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Abstract. The Braess’s paradox, also called Braess paradox, in trans-
portation networks states that adding extra capacity to a network, when
moving entities with incomplete information selfishly choose their routes,
can in some cases reduce the overall network performance. In this paper,
we observe a similar phenomenon in wireless networks. More specifically,
we consider a single-cell system with two different types of access points,
one of them with a fixed rate and one of them with a variable rate, i.e.,
a rate that depends on the number of users connected to that access
point. We observe that, under certain conditions, the intersystem con-
nection between these two types of access points does not necessarily
improve the overall system performance. In other words, after the inter-
connection, the individual rates of users as well as their sum rate might
get worse. This is similar to the original Braess paradox where adding a
new route does not necessarily improve the overall traffic throughput. We
develop a general model that describes under which conditions and for
which families of variable rate functions this paradox happens. abstract
environment.

Keywords: Braess paradox, game theory, wireless networks, informa-
tion theory, intersystem interconnection.

1 Introduction

In traffic networks, Braess paradox [1] states the following: Suppose a road net-
work where cars go from a starting point to a destination through various routes.
The delay incurred on each route depends on the number of users on that specific
route. Hence, whether one street is preferable to another depends not only on the
quality of the road, but also on the density of the flow. Under these conditions,
one wishes to estimate the total time of travel at the equilibrium state. If each
driver takes the path that looks most favorable for him, the resulting running
times need not be minimal. It turns out that [1] an extension of the road net-
work with a new road may cause a redistribution of the traffic that results in
longer individual running times (which will not happen if a centralized approach
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is used). This is known as the Braess paradox. Key reasons for Braess paradox
are the greedy behavior of individual users and the lack of global information
and coordination.

In the case of wireless networks, similar phenomena may occur if users are
allowed to behave selfishly. The decentralized and selfish behavior of users have
recently appeared in wireless networks as a solution to cope with the excess pro-
tocol signaling in highly mobile scenarios. Indeed, centralized approaches require
feedback protocols and complex optimization, which turns out to be incompat-
ible with the coherence time of mobile flexible networks, where terminals must
decide on their own, on different resource allocation criteria [2, 3]. Decentraliza-
tion appears also as a first step towards self-optimization networks, which are at
the heart of future networks enabling to reduce monitoring and managing costs.
Consequently, game theory turned out to be a natural mathematical framework
to analyze the outcome of intelligent devices which make decisions based on their
local information. As a result, many game theoretical approaches [4–6] have been
proposed recently to let the users autonomously optimize their resources.

The general idea is to understand to what extent local optimization provides
a global optimization of the network, which is difficult to achieve for scaling
networks. Unfortunately, the distributed approaches often suffer from similar
paradoxes as the original Baress’s paradox, due to greedy and selfish behavior
and lack of global information. In particular, in many cases and for a fixed
number of devices, one can show that the equilibria states with respect to a
given utility are Nash equilibria that are very often far from the Pareto optimal
performance. Most solutions proposed in the literature are either to introduce
some pricing mechanisms or to change the network architecture.

The goal of this paper is to show that the change in the network architecture,
by interconnecting two different technologies (e.g., a technology with a fixed rate
and a technology with a variable rate) in order to improve the network traffic has
to be done carefully as it may worsen the utilities of different users and lead to
a paradoxical situation in which network performs worse than the original one.
Here we analyze to what extent the intersystem connection does not improve
the network performance.

The rest of this paper is organized as follows: In Section 2, we describe three
possible models of wireless networks, in which intersystem connection does not
improve the downlink rate of the users. The general functions for the access
points and conditions under which the Braess paradox happens is considered in
Section 3. Finally, Section 4 concludes the paper.

2 System Models

We consider a single-cell network with two access points (APs). A number of
mobile users (terminals) are connected (Fig. 1) to these two access points.

Assume that the first access point, denoted in Fig. 1 by AP1, offers a fixed
rate rF and the rate offered by the second access point, denoted by AP2, offers
a per user rate that depends on the number of users connected to it rV (n). An
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Fig. 1. A single cell with two different access points - one offering a fixed rate rF and
the other offering a rate that depends on the number n of users connected to it rV (n)

example of such a system in practice could be a network that has two types of
access points. The first type is an access point that uses an orthogonal multiple
access scheme where each user gets a fixed rate. The second type is an access
point that offers a variable rate depending on the number of users connected to
it. An example of such an access point could be based on a system which offers
a rate that depends on the number of users connected to it. In this system the
more users are connected to it, the bigger the interference is. This leads to a lower
signal-to-interference-and-noise ratio (SINR) and, therefore, to a lower rate. In
the following text, we demonstrate that if one tries to improve the system by
allowing an intersystem connection, i.e., connection between the two types of
APs, this may lead to a performance that is worse than in the original system.
In this section we present three different models of the variable rate access point
that may lead to a Braess type of paradox in wireless networks.

2.1 Model 1

Assume that AP2 in Fig. 1 offers the following per user rate as a function of the
number of users connected to it

rV (n) =
r0

n+ k
, (1)

where n is the number of users connected to AP2, r0 > 0 is the total available
rate and k ≥ 0 is some fixed penalty that has to be paid when connected to
AP2. In other words, the total rate of the users connected to AP2 is never equal
to r0. For instance, if we have � users connected to AP2, their sum rate will be
�r0/(�+ k) and is always smaller or equal to r0.

At equilibrium, the total rate through both base stations will be the same and
no user at that point will have an incentive to deviate to another access point.
In that case if there are N users in the cell, we have

m · r0
m+ k

= (N −m)rF , (2)

where m is the number of users that are connected to AP2 and the rest (N −m)
users are connected to AP1. Solving (2) we get that in equilibrium:
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m =
N − k − r0

rF

2
+

√
(N − k − r0

rF
)2 + 4kN

2
. (3)

Note that each user connected to AP1 has a rate of r1 = rF and each user
connected to AP2 has a rate of r2 = r0/(m+ k). The number of users m that in
equilibrium are connected to AP2 as a function of r0/rf for different k is shown
in Fig. 2. Note that for a given r0/rF , m is larger for larger k.
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Fig. 2. The number of users m connected to AP2 in equilibrium for the model (1), for
N = 100 and various k

Assume now that the system provider decides to interconnect the two different
technologies (and provide also terminals with the possibility to be connected on
the two different technologies at the same time to split their packets), namely the
access points with fixed and variable rates. With this new system, the network
is no longer in equilibrium with the original rate flow since a new configuration
has appeared. Users can, therefore, use a combination of the two links to send
their packets. In particular, the individual rate of each user after interconnection
is

r̃2 =
r0

N + k
> rF .

Hence, all users would prefer to be connected to AP2 since they get better rate
than connecting to AP1. In other words, no user has an incentive to change its
access point, i.e., to connect back to AP1.

Here, we consider two types of paradox. A paradox may happen with respect
to the individual rate of users connected to AP2, i.e., r̃2 ≤ r2. For this model,
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this paradox happens since each user that was connected to AP2 gets a smaller
individual rate, since after interconnection

r̃2 =
r0

N + k
<

r0
m+ k

= r2,

where m is given by (3). Note that the paradox happens if 1 ≤ m < N . In the
case m = N noting changes after the interconnection, i.e., this case is trivial.
In the case m = 0, the paradox does not happen, since all users previously
connected to AP1 get better rate by switching to AP2.

More interesting paradox for the system designer is the paradox that happens
with respect to the total sum rate. In other words, after interconnection is done,
the total sum rate gets worse than before. The total sum rate in equilibrium,
before interconnection is

rT = (N −m)rF +
mr0
m+ k

= 2(N −m)rF .

Since after interconnection, the total sum rate is

r̃T =
Nr0
N + k

,

the paradox happens with respect to the sum rate if

rT = 2(N −m)rF >
Nr0
N + k

= r̃T .

Example 1. Consider a system in which N = 100, k = 10, r0 = 120 Mbps,
and rF = 1 Mbps. In this case, from (3), we get that m = 20. That means,
in equilibrium, 20 users will be connected to AP2 with a per user rate of r2 =
r0/(20 + 10) = 4 Mbps, and the other 80 users will be connected to AP1 with a
fixed rate of r1 = rF = 1 Mbps. The sum rate is

rT = (80 · 1 + 20 · 4) Mbps = 160 Mbps.

If an intersystem connection is applied, then all users will connect to AP2 since
in that case they get

r̃2 = r0/(N + k) = 120/110 Mbps = 1.091 Mbps,

a rate larger than rF = 1 Mbps. The paradox happens since the sum rate after
interconnection is

r̃T = Nr̃2 =
Nr0
N + k

= 109.1 Mbps,

which is smaller than the sum rate rT = 160 Mbps of the original system.
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2.2 Model 2

Assume that AP2 in Fig. 1 offers the following per user rate as a function of the
number of connected users

rV (n) =
r0
n

+ r1. (4)

Here n is the number of users connected to AP2, r0 > 0 is the total available
rate and r1 ≥ 0 is some fixed rate that is guaranteed no matter how many users
are connected to AP2. In that case, since there are a total of N users in the
cell, in equilibrium, if the access points are not interconnected we have the same
amount of traffic through both access points, that is

m ·
(r0
m

+ r1

)
= (N −m)rF . (5)

Here, m is the number of users connected to AP2, while the rest (N −m) users
are connected to AP1. Solving (5) we get that at the equilibrium state:

m =
NrF − r0
rF + r1

=
N − r0/rF
1 + r1/rF

. (6)

Note that each user connected to AP1 has a rate of r1 = rF and each user
connected to AP2 has a rate of r2 = r0/m+ r1. The number of users m that in
equilibrium are connected to AP2 is shown in Fig. 3 for different r1/rF . Note
that for a given r0/rF , m is larger for larger r1/rF .
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Fig. 3. The number of users m connected to AP2 in equilibrium for the model (4), for
N = 100 and various ratios r1/r0

Assume now that the system provider decides to interconnect the two access
points with fixed and variable rates. In that case, if we assume that

r̃2 = r0/N + r1 > rF ,
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then all users prefer to be connected to AP2 since they get a better rate if
they are connected to AP2 than to AP1. Here again, no user has an incentive
to connect to AP1. In this case, the paradox happens since each user that was
connected to AP2 gets a smaller individual rate than in the previous case, since

r̃2 =
r0
N

+ r1 <
r0
m

+ r1 = r2,

where m is given by (6). The paradox happens if 1 ≤ m < N .
The sum rate before interconnection is

rT = 2rF (N −m) = 2m(r0/m+ r1, )

while after interconnection it is

r̃T = N(r0/N + r1).

Hence, the paradox happens with respect to the sum rate if

rT = 2rF (N −m) > r0 +Nr1 = r̃T .

Example 2. Consider a system in which N = 100, r0 = 80, r1 = 0.25 Mbps,
and rF = 1 Mbps. In that case from (6), we get m = 16. This means that, in
equilibrium, 16 users will be connected to AP2 with a rate of r2 = 5.25 Mbps
and the other 84 users will be connected to AP1 with a rate of r1 = rF = 1
Mbps. The sum rate is

rT = (84 · 1 + 16 · 5.25) Mbps = 168 Mbps.

If an intersystem connection is done then all users will connect to AP2, since in
that case they get

r̃2 = r0/N + r1 = 1.05 Mbps,

a rate that is larger than rF = 1 Mbps. The paradox happens since r̃2 < r2
although the interconnection is applied. Moreover, the sum rate is

r̃T = r0 +Nr1 = 105 Mbps.

This is smaller than the sum rate of rT = 168 Mbps in the original system.

2.3 Model 3

Assume that AP2 in Fig. 1 offers the following rate as a function of the number
of users connected to it

rV (n) = log2

(
1 +

P

σ2 + (n− 1)P

)
, (7)

where n is the number of users connected to AP2, P > 0 is the received power of
a given user, and σ2 is the variance of the additive Gaussian noise. This model
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is used for CDMA based systems where if in the uplink, n users are connected
to the access point. Here we assume an AWGN channel, however the extension
to fading channels is straightforward. Since power equalization is applied, each
user has the same received signal-to-interference-and-noise (SINR) ratio given
by P/(σ2 + (n− 1)P ). In that case, since there are N users in the cell, we have
that, in equilibrium,

m · log2
(
1 +

P

σ2 + (m− 1)P

)
= (N −m)rF . (8)

Here again, m is the number of users connected to AP2 and the rest N −m is
connected to AP1. Equation (8) is a transcendental equation and can be solved
only numerically. Fig. 4 depicts the number of users m that in equilibrium are
connected to AP2 as a function of rF for different SNRs P/σ2. Note that for low
SNR= P/σ2, using the approximation log2(1 + x) ≈ x/ ln 2, (8) simplifies to

mP

σ2 + (m− 1)P
· 1

ln 2
= (N −m)rF .

For high SNR= P/σ2, (8) simplifies to

m · log2
(
1 +

1

m− 1

)
= (N −m)rF ,

and does not depend on P/σ2. Assuming that the solution m is large enough,
using again log2(1 + x) ≈ x/ ln 2 we get

m

m− 1
= (N −m)rF · ln 2

Assume now that the system provider decides to interconnect the two access
points with fixed and variable rates. In that case, if we assume that

r̃2 = log2

(
1 +

P

σ2 + (N − 1)P

)
> rF ,

then all users prefer to connect to AP2 since they get better rate if all are
connected to AP2 than to AP1. The system is in equilibrium since no user wants
to connect back to AP1. The paradox happens since each user that was connected
to AP2 gets a smaller individual rate than in the previous case, since

r̃2 = log2

(
1 +

P

σ2 + (N − 1)P

)

< log2

(
1 +

P

σ2 + (m− 1)P

)
= r2,

where m is given by the solution of (8). Note that the paradox happens only if
0 ≤ m < N .
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Fig. 4. The number of users m connected to AP2 in equilibrium for the model (7), for
N = 100 and various SNRs P/σ2

The sum rate before interconnection is

rT = 2rF (N −m),

while after interconnection it is

r̃T = N log2

(
1 +

P

σ2 + (N − 1)P

)
= Nr̃2.

The paradox happens for the sum rate if

rT = 2rF (N −m)

> N log2

(
1 +

P

σ2 + (N − 1)P

)
= r̃T .

Example 3. Consider a system in which N = 100, P/σ2 = 0.1, and rF = 12.5
kbps. In that case solving numerically (8), we get that in equilibrium m = 21.
This means that, in equilibrium, 21 users will be connected to AP2 with a rate of
r2 = 47.3 kbps and the other 79 users will be connected to AP1 with a fixed rate
of r1 = rF = 12.5 kbps. The sum rate is rT ≈ 1.981 Mbps. By interconnecting
the two access points, all users will connect to AP2 since in that case they get

r̃2 = log2

(
1 +

P

σ2 + (N − 1)P

)
≈ 13.18 kbps,

a rate larger than rF = 12.5 kbps. The paradox happens since r̃2 < r2 although
the interconnection is done. Moreover, the sum rate is r̃T = 1.318 Mbps and it
is smaller than the sum rate of rT =1.981 Mbps in the previous case.
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3 General Model

In this section, we describe in general for what type of functions rV (n) for AP2

in Fig. 1, the paradox happens, by interconnecting the fixed and variable rate
access points. We describe the conditions under which paradox happens for both
the individual and the sum rate of users.

From the previous analysis we see that rV (n) has to be a decreasing function
of n, namely,

rV : N �→ R+

rV (n+ 1)− rV (n) ≤ 0.

The paradox happens only if a certain number of users in the original system are
connected to both access points. Mathematically, this means that the solution
of

m · rV (m) = (N −m)rF (9)

gives a number between 1 and N −1. In order to have an equilibrium in the new
system and the paradox to happen for the individual rate, the following has to
be satisfied

rF < rV (N) = r̃2.

Then, the paradox with respect to the individual rate of users connected to the
access point with variable rate happens since rV (N) < rV (m). An example of
such a variable rate function rV (n) and a fixed rate rF is shown in Fig. 5.

It is of greater interest to consider under which conditions the paradox hap-
pens with respect to the sum rate. From the previous analysis we see that it
happens if the following condition is satisfied

N · rV (N) < 2(N −m)rF = 2m · rV (m)

where m is an integer solution to (9) and 1 ≤ m < N .
In summary, we give the conditions that the function rV (n) has to satisfy

such that the performance gets worse after the interconnection of the two access
points. Again we present the conditions for the two types of paradox.

In the first case the following conditions have to be satisfied such that the
paradox happens with respect to the individual rate:

(1) rV (n+ 1) ≤ rV (n), for 1 ≤ n < N ,
(2) r̃2 = rV (N) > rF , and
(3) the solution m of m · rV (m) = (N −m)rF has to satisfy 1 ≤ m < N .

Note that the paradox follows directly from (1), since r2 = rV (m) > r̃2.
In the second case the following conditions have to be satisfied such that the

paradox happens with respect to the sum rate:

(1) rV (n+ 1) ≤ rV (n), for 1 ≤ n < N ,
(2) r̃2 = rV (N) > rF ,
(3) the solution m of m · rV (m) = (N −m)rF has to satisfy 1 ≤ m < N , and
(4) N · rV (N) < 2(N −m)rF = 2m · rV (m).
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Fig. 5. An example of a network with rV (n) in which a Braess-type paradox happens

4 Conclusions

Based on the observation of Braess paradox in transportation, we investigate the
impacts of greedy behaviors and lack of global information. From our analysis,
we conclude that interconnecting two different access points (with the ability
of the users to use these two access points at the same time, i.e., cross-system
diversity) may not always improve the performance of the network. Under cer-
tain conditions, we showed that the rate of users connected to the access point
with variable rate decreases after interconnection. We also identified the condi-
tions under which the sum rate does not improve if a system interconnection is
performed. Our analysis is based on game theory, and it suggests what are the
conditions under which the Braess-type paradox happens. A future work will
consist in designing a mechanism that encourages user cooperation in order to
avoid the paradox under any scenario. In this case, users may also not cooperate,
however, the design of a certain utility will have the same effect as in the case
of cooperation.
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