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Preface

This book arose from a lecture course on open quantum systems that I had the
chance to teach at the Technical University of Berlin. I was asked to give a lecture
on my research for an audience that was composed of graduate students specializing
in very different areas of physics. Consequently, I had to start with an introduction
that generated a common ground. In order to give all students an opportunity to treat
hot research topics, I decided not to teach overly sophisticated technical tools. In-
stead, I tried to make the lecture as self-contained as possible and—with some work
involved—straightforward to follow. Presenting that lecture was a fun adventure for
me: [ had to put my research results into a somewhat wider background and rethink
exactly which points were the most important to make. Soon after the actual lecture,
I was asked to provide a lecture script for later reference, which triggered the idea
for this book.

During the writing of this book, as the research advanced, so did the book; thus,
it now contains a few more topics than were treated in the original lecture. However,
keeping the original motivation, it aims at providing graduate students or researchers
with a little background in quantum theory—what one typically learns during two
semesters of quantum theory—with a straight route to the dynamics of open quan-
tum systems. This route is not necessarily easy, since the readers might have to
invest some work if they are unfamiliar with certain techniques or topics. Neither
can it be claimed to be the only path, and the readers are certainly invited to find and
explore possibly simpler or more elegant pathways.

In my opinion, the road to open quantum systems is a very rewarding journey:
New decades bring new challenges, and one of the challenges of our decade cer-
tainly is to understand and control the behavior of the smallest systems. Just as the
steam engine led to the industrial revolution, one can anticipate that nanomachines
will not just be useful in existing applications (e.g., drug design and delivery, micro-
fabrication, and DNA construction). Beyond this, they may also yield an unimag-
inable number of new applications. Nanomachines cannot be described by thermal
equilibrium. Therefore, it seems a rewarding enterprise to understand the evolution
of open quantum systems when coupled to non-equilibrium reservoirs.
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In this book, we will provide several possibilities to treat such non-equilibrium
reservoirs. The simplest idea is to compose a non-equilibrium reservoir from sub-
systems that are held at different equilibrium states. This approach can only be well
motivated in the weak coupling limit. Then, quantum master equations have many
favorable properties: These properties enable one to interpret the dynamics of quan-
tum systems coupled to different equilibrium reservoirs similarly to the dynamics of
heat engines. Alternatively, we can study strongly coupled quantum systems that—
when scaled up in size to the thermodynamic limit with an infinite recurrence time—
may assume a non-equilibrium stationary state. Beyond this, there are many more
examples of non-equilibrium systems to study. In this book, we will also treat sys-
tems subject to external driving and systems that are continuously monitored and
controlled, which includes feedback control.

On the technical side, the book provides concepts useful in the presence of
the aforementioned situations: multiple reservoirs, non-equilibrium reservoirs, ad-
ditional monitoring, and feedback control. These methods include master equations,
the extraction of full counting statistics from these equations, thermodynamic inter-
pretation of master equations, and of course methods for their solution. It is further
demonstrated how the conventional weak coupling limit can be overcome in some
cases and how true non-equilibrium reservoirs alter the dynamics. The book contains
a number of exercises of varying difficulty, which the reader is invited to solve. The
solutions to the exercises are not part of the book, but can be downloaded from the
on-line supplement (http://extras.springer.com/ZIP/2014/978-3-319-03877-3.zip).
Corrections and suggestions for improvement should be addressed to me:

gernot.schaller@tu-berlin.de

The examples in this contribution have mostly originated from my own re-
search and that of collaborators and students, to whom I would like to express
my deepest gratitude. Tobias Brandes, Clive Emary, Massimiliano Esposito, Gerold
KieBlich, Thilo Krause, Philipp Strasberg, Christian Nietner, Gabriel Topp, and
Malte Vogl have—among many others to whom I apologize for not mentioning
them—questioned my views and sharpened my thinking. Without these wonderful
people, this book would not have been possible. Any errors are, of course, entirely
my own.

Finally, I would like to apologize to my wife and my little daughters for being a
distracted husband and father during the writing of this book. After all, it is the joy
you bring that keeps me going.

Berlin, Germany Gernot Schaller


http://extras.springer.com/ZIP/2014/978-3-319-03877-3.zip
mailto:gernot.schaller@tu-berlin.de
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Chapter 1
Dynamics of Open Quantum Systems

Abstract This chapter provides a brief introduction to quantum systems that are
coupled to large reservoirs. It aims to remind the reader of well-known concepts
necessary for the understanding of the book and does not claim to provide a self-
contained introduction. It starts with a brief summary of the conventions used in the
book and then introduces master equations with some examples. This also requires
us to introduce the density matrix: among other things, we discuss its evolution in
a closed system and under measurements. To connect to system-reservoir theories,
we also review the definition of the tensor product and the partial trace. Finally, we
introduce the Lindblad form of a quantum master equation and discuss its properties
before closing with some remarks on the superoperator representation of master
equations.

With the tremendous advances during the last century in our ability to prepare and
control the smallest systems, quantum theory has proven extremely successful. This
evolution has not only been driven by mere interest in basic principles. Perfect con-
trol of quantum systems would also allow one to build extremely powerful com-
puters that could solve special problems such as number factoring [1], database
search [2], or simply simulation of other quantum systems [3, 4] much faster than
we can do with classical computers. Unfortunately, the promises of quantum com-
putation have turned out to be hard to keep, since the fragile quantum coherence
necessary for quantum computation to work usually rapidly decays. This process—
commonly termed decoherence [5—7]—is induced by the presence of reservoirs that
can significantly alter the true quantum dynamics. With the sophisticated experi-
mental setups in present-day proof-of-principle implementations of quantum com-
puters [8] or quantum simulators [9—11], these reservoirs usually cannot be assumed
to be in thermal equilibrium.

The coupling between a quantum system and a structured non-equilibrium en-
vironment can however also be seen as a chance: the smallest quantum systems
can also be seen as nanomachines that exchange energy and matter with their sur-
roundings. From a thermodynamic viewpoint, such nanomachines are coupled to
an environment that is out of equilibrium and might thus be able to perform useful
tasks such as generating electrical current from a heat gradient [12]. Alternatively,
they could function as heating or cooling devices [13].

G. Schaller, Open Quantum Systems Far from Equilibrium, Lecture Notes in Physics 881, 1
DOI 10.1007/978-3-319-03877-3_1,
© Springer International Publishing Switzerland 2014
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2 1 Dynamics of Open Quantum Systems

In either case, the effect of non-equilibrium environments on a quantum system
is a topic that deserves to be thoroughly understood. This book provides some basic
steps towards a description of open quantum systems subject to non-equilibrium
environments.

1.1 Conventions

Altogether, we will use the following conventions without further notice in the book.

Planck’s constant i = 1.0546 x 1073* Js will be set to one; i.e., we will ab-
sorb it in the Hamiltonian of every considered system. This implies that all ener-
gies will have dimensions of inverse time. Similarly, Boltzmann’s constant kg =
1.3806 x 10723 J/K will also not occur in this book; it will be hidden in the inverse
temperature 8 = 1/(kgT) with temperature 7.

The quantity [A, B] = AB — B A denotes the commutator between two operators
A and B, whereas {A, B} = AB + BA denotes their anti-commutator.

Operators in the interaction picture will be written by boldface symbols O (¢) =
etiHor 9 =1Ho! | with Hy and r denoting the free Hamiltonian and time, respectively.

We will represent superoperators, i.e., linear operations on operators, by calli-
graphic symbols. For example, the linear operation £ [0] =) ; ;i KiOK; on the
operator O will—after short notice—be denoted by 2 O.

Throughout the book, we will denote the Fermi—Dirac distribution (or just the
Fermi function) of a particular reservoir « by

1

fa (@) = eBa(0—pa) +1 ’

(1.1)
where B, and p, represent the inverse temperature and chemical potential of the
reservoir «, respectively. Similarly, we will denote the Bose—Einstein distribution
of bosonic reservoirs by

1

o) = g T

(1.2)
where we will however mostly consider gy = 0.

Finally, we mention that only a few abbreviations will be used in the book.
The ones to remember are single electron transistor (SET), double quantum
dot (DQD), quantum point contact (QPC), Kubo—Martin—Schwinger (KMS), and
Baker—Campbell-Hausdorff (BCH).

1.2 Evolution of Closed Systems

Before we start with the non-equilibrium, we will briefly review closed quantum
systems. The dynamics of such a closed quantum system can already be complicated
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enough, since the evolution of its state vector |¥) obeys the Schrodinger equation
|& ()= —iH@®)|¥ @), (1.3)

where we have absorbed the Planck constant 7 in the Hamiltonian H (¢). A time-
dependent Hamiltonian in the Schrddinger picture would mean that the system is
actually not really closed: changing the parameters of the Hamiltonian normally
requires an interaction with the outside world. However, time-dependent Hamilto-
nians may also arise in transformed pictures, e.g., when a time-dependent unitary
transformation |& (1)) = eH0! | (1)) is applied to Eq. (1.3) with an initially time-
independent Hamiltonian.

Exercise 1.1 (Transformation to the interaction picture) Assuming a time-inde-
pendent Hamiltonian H = Hp + V, show that the Schrodinger equation in the inter-
action picture becomes

|9 (1)) = =iV () |F (1), (1.4)

where V (1) = etiHor v ¢=iHot denotes the time-dependent Hamiltonian and | (1)) =
eTiHo! | (1)) the state vector in the interaction picture.

The Schrédinger equation is formally solved by the unitary propagator
t
U@ = fexp{—if H(t') dt’}, (1.5)
0

with the time-ordering operator . Time ordering sorts time-dependent operators
depending on their time argument; i.e., formally it acts as

1010 () =011 —12)0(t1)0 () + Ot —11) 0 (12) O (11) (1.6)

with the Heaviside theta function

1: x >0,
Ox)=141/2: x=0, (1.7)
0: x < 0.

Its role in the time evolution operator can however also be defined by the time
derivative

U(t) =—iH U @). (1.8)

In the case of a time-independent Hamiltonian however, time ordering is not nec-
essary and we simply obtain U () = e~'#". This neglect of time ordering is possi-
ble only when the commutator of the Hamiltonian with itself vanishes at different
times [H (¢), H(¢')] = 0. In the general case however, the study of time-dependent
Hamiltonians is usually quite difficult and is normally restricted to periodic [14] or
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adiabatic [15] time dependencies. Turning the question around, it is simpler to take
a time-dependent trajectory of the state vector and to obtain a corresponding time-
dependent Hamiltonian [16]. Unfortunately, this is often not the question asked in
the experimental setup.

In any case however, unitary evolution (U (1)U (1) = 1) means that the informa-
tion about the initial state is conserved in every solution to the Schrodinger equa-
tion. A unitarily evolving system cannot evolve towards a single stationary state,
since from that state the information about the initial configuration cannot be ex-
tracted. For a constant Hamiltonian, we may expand the initial state in the eigen-
states H|n) = E,|n) of the Hamiltonian, and the time-dependent solution to the
Schrodinger equation is then simply given by [¥ (1)) =), c?l exp{—iE,t}|n). Fora
finite number of system energies E,, this will always evolve periodically and thus
return to its initial state after some recurrence time. When the system becomes large
however, approximate notions of a stationary state in a closed quantum system ex-
ist [17].

Furthermore, realistic quantum systems can usually not be regarded as closed;
i.e., they are not perfectly isolated from their environment (composed of thermal
reservoirs, detectors, and other things). The naive approach of simply simulating
the evolution of both the system and its environment is unfortunately prohibitive.
With increasing size, the complexity to simulate a quantum system grows exponen-
tially, and a typical reservoir with ¢’{10>3} degrees of freedom would in the simplest
case require the storage of & {21023} bits, which is completely impossible. With our
limited abilities one should therefore be content with a theory that describes only a
small part of our universe—conventionally called the system. In this restricted sub-
space, the dynamics may no longer be expected to be unitary. That is, a simple time
dependence of external parameters in the Hamiltonian cannot account for the ob-
served dynamics, which the Schrodinger equation (1.3) will fail to predict. In such
cases, the system can no longer be described by a pure state |¥), and the density
matrix formalism is required. This formalism will be introduced in the following
sections.

1.3 Master Equations
1.3.1 Definition

Many processes in nature are stochastic. In classical physics, this may be due to
our incomplete knowledge of the system. Due to the unknown microstate of, e.g.,
a gas in a box, the collisions of gas particles with the domain wall will appear ran-
dom. In quantum theory, the Schrodinger equation (1.3) itself involves amplitudes
rather than observables in the lowest level, and measurement of observables will
yield a stochastic outcome. In order to understand such processes in great detail,
such random events must be included via a probabilistic description. For dynamical
systems, probabilities associated with measurement outcomes may evolve in time,
and the determining equation for such a process is called a master equation.
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Definition 1.1 (Master equation) A master equation is a first-order differential
equation describing the time evolution of probabilities, e.g., for discrete events
ke{l,..., N}

dPy

ke > [TeePe — T Py, (1.9)
¢

where the Tip > 0 are transition rates from state (measurement event) £ to state
(measurement event) k. Since it is completely defined by the transition rates, it is
also termed the rate equation.

The master equation is said to satisfy detailed balance when for the stationary
state P; the equality Ty Py = Ty Py holds for all terms separately.

The transition rates must be positive and may in principle also depend on time.
When the transition matrix T, is symmetric, all processes are reversible at the level
of the master equation description.

Often, master equations are phenomenologically motivated and not derived from
first principles. However, in most examples discussed in this book we will use mas-
ter equations that can be derived from a microscopic underlying model. We will see
later that, in its standard form, the Markovian quantum master equation may not
only involve probabilities (diagonals of the density matrix, termed populations) but
also further auxiliary values (off-diagonal entries, termed coherences). However, it
is possible to transform such master equations to a rate equation representation in
a suitable basis. Therefore, we will use the term master equation in this book in a
somewhat wider sense as an equation that provides the time equation of probabili-
ties.

It is straightforward to show that the master equation conserves the total proba-
bility

dPy

== (TaPe—TuP) =) (TuPi—TuP)=0.  (1.10)
24

k ke

Beyond this, all probabilities must remain positive, which is also respected by
a rate equation with positive rates: evidently, the solution of the master equation
is continuous, such that when initialized with valid probabilities 0 < P;(0) < 1
all probabilities are non-negative initially. Let Py be the first probability that ap-
proaches zero at some time ¢ (when all other probabilities are non-negative). Its
time derivative is then given by

d Py
dt

=+ TP >0, (1.11)
Pk=0 l

which simply implies that Py (¢) will increase. In effect, any probability will be re-
pelled from zero, such that negative probabilities are impossible with positive rates.

Finally, the probabilities must remain smaller than one throughout the evolution.
This however follows immediately from ), Py =1 and Py > 0 by contradiction.
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In conclusion, a master equation of the form (1.9) automatically preserves the sum
of probabilities and also keeps 0 < P;(t) < 1—with a valid initialization provided.
That is, under the evolution of a rate equation, probabilities remain probabilities.

1.3.2 Examples

1.3.2.1 Fluctuating Two-Level System

Let us consider a system of two possible states, to which we associate the time-
dependent probabilities Py(¢) and Pj(z). These events could for example be the two
conformations of a molecule, the configurations of a spin, the ground and excited
states of an atom, etc. To introduce some dynamics, let the transition rate from
0 — 1 be denoted by 770 > 0 and the inverse transition rate 1 — 0 be denoted by
To1 > 0. This implies that the conditional probability to end up in the state 1 at time
(t + At) provided that at time 7 one is in the state 0, is for sufficiently small time
intervals Ar given by T1gAt. The associated master equation is then a first-order
differential equation given by

d _
L (Po\_(~Two +To) (P (1.12)
dt \ P +Tio —Toi Py

We note that in the matrix representation, conservation of the trace is fulfilled when

the entries in all columns of the rate matrix add up to zero. This can easily be shown
to hold more generally.

Exercise 1.2 (Temporal dynamics of a two-level system) Calculate the solution of
Eq. (1.12). What is the stationary state? Show that detailed balance is satisfied.

1.3.2.2 Diffusion Equation

Consider an infinite chain of coupled compartments. Now suppose that, along the
chain, molecules may move from one compartment to another with a transition rate
T > 0 that is unbiased, i.e., symmetric in all directions as depicted in Fig. 1.1. The
evolution of probabilities obeys the infinite-size master equation

Pi(t) =TPi_1(t) + TPy (t) — 2T Pi (1)

Pi1(t) + Piy1(t) — 2P (1)
Ax? ’

=T Ax? (1.13)

which converges as Ax — 0 and T — oo such that D = T Ax? remains constant to
the partial differential equation

0P, 1) _ [ 9?P(x,1)

oy T3 with D = T Ax?, (1.14)
X
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-~ I ARYAR)

Pi_1(t)| Pilt) [P (t)

Fig. 1.1 Sketch of a chain of compartments, between which a transition is possible with isotropic
and uniform rate 7 > 0. In the limit when the compartment size Ax — 0 and T — oo such that
Ax?T = D remains constant, the dynamics of the probabilities is described by the diffusion equa-
tion

where D is the diffusion constant. Such diffusion equations are used to describe
the distribution of chemicals in a solution in the highly diluted limit, the kinetic
dynamics of bacteria, and further undirected transport processes. From our analy-
sis of master equations, we can immediately conclude that the diffusion equation
preserves positivity and total norm, i.e., P(x, ) > 0 and fj_oooo P(x,t)dx = 1. Note
that it is straightforward to generalize to the higher dimensional case.

One can now think of microscopic models where the hopping rates in different
directions are not equal (drift) and may also depend on the position (a spatially de-
pendent diffusion coefficient). A position-dependent hopping rate may, e.g., result
from a heterogeneous medium through which transport occurs, whereas a difference
in the directionality may result from an applied external potential (e.g., in the case of
electrons) or some intrinsic preference of the considered species (e.g., in the case of
chemotactically active bacteria sensing a present chemical gradient). A correspond-
ing model (in a next-neighbor approximation) would be given by

P,' = T,',,'_1P,'_1(t) + Ti,i+1Pi+1(t) - (Ti—l,i + Ti+l,i)Pi ), (1.15)

where T, , denotes the rate of jumping from b to a; see also Fig. 1.2. An educated
guess is given by the ansatz

o _ 0 [AC)P(x,0)] + i [B()P(x,1)]
—_— = = X X, — X X,
at  oxZ2 dx
_ A1 P —2Ai P+ Ai1 Py n Bi+1Pi+1 — Bi—1Pi—
o Ax? 2Ax
A1 Bi 2A; Aiy1 By
= — P ——PF P, 1.16
[ Ax? 2Axi| LT A2 + |:Ax2 + 24x | ! (1.16)

which is equivalent to our master equation when

Ax?
A= T[Tifl,i + Tit1.il, Bi = Ax[Ti—1,; — Tit1.i]- (1.17)

We conclude that the Fokker—Planck equation

P 9? 3
P ﬁ[A(x)P(x, n]+ a[B(x)P(x, D] (1.18)

with A(x) > 0 preserves norm and positivity of the probability distribution P (x, ).
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Az Tiic1 Tii
P (t)] Pi(t) [P (D)

» A

Tic1i  Tigra

Fig. 1.2 Sketch of a chain of compartments, between which a transition is possible with differing
rates T;; > 0. In contrast to Fig. 1.1, the hopping rates are not uniform, 7;; # T, and may be
anisotropic, T;; # T};

Exercise 1.3 (Reaction-diffusion equation) Along a linear chain of compartments,
consider the master equation for two species

Pi

T[Pi—i(t) + Piy1(1) =2P; ()] — v P (1),
pi = t[pi—1(t) + pit1() = 2pi ()] + v Pi(1),

where P; (t) may denote the concentration of a molecule that irreversibly reacts with
chemicals in the solution to an inert form characterized by p; (¢). To which partial
differential equation does the master equation map?

In some cases, the probabilities may not only depend on the probabilities them-
selves, but also on external parameters, which appear then in the master equation.
Here, we will use the term master equation for any equation describing the time evo-
lution of probabilities; i.e., auxiliary variables may appear in the master equation.

1.3.2.3 Cell Culture Growth

Consider a population of identical cells, where each cell may divide (proliferate)
with a rate «. These cells live in a constrained geometry (e.g., a Petri dish) that
admits at most K cells due to some limitations (space, nutrient supply, etc.). Let
P;(t) denote the probability of having i cells in the Petri dish. Assuming that the
proliferation rate « is sufficiently small, we can easily set up a master equation:

Pi=—1-a-P,
Pr=-—2-0-P,+1-a- Py,

(1.19)
Pp=—C-a-Pp+(t—1)-a- Py,
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Pxk_1=—(K—1)-a-Pgk_1+(K—2)-a- Px_a,
Px=+(K —1)-aPx_;.

The prefactors in front of the bare rates arise since any of the £ cells may proliferate.
Arranging the probabilities in a single vector, this may also be written as P = £ P,
where the band-diagonal matrix . contains the rates. When we have a single cell
as the initial condition (full knowledge), i.e., P1(0) =1 and Py (0) =0, one can
change the carrying capacity K = {1, 2, 3,4, ...} and solve for each K the resulting
system of differential equations for the expectation value of (£) = Zf: 1 EPe(2).
These solutions may then be generalized to

() =et'[1 - (1—e)*]. (1.20)
Similarly, one can compute the expectation value of (¢2).
Exercise 1.4 (Cell culture growth) Confirm the validity of Eq. (1.20).

This result can be compared with the logistic growth equation, obtained from the
solution of the differential equation

. N
N=a<1—E>N, (1.21)

which means that initially cell growth is just given by the bare proliferation rate
« and then smoothly reduced when the population approaches the carrying capac-
ity K.

Exercise 1.5 (Logistic growth equation) Solve Eq. (1.21).

However, one may not only be interested in the evolution by mean values. Some-
times, rare events become quite important (e.g., a benign tumor cell turning ma-
lignant), in particular when they are strengthened in the following dynamics. Then
it is also useful to obtain some information about the spread of single trajectories
from the mean. In the case of a rate equation only involving the probabilities, as in
Eq. (1.19), it is possible to also generate single trajectories from the master equation
by using Monte Carlo simulation. Suppose that, at time #, the system is in the state £,
i.e., Py(t) = &4y After a sufficiently short time At, the probabilities of being in a
different state read as

P(t + At~ [1+ At ZL1P(1) + O{ A1), (1.22)
which for our simple example boils down to
Pyt + At) ~ (1 — La At) Py (1), Py (t + At) ~ +La At Pe(r).  (1.23)

To simulate a single trajectory, one may now simply draw a random number
o € [0, 1]: the probability that a cell divides during this small time interval is given
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120 I
L specific trajectories 4
mean and error estimate
100 H — == logistic growth ——
e logistic growth with 1,=1.98 Zo

cell number

8 10

Fig. 1.3 Population dynamics for the linear master equation (black curve (£) and shaded area de-
termined from +/(£2) — (£)2) and for the logistic growth equation (dashed red curve) for carrying
capacity K = 100. For identical initial and final states, the master equation solution overshoots
the logistic growth curve. A slight modification (dotted green curve) of the initial condition in the
logistic growth curve yields the same long-term asymptotics. An average of many specific trajec-
tories would converge towards the black curve

by Pump = oAt K 1. If the random number o < Pjymp, we assume that the tran-
sition P — Py41 has occurred, and we may set Py (f + At) = 8¢41 .. In contrast,
when & > Pjump, we assume that no transition has occurred and therefore remain at
P, (t + At) = 844 In any case, the simulation keeps track of the actual state of the
system as if the cell number were regularly measured at intervals A¢. The ensemble
average of many such trajectories will yield the mean evolution predicted by the
master equation; see Fig. 1.3. The figure demonstrates that single trajectories may
look quite different from the solution of the master equation. Furthermore, the mean
and standard deviation (shaded area) may hide important information about single
trajectories: in this case, single trajectories must always be bounded by the carrying
capacity K. The ensemble averages of trajectories must however coincide with the
rate equation solution.

1.4 Density Matrix Formalism

1.4.1 Density Matrix

Suppose one wants to describe a quantum system, where the system state is not
exactly known. That is, there is an ensemble of known states {|®;)}, but there is
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uncertainty regarding in which of these states the system resides. Such systems can
be conveniently described by a density matrix.

Definition 1.2 (Density matrix) Any density matrix can be written as

p=>_ pil®i)(®il, (1.24)

where 0 < p; < 1 denote the probabilities of being in the state |®;) with ), p; = 1.
In general, the states are not required to be orthogonal, i.e., (P; P ) # §;;. Formally,
any matrix fulfilling the properties

e self-adjointness: p" = p
e normalization: Tr{p} =1
e positivity: (¥|p|¥) > 0 for all vectors ¥

can be interpreted as a valid density matrix.
For a pure state, one has p; = 1 and thereby p = |®;)(®;| for some particular i.

Thus, a density matrix is pure if and only if p = p.
The expectation value of an operator for a known state |¥)

(A) =(P[Al¥) (1.25)

can be obtained conveniently from the corresponding pure density matrix p =
|¥)(¥| by simply computing the trace (sum of diagonal elements) of Ap:

(A) = Tr{Ap} =Tr{pA} = Tr|{A|¥)(¥|}

= (n|Al@)(W|n) = Wl(Z |n><n|>A|W>
= (V|A|W). (1.26)

In the first line above, we simply stated an important property of the trace: its in-
variance under cyclic permutations of its arguments. When the state is not exactly
known, but its probability distribution is, the expectation value is obtained by com-
puting the weighted average

(A) ZZPi(GPiIAI@i), (1.27)

where P; denotes the probability of being in state |@;). The definition of obtaining
expectation values by calculating traces of operators with the density matrix is also
consistent with mixed states



12 1 Dynamics of Open Quantum Systems

(A) = Tr{Ap} =Tr{AZpl~|¢>i><¢i|} =Y piTr{A|®:) (@]}

:ZpiZ(n|A|q> (@;|n) Zp,@|(2|n >A|¢

n

=Y pi(®i|A|®i). (1.28)

Exercise 1.6 (Superposition versus localized states) Calculate the density matrix
for a statistical mixture in the states |0) and |1) with probability po = 3/4 and
p1 = 1/4. What is the density matrix for a statistical mixture of the superposition
states |W,) = +/3/4|0) +/1/4|1) and |¥;,) = /3/4|0) — /T/4|1) with probabilities
Pa=ppr=1/27

1.4.2 Dynamical Evolution of a Density Matrix

1.4.2.1 Continuous Evolution

The evolution of a pure state vector in a closed quantum system is described
by the evolution operator U (t), as, e.g., for the Schrédinger equation (1.3) the
time evolution operator (1.5) may be defined as the solution to the operator equa-
tion U(t) = —iH (¢)U(¢). For constant H(t) = H, we simply have the solution
U(r) = e H1, Similarly, a pure state density matrix p = [¥)(¥| would evolve ac-
cording to the von Neumann equation

p=—i[H®), p(1)] (129)

with the formal solution p(t) = U(t)p(0)U T(0); compare Eq. (1.5). This simply
means that for pure states, the von Neumann equation yields the same dynamics as
the Schrodinger equation, and pure states remain pure under unitary evolution.

When we apply the very same evolution equation (1.29) to a density matrix that
is not pure, we obtain

p(t) =" piU®| P} Pi|UT (1) (1.30)

This equation implies that transitions between the (now time-dependent) state vec-
tors |@;(t)) = U(t)|P;) are impossible with unitary evolution. These are exactly
the state vectors that one would have obtained from the Schrodinger equation by
initializing with the initial state |®;). Therefore, the von Neumann evolution equa-
tion yields the same dynamics as an ensemble average of the Schrodinger equation
solutions corresponding to the different initial states.
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Exercise 1.7 (Preservation of density matrix properties by unitary evolution) Show
that the von Neumann equation (1.29) preserves self-adjointness, trace, and positiv-
ity of the density matrix.

1.4.2.2 Measurement

The measurement process can also be generalized similarly. For a quantum
state |¥), measurements are described by a set of measurement operators {M,,},
each corresponding to a certain measurement outcome, and with the completeness
relation ), M,E M,, = 1. The probability of obtaining result m is given by

Py = (¥|M| M, |¥) (1.31)

and after the measurement with outcome m, the quantum state is collapsed:

M, |¥
wy M) (1.32)
(W | My My | &)
The projective measurement is just a special case of that with M,, = |m)(m]|.

Definition 1.3 (Measurements with density matrix) For a set of measurement op-
erators {M,,} corresponding to different outcomes m and obeying the completeness
relation ), M,L M,, =1, the probability of obtaining result m is given by

Py =Tr{M} Myp}. (1.33)

and the action of measurement on the density matrix—provided that result m was
obtained—can be summarized as

mo_ MupMy,

p B p = e (1.34)
Tr{M,, M, 0}

The set of measurement operators is also the called positive operator-valued measure
(POVM).

It is therefore straightforward to see that the descriptions using the Schrodinger
equation and the von Neumann equation with the respective measurement postulates
are equivalent. The density matrix formalism conveniently includes statistical mix-
tures in the description, since it automatically performs the averaging over different
initial conditions. Unfortunately, this comes at the cost of quadratically increasing
the number of state variables.

Exercise 1.8 (Preservation of density matrix properties by measurement) Show that
the measurement postulate preserves self-adjointness, trace, and positivity of the
density matrix.
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1.4.2.3 Most General Evolution

Finally, we mention here that the most general evolution preserving all the nice prop-
erties of a density matrix is called a Kraus map [18]. A density matrix p (hermitian,
positive definite, and with trace one) can be mapped to another density matrix o’ via

P'= YopAupAly, with Y yupAhAy =1, (1.35)
of af

where the prefactors y,g form a hermitian (yus = yg ) and positive definite
(ZO[/S X} vapxpg > 0 or equivalently all eigenvalues of (y,g) are non-negative) ma-
trix. It is straightforward to see that the above map preserves trace and hermiticity of
the density matrix. In addition, o’ also inherits the positivity from p =", P,|n)(n]

(W10 1W) =Y Yap(WIAapALIW) =D Py yup(¥|Aaln) (n|Af W)

af n of
=" Pu Y ((nlAL1¥) yap(nl Af1¥) = 0. (1.36)
——
n >0 off
>0

Since the matrix y,g is hermitian, it can be diagonalized by a suitable unitary trans-
formation, and we introduce the new operators Ay = Y, Uy Ko':

0= 33 YupUsw Rar pUjy Ky = 3 Rt 0Ky S U vap Uy
af o' p o« o

-

yoz’aa’ﬁ’
=Y vaKupK], (1.37)
o
where y, > 0 represent the eigenvalues of the matrix (yap). Since these are by

construction positive, we introduce further new operators K, = /¥4 K, to obtain
the simplest representation of a Kraus map.

Definition 1.4 (Kraus map) The map

p(t+ A=Y Ko(t, Ap()K] (1, At) (1.38)

with Kraus operators K, (¢, At) obeying the relation ), KOT[ (t, A)Ky(t, A1) =1
preserves hermiticity, trace, and positivity of the density matrix.

Obviously, both unitary evolution and evolution under measurement are just spe-
cial cases of a Kraus map. Though Kraus maps are heavily used in quantum infor-
mation [5], they are not often very easy to interpret. For example, it is not straight-
forward to identify the unitary and the nonunitary part induced by the Kraus map.
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1.4.3 Tensor Product

The greatest advantage of the density matrix formalism is visible when quantum
systems composed of several subsystems are considered. Then, a tensor product is
required to construct the Hilbert space of the combined system. Roughly speaking,
it represents a way to construct a larger vector space from two (or more) smaller
vector spaces.

Definition 1.5 (Tensor product) Let V and W be Hilbert spaces (vector spaces
with a scalar product) of dimension m and n with basis vectors {|v)} and {|w)},
respectively. Then V @ W is a Hilbert space of dimension m - n, and a basis is
spanned by {|v) ® |w)}, which is a set combining every basis vector of V with every
basis vector of W.

Mathematical properties

bilinearity (z1|vi) +z2[v2)) ® |w) = z1[v1) @ [w) + 22[v2) ® |w)

operators acting on the combined Hilbert space A ® B act on the basis states as
(A® B)(Jv) ® |w)) = (A|v)) ® (B|w))

any linear operator on V ® W can be decomposed as C =) ; ¢;A; ® B;

the scalar product is inherited in the natural way; i.e., one has for |a) =
Zi./ aijlvi) ® lwj) and |b) = Y, brelvk) ® |wy) the scalar product (a|b) =
Zijk(i a;kjbké(vi k) (wjlwe) = Zi‘/ a;'kjbij

We note here that the basis vectors of the joint system are also often written as
|v) ® |lw) = |vw), where the order of v and w determines the subspace to which the
quantum numbers are associated.

If more than just two vector spaces are combined to form a larger vector space,
the definition of the tensor product may be applied recursively. As a consequence,
the dimension of the joint vector space grows rapidly, as, e.g., exemplified by the
case of a qubit: its Hilbert space is just spanned by two vectors |0) and |1). The joint
Hilbert space of two qubits is spanned by the vectors |0) ® |0) = |00), |0) ® |1) =
|01), |1) ® |0) = |10), and |1) ® |1) = |11), and is thus four dimensional. This can
be readily scaled up: the dimension of the Hilbert space for three qubits is eight
dimensional, and that for n qubits is 2" dimensional. Eventually, this exponential
growth of the Hilbert space dimension for composite quantum systems is at the
heart of quantum computing.

Exercise 1.9 (Tensor products of operators) Let o denote the Pauli matrices, i.e.,

1_ 0 +1 2 0 —i 3 _ +1 0
“_<+1 0)’ “‘<+i 0)’ o=\ —1) @39

Compute the trace of the operator

3 3 3
2:01®1+Zaiai ®1~|—Zﬂjl®aj + Z aijai Qo
i=1 j=1 i,j=1
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Since the scalar product in the subsystems is inherited by the scalar product of
the composite system, this typically enables a convenient calculation of the trace—
given a decomposition into only few tensor products. For example, one has for a
single tensor product of two operators

Tr{A® B} = Z (na,nglA® Blna,ng)

= [Z(nufxmm] [Z(ngwmm]
nA ng
= Tra{A}Trg{B}, (1.40)

where Trs/p denote the trace in the Hilbert space of A and B, respectively. Since
these traces only involve the summation over the degrees of freedom of a subsystem,
they are also called partial traces. Such partial traces are of tremendous importance
and will be discussed in the next section.

1.4.4 The Partial Trace

For composite systems, it is usually not necessary to keep all information of the
complete system in the density matrix. Rather, one would like to have a density
matrix that encodes all the information on a particular subsystem only. Obviously,
the map p — Trg{p} to such a reduced density matrix should leave all expectation
values of observables acting on the considered subsystem only invariant, i.e.,

Tr{A ® 1p} = Tr|A Tr{p}}. (1.41)

If this basic condition were not fulfilled, there would be no point in defining such
a thing as a reduced density matrix: measurements would yield different results
depending on the Hilbert space of the experimenter’s choice.

Definition 1.6 (Partial trace) Let |a;) and |a;) be vectors of state space A and |by)
and |by) vectors of state space B. Then, the partial trace over state space B is defined
via

Trp {la1)(az] ® |b1) (bal} = la1) (a2| Tr{|b1) (bl }. (1.42)

We note that whereas the trace mapped an operator to a number, the partial trace
reduces operators to lower dimensional operators. The partial trace is linear, such
that the partial trace of arbitrary operators is calculated similarly. By choosing the
|a) and |b,, ) as an orthonormal basis in the respective Hilbert space, one may there-
fore calculate the most general partial trace via
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Trp{C} = TrB{ > capyslaadiagl ® |by><bs|}
afys

= > capys Tra{law) (ag| ® |by ) (bs|}
afys

= Y capyslaa)lag| Te{Ib, ) (bsl}

afys

= ) capyslaa) amz belby) (bs|be)

afys
= Z[Z ca,gw}maxam. (1.43)
af 14

Definition 1.6 is the only linear map that respects the invariance of expectation val-
ues [5].

Exercise 1.10 (Partial trace) Compute the partial trace p4 = Trg{pap} of a pure
density matrix psp = |¥) (¥ in the bipartite state

1
EOOIHHO)E

Show that p4 is no longer pure.

W) = (10) ® 1) + [1) ® |0)).

7

1.5 Lindblad Quantum Master Equation

Any dynamical evolution equation for the density matrix should preserve its inter-
pretation as a density matrix. This implies that trace, hermiticity, and positivity or
the initial condition must be preserved—at least in some approximate sense. By
construction, the measurement postulate and unitary evolution preserve these prop-
erties. However, more general evolutions are conceivable as, e.g., exemplified by
the Kraus map. If we constrain ourselves to master equations that are local in time
and have constant coefficients, the most general evolution that preserves trace, self-
adjointness, and positivity of the density matrix is given by a Lindblad form [19].

1.5.1 Representations

Definition 1.7 (Lindblad form) A master equation of Lindblad form has the struc-
ture
N%-1 1
p=Lp=—ilH pl+ ) vap (AapA; — 5 1ApAa. p}), (1.44)
o,B=1
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where the hermitian operator H = H ' can be interpreted as an effective Hamiltonian
and the dampening matrix y,g = yg‘a is a positive semidefinite matrix; i.e., it fulfills
Zaﬂ xyYapxp = 0 for all vectors x (or, equivalently, that all eigenvalues of (yug)
are non-negative, A; > 0).

In the above definition, the commutator term with the effective Hamiltonian ac-
counts for the unitary evolution, whereas the remaining terms are responsible for
the nonunitary (dissipative) evolution. When derived from a microscopic model, the
effective Hamiltonian need not coincide with the system Hamiltonian. This demon-
strates that the interaction with a reservoir may also change the unitary part of the
evolution.

Exercise 1.11 (Trace and hermiticity preservation by Lindblad forms) Show that
the Lindblad form of master equation preserves trace and hermiticity of the density
matrix.

The Lindblad-type master equation can be written in a simpler form. As the
dampening matrix y is hermitian, it can be diagonalized by a suitable unitary trans-
formation U, such that Zaﬁ UwaYap(U T) gp’ = Oa’p' Voo With v, > O representing
its non-negative eigenvalues. Using this unitary operation, a new set of operators
can be defined via Ay =), UygLa' Inserting this decomposition in the master
equation, we obtain

N2-1

1, .
p = —ilH, p] + Z Yap <Aa,0A]; - E{A;gAa’ p})
o,B=1

1,-+ -
Hp]+Z|:ZVaﬂUaaUﬁﬂi|< /pLﬁ/—E{nglLa’»p}>

o B
1, -, -
= —i[H. p]+2ya( LapL}, —E{LLLa,p}) (1.45)
where y, denote the N> — 1 non-negative eigenvalues of the dampening ma-

trix. Their positivity also allows us to absorb them into the Lindblad operators
Ly = /Yo Ly to yield the simplest representation of a Lindblad form,

6 =—i[H, p]—i—Z( wpLl — {L Lo, p }). (1.46)

Evidently, the representation of a master equation is not unique. Any other unitary
operation would lead to a different nondiagonal form which however describes the
same master equation. In addition, we note here that the master equation is not
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only invariant to unitary transformations of the operators Ay, but in the diagonal
representation also to inhomogeneous transformations of the form

Ly — L, =Ly + a1,

1 (1.47)
H—H=H+ za:(a;La —agL}) + 01,

with complex numbers a, and a real number b. The first of these equations can be
exploited to choose the Lindblad operators L, traceless, thereby fixing the num-
bers a,, whereas b is fixed by gauging the energy of the Hamiltonian.

Exercise 1.12 (Shift invariance) Show the invariance of the diagonal representation
of a Lindblad form master equation (1.46) with respect to the transformation (1.47).

1.5.2 Preservation of Positivity

Similar to the transformation into the interaction picture, one can eliminate the
unitary evolution term by transforming Eq. (1.45) to a co-moving frame p =
e 11 5etiH! Then, the master equation assumes the form

. ; 1, .
p= Z Va (LampL;(z) —S{LiOLL), p}> (1.48)

with the transformed time-dependent operators L (1) = et L,e 1H! 1t is also
clear that if the differential equation preserves positivity of the density matrix,
then it would also do this for time-dependent rates y,. Define the operators with
K=N?>-1

W) =1,
1
Wa(r) = 3y Z Yo (LY (1) Lo (1),

Ws(t) = L (t). (1.49)

Wi 2(t) = Lk (1),
where y = Za ¥ (¢) has been introduced to render all W; operators dimension-

less. Discretizing the time derivative in Eq. (1.48), one transforms the differential
equation for the density matrix into an iteration equation,
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1
pt+ A =p(t) + At Y va [Lamp(t)LL(t) —S{L 0L, p(t)}}
o

=Y wapOWa (Dp(OWLQ), (1.50)
of

where the dimensionless wqg matrix assumes the block form

1 —Ary| 0 0
—Aty 0 0 0
w(t) = 0 0 [Amyi@) , (1.51)
0 0 Atyk (1)

which makes it particularly easy to diagonalize; the lower right block is already
diagonal and the eigenvalues of the upper 2 by 2 block may be directly obtained by
solving for the roots of the characteristic polynomial A> — A — (y At)? = 0. Again,
we introduce the corresponding unitary transformation Wa (1) =y U @) Wy (1)
to find that

P+ AN =) wa () Wa()p(O) Wi (1) (1.52)

with wy () denoting the eigenvalues of the matrix (1.51) and in particular the
only negative eigenvalue being given by w;(¢) = %(1 — V14+4(y Ap)?). Now,
we use the spectral decomposition of the density matrix at time ¢, p(t) =
> o Pa@®) W, (1)) (W, ()], to demonstrate approximate positivity of the density ma-
trix at time ¢ + At:

(Dot + ADIP) =Y wa (1) Pa(t) (@[ Wa ()| ¥ (1))]

1 -
= (1= 1+4an) Z Pa)[(@1W1 ()| 1))

> — (A2 Y Pa)|(@ Wi 0w o) 450, (1.53)

such that the violation of positivity vanishes faster than the discretization width as
At goes to zero. This limit just yields the differential equation of the Lindblad form
master equation, which shows that the latter preserves positivity. It should be noted
however that numerical solutions of the Lindblad master equation using a forward-
time discretization may yield negative probabilities if the time step At is chosen too
large.
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1.5.3 Rate Equation Representation

Since Eq. (1.45) at all times preserves hermiticity of the density matrix, it can always
be diagonalized by a unitary transformation pp(t) = U () p(t)U T(1). Inserting this
transformation in the master equation (1.46) yields

pp=UU"pp +UpU" + ppUU" = =i[iUU", pp] + UpU"
= —i[H(t) + Hess(1), pp |

1
+ Z[La(r)pDL;m — 5 {LOL, pD}}, (1.54)

with transformed Lindb}ad operators Ly (t) = U(t)L,U T(r) and the effective
Hamiltonian H e (t) = iU 0)U" (7).

Exercise 1.13 (Hermiticity of effective Hamiltonian) Show that the effective
Hamiltonian Heg(¢) = iU (1)U (¢) is hermitian.

Now using the fact that in the time-dependent basis pp is diagonal, pp =
>_a Paa()la(®)){(a(t)|, we obtain

faa=Y_ 3 |alLa@®1b)*ppp — > (aILL () La(D)a)paa.  (1.55)
o b o

which has the structure of a rate equation with positive but time-dependent
rates [20]. Unfortunately, to obtain such a rate equation, one first has to diagonal-
ize the time-dependent solution of Eq. (1.46), i.e., to solve the complicated master
equation beforehand. It is therefore not very practical in most cases, unless one is
given a rate equation from the start. Nevertheless, it shows that rate equations—if
set up in the correct basis—can yield a quite general description of master equation
dynamics. The basis within which the long-term density matrix becomes diagonal
is also called a pointer basis.

1.5.4 Examples

1.5.4.1 Cavity in a Thermal Bath

Consider the Lindblad form master equation
ps = —i[2a"a, ps|+y (1 +np)|apsa’ — Sa'aps — Spsa‘a

. 1 1 .
+ yn3|:a7,osa — Eaans — Epsaa1:|. (1.56)
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Here a and a' are bosonic annihilation and creation operators, respectively, fulfill-
ing the bosonic commutation relations [a, a'] = 1. The dampening matrix is given
by the Bose-Einstein bath occupation np = [¢#¥ — 1]7! evaluated at cavity fre-
quency £2 and a bare emission and absorption rate ¥ > 0. In Fock space represen-
tation, these operators act as aTln) =+/n+1|n+1) and a|n) = /n|n — 1) (where
0 < n < 00), such that the above master equation couples only the diagonals of the
density matrix p, = (n|ps|n) to each other,

pn=y( +nB)[(” + Dpn+1 — npn] + V”B[npn—l —(n+ 1),0n]
= ynpnpy—1 —y[n+Qn+ Dnplon +y (1 +np)@n+ Dppi1, (1.57)

in a tridiagonal form. That makes it particularly easy to calculate the stationary
state of the populations recursively, since the boundary solution ngpy = (1 +np)pj
implies for all » the relation

Poil _ B _ B2, (1.58)
Pn l+np

Consequently, the stationary populations are consistent with a thermalized Gibbs
state

e—ﬁ.QaTa
(= ———— 1.59
p Tr{e—p@aa) (1.59)
with the inverse reservoir temperature 8. Such a Gibbs state however does not have
coherences in the Fock space basis. To investigate their evolution, we calculate the

time derivative of p,,, = (n|ps|m),

n+m n+l+m+1
- A~ nm

,(')nmzl:—i.Q(n—m)—y(l—l—nB) 5 —ynp 5

+y(d+npg)y(+1Dm+Dppr1me1 +ynpy/nmpg_1m—1, (1.60)
which, when n # m, shows that the coherences do not formally depend on the dy-
namics of the populations. However, they couple strongly to other coherences. In

particular, we observe that coherences pnA = pn.n+4 Withinteger A #0and A > —n
couple only to coherences with the same difference ,onAjEl :

bt =[HRA -y +np)(n+A/2) —yng(n+ 1+ A/2)]p;

+y(L+np)y/(n+ D+ 1+ A)pf, +yngynn+A)ps,, (1.61)

which also corresponds to a tridiagonal system for each fixed difference A. For each
A it is straightforward to see that ,5”A =0 is a stationary solution.
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Exercise 1.14 (Moments) Calculate the expectation value of the number operator

n=a'a and its square n®> = a'aa’a in the stationary state of the master equa-
tion (1.56).

1.5.4.2 Driven Cavity with Losses

When the cavity is driven with a laser and simultaneously coupled to a vacuum bath
np = 0, we obtain the master equation

P . P ..
p's:_i|:QaTa+Ee+zwta+76—zwtat’psi|
i1 s L
+ ylapsa' — Ea aps — E,osa a (1.62)

. . . iwat
with the laser frequency w and amplitude P. The transformation p = e™1®4 ¢! x

—iwa' L .
pse 1?4 4 maps to a time-independent master equation,

S i g Lo BE o LR S
p=—i| (2 —w)a a+5a+7a ,p|+vlapa —Ea a,o—E,oaa . (1.63)

This equation obviously couples coherences and populations in the Fock space rep-
resentation. Therefore, it does not assume a simple rate equation form in this basis.
Nevertheless, a solution of the resulting equation of motion can be found for partic-
ular operators.

Exercise 1.15 (Coherent state) Using the driven cavity master equation, show that
the stationary expectation value of the cavity occupation fulfills

s |P|?
lim (a7a) = ———.
=00 Y2 +4(2 —w)?

1.6 Superoperator Notation

The Lindblad master equation may be a bit impractical for calculations, as one is
often more used to the solution of first-order differential equations that are written as
v = Av, where A is a matrix and v is a vector. Since the Lindblad equation is linear
in the density matrix p, one can easily convert it into such a form, where one writes
0 = Zp. In this representation, . is a matrix, and the density matrix becomes a
density vector. Conventionally, the mapping to a density vector is performed by first
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placing d populations and then the d(d — 1) coherences:

P11
P11 ---  PIN PNN
p=| : : s Iey=| 2 |. (1.64)
P21
PN1 ... PNN .
PN—1,N
PN,N—1
A master equation can now be written as
p=2p, (1.65)

where the superoperator corresponding to the Lindblad form (1.46) acts like an or-
dinary operator on the density vector. In this representation, the trace of a density
matrix corresponds to multiplication with the vector

)=a,...,1,0,...,0), (1.66)
R
N x N(N—-1)x

i.e., Tr{p} = {(0]| p)). Thus, when the Hilbert space dimension of the quantum system
is d, ps is a vector of dimension d2, and the superoperator . is represented by a
d? x d* matrix. At first sight, such a representation does not seem very efficient.
However, for many specific cases, the structure of the superoperator . may directly
allow for a simplified treatment. If for example it has block structure—as will be the
case in the quantum optical master equation when the system has no degeneracies—
one may treat the blocks separately, which is routinely done. To be more specific,
the mapping can generally be performed as

pij = —i<i|[H, Zpkz|k><l|] 1j)
kl

. 1
+ Zm[uma > oulk) AL — 5<i|{A;Aa, > pulk) <z|}|j>}

apB Kl K

= Z«Z‘j,kmkz. (1.67)
ki

Similarly, we can also transform linear operators into superoperators. However, we
must specify on which side of the density matrix the operator is supposed to act.
As an example, we consider the Liouvillian

L[p]=—i[902,p]+y[o‘pa+ - %{GWW}} (1.68)
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with o® = %(ox +i0”) in the eigenbasis of o¢|e) = |e) and o%|g) = —|g), where
we have 07 |g) = |e) and o~ |e) = |g). From the master equation, we obtain

Pee = —VPees pgg = +YPees

. 14 . . )4 .
Peg = <_§_21~Q>)Oega Pge = <_E+21~Q>pge,

such that when we arrange the matrix elements in a vector p = (0gg, Pees Pge> /Oeg)T7
the master equation reads

(1.69)

Peg 0 +y 0 0 Pgg
Pee 0 -y 0 0 Pee
= . . 1.70
Oge 0 0 —-%+42i02 0 Pge (1.70)
Peg 0 0 0 2212 ) \ peg

We note that populations and coherences evolve apparently independently. Note
however that the Lindblad form nevertheless ensures a positive density matrix—
with valid initial conditions provided.

Exercise 1.16 (Preservation of Positivity) Show that the superoperator in Eq. (1.70)
preserves positivity of the density matrix provided that initial positivity (—1/4 <
|10ge|2 - pggpgg = 0) is given'

Furthermore, note that we do not need to exponentiate a matrix to solve
Eg. (1.70): its special structure makes it possible to solve for p., and pg., and e,
independently. The equation for pg, does depend on the result for p..; however,
we may readily obtain the solution by exploiting trace conservation pge =1 — pee.
It is of course also possible to represent ordinary operators as superoperators. This
however requires one to specify on which side the operator is acting; for example,

one has
(o V) (5 )
0 1 Peg  Pee

(s 2@ )
Peg  Pee 0 1

Exercise 1.17 (Expectation values from superoperators) Show that for a Liouvillian
superoperator connecting N populations (diagonal entries) with M coherences (off-
diagonal entries) acting on the density matrix p(¢) = (P, ..., Py, Cq, ..., CM)T,

Pgg
pl’e
Pge
peg

- o O O

(1.71)
Pgg
pee
pge
Peg

1>

SO OO OO0
SO~ OO oo o o

SO~ O OO ~=O

(= e Nee)
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the trace in the expectation value of an operator can be mapped to the matrix element

(Am)=(,...,1,0,...,0)- & - p(1),
N, e’ ., e
N x Mx

where the matrix 7 is the superoperator corresponding to multiplication with A
from the left.
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Chapter 2
Microscopic Derivation

Abstract In this chapter, we provide methods of deriving evolution equations for
the density matrix from a microscopic model defined by system, reservoir, and
interaction Hamiltonians. Since all methods assume that the interaction Hamilto-
nian can be decomposed into tensor products of system and bath operators, we first
demonstrate how to convert fermionic tunnel couplings into these representations.
Then, we introduce a Kraus-type map for the density matrix that is valid for short
times and/or weak couplings. The corresponding master equation is introduced via
a coarse-graining approach, which however for large coarse-graining times repro-
duces the quantum optical master equation, valid in the weak coupling limit. Finally,
we discuss important properties of the quantum optical master equation and the sin-
gular coupling limit. Here, it is always assumed that the interaction between system
and reservoir does not change the state of the reservoir. The examples in later chap-
ters will often refer to the definitions in this chapter, which may therefore also be
used as a reference.

Given a microscopic model, the actual derivation of a master equation may be quite
challenging and can be an art of its own for some parameter regimes. However, there
exist quite well-known and model-independent limits where the road map to the
master equation is well documented. The most important one is the weak coupling
limit [1]. Often, such a microscopic derivation is rewarding from a conceptual point
of view, since one gets a thermodynamic interpretation for free.

Before we start discussing the derivations, we make a technical remark: to per-
form a microscopic derivation, it is required to perform a partial trace over all de-
grees of freedom that are not considered as belonging to the system. To perform this
trace in a convenient way, we assume a decomposition of the interaction Hamilto-
nian in terms of a tensor product,

Hi=) Ay ® By, (2.1)
o

where A, are system operators and B, are bath operators, respectively. This tensor
product decomposition implies that the commutator of system and bath operators
vanishes, [Ay, Bg] = 0. In fermionic tunneling terms, the standard representation

G. Schaller, Open Quantum Systems Far from Equilibrium, Lecture Notes in Physics 881, 27
DOI 10.1007/978-3-319-03877-3_2,
© Springer International Publishing Switzerland 2014
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has however anti-commuting operators associated with system and bath, respec-
tively. Therefore, we first demonstrate below how such terms can be mapped to a
tensor product representation.

2.1 Tensor Product Representation of Fermionic Tunnel
Couplings

The representation (2.1) is not compatible with a fermionic tunneling Hamiltonian
of, e.g., the form

Hi=d) nef+Y tfad=dY ncf—d" Y tia. 2.2)
k k k k

where the sign arises because the anti-commutator of system and bath operators
vanishes, {d, cZ} = 0. It is however possible to map fermionic operators to spin
operators via the Jordan—Wigner transformation. This transformation decomposes
the fermionic operators in terms of Pauli matrices acting on different spins

d=0"Q11®---®1,
Gh=0'®0‘® - ®0‘®o @R ®1, (2.3)
—_———
k—1

to map to a tensor product decomposition of the interaction Hamiltonian, where
ot = %[ax + io?]. The remaining operators follow from (¢)" = ¢~ and vice
versa. This decomposition automatically obeys the fermionic anti-commutation re-
lations such as {cx,d’} = 0 and may therefore also be used to create a fermionic

operator basis with computer algebra programs.

Exercise 2.1 (Jordan—Wigner transform) Show that for fermions distributed on N
sites, the decomposition

¢i=0"Q - ®*®o" ®1Ix---®1
N —_—
i—1 N—i

preserves the fermionic anti-commutation relations

el =0= el fernc)]=ay1.

Show also that the fermionic Fock space basis cl.Tci|n1, ...,nN) =ni|ny,...,nN)
obeys of|ni,....,ny) = (=" ny, ... ny).

Using the fact that for the Pauli matrices (1.39) onehas 0 "06* =0~ and 0 To% =
—o, the interaction Hamiltonian becomes (omitting all identity operators)
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HI=G_®ZtkUZ®-~-®UZ ®a++o+®2t,joz®..-®aj®a‘,
k k—1 k k—1
2.4)

which is compatible with Eq. (2.1).

Calculations with such lengthy spin operators may be inconvenient, such that one
may reintroduce fermionic operators defined separately on system and bath Hilbert
spaces, respectively,

d=o", Gk=0'®---®0'®oc R1®---®1, (2.5)
———
k—1

such that the interaction Hamiltonian in terms of these operators becomes
Hi=d®) e +d ®) 1, (2.6)
k k

which of course also respects the required tensor decomposition (2.1). In the
fermionic models that follow, we will implicitly assume such mappings. It is how-
ever also possible to perform specific calculations with the original fermionic oper-
ators yielding the same result.

2.2 A Mapping for Short Times or Weak Couplings

We assume a decomposition of the Hamiltonian
H = Hs + Hi + Hp 2.7

into system, an interaction of type (2.1), and bath Hamiltonians, respectively. Aim-
ing at a perturbative treatment in the interaction, we transform to the interaction
picture

p(t) = g+i(Hs+HB)tp(t)e—i(Hs+HB)t _ e+iHS[e+iHBtp(t)e_iHBte_iHS’, 2.8)

where the von Neumann equation in the interaction picture
p=—i[H(1). p(1)] 2.9)

just contains the time-dependent interaction Hamiltonian. To simplify the bookkeep-
ing of terms and notation, we introduce the dimensionless perturbation parameter
A by transforming H1(¢) — AH1(¢). In the end, we will replace A — 1. For fac-
torizing initial density matrices, the von Neumann equation is formally solved by

U(t) pg ® pgUT(¢), where the time evolution operator

U = fexp{—ik/
0

t

Hy(t) dt’} (2.10)
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obeys the evolution equation
U=—-iHi(nHU (), (2.11)

which defines the time-ordering operator 7. Formally integrating this equation with
the evident initial condition U (0) = 1 yields

t
U@) = 1—iA/ Hy(/)U(¢") dt’

0
t t t'

:1—1A/ HI(t’)dt’—Azf dt’HI(t/)[/ dt”HI(t”)U(t”)i|
0 0 0
t t

=1—i)\./ HI(t/)dt/—)»2/ dtidty Hi(t1) ) H1(1)® (t; — 1)
0 0

+ 0|1’} (2.12)

where the occurrence of the Heaviside function ® (x) is a consequence of time or-
dering. For the hermitian conjugate operator we obtain

t t
Ui ~1 —HA/ Hy(¢)dr —)\2/ dtidty Hy(t)) Hi(12) O (1 — 1)
0 0

+ 023}, (2.13)
To keep the discussion at a moderate level, we assume Tr{ B, pg} = 0. Though for
many conceivable models this is fulfilled, it is a priori not the general case. However,
it can be shown that this case can always be achieved by suitable transformation of
the system and interaction Hamiltonians.
Exercise 2.2 (Transforming the coupling operators) Given an interaction Hamilto-
nian Hy =), Ay ® By where (B,) # 0, show that there exists a simple transfor-
mation B, — B/, and Hs — H{ which obeys (B;,) =0. Find B;, and H{.

The exact solution is approximated by
t
ps() = TI‘B{ |:1 — i)\/ Hq(t1)dt
0
) t
— X / diydn, Hi(t)Hy (1) (1 — m}pg ® /B
0

t t

x [1+i,\/ Hi(t)dn —,\2/ dti dty HI(tl)HI(tz)@(tg—tl):H
0 0

+0{2*}

t
=p2—iATrB{[f Hl(tl)dt1,pg®ﬁs]}
0



2.2 A Mapping for Short Times or Weak Couplings 31

t t
+)»2TTB{/O dfl/O dleI(fl),Og@ﬁBHl(tz)}

t
-2 [ anan (06 - i) Hiwp © o
0

+ 0t — 11)pd ® pp Hi(t) Hi(12) ]
+ 0|1’} (2.14)
We introduce the bath correlation functions with two time arguments:
Cap(t1,12) = Tr{Bo(11) Bg(12)pB}, (2.15)

such that we have, using that Trg{ B (¢) o} = 0, the equation
t t
ps )= +32 3 [ an [ dnCoptr. [ AperplAu ()
0 0
ap

— Ot — h)Ag (1) Ap(t2)pd — Otz — 1) pS Ac (1) Ap(12) ]
+ o33, (2.16)

We now aim to identify this expression with a positivity-preserving Kraus map. To

do so, we first insert a time-independent basis and use @ (x) = %[1 + sgn(x)] to
obtain

t t
ps(t)=p8+)\22f dn/ diy Cog(t1, 12)
af 0 0

x 3 (alAp(n)|b){cl AL ()d)*[1a) (b1pS(Ic) ()

abcd
— 0t —)(Ie)(d1) '|a) (bl 3 — © (12 — 1) pd(Ic) (1) T 1a) (b1] + 03}
1
= Pg + 27 Z Yab,cd (1) [LangLId - E{LZdLab’ pg}:|
abed

—ix* " oup ([ Lap. 03] + O{27}, (2.17)
ab

where we have introduced the Lindblad jump operators L., = |a)(b| and the time-
dependent coefficients

t t
e =3 [ [ Coptermtalap eyl
opf
. t t (2.18)
—1
o= 3 /0 dn /0 dty Cop (1, 12) st — 1) (al A (1) Ap (1)),
af
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which are evaluated most conveniently in the system energy eigenbasis. We note
that we have neglected terms of higher than quadratic order A, but the description
remains consistent if we deliberately reinsert them, e.g., to preserve positivity.

We first show that the matrix yup, 4 is positive semidefinite: this can be shown
by Zab,cd X Vab,cdXed = ZA’B x3vapxp > 0 (where we have introduced the short
hand notation A = (a, b) and B = (c, d)) for all times

t t
Z XgpYab,cdXed = Z Z / dtl/ diy Trg{ B (11) B (12) o }
ab,cd af ab,cd 0 0

x xpy(al Ap()|b)xea | AL (1)|d)*

13
=TTB{[/0 dnZxcd<d|ZAa<n)Bam>|c>}
cd o
t
x [/0 dy ) " xi,al ZAﬂ(t2)Bﬁ(t2)|b>]/3B}

ab B

t
=TrB{UO dnZxcd<d|ZAa<n)Ba(n)|c>}
cd o
t
x [ /0 drsz:,,<b|ZAﬂ(tz>Bﬁ(tz>|a>*}SB}

ab B
=Tris{CT(C ()P} =0, (2.19)
where the last inequality holds for any operator C(¢) with a positive definite density

matrix pp.
With the same short-hand notation, we can write the system density matrix as

1
ps(A1) = ps(0) + 27 yap(Ar) [LAngL - E{L;LA,pg}]
AB

— iA?[ Hetr, p3] + 0133}, (2.20)

where the introduced operator Hefr = ) ,j, 0a (At) Lyp is hermitian. We define the
operators

1 + .
Ki=1, Ky=—- E YAB(AD L gL g — 1Heyr,
2
AB (2.21)

K3=1Ly, Kp+2=Lp

and rewrite the above equation as

ps(AD) =Y wapKapdKy + {33}, (2.22)
AB
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where the matrix

1 A2 0o ... 0
Az oad 0o ... 0

w=|0 0] Ay ... Ay (2.23)
0 0 )LZVDI )\2VDD

is evidently positive definite: the larger lower right block is positive semidefinite
due to the positivity of y4p. The upper left block has eigenvalues A9 = 0 and
A1 =1+ A%, as can be easily confirmed. If we had—as is usual for perturbation—
neglected the wy; element completely, one of its eigenvalues would remain negative.
In principle, we could have inserted larger values for wyy as long as they were not
larger than ¢’{13} while remaining consistent with our truncation order. However,
here we aim at preserving positivity while applying the smallest possible modifi-
cation to our equations, and under this side constraint the above choice becomes
unique. Unfortunately, we note that due to this additional term the trace is no longer
conserved:

Y wapKiKa =1+ 1*K]K>. (2.24)
op

Though this correction is small, repeated application of the map defined this way
would result in an exploding trace of the density matrix, such that the probability
interpretation would no longer be valid. We take a closer look at the operator K, by
inserting all necessary definitions,

-1 . ,
Ky, = 7 Z Vah,cd(At)leLab - IZUab(At)Lah
ab,cd ab

-1
= Z(? Z Vcb,ca(At) - ioab(At)>Lab
ab c

At At
—= [ an [ dncapnmon —maumasm. @25
of

To obtain a map that preserves the probability interpretation of the density ma-
trix, we therefore have to renormalize the density matrix after each application. In
addition, we assume that the bath part is roughly unaffected by the evolution, such
that we may use the map

Y up Wap Kaps (K|
Tr{Y s wep Ka s (DK )

ps(t + At) = (2.26)

for all times ¢. This will also preserve the trace of the density matrix, at the price
of obtaining a nonlinear map. However, we note that in the continuum limit, where
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At — 0, the non-preservation of the trace will become negligible, and renormaliza-
tion may not be necessary.

Now, putting it all together (i.e., undoing the scaling transformation A — 1 and
inserting all definitions), we have generated a fixed-point iteration scheme for the
density matrix that will always preserve its positivity, trace, and hermiticity.

Definition 2.1 (Map for short times/weak couplings) In the weak coupling limit
with a decomposition of the interaction Hamiltonian Hy =), Ay ® By, the density
matrix in the interaction picture obeys the map

;
wep Ko pgK
ps(t + Ar) = Zaﬂ af BaPs ﬂT ’ (2.27)
Tr{Zaﬂ Wap KapSKﬂ}

where

1 1 0 0

1 1 0 0

w=|0 0| yiiiu1 ... viop |,
0 O|vpp11 ... VYDpD.DD

t t
)/ab,cd(t)=2/o dt1/0 dt Cop(t1, 12)(alAp(12)|b) (c| AL (11)]d)*,
af

- t t
o= 3 [ dn [ draCopttr, o senn — ) el Au ) Ap )18,
2 0 (2.28)

Ki=1,

At At
Ky =— Z/(; dt /(; dtr Cap(t1,12)O (1 — 1) Ag (1) Ap(22),
af

K3 =[1)(1], Ky p =1)(D|,
K3yp =12)(1], Kopop =12)(D],
Kiyp-1p = |D){1], K, p2 =1D){D]|,
where |1), ..., |D) represents an orthonormal basis in the D-dimensional system
Hilbert space.

We note that the matrix elements in the above definition are most conveniently
evaluated in the energy eigenbasis of the system Hs|n) = E,|n).
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&)

A P(s:(cf)(T) =Ps

\\m\_\pgg)(t) = [14£5C%¢] pd

TS (1) = pEN(E) + O(HY)

P (t) = Trp (Ut @ pBUT ()] v

t=r1

Fig. 2.1 Sketch of the coarse-graining approximation scheme. Calculating the exact time evolu-
tion operator in Eq. (1.5) in a closed form is usually prohibitive, which renders the calculation of
the exact solution (solid black curve) an impossible task. It is however possible to expand the evo-
lution operator U (1) = 1—i [y Hi(t')dt' — [y dty dt, Hi(t/) Hi(12)O (1) — t2) + O{H} to second
order in the interaction Hy and to obtain the corresponding reduced approximate density matrix
(solid red curve). Calculating the matrix exponential of a constant Lindblad-type generator .£C is
also usually prohibitive (dashed blue curve), but the first-order approximation (dotted green line)
may be matched with the weak coupling approximation of the exact solution at time ¢ = 7 to obtain
a defining equation for .£<%

2.3 Master Equation in the Weak Coupling Limit

The standard derivation in the weak coupling limit consists of applying the Born,
Markov, and secular approximations in a certain sequence, which eventually yields
a Lindblad master equation with further appealing properties [2]. Here, we will
present an alternative scheme based on coarse graining [3]. As an adjustable param-
eter, this involves a coarse-graining time scale 7, after which the reduced density
matrix should be closest to the exact solution. It can be shown [4] that the limit
T — oo reproduces the standard textbook results. For finite coarse-graining times
however one obtains Lindblad form master equations that yield valid short-time de-
scriptions [4, 5]. See Fig. 2.1.

2.3.1 Coarse-Graining Master Equation

We use the result derived in the previous section, Eq. (2.16). At time ¢, this should
for weak coupling match the evolution by a Markovian generator,

CG.
pSC() =% T pd ~ (14 £E6 - 7], (2.29)

such that we can infer the action of the generator on an arbitrary density matrix
cG 1 i i
L ps = - Z/ dn / diy Cop (11, 1) [Ap(12) ps A (t1)
0 0
af

—O(t1 — ) Au (1) Ap(12) ps — O (12 — 1) psAa(11) Ap(t2) ]
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. 1 T T
= _I[E/ dll/ dtr sgn(ty _IZ)ZCaﬁ(tlsZZ)Aa(tl)Aﬁ(t2)7p8:|
0 0 o
1 T T
+;f dtlf dtzZCa/s(tl,tz)[Aﬁ(lz)PsAa(ll)
0 0 B

1
— 5 {Aa) A5, ps}}, (2.30)

where we have inserted ® (x) = %[1 + sgn(x)]. The above equation can be taken as
the definition of a coarse-graining Lindblad generator. To show its Lindblad form,
we first note that the effective Hamiltonian

1 T T
Gr= g [ dn [ dnsenn - )3 Capn AL A @30
0 0 ap

in the commutator is hermitian, which can be seen by reinserting the definitions of
the two-argument correlation functions (2.15). To show that the second line can be
written as a Lindblad dissipator, we insert identities in a time-independent basis:

Ag(t1) =) ld)(d|Aa(tr)lc)(cl,

cd

Ap(t) = la)(alAg(12) D) (bl

ab

(2.32)

such that the coarse-graining Liouvillian can be written as
. 1
Z7Cps = —i[Hiy. ps] + Z Yabcd [LabPSLZd - E{LZdLub’ /’S}} (2.33)
abcd
with Lindblad jumpers L,;, = |a)(b| and the dissipation coefficients
1 T T
Vab.ed = 7 f dn f dy Y Cap(ti, 2)(alAp()|b)(d|Au(t1)]c). (2.34)
0 0 s

To prove the Lindblad form we simply have to demonstrate positivity of the damping
matrix:

> Xy Vab.caxea =Tra { ( fo iy > By(t)xeald|Ag <z1>|c>)
ab,cd cd o
x ( /0 drzZZBﬁ(tz>x;‘b<a|Aﬁ<rz)|b>)p‘B}

ab B
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:TrB{(/O diy Zxcd<d|H1<n)|c>)

cd

x (/0 dlzzx:b(alHI(fz)lb))ﬁB}

ab

=Tr{B"(1)B(x)pB} > 0, (2.35)

where we have introduced the auxiliary operator B(t) = fof dty ) p Xk, X
(a|H1(t2)|b) and where the last line follows from positivity of the reservoir density
matrix. Therefore, we conclude that coarse graining always yields a Lindblad-type
master equation, regardless of the bath state, hermiticity of coupling operators, etc.

For most applications however, the form of Eq. (2.30) is not quite practical, since
for example we have not yet used the fact that the bath correlation functions typically
only depend on a single argument. One important situation in which this is always
the case is that of a single or multiple thermal reservoirs.

Exercise 2.3 (Properties of correlation functions) Show that when [Hg, pg] = 0
(which is, e.g., the case in thermal equilibrium), the correlation functions in
Eq. (2.15) only depend on the difference of their time arguments

Cop(t1,12) = Cop(t; — 12, 0). (2.36)

However, for a system that is in a non-equilibrium steady state one may also
observe that in the long-time limit, the correlation functions only depend on the
difference of their time arguments (see the discussion in Sect. 5.6).

For the case where the correlation functions only depend on the difference of
their time arguments, Cyg(t1 — 12) = Cop(t1 — 12, 0) = Cyup(t1, 2), we introduce the
even and odd Fourier transforms of the correlation functions, respectively, as

Vop (@) = / Coap(D)e™Tdr,  oup(w) = / Cop(v) sgn(r)e ™7 dr.  (2.37)

We note here for later reference that the odd Fourier transform may be obtained
from the even one:

. 4o
Ga (@) = R Yap(82)
b/ —

as2, (2.38)

o W—52

where & denotes the Cauchy principal value of the integral. Furthermore, we use
the system energy eigenbasis Hs|a) = E,|a) to explicitly perform the temporal in-
tegrations. The Liouvillian then acts like

/de/ dn/ dty ) oup()
abc 0 0 [753

x e 101=n) ;H(Eq—E)t ,H(Ec—Ep)t2 (C|A,3|b) (C|Al|a)*[|a)(b|, pS]

. 1
= —i
Ps dimt
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T T
da)/ dt / dt
0 0

x Z Z Vaﬂ(w)e—iw(fl—tz)e+i(Ea—Eb)tze-i-i(Ed—Ec)tl (alA,g|b)(c|Al|d)*
aff abed

P | ;
x [|a><b|ps(|c><d|)‘ - 5{(|c><d|)k|a><b|,ps}] (2.39)

We perform the temporal integrations by invoking
T
/ et gy = 72 sinc[%} (2.40)
0

with the band-filter function sinc(x) = sin(x)/x to obtain

= —1— dw ZZU ﬂ(w)e”(E —Ep)/2

abc off
. T . T
X smc[—(Ea —E.— a)):| s1nc|:—(EC — Ep+ a))]
2 2
X (c|A,3|b)<c|Al|a>*[|a)(b|, Ps]

d(,()Z Z ,y ﬂ((,())@lr(Ea Eb+Ed E )/2

271
aff abcd

X sinc[%(Ed —E.— a))i| sinc[%(m + E,; — Eb)i|
1
X <Cl|Aﬁ|b)(C|AL|d)*|:|a)(b|ps(|C)(d|)T - 5{(|C><d|)T|a)(b|,Ps}]- (241)

This expression is already quite similar to the standard quantum optical master equa-
tion [4], but here the dampening coefficients are expressed in terms of integrals that
depend on the coarse-graining time scale t.

Definition 2.2 (Coarse-graining Liouvillian) For a system-bath interaction of
the form Hy = ), Aw ® By and a stationary reservoir density matrix obeying
[Hp, p] = 0 and Tr{B,pp} = 0, the coarse-graining Lindblad Liouvillian is in
the system energy eigenbasis Hsla) = E,|a) given by

ps = —i[Zo;b|a><b|, Ps]
ab

+Zy,ﬂ,cd[ (blos (le)d])" — {(|c><d|)"'|a><b|,ps}} (2.42)

abcd
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with the coefficients

1 S (E— T |
or, = % dw Ze”(E“ Eb)/zg smc|:§(Ea —E.— a))i|
-

. T E E Aslb A% *
xsmc[z( b— C—w>MZaaﬂ(w><c| sIb)(c|A] la) }
op (2.43)

- T T
Yab.cd = /dw ElT(E"_EHEd_E")/Zg sinc|:§(Ed —E.— w)}

X sinc[%(Eb —E;, — a))] I:Zﬂ Yap(@){a|Ag|b) (c|Al|d)*i|.

When transforming the master equation back to the Schrodinger picture ps(t) =
e~ iHst ps(t)e+iHS’ , we will get the system Hamiltonian in the commutator, too, and
some additional phases that lead to time-dependent coefficients but do not destroy
the Lindblad form. We note that this Lindblad master equation will in general not
assume a rate equation form in the system energy eigenbasis. The theory contains
the coarse-graining time 7 as a free parameter, and a sufficient condition for the
validity of the perturbative treatment is ||.$,CGI || < 1, but it is not a necessary con-
dition.

2.3.2 Quantum Optical Master Equation

When the coarse-graining time is sent to infinity, T — 00, one can show that the
standard quantum optical master equation (that normally arises when Born, Markov,
and secular approximations are applied) is recovered: in our case, this simply re-
quires us to use the identity

lim 7 sinc|:£(.(2a - a)):| sinc|:z([2b - a)):| =280, 0,8(2a —w) (2.44)
T—00 2 2 @
to collapse the integrals in (2.43). It is also visible that, when transforming back to
the Schrodinger picture, the time-dependent phases cancel due to the arising Kro-
necker functions.

Definition 2.3 (Quantum optical master equation) In the weak coupling limit, an
interaction Hamiltonian of the form Hy = Za Ay ® B, obeying [Hg, pg] =0 and
Tr{B, pp} = 0 leads in the system energy eigenbasis Hg|a) = E,|a) to the Lindblad
form master equation in the Schrédinger picture:
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ps = —i[Hs + ) oala)(bl, ,Os(t)}

ab

1
+ ) yab,cd[|a><b|ps<r>(|c><d|)*—5{(|c><d|)*|a><b|,ps<z>}]
@hed (2.45)

Yabed = Yap(Eb — Ea)SE,—E,.E4—E (@l Aplb) (c| A} |d)*,
of

1
Oab= ) D 5:0up(Ep = E)Sr, £, (el Aplb) (¢l Aala)”.
aff ¢

where His =), 0upla) (b| = HES is also called the Lamb-shift Hamiltonian.

2.3.3 Properties of the Quantum Optical Master Equation

2.3.3.1 Pointer Basis

The simple master equation in Definition 2.3 is not only very popular due to its sim-
ple computability. First, we note that the Lamb-shift Hamiltonian commutes with
the system Hamiltonian [ Hs, Hy s] = 0. This implies that there exists a basis diago-
nalizing both operators.

In particular, in the case when the system is already nondegenerate, the basis
diagonalizing Hs is unique and thus also diagonalizes Hys. By using 8¢, g, —> 8a.p
and 8¢,k E,—E. = OE,,E. — Sb,c, We see that, in this case, only the diagonals of
the density matrix in the energy eigenbasis couple to themselves:

Oaa = Z Yab,abPbb — |:Z Vba,ba:|,0aas (2.46)
b b

whereas the coherences usually simply decay. Such rate equations are of course
much simpler to solve than the full master equation.

Definition 2.4 (Quantum optical rate equation) In the weak coupling limit, an in-
teraction Hamiltonian of the form Hy =), Ay ® B, obeying [Hg, pg] = 0 and
Tr{B,pp} = 0 leads for a nondegenerate system in the system energy eigenbasis
Hgla) = E,|a) to a rate equation for the populations of the density matrix

Paa = Z Yab,abPbb — |:Z Vba,ba]paas (2.47)
b b
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where the rates are given by matrix elements of the coupling operators and the even
Fourier transform of the correlation function (2.37),

Yabab = Y Yap(Ep — Ea)(a|Ag|b)(al ALIb)* > 0. (2.48)
af

In a basis different from the system energy eigenbasis, the simple rate equation
picture does not apply.

We note that the positivity of the transition rates follows from the fact that y,p 41
are just the diagonal entries of the damping matrix y,p 4, for which we have al-
ready demonstrated positivity: diagonal entries of non-negative matrices are also
non-negative. This rate equation representation implies that for the assumed prereq-
uisites (weak coupling, no degeneracies), the system energy eigenbasis quite gen-
erally becomes the pointer basis (i.e., the basis within which the stationary density
matrix becomes diagonal). With degeneracies present in Hs, the type of interaction
may determine the pointer basis for extremely small coupling strengths [5, 6].

Furthermore, we note that a system described by a rate equation may still exhibit
complex quantum behavior. This can for example be expected when the basis within
which this rate equation applies exhibits true quantum properties such as entangle-
ment [7, 8].

2.3.3.2 Steady State for a Thermal Reservoir

Furthermore, for a single reservoir in thermal equilibrium

efﬁHB
p= ———— 2.49
PB Tr(e—FPs) (2.49)
a stationary state of the rate equation (2.47) is the thermal one
=t 2.50
ps = W (2.50)

with exactly the same temperature as that of the reservoir.

Formally, this can be traced back to analytic properties of the bath correlation
functions. For thermal reservoirs, these obey Kubo—Martin—Schwinger (KMS) con-
ditions

Cup (1) =Cpo(—1 —1iP). (2.51)

Exercise 2.4 (KMS condition) Show the validity of the KMS condition for a ther-
e PHB

mal bath with ,6]3 = W.
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This shift property implies the following for the Fourier transforms of the bath
correlation function:

Yap (—®) = ypo (+w)e P, (2.52)

such that eventually the transition rates—compare Eq. (2.45)—from b to a in the
rate equation

Yabab = Y Yap(Eb — Eq)(alAg|b){al AL |b)" (2.53)
ap

obey global detailed balance relations

Yab.ab _ eﬂ(Ebea), (2.54)
Yba,ba

which can be used to prove equilibration of the system temperature with that of the
bath.
Furthermore, when the bath is in a grand-canonical ensemble,

e~ B(HB—1LNB)

PB = Tre PN (2.55)

where B denotes the inverse temperature, ;v the chemical potential, and Np the
particle number of the bath, one can show [9]—given that the total particle number is
conserved: [Hs, Ns] =0, [Hg, Ng] =0, and [H}, Ns + Np] = O—that a stationary
state is also present when both temperature and chemical potential are equilibrated:

e~ PB(Hs—Ns)

PS = TP s—Ns))" (2.56)

In general, this does not exclude the existence of further stationary states, but with
a sufficiently complex coupling between system and reservoir, one can expect the
above stationary solution to be unique [2].

2.3.3.3 Multiple Thermal Reservoirs

When a system is coupled to multiple reservoirs that are held at different equilibrium
states,

_ —(1 ~(N

=0y @ ®py . (2.57)
all the previous derivations go through, but we note here that we can enforce the
previously mentioned constraint (Bé”)) = 0 for all bath operators Béu) and all reser-
voirs v. This implies that the correlation function involving bath operators acting on
different reservoirs will vanish,

Cap” (@ = (B (0B”) =0, when i v. @58)
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Keeping in mind that the Fourier transforms of these quantities are linear, this im-
plies that within the already-used limitations the resulting Liouvillian can be repre-
sented as an additive combination of the separate dissipators,

&= Z LW (2.59)
v

where .Z(") is the dissipator if the system was only coupled to the single reservoir v.
If for example the system has all the favorable properties enabling the derivation of
a rate equation, this decomposition of course also transfers to the rates:

Yab,ab = Z )/a(ll;’)ab. (2.60)
v

The interesting consequence of this procedure is now that when the reservoirs are
held at different equilibrium states, the system experiences a highly non-equilibrium
environment, which induces, e.g., steady-state energy and matter currents. In this
case, the separate detailed balance relations will still hold:

y(V)
ab.ab _ eﬁv(Eb—Ea)’ (2.61)
v)

yha,ba

but of course the global detailed balance relation will in general be violated:

Yab,ab ” oPEv—Ea) (2.62)
Yba,ba

There exist a few special cases however (e.g., systems described by only a single
transition frequency), where one obtains thermalization at some average tempera-
ture [7].

2.4 Strong Coupling Limit

In the previous derivation, we have used the fact that the interaction Hamiltonian
is weak in comparison to both the system part and the reservoir part. The latter
assumption is required to keep the reservoir at a stationary limit, whereas the first
assumption may be inverted. It is for example still possible to derive a master equa-
tion in the limit where the interaction dominates the system Hamiltonian. Within the
framework of coarse graining, we can apply exactly the same formalism, but should
now keep in mind that oscillations of the system are much slower than the ones in-
duced by the interaction. This implies that we can neglect the time dependence by
inserting Ay () — Ay, Which corresponds to setting the system energies to zero in
Eq. (2.39). The Liouvillian in the interaction picture then becomes
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. . T . T
ps = _14_711 / aXﬂ:aaﬂ(a)) smcz|:7j| dw[AqAg, ps]

(2.63)
T . o] ot 1
+ 5 Xﬁ:yaﬁ(w) sine?| == | dw | AppsAu — S{AaAp. ps}|.
o
Now inserting the limit of large coarse-graining times,
lim 7 sincz[ﬂ] = 278(w), (2.64)
T—00 2
the Liouvillian in the strong coupling limit can be readily calculated:
. 908(0)
Lpg=— AgA
ps=—i) —o—lAuAp. ps]
ap
1
+ Xﬂj Vap (0) [AﬁPsAa — 5 {Aadg, Ps}i|- (2.65)
Q,

Finally, transforming back to the Schrodinger picture (again neglecting the small
system eigenenergies), one obtains a simple form for the generator in the strong
coupling limit. Alternatively, the generator can be obtained by a scaling transforma-
tion, from which it is also often called the singular coupling limit.

Definition 2.5 (Master equation in the singular coupling limit) In the singular cou-
pling limit, an interaction Hamiltonian of the form H; = )", Ay ® B, yields the
Liouvillian in the Schrédinger picture

%8O 4 ag. ps]

ZLps = —ilHs, ps] —i) o

ap

1
+ Z Yap (0) |:AﬁpSAa - E{AaAﬂs ps}]-
af
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Chapter 3
Exactly Solvable Models

Abstract To understand the limit within which master equations are valid, it is
quite instructive to compare the master equation results against exactly solvable
models. Unfortunately, these models are quite rare. In this chapter, we will discuss
two popular representatives of exactly solvable models: first, we investigate a pure
dephasing spin-boson model, where the interaction Hamiltonian commutes with the
system Hamiltonian. Such models obviously leave the system energy invariant but
nevertheless may be used to investigate interesting features such as decoherence.
Second, we consider a noninteracting model, where the Hamiltonian can be written
as a quadratic form of fermionic annihilation and creation operators. Such mod-
els generally admit—at least formally—an exact solution, and can thus be used
to study non-equilibrium setups and transport in a regime where the coupling be-
tween system and reservoir becomes strong. Furthermore, we note that the non-
equilibrium stationary solution of these models may also define a non-equilibrium
TeServoir.

3.1 Pure Dephasing Spin-Boson Model

The pure dephasing spin-boson model describes the interaction of a two-level sys-
tem with a bosonic bath:

Hs = wo?,
Hp =Y wi(bjbx +1/2),

k (3.1
Hi=0°® ) (hibi + hiby).

k

where o% is a Pauli matrix and by a bosonic annihilation operator in the bath.
One immediately observes that the model conserves the system energy—since
[Hs, Hi] = 0—and will thus only modify the evolution of coherences in the system
energy eigenbasis (hence the name purely dephasing). Similar models have been
used to illustrate decoherence in quantum computers [1, 2] or to test the validity of
Markovian master equations [3].
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48 3 Exactly Solvable Models

3.1.1 Time Evolution Operator

The calculation of the exact solution makes use of the fact that in the interaction
picture, the time evolution operator can be exactly determined. In the interaction
picture, the full density matrix follows the von Neumann equation

p=—i[H(1). p()] (32)

with the interaction Hamiltonian in the interaction picture

Hi()=0"® Y (hcbre " + hibje™ ). (3.3)
k

Exercise 3.1 (Interaction picture) Show that Eq. (3.3) arises in the interaction pic-
ture.

‘We note that the commutator of the interaction Hamiltonian with itself at differ-
ent times is just a number,

[Hi(t), Hi(2)] =) e ?2isinwx (22 — 1)), 34
k

such that the Baker—Campbell-Hausdorff (BCH) formula may be employed to cal-
culate the exponential. For two operators A and B with the commutator obeying
[[A, B], A] = 0 = [[A, B], B], one can express the exponential of the sum by a
product of exponentials

oATB _ A B ,~A.BI/2 3.5)

If one now has many of these operators in the exponent Ap,..., A, obeying
[Ai, Aj] = a;;1 such that [[A;, A;], Ax] = 0, one can generalize the above equa-
tion to

eZLl Ai _ pA1p42 ,eAnfleAne_Zi<j[Ai’Aj]/2. (3.6)
Exercise 3.2 (BCH formula) Show the generalization from Eq. (3.5) to Eq. (3.6).

Following the ideas in Ref. [3], we discretize the integral in the exponent of the
time evolution operator:

st ’ ’ N
U =te MO — ¢ Jim oD ot 3.7)
At—0,N—o0

where H, = —iH1(nAt) with the constraint N At =t remaining finite. Applying
the generalized BCH formula (3.6), we obtain

N N
Uty =1 l—[ oAt = X1 H Hj1/2 1_[ eHnAt o= i jIHLH)2 (3 gy

n=1 n=1
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where we note that the last exponential is just a number and that the operators are
already time-ordered, such that the time ordering may simply be omitted. Recom-
bining the exponentials of the operators, we see that the time ordering has no effect
in this particular case:

U(t) = e o M)Al _ (o @ cx Db 0b) = (0" @AW (3.9)

with ag (1) = (e — 1)hy Jwy and A(r) = —AT(1).

Exercise 3.3 (Matrix exponentials) Show that for a unit vector |r| = 1 and a vector
of Pauli matrices 0 = (0, 0”7, 0'%) one has

e84 — 1 @ cosh(A) + (n - 0) @ sinh(A).

We can also write the unitary transformation as

1 1
U =1® §(e+A(t) + e’A(’)) +oi® 5(eJrA(t) . efA(z))’
(3.10)
i) =16 L(eHAD 4 g=AD) _ o2 @ L, A0 _ =AW
DI =10 L (¢H0 +e40) — gt @ L (¢+40 _ 40,

When assuming an initial product state, the full density matrix is given by p(t) =
U(t) ,og ® pgU J'(t), which can be used to calculate any expectation value.

3.1.2 Reduced Dynamics

By performing the partial trace over the reservoir, we obtain the exact solution in
the interaction picture:

ps(t) = Trp{U ()3 ® ppU" (1)}
~ AT e 0 2
_ pgaz;L Trg [ (7240 — ¢72400) 5y )
oty T (¢4 — 40) )
- azp(s)aziTrB{(eHA(t) +e7 240 _2)pgl, (3.11)

which can therefore be related to the expectation values (e*24(®)) with respect to

a thermal state. Since the bosonic annihilation and creation operators commute
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for different modes, we can separate the modes in the exponentials and write
Trp{e*A® g} = [T, Tk (t) with

-
To(t) = Try | 20 Obi—207]
Zy

o0
- Z(me*wbl’ e+2ak(f>bk|n>e*2\“k<f>‘2e*/’wk"[1 —eFx], (312
n=0

where we have used the BCH formula (3.5) and also inserted the normalized thermal
state for mode k. For the matrix element we can use the identity

(nle=" e n) = Z, (o), (3.13)

with the Laguerre polynomial [4]

et d"
— —X .n
()= (e7*x™), (3.14)
which further yields
s 2
Ti(t) = Zgn(4|ak(,)|2)e—2lak(t)| e—ﬁwm[l -~ e—ﬁwk]
n=0
— 2l coth(Be /2). (3.15)
Therefore, we obtain for the sought-after expectation value
TrB{eZA(t)ﬁB} — 6_2 Zk |o(k([)|2 coth(Bwy /2) — TI'B {E—ZA(I)IEB}’ (316)

where the second equality sign follows from A(¢) = —AT(#) and the fact that the
above expectation value is real. The exact solution for the system density matrix
becomes

1 _ 2
ps(t) = pg§[1 +e 23kl (0)] COth(ﬂwk/Z)]

+ Uzp(s)azl[l e 22k lotge (1)1 COth(ﬁwk/Z)] (3.17)
2 ’ ’

which means that, as expected, the populations pgo and p1; are unaffected by the
interaction with the reservoir, whereas the coherences evolve according to

Po1() = ,081672 Dk ok (t)\zcoth(ﬁwk/z)’
(3.18)

_ 2
P1o(t) = pe 23kl (D]” coth(Beoy /2)
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Inserting |otg (t)|2 2””‘| [1—cos(wit)] = 4‘}”‘| 51n2(a)kt/2) we eventually arrive

k
at the well-known result that, in the pure dephasmg model, the coherences decay as

)
001(f)=eXP{—82|hk|2mt)07§t/2) cot ('Bwk)}loop (3.19)
k

k

which for a discrete spectrum of modes will display recurrences. Transforming to
the continuum limit by introducing the spectral coupling density

J(@) =) I8~ wp), (3.20)
k

we note that as soon as J (w) is represented as a smooth function, a popular choice
being the parametrization [5]

a)S
Jo =€

J(w) = —o/oc  for g >0, (3.21)

the coherences will approach a vanishing stationary state lim;_, s pg(#) =0

By performing a simple time derivative of the solution, one can now derive an
exact master equation. For completeness we note here that this exact master equation
has time-dependent rates. In addition, it is not of Lindblad form (also for constant
time) but must—since the solution is exact—nevertheless preserve positivity of the
density matrix.

In general, the speed of decoherence depends on the temperature and coupling
strength, etc. For high temperatures, we can expand the integrand and solve the
special case s = 1 and w. — o0 in the above parametrization explicitly:

_ag o
poi1() ~ e F g (3.22)

This result can also be reproduced within a master equation approach, as described
below.

3.1.3 Master Equation Approach

Identifying a single system and bath coupling operator in the interaction Hamilto-
nian A =o% and B = Zk (hybr + h,"(‘bz), respectively, we first calculate the bath
correlation function

€0 = B08) = St il e 1)
kk'

= Z {71+ npwn)] + e ng(wr) )
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o0 . .
:/ J@){e ' [14+np(@)]+e" npw)}do
0

+00 .
=/ J(w)e_“"’J(a))[l —l—nB(a))] dow, (3.23)

—00

where we have analytically continued the spectral coupling density to negative fre-
quencies J(—w) = —J (w). This enables us to identify the Fourier transform of the
correlation function as

y (@) =2nJ()[1+ngw)]. (3.24)

With the help of Eq. (2.38) this can be used to calculate the odd Fourier transform
numerically. The quantum optical master equation in Definition 2.3 then yields

poo = p11 =0,

. . 1 1
po1 = —1(Eyg — E1 + 000 — o11)po1 + (J/oo,n — 500,00 ~ E)/n,n)pm (3.25)

=—i(Ep — E1 + 000 — o11)po1 — 2y (0)po1.

The first two equations just express the fact that the interaction does not change the
system energy, which is also obeyed by the master equation solution.

The Lamb-shift terms can be expressed with the odd Fourier transform of the
reservoir correlation function ooy = 0 (0)/(2i) = 011, and thus they cancel in the
evolution of the coherences. Therefore, we obtain for the coherences a decay accord-
ing to po1(t) = e~ (Eo=Et =2y (01 |,081 |. The first exponential can be transformed
away by switching to the interaction picture pg(t) = eTiHst 0s (t)e_iHS’ , where one
only has pg(¢) = e~ 2O ,081|~ Now, assuming high temperatures and an ohmic
spectral coupling density J(w) = Jow, the limit becomes lim,—.¢ ¥ (0) =27 Jo/B,
which perfectly coincides with the result in Eq. (3.22).

We finally note that the Lindblad form only guarantees positivity of the solution
if initialized with a valid, i.e., positive, density matrix.

3.2 Quantum Dot Coupled to Two Fermionic Leads

As one of the simplest fermionic models, we consider a single electron transistor
(SET). The system, bath, and interaction Hamiltonians are given by

Hs=¢ed'd, Hp = ZSkLCZLCkL + ZSkRC/;RCkR,
k k

Hi= Y (tede], +tipernd’) + 3 (rde] g + tigcird’),
k k

(3.26)
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where d is a fermionic annihilation operator on the dot and ¢, are fermionic annihi-
lation operators of an electron in the kth mode of lead «. Obviously, this corresponds
to a quadratic fermionic Hamiltonian, which can in principle be solved exactly by
various methods, such as non-equilibrium Green’s functions [6] or even the equa-
tion of motion approach [7]. Such quadratic models are useful for studying exact
transport properties [8] or exact master equations [9].

3.2.1 Heisenberg Picture Dynamics

To be as self-contained as possible, here we simply compute the Heisenberg equa-
tions of motion for the system and bath annihilation operators (we denote operators
in the Heisenberg picture by boldface symbols):

d=—ied +iZ[t,chkL + 1rCkr ]
k

. : . 3.27
¢ = —iggpcxr +itgrd, (3:27)

CkRr = —iekrCkR +itkrd.

Surprisingly, this system is already closed, and we obtain its solution by performing
a Laplace transform [10]:

2d(z) —d = —ied(2) +i ) _[1{1.8L () + {rirr(D)],
k
(3.28)

28k1.(2) — cxr = —iekr Gk (2) +ityrd (2),
28R (2) — ckr = —iekrCrR(2) + itkrd (2).

In the above equations, we can eliminate the operators ¢y (z) and cxr(z). This
yields for the dot annihilation operator

1 ckL 1 RCAR
kL kR
5 d +12k(Z+IEkL Z+i8kR)

d@) = e lugl
2 + 18 + Zk(z-fl—{ll‘é‘kL Z-i]-(ilfﬁ,‘kR)
= f(@d+ ) (&L + &r@)err), (3.29)
k

where we have introduced the functions g (z) and f (z)- This expression also yields
the solution for the operators of the right lead modes,
itkg

1 ~
C = d(z). 3.30
Cka (2) i, ke + Tt it () (3.30)
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Inverting the Laplace transform may now be achieved by identifying the poles and
applying the residue theorem. In the wide-band limit discussed below, this becomes
particularly simple.

3.2.2 Stationary Occ