
Chapter 3
3D Modelling

Abstract Space modelling uses geometric topological elements. The chapter
presents all the basic topological elements, as well as the matrix calculus for trans-
lation, rotation, scaling, mirroring and perspective. These are the key operations for
space modelling.

In order to represent objects or products in a virtual environment, many types of
equipment have been used since early times. Besides analogue records in 3D space
(such as a sketch, an illustration or a photograph), solutions for the best possible
form of digital recording were investigated. When the computer processor and the
corresponding mathematical relations appeared they offered, for the first time, an
opportunity for a high-quality digital record of 3D space. Of course, this had to
be accompanied by appropriate 3D modelling methods, and several procedures and
approaches appeared during their development. The approaches were, however, ini-
tially very different. After some development, some methods established themselves
and proved to be suitable for computer processing. Seeking the right solutions was
necessary and important, particularly from the viewpoint of getting a high-quality
basis for digital recording. However, the issue of standardizing communications
between the user and the computer has remained open.

Historically, development progressed gradually, from simply describing objects
with wireframe models and a surface description of 3D models to the solid model,
as the most reliable way of describing real models in space (Fig. 3.1).

Increasing computer capacities gradually provided users with new solutions based
on different modellers. However, all modeller developers need to follow the global
user. Standard imaging has been established in global engineering practice, i.e., it is
understood by engineers and technicians in different parts of the world. This was the
reason why the large number of original software solutions was gradually reduced to
a smaller number of providers for general 3D-modelling equipment. However, there
are also developers for specific needs and forms on the market.

To understand the structure of a 3D model it is vital to also understand the fun-
damentals of the topological definition of a geometric model. Below, the basic topo-
logical elements will be presented: point, edge, loop, surface, and volume. This is
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Fig. 3.1 Development of 3D modelling

followed by presenting the different types of geometric models, i.e., from a wire-
frame and surface model to a solid model. The result is geometrical transformations
that allow the representation of an object on the screen and its manipulation.

3.1 Topological Elements in a 3D Modeller

The topology of an object in space consists of five topological elements, with each
of them having its own characteristics. The geometric modeller’s database considers
the method of describing the basic topological elements and their relations.

The basic topological elements include: point, edge, loop, surface and volume, all
of which can be used to represent a 3D model of an object (Fig. 3.2). The parameters
of each of the described topological elements and their characteristics are presented.

Any object, however simple, represents a volume in nature. This volume is
described by the surface, dividing the object’s interior from its environment. Each
surface is surrounded by a loop, consisting of a finite set of edges. Each edge is
defined by at least two points in space, representing its beginning and end.
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Fig. 3.2 Topological elements on a model

3.1.1 Point

The point is the basic topological element of 3D space; its position in space is
described by coordinates that depend on the chosen coordinate system.

3.1.1.1 Cartesian Coordinate System

P = P(x, y, z)

A point in a Cartesian coordinate system is specified by its distance from the
main three planes: the x coordinate—distance from the front view y–z plane; the
y coordinate—distance from the side view x–z plane, the coordinate z—distance
from the top view x–y plane (Fig. 3.3).

3.1.1.2 Cylindrical Coordinate System

P = P(r, ϕ, z)
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Fig. 3.3 A point in a cartesian
coordinate system

Fig. 3.4 A point in a cylin-
drical coordinate system

This is an upgrade of the so-called polar coordinate system, where point T is deter-
mined by a distance from the origin, i.e., the local vector (r ), the rotation of the
point around the z axis and the axis itself by the revolution angle (ϕ) relative to the
x–z plane. The (z) coordinate is added, representing movement in the z direction
(Fig. 3.4).

A cylindrical coordinate system is used for different types of rotated or turned
parts. It is useful for a computer-controlled lathe. Figure 3.4 presents the (r ) radius,
acquired by moving the knife, mounted on the lathe support, the revolution angle
(ϕ), the (z) coordinate represents movement along the lathe’s bed.

3.1.1.3 Spherical Coordinate System

P = P (r, ϕ, θ)

In contrast to a cylindrical coordinate system, where the height is specified by the z
coordinate, the height in a spherical coordinate system is specified by the revolution
angle θ between the point’s local vector and the x-y plane (top view). The distance
from the centre is specified by the radius of a sphere (Fig. 3.5).
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Fig. 3.5 Apoint in a spherical
coordinate system

Aspherical coordinate system is used for all products that are either built or operate
in the shape of a sphere. The most well-known application of a spherical coordinate
system is Gauss-Krueger’s coordinates for determining the positions on a globe.
These coordinates are used by surveyors, who determine two types of coordinate:
the latitude (ϕ) and the longitude (θ ). Amore accurate determinationwould generally
also require a distance from the centre of the Earth (r); however, it varies from place
to place in different parts of the world, and instead we use the height above sea level,
according to conventional bases in different parts of the world. It is to be expected
that some definitions of the radius itself and sea level will change again.

3.1.2 Edge

E ⇒ f (x, y, z)

The edge is a topological element—the connection between at least two points
(Fig. 3.6). In a linear connection, the edge is represented by the line, defined by
its beginning (P1) and end (P2) points.

E ⇒ (P1, P2)

The edge can be generally presented as a function (curve) between two points
that are running in space through a defined point. The function can be of any order.
As a rule, it should be as close as possible to the function of a natural phenomenon,
taking place on its surface or in its vicinity and defined by the said function. For
example, hydraulic phenomena (vessels at sea, the blade of a Kaplan turbine, etc.)
or aero phenomena (windmills, cars, car spoilers etc.) are described by the Bernoulli
equation, which makes it possible for a surface to be designed by a fourth-order
curve, and not at all by a third-order curve.
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Fig. 3.6 Possible connections
between two points with
different functions in space

Fig. 3.7 A closed loop in
space

3.1.3 Loop

L ⇒ (E1, E2, ..., En)

The loop consists of a set of edges, connected one to another in one or another way
(Fig. 3.7).

A closed loop represents sequentially connected and closed edges. The said con-
ditions provide logically executed and repeatable computer operations. An open loop
is referred to as an edge assembly or polylines. The polylines start by defining the
first point, which is then in the following step defined as the last point with n data
polylines. The number n specifies the number of connecting lines or curves of par-
ticular polylines. Such designed polylines can be quickly transformed into different
types of curves. The method is very useful for specifying the regression lines or
curves with an order m.

An open loop represents a set of edges where the last edge with its second point
does not connect with the first point of the first edge. An open loop can appear with
wireframe models. Surface or volume models cannot use an open loop, and surfaces
in open loops cannot be defined.
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Fig. 3.8 A topological
element—surface

More frequent and useful for modelling purposes is the so-called closed loop with
a number of edges finishing in the initial point. Only a closed loop, lying on a plane,
can represent a surface.

3.1.4 Surface

S ⇒ L ⇒ (E1,E2, ..., En)

The surface is represented by a closed loop. A surface is defined by a loop and a
normal vector to a surface. A surface is required to manage surface and solid models
(Fig. 3.8). Wireframe models can be presented without defined surfaces. For simple
surface-model presentations, there are simple laws used to create the surface filling.
Surfaces sometimes come with surface colour information or even a “pattern” to
improve the image of the object itself.

Models that are presented with surfaces only, are very useful for simulating phe-
nomena in the environment. However, when reshaping the model, their major draw-
back is errors in the surface connection, resulting in inaccurate details.

3.1.5 Volume

V1 ⇒ (S1, S2, ..., Sn)

The volume is the final element in a geometric modeller. The volume is described as
a set of surfaces, dividing the object’s interior from the exterior—the environment.
The volume is characterized by the requirement that all surfaces need to be connected
and all normals should point outwards (Fig. 3.9).
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Fig. 3.9 Volume as a complex
topological element

Similar to surfaces, where a loop may not have any undefined edges, the volume
also allows no undefined surfaces. Volume elements are required to model solid
bodies.

Modellers were also developed in line with the topological structure. Looking
at the required parameters for a single topological element, one can see that at the
very beginning of modeller development, memory was the main obstacle. With the
arrival of sufficiently capable RAM units (exceeding 4 Gb), modeller development
accelerated in the direction of digitising objects.

This all suggests that the development of useful methods and modelling largely
depends on the development of other systems, which is computer power in this case.

3.2 Presenting 3D Models

3.2.1 Wireframe Model

The first 2D and 3Dmodelling computer programmes were based on two topological
elements: the point and the edge. With the development of 3D modelling, other
topological elements came into use.

The wireframe model is the simplest way to describe an object in 3D space.
Representing a model, its edges are shown as lines, connecting the points in space
with a wire.

Containing only vertices and edges and their relations, the databases for wire-
frame modellers are simple. Due to simple relations and a small volume of data, the
computation is fast and does not require a lot of computer memory.

A drawback of wireframe modellers is that an image with a larger number of
edges becomes unclear. The clear orientation of an object in space can be lost. The
incorrect connections of edges between individual points can lead to an anomaly, as
shown in Fig. 3.10.
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Fig. 3.10 Anomaly of a wireframe model, caused by incorrect connections between points: incor-
rect (a) and correct (b) connections

Fig. 3.11 Examples of a wireframe models: a pulley (a) and a house (b)

Wireframe models are not suitable for computer-aided analyses (CAA) as they
do not allow the calculation of even basic quantities, such as the model’s surface or
volume.

3.2.2 Surface Model

The surface model is an upgrade of the wireframe model. For the wireframe model,
the loop is the highest topological model. The surface model requires all loops with
defined edges, plus normal vectors for each closed loop. In terms of the surface, the
models are divided according to the method of describing the surface. The following
description methods are the most commonly used:

• surfaces as parts of the shape of geometric bodies (Fig. 3.12),
• interpolate surfaces (Fig. 3.13),
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Fig. 3.12 Surface as part of the shape of a cylinder (a), a cone (b), a sphere (c) and a torus (d)

Fig. 3.13 An interpolate
surface, defined by two edge
curves

• parametric surfaces (Fig. 3.14),
• polygon meshes (Fig. 3.15).

3.2.3 Volume (Solid) Model

Solid models can be defined by a Euclidean space, defined by two regions, i.e., the
interior one and the exterior one, divided by the boundary of the object. Its boundary
is defined by at least one closed surface and/or a set of connected open surfaces. A
common feature of all the representations of solid models is that the interior of the
object consists of a number of points, geometrically closed by the boundary of the
object.

3.2.3.1 Instances and Parameterized Shapes

This method describes simple and similar shapes of objects with the use of basic,
i.e., parameterized, shapes. Figure 3.16 shows a couple of examples of new shapes,
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Fig. 3.14 A free parametric surface, described with 16 control vertices

Fig. 3.15 A polygon mesh of a human foot: a scanned surface (a) and a triangle mesh (b)

designed by simple linear transformations of existing models, such as a unit sphere,
a cube and a cylinder. A family of similar shapes can be created by parameterizing
instances. All the resulting variants can be created by changing the parameters.
Figure 3.17 shows an example of an instance and the parameterization of a Z-profile.

3.2.3.2 Boundary Representation

A boundary representation (B-Rep) is based on an argument that a physical object is
closed from all sides with boundary faces (surfaces), dividing the model from the rest
of the space. Each face is limited by edges and they are limited by vertices (points).
Figure 3.18 shows a boundary-represented object.
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Fig. 3.16 Instances and linear transformations or better parameters extrude: a sphere (a), a cube
(b) and a cylinder (c)

3.2.3.3 Constructive Solid Geometry

The constructive solid geometry (CSG) method represents one of the most popular
techniques for generating solid models. The method is simple—for both understand-
ing and communicatingwith the user.A3Dmodel validation according to thismethod
is simple.

The method is based on the principle that any physical body can be generated as
a combination of elementary shapes, i.e., primitives. A large set of primitives can
be used. In practice, the most frequently used ones include a rectangular solid, a
cylinder, a cone and a sphere, as shown in Fig. 3.19.
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Fig. 3.17 Parameterization of a Z-profile

Fig. 3.18 An object with boundary surfaces

3.2.3.4 Feature-Based Mdelling

Feature-based modelling is a 3D modelling technique that makes it possible to build
a model at a higher level, such as manipulation with the basic geometric entities
(point, line, etc.) or primitives. A model is represented as a combination of the CSG
and B-rep algorithms. Besides the basic geometric and the topological modelling
structure, the method also takes account of higher information levels, such as the
geometric characteristics of holes, slots, fillets and other shapes.

A feature represents a set of geometric entities that appear and are recorded in a
certain order. It allows—bymeans of a couple of simple operations—the creation of a
large number of geometric primitives thatmake up individualmodel parts (Fig. 3.20).
The features are very useful for the user, as they allow him or her to upgrade a feature
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Fig. 3.19 Examples of the basic elementary shapes, i.e., primitives: a cube (a), a cylinder (b),
a cone (c) and a sphere (d)

Fig. 3.20 Using features for modelling a product of moderate complexity

that represents a certain manufacturing technology or its form. The features bring the
user close to technological manufacturing operations, which significantly improves
the practical value of a modeller.

The basis for feature manipulation (Fig. 3.21) are Boolean operations:

• union,
• difference,
• intersection.
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Fig. 3.21 Boolean operations between the objects (from left to right): union (A ∪ B), difference
(A − B and B − A) and intersection (A ∩ B)

3.3 Geometric Transformations

A 3D graphics user would like to observe the scene from different points of view
and move some objects in space relative to other objects. These operations are made
possible by geometric transformations. They are used for the purpose of position-
ing, orienting and scaling the objects, as well as for mirroring, perspective view,
etc. Before describing the transformations, let us take a look at some mathematical
operations that make the passage into matrix formulations possible, as these are the
easiest way to perform transformations.

Whenmirroring objects from the real world into the virtual one, it is vital to ensure
independent imaging, independent of the size and type of display. In order to achieve
that, a new environment, a new space—called a uniform space—has to be created.
A uniform space should provide complete neutrality for different types of mirroring
from the real into the virtual display world (Fig. 3.22).

Homogenous coordinates are used in a uniform space. A 3D description of a
point is translated into homogenous coordinates by adding to Cartesian coordinates
{x, y, z} a fourth component w, also called a homogenous coordinate.

p =
⎧
⎨

⎩

x
y
z

⎫
⎬

⎭
, pH =

⎧
⎪⎪⎨

⎪⎪⎩

x
y
z
w

⎫
⎪⎪⎬

⎪⎪⎭
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Fig. 3.22 Mirroring from the real into the virtual display world by means of a uniform space

An inverse transformation that projects homogenous coordinates back into a 3D
space is called a projection. The neutrality to newly introduced coordinates w is
established by its value 1. All the values from the real world are therefore projected
onto a display of a certain resolution by practically retaining—in a homogenous
space—identical values, identical dimensions.

3.3.1 Translation

With the geometric transformation that is to be used to move point p to p′, the
translation is performed by specifying the size of the movement by the vector
t = {Tx , Ty, Tz}. In a matrix equation and using homogenous coordinates, the trans-
formation can be formulated as follows (Fig. 3.23):

p′ =

⎧
⎪⎪⎨

⎪⎪⎩

x + Tx

y + Ty

z + Tz

1
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=

⎧
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⎫
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⎪⎪⎬

⎪⎪⎭

This equation can also be written in a more concise way:

p′ = T · p

where T is the transformation matrix:

T =

⎡

⎢
⎢
⎣

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

⎤

⎥
⎥
⎦
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Fig. 3.23 An example of translating an object on a plane

The matrix yields more accurate values if only translations are performed. But when
translations are performed together with rotation, especially with large translation
values, it can result in large discrepancies due to the increased influence of the
asymmetric values of individual matrix elements. For this reason, translations are
generally performed independently and not together with other transformations.

3.3.2 Rotation

A rotation transformation rotates a selected point p into a point p′ about one of the
coordinate axes by the revolution angle φ. Figure 3.24 shows an example of rotating
a rectangle. When rotating about the coordinate axis z, the coordinates of the rotated
point are calculated as follows.

With matrix calculus and using homogenous coordinates, this transformation can
be presented as:

p′ = Rz · p

where Rz is a transformation matrix, rotating a chosen point about the z axis:

Rz =

⎡

⎢
⎢
⎣

cos(φ) − sin(φ) 0 0
sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

Analogous to this is the remaining two rotations in space, i.e., rotations about the
y and x axes:
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Fig. 3.24 Rotating an object about the z-axis

Ry =

⎡

⎢
⎢
⎣

cos(φ) 0 − sin(φ) 0
0 1 0 0

sin(φ) 0 cos(φ) 0
0 0 0 1

⎤

⎥
⎥
⎦ Rx =

⎡

⎢
⎢
⎣

1 0 0 0
0 cos(φ) − sin(φ) 0
0 sin(φ) cos(φ) 0
0 0 0 1

⎤

⎥
⎥
⎦

As explained later on, each of these three rotations can be combined in any order
into a general 3D rotation. It should be noted that great differences can appear in the
ranges between 0◦ and 5◦, and 85◦ and 90◦. The resulting differences in the numerical
part can be correctedwith two operations: rotation is performed by first executing it in
a negative direction and an angle of 45− alpha/2 is deduced, followed by rotation in
a positive direction by an angle of 45+alpha/2, where the angle alpha represents the
required rotation, set by the user. The decision for such an operation should be made
when the alpha angle is smaller than a specified value. More advanced modellers
have this method built into their programme code, while the more basic ones do not
include it. As a result, rotations of less than 5◦, for example, are becoming unreliable
after several repetitions, and distorted objects and ratios between the surfaces begin
to appear.

3.3.3 Scaling

A general form of a scaling matrix, defining the scaling matrix elements, should first
specify the size of the scaling. The size is specified according to the origin of the
coordinate system and provides different enlarging or shrinking factors in a chosen
direction. To scale the point p = {x, y, z}T by the chosen scaling factors Sx , Sy, Sz

the following form of matrix calculus can be used:
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Fig. 3.25 Scaling an object

p′ = S · p

whereby S is a scaling matrix:

S =

⎡

⎢
⎢
⎣

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

⎤

⎥
⎥
⎦

When all three factors are identical this is called uniform scaling. When the scale
factor Si is larger than 1, this is enlarging in a given direction, and when Si is smaller
than 1 and larger than 0, this is an object contraction. Figure 3.25 shows an example
of non-uniform rectangle scaling, i.e., when the Sx , Sy, Sz scalars are different for
each coordinate.

A scaling matrix has only diagonal elements, which makes it robust and reli-
able also for larger scaling values, using the ZOOM function, for example. It is a
known fact that the accuracy of the details can be maintained without problems for
enlargements by a factor up to 400.

3.3.4 Mirroring

Mirroring is a special form of scaling, where some of the Si factors are identical to
−1. When Sx = −1, this is mirroring across the yz plane. When Sy = −1, this is
mirroring across the xz plane, and finally, when Sz = −1, this is mirroring across
the xy plane.

p′ = Z · p

whereby:

• mirroring across the y-z plane (Fig. 3.26)
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Fig. 3.26 An example of mirroring a line across the y–z plane

Zyz =

⎡

⎢
⎢
⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

• mirroring across the x-z plane

Zxz =

⎡

⎢
⎢
⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

• mirroring across the x-y plane

Zxy =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥
⎥
⎦

3.3.5 Perspective Projection

A perspective projection is required to show the depth of an object. The objects
are deformed by showing the closer objects larger than the more distant ones. The
perspective transforms the parallel lines into lines that converge to the vanishing
point. In terms of the number of vanishing points, there are (a) one-point, (b) two-
point and (c) three-point perspective projections (Fig. 3.27).

General presentation of the perspective projection in a matrix form:

p′ = W · p
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Fig. 3.27 Perspective projection. One-vanishing point (a), two-vanishing point (b), three-vanishing
point (c)

where W is the transformation matrix for a perspective projection:

W =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
px py pz 1

⎤

⎥
⎥
⎦ , where: px = − 1

xv

, py = − 1

yv

, pz = − 1

zv

Let us take a look at projecting the point P onto the x-y (z = 0) plane, where the
point of the observation is on the z axis (Fig. 3.28). Considering the similarity of
triangles, we can write:
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Fig. 3.28 Perspective projection of a point onto a plane (z = 0)

x ′

x
= x

zv − z
⇒ x ′ = x

1 − z
zv

and
y′

y
= y

zv − z
⇒ y′ = y

1 − z
zv

As this is a projection on the x-y plane, we know that z = 0. In this case, the
perspective projection can be written as:

Wy =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 pz 1

⎤

⎥
⎥
⎦ , or

⎧
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1

⎫
⎪⎪⎬
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⎤

⎥
⎥
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⎪⎪⎨

⎪⎪⎩
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y
z
1

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

x
y
0

pz · z + 1

⎫
⎪⎪⎬

⎪⎪⎭

Projecting the point p′ onto a plane (w = 1) results in the point p′ in three-
dimensional space:

⎧
⎨

⎩

x ′
y′
z′

⎫
⎬

⎭
=

⎧
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x

1 + pz · z
y

1 + pz · z
0

⎫
⎪⎪⎪⎬
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Assuming that pz = − 1
zv
, this results in:

⎧
⎨

⎩

x ′
y′
z′

⎫
⎬

⎭
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⎧
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x

1 − 1
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· z
y

1 − 1

zv

· z

0

⎫
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