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Abstract. For solving large instances of the Travelling Salesman Prob-
lem (TSP), the use of a candidate set (or candidate list) is essential to
limit the search space and reduce the overall execution time when using
heuristic search methods such as Ant Colony Optimisation (ACO). Re-
cent contributions have implemented ACO in parallel on the Graphics
Processing Unit (GPU) using NVIDIA CUDA but struggle to maintain
speedups against sequential implementations using candidate sets. In this
paper we present three candidate set parallelization strategies for solving
the TSP using ACO on the GPU. Extending our past contribution, we
implement both the tour construction and pheromone update stages of
ACO using a data parallel approach. The results show that against their
sequential counterparts, our parallel implementations achieve speedups
of up to 18x whilst preserving tour quality.

Keywords: Ant Colony Optimization, Graphics Processing Unit, CUDA,
Travelling Salesman.

1 Introduction

Ant algorithms model the behaviour of real ants to solve a variety of optimiza-
tion and distributed control problems. Ant Colony Optimization (ACO) [7] is a
population-based metaheuristic that has proven to be the most successful ant
algorithm for modelling discrete optimization problems. One of these problems is
the Travelling Salesman Problem (TSP) in which the goal is to find the shortest
tour around a set of cities. Dorigo and Stiitzle note [7] that the TSP is often the
standard problem to model as algorithms that perform well when modelling the
TSP will translate with similiar success to other problems. Dorigo and Stiitzle
also remark [7] that ACO can be applied to the TSP easily as the problem can
be directly mapped to ACO. For this reason, solving the TSP using ACO has
attracted significant research effort and many approaches have been proposed.
The simplest of these approaches is known as Ant System (AS) and con-
sists of two main stages: tour construction; and pheromone update. An optional
additional local search stage may also be applied once the tours have been con-
structed so as to attempt to improve the quality of the tours before performing
the pheromone update stage. The process of tour construction and pheromone
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update is applied successively until a termination condition is met (such as a
set number of iterations or minimum solution quality is attained). Through a
process known as stigmergy, ants are able to communicate indirectly through
pheromone trails. These trails are updated once each ant has constructed a new
tour and will influence successive iterations of the algorithm. As the number of
cities to visit increases, so does the computational effort and thus time required
for AS to construct and improve tours. The search effort can be reduced through
use of a candidate set (or candidate list). In the case of the TSP a candidate set
provides a list of nearest cities for each city to visit. During the tour construction
phase these closest cities will first be considered and only when the list has been
exhausted will visiting other cities be permitted.

As both the tour construction and pheromone update stages can be performed
independently for each ant in the colony and this makes ACO particularly suited
to parallelization. There are two main approaches to implementing ACO in par-
allel which are known as fine and coarse grained. The fine grained approach maps
each ant to an individual processing element. The coarse grained approach maps
an entire colony to a processing element [7].

NVIDIA CUDA is a parallel programming architecture for developing general
purpose applications for direct execution on the GPU [8] for potential speed
increases. Although CUDA abstracts the underlying architecture of the GPU,
fully utilising and scheduling the GPU is non-trivial.

This paper builds upon our past improvements to existing parallel ACO im-
plementations on the GPU using NVIDIA CUDA [3]. We observed that parallel
implementations of ACO on the GPU fail to maintain their speedup against
their sequential counterparts that use candidate sets. This paper addresses this
problem and explores three candidate set parallelization strategies for execution
on the GPU. The first adopts a naive ant-to-thread mapping to examine if the
use of a candidate set can increase the performance; this naive approach (in
the absence of candidate sets) has previously been shown to perform poorly [2].
The second approach extends our previous data parallel approach (as pioneered
by Cecilia et al. [2] and Delévacq et al. [4]), mapping each ant to a thread block.
Through the use of warp level primitives we manipulate the block execution to
first restrict the search to the candidate set and then expand to all available cities
dynamically and without excessive thread serialization. Our third approach also
uses a data parallel mapping but compresses the list of potential cities outside
of the candidate set in an attempt to further decrease execution time.

We find that our data parallel GPU candidate set mappings reduce the com-
putation required and significantly decrease the execution time against the se-
quential counterpart when using candidate sets. By adopting a data parallel
approach we are able to achieve speedups of up to 18x faster than the CPU
implementation whilst preserving tour quality and show that candidate sets can
be used efficiently in parallel on the GPU. As candidate sets are not unique to
ACO, we predict that our parallel mappings may also be appropriate for other
heuristic problem-solving algorithms such as Genetic Algorithms.
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2 Background

In order to solve the TSP we aim to find the shortest tour around a set of cities.
An instance of the problem is a set of cities where for each city we are given the
distances from that city to every other city. Throughout this paper we only ever
consider symmetric instances of the TSP where d; ; = d;;, for every edge (i, 7).
For a more detail on the TSP we direct readers to [3].

The AS algorithm consists of two main stages: ant solution construction; and
pheromone update [7] and are repeated until a termination condition is met.
To begin, each ant is placed on a randomly chosen start city. The ants then
repeatedly apply the random proportional rule, which gives the probability of
ant k moving from its current city i to some other city j, in order to construct a
tour (the next city to visit is chosen by ant k according to these probabilities).
At any point in the tour construction, ant k& will already have visited some cities.
The set of legitimate cities to which it may visit next is denoted N* and changes
as the tour progresses. Suppose that at some point in time, ant & is at city ¢ and
the set of legitimate cities is N*. The random proportional rule for ant k moving
from city i to some city j € N* is defined via the probability:

ok = [7i51% [135)" (1)
Y Yienlmalmal®’

where: 7;; is the amount of pheromone currently deposited on the edge from
city i to city l; n; is a parameter relating to the distance from city ¢ to city [
and which is usually set at 1/d;;; and o and 8 are user-defined parameters to
control the influence of 7;; and 7, respectively. Dorigo and Stiitzle [7] suggest
the following parameters when using AS: @« = 1; 2 < 8 < 5; and m = |N|
(that is, the number of cities), i.e., one ant for each city. The probability pfj is
such that edges with a smaller distance value are favoured. Once all of the ants
have constructed their tours, the pheromone level of every edge is evaporated
according to the user-defined evaporation rate p (which, as advised by Dorigo
and Stiitzle [7], we take as 0.5). So, each pheromone level 7;; becomes:

Tij < (1 — p)7i5. (2)

This allows edges that are seldom selected to be forgotten. After evaporation,
each ant k deposits an amount of pheromone on the edges of their particular
tour T% so that each pheromone level T;; becomes:

m
Tij <_Tij+ZATi]§" (3)
k=1

where the amount of pheromone ant k£ deposits, that is, ATZ-};, is defined as:

Ark — 1/C*, if edge (i,7) belongs to T*
Tij = .
0, otherwise,

(4)

where C* is the length of ant k’s tour T*. Depositing pheromone increases the
chances of one of the shorter edges being selected by an ant in a subsequent tour.
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2.1 Candidate Sets

For larger instances of the TSP, the computational time required for the tour
construction phase of the algorithm increases significantly. A common solution
to this problem is to limit the number of available cities which we refer to as
a candidate set. In the tour construction phase the ant will first consider all
closely neighbouring cities. If one or more of the cities in the candidate set
has not yet been visited, the ant will apply proportional selection on the closely
neighbouring cities to determine which city to visit next. If no valid cities remain
in the candidate set, the ant then applies an arbitrary selection technique to pick
from the remaining unvisited cities. Dorigo and Stiitzle [7] utilise greedy selection
to pick a city with the highest pheromone value. Randall and Montgomery [10]
propose several new dynamic candidate set strategies, however, for this paper
we will only focus on static candidate sets.

2.2 CUDA and the GPU

NVIDIA CUDA is a parallel architecture designed for executing applications
on both the CPU and GPU. CUDA allows developers to run blocks of code,
known as kernels, on the GPU for potential speed increases. A CUDA GPU
consists of an array of streaming multiprocessors (SM), each containing a subset
of streaming processors (SP). When a kernel method is executed, the execution
is distributed over a grid of blocks each with their own subset of parallel threads.

CUDA exposes a set of memory types each with unique properties that must
be exploited in order to maximize performance. The first type registers, are the
fastest form of storage and each thread within a block has access to a set of
fast local registers that exist on-chip. However, each thread can only access it’s
own registers and as the number of registers is limited per block. For inter-
thread communication within a block, shared memory must be used. Shared
memory also exists on-chip and is accessible to all threads within the block but
is slower than register memory. For inter-block communication and larger data
sets, threads have access to global, constant and texture memory.

3 Related Work

In this section we will briefly cover our past parallel ACO contribution and
detail a new parallel ACO implementation. For a comprehensive review of all
ACO GPU literature to date we direct readers to [3].

In our previous contribution [3] we presented a highly parallel GPU imple-
mentation of ACO for solving the TSP using CUDA. By extending the work of
Cecilia et al. [2] and Delvacq et al. [4] we adopted a data parallel approach map-
ping individual ants to thread blocks. Roulette wheel selection was replaced by
a new parallel proportionate selection algorithm we called Double-Spin Roulette
(DS-Roulette) which significantly reduced the running time of tour construction.
Our solution executed up to 82x faster than the sequential counterpart and up
to 8.5x faster than the best existing parallel GPU implementation.
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Uchida et al. [T1] implement a GPU implementation of AS and also use a data
parallel approach mapping each ant to a thread block. Four different tour con-
struction kernels are detailed and a novel city compression method is presented.
This method compresses the list of remaining cities to dynamically reduce the
number of cities to check in future iterations of tour construction. The speedup
reported for their hybrid approach is around 43x faster than the sequential imple-
mentation (see [6]). Uchida et al. conclude that further work should be put into
nearest neighbour techniques (candidate sets) to further reduce the execution
times (as their sequential implementation does not use candidate sets).

We can observe that the fastest speedups are obtained when using a data
parallel approach; however none of the current implementations ([3],[2],[4],[11])
use candidate sets and as a result fail to maintain speedups for large instances
of the TSP. In conclusion, although there has been considerable effort put into
improving candidate set algorithms (e.g. [5],[10],[9],[1]), there has been little
research into developing parallel GPU implementations.

4 Implementation

In this section we present three parallel AS algorithms utilising candidate sets for
execution on the GPU. The first uses a simple ant-to-thread mapping to check if
this approach is suitable for use with candidate sets. The second and third im-
plementations use a data parallel approach. The following implementations will
only focus on the tour construction phase of the algorithm as we have previously
shown how to implement the pheromone update efficiently on the GPU [3].

City data is first loaded into memory and stored in an n X n matrix. Ant mem-
ory is allocated to store each ant’s current tour and tour length. A pheromone
matriz is initialized on the GPU to store pheromone levels and a secondary
structure called choice info is used to store the product of the denominator of
Equation[Il The candidate set is then generated and transferred to the GPU. For
each city we save the closest 20 cities (as recommended by Dorigo and Stiitzle [7])
into an array. After initialization the pheromone matrix is artificially seeded with
a tour generated using a greedy search as recommended in [7].

4.1 Tour Construction Using a Candidate Set

In Fig. [l we give the pseudo-code for iteratively generating a tour using a can-
didate set based upon the implementation by Dorigo and Stiitzle [7]. First, an
ant is placed on a random initial city; this city is then marked as visited in a
tabu list. Then for n — 2 iterations (where n is the size of the TSP instance) we
select the next city to visit. The candidate set is first queried and a probability of
visiting each closely neighbouring city is calculated. If a city has previously been
visited, the probability of visiting that city in future is 0. If the total probability
of visiting any of the candidate set cities is greater than 0, we perform roulette
wheel selection on the set and pick the next city to visit. Otherwise we pick the
best city out of all the remaining cities (where we define the best as having the
largest pheromone value).
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procedure ConstructSolutionsCandidateSet
tour[l] < place the ant on a random initial city
tabu[l] + visited
for j =2ton—1do
for [ =1 to 20 do
probability[l] < CalcProb(tour(l...j —1],])
end-for
if probability > 0 do
tour[j] < RouletteWheelSelection(probability)
tabu[tour[j]] < true
else
tour[j] < SelectBest(tabu)
tabu[tour[j]] < true
end-if
end-for
tour[n] < remaining city
tour cost < CalcTourCost(tour)
end

Fig. 1. Overview of an ant’s tour construction using a candidate set

4.2 Task Parallelism

Although it has previously been shown that using a data parallel approach yields
the best results ([3],[2],[4],[11]), it has not yet been established that this holds
when using a candidate set. Therefore our first parallelization strategy considers
this simple mapping of one ant per thread (task parallelism). Each thread (ant) in
the colony executes the tour construction method shown in Fig. [[l There is little
sophistication in this simple mapping, however we include it for completeness.
Cecilia et al. [2] note that implementing ACO using task parallelism is not suited
to the GPU. From our experiments we can observe that these observations still
persist when using a candidate set and as a result yield inadequate results which
were significantly worse than those obtained by the CPU implementation. We
can therefore conclude that the observations made by Cecilia et al. [2] hold when
using candidate sets.

4.3 Data Parallelism

Our second approach uses a data parallel mapping (one ant per thread block).
Based on the previous observations made when implementing a parallel roulette
wheel selection algorithm [3] we found that using warp level primitives to avoid
branching lead to the largest speedups. In DS-Roulette each warp independently
calculates the probabilities of visiting a set of cities. These probabilities are then
saved to shared memory and one warp performs roulette wheel selection to select
the best set of cities. Roulette wheel selection is then performed again on the
subset of cities to select which city to visit next [3]. This process is fast as
we no longer perform reduction across the whole block and avoid waiting for
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other warps to finish executing. As we no longer need to perform roulette wheel
selection across all cities, DS-Roulette is unsuitable for use with a candidate
set. However, if we reverse the execution path of DS-Roulette we can adapt
the algorithm to fit tour selection using a candidate set (see Fig. ). Instead of
funnelling down all potential cities to perform roulette wheel on one warp of
potential cities, we first perform roulette wheel selection across the candidate
set and scale up to all available cities if no neighbouring cities are available. Our
new data parallel tour selection algorithm consists of three main stages.

The first stage uses one warp to calculate the probability of visiting each city
in the candidate set. An optimisation we apply when checking the candidate set
is to perform a warp ballot. Each thread in the warp checks the city against the
tabu list and submits this value to the CUDA operation ballot(). The result
of the ballot is a 32-bit integer delivered to each thread where bit n corresponds
to the input for thread n. If the integer is greater than zero then unvisited cities
remain in the candidate set and we proceed to perform roulette wheel selection
on the candidate set. Using the same warp-reduce method we previously used
in [3] we are able to quickly normalize the probability values across the candidate
set warp, generate a random number and select the next city to visit without
communication between threads in the warp. We found experimentally that using
a candidate set with less than 32 cities (1 warp) was actually detrimental to the
performance of the algorithm. Scaling the candidate set up from 20 cities to 32
cities allows all threads within the warp to follow the same execution path.

In stage two the aim is to narrow down the number of remaining available
cities. We limit the number of threads per block to 128 and perform tiling across
the block to match the number of cities. Each warp then performs a modified
version of warp-reduce [3] to find the city with the best pheromone value using
warp-max. As each warp tiles it saves the current best city and pheromone value
to shared memory. Using this approach we can quickly find four candidates (1
best candidate for each of the warps and as there are 128 threads with 32 threads
per warp) for the city with the maximum pheromone value for the final stage of
the algorithm using limited shared memory and without block synchronisation.

Finally we use one thread to check which of the four previously selected cities
has the largest pheromone value, visit this city and save the value to global
memory. The three stages of the algorithm are illustrated in Fig. 2

4.4 Data Parallelism with Tabu List Compression

Section Bl details the recent work of Uchida et al. [T1] presenting a novel tabu list
compresssion technique. A tabu list can be represented as an array of integers
with size n. When city i is chosen, the algorithm replaces city tabu[i] with city
tabu[n — 1] and decrements the list size n by 1. Cities that have previously been
visited will not be considered in future iterations thus reducing the search space.
By adding tabu list compression to our data parallel tour construction kernel we
aim to further reduce the execution time. However, as a complete tabu list is stil
required for checking against the candidate set we must use two tabu lists. The
second list maintains the positions of each city within the first candidate list.



Candidate Set Parallelization Strategies for ACO on the GPU 223

Idle warp Idle warp
T T T T e T T Ta T

Select city from
candidate list

Balot city availability and
save if cities are available
to shared memory

Normalize

Generate random number

Calculate cost

Save city to
global memory

__syncThreads()

’ If the next city has not been selected from the candidate set, pick the next city via greedy selection

l l l

Warp 1 Warp 2 Warp N

[ Ballot warp taboo list [ Ballot warp taboo list
el i N T

[ Select pheromone value [ Select pheromone value ] ct pheromone value
|

Sele
N S S
Warp max

l
I

]
I
J

[ v

| |

Select the next city via greedy selection and save the value to global memory ‘

[ v

Fig. 2. An overview of the data parallel candidate set tour construction algorithm

5 Results

In this section we present the results of executing various instances of the TSP
on our two data parallel candidate set implementations and compare the results
to the sequential counterpart and our previous GPU implementation. We use
the standard ACO parameters but increase the candidate set size from 20 to 32
(see Section [)). The solution quality obtained by our implementations was able
match and often beat the quality obtained by the sequential implementation.
Our test setup consists of a GTX 580 GPU and an i7 950 CPU. Timing results
are averaged over 100 iterations of the algorithm with 10 independant runs.

In Table. [l we present the execution times (for a single iteration) of the tour
construction algorithm using a candidate set for various instances of the TSP.
Columns 5 and 6 show the speedup of the two data parallel implementations over
the CPU implementation using a candidate set. The CPU results are based on
the standard sequential implementation ACOTSP (source available at [6]) and
the two GPU columns correspond to the two proposed data parallel candidate
set implementations in Section @l
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Table 1. Average execution times (ms) when using AS and a candidate set

Speedup Speedup

Instance CPU GPU 1 GPU 2 GPU 1 GPU 2
d198 6.39 0.77 0.85 8.31x 7.53x
a280 13.44 1.59 2.04 8.42x 6.59x

1in318 18.60 1.90 2.07 9.74x 8.99x
pch442 42.37 3.67 3.96 11.55x 10.69x
rat783 168.90 12.13 14.49 13.92x 11.66x
pr1002 278.85 19.76 26.34 14.10x 10.58x
nrwl379 745.59 42.37 68.78 17.60x 10.84x
pr2392 2468.40 131.85 393.98 18.72x 6.27x

T T T
GPU without candidate set

20 - GPU with candidate set & without compression NS + a
GPU with candidate set & compression I

Speedup

d198 a280 lin318 pcb442 rat783 pr1002 pr2392

City instance

Fig. 3. Execution speedup using multiple GPU and CPU instances

Our results show the first data parallel GPU implementation achieves the best
speedups across all instances of the TSP. Both data parallel approaches consis-
tently beat the results obtained for the sequential implementation. The speedup
obtained by the first data parallel implementation increased as the tour sizes
increased. This is in contrast to our previous GPU implementation [3] in which
the speedup reduced due to shared memory constraints and failed to maintain
speedups against the sequential implementation when using a candidate set.

The results attained for the second data parallel implementation using tabu
list compression show the implementation was not able to beat the simpler
method without compression. As mentioned in Section H to implement tabu
list compression, a second tabu list must be used to keep the index of each city
in the first list. We observed the process of updating the second list for each
iteration (for both the greedy search stage and proportionate selection on the
candidate set stage) outweighed the benefits of not checking the tabu values for
previously visited cities. We also observed that the increased shared memory
requirements for larger instances reduced the performance of the solution.
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In Fig. Bl we compare the speedup of our previous GPU implementation [3]
without a candidate set against our data parallel GPU solutions. We can observe
that for large instances, the speedup obtained from our GPU implementation
with a candidate set increases as opposed to instances without a candidate set.

6 Conclusions

In this paper we have presented three candidate set parallelization strategies
and shown that candidate sets can be used efficiently in parallel on the GPU.
Our results show that a data parallel approach must be used over a task parallel
approach to maximize performance. Tabu list compression was shown to be
ineffective when implemented as part of the tour construction method and was
beaten by the simpler method without compression. OQur future work will aim to
implement alternative candidate set strategies including dynamically changing
the candidate list contents and size.
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