [n] with |S| = s, there is a function
of F that is injective of S. Naor et al. [23] give a deterministic construction of an
(n, s, s2)-splitter of size O(s6 log s logn). We can use this splitter construction to
build a family of colorings of Erel to replace the randomized selection of colors in
Lemma 10. By setting the parameters appropriately, we can ensure that at least
one coloring in the family has the property that every edge of B is colored black
and every edge of R is colored red. The (n, s, s2)-splitter of Naor et al. [23] can
be constructed in polynomial time, but unfortunately the exact running time is
not stated. Therefore, in the following theorem, we do not specify the polynomial
factors of the running time.

Theorem 12. Rank-Cut has a deterministic FPT algorithm with running
time 2O(k2)nO(1).

Proof. Consider an instance I = (G, k,X, Y,M) of Rank-Cut. We first con-
struct the set Erel as in Section 5, and we identify Erel \ M with the set [m′]
where m′ = |Erel \ M |. Let s = k + 4kd = 2O(k). Using the result of [23], we
construct an (m′, s, s2)-splitter F of size O(s6 log s logm). Instead of randomly
coloring the elements of Erel \ M , we go through the following deterministic
family of colorings: for every f ∈ F and every subset U ⊆ [s2] of size at most
k, we color e ∈ Erel \M black if and only if f(e) ∈ U . For each such coloring,
we perform the reduction to Constrained Rank-Cut as in Lemma 10 and
then solve the instance using the algorithm of Lemma 7. We return “yes” if and
only if at least one of the resulting Constrained Rank-Cut instances is a
yes-instance.

It is clear that if one of the Constrained Rank-Cut instances is a yes-
instance, then I is a yes-instance of Rank-Cut. Conversely, suppose that I
is a yes-instance and let B and R be the set of edges defined in the proof of
Lemma 10. As |B|+ |R| ≤ s, there is a function f ∈ F that is injective on B∪R
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and there is a set U ⊆ [s2] of size at most k such that b ∈ B∪R satisfies b ∈ B if
and only f(b) ∈ U . For this choice of f and U , the algorithm considers a coloring
that colors B black and R red. Therefore, the reduction creates a yes-instance
of Constrained Rank-Cut. ��

Theorems 11 and 12 respectively give randomized and deterministic FPT
algorithms for Rank-Cut. Combining them with Lemmas 3 and 6, we ob-
tain (i) a 2O(k2)nm randomized algorithm for Bipartite Contraction, (ii)

a 2O(k2)nO(1) deterministic algorithm Bipartite Contraction. This estab-
lishes Theorem 1 stated in the introduction.

7 Concluding Remarks

We have obtained a randomized 2O(k2)nm algorithm for Bipartite Contrac-

tion. Can the dependence on k be improved? It seems plausible that the problem
admits a 2O(k)nO(1) FPT algorithm, as such algorithms are known for Edge Bi-

partization [11] as well as for other edge contraction problems [12]. We note
that important separators are a common feature of [13] and of our algorithm, so
they could be the key to further improvements.

Regarding kernelization, Heggernes et al. [13] asked whether Bipartite Con-

traction has a polynomial kernel. While this question is still open, it is now
known that Odd Cycle Transversal (and thus Edge Bipartization) have
randomized polynomial kernels [16]. As Edge Bipartization reduces to Bi-

partite Contraction, this raises the question whether the matroid-based
techniques of [16,17] can be applied to the more general Bipartite Contrac-

tion as well. The notion of rank in the Rank-Cut problem is the same as the
notion of rank in graphic matroids, hence it is possible that the rank constraint
can be incorporated into the arguments of [16,17] based on linear representation
of matroids.
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Abstract. In the parameterized Ordered List Subgraph Embed-

ding problem (p-OLSE) we are given two graphs G and H , each with
a linear order defined on its vertices, a function L that associates with
every vertex in G a list of vertices in H , and a parameter k. The question
is to decide if we can embed (one-to-one) a subgraph S of G of k vertices
into H such that: (1) every vertex of S is mapped to a vertex from its
associated list, (2) the linear orders inherited by S and its image under
the embedding are respected, and (3) if there is an edge between two
vertices in S then there is an edge between their images. If we require
the subgraph S to be embedded as an induced subgraph, we obtain the
Ordered List Induced Subgraph Embedding problem (p-OLISE).
The p-OLSE and p-OLISE problems model various problems in Bioin-
formatics related to structural comparison/alignment of proteins.

We investigate the complexity of p-OLSE and p-OLISE with respect
to the following structural parameters: the width ΔL of the function L
(size of the largest list), and the maximum degree ΔH of H and ΔG of
G. We provide tight characterizations of the classical and parameterized
complexity, and approximability of the problems with respect to the
structural parameters under consideration.

1 Introduction

1.1 Problem Definition and Motivation

We consider the following problem that we refer to as the parameterized Or-

dered List Subgraph Embedding problem, shortly (p-OLSE):

Given: Two graphs G and H with linear orders ≺G and ≺H defined on the
vertices of G and H ; a function L : V (G) −→ 2V (H); and k ∈ N
Parameter: k
Question: Is there a subgraph S of G of k vertices and an injective map
ϕ : V (S) −→ V (H) such that: (1) ϕ(u) ∈ L(u) for every u ∈ S; (2) for ev-
ery u, u′ ∈ S, if u ≺G u′ then ϕ(u) ≺H ϕ(u′); and (3) for every u, u′ ∈ S, if
uu′ ∈ E(G) then ϕ(u)ϕ(u′) ∈ E(H)
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c© Springer International Publishing Switzerland 2013



190 O. Hassan et al.

The parameterized Ordered List Induced Subgraph Embedding (p-
OLISE) problem, in which we require the subgraph S to be embedded as an
induced subgraph, is defined the same way as p-OLSE except that condition (3)
is replaced with: for every u, u′ ∈ S, uu′ ∈ E(G) if and only if ϕ(u)ϕ(u′) ∈ E(H).
The optimization versions of p-OLSE and p-OLISE, denoted opt-OLSE and opt-
OLISE, respectively, ask for a subgraph S ofG with maximum number of vertices
such that there exists a valid list embedding ϕ that embeds S into H .

The p-OLSE and p-OLISE problems have applications in the area of Bioin-
formatics because they provide a graph-theoretical model for numerous protein
and DNA structural comparison problems (see [3,5,6,15]).

In this paper we investigate the complexity of p-OLSE and p-OLISE with
respect to the following structural parameters: the width ΔL of the function L
(i.e., the size of the largest list |L(u)|, for u ∈ G) and the maximum degree
ΔH of H and ΔG of G. Restrictions on the structural parameters ΔH , ΔG and
ΔL are very natural in Bioinformatics. The parameters ΔH and ΔG model the
maximum number of hydrophobic bonds that an amino acid in each protein can
have; on the other hand, ΔL is usually a parameter set by the Bioinformatics
practitioners when computing the top few alignments of two proteins [15].

1.2 Previous Related Results

Goldman et al. [8] studied protein comparison problems using the notion of
contact maps, which are undirected graphs whose vertices are linearly ordered.
Goldman et al. [8] formulated the protein comparison problem as a contact

map overlap problem, in which we are given two contact maps and we need to
identify a subset of vertices S in the first contact map, a subset of vertices S′ in
the second with |S| = |S′|, and an order-preserving bijection f : S −→ S′, such
that the number of edges in S that correspond to edges in S′ is maximized. In [8],
the authors proved that the contact map overlap problem is MAXSNP-
complete, even when both contact maps have maximum degree one. The main
difference between the contact map overlap problem and the opt-OLSE and
opt-OLISE problems under consideration is that in opt-OLSE and opt-OLISE
the function is restricted to mapping a vertex to one in its list, and the goal is to
maximize the number of vertices not the number of edges that can be embedded.

The p-OLISE problem generalizes the Longest Arc-Preserving Com-

mon Subsequence (LAPCS) problem, which is a well-studied problem
(see [1,5,6,9,10,12]). In LAPCS, we are given two sequences S1 and S2 over
a fixed alphabet, where each sequence has arcs/edges between its characters,
and the problem is to compute a longest common subsequence of S1 and S2

that respects the arcs. The p-OLISE problem generalizes LAPCS since no re-
striction is placed on the size of the alphabet, and a vertex can be mapped to
any vertex from its list. Consequently, the “positive” results obtained in this
paper about p-OLISE and opt-OLISE apply directly to their corresponding ver-
sions of LAPCS; on the other hand, we are able to borrow the W [1]-hardness
result from [6] to conclude the W -hardness results in Proposition 3 and Propo-
sition 4. The LAPCS problem was introduced by [5,6] where it was shown to be
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W [1]-complete (parameterized by the length of common subsequence sought) in
the case when the arcs are crossing. Several works studied the complexity and
approximation of LAPCS with respect to various restrictions on the types of
the arcs (e.g., nested, crossing, etc.) [1,5,6,9,10,12]. The work in [1,9] considered
the problem in the case of nested arcs parameterized by the total number of
characters that need to be deleted from S1 and S2 to obtain the arc-preserving
common subsequence. They showed that the problem is FPT with respect to
this parameterization, and they also showed it to be FPT when parameterized
by the length of the common subsequence in the case when the alphabet consists
of four characters.

A slight variation of p-OLSE was considered in [3,15], where the linear order
imposed on G and H was replaced with a partial order (directed acyclic graphs);
the problem was referred to as the Graph Embedding problem in [3] and as the
Generalized Subgraph Isomorphism problem in [15]. The aforementioned
problems were mainly studied in [3,15] assuming no bound on ΔH and ΔG (i.e.,
unbounded) and, not surprisingly, only hardness results were derived. In [15], a
parameterized algorithm with respect to the treewidth of G and the map width
ΔL combined was given. Most of the hardness results in [3,15] were obtained
by a direct reduction from the Independent Set or Clique problems. For
example, it was shown in [3] that the problem of embedding the whole graph G
into H is NP-hard, but is in P if ΔL = 2. It was also shown that the problem
of embedding a subgraph of G of order k into H is W [1]-complete even when

ΔL = 1, and cannot be approximated to a ratio n
1
2−ε unless P = NP ; we borrow

these two hardness results as they also work for p-OLSE and p-OLISE.
Finally, one can draw some similarities between p-OLISE and the celebrated

Subgraph Isomorphism and Graph Embedding problems. The main differ-
ences between p-OLISE and the aforementioned problems are: (1) in p-OLSE we
have linear orders on G and H that need to be respected by the map sought, (2)
we ask for an embedding of a subgraph of G rather than the whole graph G, and
(3) each vertex must be mapped to a vertex from its list. In particular, require-
ment (1) above precludes the application of well-known (logic) meta-theorems
(see [7]) to the restrictions of p-OLISE that are under consideration in this paper.

1.3 Our Results and Techniques

We draw a complete complexity landscape of p-OLSE and p-OLISE with re-
spect to the computational frameworks of classical complexity, parameterized
complexity, and approximation, in terms of the structural parameters ΔH , ΔG

and ΔL. Table 1 outlines the obtained results about p-OLSE and p-OLISE and
their optimization versions. Note that even though our hardness results are for
specific values of the parameters ΔH , ΔG, and ΔL, these results certainly hold
true for restrictions of the problems to instances in which the corresponding
parameters are upper bounded by (or equal to — by adding dummy vertices)
any constants larger than these specific values. Observe also that the results we
obtain completely and tightly characterize the complexity (with respect to all
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frameworks under consideration) of the problems with respect to ΔH , ΔG and
ΔL (unbounded vs. bounded, and when applicable, for different specific values).

Section 2 presents various complexity and approximation results. The NP-
hardness results are obtained by a reduction from the k-Multi-Colored Inde-

pendent Set problem, and the W [1]-hardness results are obtained by tweaking
the W [1]-hardness results given in the literature [3,6], or by simple known reduc-
tions from the Independent Set problem. Section 3 presents FPT algorithms
for various restrictions of p-OLSE and p-OLISE. The FPT results in Theorem 2
for p-OLSE, when ΔL = O(1), ΔG = O(1), and ΔH = ∞, are derived using
the random separation method. This method is applied after transforming the
problem — via reduction operations — to the Independent Set problem on a
graph composed of (1) a permutation graph and (2) a set of additional edges be-
tween the permutation graph vertices such that the number of additional edges
incident to any vertex is at most a constant; Lemma 4 then shows that the
Independent Set problem on such graphs is FPT. On the other hand, the
FPT results in Proposition 6, when ΔH = 0, ΔG = O(1) (resp. ΔG = 0 and
ΔH = O(1) for p-OLISE by symmetry) and ΔL = ∞, are also derived using the
random separation method, but the argument is simpler.

To cope with the W -hardness of p-OLSE in certain cases, we consider a differ-
ent parameterization of the problem, namely the parameterization by the vertex
cover number of G, and denote the associated problem by p-VC-OLSE. This
parameterization is not interesting for p-OLISE since we proved that p-OLISE
is NP-complete in the case when ΔG = 0, ΔH = 1 and ΔL = 1, and hence the
problem is para-NP-hard with respect to this parameterization. Proposition 7
shows that p-VC-OLSE is W [1]-complete in the case when ΔH = 1, ΔG = 1
and ΔL is unbounded (note that if either ΔH = 0 or ΔG = 0 then p-OLSE is
FPT when ΔL = ∞). So we restrict our attention to the case when ΔL = O(1),
and show in this case that the problem is FPT even when both ΔH and ΔG

are unbounded; the method relies on a bounded search tree approach, combined
with the dynamic programming algorithm described in Proposition 1.

1.4 Background and Terminologies

We assume knowledge of the basic background about approximation algorithms.

Graphs. For a graph H we denote by V (H) and E(H) the set of vertices and
edges of H , respectively. The order of a graph H is |V (H)|. For a set of vertices
S ⊆ V (H), we denote by H [S] the subgraph of H induced by the vertices in S.
For a subset of edges E′ ⊆ E(H), we denote by H−E′ the graph (V (H), E(H)\
E′). For a vertex v ∈ H , N(v) denotes the set of neighbors of v in H . The degree
of a vertex v in H , denoted degH(v), is |N(v)|. A vertex v is isolated in H if
degH(v) = 0. The degree ofH , denotedΔ(H), isΔ(H) = max{degH(v) : v ∈ H}.
An Independent Set of a graph H is a set of vertices I such that no two vertices
in I are adjacent. A vertex cover of H is a set of vertices such that each edge in
H is incident to at least one vertex in this set; we denote by τ(H) the cardinality
of a minimum vertex cover of H . Let L and L′ be two parallel lines in the plane.



On the Ordered List Subgraph Embedding Problems 193

Table 1. Classical, approximation, and parameterized complexity maps of p-OLSE and
p-OLISE with respect to ΔH , ΔG and ΔL. The inapproximability results are under
the assumption that P �= NP. The symbol ∞ stands for unbounded degree, and the
results with the O(1) upper bound on the degree hold true for any fixed degree.

p-OLSE ΔH ΔG ΔL Complexity

Classical ∞ 0 ∞ P
0 1 1 NP-complete

Approximation ∞ O(1) ∞ APX -complete

0 ∞ 1 not approximable to n
1
2
−ε (Thm. 0.4, [3])

Parameterized ∞ O(1) O(1) FPT

1 1 ∞ W [1]-complete

0 ∞ 1 W [1]-complete (Thm. 0.3, [3])

0 O(1) ∞ FPT

∞ 0 ∞ FPT (even in P)

p-OLISE ΔH ΔG ΔL Complexity

Classical 0 0 ∞ P
0 1 1 NP-complete

1 0 1 NP-complete

Approximation O(1) O(1) ∞ APX -complete

0 ∞ 1 not approximable to n
1
2
−ε (Thm. 0.4, [3])

∞ 0 1 not approximable to n
1
2
−ε

Parameterized ∞ 0 1 W [1]-complete

0 ∞ 1 W [1]-complete

0 O(1) ∞ FPT

O(1) 0 ∞ FPT

1 1 1 W [1]-complete

A permutation graph P is the intersection graph of a set of line segments D such
that one endpoint of each of those segments lies on L and the other endpoint
lies on L′.

Parameterized Complexity. A parameterized problem is a set of instances of the
form (x, k), where x ∈ Σ∗ for a finite alphabet setΣ, and k is a non-negative inte-
ger called the parameter. A parameterized problem Q is fixed parameter tractable
(FPT), if there exists an algorithm that on input (x, k) decides if (x, k) is a yes-
instance of Q in time f(k)nO(1), where f is a computable function independent
of n = |x|; we will denote by fpt-time a running time of the form f(k)nO(1).
A hierarchy of fixed-parameter intractability, the W -hierarchy

⋃
t≥0W [t], was

introduced based on the notion of fpt-reduction, in which the 0-th level W [0]
is the class FPT. It is commonly believed that W [1] �= FPT. The asymptotic
notation O∗() suppresses a polynomial factor in the input length.

We will denote an instance of p-OLSE or p-OLISE by the tuple
(G,H,≺G,≺H , L, k). We shall call an injective map ϕ satisfying conditions (1)-
(3) in the definition of p-OLSE and p-OLISE (given in Section 1) for some
subgraph S of G, a valid list embedding, or simply a valid embedding. Constraint
(3) will be referred to as the embedding constraint (note that constraint (3)
is different in the two problems). We define the width of L, denoted ΔL, as
max{|L(v)| | v ∈ G}. It is often more convenient to view/represent the map L
as a set of edges joining every vertex u ∈ G to the vertices of H that are in L(u).
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2 Complexity Results

Consider the restrictions of the opt-OLSE and opt-OLISE problems to instances
in which ΔG = ΔH = 0 (for p-OLSE we can even assume that ΔH = ∞ as the
edges in H do not play any role when ΔG = 0). This version of the problem can
be easily shown to be solvable in polynomial time by dynamic programming:

Proposition 1. The opt-OLSE and opt-OLISE problems (and hence p-OLSE
and p-OLISE) restricted to instances in which ΔG = ΔH = 0 are solvable in
O(|V (G)| · |V (H)|) time (and hence are in P).

Proposition 1 will be useful for Proposition 2 and Theorem 3.
If ΔG > 0, the p-OLSE and p-OLISE problems become NP-complete, even

in the simplest case when ΔG = 1, ΔH = 0 and ΔL = 1. For p-OLISE, the same
proof by symmetry shows the NP-completeness of the problem when ΔH = 1,
ΔG = 0 and ΔL = 1 (this version of p-OLSE is in P).

Theorem 1. The p-OLSE and p-OLISE problems restricted to instances in
which ΔG = 1, ΔH = 0 and ΔL = 1 are NP-complete.

Proposition 2. The opt-OLSE problem restricted to instances in which ΔG =
O(1) has an approximation algorithm of ratio (ΔG + 1), and the opt-OLISE
problem restricted to instances in which ΔG = O(1) and ΔH = O(1) has an
approximation algorithm of ratio (ΔH + 1) · (ΔG + 1).

Proof. Let (G,H,≺G,≺H , L) be an instance of opt-OLSE, and consider the fol-
lowing algorithm. Apply the dynamic programming algorithm in Proposition 1
to (G,H,≺G,≺H , L) after removing the edges of G and the edges of H , and let
S and ϕ be the subgraph and map obtained, respectively. Apply the following
trivial approximation algorithm to compute an independent set I of S: pick a
vertex v in S, include v in I, remove v and N(v) from S, and repeat until S is
empty. Return the subgraph G[I] = I, and the restriction of ϕ to I, ϕI . Clearly,
we have |I| ≥ |V (S)|/(ΔG + 1).

Since ϕ is a valid list embedding of S with respect to G and H with their edges
removed, and since I is an independent set of G[S], it is clear that ϕI is a valid
list embedding of G[I] into H . Therefore, the algorithm is an approximation
algorithm. Now let Sopt be an optimal solution of the instance. Clearly, we have
|V (Sopt)| ≤ |V (S)|. Therefore, |V (Sopt)|/|I| ≤ |V (S)|/|I| ≤ (ΔG + 1).

For opt-OLISE, we follow the same steps to obtain I, and then we apply a
similar approximation algorithm to H , to retain in I a subset whose image under
ϕI is an independent set of H . At least |I|/(ΔH + 1) vertices are retained. ��

The inapproximability results outlined in Table 1 follow by simple reductions
from the Maximum Independent Set problem. The APX-hardness for the
restrictions of opt-OLSE and opt-OLISE considered in Proposition 2 follow by
a reduction from Maximum Independent Set on bounded-degree graphs. On
the other hand, the inapproximability results for opt-OLSE and opt-OLISE when
ΔG = ∞, ΔL = 1 and ΔH = 0 (and the symmetric case for opt-OLISE when
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ΔG = 0, ΔL = 1 and ΔH = ∞) follow by a reduction from the (general)
Maximum Independent Set that was given in [3] for a variation of p-OLSE.

Evans [6] proved that the Longest Arc-Preserving Common Subse-

quence (LAPCS) is W [1]-complete. LAPCS is a special case of p-OLISE, and
it turns out that the reduction in [6] results in an instance that can be modeled
by an instance of either p-OLSE or p-OLISE in which ΔH = 1, and ΔG = 1:

Proposition 3. The p-OLSE and p-OLISE problems restricted to instances in
which ΔH = 1 and ΔG = 1 are W [1]-complete.

The reduction in [6] can also be tweaked to show that p-OLISE, restricted to
instances in which ΔH = O(1), ΔG = O(1), and ΔL = O(1) is W [1]-complete.
To see this, observe first that the result would follow if we proved the W [1]-
hardness of p-OLISE restricted to instances in which ΔH = O(1), ΔG = O(1),
and the number of vertices in G that have the same vertex v ∈ H in their list
is also O(1), since that would correspond to ΔL = O(1) if we switched G and
H (by symmetry). Using color-coding, the reduction in [6] can be tweaked to a
Turing fpt-reduction in which ΔG = 1, ΔH = 1, and every vertex v ∈ H appears
in the list of exactly one vertex in G:

Proposition 4. The p-OLISE problem restricted to instances in which ΔH = 1,
ΔG = 1, and ΔL = 1 is W [1]-complete.

The result below follows from a reduction given in [3] for a variant of p-OLSE:

Proposition 5. ([3], Theorem 0.3) The p-OLSE problem restricted to instances
in which ΔG = ∞, ΔH = 0 and ΔL = 1 is W [1]-complete, and the p-OLISE
problem restricted to instances in which ΔG = ∞ (resp. ΔH = ∞ by symmetry),
ΔH = 0 (resp. ΔG = 0) and ΔL = 1 is W [1]-complete.

3 FPT Results

We start by discussing the results for p-OLSE when both ΔG and ΔL are O(1)
(ΔH may be unbounded). Let (G,H,≺G,≺H , L, k) be an instance of p-OLSE in
which both ΔG and ΔL are upper bounded by a fixed constant. Consider the
graph G whose vertex-set is V (G)∪V (H) and whose edge-set is E(G)∪E(H)∪EL ,
where EL = {uv | u ∈ G, v ∈ H, v ∈ L(u)}; that is, G is the union of G and H
plus the edges that represent the mapping L. We perform the following splitting
operation on the vertices of G (see Figure 1 for illustration):

Definition 1. Let u be a vertex in G and assume that u ∈ G (the operation is
similar when u ∈ H). Suppose that the vertices of G are ordered as 〈u1, . . . , un〉
with respect to ≺G, and suppose that u = ui, for some i ∈ {1, . . . , n}. Let
e1 = uv1, . . . , er = uvr be the edges incident to u in EL, and assume that
v1 ≺H v2 ≺H . . . ≺H vr. By splitting vertex u we mean: (1) replacing u in
G with vertices u1i , . . . , u

r
i such that the resulting ordering of the vertices in G

with respect to ≺G is 〈u1, . . . , ui−1, u
1
i , . . . , u

r
i , ui+1, . . . , un〉; (2) removing all the

edges e1, . . . , er from G and replacing them with the edges u1i vr, u
2
i vr−1, . . . , u

r
i v1;

and (3) replacing every edge uuj in G with the edges usiuj, for s = 1, . . . , r.
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vi1 vi2 vi3 vi4

uj1 uj2

vi1 vi2 vi3 vi4

uj11

uj12
uj13 uj21

uj22

Fig. 1. Illustration of the splitting operation when applied to vertices uj1 and uj2

Let Gsplit be the graph resulting from G by splitting every vertex in G and
every vertex inH (in an arbitrary order), whereGsplit is the graph resulting from
splitting the vertices in G and Hsplit that resulting from splitting the vertices
of H . Let Esplit be the set of edges having one endpoint in Gsplit and the other
in Hsplit, Lsplit : Gsplit −→ 2V (Hsplit) defined by Lsplit(u) = {v | uv ∈ Esplit}
for u ∈ V (Gsplit), and let ≺Gsplit

and ≺Hsplit
be the orders on Gsplit and Hsplit,

respectively, resulting from ≺G,≺H after the splitting operation. The following
lemma can be easily verified:

Lemma 1. The graph Gsplit satisfies the properties: (i) for every u ∈ V (Gsplit)
we have degGsplit

(u) ≤ ΔL ·ΔG;1 (ii) in the graph (V (Gsplit)∪V (Hsplit), Esplit)
every vertex has degree exactly 1 (in particular |Lsplit(u)| = 1 for every u ∈
V (Gsplit)), and (iii) the instance (G,H,≺G,≺H , L, k) is a yes-instance of p-
OLSE if and only if (Gsplit, Hsplit,≺Gsplit

,≺Hsplit
, Lsplit, k) is.

Next, we perform the following operation, denoted Simplify, to Gsplit. Since
every vertex in (V (Gsplit)∪V (Hsplit), Esplit) has degree 1 by part (ii) of Lemma 1,
if two vertices u, u′ ∈ Gsplit are such that either (1) uu′ /∈ E(Gsplit) but vv′ ∈
E(Hsplit) or (2) both uu

′ ∈ E(Gsplit) and vv
′ ∈ E(Hsplit), where {v} = Lsplit(u)

and {v′} = Lsplit(u
′), then we can remove edge vv′ from E(Hsplit) in case

(1) and we can remove both edges uu′ and vv′ in case (2) without affecting
any embedding constraint. Without loss of generality, we will still denote by
(Gsplit, Hsplit,≺Gsplit

,≺Hsplit
, Lsplit, k) the resulting instances after the removal

of the edges satisfying cases (1) and (2) above. Note that E(Hsplit) = ∅ at this
point, and hence if uu′ ∈ E(Gsplit) then no valid list embedding can be defined
on a subset that includes both u and u′. Note also that Gsplit − E(Gsplit) is
a permutation graph P in which the vertices of Gsplit can be arranged on one
line according to the order induced by ≺Gsplit

, and the vertices of Hsplit can be
arranged on a parallel line according to the order induced by ≺Hsplit

. The vertex-
set of P corresponds to the edges in Esplit, and two vertices in P are adjacent if
and only if their two corresponding edges cross. Note that two vertices in P cor-
respond to two edges of the form e = uv and e′ = u′v′, where u, u′ ∈ Gsplit and
v, v′ ∈ Hsplit. Let I be the graph whose vertex-set is V (P ) and whose edge set

1 Note that the degree of a vertex in Hsplit may be unbounded.
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is E(P ) ∪ Ec, where Ec = {ee′ | e, e′ ∈ V (P ), e = uv, e′ = u′v′, uu′ ∈ E(Gsplit)}
is the set of conflict edges; that is, I consists of the permutation graph P plus
the set of conflict edges Ec, where each edge in Ec joins two vertices in P whose
corresponding endpoints in Gsplit cannot both be part of a valid solution.

Lemma 2. For every vertex e ∈ I, the number of conflict edges incident to e
in I, denoted degc(e), is at most ΔL ·ΔG.

Lemma 3. The instance (Gsplit, Hsplit,≺Gsplit
,≺Hsplit

, Lsplit, k), and hence
(G,H,≺G,≺H , L, k), before Simplify is applied is a yes-instance of p-OLSE if
and only if I has an independent set of size k.

Proof. A size-k independent set I in I corresponds to a set of k edges
ui1vj1 , . . . , uikvjk in Gsplit such that ui1 ≺Gsplit

. . . ≺Gsplit
uik , vj1 ≺Hsplit

. . . ≺Hsplit
vjk , and S = Gsplit[{ui1 , . . . , uik}] is a subgraph in Gsplit whose

vertices form an independent set. Clearly, the embedding ϕ(uis) = {vjs}, s =
1, . . . , k, is a valid embedding that embeds S into Hsplit because it respects both
≺Gsplit

,≺Hsplit
, and because it respects the embedding constraints. To see why

the latter statement is true, note that, for any two vertices uis and uir (r �= s)
in S, either there was no edge between uis and uir before the application of the
operation Simplify, or there was an edge and got removed by Simplify, and in
this case there must be an edge between vjs and vjr in Hsplit; in either case, ϕ
respects the embedding constraints.

Conversely, let ϕ be a valid embedding that embeds a subgraph S of order k
where V (S) = {ui1 , . . . , uik}, and ϕ(uis) = vjs , for s = 1, . . . , k. We claim that
the set I = {e1 = ui1vj1 , . . . , ek = uikvjk} is an independent set in I. Since ϕ is
a valid list embedding, no edge in P exists between any two vertices in I. Let
er = uirvjr and es = uisvjs be two vertices in I, where r �= s. If there is no edge
between uir and uis in E(Gsplit), then no edge exists between es and er in I.
On the other hand, if there is an edge between uir and uis in E(Gsplit), then
because ϕ is a valid embedding, there must be an edge between vir and vis . After
applying Simplify, the edge between uir and uis will be removed, and hence no
edge exists between es and er in I. It follows that I is a size-k independent set
in I. ��

Lemma 4. Let C be a hereditary class of graphs on which the Independent

Set problem is solvable in polynomial time, and let Δ ≥ 0 be a fixed integer
constant. Let C′ = {I = (V (P ), E(P ) ∪Ec) | P ∈ C, Ec ⊆ V (P )× V (P )}, where
at most Δ edges in Ec are incident to any vertex in I. Assuming that a graph
in C′ is given as (V (P ), E(P ) ∪ Ec) (i.e., Ec is given), the Independent Set

problem is FPT on graphs in the class C′.

Proof. Let (I = (V (P ), E(P ) ∪ Ec), k) be an instance of Independent Set,
where I ∈ C′. We use the random separation method introduced by Cai et al. [4];
this method can be de-randomized in fpt-time using the notion of universal sets
and perfect hash functions [2,13,14].

We apply the random separation method to the subgraph (V (P ), EC), and
color the vertices in V (P ) with two colors, “green” and “red”, randomly and
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independently. If I is an independent set of size k in I, since there are at most Δ
edges of Ec that are incident to any vertex in I, the probability that all vertices in
I are colored green and all their neighbors along the edges in Ec are colored red,
is at least 2−k+Δk = 2−(Δ+1)k. Using universal sets and perfect hash functions,
by trying FPT-many 2-colorings, if a size-k independent set exists, then there is
a 2-coloring among the ones we try that will result in the independent set vertices
being colored green, and all their neighbors along edges in Ec being colored red.
Therefore, it suffices to determine, given a 2-colored graph I, whether there is
an independent set of size k consisting of green vertices whose neighbors along
the edges in Ec are red vertices. We explain how to do so next.

Suppose that the vertices in I are colored green or red, and Ig be the subgraph
of I induced by the green vertices, and Ir that induced by the red vertices.
Notice that if there is an independent set I consisting of k green vertices whose
neighbors along the edges in Ec are red, then for each vertex u in I, u is an
isolated vertex in the graph (V (Ig), Ec). Moreover, since I is an independent
set, then no edge in E(P ) exists between any two vertices in I. Therefore, if
we form the subgraph G0 = (V0, E0), where V0 is the set of vertices in Ig that
are isolated with respect to the set of edges Ec, and E0 is the set of edges in
E(P ) whose both endpoints are in V0, then I is an independent set in G0. On
the other hand, any independent set of G0 is also an independent set of I. Since
G0 is a subgraph of P ∈ C and C is hereditary, it follows that G0 ∈ C and we
can compute a maximum independent set Imax in G0 in polynomial time. If
|Imax| ≥ k, then we accept the instance; otherwise, we try the next 2-coloring.
If no 2-coloring results in an independent set of size at least k, we reject. ��

Theorem 2. The p-OLSE problem restricted to instances in which ΔG = O(1)
and ΔL = O(1) is FPT.

Proof. Let (G,H,≺G,≺H , L, k) be an instance of p-OLSE in which both ΔG

and ΔL are upper bounded by a fixed constant. We form the graph G and
perform the splitting operation described in Definition 1 to obtain the instance
(Gsplit, Hsplit,≺Gsplit

,≺Hsplit
, Lsplit, k). By Lemma 1, (G,H,≺G,≺H , L, k) is a

yes-instance of p-OLSE if and only if (Gsplit, Hsplit,≺Gsplit
,≺Hsplit

, Lsplit, k) is.
We apply the operation Simplify to the instance and construct the graph I =
(V (P ), E(P ) ∪ Ec) as described above, where P is a permutation graph. Note
that the set of edges Ec is known. By Lemma 3, (G,H,≺G,≺H , L, k) is a yes-
instance of p-OLSE if and only if I has an independent set of size k. Since
the Independent Set problem is solvable in polynomial time on permutation
graphs ([11]), the class of permutation graph is hereditary, and every vertex in
I has at most ΔL · ΔG edges in Ec incident to it by Lemma 2, it follows from
Lemma 4 that we can decide if I has an independent set of size k in fpt-time. ��

Unfortunately, the above result does not hold true for p-OLISE, even when
ΔG = O(1), ΔH = O(1), and ΔL = O(1).

From Proposition 3, we know that in the case when ΔL is unbounded, and
both ΔG = 1 and ΔH = 1, p-OLSE is W[1]-hard. The following proposition says
that the condition ΔH = 1 is essential for this W-hardness result:
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Proposition 6. The p-OLSE and p-OLISE problems restricted to instances in
which ΔH = 0, ΔG = O(1) (resp. ΔG = 0 and ΔH = O(1) for p-OLISE by
symmetry) and ΔL = ∞ are FPT.

Proof. We prove the result for p-OLSE. The proof is exactly the same for p-
OLISE. The proof uses the random separation method, but is simpler than the
proof of Lemma 4. Let (G,H,≺G,≺H , L, k) be an instance of p-OLSE. Observe
that if S is the solution that we are looking for then G[S] must be an independent
set since ΔH = 0. Use the random separation method to color G with green or
red. Since ΔG = O(1), if a solution S exists, then in fpt-time (deterministic) we
can find a 2-coloring in which all vertices in S are green and their neighbors in
G are red. So we can work under this assumption. Let Gg be the subgraph of G
induced by the green vertices, and Gr that induced by the red vertices. Observe
that any green vertex in Gg that is not isolated in Gg can be discarded by our
assumption (since all neighbors of a vertex in S must be in Gr). Therefore, we
can assume that Gg is an independent set. We can now compute a maximum
cardinality subgraph of Gg that can be (validly) embedded into H using the
dynamic programming algorithm in Proposition 1; if the subgraph has order at
least k we accept; otherwise, we try another 2-coloring of G. If no 2-coloring of
G results in a solution of size at least k, we reject. ��

4 Parameterization by the Vertex Cover Number

We study the parameterized complexity of p-OLSE parameterized by the size
of a vertex cover ν in the graph G; we denote the corresponding problem with
p-VC-OLSE. The reduction in [6], which can be used to prove the W [1]-hardness
of p-OLSE when restricted to instances in which ΔH ≤ 1, ΔG ≤ 1 and ΔL is
unbounded, results in an instance in which the number of vertices in G, and
hence τ(G), is upper bounded by a function of the parameter. Therefore:

Proposition 7. p-VC-OLSE restricted to instances in which ΔH = 1 and ΔG =
1 is W [1]-complete.

Therefore, we can focus our attention on studying the complexity of p-VC-
OLSE restricted to instances in which ΔL ∈ O(1).

Theorem 3. p-VC-OLSE restricted to instances in which ΔL = O(1) is FPT.

Proof. Let (G,H,≺G,≺H , L, k, ν) be an instance of p-VC-OLSE, where k is the
desired solution size and ν is the size of a vertex cover in G. In fpt-time (in ν)
we can compute a vertex cover C of G of size ν (if no such vertex cover exists we
reject). Let I = V (G) \ C, and note that I is an independent set of G. Suppose
that the solution we are seeking (if it exists) is S, and the valid mapping of S is
ϕ. Let SC = S∩C, and let ϕC be the restriction of ϕ to SC . We enumerate each
subset of C as SC , enumerate each possible mapping from SC to L(SC) as ϕC ,
and check the validity of ϕC . This enumeration takes O∗((2ΔL)

ν) time, which
is fpt-time in ν. Therefore, we will assume that the solution intersects C at a
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known subset SC , and that the restriction of ϕ to SC is a valid map ϕC , and
reject the instance if this assumption is proved to be wrong.

We remove all vertices in C \ SC from G and update L accordingly; without
loss of generality, we will still use G to refer to the resulting graph whose vertex-
set at this point is I ∪ SC . Let ui1 , . . . , uir be the vertices in SC , where ui1 ≺G

. . . ≺G uir . Since ϕC is valid, we have ϕ(ui1 ) ≺H . . . ≺H ϕ(uir ). We perform
the following operation. For each vertex u in I and each vertex v ∈ L(u), if
setting ϕ(u) = v violates the embedding constraint in the sense that either (1)
there is a vertex uij ∈ SC such that uuij ∈ E(G) but vϕC(uij ) /∈ E(H) or (2)
there is a vertex uij ∈ SC such that u ≺ uij (resp. uij ≺ u) but ϕC(uij ) ≺ v
(resp. v ≺ ϕC(uij )), then remove v from L(u). Afterwards, partition the vertices
in G into at most r + 1 intervals, I0, . . . , Ir, where I0 consists of the vertices
preceding ui1 (with respect to �G), Ir consists of those vertices following uir ,
and Ij consists of those vertices that fall strictly between vertices uij−1 and uij ,
for j = 1, . . . , r. Similarly, partition H into r + 1 intervals, I ′0, . . . , I

′
r, where

I ′0 consists of the vertices preceding ϕC(ui1) (with respect to ≺H), I ′r those
vertices following ϕC(uir), and I

′
j those vertices that fall strictly between vertices

ϕC(uij−1 ) and ϕC(uij ), for j = 1, . . . , r. Clearly, any valid mapping ϕ that
respects ≺G and ≺H must map vertices in the solution that belong to Ij to
vertices in I ′j , for j = 0, . . . , r, in a way that respects the restrictions of ≺G and
≺H on Ij and I

′
j , respectively. On the other hand, since after the above operation

every vertex u in I can be validly mapped to any vertex v ∈ L(u), any injective
mapping ϕj that maps a subset of vertices in Ij to a subset in I ′j in a way that
respects the restrictions of ≺G and ≺H to Ij and I

′
j , respectively, can be extended

to a valid embedding whose restriction to SC is ϕC . Therefore, our problem
reduces to determining whether there exist injective maps ϕj , j = 0, . . . , r,
mapping vertices in Ij to vertices in I ′j , such that the total number of vertices
mapped in the Ij ’s is k− r. Consider the subgraphs Gj = G[Ij ] and Hj = H [I ′j ],
for j = 0, . . . , r. Since Gj is an independent set, the presence of edges in Hj

does not affect the existence of a valid list mapping from vertices in Gj to
Hj , and hence those edges can be removed. Therefore, we can solve the opt-
OLSE problem using Proposition 1 on the two graphs Gj and Hj to compute a
maximum cardinality subset of vertices Sj in Gj that can be validly embedded
into Hj via an embedding ϕj . If the union of the Sj ’s with SC has cardinality
at least k, we accept. If after all enumerations of SC and ϕC we do not accept,
we reject the instance. This algorithm runs in time O∗((2ΔL)

ν). ��
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Abstract. The framework of Bodlaender et al. (ICALP 2008, JCSS 2009) and
Fortnow and Santhanam (STOC 2008, JCSS 2011) allows us to exclude the
existence of polynomial kernels for a range of problems under reasonable
complexity-theoretical assumptions. However, some issues are not addressed by
this framework, including the existence of Turing kernels such as the “kerneliza-
tion” of LEAF OUT BRANCHING(k) into a disjunction over n instances each of
size poly(k). Observing that Turing kernels are preserved by polynomial para-
metric transformations (PPTs), we define two kernelization hardness hierarchies
by the PPT-closure of problems that seem fundamentally unlikely to admit ef-
ficient Turing kernelizations. This gives rise to the MK- and WK-hierarchies
which are akin to the M- and W-hierarchies of ordinary parameterized complex-
ity. We find that several previously considered problems are complete for the
fundamental hardness class WK[1], including MIN ONES d-SAT(k), BINARY

NDTM HALTING(k), CONNECTED VERTEX COVER(k), and CLIQUE parame-
terized by k log n. We conjecture that no WK[1]-hard problem admits a polyno-
mial Turing kernel. Our hierarchy subsumes an earlier hierarchy of Harnik and
Naor (FOCS 2006, SICOMP 2010) that, from a parameterized perspective, is re-
stricted to classical problems parameterized by witness size. Our results provide
the first natural complete problems for, e.g., their class V C1; this had been left
open.

1 Introduction

Kernelization, or data reduction, is a central concept in parameterized complexity, and
has important applications outside this field as well. Roughly speaking, a kernelization
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algorithm reduces an instance of a given parameterized problem to an equivalent in-
stance of size f(k), where k is the parameter of the input instance. Appropriately, the
function f() is referred to as the size of the kernel. A kernel with a good size guarantee is
very useful – whether one wants to solve a problem exactly, or apply heuristics, or com-
pute an approximation, it never hurts to first apply the kernelization procedure.1 It can
also be seen more directly as instance compression, e.g., for storing a problem instance
for the future use; see Harnik and Naor [18]. The common milestone for an efficient
kernelization is a polynomial kernel, i.e., a kernel with a polynomial size guarantee.
Several significant kernelization results can be found in the literature, sometimes using
non-trivial mathematical tools; see, e.g., the 2k-vertex kernel for VERTEX COVER [28],
the O(k2) kernel for FEEDBACK VERTEX SET [30], and the recent randomized poly-
nomial kernel for ODD CYCLE TRANSVERSAL [26].

Fairly recently, work by Bodlaender et al. [4] together with a result of Fortnow and
Santhanam [17] provided the first technique to rule out the existence of any polyno-
mial kernel for certain problems, assuming that NP � coNP/poly (and PH does not
collapse [31]). A series of further papers have applied this framework to concrete prob-
lems and developed it further, e.g., [13,12,5,11,21,22,14].

However, there are relaxed notions of efficient kernelization which are not ruled out
by any existing work, but which would still be useful in practice and interesting from a
theoretical point of view. Almost immediately after the appearance of the above lower
bounds framework, the question was raised whether there were notions of “cheating”
kernels. For example for the problem k-PATH which could circumvent the above lower
bounds by producing Turing kernels instead of standard many-one kernelizations [3].
Not long afterwards, the first example of such a cheating kernel appeared: Binkele-
Raible et al. [2] showed that the k-LEAF OUT-BRANCHING problem (given a directed
graph G and an integer k, does G contain a directed tree with at least k leaves?) does
not admit a polynomial kernel unless NP � coNP/poly, but does admit one (with O(k3)
vertices) if the root of the tree is fixed, implying a Turing kernel in the form of a dis-
junction over n instances, each of size polynomial in k. There are also simpler problems
sharing the same behavior; for example, the problem of CLIQUE parameterized by max-
imum degree is trivially compatible with the lower-bound frameworks, implying that it
has no polynomial many-one kernel unless NP � coNP/poly, but admits a very simple
Turing kernel into n instances of k vertices (by taking the neighborhood of each vertex).
We will call such a disjunctive Turing kernel an OR-kernel. We observe that many of
the positive aspects of standard (many-one) polynomial kernels are preserved by OR-
kernels, or even generally Turing kernels; in particular the algorithmic consequences
(e.g., a Turing kernel with polynomial individual instance sizes for a problem in NP
implies an algorithm with a running time of 2k

O(1)

nO(1), same as for a polynomial
many-one kernel).

The question of the extent to which such Turing kernels exist is theoretically very
interesting and one of the most important problems in the field. Some restricted forms
of Turing kernels, e.g., polynomial AND-kernels, can already be excluded by the ex-
isting framework, as they are special cases of polynomial kernels which may use co-
nondeterministic polynomial time (cf. [12,22,26]). However, for OR-kernels or Turing

1 This is assuming that the kernel preserves solution values, which most do.
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kernels the current framework does not apply (as also witnessed by the k-LEAF OUT-
BRANCHING and CLIQUE by max degree problems). It is also unclear if the framework
could be adapted to deal with them. Instead, we take an approach common in com-
plexity theory, namely that of defining an appropriate notion of hardness, and studying
problems that are complete under this notion. We start from a set of problems for which
we conjecture that none of them has a polynomial Turing kernel, and show that they are
equivalent under PPT-reductions (which preserve existence of polynomial Turing ker-
nels). The result is a robust class of hardness of Turing kernelization, dubbed WK[1],
whose complete problems include central problems from different areas of theoretical
computer science. While we have no concrete evidence that our conjecture holds, we
feel that the abundance of WK[1]-complete problems, where Turing-kernelization is
found for none of them, might suggest its validity.

WK[1]-hard problems. A cornerstone problem of WK[1] is the k-step halting prob-
lem for non-deterministic Turing machines parameterized by k logn. To see why this
is a powerful problem, and why an efficient Turing kernel would seem unlikely, con-
sider the k-clique problem. Given a graph G with n vertices and an integer k, it is
easy to construct a Turing machine which checks in poly(k) non-deterministic steps
whether G contains a k-clique (by using a number of states polynomial in n). On the
other hand, an OR-kernel for the problem (or more generally, a polynomial Turing ker-
nel) would require reducing k-clique to a polynomial number of questions of size poly-
nomial in k logn (e.g., poly(n) induced subgraphs of G, each of size poly(k logn),
which are guaranteed to cover any k-clique of G). In fact, the above-mentioned halting
problem captures not only clique, but all problems where a witness of t bits can be
verified in poly(t, logn) time (e.g., SUBGRAPH ISOMORPHISM).

Other WK[1]-complete problems include MIN ONES d-SAT, the problem of finding
a satisfying assignment with at most k true variables for a d-CNF formula, parameter-
ized by the solution size k; HITTING SET parameterized by the number of sets or hy-
peredges m; and CONNECTED VERTEX COVER parameterized by the solution size k.
Of these, we in particular want to single out MIN ONES d-SAT, which captures all min-
imization problems for which the consistency of a solution can be locally verified (by
looking at combinations of d values at a time). For example, this includes the H-FREE

EDGE MODIFICATION(k) problems, where H is a finite, fixed set of forbidden induced
subgraphs, and the goal is to remove or add k edges in the input graph in order to obtain
a graph with no induced subgraph in H [8].

Extending the hardness class WK[1], we also define a hierarchy of hardness classes
WK[t] and MK[t] for t ≥ 1, mirroring the W- and M-hierarchies of traditional parame-
terized complexity; see [16]. We note that there are also strong similarities to the work
of Harnik and Naor [18], in particular to the VC-hierarchy (which is defined around the
notion of witness length for problems in NP). However, the notion of a parameter seems
more general and robust than witness length; consider for example the volume of work
in FPT on structural parameters such as treewidth. We also feel that the connections
to the traditional FPT hardness classes (see Section 3) flesh out and put into context
Harnik and Naor’s work, and the link to the Turing kernel question adds interest to the
separation question. Still, the main focus of our work is the hardness class WK[1].
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We hope that our conjecture, that WK[1] does not have polynomial Turing kernels,
will inspire other researchers to revisit the kernelization properties of problems which
have been shown not to admit standard polynomial kernels unless PH collapses, but for
which hardness for the above-mentioned class is less obvious. In particular, we leave
open the WK[1]-hardness of k-PATH, the problem for which the existence of Turing
kernels was originally asked in [3].

2 Preliminaries

We begin our discussion by formally defining some of the main concepts used in this
paper, and by introducing some terminology and notation that will be used throughout.
All problem definitions are deferred to the full version of this paper [20]. We use [n] to
denote the set of integers {1, . . . , n}.

Definition 1 (Kernelization). A kernelization algorithm, or, in short, a kernel for a
parameterized problem L ⊆ Σ∗ × N is a polynomial-time algorithm that on a given
input (x, k) ∈ Σ∗ × N outputs a pair (x′, k′) ∈ Σ∗ × N such that (x, k) ∈ L ⇔
(x′, k′) ∈ L, and |x′|+k′ ≤ f(k) for some function f . The function f above is referred
to as the size of the kernel.

In other words, a kernel is a polynomial-time reduction from a problem to itself that
compresses the problem instance to a size depending only on the parameter. If the size
of a kernel for L is polynomial, we say that L has a polynomial kernel. In the interest
of robustness and ease of presentation, we relax the notion of kernelization to allow the
output to be an instance of a different problem. This has been referred to as a generalized
kernelization [4] or bikernelization [1]. The class of all parameterized problems with
polynomial kernels in this relaxed sense is denoted by PK.

Definition 2 (Turing Kernelization). A Turing kernelization for a parameterized prob-
lem L ⊆ Σ∗×N is a polynomial-time algorithm with oracle access to a parameterized
problemL′ that can decide whether an input (x, k) is in L using queries of size bounded
by f(k), for some computable function f . The function f is referred to as the size of the
kernel.

If the size is polynomial, we say that L has a polynomial Turing kernel. The class of all
parameterized problems with polynomial Turing kernels is denoted by Turing-PK.

Definition 3 (Polynomial Parametric Transformations [7]). Let L1 and L2 be two
parameterized problems. We write L1 ≤ppt L2 if there exists a polynomial time com-
putable function Ψ : {0, 1}∗ × N → {0, 1}∗ × N and a constant c ∈ N, such that for
all (x, k) ∈ Σ∗ × N, if (x′, k′) = Ψ(x, k) then (x, k) ∈ L1 ⇐⇒ (x′, k′) ∈ L2, and
k′ ≤ ckc. The function Ψ is called a polynomial parameter transformation (PPT for
short). If L1 ≤ppt L2 and L2 ≤ppt L1 we write L1 ≡ppt L2.

Proposition 1. Let L1, L2, and L3 be three parameterized problems.

– If L1 ≤ppt L2 and L2 ≤ppt L3 then L1 ≤ppt L3.
– If L1 ≤ppt L2 and L2 ∈ PK (resp. Turing-PK) then L1 ∈ PK (resp. Turing-PK).
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We denote parameterizations in parentheses after the problem name, for example,
CLIQUE(k logn). In this example, k is the solution size, and n the size of the input.
(Recall that CLIQUE(k) is one of the fundamental hard problems for parameterized
complexity, and unlikely to admit a kernel of any size [16]; however, under a parame-
ter p = k logn it has a trivial kernel of size 2p.)

Note that, if a problem Q is solvable in 2k
O(1)

nO(1) time, then Q(k)≡ppt Q(k logn).

3 The WK- and MK-Hierarchies

In this section we introduce our hierarchies of inefficient kernelizability, the MK- and
WK-hierarchies. Relations to the so-called VC-hierarchy of Harnik and Naor [18] are
discussed in Section 3.1. To begin with, for t ≥ 0 and d ≥ 1, we inductively define the
following classes Γt,d and Δt,d of formulas following [16]:

Γ0,d := {λ1 ∧ · · · ∧ λc : c ∈ [d] and λ1, . . . , λc are literals},
Δ0,d := {λ1 ∨ · · · ∨ λc : c ∈ [d] and λ1, . . . , λc are literals},
Γt+1,d := {

∧
i∈I δi : I is a finite non-empty set and δi ∈ Δt,d for all i ∈ I},

Δt+1,d := {
∨

i∈I γi : I is a finite non-empty set and γi ∈ Γt,d for all i ∈ I}.

Thus, Γ1,3 is the set of all 3-CNF formulas, and Γ2,1 is the set of all CNF formulas.
Given a class Φ of propositional formulas, we let Φ+, Φ− ⊆ Φ denote the restrictions of
Φ to formulas containing only positive and negative literals, respectively. For any given
Φ, we define two parameterized problems:

– Φ-WSAT(k logn) is the problem of determining whether a formula φ ∈ Φ with n
variables has a satisfying assignment of Hamming weight exactly k, parameterized
by k log n.

– Φ-SAT(n) is the problem of determining whether a formula φ ∈ Φwith n variables
is satisfiable, parameterized by n.

In particular, we will be interested in Γt,d-WSAT(k logn) and Γt,d-SAT(n).
We now reach our class definitions. For a parameterized problem L ⊆ Σ∗ × N, we

let [L]≤ppt denote the closure of L under polynomial parametric transformations. That
is, [L]≤ppt := {L′ ⊆ Σ∗ × N : L′ ≤ppt L}.

Definition 4. Let t ≥ 1 be an integer. The classes WK[t] and MK[t] are defined by

– WK[t] :=
⋃

d∈N
[Γt,d-WSAT(k logn)]≤ppt .

– MK[t] :=
⋃

d∈N
[Γt,d-SAT(n)]≤ppt .

The naming of the classes in our hierarchies comes from the close relationship of the
MK- and WK-hierarchies to the M- and W-hierarchies of traditional parameterized
complexity [16]. Roughly speaking, WK[t] and MK[t] are reparameterizations by a
factor of logn (or log of the instance size) of the traditional parameterized complexity
classes W[t] and M[t] (although W[t] and M[t] are closed under FPT reductions, which
may use superpolynomial time in k).

There are also close connections to the so-called subexponential time S-hierarchy
(see [16, Chapter 16]); specifically, S[t] and MK[t] are defined from the same starting
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problems, using closures under different types of reduction; see also Cygan et al. [10].
We further note that [10] asked as an open problem, a reduction which in our terms
would go from an MK[2]-complete problem to one in WK[1], and our work suggests
the difficulty of producing one (see Theorem 2).

We show the following complete problems for our hierarchy.

Theorem 1 (�2). Let t ≥ 1. The following hold.

– Γ−
1,2-WSAT(k log n) is WK[1]-complete.

– Γ−
t,1-WSAT(k log n) is WK[t]-complete for odd t > 1.

– Γ+
t,1-WSAT(k log n) is WK[t]-complete for even t > 1.

– Γ1,d-SAT(n) is MK[1]-complete for every d ≥ 3.
– Γt,1-SAT(n) is MK[t]-complete for t ≥ 2.

Theorem 1 above shows that the traditional problems used for showing completeness
in the W- and M-hierarchies have reparameterized counterparts which are complete for
our hierarchy. The theorem is proven using a set of PPTs from the specific class-defining
problems to the corresponding target problem in the theorem. Our main contribution
is a PPT for the first item, for which previous proofs used FPT-time reductions. The
remaining items are either easy or well-known.

We now proceed to show the class containments in our hierarchy. The main contain-
ments are as follows.

Theorem 2 (�). MK[1] ⊆ WK[1] ⊆ MK[2] ⊆ WK[2] ⊆ MK[3] ⊆ · · · ⊆ EXPT.

We also study a few further particular classes. First, let PKNP denote the class of
parameterized problems with polynomial kernels whose output problem lies in NP. We
have the following relationship.

Lemma 1 (�). MK[1] = PKNP.

Proof (sketch). If a problem has a polynomial kernel within NP, then we may first
kernelize, then reduce to 3-SAT by the NP-completeness of the latter. Conversely, any
problem in MK[1] has a PPT to d-SAT(n) for some constant d, which (as the latter has
bounded size) forms a kernelization within NP. ��

Next, for a problemL, we define a parameterized problem OR(L)(
) where the input
is a set of instances x1, . . . , xt of L, each of length at most 
, and the task is to decide
whether xi ∈ L for at least one instance xi.

Lemma 2 (�). Let L be an NP-complete language. Then MK[1] ⊆ [OR(L)(
)]≤ppt ⊆
WK[1], where the first inclusion is strict unless NP ⊆ coNP/poly, and the second is
strict unless every problem in WK[1] has a polynomial OR-kernel.

Proof (sketch). The first containment is trivial; the second can be given via reduction to
the BINARY NDTM HALTING problem (see Section 4). The first consequence follows
from Fortnow and Santhanam [17]; the second follows since OR(L) has an OR-kernel,
and OR-kernels are preserved by PPTs. ��
2 The proofs for lemmas and theorems denoted by a star are deferred to the full version [20].



208 D. Hermelin et al.

For AND(L), and problems with Turing kernels more generally, no similar con-
tainment is known. However, our hierarchy can still be useful for AND-compositional
problems, in showing them to be hard for some level.

3.1 Comparison with the VC-Hierarchy

We now discuss the relations between the VC-hierarchy of Harnik and Naor [18] and
the MK- and WK-hierarchies defined in this paper. Let us review some definitions. An
NP-language L is for the purposes of this section defined by a pair (RL, k), where
RL(·, ·) is a polynomial-time computable relation and k(x) = |x|O(1) a polynomial-
time computable function, and x ∈ L for an instance x if and only if there is some
string y with |y| ≤ k(x), such that RL(x, y) holds. The string y is called the witness
for x. This naturally defines a parameterization of L, with parameter k(x); the resulting
problem is FPT (with running time O∗(2k)). We refer to this parameterized problem
as the direct parameterization of (RL, k). Harnik and Naor consider the feasibility of a
(possibly probabilistic) compression of an instance x of L into length poly(k(x)), in a
sense essentially equivalent to our (relaxed) notion of kernelization; see [18] for details.

Before we give the technical results, let us raise two points. First, Harnik and Naor
deal solely with problems where the parameter is the length k(x) of a witness. Although
this always defines a valid parameter (as we have seen), it is not clear that every reason-
able parameterization of an NP-problem can be interpreted as a witness in this sense.
Second, although Harnik and Naor are rather lax with the choice of witness (frequently
letting it go undefined), we want to stress that the choice of witness can have a big
impact on the kernelization complexity of a problem. Consider as an example the case
of HITTING SET (treated later in this paper). Let n denote the number of vertices of
an instance, m the number of edges, and k the upper bound on solution size; note that
the total coding size is O(mn). We will find that the problem is WK[1]-complete when
parameterized by m, MK[2]-complete under the parameter n, and WK[2]-complete un-
der the parameter k logn. The two latter both represent plausible choices of witnesses;
a witness of length m is less obvious (or natural), but there is a simple witness of length
m log k ≤ m logm obtained by describing a partition of the edges into k sets. One may
also consider structural parameters such as treewidth (e.g., of the bipartite vertex/edge
incidence graph), for which a corresponding short witness seems highly unlikely (but
which can be shown to be MK[2]-hard). That said, it is not hard to see that every prob-
lem in the WK- and MK-hierarchies has a corresponding witness, by the PPT-reduction
that proves its class membership.

For reasons of space, we give only a brief summary of the results; see the full ver-
sion [20] for more details.

Theorem 3 (�). Let L be an NP-language defined by (RL, k), and let Q be its direct
parameterization. The following hold.

1. L is contained in (hard for, complete for) VCor if and only if Q is contained in (hard
for, complete for) the PPT-closure of OR(3-SAT).

2. L is contained in VC1 (VC1-hard, VC1-complete) if and only if Q is contained in
WK[1] (WK[1]-hard, WK[1]-complete).
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3. L is contained in VCt (VCt-hard, VCt-complete) for t > 1 if and only if Q is
contained in MK[t] (MK[t]-hard, MK[t]-complete).

Thus, we answer a question left open in [18], of finding a natural problem complete
for VC1 (as well as some minor questions about specific problem placements).

4 Complete Problems for WK[1]

In this section we show that several natural problems are complete for our fundamen-
tal hardness class WK[1] and thus exemplify its robustness. Our starting point will
be CLIQUE(k logn) which is clearly equivalent to Γ−

1,2-WSAT(k log n); the latter is
WK[1]-complete by Theorem 1.

Theorem 4. CLIQUE(k logn) is complete for WK[1].

4.1 Basic Problems

This section establishes the following theorem that covers some basic problems which
will be convenient for showing WK[1]-hardness and completeness for other problems.
Standard many-one polynomial kernels for these problems were excluded in previous
work [4,24,25,13].

Theorem 5. The following problems are all complete for WK[1]:

– BINARY NDTM HALTING(k) and NDTM HALTING(k logn).
– MIN ONES d-SAT(k) for d ≥ 3, with at most k true variables.
– HITTING SET(m) and EXACT HITTING SET(m), with m sets.
– SET COVER(n) and EXACT SET COVER(n), with n elements.

The following colorful variants are helpful for our reductions.

Lemma 3 ([15,13]). The following equivalences hold.

– MULTICOLORED CLIQUE(k logn) ≡ppt CLIQUE(k logn).
– MULTICOLORED HITTING SET(m) ≡ppt HITTING SET(m).

We now proceed with the reductions. For many problems, we will find it convenient
to show hardness by reduction from EXACT HITTING SET(m) or HITTING SET(m);
hence we begin by showing the completeness of these problems. We give a chain of
reductions from CLIQUE(k logn), via EXACT HITTING SET(m) and NDTM HALT-
ING(k logn), and back to CLIQUE(k logn), closing the cycle. After this we will treat
the HITTING SET(m) problem. Note that NDTM HALTING(k logn) and BINARY

NDTM HALTING(k) (the problem restricted to machines with a binary tape alphabet)
are easily PPT-equivalent.

Lemma 4 (�). MULTICOLORED CLIQUE(k logn) ≤ppt EXACT HITTING SET(m).



210 D. Hermelin et al.

Proof (sketch). Let the input be a graphG = (V,E) with coloring function c : V → [k].
Assume V = [n], and let b	(v) be the 
:th bit in the binary expansion of v. We create a
set family F ⊆ 2E with sets Fi,j = {uv ∈ E : c(u) = i, c(v) = j} for 1 ≤ i < j ≤ k,
and Fi,j,j′,	 = {uv ∈ E : c(u) = i, c(v) = j, b	(u) = 1}∪{uv ∈ E : c(u) = i, c(v) =
j′, b	(u) = 0} for all color pairs (i, j) and (i, j′) (e.g., for i, j, j′ ∈ [k] with i �= j, j′

and j < j′), 1 ≤ 
 ≤ #logn$. By the first set family, exactly one edge per color class is
selected in a solution; the second family ensures that the selections are consistent (i.e.,
for each color class i, all incident edges are incident on the same vertex u). ��
Lemma 5 (�). EXACT HITTING SET(m) ≤ppt NDTM HALTING(k logn).

Proof (sketch). Let F = {F1, . . . , Fm} be a set family on universe U = [n]; we will
create a NDTM with tape alphabet [n] which verifies whether F has an exact hitting
set. We may assume n ≤ 2m. In the first phase, for each i ∈ [m] we put the ID of a
member ui of Fi in cell i; in subsequent phases, we verify that no set Fi is hit twice
(e.g., if uj �= ui, then uj /∈ Fi). This is easily done in poly(m) steps, by a machine with
poly(n+m) states; thus k logn = mO(1) and we are done. ��
Lemma 6 (�). BINARY NDTM HALTING(k) ≤ppt MIN ONES 3-SAT(k).

Proof (sketch). Let M be a Turing machine with 
 transitions in the state diagram. We
will create a 3-CNF formula φ that has a satisfying assignment of Hamming weight
at most k′, k′ = kO(1), if and only if M accepts within k steps. We use variables
Me,t, e ∈ [
], t ∈ [k], designating that M uses transition e of the state diagram as
the t:th execution step, along with auxiliary variables tracing the machine state, head
position, and tape contents. By using the log-cost selection formulas of [25], we can
ensure that exactly one variable Me,t is true for each t, at the cost of an extra solution
weight of k log 
. Given this, the consistency of an assignment can be enforced using
only local (3-ary) conditions (details omitted). We also require that the final state is
accepting. With some care, one can ensure that every satisfying assignment has the
same weight k′ = poly(k, log 
). Since the problem is FPT, we may assume log 
 ≤ k,
thus we have polynomial reduction time and parameter growth, i.e., a PPT. ��

The following lemma is a direct consequence of Theorem 1 in Section 3.

Lemma 7 (�). MIN ONES d-SAT(k) ≤ppt CLIQUE(k logn) for every fixed d.

The remaining problems in Theorem 5 for which we need to show completeness are
HITTING SET(m), SET COVER(n), and EXACT SET COVER(n). Since it is well known
that HITTING SET(m) ≡ppt SET COVER(n) and EXACT HITTING SET(m) ≡ppt EX-
ACT SET COVER(n), we finish the proof of Theorem 5 by proving WK[1]-completeness
for HITTING SET(m).

Lemma 8 (�). HITTING SET(m) is WK[1]-complete.

4.2 Further Problems

We briefly list further problems which we have shown to be WK[1]-complete or WK[1]-
hard. LOCAL CIRCUIT SAT(k logn) was defined by Harnik and Naor, for defining
their VC-hierarchy [18]. The remaining proofs are adaptations of lower bounds proofs
by Bodlaender et al. [7] and Dom et al. [13].
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Theorem 6 (�). The following problems are WK[1]-complete.

– LOCAL CIRCUIT SAT(k logn).
– MULTICOLORED PATH(k) and DIRECTED MULTICOLORED PATH(k).
– MULTICOLORED CYCLE(k) and DIRECTED MULTICOLORED CYCLE(k).
– CONNECTED VERTEX COVER(k).
– CAPACITATED VERTEX COVER(k).
– STEINER TREE(k + t), for solution size k and t terminals.
– SMALL SUBSET SUM(k) (see [13] for parameter definition).
– UNIQUE COVERAGE(k), where k is the number of items to be covered.

Theorem 7 (�). The following problems are WK[1]-hard.

– DISJOINT PATHS(k) and DISJOINT CYCLES(k).

5 Problems in Higher Levels

In this section we investigate the second level of the MK- and WK-hierarchies, and
present some complete and hard problems for these classes.

MK[2]-complete problems. According to Theorem 1, MK[2] is the PPT-closure of the
classical CNF satisfiability problem where the parameter is taken to be the number
of variables in the input formula. The PPT-equivalence of this problem to HITTING

SET(n) and SET COVER(m) is well known.

Theorem 8. HITTING SET(n) and SET COVER(m) are complete for MK[2].

Heggernes et al. [19] consider RESTRICTED PERFECT DELETION(|X |) and RE-
STRICTED WEAKLY CHORDAL DELETION(|X |), where the input is a graphG, a setX
of vertices of G such that G−X is perfect (resp. weakly chordal), and an integer k, and
the task is to select at most k vertices S ⊆ X such that G− S is perfect (resp. weakly
chordal). We get the following corollary from Theorem 8 and PPTs given in [19].

Corollary 1. RESTRICTED PERFECT DELETION(|X |) and RESTRICTED WEAKLY

CHORDAL DELETION(|X |) are hard for MK[2].

WK[2]-complete problems. Due to space limitations we only state the following com-
pleteness and hardness results for WK[2] and defer the proofs to the full version.

Theorem 9 (�). The following problems are complete for WK[2]:

– HITTING SET(k logn) and SET COVER(k logm).
– DOMINATING SET(k logn) and INDEPENDENT DOMINATING SET(k logn).
– STEINER TREE(k logn)

From Theorem 9, we immediately get the following corollary via PPTs by Loksh-
tanov [27] and Heggernes et al. [19].

Corollary 2. The following problems are all hard for WK[2]:
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– WHEEL-FREE DELETION(k logn).
– PERFECT DELETION(k logn).
– WEAKLY CHORDAL DELETION(k logn).

For the first four problems in Theorem 9 the results follow easily (see [20]), so let us
focus on the more interesting case of STEINER TREE(k logn). While WK[2]-hardness
for this problem follows immediately from e.g. the PPT from HITTING SET(k logn)
given in [13], showing membership in WK[2] is more challenging. To facilitate this
and other non-trivial membership proofs, we consider the issue of a machine char-
acterization of WK[2], similarly to the WK[1]-complete NDTM HALTING(k logn)
problem. The natural candidate would be MULTI-TAPE NDTM HALTING(k logn), as
this same problem with parameter k is W[2]-complete [9]. However, while the prob-
lem with parameter k logn is easily shown to be WK[2]-hard, we were so far unable to
show WK[2]-membership. On the other hand, the following extension of a single-tape
non-deterministic Turing machine leads to a WK[2]-complete problem, which we name
NDTM HALTING WITH FLAGS.

Definition 5. A (single-tape, non-deterministic) Turing machine with flags is a stan-
dard (single-tape, non-deterministic) Turing machine which in addition to its working
tape has access to a set F of flags. Each state transition of the Turing machine has the
ability to read and/or write a subset of the flags. A transition that reads a set S ⊆ F of
flags is only applicable if all flags in S are set. A transition that writes a set S ⊆ F of
flags causes every flag in S to be set. In the initial state, all flags are unset. Note that
there is no operation to reset a flag.

Theorem 10. NDTM HALTING WITH FLAGS(k log n) is WK[2]-complete.

Proof. Showing WK[2]-hardness is easy by reduction from HITTING SET(k logn). In
fact, the hitting set instance can be coded directly into the flags, without any motion
of the tape head – simply construct a machine that non-deterministically makes k non-
writing transitions, each corresponding to including a vertex in the hitting set, followed
by one verification step. The machine has m flags, one for every set in the instance,
and a step corresponding to selecting a vertex v activates all flags corresponding to sets
containing v. Finally, the step to the accepting state may only be taken if all flags are
set. By assuming logm ≤ k logn (or else solving the instance exactly) we get a PPT.

Showing membership in WK[2] can be done by translation to Γ2,1-WSAT(k logn).
The transition is similar to that in Lemma 6. The only complication is to enforce con-
sistency of transitions which read and write sets of flags, but this is easily handled.
Let Me,t signify that step number t of the machine follows edge e of the state diagram
(as in Lemma 6). If transition e has a flag f as a precondition, then we simply add a
clause

(¬Me,t ∨Mei1 ,1
∨ . . . ∨Meim ,1 ∨ . . . ∨Mei1 ,t−1 ∨ . . . ∨Meim ,t−1),

where ei1 , . . . , eim is an enumeration of all transitions in the state diagram which set
flag f . The rest of the reduction proceeds without difficulty. ��

Lemma 9 (�). STEINER TREE(k logn)≤pptNDTM HALTING WITH FLAGS(k logn).
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6 Discussion

We have defined a hierarchy of PPT-closed classes, akin to the M- and W-hierarchy
of parameterized intractability, in order to build up a completeness theory for polyno-
mial (Turing) kernelization. The fundamental hardness class is called WK[1] and we
conjecture that no WK[1]-hard problem admits a polynomial Turing kernelization. At
present, the state of the art in lower bounds for kernelization does not seem to provide
a way to connect this conjecture to standard complexity assumptions. However, there
is collective evidence by a wealth of natural problems that are complete for WK[1] and
for which polynomial Turing kernels seem unlikely. (Recall that admittance of Turing
kernels is preserved by PPTs and hence a single polynomial Turing kernel would trans-
fer to all WK[1] problems.) Of course, our examples provide only a partial image of the
WK[1] landscape. For example, the various kernelizability dichotomies that have been
shown for CSP problems [25,23] can be shown to imply dichotomies between prob-
lems with polynomial kernels and WK[1]-complete problems (and in some cases the
third class of W[1]-hard problems). We take this as further evidence of the naturalness
of the class.

On the more structural side, we have discussed the relation to the earlier VC-hierarchy
of Harnik and Naor [18] which, from our perspective, is restricted to NP-problems pa-
rameterized by witness size. Under this interpretation their hierarchy folds into ours,
with the levels of their hierarchy mapping to a subset of the levels of our hierarchy.

Many questions remain. One is the WK[1]-hardness of PATH(k) and CYCLE(k);
for these problems, we have only lower bound proofs in the framework of Bodlaender
et al. [4], leaving the question of Turing kernels open. There are also several prob-
lems, including the work on structural graph parameters by Bodlaender, Jansen, and
Kratsch, e.g. [6], which we have not investigated. It is also unknown whether MULTI-
TAPE NDTM HALTING(k log n) is in WK[2]. Furthermore, it would be interesting to
know some natural parameterized problems which are WK[2]-complete under a stan-
dard parameter (e.g., k rather than k logn).

Still, the main open problem is to provide (classical or parameterized) complexity
theoretical implications of polynomial Turing kernelizations for WK[1]. More modest
variants of this goal include excluding only OR-kernels, and/or considering the general
problem of Turing machine acceptance parameterized by witness length.
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Abstract. We investigate whether an n-vertex instance (G, k) of Tree-

width, asking whether the graph G has treewidth at most k, can effi-
ciently be made sparse without changing its answer. By giving a special
form of or-cross-composition, we prove that this is unlikely: if there
is an ε > 0 and a polynomial-time algorithm that reduces n-vertex
Treewidth instances to equivalent instances, of an arbitrary problem,
with O(n2−ε) bits, then NP ⊆ coNP/poly and the polynomial hierarchy
collapses to its third level.

Our sparsification lower bound has implications for structural pa-
rameterizations of Treewidth: parameterizations by measures that do
not exceed the vertex count, cannot have kernels with O(k2−ε) bits
for any ε > 0, unless NP ⊆ coNP/poly. Motivated by the question of
determining the optimal kernel size for Treewidth parameterized by
vertex cover, we improve the O(k3)-vertex kernel from Bodlaender et
al. (STACS 2011) to a kernel with O(k2) vertices. Our improved kernel is
based on a novel form of treewidth-invariant set. We use the q-expansion
lemma of Fomin et al. (STACS 2011) to find such sets efficiently in graphs
whose vertex count is superquadratic in their vertex cover number.

1 Introduction

The task of preprocessing inputs to computational problems to make them less
dense, called sparsification, has been studied intensively due to its theoretical and
practical importance. Sparsification, and more generally, preprocessing, is a vital
step in speeding up resource-demanding computations in practical settings. In
the context of theoretical analysis, the sparsification lemma due to Impagliazzo
et al. [21] has proven to be an important asset for studying subexponential-
time algorithms. The work of Dell and van Melkebeek [15] on sparsification for
Satisfiability has led to important advances in the area of kernelization lower
bounds. They proved that for all ε > 0 and q ≥ 3, assuming NP �⊆ coNP/poly,
there is no polynomial-time algorithm that maps an instance of q-CNF-SAT

on n variables to an equivalent instance on O(nq−ε) bits — not even if it is an
instance of a different problem.

This paper deals with sparsification for the task of building minimum-width
tree decompositions of graphs, or, in the setting of decision problems, of de-
termining whether the treewidth of a graph G is bounded by a given integer k.
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Preprocessing procedures forTreewidth have been studied in applied [10,11,26]
and theoretical settings [3,7]. A team including the current author obtained [7]
a polynomial-time algorithm that takes an instance (G, k) of Treewidth, and
produces in polynomial time a graph G′ such that tw(G) ≤ k if and only
if tw(G′) ≤ k, with the guarantee that |V (G′)| ∈ O(vc3) (vc denotes the size
of a smallest vertex cover of the input graph). A similar algorithm was given that
reduces the vertex count of G′ to O(fvs4), where fvs is the size of a smallest
feedback vertex set in G. Hence polynomial-time data reduction can compress
Treewidth instances to a number of vertices polynomial in their vertex cover
(respectively feedback vertex) number. On the other hand, the natural parame-
terization of Treewidth is trivially and-compositional, and therefore does not
admit a polynomial kernel unless NP ⊆ coNP/poly [3,17]. These results give an
indication of how far the vertex count of a Treewidth instance can efficiently
be reduced in terms of various measures of its complexity. However, they do not
tell us anything about the question of sparsification: can we efficiently make a
Treewidth instance less dense, without changing its answer?

Our Results. Our first goal in this paper is to determine whether nontrivial
sparsification is possible for Treewidth instances. As a simple graph G on n
vertices can be encoded in n2 bits through its adjacency matrix, Treewidth

instances consisting of a graph G and integer k in the range [1 . . . n] can be
encoded in O(n2) bits. We prove that it is unlikely that this trivial sparsification
scheme for Treewidth can be improved significantly: if there is a polynomial-
time algorithm that reduces Treewidth instances on n vertices to equivalent
instances of an arbitrary problem, with O(n2−ε) bits, for some ε > 0, then NP ⊆
coNP/poly and the polynomial hierarchy collapses [27]. We prove this result
by giving a particularly efficient form of or-cross-composition [9]. We embed
the or of t n-vertex instances of an NP-complete graph problem into a Tree-

width instance with O(n
√
t) vertices. The construction is a combination of

three ingredients. We carefully inspect the properties of Arnborg et al.’s [1] NP-
completeness proof for Treewidth to obtain an NP-complete source problem
called Cobipartite Graph Elimination that is amenable to composition. Its
instances have a restricted form that ensures that good solutions to the composed
Treewidth instance cannot be obtained by combining partial solutions to two
different inputs. Then, like Dell and Marx [14], we use the layout of a 2 ×

√
t

table to embed t instances into a graph on O(nO(1)
√
t) vertices. For each way

of choosing a cell in the top and bottom row, we embed one instance into the
edge set induced by the vertices representing the two cells. Finally, we use ideas
employed by Bodlaender et al. [8] in the superpolynomial lower bound for Tree-

width parameterized by the vertex-deletion distance to a clique: we compose
the input instances of Cobipartite Graph Elimination into a cobipartite
graph to let the resulting Treewidth instance express a logical or, rather than
an and. Our proof combines these three ingredients with an intricate analysis of
the behavior of elimination orders on the constructed instance. As the treewidth
of the constructed cobipartite graph equals its pathwidth [24], the obtained
sparsification lower bound for Treewidth also applies to Pathwidth.
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Our sparsification lower bound has immediate consequences for parameter-
izations of Treewidth by graph parameters that do not exceed the vertex
count, such as the vertex cover number or the feedback vertex number. Our re-
sult shows the impossibility of obtaining kernels of bitsize O(k2−ε) for such pa-
rameterized problems, assuming NP �⊆ coNP/poly. The kernel for Treewidth

parameterized by vertex cover (Treewidth [vc]) obtained by Bodlaender et
al. [6] contains O(vc3) vertices, and therefore has bitsize Ω(vc4). Motivated by
the impossibility of obtaining kernels with O(vc2−ε) bits, and with the aim of
developing new reduction rules that are useful in practice, we further investi-
gate kernelization for Treewidth [vc]. We give an improved kernel based on
treewidth-invariant sets : independent sets of vertices whose elimination from the
graph has a predictable effect on its treewidth. While finding such sets seems
to be hard in general, we show that the q-expansion lemma, previously em-
ployed by Thomassé [25] and Fomin et al. [19], can be used to find them when
the graph is large with respect to its vertex cover number. The resulting kernel
shrinks Treewidth instances to O(vc2) vertices, allowing them to be encoded
in O(vc3) bits. Thus we reduce the gap between the upper and lower bounds
on kernel sizes for Treewidth [vc]. Our new reduction rule for Treewidth

[vc] relates to the old rules like the crown-rule for k-Vertex Cover relates to
the high-degree Buss-rule [12]: by exploiting local optimality considerations, our
reduction rule does not need to know the value of k.

Related Work. While there is an abundance of superpolynomial kernel lower
bounds, few superlinear lower bounds are known for problems admitting poly-
nomial kernels. There are results for hitting set problems [15], packing prob-
lems [14,20], and for domination problems on degenerate graphs [13].

2 Preliminaries

Parameterized Complexity and Kernels. A parameterized problem Q is a
subset of Σ∗×N. The second component of a tuple (x, k) ∈ Σ∗×N is called the
parameter [16,18]. The set {1, 2, . . . , n} is abbreviated as [n]. For a finite set X
and integer i we use

(
X
i

)
to denote the collection of size-i subsets of X .

Definition 1 (Generalized kernelization). Let Q,Q′ ⊆ Σ∗ × N be parame-
terized problems and let h : N → N be a computable function. A generalized ker-
nelization forQ intoQ′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗×N,
takes time polynomial in |x|+ k and outputs an instance (x′, k′) such that:

– |x′| and k′ are bounded by h(k).
– (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernelization, or in short a kernel, for Q if Q′ = Q. It is a
polynomial (generalized) kernelization if h(k) is a polynomial.

Cross-Composition. To prove our sparsification lower bound, we use a variant
of cross-composition tailored towards lower bounds on the degree of the polyno-
mial in a kernel size bound. The extension is discussed in the journal version [9]
of the extended abstract on cross-composition [6].



On Sparsification for Computing Treewidth 219

Definition 2 (Polynomial equivalence relation). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in time polynomial in |x|+ |y|.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Definition 3 (Cross-composition). Let L ⊆ Σ∗ be a language, let R be a
polynomial equivalence relation on Σ∗, let Q ⊆ Σ∗ ×N be a parameterized prob-
lem, and let f : N → N be a function. An or-cross-composition of L into Q (with
respect to R) of cost f(t) is an algorithm that, given t instances x1, x2, . . . , xt ∈
Σ∗ of L belonging to the same equivalence class of R, takes time polynomial
in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

– The parameter k is bounded by O(f(t) ·(maxi |xi|)c), where c is some
constant independent of t.

– (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

Theorem 1 ([9, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N
be a parameterized problem, and let d, ε be positive reals. If L is NP-hard under
Karp reductions, has an or-cross-composition into Q with cost f(t) = t1/d+o(1),
where t denotes the number of instances, and Q has a polynomial (generalized)
kernelization with size bound O(kd−ε), then NP ⊆ coNP/poly.

Graphs. All graphs we consider are finite, simple, and undirected. An undirected
graph G consists of a vertex set V (G) and an edge set E(G) ⊆

(
V (G)

2

)
. The

open neighborhood of a vertex v in graph G is denoted NG(v), while its closed
neighborhood is NG[v]. The open neighborhood of a set S ⊆ V (G) is NG(S) :=⋃

v∈S NG(v) \ S, while the closed neighborhood is NG[S] := NG(S) ∪ S. If S ⊆
V (G) then G[S] denotes the subgraph of G induced by S. We use G−S to denote
the graph G[V (G)\S]. A graph is cobipartite if its edge-complement is bipartite.
Equivalently, a graph G is cobipartite if its vertex set can be partitioned into
two sets X and Y , such that both G[X ] and G[Y ] are cliques. A matching M
in a graph G is a set of edges whose endpoints are all distinct. The endpoints of
the edges in M are saturated by the matching. For disjoint subsets A and B of a
graph G, we say that A has a perfect matching into B if there is a matching that
saturates A ∪ B such that each edge in the matching has exactly one endpoint
in each set. If {u, v} is an edge in graph G, then contracting {u, v} into u is the
operation of adding edges between u and NG(v) while removing v. A graph H
is a minor of a graph G, if H can be obtained from a subgraph of G by edge
contractions.

Treewidth and Elimination Orders.While treewidth [2] is commonly defined
in terms of tree decompositions, for our purposes it is more convenient to work
with an alternative characterization in terms of elimination orders. Eliminating
a vertex v in a graph G is the operation of removing v while completing its open
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neighborhood into a clique, i.e., adding all missing edges between neighbors of v.
An elimination order of an n-vertex graph G is a permutation π : V (G) → [n] of
its vertices. Given an elimination order π of G, we obtain a series of graphs by
consecutively eliminating π−1(1), . . . , π−1(n) from G. The cost of eliminating a
vertex v according to the order π, is the size of the closed neighborhood of v at
the moment it is eliminated. The cost of π on G, denoted cG(π), is defined as
the maximum cost over all vertices of G.

Theorem 2 ([2, Theorem 36]). The treewidth of a graph G is exactly one
less than the minimum cost of an elimination order for G.

Lemma 1 ([4, Lemma 4], cf. [23, Lemma 6.13]). Let G be a graph con-
taining a clique B ⊆ V (G), and let A := V (G) \ B. There is a minimum-cost
elimination order π∗ of G that eliminates all vertices of A before eliminating any
vertex of B.

Following the notation employed by Arnborg et al. [1] in their NP-completeness
proof, we say that a block in a graph G is a maximal set of vertices with the
same closed neighborhood. An elimination order π for G is block-contiguous
if for each block S ⊆ V (G), it eliminates the vertices of S contiguously. The
following observation implies that every graph has a block-contiguous minimum-
cost elimination order.

Observation 1. Let G be a graph containing two adjacent vertices u, v such
that NG[u] ⊆ NG[v]. Let π be an elimination order of G that eliminates v be-
fore u, and let the order π′ be obtained by updating π such that it eliminates u
just before v. Then the cost of π′ is not higher than the cost of π.

3 Sparsification Lower Bound for Treewidth

In this section we give the sparsification lower bound for Treewidth. We phrase
it in terms of a kernelization lower bound for the parameterization by the number
of vertices, formally defined as follows.

n-Treewidth

Input: An integer n, an n-vertex graph G, and an integer k.
Parameter: The number of vertices n.
Question: Is the treewidth of G at most k?

The remainder of this section is devoted to the proof of the following theorem.

Theorem 3. If n-Treewidth admits a (generalized) kernel of size O(n2−ε),
for some ε > 0, then NP ⊆ coNP/poly.

We prove the theorem by cross-composition. We therefore first define a suit-
able source problem for the composition in Section 3.1, give the construction
of the composed instance in Section 3.2, analyze its properties in Section 3.3,
and finally put it all together in Section 3.4. The proofs of statements marked
with a star (�) are deferred to the full version [22] of this work due to space
restrictions.
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3.1 The Source Problem

The sparsification lower bound for Treewidth will be established by cross-
composing the following problem into it.

Cobipartite Graph Elimination

Input: A cobipartite graph G with partite sets A and B, and a positive

integer k, such that the following holds: |A| = |B|, |A| is even, k < |A|
2 ,

and A has a perfect matching into B.
Question: Is there an elimination order for G of cost at most |A|+ k?

The NP-completeness proof extends the completeness proof for Treewidth [1].

Lemma 2 (�). Cobipartite Graph Elimination is NP-complete.

3.2 The Construction

We start by defining an appropriate polynomial equivalence relationship R. Let
all malformed instances be equivalent under R, and let two valid instances of
Cobipartite Graph Elimination be equivalent if they agree on the sizes of
the partite sets and on the value of k. This is easily verified to be a polynomial
equivalence relation.

Now we define an algorithm that combines a sequence of equivalent inputs into
a small output instance. As a constant-size no-instance is a valid output when
the input consists of solely malformed instances, in the remainder we assume
that the inputs are well-formed. By duplicating some inputs, we may assume
that the number of input instances t is a square, i.e., t = r2 for some integer r.
An input instance can therefore be indexed by two integers in the range [r].
Accordingly, let the input consist of instances (Gi,j , Ai,j , Bi,j , ki,j) for i, j ∈ [r],
that are equivalent under R. Thus the number of vertices is the same over all
partite sets; let this be n = |Ai,j | = |Bi,j | for all i, j ∈ [r]. Similarly, let k be
the common target value for all inputs. For each partite set Ai,j and Bi,j in the
input, label the vertices arbitrarily as a1i,j , . . . , a

n
i,j (respectively b1i,j , . . . , b

n
i,j).

We construct a cobipartite graph G′ that expresses the or of all the inputs, as
follows.

1. For i ∈ [r] make a vertex set A′
i containing n vertices â1i , . . . , â

n
i .

2. For i ∈ [r] make a vertex set B′
i containing n vertices b̂1i , . . . , b̂

n
i .

3. Turn
⋃

i∈[r]A
′
i into a clique. Turn

⋃
i∈[r]B

′
i into a clique.

4. For each pair i, j with i, j ∈ [r], we embed the adjacency of Gi,j into G′ as

follows: for p, q ∈ [n] make an edge {âpi , b̂
q
j} if {api,j , b

q
i,j} ∈ E(Gi,j).

It is easy to see that at this point in the construction, graph G′ is cobipartite.
For any i, j ∈ [r] the induced subgraph G′[A′

i ∪ B′
j ] is isomorphic to Gi,j by

mapping â	i to a	i,j and b̂	j to b	i,j . As Gi,j has a perfect matching between Ai,j

and Bi,j by the definition of Cobipartite Graph Elimination, this implies
that G′ has a perfect matching between A′

i and B′
j for all i, j ∈ [r]. These

properties will be maintained during the remainder of the construction.
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5. For each i ∈ [r], add the following vertices to G′:
– n checking vertices C′

i = {c1i , . . . , cni }, all adjacent to B′
i.

– n dummy vertices D′
i = {d1i , . . . , dni }, all adjacent to

⋃
j∈[r]A

′
j and to C′

i.

– n
2 blanker vertices X ′

i = {x1i , . . . , x
n/2
i }, all adjacent to A′

i.
6. Turn

⋃
i∈[r]A

′
i∪C′

i into a clique A′. Turn
⋃

i∈[r]B
′
i∪D′

i∪X ′
i into a clique B′.

The resulting graph G′ is cobipartite with partite sets A′ and B′. Define k′ :=
3rn+ n

2 + k. Observe that |A′| = 2rn and that |B′| = 2rn + rn
2 . Graph G′ can

easily be constructed in time polynomial in the total size of the input instances.

Intuition. Let us discuss the intuition behind the construction before proceeding
to its formal analysis. To create a composition, we have to relate elimination
orders in G′ to those for input graphs Gi,j . All adjacency information of the
input graphs Gi,j is present in G′. As A′ is a clique in G′, by Lemma 1 there
is a minimum-cost elimination order for G′ that starts by eliminating all of B′.
But when eliminating vertices of some B′

j∗ from G′, they interact simultaneously
with all sets A′

i (i ∈ [r]), so the cost of those eliminations is not directly related to
the cost of elimination orders of a particular instance Gi∗,j∗ . We therefore want
to ensure that low-cost elimination orders for G′ first “blank out” the adjacency
of B′ to all but one set A′

i∗ , so that the cost of afterwards eliminating B′
j∗

tells us something about the cost of eliminating G′
i∗,j∗ . To blank out the other

adjacencies, we need earlier eliminations to make B′ adjacent to all vertices
of

⋃
i∈[r]\{i∗}A

′
i. These adjacencies will be created by eliminating the blanker

vertices. For an index i ∈ [r], vertices in X ′
i are adjacent to A′

i and all of B′.
Hence eliminating a vertex inX ′

i indeed blanks out the adjacency ofB′ toA′
i. The

weights of the various groups (simulated by duplicating vertices with identical
closed neighborhoods) have been chosen such that low-cost elimination orders
of G′ starting with B′, have to eliminate r− 1 blocks of blankers X ′

i1
, . . . , X ′

ir−1

before eliminating any other vertex of B′. This creates the desired blanking-out
effect. The checking vertices C′

i (i ∈ [r]) enforce that after eliminating r−1 blocks
of blankers, an elimination order cannot benefit by mixing vertices from two or
more sets B′

i, B
′
i′ : each set B′

i from which a vertex is eliminated, introduces new
adjacencies between B′ and C′

i. Finally, the dummy vertices are used to ensure
that after one set B′

i ∪ D′
i is completely eliminated, the cost of eliminating the

remainder is small because |B′| has decreased sufficiently.

3.3 Properties of the Constructed Instance

The following type of elimination orders of G′ will be crucial in the proof.

Definition 4. Let i∗, j∗ ∈ [r]. An elimination order π′ of G′ is (i∗, j∗)-canonical
if π′ eliminates V (G) in the following order:

1. first all blocks of blanker vertices X ′
i for i ∈ [r] \ {i∗}, one block at a time,

2. then the vertices of B′
j∗ , followed by dummies D′

j∗ , followed by blankers X ′
i∗ ,

3. alternatingly a block B′
i followed by the corresponding dummies D′

i, until all
remaining vertices of

⋃
i∈[r]B

′
i ∪D′

i have been eliminated,
4. and finishes with the vertices

⋃
i∈[r]A

′
i ∪ C′

i in arbitrary order.
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Lemma 3 shows that the crucial part of a canonical elimination order is its
behavior on B′

j∗ .

Lemma 3 (�). Let π′ be an (i∗, j∗)-canonical elimination order for G′.

1. No vertex that is eliminated before the first vertex of B′
j∗ costs more than 3rn.

2. When a vertex of D′
j∗ ∪X ′

i∗ is eliminated, its cost does not exceed 3rn+ n
2 .

3. No vertex that is eliminated after X ′
i∗ costs more than 3rn.

The next lemma links this behavior to the cost of a related elimination order
for Gi∗,j∗ . Some terminology is needed. Consider an (i∗, j∗)-canonical elimina-
tion order π′ for G′, and an elimination order π for Gi∗,j∗ that eliminates all
vertices of Bi∗,j∗ before any vertex of Ai∗,j∗ . By numbering the vertices in Bi∗,j∗

(a partite set of Gi∗,j∗) from 1 to n, we created a one-to-one correspondence
between Bi∗,j∗ and B′

j∗ , the first set of non-blanker vertices eliminated by π′.
Hence we can compare the relative order in which vertices of Bi∗,j∗ are elimi-
nated in π and π′. If both π and π′ eliminate the vertices of Bi∗,j∗ in the same
relative order, then we say that the elimination orders agree on Bi∗,j∗ .

Lemma 4. Let π′ be an (i∗, j∗)-canonical elimination order of G′. Let π be an
elimination order for Gi∗,j∗ that eliminates all vertices of Bi∗,j∗ before any vertex
of Ai∗,j∗ . If π′ and π agree on Bi∗,j∗ , then cG′(π′) = 3rn+ n

2 − n+ cGi∗,j∗ (π).

Proof. Consider the graph G′
B obtained from G′ by performing the elimina-

tions according to π′ until we are about to eliminate the first vertex of B′
j∗ .

By Definition 4 this means that all blocks of blankers X ′
j for j �= j∗ have been

eliminated, and no other vertices. Using the construction of G′ it is easy to
verify that these eliminations have made all remaining vertices of B′ adjacent
to

⋃
i∈[r]\{i∗}A

′
i, and that no new adjacencies have been introduced to

⋃
i∈[r]C

′
i

or to A′
i∗ . Graph G′[A′

i∗ ∪ B′
j∗ ] was initially isomorphic to Gi∗,j∗ by the obvi-

ous isomorphism based on the numbers assigned to the vertices. As no vertex
adjacent to A′

i∗ has been eliminated yet, this also holds for G′
B[A

′
i∗ ∪B′

j∗ ].
Consider what happens when eliminating the first vertex v′ of B′

j∗ according
to π′. Let v ∈ Bi∗,j∗ be the corresponding vertex in Gi∗,j∗ . By the fact that the
elimination orders agree, v is the first vertex of Bi∗,j∗ to be eliminated under π.

The set NG′
B
[v′] contains C′

j∗ ,
⋃

j �=j∗ B
′
j ∪ D′

j,
⋃

i�=i∗ A
′
i, X

′
i∗ , D

′
j∗ , and the

vertices of G′[A′
i∗ ∪ B′

j∗ ] that correspond exactly to NGi∗,j∗ [v] by the isomor-
phism. So the cost of eliminating v′ from G′ exceeds the cost of eliminating v
from Gi∗,j∗ by exactly |C′

j∗ | + |
⋃

j �=j∗ B
′
j ∪ D′

j | + |
⋃

i�=i∗ A
′
i| + |X ′

i∗ | + |D′
j∗ | =

n + 2(r − 1)n + (r − 1)n + n
2 + n = 3rn + n

2 − n. Now observe that by the
isomorphism, eliminating v′ from G′ has exactly the same effect on the neigh-
borhoods of B′

j∗ into A′
i∗ , as eliminating v from Gi∗,j∗ has on the neighbor-

hoods of Bi∗,j∗ into Ai∗,j∗ . Thus after one elimination, the remaining vertices
of A′

i∗ ∪ B′
j∗ and Ai∗,j∗ ∪ Bi∗,j∗ induce subgraphs of G′ and Gi∗,j∗ that are

isomorphic. Hence we may apply the same argument to the next vertex that is
eliminated. Repeating this argument we establish that for each vertex in B′

j∗ ,
its elimination from G′ costs exactly 3rn+ n

2 − n more than the corresponding
elimination in Gi∗,j∗ .
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Now consider the cost of π on Gi∗,j∗ : it is at least n+1, as the first vertex to be
eliminated is adjacent to all ofBi∗,j∗ (the graph is cobipartite) and to at least one
vertex of Ai∗,j∗ (since the Cobipartite Graph Elimination instance Gi∗,j∗

has a perfect matching between its two partite sets). After all vertices of Bi∗,j∗

have been eliminated fromGi∗,j∗ , the remaining vertices cost at most n; there are
at most n vertices left in the graph at that point. Hence the cost of π on Gi∗,j∗

is determined by the cost of eliminating Bi∗,j∗ . For each vertex from that set
that is eliminated, π′ incurs a cost exactly 3rn+ n

2 − n higher. Hence cG′(π′) is
at least (3rn + n

2 − n) + (n + 1) = 3rn + n
2 + 1. By Lemma 3 the cost that π′

incurs before eliminating the first vertex of B′
j∗ is at most 3rn, the cost of

eliminating D′
j∗ ∪X ′

i∗ is at most 3rn+ n
2 , and the cost incurred after eliminating

the last vertex of B′
j∗ is at most 3rn. Hence the cost of π′ is determined by the

cost of eliminating the vertices of B′
j∗ . As this is exactly 3rn+ n

2 −n more than
the cost of π on Gi∗,j∗ , this proves the lemma. ��

The last technical step of the proof is to show that if G′ has an elimination
order of cost at most k′, then it has such an order that is canonical.

Lemma 5 (�). If G′ has an elimination order of cost at most k′, then there
are indices i∗, j∗ ∈ [r] such that G′ has an (i∗, j∗)-canonical elimination order
of cost at most k′.

3.4 Proof of Theorem 3

Having analyzed the relationship between elimination orders for G′ and for the
input graphs Gi,j (i, j ∈ [r]), we can complete the proof. By combining the
previous lemmata it is easy to show that G′ acts as the logical or of the inputs.

Lemma 6 (�). G′ has an elimination order of cost ≤ k′ ⇔ there are i, j ∈ [r]
such that Gi,j has an elimination order of cost ≤ n+ k.

Lemma 7. There is an or-cross-composition of Cobipartite Graph Elimi-

nation into n-Treewidth of cost
√
t.

Proof. In Section 3.2 we gave a polynomial-time algorithm that, given instances
(Gi,j , Ai,j , Bi,j , ki,j) of Cobipartite Graph Elimination that are equivalent
under R for i, j ∈ [r], constructs a cobipartite graph G′ with partite sets A′

and B′, and an integer k′. By Lemma 6 the resulting graph G′ has an elimination
order of cost k′ if and only if there is a yes-instance among the inputs. By the
correspondence between treewidth and bounded-cost elimination orders of Theo-
rem 2, this shows that G′ has treewidth at most k′−1 if and only if there is a yes-
instance among the inputs. The polynomial equivalence relationship ensured that
all partite sets of all inputs have the same number of vertices. For partite sets of
size n, the constructed graph G′ satisfies |A′| = 2rn and |B′| = 5rn

2 . The number
of vertices in G′ is n′ = 9rn

2 . Consider the n-Treewidth instance (G′, n′, k′−1).
It expresses the logical or of a series of r2 = t Cobipartite Graph Elimi-

nation instances using a parameter value of 9n
√
t

2 ∈ O(n
√
t). Hence the algo-

rithm gives an or-cross-composition of Cobipartite Graph Elimination into
n-Treewidth of cost

√
t. ��
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Theorem 3 follows from the combination of Lemma 7, Lemma 2, and Theorem 1.
Since the pathwidth of a cobipartite graph equals its treewidth [24] and the graph
formed by the cross-composition is cobipartite, the same construction gives an
or-cross-composition of bounded cost into n-Pathwidth.

Corollary 1. If n-Pathwidth admits a (generalized) kernel of size O(n2−ε),
for some ε > 0, then NP ⊆ coNP/poly.

4 Quadratic-Vertex Kernel for Treewidth [VC]

In this section we present an improved kernel for Treewidth [vc], which is
formally defined as follows.

Treewidth [vc]

Input: A graph G, a vertex cover X ⊆ V (G), and an integer k.
Parameter: |X |.
Question: Is the treewidth of G at most k?

Our kernelization revolves around the following notion.

Definition 5. Let G be a graph, let T be an independent set in G, and let ĜT

be the graph obtained from G by eliminating T ; the order is irrelevant as T is
independent. Then T is a treewidth-invariant set if for every v ∈ T , the graph ĜT

is a minor of G− {v}.

Lemma 8. If T is a treewidth-invariant set in G and Δ := maxv∈T degG(v),
then tw(G) = max(Δ,tw(ĜT )).

Proof. We prove that tw(G) is at least, and at most, the claimed amount.
(≥). As ĜT is a minor of G, we have tw(G) ≥ tw(ĜT ) (cf. [2]). If tw(ĜT ) ≥

Δ then this implies the inequality. So assume that Δ > tw(ĜT ). Let v ∈ T have
degree Δ. By assumption, ĜT is a minor of G − {v}. It contains all vertices
of NG(v) since T is an independent set. As NG(v) is a clique in ĜT , there is a
series of minor operations in G−{v} that turns NG(v) into a clique. Performing
these operations on G rather than G−{v} results in a clique on vertex set NG[v]
of size degG(v)+1 = Δ+1: the set NG(v) is turned into a clique, and v remains
unchanged. Hence G has a clique with Δ+1 vertices as a minor, which is known
to imply (cf. [2]) that its treewidth is at least Δ.

(≤). Consider an optimal elimination order π̂ for ĜT , which costs tw(ĜT )+1
by Theorem 2. Form an elimination order π for G by first eliminating all vertices
in T in arbitrary order, followed by the remaining vertices in the order dictated
by π̂. Consider what happens when eliminating the graph G in the order given
by π. Each vertex v ∈ T that is eliminated incurs cost degG(v)+1 ≤ Δ+1: as T
is an independent set, eliminations before v do not affect v’s neighborhood. Once
all vertices of T have been eliminated, the resulting graph is identical to ĜT , by
definition. As π matches π̂ on the vertices of V (G)\T , and π̂ has cost tw(ĜT )+1,
the total cost of elimination order π on G is max(Δ + 1,tw(ĜT ) + 1). By
Theorem 2 this completes this direction of the proof. ��
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Lemma 8 shows that when a treewidth-invariant set is eliminated from a
graph, its treewidth changes in a controlled manner. To exploit this insight in a
kernelization algorithm, we have to find treewidth-invariant sets in polynomial
time. While it seems difficult to detect such sets in all circumstances, we show
that the q-expansion lemma can be used to find a treewidth-invariant set when
the size of the graph is large compared to its vertex cover number. The following
auxiliary graph is needed for this procedure.

Definition 6. Given a graph G with a vertex cover X ⊆ V (G), we define
the bipartite non-edge connection graph HG,X . Its partite sets are V (G) \ X
and

(
X
2

)
\E(G), with an edge between a vertex v ∈ V (G) \X and a vertex x{p,q}

representing {p, q} ∈
(
X
2

)
\ E(G) if v ∈ NG(p) ∩NG(q).

For disjoint vertex subsets S and T in a graph G, we say that S is saturated
by q-stars into T if we can assign to every v ∈ S a subset f(v) ⊆ NG(v) ∩ T of
size q, such that for any pair of distinct vertices u, v ∈ S we have f(u)∩f(v) = ∅.
Observe that an empty set can trivially be saturated by q-stars.

Lemma 9 (�). Let (G,X, k) be an instance of Treewidth [vc]. If HG,X

contains a set T ⊆ V (G) \ X such that S := NHG,X (T ) can be saturated by
2-stars into T , then T is a treewidth-invariant set.

q-Expansion Lemma ([19, Lemma 12]). Let q be a positive integer, and
let m be the size of a maximum matching in a bipartite graph H with partite
sets A and B. If |B| > m · q and there are no isolated vertices in B, then there
exist nonempty vertex sets S ⊆ A and T ⊆ B such that S is saturated by q-stars
into T and S = NH(T ). Furthermore, S and T can be found in time polynomial
in the size of H by a reduction to bipartite matching.

Theorem 4. Treewidth [vc] has a kernel with O(|X |2) vertices that can be
encoded in O(|X |3) bits.

Proof. Given an instance (G,X, k) of Treewidth [vc], the algorithm con-
structs the non-edge connection graph HG,X with partite sets A =

(
X
2

)
\ E(G)

and B = V (G) \X . We attempt to find a treewidth-invariant set T ⊆ B. If B
has an isolated vertex v, then by definition of HG,X the set NG(v) is a clique
implying that {v} is treewidth-invariant. If B has no isolated vertices, we apply
the q-expansion lemma with q := 2 to attempt to find a set S ⊆ A and T ⊆ B
such that S is saturated by 2-stars into T and S = NHG,X (T ). Hence such a
set T is treewidth-invariant by Lemma 9. If we find a treewidth-invariant set T :

– If maxv∈T degG(v) ≥ k + 1 then we output a constant-size no-instance, as
Lemma 8 then ensures that tw(G) ≥ degG(v) > k.

– Otherwise we reduce to (ĜT , X, k) and restart the algorithm.

Each iteration takes polynomial time. As the vertex count decreases in each
iteration, there are at most n iterations until we fail to find a treewidth-invariant
set. When that happens, we output the resulting instance. The q-expansion
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lemma ensures that at that point, |B| ≤ 2m, where m is the size of a maximum
matching in HG,X . As m cannot exceed the size of the partite set A, which is

bounded by
(|X|

2

)
as there cannot be more non-edges in a set of size |X |, we find

that |B| ≤ 2
(|X|

2

)
upon termination. As vertex set B of the graph HG,X directly

corresponds to V (G)\X , this implies thatG has at most |X |+2
(|X|

2

)
vertices after

exhaustive reduction. Thus the instance that we output has O(|X |2) vertices.
We can encode it in O(|X |3) bits: we store an adjacency matrix for G[X ], and
for each of the O(|X |2) vertices v in V (G) \ X we store a vector of |X | bits,
indicating for each x ∈ X whether v is adjacent to it. ��

5 Conclusion

In this paper we contributed to the knowledge of sparsification for Treewidth

by establishing lower and upper bounds. Our work raises a number of questions.
We showed that Treewidth and Pathwidth instances on n vertices are

unlikely to be compressible into O(n2−ε) bits. Are there natural problems on
general graphs that do allow (generalized) kernels of size O(n2−ε)? Many prob-
lems admit O(k)-vertex kernels when restricted to planar graphs [5], which can
be encoded in O(k) bits by employing succinct representations of planar graphs.
Obtaining subquadratic-size compressions for NP-hard problems on classes of
potentially dense graphs, such as unit-disk graphs, is an interesting challenge.

In Section 4 we gave a quadratic-vertex kernel for Treewidth [vc]. While
the algorithm is presented for the decision problem, it is easily adapted to the
optimization setting (cf. [11]). The key insight for our reduction is the notion
of treewidth-invariant sets, together with the use of the q-expansion lemma to
find them when the complement of the vertex cover has superquadratic size. A
challenge for future research is to identify treewidth-invariant sets that are not
found by the q-expansion lemma; this might decrease the kernel size even further.
As the sparsification lower bound proves that Treewidth [vc] is unlikely to
admit kernels of bitsize O(|X |2−ε), while the current kernel can be encoded
in O(|X |3) bits, an obvious open problem is to close the gap between the upper
and the lower bound. Does Treewidth [vc] have a kernel with O(|X |) vertices?
If not, then is there at least a kernel with O(|X |2) rather than O(|X |3) edges?

For Pathwidth [vc], a kernel with O(|X |3) vertices is known [8]. Can this
be improved to O(|X |2) using an approach similar to the one used here? The
obvious pathwidth-analogue of Lemma 8 fails, as removing a low-degree simpli-
cial vertex may decrease the pathwidth of a graph. Finally, one may consider
whether the ideas of the present paper can improve the kernel size for Tree-

width parameterized by a feedback vertex set [7].
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Abstract. The Jump Number problem asks to find a linear extension
of a given partially ordered set that minimizes the total number of jumps,
i.e., the total number of consecutive pairs of elements that are incom-
parable originally. The problem is known to be NP-complete even on
posets of height one and on interval orders. It has also been shown to be
fixed-parameter tractable. Finally, the Jump Number problem can be
solved in time O∗(2n) by dynamic programming.

In this paper we present an exact algorithm to solve Jump Number

in O(1.8638n) time. We also show that the Jump Number problem on
interval orders can be solved by an O(1.7593n) time algorithm, and prove
fixed-parameter tractability in terms of width w by an O∗(2w) time algo-
rithm. Furthermore, we give an almost-linear kernel for Jump Number

on interval orders for parameterization by the number of jumps.

1 Introduction

A partially ordered set P = (X,≺P ) consists of a finite set X and an irreflexive,
antisymmetric, and transitive binary relation ≺P defined on X . We call P a
poset and ≺P its partial order; we often omit the subscript P . We denote the
size of X by n. We say that u and v are comparable if u ≺P v or v ≺P u,
otherwise u and v are incomparable. The comparability graph G(P ) has vertex
set X and two of its vertices are adjacent if and only if they are comparable
in P . A set of pairwise comparable elements of P is called a chain, and a set
of pairwise incomparable elements of P is called an anti-chain. The height of a
poset P , denoted h(P ), is the maximum size of a chain in P minus one. The
width of a poset P , denoted w(P ), is the maximum size of an anti-chain in P .

A total order L on X : v1 ≺L v2 ≺L . . . ≺L vn is a linear extension of the
poset P = (X,≺P ) if for all u, v ∈ X : u ≺P v implies u ≺L v. Let L: v1 ≺L

v2 ≺L . . . ≺L vn be any linear extension of P . Then for all i ∈ {1, 2, . . . , n− 1},
we call (vi, vi+1) a jump of L if vi and vi+1 are incomparable with respect to
P , i.e., vi �≺P vi+1. Otherwise when vi ≺P vi+1, we call (vi, vi+1) a bump of L.
The number of jumps of a linear extension L of P , denoted by s(P,L), is the
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total number of jumps of L, i.e., s(P,L) = |{i : (vi, vi+1) is a jump}|. Similarly
b(P,L) is defined as the total number of bumps of L. Clearly, for every linear
extension L of P we have s(P,L) + b(P,L) = n − 1 since any pair (vi, vi+1) is
either a jump or a bump of L. The jump number of a poset P , denoted s(P ),
is the minimum number of jumps taken over all linear extensions of P . A linear
extension L of a poset P is called jump-optimal if s(P,L) = s(P ). The bump
number of a poset P , denoted b(P ), is the minimum number of bumps taken
over all linear extensions of P .

The Jump Number problem. The Jump Number problem asks to compute
for a poset P = (X,≺P ) the minimum number of jumps s(P ) in any linear
extension L, or to find a jump-optimal linear extension L of P . The complexity
of the Jump Number problem has been studied extensively in the eighties and
nineties in poset theory and poset algorithmics [1–4]. Let us summarize the most
important results. The problem was shown to be NP-hard by Pulleyblank [5]; see
also [6]. Pulleyblank’s proof also shows that the problem is NP-hard for posets
of height one (see also [7]). Furthermore, Jump Number is known to be NP-
hard on interval orders [8], but was long known to admit a 3/2-approximation
algorithm [8–10]; this was recently improved by Krysztowiak [11] to factor 1.484.
It is polynomial time solvable on various classes of orders among them N-free
orders and 2-dimensional orders of height one [12, 13]. Finally let us mention that
contrary to the Jump Number problem the Bump Number problem asking to
minimize the total number of bumps over all linear extensions of a poset P is
polynomial time solvable [14].

The Jump Number problem has already been studied from a parameterized
point of view. First El-Zahar and Schmerl [15] gave a polynomial-time algorithm
for fixed number of jumps (an XP algorithm). Then McCartin established an
FPT algorithm that runs in time O(k2k!n) [16]. This is a very interesting result,
however it does not imply an exact exponential algorithm faster than the trivial
one based on listing all linear extensions of P and running in time O∗(n!).

Our work. We study the Jump Number problem on general posets and on in-
terval orders. Let us mention that interval orders form a class of orders which
has been studied extensively in poset theory and that there is a monograph
on interval orders [17]. We present exact algorithms which improve significantly
upon the standard O∗(2n) time dynamic programming algorithm. Both exact
algorithms are essentially refinements of this dynamic programming algorithm.
The first one solves the Jump Number problem on general posets in O(1.8638n)
time. The second algorithm solves the Jump Number problem on interval or-
ders in O(1.7593n) time. As a byproduct, we obtain single-exponential FPT-
algorithms for the Jump Number problem on interval orders when parameter-
ized either by width or by the number of jumps. For the latter parameter we also
establish an almost linear kernel, i.e., we can efficiently reduce to O(k) elements
and bit-size O(k log k).

Organization. Section 2 presents our exact algorithm for Jump Number on
general posets. In Section 3 we give a faster exact algorithm for the restricted
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case of interval orders and a single-exponential algorithm for Jump Number on
interval orders with respect to parameter width. In Section 4 we show the almost
linear kernelization for Jump Number on interval orders. For completeness,
Sections 5 and 6 recall the basic O∗(2n) dynamic programming algorithm and
some useful properties of binomial coefficients. Section 7 concludes the paper.

2 Computing the Jump Number in O(1.8638n) Time

In this section we present an exact algorithm to compute the jump number of any
given poset in time O(1.8638n) based on refinements of a well-known dynamic
programming approach.

Various problems on graphs ask to find a permutation of the elements of the
ground-set minimizing or maximizing some function depending on the permuta-
tion. They can often be solved using dynamic programming over subsets, which
typically yields an O∗(2n) algorithm. This algorithm design technique goes back
to the sixties and the Held-Karp algorithm for the Traveling Salesman Problem
(see [18]); it can also be applied to problems on posets. Doing this, the Jump

Number problem can be solved in time O∗(2n) using dynamic programming
over subsets improving upon trivial enumeration of all linear extensions in O∗(n!)
time. For some of these permutation problems improvements over the Θ∗(2n)
worst case running time of the general approach have been achieved. The num-
ber of such problems is small, among them exact computation of treewidth and
pathwidth [19, 20]. An outstanding result of this type is Björklund’s O(1.657n)
time randomized algorithm for Hamiltonian Circuit [21].

Recently, Cygan et al. [22] obtained such a result by showing that a precedence
constraint scheduling problem called Sched can be solved in time O∗((2− ε)n)
answering a question of Woeginger [23]; in fact their ε is very small: ε ≈ 10−15.
Note that their problem can be seen as a poset problem, namely searching for a
linear extension that minimizes a function. Thus, it comes as no surprise that the
starting point for their algorithm, an observation about the relation of matchings
in the comparability graph versus the number of initial sets, is also useful for
the Jump Number problem; we explain this in the following paragraph.

Let us shortly recall the part of [22] important to us. The authors start with
an O∗(2n) dynamic programming algorithm for Sched. Its running time is es-
sentially given by its number of subproblems. Each useful subproblem is called
an initial set, namely a set of the first elements of a linear extension already
fixed during the dynamic programming. Clearly, the number of initial sets is at
most 2n. Achieving a better upper bound on the number of initial sets provides
a refined running time bound for the dynamic programming algorithm. Since the
algorithm constructs only linear extensions of P , and since u ≺P v implies that u
occurs before v in any linear extension of P , there is no initial set containing v
but not u. This is used to achieve an upper bound on the number of initial sets
as follows. Let M be a maximum matching of the comparability graph G(P )
which can be computed in polynomial time [24]. Then for all {u, v} ∈ M it holds
that u and v are comparable in P , and thus if for example u ≺P v then no
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initial set contains v but not u. Consequently the number of initial sets is at
most 2n−2|M| · 3|M|. Hence if M is large, i.e., |M | ≥ cn for large enough c, to be
fixed later, then the running time will be O∗((2 − ε)n) for some ε > 0.

This refined analysis via initial sets also applies to Jump Number (and to
various other problems). In the case of a small maximum matching problem-
specific ideas are required. For Jump Number it turns out that there is a single
algorithm that handles both cases, i.e., small and large maximum matchings,
and that explores the above number of subproblems when M is large; if M is
small then more subproblems can be omitted, as we shall see.

Let us fix some poset P = (X,≺P ) and let M be a maximum matching
of G(P ) with |M | = cn; note that 0 ≤ c ≤ 0.5. Let W denote the elements of X
that are not matched by M and let U := X \ W = V (M). Clearly, W is an
independent set in G(P ) and hence no two elements of W are comparable. Note
that |W | = n− 2cn. Let L = v1 ≺L v2 ≺L . . . ≺L vn be a linear extension of P
with minimum total number of jumps, and thus with maximum total number of
bumps. Let s(L, P ) = s(P ) = k, thus b(L, P ) = n− k − 1. The jumps of L give
a chain partition of L into C1, C2, . . . Ck+1 where for all i,

Ci = vti ≺P vti+1 ≺P . . . ≺P vti+ri

is a chain of P , and (vti−1, vti) is a jump for all i ∈ {2, 3, . . . , k+ 1}. Since W is
an anti-chain of P every chain Ci contains at most one element of W .

Note that only non-trivial chains, i.e., those containing at least two elements,
of the chain partition of L contain bumps. Thus to count the total number
of bumps of L it suffices to consider only the non-trivial chains. Furthermore,
everyW -vertex in a non-trivial chain of the partitionC1, C2, . . . , Ck+1 is adjacent
to a vertex of U in G. Thus these edges form a matching in G. Since M is a
maximum matching this implies that at most |M | ≤ cn vertices of W belong to
non-trivial chains. Hence it suffices to compute the maximum number of bumps
on posets P [W ′ ∪ U ] over all W ′ ⊆ W satisfying |W ′| ≤ |M | ≤ cn. Note that
we can always add the ignored elements of W \ W ′ while retaining a linear
extension with at least the same number of bumps: For w ∈ W \W ′ consider
adding it at the latest possible spot in a given linear extension, i.e., right before
the first element x with w ≺P x. This has two immediate consequences. First,
all predecessors of w must also occur before x by transitivity, so there are no
conflicts with this position of w in the linear extension. Second, we create at
least the bump (w, x) and remove at most one bump before x; no decrease in
total bumps. (If there is no such x then we insert at the end. Clearly, no conflicts
are created and no bumps are removed.) Hence, the maximum number of bumps
found for P [W ′ ∪ U ] indeed transfers to P . From this the correct (minimum)
jump number of P can be derived.

Note that, when computing the jump number of any P [W ′ ∪ U ], we again
benefit from the fact that the matching M limits the possible initial sets. Thus,
the number of necessary subproblems can be bounded by the number of choices
for W ′ ∈

(
W
≤cn

)
, i.e., the number of subsets of W of size up to cn, times 3|M| =

3cn. Thus we get an upper bound of
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n− 2cn

≤ cn

)
· 3cn.

If 0.5 ≥ c ≥ 0.25 then this can be bounded by 1.8613n as follows.(
n− 2cn

≤ cn

)
· 3cn ≤ 2n−2cn · 2log2 3·cn = 2n−2cn+log2 3·cn = 2n·(1−(2−log2 3)c)

Now, we use c ≥ 0.25 and (2− log2 3) > 0.

≤ 2n·(1−(2−log2 3)0.25) =
(
20.5+0.25 log2 3

)n
< 1.8613n

Otherwise, if 0 ≤ c ≤ 0.25, then 0 ≤ c ≤ 0.5·(1−2c), i.e., cn ≤ 0.5·(n−2cn), and
hence Lemmas 3 and 4 (1) apply. Thus, to maximize over all values 0 ≤ c ≤ 0.25
up to polynomial factor, we compute the maximum value of the function

f(c) =
(1− 2c)(1−2c)

cc · (1− 3c)(1−3c)
· 3c

The maximum is achieved for c0 ≈ 0.2405117 . . . and implies a running time
of O(1.8638n). Together, both cases yield the following result.

Theorem 1. Jump Number can be solved in time O(1.8638n).

3 Algorithms for Interval Orders

A partially ordered set P = (X,≺P ) is an interval order if there is a collection I
of intervals of the real line and a bijection assigning to each element v ∈ X an
interval I(v) such that for all x, y ∈ X :

x ≺P y ⇔ I(x) < I(y),

where I(x) < I(y) means that interval I(x) appears to the left of interval I(y).
Then I is called an interval model of P . We may assume that all endpoints
of intervals in I are pairwise different and that {1, 2, . . . , 2n} is the set of all
endpoints. Furthermore, for each interval i we denote its left endpoint by li and
its right endpoint by ri. With this notation we have I(x) < I(y) if and only
if rI(x) < lI(y).

It is a well-known property of interval orders that they have at most nmaximal
anti-chains [7]. This can easily be seen as follows. The comparability graph G(P )
of an interval order P with interval model I is the complement of an interval
graph with interval model I. Consequently a maximal anti-chain of P is a max-
imal clique of the interval graph G(P ), and an interval graph has at most n
maximal cliques. Thus P has at most n maximal anti-chains.

Lemma 1. An interval order P on n elements and of width w(P ) has at most n·
2w(P ) initial sets.
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Proof. Let I be an initial set of poset P . Then, as we have discussed, x ∈ I
and y ≺ x implies y ∈ I. Hence x ∈ I implies that all predecessors of x also
belong to I. Moreover, any initial set I of a poset P can be described as a union
of predecessor sets: I = I(W ) = Pred(W ) = ∪x∈W {y : y ≺ x} where W is
the set of all maximal elements in the poset induced by I. Hence W is an anti-
chain of P , and thus there is a bijection between the initial sets of P and the
anti-chains of P .

Let P be any interval order. Since an interval order has at most n maximal
anti-chains [7], and each of them has size at most w(P ) and thus at most 2w(P )

subsets, it follows that P has at most n · 2w(P ) anti-chains and thus n · 2w(P )

initial sets. ��

Lemma 1 implies that Jump Number parameterized by width is fixed-
parameter tractable on interval orders by a single-exponential algorithm: Indeed,
it suffices to run the basic dynamic programming algorithm restricted to all sub-
problems that correspond to one of the O(n ·2w) initial sets, giving time O∗(2w).
Furthermore, since s(P ) ≥ w(P )− 1 for every poset P , this immediately implies
a single-exponential algorithm to solve Jump Number parameterized by number
of jumps.

Theorem 2. Jump Number on interval orders can be solved in time O∗(2w)
where w denotes the width of the given poset. It can be decided in time O∗(2k)
whether the jump number of an interval order is at most k.

Now let us describe our exact algorithm. If w(P ) ≤ cn for sufficiently small c
then the exact exponential algorithm is using the O∗(2w) algorithm which takes
time O∗(2cn). This happens if c ≤ c0 for some c0 ≥ 0.8 that we will fix later.

Now let us consider the case w(P ) = cn for large c, i.e., c ≥ c0. Let W be
a maximum anti-chain of P , which can be computed in polynomial time [25].
Then like in the exact exponential algorithm for general posets of the previous
section, such large anti-chains do not contribute a lot to the number of bumps
in an optimal linear extension. Let L be a linear extension with minimum total
number of jumps, respectively maximum total number of bumps. Suppose L
has k jumps then L generates a chain partition (C1, C2, . . . , Ck+1). Since W is
an anti-chain each chain Ci contains at most one element of W .

Each bump of L requires at least one incident element of U := X \W since W
is an anti-chain. Thus, since |U | = (1−c)·n there are at most (1−c)·n bumps, and
accordingly at most that many elements of W are involved in bumps. Therefore
the algorithm tries all sets W ′ of at most (1 − c)n elements of W , and for
each possible choice of W ′ and each subset U ′ ⊆ U the dynamic programming
algorithm computes the maximum number of bumps in any linear extension
of P [(U ′ ∪W ′)]. The largest number b of bumps achieved over all choices of W ′

is the maximum number of bumps in a linear extension of P , and thus s(P ) =
n− 1− b. The algorithm considers

(
cn

≤(1−c)n

)
· 2(1−c)n subproblems. Since |W | =

cn ≥ c0n ≥ 0.8n we have (1 − c)n ≤ 0.5cn and Lemma 4 (1) applies. Thus, we
get a bound of O∗(

(
cn

(1−c)n

)
· 2(1−c)n) for the runtime in this case.
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To balance the two running times O∗(2cn) and O∗(
(

cn
(1−c)n

)
· 2(1−c)n) we

use Lemma 3 and obtain c0 ≈ 0.81493469 . . . and an overall running time
of O(1.7593n).

Theorem 3. The Jump Number problem on interval orders is solvable in
time O(1.7593n).

4 Linear Kernel for Jump Number on Interval Orders

In this section we present a kernelization for Jump Number on interval orders
which reduces any given instance (P, k) to an equivalent instance with O(k)
elements and bit-size O(k log k). It is known that for any interval order (X,≺)
the successor sets Succ(x) := {y ∈ X | x ≺ y} are comparable with respect to
set inclusion, i.e., for any two x, y ∈ X we have Succ(x) ⊆ Succ(y) or Succ(y) ⊆
Succ(x). The same is true for the sets Pred(x) := {y | y ≺ x} of predecessors.
(In fact, either property is an alternative characterization of interval orders.) It
is known that any linear order ≺L of X such that

x ≺L y :⇐
{
Succ(x) � Succ(y),

Succ(x) = Succ(y) andPred(x) � Pred(y),

and breaking ties arbitrarily when Succ(x) = Succ(y) and Pred(x) = Pred(y) is a
linear extension of the interval order (X,≺); cf. [26]; it is called (decreasing) Succ-
order.

To obtain the kernelization we use results due to Felsner [26] who gave lower
bounds on the jump number of an interval order (X,≺) in terms of parameters
derived from the decreasing Succ-order. Given an interval order P = (X,≺)
let x1, . . . , xn denote the obtained ordering. Since the sets Succ(x) are well-
ordered we get that i < j implies Succ(xi) ⊇ Succ(xj). Felsner [26] describes
three different cases for the behavior of any pair xi, xi+1 in the ordering (note
that necessarily Succ(xi) ⊇ Succ(xi+1)):

1. Succ(xi) = Succ(xi+1): This is called an α-jump at xi and α denotes the
number of such jumps. Note that xi and xi+1 must be incomparable; else
one would appear in the successor set of the other causing disequality.

2. Succ(xi) � Succ(xi+1) and xi+1 /∈ Succ(xi): This is called a β-jump at xi
and β also denotes the number of such jumps. Again the elements must be
incomparable: We have xi ⊀ xi+1 since xi+1 /∈ Succ(xi), and xi+1 ≺ xi
would imply xi ∈ Succ(xi+1) � Succ(xi) �� xi.

3. If we have neither an α- nor a β-jump then it follows that Succ(xi) �
Succ(xi+1) and xi+1 ∈ Succ(xi). Clearly, xi ≺ xi+1.

Theorem 4 (Felsner [26]). For any interval order P , the minimum number
of jumps in any linear extension of P is at least

max

{
α, α+

β − α

3

}
.
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It is an immediate corollary that yes-instances (P, k) for Jump Number on
interval orders have α ≤ k and β ≤ 3k. Thus in order to obtain a kernelization it
suffices to reduce the number of times that the third case happens. The following
lemma gives a reduction rule for this. (The statement is equivalent to requiring
three consecutive elements in Succ-order that have neither α- nor β-jumps.)

Lemma 2. Let P = (X,≺) be an interval order and let x1, . . . , xn be an ordering
of X according to decreasing Succ-order. Let i ∈ {1, . . . , n− 3} such that

1. xi ≺ xi+1 ≺ xi+2 ≺ xi+3 and
2. Succ(xi) � Succ(xi+1) � Succ(xi+2) � Succ(xi+3).

Then P has the same jump number as P ′ := P − {xi+2}.

Proof. It is well-known that the jump number cannot increase by deleting ele-
ments: If we delete an element that has two incident bumps in a linear extension,
then (by transitivity) its two neighbors still have an incident bump after deletion
of the element; thus no jump is inserted. If there was at least one incident jump
to begin with then this balances the possible jump between the former neighbors
(after deletion of the element). Thus the jump number of P ′ is at most the jump
number of P .

For the converse consider a linear extension L′ of P ′. We will show that xi+2

can be inserted into L′ such that we get a linear extension L of P with at
most the same number of jumps. Obviously we have to insert xi+2 somewhere
between xi+1 and xi+3. We have to check that this causes no violation of compa-
rabilities between xi+2 and elements x ∈ X\{xi, . . . , xi+3}, and that the number
of jumps does not increase.

1. Let x ∈ {x1, . . . , xi−1}. Clearly, Succ(x) ⊇ Succ(xi). Since xi ≺ xi+1 we
get xi+1 ∈ Succ(xi) ⊆ Succ(x) and hence x ≺ xi+1. Thus there can be no
violated comparabilities between xi+2 and elements x ∈ {x1, . . . , xi−1} when
we insert xi+2 after xi+1. Furthermore, such x are not relevant regarding
preservation of the number of jumps: They appear before xi+1 in L′ and we
insert x after it.

2. Let x ∈ {xi+4, . . . , xn}. Clearly, Succ(xi+3) ⊇ Succ(x). We have to consider
the three possibilities for the ≺-relation between x and xi+2:
(a) If x ≺ xi+2 then xi+2 ∈ Succ(x) ⊆ Succ(xi+3). However, this means

that xi+3 ≺ xi+2 and contradicts antisymmetry of P .
(b) If xi+2 ≺ x then we get xi+1 ≺ xi+2 ≺ x. Thus in L′ the element xi+1

must precede x. Consequently, placing xi+2 after xi+1 and before any x
with xi+2 ≺ x causes no comparability violation.

(c) If neither x ≺ xi+2 nor xi+2 ≺ x then there is no comparability and
hence also no possible violation.

We know now that inserting xi+2 after xi+1 and right before the first element x
with xi+2 ≺ x does not cause any violation of comparabilities. Put differently,
none of the elements succeeding xi+2 can appear before xi+1 since they are
all successors of xi+1 too. We will now have to check that, additionally, this
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placement also does not increase the number of jumps. Clearly, additional jumps
can only happen adjacent to xi+2. Furthermore, xi+2 ≺ x is a bump. Thus, the
only bad case for us would be if the old linear extension L′ has a bump (x′, x) and
thus x′ ≺ x but our insertion gives x′ ≺L xi+2 ≺L x with x′ ⊀ xi+2 and xi+2 ≺ x
i.e., a jump and a bump in the new linear extension. Let us fix such choices of x
and x′ and discuss this case in detail.

We know from our previous discussion that x, x′ /∈ {x1, . . . , xi−1} since oth-
erwise we would have x ≺ xi+1 ≺ xi+2 (contradicting xi+2 ≺ x) or x′ ≺ xi+1 ≺
xi+2 (contradicting x′ ⊀ xi+2). By the same argument we get x, x′ /∈ {xi, xi+1}
since either of that would precede xi+2 in P . Thus x, x′ ∈ {xi+3, . . . , xn}.

1. If x′ = xi+3 then xi+2 ≺ xi+3 = x′; a contradiction to our choice of x as
the first element in the linear extension that succeeds xi+2 in P : Since we
assumed x′ ≺ x it must appear before x in L′ (and it also succeeds xi+2 in
the present case); we would have chosen x′ over x.

2. If x′ ∈ {xi+4, . . . , xn} then Succ(xi+3) ⊇ Succ(x′). Since x′ ≺ x we have x ∈
Succ(x′) ⊆ Succ(xi+3). This however means that xi+3 ≺ x which contradicts
our choice of x: It must appear before x in the linear extension and it does
succeed xi+2 too.

Summarizing, we may conclude that no such choice of x and x′ is possible. Thus,
placing xi+2 after xi+1 and right before the first element that succeeds xi+2 in P
causes no additional jumps and does not violate comparabilities. Hence, under
the assumptions of the lemma the partial orders P and P ′ := P − {xi+2} have
the same jump number. ��

We are now able to complete the kernelization.

Theorem 5. Jump Number on interval orders admits a kernelization with a
linear number of elements, i.e., given an instance (P, k) where P is an interval
order we get an equivalent instance with at most 9k + 3 elements. This can be
encoded in bit-size O(k log k).

Proof. Let (P, k) be an input for Jump Number where P = (X,≺) is an inter-
val order. We use the implicit reduction rule of Lemma 2: Order the elements
according to decreasing Succ-order: x1, . . . , xn. For i ∈ {1, . . . , n − 3}, if there
are no α- or β-jumps at xi, xi+1, and xi+2 then

1. xi ≺ xi+1 ≺ xi+2 ≺ xi+3 and
2. Succ(xi) � Succ(xi+1) � Succ(xi+2) � Succ(xi+3).

Thus, by Lemma 2 we may delete xi+2 from P without changing its jump num-
ber. Exhaustive application of this rule (possibly recomputing the Succ-order)
can be performed in polynomial time.

Afterwards, at any three consecutive elements xi, xi+1, and xi+2 for i ∈
{1, . . . , n − 3} in the sorted order there is at least one α- or β-jump. Thus, the
total number of elements is at most 3(α + β) + 3, where α and β denote the
number of α- and β-jumps, respectively. (Note that the +3 accounts for element



The Jump Number Problem: Exact and Parameterized 239

number n and the possibility of having exactly every third element be an α- or β-
jump.) By Theorem 4 due to Felsner [26] we have that the minimum number of
jumps is at least

max

{
α, α+

β − α

3

}
.

Thus, if this value exceeds k then we may safely return a no-instance (or simply
answer no). Otherwise, we can bound α+ β, i.e., the total number of α- and β-
jumps, as follows.

α+ β ≤ 2α+ β = 3α+ β − α = 3

(
α+

β − α

3

)
≤ 3k

This is tight for α = 0 and β = 3k. We get a bound of 3(α + β) + 3 ≤ 9k + 3
elements in instances that are reduced as outlined above.

Finally, let us address the claimed bit size of O(k log k). Recall the ordering
by decreasing value of Succ(x), and let x1, x2, . . . , x	 be such an ordering for a
reduced instance with 
 ≤ 9k+3. Clearly, Succ(x1) ⊇ Succ(x2) ⊇ . . . ⊇ Succ(x	).
Note that for each element x ∈ X there is a largest index i(x) ∈ {1, . . . , 
} such
that x ∈ Succ(xi(x)). Storing this index in O(log k) bits for each of the 
 elements
lets us retrieve the sequence of successor sets and hence all comparabilities. This
takes total size O(k log k). This completes the proof. ��

5 The O∗(2n) Dynamic Programming Algorithm

For the sake of completeness we present here the algorithm to compute the
jump number of a given poset P = (X,≺P ) in time O∗(2n) which is based on
a standard dynamic programming over all subsets of X . Let us recall that the
task is to compute the smallest possible number of jumps taken over all linear
extension of P .

To describe the algorithm we use the following notation. The subposet of P
induced by a subset A ⊆ X is denoted by P [A]. The set of all maximal elements
of a subposet P [A] is denoted by MAX(A). We also use a binary-valued func-
tion j(u, v) which is equal to 1 if u and v are not comparable and equal to 0
otherwise.

The algorithm computes the jump number of P by solving subproblems de-
noted by s[A, v] for all A ⊆ X and all v ∈ MAX(A). Thereby s[A, v] is the
smallest number of jumps in any linear extension of P [A] having v as last ele-
ment. The computation is based on the following recurrence:

s[A, v] =

{
minu∈MAX(A\{v})

(
s[A \ {v}, u] + j(u, v)

)
if v ∈ MAX(A),

∞ else.

Initially, the algorithm sets s[{a}, a] = 0 for all elements a of P (in fact, we will
see in a moment that this will only be needed for minimal elements). Then the
above recurrence is applied to all subproblems s[A, v] with |A| ≥ 2 in increasing
order of the size of A. Finally s(P ) = minv∈X s[X, v].
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The number of subproblems to be solved is at most n2n and the running
time is O(n22n). Without further efforts in the construction and analysis of the
dynamic programming algorithm its running time is O∗(2n) for every input.

Let us recall the observation that the dynamic programming can be restricted
to initial sets. Consider the case of a set A ⊆ X that is not initial and let v ∈
X \ A such that v ≺P u for some u ∈ A. Now, when we take the recurrence
for A′ = A ∪ {v} we see that v is not maximal in A′ since v ≺P u; thus we
get s[A′, v] = ∞. By extension this means that the partial solution for A cannot
contribute to the final outcome for s[X, ·]. Thus, we may safely skip all A that
are not initial sets (often also called down sets).

As a technical detail, to benefit from the small number of initial sets the
algorithm needs to enumerate all those sets with polynomial delay. (We would
not want to check all subsets for whether they are down sets/initial sets.) This
is straightforward and we omit a discussion at this point.

6 Binomial Coefficients

The following formula is crucial for the computation of the running times of
our exact exponential algorithms. It is an immediate consequence of a related
formula in [18, p.39].

Lemma 3. Let α and β reals such that 1 ≥ α ≥ β ≥ 0 and let n be a positive
integer. Then the following holds(

αn

βn

)
≤
(

αα

ββ(α− β)α−β

)n

.

The following lemma is an immediate consequence of basic properties of bi-
nomial coefficients, i.e., the well-known monotonicity and the fact that the max-
imum of

(
s
t

)
is approximately 2s and is achieved for t = 's/2(.

Lemma 4. Let α and β reals such that 1 ≥ α ≥ β ≥ 0 and let n be a positive
integer. (

αn

≤ βn

)
=

βn∑
i=0

(
αn

i

)
≤ n ·

(
αn

βn

)
if β < α/2 (1)

(
αn

≤ βn

)
=

βn∑
i=0

(
αn

i

)
≤ 2αn if β ≥ α/2 (2)

7 Conclusion

We have studied exact algorithms for the Jump Number problem. For the gen-
eral case on arbitrary posets we provide a O(1.8638n) time algorithm improving
over the O∗(2n) dynamic programming over (all) subsets algorithm. For inter-
val orders we improve the runtime to O(1.7593n). Along the way we prove that
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Jump Number is fixed-parameter tractable with runtime O∗(2w) on interval
orders when parameterized by the width w of the poset (the length of its longest
anti-chain). Since w− 1 is a lower bound on the jump number, this immediately
gives time O∗(2k) parameterized by the number of jumps. This motivates two
questions: (1) Does the fixed-parameter tractability by width extend also to gen-
eral posets? The algorithm of Colbourn and Pulleyblank [27] runs in polynomial
time for fixed width; in other words, Jump Number is in XP with respect to
width. (2) Can Jump Number be solved in time O∗(ck) in general?

Extending our results for Jump Number on interval orders, we provided a
polynomial kernelization with respect to the target number k of jumps. Con-
cretely, we reduce to 9k + 3 elements and bit-size O(k log k). Naturally, this
brings up the open question regarding the possibility of a polynomial kernel-
ization for Jump Number on general posets. We note that parameterization by
width, unsurprisingly, does not admit a polynomial kernelization, similar to most
other problems parameterized by “width-parameters” (e.g., treewidth, maximum
degree); here is a sketch of a composition: Take t instances of Jump Number

with width w each and asking for jump number at most k. Furthermore, using a
result of Kratsch et al. [28], we can start from the improvement version where all
these instances are yes for k+1, without requiring NP-hardness of this variant.
(Essentially, it suffices that we could solve Jump Number by queries to this
improvement variant.) Now, make elements x and y comparable, i.e., x ≺ y,
if x is in an instance with smaller number than y. It is easy to see that linear
extensions of the obtained order have to keep the elements of each instance con-
secutive: Indeed, every element must precede all elements from instances with
larger numbers. It follows that jumps are only incurred among elements from
the same instance and no jumps between them can be saved in comparison to
any linear extension of only these elements. Thus, if all instances are no and
hence need k+1 jumps then the total is t · (k+1). If at least one instance is yes,
then we get a total at most t · (k+1)− 1. Thus asking for at most t · (k+1)− 1
jumps implements the or of the instances. The width of the combined instance
is w since anti-chains can only have elements from a single instance.
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Abstract. Graph modification problems such as vertex deletion, edge
deletion or edge contractions are a fundamental class of optimization prob-
lems. Recently, the parameterized complexity of the contractibility

problem has been pursued for various specific classes of graphs. Usually,
several graph modification questions of the deletion variety can be seen to
be FPT if the graph class we want to delete into can be characterized by a
finite number of forbidden subgraphs. For example, to check if there exists
k vertices/edges whose removal makes the graph C4-free, we could simply
branch over all cycles of length four in the given graph, leading to a search
tree with O(4k) leaves. Somewhat surprisingly, we show that the corre-
sponding question in the context of contractibility is in fact W[2]-hard. An
immediate consequence of our reductions is that it is W[2]-hard to deter-
mine if at most k edges can be contracted to modify the given graph into
a chordal graph. More precisely, we obtain following results:

– C�-free Contraction is W[2]-hard if � ≥ 4 and FPT if � ≤ 3.
– P�-free Contraction is W[2]-hard if � ≥ 5 and FPT if � ≤ 4,

where P� denotes a path on � vertices.

We believe that this opens up an interesting line of work in understanding
the complexity of contractibility from the perspective of the graph classes
that we are modifying into.

1 Introduction

Graph modification problems constitute a broad and fundamental class of graph
optimization problems. Typically, we are interested in knowing if a given input
graph G is “close enough” to a graph H or a graph in a class of graphs H. In
the latter case, the goal is usually to see if G can be easily morphed into a graph
with a certain property, and the class H is used to describe the said property [3].
Some of the most prevalent notions of closeness are defined in terms of vertex or
edge deletion, or edge contraction. For example, when defined in terms of vertex
deletion, one might ask if at most k vertices can be deleted to make the graph
edgeless (here we are modifying into the class of empty graphs), and this is the
classic vertex cover problem.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 243–254, 2013.
c© Springer International Publishing Switzerland 2013
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In this work, we will restrict ourselves to the context of contractibility ques-
tions, and in particular, we would be contracting into graph classes that are de-
scribed in terms of their induced forbidden subgraphs. In a H-contractibility

problem, given a graph G and a positive integer k, the objective is to check if
there exists a subset of at most k edges which, if contracted, lead to a graph
in H. Such questions are usually NP-complete on general graphs, and have re-
cently received a lot of attention in the context of parameterized complexity.
For example, it is known that the bipartite contraction problem is FPT,
and this is the contraction analog of edge bipartization, which is the funda-
mental and well-studied question of whether k edges can be removed to make
a given graph bipartite [9,6]. This result involved an interesting combination of
techniques, including iterative compression, important separators, and irrelevant
vertices. Also, the problems of determining if k edges can be contracted to obtain
a tree, or a path, are known to be FPT using a non-trivial application of color
coding [7]. The planar contraction problem was also shown to be FPT re-
cently [5], again using irrelevant vertex techniques combined with an application
of Courcelle’s theorem.

Questions of contractibility have been investigated quite extensively when the
input graph is restricted to being chordal, usually yielding polynomial time al-
gorithms (see, for instance, [8,2]). However, the natural question of chordal

contraction, while known to be NP-complete [1], remains un-investigated in
the parameterized context. Before considering algorithms for chordal con-

traction, we first explored the apparently easier question of contracting edges
to obtain a C4-free graph, that is, a graph with no induced cycles of length four.
Notice that the vertex-deletion analog of this question is almost trivial from a
parameterized point of view: we could simply branch over all cycles of length
four in the given graph, leading to a search tree with O(4k) leaves. This is true
of most problems which require us to “hit” a constant number of constant-sized
forbidden subgraphs using a constrained budget. However, when we ask the same
question in the context of contraction, the scenario is dramatically different: it
is no longer true that a copy of a forbidden object can only be destroyed by
edges that form the object — rather, edges contracted from “outside” the copy
could also contribute towards its elimination. Therefore, the number of choices
for branching is no longer obviously bounded. In fact, we find that the C4-free

contraction question turns out to be W[2]-hard, which we find rather surpris-
ing, considering the finite nature of the forbidden subgraph characterization of
the graph class that we are interested in contracting to.

It turns out that our reduction also implies the hardness of chordal con-

traction. On a closely related note, we show that the Pi-free contraction

problem is also W[2]-hard. On the positive side, we show that it is FPT to
determine if k edges can be contracted so that the resulting graph is a com-
plete graph. In this case, the forbidden subgraph is just a single non-edge or an
induced path on two edges. Further, we remark that it is easily checked that Ki-

free contraction is FPT by the search tree technique. In this case, since the
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forbidden object, being a complete graph, cannot be “destroyed from outside”,
the branching is exhaustive.

The reason for describing the graph classH in terms of its forbidden subgraphs
is to open up questions regarding a general characterization of the parameterized
complexity of the problem in terms of the forbidden subgraphs, possibly analo-
gous to the theorem of Asano and Hirata [1]. In this work, our goal is to motivate
and initiate a study in this direction, by providing somewhat unexpected answers
to a few specific cases.

Our Contributions. Let H be a graph class that has a forbidden induced sub-
graph characterization, and let F be the forbidden induced subgraphs for H.
Then, the H Contraction question, or equivalently the F-free Contrac-

tion problem, is the following.

F-free contraction Parameter: k
Input: A graph G = (V,E) and a positive integer k
Question: Is there a subset of at most k edges such that G/F has no induced
copies of graphs H ∈ F?

The C	-free contraction problem is known to be NP-complete. [1] for
all fixed integer 
 ≥ 3. We show, by a simple reduction from the hitting set

problem, that the C	-free contraction problem is W[2]-hard for 
 ≥ 4. Con-
sequently, we establish that chordal contraction is W[2]-hard. Further, we
show that Pγ-free contraction is W[2]-hard for all γ ≥ 5, while contracting
to Ki-free graphs (for i ≥ 3) and cliques turn out to be FPT.

The paper is organized as follows. After introducing some notation and pre-
liminary notions in Section 2, we turn to the reductions. We first show that
the C4-free Contraction problem is W[2]-hard, and subsequently describe
a generalization. This is followed by the reduction for Pγ-free Contraction.
We conclude with the tractable cases and suggestions for future directions.

2 Preliminaries

In this section we state some basic definitions related to parameterized complex-
ity and graph theory, and give an overview of the notation used in this paper.
Our notation for graph theoretic notions is standard and follows Diestel [4]. We
summarize some of the frequently used concepts here. For a finite set V , a pair
G = (V,E) such that E ⊆ V 2 is a graph on V . The elements of V are called
vertices, while pairs of vertices (u, v) such that (u, v) ∈ E are called edges. We
also use V (G) and E(G) to denote the vertex set and the edge set of G, re-
spectively. In the following, let G = (V,E) and G′ = (V ′, E′) be graphs, and
U ⊆ V some subset of vertices of G. Let G′ be a subgraph of G. If E′ contains
all the edges {u, v} ∈ E with u, v ∈ V ′, then G′ is an induced subgraph of G,
induced by V ′, denoted by G[V ′]. For any U ⊆ V , G \U = G[V \U ]. For v ∈ V ,
NG(v) = {u | (u, v) ∈ E}.
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The contraction of edge xy in G removes vertices x and y from G, and replaces
them by a new vertex, which is made adjacent to precisely those vertices that
were adjacent to at least one of the vertices x and y. A graph G is contractible
to a graph H , or H-contractible, if H can be obtained from G by a sequence
of edge contractions. Equivalently, G is H-contractible if there is a surjection
ϕ : V (G) → V (H), with W (h) = {v ∈ V (G) | ϕ(v) = h} for everyh ∈ V (H),
that satisfies the following three conditions: (1) for every h ∈ V (H), W (h) is
a connected set in G; (2) for every pair hi, hj ∈ V (H), there is an edge in G
between a vertex of W (hi) and a vertex of W (hj) if and only if hihj ∈ E(H);
(3) W = {W (h) | h ∈ V (H)} is a partition of V (G). We say that W is an
H-witness structure of G, and the sets W (h), for h ∈ V (H), are called witness
sets of W . It is easy to see that if we contract every edge uv ∈ E(G), such that
u and v belong to the same witness set, then we obtain a graph isomorphic to
H . Hence G is H-contractible if and only if it has an H-witness structure.

A path is a sequence of vertices v1, v2, . . . , vr such that (vi, vi + 1) ∈ E for
all 1 ≤ i ≤ r − 1. A cycle is a sequence of vertices v1, v2, . . . , vr such that
(vi, vi + 1) ∈ E for all 1 ≤ i ≤ r − 1, and (vr , v1) ∈ E. A graph is said to be
chordal, or triangulated if it has no induced cycles of length four or more.
Parameterized Complexity. A parameterized problem is denoted by a pair
(Q, k) ⊆ Σ∗×N. The first component Q is a classical language, and the number
k is called the parameter. Such a problem is fixed–parameter tractable (FPT) if
there exists an algorithm that decides it in time O(f(k)nO(1)) on instances of
size n. Next we define the notion of parameterized reduction.

Definition 1. Let A,B be parameterized problems. We say that A is (uniformly
many:1) fpt-reducible to B if there exist functions f, g : N → N, a constant α ∈
N and an algorithm Φ which transforms an instance (x, k) of A into an instance
(x′, g(k)) of B in time f(k)|x|α so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

A parameterized problem is considered unlikely to be fixed-parameter tractable
if it isW [i]-hard for some i ≥ 1. To show that a problem isW [2]-hard, it is enough
to give a parameterized reduction from a knownW [2]-hard problem. Throughout
this paper we follow this recipe to show a problemW [2]-hard.

3 Hardness of Contraction Problems

In this section we address the parameterized complexity of Cj-free contrac-

tion, chordal contraction and Pj-free contraction. All the reductions
are from the Hitting Set problem, and have a similar underlying flavor. We
would begin by creating a separate induced instance of a forbidden object for
every set in the universe. Then we will typically have edges corresponding to the
elements in the universe, and the edges are placed to ensure that contracting
them will “kill” exactly those forbidden objects that correspond to the sets that
the element belongs to. Often, this is achieved with the following wireframe: we
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anchor all the edges corresponding to vertices of the universe to a common vertex,
and let the forbidden object “dangle” from the same vertex. Now, to encode the
instance, we add edges between the free end of the edges that correspond to the
vertices of the universe and a suitably chosen vertex of the relevant forbidden
objects. We would expect that this generic idea is realized in different ways
depending on what the forbidden objects are. In the rest of this section, we
will describe two instances of specific reductions in detail, formalizing the ideas
described above.

3.1 Contracting to C�-free Graphs

Our first exploration is to do with the problem of contracting to graphs that
contain no induced cycles of length 
. In the interest of exposition, we begin
by explaining the reduction for the case of reducing to C4-free graphs. Since it
turns out that the reduced instance has no longer induced cycles, this reduction
already implies the hardness of contracting k edges to obtain a chordal graph.
We will subsequently describe an easy generalization of the construction.

C4-free contraction Parameter: k
Input: A graph G = (V,E) and a positive integer k
Question: Is there a subset of at most k edges such that G/F has no induced
cycles of length four?

We reduce from the hitting set problem. Let (U,F) be an instance of hit-
ting set, where U = {x1, x2, . . . , xn} and F = {S1, S2, . . . , Sm}, where each
Si ⊆ U . We denote the reduced instance to be constructed by G = (V,E). The
vertex set consists of a special central vertex, denoted by g, one vertex for each
element xi ∈ U , denoted by ui, and three vertices for every set Si in the family
F , denoted by ai, bi, ci. We now describe the edges. The central vertex is adjacent
to every vertex other than {ci | 1 ≤ i ≤ m}. We impose a clique on the vertices
that correspond to elements of the universe. Next, we add the edges (aici) and
(bici) for every 1 ≤ i ≤ m. Finally, for every xi ∈ Sj , we add the edge (ui, cj).
This completes the construction. Formally, the instance is given as follows (also

see Figure 1). V := {g} ∪ {ui | 1 ≤ i ≤ n} ∪
(⋃

1≤i≤m{ai, bi, ci}
)
and

E :=

⎛⎝ ⋃
1≤i≤n,1≤j≤m

{(g, ui), (g, aj), (g, bj)}

⎞⎠ ∪

⎛⎝ ⋃
1≤j≤m

{(cj , aj), (cj , bj)}

⎞⎠
∪ {(ui, uj) | 1 ≤ i �= j ≤ n} ∪ {(ui, cj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m, and xi ∈ Sj}

We begin by identifying the induced cycles of length four in the graph G. This
will help us in showing the correctness of the reduction.

Proposition 1. The only induced cycles of length four in the graph G are
formed by the vertex sets given below:
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...

Clique

Fig. 1. The construction for reducing to C4-free graphs. In this example, the adja-
cencies corresponding to the hitting set are illustrated for the element xi, which is
assumed to belong to the sets S2, S3 and S4.

– {g, ai, ci, bi}, for all 1 ≤ i ≤ m,
– {ui, g, aj, cj}, for all xi ∈ Sj, and
– {ui, g, bj, cj}, for all xi ∈ Sj.

Proof. Clearly, for all 1 ≤ i ≤ m, the vertices {g, ai, bi, ci} induce a four-cycle,
and for all xi ∈ Sj, the vertices {ui, g, t, cj} (where t is either aj or bj) induce
a four-cycle as well. Assume, for the sake of contradiction, that there exists
an induced four-cycle other than the ones accounted for, with the vertex set
C := {w, x, y, z}. Let T denote the vertex subset {g} ∪ {ui | 1 ≤ i ≤ n}. Note
that |C ∩ T | ≤ 2, since G[T ] is a clique, and G[C] is an induced cycle of length
four. Notice that G \T is acyclic, so C intersects T in either one or two vertices.

First, consider the case when |T ∩ C| = 1, and without loss of generality, let
T ∩ C = {w}. Suppose w �= g. Then w = ui for some 1 ≤ i ≤ n. Notice that ui
is adjacent to vertices Ni := {cj | xi ∈ Sj}. However, it is easily checked that no
two vertices in Ni share a common neighbor in G\T . Indeed, for 1 ≤ p �= q ≤ m,
NG\T (cp) = {bp, ap} andNG\T (cq) = {bq, aq}. Therefore,N(x)∩N(y)∩G\T = ∅
for all x, y ∈ Ni, and w cannot be extended to an induced four-cycle from vertices
in G \T . On the other hand, let w = g. Then, let the neighbors of w in the four-
cycle C are x and z. Clearly, x := aj or x := bj , for some 1 ≤ j ≤ m. Without
loss of generality, let x := aj. Now, z �= bj , since in this case, the unique cycle

that w, x and z can be completed to is already accounted for. Thus, z := v
(a)
	 or

z := v
(b)
	 for some 
 �= j. Again, in this case, z and x share no common neighbors

in G \ T , and we are done.
The second case is when |T ∩ C| = 2. Again, without loss of generality, let

T ∩C = {w, x}. First, consider the situation when w �= g and x �= g. Let w = up
and x = uq. For w and x to be part of an induced four-cycle, w and x need to
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have private neighbors in G \ T that are adjacent. However, it is easy to verify
that N(up) ∪N(uq) in G \ T is an independent set. Therefore, there is no way
of extending this choice of w and x to a four-cycle. Finally, suppose w = g, and
let x = up. Every neighbor of up is ci for some i and every neighbor of g lies in
{aj, bj | 1 ≤ j ≤ m}. The only possibilities for forming induced four-cycles arise
from choosing ci ∈ N(up) and either aj or bj with j = i. However, note that all
of these cycles have been accounted for in the statement of the proposition. This
completes the proof. ��

We now turn to the correctness of the reduction.

Lemma 1. The graph G described as above is a Yes-instance of C4-free con-

traction if, and only if, (U,F) is a Yes-instance of hitting set.

Proof. First, suppose (U,F) is a Yes-instance of hitting set, and let S ⊆ U
be a solution. Consider the edges corresponding to S in G, that is, let F be
defined as {(g, ui) | for all ui ∈ S. We claim that G/F has no induced cycles
of length four. Clearly, the proposed solution has the appropriate size, since we
are picking one edge corresponding to every element of the hitting set, which is
assumed to have size at most k. We now argue that the suggested set indeed
forms a solution. First, notice that when the edge (g, ui) is contracted, g becomes
adjacent to every cj for which xi ∈ Sj . Since we are contracting vertices that
form a hitting set, notice that for every 1 ≤ j ≤ m, the edge (g, cj) is present in
G/F . By Proposition 1, the only induced four-cycles that need to be killed are
as follows:

– {g, ai, ci, bi}, for all 1 ≤ i ≤ m,
– {ui, g, aj, cj}, for all xi ∈ Sj , and
– {ui, g, bj, cj}, for all xi ∈ Sj .

Notice that the edge (g, cj) is a chord with respect to all these cycles, and this
completes the argument in the forward direction.

In the reverse direction, suppose we have a subset of k edges, say F , such
that G/F has no induced cycles of length four. We first argue that there exists
a solution F that does not use any edge from the C4 corresponding to the sets.
Suppose F contains an edge e that is of the form (g, aj) or (g, bj). Clearly,
contracting such an edge only affects the cycle {g, aj, cj , bj}. Let xi be any
element of Sj . Consider the set F � given by F \ {e} ∪ {(g, ui)}. It is easy to
see that F � is also a solution, since G/F � has a chord in the cycle {g, aj, cj , bj}.
A similar argument shows that if F contains an edge of the form (aj , cj) or
(bj , cj), then it can be replaced with an appropriately chosen edge of the form
(g, ui).

Finally, if F contains an edge e of the form (ui, cj), then notice that the
only four-cycles of G that become triangulated in G/{e} are: {g, aj, cj , bj},
{ui, g, aj, cj}, and {ui, g, bj, cj}. All of these cycles also become triangulated
when the edge (ui, g) is contracted instead. Therefore, in this case also, we note
that the set F � given by F \ {e} ∪ {(g, ui)} is also a solution.
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Let T � denote the set {u1, . . . , un}. By above arguments we have shown that
there exists a solution F that is contained in the clique formed on T �∪{g}. We are
now ready to describe a hitting set S of size at most k. Let W be a G/F -witness
structure of G and let W (g) be the witness set that contains the global vertex g.
Observe that since G[W (g)] is connected we have that the |W (g)| ≤ k + 1. We
take S as W (g) \ S. Clearly, the size of S is at most k. It is also straightforward
to see that S forms a hitting set. Indeed, consider any set Sj ∈ F . Now consider
the four-cycle given by {g, aj, cj , bj}. Since it is triangulated, it must be the case
that there is a xi ∈ Si for which ui ∈ W (g), and hence xi ∈ S. This concludes
the reverse direction of the reduction. ��

From Lemma 1, and the hardness of the hitting set problem, we have the
following:

Theorem 1. The C4-free contraction problem is W[2]-hard when param-
eterized by the size of the solution.

Notice that in the analysis of Proposition 1, it is evident that the graph has
no induced cycles of length five or more. Therefore, exactly the same arguments
can be used to derive the fact that the problem of Chordal Contraction,
where we ask if k edges can be contracted to make the input graph chordal, is
W[2]-hard when parameterized by k.

Corollary 1. The chordal contraction problem is W[2]-hard when param-
eterized by the size of the solution.

Now we consider the C	-free contraction problem for i ≥ 5. Notice that
if we replace the cycles of length four with cycles of length 
 in the reduction
above, and make the vertices in ui adjacent to the '(
/2)(th vertex in the cycle,
then our claims follow by very similar arguments. We describe the construction
and because of the similarity of the arguments defer the details of the correctness
to the full version of this paper.

As before, let (U,F) be an instance of hitting set, whereU = {x1, x2, . . . , xn}
and F = {S1, S2, . . . , Sm}, where each Si ⊆ U . We denote the reduced instance to
be constructed by G = (V,E). The vertex set consists of a special central vertex,
denoted by g, one vertex for each element xi ∈ U , denoted by ui, and (
 − 1)
vertices for every set Si in the family F , denoted by a1i , a

2
i , . . . , a

	−1
i .

We now describe the edges. The central vertex is adjacent to the vertices ui
and a1j , a

	−1
j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We impose a clique on the vertices

that correspond to elements of the universe. Next, we add the edges (g, a1i ),

(g, a	−1
i ) and (aji , a

j+1
i ) for every 1 ≤ i ≤ m and 1 ≤ j ≤ 
− 2. Finally, for every

xi ∈ Sj , we add the edge (ui, a
�	/2�
j ). This completes the construction.

The proof of correctness is along the same lines as for the case of C4-free
contraction. In fact, for values of 
 ≥ 6, there will be exactly m induced cycles of
length 
 in the graph G, as the cycles that use g, ui and half of a cycle formed by
a-vertices will not be of the requisite length, so the case analysis for the analog
of Proposition 1 only simplifies. The detailed arguments are deferred to avoid
repetition. This discussion brings us to the following theorem.
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Theorem 2. The C	-free contraction problem, for all fixed integer 
 ≥ 4,
is W[2]-hard when parameterized by the size of the solution.

3.2 Contracting to Pγ-free Graphs

For the purposes of our discussion in this section, a path of length γ is a path
on γ vertices and (γ − 1) edges. For the problem of contracting to graphs that
have no induced paths of length γ or longer (for γ ≥ 5) we give describe two
different reductions depending on the parity of γ. For the cases when γ ≤ 4, in
the next section, we describe approaches to FPT algorithms.

Pγ-free contraction Parameter: k
Input: A graph G = (V,E) and a positive integer k
Question: Is there a subset of at most k edges such that G/F has no induced
paths of length γ?

The Case of Odd-Length Paths. We first describe the reduction for the case
when γ is odd. Again, we reduce from hitting set. Let (U,F) be an instance
of hitting set, where U = {x1, x2, . . . , xn} and F = {S1, S2, . . . , Sm}, where
each Si ⊆ U . We denote the reduced instance to be constructed by G = (V,E).
The vertex set consists of a special central vertex, denoted by g, one vertex for
each element xi ∈ U , denoted by ui, and (γ − 1) vertices for every set Si in the

family F , denoted by a1i , a
2
i , . . . , a

�(γ/2)�
i , b1i , b

2
i , . . . , b

�(γ/2)�
i . For readability, we

use 
 to denote 'γ/2(. Also, let T = {u1, . . . , un} denote the subset of vertices
corresponding to the elements of the universe, and for every 1 ≤ i ≤ m, denote
the sets {a1i , a2i , . . . , a	i} {b1i , b2i , . . . , b	i} by Ai and Bi, respectively.

We now describe the edges. To begin with, we impose a clique on T∪{g}. Next,
add edges to ensure that the sets Ai and Bi induce paths of lengths 
, starting
at a1i and b1i , respectively. Further, we make the central vertex g adjacent to a1i
and b1i for all 1 ≤ i ≤ m. Notice that there is now an induced path of length
γ starting at a	i , going via g and ending at b	i for all 1 ≤ i ≤ m. To encode
the hitting set structure, for every xi ∈ Sj , make ui adjacent to all vertices in
Aj ∪Bj .

We now turn to the correctness of the reduction.

Lemma 2. Let γ be a fixed odd integer ≥ 5. The graph G described as above
is a Yes-instance of Pγ-free contraction if, and only if, (U,F) is a Yes-
instance of hitting set.

Proof. First, suppose (U,F) is a Yes-instance of hitting set, and let S ⊆ U be
a solution. Consider the edges corresponding to S in G, that is, let F be defined
as {(g, ui) | for all xi ∈ S}. We claim that G/F has no induced paths of length
γ. Clearly, the proposed solution has the appropriate size, since we are picking
one edge corresponding to every element of the hitting set, which is assumed to
have size at most k.



252 D. Lokshtanov, N. Misra, and S. Saurabh

We now argue that the suggested set indeed forms a solution. For the sake of
contradiction, let P be a path of length γ in G/F . First, note that g is a global
vertex in G/F and therefore P does not contain g. Notice that G\ (T ∪{g}) is a
disjoint union of paths of length 
, induced by the sets Ai, Bi, 1 ≤ i ≤ m. This
implies that P must contain at least one vertex from T , since 
 < γ. However,
since T induces a clique, P can use at most two vertices from T . Finally, since
γ ≥ 5, we conclude that P must contain at least two vertices from one of the
paths induced by Ai or Bi.

Let the path P be given by the sequence p1, p2, . . . , p5. Without loss of gener-
ality, let p1, p2 /∈ T∪{g} (if either or both of them belong to T∪{g}, then the last
two vertices do not belong to T∪{g} and the path can be considered backwards).
Note that both p1 and p2 belong to the same component of G \ (T ∪ {g}), in
other words, they belong to Aj or Bj for some 1 ≤ j ≤ m. Let pt be the nearest
vertex along P such that pt ∈ T . Now, the vertex pt is evidently adjacent to
both p1 and p2, creating a triangle in an induced path, which is a contradiction.

In the reverse direction, suppose we have a subset of k edges, say F , such that
G/F has no induced paths of length γ. We now propose a hitting set S based
on the edges in F . Let W be a G/F -witness structure of G and let W (v) denote
the witness set that contains the vertex v. We first consider the witness set of
the global vertex g. For every 1 ≤ i ≤ n such that W (g) contains the vertex ui,
include xi in S. For every 1 ≤ j ≤ m such that W (g) contains a vertex from
(Aj ∪ Bj), choose an arbitrary element of the set Sj in S. Further, for every
v /∈ T ∪ {g}, if W (v) contains a vertex ui ∈ T , include xi in S.

We first reason that the size of the set thus described is at most k. Let λ be
the number of vertices v /∈ T ∪ {g} for which W (v) included a vertex from T .
Then, it is easy to see that:⎛⎝ ∑

v∈G\(T∪{g})
|W (v)|

⎞⎠+ |W (g)| ≤ k + 1 + λ.

Since we incorporate, from the witness sets W (g) and W (v), no elements corre-
sponding to g or v (respectively), the number elements that feature in S is at
most k.

We now argue that S is indeed a hitting set for (U,F). In particular, we claim
that if Si is a set that is not hit by S, then G[Ai ∪ Bi ∪ {g}] is an induced
path of length γ in G/F , which would be the desired contradiction. Indeed,
consider G[Ai ∪ Bi ∪ {g}]. For any vertex v in (Ai ∪ Bi), the edge (g, v) was
not contracted (otherwise we would have included an element from Si in S by
construction). On the other hand, none of the vertices of T corresponding to
elements contained in Si were contracted to v, by the assumption that S does
not hit Si. All remaining vertices in W (g) come from Aj ∪ Bj for j �= i and
none of these vertices are adjacent to any of the vertices in Ai ∪Bi. Finally, we
also know that if the witness sets W (v) corresponding to v ∈ Ai ∪ Bi included
vertices from T , then they must necessarily contain vertices corresponding to
elements in Si. But this would again contradict our assumption that Si is not
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hit by S. The implication of this is that for all v ∈ Ai∪Bi, the witness sets W (v)
do not contain any elements other than v. Therefore, the path G[Ai ∪Bi ∪ {g}]
remains an induced path in G/F . This concludes the reverse direction of the
reduction. ��

The Case of Even-Length Paths. We now describe the reduction for the case
when γ is even. As in the case when γ was odd, we reduce from hitting set.
Let (U,F) be an instance of hitting set, where U = {x1, x2, . . . , xn} and
F = {S1, S2, . . . , Sm}, where each Si ⊆ U . We denote the reduced instance
to be constructed by G = (V,E). The vertex set consists of a special central
vertex, denoted by g, one vertex for each element xi ∈ U , denoted by ui, and
(γ− 3) vertices for every set Si in the family F , denoted by a1i , a

2
i , . . . , a

γ−3
i . For

readability, we use 
 to denote (γ − 3). Also, let T = {u1, . . . , un} denote the
subset of vertices corresponding to the elements of the universe, and for every
1 ≤ i ≤ m, denote the sets {a1i , a2i , . . . , a	i} by Ai. Finally, introduce 2(k + 1)
additional vertices denoted by {g1, . . . , gk+1, g

′
1, . . . , g

′
k+1}. This vertices in this

set are sometimes referred to as guard vertices.
We now describe the edges. To begin with, we impose a clique on T ∪ {g}.

Next, add edges to ensure that the sets Ai induce paths of lengths 
, starting
at a1i . Also add the edges (gi, g

′
i) for all 1 ≤ i ≤ k + 1. Further, we make the

central vertex g adjacent to a1i for all 1 ≤ i ≤ m and gi for all 1 ≤ i ≤ k + 1.
Notice that there is now an induced path of length γ starting at a	i , going via g
and ending at g′j , for all 1 ≤ i ≤ m and all 1 ≤ j ≤ k + 1. To encode the hitting
set structure, for every xi ∈ Sj, make ui adjacent to all vertices in Aj .

We now turn to the correctness of the reduction.

Lemma 3. [�] Let γ be a fixed even integer ≥ 6. The graph G described as
above is a Yes-instance of Pγ-free contraction if, and only if, (U,F) is a
Yes-instance of hitting set.

Notice that the results above holds for γ ≥ 5, and the cases when γ ≤ 4 are
shown to be tractable in the next section. To conclude, from Lemmas 2 and 3,
and the hardness of the hitting set problem, we have the following:

Theorem 3. The Pγ-free contraction problem is W[2]-hard for all fixed
integers γ ≥ 5 when parameterized by the size of the solution.

4 A Few Tractable Cases

In this section we give FPT algorithm for a few cases of F-free contraction

– namely K	-free contraction for every fixed integer 
 ≥ 3, P3-free con-

traction and P4-free contraction. The last two problems can be shown to
be FPT by arguments based on the MSO-expressibility of the problem and the
fact that P4- and P3-free graphs have bounded rankwidth. In summary, we show
the following.

Theorem 4. [�] For every fixed integer 
 ≥ 3, K	-free contraction is FPT.
Also, the problems P3-free contraction and P4-free contraction are
FPT.
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5 Future Directions

In this paper we initiated the study of F-free contraction problem and an-
swered questions when F consisted of a fixed cycle or a path of a particular
length. An interesting, and potentially challenging, question would be to char-
acterization the parameterized complexity of F-free contraction in terms
of properties of the forbidden subgraphs F . On the other hand, it will also be
interesting examine if there are subclasses of graphs on which the problems of
Cj-free contraction (for j ≥ 4) and Pj-free contraction (for j ≥ 5)
admit FPT algorithms while being NP-complete.

Acknowledgments. The authorswould like to thankChengweiGuo andLeizhen
Cai for a careful reading of the paper and communicating a gap in the proof of
Theorem 3, which has since been fixed.
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Abstract. The dominating set problem has been extensively studied
in the realm of parameterized complexity. It is one of the most common
sources of reductions while proving the parameterized intractability of
problems. In this paper, we look at dominating set and its general-
ization r-dominating set on graphs of bounded diameter in the realm
of parameterized complexity. We show that dominating set remains
W[2]-hard on graphs of diameter 2, while r-dominating set remains
W[2]-hard on graphs of diameter r+1. The lower bound on the diameter
in our intractability results is the best possible, as r-dominating set is
clearly polynomial time solvable on graphs of diameter at most r.

1 Introduction

In the dominating set problem, we are given a graph G and a non-negative in-
teger k, and the objective is to check if G contains a set of k vertices whose closed
neighborhood contains all the vertices of G. In its generalization, r-dominating
set, we are given a graph G and a non-negative integer k, and the question is
whether G contains a set of k vertices such that every vertex of G is at distance
at most r from one of these vertices. dominating set, together with its numer-
ous variants, is one of the most classic and well-studied problems in algorithms
and combinatorics [12].

A considerable part of the algorithmic study on this NP-complete problem
has been focused on the design of parameterized algorithms. Formally, a pa-
rameterization of a problem is assigning an integer k to each input instance
and a parameterized problem is fixed-parameter tractable (FPT) if there is an
algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size
of the input and f is an arbitrary computable function depending only on the
parameter k. Just as NP-hardness is used as evidence that a problem probably
is not polynomial time solvable, there exists a hierarchy of complexity classes
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c© Springer International Publishing Switzerland 2013



256 D. Lokshtanov et al.

above FPT, and showing that a parameterized problem is hard for one of these
classes is considered evidence that the problem is unlikely to be fixed-parameter
tractable. The main classes in this hierarchy are:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

The principal analogue of the classical intractability class NP is W[1], which is a
strong analogue, because a fundamental problem complete for W[1] is the k-Step
Halting Problem for Nondeterministic Turing Machines (with unlim-
ited nondeterminism and alphabet size) — this completeness result provides an
analogue of Cook’s Theorem in classical complexity. In particular this means
that an FPT algorithm for any W[1]-hard problem would yield a O(f(k)nc)
time algorithm for k-Step Halting Problem for Nondeterministic Tur-

ing Machines. A convenient source of W[1]-hardness reductions is provided
by the result that Clique is complete for W[1]. Other highlights of the theory
include that dominating set, by contrast, is complete for W[2]. We refer to the
following books for further details on parameterized complexity theory [8, 9, 13].

In general, dominating set and r-dominating set are W[2]-complete and
therefore do not admit FPT algorithms unless an unexpected collapse occurs
among certain parameterized complexity classes. However, there are interesting
graph classes where FPT algorithms do exist for the dominating set problem.
The project of widening the horizon where such algorithms exist spanned a
multitude of ideas that made dominating set the testbed for some of the most
cutting-edge techniques of parameterized algorithm design. For example, the
initial study of parameterized subexponential algorithms for dominating set

on planar graphs [2, 4, 10] resulted in the creation of bidimensionality theory,
characterizing a broad range of graph problems that admit efficient approximate
schemes or FPT algorithms on an equally broad range of graphs [5–7].

In this paper, we look at the effect of diameter on the parameterized com-
plexity of dominating set and r-dominating set. In other words we study
dominating set and r-dominating set on graphs of bounded diameter. We
show that dominating set remains W[2]-complete on graphs of diameter 2,
while r-dominating set remains W[2]-complete on graphs of diameter r + 1.
The lower bound on the diameter in our intractability results is the best pos-
sible, as any graph with diameter at most r has an r-dominating of set of size
exactly 1. The dominating set problem on split graphs was shown to be NP-
complete in [1] and W[2]-hard in [14], while in [3], dominating set was shown
to be NP-complete on graphs of diameter 2. In this paper, we demonstrate a
reduction from the dominating set problem on split graphs to the dominat-

ing set problem on graphs of diameter 2, showing the W[2]-hardness of the
problem on this graph class. Furthermore, this reduction will also demonstrate
that connected dominating set is both NP-hard and W[2]-hard on graphs
of diameter 2. We then extend these reductions in a non-trivial way to prove the
classical as well as the parameterized intractability of generalizations of these
problems. Our hardness reduction for r-dominating set on graphs of diameter
r + 1 for r ≥ 2 starts with a hypercube of diameter r + 1 and then embeds the
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input graph in this hypercube. The hard part of the reduction is the reverse
direction where we need to argue that given a r-dominating set of the reduced
graph we can obtain a dominating set of the input graph. We believe that our
reduction strategy will be useful in other situations also.

2 Preliminaries

A parameterized problem is denoted by a pair (Q, k) ⊆ Σ∗ × N. The first com-
ponent Q is a classical language, and the number k is called the parameter. Such
a problem is fixed–parameter tractable (FPT) if there exists an algorithm that
decides it in time O(f(k)nO(1)) on instances of size n. Next we define the notion
of parameterized reduction.

Definition 1. Let A,B be parameterized problems. We say that A is (uniformly
many:1) fpt-reducible to B if there exist functions f, g : N → N, a constant α ∈
N and an algorithm Φ which transforms an instance (x, k) of A into an instance
(x′, g(k)) of B in time f(k)|x|α so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

A parameterized problem is considered unlikely to be fixed-parameter
tractable if it is W[i]-hard for some i ≥ 1. To show that a problem is W[2]-
hard, it is enough to give a parameterized reduction from a known W[2]-hard
problem. Throughout this paper we follow this recipe to show a problem W[2]-
hard. In fact, in this paper, all our reductions will run in polynomial time. Since
this will be easy to see, we will not explicitly mention the time complexity of
our reductions.

A split graph is a graph whose vertex set can be parititioned into two parts, one
of which is a (maximal) clique and the other is an independent set. For any two
vertices u and v, we let d(u, v) denote the length of the shortest path between the
vertices. Then the diameter of the graph G = (V,E) is maxu,v∈V d(u, v). In other
words, the diameter of a graph is the length of the longest among all the shortest
paths in the graph. For S ⊆ V , G[S] denotes the graph induced by S in G. The
vertex set of G[S] is S, and the edge set is {(u, v) | u ∈ S, v ∈ S and (u, v) ∈ E}.
The r-neighborhood of a vertex v is the set of all vertices that are at distance
at most r from v. The r-neighborhood of a vertex is denoted by N r(v), and the
closed r-neighborhood of a vertex, given by N r(v) ∪ {v}, is denoted by N r[v].
The r-neighborhood of a subset of vertices S is ∪v∈SN

r(v), and is denoted by
N r(S). Likewise, the closed r-neighborhood of a subset of vertices S is N r(S)∪S,
and is denoted by N r[S]. We say that a vertex v is global to a set S of vertices if
v is adjacent to every vertex in S. The hamming distance between two n-length
strings is the number of positions at which the two string differ.

The dominating set and connected dominating set problems are de-
fined as follows:

dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , either v ∈ S, or there exists u such that u ∈ S and (u, v) ∈ E?
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connected dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , either v ∈ S, or there exists u such that u ∈ S and (u, v) ∈ E, and
G[S] is connected?

The dominating set and the connected dominating set problems are
fundamental NP-complete [11], and W[2]-complete problems [8]. The
r-dominating set and connected r-dominating set problems are defined
below, and are also known to be NP-complete and W[2]-hard for every fixed
constant r.

r-dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , v ∈ N r[S]?

connected r-dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , v ∈ N r[S] and G[S] is connected?

3 W-Hardness Of dominating set on Graphs of Diameter
Two

In this section we show that dominating set remains W[2]-hard on split graphs
of diameter 2.

Theorem 1. dominating set is W [2]-hard on split graphs of diameter 2.

Proof. We demonstrate this by a parameterized reduction from dominating set

on connected split graphs. Let G = (V,E) be a split graph, where V = I)C with
G[C] being a clique and G[I], an independent set and let (G, k) be an instance of
dominating set. We first make the following claim regarding dominating sets
of G.

Claim. If (G, k) is a Yes instance, then there exists a dominating set of size at
most k that does not intersect I.

Proof. Since (G, k) is a Yes instance of dominating set, G admits some subset
S of size at most k that dominates all vertices in G. If S ∩ I = ∅, then we are
done. Suppose that this is not the case, and consider the set R obtained from S,
by replacing every v ∈ S ∩ I with some u ∈ N(v). Clearly, R is no larger than S
and R ∩ I = ∅. It is also easy to see that R is a dominating set of G:
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– every vertex in the clique is dominated by R since R ∩ C �= ∅,
– any vertex v ∈ I \ (S ∩ I) is dominated by some vertex in S ∩R, since S was

a dominating set, and vertices in S ∩ I cannot dominate the vertex under
consideration,

– any vertex in S ∩ I is dominated by R, by construction.

This completes the proof of the claim. ��

We now proceed to the reduction. We will construct a split graph H = (VH =
C′ ) I ′, EH). Recall that we desire H to be a graph of diameter 2. To this end,

we obtain H from G by “replacing” the vertices of C with
(|C|

2

)
vertices, that

is, H has one vertex for every pair of vertices in the clique partition of G. The
adjacencies are as expected: a vertex corresponing to a pair of vertices is adjacent
to the union of the neighborhoods of the original vertices. Finally, we induce a
clique on the newly added vertices. Formally,

– I ′ = I,
– C′ = {v[i, j] | i, j ∈ C, i �= j}
– (u, v[i, j]) ∈ EH if, and only if, either (u, i) ∈ E or (u, j) ∈ E,

– (v[i, j], v[k, l]) ∈ EH for all (v[i, j], v[k, l]) ∈
(
C′

2

)
. Here,

(
C′

2

)
is the family

of two sized subsets of C′. This makes the set C′ a clique, and hence H is
indeed a split graph.

We now claim that (H, k) is a Yes instance of dominating set if and only if
(G, 2k) is a Yes instance. Since it is easily checked that H is a split graph and
has diameter 2, the statement of the lemma will follow.

Indeed, let S = {u1, u2, . . . , ur} be a dominating set of G of size at most
2k. Notice that we can assume S ∩ I = ∅ (see claim 3). Also, without loss
of generality, we assume that r is even. Then, we claim that the set R =
{v[u1, u2], v[u3, u4], . . . v[ur−1, ur]} is a dominating set of H , of size at most k.
It is evident that all vertices in C′ are dominated by R. Let v ∈ I ′, and let
ui ∈ S be such that (u, v) ∈ E (notice that such a choice of u always exists,
since S is – by assumption – a dominating set of G). But, since either v[ui, ui+1]
or v[ui−1, ui] is contained in R, the vertex v is also dominated by R in the graph
H .

On the other hand, let R = {v[u1, u2], v[u3, u4], . . . v[ur−1, ur]} be a dominat-
ing set of H of size at most k. Again, by claim 3 (which applies since we have
that H is also a split graph), we may assume that R ∩ I ′ = ∅. We claim that
the set S = {u1, u2, . . . , ur} is a dominating set of G of size at most 2k. Clearly,
|S| ≤ 2r ≤ 2k and all vertices in C are dominated by S. Now, consider a vertex
v ∈ I, and let v[ui, ui+1] ∈ R be such that (v[ui, ui+1], v) ∈ EH (notice that
such a vertex always exists, since R is – by assumption – a dominating set of
H). Since both ui and ui+1 are in S, v is also dominated by S. This completes
the proof of the theorem. ��



260 D. Lokshtanov et al.

4 W-Hardness Of r-dominating set on Graphs of
Diameter (r + 1)

In this section, we describe a reduction from the dominating set problem on
split graphs of diameter two to the r-dominating set problem on graphs of
diameter (r + 1) for r ≥ 2.

The Construction. Let (G, k) be an instance of dominating set, where G =
(V,E) is a split graph of diameter two with V = (I ) C). The independent set
and clique of the split partition are given by I and C respectively.

We first describe an intermediate graph G′ = (V ′, E′) that will serve as an
wireframe for the construction. Let α := 4kr|I| + |C|. The vertex set of G′

comprises of words of length (r+1) over the alphabet {1, . . . , α}, and the edges
are between vertices whose corresponding words differ in exactly one position.

Formally, we define V ′ := {1, . . . , α}r+1. For every u, v ∈ V ′, let δ(u, v) be
the number of positions in which the strings u and v differ. In other words,
δ(u, v) is the hamming distance between the strings u and v. We therefore have
E′ = {(u, v) | δ(u, v) = 1}. This completes the description of G′.

We abuse language and speak of the hamming distance between two vertices to
refer to the hamming distance between the strings corresponding to the vertices
in question. Also, for a vertex v and 1 ≤ i ≤ r + 1, we will use v[i] ∈ [α] to
denote the value of the ith position in the string corresponding to v (sometimes
also referred to as the ith coordinate).

It turns out that in G′, the distance between a pair of vertices corresponds
exactly to the hamming distances between them. We formalize this in the obser-
vation below, where we show that for any vertex v in V ′, the vertices of distance
at most d from v in G′ are precisely the vertices whose hamming distance from
v is at most d.

Lemma 1. For every vertex v ∈ V ′, for every d > 0, the set

Nd(v) = {u | δ(u, v) ≤ d}.

Proof. The proof is by induction on d. In the base case, for d = 1, the claim
follows by the definition of adjacencies in G′. For the induction step, let d > 0,
and assume that the claim holds for all d∗ < d. Let u1, . . . , ut be the vertices at
distance (d − 1) from v. Consider Nd(v) =

⋃
u∈Nd−1(v)N [u]. By the induction

hypothesis, we have that Nd−1(v) = {u|δ(u, v) ≤ d− 1}. Therefore,

Nd(v) =
⋃

{u : δ(u,v)≤d−1}

⋃
{w : δ(w,u)≤1}

{w} = {u | δ(u, v) ≤ d}.

This completes the proof of the claim. ��

Notice that the distance between any pair of vertices in G′ is at most (r+1).
By Lemma 1, we also have that the distance between the vertices (i, i, . . . , i) and
(j, j, . . . , j) is r+1 for any i, j ∈ [α], i �= j. It follows that G′ has diameter r+1.
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Fig. 1. (a) An illustration of the construction for r = 2 where the graph G is embedded
along the diagonal of the bottom face of the cube. (b) An illustration of the adjacencies
in G′. The red, blue and green vertices are the vertices adjacent to the yellow vertex
in G′.

We are now ready to incorporate an encoding of G in the reduction. It is
useful to think of V ′ as points inside an (r + 1)-dimensional hypercube with
sides of length α. We will focus on the plane obtained by setting all but first two
coordinates to 1 and embed the graph G here in a way that does not decrease
the diameter of the entire graph, and at the same time encodes a dominating
set of G as an r-dominating set of the newly constructed graph and vice versa.
We now formalize this intuition.

Recall that (I ) C) is the split partition of the instance G. Let p := |I| and
q := |C|. Begin by labelling the vertices in I as {v1, . . . , vp} and those in C as
{u1, . . . , uq}. Let β(i) = 4kr · (i − 1) and γ = (4kr) · p. Furthermore, we use 1i
to refer to the tuple (1, . . . , 1) of length i. We exclude the subscript when the
length of the tuple is clear from the context. Before we go further, we collect the
definitions of α, β and γ for easy reference.

– α := 4krp+ q, β(i) := 4kr · (i− 1) and γ := (4kr) · p.

Define the set P2 := {(i, j, 1) | 1 ≤ i, j ≤ α} and let R denote the remaining
vertices in V ′, that is, R := V ′ \ P2. Let D2 ⊂ P2 denote the “diagonal” entries
of P2, that is, D2 = {(i, i, 1) | 1 ≤ i ≤ α}. We now establish the following
correspondence between vertices of G and the vertices of D2:

– For each vertex v	 ∈ I, the 4kr vertices – (β(
) + 1, β(
) + 1, 1), . . . , (β(
 +
1), β(
+ 1), 1) in G′ all correspond to v	 and we refer to this set as I	.

– For each vertex ui ∈ C, the vertex (γ + i, γ + i, 1) corresponds to ui and we
refer to this vertex as u�i .
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We now add the following edges to G′. For each edge (v	, uj) ∈ E such that
v	 ∈ I and uj ∈ C, we make u�j adjacent to every vertex in I	. Finally, we
consider the set P2 and make a clique on the set P2 \ (

⋃p
	=1 I	). This completes

the construction and we refer to the graph thus constructed as G′′ = (V ′′, E′′).
To tie back to the intuition described earlier, note that we considered the

points of V ′ that lie on the two-dimensional plane obtained by the restriction of
the last (r−1) coordinates to (1, 1, . . . , 1) (recall that we are now interpreting the
elements of V ′ as points in (r+1)-dimensional space). Here, we embedded (4kr)
copies of each vertex in I and a single copy of each vertex in C along the diagonal
of this plane (see Figure 1). Following this, we replicated the adjacencies of G
between the corresponding vertices in G′ and finally, we made a complete graph
on all the vertices in this plane except for those that correspond to vertices of I.

Diameter Bound. Notice that G′ is a subgraph of G′′, and therefore, the
diameter of G′′ is no more than the diameter of G′. We now show that in spite
of the newly added edges, the diameter of G′′ is the same as the diameter of G′.

Lemma 2. The diameter of the graph G′′ is r + 1.

Proof. We show that the distance between the vertices u = (α, α, . . . , α) and
v = (α − 1, α − 1, . . . , α − 1) in G′′ is r + 1 which would imply the claim.
Suppose, for the sake of contradiction, that that there is a path L of length
at most r from u to v. Since such a path does not exist in G′, this path must
contain an edge from E′′ \ E′. Since every edge in E′′ \ E′ is contained in P2,
the path L has a non-trivial intersection with P2. Since u, v /∈ P2, L begins and
ends outside P2. We let u′ be the first vertex of P2 on L and let v′ be the last
vertex of P2 on L. Note that u �= u′ �= v′ �= v.

Let Lu be the subpath of L from u to u′, Lv be the subpath of L from v′

to v. Clearly, Lu and Lv are also paths in G′. Note that the length of Lu is at
least the length of a shortest path from u to u′, and the length of Lv is at least
the length of a shortest path from v′ to v. Since Lu and Lv lie entirely outside
P2, the lengths of these shortest paths are the same in G′′ and G′. This implies
(using Lemma 1) that Lu and Lv both have length at least (r−1), which implies
that L has length at least 2(r− 1) + 1. Since r ≥ 2 we have that 2r − 1 can not
be less than r. Thus we get our desired contradiction. ��

Correctness of the Reduction. We now turn to the correctness of the re-
duction. In the forward direction, consider a dominating set Z of size at most
k for G. We have already seen that we may assume that Z ⊆ C, without loss
of generality. Consider the set CZ := {u∗j | uj ∈ Z}. We claim that CZ is an
r-dominating set for G′′.

Clearly, every vertex in P2 is at a distance of at most 1 from CZ . Now, consider
any vertex v := (a1, a2, a3, . . . , ar+1) ∈ R. By Lemma 1, the vertex (a1, a2, 1) ∈
P2 is at a distance of at most (r − 1) from v, and consequently at a distance of
at most r from CZ . Hence, CZ is indeed an r-dominating set for G′′.

Conversely, consider a set Z of size at most k which is an r-dominating set
for G′′. In this direction, we will have to work our way from Z ⊂ V ′′ to a subset
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of P2, and eventually to a subset of D2 that will lead us to a correspondence
between the vertices of Z and vertices of C in G. In the process, we will ensure
that the vertices specified by the correspondence dominate I, using the fact that
Z was a r-dominating set in G′′.

The multiple copies of vertices in I will now be helpful in identifying vertices
of Z that lie in P2. To see this informally, fix v	 ∈ I, and consider I	. We will
first show the presence of a “large” set such that any vertex outside P2 can r-
dominate a limited number of vertices in in this set. In fact, it will follow from
the choice of α that even k vertices from outside P2 cannot r-dominate this set.
Therefore, for every 
 ∈ [p], there must be a vertex from P2 that belongs to Z
to witness the r-domination of this large set. When these vertices correspond
to u�j for some j, then the correspondence with a vertex in C is direct. In the
other cases, it will turn out that the vertex in question dominates copies of at
most two distinct vertices of I. In this situation, we will be able to identify an
appropriate vertex from C to map to, using the fact that G has diameter two.

We now turn to a formal argument. To begin with, in the following ob-
servation we show that for any v	 ∈ I, there is an index j	 in the range
[β(
) + 1, β(
 + 1)] such that the dominating set does not contain any vertex
of the form (j	, ∗, ∗, . . . , ∗), or (∗, j	, ∗, . . . , ∗).

Observation 1. For every v	 ∈ I, there is an index j	 such that β(
)+1 ≤ j	 ≤
β(
 + 1) and Z does not contain a vertex of the form (j	, x) or (t, j	, y) for any
x ∈ [α]r, y ∈ [α]r−1 and 1 ≤ t ≤ α.

Proof. Let Z = {z1, z2, . . . , zk}. Let Z12 ⊆ [α] be the set of all values in the first
two coordinates of vertices in Z. Recall that for v ∈ V ′′, we let v[i] ∈ [α] denote
the value of the ith co-ordinate of v. Then, we have:

Z12 := {z[1] | z ∈ Z} ∪ {z[2] | z ∈ Z}.

Notice that |Z12| ≤ 2k and the range of 
 is at least 4kr, and the observation
follows by a simple application of the pigeon-hole principle. ��

Now consider the vertices in the dominating set that lie outside P2, that is,
ZR = Z ∩R. Further, fix a vertex v	 ∈ I, and consider j	 given by Observation 1
above. Consider the set of all vertices of G that are obtained by restricting the
first two coordinates to (j	, j	). Formally, we let T	 =

⋃
a(j	, j	, a). Notice that

no vertex in Z is contained in this set. To begin with, we will account for how
many vertices of T	 can be r-dominated by a vertex in ZR.

Lemma 3. The r-neighborhood of any vertex in ZR intersects T	 in at most
2αr−2 vertices.

Proof. Let v ∈ ZR. We will prove the claim by identifying a suitably large set of
vertices in T	 that are at distance (r + 1) from v. A natural candidate would be
the vertices in T	 which are outside P2 and at hamming distance (r+1) from v.
For technical reasons, we will consider this set but with the additional property



264 D. Lokshtanov et al.

that a particular coordinate is not equal to 1. Since v is not in P2 there exists a
coordinate t ∈ {3, . . . , r + 1} such that v[t] �= 1. Formally,

Dv
	 := {u | u ∈ T	, u[t] �= 1, and u[i] �= v[i] for all 1 ≤ i ≤ r + 1}.

We first claim that no vertex from Dv
	 lies in the r-neighborhood of v. Indeed,

suppose not. Let u ∈ Dv
	 . For the sake of contradiction, consider any path L

of length at most r from u to v. Note that such a path does not exist in G′

(by Lemma 1 and the choice of u and v), this path must contain an edge from
E′′ \ E′. Since every edge in E′′ \ E′ is contained in P2, the path L has a non-
trivial intersection with P2. Since, by definition, u, v /∈ P2, L begins and ends
outside P2. We let u′ be the first vertex of P2 on L and let v′ be the last vertex
of P2 on L. Note that u �= u′ �= v′ �= v.

Let Lu be the subpath of L from u to u′, Lv be the subpath of L from v′

to v. Clearly, Lu and Lv are also paths in G′. Note that the length of Lu is
at least the length of a shortest path from u to u′, and the length of Lv is at
least the length of a shortest path from v′ to v. Since Lu and Lv lie entirely
outside P2, the lengths of these shortest paths are the same in G′′ and G′, and
in particular, are equal to the hamming distances between the corresponding
vertices. Let p(u) and p(v) denote, respectively, the set of positions where the
last (r − 1) coordinates of u (respectively, v) differ from 1r−1. Note that the
tth position belongs to p(u) ∩ p(v). Also, every position that is not in p(u) is
in p(v) – this is simply because u and v differ at every coordinate. Therefore,
|p(u)|+ |p(v)| ≥ (r − 1) + 1 = r.

Now, using Lemma 1, we have that the length of Lu is at least |p(u)| and the
length of Lv is at least pv. Therefore, we have that L has length at least r + 1
(since L uses at least one edge inside P2), and this is the desired contradiction.

We have that among the vertices in T	 the vertices from D	 are not within
the r-neighborhood of v. Note that |T	| = α(r−1), and it is easy to see that
|Dv

	 | = (α− 1)(r−1) − (α− 1)(r−2). Thus, the intersection of the r-neighborhood
of v with T	 is at most:

X := α(r−1) − [(α− 1)(r−1) − (α− 1)(r−2)]

Consider the term α(r−1) − (α− 1)(r−1). Let λ := (α− 1).

(λ+ 1)(r−1) − λ(r−1) =

⎛⎝r−1∑
j=0

(
r − 1

j

)
λj

⎞⎠− λ(r−1)

=
r−2∑
j=0

(
r − 1

j

)
λj

≤
r−2∑
j=0

(
r − 2

j

)
λj = λ(r−2) = (α − 1)(r−2)
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Now we have:

X ≤ (α− 1)(r−2) + (α− 1)(r−2) ≤ 2(α− 1)r−2 ≤ 2αr−2,

which is the desired conclusion. ��

Next, we consider the vertices in the dominating set that are in P2, but do not
one-dominate the jth	 copy of vj . In other words, we are concerned with vertices
that are non-adjacent to (j	, j	, 1). Again, we will account for how much of T	
can be r-dominated by such vertices, and this observation will be analogous to
the previous lemma.

Lemma 4. Let T	 be defined as before. The r-neighborhood of any vertex in P2

which is non-adjacent to (j	, j	, 1) intersects T	 in at most αr−2 vertices.

Proof. Let v ∈ P2 be a vertex that is not adjacent to (j	, j	, 1). Notice that by
definition, v[1] �= j	 and v[2] �= j	. Consider Sv

	 ⊆ T	 defined as the set of vertices
whose hamming distance from v is equal to (r+1). We claim that for any vertex
u ∈ Sv

	 , the distance between v and u in G′′ is (r+1). Indeed, consider any path
from v to u. Since v ∈ P2 and u /∈ P2, we let w be the last vertex on this path
that belongs to P2. If the distance from v to w is at least two, then we claim that
the length of the path is at least (r + 1). This is because w ∈ P2, implying that
the hamming distance between w and v is at least (r− 1). (Recall that v and w
have 1r−1 on the last r−1 coordinates and the hamming distance between v and
u is equal to (r+1).) Since the subpath of L from w to u lies entirely outside P2,
the distance between w and u is equal to the hamming distance. Consequently,
as long as the distance between v and w is at least two, we are done.

On the other hand, suppose the distance between v and w is one, that is,
w ∈ N(v)∩P2. Since v is not adjacent to (j	, j	, 1), it follows that the hamming
distance between w and u is in fact r, and therefore, the length of the path
between w and u is r, for the same reasons as before. The only remaining case
is when the path between v and u uses no edges in P2, but in this case, the path
is at least as long as the hamming distance between v and u, which is (r+1) by
choice of u. Therefore, we conclude that the length of the shortest path between
v and any vertex in Sv

	 is r+1. Since |Sv
	 | = (α− 1)(r−1), the computation from

the proof of Lemma 3 can be used to derive the desired conclusion. ��

Let Z2 be the set of vertices of Z ∩ P2 which are non-adjacent to (j, j, 1). By
Lemma 3 and Lemma 4, ZR and Z2 can together r-dominate at most 3kαr−2

vertices. Since |T	| = αr−1 > 3kαr−2, there is a vertex in Z∩P2 which is adjacent
to (j, j, 1).

For every independent set vertex vi, let ji be the index with all the nice
properties. For each i, let (xi, yi, 1) be a vertex in P2 ∩ Z which is adjacent to
(ji, ji, 1). Let Y ⊆ (Z ∩ P2) be those vertices of Z in P2 which are adjacent to
(ji, ji, 1) for some i.

We now define a mapping f : Y → C as follows. Consider a vertex (xi, yi, 1) ∈
Y .
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– If xi = yi, then, since vertices corresponding to the independent set vertices
are independent in G′′, the vertex (xi, xi, 1) corresponds to a vertex vc ∈ C
and we set f(xi, yi, 1) = vc.

– If (xi, xi, 1) and (yi, yi, 1) correspond to vertices va and vb respectively where
va, vb ∈ I and vc ∈ C is a vertex adjacent to both va and vb in G (such a
vertex always exists since G has diameter 2), then we set f(xi, yi, 1) = vc.

– If (xi, xi, 1) corresponds to a vertex va ∈ I and (yi, yi, 1) corresponds to a
vertex vb ∈ C, then we set f(xi, yi, 1) = vc where vc ∈ C is a vertex adjacent
to va in G.

Lemma 5. The set f(Y ) is a dominating set of size at most k for the graph G.

Proof. Since Y ⊆ Z, Y has size at most k. Furthermore, the mapping f is
clearly surjective, which implies that |f(Y )| ≤ k. It remains to show that f(Y )
is a dominating set of G. Consider a vertex vi ∈ I. We have already shown that
there is a ji and a vertex u = (xi, yi, 1) ∈ Z such that u is adjacent to (ji, ji, 1).
Furthermore, observe that the vertex f(xi, yi, 1) is by definition adjacent to vi.
Therefore f(Y ) dominates vi and by the same argument, every vertex in I. Since
f(Y ) ⊆ C and it is non-empty, the vertices in C are dominated as well. This
completes the proof of the claim. ��

Thus we obtain the following theorems.

Theorem 2. For all fixed r ≥ 1, r-dominating set is W [2]-hard on graphs of
diameter (r + 1).

We note that, in all our reductions, without loss of generality, the r-dominating
set in the reduced instances is connected. Hence, these reductions also prove
W[2]-hardness of the connected variants of r-dominating set.

Theorem 3. For all fixed r ≥ 1, Connected r-dominating set is W [2]-hard
on graphs of diameter (r + 1).

5 Conclusions

It is an interesting open problem to investigate if there are problems that are
FPT on graphs of bounded diameter, even if they are W-hard on general graphs.
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Abstract. We introduce a new matroid width parameter based on the
operation of matroid amalgamation called amalgam-width. The parame-
ter is linearly related to branch-width on finitely representable matroids,
while still allowing algorithmic applications on non-representable ma-
troids (which is not possible for branch-width). In particular, any prop-
erty expressible in the monadic second order logic can be decided in linear
time for matroids with bounded amalgam-width. We also prove that the
Tutte polynomial can be computed in polynomial time for matroids with
bounded amalgam-width.

1 Introduction

It is well known that many NP-hard graph problems can be solved efficiently
when restricted to trees or to graphs with bounded tree-width. Research of
this phenomenon culminated in proving a celebrated theorem of Courcelle [2],
which asserts that any graph property expressible in the monadic second order
(MSO) logic can be decided in linear time for graphs of bounded tree-width.
Such properties include, among many others, 3-colorability. There are several
other width parameters for graphs with similar computational properties, e.g.,
boolean-width [1] and clique-width [5].

In this work, we study matroids, which are combinatorial structures gener-
alizing the notions of graphs and linear independence. Although the tree-width
for matroids can be defined [6], a more natural width parameter for matroids is
branch-width. This is due to the fact that the branch-width of graphs can be
introduced without referring to vertices, which are not explicitly available when
working with (graphic) matroids. We postpone the formal definition of branch-
width to Section 2 and just note that the branch-width of a matroid or a graph
is linearly related to its tree-width.
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It is natural to ask to what extent the above-mentioned algorithmic results
for graphs have their counterparts for matroids. However, most width parame-
ters (including branch-width) do not allow corresponding extension for general
matroids without additional restrictions. Although computing decompositions of
nearly optimal width is usually still possible (see [16, 17]), the picture becomes
more complicated for deciding properties. Extensions to finitely representable
matroids are feasible but significant obstacles emerge for non-representable ma-
troids. This indicates a need for a width parameter reflecting the complex be-
havior of matroids that are not finitely representable.

Let us be more specific with the description of the state of the art for matroids.
On the positive side, the analogue of Courcelle’s theorem was proven by Hliněný
[8] in the following form:

Theorem 1. [8, Theorem 6.1] Let F be a finite field, ϕ be a fixed MSO formula
and t ∈ N. Then there is a fixed parameter algorithm deciding ϕ on F-represented
matroids of branch-width bounded from above by t.

However, as evidenced by several negative results, a full generalization of the
above theorem to all matroids is not possible: Seymour [21] has shown that
there is no sub-exponential algorithm testing whether a matroid (given by an
oracle) is representable over GF(2). Note that being representable over GF(2)
is equivalent to the non-existence of U4

2 minor, which can be expressed in MSO
logic. This result generalizes for all finite fields and holds even when restricted to
matroids of bounded branch-width. This subsequently implies the intractability
of deciding MSO formulas on general matroids of bounded branch-width. See [12]
for more details on matroid representability from the computational point of
view. Besides MSO properties, algorithmic aspects of first order properties have
also been studied [11].

Two width parameters have been proposed to circumvent the restriction of
tractability results to matroids representable over finite fields: decomposition
width [13, 14] and another width parameter based on 2-sums of matroids [22].
The latter allows the input matroid to be split only along 2-separations, making
it of little use for 3-connected matroids. On the other hand, though the first one
can split the matroid along more complex separations, it does not correspond to
any natural “gluing” operation on matroids. In this work, we present a matroid
parameter, called amalgam-width, that has neither of these two disadvantages
and still allows proving corresponding algorithmic results. An input matroid can
be split along complex separations and the parts of the decomposed matroid
can be glued together using the so-called amalgamation [19], which is a well-
established matroid operation.

2 Notation

We now introduce definitions and concepts relevant to this work. The reader is
referred to the monograph [19] for a detailed treatment of matroid theory.

A matroid M is a tuple (E, I) where I ⊆ 2E . The set E is called the ground
set and its elements are the elements of M . Sets from I are referred to as
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independent sets. If a set is not independent, we call it dependent. The ground
set of a particular matroid M is denoted by E(M). The set I is required (1) to
contain the set ∅, (2) to contain as elements all subsets of any independent set,
and (3) to satisfy the exchange axiom: if F and F ′ are independent sets with
|F | < |F ′|, then there exists x ∈ F ′ such that F ∪ {x} ∈ I. A minimal depedent
set is called a circuit. The set of all circuits of the matroid, denoted by C(M),
uniquely determines the matroid.

Examples of matroids include graphic matroids and vector matroids. The for-
mer are derived from graphs in the following way: their elements are edges and
a set of edges is independent if it does not span a cycle. Vector matroids have
vectors as their elements and a set of vectors is independent if the vectors in
the set are linearly independent. A matroid M is called representable over a
field F if there exists a vector matroid over F isomorphic to M . Finally, a ma-
troid is binary if it is representable over the binary field and it is regular if it is
representable over any field.

The rank r(F ) of a set F ⊆ E(M) is the size of the largest independent
subset of F . The closure operator cl(F ) acting on subsets of E(M) is defined as
cl(F ) :=

{
x : r(F ∪ {x}) = r(F )

}
. It can be shown that r(cl(F )) = r(F ). A set

F such that cl(F ) = F is called a flat.
By M \F we denote the matroid resulting from deleting the elements of F ⊆

E(M): the elements of M \F are those not contained in F , with F ′ ⊂ E(M \F )
being independent in M \ F if and only if it is independent in M . For F ⊆ E,
we define the restriction M |F as M \ (E \F ). A loop of M is an element e of M
with r({e}) = 0. A separation (A,B) is a bipartition of E(M) into sets A and
B. We call a separation (A,B) a k-separation if r(A) + r(B) − r(M) ≤ k − 1.

A branch-decomposition of a matroid M = (E, I) is a tree T , in which

– the leaves of T are in one-to-one correspondence with the elements of E and
– all inner nodes have degree three.

The width of an edge e of T is defined as r(E1) + r(E2) − r(E) + 1, where
E1 and E2 are the subsets of E(M) corresponding to the leaves of the two
components of T \e. Thus, the width of an edge e is the smallest k such that the
induced bipartition (E1, E2) is a k-separation of M . The width of the branch-
decomposition T is a maximum width of an edge e ∈ T . The branch-width bw(M)
of a matroid is the minimum width of a branch-decomposition of M .

The question of constructing a branch decomposition of a small width was
positively settled in [16, 17] for general matroids (given by an oracle).

Theorem 2. [17, Corollary 7.2] For each k, there is an O(n4) algorithm con-
structing a decomposition of width at most 3k−1 or outputting a true statement
that the matroid has branch-width at least k + 1.

Moreover, for matroids representable over a fixed finite field, an efficient algo-
rithm for constructing a branch decomposition of optimal width is given in [10].
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Fig. 1. The underlying graphs of matroids M1,M2 (with edges p1, p2 being dashed)
and the underlying graph of the graphic matroid M1 p1,p2 M2

Let M1 and M2 be two matroids satisfying pi ∈ E(Mi), for i ∈ {1, 2}. Then,
the 2-sum M1 +p1,p2 M2 is defined as the matroid with the set of circuits below:

C = C(M1 \ p1) ∪ C(M2 \ p2) ∪
{(C1 \ p1) ∪ (C2 \ p2) : pi ∈ Ci ∈ C(Mi) for i ∈ {1, 2}}.

An example of a 2-sum of a pair of graphic matroids can be found in Figure 1.
We say that an algorithm runs in linear time if it always finishes in O(n)

steps, where n is the length of the input in an appropriate encoding. Similarly,
an algorithm runs in polynomial time if it always finishes in O(nk) steps, for
k ∈ N. When a part of the algorithm’s input is given by an oracle (e.g., a rank-
oracle specifying an input matroid), the time the oracle spent computing the
answer is not counted towards the number of steps the main algorithm took
– only the time spent on constructing the input for the oracle and reading its
output is accounted for in the overall runtime.

A monadic second order (MSO) formula ψ for a matroid M can contain the
logical connectives ∨,∧,¬,⇒, the equality predicate =, quantifications ∃x over
elements of E(M) and subsets of E(M) (we refer x as the element or set variable,
respectively), the predicate ∈ of containment of an element in a set, and, finally,
the independence predicate ind(·) determining whether a subset of E(M) is
independent. The independence predicate encodes the input matroid.

Deciding MSO properties of matroids is NP-hard in general, since, for example,
the property that a graph is hamiltonian can be determined by deciding the
following formula on the graphic matroid corresponding to the input graph:

∃H∃e
(
is circuit(H) ∧ is base(H \ {e})

)
,

where H is a set variable, e an element variable, and is circuit(·) and is base(·)
are predicates testing the property of being a circuit and a base, respectively.
These can be defined in MSO logic as follows:

is circuit(H) ≡
(
¬ind(H)

)
∧
(
∀e : (e ∈ H) ⇒ ind(H \ {e})

)
,

is base(H) ≡ ¬
(
∃e : ind(H ∪ {e})

)
.

3 Matroid Amalgams

In this section we define the operation of a generalized parallel connection, which
plays a key role in the definition of an amalgam decomposition. We begin by
introducing matroid amalgams and modular flats.
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Definition 1. Let M1 and M2 be two matroids. Let E = E(M1) ∪ E(M2) and
T = E(M1) ∩ E(M2). Suppose that M1|T = M2|T . If M is a matroid with the
ground set E such that M |E1 = M1 and M |E2 = M2, we say that M is an
amalgam of M1 and M2.

An amalgam of two matroids does not necessarily exist, even if the matroids
coincide on the intersection of their ground sets. Our aim is to investigate a
condition on matroids sufficient for the existence of an amalgam. To do so, we
introduce the notions of free amalgams and proper amalgams.

Definition 2. Let M0 be an amalgam of M1 and M2. We say that M0 is the
free amalgam of M1 and M2 if for every amalgam M of M1 and M2 every set
independent in M is also independent in M0.

The definition of a more restrictive proper amalgam is more involved.

Definition 3. Let M1 and M2 be two matroids with rank functions r1 and r2,
respectively, and independent sets coinciding on E1 ∩E2. First, define functions
η and ζ on subsets of E := E1 ∪ E2 as follows.

η(X) := r1(X ∩ E1) + r2(X ∩ E2)− r(X ∩ T ),

ζ(X) := min{η(Y ) : Y ⊇ X},

where T := E1∩E2 and r is the rank function of the matroid N := M1|T = M2|T .
(Note that η provides an upper bound on the rank of the set X in a supposed
amalgam of M1 and M2, while ζ is the least of these upper bounds.) If ζ is
submodular on 2E, we say that the matroid on E1∪E2 with ζ as its rank function
is the proper amalgam of M1 and M2.

It can be verified that if the proper amalgam of two matroids exists then it is a
free amalgam. The next lemma provides a necessary and sufficient condition for
an amalgam to be the proper amalgam of two given matroids.

Lemma 1. Let M1 and M2 be two matroids and M one of their amalgams. M
is the proper amalgam of M1 and M2 if and only if it holds for every flat F of
M that

r(F ) = r(F ∩ E1) + r(F ∩ E2)− r(F ∩ T ).

However, Lemma 1 says nothing about the existence of the proper amalgam of
M1 and M2. Below, we give a condition that guarantees it.

Definition 4. A flat X = cl(T ) of a matroid M is modular if for any flat Y of
M the following holds:

r(X ∪ Y ) = r(X) + r(Y )− r(X ∩ Y ).

Furthermore, we say that T is a modular semiflat if cl(T ) is a modular flat in
M and every element of cl(T ) is either in T , a loop, or parallel to some other
element of T .
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For example, the set of all elements, the set of all loops, and any flat of rank one
are modular flats. Each single-element set is a modular semiflat.

Theorem 3. [19] Suppose that M1 and M2 are two matroids with a common
restriction N := M1|T = M2|T , where T = E(M1) ∩ E(M2). If T is a modular
semiflat in M1, then the proper amalgam of M1 and M2 exists.

We are now ready to introduce the operation of a generalized parallel connection,
which can be used to glue matroids.

If M1 andM2 satisfy the assumptions of Theorem 3, then the resulting proper
amalgam is called the generalized parallel connection of M1 and M2 and denoted
byM1 ⊕N M2, where N := M1|(E(M1)∩E(M2)). If we useM1 ⊕N M2 without
specifying N in advance, then N refers to the unique intersection of the two
matroids. The generalized parallel connection satisfies the following properties.

Lemma 2. If the generalized parallel connection of matroids M1 and M2 exists,
cl(E2) is a modular semiflat in M1 ⊕N M2.

Lemma 3. [19, p. 446] Let M1 and M2 be two matroids, T = E(M1)∩E(M2),
N the matroid M1|T = M2|T , and M = M1 ⊕N M2. For X ⊆ E(M1) ∪E(M2),
let Xi = cli(X ∩ Ei) ∪X. It holds that

clM (X) = cl1(X2 ∩ E1) ∪ cl2(X1 ∩E2), and

rM (X) = rM1 (X2 ∩E1) + rM2(X1 ∩E2)− r
(
T ∩ (X1 ∪X2)

)
.

The operation of generalized parallel connection also commutes:

Lemma 4. Let K,M1 and M2 be matroids such that M1|T1 = K|T1 and M2|T2 =
K|T2. If T1 is a modular semiflat in M1 and T2 is a modular semiflat in M2, then

M2 ⊕N2 (M1 ⊕N1 K) = M1 ⊕N1 (M2 ⊕N2 K).

3.1 Amalgam Width

Recall that the class of graphs of bounded tree-width can be introduced as the
set of all subgraphs of a k-tree, where a k-tree is a graph that can be obtained by
glueing two smaller k-trees along a clique of size k. Similarly, matroids of bounded
branch-width can be introduced in terms of an operation taking two matroids
of bounded branch-width and producing a larger matroid of bounded branch-
width by glueing them along a low-rank separation. The amalgam-width is also
defined using a glueing operation. Analogously to the definition of tree-width,
where some elements of the clique can be effectively removed after glueing takes
place, the operation includes a set of elements to be deleted. A typical situation
when applying the glueing operation is illustrated on Figure 2.

Definition 5. Suppose we are given matroids M1,M2, and K such that E(M1)∩
E(M2) ⊆ E(K). Furthermore, suppose we are also given a set D ⊆ E(K). Let
Ji := E(Mi) ∩E(K), i ∈ {1, 2} and assume the two conditions below hold:
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– Mi|Ji = K|Ji, i ∈ {1, 2},
– J1 and J2 are both modular semiflats in K.

Then, the matroid M1 ⊕K,D M2 is defined as follows:

M1 ⊕K,D M2 :=
(
(K ⊕J1 M1)⊕J2 M2

)
\D.

We also say that the matroid M1 ⊕K,D M2 is a result of glueing of M1 and M2

along K and removing the elements D.

M1 M2

K

J1 J2

D

Fig. 2. M1,M2 are the matroids being combined, K is a small matroid used to glue
them together, and D is a set of elements that are subsequently removed

Note that Theorem 3 guarantees the matroidM1⊕K,D M2 to be well defined.
We are now ready to introduce our width parameter.

Definition 6. Matroid M has amalgam-width at most k ∈ N if |E(M)| ≤ 1,
or there are matroids M1 and M2 of amalgam width at most k, a matroid K
satisfying |E(K)| ≤ k, and a choice of D ⊆ E(K) such that

M = M1 ⊕K,D M2.

Note that the first condition can be weakened to |E(M)| ≤ k without affecting
the definition. Every finite matroid M has an amalgam width at most |E(M)|.
The amalgam-width of M is the smallest k such that M has amalgam-width at
most k. The definition above naturally yields a tree-like representation of the
construction of the matroid in question:

Definition 7. Assume that M is a matroid with amalgam width k. Any rooted
tree T satisfying either of the following statements is called an amalgam decom-
position of M of width at most k:

– |E(M)| ≤ 1 and T is a trivial tree containing precisely one node,
– M = M1 ⊕K,D M2 and T has a root r with children r1 and r2 such that the

subtrees of T rooted at r1 and r2 are amalgam decompositions of M1 and
M2 of width at most k.

The above definition leads to a natural assignment of matroids to the nodes
of T : whenever a glueing operation is performed, we assign the resulting matroid
to the node. We use MT (v) to refer to this matroid and say that the node v
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represents MT (v). For an internal node v ∈ T , we use MT
1 (v), MT

2 (v), KT (v),
DT (v), JT

1 (v) and JT
2 (v) to denote the corresponding elements appearing in

the glueing operation used to obtain MT (v) = MT
1 (v)⊕KT (v),DT (v)MT

2 (v). If
v is a leaf of a decomposition T , we let MT

1 (v) and MT
2 (v) be matroids with

empty groundsets, KT (v) := MT (v), and DT (v) := ∅. Finally, we denote by
JT (v) ⊆ K(v) the set of elements used to glueM(v) to its parent. More formally,
we set JT (v) := JT

i (u), where i ∈ {1, 2} is chosen depending on whether v is a
left or right child of u. Since the decomposition under consideration is typically
clear from context, we usually omit the upper index T .

Strozecki [22] introduces a similar parameter that uses the operation of a
matroid 2-sum instead of the generalized parallel connection. However, its appli-
cability is limited since it allows to join matroids only using separations of size
at most 2 and thus a corresponding decomposition of a 3-connected matroid M
has a width of |E(M)|. The next proposition implies that the latter is able to
express the 2-sum operation as a special case. Therefore, the amalgam-width is
a more general parameter than the one from [22].

Proposition 1. A 2-sum of matroids M1 and M2 can be replaced by finitely
many operations of generalized parallel connections and deletions.

Furthermore, the amalgam width is a generalization of the branch-width pa-
rameter for finitely representable matroids in the sense that a bound on the value
of branch-width implies a bound on the amalgam-width:

Proposition 2. If M is a matroid with branch-width k and M is representable
over a finite field F, then the amalgam width of M is at most |F|3k/2.

4 Algorithms

As a main result of this section, we show that the problem of deciding monadic
second order properties is computationally tractable for matroids of bounded
amalgam width:

Theorem 4. MSO properties can be decided in linear time for matroids with
amalgam width bounded by k (assuming the corresponding amalgam decomposi-
tion T of the matroid is given explicitly as a part of the input).

For the purpose of induction used in the proof of Theorem 4, we need to
generalize the considered problem by introducing free variables:

INPUT:

– an MSO formula ψ with p free variables,
– amalgam decomposition T of a matroid M with width at most k,
– a function Q defined on the set {1, . . . , p} assigning the i-th free variable

its value; specifically, Q(i) is equal to an element of E(M) if xi is an
element variable, and it is a subset of E(M) if xi is a set variable.
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OUTPUT:

– ACCEPT if ψ is satisfied on M with the values prescribed by Q to its
free variables.

– REJECT otherwise.

The resulting problem is referred to as the MSO-DECIDE problem. To simplify
notation, let us assume that if ψ is a formula with free variables, we use xi for
the i-th variable if it appears in ψ as an element variable and Xi if it appears as
a set variable. We prove the following generalization of Theorem 4:

Theorem 5. The problem MSO-DECIDE can be solved in linear time for ma-
troids with amalgam width bounded by k (assuming the corresponding amalgam
decomposition T of the matroid is given as a part of the input).

Our aim in the proof of Theorem 5 is to construct a linear time algorithm based
on deterministic bottom-up tree automatons. Let us introduce such automatons.

Definition 8. A finite tree automaton is a 5-tuple (S, SA, δ,Δ,Σ), where

– S is a finite set of states containing a special initial state 0,
– SA ⊆ S is a non-empty set of accepting states,
– Σ is a finite alphabet,
– δ : S × Σ → S is set of transition rules that determine a new state of the

automaton based on its current state and the information, represented by Σ,
contained in the current node of the processed tree, and

– Δ : S×S → S is a function combining the states of two children into a new
state.

Let us also establish the following simple notation.

Definition 9. Consider an instance of an MSO-DECIDE problem. In particular,
let Q be the variable-assignment function as in the definition of our generalized
problem. For F ⊆ E(M), we define the local view of Q at F to be the following
function:

QF (i) :=

⎧⎪⎨⎪⎩
Q(i) ∩ F if the i-th variable is a set variable,

Q(i) if the i-th variable is an element variable and Q(i) ∈ F ,

� otherwise,

where � is a special symbol that is not an element of the input matroid.

The symbol � stands for values outside of F . We simplify the notation by writing
Qv(xi) instead of QE(K(v))(i), where v is a node of T from the problem’s input.

The alphabet Σ of the automaton we construct will correspond to the set of all
possible “configurations” at a node v in an amalgam decomposition of width at
most k. A finite tree automaton processes a tree (in our case T ) from its leaves to
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the root, assigning states to each node based on the information read in the node
and on the states of its children. When processing a node whose two children
were already processed the automaton calculates the state s := Δ(s1, s2), where
s1 and s2 are the states of the children, and moves to the state δ(s, q), where
q ∈ Σ represents the information contained in that node of the tree. If the state
eventually assigned to the root of the tree is contained in the set SA, we say that
the automaton accepts. It rejects otherwise.

As a final step of our preparation for the proof of Theorem 5, we slightly alter
the definition of an MSO formula by replacing the use of ind(X) predicate with
the use of x1 ∈ cl(X2), where cl(·) is the closure function of M . The predicate
ind(X) can be expressed while adhering to the altered definition as follows:

ind(X) ≡ ¬
(
∃e ∈ X : cl(X) = cl(X \ {e})

)
.

Proof (of Theorem 5). We proceed by induction on the complexity of the for-
mula ψ, starting with simple formulas such as x1 = x2 or x1 ∈ X2. In each step
of the induction, we design a tree automaton processing the amalgam decompo-
sition tree T and correctly solving the corresponding MSO-DECIDE problem. As
already mentioned, the alphabet will encode all possible non-isomorphic choices
of the matroidK(v), sets J(v), J1(v), J2(v), and D(v) combined with all possible
local views of Q at v, allowing this information to be read when processing the
corresponding node. Note that if k is bounded, the size of the set Σ of such
configurations is bounded. Since the automaton size does not depend on n and
the amount of information read in each node of T is bounded by a constant (as-
suming bounded amalgam-width), we will be able to conclude that the running
time of our algorithm, which will just simulate the tree automaton, is linear in
the size of T .

To start the induction, we first consider the case ψ = x1 ∈ X2. Such instances
of MSO-DECIDE can be solved by the automaton given in Figure 3. This au-
tomaton stays in its original state if x1 is assigned � by the local view of Q at
E(K(v)). Otherwise, it moves to designated ACCEPT and REJECT states based
on whether Qv(x1) ∈ Qv(X2) holds. The set SA is defined to be {ACCEPT}.
The function Δ : S × S → S assigns the ACCEPT state to any tuple contain-
ing an ACCEPT state. Similarly for the REJECT state. We are guaranteed not
to encounter the situation where one child node is in the ACCEPT state and
the other in the REJECT state, since the free variable assignment function Q
maps x1 precisely to one element of E(M). It is clear that this tree automaton
correctly propagates the information of whether x1 ∈ X2 or not from the leaf
representing the value of x1 to the root of T .

The cases of formulas x1 = x2 and X1 = X2 can be handled similarly. For
formulas of the form ψ1 ∨ ψ2, we construct the automaton by taking the
Cartesian product of the automatons Ai = (Si, Si

A, δ
i, Δi, Σi), i ∈ {1, 2} for the

partial formulas ψi. Specifically, Σ = Σ1 ×Σ2, S = S1 × S2, SA = (S1
A × S2) ∪

(S1 × S2
A), Δ

(
(x, y)

)
=

(
Δ1(x), Δ2(y)

)
, δ

(
(x, y), (q, r)

)
=

(
δ1(x, q), δ2(y, r)

)
.

Informally, the two automatons run in parallel and the new automaton accepts
precisely if at least one of the two is in an accepting state. A formula of the form
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0

ACCEPT

REJECT

Qv(x1) ∈ Qv(X2)

Qv(x1) �∈ Qv(X2) ∪ {�}

Qv(x1) = �

all cases

all cases

Fig. 3. The states and transition rules δ of the tree automaton for the formula
x1 ∈ X2. Here, v is the currently processed node of the amalgam decomposition.
The names of the states are typed using bold font.

¬ψ can be processed by the same automaton as ψ, except we change the set
accepting states to their complement. The connectives ∧,⇒, . . . can be expressed
using ∨ and ¬ by a standard reduction.

The special properties of amalgam decompositions come into play when con-
structing the automaton deciding x1 ∈ cl(X2). When processing a node v ∈ T ,
we see the elements of K(v), can query the independent sets on E(K(v)), and
see local view of Q(X2) at E(K(v)). Our strategy will be to compute clM (X2)
restricted to E(K(v)) and determine whether x1 is contained in it. However, the
state at v does not encode necessary information about the remaining part of
M . The matroid M(v) is joined to this part by a generalized parallel connection
using J(v). Lemma 3 says that the remaining part ofM can influence the restric-
tion of the closure of X2 on E(K(v)) only through forcing some of the elements
of this modular flat into the closure. Since |J(v)| is bounded, we can precompute
the behavior of the resulting closure for all possible cases. This information is
encoded in the state of the finite automaton passed to the parent node. The
parent node can then use the information encoded in the states corresponding
to its children when precomputing its intersection with clM (X2). We formalize
this approach using the following definition.

Definition 10. Let v be a node of an amalgam decomposition T of M and X
be a subset of E(M). A map fX

v from 2J(v) → 2J(v) satisfying

fX
v (Y ) = clM(v)

((
X ∩ E(M(v))

)
∪ Y

)
∩ J(v)

is called the type of a node v with respect to X.

When processing a node v, we can assume we are given the types fX
1 and

fX
2 of the children of v and we want to determine the type of v. The type is
then encoded into the state of the finite automaton (along with the information
for which choices of Y ⊆ J(v) the formula ψ holds) and is passed to the parent
node. This information is then reused to determine the type of the parent node,
etc. This process is captured by the following definition.

Definition 11. Let v be a node of an amalgam decomposition T of a matroid
M , v1 and v2 the children of v, and X a subset of E(M). If fX

v1 is the type of
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v1 with respect to X and fX
v2 is a type of v2 with respect to X, we say that the

type fX
v1 +K(v) f

X
v2 of v is the join of fX

v1 and fX
v2 if for every subset Y of J(v) it

holds that fX
v1 +K(v) f

X
v2 = Z ∩ J(v), where Z is the smallest subset of E(K(v))

such that (1) fX
v1 (Z ∩ J1(v)) = Z ∩ J1(v), (2) fX

v2 (Z ∩ J2(v)) = Z ∩ J2(v), (3)
Z ⊇ Y ∪ (X ∩ E(K(v))).

Lemma 3 implies that fX
v1 +K(v) f

X
v2 is the type of the node v with respect to

X . Observe that the type fX
1 +K(v) f

X
2 in the above definition is determined by

fX
v1 , f

X
v2 ,K(v) and X ∩ E(K(v)) – each of which has bounded size. This implies

that the computation of the type fX
1 +K(v) f

X
2 can be wired in the transition

function of the automaton. Deciding if Q(x1) ∈ cl(X2)∩ J(v) is then reduced to
verifying if Q(x1) ∈ fX2

v (Y ) for a particular choice of Y .
The case of a formula ∃x : ψ is solved by a standard argument of taking the

finite tree automaton recognizing ψ and transforming it to a non-deterministic
finite tree automaton that tries to guess the value of x (in our case, the au-
tomaton also checks if this guessed value of x lies in the set D(v) of deleted
elements). This automaton can in turn be simulated using a deterministic finite
tree automaton with up to an exponential blow-up of the number of states. The
case ∃X : ψ is solved analogously. Since the algorithm simulating the automaton
on T spends O(1) time in each of the nodes of T , there exists a linear time
algorithm solving the problem from the statement of the theorem.

We can also show that the Tutte polynomial can be computed and evaluated
in an FPT way. We omit the proof due to space constraints.

Theorem 6. For a fixed k, there exists a polynomial-time algorithm that com-
putes the coefficients of the Tutte polynomial of M from its amalgam decompo-
sition T of width at most k. The degree of the polynomial in the running time
estimate of the algorithm is independent of k.

5 Conclusion

The Theorem 5 includes the assumption that the amalgam decomposition is
given as a part of the input. This can be removed for matroids representable
over a fixed finite field, since the proof of Proposition 2 gives a linear time
algorithm constructing an amalgam decomposition from a branch decomposition.
Therefore, we can use a polynomial-time algorithm [7, 15] for constructing a
branch decomposition and then convert it to an amalgam decomposition of width
bounded by a constant multiple of the original branch-width. Similarly, it can
be shown that the branch decomposition of a representable matroid can be
obtained from an amalgam decomposition in a natural way. However, we have
not been able to settle the complexity of constructing amalgam decomposition
of (approximately) optimal width for a general oracle-given matroid.

Acknowledgment. The authors would like to thank Dan Král’ for valuable
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Abstract. We present the first results on the parameterized complexity
of reconfiguration problems, where a reconfiguration version of an opti-
mization problem Q takes as input two feasible solutions S and T and de-
termines if there is a sequence of reconfiguration steps that can be applied
to transform S into T such that each step results in a feasible solution to
Q. For most of the results in this paper, S and T are subsets of vertices of a
given graph and a reconfiguration step adds or deletes a vertex. Our study
is motivated by recent results establishing that for most NP-hard prob-
lems, the classical complexity of reconfiguration is PSPACE-complete.

We address the question for several important graph properties under
two natural parameterizations: k, the size of the solutions, and �, the
length of the sequence of steps. Our first general result is an algorithmic
paradigm, the reconfiguration kernel, used to obtain fixed-parameter al-
gorithms for the reconfiguration versions of Vertex Cover and, more
generally, Bounded Hitting Set and Feedback Vertex Set, all pa-
rameterized by k. In contrast, we show that reconfiguring Unbounded

Hitting Set is W [2]-hard when parameterized by k+�. We also demon-
strate the W [1]-hardness of the reconfiguration versions of a large class
of maximization problems parameterized by k + �, and of their corre-
sponding deletion problems parameterized by �; in doing so, we show
that there exist problems in FPT when parameterized by k, but whose
reconfiguration versions are W [1]-hard when parameterized by k + �.

1 Introduction

The reconfiguration version of an optimization problem asks whether it is possi-
ble to transform a source feasible solution S into a target feasible solution T by
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a (possibly minimum-length) sequence of reconfiguration steps such that every
intermediate solution is also feasible. Reconfiguration problems model dynamic
situations in which we seek to transform a solution into a more desirable one,
maintaining feasibility during the process. The study of reconfiguration yields
insights into the structure of the solution space of the underlying optimization
problem, crucial for the design of efficient algorithms.

Motivated by these facts, there has been a lot of recent interest in studying the
complexity of reconfiguration problems. Problems for which reconfiguration has
been studied includeVertex Colouring [1–5], List Edge-Colouring [6], In-
dependent Set [7, 8], Set Cover, Matching, Matroid Bases [8], Satisfi-
ability [9], Shortest Path [10, 11], andDominating Set [12, 13]. Most work
has been limited to the problem of determining the existence of a reconfiguration
sequence between two given solutions; for most NP-complete problems, this prob-
lem has been shown to be PSPACE-complete.

As there are typically exponentially many feasible solutions, the length of a
reconfiguration sequence can be exponential in the size of the input instance. It
is thus natural to ask whether reconfiguration problems become tractable if we
allow the running time to depend on the length of the sequence. In this work, we
explore reconfiguration in the framework of parameterized complexity [14] under
two natural parameterizations: k, a bound on the size of feasible solutions, and 
,
the length of the reconfiguration sequence. One of our key results is that for most
problems, the reconfiguration versions remain intractable in the parameterized
framework when we parameterize by 
. It is important to note that when k is
not bounded, the reconfiguration problems we study become easy.

We present fixed-parameter algorithms for problems parameterized by k by
modifying known parameterized algorithms for the problems. The paradigms of
bounded search tree and kernelization typically work by exploring minimal solu-
tions. However, a reconfiguration sequence may necessarily include non-minimal
solutions. Any kernel that removes solutions (non-minimal or otherwise) may
render finding a reconfiguration sequence impossible, as the missing solutions
might appear in every reconfiguration sequence. To handle these difficulties, we
introduce a general approach for parameterized reconfiguration problems. We use
a reconfiguration kernel, showing how to adapt Bodlaender’s cubic kernel [15] for
Feedback Vertex Set, and a special kernel by Damaschke and Molokov [16]
for Bounded Hitting Set (where the cardinality of each input set is bounded)
to obtain polynomial reconfiguration kernels, with respect to k. These results can
be considered as interesting applications of kernelization, and a general approach
for other similar reconfiguration problems.

As a counterpart to our result for Bounded Hitting Set, we show that
reconfiguring Unbounded Hitting Set or Dominating Set is W [2]-hard
parameterized by k+ 
 (Section 4). Finally, we show a general result on reconfig-
uration problems of hereditary properties and their ‘parametric duals’, implying
the W [1]-hardness of reconfiguring Independent Set, Induced Forest, and
Bipartite Subgraph parameterized by k+ 
 and Vertex Cover, Feedback
Vertex Set, and Odd Cycle Transversal parameterized by 
.
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2 Preliminaries

Unless otherwise stated, we assume that each input graph G is a simple, undi-
rected graph on n vertices with vertex set V (G) and edge set E(G). To avoid
confusion, we refer to nodes in reconfiguration graphs (defined below), as distin-
guished from vertices in the input graph. We use the modified big-Oh notation
O∗ that suppresses all polynomially bounded factors.

Our definitions are based on optimization problems, each consisting of a
polynomial-time recognizable set of valid instances, a set of feasible solutions
for each instance, and an objective function assigning a nonnegative rational
value to each feasible solution.

Definition 1. The reconfiguration graph RQ(I, adj, k), consists of a node for
each feasible solution to instance I of optimization problem Q, where the size
of each solution is at least k for Q a maximization problem (of size at most k
for Q a minimization problem, respectively), for positive integer k, and an edge
between each pair of nodes corresponding to solutions in the binary adjacency
relation adj on feasible solutions.

We define the following reconfiguration problems, where S and T are feasible
solutions for I: Q Reconfiguration determines if there is a path from S to T in
RQ(I, adj, k); the search variant returns a reconfiguration sequence, the sequence
of feasible solutions associated with such a path; and the shortest path variant
returns the reconfiguration sequence associated with a path of minimum length.

Using the framework developed by Downey and Fellows [14], a parameterized
reconfiguration problem includes in the input a positive integer 
 (an upper bound
on the length of the reconfiguration sequence) and a parameter p (typically k or

). For a parameterized problem Q with inputs of the form (x, p), |x| = n and p
a positive integer, Q is fixed-parameter tractable (or in FPT) if it can be decided
in f(p)nc time, where f is an arbitrary function and c is a constant independent
of both n and p. Q has a kernel of size f(p) if there is an algorithm A that
transforms the input (x, p) to (x′, p′) such that A runs in polynomial time (with
respect to |x| and p) and (x, p) is a yes-instance if and only if (x′, p′) is a yes-
instance, p′ ≤ g(p), and |x′| ≤ f(p). Each problem in FPT has a kernel, possibly
of exponential (or worse) size. The main hierarchy of parameterized complexity
classes is FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ XP , where W -hardness, shown using
FPT reductions, is the analogue of NP-hardness in classical complexity. The
reader is referred to [17, 18] for more on parameterized complexity.

We introduce the notion of a reconfiguration kernel; it follows from the defi-
nition that a reconfiguration problem that has such a kernel is in FPT.

Definition 2. A reconfiguration kernel of an instance (x, p) = (Q, adj, S, T, k,

, p) of a parameterized reconfiguration problem is a set of h(p) instances, for an
arbitrary function h, such that for 1 ≤ i ≤ h(p):

– for each instance in the set, (xi, pi) = (Q, adj, Si, Ti, ki, 
i, pi), the values of
Si, Ti, ki, 
i, and pi can all be computed in polynomial time,
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– the size of each xi is bounded by j(p), for an arbitrary function j, and
– (x, p) is a yes-instance if and only if at least one (xi, pi) is a yes-instance.

Most problems we consider can be defined using graph properties, where a
graph property π is a collection of graphs, and is non-trivial if it is non-empty
and does not contain all graphs. A graph property is polynomially decidable if
for any graph G, it can be decided in polynomial time whether G is in π. For
a subset V ′ ⊆ V , G[V ′] is the subgraph of G induced on V ′, with vertex set V ′

and edge set {{u, v} ∈ E | u, v ∈ V ′}. The property π is hereditary if for any
G ∈ π, any induced subgraph of G is also in π. It is well-known [19] that every
hereditary property π has a forbidden set Fπ, in that a graph has property π if
and only if it does not contain any graph in Fπ as an induced subgraph.

For a graph property π, we define two reconfiguration graphs, where solutions
are sets of vertices and two solutions are adjacent if they differ by the addition
or deletion of a vertex. The subset reconfiguration graph of G with respect to
π, Rπ

sub
(G, k), has a node for each S ⊆ V (G) such that |S| ≥ k and G[S]

has property π, and the deletion reconfiguration graph of G with respect to π,
Rπ

del
(G, k), has a node for each S ⊆ V (G) such that |S| ≤ k and G[V (G)\S] has

property π. We can obtain Rπ
del

(G, |V (G)|−k) by replacing the set corresponding
to each node in Rπ

sub
(G, k) by its (setwise) complement.

Definition 3. For any graph property π, graph G, positive integer k, S ⊆ V (G),
and T ⊆ V (G), we define the following decision problems: π-deletion(G, k): Is
there V ′ ⊆ V (G) such that |V ′| ≤ k and G[V (G) \ V ′] ∈ π?
π-subset(G, k): Is there V ′ ⊆ V (G) such that |V ′| ≥ k and G[V ′] ∈ π?

π-del-reconf(G,S, T, k, 
): For S, T ∈ V (Rπ
del

(G, k)), is there a path of length

at most 
 between S and T in Rπ
del

(G, k)?
π-sub-reconf(G,S, T, k, 
): For S, T ∈ V (Rπ

sub
(G, k)), is there a path of length

at most 
 between S and T in Rπ
sub

(G, k)?

We say that π-deletion(G, k) and π-subset(G, k) are parametric duals of each
other. We refer to π-del-reconf(G,S, T, k, 
) and π-sub-reconf(G,S, T, k, 
)
as π-reconfiguration problems.

Due to the page limitation, some proofs (marked with an asterisk) have been
omitted and can be found in the full version of the paper [20].

3 Fixed-Parameter Tractability Results

For an instance (G,S, T, k, 
) of a π-reconfiguration problem, we partition V (G)
into the sets C = S ∩ T , SD = S \ C, TA = T \ C, and O = V (G) \ (S ∪ T ) =
V (G)\(C∪SD∪TA) (all other vertices). Furthermore, we can partition C into two
sets CF and CM = C \ CF , where a vertex is in CF if and only if it is in every
feasible solution of size bounded by k. In any reconfiguration sequence, each
vertex in SD must be deleted and each vertex in TA must be added. We say that
a vertex v is touched if v is either added or deleted in at least one reconfiguration
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step. The following fact is a consequence of the definitions above, the fact that
π is hereditary, and the observations that G[SD] and G[O] are both subgraphs
of G[V (G) \ T ], and G[TA] and G[O] are both subgraphs of G[V (G) \ S].

Fact 1. For an instance π-del-reconf(G,S, T, k, 
) of a reconfiguration prob-
lem for hereditary property π, G[O], G[SD], and G[TA] all have property π.

In the next section, we show that for most hereditary properties, reconfigura-
tion problems are hard when parameterized by 
. Here, we prove the parameter-
ized tractability of reconfiguration for certain superset-closed k-subset problems
when parameterized by k, where a k-subset problem is a parameterized problem
Q whose solutions for an instance (I, k) are all subsets of size at most k of a
domain set, and is superset-closed if any superset of a solution of Q is also a
solution of Q.

Theorem 4. If a k-subset problem Q is superset-closed and has an FPT algo-
rithm to enumerate all its minimal solutions, the number of which is bounded by
a function of k, then Q Reconfiguration parameterized by k is in FPT, as
well as the search and shortest path variants.

Proof. By enumerating all minimal solutions of Q, we compute the set M of
all elements v of the domain set such that v is in a minimal solution to Q. For
(I, S, T, k, 
) an instance of Q Reconfiguration, we show that there exists a
reconfiguration sequence from S to T if and only if there exists a reconfiguration
sequence from S ∩M to T ∩M that uses only subsets of M .

Each set U in the reconfiguration sequence from S to T is a solution, hence
contains at least one minimal solution in U ∩ M ; U ∩ M is a superset of the
minimal solution and hence also a solution. Moreover, since any two consecutive
solutions U and U ′ in the sequence differ by a single element, U ∩M and U ′∩M
differ by at most a single element. By replacing each subsequence of identical
sets by a single set, we obtain a reconfiguration sequence from S ∩M to T ∩M
that uses only subsets of M .

The reconfiguration sequence from S ∩ M to T ∩ M using only subsets of
M can be extended to a reconfiguration sequence from S to T by transforming
S to S ∩ M in |S \ M | steps and transforming T ∩ M to T in |T \ M | steps.
In this sequence, each vertex in C \M is removed from S to form S \M and
then readded to form T from T \M . For each vertex v ∈ C \M , we can choose
instead to add v to each solution in the sequence, thereby decreasing 
 by two
(the steps needed to remove and then readd v) at the cost of increasing by one
the capacity used in the sequence from S ∩ M to T ∩ M . This choice can be
made independently for each of these E = |C \M | vertices.

Consequently, (I, S, T, k, 
) is a yes-instance for Q Reconfiguration if and
only if one of the E+1 reduced instances (I, S∩M,T ∩M,k−e, 
−2(E −e)), for
0 ≤ e ≤ E and E = |C\M |, is a yes-instance for Q′

Reconfiguration: we define
Q′ as a k-subset problem whose solutions for an instance (I, k) are solutions of
instance (I, k) ofQ that are contained inM . To show thatQ′

Reconfiguration

is in FPT, we observe that the number of nodes in the reconfiguration graph for
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Q′ is bounded by a function of k: each solution of Q′ is a subset of M , yielding
at most 2|M| nodes, and |M | is bounded by a function of k. ��

Corollary 5. Bounded Hitting Set Reconfiguration, Feedback Ver-

tex Set in Tournaments Reconfiguration, and Minimum Weight SAT

in Bounded CNF Formulas Reconfiguation parameterized by k are in
FPT.

For Bounded Hitting Set, the proof of Theorem 4 can be strengthened
to develop a polynomial reconfiguration kernel. In fact, we use the ideas in
Theorem 4 to adapt a special kernel that retains all minimal k-hitting sets in
the reduced instances [16].

Theorem 6. Bounded Hitting Set Reconfiguration parameterized by k
has a polynomial reconfiguration kernel.

Proof. We let (G,S, T, k, 
) be an instance of Bounded Hitting Set Recon-

figuration: G is a family of sets of vertices of size at most r and each of S
and T is a hitting set of size at most k, that is, a set of vertices intersecting
each set in G. We form a reconfiguration kernel using the reduction algorithm
A of Damaschke and Molokov [16]: G′ = A(G) contains all minimal hitting set
solutions of size at most k, and is of size at most (r − 1)kr + k.
V (G′) includes all minimal k-hitting sets, and the k-hitting sets for G′ are

actually those k-hitting sets for G that are completely included in V (G′). There-
fore, as in the proof of Theorem 4, (G,S, T, k, 
) is a yes-instance for Bounded

Hitting Set Reconfiguration if and only if one of the E+1 reduced instances
(G′, S ∩ V (G′), T ∩ V (G′), k − e, 
 − 2(E − e)), for 0 ≤ e ≤ E , is a yes-instance
for Bounded Hitting Set Reconfiguration.

Notice that unlike in the proof of Theorem 4, here the set containing all
minimal solutions can be computed in polynomial time, whereas Theorem 4
guarantees only a fixed-parameter tractable procedure. ��

Bounded Hitting Set generalizes any deletion problem for a hereditary
property with a finite forbidden set:

Corollary 7. If π is a hereditary graph property with a finite forbidden set, then
π-del-reconf(G,S, T, k, 
) parameterized by k has a polynomial reconfiguration
kernel.

Corollary 7 does not apply to Feedback Vertex Set, for which the associ-
ated hereditary graph property is the collection of all forests; the forbidden set is
the set of all cycles and hence is not finite. Indeed, Theorem 4 does not apply to
Feedback Vertex Set either, since the number of minimal solutions exceeds
f(k) if the input graph includes a cycle of length f(k) + 1, for any function f .
While it may be possible to adapt the compact enumeration of minimal feed-
back vertex sets [21] for reconfiguration, we develop a reconfiguration kernel for
feedback vertex set by modifying a specific kernel for the problem.
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We are given an undirected graph and two feedback vertex sets S and T
of size at most k. We make use of Bodlaender’s cubic kernel for Feedback

Vertex Set [15], modifying reduction rules (shown in italics in the rules below)
to allow the reconfiguration sequence to use non-minimal solutions, and to take
into account the roles of C, SD, TA, and O. In some cases we remove vertices
from O only, as others may be needed in a reconfiguration sequence.

The reduction may introduce multiple edges, forming a multigraph. Bodlaen-
der specifies that a double edge between vertices u and v consists of two edges
with u and v as endpoints. Since we preserve certain degree-two vertices, we
extend the notion by saying that there is a double edge between u and v if either
there are two edges with u and v as endpoints, one edge between u and v and
one path from u to v in which each internal vertex is of degree two, or two paths
(necessarily sharing only u and v) from u to v in which each internal vertex is
of degree two. Following Bodlaender, we define two sets of vertices, a feedback
vertex set A of size at most 2k and the set B containing each vertex with a
double edge to at least one vertex in A. A piece is a connected component of
G[V \ (A ∪ B)], the border of a piece with vertex set X is the set of vertices
in A ∪ B adjacent to any vertex in X , and a vertex v in the border governs a
piece if there is a double edge between v and each other vertex in the border.
We introduce E to denote how much capacity we can “free up” for use in the
reduced instance by removing vertices and then readding them.

Bodlaender’s algorithm makes use of a repeated initialization phase in which
an approximate solution A is found and B is initialized; for our purposes, we set
A = C ∪SD ∪TA in the first round and thereafter remove vertices as dictated by
the application of reduction rules. Although not strictly necessary, we preserve
this idea in order to be able to apply Bodlaender’s counting arguments. In the
following rules, v, w, and x are vertices.

Rule 1. If v has degree 0, remove v from G. If v is in SD ∪ TA, subtract 1 from

. If v is in C, increment E by 1.

Rule 2. If v has degree 1, remove v and its incident edge from G. If v is in
SD ∪ TA, subtract 1 from 
. If v is in C, increment E by 1.

Rule 3. If there are three or more edges {v, w}, remove all but two.
Rule 4. If v has degree 2 and v is in O, remove v and its incident edges from

G and add an edge between its neighbours w and x; add w (respectively, x)
to B if a double edge is formed, w (respectively, x) is not in A ∪ B, and x
(respectively, w) is in A.

Rule 5. If v has a self-loop, remove v and all incident edges and decrease k by
1, then restart the initialization phase.

Rule 6. If there are at least k+2 vertex-disjoint paths between v ∈ A and any
w and there is no double edge between v and w, add two edges between v
and w, and if w /∈ A ∪B, add w to B.

Rule 7. If for v ∈ A there exist at least k + 1 cycles such that each pair of
cycles has exactly {v} as the intersection, remove v and all incident edges
and decrease k by 1, then restart the initialization phase.

Rule 8. If v has at least k + 1 neighbours with double edges, remove v and all
incident edges and decrease k by 1, then restart the initialization phase.
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Rule 9. If v ∈ A ∪ B governs a piece with vertex set X and has exactly one
neighbour w in X , then remove the edge {v, w}.

Rule 10. If v ∈ A ∪ B governs a piece with vertex set X and has at least two
neighbours in X , then remove v and all incident edges and decrease k by
1, then restart the initialization phase. Replaced by the following rule: If a
piece with vertex set X has a border set Y such that there is a double edge
between each pair of vertices in Y , remove X.

Lemma 8. The instance (G,S, T, k, 
) is a yes-instance if and only if one of
the E + 1 reduced instances (G′, S′, T ′, k − e, 
 − 2(E − e)), for 0 ≤ e ≤ E, is a
yes-instance.

Proof. We show that no modification of a reduction rule removes possible recon-
figuration sequences. This is trivially true for Rules 3 and 6.

The vertices removed by Rules 1, 2, and 4 play different roles in converting
a reconfiguration sequence for a reduced instance to a reconfiguration sequence
for the original instance. As there is no cycle that can be destroyed only by a
vertex removed from O by Rule 1, 2, or 4, none of these vertices are needed. To
account for the required removal (addition) of each such vertex in SD (TA), we
remove all d such vertices and decrease 
 by d. We can choose to leave a v ∈ CM

in each solution in the sequence (with no impact on 
) or to remove and then
readd v to free up extra capacity, at a cost of incrementing 
 by two; in the
reduced instance we thus remove v and either decrement k or subtract two from

. Since this choice can be made for each of these vertices, E in total, we try to
solve any of E + 1 versions (G′, S′, T ′, k − e, 
− 2(E − e)) for 0 ≤ e ≤ E .

For each of Rules 5, 7, and 8, we show that the removed vertex v is in CF ;
since the cycles formed by v must be handled by each solution in the sequence,
the instance can be reduced by removing v and decrementing k. For Rule 5,
v ∈ CF since every feedback arc set must contain v. For Rules 7 and 8, v ∈ CF ,
since any feedback vertex set not containing v would have to contain at least
k + 1 vertices, one for each cycle.

For Rule 9, Bodlaender’s Lemma 8 shows that the removed edge has no impact
on feedback vertex sets.

For Rule 10, we first assume that Rule 9 has been exhaustively applied, and
thus each vertex in the border has two edges to X . By Fact 1 for π the set of
acyclic graphs, there cannot be a cycle in G[O ∪ {v}] for any v ∈ SD ∪ TA ∪O,
and hence each member of the border is in C. Lemma 9 in Bodlaender’s paper
shows that there is a minimum size feedback vertex set containing v: even if all
the neighbours of v in the border are included in a feedback vertex set, at least
one more vertex is required to break the cycle formed by v and X . There is
no gain in capacity possible by replacing v in the reconfiguration sequence, and
hence this particular piece is of no value in finding a solution. ��

We first present the key points and lemmas in Bodlaender’s counting argu-
ment and then show that, with minor modifications, the same argument goes
through for our modified reduction rules and altered definition of double edge. In
Bodlaender’s proof, the size of the reduced instance is bounded by bounding the
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sizes of A and B (Lemma 10), bounding the number of pieces (Lemma 12), and
bounding the size of each piece. Crucial to the proof of Lemma 12 is Lemma 11,
as the counting associates each piece with a pair of vertices in its border that are
not connected by a double edge and then counts the number of pieces associated
with each different type of pair. We use Lemma 9 in the discussion below.

Lemma 9. [15] Suppose v ∈ A ∪B governs a piece with vertex set X. Suppose
there are at least two edges with one endpoints v and one endpoint in X. Then
there is a minimum size feedback vertex set in G that contains v.

Lemma 10. [15] In a reduced instance, there are at most 2k vertices in A and
at most 2k2 vertices in B.

Lemma 11. [15] Suppose none of the Rules 1–10 can be applied to G. Suppose
Y ⊆ V is the border of a piece in G. Then there are two disjoint vertices v, w ∈ Y
such that {v, w} is not a double edge.

Lemma 12. [15] Suppose we have a reduced instance. There are at most 8k3 +
9k2 + k pieces.

Lemma 13. Each reduced instance has O(k3) vertices and O(k3) edges, and
can be obtained in polynomial time.

Proof. Our modifications to Rules 1–3 and 5–9 do not have an impact on the size
of the kernel. Although our Rule 4 preserves some vertices in A of degree two,
due to the initialization of A to be C∪SD∪TA, and hence of size at most 2k, the
bound on B and hence Lemma 10 follows from Rule 8. In essence, our extended
definition of double edges handles the degree-two vertices that in Bodlaender’s
constructions would have been replaced by an edge.

To claim the result of Lemma 12, it suffices to show that Lemma 11 holds for
our modified rules. Bodlaender shows that if there is a piece such that each pair
of vertices in the border set is connected by a double edge, Rule 10 along with
Rule 9 can be applied repeatedly to remove vertices from the border of the piece
and thereafter Rules 2 and 1 to remove the piece entirely.

To justify Rule 10, Bodlaender shows in Lemma 9 that if v ∈ A ∪B governs
a piece with vertex set X and there are at least two edges between v and X ,
then there is a minimum size feedback vertex set in G that contains v. For our
purposes, however, since there may be non-minimum size feedback vertex sets
used in the reconfiguration sequence, we wish to retain v rather than removing
it. Our modification to Rule 10 allows us to retain v, handling all the removals
from the piece without changing the border, and thus establishing Lemma 11,
as needed to prove Lemma 12. In counting the sizes of pieces, our modifications
result in extra degree-two vertices. Rule 4 removes all degree-two vertices in O,
and hence the number of extra vertices is at most 2k, having no effect on the
asymptotic count. ��

Theorem 14. Feedback Vertex Set Reconfiguration and the search
variant parameterized by k are in FPT.
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Proof. Since the number of reduced instances is E + 1 ≤ |C| + 1 ≤ k + 1, as a
consequence of Lemmas 8 and 13, we have a reconfiguration kernel, proving the
first result. For the search version, we observe that we can generate the recon-
figuration graph of the reduced yes-instance and use it to extract a reconfigura-
tion sequence. We demonstrate that we can form a reconfiguration sequence for
(G,S, T, k, 
) from the reconfiguration sequence σ for the reduced yes-instance
(G′, S′, t′, k − e, 
 − 2(E − e)). We choose an arbitrary partition of the vertices
removed from G by Rules 1 and 2 into two sets, K (the ones to keep) of size e
and M (the ones to modify) of size E − e. We can modify σ into a sequence σ′ in
which all vertices in K are added to each set; clearly no set will have size greater
than k. Our reconfiguration sequence then consists of E − e steps each deleting
an element of M , the sequence σ′, and E − e steps each adding an element of M ,
for a length of at most (E − e) + (
− (E − e)) + (E − e) ≤ 
, as needed. ��

4 Hardness Results

The reductions presented in this section make use of the forbidden set charac-
terization of heredity properties. A π-critical graph H is a (minimal) graph in
the forbidden set Fπ that has at least two vertices; we use the fact that H /∈ π,
but the deletion of any vertex from H results in a graph in π. For convenience,
we will refer to two of the vertices in a π-critical graph as terminals and the
rest as internal vertices. We construct graphs from multiple copies of H . For
a positive integer c, we let H∗

c be the (“star”) graph obtained from each of c
copies Hi of H by identifying an arbitrary terminal vi, 1 ≤ i ≤ c, from each Hi;
in H∗

c vertices v1 through vc are replaced with a vertex w, the gluing vertex of
v1 to vc, to form a graph with vertex set ∪1≤i≤c(V (Hi) \ {vi}) ∪ {w} and edge
set ∪1≤i≤c{{u, v} ∈ E(Hi) | vi /∈ {u, v}} ∪ ∪1≤i≤c{{u,w} | {u, vi} ∈ E(Hi)}. A
terminal is non-identified if it is not used in forming a gluing vertex. In Figure 1,
H is a K3 with terminals marked black and gray; H∗

4 is formed by identifying
all the gray terminals to form w.

v1 v2 v3 v4

H∗
4

Fig. 1. An example H∗
c

Theorem 15. Let π be any hereditary property satisfying the following:

– For any two graphs G1 and G2 in π, their disjoint union is in π.
– There exists an H ∈ Fπ such that if H∗

c is the graph obtained from identifying
a terminal from each of c copies of H, then R = H∗

c [V (H∗
c ) \ {u1 . . . uc}] is

in π, where u1 . . . uc are the non-identified terminals in the c copies of H.
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Then each of the following is at least as hard as π-subset(G, k):

1. π-del-reconf(G,S, T, k, 
) parameterized by 
, and
2. π-sub-reconf(G,S, T, k, 
) parameterized by k + 
.

Proof. Given an instance of π-subset(G, k) and a π-critical graph H satisfying
the hypothesis of the lemma, we form an instance of π-del-reconf(G′, S, T,
|V (G)| + k, 4k), with G′, S, and T defined below. The graph G′ is the disjoint
union of G and a graphW formed from k2 copies of H , where Hi,j has terminals

i,j and ri,j . We let ai, 1 ≤ i ≤ k, be the gluing vertex of 
i,1 through 
i,k, and
let bj, 1 ≤ j ≤ k, be the gluing vertex of r1,j through rk,j , so that there is a copy
of H joining each ai and bj . We let A = {ai | 1 ≤ i ≤ k}, B = {bj | 1 ≤ j ≤ k},
S = V (G)∪A, and T = V (G)∪B. Clearly |V (G′)| = |V (G)|+2k+k2(|V (H)|−2)
and |S| = |T | = |V (G)|+ k. Moreover, each of V (G′) \S and V (G′) \T induce a
graph in π, as each consists of k disjoint copies of H∗

k with one of the terminals
removed from each H in H∗

k .
Suppose the instance of π-del-reconf(G′, S, T, |V (G)| + k, 4k) is a yes-

instance. As there is a copy of H joining each vertex of A to each vertex of
B, before deleting a ∈ A from S the reconfiguration sequence must add all of
B to ensure that the complement of each intermediate set induces a graph in π.
Otherwise, the complement will contain at least one copy of H as a subgraph
and is therefore not in π. The capacity bound of |V (G)| + k implies that the
reconfiguration sequence must have deleted from S a subset S′ ⊆ V (G) of size
at least k such that V (G′) \ (S \ S′) = S′ ∪ B induces a subgraph in π. Thus,
G[S′] ∈ π, and hence π-subset(G, k) is a yes-instance.

Conversely if the instance of π-subset(G, k) is a yes-instance, then there
exists V ′ ⊆ V (G) such that |V ′| = k and G[V ′] ∈ π. We form a reconfiguration
sequence between S and T by first deleting all vertices in V ′ from S to yield a
set of size |V (G)|. G′[V (G′) \ (S \V ′)] consists of the union of G′[V ′(G) \S] and
G′[V ′] = G[V ′], both of which are in π. Next we add one by one all vertices of B,
then delete one by one all vertices of A and then add back one by one each vertex
in the set V ′ resulting in a reconfiguration sequence of length k+k+k+k = 4k.
It is clear that in every step, the complement of the set induces a graph in π.

Thus we have showed that π-subset(G, k) is a yes-instance if and only if
there is a path of length at most 4k between S and T in Rπ

del
(G′, |V (G)| +

k). Since |V (G′)| − (|V (G)| + k) = k + k2(|V (H)| − 2)), this implies that π-
subset(G, k) is a yes-instance if and only if there is a path of length at most
4k between V (G′) \ S and V (G′) \ T in Rπ

sub
(G′, k+k2(|V (H)|− 2)). Therefore,

π-sub-reconf(G,S, T, k, 
) parameterized by k + 
 is at least as hard as π-
subset(G, k), proving the second part. ��

It is easy to see that for π the collection of all edgeless graphs, or all forests,
or all bipartite graphs, the hypothesis of Theorem 15 is satisfied. Since the π-
subset(G, k) problem is W [1]-hard for these properties [22], it follows that:

Corollary 16. ∗
Vertex Cover Reconfiguration, Feedback Vertex

Set Reconfiguration, and Odd Cycle Transversal Reconfiguration
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parameterized by 
 are all W [1]-hard and Independent Set Reconfigura-

tion, Forest Reconfiguration, and Bipartite Subgraph Reconfigu-

ration parameterized by k + 
 are all W [1]-hard.

We obtain further results for properties not covered by Theorem 15. Lemma 17
handles the collection of all cliques, which does not satisfy the first condi-
tion of the theorem and the collection of all cluster graphs (disjoint unions of
cliques), which satisfies the first condition but not the second. Moreover, as π-
subset(G, k) is in FPT for π the collection of all cluster graphs [22], Theorem 15
provides no lower bounds.

Lemma 17. ∗
Clique Reconfiguration and Cluster Subgraph Recon-

figuration parameterized by k + 
 are W [1]-hard.

As neither Dominating Set nor its parametric dual is a hereditary graph
property, Theorem 15 is inapplicable; we instead use a construction specific to
the problem in Lemma 18.

Lemma 18. ∗
Dominating Set Reconfiguration and (Unbounded) Hit-

ting Set Reconfiguration parameterized by k + 
 are W [2]-hard.

5 Conclusions and Directions for Further Work

Our results constitute the first study of the parameterized complexity of re-
configuration problems. We give a general paradigm, the reconfiguration ker-
nel, for proving fixed-parameter tractability, and provide hardness reductions
that apply to problems associated with hereditary graph properties. Our result
on cluster graphs (Lemma 17) demonstrates the existence of a problem that
is fixed-parameter tractable [22], but whose reconfiguration version is W -hard
when parameterized by k. It remains open whether there exists an NP-hard
problem for which the reconfiguration version is in FPT if parameterized by 
.

Our FPT algorithms for reconfiguration of Bounded Hitting Set and
Feedback Vertex Set have running times of O∗(2O(k lg k)). Further work is
needed to determine whether the running times can be improved to O∗(2O(k)),
or whether these bounds are tight under the Exponential Time Hypothesis.

We observe connections to another well-studied paradigm, local search [23],
where the aim is to find an improved solution at distance 
 of a given solution
S. Not surprisingly, as in local search, the problems we study turn out to be
hard even in the parameterized setting when parameterized by 
. Other natural
directions to pursue (as in the study of local search) are the parameterized
complexity of reconfiguration problems in special classes of graphs and of non-
graph reconfiguration problems, as well as other parameterizations.

Acknowledgements. The second author wishes to thank Marcin Kamiński for
suggesting the examination of reconfiguration in the parameterized setting.
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Abstract. A binary matrix M has the Consecutive Ones Property
(COP) if there exists a permutation of columns that arranges the ones
consecutively in all the rows. We consider the parameterized complexity
of d-COS-R (Consecutive Ones Submatrix by Row deletions) problem [8]:
Given a matrix M and a positive integer d, decide whether there exists a
set of at most d rows ofMwhose deletion results in amatrix with the COP.
The closely related Interval Deletion problem has recently been shown to
be FPT [5]. In this work, we describe a recursive depth-bounded search
tree algorithm in which the problems at the leaf-level of the recursion tree
are solved as instances of Interval Deletion. Therefore, we show that d-
COS-R is fixed-parameter tractable and has the current best run-time of
O∗(10d), which is associated with the Interval Deletion problem. We then
consider a closely related optimization problem, called Min-ICPIA, and
prove that it is computationally equivalent to the Vertex Cover problem.

Keywords: Consecutive Ones Property, Consecutive Ones Submatrix,
Parameterized complexity.

1 Introduction

A binary matrix has the Consecutive Ones Property (COP), if there is a permu-
tation of its columns that places the ones consecutively in all the rows. Testing
the COP is a classical algorithmic problem and has various applications that
include information retrieval [13], physical mapping of DNA [1], recognizing
interval graphs, planar graphs and Hamiltonian cubic graphs [4,28]. Problems
like integer linear programming and set cover, on instances for which
the associated constraint matrices have the COP, are polynomial-time solvable
[7]. After early attempts at testing for the COP by Robinson [25], the first
polynomial-time algorithm was designed by Fulkerson and Gross [10]. They
decomposed the given matrix into simpler matrices which have exactly two
permutations that guarantee the COP or none. This decomposition into sim-
pler matrices have been repeatedly used in the study of the COP. Using a data
structure called PQ-trees, Booth and Lueker [4] came up with a linear-time al-
gorithm to test the COP. PQ-trees exist only for matrices with the COP and
it is an empty data structure if the associated matrix does not have the COP.
PQR-trees are extensions of PQ-trees introduced by Meidanis, Porto and Telles

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 295–307, 2013.
c© Springer International Publishing Switzerland 2013
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[22] to ensure that the data structure is well defined for all matrices. Further,
R-nodes in PQR-trees give the forbidden submatrices for the COP. Hsu [18]
introduced PC-trees, as a generalization of PQ-trees to test the COP and this
algorithm also runs in linear-time. Habib, McConnell, Paul and Viennot [15]
used Lex-BFS and partition refinement to test matrices with the COP. An alter-
nate linear time solution (without using any of PQ-trees, PQR-trees, PC-trees)
for testing the COP using decomposition technique was also proposed by Hsu
[19]. Recently, Raffinot [24] presented an algorithm for testing the COP based
on a new partitioning scheme.

Matrices with the COP are characterized based on a set of forbidden subma-
trices and this characterization is due to Tucker [27]. Efficiently finding minimum
size forbidden submatrices for the COP is a vibrant line of research. Dom, Guo
and Niedermeier [8] first came up with a polynomial-time algorithm for finding
these forbidden submatrices. Recently, Blin, Rizzi and Vialette [2] designed a
faster algorithm for finding minimum size Tucker forbidden submatrices, thereby
improving the running time of Dom et al. [8]. Another fundamentally different
characterization of matrices with the COP is due to McConnell [21] based on
the bipartiteness of an associated incompatibility graph. An odd cycle of the in-
compatibility graph serves as a certificate, if the matrix does not have the COP.

Matrices with the COP have been characterized in terms of interval assign-
ments to an associated set system such that the intersection cardinalities are
preserved [23]. This characterization, implicitly present in the paper by Fulker-
son and Gross (Theorem 2.1, [10]), is re-discovered in [23] (Theorem 3, [23]). Let
S = {S1, . . . , Sn} be a family of subsets of [m]. An interval assignment to the
collection S is denoted by a set of ordered pairs, {(Si, Ii) | 1 ≤ i ≤ n}, where
each interval Ii is a set of consecutive integers from the set [m]. An interval
assignment to the collection S is an Intersection Cardinality Preserving Interval
Assignment (ICPIA), if it satisfies the following conditions: for each i, |Si| = |Ii|

and for every pair of sets Si and Sj, |Si ∩ Sj| = |Ii ∩ Ij|. The relevance of an
ICPIA associated with a binary matrix M is as follows: for each 1 ≤ i ≤ n, let
Si = {j | Mij = 1}, and S(M) = {Si | 1 ≤ i ≤ n}. It is easy to verify that if M
has the COP then the family S(M) has an ICPIA. The converse is also true,
and this is a characterization of matrices with the COP [10,23].

Many approaches are taken to deal with matrices that do not have the COP:
Consecutive Ones Submatrix (COS), consecutive ones matrix partition, consecu-
tive ones matrix augmentation and consecutive block minimization (SR14, SR15,
SR16, SR17 [11]) are some of the known problems. COS problem considers a nat-
ural way of addressing matrices that do not have the COP: Find a minimum set
of rows to be deleted such that the resulting matrix has the COP. This problem
is referred to as Min-COS-R (COS by Row deletions) [8] and it is known to be
NP-complete [3]. However, many variants of Min-COS-R have been looked at
in the literature both from parameterized and classical complexity. To highlight
the results of [8,16,26], we follow the notation of [26]. The notation (x, y)-matrix
denote the matrix consisting of at most x-number of ones in each column and
at most y-number of ones in each row and x = ∗ or y = ∗ denote that no bound
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on the number of ones in columns or rows. It is known from [16] that Min-COS-
R on (2,2)-matrices is polynomial-time solvable. The closely related variants of
Min-COS-R on (2,3) and (3,2)-matrices are NP-hard [26]. In the parameterized
setting, Min-COS-R with the number d of rows to be deleted as the parameter is
referred to as d-COS-R from now on. The parameterized complexity of d-COS-R
results as established by Dom, Guo and Niedermeier [8] are listed as follows.

, (∗, 2)-matrices have problem kernels with O(d2) rows and O(d) columns
, (2, ∗)-matrices have run-time O∗(4d)
, (∗, Δ)-matrices have run-time O∗((Δ+ 1)d.(2Δ)2d)

In the above results of d-COS-R, number of ones in the columns/rows of the ma-
trices are bounded and are shown to be FPT. These FPT algorithms are based
on a refinement of the forbidden submatrix characterization [27] of matrices with
the COP. Dom et al. [8] used this characterization repeatedly to delete the forbid-
den submatrices, for solving d-COS-R problem. To the best of our knowledge, the
parameterized complexity of d-COS-R on general binary matrices is open.

Our Results: We consider two deletion problems with respect to matrices that
do not have the COP: Consecutive Ones Submatrix (COS) problem [11] and
Min-ICPIA problem (defined later) posed by us, motivated by the results of
(Theorem 2.1, [10]) and (Theorem 3, [23]), which relate the COP and ICPIA.
The decision version of Min-COS-R called d-COS-R on arbitrary binary matrices
is defined as follows:

d-COS-R
Instance: 〈M,d〉 - A binary matrix Mn×m and an integer d ≥ 0.
Parameter: d

Question: Does there exist a set of at most d rows of M whose deletion
results in a matrix with the COP?

We show that d-COS-R admits an FPT algorithm with run-time O∗(10d). This
is obtained by a recursive branching algorithm in which the instances at the
leaf nodes are instances of Interval Deletion. For these instances, we employ the
recent O∗(10d) algorithm for Interval Deletion [5].

Interval Deletion
Instance: 〈G, d〉 - A graph G and an integer d ≥ 0.
Parameter: d
Question: Does G have a set V ′ of at most d vertices such that G \V ′ is an
interval graph?

This is a significant advancement over the current knowledge on this problem,
where current FPT results [8] are known only when the number of 1s in the rows
or columns are bounded. It is well known that a graph is an interval graph if
and only if its clique matrix (vertices versus maximal cliques incidence matrix)
has the COP (see Theorem 1). An algorithm for the Interval-deletion problem
would solve the d-COS-R problem, if the given matrix M can be recognized
as a clique matrix of the associated graph. Our approach, which is a recursive



298 N.S. Narayanaswamy and R. Subashini

algorithm, processes M such that matrices at the leaves of the recursion tree are
clique matrices of the associated graphs. Then, at the leaf nodes we apply the
interval-deletion algorithm of Cao and Marx [5] and get the overall running time
of d-COS-R as O∗(10d).

We pose a natural problem Min-ICPIA, based on the characterization of
matrices with the COP in terms of set systems that have an ICPIA [10,23], and
is defined as follows.

MIN-ICPIA
Instance: An interval assignment F = {(Si, Ii) | 1 ≤ i ≤ n}, where each
Si, Ii ⊆ [m] satisfying

⋃
Si =

⋃
Ii = [m] and an integer d ≥ 0.

Question: Does there exist a set D ⊆ F with |D| ≤ d such that F \D is an
ICPIA?

We show that Min-ICPIA is NP-complete by a polynomial time reduction from
Vertex Cover. We also present a parameter preserving reduction from Min-

ICPIA to Vertex Cover. By using the current best FPT algorithm for Vertex
Cover [6] we obtain an algorithm that solves Min-ICPIA in time O(1.2738d +
dn), where d is the number of ordered pairs to be deleted. Also, the
2-approximation algorithm of Vertex Cover [17] is applicable to Min-ICPIA.

2 Preliminaries

Throughout this paper we consider only binary matrices. Recall that an n ×
m matrix M can be represented as a set system (U,S(M)) where S(M)=
{S1, . . . , Sn} being the collection of subsets of U = {1, . . . ,m} where Si = {j |

Mij = 1}.

Definition 1. Let F = {S1, . . . , Sn}, Si ⊆ [m] be a collection of sets. Let F ′ ⊆ F
be a subcollection such that any two sets in F ′ have a non-empty intersection.
If all such pairwise intersecting subcollections F ′, contain at least one common
element, then F is said to have the Helly property [9].

For an n × m matrix M, let R(M) = {r1, . . . , rn} and C(M) = {c1, . . . , cm}

denote the sets of rows and columns, respectively. Here, ri and cj denote the
binary vectors corresponding to the row ri and column cj of M, respectively.
The (i, j)th entry in M is denoted as Mij. For a subset D ⊆ R(M) of rows,
the submatrix induced on D and R(M) \ D are denoted by M[D] and M \ D,
respectively. We follow graph theoretic definitions and notations of [14,29].

Definition 2. The derived graph (see Golumbic [14]) associated with a 0-1 ma-
trix M is G(M) = (V, E) is defined as V = {vi | ri ∈ R(M)} and E = {{vi, vj} |

∃ck ∈ C(M) with Mik = Mjk = 1}.

In other words, G(M) is obtained from M by visualizing each column ck as a
clique involving the vertices corresponding to rows which have a 1 entry in ck. For
a column ck, the set of vertices in G(M) is defined as vert(ck) = {vi | ri ∈ R(M)
and Mik = 1}. It is easy to see that G(M) is an intersection graph of the set
system (U = [m],S(M)) associated with M.
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Definition 3. A graph is called an interval graph if its vertices can be assigned
intervals such that two vertices are adjacent if and only if their corresponding
intervals have a nonempty intersection.

Let G be a graph on the vertex set {v1, . . . , vn} and let {Q1, . . . , Ql} be the set
of maximal cliques in G. The clique matrix M of G is the matrix whose rows
and columns correspond to the vertices and the maximal cliques, respectively,
in G. The entry Mij = 1 if the vertex vi is in the clique Qj and it is 0 otherwise.
The following characterization by Fulkerson and Gross [10] relates the COP and
interval graphs.

Theorem 1. (Theorem 7.1, [10]) A graph is an interval graph if and only if its
clique matrix has the COP.

2.1 COP, ICPIA and Clique-Matrices of Derived Graphs

In this section, we state and prove few results that are crucially used in proving
the correctness of our parameterized algorithm described in Section 3. We present
the following characterization of matrices with the COP [23], which is essential
in proving our claims.

Theorem 2. (Theorem 3, [23]) A binary matrix M has the COP if and only if
S(M) has an ICPIA.

We recall an important property of ICPIA, by generalizing the Lemma 1 in
Lemma 2.

Lemma 1. (Lemma 1, [23]) Let (Si, Ii), (Sj, Ij), (Sk, Ik) be elements of an
ICPIA. Then, |Si ∩ Sj ∩ Sk| = |Ii ∩ Ij ∩ Ik|.

Lemma 2. Let F = {(Si, Ii) | 1 ≤ i ≤ n} be an ICPIA for S(M). Then, for any
1 ≤ r ≤ n and for any collection of ordered pairs {(Si1 , Ii1), . . . , (Sir , Iir)} ⊆ F ,
|
⋂r

j=1 Sij | = |
⋂r

j=1 Iij |.

Proof. We prove this by induction on r. Base: For r = 3, the claim is true
for any three ordered pairs (by Lemma 1). Hypothesis: Let us assume that the

claim is true for all collections of r ordered pairs, i.e for each k ≤ r, |
⋂k

j=1 Sij | =

|
⋂k

j=1 Iij |. Induction step: We now prove the claim for a collection of r+1 ordered
pairs. For a collection of k ordered pairs, k ≤ r, the claim is true by the induction
hypothesis. For k = r+1, we will prove the claim as follows: let

⋂r+1
j=1 Sij = Si1 ∩

(
⋂r

j=2 Sij)∩Sir+1
and

⋂r+1
j=1 Iij = Ii1∩(

⋂r
j=2 Iij)∩Iir+1

. Define S∗ =
⋂r

j=2 Sij and

I∗ =
⋂r

j=2 Iij . From the induction hypothesis, it is clear that for any k ordered

pairs, where k ≤ r, |
⋂k

j=1 Sij | = |
⋂k

j=1 Iij |. Therefore |S∗| = |I∗|. Further, it
follows that |Si1∩Sir+1

| = |Ii1∩Iir+1
|, |Si1∩S∗| = |Ii1∩I∗|, |Sir+1

∩S∗| = |Iir+1
∩I∗|

i.e the interval assignment {(Si1 , Ii1), (S
∗, I∗), (Sir+1

, Iir+1
)} is an ICPIA. Thus,

by applying Lemma 1 to the ICPIA {(Si1 , Ii1), (S
∗, I∗), (Sir+1

, Iir+1
)}, we obtain

|Si1∩S∗∩Sir+1
| = |Ii1∩I∗∩Iir+1

| and this is equivalent to |
⋂r+1

j=1 Sij | = |
⋂r+1

j=1 Iij |.
Hence, the lemma is proved. ��
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We use the following lemma in proving our structural observation in Lemma 4.

Lemma 3. If M has the COP then S(M) satisfies the Helly Property.

Proof. Since M has the COP, let M ′ be the column permuted matrix obtained
from M which has consecutive ones in the rows. For each 1 ≤ i ≤ n, let Ii be the
interval of column indices corresponding to the ones in row ri of M ′. We know
that {(Si, Ii) | 1 ≤ i ≤ n} is an ICPIA for S(M) (from Theorem 2). From Lemma
2 and the fact that the set of intervals {I1, . . . , In} satisfies the Helly Property,
it follows that S(M) satisfies the Helly Property. ��

Augmented Matrix
∼

M and its Derived Graph G(
∼

M): For the given matrix
M, the augmented matrix

∼

M of order (m+n)×m, is defined as
(

I
M

)
where I is

the m×m identity matrix. The main reason for considering
∼

M is that in G(
∼

M),
each column corresponds to a maximal clique. This may not necessarily be the
case in G(M). We first observe that M and

∼

M behave the same with respect to
the COP, and the proof of this observation is very easy and is based on the fact
that

∼

M is obtained from M by padding with an identity matrix.

Observation 1.
∼

M has the COP if and only if M has the COP.

Corollary 1. Let D ⊆ R(M). Then, M \ D has the COP if and only if
∼

M \D
has the COP.

Lemma 4. If M has the COP, then G(M) is an interval graph. Further, for
every maximal clique Q in G(M) there exists a column ck in M such that
vert(ck) = Q.

Proof. Consider the columns of M in the order of a permutation σ that results
in the COP. Now, for every vertex vi in G(M) assign the interval Ii = [j, k]
where j and k are the minimum and maximum column indices, respectively,
with Mij = Mik = 1. Now, {vi, vj} is an edge in G(M) if and only if there is
a column r in which Mir = Mjr = 1, and this happens if and only if r is in
both Ii and Ij. Clearly, this is an interval representation of G(M), and therefore,
G(M) is an interval graph. Moreover, from Theorem 2 {(Si, Ii) | 1 ≤ i ≤ n} is an
ICPIA.

We now prove the second part of the lemma. Let Q = {v1, . . . , vq} be a
maximal clique in G(M). Let r1, . . . , rq be the rows in M corresponding to the
vertices in Q, and let S1, . . . , Sq be the sets corresponding to the rows r1, . . . , rq,
respectively. Since Q is a clique, any two sets in S1, . . . , Sq have a non-empty
intersection. Consequently, using the fact that M has the COP and by Lemma
3, it follows that |

⋂q
i=1 Si| > 0. Let k be an element in

⋂q
i=1 Si, then it follows

that vertices of Q are in vert(ck). Now vert(ck) = Q, since Q is a maximal
clique. Hence the lemma is proved. ��

Based on the above results, we prove the following theorem which forms a crucial
step in the parameterized algorithm for d-COS-R.

Theorem 3. If M has the COP, then G(
∼

M) is an interval graph, and
∼

M is the
clique matrix of G(

∼

M).
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Proof. From Observation 1, M has the COP implies that
∼

M has the COP. From
Lemma 4 it follows that G(

∼

M) is an interval graph, and each maximal clique
corresponds to a column in

∼

M. In
∼

M, each column cj has a distinguishing entry
∼

Mij where there is a 1, and all other entries
∼

Mik with k �= j in that row ri are
zero. This shows that vi is adjacent only to vertices vert(cj) \ {vi} in G(

∼

M). In
other words, each column corresponds to a maximal clique in G(

∼

M). Therefore,
∼

M is the clique matrix of G(
∼

M). ��

3 An FPT Algorithm for d-COS-R via Interval Deletion

In this section, we present a parameterized algorithm for solving d-COS-R. The
recursive algorithm COS-R is called with a binary matrix M, the initial solu-
tion set D = ∅ and the parameter d as inputs. The basic idea in this algo-
rithm is that we transform the given instance 〈M,d〉 of d-COS-R into at most

3d instances 〈M ′, d ′〉 where M ′ has the additional property that
∼

M
′
is the

clique matrix of G(
∼

M
′
). This is achieved by applying a branching rule referred

to as MI1 -Hitting rule (described below) at each internal node in the depth
bounded search tree. This rule is based on Tucker’s forbidden submatrix [27]

MI1=
(

1 1 0
0 1 1
1 0 1

)
. At the leaves of the recursion tree, COS-R calls the function

Interval-Deletion(G(
∼

M
′
), d ′), which determines the existence of a set X of at

most d ′ vertices such that G(
∼

M
′
) \ X is an interval graph and returns such a

set, if one exists. In O∗(10d) time, COS-R(M, ∅, d) either returns a set D of at
most d rows such that M \D has the COP or returns ’NO’. Algorithm COS-R
is described as follows:

Algorithm COS-R(M,D, d)
Input: An instance 〈Mn×m, d〉 where M is a binary matrix and d ≥ 0.
Output: Return a set D of at most d rows (if one exists) such that M \ D
has the COP.
(Step 0) If M has the COP and d ≥ 0 then Return D.
(Step 1) If d < 0 then Return ’NO’/* parameter budget exhausted */
(Step 2) (MI1 -Hitting Rule) If there exists three rows {r1, r2, r3} ⊆ R(M)

such that M[{r1, r2, r3}] contains the matrix MI1=
(

1 1 0
0 1 1
1 0 1

)
, then branch into

3 instances Ii = 〈Mi, di〉, where i ∈ {1, 2, 3}

Set Di ← D ∪ {ri} and Mi ←M \ {ri}

Update di ← d− 1 /* Parameter drops by 1 */
For some i ∈ {1, 2, 3}, if COS-R(Mi,Di, di) returns a solutionDi, then Return
Di, else Return ’NO’
/* Invariant: See Lemma 6 */
(Step 3) (Interval Deletion) V ′=Interval-Deletion(G(

∼

M), d).
(Step 4) If Interval-Deletion returns ’NO’ then Return ’NO’. Otherwise,
Return the set D = D ∪ {ri ∈ R(M) | vi ∈ V ′}.

We now prove the correctness of MI1 -Hitting rule in the following Lemma.
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Lemma 5. Let M be a matrix for which MI1 -Hitting rule applies, and

M[{r1, r2, r3}] contains the forbidden matrix MI1 =
(

1 1 0
0 1 1
1 0 1

)
, where {r1, r2, r3} ⊆

R(M). Then, any solution D of d-COS-R includes at least one of the rows
r1, r2, r3.

Proof. We prove this by contradiction. Suppose, there exists a solution D that
contains none of r1, r2 and r3. Let M ′ = M \ D be the matrix with the COP.
This implies that M[{r1, r2, r3}] in M ′ satisfies the COP. This is a contradiction
to the fact that M[{r1, r2, r3}] contains the forbidden matrix MI1 . ��

The consequence of MI1-Hitting rule is as follows.

Lemma 6. Let M be a matrix on which MI1 -Hitting rule is not applicable.
Then, for every maximal clique Q in G(M), there exists a column ck such that
Q = vert(ck). Further,

∼

M is the clique matrix of G(
∼

M).

Proof. Assume on the contrary that Q is a maximal clique in G(M) such that
there is no column cl satisfying the property Q ⊆ vert(cl). Further, let Q

′ be a
minimal subset of Q with this property. Since Q ′ is a minimal subset with this
property, then for every strict subset Q ′′ of Q ′ there exists a column ck such
that Q ′′ ⊆ vert(ck). Now, Q

′ is a clique of size at least 3, because for every
edge {vi, vj} in G(M) there exists a column ck such that {vi, vj} ⊆ vert(ck).
Let v1, v2, v3 be 3 vertices in Q ′. Let c1, c2, c3 be three distinct columns in M

such that Q ′ \ {v1} ⊆ vert(c1), Q
′ \ {v2} ⊆ vert(c2) and Q ′ \ {v3} ⊆ vert(c3),

respectively. Let r1, r2, r3 be the rows corresponding to the vertices v1, v2, v3,
respectively. From this, it follows that the submatrix formed by rows r1, r2, r3,
and columns c1, c2, c3 is a column permutation of the forbidden submatrix

MI1=
(

0 1 1
1 0 1
1 1 0

)
. Therefore, the matrix M has MI1 as a submatrix, and this con-

tradicts the hypothesis that MI1-Hitting rule is not applicable. Therefore, our
assumption is wrong. This finishes the first claim in the lemma. The example
shown in Fig.1. illustrates the above argument.
We prove the second part of the lemma as follows. For every column ck, 1 ≤ k ≤
m inM whose vertices vert(ck) is not a maximal clique in G(M), becomes a max-
imal clique in G(

∼

M). This is because G(
∼

M) can be viewed as a graph obtained
from G(M) by adding a new vertex uk for each clique Qk = vert(ck), 1 ≤ k ≤ m,
and making uk adjacent to all the vertices in Qk. Further, if Qk is a maximal
clique in G(M), then in G(

∼

M), Qk is a maximal clique with one additional ver-
tex. This completes the proof that

∼

M is the clique matrix of G(
∼

M). ��

Algorithm COS-R explores a recursion tree in which the leaves fall into one of the
following cases: (1) MI1 -Hitting rule is not applicable further and the number
of rows deleted is less than d (2) Number of rows deleted by MI1 -Hitting rule is
more than d. An instance that falls into the first case is a preprocessed instance.
In the second case, since the parameter is exhausted we abort this branch. Each
node in the recursion tree has at most 3 subproblems, and therefore, the tree
has at most 3d leaves. At a leaf, let M ′ be the resultant matrix obtained after
the application of rule and d ′ is the remaining parameter. Thus, at this leaf, an
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2

3

4

5

6

( )

1
1 2 3 4 5 6 7      

1        1     1     0     0     1    1    0           

2        0     1     1     1     0    1    1  

3        1     1     1     0     1    1    1  

4        0     1     1     0     0    1    0  

5        1     0     1     1     1    0    1   

6        1     1     0     1     1    0    1  

( )

Fig. 1. For the maximal clique Q = {v1, . . . , v6} in G(M), there is no column cl in M

satisfying the property Q ⊆ vert(cl). Also, Q ′ = {v4, v5, v6} is a minimal subset of
Q with the same property. The submatrix induced by the rows corresponding to the
vertices of Q ′ i.e M[{r4, r5, r6}] contains MI1 (shown in dotted lines).

instance 〈M,d〉 of d-COS-R is transformed to an instance 〈G(
∼

M
′
), d ′〉 of the

interval deletion problem, by Theorem 3. Now we show that, solving d-COS-R
on

∼

M is equivalent to solving the Interval-Deletion problem on the graph G(
∼

M).

Theorem 4. Let
∼

M be the clique matrix of G(
∼

M). Given
∼

M and integer d ≥ 0,
there exists a set D of rows such that |D| ≤ d and

∼

M \ D has the COP if and
only if G(

∼

M) has a set of vertices V ′ such that |V ′| ≤ d and G(
∼

M) \ V ′ is an
interval graph.

Proof. Let D be a set of rows in
∼

M, and let V ′ be the corresponding vertices in
G(

∼

M). From Lemma 4, it follows that
∼

M \ D has the COP implies G(
∼

M \ D)
is an interval graph. Further, G(

∼

M \ D) is the graph obtained by removing V ′

from G(
∼

M). This completes the forward direction of the claim. For the reverse
direction, let V ′ be a minimal set of vertices such that G(

∼

M) \ V ′ is an interval
graph. Due to the minimality of V ′, no vertex in G(

∼

M) corresponding to a row
of the identity matrix padded to M is an element of V ′. Let D be the set of rows
in

∼

M corresponding to V ′. Since
∼

M is the clique matrix of G(
∼

M), the columns
of

∼

M \D are exactly the maximal cliques of G(
∼

M) \V ′. Therefore,
∼

M \D is the
clique matrix of G(

∼

M)\V ′. Since G(
∼

M)\V ′ is an interval graph, it follows from
Theorem 1 that

∼

M \D has the COP. Hence the theorem is proved. ��

The following theorem states our main result. In the theorem, let 〈G(
∼

M1), d1〉,
. . . , 〈G(

∼

Mr), dr〉 be the instances of interval deletion at the leaf nodes of the
depth bounded search tree explored by Algorithm COS-R.

Theorem 5. 〈M,d〉 is an YES-instance of d-COS-R if and only if 〈G(
∼

Mk), dk〉,
1 ≤ k ≤ r is an YES-instance of interval deletion.

Proof. Let 〈G(
∼

Mk), dk〉 be an YES-instance of interval deletion such that
G(

∼

Mk) \V
′ is an interval graph, where V ′ is a minimal set of vertices in G(

∼

Mk)
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guaranteeing this property. In the recursion tree explored by Algorithm COS-R,
let D ′ be the set of rows that are removed to get Mk from M. Since dk is the
parameter at the leaf instance, it follows that |D ′| ≤ d − dk. Let D ′′ be the
rows corresponding to the vertices in V ′ and |D ′′| ≤ dk. From Theorem 4, it
follows that

∼

Mk \ D ′′ has the COP. From Corollary 1 it follows that Mk \ D ′′

has the COP, and consequently it follows that M \ (D ′ ∪ D ′′) has the COP and
|D ′ ∪ D ′′| ≤ d. Thus, 〈M,d〉 is an YES-instance of d-COS-R.

To prove the forward direction, let 〈M,d〉 be an YES-instance of d-COS-R
such that M \ D has the COP, where D is a set of rows in M and |D| ≤ d.
Let D ′ ⊆ D be a minimal set of cardinality d ′, such that D ′ contains a row
of the forbidden matrix MI1 . Since Algorithm COS-R branches on each row
of forbidden submatrix of the form MI1 , one path in the recursion tree will
remove all the elements of D ′. Consequently the resulting matrix M ′ = M \D ′

does not have an MI1 , and becomes an interval deletion instance at a leaf node
in the recursion tree associated with Algorithm COS-R. From the hypothesis
that M \ D has the COP, it follows that M ′ \ (D \D ′) has the COP, and from

Corollary 1, it is clear that
∼

M
′
\ (D \D ′) has the COP. Further,

∼

M
′
is the clique

matrix of G(
∼

M
′
). Therefore, from Theorem 4 it follows that for 〈G(

∼

M
′
), d−d ′〉

there is a minimal set of vertices V ′ such that |V ′| ≤ d − d ′ and G(
∼

M
′
) \ V ′ is

an interval graph and |D ′| + |V ′| ≤ d. Thus, G(
∼

M
′
) \ V ′ is an YES-instance of

interval deletion. ��

As a consequence of Algorithm COS-R(M,D, d), we conclude that d-COS-R is
FPT in the parameterized complexity framework. Thus, by employing the recent
parameterized algorithm for Interval Deletion [5] at the leaves of the search tree,
we get an overall running time of O∗(10d) for d-COS-R.

3.1 Convex Bipartite Deletion is FPT

Using our algorithm for d-COS-R, we observe that the Convex Bipartite Deletion
problem is FPT. Let G = (V1, V2, E) be a bipartite graph with V1 = {x1, . . . , xn}
and V2 = {y1, . . . , ym}. Let M be the half adjacency matrix of G. That is,
Mij = 1 if and only if {xi, yj} ∈ E. G is convex bipartite graph iff M has the
COP [7,27]. The Convex Bipartite Deletion problem is defined as follows.

Convex Bipartite Deletion
Input: A bipartite graph G = (V1, V2, E), |V1| = n, |V2| = m and d ≥ 0

Parameter: d
Question: Does there exist a set D ⊆ V1 with |D| ≤ d such that G[V1\D,V2]
is a convex bipartite graph?

This problem is known to be NP-complete from [20]. However, COS-R algorithm
in Section 3 can be used to solve this problem in O∗(10d) time. Here, the inputs
to the algorithm are the half adjacency matrix M of G and the parameter d. The
algorithm returns a set D of at most d rows (if one exists) such that G[V1\D,V2]
is convex bipartite where D is the subset of vertices of V1 corresponding to D.
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4 Min-ICPIA is equivalent to Vertex Cover

We first prove that Min-ICPIA (defined in Section 1) is NP-complete. It is easy
to see that Min-ICPIA is in NP. To prove that it is NP-hard, we show that
Vertex Cover [11], a classical NP-hard problem, reduces to Min-ICPIA. Let
〈G, d〉 be an instance of Vertex Cover. Let {v1, . . . , vn} and {e1, . . . , em} denote
the vertex and edge set, respectively, of G. We construct a Min-ICPIA instance
〈U = [2m + 1],F = {(Si, Ii) | 0 ≤ i ≤ n}, d + 1〉 as follows. For each vertex vi in
G, define Si = {k | ek ∈ E(G) and ek incident on vi} and Ii = [li, ri], where li
and ri are the left and right end points, respectively and li = |

⋃
1≤j≤i−1 Sj|+ 1,

ri = li + |Si| − 1. Also, S0 = U \
⋃

1≤i≤n Si, I0 = [2m + 1, 2m + 1]. From the
definition, it is clear that |S0| �= |I0|.

Theorem 6. G has a vertex cover of size d if and only if the corresponding
Min-ICPIA instance 〈U = [2m + 1],F = {(Si, Ii) | 0 ≤ i ≤ n}, d + 1〉 has a
(d + 1)-sized solution.

Proof. Let X be a vertex cover of size d in G. Let D = {(Si, Ii) | vi ∈ X}. From
the reduction, it is clear that for any two non-adjacent distinct vertices vi and
vj, Si ∩ Sj = ∅. Further, for any vi and vj, Ii ∩ Ij = ∅. For every edge {vi, vj}
in G, |Si ∩ Sj| �= |Ii ∩ Ij|. Finally, except for S0, for all vi, |Si| = |Ii|. We now
observe that since X is a vertex cover for G it follows that F \ (D ∪ {(S0, I0)})
is an ICPIA. This ICPIA has been obtained by removing a set of size d + 1.
Conversely, let D ⊆ F be a set of size d such that F \ D is an ICPIA. Then,
(S0, I0) must be in D. Further, since F \D is an ICPIA, if (Si, Ii) and (Sj, Ij)
are in F \ D, then Si ∩ Sj = ∅ as Ii ∩ Ij = ∅. Therefore, the corresponding two
vertices are not adjacent in G. Consequently the vertices corresponding to D
form a vertex cover of size d − 1. Hence the theorem is proved. ��

The following corollary shows that Min-ICPIA restricted to special class of
inputs remains NP-Complete. It follows from the same reduction described above
to prove that Min-ICPIA is NP-Complete and the fact that Vertex Cover on
cubic graphs is NP-Complete [12].

Corollary 2. Min-ICPIA is NP-Complete on instances 〈U = [m], {(Si, Ii) |

1 ≤ i ≤ n}, d〉 such that |Si| ≤ 3 and for all 1 ≤ i < j ≤ n, |Si ∩ Sj| ≤ 1.

4.1 Min-ICPIA is FPT w.r.t Solution Size as the Parameter

In this section, we show that Min-ICPIA, parameterized by d - the number of
ordered pairs to delete, is FPT by reducing it to Vertex Cover. A Min-ICPIA

instance 〈U = [m], {(Si, Ii) | 1 ≤ i ≤ n}, d〉 is transformed to a Vertex Cover
instance 〈G = (V, E), d〉 as follows:
(1) Discard all the pairs (Si, Ii) such that |Si| �= |Ii|, and reduce the parameter
d by as many pairs discarded.
(2) For each remaining pair (Si, Ii), there is a vertex vi.
(3) There is an edge between two vertices (vi, vj) if and only if the corresponding
ordered pairs (Si, Ii) and (Sj, Ij), 1 ≤ i < j ≤ n are such that |Si∩Sj| �= |Ii∩ Ij|.
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Observation 2. Let 〈U = [m],F = {(Si, Ii) | 1 ≤ i ≤ n}, d〉 be an instance of
Min-ICPIA. Let 〈G, d〉 be the corresponding instance of Vertex Cover obtained
from the above reduction. Then, F has a d-sized solution if and only if G has
d-sized Vertex Cover.

Proof. Let D ⊆ F be such that |D| = d and F \ D is an ICPIA. Let X be the set
of vertices in G corresponding to D. Clearly, G[V \X] is an independent set, and
therefore X is a vertex cover of size d. In the other direction, let X be a vertex
cover of G of size at most d. Let D ⊆ F be the ordered pairs corresponding
to the vertices in X. Since G[V \ X] is an independent set, it follows from the
construction that F \D is an ICPIA. Hence the Lemma is proved. ��

As a consequence of the above reduction which is both parameter and approxi-
mation preserving, it follows that Min-ICPIA is FPT. In particular, the current
best parameterized and approximation results [6,17] of Vertex Cover applies to
Min-ICPIA too. As a result of the reduction from Vertex Cover to Min-ICPIA,
the inapproximability of Vertex Cover also applies to Min-ICPIA.

Corollary 3. Min-ICPIA can be solved in time O(1.2738d + dn) where d is
the number of ordered pairs to be deleted from Min-ICPIA instance.

Corollary 4. Min-ICPIA has polynomial time 2-approximation algorithm.
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Abstract. Boolean-width is similar to clique-width, rank-width and NLC-width
in that all these graph parameters are constantly bounded on the same classes
of graphs. In many classes where these parameters are not constantly bounded,
boolean-width is distinguished by its much lower value, such as in permutation
graphs and interval graphs where boolean-width was shown to be O(log n) [1].
Together with FPT algorithms having runtime O∗(cboolw) for a constant c this
helped explain why a variety of problems could be solved in polynomial-time on
these graph classes.

In this paper we continue this line of research and establish non-trivial upper-
bounds on the boolean-width and linear boolean-width of any graph. Again we
combine these bounds with FPT algorithms having runtime O∗(cboolw), now to
give a common framework of moderately-exponential exact algorithms that beat
brute-force search for several independence and domination-type problems, on
general graphs.

Boolean-width is closely related to the number of maximal independent sets in
bipartite graphs. Our main result breaking the triviality bound of n/3 for boolean-
width and n/2 for linear boolean-width is proved by new techniques for bounding
the number of maximal independent sets in bipartite graphs.

1 Introduction

Boolean-width is a recently introduced graph parameter motivated by algorithms [2].
Having small boolean-width is witnessed by a decomposition of the graph into cuts
with few different unions of neighborhoods - Boolean sums of neighborhoods - across
the cut. This makes the decomposition natural to guide dynamic programming algo-
rithms to solve problems where vertex sets having the same neighborhood across a cut
can be treated as equivalent. Such dynamic programming on a given decomposition of
boolean-width boolw will for several problems related to independence and domination
have runtime O∗(cboolw) for a small constant c [2].

Boolean-width is similar to clique-width, rank-width and NLC-width in that all these
graph parameters are constantly bounded on the same classes of graphs. However, in
many classes where these parameters are not constantly bounded, boolean-width is dis-
tinguished by its much lower value. For example, permutation graphs, interval graphs,
convex graphs and Dilworth k graphs all have boolean-width O(log n), and the de-
compositions are easy to find [1]. Since O∗(cO(log n)) is nO(1) this helps explain why
several problems related to independence and domination are polynomial-time solvable
on these graph classes.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 308–320, 2013.
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In this paper we continue this line of research, combining O∗(cboolw) dynamic pro-
gramming for independence and domination problems with new bounds on boolean-
width. Rather than giving a framework for polynomial-time algorithms on restricted
graph classes, our goal in this paper is a framework for moderately-exponential exact al-
gorithms on general graphs. Our main results are non-trivial upper-bounds of (1−c)n/3
on the boolean-width, and (1 − c)n/2 on the linear boolean-width, of any graph, for
some c > 0 and sufficiently large values of n. This is accompanied by a polynomial-
time algorithm computing a decomposition witnessing the non-trivial bound on linear
boolean-width.

We combine this with dynamic programming algorithms on decompositions of lin-
ear boolean-width k that solve INDEPENDENT SET in time O∗(2k) and DOMINAT-
ING SET, INDEPENDENT DOMINATING SET and TOTAL DOMINATING SET in time
O∗(22k). The combination gives moderately-exponential exact algorithms on general
graphs solving all these problems, also weighted versions and counting versions, by a
runtime beating brute-force search. Note that faster algorithms do exist in the literature,
our goal in this paper is mainly to show the viability of this line of research. This is the
first time a non-trivial upper bound on the value of a graph width parameter has been
shown to hold for every graph.

Boolean-width is defined based on branch decompositions of a graph, using as cut
function what is called the boolean dimension bd(H) of a (bipartite) graphH . This cor-
responds to the logarithm (base 2) of the number of maximal independent sets mis(H)
of H . Our upper bounds on (linear) boolean-width rely on new techniques for bounding
the number of maximal independent sets. This number has received much attention both
from the algorithmic and the structural perspectives. While it is known [3] that comput-
ing mis(G) is #P -hard even for planar bipartite graphs, approximating it is a much
more delicate problem. From the structural point of view, bounding the number of max-
imal independent sets in special as well as in general graphs leads to interesting hard
problems. Let us just mention the entropy-based results about bd(G) = log2 mis(G)
of d-regular graphs [4], see the references therein for an updated picture of the state of
research in this area.

We introduce three techniques for our bounds. The first (Theorem 5) is based on a
vertex partition achieved from a packing of paths and goes via im(H), the size of a
maximum induced matching in bipartite graph H . The second (Theorem 6) is based
on a random partition and also goes via im(H). The third (Theorem 7) is based on
Hoeffding’s inequality and in contrast to the first two applies also to boolean-width
rather than just linear boolean-width. As already mentioned, our goal is to show the
viability of this line of research and these various techniques should be helpful in later
attempts to improve the bounds.

Our paper is organized as follows. In Section 2 we give all definitions and some
preliminary results, for example showing that a non-trivial upper bound on (linear)
boolean-width of a graph G will follow from a non-trivial upper bound on the boolean
dimension of some balanced partition of G. In Section 3 we aim at an understanding of
the structure of bipartite graphs of high boolean dimension. It is well known and easy
that bd(H) is at most n/2, and the maximum is attained by a size-n/2 matching. We
tie bd(H) to im(H) and introduce and study the values of co-im(H) = n/2− im(H)
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and co-bd(H) = n/2 − bd(H), the high-end ranges of im(H) and bd(H). We show
constant factor approximation algorithms for these values, as well as a stability result
showing that the smaller the values are, the closer is the bipartite graph to the size-
n/2 matching. In Section 4 we turn to general graphs, and show, constructively, by a
polynomial-time algorithm, that every graph has a balanced partition where the boolean
dimension of the associated bipartite graph beats the triviality bound. Combined with
the result from Section 2 this implies a constructive result for linear boolean-width of
general graphs, beating the triviality bound of n/2. In Section 5 we turn to the stan-
dard boolean-width parameter and show also in this case a non-trivial upper bound
beating the triviality bound of n/3, also constructive, but now by a randomized and
low-exponential-time algorithm.

2 Terminology and Preliminaries

We consider undirected unweighted simple graphs G = (V,E) and bipartite graphs
H = (A,B,E). We also denote the vertex set V by V (G). For S ⊆ V we denote by
G|S the subgraph induced by S. The neighborhood of a vertex v ∈ V is denoted N(v).
The neighborhood of a set S ⊂ V is N(S) = ∪v∈SN(v). Any S ⊆ V defines a cut
(S, V−S), and a bipartite graphGS,V−S = (S, V−S, {(u, v) ∈ E : u ∈ S∧v ∈ V−S}).

A decomposition tree of a graph G = (V,E) is a pair (T, δ) where T is a ternary
tree, i.e. all internal nodes are of degree three, and δ a bijection between the leaves of
T and V (G). Removing an edge (a, b) from T results in two subtrees Ta and Tb, and a
bipartition of V into Va and Vb corresponding, respectively, to the δ-labels of leaves of
Ta and Tb, and a bipartite graph GVa,Vb

.

Definition 1 (Boolean Dimension, Boolean Width and Linear Boolean Width). For
a bipartite graph H = (A,B,E), let NA = {N(X) ⊆ B |X ⊆ A} be the family of
neighborhoods of all sets X ⊆ A. The boolean dimension of H is defined as bd(H) =
log2 |NA|.

The boolean-width of a decomposition tree (T, δ) is the maximum value of
bd(GVa,Vb

) over all edges (a, b) of T . The boolean-width of G, denoted bw(G), is
the minimum boolean-width over all decomposition trees of G.

The linear boolean-width of G, denoted lbw(G), is the minimum boolean-width over
all decomposition trees (T, δ) of G where T is a path on |V | inner nodes, each with an
attached leaf, corresponding to a linear arrangement of V .

Given a graph G there is a O∗(2.52n) algorithm computing its boolean-width ex-
actly [5] and in FPT time parameterized by bw(G) we can compute a decomposition of
boolean-width 22bw(G) using the algorithm for decompositions of optimal rank-width
[6]. The boolean-width parameter was originally introduced in [2] in the context of pa-
rameterized algorithms. In particular, using a natural dynamic programming approach
it was shown there that

Theorem 1. [2,5] Given a graph G and a decomposition tree of boolean-width k, one
can solve weighted and counting versions of INDEPENDENT SET in time O∗(22k) and
DOMINATING SET, INDEPENDENT DOMINATING SET and TOTAL DOMINATING SET

in time O∗(23k).
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These are dynamic programming algorithms that choose a root of the decomposition
tree and traverse it bottom-up, with each node of the tree representing the subgraph
induced by vertices corresponding to the leaves of the subtree. In a decomposition tree
for linear boolean-width we choose one end of the path of inner nodes as root so that
one of the two children of any node will always represent a subgraph on a single vertex.
The runtime on linear decompositions can for this reason be improved

Corollary 1. [2,5] Given a linear arrangement of V (G) of linear boolean-width k, one
can solve weighted and counting versions of INDEPENDENT SET in time O∗(2k) and
DOMINATING SET, INDEPENDENT DOMINATING SET and TOTAL DOMINATING SET

in time O∗(22k).

Note that for any bipartite graph H = (A,B,E), we have |NA| = |NB |, see,
e.g., [7]. A good combinatorial way to demonstrate this is by establishing a bijection
between the elements of NA (or NB) and the set of all maximal independent sets of
H = (A,B,E). Here is a sketch of the argument. Given a set S ∈ NA, let X be the
maximal set in A such that N(X) = S. Then X is uniquely defined, and X ∪ B−S
is maximal independent. In the other direction, given a maximal independent set I ,
B−I ∈ NA. Moreover, if I resulted from S, then S results from I . 1 Hence,

Proposition 1. Let mis(H) be the number of maximal independent sets in a bipartite
graph H . Then, bd(H) = log2 mis(H).

The following simple property of bd(H) will prove useful; it is an immediate con-
sequence of the definition of bd.

Proposition 2. bd(H) is monotone decreasing with respect to vertex removal. More-
over, such removal may decrease bd(H) by at most 1. Hence, for a bipartite graph
H = (A,B,E) we have bd(H) ≤ min(|A|, |B|).

More generally, given two bipartite graphs G = (A,B,E) and H = (A,B,E′) on
the same vertex set and the same two sides, it holds that bd(G∪H) ≤ bd(G)+bd(H).

Proposition 2 implies that bd(H) ≤ n/2, and this bound is met when H is a match-
ing of size n/2. For a finer study of the structure of sub-extremal graphs H , we shall
need the following notions.

Definition 2. Define im(G) as the size of a maximum induced matching in G, i.e. a
maximum-size set of edges whose endpoints do not induce any other edges in G. Note
that im(G) ≤ n/2 and this bound is met only by a size-n/2 matching. To study the high-
end range of bd(H) and im(G) we define co-im(G) = n

2 − im(G) and the boolean
co-dimension co-bd(H) = n

2 − bd(H).

The extremal values of bw(G) and lbw(G) are not known. The following proposition
provides a preliminary tool for the study of the former.

1 Observed by Nathann Cohen in a course of discussion with the authors. Later we have learned
that a similar observation was made in [8].
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Proposition 3. Let A ⊆ V be a subset of vertices with 1
3n ≤ |A| ≤ 2

3n and
bd(GA,V−A) = (13 − ε)n for some 1

4 > ε ≥ 0. Then one can construct a decompo-
sition tree of boolean-width at most (13 − ε

3 )n.
In particular, bw(G) ≤ n/3. We call this the triviality bound for bw(G).

Proof. Without loss of generality, |A| ≤ n/2; otherwise we switch to V−A. Partition V
into three setsA∪X,B1, B2 whereX is disjoint fromA and |X | ≤ 2

3εn, |A∪X | ≤ n/2
and |B1|, |B2| ≤ (13 − 1

3ε)n. Refining this partition to a decomposition tree arbitrarily
with the sole restriction that at the upper level A ∪ X is split into two approximately
equal parts we argue that the proposition holds using Proposition 2. For the top cut
bd(GA∪X,V−(A∪X)) ≤ n/3−ε+ |X | ≤ (13−

ε
3 )n. For any node representing a subset of

B1 or B2 the proposition holds since the size of one side will be small. When splitting
A ∪ X into two approximately equal parts, each part has size at most n/4, we have
n/4 ≤ n/3 − ε/3 since ε < n/4, and hence the proposition holds. The conclusion
about bw(G) ≤ n/3 corresponds to choosing an A of size 1

3n, and ε = 0. ��

For lbw(G) one has an analogous statement:

Proposition 4. Let A ⊆ V be subset of vertices of size n/2 such that bd(GA,V−A) ≤
(12 − ε) ·n for some ε ≥ 0. Then one can construct a linear arrangement of the vertices
of linear boolean-width at most (12 − 1

2ε) · n.
In particular, lbw(G) ≤ n/2. We call this the triviality bound for lbw(G).

Proof. Take any linear arrangement whose first n/2 elements are preciselyA. We claim
that it has the desired property. Let Ai denote the set of the first (equivalently, the
last) i elements in this arrangement. Let Gi = GAi,V−Ai . Proposition 2 implies that
bd(Gi) ≤ i. It also implies that |bd(Gi)−bd(Gi+1)| ≤ 1 for every i, hence bd(Gi) ≤
bd(Gn/2) + (n/2 − i) ≤ n − εn − i. Combining the two bounds on bd(Gi), the
statement follows. ��

The present paper, besides studying bd(H), is mostly dedicated to establishing up-
per bounds on lbw(G) and bw(G). Before starting with our toil, let us just mention that
the above values can in general be as large as Ω(n), which is achieved e.g., when G is a
constant-degree expander. Indeed, in this case any GA,V−A where both sides are ≥ n/3
has at least Ω(n) edges, and hence, due to the constant degree, im(GA,V−A) = Ω(n).
Since the size of an induced matching is a lower bound on the boolean dimension (see
the next section for details), the conclusion follows. The constants obtained along this
line of reasoning are, however, quite miserable. The extremal values of lbw(G), bw(G)
and the structure of the corresponding extremal graphs remain a (highly inspiring)
mystery.

3 On Boolean Co-Dimension

3.1 Boolean Dimension vs. the Size of Maximum Induced Matching

We start with a lemma relating the boolean dimension of a bipartite graph G =
(A,B,E), |V (G)| = n, to the size of the maximum induced matching in G:
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Lemma 1. When im(G) ≤ n/4, it holds that

im(G) ≤ bd(G) ≤ im(G) · log2(n/im(G)) · φ(2 · im(G)/n),

where φ is a function which never exceeds 1.088, and tends to 1 as im(G) tends to n/4.

Proof. The first inequality is obvious, as the boolean dimension is monotone with
respect to taking induced subgraphs. For the second inequality, assume w.l.o.g., that
|A| ≤ n/2, and consider the family of neighborhoods NA in B. For every S ∈ NA,
there is a a minimal set S∗ ⊆ A such thatN(S∗) = S. By minimality of S∗, each vertex
v∗ in it has a neighbour v ∈ S not seen by the other vertices. Forming a set S′ ⊆ S ⊆ B
by picking (one) such v for every v∗ ∈ S∗, we conclude that the subgraph of G induced
by (S∗, S′) is an induced matching. In particular, it holds that |S∗| ≤ im(G), and thus
any S ∈ NA is a neighbourhood of a subset of A of size ≤ im(G). Consequently, using
a standard estimation for the sum of binomial coefficients,

2bd(G) = |NA| ≤
im(G)∑
i=0

(
|A|
i

)
≤

im(G)∑
i=0

(
n/2

i

)
≤ 2n/2 ·H(im(G)/(n/2))

where H(p) = p log2
1
p + (1 − p) log2

1
1−p is the entropy function. We introduce

p log2
1
p + p = p log2

2
p as an approximator of H , and set φ(p) = H(p)/(p log2

2
p ).

Then,

bd(G) ≤ n

2
·H

(
im(G)

n/2

)
= im(G) · log2

(
n

im(G)

)
· φ

(
im(G)

n/2

)
Through numerical analysis we found that φ(0.157) ≈ 1.08798 is the global maximum
of φ in the range [0, 0.5]. ��

Thus, im(G) is a logn-approximation of bd(G), and the quality of approximation
improves as im(G) grows. However, when im(G) ≥ n/4, the approach of Lemma 1
fails to imply anything beyond the trivial upper bound bd(G) ≤ n/2. This makes
Lemma 1 inapplicable to the study of co-bd(G) vs. co-im(G). The key result of this
subsection is that when co-bd(G) is small, so is co-im(G), and, moreover, co-bd(G)
and co-im(G) are linearly related.

We start with a special case:

Lemma 2. Let G = (A,B,E) be a bipartite graph of degree at most 2. Then,

co-im(G) ≥ co-bd(G) ≥ 0.339 · co-im(G).

Proof. The first inequality was already established in Lemma 1. For the second in-
equality, observe that both co-bd(G) and co-im(G) are additive with respect to disjoint
union of graphs. Thus it suffices to consider connected G’s, i.e. G is either Cn, the
(even) n-cycle, or Pn−1, the path on (n − 1) edges. For such graphs both im(G) and
bd(G) are tractable. For the maximum induced matching one easily gets im(Cn) =
'n
3 ( and im(Pn−1) = 'n+1

3 (. For boolean dimension, recall that by Proposition 1,
bd(G) = log2 mis(G), where mis(G) is the number of maximal independent sets in
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G. Let c(n) = mis(Cn) and p(n) = mis(Pn−1). The recurrence formulae for these
values are well known (see e.g. [9]). Namely, c(n) = c(n − 2) + c(n − 3), and
p(n) = p(n − 2) + p(n − 3). The initial conditions are c(1) = 0, c(2) = 2, c(3) = 3
and p(1) = 1, p(2) = 2, p(3) = 2 respectively.

Thus, to compare co-bd(G) to co-im(G) one needs to lower-bound the expressions

n/2− log2(c(n))

n/2− 'n
3 (

and
n/2− log2(p(n))

n/2− 'n+1
3 (

.

Combining case analysis (according to n mod 3), numerical computations and an in-
ductive argument, we conclude that the minimum is achieved on the 8-cycle C8, and its
value is 1

2 (4− log2 10) ≈ 0.339036. ��

We continue with the general case.

Theorem 2. Let G = (A,B,E) be a bipartite graph. Then,

co-im(G) ≥ co-bd(G) ≥ 0.0698 · co-im(G)− 4 .

Proof. As before, we shall be concerned only with the second inequality. Set Δ =
co-bd(G). Keeping in mind that mis(G) = 2bd(G), observe that

mis(G) ≤ mis(G|V −{v}) + mis(G|V −{v}−N(v)), (1)

where the first term (over-)counts the maximal independent sets not containing v, and
the second term counts those containing v. In accordance with inequality, we define a
splitting process, or a (weighted) rooted splitting tree T , as follows.

Each inner node x of T is labelled by (Gx, v), where Gx is an induced subgraph of
G, and v ∈ V (Gx) is a vertex of degree 3 or more in Gx. At the root Gx = G; the
leaves correspond to induced subgraphs of degree at most 2. An inner node x has two
children, one corresponding to the graph obtained from Gx by removing v, the other
corresponding to the graph obtained from Gx by removing v and all its neighbours (at
least 4 vertices removed). The weight of the respective edge is defined as the number of
vertices (respectively) removed. The weight of the node x, w(x), is the defined as the
sum of weights on the path from the root to x.

In view of (1), it holds that

2bd(G) ≤
∑

x: leaf of T

2bd(Gx) . (2)

The strategy of proof is as follows. The leaves L of T will be split into L+ =
{x | w(x) ≥ z} and L− = {x | w(x) < z} according to a suitably defined threshold
value z. Then, it is shown that the leaves in L+ contribute little to the above sum, while
the graphs Gx corresponding to x ∈ L− have co-im comparable with Δ. The value of
z will be set later, in the course of analysis.

Upper-bounding the contribution of L+

By Proposition 2, bd(Gx) ≤ (n− w(x))/2 for any x ∈ T . Thus,∑
x∈L+

2bd(Gx) ≤ 2n/2 ·
∑
x∈L+

2−w(x)/2 .
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It is readily checked that the right-hand side is maximized when T is the complete 1-4
tree, where every inner node has an outgoing edge of weight 1 and an outgoing edge of
weight 4. Moreover, for an inner node x and it two children x1 and x2 it holds that

2−w(x1)/2 + 2−w(x2)/2 = 2−w(x)/2 · (2−1/2 + 2−4/2) < 2−w(x)/2 .

Therefore, the right-hand side is maximized when the leaves are immediate descendants
of the inner nodes of weight < z.

Let s(i) denote the number of nodes of weight i in the complete 1-4 tree. Then,
|L+| ≤ s(z)+s(z+1)+s(z+2)+s(z+3).A closer look reveals that s(0), s(1), s(2) =
1, s(3) = 2, and that for i ≥ 4, s(i) = s(i−1)+s(i−4), where the first term counts the
strings with leading ”1”, and the second term counts those with leading ”4”. Moreover,
it holds that s(z) + s(z + 1) + s(z + 2) + s(z + 3) = s(z + 6). Finding the maximal
absolute-value root α = 1.38028 of the equation x4 = x3+1, and using the estimation
s(z) ≤ αz , we conclude that

|L+| ≤ s(z + 6) ≤ 8 · 1.38028z ≤ 8 · 20.4649589 z ,

and the total contribution of L+ to the right-hand side of (2) is bounded from above by

2n/2 ·
∑
x∈L+

2−w(x)/2 ≤ 8 · 2n/2 · 2−z/2 · 20.4649589 z ≤ 8 · 2n/2 · 2−0.035 z.

Setting z = #(Δ+ 4)/0.035$, where Δ = co-bd(G) = n/2− bd(G), ensures that the
total contribution of L+ is at most 0.5 · 2n/2 · 2−Δ = 0.5 · 2bd(G).

Consequently, the total contribution of L− to the right-hand side of (2) is at least∑
x∈L−

2bd(Gx) ≥ 0.5 · 2bd(G) = 2n/2 · 2−Δ−1 . (3)

Upper bounding the contribution of L−

To get an estimation from above on
∑

x∈L− 2bd(Gx), consider bd(Gx) for a leaf x of
T . Since Gx has degree ≤ 2, Lemma 2 implies that:

bd(Gx) = (n− w(x))/2 − co-bd(Gx) ≤ (n− w(x))/2 − 0.339 · co-im(Gx) .

Keeping in mind that w(x) = n−|V (Gx)|, it follows that co-im(Gx) ≥ co-im(G)−
w(x)/2. Substituting this in the previous line yields

bd(Gx) ≤ n/2− 0.33w(x)− 0.339 · co-im(G) ,

and thus,∑
x∈L−

2bd(Gx) ≤
∑
x∈L−

2
n
2 −0.33w(x)−0.339co-im(G) = 2

n
2 −0.339co-im(G)

∑
x∈L−

2−0.33w(x)

As before, the complete 1-4 tree yields the most general (i.e., the weakest possible)
upper bound on the sum

∑
x∈L− 2−0.33w(x), as it maximizes the number of nodes of

any weight i in T . Since this time the contribution of the father node is dominated by
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that of its sons, it suffices to analyse the case when the leaves of L− have weights
z − 4, z − 3, z − 2 or z − 1. Arguing as before, we conclude that |L−| ≤ s(z + 2) ≤
20.4649589(z+2) < 20.4649589z+1. That is,
∑

x∈L−

2−0.33w(x) ≤ |L−| · 2−0.33(z−4) ≤ 20.4649589z+1 · 2−0.33(z−4) < 20.1349589z+2.32 .

Now, z < (Δ + 4)/0.035 + 1, implying 0.1349589z+ 2.32 ≤ 3.856Δ+ 18 . The
bottom line is: ∑

x∈L−

2bd(Gx) ≤ 2n/2 · 2−0.339·co-im(G) · 23.856Δ+18 . (4)

We are ready to conclude the proof of Theorem 2. Combining (3) and (4) yields

2n/2 · 2−Δ−1 ≤
∑
x∈L−

2bd(Gx) ≤ 2n/2 · 2−0.339·co-im(G) · 23.856Δ+18 .

Combining the two sides, it follows that 0.339 · co-im(G) ≤ 4.856Δ+ 19 , and,
finally, co-im(G) ≤ 14.33 (Δ+ 4) = 14.33 (co-bd(G) + 4) . ��

One curious structural implication following at once from Theorem 2 is the following
result (for asymptotically tight results see [4]):

Corollary 2. Let G be a d-regular bipartite graph, d > 1. Then mis(G) ≤ 2(
1
2−ε)n for

some universal ε > 0.

The reason is that by a trivial computation, for such graphs one has im(G) ≤ n
2 · d

2d−1 ,
and since co-bd(G) is proportional to co-im(G), the conclusion follows.

3.2 A Constant Factor Polynomial Approximation Algorithm for co-bd(G)

Let us first give a polynomial time constant-factor approximation algorithm for
co-im(G). As before, G is bipartite.

Approx-CoIm: Construct (greedily or otherwise) a maximal vertex-disjoint packing P
of P2’s (paths on 2 edges) in G. Remove all the vertices in P . Output M̃ , the set of the
remaining edges.

Theorem 3. The above algorithm produces an induced matching M̃ with n/2−|M̃ | ≤
5 · co-im(G). In particular, it provides a 5-approximation for co-im(G).

Proof. Observe that after the removal of P2’s in P , the remaining induced graph con-
sists of singletons and isolated edges, and thus M̃ is indeed an induced matching.

Let M∗ denote the maximum induced matching of G. Since every P2 in the packing
must contain at least one vertex outside of M∗, the size of P is at most n − 2|M∗|.
Now, since each P2 in P may hit at most 2 edges of M∗, at least |M∗| − 2|P| edges of
M∗ will survive the removal of P . Thus,

|M̃ | ≥ |M∗| − 2|P| ≥ |M∗| − 2 · (n− 2|M∗|) = 5|M∗| − 2n ;

n/2− |M̃ | ≤ 5/2n− 5|M∗| = 5 · (n/2− |M∗|) = 5 · co-im(G) ��.
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Theorem 3 combined with Theorem 2 yields a constant factor approximation algorithm
for co-bd(G):

Theorem 4. The co-size of M̃ produced by Appox-CoIm on input G, i.e., n/2− |M̃ |,
approximates co-bd(G) within a multiplicative factor of 5 · 14.3 < 72.

4 Linear Boolean Width: Beyond the Triviality Bound

We show (constructively and efficiently) that every size-n graph has a balanced bipar-
tition of its vertex set such that the boolean dimension of the associated bipartite graph
is ≤ (1/2− c)n for some universal c > 0. Combined with Proposition 4, this implies
that lbw(G) ≤ (1/2 − c/2)n; the argument therein provides also the corresponding
linear arrangement of the vertices.

Two constructions are provided, the first deterministic and somewhat elaborate, the
other is just the random uniform bipartition. We start with the former.

GoodBipartition: Construct (greedily or otherwise) a maximal vertex-disjoint packing
P of P2’s (paths on 2 edges) in G. For each P2 ∈ P mark the middle vertex. Partition
the vertices into two equal- (up to ±2) size sets so that

(i) for every P2 ∈ P , the marked and the unmarked vertices lay on different sides;
(ii) no edge (parity permitting) remaining after the removal of V (P) is split.

Since P is maximal, removing V (P) one obtains an (induced) graph that consists
of isolated edges and vertices. The required partition is obtained by placing the middle
vertices ofP2’s, one by one, on alternating sides. The same is done for surviving isolated
edges and isolated vertices.

Let H = (A,B,E′) be the graph defined by this bipartition.

Theorem 5. It holds that co-im(H) ≥ 1
10 n, and bd(H) ≤ (12 − 1

143 )n+O(1).

Proof. Let IM be a set of edges corresponding to a maximum induced matching of
H , on vertices V (IM). For each P2 ∈ P we have at least one vertex of this P2 not
belonging to V (IM), let h(P2) be such a vertex. For each (u, v) ∈ IM we have either
u or v (or both) a vertex of some Puv ∈ P . Fix for each (u, v) ∈ IM arbitrarily such
a Puv and define a function f : IM → V (H)−V (IM) by f((u, v)) = h(Puv). Since
IM is an induced matching this function assigns to each vertex h(Puv) at most two
edges of IM . Thus there are at least |IM |/2 vertices in V (H)−V (IM) and we have
|V (H)| ≥ 2|IM |+ |IM |/2 which gives im(H) ≤ 2

5n, and, equivalently, co-im(H) ≥
1
2n− 2

5n = 1
10n . By Theorem 2, this implies that co-bd(H) ≥ 1

10·14.3 n = 1
143 n. ��

Next, we show that a statement similar to that of Theorem 5 holds also for a random
uniform bipartition of V (G), when each vertex of V is assigned randomly and indepen-
dently either to side A or to side B, resulting in H(A,B,E′′). While the bound will
be weaker, this structural result is of independent interest. The proof is left out of this
extended abstract.

Theorem 6. For H as above, it holds almost surely that co-im(H) ≥ 1
28 n − o(n).

Consequently, co-bd(H) ≥ 1
801 n− o(n).
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5 Boolean Width: Beyond the Triviality Bound

We turn to the boolean-width of general graphs. Since we currently have much less
understanding of boolean dimension of unbalanced partitions than of the balanced ones,
in this section we provide an existential argument, which can nevertheless be turned into
an exponential time algorithm with a relatively small exponent.

We shall need the following standard estimation for the sum of binomial coefficients,
to be called here the Entropy Bound:

cm∑
i=0

(
m

i

)
≤ 2H(c)m (5)

where H(p) = p log2
1
p + (1− p) log2

1
1−p is the entropy function.

Lemma 3. Every graphG hasA ⊂ V (G) with |A| = n
3±o(n) such that bd(GA,V−A) ≤

n
3 − n

226 + o(n).

Proof. If there exists S ⊆ V (G) such that |S| = n
226 and |N(S)∪ S| ≤ n

3 we just take
any set A of size n/3 containingN(S)∪S. Then, bd(GA,V−A) ≤ n

3 −
n

226 , as no vertex
in S has neighbours in V−A.

Otherwise, every set S of size n
226 has |N(S)−S| ≥ n

3 − n
226 . The set A will

be constructed by a random procedure by choosing every vertex v with probability 1
3 ,

randomly and independently from the others. We claim that almost surely two following
events take place. First, |A| = n/3± o(n), and second, all sets S ⊆ V−A of size n

226
have |N(S)∩A| >

(
1
3 − 0.202

)
·
(
n
3 − n

226

)
, which we short-cut as αn for the suitable

α. Such an A will be called good.
Since 1−Pr[X ∩ Y ] ≤ (1− Pr[X ]) + (1− Pr[Y ]), it suffices to show that each of

the two events holds almost surely separately. To bound the probabilities of failure, we
use a suitable Chernoff-Hoeffding Bound.

Let Σ be the number of successes in r i.i.d. 0/1 events, each happening with proba-
bility p. Then by [10], Pr[Σ ≤ (p−t)r ] ≤ e−2t2randPr[Σ ≥ (p+t)r ] ≤ e−2t2r .
The desired bound on the probability of the first event follows at once with o(n) stand-
ing for any sublinear function majorizing n0.5, e.g., 6(n0.5+ε). For the second event,
the analysis is more involved.

Let S be any subset of V (G) of size n
226 . The probability that S causes a failure is

Pr [{S ⊆ V−A} ∧ {|N(S) ∩A| ≤ αn}] =

= Pr [{|N(S) ∩ A| ≤ αn} | {S ⊆ V−A}] · Pr[S ⊂ V−A].
We start with upper-bounding the first factor in the above product. Then, the set S is
fixed and is in V −A. The choosing process on the unfixed vertices in V −S remains,
however, unaltered. In particular, the vertices in N(S)−S are chosen randomly and
independently as before. Recall that by our assumption there are ≥ n/3 − n/226
vertices in this set. Choosing t = 0.202, we get from the above Hoeffding Bound:

Pr
[
|N(S) ∩ A| ≤

(
1
3 − 0.202

) (
n
3 − n

226

)
| {S ⊆ V−A}

]
< e−2·0.2022(n

3 − n
226 ) <

< e−0.02684n . Thus,
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Pr[S is bad ] < e−0.02684n ·Pr[S ⊂ V−A] = e−0.02684n ·
(
2
3

)n/226
< e−0.02863n .

Next, we apply the union bound summing over all sets S of size n
226 . As always, the

binomial coefficients are upper-bounded using the Entropy Bound from Equation (5):
Pr[ there exists a bad S ] ≤ e−0.02863n ·

(
n

n/226

)
< e−0.02863n · 2H(1/226)n <

< e−0.00023n = o(1) . Thus, a random A is good almost surely for a large enough
n. We proceed with upper bounding bd(GA,V−A) for a good A by counting the sets in
NV−A, the family of neighbourhoods of subsets of V−A in A.

Recall that |V −A| ≈ 2n/3. The sets S ⊂ V −A of size i < n/226 may contribute
only as many as

∑n/226
i=0

(
2n/3+o(n)

i

)
distinct neigbourhoods in A. The contribution of

sets S ⊂ V −A of size ≥ n/226 may be bounded as follows. In each such S mark an
arbitrary subset X ⊆ S of size precisely #n/226$. Call two large S’s equivalent if the
sameX was marked in both of them. Then, since everyX sees at leastαn vertices n, the
contribution of the entire equivalence class of large sets defined X is at most 2n/3−αn.
The number of X’s is at most

(2n/3+o(n)
n/226

)
. By plugging in the numerical value of α and

using the Entropy Bound from Equation (5) for
( 2n/3
n/226

)
, the entire contribution can be

bounded by:

|NV−A| ≤
n/226∑
i=0

(
2n/3 + o(n)

i

)
+

(
2n/3 + o(n)

n/226

)
·2n/3−αn ≤ 20.3286n+o(1) ≤

≤ 2
n
3 − n

226+o(1) ,

and the upper bound on bd(GA,V−A) = log2 |NV−A| follows.

As an immediate consequence of Lemma 3 and Proposition 3 we obtain the following
result:

Theorem 7. For any graph G, it holds that bw(G) ≤ n
3 − n

672 + o(n).

6 Conclusion

Our results are the first non-trivial upper bounds on the value of a graph width param-
eter that hold for every graph. In this paper we gave three techniques to show such
bounds, respectively Theorems 5, 6 and 7. At the moment the first two work only for
linear boolean-width and the third is here applied only to boolean-width but it should
work also for the linear case. We believe these bounds can be substantially improved.
Combining Corollary 1 with Proposition 4 and Theorem 5 we can solve MAXIMUM

WEIGHT INDEPENDENT SET and COUNTING INDEPENDENT SETS OF SIZE K in time
O∗(1.4108n), and solve MINIMUM WEIGHT DOMINATING SET, MINIMUM WEIGHT

TOTAL DOMINATING SET, MAXIMUM/MINIMUM WEIGHT INDEPENDENT DOMI-
NATING SET, and counting versions of these, in time O∗(1.9904n). These runtimes
beat brute-force search but faster algorithms exist in the literature, see [11]. Our goal
was mainly to prove the viability of this new line of research by establishing structural
qualitative results. The natural directions for further work are to improve the bounds
and hence the runtime, and to increase the class of problems handled by Corollary 1.
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for Steiner Tree on Tree Decompositions
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Abstract. Dynamic programming on tree decompositions is a frequently
used approach to solve otherwise intractable problems on instances of
small treewidth. In recent work by Bodlaender et al. [5], it was shown that
for many connectivity problems, there exist algorithms that use time, lin-
ear in the number of vertices, and single exponential in the width of the
tree decomposition that is used. The central idea is that it suffices to com-
pute representative sets, and these can be computed efficiently with help
of Gaussian elimination.

In this paper, we give an experimental evaluation of this technique
for the Steiner Tree problem. A comparison of the classic dynamic
programming algorithm and the improved dynamic programming algo-
rithm that employs the table reduction shows that the new approach
gives significant improvements on the running time of the algorithm and
the size of the tables computed by the dynamic programming algorithm,
and thus that the rank based approach from Bodlaender et al. [5] does
not only give significant theoretical improvements but also is a viable
approach in a practical setting, and showcases the potential of exploit-
ing the idea of representative sets for speeding up dynamic programming
algorithms.

Keywords: Experimental evaluation, Algorithmic engineering, Steiner
tree, Treewidth, Dynamic programming, Exact algorithms.

1 Introduction

The notion of treewidth provides us with a method of solving many NP-hard
problems by means of dynamic programming algorithms on tree decompositions
of graphs, resulting in algorithmic solutions which are fixed-parameter tractable
in the treewidth of the input graph. For many problems, this gives algorithms
that are linear in the number of vertices n, but at least exponential in the width
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of the tree decomposition on which the dynamic programming algorithm is ex-
ecuted. The dependency of the running time on the width of the tree decompo-
sition has been a point of several investigations. For many problems, algorithms
were known whose running time is single exponential on the width, see e.g., [25].
A recent breakthrough was obtained by Cygan et al. [11] who showed for sev-
eral connectivity problems, including Hamiltonian Circuit, Steiner Tree,
Connected Dominating Set (and many other problems) that these can be
solved in time, single exponential in the width, but at the cost of introducing
randomization and an additional factor in the running time that is polynomial
in n. Very recently, Bodlaender et al. [5] introduced a new technique (termed the
rank based approach) that allows algorithms for connectivity problems that are
(i) deterministic, (ii) can handle weighted vertices, and (iii) have a running time
of the type O(ckn) for graphs with a given tree decomposition of width k and n
vertices, i.e., the running time is single exponential in the width, and linear in
the number of vertices.

The main ideas of the rank based approach are the following. (Many details
are abstracted away in the discussion below. See [5] for more details.) Suppose
we store during dynamic programming a table T with each entry giving the
characteristic of a partial solution. If we have an entry s in T , such that for each
extension t of s to a ‘full solution’, s · t, there is an other entry s′ �= s in T ,
that can be extended in the same way to a full solution s′ · t, and solution s′ · t
has a value that is as least as good as the value of s · t, then s is not needed for
obtaining an optimal solution, and we can delete s from T . This idea leads to the
notion of representativity, pioneered by Monien in 1985 [23]. Consider the matrix
M with rows indexed by partial solutions, and columns indexed by manners to
extend partial solutions, with a 1 if the combination gives a full solution, and a 0
otherwise. A table T corresponds to a set of rows in M , with a value associated
to each row. (E.g., for the Steiner Tree problem, a row corresponds to the
characteristic of a forest in a subgraph, and the value is the sum of the edges
in the forest.) It is not hard to see that a maximal subset of linear independent
rows of minimal cost (in case of minimization problems, and of maximal value
in case of maximization problems) forms a representative set. Now, if we have
an explicit basis of M (the characteristics of the columns in a maximal set of
independent columns in T ) and M has ‘small’ rank, then we can find a ‘small’
representative set efficiently, just by performing Gaussian elimination on a sub-
matrix of M . Now, for many connectivity problems, including Steiner Tree,
Feedback Vertex Set, Long Path, Hamiltonian Circuit, Connected

Dominating Set, the rank of this matrix M when solving these problems on
a tree decomposition is single exponential in the width of the current bag. This
leads to the improved dynamic programming algorithm: interleave the steps of
the existing DP algorithm with computing representative sets by computing the
submatrix of M and then carrying out Gaussian elimination on this submatrix.

The notion of representative sets was pioneered by Monien in 1985 [23]. Using
the well known two families theorem by Lovász [21], it is possible to obtain effi-
cient FPT algorithms for several other problems [22,14]. Cygan et al. [10] give an
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improved bound on the rank as a function of the width of the tree decomposition
for problems on finding cycles and paths in graphs of small treewidth, including
TSP, Hamiltonian Circuit, Long Path.

In this paper, we perform an experimental evaluation of the rank based ap-
proach, targeted at the Steiner Tree problem, i.e., we discuss an implementa-
tion of the algorithm, described by Bodlaender et al. [5] for the Steiner Tree

problem and its performance.We test the algorithm on a number of graphs from a
benchmark for Steiner Tree, and some randomly generated graphs. The results
of our experiments are very positive: the new algorithm is considerably faster com-
pared to the classic dynamic programming algorithm, i.e., the time that is needed
to reduce the tables with help of Gaussian elimination is significantly smaller than
the gain in time caused by the fact that tables are much smaller.

The Steiner Tree problem (of whichMinimum Spanning Tree is a special
case) is a classic NP-hard problem which was one of Karp’s original 21 NP-
complete problems [17]. Extensive overviews on this problem and algorithms for
it can be found in [16,30]. Applications of Steiner Tree include electronic
design automation, very large scale integration (VSLI) of circuits and wire rout-
ing. In this paper we consider the weighted variant, i.e., edges have a weight,
and we want to find a Steiner tree of minimum weight. It is well known that
Steiner Tree can be solved in linear time for graphs of bounded treewidth.
In 1983, Wald and Colbourn [27] showed this for graphs of treewidth two. For
larger fixed values of k, polynomial time algorithms are obtained as consequence
of a general characterization by Bodlaender [4] and linear time algorithms are
obtained as consequence of extensions of Courcelles theorem, by Arnborg et
al. [2] and Borie et al. [7]. In 1990, Korach and Solel [20] gave an explicit linear
time algorithm for Steiner Tree on graphs of bounded treewidth. Inspection
shows that the running time of this algorithm is O(2O(k log k)n); k denotes the
width of the tree decomposition. We call this algorithm the classic algorithm.
Recently, Chimani et al. [8] gave an improved algorithm for Steiner Tree on
tree decompositions that uses O(B2

k+1 · k · n) time, where the Bell number Bi

denotes the number of partitions of an i element set. Our description of the
classic algorithm departs somewhat from the description in Korach and Solel
[20], but the underlying technique is essentially the same. We have chosen not to
use the coloring schemes from Chimani et al. [8], but instead use hash tables to
store information. While the coloring schemes give a better worst case running
time, we also spend time with these on ‘non-existing table entries’, and thus
we expect faster computations when using hash tables. Wei-Kleiner [29] gives a
tree decomposition based algorithm for Steiner tree, that particularly aims
at instances with a small set of Steiner vertices.

In this paper, we compare three different algorithms:

– The classic dynamic programming algorithm (CDP), see the discussion
above. On a nice tree decomposition, we build for each node i a table. Tables
map partitions of subsets of Xi to values, characterizing the minimum weight
of a ‘partial solution’ that has this partition of a subset as ‘fingerprint’.
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– RBA: To the classic dynamic programming algorithm, we add a step where
we apply the reduce algorithm from [5]. With help of Gaussian elimination
on a specific matrix (with rows corresponding to entries in the DP table,
columns corresponding to a ‘basis of the fingerprints of ways of extending
partial solutions to Steiner trees’, and values 1, if the extension of the column
applied to the entry of the row gives a Steiner tree and 0 otherwise), we delete
some entries from the table. It can be shown that deleted entries are not
needed to obtain an optimal solution, i.e., the step does not affect optimality
of the solution. This elimination step is performed each time after the DP
algorithm has computed a table for a node of the nice tree decomposition.

– RBC: Similar to RBA, but now the elimination step is only performed for
‘large’ tables, i.e., tables where the theory tells us that we will delete at least
one entry when we perform the elimination step.

Our software is publicly available, can be used under a GNU Lesser General
Public Licence, and can be downloaded at:
http://www.staff.science.uu.nl/∼bodla101/java/steiner.zip

This paper is organized as follows. Some preliminary definitions are given
in Section 2. In Section 3, we briefly describe both the classic dynamic pro-
gramming algorithm for Steiner Tree on nice tree decompositions, as well as the
improvement with the rank based approach as presented in [5]. In Section 4, we
describe the setup of our experiments, and in Section 5, we discuss the results
of the experiments. Some final conclusions are given in Section 6.

2 Preliminaries

We use standard graph theory notation and quite some additional notation
from [5]. For a subset of edges X ⊆ E of an undirected graph G = (V,E),
we let G[X ] denote the subgraph induced by edges and endpoints of X , i.e.
G[X ] = (V (X), X).

For two partitions p and q of a set W , we say that p is a coarsening of q (or,
q is a refinement of p) if every block of q is contained in a block of p, and we
let p � q denote the finest partition that is a coarsening of p and of q. (In graph
terms: take an edge between v ∈ W and w ∈ W iff v �= w and v and w belong
to the same block in p or to the same block in q. Now, the classes of p � q are
the connected components of this graph.)

The Steiner Tree problem can be defined as follows.

Steiner Tree

Input: A graph G = (V,E), weight function ω : E → N \ {0}, a terminal set
K ⊆ V and a nice tree decomposition T of G of width tw.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that
G[X ] is connected and K ⊆ V (G[X ]).

Definition 1 (Tree decomposition, [24]). A tree decomposition of a graph
G is a tree T in which each node x has an assigned set of vertices Bx ⊆ V (called
a bag) such that

⋃
x∈T

Bx = V with the following properties:
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– for any e = (u, v) ∈ E, there exists an x ∈ T such that u, v ∈ Bx.
– if v ∈ Bx and v ∈ By, then v ∈ Bz for all z on the (unique) path from x to
y in T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag
of T minus one, and the treewidth of a graph G is the minimum treewidth over
all possible tree decompositions of G.

Definition 2 (Nice tree decomposition). A nice tree decomposition is a
tree decomposition with one special bag z called the root and in which each bag
is one of the following types:

– leaf bag: a leaf x of T with Bx = ∅.
– introduce vertex bag: an internal vertex x of T with one child vertex y for

which Bx = By ∪ {v} for some v /∈ By. This bag is said to introduce v.
– introduce edge bag: an internal vertex x of T labelled with an edge e =

(u, v) ∈ E with one child bag y for which u, v ∈ Bx = By. This bag is said
to introduce e.

– forget vertex bag: an internal vertex x of T with one child bag y for which
Bx = By \ {v} for some v ∈ By. This bag is said to forget v.

– join bag: an internal vertex x with two child vertices y and y′ with Bx =
By = By′ .

We additionally require that every edge in E is introduced exactly once.

Nice tree decompositions were introduced in the 1990s by Kloks [18]. We use
here a more recent version that distinguishes introduce edge and introduce vertex
bags [11]. To each bag x we associate the graph Gx = (Vx, Ex), with Vx the
union of all By with y = x or y a descendant of x, and Ex the set of all edges
introduced at bags y with y = x or y a descendant of x. There are also many
heuristics for finding a tree decomposition of small width; see [6] for a recent
overview. Given a tree decomposition T of G, a nice tree decomposition rooted
at a forget bag can be computed in n · twO(1) time by following the arguments
given in [18], with the following modification: between a forget bag Xi where we
’forget vertex v’ and its child bag Xj , we add a series of introduce edge bags
for each edge e = {v, w} ∈ E and w ∈ Xj . We also assume that root bag z is a
forget node with Bx = ∅ and that the vertex that is forgotten at the root bag is
a terminal.

3 Dynamic Programming Algorithms for Steiner Tree
Parameterized by Treewidth

In this section we briefly sketch both the classic dynamic programming algorithm
on (nice) tree decompositions for (the edge weighted version of) Steiner Tree

and its variant with the rank based approach. For details, see the full paper [13].
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3.1 Classic Dynamic Programming

The classic dynamic programming algorithm computes for each bag x a function
Ax. This function is represented by a table, with only trivial entries (e.g., parti-
tions mapping to infinity, as there are no forests corresponding to the partition)
not stored.

The function Ax maps a subset W ⊆ Bx to a collection of pairs. Each pair
consists of a partition p of W and a weight w. If (p, w) is in the collection
associated to W , then w is the minimum weight over all forests F in Gx with
the following properties: (1) For all v ∈ Bx, v ∈ W iff v belongs to F ; (2) each
terminal in Vx belongs to F ; (3) each tree in F contains at least one vertex in
W ; and (4) two vertices in W belong to the same class in the partition p, iff
they belong to the same tree in F . I.e., for each partition p, we store at most one
weight; if for set W and a partition p, no forest exists that fulfills the properties,
then we have no pair in Ax(W ) of the form (p, . . .).

In the full paper [13] we can find a more formal description with slightly
different notation (based on the notation in [5]), and recurrences for A for each
of the types (leaf, introduce vertex, introduce edge, join, forget) of nodes in nice
tree decompositions. In bottom-up order, we compute for each node x in the
nice tree decomposition a table for Ax. The minimum value of a Steiner tree in
G can be directly observed given the table for the root node.

In our implementation, we use two levels of hash tables: one with keys the
different subsets W of Bx, and for each W with at least one partial solution, we
have a hash table storing for each p the value z of the pair (p, z) ∈ Ax(W ), in
case such a pair exists.

3.2 Rank Based Table Reductions

The main idea of the rank based approach from [5] is that after we have com-
puted a table for a bag x in the nice tree decomposition, we can carry out a
reduction step and possibly remove a number of entries from the table without
affecting optimality. A table is transformed thus to a (possibly smaller) table
whose weighted partitions are representative for the collection of weighted par-
titions in the earlier table.

The reduction step is performed as follows: for each W ⊆ Bx, we do the
following. We build a matrix M with a row for each partition p appearing in
a pair in Ax(W ), and a column for each partition q of W in two sets, with
M(p, q) = 1 if and only if p� q = U . Now, from [5], it follows that it is sufficient
to keep a minimum weight basis of rows. With help of Gaussian elimination, we
compute such a minimum weight basis (after first sorting the rows with respect
to their weights), and then delete all other entries from the table. Correctness
follows from the analysis in [5]. In our experiments, we consider both the case
where we always apply the reduction step, and the case where we only apply it
when A ≥ 2|Bx|. Both cases give the same guarantees on the size of tables and
worst case upper bound on the running time, but the actual running times in
experiments differ, as we discuss in later sections.
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4 Implementation

In this section, we give some details on our implementation of the algorithms
described in the previous section. We have implemented the algorithms in Java.
For each of the test graphs, we used the well known (and quite simple and ef-
fective, see e.g., [6]) Greedy Degree heuristic to find a tree decomposition. These
tree decompositions were subsequently transformed into nice tree decomposi-
tions, using the procedure which was previously described in Section 2. The
algorithms were executed on the thus obtained nice tree decompositions.

The recursions for the different types of nodes were implemented such that
we spend linear time per generated entry (before removing double entries, and
before the reduction step). For most types, this is trivial. The computation for
join bags contains a step, where we are given two partitions, and must compute
the partition that is the closure of the combination of the two (i.e., the finest
partition that is a coarsening of both). We implemented this step with a breadth
first search on the vertices in the bag, with the children of a vertex v all not yet
discovered vertices that are in the same block as v in either of the partitions.

Sets W ⊆ Bx are represented by a bitstring. In the computations of join,
introduce edge, and forget nodes, it is possible that we generate two or more
entries for the sameW and partition p ofW . Of these duplicate partial solutions,
we need to keep only the one with the smallest weight. In order to find such
duplicate partial solutions we have represented the partial solution tables in a
nested hash-map structure. First we use sets of vertices that where not used in
a partial solution as keys, pointing to tables of weighted partitions, effectively
grouping partitions consisting of the same base set of vertices together. These
weighted partition tables are then represented by another hash-map where the
partitions, which are represented as nested sets, are used as keys, pointing to the
minimum weight corresponding to the partial solution. This allows us to find and
replace any duplicate partial solution in amortized constant time. Java provides
hash-codes for sets by adding the hash-codes for all objects contained within
a set, which works well enough for the outer hash-table used in our structure.
This standard approach breaks down when we use it to calculate hash-codes for
partitions however, as it effectively adds all hash-codes of vertices used in the
partition together. This results in the same hash-code for all partitions used in
the same inner hash-map. To resolve this problem we disrupt this commutative
effect by multiplying indexes of vertices contained in each block, and then taking
the sum of these values of blocks in order to calculate hash-codes for partitions.
We apply the multiplications modulo a prime number to avoid integer overflows.
In our experiments, we observed that this approach results in approximately 3%
collisions for large tables.

In the implementation of the rank based approach, for each bag, we first
compute a table as in the classic algorithm, and then compute the corresponding
matrix M, as discussed above. We perform the steps of Gaussian elimination
with rows in order of nondecreasing weight. I.e., first we order the rows of M
in order of nondecreasing weight. find the first 1 in the row, and now add the
values in this row to all later rows with a 1 in the same column (modulo 2).
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(This is precisely one step of Gaussian elimination). When a row consists of only
0’s, it is linearly dependent on previous processed rows (of smaller weight), and
thus safely eliminated. We stop when all partial solutions have been processed,
or when we have processed 2|W | rows, since all remaining partial solutions are
linearly dependent on solutions in A. Any time a partial solution is processed
we can eliminate the column containing its leading 1, since all elements in this
column are 0.

Chimani et al. [8] give an efficient algorithm for Steiner tree for graphs
given with a tree decomposition, that runs in O(B2

k+2kn) time, with k the width
of the tree decomposition. We have chosen not to use the coloring scheme from
Chimani et al. [8], but instead use hash tables (as discussed above) to store
the tables. Of course, our choice has the disadvantage that we lose a guarantee
on the worst case running time (as we cannot rule out scenarios where many
elements are hashed to the same position in the hash table), but gives a simple
mechanism which works in practice very well. In fact, if we assume that the
expected number of collisions of an element in the hash table is bounded by a
constant (which can be observed in practice), then the expected running time
of our implementation matches asymptotically the worst case running time of
Chimani et al.

5 Experimental Results

In this section, we will report the results for experiments with the algorithms dis-
cussed in Section 3. We will denote the classic dynamic programming algorithm
as CDP. With RBA, we denote the algorithm where we always apply the reduc-
tion step, whereas RBC denotes the algorithm which only applies the reduction
step when we have a table whose size is larger than the bound guaranteed by
reduction. We will compare the runtime of these three algorithms. Furthermore
we will compare the number of partial solutions generated during the execution
of these algorithms to illustrate how much work is being saved by reducing the
tables.

Each of the three algorithms receives as input the same nice tree decomposi-
tion of the input graph; this nice tree decomposition is rooted at a forget bag
of a terminal vertex. The experiments where performed on sets of graphs of dif-
ferent origin, spanning a range of treewidth sizes of their tree decompositions,
and where possible diversified on the number of vertices, edges and terminals.
Our graphs come from benchmarks for algorithms for the Steiner Tree prob-
lem and for Treewidth. The graphs from Steiner tree benchmarks can be found
in Steinlib [19], a repository for Steiner Tree problems. These are prefixed by
b, i080 or es. Graph instances prefixed by b are randomly generated sparse
graphs with edge weights between 1 and 10; these were introduced in [3] and
were generated following a scheme outlined in [1]. The i080 graph instances
are randomly generated sparse graphs with incidence edge weights, introduced
in [12]. We have grouped these sparse graphs together in the results. The next
set of instances, prefixed by es, were generated by placing random points on a
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two-dimensional grid, which serve as terminals. By building the grid outlined
in [15] they where converted to rectilinear graphs with L1 edge weights and
preprocessed with GeoSteiner [28]. The last collection of graphs are often used
as benchmarks for algorithms for Treewidth. These come from Bayesian net-
work and graph colouring applications. We transformed these to Steiner Tree

instances by adding random edge weights between 1 and 1000, and by select-
ing randomly a subset of the vertices as terminals (about 20% of the original
vertices). These graphs can be found in [26].

All algorithms have been implemented in Java and the computations have been
carried out on aWindows-7 operated PCwith an Intel Core i5-3550 processor and
16.0 GB of available main memory. We have given each of the algorithms a max-
imum time of one hour to find a solution for a given instance; in the tables, we
marked instances halted due to the use of the maximum time by a *.

Table 1. Runtime in milliseconds for instances from Steinlib (1)

instance tw(T) |V | |E| |T | CDP RBA RBC

b01.stp 4 50 63 9 55 53 17
b02.stp 4 50 63 13 12 30 12
b08.stp 6 75 94 19 171 92 48
b09.stp 6 75 94 38 78 46 31
b13.stp 7 100 125 17 1328 618 408
b14.stp 7 100 125 25 2190 385 275
b15.stp 8 100 125 50 14421 1542 1281
i080-001.stp 9 80 120 6 98617 11270 7953
i080-003.stp 9 80 120 6 144796 12689 10211
i080-004.stp 10 80 120 6 1618531 70192 68930
b06.stp 10 50 100 25 1325669 36986 29082
b05.stp 11 50 100 13 * 270376 207516
i080-005.stp 11 80 120 6 * 936074 840466

In Tables 1 – 3, we have gathered the results for the runtimes of the three
algorithms for the aforementioned graph instances. We immediately notice that
RBC outperforms RBA in all cases. In Table 4 we give the number of partial
solutions (table entries) computed for each of the three algorithms; similar data
is available for the other instances in the full paper [13]. If we investigate Table
4 we notice that the number of partial solutions computed during RBA is not
significantly smaller compared to the number computed during RBC. From these
results we can conclude that it is preferable to use the reductions more sparingly
in order to decrease runtime, since applying the reductions when the tables are
already smaller than their size guarantee does not seem to have a noteworthy
effect.

We also notice that, while RBA outperforms CDP in numerous cases, RBC
outperforms CDP in all but one (discussed below). For example, in the case of
i080-004 we see a significant speed-up: the classic DP uses 26 minutes to find the
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Table 2. Runtime in milliseconds for instances from Steinlib (2)

instance tw(T) |V | |E| |T | CDP RBA RBC

es90fst12.stp 5 207 284 90 71 120 60
es100fst10.stp 5 229 312 100 105 166 86
es80fst06.stp 6 172 224 80 272 276 151
es100fst14.stp 6 198 253 100 109 160 78
es90fst01.stp 7 181 231 90 250 270 148
es100fst13.stp 7 254 361 100 1223 1200 679
es100fst15.stp 8 231 319 100 2600 1688 1033
es250fst03.stp 8 543 727 250 2904 2010 1251
es100fst08.stp 9 210 276 100 4670 2302 1942
es250fst05.stp 9 596 832 250 24460 15550 9742
es250fst07.stp 10 585 799 250 107150 54605 31729
es500fst05.stp 10 1172 1627 500 124664 47336 31102
es250fst12.stp 11 619 872 250 * 144932 95855
es100fst02.stp 12 339 522 100 * 426078 334785
es250fst01.stp 12 623 876 250 * 332389 246704
es250fst08.stp 13 657 947 250 * 2670464 2251728
es250fst15.stp 13 713 1053 250 * 2120913 1671672

Table 3. Runtime in milliseconds for instances on graphs from TreewidthLib

instance tw(T) |V | |E| |T | CDP RBA RBC

myciel3.stp 5 11 20 2 5 8 4
BN 28.stp 5 24 49 4 8 15 7
pathfinder.stp 6 109 211 21 422 254 155
csf.stp 6 32 94 6 335 198 116
oow-trad.stp 7 33 72 6 766 594 364
mainuk.stp 7 48 198 9 8842 3495 2025
ship-ship.stp 8 50 114 10 10579 4511 2841
barley.stp 8 48 126 9 9281 2410 1473
miles250.stp 9 128 387 25 35369 14423 9382
jean.stp 9 80 254 16 39192 18237 10862
huck.stp 10 74 301 14 17030 38486 21050
myciel4.stp 11 23 71 4 1510595 98720 93107
munin1.stp 11 189 366 37 * 460051 372718
pigs.stp 12 441 806 88 * 1431083 1280194
anna.stp 12 138 493 27 * * 3291591

optimal solution, but RBC uses just 69 seconds. Furthermore we see a strong
increase in the runtime difference when the width of the tree decompositions
increases. This is further reflected in Table 4, where we see that when the width
of the tree decompositions increases, the difference in the number of of generated
partial solutions grows significantly.

The huck instance is the only example where using the rank based approach
does not pay off. Upon further inspection we found that the tree decomposition
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Table 4. Number of generated partial solutions for instances of Steinlib (1)

instance tw(T) |V | |E| |T | CDP RBA RBC

b01.stp 4 50 63 9 3141 2854 2854
b02.stp 4 50 63 13 3263 2763 2769
b08.stp 6 75 94 19 39178 11278 11345
b09.stp 6 75 94 38 18970 5177 5449
b13.stp 7 100 125 17 328366 68533 70693
b14.stp 7 100 125 25 400940 35554 40012
b15.stp 8 100 125 50 2294557 84567 94951
i080-001.stp 9 80 120 6 15757284 529805 565777
i080-003.stp 9 80 120 6 18841974 589313 589773
i080-004.stp 10 80 120 6 196513167 2611426 3270334
b06.stp 10 50 100 25 156669926 903700 938800
b05.stp 11 50 100 13 * 6320072 6320264
i080-005.stp 11 80 120 6 * 26653282 31275766

for this instance has only one bag of size 11, while most of the other bags are
of size 7 and below. This is also reflected by the difference in the number of
generated partial solutions, where the improvement factor is not comparable to
the other cases. Conversely we found that the i080-004 case included 18 bags of
treewidth 11 of which 6 where join bags, which explains the extreme difference.
In practice, when we run dynamic programming algorithms on tree decomposi-
tions, the underlying structure of the decomposition has a big influence on the
performance, which is not always properly reflected by the treewidth of a graph.
In general however, the rank based approach is more and more advantageous as
the treewidth increases, even allowing us to find solutions where CDP does not
find any within the time limit. During the execution of the experiments we have
also tracked the amount of time spent on filling the cut-matrices and the time
spent on performing Gaussian elimination, and found that we spent significantly
more time on filling the table whereas the Gaussian elimination step only takes
up a small fraction of the time spent on reducing the tables.

6 Discussion and Concluding Remarks

In this paper, we presented an experimental evaluation of the rank based ap-
proach by Bodlaender et al. [5], comparing the classic dynamic programming for
Steiner Tree and the new versions based on Gaussian elimination. The re-
sults are very promising: even for relatively small values of the width of the tree
decompositions, the new approach shows a notable speed-up in practice. The
theoretical analysis of the algorithm already predicts that the new algorithms
are asymptotically faster, but it is good to see that the improvement already is
clearly visible at small size benchmark instances.

Overall, the rank based approach is an example of the general technique of
representativity: a powerful but so far underestimated paradigmatic improve-
ment to dynamic programming. A further exploration of this concept, both in
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theory (improving the asymptotic running time for problems) as in experiment
and algorithm engineering seems highly interesting. Our current paper gives a
clear indication of the practical relevance of this concept.

We end this paper with a number of specific points for further study:

– The rank based approach also promises faster algorithms on tree decom-
positions for several other problems. The experimental evaluation can be
executed for other problems. In particular, for Hamiltonian Circuit and
similar problems, it would be interesting to compare the use of the basis
from [5] with the smaller basis given by Cygan et al. [10].

– How well does the Cut and Count method perform? As remarked in [11],
it seems advantageous to use polynomial identity testing rather then the
isolation lemma to optimize the running time.

– Are further significant improvements on the running time possible by using
different data structures or variants of the approach, e.g., by not storing
table entries as partitions of subsets by identifying them by their row in the
matrix M?

– In what extent do results change if we use normal (instead of nice) tree
decompositions?

– What is the effect of the ratio between the number of terminals and the
number of vertices on the running times?

– Are running time improvements possible by other forms of reduction of tables
(without affecting optimality)? If we exploit the two families theorem by
Lovász [21], we obtain a variant of our algorithm, with a somewhat different
reduce algorithm [14] (see also [22]); how does the running time of this version
compare with the running time of the algorithm we studied?

– Can we use the rank based approach to obtain a faster version of the tour
merging heuristic for TSP by Cook and Seymour [9]? Also, it would be
interesting to try a variant of tour merging for other problems, e.g., ‘tree
merging’ as a heuristic for Steiner Tree.

– For what other problems does the rank based approach give faster algorithms
in practical settings?

– Are there good heuristic ways of obtaining small representative sets, even
for problems where theory tells us that representative sets are large in the
worst case?
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Abstract. The parameterized complexity of a problem is generally con-
sidered “settled” once it has been shown to lie in FPT or to be complete
for a class in the W-hierarchy or a similar parameterized hierarchy. Sev-
eral natural parameterized problems have, however, resisted such a clas-
sification. At least in some cases, the reason is that upper and lower
bounds for their parameterized space complexity have recently been ob-
tained that rule out completeness results for parameterized time classes.
In this paper, we make progress in this direction by proving that the
associative generability problem and the longest common subsequence
problem are complete for parameterized space classes. These classes are
defined in terms of different forms of bounded nondeterminism and in
terms of simultaneous time–space bounds. As a technical tool we intro-
duce a “union operation” that translates between problems complete for
classical complexity classes and for W-classes.

1 Introduction

Parameterization has become a powerful paradigm in complexity theory, both in
theory and practice. Instead of just considering the runtime of an algorithm as
a function of the input length, we analyse the runtime as a multivariate function
depending on a number of different problem parameters, the input length being
just one of them. While in classical complexity theory instead of “runtime” many
other resource bounds have been studied in great detail, in the parameterized
world the focus has lain almost entirely on time complexity. This changed when
in a number of papers [1–3] it was shown for different natural problems, includ-
ing the vertex cover problem, the feedback vertex set problem, and the longest
common subsequence problem, that their parameterized space complexity is of
interest. Indeed, the parameterized space complexity of natural problems can
explain why some problems in FPT are easier to solve than others (namely, be-
cause they lie in much smaller space classes) and why some problems cannot
be classified as complete for levels of the weft hierarchy (namely, because upper
and lower bounds on their space complexity rule out such completeness results
unless unlikely collapses occur).
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Our Contributions. In the present paper, we present completeness results of
natural parameterized problems for different parameterized space complexity
classes. The classes we study are of two kinds: First, parameterized classes of
bounded nondeterminism and, second, parameterized classes where the space and
time resources of the machines are bounded simultaneously. In both cases, we
introduce the classes for systematic reasons, but also because they are needed
to classify the complexity of the natural problems that we are interested in.

In the context of bounded nondeterminism, we introduce a general “union
operation” that turns any language into a parameterized problem in such a way
that completeness of the language for some complexity class C carries over to
completeness of the parameterized problem for a class “paraWC,” which we will
define rigorously later. Building on this result, we show that many union versions
of graph problems are complete for paraWNL and paraWL, but the theorem can
also be used to show that p-weighted-sat is complete for paraWNC1. Our
technically most challenging result is that the associative generability problem
parameterized by the generator set size is complete for the class paraWNL.

Regarding time–space classes, we present different problems that are complete
for the class of problems solvable “nondeterministically in fixed-parameter time
and slice-wise logarithmic space.” Among these problems are the longest com-
mon subsequence problem parameterized by the number of strings, but also the
acceptance problem for certain cellular automata parameterized by the number
of cells.

Related Work. Early work on parameterized space classes is due to Cai et al. [1]
who introduced the classes para-L and para-NL, albeit under different names,
and showed that several important problems in FPT lie in these classes: the
parameterized vertex cover problem lies in para-L and the parameterized k-leaf
spanning tree problem lies in para-NL. Later, Flum and Grohe [4] showed that
the parameterized model checking problem of first-order formulas on graphs
of bounded degree lies in para-L. In particular, standard parameterized graph
problems belong to para-L when we restrict attention to bounded-degree graphs.
Recently, Guillemot [3] showed that the longest common subsequence problem
(lcs) is equivalent under fpt-reductions to the short halting problem for ntms,
where the time and space bounds are part of the input and the space bound
is the parameter. Our results differ from Guillemot’s insofar as we use weaker
reductions (para-L- rather than fpt-reductions) and prove completeness for a
class defined using a machine model rather than for a class defined as a reduction
closure. The paper [2] by Elberfeld and us is similar to the present paper insofar
as it also introduces new parameterized space complexity classes and presents
upper and lower bounds for natural parameterized problems. The core difference
is that in the present paper we focus on completeness results for natural problems
rather than “just” on upper and lower bounds.

Organisation of This Paper. In Section 2 we review the parameterized space
classes previously studied in the literature and introduce some new classes that
will be needed in the later sections. For some of the classes from the literature we
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propose new names in order to systematise the naming and to make connections
between the different classes easier to spot. In Section 3 we study problems
complete for classes defined in terms of bounded nondeterminism, in Section 4
we do the same for time–space classes.

Due to lack of space, all proofs have been omitted. They can be found in the
technical report version of this paper [5].

2 Parameterized Space Classes

Before we turn our attention to parameterized space classes, let us first re-
view some basic terminology. As in [2], we define a parameterized problem as
a pair (Q, κ) of a language Q ⊆ Σ∗ and a parameterization κ : Σ∗ → N that
maps input instances to parameter values and that is computable in logarithmic
space.1 For a classical complexity class C, a parameterized problem (Q, κ) be-
longs to the para-class para-C if there are an alphabet Π , a computable function
π : N → Π∗, and a language A ⊆ Σ∗ ×Π∗ with A ∈ C such that for all x ∈ Σ∗

we have x ∈ Q ⇐⇒
(
x, π

(
κ(x)

))
∈ A. The problem is in the X-class XC if for

every number w ∈ N the slice Qw = { x | x ∈ Q and κ(x) = w} lies in C. It is
immediate from the definition that para-C ⊆ XC holds.

The “popular” class FPT is the same as para-P. In terms of the O-notation,
a parameterized problem (Q, κ) is in para-P if there is a function f : N → N
such that the question x ∈ Q can be decided within time f(κ(x)) · |x|O(1). By
comparison, (Q, κ) is in para-L if x ∈ Q can be decided within space f(κ(x)) +
O(log |x|); and for para-PSPACE the space requirement is f(κ(x)) · |x|O(1). The
class XP is in wide use in parameterized complexity theory; the logarithmic space
classes XL and XNL have previously been studied by Chen et al. [4, 8].

To simplify the notation, let us write fx for f
(
κ(x)

)
and n for |x| in the

following. Then the time bound for para-P can be written as fxn
O(1) and the

space bound for para-L as fx +O(log n).
Parameterized logspace reductions (para-L-reductions) are the natural restric-

tion of fpt-reductions to logarithmic space: A para-L-reduction from a parame-
terized problem (Q1, κ1) to (Q2, κ2) is a mapping r : Σ∗

1 → Σ∗
2 such that

1. for all x ∈ Σ∗
1 we have x ∈ Q1 ⇐⇒ r(x) ∈ Q2,

2. κ2
(
r(x)

)
≤ g

(
κ1(x)

)
for some computable function g, and,

3. r is para-L-computable with respect to κ1 (that is, there is a Turing machine
that outputs r(x) on input x and needs space at most f(κ1(x)) +O(log |x|)
for some computable function f).

Using standard arguments one can show that all classes in this paper are closed
with respect to para-L-reductions; with the possible exception of paraWNC1, a
class we encounter in Theorem 3.2. Throughout this paper, all completeness and
hardness results are meant with respect to para-L-reductions.

1 In the classical definition, Downey and Fellows [6] just require the parameterization
to be computable, while Flum and Grohe [7] require it to be computable in polyno-
mial time. Whenever the parameter is part of the input, it is certainly computable
in logarithmic space.
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2.1 Parameterized Bounded Nondeterminism

While the interplay of nondeterminism and parameterized space may seem to
be simple at first sight (NL is closed under complement and NPSPACE is even
equal to PSPACE, so only XNL and para-NL appear interesting), a closer look
reveals that useful and interesting new classes arise when we bound the amount
of nondeterminism used by machines in dependence on the parameter. For this,
it is useful to view nondeterministic computations as deterministic computations
using “choice tapes” or “tapes filled with nondeterministic bits.” These are extra
tapes for a deterministic Turing machine, and an input word is accepted if there
is at least one bitstring that we can place on this extra tape at the beginning
of the computation such that the Turing machine accepts. It is well known that
NP and NL can be defined in this way using deterministic polynomial-time or
logarithmic-space machines, respectively, that have one-way access to a choice
tape. (For NP it makes no difference whether we have one- or two-way access,
but logspace dtms with access to a two-way choice tape can accept all of NP.)

Classes of bounded nondeterminism arise when we restrict the length of the
bitstrings on the choice tape. For instance, the classes βh for h ≥ 1, see [9]
and also [10] for variants, are defined in the same way as NP above, only the
length of the bitstring on the choice tape may be at most O(logh n). Classes
of parameterized bounded nondeterminism arise when we restrict the length the
bitstring on the choice tape in dependence not only on the input length, but also
of the parameter. Furthermore, in the context of bounded space computations,
it also makes a difference whether we have one-way or two-way access to the
choice tapes.

Definition 2.1. Let C be a complexity class defined in terms of a deterministic
Turing machine model (like L or P). We define para∃↔C as the class of param-
eterized problems (Q, κ) for which there exists a C-machine M , an alphabet Π,
and a computable function π : N → Π∗ such that: For every x ∈ Σ∗ we have
x ∈ Q if, and only if, there exists a bitstring b ∈ {0, 1}∗ such that M accepts
with (x, π(κ(x))) on its input tape and b on the two-way choice tape. We define
para∃→C similarly, only access to the choice tape is now one-way.

We define para∃↔
f logC and para∃→

f logC in the same way, but the length of b may
be at most |π(κ(x))| · O(log n).

Observe that, as argued earlier, para∃↔L = para∃↔P = para∃→P = para-NP

and para∃→L = para-NL. Also observe that para∃↔
f logP = para∃→

f logP = W[P] by
one of the many possible definitions of W[P].

The above definition can easily be extended to the case where a universal
quantifier is used instead of an existential one and where sequences of quan-
tifiers are used. This is interpreted in the usual way as having a choice tape
for each quantifier and the different “exists . . . for all”-conditions must be met
in the order the quantifiers appear. For instance, for problems in para∃↔

f log∃→L

we have x ∈ Q if, and only if, there exists a bitstring of length fx log2 n for the
first, two-way-readable choice tape for which an NL-machine accepts. The classes
para-NL[f log], para-L-cert, and para-NL-cert introduced in an ad hoc manner by
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para-NC1

para-L = D[∞, f+ log]

para-NL = N[∞, f+ log]

para-P = FPT
= D[f poly,∞]

para-NP = N[f poly,∞]

para-PSPACE = D[∞, f poly]
= N[∞, f poly]

paraβL

paraβP

paraWNC1

paraWL

paraWNL

paraWP

XL

XNL

XP

XNP

= W[P] =

D[∞, f log] = XL

N[∞, f log] = XNL

D[nf ,∞] = XP

N[nf ,∞] = XNP

para-P ∩XL

para-NP ∩XNL

XP ∩ para-PSPACE

XNP ∩ para-PSPACE

D[f poly, f log]

N[f poly, f log]

D[nf , f poly]

N[nf , f poly]

Fig. 1. In this inclusion diagram bounded nondeterminism classes are shown in red
and time–space classes in blue. The X-classes are shown twice to keep the diagram
readable. All known inclusions are indicated, where C → D means C ⊇ D.

Elberfeld et al. in [2] can now be represented systematically: They are para∃→
f logL,

para∃↔
f logL, and para∃↔

f log∃→L, respectively.
In order to make the notation more useful in practice, instead of “∃→” let

us write “N” and instead of “∃→f log” we write “β” as is customary. As a new
notation, instead of “∃↔f log” and “∀↔f log” we write “W” and “W∀,” respectively.
The three classes of [2] now become paraβL, paraWL, and paraWNL.

Our reasons for using “W” to denote ∃↔f log will be explained fully in Section 3;
for the moment just observe that W[P] = paraWP holds. To get a better intu-
ition on the W-operator, note that it provides machines with “fx log2 n bits of
nondeterministic information” or, equivalently, with “fx many nondeterministic
positions in the input” and these bits are provided as part of the input. This
allows us to also apply the W-operator to classes like NC1 that are not defined
in terms of Turing machines.

The right half of Figure 1 depicts the known inclusions between the introduced
classes, the left half shows the classes introduced next.

2.2 Parameterized Time–Space Classes

In classical complexity theory, the major complexity classes are either defined
in terms of time complexity (P, NP, EXP) or in terms of space complexity (L,
NL, PSPACE), but not both at the same time: by the well-known inclusion chain
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L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP space and time are in-
tertwined in such a way that bounding either automatically bounds the other
in a specific way (at least for the major complexity classes). In the param-
eterized world, interesting new classes arise when we restrict time and space
simultaneously: namely whenever the time is “para-restricted” while space is
“X-restricted” or vice versa.

Definition 2.2. For a space bound s and a time bound t, both of which may
depend on a parameter k and the input length n, let D[t, s] denote the class of all
parameterized problems that can be accepted by a deterministic Turing machine
in time t(κ(x), |x|) and space s(κ(x), |x|). Let N[t, s] denote the corresponding
nondeterministic class.

Four cases are of interest: First, D[fpoly, f log], meaning that t(k, n) = f(k) ·
nO(1) and s(k, n) = f(k) · O(log n), contains all problems that are “fixed pa-
rameter tractable via a machine needing only slice-wise logarithmic space,” and,
second, the nondeterministic counterpart N[fpoly, f log]. The two other cases
are D[nf , fpoly] and N[nf , fpoly], which contain problems that are “in slice-
wise polynomial time via machines that need only fixed parameter polynomial
space.” See Figure 1 for the trivial inclusions between the classes.

In Section 4 we will see that these classes are not only of scholarly interest.
Rather, we will show that lcs parameterized by the number of input strings is
complete for N[fpoly, f log].

3 Complete Problems for Bounded Nondeterminism

In this section we present new natural problems that are complete for paraWNL

and paraWL. Previously, it was only known that the following “colored reachabil-
ity problem” [2] is complete for paraWNL: We are given an edge-colored graph,
two vertices s and t, and a parameter k. The question is whether there is a path
from s to t that uses only k colors. Our key tool for proving new completeness
results will be the introduction of a “union operation,” which turns P-, NL-, and
L-complete problems into paraWP-, paraWNL-, and paraWL-complete problems,
respectively. Building on this, we prove the parameterized associative genera-
bility problem to be complete for paraWNL. Note that the underlying classical
problem is well-known to be NL-complete and, furthermore, if we drop the re-
quirement of associativity, the parameterized and classical versions are known
to be complete for paraWP and P, respectively.

At this point, we remark that Guillemot, in a paper [3] on parameterized
time complexity, uses “WNL” to denote a class different from the class paraWNL

defined in this paper. Guillemot chose the name because his definition of the class
is derived from one possible definition of W[1] by replacing a time by a space
constraint. Nevertheless, we believe that our definition of a “W-operator” yields
the “right analogue” ofW[P]: First, there is the above pattern that parameterized
version of problems complete P, NL, and L tend to be complete for paraWP,
paraWNL, and paraWL, respectively. Furthermore, in Section 4 we show that the
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class WNL defined and studied by Guillemot is exactly the fpt-reduction closure
of the time–space class N[f poly, f log].

Union Problems. For numerous problems studied in complexity theory the input
consists of a string in which some positions can be “selected” and the objective
is to select a “good” subset of these positions. For instance, for the satisfiability
problem we must select some variables such that setting them to true makes
a formula true; for the circuit satisfiability problem we must select some input
gates such that when they are set to 1 the circuit evaluates to 1; and for the
exact cover problem we must select some sets from a family of sets so that they
form a partition of the union of the family. In the following, we introduce some
terminology that allows us to formulate all of these problems in a uniform way
and to link them to the W-operator.

Let Σ be an alphabet that contains none of the three special symbols ?, 0,
and 1. We call a word t ∈ (Σ ∪ {?})∗ a template. We call a word s ∈ (Σ ∪
{0, 1})∗ an instantiation of t if s is obtained from t by replacing exactly the
?-symbols arbitrarily by 0- or 1-symbols. Given instantiations s1, . . . , sk of the
same template t, their union s is the instantiation of t that has a 1 exactly at
those positions i where at least one sj has a 1 at position i (the union is the
“bitwise or” of the instantiated positions and is otherwise equal to the template).

Given a language A ⊆ (Σ ∪ {0, 1})∗, we define three different kinds of union
problems for A. Each of them is a parameterized problem where the parameter
is k. As we will see in a moment, the first kind is linked to the W-operator while
the last kind links several well-known languages from classical complexity theory
to well-known parameterized problems. We will also see that the three kinds of
union problems for a language A often all have the same complexity.

1. The input for p-family-union-A are a template t ∈ (Σ∪{?})∗ and a family
(S1, . . . , Sk) of k sets of instantiations of t. The question is whether there
are si ∈ Si for i ∈ {1, . . . , k} such that the union of s1, . . . , sk lies in A.

2. The input for p-subset-union-A are a template t ∈ (Σ ∪ {?})∗, a set S of
instantiations of t, and a number k. The question is whether there exists a
subset R ⊆ S of size |R| = k such that the union of R’s elements lies in A.

3. The input for p-weighted-union-A are a template t ∈ (Σ ∪ {?})∗ and
a number k. The question is whether there exists an instantiation s of t
containing exactly k many 1-symbols such that s ∈ A?

To get an intuition for these definitions, think of instantiations as words writ-
ten on transparencies with 0 rendered as an empty box and 1 as a checked box.
Then for the family union problem we are given k heaps of transparencies and
the task is to pick one transparency from each heap such that “stacking them
on top of each other” yields an element of A. For the subset union problem, we
are only given one stack and must pick k elements from it. We call the weighted
union problem a “union” problem partly in order to avoid a clash with existing
terminology and partly because the weighted union problem is the same as the
subset union problem for the special set S containing all instantiations of the
template of weight 1.
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Concerning the promised link between well-known languages and parameter-
ized problems, consider A = circuit-value-problem (cvp) where we use Σ to
encode a circuit and use 0’s and 1’s solely to describe an assignment to the input
gates. Then the input for p-weighted-union-cvp are a circuit with ?-symbols
instead of a concrete assignment together with a number k, and the question is
whether we can replace exactly k of the ?-symbols by 1’s (and the other by 0’s)
so that the resulting instantiation lies in cvp. Clearly, p-weighted-union-cvp

is exactly the W[P]-complete problem p-circuit-sat, which asks whether there
is a satisfying assignment for a given circuit that sets exactly k input gates to 1.

Concerning the promised link between the union problems and the W-opera-
tor, recall that the operator provides machines with fx nondeterministic indices
as part of the input. In particular, a W-machine can mark fx different “parts”
of the input – like one element from each of fx many sets in a family, like the
elements of a size-fx subset of some set, or like fx many positions in a template.
With this observation it is not difficult to see that if A ∈ C, then all union
versions ofA lie in paraWC. A much deeper observation is that the union versions
are also often complete for these classes. In the next theorem, which states this
claim precisely, the following definition of a compatible logspace projection p from
a language A to a language B is used: First, p must be a logspace reduction from
A to B. Second, p is a projection, meaning that each symbol of p(x) depends on
at most one symbol of x. Third, for each word length n there is a single template
tn such for all x ∈ Σn the word p(x) is an instantiation of tn.

Theorem 3.1. Let C ∈ {NC1,L,NL,P}. Let A be complete for C via compatible
logspace projections. Then p-family-union-A is complete for paraWC under
para-L-reductions.2

Parameterized Satisfiability Problems. Recall that the problem p-weighted-

union-cvp equals p-circuit-sat. Since one can reduce p-family-union-cvp to
p-weighted-union-cvp (via essentially the same reduction as that used in the
proof of Theorem 3.2 below), Theorem 3.1 provides us with a direct proof that
p-circuit-sat = p-weighted-union-cvp is complete for paraWP. We get an
even more interesting result when we apply the theorem to bf, the propositional
formula evaluation problem. We encode pairs of formulas and assignments in
the straightforward way by using 0 and 1 solely for the assignment. Since bf is
complete for NC1 under compatible logspace reductions, see [11, 12], p-family-
union-bf is complete for paraWNC1 by Theorem 3.1. By further reducing the
problem to p-weighted-union-bf, we obtain:

Theorem 3.2. p-weighted-union-bf is para-L-complete3 for paraWNC1.

By definition, W[sat] is the fpt-reduction closure of p-weighted-sat = p-
weighted-union-bf. Thus, by the theorem, W[sat] is also the fpt-reduction

2 The proof shows that the theorem actually also holds for any “reasonable” class C
and any “reasonable” weaker reduction.

3 As in Theorem 3.1 one can also use weaker reductions.
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closure of paraWNC1 – a result that may be of independent interest. For ex-
ample, it shows that NC1 = P implies W[sat] = W[P]. Note that we do not
claim W[sat] = paraWNC1 since paraWNC1 is presumably not closed under
fpt-reductions.

Graph Problems. In order to apply Theorem 3.1 to standard graph problems
like reach or cycle, we encode graphs using adjacency matrices consisting of
0- and 1-symbols. Then a template is always a string of n2 many ?-symbols for n
vertex graphs. The “colored reachability problem” mentioned at the beginning of
this section equals p-subset-union-reach.4 Note that any reduction to a union
problem for this encoding is automatically compatible as long as the number of
vertices in the reduction’s output depends only on the length of its input.

Applying Theorem 3.1 to standard L- or NL-complete problems yields that
their family union versions are complete for paraWL and paraWNL, respectively.
By reducing the family versions further to the subset union version, we get the
following:

Theorem 3.3. For A ∈ {reach,dag-reach,cycle}, p-subset-union-A is
complete for paraWNL, while for B ∈ {undirected-reach, tree, forest,
undirected-cycle}, p-subset-union-B is complete for paraWL.

Associative Generability. The last union problem we study is based on the gen-
erators problem, which contains tuples (U, ◦, x,G) where U is a set, ◦ : U2 → U
is (the table of) a binary operation, x ∈ U , and G ⊆ U is a set. The question
is whether the closure of G under ◦ (the smallest superset of G closed under ◦)
contains x. A restriction of this problem is associative-generator, where ◦
must be associative. By two classical results, generators is P-complete [13]
and associative-generator is NL-complete [14].

In order to apply the union operation to generator problems, we encode
(U, ◦, x,G) as follows: U , ◦, and x are encoded in some sensible way using the
alphabet Σ. To encode G, we add a 1 after the elements of U that are in G
and we add a 0 after some elements of U that are not in G. This means that in
the underlying templates we get the freedom to specify that only some elements
of U may be chosen for G. Now, p-weighted-union-generators equals the
problem known as p-generators in the literature: Given ◦, a subset C ⊆ U
of generator candidates, a parameter k, and a target element x, the question is
whether there exists a set G ⊆ C of size |G| = k such that the closure of G under
◦ contains x. Flum and Grohe [7] have shown that p-generators is complete for
W[P] = paraWP (using a slightly different problem definition that has the same
complexity, however). Similarly, p-weighted-union-associative-generator

is also known as p-agen and we show:

Theorem 3.4. p-agen is complete for paraWNL.

4 For exact equality, in the colored reachability problem we must allow edges to have
several colors, but this is does not change the problem complexity.
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With the machinery introduced in this section, this result may not seem
surprising: associative-generators is known to be complete for NL via com-
patible logspace reductions and, thus, by Theorem 3.1, p-family-union-associ-
ative-generators is complete for paraWNL. To prove Theorem 3.4 we “just”
need to further reduce to the weighted union version. However, unlike for satis-
fiability and graph problems, this reduction turns out to be technically difficult.

4 Problems Complete for Time–Space Classes

The classes para-P = FPT and XL appear to be incomparable: Machines for
the first class may use fxn

O(1) time and as much space as they want (which
will be at most fxn

O(1)), while machines for the second class may use fx logn
space and as much time as they want (which will be at most nfx). A natural
question is which problems are in the intersection para-P ∩ XL or – even better
– in the class D[f poly, f log], which means that there is a single machine using
only fixed-parameter time and slice-wise logarithmic space simultaneously.

It is not particularly hard to find artificial problems that are complete for the
different time–space classes introduced in Section 2.2; we present such problems
at the beginning of this section. We then move on to automata problems, but still
some ad hoc restrictions are needed to make the problems complete for time–
space classes. The real challenge lies in finding problems together with natural
parameterization that are complete. We present one such problem: the longest
common subsequence problem parameterized by the number of strings.

Resource-Bounded Machine Acceptance. A good starting point for finding com-
plete problems for new classes is typically some variant of Turing machine ac-
ceptance (or halting). Since we study machines with simultaneous time–space
limitations, it makes sense to start with the following “time and space bounded
computation” problems: For dtsc the input is a single-tape dtm M together
with two numbers s and t given in unary. The question is whether M accepts
the empty string making at most t steps and using at most s tape cells. The
problem ntsc is the nondeterministic variant. As observed by Cai et al. [15],
the fpt-reduction closure of pt -ntsc (that is, the problem parameterized by t) is
exactly W[1]. In analogy, Guillemot [3] proposed the name “WNL” for the fpt-
reduction closure of ps -ntsc (now parameterized by s rather than t). As pointed
out in Section 3, we believe that this name should be reserved for the class result-
ing from applying the operator ∃↔f log to the class NL. Furthermore, the following
theorem shows that ps -ntsc is better understood in terms of time–space classes:

Theorem 4.1. The problems ps-dtsc and ps-ntsc are complete for the classes
D[f poly, f log] and N[f poly, f log], respectively.

Automata. A classical result of Hartmanis [16] states that L contains exactly
the languages accepted by finite multi-head automata. In [2], Elberfeld et al.
used this to show that pheads-mdfa (the multi-head automata acceptance prob-
lem parameterized by the number of heads) is complete for XL. It turns out
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that multi-head automata can also be used to define a (fairly) natural complete
problem for D[f poly, f log]: A dag-automaton is an automaton whose transi-
tion graph is a topologically sorted dag (formally, the states must form the set
{1, . . . , |Q|} and the transition function must map each state to a strictly greater
state). Clearly, a dag-automata will never need more than |Q| steps to accept a
word, which allows us to prove the following theorem:

Theorem 4.2. The problems pheads-dag-mdfa and pheads-dag-mnfa are com-
plete for D[f poly, f log] and N[f poly, f log], respectively.

Instead of dag-automata, we can also consider a “bounded time version” of
mdfa and mnfa, where we ask whether the automaton accepts within s steps
(s being given in unary). Both versions are clearly equivalent: The number of
nodes in the dag bounds the number of steps the automaton can make and
cyclic transitions graphs can be made acyclic by making s layered copies.

Another, rather natural kind of automata are cellular automata, where there
is one instance of the automaton (called a cell) for each input symbol. The cells
perform individual synchronous computations, but “see” the states of the two
neighbouring cells (we only consider one-dimensional automata, but the results
hold for any fixed number of dimensions). Formally, the transition function of
such an automaton is a function δ : Q3 → Q (for the cells at the left and right end
this has to be modified appropriately). The “input” is just a string q1 . . . qk ∈ Q∗

of states and the question is whether k cells started in the states q1 to qk will
arrive at a situation where one of them is in an accepting state (one can also
require all to be in an accepting state, this makes no difference).

Let dca be the language
{
(C, q1 . . . qk) | C is a deterministic cellular automa-

ton that accepts q1 . . . qk
}
. Let nca denote the nondeterministic version and let

dag-dca and dag-nca be the versions where C is required to be a dag-auto-
maton (meaning that δ must always output a number strictly larger than all its
inputs). The following theorem states the complexity of the resulting problems
when we parameterize by k (number of cells):

Theorem 4.3. The problems pcells-dca and pcells-nca are complete for XL and
XNL, respectively. The problems pcells-dag-dca and pcells-dag-nca are complete
for D[fpoly, f log] and N[fpoly, f log], respectively.

We remark that, for once, the nondeterministic cases need special arguments.

Longest Common Subsequence. The input for the longest common subsequence
problem lcs is a set S of strings over some alphabet Σ together with a number l.
The question is whether there is a string c ∈ Σl that is a subsequence of all strings
in S, meaning that for all s ∈ S just by removing symbols from s we arrive at c.

There are several natural parameterization of lcs: We can parameterize by the
number of strings in S, by the size of the alphabet, by the length l, or any com-
bination thereof. Guillemot has shown [3] that pstrings,length-lcs is fpt-complete
for W[1], while pstrings-lcs is fpt-equivalent to ps -ntsc. Hence, by Theorem 4.1,
both problems are complete under fpt-reductions for the fpt-reduction closure of
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N[f poly, f log]. We tighten this in Theorem 4.6 below (using a weaker reduction
is more than a technicality: N[f poly, f log] is presumably not even closed under
fpt-reduction, while it is closed under para-L-reductions).

As a preparation for the proof of Theorem 4.6, we first present a simpler-to-
prove result: Let lcs-injective denote the restriction of lcs where all input
words must be p-sequences [17], which are words containing any symbol at most
once (the function mapping word indices to word symbols is injective).

Theorem 4.4. lcs-injective is NL-complete and this holds already under the
restriction |S| ≤ 4.

Although we do not prove this, we remark that NL-completeness already holds
for |S| = 3, while for |S| = 2 the complexity appears to drop significantly.

Corollary 4.5. pstrings-lcs-injective is para-L-complete for para-NL.

Theorem 4.6. pstrings-lcs is para-L-complete for N[fpoly, f log].

5 Conclusion

Bounded nondeterminism plays a key role in parameterized complexity theory
since it lies at the heart of the definition of important classes like W[P], but
also of W[1]. In the present paper we introduced a “W-operator” that cannot
only be applied to P, yielding paraWP, but also to classes like NL or NC1. We
showed that “union versions” of problems complete for P, NL, and L tend to
be complete for paraWP, paraWNL, and paraWL. Several important problems
studied in parameterized complexity turn out to be union problems, including p-
circuit-sat and p-weighted-sat, and we could show that the latter problem is
complete for paraWNC1. For the associative generability problem p-agen, which
is also a union problem, we established its paraWNL-completeness. An interesting
open problem is determining the complexity of the “universal” version of agen,
where the question is whether all size-k subsets of the universe are generators.
Possibly, this problem is complete for paraW∀NL.

We showed that different problems are complete for the time–space class
N[f poly, f log]. We shied away from presenting complete problem for the classes
D[nf , f poly] and N[nf , f poly] because in their definition we need restrictions
like “the machine may make at most nk steps where k is the parameter.” Such
artificial parameterizations have been studied, though: In [7, Theorem 2.25] Flum
and Grohe show that “p-exp-dtm-halt” is complete for XP. Adding a unary
upper bound on the number of steps to the definition of the problem yields a
problem easily seen to be complete for D[nf , f poly]. Finding a natural problem
complete for the latter class is, however, an open problem.
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Abstract. We consider the complexity of w-PNE-GG, the problem of
computing pure Nash equilibria in graphical games parameterized by the
treewidth w of the underlying graph. It is well-known that the problem
of computing pure Nash equilibria is NP -hard in general, but in polyno-
mial time when restricted to games of bounded treewidth. We now prove
that w-PNE-GG is W [1]-hard. Next we present a dynamic programming
approach, which in contrast to previous algorithms that rely on reduc-
tions to other problems, directly attacks w-PNE-GG. We show that our
algorithm is in FPT for games with strategy sets of bounded cardinal-
ity. Finally, we discuss the implications for solving games of O(log n)
treewidth, the existence of polynomial kernels for w-PNE-GG, and con-
structing a sample or a maximum-payoff pure Nash equilibrium.

1 Introduction

The computation of solution concepts of finite games is a fundamental class of
problems arising in algorithmic game theory. The computation of Nash equilib-
ria is a case in point. Several recent breakthroughs have settled the complexity
of computing approximate mixed Nash equilibria [9,6]. Such equilibria are guar-
anteed to exist, but are very fragile as models of behavior and rationality. On
the other hand, pure Nash equilibria are more intuitive but they do not exist in
every game.

Games are commonly represented in normal form, i.e. with the payoff of each
player defined by a matrix with one column for each combination of all players’
actions. Lately, it is widely noted that more succinct representations for multi-
party game theory are essential, since most large games of any practical interest
have highly structured payoff functions. A prime example is the graphical games
representation, introduced by Kearns et al. [19]. A graphical game consists of a
graph and a collection of matrices -one for each player; a player is represented by
a vertex in the input graph and her payoff is determined entirely by her action
and that of her neighbors.

We focus in this paper on the computational aspects of pure Nash equilibria
for graphical games and the role of treewidth in such computations. We treat the
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problem from the viewpoint of parameterized complexity, when the parameter
is the treewidth of the input graph. First we prove that computing pure Nash
equilibria for graphical games is W [1]-hard for the parameter treewidth (Sec-
tion 3). Then, we develop a direct dynamic programming method to compute
pure Nash equilibria (Section 4). Our algorithm decides the existence of pure
Nash equilibria in O(αw ·n · |M|) time, where α is the size of the largest strategy
set, w is the treewidth of the input graph and |M| is the size of the description of
the input matrices. As a consequence, the problem is fixed-parameter tractable
when the cardinality of the strategy sets is bounded. Finally, we treat the exis-
tence of a polynomial kernel for w-PNE-GG, and discuss the implications of our
algorithm for games of O(log n) treewidth and for constructing a sample or the
maximum-payoff equilibrium (Section 5).

Related Work. The computational complexity of computing pure Nash equi-
libria for graphical games was proved to be NP -complete by Gottlob et al. in
[13], even in the restricted case of neighborhoods of size at most 3 and a fixed
number of actions. On the other hand, they prove that the problem is tractable
for games with graphs of bounded hypertreewidth and in extension bounded
treewidth. This is proved by mapping graphical games to Constraint Satisfac-
tion problems while maintaining pure Nash equilibria as solutions of the resulting
instance. The time complexity of the suggested procedure is O(||G||w+1 ·log ||G||),
exponential in treewidth w, where ||G|| is the size of the description of the game
instance. Moreover, Marx shows that the algorithm for solving CSP is essentially
optimal under the Exponential Time Hypothesis [20] and thus, faster algorithms
are not expected using this approach.

A different approach was provided by Daskalakis and Papadimitriou in [7]
where they attacked the problem by providing a reduction from graphical games
to Markov random fields. Their result yields a unified proof to the previously
known tractable cases with time complexity O(n · |Mp|w+1) = O(n · αΔ·(w+1)),
where n is the number of players, p is the player with the largest neighborhood (of
size Δ) and Mp its local game matrix (cf section 2). It additionally implies that
the class of games with O(log n) treewidth is tractable. Furthermore, Jiang and
Leyton-Brown provide an algorithm for another class of succinctly represented
games, namely action graph games, that is polynomial for symmetric action
graph games of bounded treewidth [16]. It is known that any graphical game can
be mapped to a non-symmetric action graph game [18]. For bounded cardinality
strategy sets this mapping keeps the treewidth bounded. However, computing
pure Nash equilibria for non-symmetric action-graph games isNP -complete even
when the treewidth is 1 [8].

Greco and Scarcello build on [13] and provide a dynamic programming ap-
proach that decides, in polynomial time, the existence of constrained pure Nash
equilibria for graphical games of bounded treewidth and with bounded number
of constraints [15]. Their approach is based on a non-deterministic algorithm,
implicitly provided in [19], that associates pure with approximate mixed equi-
libria. Finally, in [17] it is shown that every recursively enumerable class of
graphical games of bounded in-degree that is in FPT must be in P, with the
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representational size of the graph as the parameter and assuming FPT �= W [1].
Observe that none of the known methods implies fixed-parameter tractability
with treewidth of the input graph as the parameter.

2 Preliminaries

In a graphical game with graph G = (V,E) we have n = |V | players and each
player p ∈ V has a finite set of strategies, each strategy St(p) being a finite set
of actions with |St(p)| ≥ 2. The cardinality of the largest strategy set is denoted
with α = maxp∈V |St(p)|. For a non-empty set of players P ⊆ V a joint strategy
or configuration C is a set containing exactly one strategy for each player p ∈ P .
The set of all joint strategies of players in P is denoted as St(P ) and thus
we write C ∈ St(P ). For a player p, Cp denotes the strategy of player p with
respect to configuration C and C−p denotes the configuration resulting from
removing the strategy suggested for p in C. Additionally, for every ap ∈ St(p)
and C−p ∈ St(V \{p}) we denote by (C−p; ap) the configuration in which p plays
ap and every other player p′ �= p plays according to C. Abusing notation, we use
C ∪ {ap} to denote the configuration resulting by adding strategy ap ∈ St(p) to
configuration C ∈ St(P ′) where p /∈ P ′. A configuration C is termed global if
it is over the set of all players (C ∈ St(V )). The global configurations are the
possible outcomes of the game. We define the neighborhood of player p ∈ V as
N (p) = {u ∈ V |(p, u) ∈ E}.

Definition 1 ([19]). A graphical game is a pair (G,M), where G = (V,E) is
an undirected graph and M is a set of n = |V | local matrices. For any joint
strategy C, the local game matrix Mp ∈ M specifies the payoff Mp(C) for player
p ∈ V , which depends only on the actions taken by p and the players in N (p).

Note that for graphical games on undirected graphs, players’ interests are
necessarily symmetric, i.e. for any pair of players p1 and p2, p1 ∈ N (p2) if and
only if p2 ∈ N (p1). Let the size of the collection of matrices be |M| =

∑
p∈V |Mp|.

Definition 2. The best response function of a player p is a function βp :
St(N (p)) → 2St(p) such that:

βp(C) = {ap|ap ∈ St(p) and ∀a′p ∈ St(p) : Mp(C−p; ap) ≥ Mp(C−p; a
′
p)}

Intuitively, βp(C) is the set of strategies that maximize the payoff of player p
when the players in p’s neighborhood play according to C. Consequently, a pure
Nash equilibrium (PNE for short) is a global configuration C such that for every
player p ∈ V , Cp ∈ βp(C−p). Alternatively:

Definition 3. A global configuration C is a pure Nash equilibrium if for every
player p and strategy ap ∈ St(p) we have Mp(C) ≥ Mp(C−p; ap).

We end this section with the definitions of treewidth and of some basic con-
cepts from the theory of parameterized complexity [10,21].
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Definition 4 ([22]). A tree decomposition of a graph G = (V,E) is a pair
({Xi|i ∈ I}, T = (I, F )), where T is a tree and each node i ∈ I has associated to
it a subset of vertices Xi ⊆ V , called the bag of i, such that:

1. Each vertex belongs to at least one bag, ∪i∈IXi = V ;
2. ∀{v, u} ∈ E, ∃i ∈ I with v, u ∈ Xi;
3. ∀v ∈ V , the set of nodes {i ∈ I|v ∈ Xi} induces a subtree of T .

The width of a tree decomposition T is maxi∈I |Xi| − 1. The treewidth of a
graph G is the minimum width over all tree decompositions of G.

Definition 5 ([21]). A parameterized problem is a language L ⊆ Σ∗ × Σ∗,
where Σ is a finite alphabet. The second component is called the parameter of
the problem.

The only parameters we consider here are nonnegative integers, hence we write
L ∈ Σ∗ × N from now on. For (x, k) ∈ L, the two dimensions of parameterized
complexity are the input size n, n = |(x, k)|, and the parameter value k.

Definition 6 ([21]). A parameterized problem L is fixed-parameter tractable
if, for all (x, k), it can be determined in f(k) · nO(1) time whether (x, k) ∈ L,
where f is a computable function depending only on k.

The class of parameterized problems of the form (x, k), that are solvable in time
f(k) · nO(1), is denoted as FPT . In order to prove hardness for parameterized
problems we also need a reducibility concept.

Definition 7 ([21]). Let (Q, k) and (Q′, k′) be parameterized problems over the
alphabets Σ and Σ′. An fpt-reduction is a mapping R : Σ∗ → (Σ′)∗ such that

– ∀x ∈ Σ∗ we have (x ∈ Q ⇔ R(x) ∈ Q′);
– R is computable in FPT time (with respect to k);
– ∃ computable function g : N → N such that k′ ≤ g(k).

Fixed-parameter intractability beyond FPT is captured in the W -hierarchy (cf.
[10,21]). A parameterized problem isW [1]-hard if Weighted 3SAT is reducible
to it by an fpt-reduction. It is currently open whether FPT ⊂ W [1].

3 W[1]-Hardness

Treewidth plays an important role in the study of pure Nash equilibria for graph-
ical games (cf. [13]). However, none of the previous results implies the existence
of a fixed-parameter tractable algorithm with respect to the treewidth of the
input graph. Here we argue that this is not surprising. Consider the following
parameterized problem:

w-PNE-GG

Input : G = (G,M), T a tree decomposition of G.

Parameter : w - the width of T .

Question: Does G admit a PNE?
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We will prove that w-PNE-GG isW [1]-hard. For this, a reduction from theW [1]-
hard problem k-Multicolor Clique will be used. The input of this problem is
a graph G = (V,E) and a vertex coloring c : V → {1, . . . , k}, k is the parameter
and the question is whether G contains a clique with vertices of all k colors.
Hardness follows follows easily by reduction from k-Clique [12].

Before proceeding to the reduction, we introduce some useful notation. Let G
be the input graph, and c : V → {1, . . . , k} a k-coloring of G. We let Va denote
the vertices colored a, i.e. Va = {v ∈ V |c(v) = a}, and we let Eci,cj be the set
of edges (u, v) ∈ E such that {c(u), c(v)} = {ci, cj}. Observe that w.l.o.g we
can assume that the input coloring is proper, i.e. for any color c, Ec,c = ∅, as
any such edge can be removed from G [12]. W.l.o.g. we can also assume that
the color classes of G, and the edge sets between them, have uniform sizes, i.e
|Vc| = N for all c and |Eci,cj | = M for all ci < cj .

Theorem 1. w-PNE-GG is W [1]-hard.

Proof. Given an instance of Multicolor Clique, graph G = (V,E) with k-
coloring c, we construct an instance G = (G′ = (P,E′),M) of PNE-GG as
follows: The players of G are separated in two distinct sets, the colorful Pc and
the auxiliary Pa players, P = Pc ∪Pa. Every c ∈ Pc is connected to all the other
colorful players c′ ∈ Pc, through an auxiliary vertex a ∈ Pa. Thus, G

′ arises by
taking a k-clique and adding one auxiliary player on each edge. By construction,
the treewidth of G′ is exactly k and thus the parameter is preserved.

The strategy sets are defined in the following manner: For a player c ∈ Pc,
the possible strategies are all the vertices of G that are colored c plus an extra
NA strategy, that stands for non-adjacent. Formally, St(c) = {v ∈ V |c(v) =
c} ∪ {NA}. An auxiliary player a ∈ Pa has only two possible strategies, St(p) =
{A,NA}, that stand for adjacent and non-adjacent respectively. Observe that
G′ is built such that all colorful vertices neighbor only with auxiliary vertices
and each auxiliary vertex is neighbor to exactly 2 colorful ones. An example
reduction can be found in Figure 1.

Let x be a global configuration. For an auxiliary player a ∈ Pa let i, j be the
two neighboring colorful players, i.e. i, j ∈ N (a). Then, the utility function ua
is such that:

1. ua(x) = 1 if a plays A and i, j play v, u such that (v, u) ∈ E or at least one
of i, j plays NA;

2. ua(x) = 1 if a plays NA and i, j play v, u such that (v, u) /∈ E and neither
of i, j plays NA;

3. ua(x) = 0 in all other cases.

For each player c ∈ Pc, her utility function uc is such that:

4. uc(x) = 1 if c plays a strategy in St(c)\{NA}, and all of her neighbors play
A;

5. uc(x) = 1 if c plays NA and at least one of her neighbors plays NA;
6. uc(x) = 0 in all other cases.
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a b e f

d c g h

1 2 1 2

3 4 3 4

(a) Multicolor Clique

1 2

3

4

{a, e} {b, f}

{d, g}

{c, h}

(b) PNE-GG

Fig. 1. An example of the reduction, where the numbers correspond to different colors.
In (b) the strategy sets are shown in curly brackets (omitting NA) and the auxiliary
players are represented as black vertices.

In the following paragraphs we will show that G has a clique including all k
colors if and only if G has a pure Nash equilibrium. Let (v1, . . . , vk) be a k-clique
of G that contains all k colors. Consider the global strategy x where each player
c ∈ Pc plays the strategy that corresponds to vertex vc (the vertex from the
clique that is colored c) and each auxiliary vertex plays A. Observe that in this
case all players receive payoff 1 which is the maximum they can receive and thus
x is a pure Nash equilibrium.

To prove the opposite direction of the claim we will first argue that there
is no pure Nash equilibrium of G where there is an auxiliary vertex that plays
NA. Assume that x is a PNE and ∃a ∈ Pa that plays NA, with neighbor
j ∈ N (a). Then, j would have an incentive to play NA and get payoff 1 rather
than a strategy in St(j)\{NA}. Consequently, a would prefer A over NA which
contradicts our assumption that x is a PNE.

Now, let x be a global configuration and a pure Nash equilibrium of G. From
the previous paragraph, every a ∈ Pa plays A and thus every c ∈ Pc plays a
strategy in St(j)\{NA}. Consider the set of vertices K = (v1, . . . , vk) where
each vc corresponds to the strategy of player c ∈ Pc. Since each auxiliary vertex
plays A, it means that all vertices in K are pairwise connected to each other
and therefore form a clique. In addition, they all belong to a different color class
because of the construction of G. Therefore, K is a multicolored k-clique of G.

To conclude our proof we need to show that the reduction takes at most
time of the form f(k) · p(|G|, k) for some computable function f and polynomial
p(X). The time of the construction is dominated by the computation of the
matrix collection M, whose size is the summation of the sizes of the individual
matrices |M| =

∑
c∈Pc

|Mc|+
∑

a∈Pa
|Ma|.

As mentioned earlier, we assume that the color classes of the Multicolor

Clique instance have uniform size N and thus N = n
k and for c ∈ Pc, |St(c)| =

N + 1. In addition, observe that |Pc| = k, that each player c ∈ Pc has k − 1

auxiliary neighbors with 2 available strategies each, and that |Pa| = k(k−1)
2

since we have one auxiliary vertex for each edge of the k-clique. Then the above
summation can be rewritten as
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k · ((N + 1) · 2k−1) +
k(k − 1)

2
2 · (N + 1)2 ≤

2k−1 · (n+ k) + k2 · (N + 1)2 ≤
2k · n+ 4n2

The 2k−1 term corresponds to the number of possible configurations over the
neighborhood of a colorful player, i.e. |St(N (c))| = 2k−1, for all c ∈ Pc. There-
fore, the time we need for the whole reduction is at most f(k) · p(|G|) which
concludes our proof. ��

We conclude that w-PNE-GG does not admit a fixed-parameter tractable
algorithm, unless FPT = W [1]. Nevertheless, in the next section we will demon-
strate an algorithm that becomes FPT for games with a bounded number of
available strategies per player.

4 Fixed-Parameter Tractability

When the input graph of a graphical game is a tree, a relatively simple algorithm
can answer the question of existence of a PNE in time linear in the input.
The idea is that every vertex is able to compute the best response(s) for each
configuration of its children, while ignoring its parent. Then, visiting the vertices
in a bottom-up manner the parent will be taken into account in a subsequent
step. The details of the algorithm and the proof of the result below are omitted.

Proposition 1. Given a graphical game (T,M), where T is a tree, one can
compute a PNE in time O(|M|).

The idea of the tree algorithm will now be generalized to tree decompositions;
the problem under consideration is w-PNE-GG as defined in the previous section.
The intuition is to go through all possible configurations for each bag of the
tree, which count to αw+1. Then we put together this information on the tree
decomposition in polynomial time. The analysis we provide, is based on a nice
tree decomposition. In such a decomposition, one node in T is considered to be
the root and each node i ∈ I is one of the following four types:

– Leaf: node i is a leaf of T and |Xi| = 1;
– Join: node i has exactly two children, say j1, j2 and Xi = Xj1 = Xj2 ;
– Introduce: node i has exactly one child, say j, and ∃v ∈ V withXi = Xj∪{v};
– Forget: node i has exactly one child, say j, and ∃v ∈ V with Xj = Xi ∪ {v}.
It is known that if a graph G = (V,E) has a tree decomposition with width

at most w, then it also has a nice tree decomposition of width at most w and
O(|V |) nodes. A given tree decomposition can be turned into a nice one in linear
time [3].
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4.1 A Dynamic Programming Approach

Suppose we are given an instance of a graphical game; a graph G = (V,E), a col-
lection of matricesM -one matrixMp for each node p ∈ V - and a tree decomposi-
tion T . We assume w.l.o.g. that the tree decomposition ({Xi|i ∈ I}, T = (I, F ))
is nice. Each node i ∈ I is associated to a graph Gi = (Vi, Ei). Vi is the union of
all bags Xj , with j equaling i or a descendant of i in T , and Ei = E ∩ (Vi ×Vi).
In other words, Gi is the subgraph of G induced by Vi.

A table Ai is to be computed for each node i ∈ I and contains an integer value
for each possible configuration C ∈ St(Xi). Therefore, when the treewidth is w,
table Ai contains at most α|Xi| ≤ αw+1 values. Given configuration C ∈ St(Xi),
the table value Ai(C) corresponds to the (maximum) number of players in best-
response in Gi w.r.t. C. Thus, Ai(C) = |Vi| if and only if ∃C′ ∈ St(Vi) such that
C′ ⊇ C and ∀p ∈ Vi, C

′
p ∈ βp(C

′
−p). Note that the strategy for the players in

Vi−Xi is not explicitly mentioned at this point (where the algorithm is treating
bagXi) but has been treated at an earlier time of the execution of the algorithm.
Table Ai is computed for all nodes i ∈ I in bottom-up order; for each non-leaf
node we use the tables of its children to compute table Ai.

In addition, we have a 0, 1-table Fp for each p ∈ V that has the same number
of entries as matrix Mp. Initially, Fp has the value 1 at all entries. For the
sake of simplicity, we will assume that |Fp| = |Mp| (same description size) for
all p ∈ V . Essentially, Fp is where we mark which joint strategies are allowed
at PNE over the neighborhood of p, with respect to the neighbors of p that
have been forgotten (through a forget node). It follows that F tables will be
updated at forget nodes -when a player is forgotten, her neighbors will update
their F tables. At introduce nodes the F table will be examined -when a player
is introduced, her neighbors will check their F tables for joint strategies that are
allowed with regards to their forgotten neighbors. Formally: Let i ∈ T be a forget
node of the tree decomposition. Then, after i is examined and corresponding F
tables updated, we have that: For every p ∈ Vi and C ∈ St(N (p) ∪ {p}), Fp(C)
has the value 0 if and only if ∃u ∈ N (p) ∩ Vi such that Cu /∈ βu(C−u).

The algorithm presented here might use the best response function with input
a configuration for only a subset of the neighbors of the player under consider-
ation. Let p ∈ V , P ′ be subset of the neighborhood of p, P ′ ⊂ N (p), and C a
configuration over the players in P ′, C ∈ St(P ′). In this case, βp(C) contains
ap ∈ St(p) if and only if ∃C′ ∈ St(N (p)) such that C′ ⊃ C and ap ∈ βp(C

′).
Similarly, let C ∈ St(P ′ ∪{p}). Then, by Fp(C) we mean all entries Fp(C

′) such
that C′ ⊃ C. Also, if the configuration given as input includes strategies for
players that are not in N (p), these strategies are ignored. A case analysis based
on the type of the node under examination follows.

Leaf Nodes. Suppose node i is a leaf of T with Xi = {p}. Then, table Ai has
only |St(p)| entries. The value 1 will be attributed to these entries since a single
player can be in PNE, no matter what strategy it follows, when there is no other
player to compete with. Hence, for each configuration C over the vertices of Xi

(in this case St(Xi) = St(p)) we set Ai(C) = 1.
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Forget Nodes. Suppose i is a forget node of T with child j. In this case, Gi and
Gj is the same graph but Xi and Xj differ by one vertex. Suppose this vertex
is p ∈ Xj − Xi. To compute the tables of a forget node we use the procedure
suggested by Lemma 1. For each of the α|Xi| possible configurations we perform
a number of α steps for a total of O(α|Xi|+1).

Lemma 1. Let C ∈ St(Xi), Ai(C) = maxap∈St(p)Aj(C ∪ {ap}).

In the case of a forget node we additionally have to update the Fu table for
each u ∈ Xi ∩ N (p). While computing the maximizing values for the proce-
dure suggested by Lemma 1 we encounter all the possible combinations of joint
strategies over the players in Xj (the bag including p). For each C ∈ St(Xi) and
ap ∈ St(p), if ap /∈ βp(C) then we set Fu(C ∪ {ap}) = 0. Information about the
preferences of forgotten players propagates this way.

For each u ∈ Xj we read the table Mp (to conclude if ap /∈ βp(C)) and table
Fj once (to update it). Since Xi is a forget node we have |Xi| ≤ w. Thus, the
time needed to compute the values of the table Ai and to update the tables F
is O(αw · (|Mp|+

∑
u∈N (p)∩Xj

|Mu|)).

Introduce Nodes. Suppose i is an introduce node of T with child j and that
Xi = Xj ∪ {p}. It is known that there is no vertex u ∈ Vj − Xj such that
{p, u} ∈ E [3]. Hence, Gi is formed from Gj by adding p and zero or more edges
from p to vertices in Xj .

Lemma 2. Let C ∈ St(Xj). If ∀u ∈ Xj, {p, u} /∈ E, then Ai(C ∪ {ap}) =
Aj(C) + 1 for all strategies ap ∈ St(p).

In the case above, p is not connected to any vertex in Gi. For the other case we
have to be more elaborate. Assume that there is u ∈ Xj such that {p, u} ∈ E.
We use Algorithm 1 which proceeds in the following manner: Given C ∈ St(Xj)
and a best response for p ∈ Xi −Xj, ap ∈ βp(C), for each player u ∈ Xj ∩N (p)
it checks if u is in best-response with respect to configuration C ∪ {ap}. If Cu ∈
βu(C ∪ {ap}) it also checks that Fu(C ∪ {ap}) = 1 and thus that the suggested
joint strategy C ∪ {ap} is allowed from the perspective of u with regards to her
forgotten neighbors. In the positive case it adds player u to the set Pi. In the
end of the iteration if all players in N (p) ∩ Xj are also in Pi it means that all
players in Gi connected to p are in best-response with respect to the current
configuration. Hence, for Ai(C ∪ {ap}) we take the value Aj(C) + 1.

Lemma 3. Given an introduce node i ∈ T with child j ∈ T such that p ∈
Xi − Xj, we can compute Ai(C) for all configurations C ∈ St(Xi) in time
O(α|Xi| · (|Mp|+

∑
u∈N (p)∩Xj

|Mu|)).

Proof. Before we start the procedure we compute the set N (p) ∩Xj in at most
|Xj | steps. This happens only once for each introduce node. In the case �u ∈
Xj such that {p, u} ∈ E we compute the table value for each configuration in
constant time and thus the total time needed is O(α|Xi|).
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Algorithm 1. IntroNode

Input: C ∈ St(Xj), p ∈ Xi −Xj , ap ∈ βp(C)
Output: Ai(C ∪ {av})
1: Initiate set Pi = ∅
2: for u ∈ N (p) ∩Xj do
3: if Cu ∈ βu(C ∪ {ap}) and Fu(C ∪ {ap}) = 1 then
4: Pi ← Pi ∪ {u}
5: end if
6: end for
7: if Pi = N (p) ∩Xj then
8: Ai(C ∪ {ap}) ← Aj(C) + 1
9: else
10: Ai(C ∪ {ap}) ← Aj(C)
11: end if

In the other case, we use Algorithm 1 for each configuration C ∈ St(Xj).
Computing βp(C) takes at most |Mp| steps1 The loop at lines 2-6 is through all
vertices u ∈ N (p) ∩ Xj and for each vertex u, βu(C ∪ {ap}) is computed once
and table Fu is checked once at line 3 in at most 2 · |Mu| steps. The operation at
line 7 takes one step. For each of the α|Xj | = α|Xi|−1 configurations Algorithm 1
has to be run at most α times (for each ap ∈ St(p)). The lemma follows. ��

The algorithm and lemma above show us how to compute the Ai table for
an introduce node using information found in the table of the child node. For
the introduced vertex p, we have that the matrix Mp and at most other |Xi| − 1
matrices are read once for each configuration. Note that adjacency is only checked
once since it does not change for different entries.

Join Nodes. Suppose i is a join node of T with children j1 and j2. Remember
that Xi = Xj1 = Xj2 . Then, Gi can be interpreted as a union of Gj1 and Gj2 .
What we need to capture here, is that a configuration C for the players of Xi

may be part of a PNE for Gi if and only if it also is for both Gj1 and Gj2 . Given
a configuration C the computation of Ai(C) for a join node takes only constant
time as described by Lemma 4. Therefore, the computation of the whole table
for a join node takes place in time O(α|Xi|).

Lemma 4. Let C ∈ St(Xi), Ai(C) = Aj1(C) +Aj2(C) − |Xi|.

4.2 Combining the Tables

The algorithm proposed in the previous section is a bottom-up tree walk that
finds partial configurations for each bag of the tree decomposition, that could be
part of a PNE configuration. Then, these configurations are synthesized together
on every step of the tree walk and an answer can be achieved when the root of
the tree decomposition is reached.

1 For a justification, see [23], p. 14.
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Lemma 5. Graphical game (G,M) has a PNE if and only if ∃C ∈ St(Xr) such
that Ar(C) = |V |.

In addition, note that during the bottom-up tree walk, if there exists a bag
Xi such that ∀C ∈ St(Xi): Ai(C) < |Vi|, then we can stop the execution of the
algorithm and reply NO. The tables of all bags of the tree decomposition have
to be computed to verify a YES instance since any partial PNE configuration
might be jeopardized by a newly introduced vertex. Upper time bounds of the
algorithm suggested in this section are provided by the theorem below.

Theorem 2. Given a graphical game (G,M) and a tree decomposition T of
width w, there is an algorithm that determines the existence of a PNE in O(αw ·
n · |M|) time.

Proof. As discussed above, the computationally expensive nodes are the forget
and introduce nodes. Both types have asymptotically the same upper bound.
Thus, here we assume that every node i ∈ T is an introduce node2 with child j
and vertex p ∈ Xi −Xj . We derive the following upper bound:

αw+1 ·
∑
i∈T

⎛⎝|Mp|+
∑

u∈N (p)∩Xj

|Mu|

⎞⎠ ≤ αw+1 · (|M|+ (n− 1)|M|) (1)

The summation over all matrices |Mp| gives |M|. In addition, the second sum-
mation is over at most n− 1 elements which in turn are upper bounded by |M|
because of the first summation. The theorem follows. ��

Our algorithm improves significantly on the previous known bounds, since the
base of the exponent is only the number of available strategies and not the whole
game description. For example, if we assume that the number of available strate-
gies is bounded by a constant, our algorithm becomes fixed-parameter tractable.
Furthermore, it is known that for a game G, hwd ≤ w+1, where hwd and w are
the hypertree width and the treewidth of G, respectively [13]. Combining this
result with Theorem 2, we obtain as a corollary the fixed-parameter tractability
of computing a PNE for graphical games with bounded cardinality strategy sets
when the parameter is hypertreewidth. Determining whether the treewidth of a
given graph G is at most w, and if so, find a tree decomposition of width at most
w is fixed-parameter tractable [2]. However, the same problem is W [2]-hard for
hypertreewidth [14].

Corollary 1. Given a graphical game (G,M) and a hypertree decomposition T
of width hwd, there is an algorithm that determines the existence of a PNE in
O(αhwd · n · |M|) time.

Finally, we address the question of the existence of a kernelization algorithm. A
polynomial kernel means that given an instance of w-PNE-GG, we can obtain in

2 Observe that in the case of a clique all the nodes of T but one are introduce nodes.
The treewidth of an n-clique is n− 1.
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polynomial time an equivalent instance whose size is bounded polynomially to w.
The theorem below states that the existence of a polynomial kernel for w-PNE-
GG is rather unlikely. It is derived from using the method of AND-Distillation
described in [4]. There, AND-Distillation was formulated as a conjecture, but
recently, Drucker proved that AND-Distillation holds unless NP ⊆ coNP/poly
[11]. It is easy to prove that w-PNE-GG is AND-Compositional by taking the
disjoint union of m instances of the problem. The resulting graph has treewidth
w and there exists a PNE if and only if all m instances have a PNE. The relevant
definitions can be found in [4].

Theorem 3. w-PNE-GG does not admit a polynomial kernel, unless NP ⊆
coNP/poly.

5 Final Remarks

Daskalakis and Papadimitriou [7] proved that deciding the existence of a PNE is
in P for all classes of games with O(log n) treewidth, bounded number of strate-
gies and bounded neighborhood size. Our algorithm improves on their results
in the following ways: First, it is polynomial for graphical games of O(log n)
treewidth and bounded number of strategies, even without the bounded neigh-
borhood size assumption. Second, if the size of the neighborhood is bounded
we achieve an upper bound that is polynomial3 in n. Our bound improves
on the time complexity of the algorithms presented in [7] by removing Δ =
maxp∈V |N (p)| from the exponent. Details can be found in [23], § 7.6.

Theorem 4. Given a graphical game with O(log n) treewidth and bounded num-
ber of strategies, there is an algorithm that decides the existence of a PNE in time
polynomial in the description of the game. Moreover, if the size of the neighbor-
hood is bounded the algorithm becomes polynomial in the number of players.

Finally, we prove that constructing a sample or the maximum-payoff PNE does
not require additional computational effort. Details can be found in [23], § 7.7.

Theorem 5. Given a graphical game (G,M) and a tree decomposition T of
width w, there is an algorithm that constructs a sample or maximum-payoff
PNE, if one exists, or answers NO otherwise in O(αw ·n · |M|) time. Moreover,
the same algorithm computes a succinct description of all PNE.
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Abstract. The k-Internal Out-Branching (k-IOB) problem asks if a
given directed graph has an out-branching (i.e., a spanning tree with
exactly one node of in-degree 0) with at least k internal nodes. The
k-Internal Spanning Tree (k-IST) problem is a special case of k-IOB,
which asks if a given undirected graph has a spanning tree with at least
k internal nodes. We present an O∗(4k) time randomized algorithm for k-
IOB, which improves the O∗ running times of the best known algorithms
for both k-IOB and k-IST. Moreover, for graphs of bounded degree Δ,

we present an O∗(2(2−
Δ+1

Δ(Δ−1)
)k
) time randomized algorithm for k-IOB.

Both our algorithms use polynomial space.

1 Introduction

In this paper we study the k-Internal Out-Branching (k-IOB) problem. The
input for k-IOB consists of a directed graph G = (V,E) and a parameter k ∈ N,
and the objective is to decide if G has an out-branching (i.e., a spanning tree
with exactly one node of in-degree 0, that we call the root) with at least k
internal nodes (i.e., nodes of out-degree ≥ 1). The k-IOB problem is of interest
in database systems [2].

A special case of k-IOB, called k-Internal Spanning Tree (k-IST), asks if a
given undirected graph G = (V,E) has a spanning tree with at least k internal
nodes. A possible application of k-IST, for connecting cities with water pipes, is
given in [14].

The k-IST problem is NP-hard even for graphs of bounded degree 3, since it
generalizes the Hamiltonian path problem for such graphs [5]; thus k-IOB is also
NP-hard for such graphs. In this paper we present parameterized algorithms for
k-IOB. Such algorithms are an approach to solve NP-hard problems by confining
the combinatorial explosion to a parameter k. More precisely, a problem is fixed-
parameter tractable (FPT) with respect to a parameter k if an instance of size
n can be solved in O∗(f(k)) time for some function f [10].1

Related Work: Nederlof [9] gave an O∗(2|V |) time and polynomial space
algorithm for k-IST. For graphs of bounded degree Δ, Raible et al. [14] gave an

O∗(((2Δ+1 − 1)
1

Δ+1 )|V |) time and exponential space algorithm for k-IST.

1 O∗ hides factors polynomial in the input size.

G. Gutin and S. Szeider (Eds.): IPEC 2013, LNCS 8246, pp. 361–373, 2013.
c© Springer International Publishing Switzerland 2013
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Table 1. Known parameterized algorithms for k-IOB and k-IST

Reference Variation Time Complexity The Topology of G

Priesto et al. [12] k-IST O∗(2O(k log k)) General

Gutin al. [6] k-IOB O∗(2O(k log k)) General

Cohen et al. [1] k-IOB O∗(49.4k) General

Fomin et al. [4] k-IOB O∗(16k+o(k)) General

Fomin et al. [3] k-IST O∗(8k) General

Raible et al. [14] k-IST O∗(2.1364k) Δ = 3

This paper k-IOB O∗(4k) General

k-IOB O∗(2(2− Δ+1
Δ(Δ−1)

)k
) Δ = O(1)

Table 2. Some concrete figures for the running time of the algorithm Δ-IOB-Alg

Δ 3 4 5 6

Time complexity O∗(2.51985k) O∗(2.99662k) O∗(3.24901k) O∗(3.40267k)

Table 1 presents a summary of known parameterized algorithms for k-IOB
and k-IST. In particular, the algorithms having the best known O∗ running
times for k-IOB and k-IST are due to [4], [3] and [14]. Fomin et al. [4] gave
an O∗(16k+o(k)) time and polynomial space randomized algorithm for k-IOB,
and an O∗(16k+o(k)) time and O∗(4k+o(k)) space deterministic algorithm for k-
IOB. Fomin et al. [3] gave an O∗(8k) time and polynomial space deterministic
algorithm for k-IST. For graphs of bounded degree 3, Raible et al. [14] gave an
O∗(2.1364k) time and polynomial space deterministic algorithm for k-IST.

Further information on k-IOB, k-IST and variants of these problems is given
in surveys [11,15].

Our Contribution: We present an O∗(4k) time and polynomial space random-
ized algorithm for k-IOB, that we call IOB-Alg. Our algorithm IOB-Alg improves
the O∗ running times of the best known algorithms for both k-IOB and k-IST.

For graphs of bounded degree Δ, we present an O∗(2(2−
Δ+1

Δ(Δ−1)
)k) time and

polynomial space randomized algorithm for k-IOB, that we callΔ-IOB-Alg. Some
concrete figures for the running time of Δ-IOB-Alg are given in Table 2.

Techniques: Our algorithm IOB-Alg is based on two reductions as follows. We
first reduce k-IOB to a new problem, that we call (k, l)-Tree, by using an ob-
servation from [1]. This reduction allows us to focus our attention on finding a
tree whose size depends on k, rather than a spanning tree whose size depends on
|V |. We then reduce (k, l)-Tree to the t-Multilinear Detection (t-MLD) problem,
which concerns multivariate polynomials and has an O∗(2t) time randomized
algorithm [7,17]. We note that reductions to t-MLD have been used to solve sev-
eral problems quickly (see, e.g., [8]). IOB-Alg is another proof of the applicability
of this new tool.

Our algorithm Δ-IOB-Alg, though based on the same technique as IOB-Alg,
requires additional new non-trivial ideas and is more technical. In particular, we
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now use a proper coloring of the graph G when reducing (k, l)-Tree to t-MLD.
This idea might be useful in solving other problems.

Organization: Section 2 presents our algorithm IOB-Alg. Specifically, Section
2.1 defines (k, l)-Tree, and presents an algorithm that solves k-IOB by using an
algorithm for (k, l)-Tree. Section 2.2 defines t-MLD, and reduces (k, l)-Tree to
t-MLD. Then, Section 2.3 presents our algorithm for (k, l)-Tree, and thus con-
cludes IOB-Alg. Section 3 presents our algorithm Δ-IOB-Alg. Specifically, Sec-
tion 3.1 modifies the algorithm presented in Section 2.1, Section 3.2 modifies
the reduction presented in Section 2.2, and Section 3.3 modifies the algorithms
presented in Section 2.3. Finally, Section 4 presents a few open questions.

2 An O∗(4k)-time k-IOB Algorithm

2.1 The (k, l)-Tree Problem

We first define a new problem, that we call (k, l)-Tree.

(k, l)-Tree

– Input: A directed graph G = (V,E), a node r ∈ V , and parameters k, l ∈ N.
– Goal: Decide if G has an out-tree (i.e., a tree with exactly one node of in-

degree 0) rooted at r with exactly k internal nodes and l leaves.

We now show that we can focus our attention on solving (k, l)-Tree. Let
A(G, r, k, l) be a t(G, r, k, l) time and s(G, r, k, l) space algorithm for (k, l)-Tree.

Algorithm 1. IOB-Alg[A](G, k)

1: for all r ∈ V do
2: if G has no out-branching T rooted at r then Go to the next iteration. end if
3: for l = 1, 2, ..., k do
4: if A(G, r, k, l) accepts then Accept. end if
5: end for
6: end for
7: Reject.

The following observation immediately implies the correctness of IOB-Alg[A]
(see Algorithm 1).

Observation 1 ([1]). Let G = (V,E) be a directed graph, and r ∈ V such that
G has an out-branching rooted at r.

– If G has an out-branching rooted at r with at least k internal nodes, then G
has an out-tree rooted at r with exactly k internal nodes and at most k leaves.

– If G has an out-tree rooted at r with exactly k internal nodes, then G has an
out-branching with at least k internal nodes.

By Observation 1, and since Step 2 can be performed in O(|E|) time and
O(|V |) space (e.g., by using DFS), we have the following result.
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Lemma 1. IOB-Alg[A] is an O(
∑

r∈V (|E|+
∑

1≤l≤k t(G, r, k, l))) time and O(
|V |+maxr∈V,1≤l≤k s(G, r, k, l)) space algorithm for k-IOB.

2.2 A Reduction from (k, l)-Tree to t-MLD

We first give the definition of t-MLD [7].

t-MLD

– Input: A polynomial P represented by an arithmetic circuit C over a set of
variables X , and a parameter t ∈ N.

– Goal: Decide if P has a multilinear monomial of degree at most t.

Let (G, r, k, l) be an input for (k, l)-Tree. We now construct an input f(G, r, k,
l) = (Cr,k,l, X, t) for t-MLD. We introduce an indeterminate xv for each v ∈ V ,
and define X = {xv : v ∈ V } and t = k + l.

The idea behind the construction is to let each monomial represent a pair of an
out-tree T = (VT , ET ) and a function h : VT → V , such that if (v, u) ∈ ET , then
(h(v), h(u)) ∈ E (i.e., h is a homomorphism). The monomial is

∏
v∈VT

xh(v).
We get that the monomial is multilinear iff {h(v) : v ∈ VT } is a set (then
h(T ) = ({h(v) : v ∈ VT }, {(h(v), h(u)) : (v, u) ∈ ET }) is an out-tree).

Towards presenting Cr,k,l, we inductively define an arithmetic circuit Cv,k′,l′

overX , for all v ∈ V, k′ ∈ {0, ..., k} and l′ ∈ {1, ..., l}. Informally, the multilinear
monomials of the polynomial represented by Cv,k′,l′ represent out-trees of G
rooted at v that have exactly k′ internal nodes and l′ leaves.

Base Cases:

1. If k′ = 0 and l′ = 1: Cv,k′,l′ = xv.
2. If k′ = 0 and l′ > 1: Cv,k′,l′ = 0.

Steps:

1. If k′ > 0 and l′ = 1: Cv,k′,l′ =
∑

u s.t.(v,u)∈E xvCu,k′−1,l′ .

2. If k′ > 0 and l′ > 1: Cv,k′,l′ =∑
u s.t.(v,u)∈E(xvCu,k′−1,l′ +

∑
1≤k∗≤k′

∑
1≤l∗≤l′−1 Cv,k∗,l∗ · Cu,k′−k∗,l′−l∗).

The following order shows that when computing an arithmetic circuit Cv,k′,l′ ,
we only use arithmetic circuits that have been already computed.

Order:

1. For k′ = 0, 1, ..., k:

(a) For l′ = 1, 2, ..., l:

i. ∀v ∈ V : Compute Cv,k′,l′ .

Denote the polynomial that Cv,k′,l′ represents by Pv,k′,l′ .

Lemma 2. (G, r, k, l) has a solution iff (Cr,k,l, X, t) has a solution.
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Proof. By using induction, we first prove that if G has an out-tree T = (VT , ET )
rooted at v with exactly k′ internal nodes and l′ leaves, then Pv,k′,l′ has the
(multilinear) monomial

∏
w∈VT

xw .
The claim is clearly true for the base cases, and thus we next assume that

k′ > 0, and the claim is true for all v ∈ V , k∗ ∈ {0, ..., k′} and l∗ ∈ {1, ..., l′},
such that (k∗ < k′ or l∗ < l′).

Let T = (VT , ET ) be an out-tree of G, that is rooted at v and has exactly
k′ internal nodes and l′ leaves. Also, let u be a neighbor of v in T . Denote by
Tv = (Vv, Ev) and Tu = (Vu, Eu) the two out-trees of G in the forest F =
(VT , ET \ {(v, u)}), such that v ∈ Vv. We have the following cases.

1. If |Vv| = 1: Tu has k′ − 1 internal nodes and l′ leaves. By the induction
hypothesis, Pu,k′−1,l′ has the monomial

∏
w∈Vu

xw. Thus, by the definition
of Cv,k′,l′ , Pv,k′,l′ has the monomial xv

∏
w∈Vu

xw =
∏

w∈VT
xw.

2. Else: Denote the number of internal nodes and leaves in Tv by kv and
lv, respectively. By the induction hypothesis, Pv,kv ,lv has the monomial∏

w∈Vv
xw, and Pu,k′−kv ,l′−lv has the monomial

∏
w∈Vu

xw . By the defini-
tion of Cv,k′,l′ , Pv,k′,l′ has the monomial

∏
w∈Vv

xw
∏

w∈Vu
xw =

∏
w∈VT

xw .

Now, by using induction, we prove that if Pv,k′,l′ has the (multilinear) mono-
mial

∏
w∈U xw , for some U ⊆ V , then G has an out-tree T = (VT , ET ) rooted

at v with exactly k′ internal nodes and l′ leaves, such that VT = U . This claim
implies that any multilinear monomial of Pv,k′,l′ is of degree exactly k′ + l′.

The claim is clearly true for the base cases, and thus we next assume that
k′ > 0, and the claim is true for all v ∈ V , k∗ ∈ {0, ..., k′} and l∗ ∈ {1, ..., l′},
such that (k∗ < k′ or l∗ < l′).

Let
∏

w∈U xw, for some U ⊆ V , be a monomial of Pv,k′,l′ . By the definition
of Cv,k′,l′ , there is u such that (v, u) ∈ E, for which we have the following cases.

1. If Pu,k′−1,l′ has a monomial
∏

w∈U\{v} xw: By the induction hypothesis, G

has an out-tree Tu = (Vu, Eu) rooted at u with exactly k′ − 1 internal nodes
and l′ leaves, such that Vu = U \ {v}. By adding v and (v, u) to Tu, we get
an out-tree T = (VT , ET ) of G that is rooted at v, has exactly k′ internal
nodes and l′ leaves, and such that VT = U .

2. Else: There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that
Pv,k∗,l∗ has the monomial

∏
w∈U∗ xw, and Pu,k′−k∗,l′−l∗ has the monomial∏

w∈U\U∗ xw . By the induction hypothesis, G has an out-tree Tv = (Vv, Ev)
rooted at v with exactly k∗ internal nodes and l∗ leaves, such that Vv = U∗.
Moreover, G has an out-tree Tu = (Vu, Eu) rooted at u with exactly k′ − k∗

internal nodes and l′ − l∗ leaves, such that Vu = U \ U∗. Thus, we get that
the out-tree T = (U,E(Tv) ∪ E(Tu) ∪ (v, u)) of G is rooted at v, and has
exactly k′ internal nodes and l′ leaves.

We get that G has an out-tree rooted at r of exactly k internal nodes and l
leaves iff Pr,k,l has a mutlilinear monomial of degree at most t. ��

The definition of (Cr,k,l, X, t) immediately implies the following observation.

Observation 2. We can compute (Cr,k,l, X, t) in polynomial time and space.
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2.3 The Algorithm IOB-Alg[Tree-Alg]

Koutis et al. [7,17] gave an O∗(2t) time and polynomial space randomized algo-
rithm for t-MLD. We denote this algorithm by MLD-Alg, and use it to get an
algorithm for (k, l)-Tree (see Algorithm 2).

Algorithm 2. Tree-Alg(G, r, k, l)

1: Compute f(G, r, k, l) = (Cr,k,l, X, t).
2: Accept iff MLD-Alg(Cr,k,l, X, t) accepts.

By Lemmas 1 and 2, and Observation 2, we have the following theorem.

Theorem 1. IOB-Alg[Tree-Alg] is an O∗(4k) time and polynomial space ran-
domized algorithm for k-IOB.

3 A k-IOB Algorithm for Graphs of Bounded Degree Δ

3.1 A Modification of the Algorithm IOB-Alg[A]

We first prove that in Step 3 of IOB-Alg[A] (see Section 2.1), we can iterate over
less than k values for l.

Given an out-tree T = (VT , ET ) and i ∈ N, denote the number of degree-i
nodes in T by nT

i .

Observation 3 ([14]). If |VT | ≥ 2, then 2 +
∑

3≤i(i− 2)nT
i = nT

1 .

Observation 4. An out-tree T of G with exactly k internal nodes contains an
out-tree with exactly k internal nodes and at most k − k−2

Δ−1 leaves.

Proof. As long as T has an internal node v with at least two out-neighbors that
are leaves, delete one of these leaves and its adjacent edge from T . Denote the
resulting out-tree by T ′, and denote the tree that we get after deleting all the
leaves in T ′ by T ′′. Note that T ′ has exactly k internal nodes, and that T ′ and
T ′′ have the same number of leaves. Since T ′′ has k nodes and bounded degree
Δ, Observation 3 implies that if nT ′′

1 + nT ′′

Δ = k, then nT ′′

1 = k − k−2
Δ−1 , and if

nT ′′

1 +nT ′′

Δ < k, then nT ′′

1 < k− k−2
Δ−1 . We have that nT ′′

1 ≤ k− k−2
Δ−1 , and thus we

conclude that T ′ has exactly k internal nodes and at most k − k−2
Δ−1 leaves. ��

Thus, in Step 3 of IOB-Alg[A], we can iterate only over l = 1, 2, ..., k−# k−2
Δ−1$.

We add some preprocessing steps to IOB-Alg[A], and thus get Δ-IOB-Alg[A] (see
Algorithm 3). These preprocessing steps will allow us to assume, when presenting
algorithm A, that the underlying undirected graph of G is a connected graph
that is neither a cycle nor a clique. This assumption will allow us to compute
a proper Δ-coloring of the underlying undirected graph of G (see Section 3.3),
which we will use in the following Section 3.2.
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Algorithm 3. Δ-IOB-Alg[A](G, k)

1: if k ≥ |V | or the underlying undirected graph of G is not connected then
2: Reject.
3: else if the underlying undirected graph of G is a cycle then
4: if k = |V | − 1 then Accept iff G has a hamiltonian path. else Accept iff there

is at most one node of out-degree 2 in G. end if
5: else if the underlying undirected graph of G is a clique then
6: Accept.
7: end if
8: for all r ∈ V do
9: if G has no out-branching T rooted at r then Go to the next iteration. end if
10: for l = 1, 2, ..., k − � k−2

Δ−1
� do

11: if A(G, r, k, l) accepts then Accept. end if
12: end for
13: end for
14: Reject.

We can clearly perform the new preprocessing steps in O(|E|) time and O(|V |)
space. Steps 2 and 4 are clearly correct. Since a tournament (i.e., a directed graph
obtained by assigning a direction for each edge in an undirected complete graph)
has a hamiltonian path [13], we have that Step 6 is also correct.

We have the following lemma.

Lemma 3. Δ-IOB-Alg[A] is an O(
∑

r∈V (|E|+
∑

1≤l≤k−� k−2
Δ−1 �

t(G, r, k, l))) time

and O(|V |+maxr∈V,1≤l≤k−� k−2
Δ−1 �

s(G, r, k, l)) space algorithm for k-IOB.

3.2 A Modification of the Reduction f

In this section assume that we have a proper Δ-coloring col : V → {c1, ..., cΔ} of
the underlying undirected graph of G. Having such col, we modify the reduction
f (see Section 2.2) to construct a ”better” input for t-MLD (i.e., an input in
which t < k + l).

The Idea Behind the Modification: Recall that in the previous construction,
we let each monomial represent a certain pair of an out-tree T = (VT , ET ) and a
function h : VT → V . The monomial included indeterminates representing all the
nodes to which the nodes in VT are mapped. We can now select some color c ∈
{c1, ..., cΔ}, and ignore some occurrences of indeterminates that represent nodes
whose color is c and whose degree in h(T ) is Δ. We thus construct monomials
with smaller degrees, and have an input for t-MLD in which t < k + l.

More precisely, the monomial representing T and h is
∏

v∈U xh(v), where U is
VT , excluding nodes mapped to nodes whose color is c and whose degree in T is
Δ (except the root). We add constraints on T and h to garauntee that nodes in
VT that are mapped to the same node do not have common neighbors in T .

The correctness is based on the following observation. Suppose that there
is an indeterminate xv that occurs more than once in the original monomial
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representing T and h, but not in the new monomial representing them. Thus
the color of v is c. Moreover, there are different nodes u,w ∈ VT such that
h(u) = h(w) = v, and the degree of u in T is Δ. We get that u has a neighbor
u′ in T and w has a different neighbor w′ in T , such that h(u′) = h(w′) and the
color of h(u′) is not c. Thus xh(u′) occurs more than once in the new monomial
representing T and h. This implies that monomials that are not multilinear in
the original construction do not become multilinear in the new construction.

The Construction: Let (G, r, k, l) be an input for (k, l)-Tree. We now construct
an input f(G, r, k, l, col) = (C,X, t) for t-MLD.

We add a node r′ to V and the edge (r′, r) to E. We color r′ with some c ∈
{c1, ..., cΔ}\{col(r)}. In the following let < be some order on V ∪{nil}, such that
nil is the smallest element. Define X = {xv : v ∈ V }, and t = (2− Δ+1

Δ(Δ−1) )k+8.

Denote N(v, i, o) = {u ∈ V \ {i} : (v, u) ∈ E, u > o}.
We inductively define an arithmetic circuit Cc,i,o,b

v,k′,l′ over X , for all v ∈ V, k′ ∈
{0, ..., k}, l′ ∈ {1, ..., l}, c ∈ {c1, ..., cΔ}, i such that (i, v) ∈ E, o such that
(v, o) ∈ E or o = nil, and b ∈ {F, T }. Informally, v, k′ and l′ play the same role
as in the original construction; c indicates that only indeterminates representing
nodes colored by c can be ignored; i and o are used for constraining the pairs of
trees and functions represented by monomials as noted in ”The Idea Behind the
Modification”; and b indicates whether the indeterminate of v is ignored.

Base Cases:

1. If k′ = 0, l′ = 1 and b = F : Cc,i,o,b
v,k′,l′ = xv.

2. Else if [k′ = 0] or [N(v, i, o) = ∅] or [(|N(v, i, o)| > l′ or col(v) �= c or v = r

or |N(v, i, nil)| < Δ− 1) and b = T ]: Cc,i,o,b
v,k′,l′ = 0.

Steps: (assume that none of the base cases applies)

1. If l′ = 1 and b = F : Cc,i,o,b
v,k′,l′ = xv

∑
u∈N(v,i,o)(C

c,v,nil,F
u,k′−1,l′ + Cc,v,nil,T

u,k′−1,l′).
2. Else if b = F :

Cc,i,o,b
v,k′,l′ =

∑
u∈N(v,i,o)[xvC

c,v,nil,F
u,k′−1,l′ + xvC

c,v,nil,T
u,k′−1,l′+∑

1≤k∗≤k′
∑

1≤l∗≤l′−1 C
c,i,u,b
v,k∗,l∗(C

c,v,nil,F
u,k′−k∗,l′−l∗ + Cc,v,nil,T

u,k′−k∗,l′−l∗)].

3. If b = T and there is exactly one node u in N(v, i, o): Cc,i,o,b
v,k′,l′ = Cc,v,nil,F

u,k′−1,l′ .
4. Else if b = T :

(a) Denote u = min(N(v, i, o)).

(b) Cc,i,o,b
v,k′,l′ =

∑
1≤k∗≤k′

∑
1≤l∗≤l′−1 C

c,i,u,b
v,k∗,l∗C

c,v,nil,F
u,k′−k∗,l′−l∗ .

The following order shows that when computing an arithmetic circuit Cc,i,o,b
v,k′,l′ ,

we only use arithmetic circuits that have been already computed.

Order:

1. For k′ = 0, 1, ..., k:
(a) For l′ = 1, 2, ..., l:

i. ∀v ∈ V, c ∈ {c1, ..., cΔ}, i s.t. (i, v) ∈ E, o s.t. (v, o) ∈ E or o = nil,

b ∈ {F, T }: Compute Cc,i,o,b
v,k′,l′ .
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Define C =
∑

c∈{c1,...,cΔ} C
c,r′,nil,F
r,k,l .

Denote the polynomial that Cc,i,o,b
v,k′,l′ (resp. C) represents by P c,i,o,b

v,k′,l′ (resp. P ).

Correctness: We need the next two definitions, which we illustrate in Fig. 1.

Definition 1. Let v ∈ V , k′ ∈ {0, ..., k}, l′ ∈ {1, ..., l}, c ∈ {c1, ..., cΔ}, i such
that (i, v) ∈ E, o such that (v, o) ∈ E or o = nil. Given a subgraph T = (VT , ET )
of G, we say that

1. T is a (v, k′, l′, c, i, o, F )-tree if
(a) T is an out-tree rooted at v with exactly k′ internal nodes and l′ leaves.
(b) Every out-neighbor of v in T belongs to N(v, i, o).

2. T is a (v, k′, l′, c, i, o, T )-tree if
(a) col(v) = c, v �= r, and |N(v, i, nil)| = Δ− 1.
(b) Every node in N(v, i, o) is an out-neighbor of v in T , and N(v, i, o) �= ∅.
(c) There is at most one node i′ ∈ VT such that (i′, v) ∈ ET .

i. If such an i′ exists: (v, i′) /∈ ET , and T ′ = (VT , ET \ {(i′, v)}) is an
out-tree rooted at v.

ii. Else: T is a (v, k′, l′, c, i, o, F )-tree.

Definition 2. Given a (v, k′, l′, c, i, o, b)-tree T = (VT , ET ), define I(T ) =

{u ∈ VT : [u �= v ∧ (col(u) �= c ∨ u has less than (Δ− 1) out− neighbors in T )]

∨[u = v ∧ (b = F ∨ v has an in− neighbor in T )]}.

 

 

 

 

v1 

v1 v1 

v2 v2 v2 v3 

v3 

v4 

v4 v4 

v3 v5 v5 

v5 G 
T1 T2 = 3 

Fig. 1. Assume that r = v1 < v2 < v3 < v4 < v5, and that shapes represent col-
ors. We have that T1 is a (v2, k

′, l′, O, v1, nil, T )-tree for any k′ and l′, and I(T1) =
{v1, v2, v3, v4, v5}. Moreover, T2 is a (v2, 3, 2, O, v1, v3, T )-tree, and I(T2) = {v1, v3, v4}.

Observation 5. Let T = (VT , ET ) be a (v, k′, l′, c, i, o, b)-tree of G, such that

there is no i′ ∈ VT for which (i′, v) ∈ ET . Then, P c,i,o,b
v,k′,l′ has the (multilinear)

monomial
∏

w∈I(T ) xw.

Proof. We prove the claim by using induction on the construction. The claim
is clearly true for the base cases. Next consider a (v, k′, l′, c, i, o, b)-tree T =

(VT , ET ) of G, such that Cc,i,o,b
v,k′,l′ is not constructed in the base cases. Assume

that the claim is true for all (ṽ, k̃, l̃, c̃, ĩ, õ, b̃) such that C c̃,˜i,õ,˜b

ṽ,˜k,˜l
is constructed

before Cc,i,o,b
v,k′,l′ . Denote by u the smallest out-neighbor of v in T .
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Denote by Tv = (Vv, Ev) and Tu = (Vu, Eu) the two out-trees of G in the
forest F = (VT , ET \ {(v, u)}), such that v ∈ Vv. If u /∈ I(T ) (this is not the case
if b = T , since then col(u) �= c), then denote b′ = T , and note that the set of
out-neighbors of u in Tu contains all of the neighbors of u in G, excluding v; else
denote b′ = F . We have the following cases.

1. If |Vv| = 1: Tu is a (u, k′ − 1, l′c, v, nil, b′)-tree of G. If b = F , then I(Tu) =

I(T ) \ {v}; else I(Tu) = I(Tv). By the induction hypothesis Cc,v,nil,b′

u,k′−1,l′ has

the monomial
∏

w∈I(Tu)
xw. Thus, by the definition of Cc,i,o,b

v,k′,l′ , P
c,i,o,b
v,k′,l′ has

the required monomial.
2. Else: Denote the number of internal nodes and leaves in Tv by kv and lv,

respectively. Note that 1 ≤ kv ≤ k′, 1 ≤ lv < l′, Tv is a (v, kv, lv, c, i, u, b)-
tree of G, and Tu is a (u, k′ − kv, l

′ − lv, c, v, nil, b
′)-tree of G. Moreover,

I(Tv) and I(Tu) are disjoint sets whose union is I(T ). By the induction hy-

pothesis, P c,i,u,b
v,kv ,lv

has the monomial
∏

w∈I(Tv)
xw, and P c,v,nil,b′

u,k′−kv ,l′−lv
has the

monomial
∏

w∈I(Tu)
xw. By the definition of Cc,i,o,b

v,k′,l′ , P
c,i,o,b
v,k′,l′ has the mono-

mial
∏

w∈I(Tv)
xw

∏
w∈I(Tu)

xw =
∏

w∈I(T ) xw.
��

Observation 6. If P c,i,o,b
v,k′,l′ has a (multilinear) monomial

∏
w∈U xw, for some

U ⊆ V , then G has a (v, k′, l′, c, i, o, b)-tree T such that I(T ) = U .

Proof. We prove the claim by using induction on the construction. The claim is
clearly true for the base cases. Let

∏
w∈U xw, for some U ⊆ V , be a monomial

of P c,i,o,b
v,k′,l′ , such that Cc,i,o,b

v,k′,l′ is not constructed in the base cases. Assume that

the claim is true for all C c̃,˜i,õ,˜b

ṽ,˜k,˜l
that is constructed before Cc,i,o,b

v,k′,l′ .

First suppose that b = F . By the definition of Cc,i,o,b
v,k′,l′ , there are u ∈ N(v, i, o)

and b′ ∈ {F, T } such that one of the next conditions is fulfilled.

1. Cc,v,nil,b′

u,k′−1,l′ has the monomial
∏

w∈U\{v} xw. By the induction hypothesis, G

has a (u, k′ − 1, l′, c, v, nil, b′)-tree Tu = (Vu, Eu), such that I(Tu) = U \ {v}.
Suppose that there is i′ ∈ Vu such that (i′, u) ∈ Eu. In this case b′ = T ; thus
v /∈ Vu and the set of out-neighbors of u in Tu contains all the neighbors of
u in G, excluding v. We get that i′ is an out-neighbor of u in Tu, which a
contradiction. Thus, by adding v and (v, u) to Tu, we get a (v, k′, l′, c, i, o, b)-
tree T such that I(T ) = U (since I(T ) = I(Tu) ∪ {v}).

2. There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that

P c,i,u,b
v,k∗,l∗ has the monomial

∏
w∈U∗ xw, and P c,v,nil,b′

u,k′−k∗,l′−l∗ has the monomial∏
w∈U\U∗ xw . By the induction hypothesis, G has a (v, k∗, l∗, c, i, u, b)-tree

Tv = (Vv, Ev) such that I(Tv) = U∗, and a (u, k′−k∗, l′− l∗, c, v, nil, b′)-tree
Tu = (Vu, Eu) such that I(Tu) = U \ U∗. Consider the following cases.

(a) If v ∈ Vu: v /∈ I(Tu) (since v ∈ I(Tv)). Thus col(v) = c and v has
Δ − 1 out-neighbors in Tu. Note that v is not an out-neighbor of u in
Tu, and thus u is an out-neighbor of v in Tu. Therefore b

′ = T , and thus
col(u) = c, which is a contradiction (since col is a proper coloring).
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(b) If there is w ∈ (Vv ∩ Vu) \ {v, u} �= ∅: Since I(Tv) ∩ I(Tu) = ∅, we get
that col(w) = c and (w has Δ neighbors in Tv or Tu). Thus there is w′

that is a neighbor of w in both Tv and Tu, such that col(w′) �= c. We get
that w′ ∈ I(Tv) ∩ I(Tu) = ∅, which is a contradiction.

(c) If u ∈ Vv: u is not an out-neighbor of v in Tv. Therefore u has less than
Δ − 1 out-neighbors in Tv, and thus u ∈ I(Tv). We get that u /∈ I(Tu),
which implies that the set of out-neighbors of u in Tu contains all the
neighbors of u in G, excluding v. Thus u has a neighbor, which is not v,
in both Tv and Tu, and we have a contradiction according to Case 2b.

We get that Vv ∩ Vu = ∅. If there is i′ ∈ Vu such that (i′, u) ∈ Eu, then
we get a contradiction in the same manner as in Case 1. We get that T =
(Vv∪Vu, Ev∪Eu∪{(v, u)}) is an out-tree of G. It is straightforward to verify
that T is a (v, k′, l′, c, i, o, b)-tree of G such that I(T ) = I(Tv) ∪ I(Tu) (and
thus I(T ) = U).

Now suppose that b = T . Denote by u the smallest node in N(v, i, o). By the

definition of Cc,i,o,b
v,k′,l′ , one of the next conditions is fulfilled.

1. If N(v, i, o) = {u}: P c,v,nil,F
u,k′−1,l′ has the monomial

∏
w∈U xw . By the induction

hypothesis, G has a (u, k′ − 1, l′, c, v, nil, F )-tree Tu such that I(Tu) = U .
Since v is not an out-neighbor of u in Tu, by adding v and (v, u) to Tv, we
get a (v, k′, l′, c, i, o, b)-tree T of G (which may not be an out-tree), such that
I(T ) = I(Tu) = U .

2. Else: There are k∗ ∈ {1, ..., k′}, l∗ ∈ {1, ..., l′ − 1} and U∗ ⊆ U , such that

P c,i,u,b
v,k∗,l∗ has the monomial

∏
w∈U∗ xw, and P c,v,nil,F

u,k′−k∗,l′−l∗ has the monomial∏
w∈U\U∗ xw . By the induction hypothesis, G has a (v, k∗, l∗, c, i, u, b)-tree

Tv = (Vv, Ev) such that I(Tv) = U∗, and a (u, k′−k∗, l′− l∗, c, v, nil, F )-tree
Tu = (Vu, Eu) such that I(Tu) = U \ U∗. Consider the following cases.
(a) If there is w ∈ (Vv ∩Vu) \ {v, u} �= ∅: We get a contradiction in the same

manner as in the previous Case 2b.
(b) If u ∈ Vv: Since col(u) �= c, we get that u ∈ I(Tv) ∪ I(Tu) = ∅, which is

a contradiction.
We get that Vv ∩ Vu \ {v} = ∅. Denote T = (VT = (Vv ∪ Vu), ET = (Ev ∪
Eu ∪ {(v, u)})). Suppose, by way of contradiction, that there are two nodes
i1, i2 ∈ VT such that (i1, v), (i2, v) ∈ ET . Since Tv is a (v, k∗, l∗, c, i, u, b)-tree
and Tu is an out-tree, we can assume WLOG that i1 ∈ Vv and i2 ∈ Vu. We
get that v ∈ I(Tv), and thus v /∈ I(Tu). Therefore v has Δ− 1 out-neighbors
in Tu; but since Tu is an out-tree rooted at u, and v is not an out-neighbor of
u in Tu, we have a contradiction. Thus we get that T is a (v, k′, l′, c, i, o, b)-
tree of G such that I(T ) = I(Tv) ∪ I(Tu) (and thus I(T ) = U). ��

Observation 7. If (G, r, k, l) has a solution, then P has a multilinear monomial
of degree at most t.

Proof. Let T = (VT , ET ) be a solution. Denote n(T, c) = {v ∈ VT : col(v) =
c, v has Δ neighbors in T }, and c∗ = argmaxc∈{c1,...,cΔ}{|n(T, c)|}. By Observa-
tion 4 and the pseudocode of Δ-IOB-Alg[A] (see Section 3.1), we get that
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1. 2 +
∑

3≤i≤Δ(i− 2)nT
i = nT

1 .

2.
∑

1≤i≤Δ nT
i = k + l.

3. nT
1 − 1 ≤ l ≤ k − k−2

Δ−1 .

4. |n(T, c∗)| ≥ nT
Δ/Δ.

These conditions imply that k+l−|n(T, c∗)| ≤ (2− Δ+1
Δ(Δ−1) )k+7. Since T is an

(r, k, l, c∗, r′, nil, F )-tree, the definition of C and Observation 5 imply that P has
the (multilinear) monomial

∏
w∈I(T ) xw. Note that |I(T )| ≤ k+ l−|n(T, c∗)|+1,

and thus we get the observation. ��

SinceObservation 6 implies that ifP has amultilinearmonomial, then (G, r, k, l)
has a solution, and by Observation 7, we get the following lemma.

Lemma 4. (G, r, k, l) has a solution iff (C,X, t) has a solution.

The definition of (C,X, t) immediately implies the following observation.

Observation 8. We can compute (C,X, t) in polynomial time and space.

3.3 The Algorithm Δ-IOB-Alg[Δ-Tree-Alg]

Skulrattanakulchai [16] gave a linear-time algorithm that computes a proper Δ-
coloring of an undirected connected graph of bounded degree Δ, which is not
an odd cycle or a clique. In Δ-Tree-Alg (see Algorithm 4), we assume that the
underlying undirected graph of G is connected, and that it is not a cycle or a
clique, since these cases are handled in the preprocessing steps of Δ-IOB-Alg[A].

Algorithm 4. Δ-Tree-Alg(G, r, k, l)

1: Use the algorithm in [16] to get a proper Δ-coloring col of the underlying undirected
graph of G.

2: Compute f(G, r, k, l, col) = (C,X, t).
3: Accept iff MLD-Alg(C,X, t) accepts.

By Lemmas 3 and 4, and Observation 8, we have the following theorem.

Theorem 2. Δ-IOB-Alg[Δ-Tree-Alg] is an O∗(2(2−
Δ+1

Δ(Δ−1) )k) time and polyno-
mial space randomized algorithm for k-IOB.

4 Open Questions

In this paper we have presented an O∗(4k) time algorithm for k-IOB, which
improves the previous best known O∗ running time for k-IOB. However, our
algorithm is randomized, while the algorithm that has the previous best known
O∗ running time is deterministic. Can we obtain an O∗(4k) time determin-
istic algorithm for k-IOB? Moreover, can we further reduce the O∗(4k) and

O∗(2(2−
Δ+1

Δ(Δ−1)
)k) running times for k-IOB presented in this paper?
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Kamiński, Marcin 78
Kanj, Iyad 189
Kim, Eun Jung 54
Kortsarz, Guy 110
Kratsch, Dieter 230
Kratsch, Stefan 202, 230

Lampis, Michael 163
Lokshtanov, Daniel 41, 150, 189, 243,

255

Mach, Lukáš 268
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