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Abstract Sugarcane is the most productive crop plant to date, and its potential of
becoming a crucial biofactory for generating high-value bioproducts is emerging
only recently. Though it possesses one of the most complex genomes in the plant
kingdom, important advances have been made in terms of transgenic approaches
to generate new varieties, both by particle bombardment and Agrobacterium-
mediated transformation. Nevertheless, crucial aspects in breeding programs and
molecular technologies have to be developed or improved, before this crop
consolidates as the highest productive biofactory. Social and biosafety issues also
need to be addressed. Here, we highlight the most recent advances in the bio-
technology of sugarcane to produce alternative products such as pharmaceutical
proteins, biopolymers, and high-value carbohydrates, and strengthen opportunities
and challenges of sugarcane as a biofactory of novel compounds. We conclude that
the progress in molecular approaches to develop sugarcane into a sustainable
biofactory demonstrates that this crop has tremendous potential and may play
an important role in the growing bioeconomy through biopharming. Like no other
contemporary crop, sugarcane is facing new paradigms and is expected to con-
tribute at least partially to the development of new generation highly profitable
biofactories.
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5.1 Introduction

Modern sugarcane, the main source of sucrose worldwide, belongs to the grass
family (Poaceae) and was created about a century ago from the combination of
Saccharum polyploid species. According to Daniels and Roach (1987), the genus
Saccharum comprises six different species: S. barberi, S. edule, S. officinarum,
S. robustum, S. sinense, and S. spontaneum. Of these, S. officinarum (the domes-
ticated sugar-producing species) and S. spontaneum (a vigorous wild species with
many aneuploidy forms) are thought to be the ancestors of cultivated sugarcane.
S. officinarum originally derived from S. robustum, while S. barberi and S. sinense
are thought to have been derived by crossing S. officinarum and S. spontaneum
(Asano et al. 2004; Sandhu et al. 2012). However, Irvine (1999) suggested only
two true species: S. officinarum and S. spontaneum, and therefore, current sugar-
cane commercial cultivars are thought to be hybrids with 80–90 % of the genome
from S. officinarum and 10–20 % of the genome from S. spontaneum (Grivet et al.
1996; Hoarau et al. 2002).

The chromosome number of these species ranges from 36 to 200 (Asano et al.
2004; OGTR 2011). The polyploid and aneuploid nature of the genus Saccharum
has made phylogenetic analyses and, as a result, breeding programs a tough task.
Furthermore, the taxonomy and phylogeny of sugarcane is complicated as plants
from five genera are thought to share common characteristics and form a closely
related interbreeding group known as the ‘‘Saccharum complex’’. This complex
comprises the genera Saccharum, Erianthus section Ripidium, Miscanthus section
Diandra, Narenga and Sclerostachya (D’Hont et al. 1998; OGTR 2011), albeit
controversial discussions still remain in the scientific community concerning the
genetic relationships among genera in this complex and new hypotheses are being
formulated. As a consequence, the assumption that S. officinarum is a result of a
complex introgression between S. spontaneum, Erianthus arundinaceus, and
Miscanthus sinensis (reviewed by Daniels and Roach 1987) is being analyzed in
the light of new biochemical and molecular approaches. Accordingly, current
extant species of the genera Saccharum, Erianthus, and Miscanthus are clearly
distinct in their isozyme profiles, nuclear and cytoplasmic restriction fragment
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length polymorphisms (AFLPs), and simple sequence repeats (SSRs) and sequence
data (reviewed by D’Hont et al. 2008). As a result of these analyses, it has been
assumed that the genus Saccharum is a well-defined lineage that has diverged over
a long period of evolution from the lineages leading to the Erianthus and
Miscanthus genera (Grivet et al. 2006; D’Hont et al. 2008) and that cultivated
sugarcanes probably emerged from wild Saccharum species, while secondary
introgressions with other genera are not likely pathways (D’Hont et al. 2008).

The Saccharum species are not only polyploid, but also autopolyploid (hosting
more than two sets of homologous chromosomes derived from a single species)
and allopolyploid (possessing two or more unlike sets of chromosomes from
different species) (Sreenivasan et al. 1987; Besse et al. 1997), which represent a
tremendous challenge for breeders that normally base their statistical genetic
approaches on models developed for diploid organisms.

A summary of the genetic characteristics of the Saccharum species and the
‘‘Saccharum complex’’ is shown in Table 5.1.

As a relatively recently domesticated species, sugarcane exhibits little of the
available genetic diversity having been incorporated or actively analyzed for
introgression into domesticated varieties (Dillon et al. 2007; OGTR 2011;
Sreenivasan et al. 1987), and breeding programs in the early 1900s focused on
hybridization of S. officinarum clones, but quickly progressed to interspecific
crosses incorporating S. spontaneum. This resulted in improved agronomic traits,
such as tilling, stand and trashiness abilities, ratooning and disease resistance, but
required a backcrossing program to S. officinarum, called ‘‘nobilization,’’ to ele-
vate the sucrose content (Dillon et al. 2007; Edmé et al. 2005). Since then, the
majority of breeding programs have focused on intercrossing between the hybrids,
though in recent decades the larger increases in genetic gains have been made by
incorporating more diverse germplasm into the cultivated backgrounds (Edmé
et al. 2005; Dillon et al. 2007) not only to increase sucrose production, but also to
diversify into other alternative products to regain profitability.

As a C4 carbohydrate metabolism plant having a perennial life cycle, sugarcane
is one of the most productive cultivated plants. Apart from producing sugar, this
crop has gained increased attention because of its importance as a biofuel source
among other value-added products developed from sugarcane biopharming using
molecular approaches. Nevertheless, sugarcane has one of the most complex
genomes among cultivated plants, which has long hampered the development of
crucial areas such as genetics to support breeding for crop improvement programs.
With the advent of molecular techniques, the sugarcane genome has become less
mysterious, although its complexity has still been confirmed in many aspects
(D’Hont et al. 2008).

In this chapter, we review the current status of sugarcane as a potential
biofactory focusing particularly on the production of pharmaceutical proteins,
biopolymers, and alternative carbohydrates; topics related to the use of sugarcane
for bioenergy generation have been thoroughly addressed elsewhere (Arruda 2012;
de Siqueira et al. 2013; Kuan et al. 2013; Vermerris 2011) and therefore will not be
discussed herein.
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5.2 Sugarcane Is More Than Sucrose

According to Hoarau et al. (2007), sugarcane converts the sun’s energy into car-
bohydrates more efficiently than any other crop plant and has the unusual ability to
store sucrose in stem cell vacuoles. This, along with its high biomass production
and ease of cultivation, makes it one of the most interesting and productive agri-
cultural crops. In fact, Waclawovsky et al. (2010) have established that the current
world yield average for sugarcane is 80 t ha-1, but the estimated theoretical yield
potential is over 380 t ha-1, while Moore (2009) calculated it over 472 t ha-1,
which supports the hypothesis of yield gains to be expected in the future.

Table 5.1 Genetic characteristics of species from the Saccharum genus and Saccharum complex

Species or
genus

Classification Sugar
content

Chromosome
number (2n)

Monoploid
genome
size (Mbp)

References

Saccharum
barberi

Ancient
hybrid

Low 111–120 3,156–4,121 Asano et al. (2004),
Bonnett and Henry
(2011)

S. edule Wild species Nil 60–80 Asano et al. (2004),
Bonnett and Henry
(2011)

S. officinarun Noble cane High 70–140 985 Asano et al. (2004),
Bonnett and Henry
(2011), Zhang et al.
(2012)

S. robustum Wild species Nil 60–200 1,195 Asano et al. (2004),
Bonnett and Henry
(2011)

S. sinense Ancient
hybrid

Low 80–124 4,183 Asano et al. (2004),
Bonnett and Henry
(2011)

S. spontaneum Wild species Nil 40–128 843 Asano et al. (2004),
Bonnett and Henry
(2011), Zhang et al.
(2012)

Erianthus spp. Wild
sugarcane
relative

20–60 980–1,205 Chae (2012)

Miscanthus
spp.

Close
sugarcane
relative

38–76 2,150–2,650 Rayburn et al. (2009),
Swaminathan et al.
(2012)

Narenga spp. Wild
sugarcane
relative

30–34 Sobral et al. (1994),
Grivet et al. (2006)

Sclerostachya
spp.

Wild
sugarcane
relative

30–96 Janaki-Ammal (1940),
Butterfield et al.
(2001), D’Hont et al.
(2008)
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Flourishing in humid and warm climates, sugarcane is mainly cultivated in tropical
and subtropical regions on 25.4 million ha in more than 90 countries; its harvested
biomass makes it the world’s largest crop with nearly 1,800 million metric tons
produced in 2011 as reported by FAO (http://faostat.fao.org). Mainly used to
produce sugar, it accounts for approximately 75 % of the total world sugar pro-
duction, while beet sugar is responsible for 25 %. By-products obtained from
sugarcane include a wide range of derivatives (e.g., molasses, alcohol, fuel, live-
stock feed, paper, particle board) that can be used in the energy, food, chemical,
pharmaceutical, and other industries (Hoarau et al. 2007; Tew and Cobill 2008).

Apart from sugar and bioethanol production, in the last few years, sugarcane
has also turned into a target crop for biosynthesis of novel products such as
proteins with pharmaceutical properties (Holland-Moritz 2003; Wang et al. 2005),
biopolymers (Brumbley et al. 2004, 2007; McQualter et al. 2005a; Petrasovits
et al. 2012), and high-value carbohydrates and sugar substitutes (Basnayake et al.
2012; Bauer et al. 2012; Chong et al. 2007, 2010; O’Neill 2011; Paterson et al.
2013) (Fig. 5.1).

Biopolymers are considered novel petrochemical substitutes that are environ-
mentally friendly. Proteins with pharmaceutical value may contribute to the
alleviation of important human diseases. Novel carbohydrates and sugar substi-
tutes are crucial for developing nutraceutical products that can benefit consumers
and other industrial processes.

The plant is well suited for such objectives due to some of its characteristics
such as vegetative propagation, absence of flowering in most commercial varieties,
production of a large biomass, large amount of carbon partitioned into sucrose (up
to 42 % of the stalk dry weight), and the mobile pool of hexose sugars through
most of its life cycle (D’Hont et al. 2008).

5.3 Sugarcane Biofactory for High-Value Biopolymers

Nowadays the production of plastics, polymers, surfactants, and other similar
synthetic products is dominated by the petrochemical industry, although bio-
technology, through metabolic engineering, may account for as much as 15 % of

Fig. 5.1 Current main focus areas for developing sugarcane as a biofactory
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the US$250 billion polymer market by the year 2015 (Nielsen 2005; Endres et al.
2007). As a matter of fact, traditional chemical industries are already shifting from
chemical to biological processes and new opportunities are continuously emerging
in the pharmaceutical, food, and biomedical areas. As a consequence, using sug-
arcane to manufacture plastics has several potential advantages over the traditional
methods of production, including higher yields, greater purity, lower energy use,
and less waste production (Nielsen 2005).

Importantly, by using bioplastics it is likely to reduce toxic emissions in the
environment and also diminish loads of industrial wastes on landfills (Fritz et al.
2001; Seinbüchel 2003). Besides, when plants are used as biofactories, the major
limitations of organic synthesis, namely long product lead time and expensive
plant design to handle toxic compounds at high pressure and temperature, are
overcome (Nielsen 2005). As a consequence, various research groups worldwide
have made important progress in the development of sugarcane as a novel
biofactory in the last decade.

For instance, Brumbley et al. (2004) engineered the genetic pathway for poly-3-
hydroxybutyrate (PHB) in sugarcane. In general, polyhydroxyalkanoates (PHA)
which include PHB, have thermoplastic properties and are biodegradable. In a
subsequent transgenic approach, McQualter et al. (2005a) reported that transgenic
sugarcane plants harboring a chloroplast-targeted version of Escherichia coli
chorismate pyruvate-lyase (CPL) (Siebert et al. 1996) and a 4-hydroxycinnamoyl-
CoA hydratase/lyase from Pseudomonas fluorescens (HCHL) (Gasson et al. 1998)
(both enzymes providing a one-enzyme pathway from a naturally occurring plant
intermediate), were able to synthetize p-hydroxybenzoic acid (pHBA, an aromatic
hydroxiacid which constitutes monomers of liquid crystal polymers used in the
electrical and optical industries),which was quantitatively converted to glucose
conjugates by endogenous uridine diphosphate (UDP)-glucosyl transferases and
apparently stored in the vacuole. The largest amounts detected in leaf and stem
tissue were 7.3 and 1.5 % dry weight, respectively, while there were no evident
phenotypic defects. However, as a result of diverting carbon away from the
phenylpropanoid pathway, there was a severe reduction in leaf chlorogenic acid,
subtle changes in lignin composition, and an apparent compensatory upregulation
of phenylalanine ammonia-lyase (McQualter et al. 2005b).

Brumbley et al. (2007) transformed sugarcane with three genes from the bac-
terium Ralstonia eutropha that encode the genetic pathway for the biosynthesis of
PHB. In the best transformed line, PHB accumulated at 2.5 % of leaf dry weight.
Furthermore, transgenic plants were evaluated as a production platform for pHBA
using two different bacterial genes, one from Escherichia coli and the other from
Pseudomonas fluorescens. Each of these genes modifies a different existing bio-
chemical pathway in sugarcane. In the best line, a glycosylated form of pHBA
accumulated in the leaf and stem tissue at 7.3 and 1.5 % dry weight, respectively.

Purnell et al. (2007) demonstrated that several transgenic sugarcane lines
accumulating the bacterial PHB exhibited a vertical PHB concentration gradient,
while the polymer concentration showed the lowest level in the youngest leaves
and increased with leaf age. In addition, there was a horizontal gradient along the
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length of a leaf, with the PHB concentration increasing from the youngest part of
the leaf (the base) to the oldest (the tip). The rank order of the lines did not change
over time. Moreover, there was a uniform spatiotemporal pattern of relative PHB
accumulation among the lines, despite the fact that they showed marked differ-
ences in absolute PHB concentration. Molecular analysis showed that the
expression of the transgenes encoding the PHB biosynthesis enzymes was
apparently coordinated, and that there were good correlations between PHB
concentration and the abundance of the PHB biosynthesis enzymes. The maximum
PHB concentration recorded (1.77 % of leaf dry weight) did not result in agro-
nomic abnormalities. Although moderate PHB concentrations were achieved in
leaves, the maximum total-plant PHB yield was only 0.79 % (11.9 g PHB in
1.51 kg dry weight).

As plant peroxisomes contain the substrate molecules and essential reducing
power for PHB biosynthesis, Tilbrook et al. (2011) generated transgenic sugarcane
with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted at
these cell compartments. PHB accumulated in sugarcane leaves at levels up to
1.6 % dry weight, in both peroxisomes and vacuoles. A small percentage of
total polymer was also identified as the copolymer poly (3-hydroxybutyrate-
co-3-hydroxyvalerate). As a result of peroxisomal PHA biosynthesis, no obvious
detrimental effect was observed on plants. This study highlights how using
peroxisomal metabolism for PHA biosynthesis could significantly contribute to
reaching commercial production levels of PHAs in crop plants.

Petrasovits et al. (2012) used different plant and viral promoters, in combination
with multigene or single-gene constructs to increase PHB levels in sugarcane.
Promoters tested included the maize and rice polyubiquitin promoters, the maize
chlorophyll A/B-binding protein promoter, and a Cavendish banana streak
badnavirus promoter. At the seedling stage, the highest levels of polymer were
produced in sugarcane plants when the Cavendish banana streak badnavirus pro-
moter was used. However, in all cases, this promoter underwent silencing as the
plants matured. The rice Ubi promoter enabled the production of PHB at levels
similar to the maize Ubi promoter. The maize chlorophyll A/B-binding protein
promoter enabled the production of PHB to levels as high as 4.8 % of leaf dry
weight, which is approximately 2.5 times higher than previously reported levels in
sugarcane. However, the highest PHB-producing lines showed phenotypic differ-
ences to the wild-type parent, including reduced biomass and slight chlorosis.

5.4 Sugarcane Biofactory for Protein Products

Regarding pharmaceutical applications, one of the first approaches reported was
done by Holland-Moritz (2003), who transformed sugarcane to produce pharma-
ceutical-grade human structural proteins for human therapeutics. Later, Wang
et al. (2005) successfully produced the human granulocyte macrophage colony-
stimulated factor (GM-CSF, used in clinical applications for the treatment of
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neutropenia and aplastic anemia) in transgenic sugarcane plants. Accumulation of
GM-CSF protein ranged from undetectable to 0.02 of total soluble protein. Human
bone marrow cells (TF-1), which require GM-CSF for cell division, proliferated
when growth media was supplemented with transgenic sugarcane extracts. Com-
parison to purified commercially produced GM-CSF indicated that sugarcane-
produced protein had essentially identical activity levels. In a 14-month field trial,
accumulation levels remained stable.

Arvinth et al. (2010) transformed sugarcane cultivars Co 86032 and CoJ 64
with the cry1Ab gene driven by maize ubiquitin promoter through particle bom-
bardment and Agrobacterium-mediated transformation systems. Gene pyramiding
was also attempted by retransforming sugarcane plants carrying the bovine
pancreatic trypsin inhibitor (aprotinin, which reduces bleeding during complex
surgeries) gene, with cry1Ab. Aprotinin-expressing sugarcane pyramided with
cry1Ab showed reduction in damage by the shoot borer Chiloinfuscatellus.

Henrique-Silva and Soares-Costa (2012) generated transgenic sugarcane
expressing a His-tagged cystatin (a human protein used as biomarker for the
identification and prevention of various diseases) under the control of the maize
ubiquitin promoter. A transformed sugarcane plant presented high levels of protein
expression and was selected for the purification of this protein through affinity
chromatography in nickel columns. Therefore, it was demonstrated that sugarcane
can be a viable expression system for recombinant protein production and that the
His-tag purification strategy used to isolate the purified protein was effective.

Recently, Barros et al. (2013) generated transgenic sugarcane expressing
recombinant bovine lysozyme (BvLz, used to control gram-negative pathogenic
bacteria) in order to evaluate the feasibility of extraction and fractionation of
recombinant proteins expressed in sugarcane stalks. Partial removal of native
proteins was achieved using a 100 kDa membrane, but 20–30 % of the extracted
BvLz was lost. Concentration of clarified extracts using a 3 kDa membrane
resulted in twofold purification and 65 % recovery of BvLz. Loading of concen-
trated sugarcane extract on hydrophobic interaction chromatography (HIC)
resulted in 50 % BvLz purity and 69 % recovery of BvLz.

5.5 Sugarcane Biofactory for High-Value Carbohydrates
and Alternative Sugars

Other research groups have focused on developing sugarcane as a platform for the
production of higher value isomers of sucrose such as isomaltulose and trehalose.

Isomaltulose is a natural isomer of sucrose. It is widely approved as a food with
properties including slower digestion, a lower glycaemic index, and low cario-
genicity, which can benefit consumers. Furthermore, isomaltulose displays
reducing properties that make it attractive as industrial precursor for the manu-
facturing of biosurfactants and biopolymers (Lichtenthaler and Peters 2004;
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Ravaud et al. 2007). In turn, trehalose is implicated in anhydrobiosis as a result of
its high water retention capabilities, and is used in the food and cosmetic indus-
tries. The saccharide may form a gel phase as cells dehydrate, which prevents
disruption of internal organelles and may function as an antioxidant as well
(Reina-Bueno et al. 2012). Availability of these saccharides is currently limited by
the cost of fermentative conversion from sucrose (Mudge et al. 2013).

Wu and Birch (2007) engineered an efficient sucrose invertase isolated from the
bacterium Pantoea dispersa, with a monocot promoter and a vacuolar targeting
sequence (Gnanasambandam and Birch 2004) and transformed sugarcane explants
with this construct to produce isomaltulose. Isomaltulose accumulated in sugar-
cane stem storage tissues of transformed plants without any decrease in the stored
sucrose concentration, resulting in nearly doubled total sugar concentrations in
harvested juice. Transgenic plants also showed higher photosynthetic activity,
sucrose transport, and sink strength, which indicates a possible feedback signal for
sucrose biosynthesis, translocation, and storage (Wu and Birch 2007).

In order to develop an efficient in planta sugarcane-based production system by
coupling the synthesis of alternative products to the metabolic intermediates of
sucrose metabolism, Chong et al. (2007) evaluated the biosynthesis of sorbitol (a
polyalcohol used as sugar substitute) in sugarcane using the Malus domestica
sorbitol-6-phosphate dehydrogenase gene (mds6pdh). The average amounts of
sorbitol detected in the most productive line were 120 mg g-1 dry weight
(equivalent to 61 % of the soluble sugars) in the leaf lamina and 10 mg g-1 dry
weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and
cleavage were elevated in the leaves of plants accumulating sorbitol, but this did
not affect sucrose accumulation in the culm. Sorbitol-producing sugarcane gen-
erated 30–40 % less aerial biomass and was 10–30 % shorter than control lines.
Leaves developed necrosis in a pattern characteristic of early senescence, and the
severity was related to the relative quantity of sorbitol accumulated. When the
Zymomonas mobilis glucokinase (zmglk) gene was coexpressed with mds6pdh to
increase the production of glucose-6-phosphate, the plants were again smaller,
indicating that glucose-6-phosphate deficiency was not responsible for the reduced
growth. In conclusion, sorbitol hyperaccumulation affected sugarcane growth and
metabolism, but the outcome was not deleterious for the plant.

Interested in the unusual development of the leaves in some transgenic sorbitol-
producing sugarcane plants, Chong et al. (2010) compared the polar metabolite
profiles in the leaves of those plants against a group of control sugarcane plants.
Principal component analysis of the metabolites indicated that sorbitol, gentiobi-
ose (a disaccharide), and gentiobiitol (a sugar alcohol) were strongly associated
with sorbitol-producing canes. Gentiobiose and gentiobiitol were positively cor-
related with sorbitol accumulation.

Trehalulose is also a structural isomer of sucrose that has a sweet taste with
similar physical and organoleptic properties to sucrose. Additionally, trehalulose is
acariogenic and can be applied in diabetic and sports foods and drinks as its
absorption reduces the rate at which monosaccharides and insulin are released into
the bloodstream (Ravaud et al. 2007). Hamerli and Birch (2011) reported the
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transformation of sugarcane plants with a vacuolar-targeted trehalulose synthase
gene modified from the gene in Pseudomonas mesoacididophila MX-45 and
obtained transgenic lines reaching about 600 mM of trehalulose in mature stem
juice. These plants retained vigor and trehalulose production over multiple gen-
erations under glasshouse and field conditions.

Sucrose is the translocated photosynthate and the largest soluble carbon store in
sugarcane. The capacity to carry stored sucrose into pathways that provide sub-
strates to produce alternative products would be highly advantageous in an effi-
cient biofactory. Hence, a high-yielding sugarcane biofactory system would
ideally contain culm tissues that function as a secondary source tissue rather than a
sink in terms of sucrose balance (O’Neill 2011). To that end, O’Neill et al. (2012a)
demonstrated that sucrose is mobilized from set storage parenchyma via phloem to
the growing shoot tissue. Overall, metabolism in storage parenchyma shifts from
futile cycling to a more quiescent state during sucrose mobilization. Subsequently,
trehalose metabolism in sugarcane was engineered in an attempt to create a sig-
nificant carbon drain of stored sucrose to impart value-added properties and
enhance abiotic stress tolerance (O’Neill et al. 2012b). To that end, two transgenes
were introduced into the sugarcane genome: trehalose-6-phosphate synthase-
phosphatase (TPSP) to increase trehalose biosynthesis, and an RNAi transgene
specific for trehalase to abrogate trehalose catabolism. In RNAi-expressing lines,
trehalase expression was abrogated in many plants although no decrease in tre-
halase activity was observed. In TPSP lines trehalase activity was significantly
higher. No events of co-integration of TPSP and RNAi transgenes were observed,
suggesting that trehalase activity is essential to mitigate embryonic lethal effects of
trehalose metabolism (O’Neill et al. 2012b).

Moreover, transgenic sugarcane plants expressing a vacuole-targeted iso-
maltulose synthase in seven recipient genotypes (elite cultivars) were evaluated
over 3 years under commercial field conditions (Basnayake et al. 2012). Iso-
maltulose concentration typically increased with internode maturity and comprised
up to 217 mm (33 % of total sugars) in whole-cane juice. There was generally a
comparable decrease in sucrose concentration, with no overall decrease in total
sugars. After several cycles of field propagation, selections were obtained with
cane yields similar to the recipient genotypes. Sucrose isomerase activity was low
in these transgenic lines, and the results indicate strong potential to develop
sugarcane for commercial-scale production of isomaltulose if higher activity can
be engineered in appropriate developmental patterns.

Bauer et al. (2012) reported the effect of high molecular weight bacterial
fructan (levan) and glucan (reuteran) on growth and carbohydrate partitioning in
transgenic sugarcane plants. These polysaccharides are products of bacterial gly-
cosyltransferases, enzymes that catalyze the polymerization of glucose or fructose
residues from sucrose. Heterologous expression resulted in reduced total carbo-
hydrate assimilation rather than a simple diversion of biopolymers by competition
for substrate.

Lately, transgenic sugarcane plants with developmentally controlled expression
of a silencing-resistant gene encoding a vacuole-targeted isomaltulose synthase
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were tested under field conditions. High yields of isomaltulose were obtained, up
to 81 % of total sugars in whole-cane juice from plants aged 13 months (Mudge
et al. 2013). Using promoters from sugarcane to drive expression preferentially in
the sugarcane stem, isomaltulose levels were consistent between stalks and stools
within a transgenic line and across consecutive vegetative field generations of
tested high-isomer lines. Importantly, these data represent the highest yields ever
achieved of value-added materials through plant metabolic engineering. The
sugarcane stem promoters are promising for strategies to achieve even higher
isomaltulose levels and for other applications in sugarcane molecular improve-
ment. Silencing-resistant transgenes are critical for delivering the potential of these
promoters in practical sugarcane improvement. At the isomaltulose levels now
achieved in field-grown sugarcane, direct production of this disaccharide in plants
is feasible at a cost approaching that of sucrose, which should make the benefits of
isomaltulose affordable on a much wider scale.

5.6 Potentialities and Challenges of Sugarcane
as a Biofactory

Recently, sugarcane has become an important crop for food and energy produc-
tion, and is emerging as a pivotal biofactory for high-value products. Its ability to
accumulate high levels of sucrose in its stems and its distinctive high yield make it
a unique crop, showing it to be the highest tonnage crop among cultivated plants.
Though breeding programs have focused on improving sugar content, an evolving
industry of biofuel and bio-based compounds such as biopolymers, pharmaceutical
proteins, and novel carbohydrates may require vast amounts of biomass and,
therefore, higher yields as well (Dal-Bianco et al. 2012).

Compared to other major crops, efforts to improve sugarcane are limited, as a
consequence of its narrow gene pool, complex genome for molecular breeding,
and the long breeding/selection cycle. These constraints, nonetheless, make sug-
arcane a good candidate for the application of molecular technologies. In recent
years, considerable progress has been made in understanding the sugarcane gen-
ome, creating transgenic plants with improved agronomic, industrial, or other
important traits, developing novel molecular markers, and understanding the
molecular aspects of sucrose biosynthesis, transport, and accumulation in greater
detail (Lakshmanan et al. 2005; Ming et al. 2006; Paterson et al. 2013). Accord-
ingly, biotechnological routes for sugarcane improvement including technological
data available and the use of marker-assisted breeding, genome sequencing,
genetic engineering, and gene discovery for traits of interest are being addressed to
reach higher productivity goals and develop sustainable molecular pharming.

Although a plethora of advantages of crop plants as biofactories are well
documented (Ahmad et al. 2010; Becerra-Moreno et al. 2012; Jacobo-Velázquez
et al. 2011; Jenkins et al. 2011; Rigano et al. 2013) as they are renewable resources
of lower environmental impacts with balanced carbon emission, these systems also
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face technical constraints and have to compete functionally and economically with
traditional petrochemical production methods (Nielsen 2005; Goldemberg et al.
2008). Consequently, low-cost raw materials, efficient biocatalysis, and product
innovations are all key determinants of success. Accordingly, sugarcane juice is a
readily fermentable low-cost feedstock, and the bagasse, representing outstanding
sources of low-cost green process energy, and fermentable and aromatic com-
pounds (Chandel et al. 2013; Cheng and Zhu 2013; Nielsen 2005). Moreover,
sugarcane has several other traits that give it tremendous potential to become a
critical crop for transition from petrochemical-based to bio-based economies
(Paterson et al. 2013). Then, using sugarcane as a biofactory of novel environ-
mentally friendly products may also offer possible diversification for cane-growers,
as well as reducing the reliance by rural sectors on sugar prices (Nielsen 2005).
Currently, important research groups are involved in this form of biopharming
projects around the world.

Nevertheless, many impasses must be overcome before sugarcane biofactories
can become a commercial fact. To contend with commercial protein production
systems that use well-established molecular protocols in plants such as maize and
tobacco, approaches will need to bring about much higher levels of protein
expression in the transformed sugarcane plants, especially in the stalk. These
challenges will demand the identification, isolation, and amplification of new
promoter regions (both constitutive and inducible), development of novel vectors,
and success with both transcriptional and post-transcriptional gene modification
and silencing. Moreover, the protocols for protein extraction and purification at an
industrial level from vegetative tissues represent a daunting task that has to be
addressed with several innovative strategies. Practical knowledge and skills in this
field are in their infancy, and especially for global industries such as sugarcane
(Paterson et al. 2013).

Constraints related to the long time required for conventional breeding of
sugarcane (i.e., it takes 12–15 years to carry out, test and launch a new variety to
the market) and its highly complex genome (polyploidy and aneuploidy) may be
overcome by using molecular approaches. However, sugarcane exhibits recalci-
trance to genetic transformation and several parameters usually need optimization
at the variety level to reach higher transformation efficiencies (Scortecci et al.
2012). Indeed, the first protocol developed for genetic transformation of sugarcane
was particle bombardment (biolistic) of cell suspension, embryogenic callus or
meristem (Bower and Birch 1992; Snyman et al. 2006), but the efficiency of this
method depends on callus formation and plant regeneration, which varies with
genotype and culture conditions (Kaeppler et al. 2000; Scortecci et al. 2012).
Later, Agrobacterium tumefaciens-mediated transformation arose (Arencibia et al.
1998; Brumbley et al. 2008) and was more efficient than biolistics for its higher
stability on transgene expression, which derives from the smaller number of
transgene copies integrated into the genome (Dai et al. 2001; Scortecci et al. 2012).
Nevertheless, Agrobacterium-mediated transformation has shown low efficiency
and is highly genotype- dependent, so that some in vitro culture parameters
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resulted as key factors to improve this transformation method, as well as genotype
screening, explant type and quality, selective agents, and Agrobacterium strains
(Arencibia et al. 1998; Arencibia and Carmona, 2006; Manickavasagam et al.
2004). Importantly, Jackson et al. (2013), van der Vyver et al. (2013) and Mayavan
et al. (2013) have recently reported successful results using both transformation
methods for sugarcane.

Although no commercial transgenic sugarcane variety is available in the market
so far, genes associated with sucrose content (Papini-Terzi et al. 2009), resistance to
pests and pathogens, including constructs against insects, bacteria, and viruses
(Arencibia et al. 1997, 1999; Falco and Silva-Filho 2003; Ingelbrecht et al. 1999;
Weng et al. 2006, 2011; Zhu et al. 2011; Ismail 2013), herbicide-resistance genes as
selective markers (Manickavasagam et al. 2004) and drought tolerance (Molinari
et al. 2007) have been successfully cloned into some varieties. Besides, none of those
reports refers to plastid transformation, even though this technology is considered a
valuable tool for improving the containment of the transgene, and enhancing the
biosafety of genetically modified (GM) plants (CBU 2007; Gottschamel et al. 2013;
Ruf et al. 2007; Scortecci et al. 2012).

The inheritance of the chloroplasts in most plants is maternal, as these organ-
elles are not carried by pollen. The manipulation of the chloroplast genome for
crop improvement is therefore a highly promising technology for biosafety rea-
sons. There are several examples of agronomical and biotechnological applications
of plastid transformation with enhanced biosafety and higher transgene product
yields in C4 plants and green microalgae (Wang et al. 2009; Chen and Melis 2013;
Hanson et al. 2013) and new advances are being developed (Gottschamel et al.
2013). Although chloroplast genetic transformation is still very incipient in
monocots like rice (Lee et al. 2006) and wheat (Cui et al. 2011; He 2012), and it
has not been reported for sugarcane (Scortecci et al. 2012), the research avenue is
widely open since the chloroplast genome of sugarcane has been completely
sequenced (Calsa-Júnior et al. 2004), which enables recombination-based trans-
formation with huge potential for basic and applied research in molecular
pharming.

Importantly, a repertoire of gene promoters that work efficiently and precisely
regarding level, timing, and location of expression is a critical element of trans-
genic cultivar development (Scortecci et al. 2012).

Public opinion currently appears to be biased against foods derived from GM
organisms, and the cane industry faces a general community rejection of sugar
produced by GM plants (Grice et al. 2003). In other industries, GM cultivars that
are environmentally friendly and not designed for human consumption (e.g.,
Bt-cotton) have been accepted reasonably well. One of the main causes of public
concern about genetic engineering has been the lack of information about the
process and the types of products, particularly nonfood products that can be
developed. As a consequence, in many countries GM sugarcane is facing release
restrictions (Grice et al. 2003; Cheavegatti-Gianotto et al. 2011; Scortecci et al.
2012), which has to be taken into consideration when designing sugarcane
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programs aimed at developing biofactories using GM strategies. Due to the
potential for new alternative uses of sugarcane other than food, such as supplying
high-value niche markets with a variety of novel products, the need for further
analyses into product diversification as a way of increasing industry returns has
also been emphasized (Grice et al. 2003).

Thus, despite the convoluted genetic system present in sugarcane, which largely
limits the use of traditional genetic markers in breeding programs, it is becoming
clear that molecular genetics and genomics will play important roles in sugarcane
breeding programs, as transformation techniques become more efficient and more
molecular tools (characterization of genes of interest, transformation vectors,
specific promoters) become available.

Of economical relevance, Hansen et al. (2011) describe a series of recent
patents on methods and techniques involving genes coding for proteins and
breeding techniques with agronomic applicability on economically important
crops, including sugarcane.

The sequencing of the complete sugarcane genome led by an international
research group from Australia, Brazil, China, France, South Africa, and the USA is
underway, and will greatly contribute to deciphering vital genetic information
controlling crucial desirable traits related to genomic organization, promoters,
gene regulators, and gene networks controlling metabolic pathways (Hotta et al.
2010; Scortecci et al. 2012; Dal-Bianco et al. 2012).

Moreover, sugarcane plantations are often criticized as they occupy large field
areas of fertile arable land that otherwise could be used for food production, for
impacting the environment with deforestation and land degradation, monocultures,
as well as pollution (run-off of fertilizers, pesticides and molasses; pre-harvest
burning and air pollution) (Scortecci et al. 2012; Uriarte et al. 2009). As envi-
ronmental and social responsibility issues are being addressed in agriculture more
often, it is also criticized that sugarcane production systems rely heavily on low-
paid seasonal jobs and labor abuses worldwide (child labor, slavery regimen,
hazardous conditions, underpayment) (Martinelli and Filoso 2008; Miranda 2010;
Scortecci et al. 2012). Therefore, a need for developing a sustainable sugarcane
industry with social responsibility is demanded by society worldwide.

Till date, substantial efforts have been directed toward sugarcane as a biofabric
for high-value products. While these achievements are commendable, a greater
understanding of the sugarcane genome, cell, and whole plant biology will
accelerate the implementation of commercially significant biotechnology out-
comes (Lakshmanan et al. 2005; Ming et al. 2006). The rapid progress in
molecular biology and emerging biotechnology innovations will play significant
roles in future sugarcane crop improvement programs and will offer many new
opportunities to develop it as a new generation industrial crop and a sustainable
biofactory.
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5.7 Conclusions and Future Perspectives

Sugarcane has become an ideal biofactory, as it converts sunlight and water into
biomolecules such as sugar, fibers, and waxes in a very efficient manner, making it
the most productive field crop among cultivated plants. However, theoretical and
technical constraints are yet to be overcome. Accordingly, using sugarcane as a
biofactory is an exciting but challenging area of research and innovation that could
have a huge influence on the evolution of alternative sugarcane industries
worldwide.

Its complex polyploidy and high level of heterozygocity make proper exploi-
tation of sugarcane variability a tough task. Consequently, significant advances in
traditional breeding of sugarcane are limited by its narrow gene pool, complex
genome, and the long breeding cycle. However, these disadvantages make sug-
arcane a good candidate for the application of transgenic approaches. Indeed,
examples of sugarcane transgenic lines exhibiting improved agronomic and
industrial traits have been cited in this chapter.

Thus, the establishment of molecular approaches reviewed herein to develop
sugarcane into a biofactory demonstrates that this crop has tremendous potential
and may play an important role in the growing bioeconomy through biopharming.
Like no other contemporary crop, sugarcane is facing new paradigms and is
expected to contribute at least partially to the development of new generation
highly profitable biofactories. Social and biosafety issues are expected to be
considered in any program aimed at developing a sustainable novel sugarcane
biofactory in the future.
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