
Chapter 3
Exactly Solvable Models

Abstract To understand the limit within which master equations are valid, it is
quite instructive to compare the master equation results against exactly solvable
models. Unfortunately, these models are quite rare. In this chapter, we will discuss
two popular representatives of exactly solvable models: first, we investigate a pure
dephasing spin-boson model, where the interaction Hamiltonian commutes with the
system Hamiltonian. Such models obviously leave the system energy invariant but
nevertheless may be used to investigate interesting features such as decoherence.
Second, we consider a noninteracting model, where the Hamiltonian can be written
as a quadratic form of fermionic annihilation and creation operators. Such mod-
els generally admit—at least formally—an exact solution, and can thus be used
to study non-equilibrium setups and transport in a regime where the coupling be-
tween system and reservoir becomes strong. Furthermore, we note that the non-
equilibrium stationary solution of these models may also define a non-equilibrium
reservoir.

3.1 Pure Dephasing Spin-Boson Model

The pure dephasing spin-boson model describes the interaction of a two-level sys-
tem with a bosonic bath:

HS = ωσz,

HB =
∑

k

ωk

(
b

†
kbk + 1/2

)
,

HI = σz ⊗
∑

k

(
hkbk + h∗

kb
†
k

)
,

(3.1)

where σz is a Pauli matrix and bk a bosonic annihilation operator in the bath.
One immediately observes that the model conserves the system energy—since
[HS,HI] = 0—and will thus only modify the evolution of coherences in the system
energy eigenbasis (hence the name purely dephasing). Similar models have been
used to illustrate decoherence in quantum computers [1, 2] or to test the validity of
Markovian master equations [3].
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3.1.1 Time Evolution Operator

The calculation of the exact solution makes use of the fact that in the interaction
picture, the time evolution operator can be exactly determined. In the interaction
picture, the full density matrix follows the von Neumann equation

ρ̇ = −i
[
H I(t),ρ(t)

]
(3.2)

with the interaction Hamiltonian in the interaction picture

H I(t) = σz ⊗
∑

k

(
hkbke

−iωkτ + h∗
kb

†
ke

+iωkτ
)
. (3.3)

Exercise 3.1 (Interaction picture) Show that Eq. (3.3) arises in the interaction pic-
ture.

We note that the commutator of the interaction Hamiltonian with itself at differ-
ent times is just a number,

[
H I(t1),H I(t2)

] =
∑

k

|hk|22i sin
[
ωk(t2 − t1)

]
, (3.4)

such that the Baker–Campbell–Hausdorff (BCH) formula may be employed to cal-
culate the exponential. For two operators A and B with the commutator obeying
[[A,B],A] = 0 = [[A,B],B], one can express the exponential of the sum by a
product of exponentials

eA+B = eAeBe−[A,B]/2. (3.5)

If one now has many of these operators in the exponent A1, . . . ,An obeying
[Ai,Aj ] = αij 1 such that [[Ai,Aj ],Ak] = 0, one can generalize the above equa-
tion to

e
∑n

i=1 Ai = eA1eA2 · · · eAn−1eAne
−∑

i<j [Ai,Aj ]/2
. (3.6)

Exercise 3.2 (BCH formula) Show the generalization from Eq. (3.5) to Eq. (3.6).

Following the ideas in Ref. [3], we discretize the integral in the exponent of the
time evolution operator:

U(t) = τe−i
∫ t

0 H I(t
′) dt ′ = τ lim

Δt→0,N→∞ e
∑N

n=1 HnΔt , (3.7)

where Hn = −iH I(nΔt) with the constraint NΔt = t remaining finite. Applying
the generalized BCH formula (3.6), we obtain

U(t) = τ

N∏

n=1

eHnΔte
−∑

i<j [Hi,Hj ]/2 =
N∏

n=1

eHnΔte
−∑

i<j [Hi,Hj ]/2
, (3.8)
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where we note that the last exponential is just a number and that the operators are
already time-ordered, such that the time ordering may simply be omitted. Recom-
bining the exponentials of the operators, we see that the time ordering has no effect
in this particular case:

U(t) = e−i
∫ t

0 H I(t
′) dt ′ = eσz⊗∑

k(αk(t)bk−α∗
k (t)b

†
k ) ≡ eσz⊗A(t) (3.9)

with αk(t) = (e−iωkt − 1)hk/ωk and A(t) = −A†(t).

Exercise 3.3 (Matrix exponentials) Show that for a unit vector |n| = 1 and a vector
of Pauli matrices σ = (σ x, σ y, σ z) one has

e(n·σ )⊗A = 1 ⊗ cosh(A) + (n · σ ) ⊗ sinh(A).

We can also write the unitary transformation as

U(t) = 1 ⊗ 1

2

(
e+A(t) + e−A(t)

) + σz ⊗ 1

2

(
e+A(t) − e−A(t)

)
,

U†(t) = 1 ⊗ 1

2

(
e+A(t) + e−A(t)

) − σz ⊗ 1

2

(
e+A(t) − e−A(t)

)
.

(3.10)

When assuming an initial product state, the full density matrix is given by ρ(t) =
U(t)ρ0

S ⊗ ρ̄BU†(t), which can be used to calculate any expectation value.

3.1.2 Reduced Dynamics

By performing the partial trace over the reservoir, we obtain the exact solution in
the interaction picture:

ρS(t) = TrB
{
U(t)ρ0

S ⊗ ρ̄BU†(t)
}

= ρ0
S

1

4
TrB

{(
e+2A(t) + e−2A(t) + 2

)
ρ̄B

}

− ρ0
Sσz 1

4
TrB

{(
e+2A(t) − e−2A(t)

)
ρ̄B

}

+ σzρ0
S

1

4
TrB

{(
e+2A(t) − e−2A(t)

)
ρ̄B

}

− σzρ0
Sσz 1

4
TrB

{(
e+2A(t) + e−2A(t) − 2

)
ρ̄B

}
, (3.11)

which can therefore be related to the expectation values 〈e±2A(t)〉 with respect to
a thermal state. Since the bosonic annihilation and creation operators commute
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for different modes, we can separate the modes in the exponentials and write
TrB{e2A(t)ρ̄B} = ∏

k Tk(t) with

Tk(t) = Trk

{
e2αk(t)bk−2α∗

k b
†
k
e−βωkb

†
kbk

Zk

}

=
∞∑

n=0

〈n|e−2α∗
k b

†
k e+2αk(t)bk |n〉e−2|αk(t)|2e−βωkn

[
1 − e−βωk

]
, (3.12)

where we have used the BCH formula (3.5) and also inserted the normalized thermal
state for mode k. For the matrix element we can use the identity

〈n|e−σ ∗b†
eσb|n〉 = Ln

(|σ |2), (3.13)

with the Laguerre polynomial [4]

Ln(x) = ex

n!
dn

dxn

(
e−xxn

)
, (3.14)

which further yields

Tk(t) =
∞∑

n=0

Ln

(
4
∣∣αk(t)

∣∣2)
e−2|αk(t)|2e−βωkn

[
1 − e−βωk

]

= e−2|αk(t)|2 coth(βωk/2). (3.15)

Therefore, we obtain for the sought-after expectation value

TrB
{
e2A(t)ρ̄B

} = e−2
∑

k |αk(t)|2 coth(βωk/2) = TrB
{
e−2A(t)ρ̄B

}
, (3.16)

where the second equality sign follows from A(t) = −A†(t) and the fact that the
above expectation value is real. The exact solution for the system density matrix
becomes

ρS(t) = ρ0
S

1

2

[
1 + e−2

∑
k |αk(t)|2 coth(βωk/2)

]

+ σzρ0
Sσz 1

2

[
1 − e−2

∑
k |αk(t)|2 coth(βωk/2)

]
, (3.17)

which means that, as expected, the populations ρ00 and ρ11 are unaffected by the
interaction with the reservoir, whereas the coherences evolve according to

ρ01(t) = ρ0
01e

−2
∑

k |αk(t)|2 coth(βωk/2),

ρ10(t) = ρ0
10e

−2
∑

k |αk(t)|2 coth(βωk/2).

(3.18)
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Inserting |αk(t)|2 = 2 |hk |2
ω2

k

[1 − cos(ωkt)] = 4 |hk |2
ω2

k

sin2(ωkt/2), we eventually arrive

at the well-known result that, in the pure dephasing model, the coherences decay as

ρ01(t) = exp

{
−8

∑

k

|hk|2 sin2(ωkt/2)

ω2
k

coth

(
βωk

2

)}
ρ0

01, (3.19)

which for a discrete spectrum of modes will display recurrences. Transforming to
the continuum limit by introducing the spectral coupling density

J (ω) =
∑

k

|hk|2δ(ω − ωk), (3.20)

we note that as soon as J (ω) is represented as a smooth function, a popular choice
being the parametrization [5]

J (ω) = J0
ωs

ω1−s
ph

e−ω/ωc, for ω > 0, (3.21)

the coherences will approach a vanishing stationary state limt→∞ ρ01(t) = 0.
By performing a simple time derivative of the solution, one can now derive an

exact master equation. For completeness we note here that this exact master equation
has time-dependent rates. In addition, it is not of Lindblad form (also for constant
time) but must—since the solution is exact—nevertheless preserve positivity of the
density matrix.

In general, the speed of decoherence depends on the temperature and coupling
strength, etc. For high temperatures, we can expand the integrand and solve the
special case s = 1 and ωc → ∞ in the above parametrization explicitly:

ρ01(t) ≈ e
−4π

J0
β

t
ρ0

01. (3.22)

This result can also be reproduced within a master equation approach, as described
below.

3.1.3 Master Equation Approach

Identifying a single system and bath coupling operator in the interaction Hamilto-
nian A = σz and B = ∑

k(hkbk + h∗
kb

†
k), respectively, we first calculate the bath

correlation function

C(t) = 〈
B(t)B

〉 =
∑

kk′

〈(
hkbke

−iωkt + h∗
kb

†
ke

+iωkt
)(

hk′bk′ + h∗
k′b

†
k′
)〉

=
∑

k

|hk|2
{
e−iωkt

[
1 + nB(ωk)

] + e+iωktnB(ωk)
}
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=
∫ ∞

0
J (ω)

{
e−iωt

[
1 + nB(ω)

] + e+iωtnB(ω)
}
dω

=
∫ +∞

−∞
J (ω)e−iωtJ (ω)

[
1 + nB(ω)

]
dω, (3.23)

where we have analytically continued the spectral coupling density to negative fre-
quencies J (−ω) = −J (ω). This enables us to identify the Fourier transform of the
correlation function as

γ (ω) = 2πJ(ω)
[
1 + nB(ω)

]
. (3.24)

With the help of Eq. (2.38) this can be used to calculate the odd Fourier transform
numerically. The quantum optical master equation in Definition 2.3 then yields

ρ̇00 = ρ̇11 = 0,

ρ̇01 = −i(E0 − E1 + σ00 − σ11)ρ01 +
(

γ00,11 − 1

2
γ00,00 − 1

2
γ11,11

)
ρ01 (3.25)

= −i(E0 − E1 + σ00 − σ11)ρ01 − 2γ (0)ρ01.

The first two equations just express the fact that the interaction does not change the
system energy, which is also obeyed by the master equation solution.

The Lamb-shift terms can be expressed with the odd Fourier transform of the
reservoir correlation function σ00 = σ(0)/(2i) = σ11, and thus they cancel in the
evolution of the coherences. Therefore, we obtain for the coherences a decay accord-
ing to ρ01(t) = e−i(E0−E1)t e−2γ (0)t |ρ0

01|. The first exponential can be transformed
away by switching to the interaction picture ρS(t) = e+iHSt ρS(t)e−iHSt , where one
only has ρ01(t) = e−2γ (0)t |ρ0

01|. Now, assuming high temperatures and an ohmic
spectral coupling density J (ω) = J0ω, the limit becomes limω→0 γ (0) = 2πJ0/β ,
which perfectly coincides with the result in Eq. (3.22).

We finally note that the Lindblad form only guarantees positivity of the solution
if initialized with a valid, i.e., positive, density matrix.

3.2 Quantum Dot Coupled to Two Fermionic Leads

As one of the simplest fermionic models, we consider a single electron transistor
(SET). The system, bath, and interaction Hamiltonians are given by

HS = εd†d, HB =
∑

k

εkLc
†
kLckL +

∑

k

εkRc
†
kRckR,

HI =
∑

k

(
tkLdc

†
kL + t∗kLckLd†) +

∑

k

(
tkRdc

†
kR + t∗kRckRd†),

(3.26)
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where d is a fermionic annihilation operator on the dot and ckα are fermionic annihi-
lation operators of an electron in the kth mode of lead α. Obviously, this corresponds
to a quadratic fermionic Hamiltonian, which can in principle be solved exactly by
various methods, such as non-equilibrium Green’s functions [6] or even the equa-
tion of motion approach [7]. Such quadratic models are useful for studying exact
transport properties [8] or exact master equations [9].

3.2.1 Heisenberg Picture Dynamics

To be as self-contained as possible, here we simply compute the Heisenberg equa-
tions of motion for the system and bath annihilation operators (we denote operators
in the Heisenberg picture by boldface symbols):

ḋ = −iεd + i
∑

k

[
t∗kLckL + t∗kRckR

]
,

˙ckL = −iεkLckL + itkLd,

˙ckR = −iεkRckR + itkRd.

(3.27)

Surprisingly, this system is already closed, and we obtain its solution by performing
a Laplace transform [10]:

zd̃(z) − d = −iεd̃(z) + i
∑

k

[
t∗kLc̃kL(z) + t∗kRc̃kR(z)

]
,

zc̃kL(z) − ckL = −iεkLc̃kL(z) + itkLd̃(z),

zc̃kR(z) − ckR = −iεkRc̃kR(z) + itkRd̃(z).

(3.28)

In the above equations, we can eliminate the operators c̃kL(z) and c̃kR(z). This
yields for the dot annihilation operator

d̃(z) = d + i
∑

k(
t∗kLckL

z+iεkL
+ t∗kRckR

z+iεkR
)

z + iε + ∑
k(

|tkL|2
z+iεkL

+ |tkR |2
z+iεkR

)

≡ f̃ (z)d +
∑

k

(
g̃kL(z)ckL + g̃kR(z)ckR

)
, (3.29)

where we have introduced the functions g̃kα(z) and f̃ (z). This expression also yields
the solution for the operators of the right lead modes,

c̃kα(z) = 1

z + iεkα

ckα + itkα

z + iεkα

d̃(z). (3.30)
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Inverting the Laplace transform may now be achieved by identifying the poles and
applying the residue theorem. In the wide-band limit discussed below, this becomes
particularly simple.

3.2.2 Stationary Occupation

The time-dependent occupation n(t) = 〈d†(t)d(t)〉 is found by inverting the Laplace
transform. For the moment we do it formally and determine the expectation value

n(t) =
〈[

f ∗(t)d† +
∑

k

(
g∗

kL(t)c
†
kL + g∗

kR(t)c
†
kR

)]

×
[
f (t)d +

∑

k

(
gkL(t)ckL + gkR(t)ckR

)]〉

= ∣∣f (t)
∣∣2

n0 +
∑

k

(∣∣gkL(t)
∣∣2

fL(εkL) + ∣∣gkR(t)
∣∣2

fR(εkR)
)
, (3.31)

where we have used a product state as an initial one,

ρ0 = ρ0
S
e−βL(HL−μLNL)

ZL

e−βR(HR−μRNR)

ZR

(3.32)

with the lead Hamiltonians Hα = ∑
k εkαc

†
kαckα and the lead particle numbers Nα =∑

k c
†
kαckα . These eventually yield the only nonvanishing expectation values n0 =

〈d†d〉 and fα(εkα) = 〈c†
kαckα〉. Inverse lead temperatures βα and chemical potentials

μα thereby only enter implicitly in the Fermi functions. Therefore, to find the exact
solution for the time-dependent dot occupation, we have to find the inverse Laplace
transform of the following:

f̃ (z) = 1

z + iε + ∑
k(

|tkL|2
z+iεkL

+ |tkR |2
z+iεkR

)
,

g̃kα(z) = it∗kα

[z + iεkα][z + iε + ∑
k(

|tkL|2
z+iεkL

+ |tkR |2
z+iεkR

)]
,

(3.33)

which heavily depends on the number of modes and their distribution in the reser-
voir. For example, any system with a finite number of reservoir modes will exhibit
recurrences to the initial state.

Only systems with a continuous spectrum of reservoir modes can be expected
to yield a stationary system state. To obtain that limit, for simplicity we assume
N + 1 modes in each reservoir, −N/2 ≤ k ≤ +N/2. These are distributed over the
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energies as εkα = kΩ/
√

N and are assumed to couple more weakly to the dot as
their momentum increases:

|tkα|2 = Ω

2π
√

N

Γαδ2
α

(kΩ/
√

N)2 + δ2
α

. (3.34)

Letting the number of reservoir modes N go to infinity, we can replace the summa-
tion in the denominators by a continuous integral:

f̃ (z) ≈ 1

z + iε + ∫ 1
2π

(
ΓLδ2

L

ω2+δ2
L

+ ΓRδ2
R

ω2+δ2
R

) 1
z+iω dω

= 1

z + iε + 1
2 (ΓLδL

z+δL
+ ΓRδR

z+δR
)
,

g̃kα(z) ≈ it∗kα

(z + iεkα)[z + iε + ∫ 1
2π

(
ΓLδ2

L

ω2+δ2
L

+ ΓRδ2
R

ω2+δ2
R

) 1
z+iω dω]

= 1

[z + iεkα][z + iε + 1
2 (ΓLδL

z+δL
+ ΓRδR

z+δR
)] .

(3.35)

We note that this transfer from a discrete to a continuous spectrum of reservoir
modes is commonly performed formally by introducing the energy-dependent tun-
neling rates

Γα(ω) = 2π
∑

k

|tkα|2δ(ω − εkα). (3.36)

Here, we have thereby assumed a Lorentzian-shaped tunneling rate [11]

Γα(ω) = Γαδ2
α

ω2 + δ2
α

. (3.37)

The simple pole structure of these tunneling rates renders analytic calculations sim-
ple. Superpositions of many Lorentzian shapes with shifted centers may approxi-
mate quite general tunneling rates [12].

To obtain sufficiently simple results, we assume the wide-band limit δα → ∞
(within which the tunneling rates are flat), where one obtains the simple expression

f̃ (z) → 1

z + iε + (ΓL + ΓR)/2
,

g̃kα(z) → it∗kα

(z + iεkα)[z + iε + (ΓL + ΓR)/2] .
(3.38)
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Inserting the inverse Laplace transforms of these expressions,

f (t) → e−iεt e−Γ t/2,

gkα(t) → t∗kα(e−iεt e−Γ t/2 − e−iεkαt )

εkα − ε + iΓ/2

(3.39)

(with Γ ≡ ΓL + ΓR) into Eq. (3.31), we obtain by switching to a continuum repre-
sentation

n(t) = e−Γ tn0 +
∑

k

∑

α

|tkα|2fα(εkα)4
1 − 2e−Γ t/2 cos[(εkα − ε)t] + e−Γ t

Γ 2 + 4(εkα − ε)2

= e−Γ tn0 +
∑

α

∫
dωΓαfα(ω)

4

2π

1 − 2e−Γ t/2 cos[(ω − ε)t] + e−Γ t

Γ 2 + 4(ω − ε)2
.

(3.40)

The long-term limit can, because Γ ≥ 0, be read off easily, and the stationary occu-
pation becomes

n̄ =
∑

α

∫
dωΓαfα(ω)

2

π

1

Γ 2 + 4(ω − ε)2
. (3.41)

With the above formula for the stationary occupation valid for the wide-band limit,
one can easily demonstrate the following.

At infinite bias fL(ω) = 1 and fR(ω) = 0, the stationary occupation approaches
n̄ → ΓL/(ΓL +ΓR), regardless of the coupling strength. A similar result is of course
obtained for reverse infinite bias where n̄ → ΓR/(ΓL + ΓR).

When the quantum dot is coupled weakly to a single bath only (e.g., ΓR(ω) = 0),
the stationary occupation approaches the Fermi distribution of the coupled lead,
evaluated at the dot energy (e.g., n̄ = fL(ε) + O{ΓL}). This implies that, for weak
coupling to an equilibrium reservoir, the system will equilibrate with the tempera-
ture and chemical potential of the reservoir, consistent with what one expects from
a master equation approach.

When the dot is coupled weakly to both reservoirs, the stationary state ap-
proaches

n̄ → ΓLfL(ε) + ΓRfR(ε)

ΓL + ΓR

, (3.42)

which is also obtained within a master equation approach (compare Sect. 5.1).

Exercise 3.4 (Weak coupling limit) Show that Eq. (3.41) reduces in the weak-
coupling limit to Eq. (3.42) by using a representation of the Dirac delta distribution,

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
.
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In contrast, for the strong coupling limit, the stationary occupation will be sup-
pressed, n̄ → 0, as the exact solution for the stationary state is no longer localized
on the dot.

3.2.3 Stationary Current

The stationary current from left to right through the SET can be defined as the long-
term limit of the change of particle numbers at the right lead,

I = lim
t→∞

d

dt

〈∑

k

c
†
kRckR

〉
, (3.43)

which we can evaluate in the Heisenberg picture as we did for the stationary occu-
pation. Using Eq. (3.30), the right lead modes can be written as

c̃kR(z) = itkR

(z + iεkR)(z + iε + Γ/2)
d + 1

z + iεkR

ckR

−
∑

q

tkRt∗qL

(z + iεkR)(z + iεqL)(z + iε + Γ/2)
cqL

−
∑

q

tkRt∗qR

(z + iεkR)(z + iεqR)(z + iε + Γ/2)
cqR. (3.44)

Now, performing the inverse Laplace transform and neglecting all transient dynam-
ics, we obtain the asymptotic evolution of the annihilation operators in the Heisen-
berg picture:

ckR(t) →
(

− tkRe−iεkRt

εkR − ε + iΓ/2

)
d + e−iεkRt ckR

+
∑

q

tkRt∗qL

εkR − εqL

(
e−iεqLt

εqL − ε + iΓ/2
− e−iεkRt

εkR − ε + iΓ/2

)
cqL

+
∑

q

tkRt∗qR

εkR − εqR

(
e−iεqRt

εqR − ε + iΓ/2
− e−iεkRt

εkR − ε + iΓ/2

)
cqR. (3.45)

The occupation of the right lead therefore becomes

NR →
∑

k

|tkR|2
(εkR − ε)2 + Γ 2/4

n0 + N0
R

−
∑

kq

[
tkRt∗qR

εkR − εqR

e+iεkRt
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×
(

e−iεqRt

εqR − ε + iΓ/2
− e−iεkRt

εkR − ε + iΓ/2

)
δkqfR(εkR) + h.c.

]

+
∑

kq

|tkR|2|tqL|2
(εkR − εqL)2

(
e+iεqLt

εqL − ε − iΓ/2
− e+iεkRt

εkR − ε − iΓ/2

)

×
(

e−iεqLt

εqL − ε + iΓ/2
− e−iεkRt

εkR − ε + iΓ/2

)
fL(εqL)

+
∑

kq

|tkR|2|tqR|2
(εkR − εqR)2

(
e+iεqRt

εqR − ε − iΓ/2
− e+iεkRt

εkR − ε − iΓ/2

)

×
(

e−iεqRt

εqR − ε + iΓ/2
− e−iεkRt

εkR − ε + iΓ/2

)
fR(εqR). (3.46)

The first term is just triggered by the initial occupation of the dot, and the sec-
ond term corresponds to the initial occupation of the right lead. These terms are
constant and cannot contribute to the current, which however is different for all
other terms. Introducing the tunneling rates in the wide-band limit Γα ≈ Γα(ω) =∑

k |tkα|2δ(ω − εkα), we can represent the right lead occupation by integrals:

NR → 1

2π

∫
dω

ΓR

(ω − ε)2 + Γ 2/4
n0

+ N0
R − 1

2π

∫
dωΓRfR(ω)

[
4 + 4iωt − 2t (Γ + 2iε)

(2ω + iΓ − 2ε)2
+ h.c.

]

+ 1

4π2

∫
dωdω′(ΓLΓRfL

(
ω′) + Γ 2

RfR

(
ω′)) 1

(ω − ω′)2

×
∣∣∣∣

e−iω′t

ω′ − ε + iΓ/2
− e−iωt

ω − ε + iΓ/2

∣∣∣∣
2

. (3.47)

Whereas the first two terms are constant and do not contribute to the current, all other
terms yield a nonvanishing contribution. The long-term limit of the time derivative
of the very last term is a bit involved to determine. It can be found, e.g., by using
properties of the Laplace transform. To evaluate the current, we therefore consider
the limit

F
(
ω′) ≡ lim

t→∞
d

dt

∫
dω

1

(ω − ω′)2

∣∣∣∣
e−iω′t

ω′ − ε + iΓ/2
− e−iωt

ω − ε + iΓ/2

∣∣∣∣
2

= lim
z→0

z

∫ ∞

0
dt e−z t d

dt

∫
dω

1

(ω − ω′)2

∣∣∣∣
e−iω′t

ω′ − ε + iΓ/2
− e−iωt

ω − ε + iΓ/2

∣∣∣∣
2

= 8π

Γ 2 + 4(ω′ − ε)2
, (3.48)
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Fig. 3.1 Plot of the electronic matter current (in units of γ = ΓL = ΓR = Γ/2) versus the bias
voltage for symmetric tunneling rates and equal electronic temperatures βL = βR = β and dot
level βε = 5. For a small coupling strength, the exact (black solid) and master equation (brown
bold) solutions coincide for all bias voltages. For stronger couplings (red dashed and green dotted,
respectively), the determination of the dot level ε from steps in the current is no longer possible
(Color figure online)

which with its Lorentzian shape converges for small Γ towards a Dirac delta distri-
bution. The current becomes

I = − 1

π

∫
dωΓRfR(ω)

Γ/2

(ω − ε)2 + (Γ/2)2

+ 1

πΓ

∫
dω

(
ΓLΓRfL(ω) + Γ 2

RfR(ω)
) Γ/2

(ω − ε)2 + (Γ/2)2

= ΓLΓR

ΓL + ΓR

∫
dω

[
fL(ω) − fR(ω)

] 1

π

Γ/2

(ω − ε)2 + (Γ/2)2
. (3.49)

Alternatively, this expression can also be derived by evaluating the expectation value
of the current operator directly I = i

∑
k tkR〈c†

kR(t)d(t)〉 + h.c. The integrals in
the above expression can be solved analytically by analysis in the complex plane,
but here we will be content with the above integral representation, which can also
be found using non-equilibrium Green’s functions [6]. For consistency, we note
that the current is antisymmetric under the exchange of left and right leads as ex-
pected.
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In the weak coupling limit Γ → 0, the current reduces to

I = ΓLΓR

ΓL + ΓR

[
fL(ε) − fR(ε)

]
, (3.50)

which at equal temperatures left and right implies that the current always flows from
the lead with larger chemical potential to the one with lower chemical potential.

Exercise 3.5 (Weak coupling limit) Show that Eq. (3.50) follows from Eq. (3.49)
when Γ → 0.

Finally, we note further that, in the infinite bias limit (fL(ω) → 1 and
fR(ω) → 0), the current becomes I = ΓLΓR/(ΓL + ΓR), which is independent
of the coupling strength and also consistent with Eq. (3.50). In Sect. 5.1 we will
find that the master equation approach applied to the same problem reproduces
Eq. (3.50) and therefore coincides with the exact result in the infinite bias limit.

Figure 3.1 demonstrates the effect of increasing but symmetric coupling strengths
ΓL = ΓR = γ on the current. Whereas the weak coupling result is well approxi-
mated when βγ � 1, one may observe significant deviations for strong couplings.
In the example shown, spectroscopy of the dot level ε via detecting steps in the I–V

characteristics is therefore only possible in the weak coupling limit.
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