
Chapter 4
Technical Tools

Abstract This chapter provides tools that are useful for the solution and handling
of master equations. We start with simple analytic approaches including the equa-
tion of motion technique and the quantum regression theorem. As numerical tech-
niques, we investigate a Runge–Kutta solver applied to a master equation and intro-
duce the stochastic Schrödinger equation. For rate equations obeying local detailed
balance, we treat the evolution of the Shannon entropy and connect it to the full
counting statistics. We show how the statistics of energy and matter transfers can be
extracted from the master equation. In particular, we demonstrate how the moments
and cumulants of the corresponding distributions can be obtained. Finally, we re-
late symmetries in the respective generating functions with the fluctuation theorem
for entropy production. The methods in this chapter may also be applied to Marko-
vian master equations that are not in Lindblad form; only constant coefficients and
a time-local evolution equation for the density matrix are required.

4.1 Analytic Techniques for Solving Master Equations

Trivially, as the superoperator notation in Sect. 1.6 allows us to write master equa-
tions as systems of ordinary coupled differential equations with constant coeffi-
cients, we may obtain the solution of the master equation by exponentiating the
Liouvillian superoperator

ρ(t) = eL t ρ0. (4.1)

This is usually quite difficult and constrained to very small dimensions of L . In
addition, since the Liouville superoperator L is not hermitian, it need not even
have a spectral decomposition.

Exercise 4.1 (Single resonant level) Calculate the matrix exponential of the Liou-
villian superoperator for a single resonant level tunnel-coupled to a single junction

L =
(−Γf +Γ (1 − f )

+Γf −Γ (1 − f )

)
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62 4 Technical Tools

when the dot level is much lower than the Fermi edge (f → 1) and when it is much
larger than the Fermi edge f → 0.

Thus, solving the master equation by brute force is usually not advisable.

4.1.1 Laplace Transform

If one is only interested in stationary properties, it is often useful to obtain the formal
solution by performing a Laplace transform, ρ̃(z) = ∫∞

0 ρ(t)e−zt dt . In frequency
space, the master equation is then reduced to an algebraic problem, which may
readily be solved by

ρ̃(z) = 1

z · 1 − L
ρ0, (4.2)

where ρ0 is just the initial state. This just requires the computation of the inverse of
z · 1 − L , which is significantly less demanding than exponentiating a matrix. The
main obstacle however is the calculation of the inverse Laplace transform, which
requires one to identify the poles of [z · 1 − L ]−1. In cases where one is only
interested in stationary values, it can be useful to compute the steady-state values of
observables by exploiting properties of the Laplace transform: the long-time limit of
a function in the time domain can be obtained from a small-z limit in the frequency
domain, limt→∞ f (t) = limz→0 zf̃ (z). Applied to an observable, this yields

〈Ā〉 = Tr{Aρ̄} = lim
z→0

zTr
{
Aρ̃(z)

}= lim
z→0

zTr

{
A

1

z · 1 − L
ρ0

}
, (4.3)

such that the trace can be performed in frequency space, which may sometimes yield
significant simplifications.

4.1.2 Equation of Motion Technique

Instead of solving the master equation for the density matrix, it may be more favor-
able to derive a related linear set of first-order differential equations for observables
〈Bi〉(t) of interest instead. In fact, for infinitely large system Hilbert space dimen-
sions such a procedure might even be necessary:

〈
Ḃi(t)

〉 = Tr
{
BiL ρ(t)

}

= −i Tr
{
Bi

[
H,ρ(t)

]}+
∑
α

γα Tr

{
Bi

(
Lαρ(t)L†

α − 1

2

{
L†

αLα,ρ(t)
})}
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= Tr

{(
+i[H,Bi] +

∑
α

γα

[
L†

αBiLα − 1

2

{
L†

αLα,Bi

}])
ρ(t)

}

= Tr

{[∑
j

GijBj

]
ρ(t)

}
=
∑
j

Gij

〈
Bj (t)

〉
, (4.4)

where in the last line we have used the fact that there is for a finite-dimensional
system Hilbert space only a finite set of linearly independent operators. The linear
coefficients Gij have to be found for each master equation separately. The advantage
is that, for well-chosen sets of operators, one can hope to end up with a much smaller
set of equations than are necessary for solving the complete master equation. For
example, this is the case when the matrix Gij has a block structure.

Exercise 4.2 (Equation of motion for the harmonic oscillator) Calculate the expec-
tation value of a + a† for a cavity in a vacuum bath

ρ̇ = −i[H,ρ] + γ

[
aρa† − 1

2

{
a†a,ρ

}]
. (4.5)

4.1.3 Quantum Regression Theorem

As with the Heisenberg picture for closed quantum systems, it may be favorable to
keep the density matrix as constant and to shift the complete time dependence to the
operators. From Eq. (4.4) we can conclude for the operators that

Ḃi(t) = L †Bi(t) = +i
[
H,Bi(t)

]+∑
α

γα

[
L†

αBi(t)Lα − 1

2

{
L†

αLα,Bi(t)
}]

=
∑
j

GijBj (t), (4.6)

where we have introduced the adjoint Liouvillian L †. For open quantum systems,
it is however often important to calculate the expectation values of operators at
different times, which may be facilitated with the help of the quantum regression
theorem. We find directly from properties of the matrix exponential that

d

dτ
Bi(t + τ) = L †Bi(t + τ) =

∑
j

GijBj (t + τ). (4.7)

Using this relation, we find the quantum regression theorem for two-point correla-
tion functions.

Definition 4.1 (Quantum regression) Let single observables follow the closed equa-
tion 〈Ḃi〉 =∑j Gij 〈Bj 〉. Then, the two-point correlation functions obey the equa-
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tions

d

dτ

〈
Bi(t + τ)B�(t)

〉=∑
j

Gij

〈
Bj (t + τ)B�(t)

〉
(4.8)

with exactly the same coefficient matrix Gij .

The advantage of the quantum regression theorem is that it enables the calcu-
lation of expressions for two-point correlation functions just from the evolution of
single-operator correlation functions.

Let us consider the example of a single electron transistor (SET) at infinite bias
(fL → 1 and fR → 0). The single-operator expectation values obey

d

dt

(〈dd†(t)〉
〈d†d(t)〉

)
=
(−ΓL +ΓR

+ΓL −ΓR

)(〈dd†(t)〉
〈d†d(t)〉

)
, (4.9)

such that the quantum regression theorem tells us that

d

dτ

(〈dd†(t + τ)d†d(t)〉
〈d†d(t + τ)d†d(t)〉

)
=
(−ΓL +ΓR

+ΓL −ΓR

)(〈dd†(t + τ)d†d(t)〉
〈d†d(t + τ)d†d(t)〉

)
. (4.10)

4.2 Numerical Techniques for Solving Master Equations

Numerical techniques are applicable when analytic methods fail or would require
comparably large efforts. We will just discuss two popular approaches here.

4.2.1 Numerical Integration

Numerical integration is generally performed by discretizing time into sufficiently
small steps. Note that there are different discretization schemes, e.g., explicit ones,

ρ(t + Δt) − ρ(t)

Δt
= L ρ(t), (4.11)

where the right-hand side depends on time t , and implicit ones, such as

ρ(t + Δt) − ρ(t)

Δt
= L

1

2

[
ρ(t) + ρ(t + Δt)

]
. (4.12)

Whereas it is straightforward to solve the explicit scheme for ρ(t + Δt), in the im-
plicit scheme this would require matrix inversion. Thus, the differential equation is
mapped to an iteration equation that maps the density matrix from time t to time
t + Δt . As a rule of thumb, explicit schemes are easy to implement but may be
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numerically unstable (i.e., an adaptive stepsize may be required to prevent the so-
lution from exploding) [1]. In contrast, implicit schemes are usually more stable
but require a lot of effort to propagate the solution. Here, we will just discuss a
fourth-order Runge–Kutta solver [2].

In order to propagate a density matrix ρn at time t to the density matrix ρn+1 at
time t + Δt , the fourth-order Runge–Kutta scheme requires the evaluation of four
intermediate values σn,1, σn,2, σn,3, and σn,4 that can be successively computed from
ρn by applying a single multiplication with the Liouvillian L . The density matrix
at time t + Δt is then obtained from these auxiliary intermediate values. Explicitly,
the Runge–Kutta algorithm is given by

σn,1 = ΔtL ρn,

σn,2 = ΔtL

(
ρn + 1

2
σn,1

)
,

σn,3 = ΔtL

(
ρn + 1

2
σn,2

)
,

σn,4 = ΔtL (ρn + σn,3),

ρn+1 = ρn + 1

6
σn,1 + 1

3
σn,2 + 1

3
σn,3 + 1

6
σn,4 + O

{
Δt5}.

(4.13)

This explicit scheme requires four matrix-vector multiplications per time step. It
should always be used in combination with an adaptive stepsize, which can be con-
trolled by comparing (e.g., by computing the norm of the difference) the result from
two successive propagations with stepsize Δt with the result of a single propaga-
tion with stepsize 2Δt . If the difference exceeds a predefined error bound, the step-
size must be reduced (and the intermediate result should be discarded). If it is not
too large, the result can always be accepted. If the error estimate is much smaller
than the error bound, one can cautiously increase the time step. In particular when
the matrix-vector multiplication is costly, this will save precious computation time.
Thus, the required computational overhead of 50 % for an adaptive stepsize is well
justified.

Exercise 4.3 (Order of the Runge–Kutta scheme) Acting with the Liouville super-
operator performs the time derivative of the density matrix. Show that the presented
scheme (4.13) is of fourth order in Δt , i.e., that

ρn+1 =
[

1 + L Δt + L 2 Δt2

2! + L 3 Δt3

3! + L 4 Δt4

4!
]
ρn + O{Δt}5.

If the Liouvillian L does not have a special structure, the Runge–Kutta scheme
requires one to store the N ×N density matrix completely. Since N scales exponen-
tially with the size of the system, this may be quite demanding—if not impossible
for larger quantum systems.
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4.2.2 Simulation as a Piecewise Deterministic Process (PDP)

Suppose we would like to solve the Lindblad form master equation (in diagonal
representation)

ρ̇ = −i[H,ρ] +
∑
α

γα

[
LαρL†

α − 1

2

{
ρ,L†

αLα

}]
(4.14)

numerically, but we are not able to store the N2 matrix elements of the density
matrix nor to write the master equation in a simpler (e.g., rate equation or block
structure) representation.

If it is possible to store at least N states, the master equation can be unraveled
to a piecewise deterministic process (PDP) for a pure quantum state. The advantage
here lies in the fact that a pure state requires only N complex observables to be
evolved.

Consider the nonlinear but deterministic equation

˙|Ψ 〉 = −i

[
H − i

2

∑
α

γαL†
αLα

]
|Ψ 〉 + 1

2

[∑
α

γα〈Ψ |L†
αLα|Ψ 〉

]
|Ψ 〉. (4.15)

Although this is nonlinear in |Ψ (t)〉, one can show that the solution is given by

|Ψ 〉 = e−iMt |Ψ0〉
〈Ψ0|e+iM†t e−iMt |Ψ0〉1/2

, (4.16)

where we have used the operator M = H − i
2

∑
α γαL†

αLα , which is also often
termed the non-hermitian Hamiltonian.

Exercise 4.4 (Norm for continuous evolution) Calculate the norm of the state vector
〈Ψ (t)|Ψ (t)〉 from Eq. (4.16).

We show the validity of the solution by differentiation

|Ψ̇ 〉 = −iM|Ψ 〉 − 1

2

e−iMt |Ψ0〉
〈Ψ0|e+iM†t e−iMt |Ψ0〉3/2

× i
[〈Ψ0|e+iM†tM†e−iMt |Ψ0〉 − 〈Ψ0|e+iM†tMe−iMt |Ψ0〉

]

= −iM|Ψ 〉 − 1

2

e−iMt |Ψ0〉
〈Ψ0|e+iM†t e−iMt |Ψ0〉3/2

i〈Ψ0|e+iM†t
[
M† − M

]
e−iMt |Ψ0〉

= −iM|Ψ 〉 + 1

2

e−iMt |Ψ0〉
〈Ψ0|e+iM†t e−iMt |Ψ0〉3/2

∑
α

γα〈Ψ0|e+iM†tL†
αLαe−iMt |Ψ0〉

= −iM|Ψ 〉 + 1

2
|Ψ 〉

∑
α

γα〈Ψ |L†
αLα|Ψ 〉. (4.17)
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However, the name PDP already suggests that the process is only piecewise de-
terministic. To reproduce the original Lindblad dynamics, the continuous evolu-
tion (4.16) must be interrupted by stochastic events. The total probability that a
jump of the wave function will occur in the infinitesimal interval [t, t +Δt] is given
by

Pjump = Δt
∑
α

γα〈Ψ |L†
αLα|Ψ 〉. (4.18)

That is, if a jump has occurred, one still has to decide which jump. Choosing a
particular jump

|Ψ 〉 → Lα|Ψ 〉√
〈Ψ |L†

αLα|Ψ 〉
(4.19)

is performed randomly with conditional probability

Pα = γα〈Ψ |L†
αLα|Ψ 〉∑

α γα〈Ψ |L†
αLα|Ψ 〉 , (4.20)

where the normalization is obvious. This recipe for deterministic (continuous) and
jump evolutions may also be written as a single stochastic differential equation,
which is often called the stochastic Schrödinger equation [3].

Definition 4.2 (Stochastic Schrödinger equation) A Lindblad-type master equa-
tion of the form

ρ̇ = −i[H,ρ] +
∑
α

γα

[
LαρL†

α − 1

2

{
ρ,L†

αLα

}]
(4.21)

can be effectively modeled by the stochastic differential equation

|dΨ 〉 =
[
−iH − 1

2

∑
α

γαL†
αLα + 1

2

∑
α

γα〈Ψ |L†
αLα|Ψ 〉

]
|Ψ 〉dt

+
∑
α

(
Lα|Ψ 〉√

〈Ψ |L†
αLα|Ψ 〉

− |Ψ 〉
)

dNα, (4.22)

where the Poisson increments dNα satisfy

dNα dNβ = δαβ dNα, E (dNα) = γα〈Ψ |L†
αLα|Ψ 〉dt (4.23)

and E (x) denotes the classical expectation value (ensemble average).

The last two equations simply mean that at most a single jump can occur at once
(practically we have dNα ∈ {0,1}) and that the probability for a jump at time t is



68 4 Technical Tools

Fig. 4.1 Recipe for propagating the stochastic Schrödinger equation in Definition 4.2. At time t ,
one calculates the total probability of a jump Pjump occurring during the interval [t, t + Δt].
A random number generator is used to determine whether a jump should occur or not. Given
that a jump occurs, one determines which type of jump by drawing another random number:
setting the particular dNα = 1 and dt = 0, one solves the stochastic Schrödinger equation for

|Ψ (t + Δt)〉 = |Ψ (t)〉 + |dΨ (t)〉 α= Lα |Ψ (t)〉/
√

〈Ψ (t)|L†
αLα |Ψ (t)〉 and proceeds with the next

time step. Given that no jump occurs, one sets dNα = 0 for all α, solves the stochastic Schrödinger
equation for |Ψ (t + Δt)〉 = |Ψ (t)〉 + |dΨ (t)〉, and proceeds with the next time step

given by Pα = γα〈Ψ |L†
αLα|Ψ 〉dt . Numerically, it constitutes a simple recipe; see

Fig. 4.1. Altogether, the description in terms of a stochastic differential equation
in Definition 4.2 simply combines the smooth evolution according to the nonlinear
Schrödinger equation (4.15) with stochastic jumps. The concept can be extended
beyond Lindblad master equations [4, 5].

It remains to be shown that this PDP is actually an unraveling of the master
equation; i.e., that the expectation value of the operator π̂ = |Ψ 〉〈Ψ |, also called the
covariance matrix,

ρ = E (π̂) = E
(|Ψ 〉〈Ψ |), (4.24)

fulfills the original Lindblad-type master equation. Then, ensemble averages of all
trajectories will also obey the Lindblad dynamics. To show this, we first note that
〈Ψ |L†

αLα|Ψ 〉 = Tr{L†
αLαπ̂}. The change of the covariance matrix is given by

dπ̂ = |dΨ 〉〈Ψ | + |Ψ 〉〈dΨ | + |dΨ 〉〈dΨ |. (4.25)

Note that the last term cannot be neglected completely, since the term E (dNα dNβ)

is not necessarily small. Making everything explicit, we obtain

dπ̂ = +dt

{
−i[H, π̂] − 1

2

∑
α

γα

{
L†

αLα, π̂
}+

∑
α

γαπ̂ Tr
{
L†

αLαπ̂
}}

+
∑
α

dNα

[
Lαπ̂L†

α

Tr{L†
αLαπ̂} − π̂

]
+ O

{
dt2, dt dNα

}
. (4.26)
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We now use the general relation

E
(
dNα g(π̂)

)= γα dt E
(
Tr
{
L†

αLαπ̂
}
g(π̂)

)
(4.27)

for arbitrary functions g(π̂) of the projector. This relation can be understood by
binning all K values of the actual state π̂ (k)(t) in the expectation value into L

equal-sized compartments where π̂ (k) ≈ π̂ (�). In each compartment, we have N�

realizations of dN�m
α with 1 ≤ m ≤ N� and

∑
� N� = K , of which we can compute

the average first:

E
(
dNα g(π̂)

) = lim
K→∞

1

K

∑
k

dN(k)
α (t) g

(
π̂ (k)(t)

)

= lim
L,N�→∞

∑
� N�

1
N�

∑
m dN

(�m)
α g(π̂ (�)(t))∑

� N�

= lim
L,N�→∞

∑
� N�γα dt Tr{L†

αLαπ̂(�)}g(π̂ (�)(t))∑
� N�

= lim
L,N�→∞

∑
� N�γα dt E (Tr{L†

αLαπ̂(�)}g(π̂ (�)(t)))∑
� N�

= γα dt E
(
Tr
{
L†

αLαπ̂(�)
}
g
(
π̂ (�)(t)

))
, (4.28)

where we have used the relation that x̄ =
∑

i Ni x̄i∑
i Ni

when x̄i represent averages of

disjoint subsets of the complete set. Specifically, we apply it on the expressions

E

(
dNα

π̂

Tr{L†
αLαπ̂}

)
= γα dt E

(
Tr
{
L†

αLαπ̂
} π̂

Tr{L†
αLαπ̂}

)
= γα dt ρ,

E (dNα π̂) = γα dt E
(
Tr
{
L†

αLαπ̂
}
π̂
)
.

(4.29)

This implies that

dρ = dt

{
−i[H,ρ] +

∑
α

γα

[
LαρL†

α − 1

2

{
L†

αLα,ρ
}]}

, (4.30)

i.e., the average of trajectories from the stochastic Schrödinger equation yields the
same solution as the master equation.

This may be of great numerical use: simulating the full master equation for an N -
dimensional system Hilbert space may involve the storage of O{N4} real variables
in the Liouvillian, whereas for the generator of the stochastic Schrödinger equation
one requires only O{N2} real variables. This is of course weakened, since in order
to get a realistic estimate of the expectation value, one has to compute K different
trajectories, but since typically K 	 N2, the stochastic Schrödinger equation is a
useful tool in the numeric modeling of a master equation.
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4.2.2.1 Example: Cavity in a Thermal Bath

As an example, we study the cavity in a thermal bath. We have the Lindblad-type
master equation describing the interaction of a cavity mode with a thermal bath,

ρ̇S = −i
[
Ωa†a,ρS

]+ γ (1 + nB)

[
aρSa† − 1

2
a†aρS − 1

2
ρSa†a

]

+ γ nB

[
a†ρSa − 1

2
aa†ρS − 1

2
ρSaa†

]
. (4.31)

We can immediately identify the jump operators

L1 = a and L2 = a† (4.32)

and the corresponding rates

γ1 = γ (1 + nB) and γ2 = γ nB. (4.33)

From the master equation, we obtain for the occupation number n = 〈a†a〉 the evo-
lution equation d

dt
n = −γ n + γ nB , which is solved by

n(t) = n0e
−γ t + nB

[
1 − e−γ t

]
. (4.34)

The corresponding stochastic differential equation reads

|dΨ 〉 =
{
−iΩa†a − 1

2

[
γ (1 + 2nB)a†a + γ nB

]

+ 1

2

[
γ (1 + 2nB)〈Ψ |a†a|Ψ 〉 + γ nB

]}|Ψ 〉dt

+
(

a|Ψ 〉√〈Ψ |a†a|Ψ 〉 − |Ψ 〉
)

dN1

+
(

a†|Ψ 〉√〈Ψ |aa†|Ψ 〉 − |Ψ 〉
)

dN2. (4.35)

When the initial state is not a superposition of different Fock basis states, the
above equation becomes particularly simple. For example, for a Fock number state
|Ψ 〉 = |n〉 we obtain

|dn〉 =
{
−iΩn − 1

2

[
γ (1 + 2nB)n + γ nB

]+ 1

2

[
γ (1 + 2nB)n + γ nB

]}|n〉dt

+ (|n − 1〉 − |n〉)dN1 + (|n + 1〉 − |n〉)dN2

= −iΩndt |n〉 + (|n − 1〉 − |n〉)dN1 + (|n + 1〉 − |n〉)dN2 (4.36)
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such that, provided we start in a single energy eigenstate, superpositions are never
created during the evolution. The total probability of having a jump in the system
during the interval dt is given by

Pjump = γ dt
[
(1 + nB)〈n|a†a|n〉 + nB〈n|aa†|n〉]

= γ
[
(1 + nB)n + nB(n + 1)

]
dt. (4.37)

If no jump occurs, the system evolves only oscillatory behavior, which has no effect
on the expectation value of a†a. However, if a jump occurs, the respective condi-
tional probability of jumping out of the system reads

P1 = (nB + 1)n

(nB + 1)n + nB(n + 1)
(4.38)

and that of jumping into the system consequently reads (these must add up to one)

P2 = nB(n + 1)

(nB + 1)n + nB(n + 1)
. (4.39)

Computing trajectories with a suitable random number generator and averaging the
trajectories, we find convergence to the master equation result as expected; see
Fig. 4.2. The plots in Fig. 4.2 could with the same effort have been obtained by
a Monte Carlo solution of the rate equation corresponding to Eq. (4.31),

ρ̇nn = −γ
[
n(1 + nB) + (n + 1)nB

]
ρnn + γ (n + 1)(1 + nB)ρn+1,n+1

+ γ nnBρn−1,n−1. (4.40)

The rate equation alone however is not sufficient to describe the decay of initial
superpositions to a statistical mixture; thus, the stochastic Schrödinger equation is a
more general tool.

4.3 Shannon’s Entropy Production

We assume that in some favorable basis (e.g., the system energy eigenbasis) the
populations of the density matrix Pi = ρii obey a rate equation dynamics

Ṗi =
∑
j

LijPj =
∑
j

∑
ν

L (ν)
ij Pj , (4.41)

where the rates Lij from state j to state i are additively decomposable into contri-
butions from different reservoirs ν. Such rate equations are commonly obtained for
the quantum optical master equation in Definition 2.4 when nondegenerate system
energies are assumed. Furthermore, the assumption of additively entering rates is
quite naturally related to the weak coupling limit: it is always possible for an inter-
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Fig. 4.2 Single trajectories of the stochastic Schrödinger equation (curves with integer jumps).
The averages of 10, 100, and 1000 trajectories (thin dotted, dashed, and solid curves, respectively)
converge to the prediction from the associated master equation (thick solid curve). Parameters have
been chosen as γ dt = 0.01, nB = 1.5

action of the form HI =∑α Aα ⊗ Bα with system and bath operators Aα and Bα ,
respectively, to choose 〈Bα〉 = 0. For L multiple reservoirs kept at different equi-
librium states, the stationary density matrix is given by a tensor product of different
equilibrium states

ρ̄ = e−β1(H
(1)
B −μ1N

(1)
B )

Z1
⊗ · · · ⊗ e−βL(H

(L)
B −μLN

(L)
B )

ZL

, (4.42)

where βν and μν represent the temperature and chemical potential of the ν-th reser-
voir described by the Hamiltonian H

(ν)
B and with total particle number operator

N
(ν)
B .

Exercise 4.5 (Additivity of rates) Show that for an interaction Hamiltonian of the
form HI =∑α Aα ⊗ Bα =∑a

∑
ν Aaν ⊗ Baν , where ν labels the reservoir and

where 〈Baν〉 = 0 holds, different reservoirs do not interfere, such that the rates can
be calculated additively:

Cαβ(τ) = Caν,bμ(τ ) = 〈Baν(τ )Bbν

〉
δμν.
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4.3.1 Balance Equation Far from Equilibrium

Keeping in mind that each reservoir is kept at a certain equilibrium, we postulate
the existence of a local detailed balance condition for each reservoir. This implies
that the ratio of forward and backward transition rates between states i and j that
are triggered by reservoir ν obey

L (ν)
j i

L (ν)
ij

= e−βν [(εj −εi )−μν(nj −ni)], (4.43)

where βν and μν denote the inverse temperature and chemical potential of the cor-
responding reservoir, and εi and ni denote the energy and particle number of the
state i, respectively. The above relation follows naturally from the extension of the
Kubo–Martin–Schwinger (KMS) condition (2.51) to systems with chemical poten-
tials and is automatically fulfilled for a large number of microscopically derived
models, as we shall see later.

Then, the Shannon entropy of the system, S = −∑i Pi(t) lnPi(t), obeys a bal-
ance equation,

Ṡ = − d

dt

∑
i

Pi lnPi = −
∑

i

Ṗi lnPi

= −
∑
ij

∑
ν

L (ν)
ij Pj ln

(
Pi

L (ν)
j i

PjL
(ν)
ij

PjL
(ν)
ij

L (ν)
j i

)

= +
∑
ij

∑
ν

L (ν)
ij Pj ln

(L (ν)
ij Pj

L (ν)
j i Pi

)
+
∑
ij

∑
ν

L (ν)
ij Pj ln

(L (ν)
j i

L (ν)
ij

1

Pj

)

= +
∑
ij

∑
ν

L (ν)
ij Pj ln

(
L (ν)

ij Pj

L (ν)
j i Pi

)
+
∑
ij

∑
ν

L (ν)
ij Pj ln

(
L (ν)

j i

L (ν)
ij

)

t→∞→ +
∑
ij

∑
ν

L (ν)
ij P̄j ln

(
L (ν)

ij P̄j

L (ν)
j i P̄i

)

︸ ︷︷ ︸
≥0

+
∑
ij

∑
ν

L (ν)
ij P̄j ln

(
L (ν)

j i

L (ν)
ij

)

︸ ︷︷ ︸
−βν [(εj −εi )−μν(nj −ni)]

.

(4.44)

In the above lines, we have simply used trace conservation
∑

i L
(ν)
ij = 0 and finally

the local detailed balance property (4.43). This property enables us to identify in the
long-term limit the second term as energy and matter currents. When multiplied by
the inverse temperature of the corresponding reservoir, they combine to the entropy
change rate of the reservoirs, which motivates the definition below.
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Definition 4.3 (Entropy flow) For a rate equation of the type (4.41), the entropy
flow from reservoir ν is defined as

Ṡ(ν)
e = +

∑
ij

L (ν)
ij P̄j

[−βν

[
(εj − εi) − μν(nj − ni)

]]

= βν

(
I

(ν)
E − μνI

(ν)
M

)
, (4.45)

where energy currents I
(ν)
E and matter currents I

(ν)
M associated to reservoir ν count

positive when entering the system.

The remaining contribution corresponds to a production term [6]. We note that it
is always positive, which can be deduced from the formal similarity to the Kullback–
Leibler divergence of two probability distributions or, more directly, by using the
logarithmic sum inequality.

Exercise 4.6 (Logarithmic sum inequality) Show that for non-negative ai and bi ,

n∑
i=1

ai ln
ai

bi

≥ a ln
a

b

with a =∑i ai and b =∑i bi .

Its positivity is perfectly consistent with the second law of thermodynamics, and
we therefore identify the remaining contribution as entropy production.

Definition 4.4 (Entropy production) For a rate equation of the type (4.41), the av-
erage entropy production is defined as

Ṡi =
∑
ij

∑
ν

L (ν)
ij P̄j ln

(L (ν)
ij P̄j

L (ν)
j i P̄i

)
≥ 0. (4.46)

It is always positive and at steady state balanced by the entropy flow.

When the dimension of the system’s Hilbert space is finite and the rate equa-
tion (4.41) approaches a stationary state, its Shannon entropy will also approach a
constant value Ṡ = 0. Therefore, at steady state the entropy production in the system
must be balanced by the entropy flow through its terminals

Ṡi = −Ṡe = −
∑
ν

βν

(
I

(ν)
E − μνI

(ν)
M

)
. (4.47)

The above formula conveniently relates the entropy production to energy and matter
currents from the terminals into the system. Evidently, the entropy production is
thus related to heat currents Q̇(ν) = I

(ν)
E − μνI

(ν)
M , which can be determined from a

master equation by means of the full counting statistics.
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We note here that identifying the entropy production in a system is not a purely
academic exercise: in the long term, it is additive in the respective entropy flows, and
their identification allows, e.g., for the definition of thermodynamically meaningful
(and bounded) efficiencies of thermoelectric nanoscale devices.

4.3.2 Linear Response for Two Terminals

As an example, we consider a system coupled to two terminals S and D obeying
a rate equation dynamics as discussed before. In the long-time limit, entropy pro-
duction will be balanced by the entropy flow, and assuming that both energy and
matter currents are conserved, I

(D)
E + I

(S)
E = 0 and I

(D)
M + I

(S)
M = 0, we can express

the entropy production solely using the currents entering the system from the source
Ṡi = (βD −βS)I

(S)
E +(μSβS −μDβD)I

(S)
M . In the linear response regime we assume

that the differences of temperatures and chemical potentials are small. Rewriting
these parameters in terms of mean and differences βS = β −Δβ/2, βD = β +Δβ/2,
μS = μ + Δμ/2, and μD = μ − Δμ/2, the entropy production can be expanded in
Δβ and Δμ, which to lowest order yields

Ṡi = Δβ
(
I

(S)
E − μI

(S)
M

)+ βΔμI
(S)
M = ΔβQ̇ + βΔμIM, (4.48)

where Q̇ represents the heat current and IM the matter current from S to D, respec-
tively. This equation has the characteristic affinity-flux form [7], where the affinity
to the heat current is given by Δβ = βD − βS = ΔT/T 2 + O{ΔT 2}, and the affin-
ity for the matter current is given by βΔμ = β(μS − μD). In the linear response
regime, the fluxes are linearly related to the affinities,

(
Q̇

IM

)
=
(

LQQ LQM

LMQ LMM

)(
Δβ

βΔμ

)
, (4.49)

with the Onsager matrix L. Consequently, the entropy production can—in the linear
response—be expressed as a quadratic form of the affinities

Ṡi = (Δβ,βΔμ)

(
LQQ LQM

LMQ LMM

)(
Δβ

βΔμ

)
. (4.50)

Positivity of the entropy production requires positivity of the Onsager matrix.
Considering, e.g., an SET with the matter current in the weak coupling regime

approaching Eq. (3.50), and assuming tight coupling between energy and matter
currents, such that Q̇ = (ε − μ)IM (compare also Sect. 5.1), the Onsager relations
become (

Q̇

IM

)
= ΓSΓD

ΓS + ΓD

f (1 − f )

(
(ε − μ)2 (ε − μ)

(ε − μ) 1

)(
Δβ

βΔμ

)

with f = 1

eβ(ε−μ) + 1
,

(4.51)
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which fulfills the Onsager relation LQM = LMQ and has a positive definite On-
sager matrix. Due to the tight coupling property we note that the determinant of the
Onsager matrix vanishes.

Exercise 4.7 (SET Onsager relations) Confirm the validity of Eq. (4.51).

4.4 Full Counting Statistics: Phenomenological Introduction

Having successfully derived a rate equation of the form (4.41), one can very often
interpret the process associated with the rate L (ν)

ij as a jump of (|ni − nj |) par-
ticles from the bath ν into the system (when ni > nj ) or out of the system into
the bath ν (when ni < nj ). Typically, the weak coupling limit assumed during the
derivation of the rate equation leads to sequential transport only; i.e., only terms
L (ν)

ij with ni −nj ∈ {−1,0,+1} will be nonvanishing. Such a jump may also trans-
fer the energy |Ei − Ej | from the bath ν into the system (Ei > Ej ) or out of the
system into the bath ν (Ei < Ej ), even if no particles are transferred (ni = nj ).
A straightforward observation is that even though on average a matter or energy
current may be directed in a certain direction, there is for a given initial state a finite
probability that a jump will occur in the opposite direction. Such trajectories would
actually decrease the entropy of the system and must—since they are not completely
forbidden—somehow be suppressed to obey the second law on average. Fortunately,
one may calculate the statistics of these events in a straightforward manner, as will
be discussed in the following subsections.

4.4.1 Discrete Particle Counting Statistics

We denote the probability that the system is in the state i and simultaneously n

particles have tunneled into reservoir σ by P
(n)
i (t). Obviously, we have −∞ < n <

+∞ (unless transport is unidirectional) and Pi(t) =∑n P
(n)
i (t). However, the rate

equation (4.41) can now be written as

Ṗ
(n)
i =

∑
ν �=σ

∑
j

L (ν)
ij P

(n)
j + L (σ )

ii P
(n)
i +

∑
j �=i

L (σ )
ij P

(n+ni−nj )

j , (4.52)

where we have separated the jumps triggered by other reservoirs than σ and also the
trace-preserving diagonal term proportional to L (σ )

ii . We note that one can interpret

the term L (σ )
ij P

(n+ni−nj )

j as follows: before the jump, the system is in state j with

nj particles in the system and n + ni − nj particles in reservoir σ . After the jump,
the system is in state i with ni particles in the system and n particles in reservoir σ .
Thus, the combined particle number n+ni in both system and reservoir is conserved
during the jump.
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For ease of notation, we write the conditioned rate equation (4.52) as a condi-
tioned density vector ρ(n) = (P

(n)
1 , . . . ,P

(n)
d )T and assume that at most one particle

can be transferred at once to and from the bath. This is the standard case arising in
most microscopic derivations; however, for a counter-example we refer the reader
to Sect. 5.8. Then, Eq. (4.52) becomes

ρ̇(n) = L0ρ
(n) + L−ρ(n+1) + L+ρ(n−1), (4.53)

and the translational invariance in n (the rates contained in L0/± do not depend on
n themselves) suggests that we simplify the coupled system via a discrete Fourier
transformation,

ρ(χ, t) =
∑
n

ρ(n)(t)einχ , (4.54)

which yields a d-dimensional ordinary differential equation similar to a rate equa-
tion but now with complex-valued rates, since we have introduced the counting
field χ :

ρ̇(χ, t) = [L0 + e−iχL− + e+iχL+
]
ρ(χ, t) = L (χ)ρ(χ, t). (4.55)

Thus, we have reduced the dimension at the price of introducing a dimensionless
counting field, but the resulting generalized master equation can now be formally
solved as

ρ(χ, t) = eL (χ)tρ(χ,0) = eL (χ)tρ0, (4.56)

where we have used the convention that at time t = 0 no particles should have en-
tered the reservoir ρ(n)(0) = ρ0δn,0.

If we disregard the state of the system and only consider the number of tunneled
particles, the corresponding probability becomes

Pn(t) =
∑

i

P
(n)
i (t) = Tr

{
ρ(n)(t)

}= 1

2π

∫ +π

−π

Tr
{
eL (χ)tρ0

}
e−inχdχ, (4.57)

where we have simply inserted the inverse of the discrete Fourier transform (4.54).
By tracing over Eq. (4.54) and taking suitable derivatives with respect to the count-
ing field χ , we note that the moments of this probability distribution can be conve-
niently calculated by taking derivatives:

〈
nk
〉≡∑

n

nkPn(t) = (−i∂χ )k Tr
{
ρ(χ, t)

}∣∣
χ=0

= (−i∂χ )k Tr
{
eL (χ)tρ0

}∣∣
χ=0. (4.58)

This directly motivates us to define a moment-generating function.
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Definition 4.5 (Moment-generating function) With a particle-counting-field de-
pendent Liouvillian L (χ), the moment-generating function corresponding to the
distribution Pn(t) is defined as

M(χ, t) = Tr
{
eL (χ)tρ0

} t→∞→ Tr
{
eL (χ)t ρ̄

}
(4.59)

with the initial state ρ0 and the stationary state defined by L (0)ρ̄ = 0.

Given the moment-generating function, moments of the distribution Pn(t) may
be calculated conveniently via

〈
nk
〉
(t) = (−i∂χ )kM(χ, t)

∣∣
χ=0, (4.60)

whereas the calculation of the full distribution requires one to calculate the full
inverse Fourier transform of the moment-generating function,

Pn(t) = 1

2π

∫ +π

−π

M(χ, t)e−inχ dχ. (4.61)

The latter is, except for some specific cases, only numerically possible.

4.4.2 Continuous Energy Counting Statistics

Similarly, we may extract the statistics of energy transfers from the rate equa-
tion (4.41). One possible way [8] is to treat transitions occurring with a certain en-
ergy transfer ωi with a separate particle number counting ni and a separate dimen-
sionless counting field χi . The total transferred energy can then later be deduced
from the specific particle transitions via E = ∑i ωini . In this case, the energy-
resolved distribution function would then be given by

ρ(E)(t) =
∑

n1,...,nk

ρ(n1···nk)(t)δ

(
E −

∑
i

δEini

)
. (4.62)

Here however, we would like avoid introducing too many counting fields and
therefore decide to count the transferred energy directly [9]. Obviously, when the
transition frequencies of the system ωi are incommensurate, the total transferred
energy E will become a continuous variable.

Denoting the density vector conditioned on energy E contained in the reservoir
σ by ρ(E) = (P

(E)
1 , . . . ,P

(E)
d )T with −∞ < E/Ω < ∞ (for any energy scale Ω)

and ρ(t) = ∫ ρ(E)(t) dE, we may write the rate equation (4.41) as

ρ̇(E) = L0ρ
(E) +

∑
ΔE

LΔEρ(E−ΔE), (4.63)
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where L0 does not induce energy transfers with reservoir σ and LΔE describes the
transfer of energy ΔE from the system to reservoir σ ; negative ΔE simply implies
the opposite direction. Here, one usually has multiple energy differences |ΔE|. Only
very simple systems admit only a single transition frequency, and then energy and
particle currents are tightly coupled. Now, we have to choose a continuous Fourier
transform

ρ(ξ, t) =
∫

ρ(E)(t)eiEξ dE, (4.64)

where the dual field ξ now has the dimension of inverse energy. The Fourier-
transformed master equation becomes

ρ̇(ξ, t) =
[
L0 +

∑
ΔE

LΔEeiξΔE

]
ρ(ξ, t) = L (ξ)ρ(ξ, t), (4.65)

and the field ξ is now allowed to range over the complete real axis. With the con-
vention that initially no energy has been transferred, ρ(E)(0) = δ(E)ρ0, we may
similarly write the solution as ρ(ξ, t) = eL (ξ)tρ0.

The moments of the energy-transfer distribution

〈
Ek
〉=
∫

Ek Tr
{
ρ(E)(t)

}
dE (4.66)

can now be similarly obtained—compare Eq. (4.64)—by differentiation of the
moment-generating function

M(ξ, t) = Tr
{
eL (ξ)tρ0

}
(4.67)

with respect to the dimensioned counting field ξ . Similarly, the full distribution can
be obtained by calculating the inverse Fourier transform of the moment-generating
function

PE(t) = 1

2π

∫ +∞

−∞
M(ξ, t)e−inξ dξ. (4.68)

4.4.3 Moments and Cumulants

It is often more convenient to characterize distributions by cumulants instead of mo-
ments, since higher cumulants are invariant against translations of the distribution
(in the following discussion we treat dimensionless particle counting and dimen-
sioned energy counting similarly).

Definition 4.6 (Cumulant-generating function) The cumulant-generating function
is defined as the logarithm of the moment-generating function:

C(χ, t) = ln Tr
{
eL (χ)tρ0

}
. (4.69)
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The cumulants of the distribution Pn(t) are obtained by differentiation with re-
spect to the counting field

〈〈
nk
〉〉
(t) = (−i∂χ )kC(χ, t)

∣∣
χ=0, (4.70)

and similarly for cumulants of the energy distribution function. Cumulants and mo-
ments are therefore obviously related. Considering for example particle counting,
the first few cumulants can be expressed by the moments as

〈〈
n1〉〉= 〈n1〉,〈〈
n2〉〉= 〈n2〉− 〈n〉2,〈〈
n3〉〉= 〈n3〉− 3〈n〉〈n2〉+ 2〈n〉3,

〈〈
n4〉〉= 〈n4〉− 4〈n〉〈n3〉− 3

〈
n2〉2 + 12〈n〉2〈n2〉− 6〈n〉4,

(4.71)

and they geometrically correspond to the mean, width, skewness, and kurtosis of
a distribution, respectively. It should be noted however that such simple geometric
interpretations only hold for unimodal distributions.

The true advantage of considering cumulants instead of moments becomes visi-
ble for master equations admitting only a single stationary state. Then, the cumulant-
generating function in the large-time limit scales approximately linearly in time,

C(χ, t) → λ(χ)t, (4.72)

where λ(χ) is the eigenvalue of the generalized Liouvillian L (χ) with the largest
real part.

We show this by using the decomposition of the Liouvillian in Jordan block form,

L (χ) = Q(χ)LJ (χ)Q−1(χ), (4.73)

where Q(χ) is a (in general nonunitary) similarity matrix and LJ (χ) contains the
eigenvalues of the Liouvillian on its diagonal, distributed in blocks with a size cor-
responding to the eigenvalue multiplicity. We assume that there exists only one sta-
tionary state ρ̄, i.e., only one eigenvalue λ(χ) with λ(0) = 0, and that all other
eigenvalues have a nonvanishing negative real part near χ = 0. Then, we use this
decomposition in the matrix exponential to estimate its long-term evolution:

M (χ, t) = Tr
{
eL (χ)tρ0

}= Tr
{
eQ(χ)LJ (χ)Q−1(χ)tρ0

}
= Tr

{
Q(χ)eLJ (χ)tQ−1(χ)ρ0

}

→ Tr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q(χ)

⎛
⎜⎜⎜⎝

eλ(χ)·t
0

. . .

0

⎞
⎟⎟⎟⎠Q−1(χ)ρ0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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= eλ(χ)·t Tr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q(χ)

⎛
⎜⎜⎜⎝

1
0

. . .

0

⎞
⎟⎟⎟⎠Q−1(χ)ρ0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= eλ(χ)t c(χ) (4.74)

with some polynomial c(χ) depending on the matrix Q(χ) and on the initial
state ρ0. This implies that the cumulant-generating function

C (χ, t) = lnM (χ, t) = λ(χ)t + ln c(χ) ≈ λ(χ)t (4.75)

becomes linear in λ(χ) for large times, up to a small correction. This small cor-
rection is usually negligible, particularly when one is interested in time derivatives
such as the current. We note here that this simple limit only holds when there is
a unique stationary state. For bistable or multistable systems a more sophisticated
theory applies [10, 11]. Note further, that when cumulants are to be obtained from
the moments, the small constant correction may be important.

Exercise 4.8 (Cumulant-generating function) Calculate the long-term cumulant-
generating function for current through the SET

L (χ) =
( −ΓLfL − ΓRfR +ΓL(1 − fL) + ΓR(1 − fR)e+iχ

+ΓLfL + ΓRfRe−iχ −ΓL(1 − fL) − ΓR(1 − fR)

)
.

What are the first two long-term cumulants for the current, i.e., current I = d
dt

〈〈n〉〉
and noise S = d

dt
〈〈n2〉〉 = d

dt
(〈n2〉 − 〈n〉2)?

4.4.4 Convenient Calculation of Lower Cumulants

To calculate moments and/or cumulants, it is not always necessary to exponentiate
the Liouvillian or to calculate its dominant eigenvalue.

If one is just interested in the long-term current, e.g., the time derivative of the
mean energy or particle number transferred (first moment/cumulant), the calcula-
tions are considerably simplified, since we can insert the stationary state as initial
condition:

I = 〈ṅ(t)
〉= −i∂χ

d

dt
Tr
{
eL (χ)t ρ̄

}∣∣∣∣
χ=0

= −i∂χ Tr
{
L (χ)eL (χ)t ρ̄

}∣∣
χ=0

= −i Tr
{
L ′(0)eL (0)t ρ̄

}− i Tr
{
L (0)∂χeL (χ)t

∣∣
χ=0ρ̄

}
= −i Tr

{
L ′(0)ρ̄

}
, (4.76)
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where we have used L (0)ρ̄ = 0 and also Tr{L (0)S} = 0 for all operators S (trace
conservation). Therefore, to compute the current, the only challenge is to calculate
the stationary state of the rate matrix at vanishing counting fields.

To calculate the long-term limit of higher cumulants, we may also use limits on
the Laplace-transformed moment-generating function:

M̃(χ, z) =
∫ ∞

0
M(χ, t)e−zt dt = Tr

{
1

z1 − L (χ)
ρ0

}

→ Tr

{
1

z1 − L (χ)
ρ̄

}
. (4.77)

Having calculated the first moment 〈n〉 = I t , the time derivative of the second cu-
mulant is, e.g., related to the first two moments via

C2 = lim
t→∞

d

dt

[〈
n2〉− 〈n〉2]= lim

t→∞

[
d

dt

〈
n2〉− 2I 2t

]
. (4.78)

Performing a Laplace transform of this equation, we may use well-known properties
of this transform,

f (t) ↔ f̃ (z) =⇒ ḟ (t) ↔ zf̃ (z) − f (0),

lim
t→∞f (t) = lim

z→0
zf̃ (z),

(4.79)

to obtain an alternative formula for the time derivative of the second cumulant:

C2 = lim
z→0

z

[
z(−i∂χ )2M̃(χ, z) − 2I 2

z2

]
, (4.80)

where we have used the fact that the initial value of the second moment vanishes.
The evaluation of this expression requires only knowledge of the stationary current I
and the inverse matrix occurring in the Laplace transform of the moment-generating
function—which is much simpler to calculate than a matrix exponential. Keeping in
mind that cumulants may have a constant contribution, one may extend the scheme
to obtain formulae for higher cumulants.

4.4.5 Fluctuation Theorems

Representing the full energy or particle distributions, not in terms of the moment-
generating function in Eqs. (4.61) and (4.68), but with the cumulant-generating
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Fig. 4.3 Sketch of a system (yellow circle) that is coupled to d terminals, which admits the ex-
change of matter ΔNi and energy ΔEi between system and reservoirs. When these are in thermal
equilibrium states described by temperatures and chemical potentials, one finds for sufficiently
weak couplings a fluctuation theorem of energy and matter exchanges (Color figure online)

function C (χ/ξ, t), we obtain

PΔn(t) = 1

2π

∫ +π

−π

eC (χ,t)e−iΔnχ dχ,

PΔE(t) = 1

2π

∫ +∞

−∞
eC (ξ,t)e−iΔEξ dξ.

(4.81)

We will consider the general case here where all matter and energy transfers
are monitored for a system with d junctions; see Fig. 4.3. Formally, simultane-
ous counting at all junctions requires introducing the multidimensional vectors
Δn = (Δn1, . . . ,Δnd) and ΔE = (ΔE1, . . . ,ΔEd), where Δnν and ΔEν denote
the particles and energy exchanged with the νth reservoir and the system (counted
positive by construction when entering the system), respectively. The corresponding
probability distribution reads

P+Δn,+ΔE(t) =
(

1

2π

)2d ∫ +π

−π

· · ·
∫ +π

−π

ddχ

∫ +∞

−∞
· · ·
∫ +∞

−∞
ddξ

× eC (χ,ξ ,t) e−iΔn·χe−iΔE·ξ , (4.82)

such that the probability of the inverse process is

P−Δn,−ΔE(t) =
(

1

2π

)2d ∫ +π

−π

· · ·
∫ +π

−π

ddχ

∫ +∞

−∞
· · ·
∫ +∞

−∞
ddξ

× eC (−χ ,−ξ ,t)e−iΔn·χe−iΔE·ξ , (4.83)

where we have already transformed the integration variables χ → −χ and
ξ → −ξ . When now the cumulant-generating function obeys a symmetry of the
form (typically, such symmetries arise in the long-term limit)

C (−χ ,−ξ , t) = C (χ + iΔχ , ξ + iΔξ , t), (4.84)
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this implies a fluctuation theorem for the probabilities of matter and energy transfers

P+Δn,+ΔE

P−Δn,−ΔE
= eΔn·Δχ eΔE·Δξ , (4.85)

which can be demonstrated with a simple transformation of the integrand. Inter-
preted within the framework of stochastic thermodynamics [12], a transfer of Δn

particles and energy ΔE from the reservoir to the system leads to the production of
entropy of

ΔiS =
d∑

ν=1

βνμνnν −
d∑

ν=1

βνEν, (4.86)

where we have neglected contributions that arise from the change of the system’s
internal state: these contributions vanish anyway when identical initial and final
states are considered, and for finite-sized systems they are negligibly small for large
times, where the exchanged matter and energy contributions are dominating. For
rate equations obeying local detailed balance (4.43), it can be shown quite generally
that the characteristic polynomial of the rate matrix

D(χ , ξ) = ∣∣L (χ , ξ) − λ1
∣∣ (4.87)

obeys the same symmetry, which then transfers to all eigenvalues of the Liouvillian
and thus to the cumulant-generating function, too. Essentially, the proof [13] relies
on analysis of the characteristic polynomial with Schnakenberg graph theory [14],
but similar results may also be obtained with other methods [15, 16]. In particular,
one obtains for d terminals with temperatures βi and chemical potentials μi the shift
relation (4.84) with

Δχ = (β1μ1, . . . , βdμd), Δξ = (β1, . . . , βd). (4.88)

In the long-term limit, the transfer of matter and energy to the terminals can be
linked to the entropy flow in Definition 4.3, which at steady state is balanced by the
entropy production in Definition 4.4. Therefore, the resulting fluctuation theorem
describes the long-term statistics of entropy production:

P+Δn,+ΔE

P−Δn,−ΔE
= exp

{∑
ν

(βνμνnν − βνEν)

}
⇔ P+ΔiS

P−ΔiS

= eΔiS (4.89)

and is a manifestation of the second law far from thermal equilibrium: trajectories
with a negative entropy production are not completely forbidden but rather strongly
suppressed, and it is straightforward to see that, on average, entropy production will
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always be positive. We show this by averaging over all trajectories:

〈ΔiS〉 =
∑
ΔiS

ΔiSPΔiS =
∑

ΔiS>0

ΔiS(P+ΔiS − P−ΔiS)

=
∑

ΔiS>0

ΔiSP−ΔiS

(
eΔiS − 1

)
︸ ︷︷ ︸

≥0

≥ 0.
(4.90)

Symmetries as in Eq. (4.87) hold in the rate equation (weak coupling) limit and
imply of course that on average the second law is respected. The fluctuation rela-
tions have been verified, e.g., in an electronic setup [17, 18]. It turned out that slight
modifications were visible, which can be explained by the interaction between sys-
tem and detector. This interaction leads to further flows of information (physically
connected to energy and matter flows) that modify the experimental signature.

It should be noted that when conservation laws exist, e.g. when the total particle
current and/or the total energy current is conserved, the fluctuation theorem further
simplifies. For example, for the SET we have conservation of the total particle num-
ber nL + nR + nd = const., where nd ∈ {0,1} denotes the number of electrons on
the dot. In the long-time limit, many particles will have been exchanged with the
central dot of the SET and its terminals, and we will have in an approximate sense
the conservation law nL = −nR . Furthermore, transferred energy and particles are
tightly coupled in the master equation description, such that ΔEα = ΔNαε with
dot level ε. Therefore, one can quantify the long-term entropy production simply
by counting the number of particles transferring the SET, e.g., from left to right.
Denoting the corresponding distribution by Pn(t), the fluctuation theorem for equal
temperatures simply becomes

lim
t→∞

P+n

P−n

= enβ(μL−μR). (4.91)

Exercise 4.9 (Fluctuation theorem) Find the fluctuation theorem, i.e., a symmetry
in the cumulant-generating function, for the SET

L (χ) =
( −ΓLfL − ΓRfR +ΓL(1 − fL) + ΓR(1 − fR)e+iχ

+ΓLfL + ΓRfRe−iχ −ΓL(1 − fL) − ΓR(1 − fR)

)
.

References

1. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn.
(Cambridge University Press, Cambridge, 1994)

2. N. Gershenfeld, The Nature of Mathematical Modeling (Cambridge University Press, Cam-
bridge, 2000)

3. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press,
Oxford, 2002)

4. H.-P. Breuer, Genuine quantum trajectories for non-Markovian processes. Phys. Rev. A 70,
012106 (2004)



86 4 Technical Tools

5. H.-P. Breuer, J. Piilo, Stochastic jump processes for non-Markovian quantum dynamics. Eu-
rophys. Lett. 85, 50004 (2009)

6. M. Esposito, K. Lindenberg, C.V. den Broeck, Universality of efficiency at maximum power.
Phys. Rev. Lett. 102, 130602 (2009)

7. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York,
1985)

8. T. Krause, G. Schaller, T. Brandes, Incomplete current fluctuation theorems for a four-terminal
model. Phys. Rev. B 84, 195113 (2011)

9. L. Simine, D. Segal, Vibrational cooling, heating, and instability in molecular conducting
junctions: full counting statistics analysis. Phys. Chem. Chem. Phys. 14, 13820 (2012)

10. A.N. Jordan, E.V. Sukhorukov, Transport statistics of bistable systems. Phys. Rev. Lett. 93,
260604 (2004)

11. G. Schaller, G. Kießlich, T. Brandes, Counting statistics in multistable systems. Phys. Rev. B
81, 205305 (2010)

12. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theo-
rem. Phys. Rev. Lett. 95, 040602 (2005)

13. D. Andrieux, P. Gaspard, Fluctuation theorem for currents and Schnakenberg network theory.
J. Stat. Phys. 127, 107 (2007)

14. J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation
systems. Rev. Mod. Phys. 48, 571 (1976)

15. M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and
counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665 (2009)

16. M. Campisi, P. Hänggi, P. Talkner, Colloquium: quantum fluctuation relations: foundations
and applications. Rev. Mod. Phys. 83, 771 (2011)

17. Y. Utsumi, D.S. Golubev, M. Marthaler, K. Saito, T. Fujisawa, G. Schön, Bidirectional single-
electron counting and the fluctuation theorem. Phys. Rev. B 81, 125331 (2010)

18. S. Nakamura, Y. Yamauchi, M. Hashisaka, K. Chida, K. Kobayashi, T. Ono, R. Leturcq, K.
Ensslin, K. Saito, Y. Utsumi, A.C. Gossard, Nonequilibrium fluctuation relations in a quantum
coherent conductor. Phys. Rev. Lett. 104, 080602 (2010)


	Chapter 4: Technical Tools
	4.1 Analytic Techniques for Solving Master Equations
	4.1.1 Laplace Transform
	4.1.2 Equation of Motion Technique
	4.1.3 Quantum Regression Theorem

	4.2 Numerical Techniques for Solving Master Equations
	4.2.1 Numerical Integration
	4.2.2 Simulation as a Piecewise Deterministic Process (PDP)
	4.2.2.1 Example: Cavity in a Thermal Bath


	4.3 Shannon's Entropy Production
	4.3.1 Balance Equation Far from Equilibrium
	4.3.2 Linear Response for Two Terminals

	4.4 Full Counting Statistics: Phenomenological Introduction
	4.4.1 Discrete Particle Counting Statistics
	4.4.2 Continuous Energy Counting Statistics
	4.4.3 Moments and Cumulants
	4.4.4 Convenient Calculation of Lower Cumulants
	4.4.5 Fluctuation Theorems

	References


