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Message from the General Chairs

Welcome to the proceedings of 13th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2013), organized by the Second
University of Naples with the support of St. Francis Xavier University. It was
our great pleasure to hold ICA3PP 2013 in Vietri sul Mare in Italy. In the past,
the ICA3PP 2013 conference series was held in Asia and Australia. This was the
second time the conference was held in Europe (the first time being in Cyprus
in 2008).

Since its inception, ICA3PP 2013 has aimed to bring together people in-
terested in the many dimensions of algorithms and architectures for parallel
processing, encompassing fundamental theoretical approaches, practical experi-
mental projects, and commercial components and systems. ICA3PP 2013 con-
sisted of the main conference and four workshops/symposia. Around 80 paper
presentations from 30 countries and keynote sessions by distinguished guest
speakers were presented during the three days of the conference.

An international conference of this importance requires the support of many
people and organizations as well as the general chairs, whose main responsibility
is to coordinate the various tasks carried out with other willing and talented
volunteers. First of all, we want to thank Professors Andrzej Gościński, Yi Pan,
and Yang Xiang, the Steering Committee chairs, for giving us the opportunity
to hold this conference and their guidance in organizing it. We would like to ex-
press our appreciation to Professors Laurence T. Yang, Jianhua Ma, and Sazzad
Hussain for their great support in the organization.

We would like to also express our special thanks to the Program Chairs Pro-
fessors Joanna Ko�lodziej, Kaiqi Xiong, and Domenico Talia, for their hard and
excellent work in organizing a very strong Program Committee, an outstanding
reviewing process to select high-quality papers from a large number of submis-
sions, and making an excellent conference program. Our special thanks also go to
the Workshop Chairs Professors Rocco Aversa and Jun Zhang for their outstand-
ing work in managing the four workshops/symposia, and to the Publicity Chairs
Professors Xiaojun Cao, Shui Yu, Al-Sakib Khan Pathan, Carlos Westphall, and
Kuan-Ching Li for their valuable work in publicizing the call for papers and the
event itself. We are grateful to the workshop/symposia organizers for their pro-
fessionalism and excellence in organizing the attractive workshops/symposia,
and the advisory members and Program Committee members for their great
support. We are grateful to the local organizing team, for their extremely hard
working, efficient services, and wonderful local arrangements.



VI Message from the General Chairs

Last but not least, we heartily thank all authors for submitting and pre-
senting their high-quality papers to the ICA3PP 2013 main conference and
workshops/symposia.

December 2013 Beniamino Di Martino
Albert Y. Zomaya

Christian Engelmann



Message from the ICA3PP 2013 Program Chairs

We are very happy to welcome readers to the proceedings of the 13th Inter-
national Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP 2013) held in Vietri sul Mare, Italy, in December 2013.

ICA3PP 2013 was the 13th event in this series of conferences that is de-
voted to algorithms and architectures for parallel processing starting from 1995.
ICA3PP is now recognized as a main regular scientific venue internationally,
covering the different aspects and issues of parallel algorithms and architec-
tures, encompassing fundamental theoretical approaches, practical experimental
results, software systems, and product components and applications.

As the use of computing systems has permeated in every aspect of daily life,
their scalability, adaptation, and distribution in human environments have be-
come increasingly critical and vital. Specifically, the main areas of the conference
include cluster, distributed and parallel systems, and middeware that cover a va-
riety of topics such as big data, multi-core programming and software tools, dis-
tributed scheduling and load balancing, high-performance scientific computing,
parallel algorithms, parallel architectures, scalable and distributed databases,
dependability in distributed and parallel systems, as well as wireless and mobile
computing.

ICA3PP 2013 provided a widely known forum for researchers and practi-
tioners from many countries around the world to exchange ideas on improving
the computational power and functionality of computing systems through the
exploitation of parallel and distributed computing techniques and models.

The ICA3PP 2013 call for papers received a great deal of attention from
the computer science community and 90 manuscripts were submitted from 33
countries. These papers were strictly evaluated on the basis of their original-
ity, significance, correctness, relevance, and technical quality. Each paper was
reviewed by at least three members of the Program Committee and external
reviewers. Based on these evaluations of the papers submitted, 10 distinguished
papers and 31 regular papers were selected for presentation at the conference,
representing 11% of acceptance for distinguished papers and 34% for regular
papers. This book consists of the two parts: distinguished papers and regular
papers. All of them are considered as the papers of the main conference tracks.

The success of any conference depends on its authors, reviewers, and orga-
nizers. ICA3PP 2013 was no exception. We are grateful to all the authors who
submitted their papers and to all the reviewers for their outstanding work in
refereeing the papers on a very tight schedule. We relied heavily on a team of
volunteers, especially those in Italy, to keep the ICA3PP 2013 wheel turning.



VIII Message from the ICA3PP 2013 Program Chairs

Last but not least, we would also like to take this opportunity to thank the
whole LNCS Springer editorial team for their support in the preparation of this
publication.

December 2013 Joanna Ko�lodziej
Domenico Talia

Kaiqi Xiong
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Juan Manuel Marn Pérez University of Murcia, Spain
Dana Petcu West University of Timisoara, Romania
Ronald Petrlic University of Paderborn, Germany
Florin Pop University Politehnica of Bucharest, Romania
Rajeev Raje Indiana University-Purdue University

Indianapolis, USA
Rajiv Ranjan CSIRO, Canberra, Australia
Etienne Riviere University of Neuchatel, Switzerland
Francoise Saihan CNAM, France
Subhash Saini NASA, USA
Johnatan Pecero Sanchez University of Luxembourg, Luxembourg
Rafael Santos National Institute for Space Research, Brazil
Erich Schikuta University of Vienna, Austria
Edwin Sha Chongqing University, China
Sachin Shetty Tennessee State University, USA
Katarzyna Smelcerz Cracow University of Technology, Poland
Peter Strazdins Australian National University, Australia
Ching-Lung Su National Yunlin University of Science and

Technology, Taiwan
Anthony Sulistio High Performance Computing Center Stuttgart

(HLRS), Germany
Magdalena Szmajduch Cracow University of Technology, Poland
Kosuke Takano Kanagawa Institute of Technology, Japan
Uwe Tangen Ruhr-Universität Bochum, Germany
Jie Tao University of Karlsruhe, Germany
Luca Tasquier Second University of Naples, Italy
Olivier Terzo Istituto Superiore Mario Boella, Italy
Hiroyuki Tomiyama Ritsumeikan University, Japan
Tomoaki Tsumura Nagoya Institute of Technology, Japan
Gennaro Della Vecchia ICAR-CNR, Italy
Luis Javier Garca Villalba Universidad Complutense de Madrid (UCM),

Spain
Chen Wang CSIRO ICT Centre, Australia



Organization XIII

Gaocai Wang Guangxi University, China
Lizhe Wang Chinese Academy of Science, Beijing, China
Martine Wedlake IBM, USA
Wei Xue Tsinghua University, Beijing, China
Toshihiro Yamauchi Okayama University, Japan
Laurence T. Yang St. Francis Xavier University, Canada
Bo Yang University of Electronic Science and

Technology of China, China
Zhiwen Yu Northwestern Polytechnical University, China
Justyna Zander HumanoidWay, Poland/USA
Sherali Zeadally University of Kentucky, USA
Sotirios G. Ziavras NJIT, USA
Stylianos Zikos Aristotle University of Thessaloniki, Greece



Table of Contents – Part I

Distinguished Papers

Clustering and Change Detection in Multiple Streaming Time Series . . . 1
Antonio Balzanella and Rosanna Verde

Lightweight Identification of Captured Memory for Software
Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Fernando Miguel Carvalho and João Cachopo

Layer-Based Scheduling of Parallel Tasks for Heterogeneous Cluster
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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Abstract. In recent years, Data Stream Mining (DSM) has received
a lot of attention due to the increasing number of applicative contexts
which generate temporally ordered, fast changing, and potentially infi-
nite data. To deal with such data, learning techniques require to satisfy
several computational and storage constraints so that new and specific
methods have to be developed. In this paper we introduce a new strat-
egy for dealing with the problem of streaming time series clustering. The
method allows to detect a partition of the streams over a user chosen
time period and to discover evolutions in proximity relations. We show
that it is possible to reach these aims, performing the clustering of tem-
porally non overlapping data batches arriving on-line and then running a
suitable clustering algorithm on a dissimilarity matrix updated using the
outputs of the local clustering. Through an application on real and sim-
ulated data, we will show that this method provides results comparable
to algorithms for stored data.

Keywords: Time series data streams, Clustering, Change detection.

1 Introduction

A growing number of applicative fields is generating huge amounts of tempo-
ral data. We can take, for instance, data generated by real-time trade surveil-
lance systems for security fraud and money laundering, communication networks,
power consumption measurement, dynamic tracing of stock fluctuations, inter-
net traffic, industry production processes, scientific and engineering experiments,
remote sensors. In these contexts, data are sequences of values or events obtained
through repeated measurements over time.

Traditional learning techniques for temporal data have their reference in tem-
poral data mining and time series analysis literature [22], however new challenges
emerge when data are collected on-line, fast changing, massive, and potentially
infinite.

Data stream mining [25] is the recent research field which aims at developing
new methods for the analysis of such kind of data.

Algorithms for data stream mining should meet a set of stringent design
criteria[14]: i) time required for processing the incoming observations has to
be small and constant, ii) memory requirements have to be reduced with refer-
ence to the amount of data to be processed, iii) algorithms have to perform only
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one scan of the data iv) knowledge about data should be available at any point
in time or on user demand.

In order to deal with these requirements, the analysis of stream data is, often,
performed using synopses, which are data structures storing summaries of the
incoming data. The general idea is to update and/or generate synopsis data
structures every time a new element or a batch of elements is collected and
then, to extract the knowledge starting from the summaries rather than directly
from the observations.

This mode of processing data enforces a trade-off between the accuracy of the
data mining techniques and the computational and storage constraints. Thus,
one of the challenges is to develop effective and space-time efficient synopses
which allow to provide a good approximation of the results of data analysis
techniques for stocked data.

Several kinds of synopses have been developed for data stream processing:
sampling based on the reservoir sampling algorithm [24][2], on line histogram
construction [13], wavelets as data stream synopsis [16], sketches, which are
small-space summaries for a distribution vector (e.g., histogram) based on using
randomized linear projections of the underlying data vectors [12][15], finally,
techniques aiming at representing streaming time series into reduced space[20][3].

Data stream mining methods use synopses for performing, on-line or off-line,
usual data mining tasks such as frequent pattern mining, association rules de-
tection, classification, clustering.

In this paper, we focus on a specific clustering problem. We propose a new
strategy able to detect a partition of a set of streams into clusters and a repre-
sentation of the clusters through suitable prototype functions.

In data stream framework, the clustering aims at dealing with two different
challenges. The first is to analyze a single univariate or multivariate data stream
with the objective to reveal a partition of the observations it is composed of.
The second is to analyze multiple data streams generated by several sources (for
example sensor networks) to find (and make available at any time), a partition
of streams which behave similarly through time.

The latter is the topic of this paper and is usually referred to as clustering of
time series data streams since it considers each data stream as a univariate time
series of potentially infinite size, which acquires, on-line, new observations.

Due to the constraints in data stream analysis, clustering of time series data
streams is strongly differentiated by the batch clustering of time series. In par-
ticular, it needs to satisfy several specific requirements: it has to be possible to
recover the clustering structure of a user chosen time interval without perform-
ing a further pass on data; summaries should be recorded on-line in order to
get an overview of the monitored phenomenon over time; algorithms should still
support the addition of new streams during the monitoring process and adapt
the clustering to the new available information.

A further important issue is to take into account the evolution of data and the
consequent, possible, change in the proximity relations among the streams. The
evolution in the proximities impacts on the clustering structure which should
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be updated to reflect the new condition. Moreover, it is desirable to detect this
change in order to provide a suitable alert, useful for decision support.

In order to satisfy these requirements, we introduce a new strategy for cluster-
ing temporally ordered data streams, based on discovering a global partitioning
of the streams starting from the clustering of local batches of data.

The proposed method is based on performing the clustering of incoming data
batches to provide, as output, a set of locally representative profiles and to allow
the updating of a proximity matrix which records the dissimilarities among the
streams. The overall partition of the streams is then obtained through a suitable
clustering algorithm on the on-line updated proximity matrix. This strategy
allows to discover evolutions of the data streams through an appropriate measure
which monitors the changes in proximity relations.

We will still show that this approach supports the possibility of recovering
the partition of the streams in a time interval chosen by the user, introducing
a tilted windows method which stores recent information at a finer granularity
level and outdated data at a courser level of detail.

It is interesting to note that our proposal is not based on some specific tech-
nique for preprocessing the incoming data in order to reduce the dimensionality
and/or to deal with noise or missing items. In addition the clustering method
will not make reference to a specific dissimilarity measure for comparing the
streams. This allows to generalize our proposal to a high range of streaming
time series clustering problems, where a suitable representation of data and an
appropriate distance measure can be chosen according to the applicative context
that must be analyzed.

The paper is organized as follows. Section 2 presents some of the main existing
proposals for data streams clustering. Section 3 introduces the details of our
strategy. In Section 4 the proposed strategy is evaluated on real data. Finally,
Section 5 closes the paper.

2 State of Art

The data stream clustering problem has been widely dealt with in recent years.
Several proposals ([17] [1]) address the challenge of the clustering of the obser-
vations of univariate or multivariate data streams (a wide review is available
in [18]). The clustering of multiple data streams, which is the challenge of this
paper, is a more recent topic. Interesting proposals have been introduced in
[5][6][23] The first one is an extension, to the data stream framework, of the
k-means algorithm for time series. The main drawback of this strategy is the
inability to deal with evolving data streams. This is because the final data parti-
tion only depends from the data of the most recent window. Moreover it does not
allow to interrogate for the clustering structure over user defined time intervals.

The second proposal, named Clustering On Demand (COD), is based on per-
forming an on-line scan of the data for dimensionality reduction using a multi
resolution approach based on wavelet transformation or on piecewise linear re-
gression. The reduced time series are indexed by suitable hierarchies which are
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Table 1. Main notations

Notation Description Notation Description

Y Set of n streams P Partition of the set of streams Y
Yi Single streaming time series Pw Partition of the data framed by

the window w
w Windows on data Lw Set of prototypes of the local

partition Pw

s Size of each window C Number of clusters of each local
partition Pw

Y w
i Subset of the stream Yi Aw =

[aw(i,m)]
Matrix storing the dissimilari-
ties among the streams

processed, off-line, by a suitable clustering algorithm which retrieves the par-
titioning structure of the streams. Although this method is able to deal with
evolving data streams, its main drawback is that it is only effective when data
can be appropriately represented using the wavelet transformation or the piece-
wise linear regression. In addition it does not manage the addition of new data
streams.

The third mentioned approach is a top-down strategy named Online Divisive-
Agglomerative Clustering (ODAC) where a hierarchy is built according to a
dissimilarity measure based on the correlation among the streams. The proposed
divisive approach incrementally updates the distance among the streams and
executes a procedure for splitting the clusters on the basis of the comparison
between the diameter of each cluster and a threshold obtained using Hoeffding
bounds. In order to deal with evolution in data, ODAC provides a criterion to
aggregate the leafs still based on the clusters diameters and Hoeffding bounds.

3 Clustering Algorithm for Multiple Data Streams

Let Y = {Y1, ..., Yi, ..., Yn} be a set of n streams Yi = {(y1, t1), ..., (yj , tj), ..., }
made by real valued ordered observations on a discrete time grid T = {t1, ..., tj , ...}
⊆ �.

The objective is to get a partition P of Y in a predefined number C of ho-
mogeneous clusters Ck with k = 1, ..., C. We propose a new strategy based on
Dynamic Clustering Algorithm (DCA) that according to the classic schema in
[10][11] optimizes a measure of best fitting between the clusters of streams and
the way to represent them.

We perform the partitioning of data in two main phases which we distinguish
in an on− line and in an off − line phase.

In the on-line phase, the incoming data are split into non overlapping win-
dows and then a partitioning of the subsequences in each window is achieved.
The outputs of this on-line clustering process are: the prototypes of the clus-
ters of the partitions associated to each window and the proximities among the
subsequences of the several streams. This proximity measures are recorded in a
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proximity matrix which is updated with the new proximities at each clustering
process performed on the set of subsequences in each window.

The on-line phase is then stopped at a certain time τ , which corresponds to
a number of processed windows set apriori or on demand by the user. A global
partitioning of the streams recorded until the stopping of the on-line clustering is
then performed, off-line, using the DCLUST algorithm on dissimilarity matrix
[11]. In particular, we consider in input the proximity matrix which contains
information about the proximities between the pairs of subsequences as updated
at each on-line clustering.

Repeating this off-line phase for different intervals of time in which the on-line
process is stopped, it is possible to discover changes in the structure of clustering
that corresponds to changes in the behavior of the subsequences along time.

3.1 On-line Partitioning Process on Subsequences

According to the introduced clustering schema, the first step consists in splitting
the incoming parallel streams into non overlapping windows, where each window
w = 1, . . . ,∞, is an ordered subset of T having size s which frames a subset
Y w
i = {yj , . . . , yj+s} of Yi called subsequence.

A Dynamic Cluster Algorithm (DCA) [10][9] is then performed on the sub-
sequences Y w

1 , . . . , Y w
i , . . . , Y w

n of the current window by looking for P ∗ among
all the partitions PC of Y w in C classes and L∗ among all the representations
spaces LC of the partition of Y w in C classes, such that is minimized a measure
Δ of fitting between L and P :

Δ(P ∗, L∗) = Min{Δ(P,L)/P ∈ PC , L ∈ LC}
The definition of the algorithm is performed according to two main functions:

- g: the representation function allowing to associate to each partition P ∈
PC of the Y w

i ∈ Y w in C classes Ck (k = 1, . . . , C) an element of the
representation space of the classes, herein indicated as L : g(P ) = L, and

- f : the allocation function allowing to associate to each gk ∈ L a partition
P : f(L) = P .

The first function concerns the representation structure L for the classes
{C1, . . . , Ck} ∈ P . Our proposal is based on a description of the classes again in
terms of subsequences, so that we choose to represent the clusters by profiles of
the subsequences belonging to the clusters, here called prototypes, here denoted
as Lw = (gw1 , . . . , g

w
k , . . . , g

w
K) for the cluster Cw

k (with k = 1, . . . , C) of each
partition Pw of the set Y w (for each window w).

The definition of the allocationfunction f allows to assign a subsequence
Y w
i to a cluster Cw

k according to its similarity with the prototype gwk .
Given a suitable distance function d(·), the criterion Δ(Pw, Lw) optimized in

DCA is usually defined as the sum of the measures d(Y w
i , gwk ) of fitting between
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each subsequence Y w
i in a cluster Cw

k ∈ Pw and the prototypes gwk , expressed
as:

Δ(Pw, Lw) =

K∑

k=1

∑

Y w
i ∈Cw

k

d(Y w
i , gwk ) (1)

The DCA algorithm used for carrying out the partition Pw and the related
prototypes in Lw can be synthesized, in our context, by the following steps:

1. Initialization: Fixed a number C of clusters in which partition the set Y w,
detect a random partition Pw = {Cw

1 , . . . , Cw
k , . . . , Cw

C}
2. Representation step: For k = 1, . . . , C, detect the prototype

gwk = argmin(
∑

Y w
i ∈Cw

k
d(Y w

i , gwk ))

3. Allocation step: For i = 1, . . . , n allocate the subsequence Y w
i to the cluster

Cw
k such that d (Y w

i , gwk ) < d (Y w
i , gwk′) with k �= k′

Steps 2 and 3 are repeated until the convergence to a stationary point.
Whenever the chosen distance function is the Euclidean distance, the algo-

rithm is equivalent to the well known K-means algorithm where the prototypes
are the average of subsequences in each local cluster.

Fig. 1. On-line steps

On-line Proximity Matrix Updating. The outputs of the Dynamic Clus-
tering Algorithm on the subsequences of each window are the prototypes of
several clusters of local partition Pw that are the syntheses of the behavior of
the streams at time periods corresponding to the size of the windows. iven the
nature of the data and the limit in the time executionThe computation of the
proximities between each pair of subsequences is prohibitive from a computa-
tional point of view taking into account the arriving frequency of the streams.
Thus, in order to obtain information about the proximities between couples of
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subsequences we introduce a proximity matrix which records, for each partition
of the subsequences in a window, the status of the proximities between the cou-
ples Y w

i and Y w
m (∀i,m = 1, . . . , n) in the cells aw(i,m) (with i,m = 1, . . . , n) of

the matrix Aw = [aw(i,m)], having denoted with Aw the status of the matrix A
at the time corresponding to the processing of the window w.

In [4] we proposed to assign to the cells aw(i,m) and aw(m, i) the value 1 if
Y w
i and Y w

m belong to the same cluster; the value 0 if the subsequences belong
to different clusters. Updating the matrix A with values 0 or 1 (for all the pair
i,m = 1, . . . , n) at each partition of the local window, at a certain time the
matrix A stores in each cell aw(i,m) the number of times each couple of streams
is allocated to the same cluster of a local partition Pw. Even if the matrix A
for a large number of windows approximates a matrix of similarities, it does not
take into account any information about the internal cohesion of the clusters or
the heterogeneity among streams belonging to different clusters.

In order to introduce more information in this proximity matrix, always re-
specting the computational constraints, we introduce a new approach based on
updating the dissimilarities rather than the similarities among the streams.

According to this new strategy, the dissimilarities d(Y w
i , Y w

m ) between the
couples Y w

i , Y w
m (with i,m = 1, . . . , n) are computed as follows:

If Y w
i , Y w

m ∈ Cw
k , d(Y w

i , Y w
m ) is equal to Ww

k =

∑
Y w
i

∈Cw
k

d(Y w
i ;gw

k )

|Cw
k | that is the

average distance of the subsequences Y w
i in a cluster Cw

k to the correspondent

prototype gwk ; It is worth noting that Ww
k =

∑
i,m∈Cw

k
d(Y w

i ;Y w
m )

|Cw
k |·|Cw

k −1| when the proto-

types gwk (for k = 1, . . . , C) of the C clusters of the local partition Pw are the
average profiles of the subsequences belonging to the several clusters and d(.) is
the Euclidean distance.

If (Y w
i ∈ Cw

k ) ∧ (Y w
m ∈ Cw

l ) (with k �= l = 1, . . . , C), the dissimilarity value
is Di,l = d(Y w

i ; gwl ) that is the distance of a subsequence Y w
i , belonging to the

cluster Cw
k to the prototype gwl of a cluster Cw

l at which Y w
m belongs.

We note that for the subsequences in the same cluster, the cell aw(i,m) is
updated with the same value Ww

k while, for couples of streams belonging to dif-
ferent clusters, the cell aw(i,m) is updated with a different value Di,k depending
on the distance of the stream Y w

i to the prototype gwk of the cluster Cw
k at which

Y w
m belongs.

In synthesis, for each partition Pw of the subsequences in a window w, the
cells of A are updated as follows:
aw(i,m) = aw−1(i,m) + Ww

k if Y w
i , Y w

m ∈ Cw
k

aw(i,m) = aw−1(i,m) + Di,l if Y w
i ∈ Cw

k and Y w
m ∈ Cw

l

3.2 Off-Line Partitioning through the Dynamic Clustering
Algorithm for Dissimilarity Tables

In order to obtain a global partition P from the stored results of the local parti-
tion Pw we propose to use the Dynamic Clustering Algorithm on a Dissimilarity
Table (DCLUST ) [11] on the proximity matrix Aw. In such a way the criterion
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optimized for obtaining the partition P is consistent with the criterion optimized
in the clustering of each local batch of data.

The aim of the DCLUST is to partition a set of elements into a fixed number
of homogeneous classes (that we can choose to be equal or not equal to the num-
ber of clusters of each local partition) on the basis of the proximities between
pairs of elements. The optimized criterion is based on the sum of the dissimilar-
ities between elements belonging to the same cluster. Because the dissimilarities
between pair of streams (Yi and Ym) are the values in the cells aw(i,m) of Aw,
the DCA criterion can be expressed as:

Δ(P,L) =

C∑

k=1

∑

i,m∈Ck

aw(i,m) (2)

According to the schema of DCLUST, the prototypes of the clusters corre-
sponds to the streams Ym∗ : m∗ = argminm(

∑
i∈Ck

aw(i,m)) with Ym ∈ Ck

(for k = 1, . . . , C).
The DCLUST algorithm schema is the following:

1. Initialization: The initial vector of prototypes, L contains random elements
of S

2. Allocation step: A stream Yi is allocated to the cluster Ck if aw(i,m) <
aw(i, j) with Ym the prototype of Ck and Yj the prototype of Cl (for all
k, l = 1, . . . , C)

3. Representation step: For each k = 1, . . . , C, the prototype Ym representing
the class Ck is the stream Ym∗ ∈ Ck

Steps 2 and 3 are repeated until convergence.
It is easy to prove that the DCLUST on the dissimilarity matrix A, choosing

as prototypes of the clusters the elements (streams) to the minimum distance
from the other elements of the clusters, converges to a stationary value.

3.3 A Tilted Time Frame Approach for Detecting a Partitioning of
the Streams over Defined Time Intervals

An important feature of the matrix Aw is that it satisfies the additive property:
Let t1, t2 ∈ T be two time stamps and At1 and At2 be the corresponding

dissimilarity matrices. The dissimilarity matrix in the interval t2−t1 is AΔt1,t2 =
At2 −At1 .

If the matrix Aw is stored at every update, it should be possible to recover
the dissimilarities among the flows of data for every temporal interval. However,
due to the storage constraints imposed by the data stream framework this is
not possible and only a set of time stamps has to be selected for storing the
proximities. With this aim, we introduce a tilted windows schema which aims at
storing recent information at a fine scale and long-term information at a coarse
scale.

There are several possible ways to design a tilted time frame. Here we recall
the natural tilted time frame model and the logarithmic tilted time frame model.
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In the natural tilted time frame model, the time frame is structured in multiple
granularity based on the natural or usual time scale: the most recent 4 quarters
(15 minutes), followed by the last 24 hours, then 31 days, and then 12 months.

The second model is the logarithmic tilted time frame model, where the time
frame is structured in multiple granularities according to a logarithmic scale. If
the most recent time stamp stores the proximities until the current time, the re-
maining slots for recording the proximity matrix correspond to 1, 2, 4, 8, 16, 32, ...
windows ago.

Fig. 2. Tilted time frame model

Though any tilted time frame model can be used in the proposed strategy, we
will adopt the logarithmic schema which can be realized by simply deleting the
non required matrices as shown in fig.2.

Change Detection. As previously stated, an important requirement for stream-
ing time series clustering is the capability to monitor the evolution in proximity
relations among the streams over time.

Starting from the on-line updated matrix A and recalling the additive prop-
erty which allows to discover the proximities in a user chosen time period, we
introduce two measures to understand, respectively, the overall and the pair-
wise change in the proximities among the streams in two temporal intervals
Δt′ = [t1, t2] and Δt′′ = [t3, t4].

The first measure is referred to as Structural Change (SC) and is based on
the Frobenius norm:

SCΔt′,Δt′′ =

∥∥∥∥
AΔt′

bΔt′
− AΔt′′

bΔt′′

∥∥∥∥
2

(3)

where:
AΔt′ and AΔt′′ are the proximity matrices computed for the time intervals [t1, t2]
and [t3, t4];
bΔt′ and bΔt′′ are the number of windows in [t1, t2] and [t3, t4];

The second measure which is referred to as pairwise change (PC), returns
a matrix storing, in each cell, the strength of the change in pairwise proximity
relations:

PCΔt′,Δt′′ =

∣∣∣∣
AΔt′

bΔt′
− AΔt′′

bΔt′′

∣∣∣∣ (4)
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The pairwise change measure is computed by taking into account the dif-
ference between the dissimilarities at the two time periods normalized by the
number of windows included in each of them in order to adapt to the different
size of Δt′ and Δt′′.

4 Experimental Results

In order to evaluate the performance of the proposed strategy we have run
several tests on real and simulated datasets. Starting from stocked data we have
simulated a streaming environment, where data are supposed to be not wholly
available. This allows to test the sensitivity of the proposed method to the input
parameters exactly on the same data and to evaluate how the performance of
the on-line method approximates the results of methods for stocked data.

We have chose three datasets in the evaluation process:
The first is made by 76 highly evolving time series, downloaded from Yahoo

finance where the observations are the daily closing price of several random
chosen stocks. Each time series is made by 4000 observations.

The second is made by 179 highly evolving time series which collect daily
electricity supply at several locations in Australia. Each time series is made by
3288 observations.

The third is a simulated dataset consisting in n = 100 time series each
having 6, 000 observations. The streams are generated according to two clus-
ters. At the time stamp t = 3000 (in the middle of the series generation), we
simulate a change in the proximities by changing the parameters of the equa-
tions used to generate the data. Especially for t < 3000, the data partition is
P ′ = {Y1, . . . , Y50} {Y51, . . . , Y100} while for t > 3000, the streams partition be-
comes: P ′′ = {Y1, . . . , Y25, Y76, . . . , Y100} {Y26, . . . , Y75}. Such dataset has been
introduced for evaluating the capability to discover changes in proximity rela-
tions.

Since one of the aims of the strategies for data stream mining is to produce
results which approximate the ones provided by techniques for stocked data, we
have compared the results obtained by the proposed method to the well known
k-means algorithm performed on stored time series. Such choice is motivated by
the common objective of finding a partition of the data, optimizing a criterion
of maximum homogeneity of the elements in each cluster in terms of within
deviance.

Our tests, have not been extended to existing clustering methods for stream-
ing time series since they share different objectives. In particular, the on-line
k-means proposed by Beringer and Hullermeier, in [5], is not able to deal with
evolving data streams, while the clustering of time sieries data streams proposed
by Rodrigues et al. in [23], is a hierarchical method, finally, the Adaptive Clus-
tering for Multiple Evolving Streams proposed by Bi-Ru Dai et al., in [6] is not
focused on giving summaries of incoming data while these are recorded.

We have considered several common indexes to assess the effectiveness of the
proposal (See [8][7][19]). The Calinski-Harabasz Index(CH), Davies-Bouldin(DB)
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Index and Silhouette Width Criterion(SW), are used as internal validity criteria
for evaluating the compactness of clusters and their separation. The Rand index
(RI) and the Adjusted Rand index (ARI) are used to measure the consensus
between the partition obtained by our proposal and the partition obtained using
the k-means.

In order to perform the testing of our procedure, we need to set the size s of
each temporal window and the number of clusters C. For the k-means we only
need to set the global number of clusters C.

The Euclidean distance is used as dissimilarity function in both the proce-
dures.

According to this choice, the local clustering performed by DCA algorithm
on the subsequences in each window, is a k-means where the prototypes are the
average profile of the data in a cluster.

Parameter C has been set, for the first and second datasets, running the k-
means algorithm using C = 2, . . . , 8. For each value of C we have computed the
Within Deviance. We have chosen C = 4 for the first dataset and C = 3 for the
second dataset, since these are the values which provide the highest improvement
of the clusters homogeneity in terms of Within Deviance.

For the third dataset we have chose C = 2 since data have been generated so
as to belong to two clusters.

By evaluating, through the mentioned indexes, the partitioning quality for
several values of s we can state that the choice of the windows size does not
impact on the clusters homogeneity. As a consequence, the choice of the value
of such parameter, can be performed according to the kind of required summa-
rization. For example, if we need to detect a set of prototypes for each week of
data, we choose a value of the window size which frames the observations in a
week.

In our tests, we have used windows made by 30 observations for the first two
datasets and 50 for the third one.

In order to compare the clustering performance of the proposed method to
the k-means, we show, respectively in table 2 and table 3, the values of the
introduced internal and external validity indexes.

Looking at the values of the internal validity indexes, computed for our pro-
posal and for the k-means on stocked data, it emerges that the homogeneity of
the clusters and their separation, is quite similar.

Table 2. Internal validity indexes

On-line clustering k-means algorithm
Dataset DB CH SW DB CH SW

Electricity supply 2.104 26.353 0.227 2.172 26.504 0.229
Financial data 1.793 15.291 0.307 1.754 15.594 0.321
Simulated
dataset

0.521 5.714 0.857 0.521 5.714 0.857
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Table 3. External validity indexes

Dataset Rand Index Adjusted Rand Index

Power supply 0.95 0.88
Financial data 0.91 0.86
Simulated dataset 1 1

Moreover, the value of the Rand Index and of the Adjusted Rand Index high-
lights the strength of the consensus between the obtained partitions.

A further aim of our tests is to evaluate if the proposed strategy is able to
discover the time point of the evolution, to measure its strength and to under-
stand which streams have the strongest evolution. To reach this aim we will only
refer to the simulated dataset.

We need to set the two time intervals over which the tests are made. We
have chosen to perform a dynamic monitoring such that the first time interval
Δt′ = [t1, t2] is made by the most recent 150 observations corresponding to three
windows of data, while the second time interval Δt′′ = [t3, t4] is made by the
previous 150 observations not included in Δt′ = [t1, t2].

The main results for the SDΔt′,Δt′′ measure are shown in the following figure:
It is possible to note that the the peak in the plot is in correspondence of

the middle of the monitoring activity such as expected. Moreover, looking at
the following figure which illustrates the values of the PCΔt′,Δt′′ matrix, it is
possible to discover which pairs of streams highlight strong changes in proximity
relations at the time point t = 3000.

Fig. 3. SCΔt′,Δt′′ measure over time

Fig. 4. PCΔt′,Δt′′ matrix at t = 3000
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5 Conclusions

In this paper we have introduced a new strategy which deals with two related
problems in data stream mining: clustering and change detection. Starting from a
set of on-line arriving data streams, we perform the clustering of temporally non
overlapping data batches and then we run an appropriate clustering algorithm
on a dissimilarity matrix updated using the outputs of the local clustering. The
comparison of the dissimilarities at two time stamps allows to discover changes
in data.

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: VLDB 2003: Proceedings of the 29th International Conference
on Very Large Data Bases, pp. 81–92. VLDB Endowment (2003)

2. Aggarwal, C.C.: On biased reservoir sampling in the presence of stream evolution.
In: VLDB, San Francisco (2001, 2006)

3. Balzanella, A., Irpino, A., Verde, R.: Dimensionality reduction techniques for
streaming time series: A new symbolic approach. In: Classification as a Tool for
Research. Studies in Classification, Data Analysis, and Knowledge Organization,
pp. 381–389. Springer, Heidelberg (2010)

4. Balzanella, A., Lechevallier, Y., Verde, R.: Clustering multiple data streams.
New Perspectives in Statistical Modeling and Data Analysis. Springer, Heidelberg
(2011)

5. Beringer, J., Hullermeier, E.: Online clustering of parallel data streams. Data and
Knowledge Engineering 58(2), 180–204 (2006)

6. Dai, B.-R., Huang, J.-W., Yeh, M.-Y., Chen, M.-S.: Adaptive Clustering for Mul-
tiple Evolving Streams. IEEE Transactions On Knowledge And Data Engineer-
ing 18(9) (2006)

7. Calinski, R.B., Harabasz, J.: A dendrite method for cluster analysis. Communica-
tions in Statistics 3, 1–27 (1974)

8. Davies, D.L., Bouldin, D.W.: Cluster Separation Measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1(2), 95–104 (1979)

9. De Carvalho, F., Lechevallier, Y., Verde, R.: Clustering methods in symbolic data
analysis. In: Classification, Clustering, and Data Mining Applications. Studies in
Classification, Data Analysis, and Knowledge Organization, pp. 299–317. Springer,
Berlin (2004)

10. Diday, E.: La methode des Nuees dynamiques. Revue de Statistique Ap-
pliquee 19(2), 19–34 (1971)

11. Diday, E., Noirhomme-Fraiture, M.: Symbolic Data Analysis and the SODAS Soft-
ware. Wiley (2008)

12. Flajolet, P., Martin, G.N.: Probabilistic counting. In: SFCS 1983: Proceedings of
the 24th Annual Symposium on Foundations of Computer Science, pp. 76–82. IEEE
Computer Society, Washington, DC (1983)

13. Gama, J., Pinto, C.: Discretization from Data Streams: applications to Histograms
and Data Mining. In: Proceedings of the 2006 ACM Symposium on Applied Com-
puting, pp. 662–667 (2006)

14. Ganguly, A.R., Gama, J., Omitaomu, O.A., Gaber, M.M., Vatsavai, R.R.: Knowl-
edge discovery from sensor data. CRC Press (2009)



14 A. Balzanella and R. Verde

15. Greenwald, M., Sanjeev, K.: Space-efficient online computation of quantile sum-
maries. SIGMOD Rec. 30(2), 58–66 (2001)

16. Guha, S., Harb, B.: Wavelet synopsis for data streams: minimizing non-euclidean
error. In: KDD, pp. 88–97 (2005)

17. Guha, S., Meyerson, A., Mishra, N., Motwani, R.: Clustering Data Streams: The-
ory and practice. IEEE Transactions on Knowledge and Data Engineering 15(3),
515–528 (2003)

18. Kavitha, V., Punithavalli, M.: Clustering Time Series Data Stream - A Litera-
ture Survey. International Journal of Computer Science and Information Security,
IJCSIS 8(1) (April 2010) ISSN 1947-5500

19. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification, 193–218
(1985)

20. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.: iSAX 2.0: Indexing and Mining
One Billion Time Series. In: ICDM 2010 (2010)

21. Laxman, S., Sastrya, P.S.: A Survey of temporal data mining. SADHANA,
Academy Proceedings in Engineering Sciences 31(2), 173–198 (2006)

22. Mitsa, T.: Temporal Data Mining. CRC Press (2010) ISBN:9781420089769
23. Rodriguess, P.P., Pedroso, J.P.: Hierarchical Clustering of Time Series Data

Streams. IEEE Transactions on Knowledge and Data Engineering 20(5) (2008)
24. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11,

37–57 (1985)
25. Yu, P.S., Wang, H., Han, J.: Mining Data Streams. In: Maimon, O., Rokach, L.

(eds.) The Data Mining and Knowledge Discovery Handbook 2005. Springer (2005)



Lightweight Identification of Captured Memory

for Software Transactional Memory�

Fernando Miguel Carvalho1,2 and João Cachopo2

1 DEETC, ISEL/Polytechnic Institute of Lisbon, Portugal
mcarvalho@cc.isel.ipl.pt

2 INESC-ID Lisboa / Instituto Superior Técnico, Universidade de Lisboa, Portugal
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Abstract. Software Transactional Memory (STM) implementations ty-
pically instrument each memory access within transactions with a call to
an STM barrier to ensure the correctness of the transactions. Compared
to simple memory accesses, STM barriers are complex operations that add
significant overhead to transactions doing many memory accesses. Thus,
whereas STMs have shown good results for micro-benchmarks, where
transactions are small, they often show poor performance on real-world–
sized benchmarks, where transactions are more coarse-grained and, there-
fore, encompass more memory accesses.

In this paper, we propose a new runtime technique for lightweight
identification of captured memory—LICM—for which no STM barriers
are needed. Our technique is independent of the specific STM design and
can be used by any STM implemented in a managed environment. We
implemented it on the Deuce STM Framework, for three different STMs,
and tested it across a variety of benchmarks.

Using our technique to remove useless barriers, we improved the per-
formance of all baseline STMs for most benchmarks, with speedups of up
to 27 times. Most importantly, we were able to improve the performance
of some of the benchmarks, when using an STM, to values close to or
better than the performance of the best lock-based approaches.

Keywords: Software Transactional Memory, Runtime Optimizations.

1 Introduction

Some researchers (e.g. [6]) question the usefulness of Software Transactional
Memory (STM), because most STM implementations fail to demonstrate appli-
cability to real-world problems: In many cases, the performance of an STM on
a real-world–sized benchmark is significantly lower than the sequential version
of the benchmark, or even than the version using coarse-grain locks. The loss of
performance is often attributed to the over-instrumentation [19] made on these
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benchmarks by overzealous STM compilers that protect each and every memory
access with a barrier that calls back to the STM runtime.

Thus, several researchers proposed optimization techniques to elide useless
barriers—for instance, to elide barriers when accessing transaction local mem-
ory. The most effective proposals (e.g. [2], [5], [13] and [19]) decompose the STM’s
API in heterogeneous parts that allow the programmer to convey application-
level information about the behavior of the memory locations to the instrumen-
tation engine. Yet, this approach contrasts with one of the main advantages of
an STM, which is to provide a transparent synchronization API, meaning that
programmers just need to specify which operations are atomic, without knowing
which data is accessed within those operations. That is the approach used by
Deuce STM [14], an STM framework for the Java environment.

Afek et al. [1] added to Deuce STM a static analysis technique to enable
compile-time optimizations that avoid instrumentation of memory accesses in
several situations, including to transaction local memory. Yet, this approach
does not accomplish the performance improvements shown by solutions based
on heterogeneous APIs that were also proposed to Deuce STM [5]. In fact, static
compiler analysis is often imprecise and conservative, and thus cannot remove
all unnecessary barriers, because program modules are dynamically loaded, for
example, and it is impossible to perform whole program compiler analysis. How-
ever, we argue that automatic approaches that keep the transparency of the
STM API are better suited to the overall goal of STMs. So, in this paper, we
propose to tackle this problem and find a technique based on runtime analy-
sis that automatically and efficiently elide STM barriers for transaction local
memory.

Our work is based on the proposal of Dragojevic et al. [8], which introduces
the concept of captured memory as memory allocated inside a transaction that
cannot escape (i.e., is captured by) its allocating transaction. Captured memory
corresponds to newly allocated objects that did not exist before the beginning of
their allocating transaction and that, therefore, are held within the transaction
until its successful commit. They use the term capture analysis (similar to es-
cape analysis) to refer to a compile- or runtime-time algorithm that determines
whether a memory location is captured by a transaction or not.

Given the lack of demonstrable effectiveness of the static compiler analysis [1],
here we are interested in exploring the proposal of Dragojevic et al. [8] for run-
time capture analysis, adapt it to a managed runtime environment and make it
more efficient. More specifically, the main contributions of this paper are:

– A new runtime technique for lightweight identification of captured memory—
LICM—for managed environments that is independent of the underlying
STM design (Section 3). Our approach is surprisingly simple, yet effective,
being up to 5 times faster than the filtering algorithm proposed by [8] (which
we briefly introduce in Section 2.2).

– We implemented the LICM in Deuce STM, which already includes some
optimization techniques in its original implementation (Section 2.1). Our
implementation uses a new infrastructure of enhancement transformations,
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which is described in Section 4. By providing an implementation of our
proposal within Deuce STM, we were able to test it with a variety of baseline
STM algorithms, namely, LSA [16], TL2 [7], and JVSTM [10].

– We performed extensive experimental tests for a wide variety of benchmarks
(Section 5), including real-world–sized benchmarks that are known for be-
ing specially challenging for STMs. The goal of these tests was not only to
evaluate the performance of our proposal, but, more importantly, to assess
the usefulness of the runtime capture analysis, thus completing the anal-
ysis of [8] about how many of the memory accesses are to captured loca-
tions. Besides the STAMP [4], we also analyze the STMBench7 [12], and the
JWormBench [5], which were not included in [8].

– For the first time, in some of the more challenging benchmarks, the LICM
makes STM’s performance competitive with the best fine-grained lock-based
approaches. Moreover, given its lightweight nature, it has almost no overhead
when the benchmark presents no opportunities for optimizations.

In Section 6, we discuss related work on optimization techniques for STMs.
Finally, in Section 7, we conclude and discuss some future work.

2 Past Solutions for Compiler Over-Instrumentation

A naive STM compiler translates every memory access inside a transaction into
a read or a write barrier, which typically require orders of magnitude more
machine cycles than a simple memory access. So, whereas the approach taken by
STM compilers ensures the correctness of the whole application, it also degrades
its performance significantly. In this section, we present an overview on past
solutions to elide useless STM barriers.

2.1 Deuce STM Optimizations

Deuce STM is a Java-based STM framework that provides a bytecode instrumen-
tation engine implemented with ASM [3]. Its two major goals are: (1) to be able
to integrate the implementation of any synchronization technique, and, in par-
ticular, different STMs; and (2) to provide a transparent synchronization API,
meaning that a programmer using it just needs to be concerned with the iden-
tification of the methods that should execute atomically. For this purpose, the
programmer marks those methods with an @Atomic annotation and the Deuce’s
engine automatically synchronizes their execution using a synchronization tech-
nique that is defined by the programmer in a class that implements the Context

interface (for more detailed information about Deuce STM see [14]).
During instrumentation, Deuce STM can perform two optimizations to sup-

press useless STM barriers. First, Deuce STM does not instrument accesses to
final fields, as they cannot be modified after creation. This optimization avoids
the use of STM barriers when accessing immutable fields, provided that they
were correctly identified in the application code.
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Second, programmers may exclude some classes from being transformed by
specifying the names of the classes to be excluded via a runtime parameter
(org.deuce.exclude). This approach, however, reduces the transparency of the
Deuce API. Moreover, it has some limitations: It does not work with arrays,
nor can it be used when the same class has both instances that are shared and
instances that are not shared across the transaction’s boundaries. So, there is no
support in the original Deuce STM for identifying objects that are transaction
local and it is not feasible to do it through the existent mechanisms.

2.2 Runtime Capture Analysis

Our proposal is based on the work of Dragojevic et al. [8], originally proposed
for the Intel C++ STM compiler, but that we adapted to the Deuce STM.

In Algorithm 1, we show the pseudo code for a read and a write barrier in
Deuce STM when using runtime capture analysis. In both cases, the barrier first
checks whether the object being accessed is captured by the current transaction.
If so, it accesses data directly from memory; otherwise, it executes the standard
full barrier. As in Deuce STM, object fields are updated in place using the
sun.misc.Unsafe pseudo-standard internal library.

Algorithm 1. Read and write barriers when using runtime capture analysis

� in the following, ref is an object, addr is the address of the field accessed
on ref , val is the value read/written, and ctx is the transaction’s context

1: function onReadAccess(ref, val, addr, ctx)
2: if isCaptured(ref, ctx) then
3: return val � returns the field’s value if the object ref is captured by ctx
4: else
5: return ctx.onReadAccess(ref, val, addr) � full STM barrier has to be used
6: end if
7: end function

8: function onWriteAccess(ref, val, addr, ctx)
9: if isCaptured(ref, ctx) then

10: Unsafe.putInt(ref, addr, val) � Updates the field in-place.
11: else
12: ctx.onWriteAccess(ref, val, addr) � full STM barrier has to be used
13: end if
14: end function

The performance of this solution depends on the overhead of the capture anal-
ysis, which is made by the isCaptured function. So, if the potential savings from
barrier elision outweighs the cost of runtime capture analysis, then the average
cost of a barrier in an application will be reduced and the overall performance
will be improved.

In the Dragojevic et al’s original proposal the capture analysis algorithm
was intertwined with the memory management process. The key idea of their
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algorithm was to compare the address of the accessed object, ref, with the ranges
of memory locations allocated by the transaction. To perform this analysis, all
transactions must keep a transaction-local allocation log for all allocated memory.

So, the performance of the isCaptured function depends on the performance
of the search algorithm that needs to lookup the allocation log for a specific ad-
dress, which ultimately depends on the efficiency of the data structure used to
implement the allocation log. In their work, they implemented and tested three
different data structures: a search tree, an array, and a filter of memory ranges.
The search tree allows insertions and removals of memory ranges and search op-
erations to determine if an address belongs to a memory range stored in the tree.
The array implementation of the log simply keeps all memory ranges allocated
inside a transaction as an unsorted array. Finally, the filtering approach uses a
hash table as a filter: When a block of memory gets allocated, all memory loca-
tions belonging to the block are hashed and the corresponding hash table entries
are marked with the exact addresses of the corresponding memory locations;
thus, this filtering scheme allows false negatives.

Dragojevic et al’s experimental results show similar performance improve-
ments for the three data structures,1 peaking at 18% for 16 threads and the
Vacation benchmark in a low-contention configuration.

On a managed runtime environment with automatic memory management, we
do not have readily access to the memory allocation process, so that we can log
which memory blocks are allocated by a transaction and, therefore, we cannot
implement the capture analysis algorithm based on the search tree or the array
data structures. Thus, we adapted the hash table filtering algorithm, replacing
it with an IdentityHashMap of the JDK and we logged the references of the
objects instantiated by a transaction. In our case, and contrary to the original
approach, this implementation does not allow false negatives, which increases
the reliability of the capture analysis, but incurs in further overhead to maintain
the transaction-local allocation log. Nevertheless, using our implementation with
the TL2 STM, we get a performance improvement similar to what was shown
in [8]: For a low-contention configuration of the Vacation benchmark, we achieve
a performance improvement of 32% at 16 threads (see Figure 1).

3 Lightweight Identification of Captured Memory

Although the implementation of the Dragojevic et al’s filtering technique im-
proves the overall performance of Deuce STM, the isCaptured algorithm is
still much more expensive than a simple memory access: We have to calculate
the System.identityHashCode() for the accessed object and then we have to
lookup an hash table for that object.

In fact, even with this runtime capture analysis, Deuce STM still does not per-
form well in some of the most challenging benchmarks, such as the Vacation [4] or

1 With the hash table performing slightly worse, 5% in the worst case, than the
alternatives.
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the STMBench7 [12], where transactions are more coarse-grained and, therefore,
encompass more memory accesses.

We claim that is, in part, due to the relative high cost of the isCaptured

function, and that, if we can lower that cost, we may solve the problem. To see
what is the effect of removing all the STM barriers for transaction local memory
in these benchmarks, we identified the classes that are instantiated inside a
transaction scope, we excluded those classes from being instrumented (in the
cases where that was possible without compromising the correctness), and then
we measured the speedup obtained.

In Vacation, most of the transaction local objects are arrays and, therefore,
we have no easy way to avoid those STM barriers in Deuce STM. On the other
hand, in STMBench7 the operations traverse a complex graph of objects by us-
ing iterators over the collections that represent the connections in that graph.
Typically, these iterators are transaction local and, thus, accessing them using
STM barriers adds unnecessary overhead to the STMBench7’s operations. To
confirm this intuition, we logged the objects instantiated in the scope of a trans-
action and we also logged the read-set and the write-set for each operation of
the STMBench7. Thus, we could identify which barriers access transaction local
objects as shown in the results of Table 1. Then, we suppressed those barriers,
excluding the whole class definition from being transformed and we measured
the speedup for each operation.

Table 1. Barriers suppressed for each STMBench7 operation (r and w denote read and
write barrier, respectively) and the corresponding speedup on the operation when we
exclude the accessed classes from being instrumented. All classes, except LargeSetImpl,
belong to the java.util package.

Operation Id st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 op1 op2 op3 op4 op5 op6 op7 op8
AbstractList$Itr w w w w w w w w w w w w
AbstractMap$2$1 w w
HashMap rw rw rw rw
HashMap$Entry rw w w w
HashMap$Entry [] rw w w w
HashSet w w w w
LargeSetImpl
StringBuilder rw
TreeMap$KeyIterator w w w w
TreeMap$ValueIterator w
””$AscendingSubMap w w
””$EntrySetView w w
””$EntryIterator w w
Speedup TL2 2.5 1.3 6.1 1.1 3.4 2.4 1.4 3.5 4.4 2.9 3.1 3.1 1.7 1.9 1.9

From the results of Table 1, we can observe that there are transaction local ob-
jects for almost all of the STMBench7’s operations (except for op1, op4 and op5)
and the majority of their classes are related to the iterators of the java.util

collections, which confirms our expectations that these iterators are transaction
local. In the same table we can also observe a large speedup of each operation
when we avoid the STM barriers that access those transaction local objects.
So, based on these results, we expect that using an efficient capture analysis
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technique has a great influence on the overall performance of the STMBench7
with Deuce.

In our work, we propose to make the runtime capture analysis algorithm faster
by using the following approach: We label objects with unique identifiers of their
creating transaction, and then check if the accessing transaction corresponds to
that label, in which case we avoid the barriers. For this purpose, every transaction
keeps a fingerprint that it uses to mark newly allocated objects, representing the
objects’ owner transaction. Thus, the isCaptured algorithm just needs to check
if the owner of the accessed object corresponds to the transaction’s fingerprint of
the executing Context. In this case, it performs an identity comparison between
the fingerprint of the accessing transaction and the owner of the accessed object,
as shown in Algorithm 2.

Algorithm 2. The LICM algorithm of the isCaptured function

1: function isCaptured(ref, ctx)
2: return ref.owner = ctx.fingerprint
3: end function

Every time a new top-level transaction begins, its context gets a new unique
fingerprint. So, when a new object is published by the successful commit of
its allocating transaction, any previously running or newly created transaction
calling the isCaptured method for that object will return false, because their
fingerprint cannot be the same as the fingerprint recorded on that object. At the
end of the top-level transaction, we do not need to clear the context’s fingerprint
because a new fingerprint will be produced on the initialization of the next top-
level transaction.

The generation of new fingerprints is a delicate process that must be carefully
designed to avoid adding unintended overhead to either the Deuce STM engine
or the underlying STM. A naive approach to identify each transaction uniquely
is to use a global counter, but this approach adds unwanted synchronization
among threads that we would like to avoid. In fact, to address this problem, we
considered three different options for the generation of the fingerprints: (1) use
a global quiescent counter; (2) use a number of type long that is assembled by
combining a thread identifier with a per-thread sequence number; and (3) use a
newly allocated instance of class Object as a fingerprint. We discarded the first
option because we cannot do it simultaneously efficient and without the support
of either synchronization or any atomic operation. The other two options have
both benefits and costs. The second option avoids memory allocation, but it
requires some mechanism to deal with the wraparound of the numbers. On the
other hand, the third option avoids rollover and aliasing issues associated with
counters, but it imposes additional memory management burden.

Within these options, we chose the third, because it is the simplest approach
that solves all the problems as it relies on the garbage collection subsystem to
provide uniqueness and the ability to recycle unused fingerprints. Furthermore,
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we do not expect to see significant differences between the alternatives, given
that the fingerprint is created when the transaction starts and corresponds to a
very small cost of the entire transaction. According to the results presented in
Figure 1, the TL2 enhanced with the LICM technique outperforms the filtering
approach and can improve the performance of the baseline STM by 60%—almost
twice the speedup achieved with filtering.

Fig. 1. The throughput for two workloads (low-contention and high-contention) of the
Vacation benchmark, when using the TL2 STM. We show results for the baseline STM
(tl2 ), for the STM enhanced with the filtering implementation (tl2-filter), and for our
LICM approach (tl2-licm).

4 Extending Deuce STM

There are some transactional optimization techniques, such as the LICM and
the multi-versioning used by JVSTM, that require a specific type system dis-
tinct from the one provided by the managed environment. Moreover, and in the
particular case of the LICM, it also needs to perform additional tasks beyond
the standard behaviour provided by the STM barriers. Yet, the original Deuce
STM just provides extensibility in terms of the specification of the STM al-
gorithm, but it allows neither the definition of additional behavior orthogonal
to all STMs, nor any modification to the standard type system. We extended
Deuce STM to support the previous requirements and we followed three major
guidelines:2 (1) to avoid changing the current Deuce STM API; (2) to guaran-
tee retro-compatibility with existing applications and STMs for Deuce; and (3)
to provide the ability to enhance any existing STM with the capture analysis
technique without requiring either its recompilation or any modification to its
source-code.

Extending Deuce STM with the capture analysis technique requires two main
changes to the Deuce STM core structures: (1) the Context implementation of
any STM must keep a fingerprint representing the identity of the transaction
in execution and must perform the capture analysis shown in Algorithm 1; and
(2) a transactional class (i.e., a class whose instances are accessed in a transac-
tional scope) must have an additional field, owner, to store the fingerprint of the
transaction that instantiates it.
2 This adaptation of Deuce is available at
https://github.com/inesc-id-esw/deucestm/

https://github.com/inesc-id-esw/deucestm/
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To support the first feature, we added a new system property, org.deu-

ce.filter that enables the specification of a filter context—that is, a class that
implements the Context interface and adds some functionality to any existing
Context (using the decorator design pattern [11]). The new class ContextFil-
terCapturedState uses this approach, so that it can be applied to an existing
Context of any STM.

To ensure that all transactional objects have a owner field, their classes must
inherit, directly or indirectly, from the class CapturedState. To support this fea-
ture, we added to the Deuce STM framework a new infrastructure that allows
the specification and execution of enhancers, which are additional transforma-
tions to the standard Deuce instrumentation. These enhancers are instances of
classes implementing the interface Enhancer and they may be added to the
Deuce engine through the system properties org.deuce.transform.pre and
org.deuce.transform.post, depending on whether they should be performed
before or after the standard Deuce instrumentation. Moreover, the enhancers
may be combined in a chain of transformations, when more than one enhancer
is specified in the same pre or post property.

5 Performance Evaluation

All the tests were performed on a machine with 4 AMD Opteron(tm) 6168
processors, each one with 12 cores, resulting in a total of 48 cores. The JVM
version used was the 1.6.0 33-b03, running on Ubuntu with Linux kernel version
2.6.32.

To evaluate the performance of our approach, we used the STMBench7 [12],
the STAMP [4], and the JWormBench [5] benchmarks, with the LSA [16], the
TL2 [7], and the JVSTM [10] STMs, all implemented in the Deuce STM frame-
work. In all tests we show the results for the baseline STM, for the STM with
LICM support (identified by the suffix -licm), and for the STM with filtering
support (identified by the suffix -filter).

Moreover, given that the STMBench7 and the JWormBench benchmarks also
have a medium/fine-grained locking synchronization strategy, we also compare
the performance of the lock-based approach with the STM-based approach,
showing that for certain STMs, using LICM makes the performance of the STM-
based approach close to (or better than) the performance of the lock-based ap-
proach. In particular, for the STMBench7 and a low number of threads, JVSTM
outperforms the medium-lock approach.

5.1 STAMP Benchmarks

STAMP is a benchmark suite that attempts to represent real-world workloads
in eight different applications. We tested four STAMP benchmarks: K-Means,
Ssca2, Intruder, and Vacation.3 We ran these benchmarks with the configurations

3 The original implementation of STAMP is available as a C library and these four
benchmarks are the only ones available for Java in the public repository of Deuce
that are running with correct results.



24 F.M. Carvalho and J. Cachopo

proposed in [4]: For Vacation Low, “-n 256 -q 90 -u 98 -r 262144 -t 65536”; for
Vacation High, “-n 256 -q 90 -u 60 -r 262144 -t 65536”; for Intruder, “-a 10 -l
128 -n 65536 -s 1”; for KMeans, “-m 15 -n 15 -t 0.00001 -i random-n65536-d32-
c16.txt”; and for Ssca2, “-s 13 -i 1.0 -u 1.0 -l 13 -p 3”.

In Table 2, we show the speedup of each STM with LICM support for 1
thread and for N threads. Note that a speedup higher than 1 means that the
performance improved with LICM, whereas a speedup lower than 1 means that
performance decreased with LICM. The results in Table 2 show that LICM
improves the performance of the baseline STMs for the majority of the evaluated
benchmarks and that, when it has no benefits (due to the lack of opportunities
for elision of barriers), the imposed overhead is very low.

Table 2. The speedup of each STM with LICM support for 1 thread and N threads. In
the latter case we also show, between parentheses, the number of threads that reach the
peak of performance, with and without the LICM support, respectively. We emphasise
in bold the speedup values that are higher than 1.0.

1 thread
Vacation

Low-contention
Vacation

High-contention Intruder KMeans Ssca2
LSA 1.2 1.2 1.4 0.9 1.0
TL2 1.1 1.1 1.2 0.9 0.9

JVSTM 1.1 1.1 1.2 1.0 1.0

N threads

LSA
7.0

(40/8)
6.0

(40/12)
1.7

(16/8)
1.0

(32/32)
0.9

(8/8)

TL2
1.6

(32/32)
1.6

(32/40)
1.3

(16/16)
1.0

(12/24)
1.0

(8/8)

JVSTM
1.1

(8/8)
1.0

(40/40)
1.1

(8/8)
1.0

(4/4)
1.0

(32/32)

The speedup we observed in Intruder and Vacation agrees with the results
of [8], which provide evidence for some opportunities of elision of transaction
local barriers. From our analysis, Intruder instantiates an auxiliary linked list
and a byte[], whose barriers can be elided with our capture analysis technique.
On the other hand, Vacation performs three different kinds of operations, each
one including an initialization phase and an execution phase. In the initial-
ization phase it instantiates several arrays with the arguments that should be
parametrized in the operations performed by each transaction. These auxiliary
arrays are transaction local and their access barriers can be suppressed through
capture analysis.

Although the performance with LICM is similar for LSA and TL2, LSA shows
better speedup due to scalability problems verified in the LSA when executed
without the LICM—in this case we registered a high rate of aborts due to the
eager ownership acquisition approach followed by LSA. For the JVSTM we do
not observe the same improvement in performance because, although LICM
helps to elide useless barriers for transaction local objects, they still incur in
additional metadata that penalizes the corresponding memory accesses (in the
case of the TL2 and the LSA, there is no in-place metadata associated with the
transactional objects).
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According to [8], neither K-Means nor Ssca2 access transaction local memory
and, thus, in these cases there are no opportunities for eliding barriers with
capture analysis. Our results are consistent with this, but still show that our
technique for capture analysis has almost no overhead in performance and it
just degrades the performance of up to 10% in the worst case.

5.2 STMBench7 Benchmark

LSA and JVSTM have the best performance in the STMBench7, when compared
to TL2, because of their versioning approach, which allows read-only transactions
to get a valid snapshot of memory and thus, they always commit successfully.
Yet, LSA shows a huge scalability problem when not using capture analysis, due
to the overhead of useless STM barriers when accessing transaction local objects.
This happens even in the case of the read-dominated workload because most of
the read-only operations use write barriers, thereby forcing the transactions to
be executed as read-write transactions. The operations are classified as read-
only because they do not change shared objects, but they still need to use write
barriers (when not using captured analysis) because they change transaction-
local objects. When this happens, LSA cannot optimize the execution of read-
only transactions. Once the useless barriers are elided with LICM, LSA can
already take advantage of read-only transactions and we see that it scales for an
increasing number of threads, as depicted in the results of Figure 2.

Fig. 2. The STMBench7 throughput for LSA and JVSTM, in the three available work-
loads, without long traversal operations. For readability reasons we omitted TL2, which
is the worst of the STMs.

In the results of Figure 2 we omitted TL2, which is the STM with the worst
performance. We can also observe that the performance of LSA-licm is between
20% and 80% better than LSA-filter, depending on the workload. Even though
LSA-licm performs better, its results are still far from the results obtained with
JVSTM-licm, which is the most performant STM in the STMBench7. In fact,
JVSTM-licm gets better results than the medium-lock synchronization approach
for a number of threads lower than 24. In this case, JVSTM benefits from its
lock-free commit algorithm and from the lazy ownership acquisition approach,
in contrast to the eager approach of the LSA.
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5.3 JWormBench Benchmark

In [5], we used the JWormBench benchmark to explore the effects on performance
of relaxing the transparency of an STM. To that end, we extended the Deuce
API with a couple of annotations that allow programmers to specify that certain
objects or arrays should not be transactified. Using this approach, we got an
improvement of up to 22-fold in the performance. Now, with our new LICM
technique, we got similar results but without having to change the original Deuce
API.

There are two major sources of unnecessary STM barriers in the JWorm-
Bench: (1) a global immutable matrix containing the world nodes (which cannot
be expressed as immutable in Java), and (2) the auxiliary arrays to the worm
operations. The first barriers can be suppressed by excluding the class World

from the instrumentation of Deuce On the other hand, the second barriers will
be automatically elided through our LICM technique.

In Figure 3, we show the results obtained for the JWormBench benchmark.
TL2 and LSA present the same performance in both workloads of the JWorm-
Bench and, so, we show the results for LSA only. In this case LSA-licm performs
between 2 and 5 times faster than LSA-filter. Unlike what happened for the STM-
Bench7, LSA with capture analysis is always better than JVSTM in the JWorm-
Bench, because these workloads have transactions with a smaller average length
and with a lower level of contention. But, most importantly, we can see that
both STMs get results close to the results obtained with the fine-grained lock-
ing approach, whereas without LICM they were an order of magnitude slower.
This is true for the first workload, but when the number of write operations
increases too much, as in the case of the O(n2), NReads,NWrites workload,
the performance of JVSTM degrades for a higher number of threads, due to the
big overhead of its read-write transactions.

The major overhead of the JWormBench comes from the mathematical op-
erations performed by each worm. When these operations perform useless STM
barriers they add a significant overhead to the transactions. In fact, and ac-
cording to the observations of [5], both workloads spend almost 50% of the
execution time accessing transactional local arrays through unnecessary STM
barriers. Furthermore, this situation increases too much the average length of the
transactions and, therefore, increases the rate of aborted transactions. In those
circumstances all STMs incur in huge overheads and substantially decrease the
overall throughput.

6 Related Work

Compiler over-instrumentation is one of the main reasons for the STM overheads
and an obstacle to the use of STMs in real-world–sized applications. The use of
unnecessary barriers on transaction-local memory access has a huge contribution
to this behavior and in the past few years several solutions have been proposed
to mitigate this problem.
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Fig. 3. The JWormBench throughput for LSA, JVSTM, and locks, for two different
wokloads. Note that the vertical axes use a logarithmic scale.

One of the first contributions of Harris et al. [13] proposed a direct access STM
with a new decomposed interface that is used in the translation of the atomic
blocks and is exposed to the compiler, giving new opportunities for optimiza-
tion. Another approach, proposed by Yoo et al. [19], is to use a new tm waiver

annotation to mark a function or block that should not be instrumented by the
compiler for memory access—waivered code. Likewise, Ni et al. [15] propose that
programmers have the responsibility of declaring which functions could avoid the
instrumentation through the use of the annotation tm pure. The same approach
has been followed in managed runtime environments, such as the work of Beck-
man et al. [2], which proposes the use of access permissions, via Java annotations,
that can be applied to references to affect the behavior of the object pointed by
that reference. Carvalho et al. [5] also proposed the use of Java annotations to
identify the object fields and arrays that could be accessed directly, avoiding the
STM barriers.

Contrary to these approaches that involve the programmer and, thus, reduce
the transparency of the STM approach, the work of Riegel et al. [17] propose
to tune the behavior of the STM for individual data partitions. Their approach
relies on compiler data structure analysis (DSA) to identify the partitions of
an application, which may be thread-local or transaction-local. The work of
Dragojevic et al. [8] propose a technique for automatic capture analysis. They
provide this feature at runtime and also in the compiler using pointer analy-
sis, which determines whether a pointer points to memory allocated inside the
current transaction. Similar optimizations also appear in Wang et al. [18], and
Eddon and Herlihy [9], which apply fully interprocedural analyses to discover
thread-local data.

Our work builds on the work of Dragojevic et al, by proposing a lightweight
technique for the runtime identification of captured memory for managed en-
vironments. A key aspect for the effectiveness of our approach is that it is
performed at runtime (albeit with very low overheads). In contrast with this,
Afek et al. [1] integrated static analysis in Deuce STM to eliminate redun-
dant read and write operations in transactional methods, including accesses to
transaction local-data. Yet, the results presented in their work are far from the
speedups shown with our approach.
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7 Conclusions and Future Work

STMs are often criticized for introducing unacceptable overhead when com-
pared with either the sequential version or a lock-based version of any realistic
benchmark. Our experience in testing STMs with several realistic benchmarks,
however, is that the problem stems from having instrumentation on memory
locations that are not actually shared among transactions.

Several techniques have been proposed to elide useless STM barriers in pro-
grams automatically instrumented by STM compilers. From our analysis, the
main contributions in this field follow three distinct approaches: (1) runtime
capture analysis; (2) compiler static analysis to elide redundant operations; and
(3) decomposition of the STM APIs to allow programmers to convey the knowl-
edge about which blocks of instructions or memory locations should not be
instrumented. The latter approach is more efficient and has shown bigger im-
provements in the performance of the STMs, but has the inconvenient of reducing
the transparency of the STMs APIs. Yet, to the extent of our knowledge, none of
the previous solutions demonstrated performance improvements with the same
magnitude of the results that we present here for the STMBench7 and Vacation
benchmarks.

Our approach can solve one of the major bottlenecks that reduces the per-
formance in many realistic applications and simultaneously preserve the trans-
parency of an STM API, as shown with its implementation in the Deuce STM
framework. By adding a minor overhead in memory space to all transactional
objects (the reference to its owner), we get a huge speedup in the Vacation and
the STMBench7 benchmarks. In fact, for the first time in the case of STM-
Bench7, we were able to get better performance with an STM than with the
medium-grain lock strategy. Moreover, integrating LICM in a managed runtime
may further reduce the overhead of our approach and provide a significant boost
in the usage of STMs.
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Abstract. The programming model of parallel tasks is a suitable programming
abstraction for parallel applications running on heterogeneous clusters, which are
clusters composed of multiple subclusters. In this model, an application is decom-
posed into parallel tasks, each of which can be executed on an arbitrary number
of processors. The advantage of this programming approach is that each task only
needs to be implemented for a homogeneous environment while the complete ap-
plication can still benefit from the entire performance of the heterogeneous cluster
by a concurrent execution of independent parallel tasks on different subclusters.
The execution of such an application on a specific platform is controlled by a
schedule that maps each parallel task onto a set of processors.

In this article, we propose an algorithm for the scheduling of parallel tasks
with precedence constraints on heterogeneous clusters. This algorithm is an ex-
tension of a layer-based scheduling approach for homogeneous platforms with an
additional phase that assigns the parallel tasks to appropriate subclusters. Three
different versions of this additional phase are considered. An experimental evalu-
ation, based on simulation results as well as on measurements with different ap-
plication benchmarks, shows that the proposed scheduling approach outperforms
existing scheduling algorithms in most situations.

1 Introduction

A heterogeneous cluster is a distributed memory platform composed of multiple homo-
geneous subclusters. Such a platform results from the combination of compute nodes
with different processors into a single large cluster or from the combination of the com-
pute resources of different institutions into a grid-like environment. Although appli-
cations for these platforms can be developed using a message-passing model such as
MPI, this may be tedious from the programmer’s point of view and may lead to a poor
portability of the application performance, since the heterogeneity of the processors and
network links has to be taken into account explicitly. Thus, it is desirable to support the
development of large applications for heterogeneous clusters by appropriate high-level
programming models and software tools.

Such a programming model is the model of parallel tasks, in which an application
is decomposed into a set of parallel tasks each of which can be executed on multi-
ple processors in parallel. There may be data or control dependencies between parallel
tasks that enforce an execution of the respective tasks one after another, but indepen-
dent parallel tasks can be executed concurrently on disjoint subsets of processors. The
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advantage of this approach is that each parallel task can be executed in a homogeneous
environment within a single subcluster, while the entire performance of the heteroge-
neous system is still exploited by running independent tasks concurrently on different
subclusters. The execution of the parallel tasks on the subclusters can be managed by
a suitable compiler or runtime environment. For example, the CM-task compiler [7]
only requires the programmer to provide a high-level specification program defining
the structure of the application and implementations of the parallel tasks for a homo-
geneous environment. Thus, the programmer is completely relieved from dealing with
platform heterogeneity.

The execution of a parallel application consisting of parallel tasks requires a sched-
ule that defines the execution order of independent parallel tasks and maps the parallel
tasks to subclusters of the heterogeneous target platform. The computation of an optimal
schedule that leads to the best application performance is a strongly NP-hard problem.
As a consequence, several heuristics have been proposed, including M-HEFT [17], H-
CPA [11], and Δ-CTS [16]. These heuristics are based on list scheduling, i.e., in each
step the task with the highest priority value is assigned to a set of processors that opti-
mizes a given objective function.

An alternative to this scheduling approach are layer-based scheduling algorithms,
which have been used successfully for homogeneous platforms [4]. These algorithms
first build layers each of which include only independent parallel tasks, and then sched-
ule the layers one after another. In this article, we extend a layer-based scheduling algo-
rithm [15] to heterogeneous platforms by introducing an additional phase that assigns
each parallel task of a given layer to one subcluster of the target platform. For this
phase, we propose three different versions that use the sequential execution time, the
data parallel execution time, and the mixed parallel execution time of the parallel tasks,
respectively. The contributions of this article include the following.

– It presents three layer-based scheduling algorithms for heterogeneous clusters that
differ in the assignment of the tasks of a layer to the subclusters of the target plat-
form.

– It includes an experimental evaluation that compares the performance of the pro-
posed algorithms and existing scheduling algorithms using synthetic scheduling
problems as well as application benchmarks, which include solvers for ordinary
differential equations and flow solvers coming from the NAS Parallel Benchmark
suite. The comparison shows that the proposed scheduling approach leads to the
best results in most cases.

The article is structured as follows. Section 2 introduces the programming model
of parallel tasks and defines the corresponding scheduling problem. The scheduling
algorithm for heterogeneous clusters is proposed in Sect. 3. The experimental results
are presented in Sect. 4. Section 5 discusses related work and Sect. 6 concludes.

2 Parallel Programming Model

In the programming model of parallel tasks, a parallel application is represented by an
annotated directed acyclic graph G = (V,E) called application task graph, see Fig. 1
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Fig. 1. Representation of an application task graph consisting of 12 parallel tasks {1, . . . , 12}
(left) and a corresponding schedule on a heterogeneous system consisting of two subclusters C1

and C2 (right)

(left) for an example. The set V of nodes represents the parallel tasks that are assumed to
be executable on an arbitrary number of processors. The set E of edges models the data
and control dependencies between the parallel tasks. A data dependency (A,B) ∈ E
exists between parallel tasks A and B if A produces output data that is required by B as
an input. Such a data dependency may lead to a data redistribution operation at runtime
if A and B are executed on different sets of processors or the data distribution of the
output of A and the input of B do not match.

The parallel target platform is a heterogeneous cluster composed of c subclusters
C1, . . . , Cc. Each subcluster Ci consists of P i identical processors that are intercon-
nected by a homogeneous network, i = 1, . . . , c. The computation and communication
performance of subcluster Ci is captured by the average execution time tiop of an arith-
metical operation, the network startup time tis and the network byte transfer time tib. The
interconnection network between subclusters Ci and Cj is defined by the startup time
t
(i,j)
s and the byte transfer time t(i,j)b , 1 ≤ i, j ≤ c, i �= j.

The nodes of the application task graph are associated with cost functions that pro-
vide an estimate of the execution time of the corresponding parallel task depending on
the subcluster and on the number of processors used for the execution. We assume that
each parallel task can only be executed by processors belonging to the same subcluster
because of two reasons. First, the interconnection network within a subcluster is usu-
ally much faster compared to the interconnection between different subclusters. Thus,
running a parallel task across multiple subclusters may lead to a large communication
overhead caused by the slow interconnection network. Second, parallel tasks are usu-
ally implemented for a homogeneous execution environment, i.e., there is no internal
load balancing to account for different processor speeds. The runtime estimates for the
parallel tasks are represented by functions

T i
par : V × [1, . . . , P i]→ IR+

where T i
par(A, p) denotes the execution time of parallel task A ∈ V executed on p

processors of subcluster Ci, i = 1, . . . , c.
The edges of the application task graph are associated with communication costs

resulting from data redistribution operations. These costs depend on the amount of data
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to be transferred between the source and target parallel task as well as the source and
target processor sets and specific subclusters. These costs are captured by functions

T
(i,j)
Re : E × [1, . . . , P i]× [1, . . . , P j ]→ IR+

where T (i,j)
Re ((A,B), p1, p2) denotes the communication cost between parallel task A ∈

V executed on p1 processors of subcluster Ci and parallel task B ∈ V executed on p2
processors of subcluster Cj , i, j = 1, . . . , c.

A schedule S assigns each parallel task A ∈ V a set PG(A) of processors, a sub-
cluster SC(A), and a starting point in time ST (A). The finish time FT (A) for parallel
task A can then be computed by

FT (A) = ST (A) + T SC(A)
par (A, |PG(A)|)

where |PG(A)| denotes the number of processors in set PG(A). An illustration of a
schedule is given in Fig. 1 (right). A schedule is called feasible if it fulfills the following
two conditions.

– Before the start of a parallel task all required input data must have been produced
by the predecessor tasks and made available on the correct set of processors in the
correct data distribution, i.e., if (A,B) ∈ E then FT (A)+T

(i,j)
re ((A,B), p1, p2) ≤

ST (B) for all A,B ∈ V where i = SC(A), j = SC(B), p1 = |PG(A)| and
p2 = |PG(B)|.

– Parallel tasks that have an overlapping execution time interval on the same subclus-
ter have to be executed by disjoint subsets of processors, i.e, if [ST (A), FT (A)] ∩
[ST (B), FT (B)] �= ∅ and SC(A) = SC(B) then PG(A) ∩ PG(B) = ∅ for all
A,B ∈ V .

The makespan Cmax(S) of a schedule S is defined as the maximum finish time of
any parallel task in the application, i.e., Cmax(S) = maxA∈V FT (A). The goal is to
determine a feasible schedule with minimum makespan. This scheduling problem is
strongly NP hard even for the special case of precedence constraints in the form of
chains and a platform consisting of a single subcluster [3].

3 Scheduling Algorithm

In this section, we propose a scheduling algorithm for heterogeneous platforms that
uses a layer-based approach, see Alg. 1 for the coarse structure. The algorithm consists
of four consecutive phases. The first phase partitions the parallel task graph into layers
of independent parallel tasks (lines 1 and 2). Next, each parallel task of a given layer
is assigned to one of the c subclusters (line 3). In the third step, a partial schedule
is computed for each subcluster considering only the parallel tasks assigned to this
subcluster (line 4). Finally, all computed partial schedules are combined into the global
schedule taking the data re-distribution costs between layers into account (line 5). In
the following, these phases are described in detail.
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Algorithm 1. Scheduling algorithm overview
Input :Parallel task graph G = (V,E); Heterogeneous platform with c subclusters
Output :Schedule S
begin

1 construct shrinked task graph G′ from G;
2 decompose G′ into l layers L1, . . . , Ll;

for (i = 1, . . . , l) do
3 partition Li into c disjoint subsets Wi,1, . . .Wi,c;

4 for (j = 1, . . . , c) do schedule node set Wi,j onto subcluster Cj ;

5 build global schedule S;

3.1 Decomposition Phase

The decomposition phase consists of two substeps. First, the algorithm identifies all
linear chains of parallel tasks in the input application task graph G and replaces each
chain of maximum size with a single node (line 1 of Alg. 1) resulting in the shrinked
graph G′. A linear chain is defined as a subgraph of a graph G consisting of at least two
nodes with the following properties:

– There exist a unique entry and a unique exit node that precede and succeed, respec-
tively, all other nodes of the linear chain.

– All nodes of the linear chain except the entry node have exactly one predecessor
that also belongs to the linear chain.

– All nodes of the linear chain except the exit node have exactly one successor, which
is also part of the linear chain.

A linear chain is of maximum size if it is not possible to add more nodes to the chain
without violating one of these conditions. The rationale behind this step is to ensure that
all tasks of a linear chain are scheduled to the same set of processors and, thus, to avoid
expensive data redistribution operations between these parallel tasks.

In the second substep, the decomposition phase builds layers of independent parallel
tasks by using a greedy heuristic that runs over the parallel task graph in a breadth first
manner and puts as many parallel tasks into a layer as possible. The goal is to construct
layers with a maximum number of parallel tasks, since this gives the most flexibility
for the next phases of the scheduling algorithm. For example, the task graph from Fig. 1
(left) is decomposed into the five layers {1}, {2,3,4}, {5,6,7,8}, {9,10,11}, and {12}.

3.2 Cluster Assignment Phase

The cluster assignment phase is an additional step added to the layer-based scheduling
algorithm [15] that is responsible for dealing with the heterogeneity of the platform. The
goal of this phase is to assign each parallel task of a given layer to one of the c subclus-
ters in such a way that a minimum execution time for the entire layer results. For this
purpose, it tries to assigns more computational work to subclusters with more and faster
processors than to subclusters with a low number of processors or slow processors.
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Algorithm 2. Assignment of tasks to subclusters.
Input :Layer with k independent parallel tasks Li = {M1, . . . ,Mk}
Input :Heterogeneous platform with c subclusters
Output :Set of tasks Wi,j for each subcluster Cj , j = 1, . . . , c
begin

1 for (j = 1, . . . , c) do initialize Wi,j = ∅;
2 sort {M1, . . . ,Mk} such that T 1

par(M1, 1) ≥ . . . ≥ T 1
par(Mk, 1);

3 for (j = 1, . . . , k) do
4 determine subcluster Cl that minimizes est load(Cl, Wi,l ∪ {Mj});
5 Wi,l = Wi,l ∪ {Mj};

The general procedure is outlined in Alg. 2. First, the parallel tasks of the layer are
sorted according to the sequential execution time on the first subcluster (line 2). This
sorting criterion is a rough approximation of the computational complexity of the tasks,
which is usually accurate enough to ensure that large tasks are scheduled before small
ones. Next, the algorithm considers the parallel tasks of the layer one after another
and assigns the currently considered parallel task to the subcluster with the minimum
estimated total load (lines 4 and 5). The estimated total load of a subcluster Cl depends
on the current parallel task and all parallel tasks that have previously been assigned to
Cl, l = 1, . . . , c. In the following, we propose three different definitions of the function
est load leading to three different scheduling algorithms (H-Layer-SEQ, H-Layer-
PAR and H-LAYER-MIX).

Sequential Execution Time (H-Layer-SEQ). The first approach uses the sequential
execution time of the parallel tasks to estimate the current load of a given subcluster,
i.e., for subcluster Cj and a set W of tasks the estimated load is defined as

est loadSEQ(C
j ,W ) =

∑

M∈W

T j
par(M, 1).

The advantage of this definition is its low computational complexity. The different pro-
cessor speeds of the subclusters are taken into account, i.e., a subcluster having faster
processors is assigned more work.

Data Parallel Execution Time (H-Layer-PAR). An alternative is to use the data paral-
lel execution times for the computation of the estimated load. For subcluster Cj with
P j processors and a set W of tasks the estimated load is defined as

est loadPAR(C
j ,W ) =

∑

M∈W

T j
par(M,P j).

The advantage over the approach based on the sequential execution time is that also
scalability effects of the parallel tasks are taken into account.
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Mixed Parallel Execution Time (H-Layer-MIX). The drawback of the previous two
definitions for the estimated load is that they only provide a very rough measure of
the individual processors’ workload in the final schedule. For example, the function
est loadSEQ does not take the number of processors of the subclusters into account.
As a result, a small subcluster with fast processors is assigned more work than a large
cluster with slow processors. The function est loadPAR ignores the scheduling deci-
sions within the individual subclusters. As a result, the load of a subcluster, which is
assigned many parallel tasks with a low scalability is overestimated, because in the final
schedule these tasks can run concurrently using only a small number of processors.

Due to these observations, we propose a third version to estimate the workload,
which is based on the mixed parallel execution time. It is defined as

est loadMIX(Cj ,W ) = Tmin

where Tmin is the makespan of the mixed parallel schedule for the set W of parallel
tasks on subcluster Cj as computed by Alg. 3, see Sect. 3.3 for a detailed description.
The advantage of this approach is that it usually provides a better load balance between
the subclusters than the previous two approaches. The drawback is the high computa-
tional complexity, since Alg. 3 has to be executed k · c times for a layer consisting of k
parallel tasks. In our experiments we have considered task graphs with layers consisting
of up to 256 parallel tasks and the scheduling was still performed in reasonable time.

3.3 Cluster Scheduling Phase

The cluster scheduling phase computes a schedule for a set of independent parallel tasks
on a single subcluster, i.e., a homogeneous target environment. The resulting scheduling
problem, which is a subproblem of the scheduling for heterogeneous platforms has been
addressed by many different algorithms, see [4] for an overview. In the following, we
present an algorithm based on list scheduling [15] that yields good results in practice.

The pseudo code of this approach is outlined in Alg. 3. First, the algorithm partitions
the set of processors of one subcluster Cj into g disjoint subsets of processors and then
assigns each parallel task to one of these subsets. The number g of subsets is selected
from all possible values (see the loop in line 2), such that the overall execution time for
all parallel tasks is at a minimum. For a specific number g, first g equal-sized subsets of
processors are created (line 3). Next, the parallel tasks are sorted with respect to their
parallel execution time (line 4) to ensure that large parallel tasks are scheduled first. The
scheduling algorithm considers the parallel tasks one after another and assigns each
parallel task to the subset of processors that currently has the minimum accumulated
execution time (line 6). The accumulated execution time of a subset Gl is defined to
be the sum of the parallel execution times of all parallel tasks previously assigned to
Gl. After all parallel tasks have been assigned, an iterative group adjustment step is
performed to reduce load imbalances between the g processor groups (line 7). This step
tries to find two processor groups G1 and G2, such that moving one processor from G1

to G2 decreases the maximum accumulated execution time of these two groups. This
step is repeated as long as such pairs of groups can be found. Afterwards, the total
execution time of the entire layer is computed (line 8) and the currently best schedule
is updated if applicable (line 9).
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Algorithm 3. Scheduling for a single subcluster.
Input :Set of n independent parallel tasks Wi,j = {M1, . . . ,Mn}
Input :Subcluster Cj with P j processors
Output :Partial Schedule for Wi,j on Cj

begin
1 Tmin =

∑n
q=1 T

j
par(Mq, P

j);

2 for (g = 1, . . . ,min{P j , n}) do
3 build g disjoint subsets of processors G = {G1, . . . , Gg} of size pg = P j/g;
4 sort {M1, . . . ,Mn} such that T j

par(M1, pg) ≥ . . . ≥ T j
par(Mn, pg);

5 for (q = 1, . . . , n) do
6 assign Mq to group Gl with the smallest accumulated execution time;

7 adjust processor group sizes;
8 Ta(g)= max

1≤q≤g
accumulated execution time of Gq;

9 if (Ta(g) < Tmin) then Tmin = Ta(g);

4 Experimental Evaluation

The performance of the proposed scheduling algorithms is evaluated by a comparison
with the algorithms H-CPA and S-HCPA [11], M-HEFT1 and M-HEFT2 [17], and Δ-
CTS [16]. All algorithms are implemented in the scheduling toolkit SEParAT [5]. We
consider synthetic scheduling problems in Subsect. 4.1 as well as application bench-
marks running on an existing heterogeneous cluster in Subsect. 4.2.

4.1 Simulation Results

For the simulation, we consider 15360 synthetic task graphs created by the daggen
graph generation program [2], see Tab. 1 (left) for an overview of the parameters used
for the generation. The task graphs consist of 10, 50, 100, and 200 nodes. The shape
of the generated graphs is controlled by the parameters width, regularity and density,
which define the average number of independent tasks, the variety in the number of
independent tasks between layers, and the number of edges, respectively. These param-
eters can be selected in the range from 0 to 1; we have used four different values (0.1,
0.3, 0.7, 0.9) for each of these parameters. The jump parameter defines the maximum
distance between source and target layer of the edges where a value of 1 means that
edges exist only between successive layers. We have used jump distances of 1, 2, and 4.

The computational complexity of a task is either a · n (modeling an image process-
ing application), a · n logn (modeling the sorting of an array), or a · n 3

2 (modeling a
matrix-matrix multiplication). The value n determines the input data size that has been
selected with uniform distribution from the interval [4 MB, . . . , 121 MB], and a is a pa-
rameter that has been selected uniformly from the interval [26, . . . , 29]. Four different
scenarios are considered: IMAGE (only image processing tasks), SORT (only sorting
tasks), MMM (only matrix-matrix multiplication tasks), and MIX (the type of each task
is determined randomly). The parallel execution time of the tasks has been modeled us-
ing Amdahl’s law assuming a non-parallelizable fraction, which has been selected from
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Table 1. Parameters for the synthetic task graphs and synthetic heterogeneous platforms

Graph Parameter Values Platform Param. Values

Number of Nodes { 10, 50, 100, 200} Sublusters { 2, 4, 8, 16 }
Graph Width { 0.1, 0.3, 0.7, 0.9 } Base GFlops { 0.5, 1.0, 2.0 }
Graph Regularity { 0.1, 0.3, 0.7, 0.9 } Heterogeneity { 1, 2, 5 }
Graph Density { 0.1, 0.3, 0.7, 0.9 } Machine samples #5
Jump length { 1, 2, 4 }
Cost Model {IMAGE, SORT, MMM, MIX}
Graph samples #5
Total graphs 15360 Total machines 180
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Fig. 2. Computed speedups in the simulation depending on the number of nodes in the task graph
(left) and on the number of subclusters (right)

the interval [0, . . . , 0.25] with uniform distribution. Finally, for each set of different
parameters we have created 5 samples.

The synthetic heterogeneous platforms consist of 2, 4, 8, and 16 subclusters where
each subcluster has 2k processors. The parameter k is chosen from the interval [3, . . . , 8],
i.e., each subcluster has between eight and 256 processors. The speed of the processors
is selected uniformly from the interval [g, . . . , g · h] where g is the base GFlops rate
and h is the heterogeneity of the platform. We used three different base GFlops rates
(0.5, 1.0, 2.0) and three different heterogeneity factors (1, 2, 5). The type of the intercon-
nection is determined at random. For the intra-cluster networks we consider 10, 20, and
40 GBit Infiniband networks, and the inter-cluster connection is either a 1 or a 10 GBit
ethernet. 5 sample machines are created for each set of different parameters leading to
180 different platforms, see Tab. 1 (right) for an overview of the parameters.

As a measure for the quality of the computed schedules, we use the speedup over
a sequential execution on the fastest processor of the platform. Figure 2 shows the
speedups for different numbers of nodes and different numbers of subclusters averaged
over all experiments. The results show that H-Layer-MIX clearly outperforms H-Layer-
PAR, which in turn outperforms H-Layer-SEQ. The proposed layer-based approach is
especially beneficial for large task graphs, since these graphs often have large layers
providing more flexibility for the cluster scheduling phase. For small layers, the con-
secutive scheduling of the layers may result in unused processor time because there are
not enough tasks to employ all available subclusters. This is also illustrated by the re-
sults for 16 subclusters where the layer-based algorithms have a lower performance than
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Table 2. Hardware configuration of the heterogeneous cluster platform used for the experiments

CPU type CPU clock Peak Perf. Nodes Procs./Node Cores/Proc. Total Cores

Intel Xeon ’Westmere’ 2.67 GHz 10.67 GFlops 5 2 6 60
AMD Opteron ’Istanbul’ 2.1 GHz 8.4 GFlops 1 4 6 24
Intel Xeon ’Clovertown’ 2.33 GHz 9.33 GFlops 2 2 4 16
AMD Opteron ’Egypt’ 1.8 GHz 3.6 GFlops 4 4 2 32

the two M-HEFT algorithms and Δ-CTS. This problem can be addressed by using the
Move-Blocks algorithm [10], which combines the layers in the final schedule with the
goal to minimize the processor idle time. Altogether, the results show that H-Layer-MIX
delivers the best results in most situations.

4.2 Application Benchmarks

As application benchmarks, we consider flow solvers from the NPB-MZ parallel bench-
mark suite [20] as well as different solvers for ordinary differential equations (ODEs).
The cost functions for the parallel tasks have been obtained by measuring the execution
times on the individual subclusters using different numbers of processors and fitting the
measured times to an appropriate function prototype.

Hardware Description. The application benchmarks have been executed on a hetero-
geneous cluster consisting of four subclusters with a total of 132 processor cores, see
Tab. 2 for an overview of the hardware configuration. All nodes of the heterogeneous
cluster are interconnected with a 10 GBit/s Infiniband network. The MVAPICH2 1.5.1
library has been used to provide MPI support. The application benchmarks have been
compiled with the Intel Compiler 12.1 with full optimizations enabled.

NPB-MZ Benchmarks. The NPB-MZ benchmarks [20] include three different solvers
(LU-MZ, SP-MZ and BT-MZ) for the solution of flow equations on a three-dimensional
discretization mesh partitioned into zones. One time step of these solvers consists of
independent computations for each zone followed by a border exchange between neigh-
boring zones. For the purpose of the benchmarks, we use one parallel task for the com-
putations of one zone. The resulting parallel task graph is a sequence of fork-join graphs.
For each solver, there are several benchmark classes that differ in the global mesh size
and in the number of zones, see Tab. 3 for an overview of the classes used in this article.

The LU-MZ and SP-MZ benchmarks define equal-sized zones leading to an identical
number of computations for each parallel task. As a consequence, the major scheduling
objective is to assign each subcluster a number of parallel tasks according to its relative
computational performance. Within the individual subclusters, Alg. 3 computes equal-
sized processor groups. Figure 3 (left) shows the measured performance for the LU-MZ
benchmark. H-Layer-MIX clearly produces the best schedule for class B. For class C,
the scheduling algorithms Δ-CTS, H-Layer-PAR, and H-Layer-MIX produce similar
schedules. The other algorithms are not competitive.
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Table 3. NPB-MZ benchmark configuration

Benchmark Class Global Mesh No. of Zones

LU-MZ B 304× 208× 17 16 equal-sized
LU-MZ C 480× 320× 28 16 equal-sized
SP-MZ A 128× 128× 16 16 equal-sized
SP-MZ B 304× 208× 17 64 equal-sized
SP-MZ C 480× 320× 28 256 equal-sized
BT-MZ A 128× 128× 16 16 of varying size
BT-MZ B 304× 208× 17 64 of varying size
BT-MZ C 480× 320× 28 256 of varying size
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Fig. 3. Performance of different scheduling decisions for the LU-MZ benchmark (left) and the
SP-MZ benchmark (right) on the heterogeneous cluster

The results for the SP-MZ benchmark are shown in Fig. 3 (right). The best overall
performance is obtained by the algorithms H-CPA, S-HCPA, and H-Layer-MIX. The
algorithms M-HEFT1, M-HEFT2 and Δ-CTS lead to a significantly lower performance
caused by allocating too many processors to the parallel tasks.

The zones of the BT-MZ benchmark have different sizes and, thus, the scheduling
algorithms also need to adjust the processor group sizes within the subclusters accord-
ingly. The results for this benchmark are shown in Fig. 4 (left). The performance of
the scheduling algorithms varies depending on the benchmark class. The algorithms H-
CPA and S-HCPA lead to a very poor performance for class A, but are competitive for
classes B and C. The M-HEFT algorithms lead to good results only for classes A and
B. The best overall algorithm is H-Layer-MIX, since it provides the best performance
for classes B and C, while being close to the best for class A.

ODE Benchmarks. The numerical solution of ordinary differential equations (ODEs)
can be computed by time stepping methods where each time step computes a fixed
number K of approximations that are combined to form an approximation of higher
order. Examples for such solvers are the Iterated Runge-Kutta (IRK), the Parallel
Adams-Bashforth (PAB), the Parallel-Adams-Bashforth-Moulton (PABM) [19], and the
extrapolation (EPOL) methods. The task graphs of the IRK, PAB, and PABM methods
consist of a sequence of layers each of which comprising K identical parallel tasks. The
task graph of the EPOL method consists of K independent linear chains with different
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Fig. 4. Performance of the computed schedules for the BT-MZ benchmark (left) and for different
ODE solvers (right) as measured on the heterogeneous cluster

lengths and one parallel task that combines the results computed within these chains.
For the benchmarks, we use an ODE system that arises from a Galerkin approximation
of a Schrödinger-Poisson system.

The results in Fig. 4 (right) show that there are substantial differences in the perfor-
mance of the parallel ODE solvers and that there is no single best scheduling algorithm.
In general, the scheduling algorithms Δ-CTS, H-Layer-PAR, and H-Layer-MIX are best
suited for these application benchmarks. H-Layer-SEQ leads to a considerably lower
performance due to a significant load imbalance between the subclusters.

5 Related Work

There are two major approaches to the scheduling of parallel tasks with precedence
constraints on homogeneous target platforms: layer-based approaches and critical-path-
based approaches. Critical-path-based approaches consist of two steps: an allocation
step that assigns each parallel task a number of processors and a mapping step that
assigns specific processors to the parallel tasks and also determines the execution order
based on the precedence constraints. These two steps may be independent from each
other as in CPA [14], MCPA [1] or MCPA2 [9], or may be executed repeatedly in a
coupled fashion as in CPR [13] or Loc-MPS [21]. The layer-based approach [15,4] first
partitions the parallel task graph into layers of independent tasks and then schedules the
resulting layers one after another using a scheduling algorithm for independent tasks.
A layer-based approach for the scheduling on multicore clusters with a hierarchically
organized interconnection networks has been proposed in [6].

The scheduling of precedence constrained parallel tasks on heterogeneous target plat-
forms usually follows a critical-path-based approach. The algorithms M-HEFT1 and M-
HEFT2 [17] have been derived from a list-scheduling algorithm for standard sequential
tasks [18]. In these algorithms, the parallel platform is modeled as a set of configura-
tions where each configuration consists of a set of identical processors. In each step
of the algorithm, an unscheduled parallel task is selected and scheduled to the config-
uration that minimizes its finish time. The task is selected based on the length of the
longest path to an exit node where the length of a path is computed as the sum of the
computation and communication costs of the nodes and edges along this path.

H-CPA and S-HCPA [11] are extensions of CPA for heterogeneous cluster platforms.
In the allocation step, each parallel task is assigned a number of processors from a
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virtual homogeneous reference cluster. The subsequent mapping step first translates
this reference allocation to allocations on the individual subclusters and then schedules
each task to the subcluster that minimizes its completion time. Several improvements of
H-CPA and M-HEFT that mainly lead to a better utilization of the execution resources
at the expense of a higher makespan have been suggested in [12].

Δ-CTS [16] uses a list-scheduling approach where in each step multiple parallel
tasks with a similar priority value are scheduled together. The maximum number of
processors for each of these parallel tasks is bounded and the tasks are scheduled, such
that a minimum termination time for each group of tasks results. The reasoning behind
this approach is to prevent one parallel task to use too many execution resources and
thus preventing other independent tasks to be scheduled for a concurrent execution.

MCGAS [8] is a scheduling algorithm for multiple subclusters with a performance
guarantee that depends on the exact platform configuration. The processors of different
clusters are assumed to have a roughly identical computational performance. The num-
ber of processors for each parallel task is computed using a linear program formulation
for the discrete time-cost trade-off problem. The mapping to groups of processors is
performed by a modified list scheduling approach that restricts the maximum number
of processors that may be used for any parallel task.

In contrast to these scheduling algorithms for heterogeneous platforms, we pursue a
layer-based scheduling approach. Our approach is an extension of an existing schedul-
ing algorithm for homogeneous platforms to heterogeneous cluster-of-clusters systems.

6 Conclusion

We have considered the scheduling of parallel tasks with precedence constraints on
heterogeneous clusters consisting of multiple subclusters. The scheduling uses a layer-
based approach, which has shown to be suitable for homogeneous platforms in previous
work [15,4]. The extension of this approach to heterogeneous target platforms requires
an additional phase that partitions the independent parallel tasks of a given layer into
subsets and assigns these subsets to the individual subclusters. For this phase, we have
suggested three different heuristics resulting in three different scheduling algorithms.
The proposed algorithms encompass H-Layer-SEQ that uses the sequential execution
time, H-Layer-PAR that uses the data parallel execution time, and H-Layer-MIX that
uses the mixed parallel execution time of the parallel tasks for the assignment onto
subclusters. An experimental evaluation using simulation as well as application bench-
marks from the NPB-MZ parallel benchmark suite and from the area of solvers for
ordinary differential equations has shown that H-Layer-MIX outperforms the other two
algorithms as well as previously proposed scheduling algorithms in most situations.
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Abstract. One of the main challenges in volunteer computing systems is sche-
duling large-scale applications expressed as scientific workflows. This work 
aims to integrate partitioning scientific workflows and proximity-aware re-
source provisioning to increase the percentage of workflows that meet the dead-
line in peer-to-peer based volunteer computing systems. In the partitioning 
phase, a scientific workflow is partitioned into sub-workflows in order to mi-
nimize data dependencies among them. We utilize knowledge-free load balanc-
ing policy and proximity of resources to distribute sub-workflows on volunteer 
resources.  Simulation results show that the proposed workflow scheduling 
system improves the percentage of scientific workflows that meet the deadline 
with average of 18% under a moderate workload. 

Keywords: scientific workflow scheduling, deadline-constrained workflow, 
Peer-to-peer based volunteer computing systems, proximity-aware scheduling. 

1 Introduction 

Volunteer computing (VC) systems exploit the idle cycle of distributed resources to 
run scientific applications such as SETI@home [1], EDGeS@Home [2] and climate-
prediction.net [3]. While popular application form in the volunteer computing  
systems is Bag of Tasks (BoT) applications, there are a number of scientific and engi-
neering applications that are determined by a set of dependent tasks called workflow 
such as Montage [4], Epigenomics [5], and Sipht [7]. 

The scheduling problem is assigning the dependent tasks in the workflow on avail-
able resources in VC systems. To tackle this problem, we propose a new scheduling 
algorithm based on our previous work called CycloidGrid [8]. CycloidGrid is a prox-
imity-aware architecture for resource discovery in P2P-based VC systems.  

The proposed workflow scheduling system divides workflow into sub-workflows 
by an algorithm based on tabu search in order to minimize data dependencies among 
sub-workflows. Then, the resource provisioning phase distributes these sub-
workflows onto volunteer resources based on Quality of Service (QoS) constraints in 
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terms of its deadline, minimum CPU speed and minimum RAM or hard disk require-
ments, and proximity of resources. The distribution of sub-workflows onto volunteer 
resources is done by load balancing policy with an analytical model based on queuing 
theory that is independent of information of resources and application characteristics. 
The contributions of our work is summarized as applying a partitioning algorithm to 
divide scientific workflows into sub-workflows and integration of that with resource 
provisioning based on QoS constraints and proximity of resources.  

The rest of this paper is organized as follows: Section 2 includes related work.  
Section 3 presents CycloidGrid architecture. Section 4 discusses the proposed dead-
line-constrained workflow scheduling system. Section 5 describes the performance 
evaluation of the proposed workflow scheduling system. Conclusions and future 
works are presented in Section 6. 

2 Related Work 

There are several studies that investigated workflow scheduling in distributed compu-
ting systems. There are some works such as HEFT [10], Min-Min [14], and MaxMin 
[15] on workflow scheduling problem where they considered a workflow as Directed 
Acyclic Graph (DAG), and proposed some heuristics to solve it. Also some other 
works [16, 17] considered partitioning of scientific workflows in the dynamic grids. 
Our work focuses on partitioning of scientific workflow along with resource provision 
with regard to QoS constraints, load balancing and proximity of resources. 

The use of graph partitioning algorithm for workflow DAG is discussed in some 
works [18,19,21]. Kalayci et al. [19] proposed a decentralized execution approach for 
large-scale workflow. They partitioned a workflow into sub-workflows and then as-
signed them to the peer domain. If each workflow management system on one peer 
domain detects a problem that affect on QoS constraints, some tasks are migrated to 
another peer domain. Our work applies partitioning phase, but in the resource provi-
sion phase, it considers the load balancing and proximity of resources along with QoS 
constraints of workflow. Kumar et al. [21] applied graph partitioning algorithm to 
minimize the data movement during workflow execution. They used multi-constraint 
graph partitioning algorithm for workflow partitioning in order to distribute tasks 
evenly in the system with minimization of internodes communication. They focused 
only on workflow partition phase, while this work focuses on workflow partitioning 
and resource provisioning. 

Lin et al. [20] used graph partitioning method to divide resources into some execu-
tion sites in the distributed system, but workflow is not partitioned.  

Chen et al. [13] proposed two methods for integration of workflow partitioning 
problem and resource provisioning. The first method takes into account the resource 
information in the system to distribute a load in a balanced manner, and the second 
one used a method based on genetic algorithm for combination of resource selection 
and job scheduling. The aim of this method is reducing the makespan and resource 
cost, but it ignores the proximity of resources in resource provisioning phase. 
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3 CycloidGrid Architecture 

CycloidGrid [8] is proximity-aware resource discovery architecture in P2P-based 
volunteer computing systems. There are three types of node in this architecture called 
reporting node, host node and client node as it is shown in Figure1.  

The reporting node collects the information of resources in the system. CycloidGr-
id applies decision tree (DT) to classify resources in the system. The attributes used to 
classify resources are CPU speed, the amount of RAM, available hard disk space, 
operating system, and processor model. DT has five levels corresponding to each 
resource attribute and four attribute values are considered for each resource attribute, 
therefore the resources are classified into 1024 clusters in this DT. Each cluster of DT 
is assigned to one reporting cluster. A reporting cluster has some reporting nodes that 
keep the information of resources categorized in this cluster. 

The host node executes allocated sub-workflows and it can schedule input 
workflows assigned to it. The client node imports input workflows into the system 
and sends them to one of active host node to schedule. This node also keeps the ex-
ecutable code of workflow, input files, intermediate and output results during the 
execution of workflow. The host nodes and the client nodes are grouped into some 
host clusters. Therefore, there are two types of clusters in the CycloidGrid. They are 
called host cluster and reporting cluster. For more information about this architecture, 
you can refer to [8]. 

4 The Proposed Deadline-Constrained Workflow Scheduling 
System 

Each workflow application is modeled as a DAG where nodes are tasks of workflow 
and directed edges show the data dependencies among the tasks. In this graph, a task 
without any parent tasks is called entry task, and a task without any child nodes is 
called exit nodes. Each workflow application is assumed to have some characteristics 
as follows: 

• Number of dependent tasks and the estimated duration of each task. 
• Deadline constraint, minimum CPU speed, minimum RAM or hard disk require-

ments are considered as QoS constraints.   

The proposed workflow scheduling system includes workflow partitioning and re-
source provisioning. The workflow partitioning phase is performed in the client node 
and it aims to divide a workflow into sub-workflows in order to minimize data depen-
dencies among them. Resource provisioning phase is performed by the host node with 
cooperation of the reporting nodes in order to submit sub-workflows onto volunteer 
resources that satisfy QoS constraints of workflow, and it tries to increase the percen-
tage of workflow that meet the deadline constraint.  
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4.1 Workflow Partitioning 

Since each workflow is considered as a DAG, the problem of partitioning workflow 
can be considered as a graph partitioning problem. It aims to partition a DAG into 
disjoint subsets of approximately equal size, such that the number of edges whose 
endpoints are in different subsets is minimized. In other words, the purpose of this 
phase is partitioning a workflow into sub-workflows such that the sum of data transfer 
among them is minimized.  To do this, we apply a modified version of tabu search 
partitioning algorithm [24] for partitioning a workflow. 

In this partitioning algorithm, at first a workflow is partitioned randomly into k  
approximate equal size sub-workflows. The tabu search algorithm replaces the current 
solution (a set of sub-workflows) with a best non-recently visited neighboring solu-
tion. This algorithm uses tabu list to forbid the recently visited solutions in order to 
prevent cycling. 

We assume the weight of each sub-workflow is computed as sum of its estimated 
task computation time. This algorithm is based on two move operators that aid to 
minimize the sum of cutting edges among sub-workflows. Also, the move operators 
try to avoid partition imbalance in terms of sub-workflow weight. These two move 
operators transfer one or two vertex between two sub-workflows. This strategy is 
based on move gain that shows how much a sub-workflow is improved in terms of 
cutting edges when a vertex is moved to another sub-workflow.  

These two move operators are single-move and double-move. Single-move moves 
one highest gain vertex to randomly another sub-workflow such that the target  
sub-workflow is not max weight sub-workflow and its weight is lower than source 
sub-workflow. Double move chooses two highest gain vertexes. One of these vertexes 
is moved according to the single-move policy and the other one moves to a sub-
workflow that is not equal to max weight sub-workflow and the target sub-workflow 
of single-move in the first phase. Also its source sub-workflow is not equal to the 
target sub-workflow of single-move and its target sub-workflow. 

The move operators only consider moving a vertex to another sub-workflow if it is 
adjacent to at least one vertex of this sub-workflow. This policy reduces the number 
of candidate movements for any iteration. Also these move operators contribute to 
have balanced sub-workflow in terms of weight along with minimization of sum of 
data communication time among sub-workflows. 

These two moves are done in tabu search algorithm in a token ring way [9]. In this 
way, one neighborhood search is done on the local optimum generated by the pre-
vious one, and this process continues until no improvement is possible. When a vertex 
is moved from a source sub-workflow to another one, moving back to its source sub-
workflow is forbidden for next some iteration. To add diversification to the tabu 
search, the perturbation mechanism is applied. This step is consisted of selecting a 
random target sub-workflow except max weight sub-workflow and moving a random 
vertex from a sub-workflow with its weight is more than target sub-workflow.   
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4.2 Resource Provisioning Phase  

Each workflow application is partitioned into sub-workflows by the tabu search algo-
rithm discussed in Section 4.1 in the client node. Also the client node computes the 
upward rank of each task in the workflow by HEFT algorithm [10]. The upward rank 
of each task in the workflow is computed by the following equation:                   max  (1) 

                                                     

Where  is computation time of task  and  is average communication time 
between two tasks  and . Average communication time is computed based on 
average network bandwidth. 

Figure 1 illustrates the interaction among different nodes in the workflow schedul-
ing system. The client node submits sub-workflows along with the rank of their tasks 
to the randomly active node in the system (step 1). This node is called injection node. 
The injection node is responsible for resource provisioning of this workflow. At first 
it sends a request to the subset of reporting nodes (step 2). The selected reporting 
nodes are chosen by DT in terms of the QoS constraints of workflow. These QoS 
constraints are minimum CPU speed, minimum RAM or hard disk space. DT speci-
fies the reporting node that contains the resource information satisfy these constraints. 

Selected reporting nodes advertise some resources based on QoS constraints and 
knowledge–free load balancing policy that are discussed in the next section (step 3). 
The number of advertised resources by one reporting node is equal to the number of 
sub-workflows. The identifier of these resources along with the weighted rank of CPU 
speed returns back to the injection node (step 4). As each workflow has deadline con-
straint, the injection node applies Algorithm 1 to select target resources to run these 
sub-workflows (step5).    

  

Fig. 1. Interaction among different nodes in the workflow scheduling system 
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According to Algorithm 1, the injection node finds the resource with maximum 
rank of CPU speed (lines 1-7) in order to increase the percentage of workflows that 
meets assigned deadline, then finds the resource with minimum communication delay 
(lines 8-14) in order to decrease the communication delay to send sub-workflows. If 
the resource with maximum rank is equal to the resource with minimum communica-
tion delay, this resource will be selected (lines 15-18). Otherwise, next minimum 
communication delay resource is selected until half of resources are examined (lines 
19-20). After that, the next resource with maximum rank of CPU speed is selected 
(line 21). This procedure is continued until the number of target resources is equal to 
the number of sub-workflows. 
__________________________________________________________________ 
Algorithm 1: Selection of target resources for running 
sub-workflows in the injection node 
_______________________________________________________ 
Input:   ,     rank of CPU speed and communication  
delay of each advertised resource i respectively,  1   (N=number of advertised resources) 
Output: S contains the index of target resources  
1. 0 
2. foreach resource i do 
3.            if ( ) then 
4.                  
5.                   
6.            end 
7. end 8.   
9. foreach resource i do 
10.            if ( ) then 
11.                 
12.                
13.           end 
14. end  
15. if     then  
16.       Add maxIndex to S 
17.      if size(S)== number of sub-workflows return S 
18. end 
19. else if half of resources are not selected  then 
20.     find next minimum communication delay and goto 8 
21.     else find next maximum rank and goto 1 
22. end 
__________________________________________________________________ 

 
The communication delay  in Algorithm1 is equal to the communication delay 

between the client node and the advertised resource plus the delay between the injec-
tion node and the advertised resource. The communication delay between two peers in 
the system is computed according to our previous work [8] by a network model based 



50 T. Ghafarian and B. Javadi 

 

on queuing theory. In this analytical model each connection between two peers is 
modeled by a GI/GI/1 queue. So the communication delay is computed according to 
the following equation [8]:                           2 ∑  

(2) 

where,  

                             0.5 (3) 

 is service time for each connection between two peers, and ,  are network 
latencies and the inverse of bandwidth along the link between two adjacent peers by a 
routing algorithm, respectively. F is a flow size between two peers. ,  is a va-
riance and inter-arrival rate of traffic at source peer’s queue. Last term in Equation (2) 
is equal to sum of service time along the route between peer next to the source peer 
and destination peer.  

After target resources are selected by Algorithm1 to run sub-workflows, the sub-
workflows are submitted to the target resources (step 6). These resources are called 
run nodes in this phase. In the run node, the tasks of each sub-workflow are ordered 
by descendent order of upward rank  , and are kept in the priority queue. The 
ordering of tasks provides a topological order of them and preserves the precedence 
constraints between them.  

To run a sub-workflow, the tasks are selected from the priority queue, if a task is 
the entry task or the results of all parent tasks are ready, this task will be run and it is 
deleted from the queue, then its result are sent back to its children, if not, jump over 
this task and next task is examined. The queue is run in the circular way. Each host 
node run assigned sub-workflows in increasing order of sum of sub-deadlines. The 
output results of tasks are transferred between run nodes directly, and also they are 
kept as backup in the client node (step 7). 

 
Load Balancing Policy. The selection of advertised resources in the reporting nodes 
is done based on QoS constraints and a load balancing policy [25]. This analytical 
model is a knowledge-free approach based on routing in parallel queues. In this mod-
el, the resource pool in the reporting node is classified into some logical clusters. The  
resources in one logical cluster have similar processing speed. In this model, the ob-
jective function is to find the optimal arrival rate to each logical cluster such that the 
incoming requests are distributed in the balanced manner among its logical clusters. 
The optimal arrival rate to each logical cluster j ( ) based on this model is computed 
by the following equation [25]: 

                               

(4) 

Where  is average and   is the squared coefficient of variance for service time of 

sub-workflows on cluster j. ,  is the arrival rate and the variance of incoming 
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requests to the reporting node. z is a Lagrange multiplier , a numerical solution based 
on bisection algorithm is used to search z between its lower and upper bound. Aver-
age service time of each sub-workflow is computed by the following equation: 

                                (5) 

Where  is average size of sub-workflows and  is average execution time of any 
task in the workflow. The scaling factor for this equation is equal to division of max-
imum average CPU speed of all logical clusters in the reporting node to average 
processing speed of this logical cluster. 

The dispatch policy in each reporting node among logical clusters based on its op-
timal arrival rate ( ) is Billiard. This dispatch policy is a generalized form of round 
robin policy and it takes into account the sequence of routing called the billiard se-
quence [11]. The billiard sequence is generated by the following equation: 

                              min (6) 

Where  is a selected logical cluster and ,  are n-size vector of integer num-
bers.  is set to 1 for fastest logical cluster and zero for all other logical clusters 
[12].  counts the number of requests that sent to each logical cluster. It initializes to 
zero for all logical clusters queue and increments by 1 for selected one.  is the 
optimal arrival rate for each logical cluster that is computed by Equation 4. 

 
Deadline Assignment to Workflow. Each workflow has a defined deadline. Dead-
line assignment to the workflow includes assigning sub-deadline to each task in the 
workflow. We use slack time to compute the sub-deadline [26]. The slack time of the 
workflow is amount of extra time for a workflow to increase its critical path and it is 
finished by its deadline. It is computed by the following equation: 

 
 

(7) 

Where  is a deadline of the workflow and  is a critical path of the 
workflow. The critical path is assumed is lower than the deadline in order to complete 
a workflow by the deadline is possible. The level of each task ( ) in the workflow 
can be computed by the following equation:                                           max 1 (8) 

                                                  0 

Slack time of the workflow is divided among all tasks by its level such that a level 
with more number of tasks and more total run time of tasks gets a larger portion of 
slack time. The slack time of the level l is computed by the following equation [26]: 

 1  

(9) 
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Where  and  are the number of tasks in level l and workflow wf, 
respectively. Also,  and  are total run time of all tasks in level l and 
workflow wf, respectively. The  parameter is between 0 and 1 in order to change 
the weight of number of tasks and total run time of all tasks. 

The sub-deadline of task  ( ) is computed as follows:                                            (10) 

Where  is the latest start time of the task and it is computed as follows: 

                              max (11)                                                        0 

And  is the task execution time and  is the slack time of its level. 

5 Performance Evaluation 

To evaluate the performance of the deadline-constrained workflow scheduling  
system, CycloidGrid simulator [8] is used. The physical network in CycloidGrid is 
emulated by the Brite topology generator [12]. The nodes are connected by Waxman 
model [12], and the bandwidth between two nodes varies from 10Mb/s to 100Mb/s 
with uniform distribution. The number of resources is equal to 1000 with heterogene-
ous computing characteristics. The percentage of workflow applications that meet the 
deadline is the performance metric.  

5.1 Workload Model 

Various scientific workflow applications are considered to evaluate the performance 
of the proposed workflow scheduling system. These workflows are an astronomy 
application (Montage) [4], seismology application (CyberShake) [27] and two bioin-
formatics applications (Epigenomics [5], and Sipht [7]). These workflows cover a 
wide range of application domains and a variety of resource requirements. These 
scientific workflows are generated with 30 tasks by Bharathi et al. [5, 28]. Workflow 
applications submit to the system by Weibull distribution based on an existing Grid 
workload model [29]. This distribution with its parameter is listed in Table 1. The 
QoS constraints for each workflow application is deadline, minimum CPU speed and 
minimum RAM or hard disk requirement.  

The workload is generated for 1 day and 2.5 hours is considered as warm-up to 
avoid bias before the system steady-state. Each experiment is performed several times 
by using different workloads and average results are reported. The reported results 
have coefficient of variance less than 0.01( 0.01). We generate different work-
load by modifying the first parameter of Weibull distribution (the scale parameter α) 
as shown in Table 1. Therefore, the number of workflows increase from 8000 
(i.e. 11) to 14000 (i.e.α 7). 
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The background traffic of Internet and Internet flow size to compute communica-
tion delay in the system are followed Weibull distribution and Pareto distribution as 
shown in Table 1 [6]. 

Table 1. Input parameters for the workload model 

Parameters Distribution/Value 

Workflow inter-arrival time Weibull ( 25.4,117 =≤≤ βα ) 

Internet inter-arrival time  Weibull( 15.0,06.0 == βα ) 

Internet flow size Pareto( 05.1,3 == βα ) 

5.2 Baseline Policies 

We compared proposed scheduling system (Tabu) with two other policies as follows: 

• FM: in this strategy, we partition workflow with popular multi-way Fiduccia–
Mattheyses [22, 23] graph partitioning algorithm, and then we select run nodes to 
run-sub-workflows by Algorithm 1.  

• Random: in this strategy, the workflow is partitioned into sub-workflows random-
ly, and run nodes are selected randomly among the advertised resources in the in-
jection node. 

However, the baseline policies differ in two ways. The first one is workflow partition 
algorithm; each of them is based on one partitioning algorithm. The second one is 
proximity-aware feature. Tabu and FM are proximity-aware and select closer resource 
to client node and injection node according to Algorithm1; whereas Random selects 
run nodes from the advertised resources that satisfy QoS constraints randomly. 

5.3 Simulation Results 

Simulation results show the percentage of workflows that meet the deadline versus 
the arrival rate for different policies. In these experiments, we assume the system is 
relatively is static and no peer joins or leaves during the simulation. 

Figure 2 shows the percentage of the workflow that meet the deadline for Montage 
workflow by increasing the arrival rate. In this figure, Tabu surpasses FM and Ran-
dom policies with improvement factor of 23% and 79%, respectively. Since Montage 
is an I/O-intensive workflow with few CPU-intensive tasks, so minimization of data 
dependency between the sub-workflows and a proximity-aware feature has more im-
pact on increasing the percentage of successful workflows in Tabu and FM policies 
compared to Random policy. When α parameter decreases, the number of workflow 
in the system is increased; whereas the number of volunteer machine is fixed. So the 
performance of all policies in meeting the deadline drops off. 

Figure 3 presents the experimental results for CyberShake workflow. The im-
provement factor of Tabu with respect to FM and Random is 14% and 44%, respec-
tively. CyberShake is a data-intensive workflow with large input/output files, so the 
proximity-aware feature of Tabu and FM shows its impact on the percentage of the 
successful workflows compared to Random policy.  
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Fig. 2. Percentage of job that meet the deadline for Montage workflow versus arrival rate 

 

Fig. 3. Percentage of job that meet the deadline for Cybershake workflow versus arrival rate 

Figure 4 presents the experimental results for Epigenomics workflow. The im-
provement factor of Tabu with respect to FM and Random policies are 23% and 49%, 
respectively. Unlike Montage workflow, Epigenomics is a CPU-intensive workflow 
with fewer fan-in jobs, so the percentage of the successful workflows with respect to 
Random is lower than Montage workflow. It shows that the partitioning algorithm has 
low impact on scheduling of this workflow and other parameters such as load balanc-
ing and proximity-awareness has more impact on percentage of successful workflows.  

Figure 5 represents the experimental results for Sipht workflow. In this workflow, 
Tabu improves the percentage of workflows that meet the deadline by 12% compared 
to FM and 72% with respect to Random. Sipht workflow has many tasks with short 
run time and a few tasks with long run time. If the run time of tasks is small, the  
load balancing strategy has little influence on system performance. So, the impact of 
partitioning algorithm and proximity-awareness is more than load balancing in this 
workflow. Meanwhile Sipht similar to Epigenomics is primarily a CPU-bound 
workflow. So, partitioning algorithm and proximity-awareness influence a few on the 
percentage of successful workflows. Therefore, the percentage of the successful 
workflows in Sipht in overall is lower than Epigenomics workflow.  
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The proposed workflow scheduling policy performs better for I/O-intensive and 
CPU-intensive workflows. In fact, the emphasis of the partitioning algorithm is 
grouping tasks with more data dependencies in the same sub-workflow, so it lessens 
the communication delay in I/O-intensive workflows and improves the system  
performance. Also the knowledge-free load balancing policy influences on the per-
formance of CPU-intensive workflows by distributing the load fairly among the  
resources in the system.  

 

Fig. 4. Percentage of job that meet the deadline for Epigenomics workflow versus arrival rate 

 

Fig. 5. Percentage of job that meet the deadline for Sipht workflow versus arrival rate 

6 Conclusions 

In this paper, we proposed a deadline-constrained workflow scheduling system  
in peer-to-peer based volunteer computing systems. Each workflow has QoS con-
straints in terms of deadline, minimum CPU speed and minimum RAM or hard disk 
requirements. We integrate a workflow partitioning with the resource provisioning to 
increase the percentage of the successful workflows in P2P-based VC systems. We 
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compare the performance of the proposed workflow scheduling system with two other 
baseline policies. The result of simulations indicate that Tabu policy significantly 
increase the percentage of workflow that meet the deadline with improvement factor 
18%, 61% in average with respect to FM and Random policies.  

As part of future work, we will consider other partitioning algorithms to improve 
partitioning phase for data-intensive workflows. Another interesting extension is us-
ing Cloud resources in some of peers. In fact, we can send failed workflows from VC 
systems to Cloud resources to meet the deadline constraints of this workflow.  
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Abstract. Energy is one of the scarcest resources in wireless sensor network 
(WSN). One fundamental way of conserving energy is judicious deployment of 
sensor nodes within the network area so that energy flow remains balanced 
throughout the network. Node deployment using Gaussian distribution is a 
standard practice and is widely acceptable when random deployment is used. 
Initially, an analysis is done to establish that Gaussian distribution based node 
deployment is not energy balanced. Standard deviation has been identified as 
the parameter responsible for energy balancing. A deployment strategy is pro-
posed for energy balancing using customized Gaussian distribution by discretiz-
ing the standard deviation. Performance of the deployment scheme is evaluated 
in terms of energy balance and network lifetime. Simulation results demonstrate 
that proposed deployment strategy significantly outperforms conventional 
Gaussian distribution based node deployment scheme in terms of the two  
performance metrics. 

Keywords: Node deployment, Gaussian distribution, Energy hole, Network 
lifetime, Wireless sensor network. 

1 Introduction 

Node deployment is a fundamental issue in wireless sensor networks (WSNs) that 
affects many facets of network operation, including energy management, routing, 
security, etc. There are broadly two types of deployment categories in WSNs- random 
deployment and another is deterministic deployment [1]. Random deployment is typi-
cally used in physically inaccessible areas e.g., volcanoes, seismic zones etc., where 
nodes are usually dropped from helicopter [2]. On the other hand, deterministic dep-
loyment is preferable in physically accessible areas e.g., target tracking, urban moni-
toring, soil monitoring etc., where nodes are placed by hand at selected spots prior to 
network operation [2]. 

It is well known that lifetime of WSN depends on the node deployment strategy 
[1], [3]. The reason is that nodes located at one-hop away from the base station/sink 
have to relay traffic from other nodes, resulting in faster consumption of energy for 
data reception and retransmission. When such first-hop nodes have exhausted their 
energy, it is useless even if other nodes may have sufficient residual energy resulting 
in the phenomenon known as energy hole problem [3]. Therefore, if any part of the 
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network is affected by the energy hole problem, the whole network gets affected as 
uneven consumption of energy leads to premature decrease of network lifetime. To 
avoid this, care should be taken during node deployment such that energy dissipation 
in all nodes takes place uniformly ensuring load balancing throughout the network. 
One solution to address non-uniform dissipation of energy is to deploy varying num-
ber of nodes to combat extreme load near the sink. Gaussian distribution [4] is a 
promising approach that follows non-uniform distribution allowing more number of 
nodes near the sink. 

Many works have been reported that deal with the issue of load balancing to reduce 
energy hole problem for prolonging network lifetime. All these works have been con-
ducted through different approaches e.g., homogeneous node deployment strategy [3], 
[4], relay node deployment strategy [5], regulating transmission range [6], data 
routing algorithm [7] and mobility of nodes [8]. Each type of the above approach have 
their strengths and limitations. In most of the existing works, the proposed deploy-
ment strategies and data routing algorithms have guaranteed the increase of network 
lifetime by balancing energy. In this work, we concentrate on the solution based on 
homogeneous node deployment strategy. Different from [4], our goal is further en-
hancement of network lifetime by deploying nodes using two dimensional Gaussian 
distribution in circular layered network architecture. In this work, we focus on finding 
the answer for the following questions- 

— Does Gaussian distribution based node deployment technique provides energy 
balancing? 

— If not, what modification is needed to provide energy balancing? 

Our main contributions in this paper are as follows: 

— We analyzed the method of controlling network lifetime by balancing the energy 
consumption of all nodes in layered network architecture. It is found that number 
of nodes and their distribution has significant role in controlling network lifetime. 

— We analyzed energy balancing by deploying nodes using Gaussian distribution in 
layered network architecture and found standard deviation acts as a parameter that 
controls number of nodes and their deployment in a layer. It is also found that 
choosing of judicious value of standard deviation for energy balancing is com-
pletely heuristic. 

— To alleviate the above shortcomings of Gaussian distribution based node deployment, 
we proposed a customized Gaussian distribution based node deployment strategy. 

— Performance of the scheme is evaluated through quantitative analysis. In quantita-
tive analysis both ideal and realistic scenarios are provided for showing the im-
pacts of routing and medium access control (MAC) protocols on the performance 
of the strategy. 

The rest of this paper is organized as follows: In section 2, literature review is ela-
borated. The system model considered for the present work is described in section 3. 
Analysis on energy balancing and network lifetime of Gaussian distribution based 
node deployment is presented followed by the proposed deployment strategy in Sec-
tion 4. In section 5, simulation results under ideal and more realistic scenarios are 
provided. Finally the paper is concluded with some mention about the future scope of 
the work in section 6. 
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2 Literature Review 

The works addressing the solutions of enhancement of network lifetime, mentioned in 
the previous section has been elaborated in this section. 

Wang et al. [4] have given an analytical model for coverage and network lifetime 
issues of WSNs using two-dimensional Gaussian distribution. The coverage proba-
bility in the Gaussian distribution is decided by factors such as distance between the 
desired point and the centre point, Gaussian standard deviation etc. By controlling the 
values of the different parameters mentioned above one can get the desired coverage 
probability and increased network lifetime. Using the proposed deployment algo-
rithm, larger coverage and longer network lifetime is achieved using limited number 
of sensor nodes. However, authors have not validated whether the proposed deploy-
ment algorithm ensures energy balancing or not. Wang et al. [5] have presented an  
in-depth analysis on the traffic-aware relay node deployment problem considering 
locations of sensor node and sink are known before hand. Based on the analysis they 
have developed optimal solution for relay node deployment with single sensor node, 
both with single and multiple traffic flows. The authors have developed a hybrid algo-
rithm that successfully returns optimal number of relay nodes and their respective 
locations. The results show that network lifetime achieved by the algorithm is very 
close to the upper bound of the optimal solution and achieves 6 to 14 times improve-
ment over existing traffic-aware relay node deployment strategies. However, the pro-
posed solution works in continuous domain resulting in fractional number of relay 
nodes and simple rounding of numbers causing severe performance degradation. Azad 
and Kamruzzaman [6] have proposed energy balanced transmission range regulation 
policies for maximizing network lifetime in WSNs. Authors have considered the con-
centric ring based network architecture where the sink is located at center. Firstly they 
have analyzed the traffic and energy usage distribution among nodes and found two 
parameters- ring thickness and hop size responsible for energy balancing. Based on 
the analysis, they have proposed a transmission range regulation scheme of each node 
and determined the optimal ring thickness and hop size for maximizing network life-
time. Simulation results show substantial improvements in terms of network lifetime 
and energy usage distribution over existing policies. However, before implementation 
of the proposed transmission policies significant computation is required for deter-
mining the optimal ring thickness and hop size. Also the scheme requires minimum 
node density for its implementation. Boukerche et al. [7] have initially studied the 
problem of energy-balanced data propagation in corona based WSNs both for uniform 
and non-uniform deployments. The authors have proposed a density based data prop-
agation protocol towards balancing the energy consumption. The basic idea of the 
proposed protocol is that in each step the node in a corona that holds data on-line 
calculates the probability of data delivery either by hop-by-hop or direct to the final 
destination (the sink) based on the density information of the neighbouring coronas. 
In particular, performance of the proposed density based data propagation protocol  
is near-optimal for uniform node deployment. However, the proposed data propaga-
tion algorithm has better performance under uniform deployment compared to non-
uniform deployment. Lin et al. [8] have developed an energy balancing scheme  
for cellular-topology based clustered WSN using mobile agents. They have designed 
an energy prediction strategy by means of which mobile agents know about the  
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remaining energy of all sensor nodes. Nodes with less remaining energy communicate 
through mobile agent and avoid long-distance communication thereby evading  
uneven energy consumption. The drawback of this work is that high energy consump-
tion is incurred as two kinds of transmission power are adopted- one is the higher 
transmission power for ensuring inter-cluster communication among mobile agents 
and the other is the lower transmission power used for intra-cluster communication. 

3 The Models 

In this section, network model along with some basic assumptions and node deploy-
ment model are provided followed by the energy consumption model. 

3.1 Network Model 

We consider a two dimensional plane (a×a) covered by a set of uniform-width 
coronas or annuli [3], [4] as shown in Fig. 1. Each such annuli is designated with 
width r as layer. The sink is located at the centre of the network area. Nodes are 
placed within the area of a layer where area of layer-i (Ai) is equal to π (2i-1)r2 for 
i=1,2,…,N. Here i=1 indicates the layer nearest to the sink and i=N indicates the layer 
farthest from the sink. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Layered network architecture 

3.2 Assumptions 

We assume that deployed nodes are static, homogeneous and battery powered with 
each node having  0ε  as initial energy while an unlimited amount of energy is set for 
the sink. We assume clock-driven periodic data gathering applications where sensory 
data generation rate is proportional to the area (1 sq. unit). Given a unit area, if  
the data generation rate is ρ bits per second, it means ρ bits/sec of data is transmitted 
towards the sink. The data is collected by the nodes and sent to the sink through  
multi-hop communication after a time-interval of 1sec. Each node has the same 
transmission range cR  and sensing range sR . The relationship amongst cR , sR  and r 
is assumed as cR r≥ and s2R r≥ . Further, two nodes can reach each other if they are 
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located within their transmission ranges. Without loss of generality, during theoretical 
analysis an ideal MAC layer with no collisions and retransmissions is assumed  
for simplicity purpose. For simulations in addition to ideal MAC, we consider a  
MAC protocol for investigating the impact caused by the MAC protocol to make the 
assumption realistic. 

3.3 Deployment Model 

We assume nodes deployed in different layers around the sink using two dimensional 
Gaussian distribution. We assume the sink is located at (0, 0), therefore, in our case 
mean value is (0, 0) i.e., standard deviations ( )σ  for x and y dimensions are equal. 
Gaussian distribution used for node deployment is given as 

 ( )
2 2

2

x y

2
2

1
f x, y e

2

+ − σ =
πσ

.                                            (1) 

3.4 Energy Consumption Model 

The energy model specifies the energy consumption by node during various opera-
tions such as radio transmission, reception, sensing, and computing. In wireless net-
works the energy spent for transmission and reception is much greater than the energy 
spent for sensing or computation. Therefore, we adopt the First Order Radio model 
[4] considering energy spent for radio transmission, reception and a distance square 
energy loss for channel transmission. In this radio model, energy consumed by a node 
for transmitting m-bit data over a distance cR  is ( ) ( )2

tx c elec amp c tE m, R m e e R m e= + × = ×  

where 2
t elec amp ce e e R= + ×  is energy spent for transmitting one bit of data, elece  (e.g., 50 

nJ/bit) is the energy spent for activating the transmitter or receiver circuitry, ampe  
(e.g., 10 pJ/bit/m2) is the energy spent for the transmitter amplifier to communicate. 
The corresponding energy consumed for receiving m-bit data is 

( )rx elec rE m m e m e= × = × , where r elece e=  is energy required to receive one bit of data. 

4 Analysis of Energy Balance and Network Lifetime 

In this section an analysis on energy balance and network lifetime for a general node 
deployment strategy are presented. Next analysis on network lifetime is done while 
nodes are deployed using Gaussian distribution. In both analyses, it is found that cer-
tain parameter(s) have significant influence on network lifetime and by controlling the 
parameter values lifetime can be extended. In presence of several existing definitions 
of network lifetime and energy balance, the present work considers the following 
definitions throughout the paper. 

Definition 1 (Network Lifetime). We consider network lifetime as the time interval 
from the beginning of the network operation until the proportion of dead nodes  
exceeds a certain threshold, which may result in loss of coverage of a certain region, 
and/or network partitioning. If the energy consumption of each node within layer-i is 

iE  (same/uniform) and the total number of nodes in layer-i is iT , the lifetime of a 
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layer-i in the network is 0 i 0

i i i

T
T E E
ε × ε

× = . From the expression, it is evident that in our case 

network lifetime is same as the lifetime of a node in layer-i. 

Definition 2 (Energy Balance). Balanced energy depletion means that all nodes in 
the network deplete their energy simultaneously, i.e., the lifetime of all nodes are the 
same and identical to the corresponding network lifetime. If uniform energy con-
sumption of each sensor node within the same layer is achievable, then balanced 
energy depletion is achieved if 0 0

i jE E
i, j, i jε ε= ∀ ≠ . When balanced energy depletion is 

achieved, the lifetime of all sensor nodes are same and identical to network lifetime. 
We assume that a node transmits data towards sink via shortest path. So, a node in 

layer-i requires i hops to transmit data to the sink. In a practical scenario, the number of 
hops may be greater than i hops to reach the sink. The nodes of all the layers except the 
farthest layer from the sink spend energy transmitting their own sensory data, receiving 
data from nodes of adjacent layers farther away from the sink and forwarding the re-
ceived data. Nodes in the farthest layer spend energy only for transmitting their own 
data. Therefore, the data transmission rate of a node in a layer-i ( )in  is given as 
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. (2) 

The average energy consumption rate (avg ECR) per node for communication (trans-
mission/reception) in a layer-i is computed using the information of in  (see (2)) as, 
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. (3) 

Energy consumption across the network is balanced [3] when all the nodes of the 
network exhaust their energy at the same time. So, from Definition 2, the following 

condition must be satisfied 0 0 0

1 2 NE E E
= = =

ε ε ε , or, 1 2 NE E E= = = . 

Now using (3) and replacing the values, we have 
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  . 

Therefore, after simplification and basic transformations, the number of nodes to be 
deployed in layer-i for balanced energy consumption is given as 

 
( ) ( ) ( )
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2i 1 e e e 2h 1
T T
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. (4) 

Equation (4) implies that for balanced energy consumption, the number of nodes re-
quired in a layer nearest to the sink is maximum and it decreases in the layers farther 
away from the sink i.e., 1 2 NT T T> > > . Also (4) implies that one can compute iT , 
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for i=1,2,…,(N-1), if NT  is known a priori. Here, we argue that NT  can be computed 
with the help of given network area (a×a), communication range ( )cR , and sensing 

range ( )sR  considering complete coverage and connectivity. 
After obtaining balanced energy consumption, when nodes are distributed accord-

ing to (4), the network lifetime can be analytically expressed as 

 
( ) ( ) ( )
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. (5) 

As we have assumed earlier that the nodes in a layer report data to the sink in minimum 
hops, therefore the derived network lifetime (see (5)) provides us the upper bound of 
network lifetime. Also it can be concluded that the upper bound of network lifetime is 
achievable by controlling the number of nodes in a layer-i i.e., iT , as given in (4). 

4.1 Gaussian Distribution Based Deployment Strategy 

According to the proposed Gaussian distribution based node deployment strategy [4], 
when nodes are deployed in layer-i of a corona based network, the probability is given as 
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It is evident from the above equation that any two points in a layer having equal dis-
tances from the center-point, have the same deployment probability. 

Let us consider totT  number of nodes in the network and iT ′  numbers of nodes are 
deployed in layer-i where nodes are deployed using Gaussian distribution. Using (6), 
the number of nodes deployed in layer-i is evaluated 
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The analytical result plotted in Fig. 2 illustrates number of nodes computed (using 
(7)) and deployed using Gaussian distribution indeed guarantee balanced energy con-
sumption amongst nodes in all layers of the network. The analytical results are plotted 
considering, similar to [4], two network sizes 5-layer and 8-layer where 800 and 1000 
nodes are deployed, respectively. We assume initial energy of each node is 10J, 
communication range of each node is 20m, standard deviation (σ) is 50 and a unit area 
generates data at the rate of 1 bit per second. 
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From Fig. 2(a) it is observed that irrespective of network size, nodes in different 
layers have different avg ECR per node which ensures that the node deployment strat-
egy is not energy balanced. It is also observed that for 8-layer network the nodes  
located in layer-3 and 4 have minimum avg ECR per node while nodes located in 
layer-1 and 7 have maximum. This is due to the fact that number of nodes deployed in 
layer-1 and 7 are not sufficient to handle the load whereas more than sufficient nodes 
are deployed in layer-3 and 4 to handle the load. It is the primary reason, according to 
us, for uneven avg ECR among the nodes in different layers. As the nodes near  
the sink have maximum avg ECR per node, the lifetime of a node in layers nearer to 
the sink is minimum compared to the layers farther away from the sink as shown in 
Fig. 2(b). This indicates that nodes deployed using Gaussian distribution is not energy 
balanced and hence maximum network lifetime is not achievable. 
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Fig. 2. Energy balance and network lifetime of Gaussian distribution based node deployment. 
(a) Average energy consumption rate per node of a layer for 5-layer and 8-layer network sizes. 
(b) Network lifetime of a layer for 5-layer and 8-layer network sizes. 

4.2 Proposed Customized Gaussian Distribution Based Deployment Strategy 

Let us investigate the reason behind the imbalance in energy consumption of a node 
in a layer when it is deployed using Gaussian distribution. From energy balancing 
perspective, from Definition 2, the following condition must be satisfied 
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Therefore, the integer number of nodes to be deployed in layer-i for balanced energy 
consumption is given as 
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We argue that the imbalance in energy consumption of a node in layer-i primarily 
occurs as the number of nodes derived using (7) is not equal or near equal to the  
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number of nodes derived using (8). Therefore, to obtain balanced energy consumption 
iT ′  given in (7) must be equal to the iT ′  given in (8), i.e., 
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. (9) 

From (9), it is evident that determination of number of nodes ( )iT ′  and its distribution 
primarily depends on the standard deviation (σ) of Gaussian distribution. To be more 
specific, higher value of σ is chosen for distributing more number of nodes around the 
layers nearer to the sink. So, choosing judicious σ value is utmost important for ener-
gy balancing. This choosing of judicious σ value is completely heuristic. We believe 
that this is the primary reason that Gaussian distribution does not always provide 
energy balanced node deployment. We argue that energy balanced node deployment 
using Gaussian distribution is only possible when nodes are distributed by varying σ 
among the layers in a network. 

Therefore, based on this analysis we propose the following node distribution func-
tion based on the customized Gaussian distribution for balanced energy consumption. 
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where 2
iσ  is the variance of layer-i for i=1,2,…,N. 

Theorem 1. For a given network area, energy balancing takes place amongst nodes 
when nodes are deployed using customized Gaussian distribution where its variance is 
given as 
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Proof: It has been shown in (9) that for balanced energy consumption iT ′  number of 
nodes need to be deployed in layer-i. As nodes are to be deployed using customized 
Gaussian distribution, hence from (9), 
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Now expanding the above exponential function as a Taylor series and considering the 
first three terms for simplicity, we have 
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The solution of the above equation for positive value of 2σ  is given as  
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It is evident from the above equation that for each value of i we obtain a value of  
2σ  i.e., value of the variance depends on layer number i. Therefore, for balanced 

energy consumption, nodes are to deployed using customized Gaussian distribution 
by following the value of variance 
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Finally, we claim that the proposed deployment is feasible. As reported in state-of-
the-art work [9], air-dropped deployment in a controllable manner is feasible even in 
an inaccessible terrain. We propose to compute the desired number of nodes in each 
part (layer/annuli) of the network offline prior to the actual deployment using (4). At 
last, the nodes are to be dropped (e.g. from helicopter) using a point (sink) as the cen-
ter using the proposed customized Gaussian distribution (see (10)). 

5 Performance Evaluation 

Performance of the present Customized Gaussian Distribution based Node Deploy-
ment (CGDND) strategy, reported in the earlier section is measured based on two 
parameters- energy balancing and network lifetime. 

5.1 Simulation Arrangement 

For performing the simulation experiments MATLAB (version 7.1) is used. Simula-
tion results of our strategy CGDND are compared with one existing node deployment 
strategy namely Node Deployment with Gaussian Distribution (NDGD) [4]. For both 
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the schemes, in order to have an integer number of nodes for each layer upper ceil 
function is employed. Extensive simulation has been performed with a confidence 
level of 95% and average of 2000 independent runs has been taken while plotting the 
simulation graphs. The values of transmission range, sensing range and initial energy 
in each sensor are taken as 20m, 10m and 10J respectively [4]. We conducted the 
experiments by deploying 800 and 1000 nodes for networks with 5 and 8 layers, re-
spectively. In the simulation experiments, we focus on the following metrics: a) avg 
ECR per node defined as the average energy spent per node in a layer during the net-
work operation; b) network lifetime as defined in section 3. First metric is useful for 
determining whether the energy consumption in a network is energy-balanced and 
second metric is for consequent enhancement of network lifetime. Two sets of expe-
riments are conducted for evaluating the performance of the proposed deployment 
strategy. One set of experiment measures energy balancing in the network and the last 
set verifies the enhancement of network lifetime. 

5.2 Analytical Results 

Shown in Fig. 3 is the analytical result of the number of nodes deployed in each layer 
for CGDND and NDGD (two different values of σ) strategies using 8-layer network 
deployed with 1000 nodes. Our primary observation is that except the schemes i.e. 
NDGD with σ=50 and σ=25, in the strategy CGDND, the number of deployed nodes 
reduces in layers as the distance of layers from the sink increases fulfilling the objec-
tive of deploying more nodes near the sink. It is also observed that NDGD gives more 
redundant nodes in layer-3 when σ=50 and in layer-2 when σ=25. When nodes are 
deployed in NDGD using σ=25, it fails to deploy any nodes in layers 6, 7 and 8. All 
these imply that choosing of judicious value of σ is utmost important for fulfilling the 
objective of energy balancing. 
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Fig. 3. Nodes deployed in each of the layer when nodes are deployed using CGDND and two 
variants (σ=50 and σ=25) of NDGD for 8-layer network 
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5.3 Simulation Results and Discussion 

During simulation, we have considered q-switch [3] as routing protocol and funne-
ling-MAC [10] as a MAC protocol for realistic scenario. The scenario considered in 
section 4 for analysis of energy balance and network lifetime is considered as ideal 
scenario. In q-switch routing the source node always selects one reachable forwardee 
node with maximum remaining energy in its subsequent inner layer for forwarding 
data. If there is more than one forwardee node with the same maximum remaining 
energy, one of them is chosen randomly. The funneling-MAC is a hybrid MAC proto-
col where nodes located within layer-2 use TDMA whereas nodes beyond layer-2 use 
CSMA/CA. Furthermore, we have considered energy consumption rate as 20%, 5% 
and 2.5% of the energy consumption rate of reception for sensing, idle and sleep 
mode respectively. In simulation plots scheme names with ‘(R)’ signify performance 
under realistic scenario and without it under ideal scenario. 

5.3.1 Energy Balancing 
Figure 4 shows avg ECR per node for different network sizes. We observe that in 
CGDND, for both ideal and realistic scenarios, the avg ECR per node of a particular 
network size is constant for all layers and this rate varies with network sizes. Precisely 
avg ECR per node increases with increase in network size. For example, in case of 
ideal scenario, avg ECR per node is 13.5 μJ/sec for 5-layer network area whereas for 
8-layer network it is 44.16 μJ/sec. Similarly, in realistic scenario, avg ECR per node is 
16.1 μJ/sec for 5-layer network whereas for 8-layer network it is 46.73 μJ/sec. In 
NDGD it is observed that avg ECR per node varies in different layers for a given 
network size. Also, in NDGD, irrespective of network size, nodes in layer-1 have 
maximum avg ECR per node and nodes in farthest layer have the lowest avg ECR per 
node. This justifies our claim that CGDND is relatively more energy balanced com-
pared to the competing scheme NDGD. 
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Fig. 4. Average energy consumption rate per node under ideal and realistic scenarios for vari-
ous network sizes. (a) 5-layer network. (b) 8-layer network. 
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Fig. 5. Network lifetime under ideal and realistic scenarios for various network sizes. (a) 5-
layer network. (b) 8-layer network. 

5.3.2 Network Lifetime 
The graphs illustrated in Fig. 5 represent the network lifetime for two different net-
work sizes. It is observed irrespective of the scenarios, that with increase in network 
size network lifetime decreases e.g., in realistic scenario for 5-layer network it is 
172.52 hours whereas for 8-layer network it is 59.44 hours. This is due to the fact that 
with increase in network size, the nodes in the innermost layer need to relay increased 
volume of data from the outer layers thereby causing more energy consumption. 
Moreover, in CGDND the flat nature of the plot ensures that in all the layers, network 
lifetime terminates in more or less the same time as compared to NDGD. This ensures 
that energy in CGDND is balanced to a greater extent. 

6 Conclusion and Future Work 

Node deployment mechanisms have significant implication on energy balancing and 
prolonging network lifetime in WSNs. In this work a node deployment strategy using 
a customized Gaussian distribution has been presented and evaluated. The target of 
the strategy is achieving energy balancing and enhancing network lifetime. Initially, 
we have analyzed network lifetime of a Gaussian distribution based node deployment 
scheme and found its efficiency in terms of energy balancing. Standard deviation has 
been identified as a parameter which has significant influence on energy balancing 
and enhancement of network lifetime. Simulation results prove that the proposed 
strategy outperforms an existing Gaussian distribution based node deployment 
scheme [4] with respect to energy balancing in the network. As a future extension of 
our work, the deployment strategy may be made more realistic by considering node 
placement error. Also, the scheme may be analyzed further for improvement consider-
ing performance metrics e.g., end-to-end delay, packet loss and throughput. 
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Abstract. With the increase of large number of data, multi-clusters
structure has been adopted for data storage. Therefore, the demand for
file metadata sharing across global scale clusters is quickly rising. How-
ever, today’s software can not provide features to reflect these desires
well. In this paper, We propose and develop a metadata sharing man-
agement method called Shedder. First Shedder can allow customized
multi-clusters metadata sharing structure. Next, Shedder can provide
highly efficient global synchronization for all clusters. Finally, Shedder
allows customized user view generated from global namespace. Our eval-
uation for Shedder shows that Shedder provides low latency for global
synchronization. Dynamic transformation from global namespace to cus-
tomized user view also has low time cost for different size of workloads.
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nization, customized user namespace.

1 Introduction

With the increasing data in single cluster or data center, global storage over the
Wide Area Networks (WAN) is inevitable [4]. Management of multiple clusters
deployed over the nation or even at the global scale is significant to improve
the whole system’s accessability. Many research work has proposed methods to
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guarantee data locality for low latency I/O operations [6, 7, 11]. On the other
hand, many applications or users often only concerns about metadata lookup and
not read or write real data frequently like web page indexing. However, few work
focuses on file metadata sharing across geographically clusters. Additionally, how
to present customized and customized user view from same global namespace
for applications to tune lookup performance is also important.

We give an example to illustrate this demand above. Flickr, Facebook and
Flipboard have photo sharing or magazine sharing services. They may use mul-
tiple clusters to store these data. Their users are used to looking up all newest
photo or news information like title, publisher, create time, permission configu-
ration and so on. But eventually they only fetch a small fraction of real photo
or news data to view. Therefore, it will spend most of time on metadata shar-
ing across geographically clusters to which different users access. Accelerating
metadata lookup will obviously reduce waiting time for refreshing metadata.

Meanwhile, users usually view photos or contents others share with but not
expect to change them like Wikipedia. We call this kind of access mode as
write once read many [14]. The paper will focus on this scenario to tune the
performance of metadata sharing.

In this paper, we propose a method called Shedder to solve problems of meta-
data sharing management. Firstly, due to various demands of applications, one
cluster needs to decide which clusters it will transmit metadata to. That be-
longs to authorization control and will eventually affect cluster network topology.
Shedder supports customized interconnections across multi-clusters to allow var-
ious logical network topology. Secondly, as for global metadata synchronization
across clusters, original two-phase commit (2PC) protocol [15] has low efficiency
especially for our write-once-read-many scenario. Therefore, Shedder uses a mod-
ified 2PC protocol to improve metadata reading performance. Thirdly, for each
independent cluster, metadata lookup of global namespace is a basic command
and unit. But most applications have their own lookup characteristics. Shed-
der also provides a customized namespace view to each cluster from the same
global namespace. We demonstrate that user view generator uses efficient data
structure and has high transformation performance.

The rest of this paper is organized as follows: Section 2 describes problem defi-
nition and system overview. Section 3 describes authorization control of Shedder.
Section 4 elaborates the design of synchronization approach. Section 5 illustrates
the design of generation algorithm of customized user view from global names-
pace. Section 6 shows performance model, simulation experiments and results
analysis. Section 7 describes related work and Section 8 concludes this paper.

2 Architecture Overview

2.1 Scenario for Global Storage Clusters

Firstly, we describe a usual scenario that multiple users access the global storage
system consisting of multiple clusters shown as Figure 1. User1 expects to look
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up what files are stored in these clusters, including not only Cluster A but also
all other clusters. Meanwhile, User1 would also like to reorganize these metadata
and categorize them according to his access characteristics. Thus he can quickly
look up information according to the given domain. Moreover, User1 can fetch
large amount of files especially small files via reorganized metadata more quickly
because paths of these files have been optimized and locating them is faster than
that of original file namespace. Likewise, all users may have totally different user
view, which though comes from the same global namespace.

IInntternnneetttInternet

User1

User2

User5User4

User3

Cluster A

Cluster C
Cluster B

Cluster D

Fig. 1. User access model over WAN

2.2 System Design of Shedder

Our metadata sharing management method Shedder can manage and coor-
dinate clusters of global storage system over the wide area networks, illus-
trated as Figure 2. It consists of three main components. Authorization control
module (simply called AC Module)uses ACL (Access Control List) mechanism to
determine what metadata updates can be generated, which clusters can receive
updates and which metadata requests, no matter from internal global storage
system or from external environment, can be granted. User View Generation is
to help clusters finish synchronization of metadata updates and maintain global
consistency. Finally, generation algorithm for customized user view is automat-
ically executed after the global synchronization.
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…...

Shedder

Authorization Control

Distributing Algorithm

User View Generation

Cluster Cluster Cluster

Fig. 2. Architecture Overview for Shedder

3 Authorization Control

Shedder regards underlying clusters as a whole global storage system. Therefore,
there are two kinds of access requests needed to be controlled by authorization
mechanism.

First is external access requests outside the global storage system. Clusters
need to be found by legal users at the same time they need to defend anonymous
attacks. Shedder can make sure each cluster always recognizes requests from
trusted domains. If requests don’t come from allowed positions, cluster will refuse
to provide connections or service.

Second kind of access requests attribute to internal communication. Though
each cluster has to recognize others’ requests inside the global storage system
for synchronizing global namespace, that doesn’t mean all requests should be
approved and executed. Due to different scenarios, relationship between clusters
can be complicated and have various pattern, shown as Figure 3. One clus-
ter can choose which clusters can acquire its metadata and namespace. Others
that are not granted cannot find one’s namespace unless there are some clusters
that have received one’s metadata willing to transfer these metadata to them.
Therefore, Shedder supports a lot of logical network topology for the demands
of applications or users.

Also, for every cluster, its authorization configuration information may be
changed at running time. The same request can be accepted after refused at the
first time or vice versa. Shedder can dynamically adjust its coordination strategy
to match the change of authorization configuration information. These can be
done by adding special flags to the transfer packets.

Shedder defines what operations for metadata to be considered metadata
updates. Users can use these operation primitives to update metadata. AC Mod-
ule also has whitelists and blacklists from user configurations to limit transmit
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Fig. 3. Customized Logical Network Topology. (a) is a single center topology structure.
(b) means ring structure. (c) represents tree topology structure. (d) is a complete graph
structure.

of updates. In addition, administrator has power to decide which users from
external networks can access Shedder. Then Shedder appoints one cluster as
local position for one user to connect according to time delay of WAN access.

4 Global Synchronization

4.1 Synchronization Strategy

Since all clusters are connected and communicated with each other through the
Internet, Shedder consider them and the Internet as a big undirected graph. But
we don’t adopt physical link between routers as edges. Authorization control has
determined the topological structure. Imagine that one’s metadata information
may be transferred to the destination under control of another one, then two
logical edges will be formed.

Next, delving into this model carefully we find we are just expecting each
cluster to receive metadata updates from its previous nodes in global topology
graph. Once it obtains all updates that are newer than that it already has,
it will refuse other updates that are older. However, it’s difficult to determine
whether all clusters have received each cluster’s updates, respectively. To solve
the issue, we add a timer for every synchronization operation and simply adopt
breadth-first distributing approach. When any cluster receives updates, it sends
a message back to the sender. The sender will record how many clusters have
received updates. In a worst situation, some certain clusters have still not sent
feedback to the sender because, for example, the cluster is down and unavailable.
So the sender needs to report to Shedder. Shedder will detect whether the cluster
is connected. If not, Shedder will remove the cluster out of the global storage
system and announce all other clusters to change their global topology graph.
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Otherwise Shedder will notice the sender it can assume that cluster has received
updates and finish this round of updates transmit, though in fact shedder doesn’t
assure whether that cluster can eventually receive the updates.

4.2 Modified 2PC Protocol

Shedder allows clusters to change metadata that are originally not theirs. Here
we use modified two-phase commit protocol, which not only supports timeout
mechanism but also allows commit delay technology.

The former is set to prevent long waiting if certain cluster is suddenly un-
available at voting phase. 2PC protocol containing timeout mechanism is often
called three-phase commit protocol. The latter prevent blocking status appear-
ing. Since the real data is only stored in one cluster, we choose this cluster as
coordinator. other clusters which have coordinator’s metadata are participants.
When one cluster changes metadata (in our scenario, it usually can be creating
new photos, renaming photos and deleting photos), it sends update request to
coordinator. Then coordinator start a voting phase for this request in which it’s
the same as the original 2PC protocol. If the voting result is refusal, then coordi-
nator notice the request sending participant to cancel the metadata operation. If
the result means agreement, at this time the coordinator tells the request sending
participant to execute the operation but for other clusters coordinator doesn’t
notice them. It just caches the voting result in its buffer queue, waiting for next
global synchronization to commit them. The reason for this method is that in
write-once-read-many scenarios the real data generally can not be modified, and
then the change of metadata could be regarded as the change of reference to
the data. We only need to maintain the mapping between new reference of same
data at each cluster and the local metadata to assure the accuracy of access,
without wasting much time to synchronize every incoming metadata update.
Hence, through delaying commit phase, we avoids blocking status when waiting
commit result. At the same time, because there is only one copy of real data
in coordinator, so it can keep the data consistent and can decide the commmit
sequence for metadata updates.

5 Generation of Customized User View

5.1 Reorganizing User View from Global Namespace

Assume that all clusters have updated to the common newest version of global
namespace at certain time. Multiple users access their local cluster to look up
metadata described as Figure 1. However, due to various applications or user
demands, they expect to see different user view, shown as Table 1 for example.

Global namespace shows that Cluster A has information of two departments,
each of which contains a lot of files. It also owns information of two products each
of which consists of multiple software modules. Here assume that Cluster B has
the same category compared with Cluster A, though unnecessary. As for Cluster
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C and Cluster D, they expect to see different user view since demands from local
applications may be totally various. Therefore, we can build a transformation
model to maintain mapping from global namespace to local user view while also
keeping reverse connections information for users to fetch specific files.

5.2 File Index Model for User View

Since we expect to change the file system view for users to see, we need to
reestablish the B-tree index, shown as Figure 4. Usually looking up a file starts
from parsing the file path, which means node nearer root is faster to be indexed
than that which is farther away from root. On the other hand, we often consider
all children nodes of a parent node belong to some certain category according to
the parent node’s characteristics. Therefore, we can cluster the same category
from different clusters into one high level node on the index tree.

Table 1. Global Namespace and Local User Views for Each Cluster. dept means de-
partment. * indicates all files in the folder.

(a) Global Namespace

/ClusterA/{dept1, dept2}/*

/ClusterA/{product1, product2}/*

/ClusterB/{dept1, dept2}/*

/ClusterB/{product1, product2}/*

(b) User View for Cluster C

/dept1/{ClusterA, ClusterB}/*

/dept2/{ClusterA, ClusterB}/*

/ClusterA/{product1, product2}/*

/ClusterB/{product1, product2}/*

(c) User View for Cluster D

/product1/{ClusterA, ClusterB}/*

/product2/{ClusterA, ClusterB}/*

/ClusterA/{dept1, dept2}/*

/ClusterB/{dept1, dept2}/*

5.3 Reverse Connections to Find Original Files

As for Shedder, it doesn’t synchronize data across clusters. In other words, Shed-
der doesn’t allow replications of files through clusters that not only costs too
much bandwidth when files are large but also needs complicated consistency
management. To simplify access model for users, Shedder assure that original
files are stored only in one cluster where they are created. Hence, Shedder main-
tains a reverse mapping relationship between local user view and global names-
pace. If user only looks up metadata, there is no need to access the reverse
mapping. Only when user needs to fetch corresponding files can the reverse
mapping be accessed.
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Fig. 4. Transformation for File Index. Assume dept is primary category for users to
look up and we ignore specific files as leaves of the tree for simplicity.

5.4 Generation of Customized User View

The default User View is presented regarding cluster domain as category. Shed-
der provides user view configuration rule for users. When certain directory, let’s
say LuckyDir, is appointed as category, Shedder starts following procedure to
form a new configured user view to users: scan file paths to find LuckyDir, then
move cluster domain to the tail of LuckyDir and submit commit. The time com-
plexity of the procedure is various because the order of LuckyDir is higher, the
length of path needed to be scanning is shorter. The worst of time complexity
is linear.

On the other hand, as for restoration, when we need to fetch the original files,
we don’t need to move cluster domain again to the original structure. We have
made a flag (a soft link) when transformation so that we can take advantage
of it to reconstruct the original path. Therefore, the mapping turns out to be a
path checking procedure: if the directory of first order is cluster domain, nothing
needs to do; otherwise scan the path and if the current directory scanned is a
soft link, then ignore it and jump to the next directory till the end.

6 Experiments

6.1 Performance Modeling

To demonstrate our observation on global synchronization and customized user
view of global namespace across clusters would be acceptable and feasible, in
this section we build cost model for Shedder and present performance analysis
for the model. Firstly we propose a formula to represent the time of the whole
process in which Shedder works.

GV T ime = Tsync + Tview (1)

GV T ime means the whole process time between the time when one cluster
updates its part of metadata and the time when one user can look up these
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updates as his configured view at the possible fastest speed. It can be split into
two parts to measure: the time for global synchronization and the time for gen-
erating customized user view from global namespace. However, the GV T ime of
one cluster may be much faster than that of another cluster. Hence, we con-
sider the time for the last cluster to finish the process as GV T ime for general
applications.

Synchronization Performance. Since the synchronization involves with many
variable parameters over the wide area networks, we simplify our measurement
standard to a reasonable and applicable formula as follows.

Tsync = 2 × Tdelay + 2 × Nupdates

Snetcard × 1
2×(Ncluster−1)

(2)

Tdelay indicates the transmit delay time from one cluster to another cluster.
Nupdates means the size of metadata updates for specific cluster where any basic
metadata operation counts. Snetcard represents the transfer rate of network card
in one machine. Ncluster is the number of clusters that Shedder monitors. Notice
when a cluster is transmitting metadata updates to other clusters it is also
receiving updates from all other ones, although it is impossible for these updates
to be processed at the same time.

Moreover, in our application scenario, users usually expect to look up large
number of metadata information. Small number of updates is less meaningful
since previous metadata updates stored in local cluster can provide similar results
for those batch processing applications. As for large amount of metadata updates,
it will cost most of time for Shedder to transmit them instead of network delay.
It is very obvious especially when multiple clusters transmit their own updates
at the same time. Therefore, the synchronization cost model can be simplified
as follows.

Tsync = k × Nupdates

Vtransmit
(3)

where k means a constant coefficient, and Vtransmit is also a constant parameter
indicating the transmit rate of metadata updates in one cluster. Here Tsync

is proportional to Nupdates, which proves that Shedder can synchronize these
clusters enough efficiently.

Generation of User View. Traditionally, file namespace would like to use
tree model to manage file metadata such as Linux ext3 file system. Considering
total memory access for looking up metadata information in Shedder, here we
adopt multi-tier, hash mapping structure to organize file namespace, shown as
Figure 5.

We build hash table for each level of directories. And each tier is connected
with another by hashing mapping of directory name. Assume certain file has
h prefix directories, the time of looking up this file is about O(h) (exactly it
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dir1

dir2
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dir9

dir10

file1
file2...

fileN
10dir

dir10

Fig. 5. Structure and Transformation for User View. Multiple files (file1, file2
etc.) are stored in the directory /dir1/dir2/.../dir9/dir10. Through user view transfor-
mation by Shedder, dir10 is moved to the top directory.

should be O(hLdir) where Ldir means the average length of directory name),
which means h times of memory access.

As for configuring user view, when we find the specific directory, we can create
a new item of it on the top directory and let the new item point to the original
top directory as Figure 5 illustrates. In addition, the original position of dir10
will become a soft link that will not be parsed by Shedder. Hence, we totally
only need O(hNupdates) time to generate configured user view.

6.2 Hardware and Software Platforms

Since what we are concerned about is metadata, we deploy three nodes for each
cluster to store them. Each machine has two Intel(R) Xeon(R) CPU 5160, DDR
667MHz 4GB of memory, 100GB HDD disk and running 2.6.32-71-kernel x86 64
Ubuntu. These nodes are running with 100Mbps network rate in LAN. For each
cluster, we deploy Hadoop-1.0.4 to set up the underlying storage system with
JDK 1.7.0 21.

6.3 Synchronization Performance Validation

According to the formula 23, the major two factors determines the rate of syn-
chronization: size of metadata updates and number of clusters belonging to the
global storage system. More accurately, not all clusters will receive same updates
because of authorization control. So the real size of updates to be transmit will
be much smaller. Experiment results are illustrated as follows.

Figure 6 shows synchronization time increase is nearly linear to the increase
of number of metadata updates when number of updates is large. Fluctuation
appears when number of updates is small. The main reason is when transmit time
of metadata updates is comparable to the network delay, the result will be various
due to the nondeterminism of network delay. But generally for enough large
number of metadata updates Shedder has linear performance to synchronize
clusters’ global namespace.
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Fig. 6. Cost time with constant cluster numbers. Each metadata operation
counts for metadata updates. In experiment we consider creating files as metadata
operations since number of files is usually changing more frequently. So the size of each
entry of metadata update is about 100B. Sync time means the time when all clusters
have received all replies. There are four clusters in total.
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Fig. 7. Cost time with constant metadata updates. Constant number of meta-
data updates is 100 × 211, the size of each of which is about 100B.

Figure 7 illustrates that synchronization time of Shedder is basically propor-
tional to theoretical fitting line, which conforms with Formula 2. Waiting more
clusters for reply makes the whole synchronization time longer. But there is also
a hidden reason: we use multiple threads to expect to transmit metadata up-
dates at the same time. In fact it is unlikely to send updates concurrently. The
operating system only allows one thread to put data into the buffer of network
card each time. Therefore, when metadata to be transmit is large enough, the
effect of waiting in the queue for writing network buffer will be enlarged.
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6.4 Customized User View Generation Performance Validation

Referring to the time complexity of generation method as Section 6.1, we mea-
sures the effect of two parameters, number of metadata updates and tier deep of
LuckyDir, respectively. In our implementation of Shedder, we support dynamic
change of LuckyDir, which needs Shedder to deal with all metadata updates in-
cluding old and new coming ones. Experiment results are illustrated as follows.

Figure 8 shows that the cost time of generation method is basically linear
with the increase of number of updates, which demonstrates our cost model
for customized user view is accurate. When one cluster creates 106 new files, it
only costs about 1.8s to finish dynamic transformation when LuckyDir is at the
reasonably 10th tier of directory path. Moreover, Shedder can support dynamic
generation of customized user view when multiple clusters expect to join or leave
this global storage system since it can process new metadata updates fast enough.
That is crucial when certain cluster is unavailable and its metadata information
can not be achieved. Other clusters can quickly discard old metadata updates
belonging to that cluster to make sure users don’t execute invalid operations in
future.
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Fig. 8. Transformation cost time with constant LuckyDir. Number of metadata
updates has the same definition as Figure 6, the size of each of which is about 100B.
Cost time means the whole transformation time from global namespace to configured
user view. And LuckyDir lies at the 10th tier of directory path.

From Figure 9 we can find that the cost time increases slowly with the increase
of the deep of directory tier. When the tier of LuckyDir changes from 10 to 50,
the final cost time only increases about 150ms. It proves our expectation to be
true because the change of directory tier nearly has no effect on computing time
for generating user view. Therefore, the small slope of fitting line demonstrate
that our cost model for customized user view generation is highly efficient and
has low latency.
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Fig. 9. Cost time with constant metadata updates. Though usually people don’t
consider directory with too deep level as the LuckyDir, we still measure extensive data
to evaluate the performance of Shedder. Cost time has the same meaning as Figure 8.
Constant metadata updates are 2 × 105.

7 Related Work

Earliest pioneer in this field is grid computing. It allows distributed resources
to get together to solve challenging problems such as [1]. However, as for cur-
rent important Internet applications such as PageRank [3], electronic commerce
recommendation systems etc., they expect these resources to be managed as a
whole instead of independent ones. Grid computing doesn’t originally support
such programming model [2]. Though some contributions [16, 17] adopt federa-
tion of geographically grids, They don’t mainly focus on sharing of metadata.

In distributed computing, Google Spanner [4] is the first system to manage
global scale data as a whole though [11] has brought similar functionality previ-
ously. It focuses on synchronous replication and multi-version control, which per-
mit strong consistency. Nevertheless, Spanner doesn’t concern about metadata
synchronization and customized user view in different clusters or data centers
since Google’s applications focus more on data instead of metadata. Moreover,
Spanner mainly replicates small files globally. For large files, even multi-version
control can’t guarantee strong consistency and writing performance. Fortunately,
[8–10] provide other methods to realize causal consistency. But still, they don’t
think about customized user view for tuning metadata lookup performance.

In addition, some distributed file systems indeed propose approaches to dis-
tribute metadata [5, 6]. Ceph file system provides a pool of metadata servers
for high scalability. [12, 13] have similar metadata management through Paxos
protocols. However, all clients see a unified view of global namespace, which can
not adjust to specific applications’ needs. Moreover, the assembly of metadata
servers cannot acquire metadata locality and will bring high latency access per-
formance over wide area networks. GPFS v3.5 [7] has proposed a method called
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Active File Management (AFM) to allow users to create a given user view of
global namespace across GPFS clusters. But real time, dynamic configuration of
user view is not supported. Meanwhile, GPFS alternatively caches part of data
of other clusters into memory for synchronization, which will bear a big burden
when cached data turns big.

8 Conclusion and Future Work

Customized logical network topology, global synchronization and customized
user view of global namespace across clusters over the wide area networks is
critically desirable for large amount of metadata sharing. Our solution Shedder
aims at providing a generic method to define logical network interconnections
through authorization control, synchronize file metadata from different clusters
and provide customized user view according to users’ dynamic configuration.
The cost model proposes that Shedder has high performance of synchronization
and user view generation. Our experimental evaluations with different workloads
and parameters have proven the effectiveness and low latency of Shedder.

Finally, our work has several aspects that can be enhanced in the future. File
prefetch can be made when Shedder finds which file metadata user often looks
up. According to locality law, it has high probability for the user to fetch these
files. File prefetch can obviously improve the whole performance of fetching re-
mote real files. Moreover, usually the used memory storing global namespace
is not out of memory boundary because of authorization control (cluster can
refuse to receive some metadata updates for saving memory), but as a devel-
oping perspective, if we really expect much more metadata updates, a pool of
metadata servers at the top of one cluster should be established. These servers
store received metadata updates. Then one user fetches what he wants from
these servers. This will support concurrent metadata access from large amounts
of users.
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Abstract. With the application of MLC (multi-level cell) and TLC (triple-level 
cell) techniques, the price of NAND flash memory based SSD (solid-state 
drive) decreases rapidly with increasing capacity. However, these techniques 
negatively influence the reliability of SSD as they lead to a larger number of 
raw flash memory errors. When multiple such reliability degraded SSDs 
organized in a RAID structure SSD failures could occur. Thus, a reliability-
aware data reconstruction mechanism that can quickly recover the data of a 
failed SSD onto a replacement SSD becomes essential. In this paper, we 
propose a reliability-driven data reconstruction strategy called PDB (Popular 
Data Backup) for RAID4 and SPD-RAID4 (Splitting Parity Disk - RAID4), a 
variant of RAID4. PDB collaboratively backups popular data among data SSDs 
to achieve a shorter “window of vulnerability”. Experimental results 
demonstrate that compared with the traditional SOR (Stripe Oriented 
Reconstruction) method PDB can shorten reconstruction time up to 31.3%. 

1 Introduction 

In order to decrease the price and increase the capacity of NAND flash memory based 
SSD (hereafter, SSD) [1], manufacturers are aggressively pushing flash memory into 
smaller geometries and letting each flash memory cell store multiple bits by employing 
either MLC (multi-level cell) or TLC (triple-level cell) technique [2]. Unfortunately, 
these techniques negatively influence the reliability of SSD as they lead to a larger 
number of raw flash memory errors compared with SLC (single-level cell) technology, in 
which each cell stores only one bit. As flash memory density increases, it becomes less 
reliable for it is more subject to various device and circuit level noises as well as retention 
errors [2]. Besides, a flash memory cell can only be reprogrammed in a limited number 
of times (called “program/erase cycles”), after which data can no longer be guaranteed to 
be correctly written into the cell [1], [3]. These scaling down techniques also 
substantially reduce the endurance of flash memory. For example, the available P/E 
(program/erase) cycles of MLC NAND flash memory has dropped from ~10K for 5x nm 
flash to around ~3K for current 2x nm flash [2]. 

Since a single SSD cannot satisfy the performance and reliability requirements 
demanded by data-intensive applications like video processing and bioinformatics, an 
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array of SSDs organized in some RAID (Redundant Array of Independent Disk) [4] 
structures has been proposed to serve such applications [5], [6]. However, when 
individual SSDs tend to be increasingly unreliable, the reliability of an SSD array 
becomes a severe problem. In particular, when an SSD fails a data reconstruction 
mechanism must be able to quickly recover its data onto a replacement SSD so that 
the length of the reconstruction time (or “window of vulnerability”) is sufficiently 
short [7]. A shorter “window of vulnerability” can alleviate performance degradation 
caused by data recovery. More importantly, it enhances SSD array reliability by 
lowering the probability of a subsequent SSD failure during an ongoing data 
reconstruction process [8], [9]. It is understood that a second SSD failure during a 
data reconstruction process could cause permanent data loss, which brings enormous 
economic loss in industry [8]. For instance, 50 percent of companies that lose critical 
business systems for more than 10 days never recover [8]. Apparently, a reliability-
driven data reconstruction strategy that can shrink the “window of vulnerability” for a 
RAID structured SSD array is much needed. To the best of our knowledge, very little 
research about SSD array data reconstruction has been reported in the literature. 

A RAID4 (block-level striping with dedicated parity) structured SSD array stores 
parity information on a dedicated SSD drive (i.e., the parity SSD) and distributes data 
among multiple data SSDs. It can tolerate one drive failure due to data redundancy. 
Among various RAID formats, RAID4 has not been popular because the dedicated 
parity drive becomes a performance bottleneck as parity data must be written to it for 
every block of non-parity data. Nevertheless, we recently proposed a new variant of 
RAID4 architecture called SPD-RAID4 (Splitting Parity Disk - RAID4) for parallel 
SSD arrays [10]. It splits the parity SSD into a configurable number of smaller ones. 
Thus, multiple small capacity parity SSDs can operate in tandem with the data SSDs 
to achieve a high performance [10]. For example, SPD-RAID4 turns a standard 
RAID4 array with five 512 GB SSDs (four data SSDs plus one parity SSD) into a 
new SSD array with four 512 GB data SSDs and two 256 GB parity SSDs. Note that 
the total cost of the two SSD arrays is almost the same as at the time of this writing 
the price of a 256 GB Intel SSD is about half of that of a 512 GB Intel SSD [10]. 
Experimental results from [10] demonstrate that in terms of mean response time SPD-
RAID4 outperforms the widely used RAID5 (block-level striping with distributed 
parity) by up to 20.3%. As a result, in this paper we propose a reliability-driven online 
data reconstruction strategy called PDB (Popular Data Backup) for SPD-RAID4.  

PDB divides each data SSD into a large user zone and a small mirroring zone. 
While the user zone serves outside user I/O requests, the mirroring zone of a data 
SSD backups its immediate neighbor data SSD’s popular read data in real-time. 
Assume that an SPD-RAID4 SSD array has four data SSDs (from left to right: S0, S1, 
S2, and S3). PDB dynamically replicates S0’s most popular read data onto S1’s 
mirroring zone. If S0 fails S1 can speed up the data reconstruction process by 
dumping the replica of S0’s most popular data onto a new replacement SSD. 
Similarly, S2 backups S1’s most popular read data. Lastly, S0’s mirroring zone is 
used to backup S3’s most popular read data. PDB makes data SSDs help each other in 
a circular linked list format. Essentially, it is a data reconstruction strategy based on a 
collaborative popular data real-time backup scheme. PDB exploits the temporal and 
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spatial locality of workloads and dynamically keeps track of the popularity changes of 
each data region. Section 3 explains the PDB strategy in details. 

To evaluate the performance of PDB, we first largely extend a validated single 
SSD simulator called SSDsim [11] to an SSD array simulator, which can simulate an 
SSD array in RAID4, RAID5, and SPD-RAID4 formats. Next, PDB and a 
conventional data reconstruction mechanism named SOR (Stripe-Oriented-
Reconstruction) [12] are implemented into the SSD array controller of the simulator. 
Finally, we use 3 real-world traces to conduct a comprehensive simulation study. 
Experimental results show that in terms of reconstruction time on RAID4 and SPD-
RAID4, PDB outperforms SOR by up to 20.9% and 31.3%, respectively. 

The remainder of this paper is organized as follows. Related work and motivation 
is presented in the next section. We describe the PDB strategy in section 3. In section 
4, we evaluate the performance of SOR and PDB based on real-world traces. Section 
5 concludes this paper with a summary. 

2 Related Work and Motivation 

2.1 SSD Basics 

An SSD is a data storage device that uses NAND flash memory to store persistent 
data [1]. Main parts of an SSD include flash controller, internal cache, and flash 
memory [1]. Flash controller manages the entire SSD including error correction, 
interface with flash memory, and servicing host requests [1]. The flash memory part 
of an SSD consists of multiple identical packages. Each package has multiple dies 
that share one serial I/O bus and common control signals [1]. Each die contains 
multiple planes with each having thousands of blocks and one data register as an I/O 
buffer. Each block has multiple pages (e.g., 64 pages in one block). The common size 
of a page ranges from 2K to 8K. Flash memory offers three basic operations: program 
or write, read, and erasure [1]. While reads and writes are page-oriented, erasure can 
be conducted only at block granularity [11]. Flash memory does not allow in-place 
updates as a write operation can only change bits from 1 to 0 [2]. On the contrary, an 
erasure operation changes all bits of a block to 1 and a block must be erased before 
being programmed (written) [2]. 

2.2 Existing Data Reconstruction Approaches 

When a disk fails, a parity-encoding-based RAID-structured disk array can restore to 
the normal operating mode by successively rebuilding each block of the failed disk 
onto a replacement drive while continuing to serve I/O requests from users [13]. This 
process is called data reconstruction or data recovery, which is normally performed by 
a background process activated in either the host or the disk array controller [13]. 
Existing data reconstruction approaches are all dedicated to HDDs (hard disk drives). 
They can be generally divided into three categories: (1) reorganizing data layout [14]; 
(2) optimizing reconstruction workflow [7], [8], [12], [13], [15], [16], [17]; (3) cache 
assisted reconstruction [9], [18].  
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Approaches in the first group improve reconstruction performance by reorganizing 
the data layout of the replacement disk or parity data units during data recovery [14]. 
One drawback of these approaches is that changing data layout incurs a high overhead. 
Mainstream data reconstruction approaches fall in the second category. They can 
improve disk array reliability and alleviate performance degradation by optimizing 
reconstruction workflow. SOR (Stripe-Oriented Reconstruction) [12] is one 
representative approach in this category. SOR creates a set of reconstruction processes 
associated with stripes so that multiple reconstruction processes can run in parallel.  

Since reducing user I/O traffic directed to a degraded RAID set is an effective 
approach to simultaneously reduce reconstruction time and alleviate user performance 
degradation, Workout [7] exploits the temporal locality of workloads to reduce user 
requests during reconstruction. However, its cost is very high as a surrogated RAID 
set is required to help the degraded disk array. Cache has been widely used in data 
reconstruction strategies [9], [18]. CORE [3] was developed on top of a hybrid disk 
array where HDDs and SSDs collaborate to optimize reconstruction. 

Our PDB strategy concentrates on SSD array data reconstruction by using an 
approach completely different from the existing ones. By dividing each data SSD into 
a large user zone and a small mirroring zone, PDB collaboratively backups immediate 
neighbor data SSD’s popular read data in real-time to significantly reduce 
reconstruction time, and thus, further enhances the reliability of system. 

2.3 SPD-RAID4 Scheme 

We recently developed a new SSD data reconstruction strategy called SPD-RAID4 
[10], which is a variant of a standard SSD RAID4 structure. To the best of our 
knowledge, it is the first data reconstruction approach devoted to an SSD array.  

SPD-RAID4 splits the parity SSD into a configurable number of smaller ones. It is 
composed of m data SSDs and n small capacity parity SSDs. In a standard SSD 
RAID4 array, only one parity SSD undertakes all parity updates, which makes it wear 
out quickly. This problem can be largely solved in SPD-RAID4 because multiple 
parity SSDs evenly receive parity updates. In addition, when a request spans across 
two or more stripes, the parity SSDs can work in parallel, and thus, significantly 
boosts the SSD array performance. If a data SSD fails, multiple parity SSDs can serve 
requests in parallel when recovering data in the fault data SSD. Experimental results 
demonstrate that the performance of SPD-RAID4 is better than that of SSD RAID5 
[10]. The scope of this research is to develop a reliability-driven data construction 
strategy for SPD-RAID4.  

2.4 Workload Locality 

In many applications, 80% accesses are directed to 20% of the data, a phenomenon that 
has long been known as Pareto’s Principle or “The 80/20 Rule” [19]. It indicates the 
existence of temporal locality and spatial locality in various workloads. Temporal 
locality, on the time dimension, refers to the repeated accesses to specific data blocks 
within relatively small time durations. Spatial locality, on the space dimension, refers 
to the clustered accesses to data objects within small regions of storage locations 
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within a short timeframe. Previous studies observe that 10% of files accessed on a web 
server approximately account for 90% of the requests and 90% of the bytes transferred 
[8]. Such studies also found that 20%-40% of the files are accessed only once for web 
workloads [8]. The two types of localities have been frequently exploited to boost 
system performance. PDB also exploits the two access localities. It dynamically tracks 
each data SSD’s popular read data. And then each data SSD backups the most popular 
read data of its immediate neighbor data SSD in real-time. Although the size of popular 
data is small, it can serve a large number of user requests. 

2.5 Motivation 

Modern large capacity SSDs become less reliable due to a spectrum of aggressive 
scaling down techniques. Meanwhile, RAID-structured SSD arrays are replacing 
traditional HDD based disk arrays in various data-intensive applications. Thus, the 
reliability of SSD arrays becomes a critical issue. Especially, when one SSD fails in 
an SSD array, a reliability-aware data reconstruction approach is desperately needed. 
Unfortunately, to the best of our knowledge, little research has been done in SSD 
array data recovery. Motivated by our observations on the facts mentioned above and 
the insights on workload locality characteristics provided by other researchers, in this 
paper we propose a new reliability-driven data reconstruction strategy PDB to 
enhance RAID-structured SSD arrays’ reliability during data recovery. PDB achieves 
reliability enhancement during reconstruction with a minimum performance penalty. 

3 The PDB Strategy 

3.1 Architecture Overview  

Fig. 1 shows the architecture of the PDB strategy on an SPD-RAID4 structured SSD 
array with 4 identical data SSDs (i.e., SSD0, SSD1, SSD2, SSD3) and 2 parity SSDs 
(i.e., SSD4, SSD5). The capacity of each parity SSD is a half of a data SSD. SSD0 is 
in shadow, which indicates that it becomes a failed SSD after running for a while (see 
Fig. 1). Each data SSD’s popular read data is replicated in real-time onto its 
corresponding immediate neighbor data SSD’s mirroring zone in normal mode. For 
simplicity, the immediate neighbor SSD is named as a buddy SSD. For example, 
SSD1 is the buddy SSD of SSD0 and SSD0 is the buddy SSD of SSD3 (see Fig. 1). 
When SSD0 suddenly fails PDB does not need to reconstruct its popular data as it has 
been stored on SSD1. Rather, PDB simply dumps it to a new replacement SSD, which 
can save data reconstruction time. Note that the requests that target on the popular 
data of SSD0 during the data recovery period can be served by SSD1. Obviously, 
when all SSDs are working correctly, the burden of each data SSD increases because 
each buddy SSD needs to backup its sponsored data SSD’s popular data in real-time. 
Thus, PDB causes performance degradation when all SSDs are fine. Our experimental 
results presented in Section 4.2 show that compared with SOR the performance 
degradation of PDB in normal mode is no larger than 6.8% in terms of mean response 
time. However, PDB shrinks data reconstruction time by up to 31.3%. We argue that 
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Fig. 1. Architecture overview of PDB 

it is worthwhile to trade a slight performance degradation for a substantial 
improvement in data reconstruction time because PDB noticeably improves SSD 
array reliability during a data recovery process. The shorter a “window of 
vulnerability” is, the more reliable an SSD array is. 

PDB consists of five key modules: read popularity identifier (RPI), request 
distributor (RD), popular data dumper (PDD), reconstruction data fetcher (RDF), and 
reconstructed data deliverer (RDD). The RPI module is responsible for identifying the 
popular data based on the recent access times of incoming user read requests in 
normal mode. The RD module directs I/O requests into either a user zone or a user 
zone and its corresponding mirroring zone. PDD dumps the popular data from the 
buddy SSD’s mirroring zone to a new replacement SSD. Multiple RDFs are launched 
during reconstruction. Each of them reads one data block or a parity block from a 
surviving data SSD or a parity SSD. Next, the rebuilt data block D0 can be computed 
by D0=XOR(D1, D2, D3, P). Finally, RDD writes the reconstructed data D0 onto the 
replacement SSD.  

In the normal mode, when a read request arrives PDB first identifies whether its 
associated data is popular by consulting the Read Popularity Table (RPT) (see Fig. 1). 
If it is popular, PDB backups it onto the mirroring zone of the corresponding buddy 
SSD once it cannot be found in the mirroring zone. If it is unpopular, PDB directly 
reads it from the right data SSD. Upon receiving a write request, PDB first checks 
whether it resides in the mirroring zone of the corresponding buddy SSD. If it does, 
PDB writes it into the right SSD and the mirroring zone of the corresponding buddy 
SSD simultaneously through the RD module. If not, PDB only writes it onto the right 
data SSD. When an SSD fails, the entire SSD array enters into the recovery mode. In 
this mode, when a read request arrives, if it targets on the failed SSD and the data has 
not been rebuilt onto the replacement SSD, PDB checks whether the data has been 
stored in the mirroring zone of the failed SSD’s buddy SSD. If yes, PDB will directly 
read it from there, and then, PDD dumps it to the replacement SSD (see Fig. 1). If not, 
PDB will launch multiple RDF processes to fetch data from surviving SSDs.  
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For example, in Fig. 1 data blocks D1, D2, D3 and the corresponding parity block P 
are fetched by 4 RDF processes in parallel from SSD1, SSD2, SSD3, and SSD4, 
respectively. Note that the 3 data blocks and the parity block P belong to one stripe. 
After conducting an XOR operation (see Fig. 1), the reconstructed data block D0 will 
be delivered to the replacement SSD by the RDD module. The replacement SSD now 
can serve the read request. When a write request that targets on the failed SSD comes, 
it will be re-directed to the new replacement SSD. 

3.2 Key Data Structures and Algorithm 

PDB relies on two key data structures RPT and RL (restore list) to identify popular 
read data and replicate it into corresponding buddy SSD’s mirroring zone. Fig. 2 
demonstrates their implementation details and the algorithm of restore function is 
shown as below. PDB evenly divides each user zone into multiple non-overlapping 
but consecutive logical data regions. Each node in RL represents a data region and 
keeps track of region information that will be replicated to corresponding buddy SSD. 
The closer the node towards the head of RL, the more popular it is. The size of each 
region is equal to the size of a flash memory block (e.g., one flash memory flock has 
64 pages and each page is 2 KB). RPT keeps track of the popularity of all logical data 
regions by using variables: id and visit_count. The id of an incoming read request is 
calculated by the equation below: 

id=int(LPN/block_size). (1)

where LPN is the logic page number of a request and block_size is set to 64, which is 
the number of pages in a flash block. Equation (1) indicates that an id contains a block 
size data region. For example, request LPN 0 to LPN 63 all belong to id 0. The value 
of visit_count represents the popularity of a data region. Its value is incremented by 1 
when a read request hits the data region. If the value of visit_count is equal to or 
greater than the popularity threshold, PDB takes the corresponding data region as a 
popular region. When the RPT table is full, the least popular data region with the 
fewest access times will be kicked out to accommodate a new popular data region. 
Then PDB inserts the corresponding node into RL and write the data in popular 
region into mirroring zone of indicated buddy SSD. 

Data consistency in PDB includes two aspects: (1) The key data structures must be 
safely stored; (2) The real-time backup data in buddy SSD must be updated timely to 
guarantee data consistency. Firstly, to prevent the loss of key data structures in the 
event of a power supply failure or a system crash, PDB stores them in a non-volatile 
RAM  (NVRAM). Since the size of RPT is generally small (1,024 entries with each 
entry 4 bytes in our experiments), it will not incur significant extra hardware cost. 
Secondly, the popular read data must be safely stored in corresponding buddy SSD. 
To ensure the popular data recovered to replacement SSD is not out-of-date, when the 
corresponding buddy SSD exists identical LPN of a write operation, the backup data 
must be updated simultaneously to make it always up to date. 
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Fig. 2. Workflow of PDB in normal mode 

Algorithm 1. 
restore()   
Write data in indicated zone into corresponding buddy SSD and create a node 
if restore list does not reach the maximum length then  

Directly insert the node into the head of restore list 
else  

Delete the node in the queue tail and invalidate data of tail node  
end if 

 

3.3 Implementation  

The original SSDsim [11] can only simulate a single SSD. We significantly extend it 
so that SSD RAID4 and SPD-RAID4 are also supported. On this basis, we also 
implement a baseline reconstruction mechanism SOR and our proposed strategy PDB 
on both RAID4 and SPD-RAID4. The size of a flash page is set to 2 KB in our 
experiments. When updating the parity data on the parity sub array, we also employ 
the round-robin way to write parity data evenly across all parity SSDs.  

Once the host sends a request, the RAID controller gets the device number and its 
LPN as well as the stripe number by a division operation. The mapping from a logical 
address to a physical address is controlled by FTL (flash translation layer) 
implemented inside each SSD. When a read request comes, PDB identifies the 
popularity of corresponding logical data region. Once it is taken as a popular page (we 
take a page in a popular data region as a popular page), PDB redirects the data to 
mirroring zone of corresponding buddy SSD while it returns to host at the same time 
if it has not been in buddy SSD. If the read operation is directed to the failed SSD, 
PDB checks that whether the indicated data has been stored in corresponding buddy 
SSD. If it has, PDB directly reads it from corresponding buddy SSD and dumps data 
in indicated data region to the replacement SDD. Otherwise, RDF and RDD are 
launched. When the popular data has been successfully dumped, the system can  
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directly respond the subsequent identical requests. Although the size of popular data 
is small, it can serve a large number of user requests, and thus, significantly reduces 
reconstruction time. 

4 Performance Evaluation 

4.1 Experimental Setup 

Among existing data reconstruction schemes, SOR is a widely used data recovery 
mechanism with the lowest overhead. Therefore, we implemented SOR and PDB on 
both SSD RAID 4 and SPD-RAID4 structures. Our simulator is built based on a 
validated SSD simulator called SSDsim [11], which is an event-driven, modularly 
structured, and highly accurate simulator for a single SSD. We added about 2,700 
lines of C codes to extend SSDsim to an SSD array simulator and implement the two 
data reconstruction schemes. The RAID controller fetches a request from a trace file 
and splits it into multiple sub-requests. 

We use three real-world traces [20] to compare the performance of SOR and PDB. 
The three traces and their characteristics are summarized in Table 1. The three 
Websearch (hereafter, Web) traces were collected from a machine running a web 
search engine. The read-dominated Web trace exhibits a strong locality.  

The number of data SSDs and parity SSDs are both configurable for SPD-RAID4. 
We conducted our performance evaluation of the two strategies on SPD-RAID4 with 
2 parity SSDs as we found that 2 is the optimal choice of the number of parity SSDs. 
The default number of data SSDs is 4. The number of RAID4’s data SSD is also set to 
4 and its parity SSD’s capacity is twice of a parity SSD in SPD-RAID4. Due to the 
limited footprints of traces, the capacity of each data SSD is set to 16 GB in our 
experiments and the capacity of each parity SSDs in SPD-RAID4 is 8 GB. The 
capacity of the only parity SSD in RAID4 is 16 GB as well.  

4.2 Real-World Trace Experimental Results 

In this section, we evaluate the performance of PDB by comparing it with a classical 
data reconstruction method SOR on both RAID4 and SPD-RAID4 structured SSD 
arrays. Fig. 3 shows the read, write and overall mean response times of PDB and SOR 
before data reconstruction in the normal mode. The marks “_R”, “_W”, and “_O” 
represent read, write and overall mean response time, respectively. For PDB, the 
logical data region size is set to 128 KB, which is equal to a flash block size. The goal 
of this group of experiments is to measure PDB’s performance degradation during the 
normal mode before an SSD failure happens. 

Table 1. Real-world traces characteristics 

Trace 
Name 

Read Ratio 
(%) 

Avg. Size 
(KB) 

Intensity 
(reqs./s) 

Duration 
(minute) 

Web 1 99.98 15.14 335 52.5 
Web 2 99.97 15.07 297 256.6 
Web 3 99.98 15.41 16 4543.9 
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From Fig. 3, we can see that the performance of PDB on both RAID4 and SPD-
RAID4 is consistently and slightly worse than that of SOR before reconstruction in 
the three traces. Compared with SOR, PDB degrades performance in terms of overall 
mean response time on SPD-RAID4 by 4.7%, 3.8% and 3.1% on the three traces, 
respectively (see Fig. 3b). Note that the maximum overall performance loss is only 
4.7% in Web1 trace case on both RAID4 and SPD-RAID4 structures. The reason for 
PDB’s performance degradation is that it has extra work to do comparing with SOR. 
In particular, PDB needs to dynamically keep track of popularity changes of read 
requests and stores popular data in the mirroring zone in real-time, which inevitably 
increase its burden, and thus, enlarges the mean response time of user requests.  

An SSD array enters the data recovery mode after one data SSD fails. To understand 
the performance and reliability enhancement of PDB during reconstruction, we 
measure mean response time during reconstruction and reconstruction time in a group 
of experiments whose results are demonstrated in Fig. 4 and Fig. 5. From Fig. 4a, we 
can clearly see that in the data recovery mode PDB even performs better in terms of 
mean response time during reconstruction than SOR in RAID4 format on Web1 and 
Web2 traces by 13.9% and 2.9%, respectively. It only performs a little bit worse in 
Web3 trace. However, on SPD-RAID4 structure, PDB only performs better on Web1 
trace (see Fig. 4b). Still, on average PDB’s performance degradation in data recovery 
mode is only 2.1% compared with SOR. The almost negligible performance 
degradation during reconstruction is because that when the reconstruction time  
 

      
Fig. 3. Performance comparisons before reconstruction on (a) RAID4; (b) SPD-RAID4 

        
Fig. 4. Performance comparison during reconstruction on (a) RAID4; (b) SPD-RAID4 
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Fig. 5. Reconstruction time on (a) RAID4; (b) SPD-RAID4 

decreases (see Fig. 5) the number of reconstruction requests per time unit obviously 
enlarges, which prolongs the mean response time of user requests. Therefore, the 
performance of PDB during reconstruction is lowered down. 

The reconstruction times of SOR and PDB on RAID4 and SPD-RAID4 are 
illustrated in Fig. 5. It shows that on both RAID4 and SPD-RAID4 structures the 
reconstruction time of PDB is consistently less than that of SOR. In case of SPD-
RAID4, PDB shrinks reconstruction time by 21.8%, 22% and 13.3% on the three 
traces, respectively (see Fig. 5b). PDB manifests a similar improvement in 
reconstruction time in RAID4 scenario (see Fig. 5a). Note that the much shorter 
reconstruction time shown in Fig. 5 compared with HDD array situations comes from 
two facts: (1) SSD has a much faster read and write speed than HDD  [0]; (2) the 
footprint of the three traces is relatively small, and thus, the amount of data need to be 
rebuilt is not large. PDB’s improvement in terms of reconstruction time stems from its 
ability to directly respond popular read requests targeting on the failed SSD from the 
mirroring zone of its buddy SSD. In this way PDB does not need to launch a standard 
reconstruction mechanism like SOR does. In addition, all three workloads are read-
dominant and have strong locality, which can be effectively exploited by PDB to 
substantially reduce reconstruction time. Although the stored popular data in a buddy 
SSD only takes a small percentage of total data amount, a large percentage of requests 
may access them consecutively due to workload locality explained in Section 2.4. 
Therefore, PDB can significantly reduce reconstruction time to shrink the “window of 
vulnerability”, and thus, can enhance SSD array reliability. We argue that scarifying 
slightly in performance in the normal mode to obviously shrink reconstruction time is 
a good trade- off for modern SSD arrays organized in a RAID structure. 

The purpose of our last group of experiments is to study the impacts of the number 
of data SSDs in an SPD-RAID4 SSD array on the performance of PDB. Several 
interesting observations can be made from the results shown in Fig. 6. First of all, for 
all 3 traces, we can see that the performance of both SOR and PDB before 
reconstruction (i.e., in the normal mode) increases when the number of data SSDs is 
enlarged.  It is easy to understand that with more data SSDs the SSD array can 
process user requests faster. Next, SOR consistently outperforms the PDB strategy on 
the three traces when the number of data SSDs is increasing. However, the 
performance gap between the two strategies shrinks with an increasing number of 
data SSDs (see Fig. 6), which is true for all 3 traces. Take the Web1 trace for 
example, the performance difference between the two reduces from 6.8% to 2.9%. 
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The small performance degradation stems from the fact that PDB needs to backup the 
popular data in normal mode, and thus, enlarges its mean response time. The larger 
the number of data SSDs is, the less performance degradation PDB has. The rationale 
behind is that with more data SSDs and a fixed amount of total workloads each data 
SSD needs to replicate less popular data for its sponsored data SSD. 
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Fig. 6. The impacts of the number of data SSDs on performance 

Furthermore, we can see that in the data recovery mode, PDB only performs better 
when the number of data SSDs is 3 or 4 in Web1 trace. PDB’s worse performance 
during reconstruction is because it gives data reconstruction task a higher priority than 
processing user requests during reconstruction. Finally, for all 3 workloads and all 
data SSD numbers, the PDB strategy consistently outperforms the SOR mechanism in 
reconstruction time (see Fig. 6). When the number of data SSDs increases, the 
reconstruction times for both SOR and PDB decrease. The reason for the decreased 
reconstruction time on a larger size SSD array is that fewer user requests arrive on an 
individual data SSD in the recovery mode, which in turn reduces the reconstruction 
time. In particular, in Web1 case PDB can shrink the reconstruction time by up to 
31.3% when there are 3 data SSDs in a SPD-RAID4 SSD array (see Fig. 6). However, 
the reconstruction time decreases the most when the number of data SSDs is 4 in the 
case of Web2 and Web3 traces. It is clear that SOR also lowers down its 
reconstruction time when the number of data SSDs increases from 3 to 5. More 
importantly, in Web1 trace, its improvement in terms of reconstruction time becomes 
more noticeable than that of PDB situation when the number of data SSDs enlarges 
from 3 to 5. The reason is that the amount of data that need to be rebuilt by SOR 
reduces faster than PDB. 

5 Conclusions 

With larger and more affordable yet less reliable SSDs, developing an efficient data 
reconstruction strategy with reliability-awareness for emerging SSD arrays organized 
in some RAID structures becomes a critical problem to be solved. Unfortunately, very 
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little research about SSD array data reconstruction has been reported in the literature. 
To the best of knowledge, this research is the first step towards solving the critical 
issue. In this paper, we develop and evaluate a novel online data reconstruction 
strategy called PDB for both conventional RAID4 and SPD-RAID4. The PDB 
strategy exploits the workload locality, which has been frequently observed in a 
spectrum of real-world workloads like the three web search traces. It utilizes a 
collaborative popular data backup mechanism among all data SSDs to largely shrink 
the “window of vulnerability”, and thus, enhances SSD array reliability. Our 
Experimental results demonstrate that compared with a traditional reconstruction 
method SOR the PDB strategy can further shorten reconstruction time by up to 31.3% 
on SPD-RAID4. 

PDB, however, in its current format, only applies the popular data backup scheme 
among all data SSDs. When a parity SSD fails, it still uses a conventional 
reconstruction method, which is currently used by SOR. The main reason is that 
parity data generally does not exhibit obvious locality, which makes PDB inefficient. 
Considering that normally the number of data SSDs is larger than that of parity SSDs, 
the probability of a data SSD failure is higher than a parity SSD failure. Thus, PDB 
could enhance SSD array reliability in majority cases. Also, PDB may not work well 
under write-dominated workloads. One direction of the future of this research is to 
extend it to incorporate write-dominated. Finally, we only integrate PDB into RAID4 
and SPD-RAID4 SSD arrays. In our future work, we are going to integrate it into 
different RAID architectures such as RAID5. 
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Abstract. Virtualization is one of the key technologies that enable Cloud Com-
puting, a novel computing paradigm aiming at provisioning on-demand computing
capacities as services. With the special features of self-service and pay-as-you-use,
Cloud Computing is attracting not only personal users but also small and middle
enterprises. By running applications on the Cloud, users need not maintain their
own servers thus to save administration cost.

Cloud Computing uses a business model meaning that the operation overhead
must be a major concern of the Cloud providers. Today, the payment of a data
centre on energy may be larger than the overall investment on the computing,
storage and network facilities. Therefore, saving energy consumption is a hot
topic not only in Cloud Computing but also for other domains.

This work proposes and implements a virtual machine (VM) scheduling mech-
anism that targets on both load-balancing and temperature-balancing with a final
goal of reducing the energy consumption in a Cloud centre. Using the strategy
of VM migration it is ensured that none of the physical hosts suffers from ei-
ther high temperature or over-utilization. The proposed scheduling mechanism has
been evaluated on CloudSim, a well-known simulator for Cloud Computing. Initial
experimental results show a significant benefit in terms of energy consumption.

Keywords: Cloud Computing, Green Computing, Virtualization, VM Schedul-
ing, Thermal-aware Scheduler, Load Balancing.

1 Introduction

Cloud Computing [16,26] is a novel computing paradigm. It provisions computing ca-
pacities, including hardware, software, applications, networks as well as storage, as ser-
vices with a business model of pay-as-you-use. Its special features lie in that users can
access the computing resources via Internet with a thin-client, such as a Web browser,
without the interaction of administrators. Additionally, Cloud Computing shows the
advantages in elasticity, system management, cost-efficiency, customized environment
and on-demand resource provision [23,17]. Therefore, an increasing number of Cloud
infrastructures [5,29,18] have been established after the first computing Cloud, the
Amazon Elastic Compute Cloud [1].
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Several underlying technologies enable Cloud Computing, where the virtualization
technology is especially important because virtual machines are the base for deliver-
ing any Cloud services, which are categorized as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (IaaS) [16]. Actually, the virtu-
alization approach has been used for 60 years with an initial application of running dif-
ferent binary codes on the expensive hardware in the late 50’s. Today, Cloud Computing
makes virtualization a hot topic again because it relies on this technology to provide on-
demand, elastic computing resources. The virtualization itself has also been developed
from simple approach to mature techniques with a standard virtualization layer called
hypervisor or virtual machine monitor. This layer is responsible for resource allocation
and the virtualization of the processor, the memory and devices.

An important issue in Cloud Computing is the scheduling of virtual machines on
physical hosts. A Cloud centre is equipped with several thousands of physical hosts,
each of them can host an incoming virtual machine request. A traditional approach of
scheduling virtual machines is a kind of FIFO approaches, where all hosts are con-
tained in a list and the first physical machine that matches the requirement of the VM is
selected to host the VM.

Scheduling is not a new topic. This issue exists in various scenarios, like task schedul-
ing in parallel and distributed systems [10,24,25,19] and job scheduling in computing
Grids [20,11,12]. Researchers have also proposed a number of algorithms, including
those targeting on energy consumption. In the field of Cloud Computing, saving energy
is especially important because it adopts a business model and the Cloud providers are
surely expecting a low operation overhead. Therefore, this work developed a specific al-
gorithm for scheduling the virtual machines on the Cloud. This algorithm first performs
an initial scheduling and then inspects the change of workload and temperature on the
host. In case of over-loading or over-heating, the VM is migrated to another host, hence
to avoid hot spots with respect to load and temperature. We implemented this algorithm
on CloudSim [4], a well-known simulation platform for research work in Cloud Com-
puting. The initial experimental results show the feasibility of the developed algorithm,
especially in saving energy consumption.

The remainder of the paper is organized as following. Section 2 introduces the related
work in energy-aware scheduling algorithms. Section 3 describes the concept of the
proposed approach, followed by the implementation details in Section 4. The evaluation
results are then depicted in Section 5. The paper concludes in Section 6 with a brief
summary and future directions.

2 Related Work

Task scheduling has been a hot topic in various research domains. As a result, a lot
of research works have been performed for investigating the scheduling strategies on
different systems with features like load-balancing and energy-awareness.

The work described in [27] and [24] exploited Dynamic Voltage Frequency Scaling
(DVFS) to implement a power-aware task clustering algorithm for parallel HPC tasks.
Authors of [14] also relied on DVFS to schedule independent tasks on a single pro-
cessor. The work presented in [15] used DVFS to build a hybrid global/local search
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optimization framework for reducing the energy requirement of multiprocessor system
with dynamic workloads.

Authors of [13] applied a thermal-aware strategy based on the RC-Thermal model
[21] to reduce the peak temperature of HPC servers under stochastic workloads. The
approach in [30] combines both techniques used in [27] and [13] for solving a
temperature-aware scheduling problem. For this, the authors implemented an approx-
imation algorithm based on the Lumped RC-Thermal model and DVFS to study the
effect of using the thermal constraints on maximizing the performance of tasks running
on some CPU architectures.

Concretely on virtualized machines, task scheduling at the high level is actually VM
scheduling that handles the allocation of virtual machines to the physical hosts. Over
the last years, the topic of VM scheduling has been addressed. The work presented in
[8] implemented a guest-aware priority-based scheduling scheme to support latency-
sensitive workloads. The proposed scheduling scheme prioritizes the virtual machines
to be allocated by using the information about priorities and status of guest-level tasks
in each VM. It preferentially selects the VMs that run latency-sensitive applications
to be scheduled thus to reduce the response time to the I/O events of latency-sensitive
workloads. Authors of [28] proposed a novel VM scheduling algorithm for virtualized
heterogonous multicore architectures. The algorithm exploits core performance hetero-
geneity to optimize the overall system energy efficiency.

The work in [7] proposed a strategy for VM scheduling on the Cloud with load
balancing. The scheduling decision is based on the historical information and current
state of the system. Authors of [9] proposed a scheduler, which schedules the virtual
machines based on the knowledge about the duration of timed instances to optimize
the virtual to physical machine assignment. The main goal of this scheduler is to re-
duce the cumulative machine uptime and thereby save the energy consumption. The
work in [2] is also one of the few approaches that deal with energy-aware scheduling
of Cloud-based resources. The authors implemented a simulation environment based
on CloudSim [4] to evaluate different power-aware scheduling policies for VMs run-
ning on a large scale Cloud centre. Furthermore, they showed how the VM migration
and VM pining techniques can optimize the load-balancing and the total energy con-
sumption of the datacenter. Our work is similar to this work, however, we combine
both power and thermal-aware scheduling policies to reduce the energy consumption.
More importantly, we extend this work to support using temperature constraints as new
scheduling parameters. The evaluation on CloudSim has shown the improvement of this
approach over the existing one in terms of saving energy consumption. The experimen-
tal results will be given after the description of the proposed scheduling algorithm and
its implementation.

3 The Thermal-Aware VM Scheduling Scheme

Modern processors have a tolerance limit to the on-chip temperature. A higher temper-
ature over this limit (i.e., case temperature) not only increases the energy consumption
but also may result in defect in hardware. We designed a novel thermal-aware schedul-
ing scheme in order to avoid the occurrence of this scenario.
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The proposed scheduler is called ThaS (Thermal-aware Scheduler). As shown in
Figure 1, ThaS implements an interface between the VMM (hypervisor) and the virtual
machines in a Cloud centre. It replaces the conventional scheduling algorithm of a hy-
pervisor to map a virtual machine request to a physical machine with consideration of
the load and temperature on the hosts. The deployment, such as start, stop, migration,
etc., of the virtual machines on the physical host remains the task of the hypervisor. In
this way, our scheduler acts as an allocation decision component for the hypervisor.

Fig. 1. Software architecture of the Thermal-aware Scheduler

Our thermal-aware scheduling concept is based on several existing strategies, which
are applied for the requirement of different scheduling scenarios. These strategies are
individually integrated in our framework at the runtime based on the current load and
temperature state. The main tasks of our scheduler ThaS are the following:

– Thermal-Aware Energy-Management: The first purpose of ThaS is to schedule
VMs with respect to the temperature of the processors. Such scheduling strategy
needs a temperature model that describes the changes of this parameter as appli-
cations (here virtual machines) are running. We applied the lumped RC thermal
model for this initial work due to its simplicity. This model is however limited to
a single-core processor. Therefore, ThaS supports now only single-core machines.
For the next version of ThaS we will adopt the Hotspot [6] tool that models mul-
ticore architectures with more accuracy but not more complexity. Hotspot uses an
analogy between electrical circuit phenomena and a heat transfer phenomena. The
heat flow between the internal CPU chip blocks is modeled by connecting thermal
resistors and thermal storage in blocks. The power consumed by each chip (which
typically corresponds to a function unit) is modeled by a power source.

– Power-Aware Energy Management: For power management we apply DVFS.
Since the power consumption depends on the CPU usage, this metric has to be
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measured before each VM scheduling step in the whole simulation process in order
to calculate the current consumed energy by the CPU.

– Migration of Virtual Machines: Migration or live migration refers to the process
of moving a running virtual machine or application from one physical machine to
another. In addition to the machine image, the data storage and network connectiv-
ity of the virtual machines have also to be transferred from the source host to the
destination. The proposed scheduling scheme implements this kind of VM migra-
tion and runs the entire migration process transparently to the user. The migration
contains several steps, including the Push phase, the Stop phase, the Copy phase
and the Pull phase. The VM migration can take a long time when a VM has a large
amount of memory. In order to save the unnecessary energy consumption during
the VM migration, we implemented two strategies in ThaS: i) the Pining strategy
that allows the allocation of multiple VMs on the same host to free other physical
hosts; ii) the energy-save-modus strategy that sets the unused hosts (or CPUs) in
the idle mode.

ThaS decides during the runtime which VM must be running on which host. It works
in the following way: As a starting point a VM request coming from the user is sched-
uled on a physical host based on the traditional Round-Robin scheme. In order to make
a decision, ThaS calls the thermal model and the power model to acquire all scheduling
parameters including the current CPU temperature, the CPU usage for each host, the
datacenter configuration and the application (VM) requirements. In case that a physi-
cal host approaches to the critical temperature (Temperature threshold) or the critical
CPU utilization value (Utilization threshold), ThaS looks for another host with better
temperature or load criteria and migrates the running VM from the source host to the
destination host. Therefore, the proposed approach schedules the virtual machines not
only for minimizing the energy consumption but also for load-balancing.

4 ThaS Implementation

In order to verify the concept and to validate the functionality of the proposed schedul-
ing strategies, we implemented a Java-based simulation environment for ThaS. The
prototypical implementation is based on CloudSim [4], a well-known simulator for re-
search work on the Cloud.

An important task of ThaS is to figure out the critical hosts. The following pseudo-
code shows how the scheduler performs this task. As can be seen in the code, the sched-
uler goes through all the available hosts to find the hosts, whose temperature and CPU
usage exceed the specified thresholds. The detected hosts are then marked as candidates
for VM migration and added to the list MigratingFromHosts. This list is adopted in the
second step as the input list.

Input : H o s t L i s t , VmList
Output : M igra t ingFromHos t s
For each h o s t i n h o s t L i s t Do

I f i s H o s t O v e r T h r e s h o l d T e m p e r a t u r e ( h o s t ) Then
overT hres ho ldT empHos t s <− add h o s t

E ls e
I f i s H o s t O v e r T h r e s h o l d U t i l i z a t i o n ( h o s t ) Then
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o v e r U t i l i z e d H o s t s <− add h o s t
Endif

Endif
Endfor
M igra t ingFromHos t s <− ove rT hre s ho ldT empHos t s+ o v e r U t i l i z e d H o s t s
Return M igra t ingFromHos t s

In the second step, the list of critical hosts, which has been created by the scheduler
in the first step, is processed again for finding for VMs running on them. These virtual
machines are the concrete migration candidates. The candidate VMs are then sorted by
their CPU usage. The VMs with minimal CPU usage have higher priority of migration
in order not to bring high workload on the target host, thus to avoid further migrations.
For the same reason the scheduler must also ensure that the temperature on the tar-
get host does not exceed the threshold. At the end of processing, this scheduling step
creates a list VMstoMigrateList that contains all VMs, which are the actual migration
candidates.

Input : M igra t ingFromHos t s
Output : VM s toM igra te L i s t
For each h o s t i n M igra t ingFromHos t s Do

While t r u e Do
vm <− ge tVmtoM igra te ( h o s t )
I f vm = Nul l Then
b r e a k
Endif
VM s toM igra teL i s t <− add vm
h o s t <− d e a l l o c a t e vm
I f ! ( i s H o s t O v e r T h r e s h o l d T e m p e r a t u r e ( h o s t ) &&

i s H o s t O v e r T h r e s h o l d U t i l i s a t i o n ( h o s t ) ) Then
b r e a k
Endif
Endwhile

Endfor
Return VM s toM igra teL i s t

The last step of the VM migration process is to find an appropriate target host for
hosting the migration candidates in the list created in the last step. Here, the work-
load requirements (e.g., needed resources) have to be taken into account. Our scheduler
first observes the temperature on the destination host. If this temperature is below the
threshold value (Temperature threshold) and the requirement of the VM is fulfilled, the
observed host is selected as the target host. In case that several target hosts are found,
the one with the minimum energy consumption is chosen for hosting the VM to be
migrated.

Input : M igra t ingFromHos t s , v m s t o M i g r a t e L i s t
Output : Migra t ionMap
Migrat ionMap <− n u l l
v m s t o M i g r a t e L i s t . S o r t D e c r e a s i n g C P U U t i l i s a t i o n
For each vm i n v m s t o M i g r a t e L i s t Do

a l l o c a t e d H o s t<− n u l l
minPower<− Max
For each h o s t n o t i n Mig ra t ingFromHos t DO

I f h o s t has enough r e s o u r c e s f o r vm Then
power <− e s t i m a t e P o w e r ( hos t , vm)

Endif
I f h o s t s w i t c h e d O f f && h o s t o v e r U t i l i z e d A f t e r A l l o c | |

o v e r T h r e s h o l d T e m p a r u r e A f t e r A l l o c ( power )
Then c o n t i n u e

Endif
I f power < minPower Then
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a l l o c a t e d H o s t <− h o s t
minPower <− power

Endif
I f a l l o c a t e d H o s t != NULL Then

a l l o c a t e vm t o a l l o c a t e d H o s t
Endif

Endfor
Migrat ionMap <− add (vm , a l l o c a t e d H o s t )

Endfor
Return migra t ionM ap

To further improve the scheduling efficiency in terms of energy consumption, a real-
location of VMs is designed in the proposed scheduler. This scheme concerns the hosts
that are underutilized. In case that the CPU usage of a physical host is below the mini-
mal value, the VMs on it are migrated to other hosts. The underutilized hosts are then
set in the sleep mode for the purpose of saving energy. The idle hosts are not candidates
of destination host for VM migration.

5 Experimental Results

5.1 Simulation Setup

As mentioned above, the prototype of the scheduler is implemented on top of CloudSim,
which models large datacenters provisioning computing infrastructures as services.
CloudSim implements a view of infinite computing resources. This feature is important
for us to evaluate the proposed thermal-aware scheduling algorithms on a large virtual-
ized datacenter infrastructure. In contrast, validation on a real Cloud infrastructure will
be extremely difficult for performing different experiments in order to examine the full
functionality of the implemented scheduler and the impact of the scheduling strategies.

The simulation duration was set to one day with a scheduling interval of five minutes
in the simulation. In addition, a workload of 50 cloudlets (applications) was modeled,
each with a CPU core and a computational requirement of 2500 MIPS.

In order to calculate the CPU temperature at a specific timestamp, our thermal model
requires the current performance and consumed power of the processors. The later is
determined using a power model. The power consumption of computing resources in a
datacenter is mainly determined by the total consumed CPU, memory, disk, and cooling
power. It has been shown that the power consumption of a server can be described
exactly by a linear relationship between the power consumption and CPU utilization
(u), even if Dynamic Voltage and Frequency Scaling (DVFS) is employed. An idle
server usually uses 70% of the maximum power consumption [3].

Table 1 lists all setup parameters applied in the simulation based tests. The first block
in the table shows the thermal constants for the lumped RC thermal model. The values
in the table are typical values of a single core CPU obtained from [6].

We configured CloudSim for a datacenter with 50 diverse hosts, each of them com-
posing half of the HP ProLiant G4 servers. The other half is modeled as the HP ProLiant
G5 servers. The characteristics of the servers are given in the second block of Table 1.
The frequency of each core on the HP ProLiant G4 Server is 1860 MIPS and for the HP
ProLiant G5 Server the value is 2660 MIPS. Each server is modeled with a connection
of 1 GB/s bandwidth. The corresponding power model used by each server is gathered
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Table 1. The experimental setups

Thermal Parameter Value Unit
Initiale CPU Temperatur (Tinit) 318 Kelvin

Thermal Ambiente Temperatur (Tamb) 308 Kelvin
Constants Case Temperatur (Tcase) 353 Kelvin

Thermal Capacity (Cth) 340 Joule/Kelvin
Thermal Resistance (Rth) 0.34 Kelvin/Watt
Server Host Type HP Proliant G4 HP Proliant G5

Simulated Host MIPS 1860 2660
physical Host Cores 1 1
machines Host RAM [MB] 2048 4096

Host BW [Gbit/s] 1 1
Host Storage [TB] 1 1
VM Type VM MIPS VM RAM [MB]

Virtual 1 500 613
machine 2 1000 1740

configuration 3 2000 1740
4 2500 870
VM Cores VM BW [Mbit/s] VM Size [GB]
1 100 2.5

from SpecPower08 [22]. The simulation of less powerful CPUs is advantageous for a
better evaluation of the effect of the VM migration because few workload is required to
result in the overload of a server.

The last block of Table 1 gives the properties of the four modeled VM types with the
assumption that all VMs are running on single core machines. As shown in the table,
we use different VMs with various values in MIPS and RAM to model real scenarios.
The bandwith and VM size for all simulated virtual machines are set as 100 Mbit/s and
2.5 GB individually.

The implemented scheduler relies on two thresholds for migration decisions, one is
the Temperature threshold and the other is the Utilization threshold. In order to have
a simulation-based evaluation applicable, it is important to perform experiments with
workload traces of a real system. The simulation experiments [2] have demonstrated
that energy consumption from a CPU utilization rate of 90% rises very quickly. There-
fore we have chosen a value of 0.9 as the Utilization threshold. If the CPU utilization
reaches this threshold, the VMs running on it may be migrated to another host with
lower CPU usage. The selection of the Temperature threshold is not as easy as the
Utilization threshold. In the following subsection we demonstrate how we achieved an
optimal threshold of 343 Kelvin with a trade-off between power consumption and SLA
violation.

5.2 Simulation Results

The first experiment was performed for studying the impact of the Tempera-
ture threshold. Figure 2 demonstrates the experimental results. The upper picture in
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the figure depicts the impact on the energy consumption and the middle one shows
the resulted number of migrations by different thresholds, while the lower figure de-
picts the impact of the threshold on the Service Level Agreement (SLA) violations.
The thresholds range from 333 to 360, as presented in the x-axis. The SLA violation
metric represents the percentage of unallocated CPU performance relative to the total
requested performance in the workloads.

Observing all three diagrams, it can be seen that the lines can be divided into four
areas with different impact values, as marked in the upper diagram. In the first area, i.e.,
the Temperature threshold between 333K (initial temperature) and 335K, the energy
consumption remains constant and its value is 52 KWh per day. Our ThaS scheduler
only decides to migrate the VMs when the temperature of the source host has reached
the Temperature threshold. If a VM should be migrated there must be a destination
host with a CPU temperature below the threshold. Because, logically, all hosts have a
temperature above the Temperature threshold, our scheduler does not find any target
host on which the VMs can be migrated. Hence, there is no VM migration in this area,
as shown in the middle diagram. The scheduler has also no influence at all (see the
lower diagram), which leads to increased and constant energy consumption and no SLA
violations.

In the second region (335K < Temperature threshold < 340K) the effective-
ness of the scheduler can be seen clearly. In contrast to the first area, the scheduler finds
now hosts with temperatures below the threshold Temperature threshold. These hosts
are selected by the scheduler as the target hosts for VM migration. The number of target
hosts increases as the threshold Temperature threshold being enlarged, because with a
higher threshold there must be more hosts whose temperature is below the threshold.
As a result, also more VM migrations are performed as depicted in the middle diagram.
As any VM migration causes a modeled CPU performance degradation of 10%, the
percentage of SLA violations increases with a large number of migrations. Overall, the
second area shows that i) The scheduler starts VM migration only from a certain Tem-
perature threshold (here 335 K); ii) The higher the threshold value for the temperature
is, the more target hosts are available as candidates for VM migrations.

In the third area (340Kelvin < Temperature threshold < 353Kelvin), the vari-
ation of the Temperature threshold has no influence on the power consumption any
more since the number of the destination hosts (hosttemperature < Temperature
threshold) remains constant in this region. Correspondingly the number of migrations
is nearly not changed. This results in a nearly constant power consumption and SLA
violation percentage.

In the fourth area (Temperature threshold > 353Kelvin) the energy consump-
tion is reduced slightly. The reason for this is that the scheduler sets all hosts with
CPU temperature over the case temperature (T case=353 Kelvin) in the sleep mode. It
moves away all running VMs on these hosts and then puts the hosts in the idle status.
This mechanism results in a small reduction of energy consumption. However, a higher
SLA violation is resulted, as can be seen in the lower picture, due to the fact that not all
user requirements can be fulfilled with a few numbers of active hosts.

To summarize the results in Figure 2: the number of VM migrations significantly
depends on the value of the Temperature threshold; the energy consumption remains
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Fig. 2. The impact of Temperature threshold on the energy consumption (upper diagram), the
number of migrations (middle diagram) and the SLA violation (lower diagram)
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high when no migration is possible and only after a certain threshold with the temper-
ature VM migration is performed, which leads to a reduction of energy consumption;
when the case temperature (T case) is reached most hosts are put into sleep mode,
which affects the CPU Utilization threshold that in turn leads to a low number of VM
migrations.

Fig. 3. Optimal trade-off for the Temperature threshold

Our goal in thermal-aware scheduling is to minimize both the energy consumption
and the SLA violation as possible. Therefore, we try in the selection of threshold values
(Temperature threshold and Utilization threshold) to take a trade-off, where the energy
consumption and the SLA violation shall both remain at a minimum. From the previous
simulation results, we have observed that the third area of the different waveforms is
the optimum range and the threshold value for the temperature shall be chosen from
this field.

In order to give a more clear view about this optimal threshold of temperature, we
created another diagram containing the energy consumption and the SLA violation.
Figure 3 depicts this graph. Observing the graph in the figure, it can be seen that there
is a point where both the energy and the SLA violation are low. This point (threshold
343 Kelvin) is exactly the optimal threshold we are looking for. Hence, we selected 343
Kelvin as the optimum value of the Temperature threshold for our experiments.

To further examine the efficiency of the implemented scheduler, we compared the
results of our ThaS scheme with three other scheduling schemes. The first one is Non
power aware, which was implemented without consideration of the CPU usage. It re-
flects the energy consumption in a datacenter with full CPU power.

The second scheme is DVFS. It schedules tasks on basis of the CPU voltage and
frequency. It relies on the information from the CPU performance and power model
to set the priorities for the VM placement. No migration is performed by the DVFS
scheduling. The energy consumption is calculated as a function of the CPU usage and
is regulated automatically and dynamically based on DVFS.
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The last scheme is Power aware ThrMu [2]. This scheduling algorithm focuses on
minimizing the CPU usage by setting up physical hosts in the idle mode. It migrates
the running VMs of a host with CPU usage over a threshold to other hosts. We choose
a Utilization threshold of 0.9 for this scheme.

In contrast, our scheduling algorithm ThaS performs VM migration based not only
on the CPU usage but also on the CPU temperature. Here, we adopted the lumped RC
thermal model for computing the temperature. The two thresholds in the VM migra-
tion are set with the Utilization threshold of 0.9 and the Temperature threshold of 343
Kelvin.

Figure 4 depicts the result of the experiment, where the energy consumption was
measured during a single simulation run with all four algorithms. Comparing ThaS
with the other scheduling algorithms, it can be observed that ThaS achieves the lowest
energy consumption with a value of 25.64 KWh per day, while the energy consump-
tion with other schemes are Non power aware of 150.68 KWh, DVFS of 52.98 KWh
and Power aware ThrMu of 28.9 KWh. We conclude: i) The support of VM migration
mechanisms is required for efficiently using Cloud resources. ii) Combining the power-
aware with the thermal-aware scheduling strategies provides the best results for energy
consumption.

Fig. 4. Comparison of ThaS with other scheduling schemes

6 Conclusions

Scheduling is a hot topic in different scientific domains, including distributed systems,
peer-to-peer environments, High Performance Computing as well as Cloud Computing.
In Cloud Computing the scheduling problem concerns majorly the scheduling of virtual
machines on a physical host. In this paper we propose and implement a load-aware
and thermal-aware scheduling mechanism that is capable of preventing the occurrence
of over-loaded or over-heated physical machines hence balancing the entire system.
The validation results show the benefit of the developed mechanism in terms of energy
consumption.
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This is our initial work in the research field of energy issues in Cloud centers. The
proposed mechanism achieves a reduction of power consumption but we still need a bet-
ter algorithm for finding the best location to host a virtual machine towards the lowest
energy consumption in the complete system. We are currently studying vision cognitive
algorithms, which are usually used for solving global optimization problems, and will
apply them to schedule the virtual machines on the Cloud. Furthermore, we will im-
prove the accuracy of our thermal model to support multi-core CPU architectures used
by current Cloud infrastructures.
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Optimistic Concurrency Control for Energy

Efficiency in the Wireless Environment
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Abstract. The ubiquity of smart portable devices has led to concur-
rency control for the mobile network becoming an area of growing
concern. Conventional optimistic concurrency control techniques require
retries of failed or disputed transactions, which place additional drain
on the energy consumption of both the network and the smart device.
We present a Distributed Later Validation Earlier Write Optimistic Con-
currency Control (DLVEW) algorithm to efficiently handle transactions
running on the server side without disturbing transactions running on
clients. Our simulation shows an increase in throughput and reduction in
both the response time and the number of missed deadlines of transac-
tions. The corresponding reduction in contentious transactions needing
to be restarted leads to a lower power cost for the network as a whole.

1 Introduction

Smartphone applications are placing greater demands on energy resources. Mil-
lions of smartphones and tablet devices are being used for more complex tasks, so
the power consumption of the servers and network is increasing, and the battery
recharge life of each phone or tablet is becoming shorter. An algorithm which
reduces the energy cost of a transaction between a client (i.e. the phone) and
the server will multiply to a significant energy saving across all devices in use. In
particular, if the number of failed transactions due to contention can be reduced,
thereby lowering the number of times a transaction must be repeated, then the
overall power consumption will also be reduced.

Many applications require an asymmetrical channel whereby the frequency of
read transactions requested by the client is significantly higher than the number
of write transactions. Taking the example of a stock trading application; there are
far more transactions involving a read-only checking of stock prices, compared
to the number of transactions involving a sale or other event requiring an update
transaction (i.e. users typically check far more share prices than they buy shares).
A common implementation of this type of application involves the use of a
broadcast disk protocol [1], whereby the database is repeatedly broadcast to
the clients in its entirety. This approach means that there is no requirement
for the client to send a read request to the server; the client simply waits for
the requested piece of data to appear in the cycled transmission, and the server
does not have to respond to individual client requests to send data. Clearly this
greatly reduces the amount of traffic on the network, and the amount of requests
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which the server must process. This type of approach is particularly useful when
a relatively small database must be read by many clients.

Earlier studies on transaction processing in wireless environments were fo-
cused on read-only transactions [2] [3] [4]. Update transactions must also be
considered. Optimistic Concurrency Control (OCC) is a well-understood solu-
tion for this type of situation [5]. However these protocols tend to involve heavy
use of the network in both directions to request and validate read transactions,
which renders the approach less applicable to mobile networks [2] due to limited
uplink bandwidth and battery life. In [6] Lee proposed a variant of the OCC
algorithm suitable for a broadcast environment known as forward and back-
ward optimistic concurrency control (FBOCC). This algorithm performs partial
backward validation [7] against committed transactions at the beginning of ev-
ery broadcast cycle at mobile clients. It also performs forward validation [7]
against concurrently running transactions at the server (including both server
transactions and update mobile transactions).

In this paper we develop a DLVEW algorithm for broadcast disk which is more
efficient at handling concurrently running transactions at the server without
disturbing transactions running on the client. We achieve this by changing the
ordering of the validate step at the server so that it takes place after the write
step (conventionally it occurs before writing). In [8] we showed that this approach
is applicable as optimistic concurrency control on resource-constrained devices
such as smart-phones. We now extend this work to the broadcast disk model for
mobile network applications that require significantly more read transactions
than write transactions. Our results show that, with this technique, the number
of client-server transactions which miss their deadline due to concurrency issues
is reduced. The non-intuitive ordering of the validation phase, combined with
the requirement of a rerun policy, improves efficiency while reducing the energy
consumption of the network.

2 Background and Related Work

2.1 Broadcast Disk and Optimistic Concurrency Control

Many studies have proposed transmitting data over wireless networks using data
broadcasting techniques [9] [10]. The broadcast disk protocol continuously broad-
casts all data objects in the database. Clients view this broadcast as a disk, ac-
cessing required data as it is broadcast. The number of mobile devices does not
affect their access time (as it is read-only). This approach makes conventional
concurrency control techniques inapplicable [2]. E.g. using locking techniques
could lead to swamping the server with lock requests. Similarly for timestamp
based techniques, communication between clients and the server is needed for
every read operation to keep track of both read and write timestamp; this can be
unwieldy in broadcast environments. Conventional OCC [5] cannot be directly
applied to mobile transaction processing because of the communications which
consume the limited uplink bandwidth and battery power [6].
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The optimistic concurrency control approach using a three-phased transaction
execution consisting of read, validate and write (RVW) phases was described in
[5]. During the read phase of a transaction, clients access data without restric-
tion and make their own local copy of this data. If any writes are required, they
are made to the client’s local copy before the validation phase is entered. The
validation phase ensures that any changes a client has made locally can be satis-
fied globally. Other executing transactions are considered to determine whether
the write requests made locally can be satisfied without invalidating the overall
read-write schedule. If the write requests are valid then the transaction moves
onto the write phase and the local changes are committed to the persistent store
at the server. Otherwise, the transaction must abort and restart.

Harder [7] proposed two schemes for the validation phase: Backward Oriented
Optimistic Concurrency Control (BOCC) and Forward Oriented Optimistic Con-
currency Control (FOCC). BOCC operates by comparing the read set of a val-
idating transaction with the write sets of all currently executing transactions
that have finished the read phase before the validating transaction. If a conflict
is identified then the validating transaction must be aborted and restarted in its
entirety. FOCC, on the other hand, is based on comparing the write set of the
validating transaction with the read sets of all currently executing transactions
that have yet to finish the read phase. When a conflict is found, FOCC provides
a degree of flexibility in that a number of resolution policies are possible. It is
this flexibility in resolution policy which has made FOCC the focus of further
works [11]. However, aborting validating transactions is expensive because such
transactions have used resources and completed execution. The Never Abort
Validating transactions (NAV) strategy ensures that these resources will not be
wasted by guaranteeing that the validating transaction commits [12]. However, a
major drawback of FOCC is that concurrent transactions have to be blocked in
their read phase while validating transactions are executing the validation and
write phase in a critical section.

Virtual execution [13] involves pre-fetching data which will be required for a
subsequent rerun of an aborted transaction. The approach enables transactions
that are known to be in conflict to continue execution and complete the read
phase, in order to pre-fetch the data that will be required for the subsequent
rerun. Significant performance gains can be made when allowing the transaction
to rerun using the pre-fetched data, due to access invariance. There is typically
no disk I/O overhead required for the transaction during rerun. Significantly,
battery power savings can be gained by deploying such a technique on mobile
devices [14]. However, the issue of consistency arises for a transaction that oper-
ates using pre-fetched data as some of the pre-fetched data may have since been
modified.

Lee has proposed a variant of the OCC algorithm called forward and backward
optimistic concurrency control (FBOCC) [6]. FBOCC is a concurrency control
algorithm suitable for mobile transactions in wireless broadcast environments.
It consists of two validation stages. Partial backward validation is performed at
clients between the write set of committed transactions at the server and the
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read set of running transactions at the client at the beginning of every data
cycle. This includes both read-only transactions and update transactions. Any
conflicted transaction will be aborted. Successfully validated read-only mobile
transactions will proceed to commit locally. Successfully validated mobile up-
dated transactions are sent to the server to be validated globally. Forward vali-
dation is performed at the server between the write set of validating transactions
and the read set of running transactions. This includes transactions generated
and executed at the server, and update transactions which are sent for valida-
tion by clients to the server. Server conflicted transactions will be aborted. Con-
flicted update transactions will be aborted and will restart at the client. Update
transactions must perform final partial backward validation at the server before
starting forward validation. This final validation is needed in case of existing
update transactions committed at the server since the last backward validation
performed at the client. FBOCC is designed to minimize the use of the uplink
channel in two ways: validation of read-only transactions locally at clients (these
constitute the majority of mobile transactions); and early validating and abort-
ing update transactions locally at clients, which makes update transactions more
likely to pass the validation and write phases at the server.

2.2 Real-Time Requirements and Phase Ordering

The LVEW algorithm [8] [14] changes the order of the traditional RVW phases.
The write phase now follows the read phase with validation occurring after the
write is complete. In addition to the reordering of the phases the algorithm makes
use of a rerun policy. Transactions are rolled back using in-memory data derived
from retaining a buffer that records the writes of committing transactions and
the reads of uncommitted transactions. Moving the validation phase ensures
the nearest to expiring transaction (i.e. the closest to reaching its deadline) is
afforded priority to commit. Also, there is no need to block concurrently running
transactions during the write and validation phases. This promotes real-time
efficiency and allows greater determinism. Writes become visible to transactions
in the read phase earlier, affording more likelihood of reading up-to-date data.

In [14] we made two observations when considering real-time requirements.
Firstly, transactions that enter rerun execute quicker than those in their initial
run (as there is likely to be no disk access). Secondly, the validation phase
presents a degree of non-determinism with respect to how long it will take (i.e.
we can’t predict how many transactions require validation). Reruns can occur
multiple times with minimal hindrance to transaction deadlines, as they execute
with no disk latency. It would therefore be advantageous to keep transactions in
rerun until we can deterministically say that, when a transaction leaves rerun,
it will complete and meet its deadline, irrelevant of the delay imposed by the
validation step. This would provide prioritization of rerun transactions without
the concern for non-deterministic latency during the validation phase.

In [8] we applied this thinking to concurrent transactions on the shared
resources of a smart device. The use of a virtual execution enabled OCC cou-
pled with the reordering of the validation and write phases allowed for an overall
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improvement in performance. When transactions are in a rerun state we can off-
set their validation until after the write phase of a transaction. The first benefit
of this approach is that writes may become visible to transactions in the read
phase earlier, affording more likelihood of reading up-to-date data. Secondly,
overall blocking may be reduced, as in the original OCC protocols, transactions
in the read phase will need to be blocked as a transaction commits changes to
the database (to prevent out of date reads from the database). Such blocking
would not be required, as out of date reads will be caught by the later validation
step.

2.3 Energy Efficiency

An important objective of much of the work on concurrency control for mobile
networks is to reduce the energy consumption, especially the battery life of
the mobile devices. Much of the literature makes the point that conventional
OCC techniques are less suited to mobile applications for this reason [6] [11]
[15]. Accessing a conventional hard disk drive is expensive in terms of power
usage, as the disk must attain read speed, and the appropriate data sector be
found. Even solid state drives are significantly more expensive to access compared
to local memory. Consequently reducing the number of times that a disk is
accessed will reduce the energy consumed. Clearly a reduction in the frequency
of transactions that must be rerun will reduce the amount of disk accesses which
must be instigated, leading to a reduction in the energy usage. In general, it is
better to perform execution at the fixed server, rather than at a mobile client [16];
this thinking can also be applied to concurrency resolution. Any energy saving
achieved at the mobile device must be offset against the additional energy cost
caused by any increase in communication over the network [17]. A protocol based
on broadcast disk, which reduces the amount of validation messages going back
and forth between clients and server, appears to meet this constraint.

2.4 Contribution

The background described in this section leads to the contribution made by
this paper. Whereas previous work [18] [19] has described developments for the
broadcast disk protocol which improve the client performance, we concentrate
on the behaviour at the server. Our improvements are compatible with that
existing work on client efficiency. We describe a new optimistic concurrency
control algorithm suitable for a wireless broadcast environment in which the
write phase occurs before the validation phase at the server. This approach
has shown improvement in overall system throughput and the likelihood that
transactions complete within their specified deadline.

We also deploy a rerun policy at the client. This reduces the access cost in the
read phase when a transaction is aborted; this consequently reduces the battery
usage in the mobile device. Additionally we show a reduction of the effect of the
conflict increase rate on transaction results due to the increase of throughput
rate at the server. Our work allows a server to resolve more contention, and
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therefore increases mobile devices’ performance, while reducing the energy cost
due to retrying failed or conflicted transactions.

3 Protocol

We describe a read-write-validation approach to optimistic concurrency control
for energy efficiency of transaction processing in a wireless broadcast disk envi-
ronment. We also present pseudo-code to describe the algorithms execution. Our
protocol builds on the FBOCC protocol proposed in [6] by performing a LVEW
algorithm for validation at the server. The algorithm is performed in two stages.

3.1 Partial Backward Validation at Mobile Clients

All running transactions at clients (i.e. both the read-only transactions and up-
date transactions) are validated at the beginning of every broadcast cycle by
performing backward validation with the write set of committed transactions at
the server. Conflicted transactions are marked for rerun, but continue execution
until the end of the read phase in order to pre-fetch all read set data to memory
[13]. When a conflicted transaction reaches the end of the read phase, we update
the conflicted data objects in memory and rerun without accessing the persistent
store. Optimistic concurrency control performs better if transactions are allowed
to reach the end of their read phase before being aborted [20]. This is intuitive,
as transactions that have been aborted early have not retrieved all the required
data for the rerun phase. Rerun policy has a significant impact in saving battery
power consumption in resource-constrained clients such as mobile devices [18]
[14]. Not conflicted read-only transactions can proceed and commit locally at
the client. Not conflicted update transactions will be sent to the server in order
to be validated globally.

Pseudo-code for partial backward validation is presented as follows:

Algorithm 3.1. PartialBackwardValidation(Tm)

if (Ci ∩RS(Tm)) �= 0

then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

for each Ok in (Ci ∩RS(Tm))

{

do update Ok in CS(Tm)
if Tm is in initial run
then mark Tm for rerun

else

{
update Tm with CS(Tm)
rerun Tm

else store the data in Ci

Tm is the transaction generated at the client. ControlInfo(Ci) os the set of data
items which was updated. Conflicted Set (CS) given CS(Tm), this contains the
updated values from Ci and Tm has been found to conflict with. Each item (Ok)
in CS(Tm) is cached until RS(Tm) can be updated with these updated values.
We choose to cache these values rather than directly update the read set of Tm



OCC in Wireless Environment 121

so as to make it clear that the calculations (writes) would not be automatically
updated if we chose to update RS(Tm) directly. RS(Tm) can be updated when
Tm has finished the initial run or, if it is in rerun, when it is aborted. Upon
updating, CS(Tm) is discarded.

We assume that a transaction which is executing in the read phase reads the
required data and performs any necessary computation. Similarly, a transaction
which is in the commit phase will update any values that were written to during
its read phase. The scheduler will handle rerunning transactions that have been
marked for rerun, along with the process of updating the read sets for conflicting
transactions.

3.2 LVEW and Final Validation at the Server

One of the transactions which are ready to commit will be chosen to enter the
write phase by the scheduler. We employ an earliest deadline policy to give prior-
ity to transactions that are closest to deadline expiration. Once this transaction
has completed the write phase, it performs forward validation against all concur-
rently running transactions at the server [8] [14]. This includes locally generated
transactions and update transactions that have been received from clients for
global validation. Any locally generated conflicted transactions will be marked
for rerun. They will continue executing until the end of the read phase in the
first run as described previously. Conflicted update mobile transactions will be
aborted and rerun again at the client. When a validating transaction finishes the
write and validation phases, the write set will be broadcast in the next broad-
cast cycle with the control information table. This information is used for partial
backward validation at clients to keep mobile transactions consistent. However,
update transactions have to perform final backward validation with any pos-
sibly committed transactions after the update transaction has finished partial
validation at the client, and before starting LVEW validation at the server [18]
[6]. The results of this validation (commit or abort) will also be included in the
information table as acknowledgment to the mobile client for further actions.

3.3 Justifying Read-Write-Validate

This approach fundamentally changes the order of the traditional transactional
phases as introduced in [5]. The write phase now follows the read phase with
the validation phase now occurring after the write phase. Both the write and
validation phases are collectively considered a single critical section, so only
one transaction is allowed to be executing in either of these phases (adopted
widely and described originally in [5]). We use a forward validation strategy
in combination with a No Sacrifice policy [15] that guarantees a transaction
entering the critical section will commit. This means that transactions which
conflict with the validating transaction must be aborted. We choose to employ
a rerun policy so that transactions in their initial run will continue to the end
of the read phase before being rerun.
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By combining the write and validation phases into a single critical section, the
ordering of transactions becomes trivial as we can guarantee system correctness
based on serializability criteria in either scheme. However, without using forward
validation coupled with a No Sacrifice policy, it would be more costly to employ a
RWV ordering. Without these mechanisms, if a validating transaction is aborted,
it would be expensive to undo the changes made during the write. This would
also result in an increased number of conflicts due to any transactions that have
accessed the same data having to be aborted or rerun. With the addition of a
rerun policy we see further performance improvements when combined with a
RWV ordering.

Real-time transactional databases need to handle transactions with timing
constraints in the form of deadlines. Upon arrival, a transaction must be pro-
cessed in a timely fashion to ensure that the changes made during the read phase
are successfully committed to the database before a deadline is reached. Factors
such as system contention have a direct impact on satisfying transactional dead-
lines. Such factors occur during validation. Therefore in the traditional OCC
phase ordering the validation step introduces a degree of non-determinism with
regards to how long writes will take to become visible in the database (delaying
entry to the write phase). The validation phase is required to ensure system
correctness with regards to transactions that are still executing, rather than
providing a direct benefit to the validating transaction itself. If the write phase
is brought before the validation phase then we remove the non-deterministic
timing constraints of the validation phase allowing the transaction to commit
sooner. Consistency is still maintained in a virtual execution environment as the
validation phase will detect transactions that are in conflict during rerun stages.

By altering the phase ordering we also remove a degree of blocking present in
the original FOCC based on read-validate-write ordering (RVW). Under RVW a
transaction executing in the read phase will eventually have to be blocked to allow
a transaction in the critical section to complete. If any of these read-phase transac-
tions which do not conflict with the validating transaction are allowed continuing
execution, they may potentially enter a conflicted state. This will arise if a future
value is read by a transaction in the read phase that is shared with the write set of
a committing transaction. There will be ambiguity as to which value would have
been read (the one written by the committing transaction or the old value). In
essence, this undetected conflicted transaction will read inconsistent data that the
validating transaction will have modified during the write phase. As a result, all
concurrently running transactions must be blocked to allow the validating trans-
action to commit. Any newly arriving transactions will also be blocked from en-
tering the read phase during this time to avoid further conflict. By employing a
read-write-validate (RWV) ordering, we no longer have to block any transaction
from progressing (we do not consider the transactions waiting to enter the critical
section as being blocked). Having completed the write phase, a validating trans-
action will only need to validate against transactions that were active while the
validating transaction was writing. These active transactions may have read data
that has now been updated. Any newly arriving transactions (those arriving while
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a transaction is validating) cannot conflict with the validating transaction, as the
data they read will have already been updated.

Pseudo-code for LVEW and final validation using the same notation explained
in the section on partial backward validation is presented as follows:

Algorithm 3.2. ServerValidation(Tv)

comment: 1 Final backward validation:

for each Ti ( i = 1...n )

{
if (RS(Tv) ∩WS(Ti) �= 0)
then return (fail)

comment: 2 Write:

Commit WS(Tv) to database
Ci = Ci ∪WS(Tv)

comment: 3 Forward validation:

for each Tj (j = 1...n )

{
if (WS(Tv) ∩RS(Tj) �= 0)
then abort Tj

Our approach is orthogonal to the back-off method [18] and the OCC for
broadcast disks scheme [19]. That is to say, both of these approaches can be
combined with our work.

4 Simulation and Results

We describe the simulation model which we have used to demonstrate our proto-
col, providing a brief overview of the structure of the model and the parameters
that were used. We then discuss the results by comparing the performance of
our simulated model with the a simulation of the original protocol FBOCC [6].

4.1 Simulation Environment

We have developed a simulation model that is based on the model presented in
[6] [18] [19]. We have increased the transaction arrival rate at the server by a
factor of 100 to a figure representative of current applications. The model was
also extended slightly in order to accommodate the rerun of transactions and
the format of our LVEW validation protocol, for meaningful comparison. The
model investigates different performance characteristics of our protocol versus
FBOCC combined with virtual execution. We present a range of results which
highlight the performance benefits of LVEW validation using a virtual execution
policy. The simulation model consists of a server, a client, and the broadcast disk
structure. Only one client was used in our simulation, to provide direct compari-
son to the existing work; the work is built upon broadcast disk implementations
where the read transaction is carried out entirely on the client (so the number
of clients is irrelevant), and mobile update transactions are relatively rare. The
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Table 1. Parameters used in the simulation experiments

Parameter Value

Server
Transaction length 8
Read operation probability 0.5
Disk access time 1000
Transaction arrival rate 1 per 20000 to 1 per 1667
Concurrency control protocol OCC with LVEW
Priority scheduling Earliest deadline first

Client
Transaction length 4
Read operation probability 0.5
Fraction of read only transactions 0.75
Minimum slack factor 2 (uniformly distributed)
Maximum slack factor 8 (uniformly distributed)
Mean inter-operation delay 65536
Mean inter-transaction delay 131072

server executes the server transactions based on conventional FV and LVEW
algorithms. The deadline of transactions is calculated by the following formula:

Deadline = arrival Time + uniform (Minimum Slack factor, Maximum Slack
factor) * execution time

Execution time is estimated using the values of transaction length, CPU time
and disk access (mean inter-operation delay in mobile transaction). Table 1 shows
the parameters which were used during the simulation experiments. The time
unit is in bit-time, which is the time to transmit a single bit. For a broadcast
bandwidth of 64 kbps, 1 M bit-time is equivalent to approximately 15s.

4.2 Simulation Results

Due to the real-time nature of the application domain, our experiments focus
on measuring the miss rate percentage, which is the percentage of transactions
missing their deadlines. Another performance metric is the throughput which
is strongly connected to miss rate; throughput is the number of transactions
committed per time unit. Figures 1-3 show the throughput, average response
time and miss rate of server transactions. Figures 4-7 show the throughput and
miss rate of clients transactions. In each graph we present the results of two
protocols: DLVEW and FBOCC.

Figure 1 shows the throughput for an increasing rate of transactions. We
define throughput as the number of committed transactions, with the commit
occurring at the end of the write phase for both phase orderings. All protocols
share a common progression; of particular interest is the point that is reached
in both sets of data where contention is too high and the throughput starts
to degrade. The number of transactions which miss their deadline (fig 3) is
also impacting the throughput, as these transactions are aborted and will never
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Fig. 1. Throughput at the server

Fig. 2. Response time at the server

commit. As the rate increases, the number of late transactions increases and so
the throughput falls.

Figure 2 shows the average response time for an increasing rate of trans-
actions. The response time is only included for transactions that successfully
commit. As the rate increases, the transaction response time increases due to
high contention. We see that, between 1 and 6∗(10−4) transactions per bit-time,
the LV approach has a lower response time than FV. This indicates that the cost
of the validation phase does not affect the transactions commit time in our ap-
proach. The response time stabilizes after 80000 bit-time due to the deadline
assignment; only transactions that have a sufficiently large deadline will be able
to commit. Regardless of the benefits of our protocol, at this level of contention,
transactions expire during the initial run in the read phase.

Figure 3 shows the percentage of transactions which miss their deadline. For
each protocol, as the rate increases, the percentage of missed deadlines also in-
creases. Between 2 and 6 ∗ (10−4) transactions per bit-time, the LV approach
has a lower miss rate than FV. With a high level of system contention, transac-
tions experience longer delays in accessing the disk and the CPU. This results
in transactions being more likely to miss the deadline during the initial run and
never entering rerun.
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Fig. 3. Miss rate at the server

Fig. 4. Throughput and miss rate of read only transactions at clients

Fig. 5. Throughput and miss rate of update transactions at clients

Figure 4 shows the miss rate and throughput of mobile read only transactions.
The figures demonstrate that both protocols generate similar results. This result
was expected because read only transactions execute and commit locally in the
client.

Figure 5 shows the miss rate and throughput of update mobile transactions.
Figure 5a illustrates that the throughput of both protocols is similar when con-
tention at the server is low. The LV protocol demonstrates higher throughput
whenever the server transaction arrival rate has increased. Figure 5b shows that



OCC in Wireless Environment 127

the miss rate of the LV protocol is always lower than the miss rate of the FV
protocol in all contentions, which is convenient for real-time mobile applications.

5 Conclusions

In [8] we identified the possibility that, in combination with virtual execution,
a performance improvement could be made by allowing the write phase to be
accomplished before the validation phase . In [8] [14] we explored this idea in the
context of multiple applications running concurrently on a resource-constrained
device. We showed that, not only does this reversal maintain correctness, it also
brings performance benefits. This is particularly evident for real-time systems.
In this paper we deploy our approach to further develop forward backward opti-
mistic concurrency control for mobile transactions in the wireless environment.

We have developed a simulation of this technique (using an appropriate sim-
ulation as used by earlier works in the area) in order to demonstrate the per-
formance. We have then benchmarked the results from these tests against the
original FBOCC approach combined with a virtual execution model. We have
shown that our approach significantly improves both the throughput and the
miss rate of the overall system when compared to the original technique. We
have simulated 100x more frequent transaction arrivals than the previous works,
to reflect the modern usage of the technology.

Our seemingly counter-intuitive idea of changing the phase order to read-
write-validate, combined with virtual execution, requires significantly fewer ac-
cesses of the server data, and completely eliminates blocking transactions at the
read phase. This leads to resolving more contention by a more able server, and
therefore increases mobile devices performance, while reducing the energy cost
due to retrying failed or conflicted transactions.
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Abstract. GPU architectures tend to be increasingly important in
multi-core era nowadays due to their formidable computational horse-
power. With the assistant of effective programming paradigms as CUDA,
GPUs are widely adopted to accelerate scientific applications. Mean-
while, the surging energy consumption by GPUs becomes a major chal-
lenge to both GPU architects and programmers. In addition to the efforts
designing energy efficient GPU architecture, comprehensive understand-
ing on how programming affects the energy consumption of GPU appli-
cation is also indispensable from the programmer perspective.

In this paper, we present a programming-oriented PTX instruction
level energy model to provide programmers the ability of predicting the
energy consumption of their program. Distinct from previous models
which require hardware performance counters or architectural simula-
tions, our model relies on the PTX instruction of a CUDA program
which is not only portable but also accurate. With the selected PTX in-
structions based on empirical study, we apply linear regression to build
the GPU energy model. One appealing advantage of our model is that it
does not require any instrumentation or profiling of the GPU application
during execution. Actually, our model is able to advise the programmers
step by step to illustrate how their way of programming impacts the final
energy consumption, especially at the stage of hacking the codes. Our
model is evaluated on NVIDIA GeForce GTX 470 with Rodinia bench-
mark suites. The results show the accuracy of our model is promising
with average prediction error below 3.7%. With the help of our GPU
energy model, the programmers are gaining valuable insights to improve
the energy efficiency of the application.

Keywords: Programming-oriented, Instruction level, Energy prediction,
CUDA.

1 Introduction

With the rapid development of CMOS technology and the increase of the num-
ber of transistors on chips as the Moore’s Law dictates, the energy consumption
of chip is rising up simultaneously. Such unsustainable energy consumption hin-
ders the further elevation of the chip performance. What’s worse, with power
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densities doubling every 18-24 months as shown in Figure 1 and large-scale HPC
systems and datacenter continuing to increase in scale, the energy consumed by
these facilities becomes dominant and contributes a significant portion of the
entire operational cost. Meanwhile, graphics processing units (GPUs) have been
widely used in HPC systems and modern heterogenous datacenter. Nowadays,
the prominent computing horse power of GPUs grants them dramatically higher
performance than their CPU counterpart. Consequently, GPUs are pervasively
utilized to accelerate a wide variety of scientific applications [1]. This trend has
been promoted with the recent advancements in programming paradigms as
CUDA [2], which greatly simplify the way to exploit the tremendous computa-
tion capacity of GPUs for general purpose applications. However, while deliver-
ing substantial computation power with a large number of processor cores and
abundant memory bandwidth, GPUs have consumed considerable energy at the
same time. Therefore, it is important to take the factor of energy efficiency into
consideration when programming GPU applications. Specifically, comprehensive
understanding on how programming affects the energy consumption of GPU ap-
plications is missing and how to optimize GPU applications to achieve higher
energy efficiency still remains a challenge.

1.5u 1u 0.7u 0.5u 0.35u 0.18u 0.13u 0.1u0.25u 0.07u
I386 1 watt

I486 2 watts

Pentium 14 watts

Pentium Pro 30 watts

Pentium 35 watts
Pentium 35 watts

Pentium 4 75 watts

Itanium 130 watts

Chip maximum
Power in watts/cm2

Source:Intel

Fig. 1. Moore’s Law for power consumption [3]

Although it is indispensable to acquire the ability to measure GPU power
consumption accurately before further investigating the energy issues, existing
approaches to GPU power measurement are quite deficient. Since the current
GPUs are not equipped with internal power sensors, the GPU power is either
observed from a separate power meter or deduced from the probed voltage and
current on the GPUs. Such approaches require additional hardware devices and
are not practical solutions, whereas software approaches to estimate the power
consumption are still in the early stages, which could not provide accurate power
prediction for GPU applications due to its coarse granularity. Moreover, the
existing approaches primarily rely on performance profiling and cannot provide
any insight on energy consumption from programming perspective.
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CUDA, proposed by NVIDIA, is a widely accepted programming paradigm
for general purpose computing in both academia and industry. Thus it would
be representative to understand the energy consumption of GPUs in terms of
CUDA program. In particular, how CUDA program impacts the GPU energy
consumption from the way it is designed and implemented. However, in order to
systematically analyze and quantify this impact, it is necessary to study at the
finest level - the instruction level. In this paper, we proposed a programming-
oriented energy model to predict the energy consumption of CUDA program at
the instruction level. Using this model, we can derive the energy consumption
of a specific CUDA program more accurately and conveniently. Furthermore,
our model can be incorporated into CUDA integrated development environment
which provides the programmers with insights on how much energy their program
consumes while they are programming simultaneously. Unlike the previous power
model that estimates the GPU power consumption at coarse granularity as Hong
[4], our model applies statistical method to correlate the instruction information
with power consumption of CUDA program. Compared to Hong’s model, our
model is built with instructions strongly correlated to the energy consumption,
which significantly improves the accuracy of the model. In contrast to [5][6], our
model does not require performance profiling yet derives the energy consumption
of CUDA program with the instructions composing the program.

In sum, our work makes the following contributions:

1. We present a practical approach to measure energy consumption of single
CUDA PTX instructions accurately which lays the foundations for building
our energy model.

2. We propose an instruction level energy model to predict energy consumption
of CUDA programs for programmers. Our model not only accurately predicts
the energy consumption of CUDA programs, but also enables energy-aware
GPU programming.

3. The evaluation with Rodinia benchmarks show that our model achieves
3.699% average prediction error. The results demonstrate our model is ca-
pable to facilitate programmers aware of energy consumption of the their
codes while they are programming.

2 Challenge

2.1 Measurement Granularity

In terms of model accuracy, the first thing that we have to consider carefully is
the granularity. The granularity of the measurement directly affect the difficulty
of building our model and the accuracy of our model. Fine-grained model, which
requires fine-grained measurement, are theoretically accurate for energy predic-
tion but hard to implement, while a coarse-grained model has a simple building
process but may lead to low prediction accuracy. As we have known, CUDA
program code impacts the energy consumption at various levels. The design of
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system software, the actual application source code, and the process of transla-
tion into machine instructions - all of these determine the energy consumption
of the CUDA program. For CUDA program, the kernel codes are first compiled
into PTX [7]codes, which is associated with different PTX instructions, and then
the PTX codes are compiled by ptxas tool into cubin format which is a kind of
binary format that can be loaded into GPU directly. However, it is not directly
exposed to programmers [8]. Therefore, in order to systematically analyze and
quantify this cost, we decide to build our energy consumption model at the PTX
instruction level.

2.2 Model Accuracy

The model accuracy is the most important criterion for evaluating the energy
model, and how to guarantee the model accuracy is the second challenge to us.
We should first design fine measurement approach to guarantee the accuracy of
the measurement of the energy consumption of single PTX instructions. Secondly
we need to choose a model which is capable to depict relation between the
instruction and energy consumption.

2.3 Execution Reliance

Most of the existing GPU power models [4][5][6][9][10][11] rely on GPU simu-
lator or performance profiling. Such requirement prohibits them acquire energy
consumption of GPU program during the stage of the programming. Moreover,
such power models are incapable of providing programmers effective and valuable
guidances on energy-efficient optimizing. The major reason for this drawback is
all of them need the complete program that can actually run on hardware. To
this end, our model, based on PTX instruction level energy analysis, provides the
capacity of predicting program at any time of programming. Therefore, making
programmers aware of the energy consumption of their program even if not com-
pleted yet become reality. Furthermore, it would allow programmers to refactor
application logic to eliminate energy hotspots in the first place and thus might
help programmers to make their programs more energy-efficient.

3 Measurement Approach

3.1 Hardware Environment

Our hardware environment for measurement contains a computer with an Nvidia
GeForce GTX 470 GPU which consists of 448 SPs and 1280MB GDDR5 DRAM.
The computer also contains an Intel Pentium Dual E2180 2-core processor, 2GB
RAM and a 250GB SCSI hard drive. The operating system is Ubuntu-11.04
with CUDA driver 4.2 installed. As it shows in Figure 2, in order to measure
the energy consumption precisely, we used two power supplies, one separated
ATX power supply to power the GPU card and the other for the rest of the
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Fig. 2. The hardware environment in our experiments for measurement and evaluation

computer including CPU, motherboard and etc. Moreover, we put an external
power meter between the GPU card power supply and the 220V AC wall outlet
which could measure the power of the GPU directly [12]. Our power meter is
Everfine PF9805 and the instrumental precision of measurement time is 0.3s.

3.2 Microbenchmark

There are massive instructions within CUDA PTX ISA as shown in Table 1.
In order to model the energy consumption of CUDA program, we choose the
instruction subset which strongly impacts the application energy consumption.
As we focus on accelerating scientific computing, not graphical computing, our
target instructions are selected from the computing aspect shown in Table 1.
The GPU computation can be briefly divided into two parts: arithmetic process
and memory access. In detail, integer arithmetic instructions, floating-point in-
structions, comparison and selection instructions and logic and shift instructions
are attributed to the first part. The second part includes data movement and
conversion instructions. Control flow instructions, although not captured by the
previous two parts, contribute negligible energy consumption in a GPU program,
thus not evaluated in this study. In addition, the rest instructions in Table 1 are
seldom explored in scientific computing, therefore, there are excluded from our
GPU energy model.

The fundamental idea is to collect the statistics of the energy consumption of
every single instruction running on one SP. Therefore, we design an algorithm for
building the synthetic microbenchmark for every instruction. Each microbench-
mark has a loop that repeats one instruction running on all SPs simultaneously
for a certain time period which should be long enough for us to measure the
total energy consumption. For most of the instructions, we could use Algorithm
1 with the inline PTX assembly [13] to build microbenchmark.

As line 5-7 in Algorithm 1 show, the instruction that being measured could
be written into one single statement without any other extra instructions and
then run repeatedly by using for loop statement. However, just running this
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Table 1. List of instructions in parallel thread execution (PTX) ISA

Category Instructions Selection

Integer Arithmetic
Instructions

add, sub, mul, mad, sad, div, rem, abs,
neg, min, max, popc, clz, bfind, brev, bfe,
bfi

√

Extended-Precision Integer
Arithmetic Instructions

add.cc, addc, sub.cc, subc, mad.cc, madc

Floating-Point Instructions add, sub, mul, fma, mad, div, abs, neg,
min, max, rcp, sqrt, rsqrt, sin, cos, lg2,
ex2

√

Comparison and Selection
Instructions

set, setp, selp, slct
√

Logic and Shift
Instructions

and, or, xor, not, cnot, shl, shr
√

Data Movement and
Conversion Instructions

mov, prmt, ld, ldu, st, prefetch, isspacep,
cvta, cvt

√

Texture Instructions tex, tld4, txq

Surface Instructions suld, sust, sured, suq

Control Flow Instructions { }, @, bra, call, ret, exit

Parallel Synchronization
and Communication

Instructions

bar, membar, atom, red, vote

Video Instructions vadd, vadd2, vadd4, vsub, vsub2...

Scalar Video Instructions vadd, vsub, vabsdiff, vmin, vmax...

SIMD Video Instructions vadd2, vadd4, vsub2, vsub4, vavrg2...

Miscellaneous Instructions trap, brkpt, pmevent

could not avoid the overhead brought by the for loop. Every time when execute
the “add.U32” statement, there will be an increase of “m” and the comparison
between “m” and 10000000. So we design a method to eliminate this impurity.
Taking the Algorithm 1 as an example, we should first run it and record the
power statistics from power meter. After that, we rewrite the code by repeating
line 6 twice in the body of the “for” loop. We run it again and receive a new record
from power meter. This time the “for” loop will repeat the “add.U32” instruction
for 20000000 times. As a result, the difference between two energy consumption
measurement results are purely the energy consumption of running“add.U32”
for 10000000 times. At last, divided by repeating times(10000000) and the num-
ber of SPs in GPU, the result should be the energy consumption of executing
“add.U32” on one SP for one time.

Nevertheless, some instructions cannot be written in this way due to their
own characteristics and the limitation of inline PTX assembly like “slct”. We
just need do few changes on Algorithm 1 to implement those special microbench-
marks like Algorithm 2. Moreover, we use the same mechanism as we use with
Algorithm 1 stated above to obtain the energy consumption of executing one
single instruction on one SP for one time.
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Algorithm 1. Sample kernel of using inline PTX assembly in microbenchmarks

Input:
Two set of arrays, An, Bn;

Output:
The sum of the two input arrays, Cn;

1: Initialize n, the index for SP to find target in array
2: asm(“.reg .U32 t1 (t2 & t3); ”)
3: asm(“ld.global.U32 t1, [%0]; ” : : “r” (&A[n]));
4: asm(“ld.global.U32 t2, [%0]; ” : : “r” (&B[n]));
5: for “m < 10000000” do
6: asm(“add.U32 t3, t1, t2; ” : :);
7: end for
8: asm(“mov.U32%0, t3; ” : “ = r”(C[n]));
9: return Cn;

Algorithm 2. Sample kernel of NOT using inline PTX assembly in microbench-
marks
Input:

Two set of arrays, An, Bn, Cn, Dn;
Output:

The sum of the two input arrays, Dn;
1: Initialize n, the index for SP to find target in array
2: for “m < 10000000” do
3: D[n] = (C[n] � 0)?A[n] : B[n];
4: end for
5: return Dn;

3.3 Single Instruction Energy Consumption

We build all the microbenchmarks for every single instructions that we select
shown in Table 1 and implement our measurement on the real machine intro-
duced in Section 3.1. Each microbenchmark run for multiple times and we take
the average as our results. The measurement for each microbenchmark is pro-
cessed as the following steps: 1) Start the metering program on power meter
and recording instantaneous power. 2) Run the microbenchmark. 3) Wait a few
seconds after the microbenchmark finishes and then stop the metering program.
In this way we could obtain an instantaneous power profile on the whole running
process of the microbenchmark.

Taking the Figure 3 for example, Y axis stands for instantaneous power and
X axis stands for time so that the area of the shadow is the energy consumed on
GPU by running the microbenchmark. Nevertheless, there is a fixed base power
consumption of GPU as the blue bold line shows in Figure 3, the area of the
shadow eliminating the fixed power consumption is the pure energy consumption
of the microbenchmark. Divided by the repeated times of the instruction that
the microbenchmark stressed on and the amount number of the core in use, we
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Fig. 3. The instantaneous power of running microbenchmarks

can get the final result of one instruction. Finally, Table 2 shows the results of
all the instructions that we selected to build the model.

4 Energy Model

4.1 PTX Instruction Count

In order to collect the PTX instruction statistics of a CUDA program which
is further used to build our model, CUDA compilation is leveraged to generate
the PTX instructions. In short, CUDA compilation process works as follows:
the program is separated by the CUDA front end (cudafe), into C/C++ host
code and the .gpu device code. Depending on the value of the -code option to
nvcc, this device code is further translated by the UCDA compilers/assemblers
into CUDA binary (cubin) and intermediate PTX code. Hence, we could collect
the execution times of every instruction in CUDA program by analysing the
intermediate PTX code produced during the compilation process.

4.2 Linear Regression

Linear regression is a standard technique to model the correlation between inde-
pendent variables and a dependent variable by assuming linearity between the
variables. We attempted to derive a linear model where independent variables
are based on PTX instruction statistics of a kernel execution, and the dependent
variable is the energy consumption of the kernel.

In Section 2, we have discussed that the granularity of our model is at PTX
instruction level. Currently, we should choose the independent variables for our
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Table 2. The energy consumption of single PTX instrcutions. The unit of Energy is
10−9J .

Instruction Energy Instruction Energy Instruction Energy

abs(float) 2.716 bfe 257.9 or 2.203
add(float) 2.115 bfi 0.1306 selp 3.941

cos 7.612 bfind 31.94 shl 2.692
div(float) 3.323 brev 81.26 shr 3.265

ex 1.555 clz 1.232 slct 7.836
fma 6.246 div(int) 8.099 xor 4.382
lg 0.8598 mad 3.646 cvt 0.9422

max(float) 0.8063 max(int) 2.844 cvta 0.3221
min(float) 0.8404 min(int) 21.50 mov 0.4955
mul(float) 2.136 mul(int) 2.880 prefetch 1.043
neg(float) 2.036 neg(int) 2.744 prmt 0.4728

rcp 2.339 popc 3.372 st 0.7243
rsqrt 2.443 rem 7.580 ldu 0.5344
sin 6.116 sad 3.104 ld 0.4748
sqrt 1.999 sub(int) 2.150 isspacep 0.6938

sub(float) 2.174 and 2.547 cnot 2.630
abs(int) 4.077 add(int) 4.556 not 2.133

model. As we already know, different PTX instruction stresses different parts of
GPU and we have already split the PTX instructions into two groups in Section
3: arithmetic process and memory access. So we let these two groups to be the
independent variables of our model. Besides, we should also add the base power
consumption, caused by electrical circle, heat and so on, into our model.

Specifically for our energy model, let E be the energy consumption of CUDA
program and αi,j (1 � i � n, 1 � j � m) be the energy consumption of single
PTX instruction, where n, m denote the number of the instruction on computa-
tion and memory respectively. Meanwhile, let ci,j (1 � i � n, 1 � j � m) be the
number of each instruction occurring in CUDA kernel program and T be the
number of the threads the CUDA kernel uses. We derive a model as:

E = k1T

n∑

i=1

αici + k2T

m∑

j=1

αjcj + βt (1)

where k1, k2 denotes the contribution of the arithmetic process part and memory
access part instructions to the energy consumption of the whole CUDA kernel
program. β is the base power consumption which is a constant parameter and t
is the execution time of the program.

Refering to the execution time, our model uses the predicted time to predict
the energy consumption. We use a precise GPU analytical timing model [14]
to predict the execution time. In this timing model, the total execution time
of a GPGPU application is calculated with one of Equations 2, 3, and 4 based
on the number of running threads, MWP, and CWP in the application. MWP



138 Q. Zhao et al.

represents the number of memory requests that can be serviced concurrently and
CWP represents the number of warps that can finish one computational period
during one memory access period. N is the number of running warps. Mem L
is the average memory latency. Mem cycles is the processor waiting cycles for
memory operations. Comp cycles is the execution time of all instructions. Repw
is the number of times that each SM needs to repeat the same set of computation.

Case1 : If (MWP is N warps per SM) and (CWP is N warps per SM)
(
Mem cycles + Comp cycles +

Comp cycles

#Mem insts
× (MWP − 1)

)
(#Repw)

(2)

Case2 : If (CWP � MWP ) or (Comp cycles > Mem cycles)
(
Mem cycles× N

MWP
+

Comp cycles

#Mem insts
× (MWP − 1)

)
(#Repw)

(3)

Case3 : If (MWP > CWP )

(Mem L + Comp cycles×N) (#Repw)
(4)

5 Evaluation

5.1 Model Training

To obtain the model parameters, we design a set of synthetic benchmarks that
combine mixed PTX instructions. Each benchmark has several loops that repeat
a certain mixed set of instructions. To be noted, all these synthetic benchmarks
should cover all the instructions in PTX instruction set while keep themselves
differing from one another. Consequently, it guarantees that the samples are
scattered uniformly within the solution space and maintain as much variance
as possible, which further improves the accuracy of the model. Here we used 15
synthetic benchmarks for model training. The final regression model is shown as
Equation 5.

E = 0.734 × T
n∑

i=1

αici + 1.224 × T
m∑

j=1

αjcj + 50 × t (5)

For linear regression analysis, R Square measures the proportion of the vari-
ability in the dependent variable about the origin explained by regression. The R
Square of our regression is 0.81 which indicates the data and our model fit well.
The value of the test of significance for our model is less than 0.05 which implies
our linear regression model is effective. The values of the test of significance for
two independent variables are both less than 0.05 so that we can consider that
the two independent variables have significant effects on the dependent variable.
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5.2 Energy Prediction

To evaluate the accuracy of our model, we select 16 representative benchmarks
from Rodinia benchmark suite [15]. Considering the execution time of some
benchmarks are extraordinary short, even shorter than the measurement pre-
cision of the power meter we used, we write a simple script to run each pro-
gram continuously and repeatedly for a certain times to prolong the execution
time. Meanwhile, with the energy consumption of executing one instruction on
one core for one time, we could easily calculate the energy consumption of the
benchmarks above. At last, we evaluate the prediction accuracy by comparing
the predicted energy consumption with the measured energy consumption.
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Fig. 4. The normalized predicted energy consumption of Rodinia benchmarks

As shown in figure 4, the predicted energy consumption of these benchmarks
are normalized to their measurements. The distance of the bar away from the
1.0 line in Y axis is the relative error of each prediction. The relative error
distributes from 0.18% to 9.46% except three of them (hotspot, leukocyte, my-
ocyte) exceed 10%. The average relative error of those below 10% is 3.699%.
For GPU programmers, the prediction given by the model is accurate enough to
comprehend the energy consumption.

The relative error of hotspot benchmark is 25.373% while 14.664% for leuko-
cyte and 12.655% for myocyte. The reasons why these relative errors exceed
10% are probably as following analysis. Hotspot benchmark contains a series
of iteration which are difficult to determine the exact number of each type of
instruction executed on GPU. The other reason is hotspot contains codes of
multiple data transformation between GPU memory and CPU memory which
may has a side effect on the energy consumption. Those operations may in-
crease the energy consumption on GPU while not increase the execution time



140 Q. Zhao et al.

of benchmark. Leukocyte and myocyte suffer from the similar problems causing
the relative error exceeding 10%.

Some of the benchmarks have a substantially low prediction error. For gaus-
sian, nn and srad, their prediction errors are only 1.781%, 0.185% and 0.180%
respectively. Mostly because their code structures are similar enough to our
model’s and their predicted execution time are more precise than the other
benchmarks because of the characteristics of the execution time prediction model
we used. In sum, our model is well trained and provides accurate energy predic-
tion ability for GPU programmers.

6 Related Work

GPU power model and related researches are continuing to draw more and more
attention from both academia and industry. Hong et al. presented an empirical
model which accurately predicts GPU run-time power from activities of single
components including floating point unit, register file, ALU, etc. They rely on
an early performance model to estimate the execution behavior, instead of pre-
dicting the power using statistical samples. They have shown that throttling
the number of GPU cores based on their novel power model can save energy.
In [6], the authors extend the applications in study to common GPGPU ker-
nels and build a linear regression model to correlate the GPU power and the
measurements of the hardware performance counters. Chen et al. designed an
approach for studying GPU power [9]. Their approach extends the model using
the random forest method which is more accurate than the approaches using
linear regression and regression tree. Moreover, Collange et al. concluded that
memory access pattern and bandwidth play a major role in achieving both good
performance and low power consumption based on their power measurement
[16]. Pool et al. present an energy model for GPU that is based on the amount
and type of work performed in various parts of the unit while their model are
typically adequate for graphical applications [17]. Ma et al. presented an SVR
regression model to predict the dynamic power consumption of a GPU with the
counters from perfkit while their model is more suitable for graphics applications
as well [10]. However, the researches done by Rofouei et al. [18] and Huang et
al. [19] advocated the use of GPUs for general purpose computing from an en-
ergy standpoint, pointing out that though they require more power, their higher
speeds reduce overall energy. Luo et al. proposed an execution time prediction
model and an energy consumption model to help programmers have a better in-
sight into the performance and energy-saving bottleneck of parallel applications
on GPU architectures [11].

Our GPU power model at instruction level was inspired by Vivek Tiwari’s
work [20]. In their paper, they described an alternative measurement based on
instruction level power analysis approach that provides an accurate and practical
way to quantify the power cost of software. Although their research focused on
software running on CPU, the way of thinking energy problems and the method
of solving the problems are also useful for GPU architecture.
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7 Conclusion and Future Work

In this paper, we presented a programming-oriented energy model based on the
PTX instruction level energy analysis of CUDA programs. Unlike the existing
model, our model leveraged the PTX instructions of the CUDA program as in-
put and gave the energy consumption of that program as output in order to
provide GPU programmers the insight of their program from energy aspect. In
addition, we could apply the ability of predicting the energy consumption of
CUDA program at creation time which enables programmer to refactor applica-
tion logic to eliminate energy hotspots in the first place aiming at making their
programs more energy-efficient. The experimental results showed that our model
was effective to predict the energy consumption of CUDA programs.

Nevertheless, our paper still has several deficiencies that we eagerly want
to solve them in the future. First is that we ignored to include the influence
of the GPU analytical timing model into our consideration during our whole
establishment of energy model. Although the timing model we used is precise
and well established in Hong’s paper [14], we should analyse the influence to
verify how much suitable this timing model is for our energy model. The other
one is the resolvent for divergence which is caused by input-dependent code
fragments during counting the exact number of instructions of PTX code. In our
model, we are indeed disable to eliminate such divergence now. However, in the
future, our preliminary solution is analysing such code fragment separately. We
will explicitly indicate the relationship between the energy and the input scale.

Moreover, our model also needs to be improved from multiple aspects. First,
we should realize the ability of predicting energy consumption of code segment
that cannot be compiled into PTX code, such as the code of a single function, the
code of a single statement and etc. With such ability, the programmer is provided
with more insight on CUDA program, for which they become aware of which
part of their code is energy efficient and vice verse. They might know which part
of their code is energy-efficient and which are not. Furthermore, programming
suggestions could be supplemented to guide the programmers optimizing their
code for better energy efficiency. Secondly we may extend our model to support
the heterogonies system. Our model could predict the energy consumption of
CUDA kernel program running on GPU card so far. As CUDA program contains
non-kernel part which runs on CPU counterpart, the implementation of this
extension could improve the widely adoption of our model.
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Abstract. Desktop Grids are composed of several thousands of
resources. They are characterized by high volatility of resources, due
to voluntary disconnections or failures. This could affect the proper ter-
mination of applications execution. PastryGrid is a decentralized system
which manages desktop grid resources and user applications over a fully
decentralized P2P network. In this paper we present PastryGridCP: our
rollback-recovery protocol, which is based on checkpoints designed for
the decentralized Desktop Grid system PastryGrid. It provides fault tol-
erance for grid applications and ensures the termination of the execution
of applications in a transparent way to users. We have conducted out
experimentations on 110 nodes of Grid’5000. Obtained results validate
our protocol and improve the performance of applications.

Keywords: Desktop Grid, fault tolerance, rollback-recovery,
checkpoints, decentralization, Grid’5000.

1 Introduction

Today’s personal computers are powerful but, most of the time, a large propor-
tion of their computational power is left unused. A desktop grid exploits the
idle CPU cycles from the desktop machines and puts it to work solving sci-
entific problems. These systems are designed to provide to scientists with low
cost, readily available computing resource, to solve important scientific problems.
Researchers are using desktop grids to simulate protein folding Folding@home
and model climate change Climateprediction.net. A large majority of volunteer
computing projects are based on BOINC.

However, desktop grids have some limitations as the high volatility of its
computing resources. They may join and leave the system at any time, especially
during a problem resolution. The users of the desktop grid should get the result
of their applications, so, ensuring proper termination of the applications running
on a large number of volatile resources is a real challenge.

PastryGrid [1] is a decentralized system which manages desktop grid resources
and user applications over a fully decentralized P2P network, Pastry overlay [2].

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 143–152, 2013.
c© Springer International Publishing Switzerland 2013



144 H. Abbes and T. Louati

To tolerate nodes volatility, the services of PastryGrid have been passively repli-
cated [3]. Consequently to a failure, PastryGrid restarts failure tasks on new
nodes from the beginning. Then, hours of computing become completely useless.
On the one hand, there is a waste of resources and on the other hand, the termi-
nation of the execution of applications is compromised, especially applications
composed of long running tasks.

To handle failures, we have integrated to PastryGrid a rollback-recovery pro-
tocol based on checkpoints. Our protocol, named PastryGridCP, is able, by
interacting with the grid services of PastryGrid, to manage checkpoints in a
decentralized manner and to restart automatically applications having a failure.

This paper is organized as follows. Sect. 2 discusses the related work. Sect. 3
outlines the architecture of PastryGrid. Sect. 4 presents PastryGridCP. Sect. 5
describes the results from the performance evaluation of our protocol. Finally,
Sect. 6 gives conclusions and future work.

2 Related Work

In this section, we present an overview of some desktop grid systems. We spec-
ify whether they have established a rollback-recovery protocol or they have re-
stricted to a reallocation of tasks with a restart from the beginning.

BOINC [4] is a platform for global computing which allows running bag of tasks
applications. To tolerate voluntary disconnections or failures, it uses the appli-
cation level checkpointing through the use of its API to instrument applications
and to specify checkpoint triggering time. All the checkpoints are stored locally
in the node. However, this approach presents a clear limitation. Following a fail-
ure, if this node reconnects within a time-out, it will continue its calculations
from these checkpoints, otherwise the local checkpoint will not be available and
becomes useless. Furthermore, the server will distribute the task to another node
to restart from the beginning.

Condor [5] is a distributed system for high throughput computing. Its architec-
ture is centralized; it is composed of a central manager and computing nodes.
Condor supports distributed applications with dependencies between tasks. It
uses the user level checkpointing through the use of its checkpoint library. All
checkpoints are stored on one server (centralized storage).

There are several other centralized desktop grid systems such XtremWeb [6],
Entropia [7] and decentralized as Vigne [8], OurGrid [9], OrganicGrid [10], Co-
hesion [11], CCOF [12], Alchemi [13], GPU [14]. These systems have not yet
established a rollback-recovery protocol, if a node fails, they restart failed tasks
from the beginning.

3 Overview of PastryGrid

3.1 Architecture

PastryGrid [15] is based on structured peer-to-peer overlay Pastry. A DHT “Dis-
tributed Hash Table” is built on top of this overlay to manage entities compos-
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ing PastryGrid distributed services. The principal service of PastryGrid is the
RDV “Rendez-Vous point” which represents the data storage service. Pastry-
Grid supports bag of independent tasks applications and workflow applications.
A workflow application is the succession of several modules. A module is a set
of tasks, using the same binary file and, generally, different input files. Tasks of
the same module can be executed in parallel. The relations between modules are
often time dependencies, a task of a module has to use the results of a task of a
previous module and must wait until it will be completed to start.

To deal with the volatility of desktop grid resources, PastryGrid uses a fault
tolerant system to ensure the availability of the RDV. In fact, if the user wants to
retrieve results of its applications, it’s necessary that the RDV is always available.
Passive replication is used to make the RDV highly available, that is ensured by
PAST [16]. It ensures k copies of the state of a node. To tolerate the failure of
nodes executing tasks, PastryGrid adoptes another strategy because replication
becomes expensive if applied to all nodes. A service called FTC “Fault Tolerance
Component”, highly available, is created dynamically for each application. It
supervises tasks. Following a failure, it affects failed tasks to new nodes to restart
from the beginning. PastryGrid does not have a rollback-recovery protocol.

4 PastryGridCP: Our Rollback-Recovery Protocol

4.1 Features of PastryGridCP

To ensure the termination of the execution of applications on a wide number
of volatile resources, following a failure, applications must restart from a check-
point. This is the purpose of our rollback-recovery protocol, PastryGridCP, de-
signed for the desktop grid system PastryGrid. Our protocol provides a solution
to the volatility as well as the size of the desktop grids. It is transparent to
applications and users ensuring the following three criteria:

• Transparency to Applications: Our protocol is based on a checkpointing ap-
proach transparent for applications, including those that were not designed to
tolerate faults.

• Simplicity of Use: The user should not worry about managing consequences
of failure of its application that can be distributed over a large number of
resources in the grid. Thus, our protocol provides a solution that guarantees
a high level of transparency: managing the checkpoints and restarting auto-
matically failed applications without user intervention.

• Scalability: Desktop grids are composed of several thousand of resources. They
allow to run many applications which are composed of multiple tasks. Our
rollback-recovery protocol must therefore scale well, this means that it must
provide good performance even for large applications. Thus, it should not
rely on a centralized architecture and must manage and save checkpoints in a
decentralized manner. In fact, there are three types of backup: local, shared
and distributed. For the checkpoints saved locally on the node, as is the case
for the BOINC system, the limit here is that the checkpoints, saved locally, will
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be lost when the node disconnects. For the shared backup, the checkpoints
of all applications are stored on a server, as is the case for the Condor system.
The major drawback here is that the server can become a bottleneck that
leads to a single point of failure in the system. The third solution is the
distributed backup, the checkpoints are stored in a distributed manner. The
most appropriate backup for our context is the distributed backup.

Table 1 presents a comparison of our rollback-recovery and those of BOINC
and Condor in terms of application model, transparency, management of check-
points and type of storage.

Table 1. Comparing the rollback-recovery in desktop grid systems

System Application model Transparency Managing
checkpoints

Storage

BOINC Bag of tasks No Yes Local

Condor Workflow No No Centralized

PastryGridCP BoTs and Workflow Yes Yes Decentralized

4.2 Architecture of PastryGridCP

Our rollback-recovery protocol PastryGridCP deals with bag of independent
tasks and workflow applications.

Architecture. The approach of saving the state of a process that ensures trans-
parency to the applications and to users is the system level checkpointing. For
PastryGridCP we have chosen BLCR [17] “Berkeley Lab Checkpoint/Restart”,
which is currently the most used solution at system level. Thus, each node of
the grid has BLCR. Without user intervention, our protocol manages check-
points generated by the backup after saving the state of each process. Following
a failure, it takes over the automatic restart of failed applications.

Management of Checkpoints. The management of checkpoints is not addressed in
the desktop grid systems. As is the case for the Condor system, it is the respon-
sibility of the user to do this task. To ensure simplicity, our protocol discharges
the user of this task, and takes over the management of checkpoints. Pastry-
GridCP uses the data storage service of PastryGrid, the RDV, for persistent
and stable storage of checkpoints. The RDV is highly available and accessible
from all nodes of the grid throughout the execution. This service can ensure high
availability of checkpoints due to the passive duplication (as mentioned before).
A RDV is created for each application, thus it ensures the decentralization of
the storage. In fact, the checkpoints of various applications will be distributed
across all nodes in the system: checkpoints of an application will be stored on
a node which is different from those of other applications. This will avoid to
associate the storage space to a central node.
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Restart Application after a Failure. Restart an application following a failure
requires, firstly, to find available resources that match the application require-
ments and secondly, to locate the data needed to the restart and make them
available on the new selected nodes:

• PastryGridCP must find new nodes to replace failed nodes. Therefore, it relies
on the FTC service of PastryGrid to find available nodes which are able to
restart failed tasks. This can be done by comparing the performance criteria
of the tasks, already described in the job submission description file, with
machine characteristics which are described in the machine description file.

• Our protocol takes over the location of data needed to the restart by contact-
ing the appropriate RDV and then makes them available on selected nodes to
restart. The data needed to restart a task include: the binary file, the check-
point, data files (inputs) and the description file of the task.

Scalability. Given the size of desktop grids, the number of users and the number
of applications running on the grid, a centralized architecture that would put
constraints on a central point could limit the scalability of our protocol. There-
fore, on the one hand, we have avoided a centralized backup, a single server
which stores all the checkpoints of all applications. On the other hand, we have
avoided that a server orchestrates applications processes to notify them to do
the backup. Each process saves its state independently of other processes and
also to prevent concurrent access to the data storage point.

Interface for PastryGrid Users. For a better quality of service, we offer the user/
administrator the opportunity to describe his checkpoint in the description file of
the application. This file defines tasks and associated needs in terms of resources.
We rely on the definition proposed by the “Open Grid Forum” OGF. The OGF
introduced the concept of Job Checkpointing. It is an XML file composed of
three tags. For the LevelCheckpoint, this tag has three possible values: system
level checkpointing, application level checkpointing and user level checkpointing.
The default value is the system level approach. For the ProtcolManagement,
this tag allows, firstly, whether it is the simple protocol, dedicated for applica-
tions such as bag of tasks and workflow, coordinated protocol or uncoordinated
protocol for applications which communicate frequently by exchanging messages.
Secondly, the user must specify the frequency of checkpoints. For the FileMan-
agement, this tag is used to specify the number of duplicates of a checkpoint.

Operation of the Protocol. Our rollback-recovery protocol deals with bag of
tasks and workflow applications. In fact, during the normal execution of the ap-
plication, periodically, a checkpointing is triggered. Eventually, the checkpoints
are sent to the appropriate RDV. Following a failure, the application restarts
from a checkpoint. This requires finding appropriate resources and retrieving the
checkpoints to continue the execution of the application. Saving a checkpoint of
an application, such as bag of independent tasks and workflow, means saving



148 H. Abbes and T. Louati

data needed to restart each of its tasks. For workflow applications (parallel ap-
plications loosely coupled), we do not save the state of communication channels
as is the case for tightly coupled parallel applications. Communication between
tasks, in a workflow, does not create dependencies between them.

5 Experimental Evaluation

5.1 Experimental Setup

To validate our protocol, we performed out experiments on Grid’5000, an ex-
perimental testbed for distributed computing that federates ten sites in France.
We used 110 nodes of the Graphene and Griffon clusters from the Nancy site.
Graphene and Griffon nodes are equipped with a quadcore Intel Xeon (respec-
tively X3440 processor x86 64 CPU, 2.53 GHz and L5420 processor x86 64 CPU,
2.5 GHz), 16 GB of RAM and local disk storage of 320 GB. They are intercon-
nected with Gigabit Ethernet (measured 117.5 MB/s for TCP sockets with MTU
= 1500 B with a latency of 0.1 ms).

We have chosen the system level approach BLCR which is sufficiently com-
pleted to save the state of a process. For our experiments, we have equipped
all compute nodes by blcr-0.8.2 while the operating system is a Debian Linux
distribution. All nodes have PastryGrid. The new version, including our rollback-
recovery protocol PastryGridCP, is available on SourceForge [18]. The prototype
of PastryGrid is fully coded in Java. It uses the open-source implementation
FreePastry of Pastry to create an overlay network of nodes and to implement
hash tables manipulation functionalities.

We are targeting applications such as bag of independent tasks and workflow.
Each task receives an input and generates an output. The dependencies between
tasks are managed at the job submission description file “Application.xml”. Our
test applications are workflows (distributed applications, over many nodes, with
dependencies between tasks). For our experiments, the number of parallel tasks
varies from 10 to 60 and the duration of each task is about 120 seconds. The total
duration of all the experiments is 24 hours. PastryGridCP depends on several
parameters which are the frequency of checkpoints and their eventual sending
to RDV. We set these parameters as follows: the time between two periodic
checkpoints is set to 2 seconds and the time between two sending to the RDV
is set to 20 seconds. We have chosen both values 2 and 20 seconds because this
constitutes a worst case scenario for the system overhead.

5.2 Experimental Evaluation of Execution without Failure

We study in this section, the overhead generated by our protocol, PastryGridCP,
during the execution without failure. There are two overheads to analyze: the
overhead in terms of storage and the overhead in terms of performance.
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The Overhead in Terms of Storage: Given an application composed of
several tasks, our protocol can generate a large number of checkpoints. To avoid
this overhead, for each new checkpointing, the old checkpoint is overwritten and
replaced by the new one. In addition, we have implemented a pull approach to
remove obsolete checkpoints.
The Overhead in Terms of Performance: Some rollback-recovery tech-
niques, such as [5] and [19], proceed as follows: each time a checkpointing is
triggered, they require to stop running the application, make a checkpointing
and restart the application from the last checkpoint. This will have a significant
impact on application performance and will generate an overhead compared to
an execution without a checkpointing strategy. This overhead evolves according
to the frequency of checkpoints.

In PastryGridCP, we have avoided interrupting the execution of the applica-
tion at the moment of the checkpointing process. The checkpointing is performed
in parallel with the execution of tasks. Our strategy works well for bag of tasks
and workflow applications (our test applications). But, for tightly coupled par-
allel applications, it cannot be done in a safe way while the process executes
because it could lead to an inconsistency. Our strategy avoids an overhead in
terms of performance.

Fig. 1 illustrates a comparison of the performances of applications with and
without PastryGridCP. Obtained results depict executions of applications with
tasks ranging from 10 to 60. The graph called “PG without CKPT” represents
the performance of applications without PastryGridCP and “PG with CKPT”
represents the performance of applications with PastryGridCP. Each experiment
has been performed twice and we plot the mean measurements.
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Fig. 1. Applications performance with and without the protocol PastryGridCP

The first result is that checkpoints are effectively on nodes running tasks as
well as on the RDV of each application. The results show, by comparing the two
curves, that PastryGridCP does not delay applications and does not penalize
their performance. We note that our protocol has no impact on application
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performance during execution without failure. We deduce that whatever the
frequency of checkpoints, the overhead in terms of performance is negligible. The
results of this experiment show also the scalability of our protocol. By increasing
the number of tasks from 10 to 60, PastryGridCP has good performance for
applications. This is due to its decentralized approach for managing checkpoint
data that allows to take over many tasks and to provide greater scalability.

5.3 Experimental Evaluation by Injecting Faults

We study in this section, the behavior of PastryGridCP facing to failures. We
mainly focus our analysis on the performance when restarting after a failure.

Performance: It is interesting to have a good tradeoff between applications
performances during execution without failure and those on restart. The perfor-
mance during execution without failure depends of the overhead generated by
PastryGridCP on application performance when running without failure. As we
have already mentionned, it is negligible. The performance of restarting after
a failure includes the time needed to deal with the consequences of failure: the
time required to retrieve the data needed to restart and the time required to
restart. To inject faults in a random manner, we create probabilistic scenarios
(choosing randomly a percentage of distinct Worker-Nodes and inject the fault
progressively on those nodes). We haven’t injected the fault on RDV and FTC
because our goal is to study the behavior of the Worker-Nodes.

We have established two scenarios with different percentages of failures: 20%,
50%. These scenarios allow to analyze the behavior of PastryGrid facing failures
when the failure rate is low (20%, 22 failed nodes) (see Fig. 2, left part) and high
(50%, 55 failed nodes) (see Fig. 2, right part). We want, through these scenarios,
to measure the impact of failures on application performance with and without
PastryGridCP and illustrate the value of a rollback-recovery protocol. We note
that, our rollback and recovery protocol isn’t used by non faulty nodes that are
executing tasks.

The experiment, with low failure rate, shows, first of all, that the perfor-
mance of applications with PastryGridCP is better than those, following a fail-
ure, restart from the beginning. As is the case of the application number 2 com-
posed of 20 tasks, PastryGridCP has improved its performance, an improvement
of 100 seconds. This experiment shows, then, by comparing the performance of
applications (with and without PastryGridCP) with the performance in fault
free execution, that there is an overhead generated. In particular, the example
of the application 4, composed of 40 tasks, the overhead of PastryGridCP is
about 50 seconds and without the protocol the overhead is about 125. Similarly,
for the experiment with a high failure rate, our protocol improves the perfor-
mance of applications. As is the case of the application number 5, composed of
40 tasks, has an improvement of 188 seconds compared to a recovery from the
beginning.
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Fig. 2. Behavior of PastryGrid by injecting 20% and 50% of failures

6 Conclusions and Future Works

We have presented our rollback-recovery protocol PastryGridCP, for the desk-
top grid system PastryGrid, based on checkpointing and DHT distribution of
checkpoint data. Our protocol ensures the termination of the execution of appli-
cations in spite of failures. It offers a solution to the volatility and the size of the
desktop grids. In fact, it does not rely on a centralized architecture which limits
its scalability. The approach is decentralized and is performed concurrently to
the application execution implying very low overhead. Furthermore, it allows the
distribution of checkpoints across multiple data storage services and it ensures
the high availability of checkpoints. The experimental results show that whatever
the failure rate is low or high, PastryGridCP could improve the performance of
applications and reduce the overhead of the recovery from the beginning.

In our future works, we plan to manage dynamically the frequency of check-
points to reduce the storage overhead. In the present work, this frequency is
chosen by the user when he submits the application. This parameter may influ-
ence the behavior of the protocol. On the one hand, with a fewer checkpoints,
we risk losing the computation in case of a failure between two checkpoints. On
the other hand, with a lot of checkpoints, we could generate an important stor-
age overhead at run time. We note that this overhead is generated only at run
time. After the termination of the application, each node removes automatically
obsolete checkpoints as soon as it finishes running tasks successfully. This pa-
rameter should be adapted according to the frequency of failure of nodes. It is
interesting to take into account the stability parameter of each node based on
the historical connection times. This allows then, to compare the stability time
of the node with the duration of the task and make better decisions by setting
optimal periods inter-checkpoints.
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(JVM) make extensive use of dynamic object-oriented programming fea-
tures such as inheritance, polymorphism, and encapsulation. This makes
them very hard or even impossible to analyze statically, defeating most of
the automatic parallelization research done so far for traditional compute-
heavy scientific applications.

In this paper, we propose and evaluate multiple extensions to the
JaSPEx-MLS framework, a speculative parallelization framework that is
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Fork/Join parallelism. Speculative execution is supported by our novel
relaxed STM model, which is tightly coupled with our framework and
includes support for integrating with Futures.
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1 Introduction

With multicore processors reaching near-ubiquity in the computing market, it
becomes ever more important for applications to take advantage of all the avail-
able parallel execution resources of modern computers.

Because retrofitting concurrency onto existing applications is usually a hard
and error-prone task, an enticing alternative is the usage of automatic paralleliza-
tion. Parallelizing compilers [2] attempt to automatically extract concurrency by
proving that parts of a sequential application can be safely executed in parallel.
The problem is that they fail to parallelize many irregular applications [6,9] that
employ dynamic data structures, loops with complex dependences and control
flows, and other abstractions, which are very hard or even impossible to analyze.
Thread-Level Speculation (TLS) systems [8,11,15] attempt to work around this
issue by optimistically running parts of the application in parallel, even if the
TLS system is not able to statically prove that there will be no dependences. In-
stead, correctness is dynamically ensured at runtime, by validating now-parallel
operations during or after their execution.

In previous work [1], we proposed the JaSPEx-MLS speculative parallelization
framework, which employs Method-Level Speculation (MLS), a technique that
uses method calls as speculative task spawn points [3, 9, 11, 18], combined with
Software Transactional Memory (STM) for buffering and tracking the speculative
program state, and supported by first-class continuations. In that work, our
main focus was on the code modifications needed for safe speculative execution
of Java bytecode, while at the same time minimizing the runtime overheads
imposed by our custom STM, but we left some open issues that limited the
amount of parallelism our framework was able to extract — our runtime thread
management and coordination/result fetching model was very simple, and as it
relied on waiting between tasks, an unbalanced speculative task selection could
easily lead to system underuse, as most tasks would spend considerable time
stopped while waiting for results from other tasks.

In this paper, we tackle our previously open issues with multiple novel tech-
niques for MLS runtime task extraction and coordination that rely on state
transfer and buffering using continuations. We build upon our previous work by:
– Extending existing experimental support for continuations in the OpenJDK

Hotspot JVM to better fit the use-cases of MLS parallelization (Section 3);
– Exploring how continuations can be used to implement MLS in the JaSPEx-

MLS framework (Section 4.2);
– Presenting a technique that allows the thread pool to buffer tasks for execu-

tion, while still preserving correctness and avoiding deadlocks (Section 4.3);
– Proposing a novel task freeze technique where we allow threads that host

speculative tasks to be reused instead of blocking by freezing tasks for later
resume, possibly by another thread (Section 4.4);

– Introducing an extension to our custom software transactional memory model
for allowing STM-assisted return value prediction (Section 4.5);

– Evaluating the impact of the proposed techniques in extracting parallelism
and reducing speculative execution overheads (Section 5).
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int example1() {
    int x = computeValue();
    int y = 0;
    for (...) y += ...;
    return x+y;
}

Fig. 1. Execution of example1() method when run normally (center) and parallelized
with MLS (right). Note that computeValue() is executed in the normal program order
(at the start of example1()); the for loop is executed speculatively.

2 Method-Level Speculation

Method-level speculation (MLS) is a speculative parallelization strategy first
discussed in the context of Java in [3], and shown to be a promising source for
parallelism by [9, 11, 18]. This technique works by speculatively executing the
code following the return of a method call in parallel with the method call itself.

MLS shares many similarities with the Fork/Join (F/J) model, which was
also recently introduced into the Java platform with the Java Fork/Join frame-
work [7]. The MLS spawn operation works similarly to the fork operation, but
with an important distinction. In the MLS model the new task spawned (forked)
starts executing the code following the spawn point, and the method itself is ex-
ecuted as part of the previously existing task, whereas in the F/J model the
reverse happens: a new task is created to execute the method call being forked,
and the code following the fork is the one executed as part of the previously
existing task — note that this distinction is in the models themselves, regardless
of the runtime strategies chosen for execution. For both F/J and MLS, the join
operation is similar, and serves to synchronize a pair of tasks where one needs
to obtain the result of another’s computation. In addition, the F/J framework
targets parallel algorithms, where tasks have simpler and less strict ordering
semantics than those required of an MLS system.

An example of method-level speculation is shown in Figure 1. When the
computeValue() method call is reached, the current thread (T1) begins execut-
ing it, while at the same time triggering the spawn of the speculative execution
(by T2) of the code following the return of that method.

In this example, both the original parent thread and the speculative child
thread have to join to produce the result of the method. If the value of the
variable x was never used, it would be possible to speculate past the return of
example1(), and continue the execution of the method that invoked it. Alterna-
tively, even if x’s value is needed to proceed with the execution, we can employ
return value prediction to guess a probable value of x, as discussed in Section 4.5.

3 First-Class Continuations on the JVM

First-class continuations allow an application to have control over its own control
flow: they allow the current program execution state to be saved, and later
resumed. Mapping it to the Java platform means having a way of saving a
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thread’s call stack, local variables and program counter, and of later restoring
it. Unfortunately, the Java VM specification includes no facilities to allow this.

There have been multiple proposals for extending Java with continuations.
We can divide them into two big groups: bytecode-based [10, 13] and VM-
based [16, 19]. Bytecode-based approaches work by modifying application byte-
code to keep parallel representations of a thread’s state on the heap, and also by
modifying methods so that the entire call stack can be rebuilt from the parallel
representation. Although this approach is successful and works with any JVM, it
suffers from very large overheads, which unfortunately are always present, even
if the application never actually tries to capture or resume any continuation.

The other approach — VM-based continuations — works by modifying the
JVM, adding hooks that allow access to the VM’s internal representation of
threads. Usually, with such an implementation, there are no extra overheads
when continuations are not being used, but it is non-portable and VM-specific.

To support our framework, we looked into VM-based continuation implementa-
tions that worked atop the OpenJDK Hotspot JVM, as it is one of the highest per-
forming and most used production VMs. To obtain our continuation-supporting
VM, we extended the work by Hiroshi [19]: this implementation provided con-
tinuations aimed at web servers, where the state of a web interaction was kept
inside a continuation between each request/response pair from the same client.
This meant that when a continuation was created at the end of each web inter-
action, the thread state that was saved would no longer be needed until the next
request from that client, so the continuation implementation would also, during
the capture operation, clear the existing state and reset the thread to a clean state
ready to serve the next client. It also meant that each continuation could only be
resumed at most once, as it was expected that at the end of each interaction a new
one would be created.

Our custom JVM extended this work by removing its restrictions: our im-
plementation allows the same continuation to be resumed multiple times, and
it is optimized so that capturing a continuation also preserves the state of the
thread, allowing execution to proceed immediately after a continuation is cap-
tured. While the latter could be simulated with added overhead, the support
for resuming a continuation multiple times is essential for JaSPEx-MLS’s use
of continuations, as explored in Section 4.2. Finally, several internal VM design
choices lead to native methods not being allowed in a call stack being captured,
and because Hotspot’s reflective invocation API is built using native code, we
developed our own VM-agnostic alternative reflective invocation system that re-
lies on runtime bytecode generation, allowing our framework to combine the use
of reflection and continuations.

4 Runtime Extensions to the JaSPEx-MLS Framework

In this section, we will start with a brief introduction of the JaSPEx-MLS frame-
work (Section 4.1) and how continuations are used to implement MLS (Sec-
tion 4.2). We then present our hybrid technique for safely allowing the buffering
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of speculative tasks, while still avoiding deadlocks (Section 4.3), followed by our
novel task freeze technique that enables thread reuse (Section 4.4). Finally, we
describe an extension to our STM model that adds support for STM-assisted
return value prediction (Section 4.5).

4.1 The JaSPEx-MLS Parallelization Framework

JaSPEx-MLS [1] is a software-based speculative parallelization framework em-
ploying Method-Level Speculation that provides both a Java classloader that
modifies application code as it is requested by the virtual machine, and a run-
time Java library that orchestrates speculative execution. The framework is im-
plemented in Java, and modifications to applications are done via bytecode
rewriting. It also depends on having a VM with continuation support, which
is provided by a modified version of the OpenJDK Hotspot VM (Section 3).

The JaSPEx-MLS classloader (introduced in more detail in [1]) is responsible
for, whenever a class is requested by the application, preparing its code for
speculative parallelization, consisting of four main steps: (1) transactification,
(2) dealing with non-transactional operations, (3) task spawn point injection,
and (4) modifications to support Futures.

The classloader first transactifies applications by modifying their code to use
our low-overhead software transactional memory, which is designed to be type-
specific and easily inlined by the VM. The transformation process then adds
hooks to deal with non-transactional operations, such as calls to native code
and to some JVM services: Whenever application code is running speculatively,
and a non-transactional operation is to be executed, we ensure the safety of the
operation by synchronizing with earlier (in the original program order) spec-
ulative tasks, aborting the current task if needed. In addition, there is limited
support for automatic transactification of JDK classes, and we have implemented
alternative transactionally-friendly versions of commonly used operations.

Our classloader decides where to insert speculative task spawn points by first
performing local analysis of a method’s control flow. We use this information
to avoid creating both overly small and too many tasks; optionally this process
can also be augmented by information from an automatic profiling pass. Each
selected spawn point corresponds to a normal method call, which is morphed into
a call to the JaSPEx-MLS runtime library that returns a Future as a replacement
for the original method’s return value. This future, similarly to the ones employed
in the Java Fork/Join framework, allows the speculative task to obtain the result
of its parent task’s computation, corresponding to the execution of the original
method call. As the original application being parallelized has no references to
futures, and Java bytecode is typed, our classloader needs to perform various
code modifications to adapt the original code to the use of futures.

After the prepared classes are loaded by the classloader into the VM, control
is transferred to the runtime orchestration library, which becomes responsible for
coordinating speculative tasks, and for parallelizing the application while still
respecting the original sequential program semantics — even in the presence of
non-transactional operations. The runtime library is also responsible for starting,
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Fig. 2. Runtime view of Figure 1’s example1() task creation and execution

maintaining, and validating the STM transactions that allow tasks to perform
speculative reads and writes to the program heap. Speculative work is submitted
to a thread pool, which we attempt to keep busy at all times, as described in
further detail in the following sections.

4.2 Mapping MLS to Continuations

As described in Section 2, under the MLS model, we change method calls into
speculation spawn points. For instance, in Figure 2, we transform the invocation
of the computeValue() method into a spawn point for a new task that will
speculatively execute the code following the spawn instruction.

This is where the support for first-class continuations enters: JaSPEx-MLS
captures a continuation representing the current thread’s state — program
counter, local variables, method arguments, and all pending invocations in the
stack — and attaches it to the newly created speculative task. It then cleans the
current call stack, throwing it away, as it will not be needed after the method is
completed, and proceeds to execute the computeValue() method. Note that do-
ing the inverse would also be possible: schedule the execution of computeValue()
on another thread, along with the current active task and transaction, and con-
tinue executing the for loop in the current thread. The problem with this
alternative approach is that it can easily lead to delays in executing code ear-
lier in the program order, while devoting more resources to code that is more
speculative.

Whenever a speculative task is picked up by a thread, it starts a new STM
transaction, and resumes the previously captured continuation. Execution jumps
to the spawn operation that replaced the computeValue() method, where a
Future is returned representing the return value for the method, and the (spec-
ulative) execution begins.

Each continuation may be resumed up to two times: The first resume happens
when a task first executes speculatively, while the second may happen if, after
the first execution, validation of the STM transaction fails and the task is re-
executed.
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4.3 Thread Pool Buffering

After a new speculative task is created, it is submitted for execution to the
JaSPEx-MLS thread pool, which is based on Java’s ThreadPoolExecutor API.
In our original design [1], the thread pool did not buffer tasks, instead allocating a
limited number of threads based on the number of available CPUs, and accepted
new tasks only when there were idle threads. This design was chosen to avoid
possible deadlocks: Because our model allows tasks to be spawned in any order,
task spawning becomes unpredictable; when combined with the fact that tasks
may need to block while waiting for other tasks to finish their work, task buffering
becomes prone to deadlocking, as it is possible for all the available threads in
the thread pool to be blocked while waiting for results from a task that is still in
the queue waiting to be executed. By disallowing buffering, we guarantee that
at least one of the threads in the system is making progress, as it is hosting the
oldest task in the system — which will never need to wait.

As benchmarking revealed that task buffering, when it did not cause any
issues, was more efficient than direct hand-overs to the thread pool, we devel-
oped a hybrid technique that starts by using buffering, but augments it with
monitoring the thread pool for deadlocks, and allows fallback to the earlier task
hand-over scheme if needed. To detect deadlocks, a dedicated thread periodically
polls the state of the thread pool queue: As any given task is queued at most
once, if the same task sits at the head of the pool for some amount of time —
we expect most tasks to execute in sub-second times — we check the state of
all the threads. If all threads in the pool are in the waiting state, it means that
the system is probably deadlocked. As such, we fallback to the earlier scheme
without buffering, and temporarily create more threads to execute the remaining
buffered tasks. This approach combines the best of both task queuing modes: it
maintains correctness for all applications while providing increased performance
to those where buffering causes no issues.

Note that if, when a task is submitted, the pool is full, the spawn is aborted.
This happens in both pool queuing modes, either when the pool is fully busy, or
when the buffer is full.

4.4 Task Freeze

During speculative execution, a task may need to access the result from another
speculative task. If the other task has not yet finished its computation, the
current task must wait until the value becomes available. A similar case occurs
when a task is about to execute a non-transactional operation: the task needs to
wait until it becomes the oldest task in the system. In both cases, the threads
hosting the waiting tasks are still considered as busy, and are unavailable for
executing other tasks, thus leaving the machine’s parallel resources underused.

A possible approach to solve this issue would be thread reuse, which unfor-
tunately is not straightforward in our model: If a thread picks up a more recent
task for execution, and the new task ends up depending on the older task to
finish, the system becomes deadlocked — unable to ever finish the new task or
to switch back to executing the previous one.
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To safely support thread reuse, we again rely on our extended JVM with
support for continuations. Whenever a thread executing a task would block
waiting for its parent task to finish, instead we freeze the task, by saving both
a continuation containing the current state of the task and the currently active
STM transaction. This frozen task is associated with its parent task, which will
be responsible for finishing the task’s work after its own. This allows the thread
previously hosting the task to be returned to the thread pool, where it can safely
proceed to work on other tasks, instead of blocking, as before.

The thaw operation happens when, after finishing its work, the parent task
discovers a frozen child task waiting to be finished. As the parent task is fin-
ished, the thread directly switches to working on the child task without needing
to return to the thread pool — the child’s continuation is resumed, its STM
transaction is validated, and execution proceeds from where the freeze left off.
Note that it is possible for a queue of frozen tasks to form, and a parent may
have to thaw several children, always directly switching between them without
returning to the thread pool.

Because capturing continuations adds some overhead, we have further iden-
tified and optimized a common use case where we can avoid the need for con-
tinuations. Whenever a child task is able to complete its work, but needs to
wait for its parent to finish before it can validate and commit its own specula-
tive state changes to the global program state — as it does not know if it read
something that will be later changed by one of its parent tasks — we can use a
simpler freeze. As the child task is finished with its work, there is no state on the
stack that needs preserving, and in this case the freeze operation consists only
in saving the STM transaction, avoiding an unneeded capture/resume cycle.

4.5 Return Value Prediction

One of the biggest challenges in the MLS model is dealing with operations that
work on the return values of methods that have yet to finish executing. Our
framework represents the return values of these methods with Futures, and our
modifications to the application code allow futures to be written both to local
variables and also to the heap, via special collaboration with our STM imple-
mentation. But the previous options are only useful if the value from the method
call is not read immediately. Otherwise, no useful work would be done in par-
allel: a speculative task spawned to run the code following a method call would
immediately stall waiting for the result from its parent task. In our previous
work, whenever the JaSPEx-MLS classloader detected that this would happen,
it declined to inject the spawn operation that would create a new task.

A possible solution to this issue lies with the use of Return Value Prediction
(RVP) [5, 12]. The idea of RVP is that whenever a task would stall waiting for
a returned value to be produced by another task, we guess a probable value for
the computation, and continue executing the task using this assumption — we
speculate on the returned value from a task.

We have implemented RVP in JaSPEx-MLS as a novel extension to our STM
model: Whenever a prediction is produced, we register it with our STM as a
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Fig. 3. Improvement obtained by the new JaSPEx-MLS extensions, relative to bench-
mark executions using JaSPEx-MLS but with the new extensions disabled, for multiple
benchmarks from the JGF

read of a specially reserved memory location. This memory location is unique
for each task from which we obtain a prediction: It is possible for a speculative
task to obtain multiple predictions corresponding to values from multiple other
tasks. When a task finishes and produces the final return value, it writes it to the
special memory location. When later the task that read the prediction attempts
to commit, the memory location hosting the prediction is checked as part of
read-set validation. If the prediction was correct, its value will be seen as valid
by the STM, otherwise the speculative task is aborted and re-executed.

We support multiple prediction strategies (as proposed in other works [5,12]),
and update predictors during transaction commit operations. As an option, when
RVP is being employed, the JaSPEx-MLS classloader can be configured to inject
code to spawn speculations even when the value is immediately consumed.

5 Experimental Results

In this Section, we present preliminary experimental results obtained with the
JaSPEx-MLS framework. We tested our prototype on an Intel Core i7 4770
computer with 16GB of RAM, running Ubuntu Linux 13.10 (snapshot) 64-bit,
with hyperthreading disabled, and our modified OpenJDK VM.

We tested several JVM benchmarks from the Java Grande Forum (JGF)
benchmark suite.1 The chosen benchmarks are single-threaded, and no modi-
fications to their source code were made. We present results with two and four
processor cores enabled in the machine. To test with two cores, we locked the
VM process to only two cores of the quad-core machine.

We first characterize the performance of the new techniques proposed in this
work for the framework by comparing the benchmark execution performance to
a version of JaSPEx-MLS where their usage was disabled. The results of this
testing are presented in Figure 3. For the series benchmark, the new features
improved performance noticeably. Interestingly, freezing tasks only improved
performance when combined with the task buffering changes; combining freezing
with the simpler no-buffering pool actually regressed performance, showing that
task submission to the pool was indeed a bottleneck in our system. Both crypt

and lufact show modest gains with 4 cores. Finally, euler was not able to

1 http://www.epcc.ed.ac.uk/research/java-grande

http://www.epcc.ed.ac.uk/research/java-grande
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Fig. 4. Speedup of the series benchmark, when compared to the original sequential
version’s runtimes, both with the new extensions enabled and disabled

improve from the new features, but it was also not negatively impacted either.
Not shown are the fft benchmark as it behaved similarly to crypt, and both
sor and sparsematmult because no useful spawn points where injected.

Figure 4 compares the actual speedup obtained in the series benchmark,
when compared to the original sequential version’s runtime, when running
JaSPEx-MLS both with and without the new extensions. Compared to our pre-
vious work [1], we see improved scaling in the series benchmark, hitting a
speedup of 3.03x with 4 cores. The remaining benchmarks were omitted, as even
with the new extensions they are not yet able to surpass the original version’s
performance, as they still need improvements to task selection and scheduling.
For all the benchmarks tested, the baseline execution with the code modifications
active but where no speculations are ever spawned reveals up to 3% overhead
when compared to the original unmodified versions, showing that the optimiza-
tions done by the virtual machine are able to almost nullify the added overheads,
making non-speculative code execution perform at production VM speeds, while
still ready for speculative execution and for capturing continuations.

6 Related Work

Because executing code transactionally can impose very large overheads, recent
TLS proposals, similarly to JaSPEx-MLS, try to optimize the transactification
and transactional model as much as possible: In SpLIP [8], a speculation system
that targets mostly-parallel loops, the authors propose avoiding performance
pitfalls present on other software TLS proposals by having speculations commit
their work in parallel, and using in-place updates. Fastpath [15] is also aimed at
extracting parallelism from loops using speculation. This system distinguishes
between the thread running in program order, and other speculative threads:
The lead thread always commits its work, and has minimal overhead, whereas
speculative threads suffer from higher overheads and may abort. The current
JaSPEx-MLS relaxed STM model is very similar to the Fastpath value-based
algorithm, the biggest differences being our support for futures and RVP.

Rountev et al. [14] studied the parallelism available on multiple Java sequen-
tial benchmarks, and propose that parallelization be broken into two steps: (1)
the modification of a sequential program into a sequential concurrently-friendly
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program; and (2) the parallelization itself. They also introduce a new technique
to help identify parallelism-inhibiting memory accesses.

Hu et al. [5] studied the importance of return value prediction to MLS and
similar speculative schemes, showing that RVP could provide clear performance
advantages by simulating the execution of multiple benchmarks on a specially
modified Java VM. Pickett [12] also studied multiple predictors and proposed a
hybrid design that dynamically chooses the best predictors for a given call site.

The idea of using futures in Java coupled with speculative execution was also
explored in a different context by Welc et al. [17]: In their work on safe futures
for Java, the authors extend Java with support for futures that are guaranteed
to respect serial execution semantics. In contrast with our automatic approach,
to use safe futures, programmers need to manually change their code to em-
ploy futures instead of normal method calls, including solving cases where the
return value from a method is consumed or written immediately. JCilk [4] is
a Java-based language for parallel programming that provides a programming
style very similar to Fork/Join. It extends Java with three new keywords, and in-
cludes very detailed and strict semantics for exception handling, aborting of side
computations, and other interactions between threads that try to minimize the
complexity of reasoning about them. Similarly to the safe futures, programmers
also need to manually prepare their program for execution using JCilk.

SableSpMT [11] is a Java MLS-based automatic parallelization framework.
Like JaSPEx-MLS, it performs RVP, but unlike our approach, a simpler task
spawn model is used: Although the main thread is allowed to spawn multiple
speculative tasks, the tasks themselves cannot spawn further speculative tasks
— nested speculation is not allowed. SableSpMT is based a modified SableVM
virtual machine, which unfortunately includes only an interpreter and a very
simple garbage collection algorithm. In contrast with SableSpMT, JaSPEx-MLS
fully supports nested speculation, and in our system the garbage collector works
normally, whereas in SableSpMT it invalidates all running speculations.

7 Conclusions and Future Work

In this paper, we have presented multiple novel techniques for improving MLS
runtimes. These techniques were developed as part of our ongoing work on the
creation of the JaSPEx-MLS software-based speculative parallelization frame-
work, which aims to parallelize irregular Java/JVM applications automatically.

We started by introducing our extensions to previous experimental work that
added first-class continuations to the OpenJDK Hotspot JVM — we removed
several restrictions and further optimized the implementation for our use-cases.
We analyzed the issues underlying both the safe buffering of speculative tasks
for execution, where we proposed an hybrid scheme with a dynamic deadlock
detector, and thread reuse via task freezing, allowing blocked threads to be freed
up for safely executing other tasks. We also described our STM-assisted return
value prediction support, which allows a task to continue execution by obtaining
(possibly multiple) predictions from other concurrently executing speculative
tasks that have not yet finished.
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Evaluation of our techniques shows that they improve our MLS runtime, allow-
ing a decrease in overheads and enabling us to unlock further latent parallelism,
improving the speedup obtained in the tested benchmarks.

In the future, we intend to work on improving the runtime management of
tasks by adding a task scheduler, and also to improve our automatic profiling
pass so that unprofitable speculations are more aggressively culled.
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Abstract. Many real-time applications are geographically distributed
and have to use large amounts of real-time data. Using DRTDBMS1 is
increasingly needed to better manage the large amount of real-time data.
In order to take into account unpredictable workload, Quality of Service
(QoS) based approaches are the most appropriate. In the particular case
of distributed applications, it is necessary to consider the problems of
load balancing for user transactions between different sites. Feedback
Scheduling approaches can adapt to unpredictable workload variations.
In this paper, we propose to apply a (m,k)-firm approach to schedule
user transactions in a distributed feedback scheduling architecture. We
also show that our approach can significantly improve the performance of
existing approaches by increasing the number of transactions that meet
their deadlines while maintaining the DRTDBMS in a stable state.

1 Introduction

Currently, many applications use distributed computing, real-time processing
and require, in addition, the management of large amount of data. Thus, DRT-
DBMS are increasingly needed to satisfy these applications since they are de-
signed to manage, in both, large volumes of distributed data and real-time
constraints of transactions. DRTDBMS include a set of nodes connected via
communication networks for transaction processing, where data and transac-
tions are totally distributed.

DRTDBMS are greatly exposed to unpredictable workload, caused by user
transactions arriving at varying frequencies, and then to an unbalanced dis-
tribution of this workload between nodes. This leads to instability periods in
which the system becomes overloaded. During overloading periods, there is a
lack of DRTDBMS resources, so that transactions greatly miss their deadlines.

1 Distributed Real-Time Database Management Systems.

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 166–175, 2013.
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Therefore, it is essential to keep the system in a stable state in order to guaran-
tee a better QoS. To control system’s instability periods, approaches based on
feedback control real-time scheduling theory and allowing to handle imprecise
computation are proposed [13][14]. Furthermore, Wei et al. [3] proposed an algo-
rithm for QoS guarantees in DRTDBMS based on a distributed feedback control
scheduling architecture (DFCSA).

In this paper, our objective is to enhance QoS in DRTDBMS by maximizing
the number of transactions which meet their deadlines, while maintaining a ro-
bust DRTDBMS behaviour facing instability periods. Our approach consists of
extending the DFCSA by applying the (m,k)-firm approach to user transactions,
which consists of decomposing each one of them into mandatory sub-transactions
and other optional. Thus, mandatory ones have to be executed on time, how-
ever, optional ones are executed only if there is enough time before reaching the
transaction’s deadline. In such a way, we relax the atomicity property of trans-
actions, which imposes that a transaction is either performed in its entirety or
not at all. Indeed, in DRTDBMS, imprecise results provided on time are more
preferred than exact results provided late.

The remaining of the paper is organized as follows. In Section 2, we present ex-
isting architecture on which our work is based. Section 3 describes our proposed
approach for QoS guarantees in DRTDBMS. Our work is evaluated according to
a set of simulation results in Section 4. We conclude the paper, in Section 5, by
briefly discussing our approach and by presenting our future work.

2 Related Work

In this section, we describe our distributed real-time database model by present-
ing data and transaction models, and defining the basic performance metric we
consider. Similarly, we present the QoS management architecture proposed in
[3], on which we based our work. We finish by giving an overview of the previous
work in which the (m,k)-firm approach is used for the QoS enhancement.

2.1 Data Model

In our data model, we consider a main memory database in which we have real-
time and non real-time data. Real-time data are sensor data from physical world,
and are updated periodically to reflect accurately the real world state. Each real-
time data object has a validity interval beyond which it becomes useless, and
a timestamp indicating the last observation of the real world state. Non real-
time data are those found in conventional databases and that do not change
dynamically with time.

In a DRTDBMS, using data replication increases the data availability at dif-
ferent sites. Then, it significantly helps transactions to meet their time require-
ments [3]. Data could be either fully or partially replicated. The full replication
consists of replication of all data to all sites in the distributed system. However,
in the partial replication, only the portion of the most accessed data items in
the database are replicated but not necessary to all sites.
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2.2 Transaction Model

In our model, we consider firm deadline transactions [11], where if a transaction
misses its deadline, it will be aborted and becomes useless for the system. Trans-
actions are divided into update and user transactions according to the type of
their accessed data items. Update transactions are executed periodically, in order
to refresh real-time data objects. They update, likewise, real-time data replicas.
We consider that each update transaction consists of one sub-transaction, having
always a write operation. User transactions are aperiodic. We consider that each
one consists of a set of sub-transactions. Then, each sub-transaction is composed
of a set of read operations on both real-time and non real-time data objects, and
of write operations on only non real-time data objects.

In distributed real-time databases, we distinguish local transactions from
global transactions [5] according to the location of their required data items.
Local transaction is the one requiring data that are entirely stored at the same
site. And so, it seems that it will be totally executed at this same site. Global
transaction is the one requiring reference to data at one or more distant site.
Then, it is distributed so that it runs at one or more than a site (other than
its local site). It should be noted that when dealing with DRTDBMS models
that are based on a load balancing technique, a transaction may have all of its
required data at its local site, but it is then distributed in order to alleviate the
overload situation of that site.

2.3 Performance Metric

The main performance metric, we consider in our model, is the Success Ratio
(SR). It is a QoS parameter which measures the percentage of transactions that
meet their deadlines. It is defined as follows:

SR = 100× #timely

#timely + #tardy
(%). (1)

where #timely and #tardy represent, respectively, the number of transactions
that have met and missed their deadlines.

2.4 QoS Management in DRTDBMS

The QoS is increasingly important for evaluating the performance of a DRT-
DBMS, in which the system performance depends on the workload distribution.
In [3], Wei et al. proposed an architecture using feedback-based global load bal-
ancers and local feedback controllers. This architecture, called DFCSA, on which
we base our work, aims a load balancing between system nodes and an efficient
management of transactions workload fluctuations. In what follows, we describe
briefly the basic components of the DFCSA.

The admission controller is used to regulate the system workload in order to
prevent its overloading, by referring to the estimated CPU utilization and the
target utilization set point of the system. The transaction manager handles the
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transactions’ execution. It consists of a concurrency controller (CC), a freshness
manager (FM), a data manager (DM) and a replica manager (RM). The CC
solves accessing data conflicts appearing between transactions using the 2PL-
HP (Two Phase Locking High Priority) [1] protocol. The FM checks the data
freshness and blocks an user transaction if the accessed data item is stale. The
DM has to update real-time data replicas, and the RM handles data replicas
using a replication control protocol.

At each sampling period, the local monitor samples the system performance
data, by referring to statistics about transactions’ execution which it retrieves
from the transaction manager. Measured values belong to the feedback control
loop and are, then, reported to the local controller. The local controller includes
the local utilization controller and the local miss ratio controller, which gener-
ate, respectively, the local miss ratio and the local utilization control signals,
based on the received values and on the system reference parameters, according
to which this controller sets the system target utilization to be considered at the
next sampling period. The scheduler is used to schedule transactions accord-
ing to the EDF (Earliest Deadline First) algorithm [2]. The global load balancer
collaborates with its corresponding at other nodes, by exchanging their system
performance data, in order to ensure the system load balancing, which is guaran-
teed by transferring transactions from highly overloaded nodes to less overloaded
nodes. The amount of workload to be transferred is controlled by the LTF (load
transferring factor) of each node.

2.5 The (m,k)-firm Approach in Literature

The (m,k)-firm approach was initially introduced for periodic tasks in real-time
systems [6], in order to relax strict real-time constraints. It has also been adapted
to transactions in real-time databases, aiming to decrease the number of missed
deadlines [15][8]. In DRTDBMS, a distributed

(
m
k

)
-firm real-time transactions

model has been proposed in [16]. It consists of decomposing each transaction
Ti into ki sub-transactions, among which mi are mandatory and the others are
optional. Mandatory sub-transactions are distinguished from optional according
to their weights, i.e., the mi mandatory sub-transactions are those having the
highest weights. To handle

(
m
k

)
-firm transactions, the authors defined in [7][16]

a new commit protocol and a new concurrency control protocol. The commit
process of

(
m
k

)
-firm transactions is based on committing at least the m success-

fully executed mandatory sub-transactions if there is no time to wait for the
execution of optional sub-transactions. For the concurrency control, there is a
consideration of both (m,k)-firm and temporal constraints of transactions.

3 Applicability of the (m,k)-firm Approach on the
DFCSA for QoS Enhancement in DRTDBMS

Our approach consists of applying the (m,k)-firm approach for user transactions
in the distributed feedback-based architecture DFCSA [3], for QoS enhancement
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in DRTDBMS. Our approach, called (m,k)-Firm-User-DFCSA is then an exten-
sion of the conventional DFCSA. It involves both the admission control, the
concurrency control and the commit process of transactions, by adapting their
functioning to take into account the (m,k)-firm constraints of user transactions.
In following sections, we describe new functioning principles of these components.
Our challenge is to increase the number of transactions that meet their deadlines
while maintaining a robust system’s behaviour, face to unpredictable workloads
induced by user transactions. The general outline of our approach architecture
is shown in Fig. 1. Compared to the conventional DFCSA, it is distinguished
by the (m,k)-Firm-User admission controller and the (m,k)-Firm-User concur-
rency controller as shown in Fig. 1, and by the (m,k)-Firm-User commit process
even it does not appear in this figure. We note that we proceed with a full data
replication policy of real-time data as in [3].

Fig. 1. The (m,k)-Firm-User-DFCSA

3.1 The (m,k)-firm Constraints Model for User Transactions

In our approach, each user transaction Ti (i ∈ [1..n]) submitted to the system is
decomposed into a set of sub-transactions. We denote by ki, the number of sub-
transactions of Ti. Distinguishing mandatory sub-transactions from optional ones
is based on the criticality of data required by transactions. For example, in an air
traffic control system and from a meteorological perspective, data like strength
and trajectory of the wind are considered as more critical than data like the
moisture rate in the air. Indeed, each sub-transaction STij (j ∈ [1..ki]) consists
of a set of operations, each of which accesses a precise data item having a specific
criticality. Thus, each operation accessing a critical data item is considered as
critical, too. An importance level ILij is then assigned to STij , that we defined
as follows:

ILij =
Number of critical operations of STij

Total number of operations of STij
. (2)



Applicability of the (m,k)-firm Approach 171

Accordingly, the mi mandatory sub-transactions of Ti are those having high-
est importance levels. Considering the m

k ratio parameter that should be fixed,
in advance, by the DBA (Database Administrator). Then, the value of mi is
determined as follows:

mi =
m

k
× ki. (3)

3.2 The (m,k)-Firm-User Admission Controller

The admission controller of user transactions in the conventional DFCSA oper-
ates in a binary way in order to respect the atomicity property of transactions, so
that either it accepts a transaction with all of its operations or it totally rejects it.
In our approach, we propose an admission controller, called (m,k)-Firm-User ad-
mission controller (cf. Fig. 1), that takes into account the (m,k)-firm constraints
defined for user transactions, aiming to relax the strict decision of the classical
one of the DFCSA. The (m,k)-Firm-User admission controller attempts to al-
low more user transactions to be admitted in the system, while ensuring their
execution before their deadlines. Therefore, it tolerates the partial admission of
a transaction, in which only its mandatory sub-transactions are admitted, if it
is not possible to accept it in its entirety during overloading periods.

At each node, when admitting an user transaction Ti, the (m,k)-Firm-User
admission controller relies on both QoS parameters belonging to the feedback
loop, in order to inquire about the system state, and the (mi,ki)-firm constraints
of Ti. In fact, it is based on the estimated CPU utilization and on the target
utilization value, adjusted by the local controller, to decide whether the current
transaction will be totally or partially accepted in the system, or even rejected.
We note that transactions are rejected in case the estimated CPU utilization
is higher than the target utilization [3], given that such case reflects a system’s
overload. Therefore, for each Ti, the estimated execution time of its ki sub-
transactions is initially credited to the estimated CPU utilization. Then, the
(m,k)-Firm-User admission controller checks if, according to the new value,
Ti may be accepted in the system. Otherwise, it checks again if the system is
able to accept Ti by reducing its execution time, when only considering its mi

mandatory sub-transactions. If even the partial admission of Ti is impossible, it
will be totally rejected. The admission controller has also to check whether Ti

may be terminated before reaching its deadline or not, according to its arrival
date and its execution time. With the (m,k)-Firm-User admission controller, Ti

has more opportunities to enter the system, given that it can be accepted if it
is possible to terminate, at least, its mi mandatory sub-transactions before its
deadline.

3.3 The (m,k)-Firm-User Concurrency Controller

In the (m,k)-Firm-User-DFCSA, we propose a specific concurrency controller,
called (m,k)-Firm-User concurrency controller (cf. Fig. 1), that consider (m,k)-
firm constraints of user transactions. Via this new concurrency controller, we
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aim to ensure that the admission of optional sub-transactions does not lead to
overload the system when considering data access conflicts. In our approach,
the use of the

(
m
k

)
-firm CC protocol, proposed in [7] for

(
m
k

)
-firm transactions

concurrency control, is appropriate in case of conflicts between user transactions
having (m,k)-firm constraints. However, in our (m,k)-firm constraints model, we
proceed with sub-transactions importance levels rather than weights. This slight
adjustment is then considered in the protocol that we call Adapted-

(
m
k

)
-firm CC

and that operates as follows. Considering a sub-transaction STr that requests
a lock on a data item d, and a sub-transaction STh that holds a lock on this
same d, where STr and STh do not belong to the same transaction. In order to
decide which one will get access to d, the Adapted-

(
m
k

)
-firm CC checks, at first,

if there is no risk that STr’s deadline expires by waiting for STh to finish its
execution. In this case, STr is inserted into the block queue of the data d, and
STh continues executing. Otherwise, if STr and STh are of different labels, the
mandatory one get access to d. Else, if STr and STh are either both mandatory
or both optional, transactions’ deadlines are considered, so that the one having
the earliest deadline will get the lock on d. If even their deadlines are equal, so:

– if STr and STh are mandatory, the one having the greater m
k ratio will get

access to d, given that its vital part is more important.
– if STr and STh are optional, the one having the greater importance level

will get the lock on d.

In the (m,k)-Firm-User-DFCSA, the Adapted-
(
m
k

)
-firm CC cannot be used

for resolving conflicts between user and update transactions, given that they
haven’t the same characteristics. Thereby, we proposed the (m,k)-firm-2PL-HP
protocol, which is adapting the 2PL-HP protocol to take into account (m,k)-firm
constraints of user transactions. Within this protocol, each update transaction
is considered as composed of only one mandatory sub-transaction. Hence, if the
conflicting sub-transaction is optional, the (m,k)-firm-2PL-HP protocol priori-
tize the update transaction. Otherwise, the highest priority will be assigned to
the transaction having the earliest deadline as in the conventional 2PL-HP.

3.4 The (m,k)-Firm-User Commit Method

In a DRTDBMS, a transaction commits only if all of its sub-transactions com-
mit. However, with the commit method we proposed in the (m,k)-Firm-User-
DFCSA, that we called (m,k)-Firm-User commit method, an user transaction
Ti can commit if, at least, its mi mandatory sub-transactions commit. Further-
more, in our commit method, and following the PROMPT protocol principle
[10], we allow transactions to borrow non-committed data. This aims to reduce
the blocking time of transactions, caused by the inaccessibility of data held by
transactions waiting for committing, and give them more opportunities to meet
their deadlines. By this way, we relaxed the isolation property of transactions,
which imposes that the result of a transaction, that have not yet finished its
execution, should be invisible for other transactions. However, the lending data
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process in our approach is controlled, so that it can only be performed by manda-
tory sub-transactions, considering that the optional ones can be ignored when
committing a transaction.

4 Simulations and Results

In this section, we aim to evaluate the QoS performance provided by the proposed
(m,k)-Firm-User-DFCSA, based on simulation results.

4.1 Simulation Principle

We have evaluated our approach according to a set of simulation experiments,
where a set of parameters have been varied. Each simulation result represents the
average of 10 simulations. The system parameters for simulations are shown in
Table 1. We note that real-time data are fully replicated at each node. Transac-
tions are scheduled according to the EDF algorithm, which prioritize the trans-
action having the earliest deadline. For resolving conflicts between transactions,
we use the (m,k)-Firm-User concurrency controller which consider the (m,k)-firm
constraints defined to user transactions. Distributed transactions are committed
according to the (m,k)-Firm-User commit method. The parameter settings of
user transactions are summarized in Table 2. We note that arrival times of these
transactions are generated according to the ”Poisson” process. In the set of our
experiments, we varied the value of the m

k ratio, in order to show the effect of ei-
ther increasing or decreasing the number of mandatory sub-transactions for each
user transaction. In our experiments results, we only consider user transactions.

Table 1. System parameter settings

Parameter Value

Simulation time (ms) 3000
Number of nodes 8

Number of real-time data 20/node
Number of classic data 1000/node

Real-time data validity (ms) [500, 1000]
MDE value [2, 5]

Table 2. User transactions parameters

Parameter Value

Number of sub-transactions [2,4]
Number of write operations 2
Number of read operations [0,2]
Write operation time (ms) 2
Read operation time (ms) 1

Slack factor 10
Remote data ratio 20%

m
k

ratio [0.5, 0.7]

4.2 Results and Discussions

By referring to Fig. 2, we can assert that the conventional DFCSA yields the
lowest number of successful user transactions, compared to the result provided
by the (m,k)-Firm-User-DFCSA. This remains true, whatsoever in case 1) the
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Fig. 2. Simulation results for user transactions

m
k ratio is equal to 0.5 or 2) when it is equal to 0.7. We can also notice that
the best result is provided in case 1), where the performance gain is for about
20%. This is because that in case 2), more of mandatory sub-transactions are
required to be executed than in case 1), which tolerates the reject of more op-
tional sub-transactions. Thus, we can say that the number of successful user
transactions increases by reducing the number of mandatory sub-transactions,
that is by reducing the value of the m

k ratio. This allows more of user transac-
tions to be successfully executed, given that with the (m,k)-Firm-User concur-
rency controller, conflicts are resolved in favour of mandatory sub-transactions.
In addition, with the (m,k)-Firm-User commit method, we have less require-
ments to validate a user transaction, given that it can be committed if at least
its m mandatory sub-transactions are successfully executed. Then we can say
that, with the (m,k)-Firm-User-DFCSA, transactions are executed under good
conditions having more opportunity to be successfully terminated before their
deadlines.

5 Conclusion and Future Work

In this paper, we have presented the (m,k)-Firm-User-DFCSA for QoS enhance-
ment in DRTDBMS. In our work, we have applied the (m,k)-firm approach to
user transactions, then we have proposed specific admission control, concurrency
control and commit process to manage these transactions while considering their
newly-defined (m,k)-firm constraints. Experimental results confirmed the benefit
of the proposed approach on increasing the number of transactions which meet
their deadlines, even in the presence of unpredictable workload. Furthermore,
we can say that the minimal QoS is guaranteed when executing only mandatory
sub-transactions, and then, the more optional sub-transactions are executed, the
more the QoS is enhanced.
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We plan to extend this work in several ways. We will propose to apply the
(m,k)-firm approach on update transactions combined with the (m,k)-Firm-
User-DFCSA, aiming to allow for more transactions to meet their deadlines
without affecting the data freshness.
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Abstract. With the development of microarray technology, it is possible now to 
study and measure the expression profiles of thousands of genes simultaneously 
which can lead to identify subgroup of specific disease or extract hidden 
relationships between genes. One computational method often used to this end 
is clustering. In this paper, we propose a parallel distributed system for gene 
expression profiling (PDS-GEF) which provides a useful basis for 
individualized treatment of a certain disease such as Cancer. The proposed 
approach is based on two major techniques: the GIM (Generalized Island 
Model) and clustering ensemble. GIMs are used to generate good quality 
clusterings which are refined by a consensus function to get a high quality 
clustering. PDS-GEF system is implemented using Matlab®’s PCT (Parallel 
Computing Toolbox™) which runs on a desktop computer, and tested on 34 
different publicly available gene expression data sets. The obtained results 
compete with and even outperform existing methods. 

1 Introduction 

During the last decade, biomedical research has undergone changes which have 
transformed the development towards automation and at the same time the treatment 
has led to an increase in speed and high throughput [1]. One of the emergent 
technologies following this development which is considered as a platform for various 
applications is Microarrays technology. The latter assesses the expression patterns of 
thousands of genes at one time, and helps to identify appropriate targets for 
therapeutic intervention and discovery of new disease subclasses. Microarray has 
three major classes [2]: class comparison, class prediction and class discovery. The 
first involves finding differences in expression levels between predefined groups of 
samples. The second class involves identifying the class membership of a sample 
based on its gene expression profile. The third class involves analyzing a given set  
of gene expression profiles with the goal to understand the mechanisms underlying  
a disease by discovering subgroups of genes that share common features. A 
computational method often used for class discovery is clustering which aims at 
dividing the data points (genes) into groups (clusters) using similarity measures, such 
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as Correlation or Euclidean distance [3, 4]. The notion of "cluster" cannot be precisely 
defined [5] which is one of the reasons that explains the wide range of clustering 
algorithms proposed in the literature to solve the problem of gene expression profiling 
[6, 7, 8]. 

When facing clustering algorithm for gene expression, selecting the best clustering 
method with the correct parameter values is not an easy task in most cases. Users may 
not be capable of introducing the precise parameter value. Therefore a small change 
on the input parameter may impact the output result. Also if not properly handled, 
noisy genes data may degrade significantly the quality of the results. The frequently 
used method to overcome these limitations is clustering ensemble. It takes as an input 
a set of clusterings generated by different algorithms [9], or by the same algorithm 
using different parameters [10], and provides as an output a better quality final 
clustering [11, 12].  

In this paper, we propose a parallel distributed system for gene expression profiling 
(PDS-GEF) dedicated for class discovery which provides a useful basis for 
individualized treatment of a certain disease such as Cancer. The proposed approach 
is based on two major techniques: the GIM (Generalized Island Model) and clustering 
ensemble. GIMs are composed of many metaheuristics (particle swarm optimization, 
ant colony optimization, artificial bee colony, genetic algorithm …) performing in 
parallel and cooperating by using a migration operator. They are used to generate 
good quality clusterings which are refined by a consensus function to get a high 
quality clustering. PDS-GEF system is implemented using Matlab’s PCT (Parallel 
Computing Toolbox) which runs on a desktop computer, and is tested on 34 different 
publicly available gene expression data sets. 

The rest of the paper is organized as follows. In section 2, we present the 
background and related works. Sections 3 and 4 are dedicated to the description  
and the implementation of the proposed approach for gene expression profiling. In 
section 5, we present the experimental results obtained by using publicly available 
data sets. Finally, conclusions and future work are drawn.   

2 Background and Related Work 

Before a formal description of our approach, we briefly introduce the principle of the 
two used methods namely generalized island model and clustering ensemble.  

2.1 Generalized Island Model 

The Generalized Island Model (GIM) [13] is as an approach that can be applied to a 
broad class of optimization algorithms. The study of the effect of this generalized 
model distribution was performed on several well-known population based clustering 
metaheuristics which include: the differential evolution (DE) [14], Genetic 
Algorithms (GA) [15], search for harmony (HS) [16], artificial bees’ colony (ABC) 
[17], particle swarm optimization (PSO) [18], ant colony optimization (ACO) [19]. 
The GIM has been proposed in order to improve the diversity of solutions. It enables 
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to efficiently distribute algorithms across multiple processors. A new operator called 
the migration operator can improve the overall performance of algorithms. 
Informally, this operator has both the role to select individuals in the current island to 
be sent to other islands, as well as to potentially introduce individuals outside the 
local population.  

2.2 Clustering Ensemble 

Cluster ensemble is made up of two steps: Generation and Consensus Function [20] 
(see figure 1). In the following, we describe these two steps. 
 

Generation Step. Is the first step of the cluster ensemble. Given a data set, it 
generates a collection of clustering solutions. For best performance, it is necessary to 
apply the most appropriate method so that the combined result will bring considerable 
changes in the outcome of the second step. 

Consensus Function. Is the main step of the clustering ensemble. It combines the 
clustering solutions of the ensemble and produces a best clustering as the final output. 
There are two main consensus function approaches: objects co-occurrence and 
median partition. Ensemble clustering has been shown to be NP-complete [21]. 
 

Many algorithms have been developed in this field [20]. COMUSA finds the true 
number of final clusters but it requires an exact parameter [22]. EAC, COMUSA, and 
CSPA may not reveal the relationship between clusters [23]. Although HGPA is very 
fast, however cannot handle large data with noise [9]. LCE needs a lot of computation 
[24]. GCC Genetic methods suffer from long execution times [25]. In the domain of 
clustering ensemble, determining crossover, chromosome encoding, mutation, and the 
fitness function are not immediate. DICLEANS outperforms all algorithms cited 
above in time execution and clusters quality, it uses minimum spanning tree as the 
input where each vertex represents an input cluster and each vertex represents the 
intercluster similarity [26]. 

Dataset 

Generation step 

     Clustering m 

Final 
Clustering 

Clustering 2 

Clustering 1 

Concensus step 

Fig. 1. Diagram of the general process of cluster ensemble [20] 
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3 The Proposed Approach 

In this section, the main aspects of our proposed approach are considered. The 
proposed approach is two-level architecture (see figure 2). The first stage is composed 
of various configurations of GIM. The second stage consists in consensus clustering 
technique which will take as input the good clusterings solutions obtained in the first 
stage and generates a high quality clustering. 

   

  Dataset 

Parallel Generation step  

Clustering 1 (ABC) 

Final 
Clustering 

Consensus step 

Fig. 2. Architecture of the PDS-GEF system 
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3.1 First Level (Parallel Generation Step) 

In our system, we use four GIMs including each three islands representing instances 
of existing clustering algorithms based optimization selected among the following 
list: DE (Differential Evolution), PSO (Particle Swarm Optimization), HS (Harmony 
Search), GA (Genetic Algorithm), and ABC (Artificial Bee Colony). All the selected 
algorithms are population based. 

Inside one GIM, optimization algorithms (Metaheuristics) work in parallel and 
cooperate by using the migration operator which consists in the exchange of a subset 
of solutions each a preset number of iterations. It should be noted that there is no 
communication between two different GIMs. However, communication is performed 
between two islands in the same GIM. The communication flow can circulates 
between any two islands (in the same GIM) and toward any direction (bi-direction). 
Our approach follows an asynchronous communication initiated by the source to 
boost the speed and scalability of the system. 

The whole process can be described as follows. Both of GIMs and islands are 
executed in parallel in order to accelerate generation and allow population migration. 
The migration topology of different islands in the same GIM is fully connected. 

3.2 Second Step (Consensus Function Step) 

Once good quality clustering solutions are generated by the different GIMs, the 
cluster ensemble process is launched in order to get high quality clustering by using a 
clustering consensus technique. The latter combines, in a smart way, a set of 
clustering solutions in order to obtain at the end one high quality clustering. 

The use of cluster ensemble can be justified by the fact that weak clustering 
solutions when combined using a consensus clustering technique will give rise to high 
quality clustering solutions [26]. Therefore, there is no constraint regarding the way 
the partitions must be obtained. Each GIM has to generate a good enough clustering 
solution which is not necessarily the best. It is the consensus function which is in 
charge of generating the high quality clustering solution. 

In our approach, we used an objects co-occurrence approach (EAC: Evidence 
ACcumulation) [23] which consists in accumulating the evidence in each cluster to 
form a coassociation matrix. Each entry in this matrix is the number of times that 
objects a and b are assigned to the same clusters. If a and b are often together they 
must belong to the same cluster in the final clustering.    

4 Parallel Implementation of the Proposed Approach 

In the following, we explain the way we implement our approach using MATLAB’s 
Parallel Computing Toolbox (PCT). The pseudo code in Matlab regarding our 
approach can be summarized as follows: 
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Program: PDS-GEF  
  input: gene expression data sets  
  Matlabpool(12); 
  spmd 
    switch labindex % the identifier of each Island 
      case 1:  apply Island (1)  algorithm; 
      case 2:  apply Island (2)  algorithm;  % GIM 1 
      case 3:  apply Island (3)  algorithm; 
      case 4:  apply Island (4)  algorithm; 
      case 5:  apply Island (5)  algorithm;  % GIM 2 
      case 6:  apply Island (6)  algorithm; 
      case 7:  apply Island (7)  algorithm; 
      case 8:  apply Island (8)  algorithm;  % GIM 3 
      case 9:  apply Island (9)  algorithm; 
      case 10: apply Island (10) algorithm; 
      case 11: apply Island (11) algorithm;  % GIM 4 
      case 12: apply Island (12) algorithm; 
    end % switch  
  end % spmd  
  BestClustering ← EAC (BestClusterings); % consensus 
  Matlabpool close; 
  output: BestClustering; % final result 
end. 

 
Our proposed system is composed of 12 parallel cooperating islands algorithms.  

The pseudo code of the Island algorithm:  
 
algorithm: Island(id) 
  input: id % identification number 
  P  % initial population 
  S  % selection strategy 
  R  % recombination policy  
  Ai % optimization algorithm 
  Ui % number of iteration in Ai 
  initalize P; % initialize population 
  while !stop_ criterion 
    P'← Ai(P, Ui);  % new population    
    M ← S(P');      % selection policy   
    labSend M; ←    % send selected solutions    
    M'←labReceive;  % receive migrant solutions    
    P''← R(P', M'); % recombination policy  
    P ← P'';        % update current population    
  end % while 
end. 
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In each island, a metaheuristic (GA, PSO, ACO, HS, DE, ABC) is deployed to 
carry out the clustering generation process. Its dynamic can be described as follows. 
Initially, the metaheuristic is launched with randomly generated population P. After ui 
iterations, a set M of solutions, chosen using a selection policy S to undergo 
migration, is broadcasted to all neighboring islands. Once all selected solutions sent 
by neighboring islands are received, a recombination policy R is used to form the new 
population. This process is repeated until a stopping criterion is reached. labSend and 
labReceive are two functions in Matlab’s parallel computing toolbox used for 
communication purposes. 

5 Experimental Results 

To assess the performance of our system, we tested our approach on 34 different 
publicly available gene expression data sets having the proprieties shown in table 1. 

Table 1. Description of used gene expression datasets [27] 

       Dataset Name               Array Type       Tissue       Total     Num    Total   Selected #  
                                                                                                            samples    classes   Genes   of Genes     

Bladder carcinoma Affymetrix Bladder 40 3 7129 1203 
Breast Cancer Affymetrix Breast 49 2 7129 1198 

Breast-Colon tumors Affymetrix Breast, Colon 104 2 22283 182 
Carcinomas Affymetrix Multi-tissue 174 10 12533 1571 

Central nervous system-1 Affymetrix Brain 34 2 7129 857 
Central nervous system-2 Affymetrix Brain 42 5 7129 1379 

Endometrial cancer D-Channel Endometrium 42 4 8872 1771 
Glioblastoma multiforme D-Channel Brain 37 3 24192 1411 

Gliomagenesis D-Channel Brain 50 3 41472 1739 
Gliomas-1 Affymetrix Brain 50 4 12625 1377 
Gliomas-2 Affymetrix Brain 28 2 12625 1070 
Gliomas-3 Affymetrix Brain 22 2 12625 1152 

Hepatocellular carcinoma D-Channel Liver 178 2 22699 85 
Leukemia-1 Affymetrix Bone Marrow 248 2 12625 2526 
Leukemia-2 Affymetrix Bone Marrow 248 6 12625 2526 
Leukemia-3 Affymetrix Blood 72 2 12582 1081 
Leukemia-4 Affymetrix Blood 72 3 12582 2194 
Leukemia-5 Affymetrix Bone Marrow 72 2 7129 1877 
Leukemia-6 Affymetrix Bone Marrow 72 3 7129 1877 

Lung tumor-1 Affymetrix Lung 203 5 12600 1543 
Lung tumor-2 D-Channel Lung 66 4 24192 4553 
Lymphoma-1 D-Channel Blood 42 2 4022 1095 
Lymphoma-2 D-Channel Blood 62 3 4022 2093 
Lymphoma-3 Affymetrix Blood 77 2 7129 798 

Melanoma D-Channel Skin 38 2 8067 2201 
Mesothelioma Affymetrix Lung 181 2 12533 1626 
Multi-tissue Affymetrix Multi-tissue 190 14 16063 1363 

Prostate cancer-1 D-Channel Prostate 104 5 20000 2315 
Prostate cancer-2 D-Channel Prostate 92 4 20000 1288 
Prostate cancer-3 D-Channel Prostate 69 3 42640 1625 
Prostate cancer-4 D-Channel Prostate 110 4 42640 2496 
Prostate cancer-5 Affymetrix Prostate 102 2 12600 339 

Round blue-cell tumor D-Channel Multi-tissue 83 4 6567 1069 
Serrated carcinomas Affymetrix Colon 37 2 22883 2202 
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Array Type refers to the type of microarray used in the experiment. There are two 
types namely Affymetrix and Double Channel. Tissue indicates the tissue from where 
the samples were taken. Total samples is the number of conditions used in the 
experiment and it represents the dimensional of data. Num of Classes is the optimal 
number of groups (clusters) expected after the data has been clustered. Total genes is 
the number of genes present in the experiment. Selected # of Genes is the data set is 
large and a lot of information corresponds to genes not showing any interesting 
changes during the experiment. Filtering allows to find the interesting genes and 
passes over genes with expression profiles that do not show anything of interest. 

Table 2. Number of Clusters on Gene Expression Data Sets 

            Data Set                 True Cluster   DiCLEANS   Our approach 
Bladder carcinoma 3 2 3 

Breast Cancer 2 2 2 
Breast-Colon tumors 2 2 4 

Carcinomas 10 6 6 
Central nervous system-1 2 2 3 
Central nervous system-2 5 4 4 

Endometrial cancer 4 4 4 
Glioblastoma multiforme 3 2 2 

Gliomagenesis 3 2 4 
Gliomas-1 4 4 3 
Gliomas-2 2 2 5 
Gliomas-3 2 2 2 

Hepatocellular carcinoma 2 3 2 
Leukemia-1 2 2 2 
Leukemia-2 6 3 5 
Leukemia-3 2 2 3 
Leukemia-4 3 3 3 
Leukemia-5 2 2 2 
Leukemia-6 3 3 2 

Lung tumor-1 5 3 4 
Lung tumor-2 4 2 2 
Lymphoma-1 2 2 2 
Lymphoma-2 3 2 2 
Lymphoma-3 2 3 2 

Melanoma 2 2 2 
Mesothelioma 2 2 2 
Multi-tissue 14 5 6 

Prostate cancer-1 5 5 7 
Prostate cancer-2 4 5 2 
Prostate cancer-3 3 2 2 
Prostate cancer-4 4 5 3 
Prostate cancer-5 2 6 2 

Round blue-cell tumor 4 5 2 
Serrated  carcinomas 2 2 2 
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The data sets used in our approach are filtered from non significant genes. We 
compared our results with the expected optimal number of classes and also with a 
recent developed consensus function called DiCLEANS (Divisive Clustering 
Ensemble with Automatic Cluster Number) [26]. The experimental results show that 
our approach competes with and even outperforms DiCLEANS in some cases as 
shown in table 2. 

6 Conclusion and Future Work 

In this work, we proposed a parallel distributed system for gene expression profiling 
PDS-GEF dedicated to class discovery using microarrays technology. It combines 
mainly two major techniques namely distributed optimization and clustering 
ensemble. The parallel distributed optimization techniques are used for generating 
good quality cluster solutions which are combined to get high quality clustering by 
exploiting a consensus function namely EAC technique. The proposed approach is 
implemented using Matlab’s PCT (Parallel Computing Toolbox) which runs on a 
desktop machine. The parallelism allows dealing with the huge amount of data 
inherent to bioinformatics. The conducted experiments on real data sets have led to 
very encouraging results.  

There are many ways to improve the performance of the system and the quality of 
the resulting clustering. The use of MATLAB Distributed Computing Server, GPU 
and cluster of GPUs will certainly improve the performance of the system. 
The application of other consensus functions like DiCLEANS or those based on 
median partition would also enhance the quality of the resulting clustering yielding to 
a better diagnosis.   

References 

1. Jens, S., Kerstin, B., Anette, J., Jvrg, D.H., Philipp, A.: Microarray Technology as a 
Universal Tool for High-Throughput Analysis of Biological Systems. Combinatorial 
Chemistry & High Throughput Screening 9, 365–380 (2006) 

2. Tarca, A.L., Roberto, R., Sorin, D.: Analysis of microarray experiments of gene expression 
profiling. American Journal of Obstetrics and Gynecology 195, 373–388 (2006) 

3. Aach, J., Rindone, W., George, M.S.: Systematic management and analysis of yeast gene 
expression data. Genome Research 10, 431–445 (2000) 

4. Bethin, K.E., Nagai, Y., Sladek, R., Asada, M., Sadovsky, Y., Hudson, T.J., et al.: 
Microarray analysis of uterine gene expression in mouse and human pregnancy. Mol. 
Endocrinol. 17, 1454–1469 (2003) 

5. Vladimir, E.C.: Why so many clustering algorithms. Sigkdd Explorations 4, 65–75 (2002) 
6. Daxin, J., Chun, T., Aidong, Z.: Cluster Analysis for Gene Expression Data: A Survey. 

IEEE Transaction on Knowledge And Data Engineering 16, 1370–1386 (2004) 
7. Kerr, G., Ruskin, H.J., Crane, M., Doolan, P.: Techniques for clustering gene expression 

data. Computer in Biology and Medecine 38, 283–293 (2008) 
8. Harun, P., Burak, E., Andy, D.P., Çertin, Y.: Clustering of high throughput gene 

expression data. Computer & Operation Research 39, 3046–3061 (2012) 



 A Parallel Distributed System for Gene Expression Profiling 185 

9. Strehl, A., Ghost, J.: Cluster A Knowledge Reuse Framework for combining Mutiple 
Partitions. J. Machine Learning Research 3, 583–617 (2002) 

10. Fred, A., Jain, A.: Combining Multiple Clusterings Using Evidence Accumulation. IEEE 
Transaction Pattern Analysis and Machine Intelligence 27, 835–850 (2005) 

11. Strehl, A., Ghosh, J.: Cluster: Cluster Ensembles - A Knowledge Reuse Framework for 
Combining Multiple Partitions. J. Machine Learning Research. 3, 583–617 (2002) 

12. Mimaroglu, S., Erdil, E.: Obtaining Better Quality Final Clustering by Merging a 
Collection of Clusterings. Bioinformatics 26, 2645–2646 (2010) 

13. Izzo, D., Ruciński, M., Biscani, F.: The Generalized Island Model. In: Fernandez de Vega, 
F., Hidalgo Pérez, J.I., Lanchares, J. (eds.) Parallel Architectures & Bioinspired 
Algorithms. SCI, vol. 415, pp. 151–170. Springer, Heidelberg (2012) 

14. Ravi, V., Aggarwal, N., Chauhan, N.: Differential Evolution Based Fuzzy Clustering. In: 
Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, 
vol. 6466, pp. 38–45. Springer, Heidelberg (2010) 

15. Sheikh, R.H., Raghuwanshi, M.M., Jaiswal, A.N.: Genetic Algorithm Based Clustering: A 
Survey. Emerging Trends in Engineering and Technology 8, 314–319 (2008) 

16. Alia, O.M., Al-Betar, M.A., Mandava, R., Khader, A.T.: Data Clustering Using Harmony 
Search Algorithm. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) 
SEMCCO 2011, Part II. LNCS, vol. 7077, pp. 79–88. Springer, Heidelberg (2011) 

17. Changsheng, Z., Dantong, O., Jiaxu, N.: An artificial bee colony approach for clustering. 
Expert Systems with Applications 37, 4761–4767 (2010) 

18. Yau, K.L., Tsang, P.W.M., Leung, C.S.: PSO-based K-means clustering with enhanced cluster 
matching for gene expression data. Neural Computing and Application 22, 1349–1355 (2013) 

19. Kao, Y., Cheng, K.: An ACO-Based Clustering Algorithm. In: Dorigo, M., Gambardella, 
L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, 
vol. 4150, pp. 340–347. Springer, Heidelberg (2006) 

20. Sandro, V.P., José, R.S.: A Survey of Clustering Ensemble Algorithms. International 
Journal of Pattern Recognition and Artificial Intelligence 25, 337–372 (2011) 

21. Filkov, V.: Integrating microarray data by consensus clustering. IEEE International 
Conference on Tools with Artificial Intelligence 15, 418–426 (2003) 

22. Mimaroglu, S., Erdil, E.: Obtaining Better quality final clustering by Merging a Collection 
of Clusterings. Bioinformatics 26, 2645–2646 (2010) 

23. Fred, A., Jain, A.: Combining Multiple Clusterings Using Evidence Accumulation. IEEE 
Tran. Pattern Analysis and Machine Intelligence 27, 835–850 (2005) 

24. Natthakan, I.O., Tossapon, B., Simon, G.: LCE: A Link-Based Cluster Ensemble Method 
for Improved Gene Expression Data Analysis. Bioinformatics 26, 1513–1519 (2010) 

25. Yu, Z., Wong, H., Wang, H.: Graph-Based Consensus Clustering for Class Discovery from 
Gene Expression Data. Bioinformatics 33, 2888–2896 (2007) 

26. Selim, M., Emin, A.: DICLEANS: Divisive Clustering Ensemble With Automatic Cluster 
Number. IEEE/ACM Tran. Computational Biology and Bioinformatics 9, 408–420 (2012) 

27. Souto, M., Costa, I., de Araujo, D., Ludermir, T., Schliep, A.: Clustering Cancer Gene 
Expression Data: A Comparative Study. BMC Bioinformatics 9, 497 (2008) 



Unimodular Loop Transformations

with Source-to-Source Translation for GPUs

Pasquale Cantiello1, Beniamino Di Martino1, and Francesco Piccolo1

Second University of Naples, Italy
pasquale.cantiello@unina2.it, beniamino.dimartino@unina.it,

piccolo.francesco@gmail.com

Abstract. Heterogeneous computing architectures offer the opportu-
nity to exploit the extremely high performances of systems which are
composed of different subsystems, assuring at the same time low energy
consumption and accessible costs. In order to benefit from all these ad-
vantages, each computing unit should be programmed by using a specific
model with properly optimized code to process its workload at best.

In the path of building a source-to-source transformer tool to auto-
mate the translation of code for heterogeneous architectures made by a
combination of several CPUs and GPUs, a series of translator building
blocks on top of ROSE compiler infrastructure have been built. In this
work is presented the module that performs unimodular loop transfor-
mations and that provides output for GPUs.

Transformers can be used in the tool either manually according to user
preference, or automatically driven by knowledge based techniques, e. g.
algorithmic concept recognition. A chain of code transformations can
produce parallel code, relieving accelerators and multicore programming
hardness.

1 Introduction

The demand for increased heterogeneity in computing systems is partially due to
the need for high performance and low power consuming systems. Less advances
in technology and frequency scaling since the last decade, have advised the com-
munity to start looking at heterogeneous solutions as the primary method of
gaining extra performance. Contemporary GPUs are massively parallel proces-
sors that have outpaced CPUs in terms of floating point operations per second,
and so GPUs have become interesting hardware platform for solving parallel
compute-intensive tasks.

Despite these advantages, accelerators present a serious challenge: several pro-
gramming models and languages are available to develop applications for this
kind of architectures, but developers are just beginning to explore program-
ming for heterogeneous systems [5]. Compilers for automatic parallelization of
sequential code have been investigated by researchers for several decades. Code
generation for hardware accelerators has gained in popularity between majority
of research or industrial compilers since the appearance of GPGPUs.
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In this work is presented a source to source compiler transformer that have
been implemented to run loop transformations and to do code mapping on par-
allel architectures as GPUs. The transformer has been built on top of ROSE
[10] compiler infrastructure and is part of a project [3] to automatically offload
computations between several heterogeneous cores (CPUs and GPUs), by com-
pounding a series of transformations.

Typically source code passes through a series of transformers which are driven
by user preferences, static analysis results and knowledge-based techniques even-
tually powered by algorithmic concept recognition [4]. A series of loop trans-
formations are performed to expose the desired grade of parallelism, laying to
CUDA mapping, OpenMP pragma generation or code factorization. The selec-
tion of the transformation chain permits to achieve a particular goal.

After the whole transformation, the intermediate representation can be un-
parsed back to source code ready to be processed by a native compiler.

After this introduction, the paper continues with a related works analysis
in section 2. In section 3 a brief remind on unimodular loop transformation
is presented along with the implementation of the loop transformer in ROSE.
In section 4 is shown the CUDA mapping with sample output code. As a test
case, a series of transformation over a matrix product are shown in section 5.
Conclusions and future work directions are summarized in section 6.

2 Related Works

The compiler design for automatic parallelization of sequential code is an old
but still very active field of investigation by scientist and engineers. The recent
research works: PAR4ALL [11] and PIPS [1] are focused on automatic paral-
lelization and mapping to accelerators, using a polyhedral model for analysis.
The first one is able to automatically map a parallel loop nest to CUDA code.
Many works have ventured in this field: in [2] is introduced an automatic C
to CUDA code transformation system, for affine programs; hiCUDA [7] is an
high-level directive-based language for CUDA programming; R-Stream compiler
[8] a source to source mapping from a high-level annotated C to GPU. There
are also several commercial compilers able to produce GPU code, including PGI
Accelerator [13] and CAPS HMPP [6]. Both use a directive approach to split
portions of the code between CPU and GPU.

The work presented here combines both source to source transformation for
loop optimization and source code generation for CUDA enabled GPUs. The
transformer can emit also OpenMP (not showed here) for multicore architec-
tures. Furthermore, its modular nature permits combinations of similar trans-
formers to create complex chains.

3 Loop Transformations

Unimodular loop transformation theory [12], is based on matrix transformations
and it has been used for an important subset of loop nests. This technique can
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be applied to programs whose loop nests have two main characteristic: first, data
dependences between loop iterations should be represented by a set of integer
vectors, known as distance vectors; second, loop must be perfectly nested.

Unimodular loop transformations such as interchange, reversal, and skewing
can be modelled as linear transformations in the iteration space. The effectiveness
of this method lies on its formalism, where transformations are modelled by an
unimodular matrix, and a compound transformation is still a unimodular matrix.

Transformation legality check can be run directly using a transformation matrix
and dependence vectors. The entire process can be split in two parts: transforma-
tion matrix generation, and loop nest restructuring. The first problem is easy to
apply, due to the simplicity of the transformation composition. On the other hand
harder is the generation of the executable code. Two steps must be conducted:
rewriting the loop body and rewriting the loop bounds. Also for each part there
are two phases: calculating new expressions by using the transformation matrix
and replacing the abstract syntax tree nodes with the new calculated one.

3.1 Loop Restructuring for Unimodular Transformations

Suppose having the loop nest in Fig. 1.

for(I_1=2; I_1<=N_1-1; I_1++) {
for(I_2=2; I_2<=N_2-1; I_2++) {

a[I_1][I_2] = a[I_1-1][I_2] + a[I_1][I_2-1] + a[I_1+1][I_2-1];
}

}

Fig. 1. A loop nest

For a two dimension loop nest a transformation matrix T can be:

T =

[
2 1
1 0

]

It results from the composition of a skewing transformation of loop I 2 by loop
I 1 with factor 2 and an interchange transformation between loops I 2 and I 1.

T = TinterTskew
Tskew =

[
1 0
2 1

]
Tinter =

[
0 1
1 0

]

In general loop body transformation only requires each iteration variable I j
to be replaced by the appropriate linear combination of I’s, where the I’s are the
indexes for the transformed loop nest:

⎡

⎢⎢⎢⎣

I1

I2

...
In

⎤

⎥⎥⎥⎦ = T−1

⎡

⎢⎢⎢⎣

I ′1
I ′2
...
I ′n

⎤

⎥⎥⎥⎦

Vector I’ has the new loop body variable references.



Unimodular Loop Transformations with Source-to-Source Translation 189

The loop body update in our work has been done with ROSE by replacing
all variable reference nodes met while traversing the loop body of the nesting,
with new expressions. At first have been built new expression nodes map com-
pounding add and multiply operations according to the inverse transformation
matrix T−1. A map is used to match old and new expressions for a particu-
lar variable reference symbol. Later a loop body rewrite traversal replaces old
variable reference expressions with new expressions according to the map. A
SageBuilder::replaceExpression has been used to the purpose.

The next step in the process of applying unimodular loop transformation is
the more complex task of updating the loop bounds for each loop in the nesting.

A parametrized convex polyhedron can be used to represent the iteration
space of a loop nest when the loop bounds of the nest are affine expressions
of outer loop indices and symbolic constants. In this case loop bounds can be
expressed by a system of inequalities as in Fig. 2 shown in Fig. 3. This holds the
data representation of all the loop bounds in the nesting.

I1 ≥ 2
I1 ≤ N1 − 1

I2 ≥ 2
I2 ≤ N2 − 1

Fig. 2. Inequalities

constants N 1 N 2 I 1 I 2

-2 0 0 1 0
-1 1 0 1 0
-2 0 0 0 1
-1 0 1 0 -1

Fig. 3. Inequalities matrix

Original loop bound expressions are extracted searching for init and test
expressions to calculate the inequality matrix coefficients. The inequality ma-
trix is filled by traversing these expressions searching for SgIntVal nodes and
SgVarRefExpressions and separating iteration variables from the others.

Next step is the calculation of the absolute minimum and maximum for each
loop index variable to determine loop bounds. Later updating of inequalities ma-
trix by unimodular transformation matrix T is done by multiplying the trans-
posed matrix T ′ with an extract of the inequality matrix. This extracted matrix
must be set to the inequalities matrix columns from I1 to In. After loop trans-
formation the loop nest inequalities matrix 1 is shown in Fig. 4.

This changes the loop nest index expression. After changing inequalities defin-
ing the original loop bounds, new global maximum and minimum must be
recomputed.

The last step consists in finding the new loop nesting bounds using inequalities
matrix and the min and max lists calculated in the previous step.

constants N 1 N 2 I 1 I 2

-2 0 0 0 1
-1 1 0 0 -1
-2 0 0 1 -2
-1 0 1 -1 2

Fig. 4. Inequalities matrix in Fig. 3 after transformation
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Loop bounds can be expressed as a series of inequalities of the form Ii ≥ Lj
i

and Ii ≤ U j
i . The lower bound of Ii is the maxj(L

j
i ), the smallest possible value

for Ii is the maximum of the smallest possible values of Li. The upper bound of
Ii is the minj(U

j
i ), the biggest possible value for Ii is the biggest possible value

of Ui . To extract the lower and upper bounds of the loop I2, at first is necessary
to get all inequality involving the loop I2; than must be separated lower bound
inequality from upper bound inequality.

constants N 1 N 2 I 1 I 2

-2 0 0 0 1
-1 0 1 -1 2

constants N 1 N 2 I 1 I 2

-1 1 0 0 -1
-2 0 0 1 -2

Fig. 5. Upper and lower bound Inequalities extracted from code

If the current inequality contains a coefficient related to an innermost loop vari-
able, its value must be replaced with the global min or the global max expression
of that loop, according to the coefficient sign and the bound type (lower or upper
bound). Now the inequality can be solved in I2. If more than one inequality hold
for a certain bound, the new bound will be the minimum of these (in case of upper
bound) or the maximum of these (in case of lower bound). In the case of code in
Fig.1 the lower bounds and upper bounds lists are shown in Fig. 6.

loop LB expression

1 6
2 max(2,ceil((1 + -1 * N 2 + I 1) / 2))

loop UB expression

1 -1 + N 2 + 2 * (-1 + N 1)
2 min(-1 + N 1,floor((-2 + I 1) / -2))

Fig. 6. Loop upper and lower bounds expressions

For loop 1, the lower bound is a constant, so a SgIntVal node type is used,
while the upper bound requires the use of a SgExpression. Loop 2 can be
processed with a SgFunctionCallExp. At the end of the transformation process,
for each loop in the nesting, the initialization statement and the test expressions
are replaced by calculated bounds.

4 Loop Nest CUDA Mapping

CUDA [9] adopts low level programming approaches that requires users to handle
details about parallelism, data handlers and movement across levels of memory
hierarchy. The automated technique in our work has been developed to create an
equivalent CUDA code starting from its sequential C version after the transfor-
mation shown in previous section. The mapping of a parallel loop nest to CUDA
code consists of several steps: parallel loops extraction from the nesting, data
transfer generation, kernel function creation and kernel launch.
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4.1 Generate Data Transfer Directives

In CUDA, the host (CPU) and device (GPU) have separate memory spaces. In
order to execute a kernel on a device, it is necessary to allocate memory on the
device by calling cudaMalloc() function of the framework. Then the data can
be transferred from the host memory to the allocated device memory with calls
to cudaMemcpy() function. Similarly, after kernel’s execution, result data from
the device needs to be copied back to the host’s memory and no longer used
device memory must be unallocated with cudaFree().

To implement this transformation pass it has been traversed the program in-
termediate representation used by ROSE, searching for variables array references
SgVariableArrayRef, included in the loop nest body candidate to be offloaded
to the GPU. After that, arrays have been classified as data-in, data-out or data-
inout, depending on their use (only read, only write, read and write). This affects
the way data is allocated and copied to and from device.

In our work the intermediate representation is updated by inserting in the scope
out of the parallelizable loop nest the declarations of, an error handler
cudaError_t, a cudaExtentwith the computation of array dimension and a call to
cudaMalloc(). After that, parameters are calculated with the source array pointer,
the destination pointer and the direction of the copy. A cudaMemcpy() function
call insertion finalizes the data transfer arrays. The ROSE node build and inser-
tion process is iterated for all arrays referenced into the code nesting that have to
be included in a CUDA kernel. All this has been done by building proper ROSE
SgExpression and putting them into the intermediate representation.

4.2 Create the CUDA Kernel

In CUDA, a kernel function specifies the code to be executed by all threads
during a parallel phase. Mapping a loop nest into a CUDA kernel can be done
by two passes: statements extraction from loop nest body and kernel function
declaration creation.

A kernel function code is executed by a single CUDA thread, and than a
single thread will execute all the statements included into the innermost loop of
the parallelizable nesting. This organization of threads is specified upon kernel
launching with a statement like f<<<P,B>>>(). This will launch P blocks of
B threads each, for a total of P ∗ B parallel threads across the entire kernel.
Every thread block is given a unique integral coordinate that is accessible within
the device program via the special variable blockIdx. The threads of a given
block are also given unique coordinates, whose components are accessible via
threadIdx.

The loop nest to CUDA kernel translation process has been made first by
creating a function definition and a function body for the future kernel and later
by invoking SAGE builder facilities. Later, the function body is filled with all
the statements nodes from loop nest body. After copying these statements nodes
into the kernel function, all references to the previous loop iteration variables
needs to be updated. A set of statements must be inserted in the function kernel
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in order to calculate, upon runtime, an index similar to the old iteration variable.
Once a kernel body is outlined into the so created function, accesses to scalars
and arrays inside have been redirected to their corresponding GPU memory
variables.

4.3 Kernel Launch

Each CUDA thread executes the same kernel code on a grid of blocks of threads.
The number of threads per block and the number of blocks per grid are specified
with the chevron syntax <<<...>>>, already supported by ROSE compiler.

A cudaKernelCallExpression has been built using SAGE III build function.
Arguments have been set using a kernel configurator.

5 Put It All Together: A Test Case

As a test case the source code performing a matrix matrix product shown in
Fig. 7 is used. The resulting code after interchanging and tiling loop I 1 and
loop I 2, is shown in Fig. 8. After loop transformations, each two dimensional
tile (3 innermost loops) of the nest in Fig. 8 are mapped to CUDA code. In
Fig. 9 is shown the generated code implementing data transfer between host and
device (only for first matrix for brevity).

for (j = 0; j < nyc; j++) {
for (i = 0; i < nxc; i++) {

prod = 0;
for (k = 0; k < nya; k++) {

prod += A[k * nxa + i] * B[j * nxb + k];
}
C[j * nxc + i] = alpha * prod + beta * C[j * nxc + i];

}
}

Fig. 7. Matrix multiply test code

for (_var_0 = 0; _var_0 <= nxc-1; _var_0 += tile_size_0) {
for (_var_1 = 0; _var_1 <= nyc-1; _var_1 += tile_size_1) {

// tiles loops
for (i = _var_0; i <= min(nxc-1, _var_0 + tile_size_0-1); i+=1) {

for (j = _var_1; j <= min(nyc-1, _var_1 + tile_size_1-1); j+=1) {
prod = 0;
for (k = 0; k <= nya-1; k+=1) {

prod += A[k * nxa + i] * B[j * nxb + k];
}
C[j * nxc + i] = alpha * prod + beta * C[j * nxc + i];

}
}

}
}

Fig. 8. Matrix product after interchange and tiling loops I 1 and I 2
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cudaError_t stat_dev_1_A;
cudaExtent ext_dev_1_A = make_cudaExtent((nxa*nya) * sizeof(float ),(1),(1));
/* Malloc on the device */
cudaPitchedPtr dev_1_A;
stat_dev_1_A = cudaMalloc3D(&dev_1_A,ext_dev_1_A);
if (stat_dev_1_A != cudaSuccess)

fprintf(stderr,"%s\n",cudaGetErrorString(stat_dev_1_A));
/* Copy host to device */
cudaMemcpy3DParms param_1_dev_1_A = {0};
param_1_dev_1_A.srcPtr = make_cudaPitchedPtr(((void *)A),(nxa*nya) * sizeof(float ),(nxa*

nya),(1));
param_1_dev_1_A.dstPtr = dev_1_A;
param_1_dev_1_A.extent = ext_dev_1_A;
param_1_dev_1_A.kind = cudaMemcpyHostToDevice;
stat_dev_1_A = cudaMemcpy3D(&param_1_dev_1_A);
if (stat_dev_1_A != cudaSuccess)

fprintf(stderr,"%s\n",cudaGetErrorString(stat_dev_1_A));

Fig. 9. CUDA Data transfer code for matrix product

__global__ void kernel_1_1527(cudaPitchedPtr dev_1_A,int nxa,int nya,
cudaPitchedPtr dev_2_B,int nxb,cudaPitchedPtr dev_3_C,
int nxc,int nyc, int _var_0, int _var_1,int alpha,int beta) {

float *A = (float *)dev_1_A.ptr;
int widthA = dev_1_A.pitch / sizeof(float );
int sliceA = dev_1_A.ysize * widthA;
float *B = (float *)dev_2_B.ptr;
int widthB = dev_2_B.pitch / sizeof(float );
int sliceB = dev_2_B.ysize * widthB;
float *C = (float *)dev_3_C.ptr;
int widthC = dev_3_C.pitch / sizeof(float );
int sliceC = dev_3_C.ysize * widthC;
int _p_i, _p_j, _p_k;
int _upperb_y = (min(nyc-1, _var_1 + tile_size_1-1) - _var_1 - 1);
int _upperb_x = (min(nxc-1, _var_0 + tile_size_0-1) - _var_0 - 1);
int _idx = threadIdx.x + _var_0;
int _gidx = _idx + blockDim.x * blockIdx.x;
int _idy = threadIdx.y + _var_1;
int _gidy = _idy + blockDim.y * 1 * blockIdx.y;
if (_gidy >= _var_1 && _gidy <= (nxc - 1)) {

if (_gidx >= _var_0 && _gidx <= (nyc - 1)) {
float prod = 0;
for (_p_k = 0; _p_k <= ((-1) + nya); _p_k += 1) {
prod += (A[(_p_k * nxa) + _gidy] * B[(_gidx * nxb) + _p_k]);
}
C[(_gidx * nxc) + _gidy] = ((alpha * prod) + (beta * C[(_gidx * nxc) + _gidy]));

}
}

}

Fig. 10. CUDA mapping - kernel

In Fig. 10 is shown the source code section with kernel code to be executed
on device. In Fig. 11 is shown the generated code to be performed on the host
that invokes kernel execution on device.
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for (_var_0 = 0; _var_0 <= nxc-1; _var_0 += tile_size_0) {
for (_var_1 = 0; _var_1 <= nyc-1; _var_1 += tile_size_1) {

int num2blockDim_1_1527 = (min(nxc-1, _var_0 + tile_size_0-1) - _var_0 + 1) % 16 == 0?
(min(nxc-1, _var_0 + tile_size_0-1) - _var_0 + 1) / 16 :
(min(nxc-1, _var_0 + tile_size_0-1) - _var_0 + 1) / 16 + 1;

int num1blockDim_1_1527 = (min(nyc-1, _var_1 + tile_size_1-1) - _var_1 + 1) % 16 == 0?
(min(nyc-1, _var_1 + tile_size_1-1) - _var_1 + 1) / 16 :
(min(nyc-1, _var_1 + tile_size_1-1) - _var_1 + 1) / 16 + 1;

dim3 blockDim_1_1527(16,16,1);
dim3 gridDim_1_1527(num1blockDim_1_1527,num2blockDim_1_1527);
kernel_1_1527<<<gridDim_1_1527,blockDim_1_1527>>>

(dev_1_A,nxa,nya,dev_2_B,nxb,dev_3_C,nxc,nyc,alpha,beta);
cudaThreadSynchronize();
cudaError_t err_kernel_1_1527 = cudaGetLastError();
if (err_kernel_1_1527)

fprintf(stderr,"In�%s,�%s\n","kernel_1_1527",cudaGetErrorString(err_kernel_1_1527));
}

}

Fig. 11. CUDA mapping - kernel launch

6 Conclusion and Future Work

In this paper has been presented a source to source transformer that performs
unimodular loop transformations giving as output both a sequential code and
a CUDA code. The transformer has been built on ROSE infrastructure and its
process can be driven at present by user preferences or by external analyzers, as
an algorithmic recognizer.

First tests were conducted on applying tiling and interchanging for loop
nests to give both sequential and CUDA code. The module is also able to emit
OpenMP code for multicore architectures.

Future works directions will be related to: implement more complex transfor-
mations, provide output for different parallel architectures, integrate transform-
ers and analyzers into a common framework.
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Abstract. The scale of data in a MapReduce system is increasing
quickly. Thus how to efficiently schedule a set of production jobs has
become increasingly important. For a given set of jobs, a well-designed
scheduling algorithm can significantly reduce makespan and increase the
utilization of clusters. However, there exists very few studies that aim
to construct a scheduler that minimizes the makespan of batch jobs in
a heterogeneous environment. This paper proposes a heuristic schedul-
ing algorithm called Hybrid Multistage Heuristic Scheduling (HMHS),
which tries to solve the scheduling problem by breaking down it into two-
subproblems: sequencing and dispatching. For sequencing, we develop a
heuristic based on Pri(the modified Johnson’s algorithm). For dispatch-
ing, we offer two heuristics Min-Min and Dynamic-Min-Min. Our simu-
lation results on two kinds of workloads demonstrate that every heuristic
employed in HMHS contributes to reducing the makespan. As a whole,
HMHS improves the performance ranging from 51% to 77% compared to
FIFO.

Keywords: task scheduling, MapReduce, makespan, heterogeneous
system, heuristic algorithm.

1 Introduction

Large scale of data has been generated daily. To handle such huge amount of
data quickly, large companies (e.g. Google) group large number of commodity
computers together to construct a distributed cloud system for data processing.
Parallel programming model MapReduce which is popularized by Google [5] is
widely used in these systems for handling data.

Empirically, a typical MapReduce system is usually used for running thou-
sands of jobs periodically for data processing(e.g. 10,000 jobs are processed daily
by Facebook’s data center [15]). Obviously, for a given set of independent MapRe-
duce jobs in a heterogeneous environment, the less time the clusters cost to exe-
cute these jobs, the earlier the resources of clusters can be released. However, the
processing time is affected by several factors, such as the precedence constraints
between map and reduce tasks. Therefore, a study on how to schedule a given
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set of independent MapReduce jobs in a heterogeneous environment to minimize
the makespan is of great value.

Many researchers have proposed delicate job scheduling algorithms to improve
the system performance of MapReduce. Chang et al. [2] abstracted the schedul-
ing problem as a novel optimization problem. They focused on constructing an
optimal scheduling algorithm that minimizes the weighted sum of the job com-
pletion times. However, they ignored the precedence relationships between map
and reduce tasks. Verma et al. [17] proposed a heuristic algorithm to organize
the order in which jobs are executed to minimize the completion time of a given
set of MapReduce jobs in a homogeneous environment. Since heterogeneous en-
vironment will greatly affect the performance of the scheduling algorithm, a al-
gorithm works well in a homogeneous environment may have poor performance
in a heterogeneous environment.

In general, none of existing works design a scheduling algorithm to minimize
the makespan of a given set of independent MapReduce jobs in a heterogeneous
environment. To address this problem, we propose a Hybrid Multistage Heuristic
Scheduling (HMHS) algorithm, which tries to solve the scheduling problem by
dividing it into two sub-problems: sequencing and dispatching. For sequencing,
we consider the precedence constraints of map and reduce, and then design a
Pri based heuristic to get the order of jobs. (Here, Pri stands for the priority of
a MapReduce job which is defined in section 3.1.) Meanwhile, for dispatching,
we offer two heuristics: Min-Min and Dynamic-Min-Min to balance the load of
machines in a heterogeneous environment. We compare performance benefits of
HMHS with three scheduling strategies via simulation. The results demonstrate
HMHS outperforms FIFO by reducing up to 51%-77% makespan. We also study
how system heterogeneity will affect the performance of HMHS.

2 Problem Description

In this paper, we study how to schedule a set of independent MapReduce jobs in
a heterogeneous system to minimize the makespan. A real MapReduce system
is usually complex and affected by many factors. In this paper, we make several
assumptions to simplify the scheduling problem. We discuss some of assumptions
here. (1)We assume that all map (reduce) tasks of a given job are uniform. Thus,
the processing times of these map (reduce) tasks are same. Meanwhile, we assume
the processing times of tasks of a given job is known. This is not available in a
real system at present, but some researchers [16] try to approximately estimate
the processing time based on historical logs and job profiles. (2)We assume that
one map (reduce) machine contains one map (reduce) slot. In real MapReduce
system (e.g. Hadoop), each machine will contain a specified number of map slots
and reduce slots, and each map (reduce) slot can be used to execute one map
(reduce) task. Tasks executed at the same machine will preempt resources and
affect the processing time of each other. As mentioned in 1, the processing time
is supposed to be known and from statistical results. Thus, the assumption that
each machine owns one slot will not have a significant impact on our scheduling
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problem. (3) We ignore the shuffle phase between map and reduce, and then
assume that, for a given job, reduce tasks can only be launched when all map
tasks have been finished. This assumption is widely used in literatures [2],[11],[17]
to simplify the scheduling problem.

According to above assumptions and the setting of real MapReduce systems,
the scheduling problem considered in this paper will satisfy the following con-
ditions: Precedence relationships exist between map and reduce stage; Each job
contains a specified number of map and reduce tasks; The processing times of
map tasks of a given job are same, as well as the processing times of reduce
tasks; Multiple map machines and reduce machines exist; All jobs arrive at zero;
Task processing time is deterministic and given in advance; Each machine can
process only one task at a time and processing tasks can not be interrupted; All
MapReduce jobs are independent.

2.1 Definitions

To describe the problem more clearly, we give the following definitions, which
are used throughout the paper.
N : Number of MapReduce jobs.
Mm (M r): Number of alternative machines at map(reduce) stage.
Tm
i (T r

i ): Number of map(reduce) tasks of ith job.
Pm
i (P r

i ): Normal task processing time of ith job at map(reduce) stage.
V m
ij (V r

ij): Speed factor of any map(reduce) task of ith job on j th machine.

P
m

i (P
r

i ) : Average total processing time of map(reduce) tasks of ith job.

P
m

i = Pm
i ∗

⎛

⎝
Mm∑

j=1

Vm
ij

⎞

⎠ /Mm ∗ Tm
i , P

r

i = P r
i ∗
⎛

⎝
Mr∑

j=1

V r
ij

⎞

⎠ /M r ∗ T r
i . (1)

FMij : Finish time of j th map task of ith job.
Ai: Arriving time of ith job’s reduce tasks.

Ai = max
1≤j≤Tm

i

(FMij) . (2)

FRij : Finish time of j th reduce task of ith job.
C : The completion time of all jobs, which can also be called makespan.

C = max
1≤i≤N

max
1≤j≤T r

i

(FRij) . (3)

2.2 Hardness of Our Scheduling Problem

Two-stage flexible flow shop scheduling problem (2-FFS) is similar to our schedul-
ing problem. The main difference is that each job in 2-FFS only contains one
task at each stage, while each job considered in our work contains multiple tasks.
Gupta [7] proved that the 2-FFS is NP-complete even if the number of machines
at one of the two stages is one. Obviously, the scheduling problem in our paper
is also NP-hard according to [7].
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3 Hybrid Multistage Heuristic Scheduling Algorithm

As discussed above (section 2.2), the scheduling problem of the MapReduce sys-
tem is NP-hard. Thus, we intend to simplify the problem. It is common to break
down the scheduling problem into smaller pieces. This enlightens us to divide the
problem into two sub-problems: (a) sequencing the tasks allocated to each ma-
chine; (b) dispatching tasks of jobs to heterogeneous machines at map and reduce
stages.

We show the details of sequencing and dispatching problems in section 3.1
and section 3.2, respectively.

3.1 Sequencing

During map and reduce stage, each machine will be allocated multiple tasks.
Precedence relationships between map and reduce tasks may block the jobs’
execution. A well-designed sequencing algorithm can help to organize map tasks
to decrease waiting time of reduce tasks.

Johnson [9] proposed an classical optimal algorithm for the two flow shop
problem (only one machine is available at each stage and each job contains only
one task at each stage), which is similar to our scheduling problem. In Johnson’s
algorithm, each job contains three attributes Mi, Ri and Vi. Mi stands for the
task processing time at map stage. Ri stands for the task processing time at
reduce stage. Vi = min (Mi, Ri). For a job List L with N jobs, the steps of
Johnson’s algorithm are:
Step 1. Define two output lists L1= {}, L2 = {}.
Step 2. Order all jobs in List L by Vi in nondecreasing order.
Step 3. Process the ordered list from the beginning. For each job, if Mi ≤ Ri,
place it at end of L1; otherwise, place it at the beginning of L2.
Step 4. Add list L2 to the end of list L1. L1 is the ordered list.

We approximately evaluate the sum of processing times of map (reduce) tasks
of a given job, indicated by P

m

i (P
r

i ), by combining the average processing time
of a map (reduce) task and the number of map (reduce) tasks. Hence, we can
replace the task processing times Mi and Ri in Johnson’s algorithm by P

m

i and
P

r

i , respectively. This enables us to apply Johnson’s algorithm to sequence jobs.
In order to describe the sequencing algorithm, we define the priority Pri which

takes advantage of Johnson’s algorithm to indicate the processing order of a job.
The smaller Pri a job has, the earlier it will be executed during map stage. The
expression is modified from Gupta [7]. For each job i,

Prii = Sgn
(
P

m

i − P
r

i

)
/min

(
P

m

i , P
r

i

)

where Sgn =

{
1, if P

m

i > P
r

i

−1, otherwise.

(4)

We can easily obtain the ordered list of jobs by sorting the Pri in nondecreas-
ing order.
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3.2 Dispatching

The basic intention of dispatching tasks is to balance the work load of all ma-
chines. Since the dispatching exists at both map and reduce stage, we discuss it
in two cases:Assigning map tasks to map machines and assigning reduce tasks
to reduce machines.

Algorithm 1. Dynamic-Min-Min heuristic

The set of N MapReduce jobs, U ; Selected jobs to be dispatched, Jw; Available
time of the earliest free machine, EAT ; The execution time of reduce tasks of ith
job on machine mj , Eij ; The minimum completion time of reduce task of ith job
if it is mapped to mj , Cij ; The time that ith reduce machine finishes all tasks
assigned to it, Avai;

1: while U �= ∅ or Jw �= ∅ do
2: EAT ←− min(Avai);
3: for each ji ∈ U do
4: if Ai ≤ EAT then
5: add ji to Jw, remove ji from U ;
6: end if
7: end for
8: if Jw == ∅ then
9: add the job with minimum Ai to Jw, remove it from U ;

10: end if
11: for each ji ∈ Jw do
12: for each machine mj do
13: Cij ←− Eij + max(Avaj, Ai);
14: end for
15: end for
16: Cpq ←− min(Cij);
17: assign one reduce task of jp to mq;
18: Avaq ←− Cpq ;
19: if all reduce tasks of jp are assigned then
20: remove jp from Jw;
21: end if
22: end while

Dispatching Heuristic of Map Stage. During map stage, we try to select a
heuristic to make the whole map stage finished as soon as possible. We employ
Min-Min as the dispatching rule, which outperforms most heuristics on dispatch-
ing a set of independent tasks onto heterogeneous systems [1]. The key steps of
Min-Min are: In each cycle, for each unassigned map task, Min-Min calculates
its minimum completion time by comparing the completion times of it on differ-
ent map machines. Then, the map task with the minimum completion time is
assigned to corresponding map machine. Therefore, the possibility of the tasks
assigned to their best matched machines is relatively high. The more tasks that
are assigned to their best matched machines, the smaller makespan our scheduler
can obtain.
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Dispatching Heuristic of Reduce Stage. As mentioned above, our algorithm
is designed to obtain an optimized batch scheduling policy for a large number of
jobs. Multiple jobs with similar P

m

i will be launched at approximately the same
time according to our sequencing algorithm. Thus, reduce tasks of these jobs will
have similar arriving time. Under such assumption, we propose a new heuristic
Dynamic-Min-Min, which takes advantage of the idea of Min-Min to dispatch
arrived reduce tasks to balance the work load of reduce machines. Dynamic-Min-
Min works as follows: At each round of task assignment, it firstly updates the
job set Jw which contains all jobs to be dispatched, and then dispatchs a reduce
task. Algorithm 1 shows the pseudocode of Dynamic-Min-Min. (Some definitions
are explained in section 2.1.)

3.3 Hybrid Multistage Heuristic Scheduling Algorithm

By combining the solutions for sequencing and dispatching together, we can
draw the outline of Hybrid Multistage Heuristic Scheduling Algorithm.
1) Dispatch map tasks of all jobs into map machines by heuristic Min-Min.
2) Define Ti as the set of tasks assigned to map machine i. For each Ti, sequence
tasks by Pri in nondecreasing order.
3) Dispatch reduce tasks of all jobs into reduce machines by heuristic Dynamic-
Min-Min.

4 Evaluation

In this section, we evaluate the benefits of our algorithm via simulations. We
compare HMHS with the following three scheduling strategies.
Default FIFO Scheduler: FIFO is the default scheduler used by Hadoop (a
widely used MapReduce system). Once a job arrives, FIFO scheduler partitions
it into individual tasks and then assigns tasks to free machines.
FIFO-Pri Scheduler: To investigate the effect of our Min-Min and Dynamic-
Min-Min dispatching strategies, we combine FIFO Scheduler and modified John-
son’s algorithm together. The FIFO-Pri sorts all jobs by priority Pri first, and
then uses FIFO Scheduler to assign tasks to free machines in order.
Reverse-Hybrid Multistage Heuristic Scheduler (R-HMHS): R-HMHS
is designed to analyze how deeply the priority Pri affects HMHS. The R-HMHS
reverses the sequencing result of HMHS. In other words, tasks are sorted by Pri
in descending order.

4.1 Simulation Setup

Since building a large distributed system with thousands of machines is beyond
the scope of our ability, to evaluate the performance of HMHS, we design a
simulator and generate some synthetic workloads according to statistical results
in [10],[19].
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(a) Single workload (b) Hybrid workload

Fig. 1. Effect of heuristics

In our simulations, a single job is constructed from two aspects: task duration
and job size. We generate two types of workloads.(1) Single workload: for each
job, Pm

i and P r
i are drawn from uniform distributions U[5, 45] and U[15, 135]

respectively. Tm
i and T r

i are drawn from U[1, 300] and U[1, 40]. (2) Hybrid work-
load: in real industry system, a small number of large and long jobs exist [13].
Thus, we generate the hybrid workload in the following way. Normal jobs(80%)
are constructed in the same way of jobs of single workload. For long(15%) jobs,
Pm
i and P r

i are drawn from U[100, 2000] and U[300, 6000]. Tm
i and T r

i are drawn
from U[1, 300] and U[1, 40]. For large(5%) jobs, Pm

i and P r
i are drawn from U[5,

45] and U[15, 135]. Tm
i and T r

i are drawn from U[2000, 5000] and U[100, 400].
Besides the parameters used to represent workload, the speed factors(Vm

ij and
V r
ij) are generated to indicate the heterogeneous system. V m

ij and V r
ij are drawn

from uniform distribution U[0.1, 1.0].

4.2 Simulation Results

A. Comparison with Other Heuristics. In our first simulation, to evaluate
the benefits of our algorithm, we compare the makespan of our scheduler with
FIFO, FIFO-Pri and R-HMHS. We generate multiply workloads with different
job sizes under Single and Hybrid distributions respectively. We also create a
heterogeneous system of 100 map and 100 reduce machines. From Fig. 1, we can
see that HMHS works the best among all other strategies. Compared to FIFO,
HMHS decreases up to 77% of makespan. We also observe that there is a slightly
upward trend of makespan improvements with the increase of number of jobs.
Effect of dispatching heuristics: To investigate the effect of dispatching
heuristics Min-Min and Dynamic-Min-Min, we analyze the results of FIFO-Pri
and HMHS. By observing the result of FIFO-Pri in Fig. 1, we can find that
HMHS decreases up to 72% makespan of FIFO-Pri for single workload and 55%
for hybrid workload. This results clearly illustrate that our dispatching heuristics
achieve significant makespan improvements.
Effect of sequencing heuristic: As mentioned above, R-HMHS is designed to
test the effect of our sequencing algorithm. Fig. 1 illustrates that, compared to
R-HMHS, HMHS exhibits 10%-30% makespan improvements. We can see that
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Table 1. Configuration of heterogeneous systems

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

slow slot(0.9-1) 0% 20% 40% 60% 80% 100%

random slot(0.1-1) 100% 80% 60% 40% 20% 0%

(a) Single workload (b) Hybrid workload

Fig. 2. Impact of heterogeneity

there is no strong association between the effect of our sequencing algorithm and
the job sizes. From the view point of workload sets, single workload gets about
7% more performance benefits than hybrid workload.

The above results fully demonstrate that each of our heuristics is effective
in reducing the makespan of a given set of independent MapReduce jobs in a
heterogeneous environment.

B. Impact of Heterogeneity
In practice, a cloud system is usually combined by heterogenous machines. By
changing the percentage of slow machines in the system, we create six kinds
of heterogeneous systems as shown in Table 1. Meanwhile, We suppose slow
machines’ speed factors are drawn from U[0.9, 1.0] and the rest machines’ speed
factors are drawn from U[0.1, 1.0] randomly. We generate two kinds of workloads
with 100 jobs as the test workloads. Each heterogeneous system contains 100 map
machines and 100 reduce machines. Fig. 2 shows that the performance of HMHS
is close to FIFO when the system is dominated by slow machines. One major
conclusion from Fig. 2 is that the less slow machines the cluster has, the more
improvements our algorithm gains.

5 Related Work

5.1 Foundational Work on Job Scheduling Problem

Job Scheduling is not a new problem. Indeed, a lot of foundational works exist in
the literature [12]. However, the problem discussed in this paper can not be corre-
sponded to any classical problem. To the best of our knowledge, the classical two-
stage flexible flow shop (2-FFS) scheduling problem has the closest model to ours.

The 2-FFS has been studied extensively [12], [14]. Gupta [7] proved the 2-FFS
with parallel processors to minimize makespan is NP-Complete and developed an
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efficient heuristic algorithm for constructing an approximate solution. Haouari et
al. [8] studied the 2-FFS with identical parallel machines at each stage. A tabu
search heuristic and a simulated annealing algorithm are presented in their work.

5.2 Scheduling on MapReduce

Job scheduling in MapReduce environment is a new problem. With the rapid
development of cloud computing, it has received much attention.

Many efforts(such as Fair Scheduler [18], Delay Scheduling [19], SAMR Sched-
uler [4] etc.) try to improve the FIFO scheduler, which is the origin strategy
of Hadoop. While other works [2] [3] [6] [11] try to formalize the MapReduce
scheduling problem and offer an offline scheduling algorithm for a given set of
MapReduce jobs.

Chang et al. [2] gave an LP based lower bound of the MapReduce scheduling
problem. Meanwhile, they designed a 3-approximation algorithm to minimize
the sum of job completion times for offline case. However, they ignored the
precedence relationships between map and reduce tasks. To improve Chang’s
work, Chen et al. [3] not only considered the precedence constraints, but also
added the shuffle phase of MapReduce into their model. Similarly, they provided
LP based lower bound and constant factor approximation algorithms to minimize
the sum of job completion times, which is different from our goal.

The closest work to ours is by Verma et al. [17]. They offered an abstraction
of the scheduling problem which is similar to ours in homogeneous system and
aimed to minimize the completion time of a set of MapReduce jobs. They de-
signed a heuristic, which extends the classical Johnson’s algorithm [9]. In our
work, we consider the scheduling problem in a heterogeneous environment. This
encourages us to explore new algorithms to minimize the makespan.

6 Conclusion and Future Work

In this paper, we propose a novel algorithm, Hybrid Multistage Heuristic Schedul-
ing(HMHS), which aims at minimizing the makespan of a given set of indepen-
dent MapReduce jobs in a heterogeneous system. The simulation results show
that the heuristics used in our algorithm exhibit significant makespan improve-
ments. In the future, we plan to examine the performance of our algorithm by
running the experiment in a real MapReduce cluster with larger input data. On
the other hand, we plan to compare our algorithm with some advanced Hadoop
schedulers, such as Fair Scheduler [18] and Delay Scheduling [19].
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Abstract. Recently, the large-scale cluster of data center is usually constructed 
to support both HPC and Cloud computing. It can be explained from two as-
pects: (1) The data center is typically a sharing environment for all the users, 
users may submit different types of jobs (HPC and Cloud computing) for 
processing currently; (2) Some applications can be divided into two parts of 
subtasks which are suitable to HPC and Cloud computing respectively, e.g. the 
AMS (Alpha Magnetic Spectrometer) experiment is such a typical application. 
Thus in order to provide good service for both computing models, it is needed 
to construct a HPC and Cloud hybrid environment. An existing management 
mechanism is to allocate fixed proportions of resources for different application 
environments. However, this approach has a significant performance drawback 
that is the low resource utilization. In order to overcome this drawback, we pro-
pose a dynamic resource management framework and mechanism to satisfy the 
requirements of both HPC and Cloud computing. Firstly we present a prediction 
model that is used to predict the arrival rate of all kinds of jobs (HPC types and 
Cloud types). Based on the prediction results, we propose a dynamic resource 
allocation algorithm, which manages dynamic resources allocation by using 
queuing theory. Finally, we evaluate our mechanism by real data sets from 
AMS experiment and Cloud tasks running on the HPC center in Southeast Uni-
versity. The results show that the proposed mechanism can effectively improve 
resource utilization at least 30% in this hybrid environment. 

1 Introduction 

Growing expertise with clusters of commodity computers has enabled a number  
of institutions to harness petaflops of computation power in a cost-efficient manner. 
The large-scale cluster is typically a sharing environment, which usually needs to 
support different kinds of computing models in the same time, such as the HPC (High 
Performance Computing) and Cloud Computing, etc. This fact can be explained by 
two major reasons:  

(1) There exists a certain application, which contains the subtasks that belong to 
multiple computing models. We take the actual scenario of SEU HPC Data Center as 
an example. Note that, the AMS experiment is a typically running application, in 
which there are three major tasks, data reconstruction, Monte Carlo simulations and 
physical analysis. The first two tasks have three obviously characteristics, that are 
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large number of data, high requirement of parallelism and sensitivity to network  
latency. Thus the first two tasks are typical HPC applications. However physical 
analysis has different requirements of operating system, software, speed of execution 
and so on, thus there is a need of elastic customizable resource to support. Thus cloud 
computing is good enough for the third task. 

(2) Multiple dedicated applications which are deployed and running based on their 
own computing models respectively. There are many experiment tasks from different 
colleges and schools of SEU submitted by the researchers of the whole university. 
Among these dedicated applications, we note that the High Throughput Sequencing 
Data Analysis and Molecular Dynamics Simulation Experiment are experiment tasks 
which are suitable to HPC, since these experiments with large number of data need 
high computing speed. While Nano Particle Optical Properties Simulation and other 
virtual machine management requests are much more suitable to cloud computing due 
to diversity of operating system and elastic resource requirement. 

Above all, we find that different computing models have different requirements on 
hardware resources. HPC needs strong parallel capacity and computing power, while 
cloud needs elastic resource adjustment. Thus running multiple applications in a sin-
gle computing environment cannot achieve good performance. There is a need of 
hybrid environment which is composed of HPC and Cloud environment to meet the 
different kinds of application requirements. 

To satisfy varied requirements of different kinds of application, the existing method 
is to allocate fixed proportions of the resources for different application environments 
[5][7]. However, this naive approach has significant performance drawbacks: (1) Over-
provisioning resources based on worst case workload estimates can result in potential 
underutilization of resources. (2) Since the number of arriving jobs is dynamic, tran-
sient overload leads to system instability and bad system performance.  

Based on the above discussion, we conclude that a static allocation strategy cannot 
satisfy the actual requirements of hybrid clusters environment. Then the key issue is 
how to dynamically allocate resources for HPC and cloud applications in a hybrid 
clusters environment legitimately to increase the resource utilization as well as gua-
ranteeing the performance constraints.  

Our experimental results from the hybrid environment performance confirm that 
this hybrid environment is stable and efficient. In particular, we compare it to the pure 
HPC environment. The utilization of resources in excess of 30% is observed. 

2 HPC and Cloud Hybrid Framework 

In the hybrid environment presented in this paper, the HPC and Cloud can be in fact 
consolidated effectively inside a common cluster infrastructure. Figure 1 (a) shows 
the architecture of our proposed hybrid environment. This hybrid environment is 
composed of HPC system, Cloud system and some reserved resources which are used 
for dynamic allocation. And there is a unified dynamic resource management module 
that is in charge of arrival rate prediction and dynamic resources allocation.  
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       (a)                                           (b) 

Fig. 1. (a)Architecture of HPC and Cloud hybrid environment; (b)Average number of jobs for 
HPC applications and Cloud tasks during one week 

2.1 Prediction Model of Arrival Rate 

Our observations are based on the analysis of real applications log files from SEU 
HPC Data Center within one year. Data are collected at a one-hour interval, for a total 
of 24 intervals each day. Figure 1 (b) shows that, for each workday morning, the 
cloud tasks arriving as people arrive at work. And the arriving cloud tasks peaks and 
remains there for most of the day. In late afternoon and weekdays, the values stay in a 
low level. However, since HPC applications are submitted automatically, there is a 
steady trend of the average number of arrival jobs during a week. 

Since workload history arrival rate of HPC applications is almost stable, we predict 
the arrival rate of HPC applications based on AR(2) model. It has been demonstrated 
that lag 2 usually provides a good model due to the high prediction accuracy and low 
computation overhead within large-scale computing. 

We are given historical data of workload in a form of time series xi, where 
i=1,2,…, I is a measurement interval index. Precisely, the model is: 

i 1 i -1 2 i -2 ix = φ x + φ x + εˆ   (1)

where φi and εi are autocorrelation function and  white noise component respectively.  
On the other hand, for cloud tasks, from Figure 2, we can find that the trend of 

them is non-stationary and shows periodicity. Thus we suppose an AR based Periodic 
Decomposition (PD) prediction model for cloud workload prediction. We decompose 
the workload of cloud tasks time series xi into a sum of jx which is periodic compo-
nents. So

j

j j
i+n* p ix = x where n is an integer and pj is a period. Specifically,  

0,1,...
p

j
i i i

j=1

X = x +r ,   i =   (2)

where P is the number of periodic components and ri is residual components of the 
workload time series. Then, we model ri using AR(2) model: 

 i 1 i -1 2 i -2 ir = φ r + φ r + εˆ    for i=0,1… (3)
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Thus we get HPCx̂  and Cloudx̂  which are predicted whole workload of HPC  

applications and Cloud tasks respectively during interval I. 

2.2 Dynamic Resource Allocation 

In this part, jobs arrive into the hybrid system with arrival rate λ which is predicted in 
previous subsection. Service times at each server are assumed to be i.i.d. Random 
variables distributed exponentially with service rate μ. Thus dynamic resource alloca-
tion can be modeled as a G/M/n queuing system, and we regard response time R as 
the QoS requirement. Finally, we summarize the notation in the paper in Table 1. 

Table 1. A Summary of Notation is Provided for Reference 

Symbol Definition 
x  Mean service time of servers 

t  Mean jobs interarrival time 

μ The service rate of servers in hybrid environment 
2
aσ The variance of interarrival time 
2
bσ The variance of service time 

In [1], the defined of arrival rate of arriving jobs is λ= μρ , where ρ denotes the uti-

lization factor of the system server which is defined as follows: 

 1
xρ = , ρ <

nt
 (4)

The waiting time for jobs in hybrid environment is represented by 

1

1
W

n μ ( - σ )
≅  

(5)

We must solve for the value of σ, which is given as the appropriate root by [1]: 

( )σ = A * nμ - nμσ  (6)

Making the change of variable 1α = nμ( - σ)and expand A*(α) in a power series, 

meanwhile we may neglect the higher-order terms and solving for α, we may finally 
get the approximate mean wait time in hybrid environment. In this G/M/n queuing 
system, the response time of jobs is the sum of waiting time and computing time, thus 
we have 

( )
1

1

2 2 2
a bσ + / n σX

R = +
T 2 t - ρ

（ ）  (7)

where X is the number of jobs completions in the previous measurement interval and 
T is the total time for computing completions in the previous interval. 

Our objective is to minimize workload response time R subject to the constraint of 
n<C, where C is total resource capacity of hybrid environment and x <T’, where T’ 
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is required computing time from user’s QoS requirement. The dynamic resource allo-
cation problem can be formulated as follows: 

OPTp     min k

ii= 1
R  (8)

Subject to: 
where

n < C

x < T',  x = nρ t





 
(9)

The optimization problem OPTP is a nonlinear constrained integer optimization 
problem. 

2.3 Procedure of Dynamic Resource Management 

In this subsection, we bring out a heuristic algorithm to represent this procedure  
of Dynamic Resources Management (DRM) in hybrid environment. The DRM  
algorithm efficiently allocates the resource with the goal of guaranteeing application 
QoS.  
 

Algorithm 1. DRM for dynamic resource management in hybrid environment 
Input: jobs arrival rate of HPC applications λ1 and Cloud tasks λ2, QoS require-
ments for jobs like response time R and computing time T’ 
Output: plan to allocate proper computing resources to jobs 
1 λ1, λ2: the job arrival rate of HPC applications and Cloud tasks 

J: set of the arrival jobs;  T: history arrival rate dataset 
Scur: current resource status of hybrid system;  
Time: required jobs response time function 

2 RA←initial resource allocation plan 
3 While λ1 >0 or λ2 >0 do 
4 T.add (λ1, λ2)                            //Put the λ1, λ2 into history arrival 

rate dataset T 

5 i 1 i -1 2 i -2 i
x = φ x + φ x + εˆ       //predict 1λ̂  using AR(2) model 

6 ri= getResidualValue (J)         //break down time series get residual com-
ponent 

7  i 1 i -1 2 i -2 i
r = φ r + φ r + εˆ        //predict residual component using AR(2) 
model 

8 2λ̂  =add (J,  ir̂  ) 

9 RA=minimizeTime ( 1λ̂ , 2λ̂  , x  )     //solve OPTP optimization problem 
10 If (!isSatisfy (RA, Scur)) 
11 adjustAllocation(RA,Scur)            //change resource allocation  
12 END 
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3 Experimental Evaluation 

3.1 Experimental Setup 

Hardware and Software. We build a HPC and Cloud hybrid environment in SEU 
(Southeast University) HPC center which consists of a computing system and a sto-
rage system. Figure 2 illustrates that computing system contains 252 IBM H22 Blade 
servers while the storage is set up by 16 IBM X3650 M3 servers.  

Note that, there are 20 IBM H22 Blade servers of SEU HPC center are used to 
construct the HPC environment of our hybrid system. Meanwhile, we use 14 IBM 
H22 Blade servers to construct a cloud environment which is managed by Openstack 
platform. One blade server is control node while the other 13 blade servers are com-
puting nodes. In addition, there are 10 IBM H22 Blade servers deployed as a reserved 
resources pool which is prepared for elastic resources allocation. 
 
HPC and Cloud Workload. Data reconstruction and MC simulations of AMS expe-
riment are used to represent HPC workload of hybrid environment. We provide Cloud 
environment to the other colleges of SEU as experiments platform. The tested cloud 
workload is composed of the whole experiments of Southeast University. 

3.2 Performance Evaluation 

Prediction Accuracy of Arrival Rate. In this experiment, we make a comparison 
between the predicted jobs arrival rate λ̂  and the real jobs arrival rate λ to evaluate our 
prediction mechanism. We implement two prediction methods for the cloud work-
load, that are: (1) AR based Periodic Decomposition (PD) is the presented prediction 
mechanism which extends the existing AR method with periodic decomposition, and 
(2) AR(2) is the traditional AR method without periodic decomposition. And for the 
HPC workload, that are: (1) AR (2) and (2) EP (32) (Extracted- based Prediction that 
is proposed by Wu [2]). 

 

Fig. 2. The hardware archritecture of SEU HPC center 

From Figure 3(a), we can find that our PD algorithm outperforms AR(2) in  
predicting cloud workload arrival rate, this is because the prediction error can be 
effectively corrected by the periodic decomposition mechanism. While in the Figure 
3(b), we note that the AR-based prediction has the better accuracy than the EP method  
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 (a) Cloud workload                           (b) HPC workload 

Fig. 3. The prediction accuracy analysis 
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(a) AR based Periodic Decomposition (PD) and AR algorithms for cloud tasks (b) AR and EP 
algorithms for HPC applications 

Fig. 4. The prediction MSE 

in predicting HPC workload arrival rate. For EP algorithm, as many useful load data 
among a monitor period are ignored when reconstructing the new load series based on 
the original trace, it cannot obtain a good result. 

On the other hand, we set the MSE (mean square error) as a performance metric to 
evaluate the prediction methods presented and used in this paper. We calculate the 
MSE of all the for 10 times to remove any side effects. As shown in the Figure 4(a), 
the MSE is much lower than AR in the cloud environment, which indicates that our 
PD algorithm is much more accuracy than AR. And the MSE of our PD algorithm is 
always steady around 0.8 without any large fluctuations, which means it is much more 
stable than AR, too. On the other hand, Figure 4(b) shows the prediction MSE of AR 
algorithm outperforms EP algorithm for HPC applications due to the complete moni-
toring during measurement interval without ignoring too much data. 
 
Dynamic Resource Allocation Performance/ Hybrid Environment Performance. 
Based on the accurate prediction of jobs arrival rate generated form the last experi-
ment (Figure 3,4), we evaluate our dynamic resource allocation techniques by com-
paring with static allocation techniques (the initial configuration of static allocation is 
set be 0.6:0.4) in this part. 
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Figure 5 (a) shows that the hybrid system resource utilization increases for both 
dynamic and static resource allocation technique firstly. When the number of incom-
ing jobs is continuously increasing, the system resource utilization of static resource 
allocation becomes stable and steady around at 62%. This is because the relatively 
stable HPC workload becomes the only determination factor that affects the resource 
utilization when the resources of cloud environment cannot satisfy the incoming job 
requests, leading to the much more stable resource utilization. While in the case of 
dynamic one, we note that the system resource utilization is keep growing along  
with the increment of incoming jobs of cloud environment, this is expected as the 
freedom resources of HPC environment can be reallocated to the cloud environment 
in a real-time, satisfying the mutative job requests of cloud workload. 

 

 
                       (a)                                            (b) 

Fig. 5. (a) The resource utilization of dynamic and static resource allocation; (b) The QoS 
violation ratio of dynamic and static resource allocation 

Figure 5 (b) shows that the QoS violation ratio increases when the number of arriv-
ing jobs increases. We can figure out that when the number of arriving jobs is low, the 
QoS requirements almost always can be met. When increasing number of arriving 
jobs, QoS violation ratio becomes higher. And the QoS violation ratio of static re-
source allocation is nearly 200% higher than that of dynamic resource allocation in 
general. This is because the fact that the job processing time and waiting time is in-
creasing along with the increment of incoming jobs, since the insufficient resource 
affects the processing time of the running jobs (most jobs need to be processed in a 
parallel way) and extends the waiting time of the other concurrent jobs (jobs need to 
wait for the resource release). However, our dynamic resource allocation has a better 
performance than static one due to the flexible resource reallocation between HPC 
and cloud environment through the reserved resource pool, which can relieve the 
computation pressure of the cloud environment to a certain extent. 

4 Related Work 

Much research has been done on investigating the possibility of constructing HPC and 
Cloud together. References [3] and [4], present an environment that constructs HPC 
on the cloud. However cloud platform is unable to provide a completely satisfactory 
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HPC environment, particularly for communication-intensive applications, due to high 
network delay and lack of a high speed interconnect. 

Some work have considered a hybrid computing environment which integrate clus-
ters with clouds [6], [8]. Kim et.al. [6] discuss challenges to integrate clouds with 
cluster computing platforms and data centers, as well as develop and manage applica-
tions to utilize the cluster platform. Assuncao et.al. [8] demonstrate an approach of 
extending a local cluster to cloud resources using schedulers by applying different 
strategies. Their approach is simulated, and not executed on production runs on cloud 
resources.  

There are models for resources scheduling on HPC and Cloud respectively. A cost 
model based on economic scheduling heuristics [9] is investigated for cloud based 
streams. An adaptive scheduling mechanism [10] uses economic tools such as market, 
bidding, pricing, etc. on an elastic grid utilizing virtual nodes from clouds. An  
on-demand resource provisioning mechanism based upon load [11] is presented in 
Amazon cloud platform. In [12], a combinatorial auction model is proposed for both 
grids and clouds. However there is limited effort on unified resources management in 
a HPC and Cloud hybrid environments. 

5 Conclusion 

In this paper, we study the problem of low utilization of data center resources. Firstly 
we present a HPC and Cloud hybrid environment to enhance the utilization of cluster 
of hardware resource in data center. Then, we use an AR based periodic decomposi-
tion algorithm to improve the prediction accuracy of jobs arrival rate. Based on it, we 
propose a G/M/n queuing model and present a heuristic algorithm to make dynamic 
resource allocation to meet the QoS requirements. Finally we have evaluated hybrid 
environment based on SEU HPC center, and the results demonstrate the efficiency 
and effectiveness of our approach. 

The result shows that this hybrid environment enhances at least 30% utilization of 
system resources than the system with static resource allocation technique. It also de-
monstrates a well performance of hybrid environment to meet user’s QoS requirement. 
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Abstract. For solving large instances of the Travelling Salesman Prob-
lem (TSP), the use of a candidate set (or candidate list) is essential to
limit the search space and reduce the overall execution time when using
heuristic search methods such as Ant Colony Optimisation (ACO). Re-
cent contributions have implemented ACO in parallel on the Graphics
Processing Unit (GPU) using NVIDIA CUDA but struggle to maintain
speedups against sequential implementations using candidate sets. In this
paper we present three candidate set parallelization strategies for solving
the TSP using ACO on the GPU. Extending our past contribution, we
implement both the tour construction and pheromone update stages of
ACO using a data parallel approach. The results show that against their
sequential counterparts, our parallel implementations achieve speedups
of up to 18x whilst preserving tour quality.

Keywords: Ant Colony Optimization, Graphics Processing Unit, CUDA,
Travelling Salesman.

1 Introduction

Ant algorithms model the behaviour of real ants to solve a variety of optimiza-
tion and distributed control problems. Ant Colony Optimization (ACO) [7] is a
population-based metaheuristic that has proven to be the most successful ant
algorithm for modelling discrete optimization problems. One of these problems is
the Travelling Salesman Problem (TSP) in which the goal is to find the shortest
tour around a set of cities. Dorigo and Stützle note [7] that the TSP is often the
standard problem to model as algorithms that perform well when modelling the
TSP will translate with similiar success to other problems. Dorigo and Stützle
also remark [7] that ACO can be applied to the TSP easily as the problem can
be directly mapped to ACO. For this reason, solving the TSP using ACO has
attracted significant research effort and many approaches have been proposed.

The simplest of these approaches is known as Ant System (AS) and con-
sists of two main stages: tour construction; and pheromone update. An optional
additional local search stage may also be applied once the tours have been con-
structed so as to attempt to improve the quality of the tours before performing
the pheromone update stage. The process of tour construction and pheromone
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update is applied successively until a termination condition is met (such as a
set number of iterations or minimum solution quality is attained). Through a
process known as stigmergy, ants are able to communicate indirectly through
pheromone trails. These trails are updated once each ant has constructed a new
tour and will influence successive iterations of the algorithm. As the number of
cities to visit increases, so does the computational effort and thus time required
for AS to construct and improve tours. The search effort can be reduced through
use of a candidate set (or candidate list). In the case of the TSP a candidate set
provides a list of nearest cities for each city to visit. During the tour construction
phase these closest cities will first be considered and only when the list has been
exhausted will visiting other cities be permitted.

As both the tour construction and pheromone update stages can be performed
independently for each ant in the colony and this makes ACO particularly suited
to parallelization. There are two main approaches to implementing ACO in par-
allel which are known as fine and coarse grained. The fine grained approach maps
each ant to an individual processing element. The coarse grained approach maps
an entire colony to a processing element [7].

NVIDIA CUDA is a parallel programming architecture for developing general
purpose applications for direct execution on the GPU [8] for potential speed
increases. Although CUDA abstracts the underlying architecture of the GPU,
fully utilising and scheduling the GPU is non-trivial.

This paper builds upon our past improvements to existing parallel ACO im-
plementations on the GPU using NVIDIA CUDA [3]. We observed that parallel
implementations of ACO on the GPU fail to maintain their speedup against
their sequential counterparts that use candidate sets. This paper addresses this
problem and explores three candidate set parallelization strategies for execution
on the GPU. The first adopts a naive ant-to-thread mapping to examine if the
use of a candidate set can increase the performance; this naive approach (in
the absence of candidate sets) has previously been shown to perform poorly [2].
The second approach extends our previous data parallel approach (as pioneered
by Cecilia et al. [2] and Delévacq et al. [4]), mapping each ant to a thread block.
Through the use of warp level primitives we manipulate the block execution to
first restrict the search to the candidate set and then expand to all available cities
dynamically and without excessive thread serialization. Our third approach also
uses a data parallel mapping but compresses the list of potential cities outside
of the candidate set in an attempt to further decrease execution time.

We find that our data parallel GPU candidate set mappings reduce the com-
putation required and significantly decrease the execution time against the se-
quential counterpart when using candidate sets. By adopting a data parallel
approach we are able to achieve speedups of up to 18x faster than the CPU
implementation whilst preserving tour quality and show that candidate sets can
be used efficiently in parallel on the GPU. As candidate sets are not unique to
ACO, we predict that our parallel mappings may also be appropriate for other
heuristic problem-solving algorithms such as Genetic Algorithms.
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2 Background

In order to solve the TSP we aim to find the shortest tour around a set of cities.
An instance of the problem is a set of cities where for each city we are given the
distances from that city to every other city. Throughout this paper we only ever
consider symmetric instances of the TSP where di,j = dj,i, for every edge (i, j).
For a more detail on the TSP we direct readers to [3].

The AS algorithm consists of two main stages: ant solution construction; and
pheromone update [7] and are repeated until a termination condition is met.
To begin, each ant is placed on a randomly chosen start city. The ants then
repeatedly apply the random proportional rule, which gives the probability of
ant k moving from its current city i to some other city j, in order to construct a
tour (the next city to visit is chosen by ant k according to these probabilities).
At any point in the tour construction, ant k will already have visited some cities.
The set of legitimate cities to which it may visit next is denoted Nk and changes
as the tour progresses. Suppose that at some point in time, ant k is at city i and
the set of legitimate cities is Nk. The random proportional rule for ant k moving
from city i to some city j ∈ Nk is defined via the probability:

pkij =
[τij ]

α[ηij ]
β

∑
l∈Nk [τil]α[ηil]β

, (1)

where: τil is the amount of pheromone currently deposited on the edge from
city i to city l; ηil is a parameter relating to the distance from city i to city l
and which is usually set at 1/dil; and α and β are user-defined parameters to
control the influence of τil and ηil, respectively. Dorigo and Stützle [7] suggest
the following parameters when using AS: α = 1; 2 ≤ β ≤ 5; and m = |N |
(that is, the number of cities), i.e., one ant for each city. The probability pkij is
such that edges with a smaller distance value are favoured. Once all of the ants
have constructed their tours, the pheromone level of every edge is evaporated
according to the user-defined evaporation rate ρ (which, as advised by Dorigo
and Stützle [7], we take as 0.5). So, each pheromone level τij becomes:

τij ← (1− ρ)τij . (2)

This allows edges that are seldom selected to be forgotten. After evaporation,
each ant k deposits an amount of pheromone on the edges of their particular
tour T k so that each pheromone level τij becomes:

τij ← τij +

m∑

k=1

Δτkij , (3)

where the amount of pheromone ant k deposits, that is, Δτkij , is defined as:

Δτkij =

{
1/Ck, if edge (i, j) belongs to T k

0, otherwise,
(4)

where Ck is the length of ant k’s tour T k. Depositing pheromone increases the
chances of one of the shorter edges being selected by an ant in a subsequent tour.
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2.1 Candidate Sets

For larger instances of the TSP, the computational time required for the tour
construction phase of the algorithm increases significantly. A common solution
to this problem is to limit the number of available cities which we refer to as
a candidate set. In the tour construction phase the ant will first consider all
closely neighbouring cities. If one or more of the cities in the candidate set
has not yet been visited, the ant will apply proportional selection on the closely
neighbouring cities to determine which city to visit next. If no valid cities remain
in the candidate set, the ant then applies an arbitrary selection technique to pick
from the remaining unvisited cities. Dorigo and Stützle [7] utilise greedy selection
to pick a city with the highest pheromone value. Randall and Montgomery [10]
propose several new dynamic candidate set strategies, however, for this paper
we will only focus on static candidate sets.

2.2 CUDA and the GPU

NVIDIA CUDA is a parallel architecture designed for executing applications
on both the CPU and GPU. CUDA allows developers to run blocks of code,
known as kernels, on the GPU for potential speed increases. A CUDA GPU
consists of an array of streaming multiprocessors (SM), each containing a subset
of streaming processors (SP). When a kernel method is executed, the execution
is distributed over a grid of blocks each with their own subset of parallel threads.

CUDA exposes a set of memory types each with unique properties that must
be exploited in order to maximize performance. The first type registers, are the
fastest form of storage and each thread within a block has access to a set of
fast local registers that exist on-chip. However, each thread can only access it’s
own registers and as the number of registers is limited per block. For inter-
thread communication within a block, shared memory must be used. Shared
memory also exists on-chip and is accessible to all threads within the block but
is slower than register memory. For inter-block communication and larger data
sets, threads have access to global, constant and texture memory.

3 Related Work

In this section we will briefly cover our past parallel ACO contribution and
detail a new parallel ACO implementation. For a comprehensive review of all
ACO GPU literature to date we direct readers to [3].

In our previous contribution [3] we presented a highly parallel GPU imple-
mentation of ACO for solving the TSP using CUDA. By extending the work of
Cecilia et al. [2] and Delv̀acq et al. [4] we adopted a data parallel approach map-
ping individual ants to thread blocks. Roulette wheel selection was replaced by
a new parallel proportionate selection algorithm we called Double-Spin Roulette
(DS-Roulette) which significantly reduced the running time of tour construction.
Our solution executed up to 82x faster than the sequential counterpart and up
to 8.5x faster than the best existing parallel GPU implementation.
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Uchida et al. [11] implement a GPU implementation of AS and also use a data
parallel approach mapping each ant to a thread block. Four different tour con-
struction kernels are detailed and a novel city compression method is presented.
This method compresses the list of remaining cities to dynamically reduce the
number of cities to check in future iterations of tour construction. The speedup
reported for their hybrid approach is around 43x faster than the sequential imple-
mentation (see [6]). Uchida et al. conclude that further work should be put into
nearest neighbour techniques (candidate sets) to further reduce the execution
times (as their sequential implementation does not use candidate sets).

We can observe that the fastest speedups are obtained when using a data
parallel approach; however none of the current implementations ([3],[2],[4],[11])
use candidate sets and as a result fail to maintain speedups for large instances
of the TSP. In conclusion, although there has been considerable effort put into
improving candidate set algorithms (e.g. [5],[10],[9],[1]), there has been little
research into developing parallel GPU implementations.

4 Implementation

In this section we present three parallel AS algorithms utilising candidate sets for
execution on the GPU. The first uses a simple ant-to-thread mapping to check if
this approach is suitable for use with candidate sets. The second and third im-
plementations use a data parallel approach. The following implementations will
only focus on the tour construction phase of the algorithm as we have previously
shown how to implement the pheromone update efficiently on the GPU [3].

City data is first loaded into memory and stored in an n×n matrix. Ant mem-
ory is allocated to store each ant’s current tour and tour length. A pheromone
matrix is initialized on the GPU to store pheromone levels and a secondary
structure called choice info is used to store the product of the denominator of
Equation 1. The candidate set is then generated and transferred to the GPU. For
each city we save the closest 20 cities (as recommended by Dorigo and Stützle [7])
into an array. After initialization the pheromone matrix is artificially seeded with
a tour generated using a greedy search as recommended in [7].

4.1 Tour Construction Using a Candidate Set

In Fig. 1 we give the pseudo-code for iteratively generating a tour using a can-
didate set based upon the implementation by Dorigo and Stützle [7]. First, an
ant is placed on a random initial city; this city is then marked as visited in a
tabu list. Then for n− 2 iterations (where n is the size of the TSP instance) we
select the next city to visit. The candidate set is first queried and a probability of
visiting each closely neighbouring city is calculated. If a city has previously been
visited, the probability of visiting that city in future is 0. If the total probability
of visiting any of the candidate set cities is greater than 0, we perform roulette
wheel selection on the set and pick the next city to visit. Otherwise we pick the
best city out of all the remaining cities (where we define the best as having the
largest pheromone value).
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procedure ConstructSolutionsCandidateSet
tour [1] ← place the ant on a random initial city
tabu[1] ← visited
for j = 2 to n− 1 do

for l = 1 to 20 do
probability [l] ← CalcProb(tour [1 . . . j − 1],l)

end-for
if probability > 0 do

tour [j] ← RouletteWheelSelection(probability)
tabu[tour[j]] ← true

else
tour [j] ← SelectBest(tabu)
tabu[tour[j]] ← true

end-if
end-for
tour [n] ← remaining city
tour cost ← CalcTourCost(tour)

end

Fig. 1. Overview of an ant’s tour construction using a candidate set

4.2 Task Parallelism

Although it has previously been shown that using a data parallel approach yields
the best results ([3],[2],[4],[11]), it has not yet been established that this holds
when using a candidate set. Therefore our first parallelization strategy considers
this simple mapping of one ant per thread (task parallelism). Each thread (ant) in
the colony executes the tour construction method shown in Fig. 1. There is little
sophistication in this simple mapping, however we include it for completeness.
Cecilia et al. [2] note that implementing ACO using task parallelism is not suited
to the GPU. From our experiments we can observe that these observations still
persist when using a candidate set and as a result yield inadequate results which
were significantly worse than those obtained by the CPU implementation. We
can therefore conclude that the observations made by Cecilia et al. [2] hold when
using candidate sets.

4.3 Data Parallelism

Our second approach uses a data parallel mapping (one ant per thread block).
Based on the previous observations made when implementing a parallel roulette
wheel selection algorithm [3] we found that using warp level primitives to avoid
branching lead to the largest speedups. In DS-Roulette each warp independently
calculates the probabilities of visiting a set of cities. These probabilities are then
saved to shared memory and one warp performs roulette wheel selection to select
the best set of cities. Roulette wheel selection is then performed again on the
subset of cities to select which city to visit next [3]. This process is fast as
we no longer perform reduction across the whole block and avoid waiting for
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other warps to finish executing. As we no longer need to perform roulette wheel
selection across all cities, DS-Roulette is unsuitable for use with a candidate
set. However, if we reverse the execution path of DS-Roulette we can adapt
the algorithm to fit tour selection using a candidate set (see Fig. 2). Instead of
funnelling down all potential cities to perform roulette wheel on one warp of
potential cities, we first perform roulette wheel selection across the candidate
set and scale up to all available cities if no neighbouring cities are available. Our
new data parallel tour selection algorithm consists of three main stages.

The first stage uses one warp to calculate the probability of visiting each city
in the candidate set. An optimisation we apply when checking the candidate set
is to perform a warp ballot. Each thread in the warp checks the city against the
tabu list and submits this value to the CUDA operation ballot(). The result
of the ballot is a 32-bit integer delivered to each thread where bit n corresponds
to the input for thread n. If the integer is greater than zero then unvisited cities
remain in the candidate set and we proceed to perform roulette wheel selection
on the candidate set. Using the same warp-reduce method we previously used
in [3] we are able to quickly normalize the probability values across the candidate
set warp, generate a random number and select the next city to visit without
communication between threads in the warp. We found experimentally that using
a candidate set with less than 32 cities (1 warp) was actually detrimental to the
performance of the algorithm. Scaling the candidate set up from 20 cities to 32
cities allows all threads within the warp to follow the same execution path.

In stage two the aim is to narrow down the number of remaining available
cities. We limit the number of threads per block to 128 and perform tiling across
the block to match the number of cities. Each warp then performs a modified
version of warp-reduce [3] to find the city with the best pheromone value using
warp-max. As each warp tiles it saves the current best city and pheromone value
to shared memory. Using this approach we can quickly find four candidates (1
best candidate for each of the warps and as there are 128 threads with 32 threads
per warp) for the city with the maximum pheromone value for the final stage of
the algorithm using limited shared memory and without block synchronisation.

Finally we use one thread to check which of the four previously selected cities
has the largest pheromone value, visit this city and save the value to global
memory. The three stages of the algorithm are illustrated in Fig. 2.

4.4 Data Parallelism with Tabu List Compression

Section 3 details the recent work of Uchida et al. [11] presenting a novel tabu list
compresssion technique. A tabu list can be represented as an array of integers
with size n. When city i is chosen, the algorithm replaces city tabu[i] with city
tabu[n− 1] and decrements the list size n by 1. Cities that have previously been
visited will not be considered in future iterations thus reducing the search space.
By adding tabu list compression to our data parallel tour construction kernel we
aim to further reduce the execution time. However, as a complete tabu list is stil
required for checking against the candidate set we must use two tabu lists. The
second list maintains the positions of each city within the first candidate list.
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Fig. 2. An overview of the data parallel candidate set tour construction algorithm

5 Results

In this section we present the results of executing various instances of the TSP
on our two data parallel candidate set implementations and compare the results
to the sequential counterpart and our previous GPU implementation. We use
the standard ACO parameters but increase the candidate set size from 20 to 32
(see Section 4). The solution quality obtained by our implementations was able
match and often beat the quality obtained by the sequential implementation.
Our test setup consists of a GTX 580 GPU and an i7 950 CPU. Timing results
are averaged over 100 iterations of the algorithm with 10 independant runs.

In Table. 1 we present the execution times (for a single iteration) of the tour
construction algorithm using a candidate set for various instances of the TSP.
Columns 5 and 6 show the speedup of the two data parallel implementations over
the CPU implementation using a candidate set. The CPU results are based on
the standard sequential implementation ACOTSP (source available at [6]) and
the two GPU columns correspond to the two proposed data parallel candidate
set implementations in Section 4.
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Table 1. Average execution times (ms) when using AS and a candidate set

Speedup Speedup
Instance CPU GPU 1 GPU 2 GPU 1 GPU 2

d198 6.39 0.77 0.85 8.31x 7.53x

a280 13.44 1.59 2.04 8.42x 6.59x

lin318 18.60 1.90 2.07 9.74x 8.99x

pcb442 42.37 3.67 3.96 11.55x 10.69x

rat783 168.90 12.13 14.49 13.92x 11.66x

pr1002 278.85 19.76 26.34 14.10x 10.58x

nrw1379 745.59 42.37 68.78 17.60x 10.84x

pr2392 2468.40 131.85 393.98 18.72x 6.27x
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Fig. 3. Execution speedup using multiple GPU and CPU instances

Our results show the first data parallel GPU implementation achieves the best
speedups across all instances of the TSP. Both data parallel approaches consis-
tently beat the results obtained for the sequential implementation. The speedup
obtained by the first data parallel implementation increased as the tour sizes
increased. This is in contrast to our previous GPU implementation [3] in which
the speedup reduced due to shared memory constraints and failed to maintain
speedups against the sequential implementation when using a candidate set.

The results attained for the second data parallel implementation using tabu
list compression show the implementation was not able to beat the simpler
method without compression. As mentioned in Section 4 to implement tabu
list compression, a second tabu list must be used to keep the index of each city
in the first list. We observed the process of updating the second list for each
iteration (for both the greedy search stage and proportionate selection on the
candidate set stage) outweighed the benefits of not checking the tabu values for
previously visited cities. We also observed that the increased shared memory
requirements for larger instances reduced the performance of the solution.
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In Fig. 3 we compare the speedup of our previous GPU implementation [3]
without a candidate set against our data parallel GPU solutions. We can observe
that for large instances, the speedup obtained from our GPU implementation
with a candidate set increases as opposed to instances without a candidate set.

6 Conclusions

In this paper we have presented three candidate set parallelization strategies
and shown that candidate sets can be used efficiently in parallel on the GPU.
Our results show that a data parallel approach must be used over a task parallel
approach to maximize performance. Tabu list compression was shown to be
ineffective when implemented as part of the tour construction method and was
beaten by the simpler method without compression. Our future work will aim to
implement alternative candidate set strategies including dynamically changing
the candidate list contents and size.
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2. Cecilia, J.M., Garćıa, J.M., Nisbet, A., Amos, M., Ujaldon, M.: Enhancing
data parallelism for ant colony optimization on GPUs. J. Parallel Distrib. Com-
put. 73(1), 42–51 (2013)

3. Dawson, L., Stewart, I.: Improving Ant Colony Optimization performance on the
GPU using CUDA. In: 2013 IEEE Congress on Evolutionary Computation (CEC),
pp. 1901–1908 (2013)
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Abstract. The Biconjugate Gradient (BiCG) and the Quasi-Minimal
Residual (QMR) method are among the popular iterative methods for
the solution of large, sparse, non-symmetric systems of linear equations.
When these methods are implemented on large-scale parallel computers,
their scalability is limited by the synchronization caused when carry-
ing out inner product-like operations. Therefore, we propose two new
synchronization-reducing variants of BiCG and QMR in an attempt to
mitigate these negative performance effects. The idea behind these new
s-step variants is to group several dot products for joint execution. Al-
though these new algorithms still reveal numerical instabilities, they are
shown to keep the cost of inner product-like operations almost indepen-
dent of the number of processes, thus improving scalability significantly.

Keywords: s-step BiCG, s-step QMR, synchronization-reducing.

1 The Need for Rethinking of Algorithm Design

Current large-scale computer systems are sophisticated architectures based on
multi- or manycore technology with deep memory hierarchies and, possibly, het-
erogeneity in the form of graphic or other coprocessors. For scientific and engi-
neering applications, it is therefore currently challenging to get high-performance
on these systems. Unfortunately, future extreme-scale computer systems are
likely to be even more complex and it will become increasingly harder to get
a sustained performance that is somewhere near their peak performance.

It is widely recognized that there are various intricate challenges for future
large-scale computing. Rather than summarizing this ongoing discussion, the
purpose of this paper is to focus on novel algorithmic techniques that will be
required to fully exploit current large-scale and future exascale systems. Today,
there is only a vague idea of how these future platforms will actually be built and
how they will be programmed efficiently. Existing technology trends, however,
strongly indicate that algorithm designers will have to pay crucial attention to
reduce data movement at various memory levels and to reduce synchronization at
various system levels. While communication cost associated with data movement
has become an important issue in today’s parallel algorithm design, the cost as-
sociated with synchronization is currently not receiving adequate consideration.
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However, synchronization cost will soon outweigh communication cost as the
degree of parallelism is increasing further. In fact, synchronization dictates the
overall performance of various algorithms on current large-scale systems. There-
fore, we here focus on synchronization-reducing variants of two Krylov methods
for the solution of large sparse non-symmetric systems of linear equations. The
new contributions of this paper are the design of new variants of the Biconjugate
Gradient method (BiCG) [1] and the Quasi-Minimal Residual method (QMR) [2]
as well as an assessment of their numerical stability and their parallel scalability.

In Sect. 2, we review related approaches for parallel Krylov methods. The
generation of the underlying basis by an s-step Lanczos variant is summarized
in Sect. 3. We also sketch in that section how this variant can be used to solve
linear systems. In Sect. 4 and 5, we derive new variants of BiCG and QMR. In
Sect. 6, these new variants are compared to their classical versions in terms of
both numerical stability and parallel performance.

2 Related Work on Parallel Krylov Subspace Methods

There is a long history of parallel Krylov subspace methods [3–7]. Taking a serial
algorithm and parallelizing each kernel operation is an option that does not
change the long tradition of successful serial algorithm design. However, rather
than considering parallelized implementations of serial algorithms, we focus on
making these algorithms “more parallel” in some suitable way.

Typically, vector updates and matrix-by-vector products perform communi-
cation between nearby processors. In contrast, due to the underlying reduction
operation, an inner product enforces a global synchronization point. It is defined
as a location of an algorithm at which all local information has to be globally
available in order to continue [8]. There have been early attempts to eliminate
inner product-like operations [9]. Another class of algorithms tries to reduce the
number of global synchronization points per iteration. This was advocated for
the Conjugate Gradient method [10, 11], BiCG [8, 12], and QMR [13]. When only
one global synchronization point is enforced for s iterations of the corresponding
classical algorithm, this is called an s-step method [14–18]. The term “s-step”
was also used in different settings. In [19], for instance, s iterations are grouped
together without the intention to enforce a single global synchronization point.
The communication-avoiding algorithms [20–22] are sometimes also referred to
as s-step methods. However, these methods are different from our approach
in that they typically rely on blocking to reduce the communication volume.
Another class of techniques is based on communication overlapping aimed at
reducing the impact of a communication event by overlapping it with computa-
tion and/or other communication. For instance, reduction operations are carried
out while the Krylov basis is being generated in [23, 24]. There is also further
research on handling synchronization hierarchically [25] or using non-blocking
allreduce operations. Throughout this paper, we use the term “s-step” in the
sense of [14–18] and derive new s-step variants of both BiCG and QMR. These
algorithms are built on top of the following s-step Lanczos algorithm.
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3 Solving Linear Systems Using the Lanczos Basis

For a non-symmetric matrix A ∈ IRN×N , the classical Lanczos algorithm [26]
returns, after N steps, matrices T, V,W ∈ IRN×N such that WTV equals the
identity and that AV = V T and ATW = WT T where T is tridiagonal. However,
the process typically converges in fewer than N steps. This classical algorithm
unfolds an intrinsic dependence; computing the i-th basis vector vi requires the
preceding vector vi−1 which in turn requires vi−2, and so forth. This is relaxed by
the s-step Lanczos method [17, 18] which determines matrices T̈ , V̈ and Ẅ such
that ẄT V̈ is almost everywhere zero except for s × s blocks on the diagonal.
Furthermore, AV̈ = V̈ T̈ and AT Ẅ = Ẅ T̈ hold where the upper Hessenberg
matrix T̈ is block tridiagonal. Compared to [17, 18], an s-step Lanczos algorithm
with additional normalization is derived in [27]. Although the variant [27] slightly
raises the computational cost for vector updates and matrix-by-vector products,
it reduces numerical instabilities and global synchronization.

To solve Ax = b where x, b ∈ IRN , we use the Lanczos basis Vn = [v1 . . .vn] ∈
IRN×n whose i-th column is the Lanczos vector vi. Let Tn denote the upper left
(n + 1)× n submatrix of T . The LU factorization of the tridiagonal matrix

Tn :=

⎡

⎢⎢⎢⎢⎢⎢⎣

α1 β2

γ2 α2
. . .

. . .
. . . βn

γn αn

γn+1

⎤

⎥⎥⎥⎥⎥⎥⎦
into LnUn =

⎡

⎢⎢⎢⎢⎢⎢⎣

τ1

ω2 τ2

. . .
. . .

ωn τn
ωn+1

⎤

⎥⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎣

1 μ2

1
. . .

. . . μn

1

⎤

⎥⎥⎥⎥⎦
(1)

is computed via

ωn = γn, μn = βn/τn−1, τn = αn − ωnμn, for n ≥ 2, with τ1 := α1 .

Given an initial guess x0 to the exact solution x, the current approximation is
given by xn = x0 +Vnzn using the Lanczos basis. We will also use another basis
Pn = [p1 . . .pn] defined by Vn = PnUn. From the structure of Un according
to (1), we find pn = vn − μnpn−1. Furthermore, the relation to the classical
Lanczos algorithm is given by APn = Vn+1Ln. Introducing yn := Unzn, we
yield xn = x0 + Pnyn. The residual rn := b−Axn is then

rn = r0 −APnyn = ω1v1 − Vn+1Lnyn = Vn+1

(
[ω1, 0, . . . , 0]

T − Lnyn

)
, (2)

where we choose v1 := r0/ω1 with a scaling factor ω1 set to ‖r0‖2.

4 The s-Step Biconjugate Gradient Algorithm

The idea of BiCG [1] is to determine yn by zeroing out the first n entries of the
vector in parentheses in (2). More precisely, if • denotes an arbitrary value in
the (n + 1)-th component of that vector, we require

[ω1, 0, . . . , 0]
T − Lnyn = [0, . . . , 0, •]T . (3)
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Let yn = [κ1, . . . , κn]T . Inserting the above ansatz into the residual rn gives

rn = Vn+1[0, . . . , 0,−ωn+1κn]
T

= −ωn+1κnvn+1 .

Assuming that (3) is fulfilled in the first (n − 1) components, we find that 0 =
−ωnκn−1 − τnκn. Hence, κn = −ωnκn−1/τn with κ0 := −1. The process of fix-
ing yn is easily updated in each iteration step because yn−1 coincides with the first
n− 1 components of yn. Therefore, the n-th approximation is obtained via

xn = x0 + Pn−1yn−1 + κnpn = xn−1 + κnpn .

The k-th block iteration of the s-step BiCG algorithm computes s Lanc-
zos vectors and updates the LU decomposition of Tn from (1) with n = sk:

1: Initialize vectors r0 ← b−Ax0, v1 ← r0/ ‖r0‖2, p1 ← v1

and set κ0 ← −1, ω1 ← ‖r0‖2, μ1 ← 0, τ1 ← α1.
2: for k = 1 until Convergence do
3: Compute next s Lanczos vectors vs(k−1)+1, . . . ,vsk as well as next entries

in Tsk, i.e., αs(k−1)+1, . . . , αsk, βs(k−1)+1, . . . , βsk, γs(k−1)+1, . . . , γsk.
4: for n = s(k − 1) + 1 to sk do
5: Update LU of Tsk via ωn ← γn, μn ← βn/τn−1, τn ← αn − ωnμn.
6: Compute vector pn ← vn − μnpn−1.
7: Set κn ← −ωnκn−1/τn and compute approximation xn ← xn−1+κnpn.
8: end for
9: end for

Throughout the s-step BiCG algorithm, the call to the s-step Lanczos method
in Step 3 introduces the only global synchronization point.

5 The s-Step Quasi-Minimal Residual Algorithm

The idea of QMR [2, 28] is to find yn by minimizing the Euclidean norm of the
vector in parentheses in (2). To solve these least-squares problems we follow [29]:

Theorem 1. The unique solution of yn := arg min
y∈IRn

∥∥∥[ω1, 0, . . . , 0]T − Lny
∥∥∥

2
is

yn =

[
yn−1

0

]
+ gn, gn = θn

[
gn−1

0

]
+ [0, . . . , 0, ξn]T , n ≥ 2 ,

with y1 = g1 = [ξ1], where

θn =
|τn|2 (1− σn)

σn |τn|2 + |ωn+1|2
,

ξn = − ωnτnξn−1

σn |τn|2 + |ωn+1|2
, ξ0 = −1,

σn+1 =
σn |τn|2

σn |τn|2 + |ωn+1|2
, σ1 = 1.

The approximation xn is derived from dn = θndn−1+ξnpn and xn = xn−1 +dn.
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The s-step QMR algorithm is given by the following pseudo-code:

1: Initialize vectors r0 ← b−Ax0, v1 ← r0/ ‖r0‖2, p1 ← v1, d0 ← 0N

and set ξ0 ← −1, σ1 ← 1, ω1 ← ‖r0‖2, μ1 ← 0, τ1 ← α1.
2: for k = 1 until Convergence do
3: Compute next s Lanczos vectors vs(k−1)+1, . . . ,vsk as well as next entries

in Tsk, i.e., αs(k−1)+1, . . . , αsk, βs(k−1)+1, . . . , βsk, γs(k−1)+1, . . . , γsk.
4: for n = s(k − 1) + 1 to sk do
5: Update LU of Tsk via ωn ← γn, μn ← βn/τn−1, τn ← αn − ωnμn.
6: Compute vector pn ← vn − μnpn−1.

7: θn ← |τn|2(1−σn)

σn|τn|2+|ωn+1|2 , ξn ← − ωnτnξn−1

σn|τn|2+|ωn+1|2 , σn+1← σn|τn|2
σn|τn|2+|ωn+1|2 .

8: Compute dn ← θndn−1 + ξnpn and approximation xn ← xn−1 + dn.
9: end for

10: end for

Once more, the invocation of the s-step Lanczos subroutine in Step 3 represents
the only synchronization point.

6 Numerical Experiments

We compare classical and s-step variants of BiCG and QMR in terms of nu-
merical accuracy and parallel performance using an example from [28]. We
consider the differential equation −Δu + 40 (xux + yuy + zuz) − 250 u = f on
Ω = (0, 1)× (0, 1)× (0, 1) with u = 0 on the boundary. Using first-order centered
differences and 3

√
N discretization points in each direction, we arrive at a linear

system of order N . The right-hand side f(x, y, z) is determined such that the

vector of all ones is the exact solution. The initial guess is set to x0 := [0, . . . , 0]T .
Both s-step BiCG and QMR are implemented in parallel using PETSc 3.0

and compared to their classical variants implemented in PETSc. We use a block
Jacobi preconditioner and chose N = 224 since PETSc recommends at least
10 000 to 20 000 unknowns per process. All computations are performed on a
Nehalem-based cluster1 whose barrier times measured via PETSc are given in
Figure 1. A synchronization with a reduction operation accounts for 5.97× 10−4 s
with 256 processes and 7.26× 10−4 s with 512 processes.

The s-step variants can yield identical results as the classical methods. In
exact arithmetic, s-step variants and their classical counterparts are mathemat-
ically equivalent. The iteration number is plotted against the relative residual
norm in Figures 2 and 3. The findings are as follows: (1) The relative residual
norms for classical and s-step algorithms are similar. (2) An increasing iteration
index n augments the numerical discrepancy between s-step and classical solvers.

1 Each node of this cluster at RWTH Aachen University, Germany, consists of 2 sock-
ets, each equipped with Intel Xeon X5570 quadcore processors running at 2.93 GHz.
Each core has a separate L1 and L2 cache; while 4 cores share an L3 cache of size
8 MB. So, each node of this cluster is made up of 8 cores called processes hereafter.
The nodes are connected by a quad data rate InfiniBand network.
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Fig. 1. Barrier time versus number of processes on the Nehalem-based cluster
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Fig. 2. Comparison of classical BiCG method and s-step variants across different step
sizes without (top) and with block Jacobi (bottom) preconditioning using two processes

(3) Numerical instabilities grow with increasing step size s as the s-step Lanczos
basis becomes more instable, causing even the possibility of breakdowns.

Figure 4 compares the ratio out of the total time that is spent in linear algebra
operations. Due to barrier operations arising from global synchronization points,
there is a gradual increase in the proportional influence of inner products. For
the classical BiCG, the percentage of the total time resulting from inner products
grows from around 12 % for 64 processes to almost 47 % for 512 processes. For
the 2-step BiCG, however, there is only a moderate rise from around 8 % to
about 13 % when varying the processes from 64 to 512. As almost half of the
total computation time for the classical BiCG is spent within the evaluation of
inner products, the scalability for a large number of processes is limited.

Figure 5 compares various linear algebra operations in terms of their absolute
time consumption. The overall runtime of the classical BiCG is affected by inner
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Fig. 6. Average speedup S = Tpar(1)/Tpar(p) for a single loop iteration of BiCG (top)
and QMR (bottom) measured across 200 iterations excluding initialization time

products to a large extent. In contrast, the 2-step BiCG computes all inner
products in less time. With 512 processes, the classical BiCG needs 0.76 s for
computing all inner products, whereas the 2-step BiCG needs only 0.17 s.

In Figure 6, the average speedup for a single loop iteration is depicted. With
increasing number of processes, the speedup of the s-step solvers ascends more
linearly compared to the classical variants that start to flatten out. Measure-
ments for step sizes s > 2 are unavailable for more than 256 processes due
to breakdowns. As a trend however, we conclude that, given a network with
a relatively time-consuming barrier operation, the scalability of the new s-step
variants is improved significantly, as compared to the classical algorithms.

7 Conclusions and Directions for Future Research

We derive s-step variants of BiCG and QMR by restructuring the original al-
gorithms in such a way that multiple inner products are grouped for joint exe-
cution. So, we successfully reduce the number of global synchronization points.
This offers a possible path of how sparse, non-symmetric systems of linear equa-
tions might be solved on current large-scale and future extreme-scale systems
with significant improvements in scalability. However, there is still a long way to
go. Most importantly, we observe severe numerical instabilities when increasing
the step size s that requires further investigation. One option is to replace the
monomial basis by Newton or Chebyshev bases [22]. Another viable alternative
is to introduce residual replacement strategies [30, 31]. The techniques addressed
in [32] might also improve the numerical stability further. Also, look-ahead tech-
niques [2, 28, 33, 34] are advantageous to prevent breakdowns.
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7. Bücker, H.M.: Iteratively solving large sparse linear systems on parallel computers.
NIC Serices, John Von Neumann Institute f. Computing. Jülich 10, 521–548 (2002)
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Rolim, J. (eds.) IRREGULAR 1997. LNCS, vol. 1253, pp. 72–79. Springer, Heidel-
berg (1997)
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Abstract. Multi-Swarm PSO (MPSO) is an extension of the PSO
algorithm that incorporates multiple, collaborating swarms. Although
embarrassingly parallel in appearance, MPSO is memory bound, intro-
ducing challenges for GPU-based architectures. In this paper, we use
device-utilization metrics to drive the development and optimization of
an MPSO algorithm applied to the task matching problem. Our hard-
ware architecture is the AMD Accelerated Processing Unit (APU), which
fuses the CPU and GPU together on a single chip. We make effective use
of features such as the hierarchical memory structure on the APU, the
4-way very long instruction word (VLIW) feature for vectorization, and
DMA transfer features for asynchronous transfer of data between global
memory and local memory. The resulting algorithm provides a 29% de-
crease in overall execution time over our baseline implementation.

Keywords: PSO, Parallel Evolutionary Computing, APU, OpenCL.

1 Introduction

Particle Swarm Optimization (PSO) [1] is a meta-heuristic optimization algo-
rithm that simulates a group of particles as they interact within a solution space.

Meta-heuristic algorithms like PSO have become increasingly popular tech-
niques for approaching NP-complete optimization problems. Recent literature
has demonstrated the effectiveness of mapping PSO variants to the GPU [2,3],
and its application to task-matching [4]. Notably, Cagnoni et al. [5] implemented
an asynchronous PSO algorithm in OpenCL and used it to compare the per-
formances of a multi-core CPU and a GPU (however, this algorithm was not
designed for the task matching problem). In general, the feasibility of mapping
PSO to parallel GPU hardware is demonstrated through discussion of thread-
to-data mappings, exploitation of different memory types, and speedup results.
This work seeks to point out the importance of additional performance trade-offs
centred around device occupancy and memory access patterns.

Solomon et al. [3] developed a collaborative multi-swarm PSO algorithm
(MPSO) for the task matching problem on a discrete Nvidia GPU. The MPSO
algorithm provides tremendous amounts of parallelism [6,7] and is well-suited
for execution on parallel hardware.

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 236–246, 2013.
c© Springer International Publishing Switzerland 2013
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Our MPSO variant [8] maintains several independent swarms, stopping pe-
riodically to migrate particles between them. Migrated particles maintain the
memories of their personal best positions, and their current velocities. This cre-
ates an implicit form of communication between the swarms.

We apply MPSO to the task matching problem, which seeks to map a set of
tasks to a set of distributed machines in such a way the time to complete all
tasks (makespan) is minimized. This problem is NP-complete [9].

Task matching introduces some irregular memory accesses when updating par-
ticle fitnesses. These accesses degrade performance on Single Instruction Multiple
Thread (SIMT) architectures such as the GPU, which are suited for applications
with regular memory accesses. Also, the position, velocity, and fitness data is too
large to fit entirely in smaller, faster GPU memories. Instead, we must rely on
global memory, which has a significant latency period. Overlapping this latency
period with computation is therefore a goal in increasing performance.

Our core performance metric is kernel occupancy [10]. Kernel occupancy is the
ratio of the number of active wavefronts per Compute Unite (CU) to the maxi-
mum number of wavefronts supported per CU. This provides a simple indication
of the proportion of GPU resources that a kernel is utilizing. Estimated Kernel
Occupancy (EKO) refers to kernel occupancy as calculated by AMD profiling
tools, which are able to determine the number of active wavefronts for a given
executing kernel.

2 Algorithm and Implementation

We define the following symbols: let n be the user-defined maximum number of
iterations, s be the number of swarms, p be the number of particles per swarm,
d = |T | be the number of dimensions (tasks), e be the number of particles
exchanged between swarms, and m = |M | be the number of machines.

This section illustrates optimizations using s = 60 and p = 128 for a total of
n = 1000 iterations. The remaining MPSO parameters are taken from the work
of Solomon et al. [3]. We set d = 80, m = 8, e = 24, c1 = 2.0, c2 = 1.4, ω = 1.0,
and exchange particles every 10 iterations. Execution times are averaged over 30
trials of 1000 iterations each.

Vectorized kernels use four-element vector data types, while unvectorized ker-
nels use scalar data types. Pseudo-code is presented in unvectorized format.

2.1 Algorithm

Each particle k maintains three pieces of information: a position vector Xk,
a personal-best position vector X́k, and a velocity vector Vk. Each swarm j
maintains the position of the best solution seen so far by any particle, X̂j .

Position is used to compute fitness, fk. We also maintain f́k and f̂j, the particle-
best and swarm-best fitnesses, respectively. Velocity is modified at each iteration
i according to the following equation [11]:

V i+1
k = ω ∗ V i

k + c1 ∗R1 ∗ (X́k −X i
k) + c2 ∗R2 ∗ (X̂j −X i

k) (1)
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Position is then updated using:

X i+1
k = X i

k + V i+1
k (2)

R1 and R2 are vectors of random numbers between 0 and 1 (selected from a
uniform distribution), while c1, c2, and ω are user-defined weighting parameters
used to balance the forces exerted by each of the three terms in (1).

We arrange swarms in a ring topology. Every given number of iterations, the
e best particles from each swarm replace the e worst particles of its neighbour.

Data Storage. An Estimated Time to Complete (ETC) matrix [3] is used to pre-
vent redundant makespan calculations. We store this data structure in constant
memory. An ETC matrix value at row i, column j records the amount of time
machine i requires to execute task j. We generate the matrix using the CPU,
while the initial random number generation and particle initialization kernels
are running on the device.

Position, velocity, and fitness data are stored in global memory arrays. Values
are ordered by dimension first (in groups of four for the VLIW Processing Ele-
ments (PEs)), and particle index second. As threads iterate through a particle’s
dimensions (four elements at a time), collectively they will access contiguous
chunks of memory.

Random Number Generation. Salmon et al. [12] recently proposed a counter-
based parallel pseudo random number generator that is well-suited for the GPU.
The only state storage requirements are simple counter values that are incre-
mented before each call. We create a kernel that uses this library to fill a large
142 MB buffer (launched on demand). We alter the granularity of the parallelism
by causing each thread to loop and place multiple calls. After determining the
optimal number of loop iterations, we unroll the loop. Our completed kernel
consumes 8 registers per CU, yielding an 87.5% EKO.

Particle Initialization. This kernel uses one thread per particle dimension (s∗p∗d
threads) to initialize particle positions and velocities in parallel. Since the thread-
to-data mapping is one-to-one, it is easy to use four-way vector data types,
reducing the number of required threads by a factor of four.

We assign position values in the range [0,m − 1], and velocity values in the
range [0, 2m]. In addition, we initialize the particle-best and swarm-best fitnesses
so as to ensure an update on the first fitness calculation. Register usage is low,
since few calculations are performed. This is desirable because there is a pool of
registers allocated to each CU. The fewer registers we use, the more wavefronts
can be run simultaneously on the CU [10]. This kernel achieves 100% EKO.

Table 1. Particle Initialization Kernels
(FU:Fetch Unit, T:Avg. time)

Kernel T (ms) ALU:Fetch FU Busy (%)

unvec 0.988 7.52 22.65
vec 0.980 9.03 6.85

Table 2. Update Fitness Kernel
Results (T: Avg. time)

Opt. T (ms) MPSO (sec)

uncached 0.313 15.835
cached 0.324 15.867
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Table 1 shows statistics for vectorized and unvectorized kernels. The table
shows two effects of vectorization. First, it significantly decreases the percentage
of time that the fetch unit is busy by generating fewer, larger accesses. Second,
the ALU-op-to-fetch-op ratio grows slightly as we move to a vectorized kernel.
If this ratio is low, the kernel is more memory-bound, and context-switching
provides little benefit. If it is high, the kernel is more compute-bound, allowing
alternate wavefronts to cover a larger portion of a global memory latency period.

In this case, the small increase for the vectorized kernel is due to an increase
in the number of calculations performed per thread. However, 9.03 ALU ops is
still not nearly enough to cover the latency period of 300-600 cycles incurred by
a single fetch. Overall, it appears that in spite of the fact that memory system
can keep up with our requests, and we have 100% EKO, execution time is still
limited by the memory-bounded characteristics of the kernel.

Update Fitness. This kernel is our objective function. We assign one thread
per particle to calculate f i+1

k , then write it to global memory. The makespan
calculation uses a local memory array, allocating chunks of size m for each thread.

This kernel requires a large number of registers, severely limiting the number
of wavefronts we can launch, and resulting in an EKO of 50%. The low number
of active wavefronts per CU will also limit the benefit of context switching.

For kernels that use local memory, we incorporate as many swarms into one
workgroup as possible. This improves kernel occupancy, since it increases the
number of wavefronts executing on each CU. However, it is important to note
that there is a corresponding increase in the amount of local memory used per
CU. If memory usage becomes too high it will limit occupancy (there is a fixed
amount per CU) [10]. For this kernel, profiling tools indicate that packing mul-
tiple swarms is worthwhile, as register usage is the factor limiting occupancy.

The makespan computation incurs a large number of irregular local memory
accesses, introducing bank conflicts. There is no way to resolve these conflicts
deterministically because we do not know in advance which machine each task
will map to. This complicates the task of vectorization. If each thread handles
four dimensions at once, then four local writes must be done atomically, since
multiple tasks could map to the same machine.

One avenue for optimization is to “cache” the four previously read local mem-
ory values in registers. If subsequent tasks map to the same machine (the same
array location), we can skip a read, grabbing the data from the register. How-
ever, this introduces several branch statements, which are a bottleneck for SIMT
hardware. The results are shown in table 2. Unfortunately, the number of “cache
hits” is not high enough to offset the overhead. Since this optimization does not
affect kernel occupancy, overall execution time remains relatively unchanged.

Update Bests. In this kernel, we update the particle-best and swarm-best fit-
nesses and positions, launching one thread per particle. The kernel operates in
two phases. The first involves a comparison between the f́ i

k and f i+1
k . Each thread

replaces the former with the latter if necessary. If an update is required, each
thread also overwrites X́ i

k with X i+1
k . Phase two performs a parallel reduction
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1: if id < s ∗ p then
2: new val = −1
3: if f [id]< f́ [id] then
4: f́ [id] = f [id]
5: new val = f [id]
6: end if
7: local mem[id] = new val
8: end if
9: barrier(local mem)

10: if id < s ∗ p then
11: if local mem[id] ≥ 0 then
12: Update all components of X́id

13: end if
14: end if
15: Parallel reduction on local mem (Skip values < 0)
16: barrier(local mem)
17: if id = 0 then
18: swarm update = reduction produced a value ? 1 : 0
19: if swarm update && local mem[0] < f̂ [group id] then
20: f̂ [group id] = local mem[0]
21: end if
22: local mem[1] = swarm update && (reduct. produced a value)
23: end if
24: barrier(local mem)
25: if local mem[1] && new val = local mem[0] then
26: local mem[2] = id
27: end if
28: barrier(local mem)
29: if swarm update && id < d then
30: Read local mem[2] and compute position offset
31: Write chunk of Xlocal mem[2] to ˆXgroup id

32: end if

Fig. 1. Update Bests pseudo-code

using half of the threads allocated to each swarm. One thread per swarm then
updates f̂j, if necessary. Finally, threads cooperate to update X̂j, if necessary.

There is a relationship between these two phases that we can exploit: each
updated f̂j is set to an updated f́ i+1

k value (for some particle k in swarm j). The
second phase requires local memory buffers for the parallel reduction. We re-use
these buffers during the first phase to store information about which particles’
best values were updated. The kernel proceeds as shown in figure 1.

Phase 1 comprises lines 1 through 14. Phase 2 (beginning on line 15) performs
a reduction, storing the result in local mem[0]. This reduction skips over any
values that are less than zero (indicating that the personal best fitness has not
changed, and therefore this value cannot be a new swarm-best fitness). Lines
17-23 update the swarm-best fitnesses, if necessary. We store a boolean value to
local memory index one (line 22) indicating whether or not this was the case.

Next, if there was an update, we must determine which thread has the new
swarm-best fitness value (lines 25-27) so that we can locate the corresponding
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position data to copy into the swarm-best positions global memory array. We
use a race condition to identify one thread with the new swarm-best fitness
(there may be multiple). It writes its particle index to local mem[2]. Finally, (if
necessary) threads read local mem[2] and cooperate to copy the new position
data to global memory in the swarm-best positions array (lines 29-32).

As we move from the unvectorized to the vectorized kernel, register usage
forces a 25% decrease in EKO (see table 3). However, this is more than compen-
sated for by the increase in the ALU-to-fetch ratio.

Table 3. Update Bests Kernels
(T:Avg.time, R:Registers)

Kernel T (ms) R EKO (%) ALU:Fetch

unvec 0.224 6 100 76.5
vec 0.081 9 75 194.5

Table 4. Update Position/Velocity Kernels
(T:Avg.time, R:Registers)

Kernel T (ms) R EKO (%) MPSO (sec)

unvec 1.209 6 75 2.749
vec 1.005 9 75 1.981
async copy 1.127 8 87.5 2.087
combined 1.177 10 75 2.124

Update Position/Velocity. In this kernel, we set V i+1
k using (1), and then X i+1

k

using (2), for each particle k. Since (1) allows each dimension to be calculated
independently, we can launch a full s ∗ p ∗ d threads. As the same X̂j is read by

all threads operating on swarm j, we place X̂ in constant memory.
Table 4 shows the effect of vectorization (each thread handles 4 dimensions) on

average run time. EKO is limited to 75%, due to the number of registers required
for the calculation of (1). One option to reduce register usage is to break to kernel
into multiple pieces, one for each term in (1). However, intermediate kernels
would have to store their partial results back to global memory. In addition,
the position X i

k would need to be read from global memory by two kernels,
whereas previously it could be read once and stored in a register. Finally, the
small independent kernels could not provide enough ALU operations to cover
the combined latency of these global memory accesses.

A second option is to use local memory in place of one or more registers.
OpenCL provides functions that asynchronously copy data from global to local
memory (DMA transfer) within a kernel. We were able to replace a single register
using this call. As table 4 shows, this was enough to raise the EKO. However,
overall MPSO execution time also rises, since the bandwidth of local memory is
less than that of register file. In order to support the four-way vectorization of
the kernel, each thread must read four (rather than the optimal two) values from
local memory, causing bank conflicts. This further increases execution time.

A third option involves combining this kernel with an adjacently launched
kernel. This should allow the compiler to re-use registers between what was pre-
viously separated kernel code. The update bests kernel is launched immediately
before this kernel, and is our only practical candidate for a merger (the following
kernel is only invoked on iterations when particle swapping occurs).
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One problem here is that the update bests kernel requires s ∗ p threads, while
the update position/velocity kernel requires s∗p∗d threads. Ordinarily, we could
simply launch s ∗ p ∗ d threads, and restrict the parallelism for the update bests
code using a branch statement. However, there is a problem.

Threads in the update position/velocity kernel operate independently. So, the
kernel may split the work for one swarm across multiple workgroups. Threads in
the update bests kernel must cooperate using local memory. Since local memory
cannot be used for inter-workgroup communication (only intra-workgroup), all
threads operating on a swarm must be members of the same workgroup.

With this in mind, we launch s∗p threads, and use a loop that iterates through
the update position/velocity kernel code d times. While this will increase the
individual execution time of a kernel instance, it has little effect on occupancy.
Table 4 shows the results of this strategy. The register usage of the combined
kernel is less than the sum for the individual kernels. Unfortunately, this is not
enough to increase the EKO. The loop pushes the combined kernel execution
time just above the combined durations of the original kernels.

Find Best/Worst Particles. This kernel determines the indices of the particles
with the e best and e worst fitnesses in each swarm. This information is stored
in global memory buffers so that the exchange can be done later.

We begin by mapping one thread to each particle, employing an algorithm
used by Solomon et. al [3]. This involves copying fitness data to local memory and
performing e parallel reductions. Tracking the particle-indices of these particles
requires additional local buffers. In total, five buffers of size p are used.

Four-way vectorization causes each thread to operate on four values, quadru-
pling the local memory requirements for each CU. Instead, we opt for a two-way
vectorized kernel. This also provides a more efficient local memory access pat-
tern. Table 5 shows statistics for this kernel. In spite of our efforts, local memory
usage drops the EKO to 25%. With this in mind, we consider an alternative al-
gorithm that requires less local memory (see figure 2).

This algorithm works by performing an all-to-all comparison and recording
the number of comparisons each element wins. The ids of the threads with the
highest (lowest) e win counts are the indices of the e best (worst) particles.

This approach is complicated by the fact that it is possible to have multiple
identical fitness values. The loop (lines 11-27) works out the conflicts between
elements that have the same loss count using a race condition. In the event of a
conflict, one thread increments its count by one, and the loop is repeated.

The loop stops when all threads read back the expected value from the local
memory array (lines 19-21). Using a separate local memory variable to record
the stopping condition increases our local memory usage, limiting occupancy.
Instead, we re-use array location zero for this purpose (lines 23-26, 12-14).

A two-way vectorized implementation of this algorithm uses only p space,
lifting the limitation on EKO (see table 5).

Swap Particles. Our final task is to perform the actual particle exchange be-
tween swarms. Here we launch one thread for each dimension of each particle to
be exchanged (s ∗ e ∗ d threads). The e best particles in each swarm overwrite
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1: local mem[id] = f [id]
2: win count = 0
3: for i = 1 to p− 1 do
4: if f [id] > f [(id + i) mod p] then
5: counts += 1
6: end if
7: end for
8: done = False
9: cmp = False

10: repeat
11: if id == 0 then
12: local mem[0] = 1
13: end if
14: if !done and cmp then
15: local mem[win count] = id
16: end if
17: if !done then
18: test val = cmp ? local mem[win count] : id
19: cmp = (test val != thread index)
20: done = !cmp
21: end if
22: if !done then
23: win count += cmp
24: local mem[0] = -1
25: end if
26: until local mem[0] ≥ 0

Fig. 2. Alternative Find Best/Worst Pseudocode

the e worst particles in the next. Specifically, positions, velocities, particle-best
positions, and particle-best fitnesses are overwritten. Fitnesses are not overwrit-
ten, as they will be recalculated on the next iteration before they are needed
again.

This kernel makes a large number of global memory accesses. A vectorized
algorithm makes fewer, larger accesses, reducing the average time (see table 5).
However, a large number of index calculations are needed to move the array
values between swarms. Vectorization drives up register usage, limiting EKO.

We could attempt to replace registers that deal with best and worst particle
indices with local memory. The asynchronous copy function must be called with
the same arguments for all threads in a workgroup. For the best indices, this
is not a problem. But for the worst indices, we must retrieve the next swarm’s
value (an offset of one). This means that there will be wrap-around in the global
memory array we are reading from. As there are multiple swarms per workgroup,
this leads to different values for different threads in the same workgroup. We
therefore manually copy the worst indices to local memory using a loop.

The asynchronous copy call also forces us to move the best and worst indices
from constant memory to global memory (constant to local asynchronous copies
are not supported in OpenCL). This actually allows the compiler to reuse more
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Table 5. Find Best/Worst Kernels (T:
Avg. Time, LM:local memory

Kernel T (ms) LM (bytes) EKO (%)

unvec 1.850 6144 62.5
vec 1.658 12288 25
vec (alt) 0.269 2048 100

Table 6. Swap Particles Kernels (T:
Avg. Time, R: Registers)

Kernel T (ms) R EKO (%)

unvec 2.463 7 100
vec 0.048 20 37.5
vec (local) 0.646 8 87.5

registers (see table 5) Unfortunately, the lower bandwidth of local memory, and
the inability of global memory to broadcast, result in a larger execution time.

3 Results

Our test system uses an AMD A8-3530MX APU. This device incorporates a
quad core CPU at 1.90 GHz with 6GB of RAM, and an on-die Radeon HD
6620G graphics processor. All experiments were compiled using OpenCL 1.2.

Optimizations that alter kernel occupancy tend to perform better with larger
input sizes. We present the results of a simple scaling experiment below. We
fix s at 60 and scale up p in the range [4, 256]. Figure 3 shows the effect that
scaling p has on execution time. The gap between unvectorized and vectorized
algorithms widens as p increases. This is true in spite of the fact that unvectorized
kernels generally have a higher occupancy level. This trend reveals multiple
levels of parallelism at work. In addition to parallelism at the work-item level
(corresponding to kernel occupancy), there is also parallelism at the ALU level
(corresponding to vectorization). In this case, the latter outweighs the former
and we see the widening gap in the graph.

The slight rises and falls in the slopes of the lines result from the placement of
multiple swarms into the same workgroups. In cases where the mapping works
out evenly, we see a lower execution time due to an increase in parallel efficiency.
But if an extra swarm narrowly fails to fit into a workgroup, the hardware
scheduler my need to launch an extra round of workgroups on the CUs.

The update fitness caching optimization exhibits no improvement over the
vectorized algorithm. Combining the update position/velocity and update bests
kernels ultimately results in a higher execution time than the plain vectorized
algorithm. This line does not quickly diverge from the vectorized series because
the EKO of the combined kernel remains identical to both separate versions.
However, the combined kernel suffers from lower parallelism at the work-item
level, since it must iterate for the position/velocity section.

Moving the position/velocity kernel to local memory significantly increases
execution time (though it increased occupancy) due to the lower bandwidth.
On the other hand, moving the swap kernel to local memory has only a small
effect. We attribute this to the fact that the local swap kernel uses much less
local memory than the local position/velocity kernel. Finally, our alternative
find best/worst algorithm decreases execution time slightly.
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Fig. 3. Execution time as the number of particles per swarm increases

Moving from the unvectorized to the best-performing algorithm (find
best/worst alt), at p = 256, execution time drops by approximately 29% (1.51
sec).

4 Conclusion

This work has traced the optimization process of an MPSO algorithm on an APU
architecture. We have investigated optimizations to increase kernel occupancy,
leverage vectorization, optimize memory access, and reduce register usage.

Nearly all of the ideas presented here may be directly applied to other parallel
population-based algorithms. It is worth noting that even those techniques that
did not consistently provide benefit to us may well prove worthwhile in other
contexts or on other devices.
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Abstract. We present in this paper a security-driven solution for schedul-
ing of N independent jobs on M parallel machines that minimizes three
different objectives simultaneously, namely the failure probability, the to-
tal completion time of the jobs and their respective tardiness. As this prob-
lem is NP-hard in the strong sense, a meta-heuristic method NSGA-II
is proposed to solve it. This approach is based on the Pareto dominance
relationship, providing no single optimal solution, but a set of solutions
which are not dominated by each other. Thus, it was necessary to provide
decision-making mechanisms selecting the best strategy from the Pareto
frontier. The performance of the presented model and the applied GA is
verified by a number of numerical experiments. The related results show
the effectiveness of the proposed model and GA for small and medium-
sized scheduling problems.

Keywords: Multi-objective optimization, Genetic algorithm, Risk
resilience.

1 Introduction

A simple concept that has emerged out of the conceptions of heterogeneous
distributed computing is that of the Cloud Computing (CC), where customers do
not own any part of the infrastructure. It reduces the concept of computational
power to a set of services, which can be rent from specialized organizations.
However, after an initial enthusiastic reception, new issues concerning CC have
been formulated. Beside problems in domains such as scheduling, CC highlights
complementary needs in the area of fault-tolerance, results checking and software
confidentiality such that novel approaches should be evaluated.

Truly secured environment for distributed execution should cover the prob-
lematics of confidentiality of both application code and user data, integrity, fault-
tolerance and finally trust management. While the range of problems to be solved
is wide, we focus on two key issues here. One is to provide a reasonable level of
security-aware and robust computation in distributed systems. To obtain this,
our approach proposes combination of generic methods of monitoring and dis-
covery of anomalies, leading to defining a security-assurance condition during
the job mapping process.
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Another issue is providing efficient resource management. Such problems in
their general form are known to be NP-hard, which means that a time com-
plexity of exact algorithms delivering solutions will be at least exponential, and
a provider of a system must rely on approximate solutions offered in an ac-
ceptable time using heuristic or meta-heuristics approaches. One of the distinc-
tive features of this paper is an attempt to work out a class of load balancing
and scheduling algorithms which, while maintaining performance criteria, will
also provide security mechanisms enabling to work in untrusted or fault-tolerant
environments.

Obviously, the conflict between achieving good performance and high security-
assurance introduces new challenges in CC scheduling. Scheduling performance is
affected by the heterogeneities of security and computational power of resources.
Different jobs may have varied security requirement and even the same security
requirements may exhibit different security overhead on different computational
nodes. The aim of our study is to propose an efficient algorithm which effectively
handles the multi-criteria parallel job scheduling problem, taking into account
not only the job completion time but also the security constraints existing in a
CC system.

The remainder of this paper is organized as follows. Section 2 presents the
related work. In Section 3 we describe our system model. Section 4 briefs the
NSGA-II algorithm and its application. Section 5 demonstrates the performance
metrics, the input parameters and experimental results. Finally, Section 6 con-
cludes the paper.

2 State of the Art and Our Approach

Recently, a great interest of researchers in Cloud and Grid Computing domains
has been focused on the secure scheduling, which aims to achieve an efficient
assignment of tasks to trustful resources. Due to the NP-hardness of the job
scheduling problem, finding the exact solutions to solve the large-scale task
scheduling problem in the dynamic environments is not always feasible. There-
fore, the approximation methods providing a near optimal solution are more
promising approaches. Heuristics and meta-heuristics have shown to be use-
ful for solving a wide variety of combinatorial and multi-objective optimization
problems.

One such a solution was presented in [5], where authors proposed a failure
detection and handling service as a mechanism providing risk-resilience in Grid
environment. In [4] authors proposed a solution capable of meeting diverse secu-
rity requirements of multiple users simultaneously, while minimizing the number
of jobs aborted due to resource limitations. Insecure conditions in on-line job
scheduling in Grids caused by the software vulnerabilities were further analyzed
in [7, 9, 10]. Their results were extended in [12] by considering the heterogeneity
of the fault-tolerance in a security-assured job scheduling.

In [2, 8] authors applied Genetic Algorithms (GA) for solving job scheduling
problem in Grid environments, optimizing both the makespan and total flowtime
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of proposed solutions. In [6] four genetic-based hybrid meta-heuristics have been
proposed and evaluated as a non-cooperative non-zero sum game of the Grid
users in order to address the security requirements. These works proved the
GAs can be useful in the design of effective schedulers mapping a large number of
jobs to the available resources. Similarly, in [14] two implementations of cellular
Memetic Algorithms (MA) were proposed to solve the job scheduling problem.
MA is a relatively new class of population-based heuristic methods in which
the concepts of genetic algorithm (evolutionary search) and local search are
combined [13].

Our approach provides the solution for parallel job scheduling problem in
distributed CC environment, while taking into account the security constraints
of both users and the system. We define our solution as a Pareto-based evaluation
instead of a more common practice of converting the multi-objective problem
into a single-objective by combining the various criteria into a single scalar value
or alternating them in order to optimize one criterion at a time while imposing
constraints on the others. In our approach a vector containing all the objective
values representing the solution fitness and the concept of dominance is used to
establish preference between multiple solutions.

3 System Model

In this section we formally define basic elements of the model and provide cor-
responding notation, characteristics of the model and the type of jobs to be
scheduled. The system model is an extension of the work introduced in [11]. A
system consists of a set of m parallel machines M1,M2, ...,Mm. Each machine
Mi is described by a parameter mi, which denotes the number of identical pro-
cessors Pi, called also the size of machine Mi. Figure 1(a) shows a set of parallel
machines in the CC system.

...

M1 Jj

M2 Mm

m processorsi sizej

tj

processor Pj

a) b)

Fig. 1. Example of the Cloud Computing system. A set of parallel machines (a) and
the multi-threaded job model (b).

Users (U1, U2, ..., Un) submit jobs to the system, expecting their completion
before required deadline. Thus, in the system there is a set of n jobs J1, J2, ..., Jn.
A job Jj is described by a tuple (rj , sizej, tj, dj). The release time rj can be de-
fined as the earliest time when the job can be processed. A sizej is referred
to as the processor requirements. It specifies a number of processors required to
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run the job Jj within assigned machine. We assume that job Jj can only run on
machine Mi if sizej ≤ mi holds, that is, we do not allow multi-site execution and
co-allocation of processors from different machines. Finally, tj , defines required
number of instructions of job Jj and dj is the required deadline of the job. Figure
1(b) shows an example of the multi-threaded job model.

3.1 Security Model

We consider a security-driven scheduling scheme, to address the reliability issues
in a computational Cloud environment. We apply the approach presented in [10]
to match job’s security requirements submitted by the user with security index
defined for each Cloud site. While a job is submitted, users define a Security
Demand (SD) dependent on the job sensitivity and access control. On the other
hand, the defense capability of a resource can be attributed to intrusion detection
mechanisms and its attack response capacity. This capability is modeled by a
Security Level (SL) factor.

Both are real fractions in the range [0,1] with 0 representing the lowest and
1 the highest security requirement/capability. A Job Failure Model is defined as
a function of the difference between the job’s demand and machine’s security.
The Formula (1) presented below expresses the failure probability regarding a
scheduling of a job Jj with a specific SDj value, to the machine Mi with Security
Level value SLi:

PFailure =

{
0, ifSDj ≤ SLi,

1− exp−(SDj−SLi), ifSDj > SLi.
(1)

In a case of a typical scheduler, failed job would be aborted and returned to
the queue for rescheduling. Such a failure may occur at any time during the job
execution and scheduler does not have any a priori knowledge about the exact
moment of failure. Thus, scheduler needs to react pro-actively to any failure
occurrences. We implement the following scheduling strategies to investigate
such scenarios and their impact on the overall system performance:

– Risky mechanism maps jobs to resources independent of the security de-
mands, taking no precaution against possible failures;

– Retry mechanism restarts the failed job from the beginning on the same
computational node;

– Migration mechanism reschedules the failed job on another computational
node defined as its backup site;

– Replication mechanism allocates the job to be executed at multiple sites
simultaneously. Replicas will stop execution once one of them is successfully
completed;

– Checkpoint mechanism records the state of the job periodically at run-
time. If the job fails, it is moved to another node and resumed from the last
saved state.
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4 GA-Based Multi Objective Scheduling Framework

We propose to apply a Multi Objective Genetic Algorithm (MOGA) to solve the
studied problem. GA is a meta-heuristic search technique that allows large solu-
tion space to be heuristically searched, by applying evolutionary techniques from
nature. It maintains a population of possible solutions to a problem, encoded as
chromosomes based on a particular representation scheme. In this study we use
the structure presented in Figure 2, where each gene is a pair of values (Jn,Mm),
indicating that job Jn is assigned to machine Mm. The execution order of jobs
allocated to the same machine is given by the positions of the corresponding
genes in the chromosome on First-Come-First-Serve basis.

1 2 3 4 5 6

(5,1) (4,2) (2,3) (3,2) (1,1) (6,3)

Fig. 2. Chromosome encoding schema. Upper numbers define allocation sequence. A
job is first scheduled to the site identified by the leftmost (Jn,Mm) pair.

Each solution is associated with a fitness value, which measures the quality
of a particular chromosome. Typical way of assessing system’s performance is
measuring the completion time of submitted jobs. Let us denote S as a schedule.
The completion time of jobs on machine Mi in the schedule Si is denoted by
Ci(Si). Three different objectives are considered in this work:

– The minimization of the Maximum Completion Time , defined as Cmax =
maxi{Ci(Si)}, which means the expected duration of all the processes;

– The minimization of the Mean Failure Probability , PFailure, defined as
a mean failure probability of each allocation;

– The minimization of the Total Tardiness, ΣTJ , where Tj is the tardiness
of job j, defined as Tj = max(0, Cj − dj).

Thus, the problem can be formulated as Minimize (Cmax, PFailure, ΣTJ). To
solve it, we apply the second version of a Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [3]. The overall structure of the NSGA-II is presented in
Algorithm 1. An initial population P0 is first randomly generated. In each gen-
eration t, the following processes are executed. The population of children Qt

(all the offspring chromosomes) is created with the operations of evaluation, se-
lection, crossover and mutation. After that, all the individuals from Pt and Qt

are ranked in different fronts. The non-dominated front of Level 1 is constituted
and includes all the non dominated solutions. In order to find the solutions in
the next front, the solutions of previous fronts are discarded. This process is
repeated until all the solutions are ranked and assigned to several fronts. Then,
the best solutions (in the best front and with the best value of the crowding
distance) are chosen for the new population Pt+1. This process is repeated until
the stopping criterion is satisfied.
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Algorithm 1. NSGA-II Algorithm

Initialize Population P0 of size N ;
Evaluate Objective Values;
Assign Rank Based on Pareto dominance;
while stopping criterion is not satisfied do
Generate the Offspring Population Qt of size N ;
Compose the populations of Parents and the Offspring in Rt = Pt ∪Qt;
Assign Rank Based on Pareto dominance in the combined population Rt;
Pt+1 = 0;
i = 1;
while |Pt+1|+ |Fi| < N do
Pt+1 ← Pt+1 ∪ Fi;
i = i + 1;

end while
Rank the solutions of Fi by the crowding distance and add N − |Pt+1|
solutions in Pt+1 by descending order of the crowding distance.

end while

4.1 Selection of the Pareto-efficient Strategy

We wish to further restrict the search space to Pareto-efficient strategies, from
among which the user can then make an educated choice and select whatever
solutions are best suited to the one’s preferences [1]. However, the user does
not know the failure probability-completion time trade-off, or if the selection of
a strategy will accomplish execution of all submitted jobs in a required time.
With that end in mind, we propose four simple scheduling policies defining basic
goals and requirements. We depict in Figure 3 an exemplary Pareto frontier with
highlighted strategies corresponding to those scheduling polices:

– Maximum speed policy selects a strategy from Pareto frontier yielding
the shortest possible completion time;

– Maximum reliability policy selects a strategy from Pareto frontier yield-
ing the minimal mean probability of execution failure;

– Maximum reliability with deadline policy selects a strategy from Pareto
frontier yielding the minimal mean probability of execution failure while meet-
ing the deadline required by the user;

– Optimum policy selects a strategy from Pareto frontier minimizing the
weighted average of three objectives, that is Min(0.33∗Cmax+0.33∗PFailure+
0.33 ∗ΣTJ).

5 Performance Evaluation

In this section we analyze the performance of the NSGA-II based scheduling
algorithms for the problem defined in this paper. We studied and compared
the performance of previously described fault-tolerant scheduling mechanisms



Multi-objective Scheduling for Fault-Tolerant Cloud Systems 253

20 30 40 50 60 70 80 90 100 110 120
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13
Pareto dominance graph for 94 pareto solutions

M
ea

n(
P

Fa
ilu

re
)

E(CMax)

Maximum speed

Deadline

Optimum

Maximum
reliability with
deadline

Maximum reliability

Fig. 3. Pareto Frontier and examples of strategies selected by four scheduling polices:
Maximum speed, Maximum reliability, Maximum reliability with deadline and Opti-
mum policy

and Pareto-efficient strategy selection policies. An open queuing network model
is considered in this work. Arriving jobs are stored in a queue and they are
dispatched to nodes at the end of predefined allocation intervals. We used in
our experiments a set of randomly generated job instances with n = 100, 150
and 200 jobs and m = 4, 8 and 16 machines. The set was generated with the
following parameters: the average execution time of a job tJ was set to 5, the
average number of threads sizeJ was set to 4 and the average number of cores
mi was set to 6. 100 independent runs per configuration have been carried out to
guarantee statistical significance and construct an approximate Pareto frontier
by gathering non-dominated solutions in all executions.

5.1 Performance Metrics

To comprehensively evaluate the scheduling performance, we have used the fol-
lowing metrics:

– Makespan: the total running time of all jobs, defined as max{Ci, i =
1, 2, ..., N};

– Scheduling success rate: the percentage of jobs successfully completed in
the system;

– System utilization: the percentage of processing power allocated to suc-
cessfully executed jobs;

– Average response time: let us denote the completion time for a job Ji
as Ci, the arrival time as ri, and the average response time is defined as
∑N

i=1(ci−ri)

N .
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5.2 Simulation Results and Analysis

The simulation results are given in Figure 4 for each metric proposed for 200 jobs
scheduled on 4 machines. Surprisingly, Maximum speed policy rarely selects a
scheduling strategy providing minimal Makespan. It is due to allocation of tasks
to the first available resources, regardless of their overall reliability. Although
optimization focused on minimization of the job completion time should yield
the best results, lower reliability of resources results in higher probability of
failures and frequent rescheduling events.

Results achieved by Maximum reliability policy are similar. The reason is the
selection of the most reliable resources, often ignoring execution time not meeting
the required deadline. In such cases, tasks are often rescheduled in later intervals,
further increasing the Makespan. That is why the Optimum and Maximum reli-
ability with deadline policies provide the best trade-off between those two objec-
tives, and in the effect, the best completion time of submitted jobs.

As to the Success Rate, Maximum speed policy returns the worst results.
Once again, selection of resources with lower reliability results in higher proba-
bility of failures and rescheduling events, thus leading to a worse performance.
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Fig. 4. Performance results of using fault-tolerant scheduling strategies with various
selection policies for 200 jobs scheduled on 4 machines. (a) Makespan. (b) Scheduling
success rate. (c) System utilization. (d) Average response time.



Multi-objective Scheduling for Fault-Tolerant Cloud Systems 255

Results yielded by other polices are comparable. Similar results can be observed
for the System Utilization, with slightly lower utilization achieved by Maximum
speed policy. Polices trying to achieve compromise between both optimization
objectives yield better results than those focusing on a single objective. The Av-
erage Response Time results are highly correlated with the Makespan results,
however the overall trend is more difficult to describe. In most cases, best results
are returned by polices favoring reliability.

The scheduling strategies employing the fault-tolerant mechanisms clearly
outperform the classic Risky scheduler except for the Replication mechanism,
which has longer Makespan due to reservation of multiple machines no matter
if a job fails or not. The Average Response Time results are usually shorter
than the Risky mechanism. Utilization rates of the fault-tolerant mechanisms
are fairly comparable, which suggest that they cannot necessarily save compu-
tational resources.

The Checkpoint mechanism achieved high performance for almost all met-
rics. The Utilization Rate can be kept at an acceptable level, while enhancing
the overall performance. As to the Success Rate, a Replication scheduling ap-
proach may expect a higher success rate due to redundancy applied. However,
the Checkpoint mechanism exhibits resilient behaviors with a moderate level of
failures, which does not necessarily lead to a worse performance.

6 Conclusions and Future Work

Security-driven job scheduling is crucial to achieving high performance in a
Cloud computing environment. However, existing scheduling algorithms largely
ignore the security induced risks involved in dispatching jobs to untrustworthy
resources. The paper proposes a paradigm of MOGA-based scheduling taking
into account the security constraints of the system. Thus, the proposed solution
makes efforts to incorporate security into job scheduling and aims to minimize
both job completion time and possible security risks. Due to its very nature, it
is capable of exploiting and exploring in the whole range of solution search space
globally and picking near optimal scheduling solution.

Our future research will be oriented on enhancing the decision-making mech-
anisms to select the best Pareto-efficient strategy without further input from the
end user. Additionally, we wish to define this issue as a game theoretical resource
allocation mechanisms such as 1) the non-cooperative bid method where tasks
are auctioned off to the highest bidder, 2) the semi-cooperative bid method in
which each site delegate its work to others if it cannot execute it itself, and
finally 3) the cooperative method in which all of the sites deliberate with one
another to execute all the tasks as efficiently as possible.
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Programme 2007-2013 and European Regional Development Fund (ERDF).
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Abstract. Transactional memory (TM) has emerged as an alternative
to the lock-based parallel programming model offering an effective and
optimistic management of concurrency. Recently, TM is being experi-
mented in the context of high performance computing. Many applica-
tions in that area spent a large amount of computing time in irregular
reduction operations, so their efficient parallelization is of utmost impor-
tance. This paper explores how to address irregular reductions in the TM
model, analyzing which support needs to be added to the TM system to
deal with reductions as a special case of conflicting memory accesses.

1 Introduction

Driven by the rise of modern shared-memory multicore architectures, Transac-
tional memory (TM) has emerged as an alternative to the traditional lock-based
parallel model with the aim of allowing an effective and optimistic management
of concurrency [8]. In the current landscape, this model is receiving support from
manufacturers, as evidenced by the inclusion of some TM features at hardware
level in recent architectures, such as Intel Haswell [10]. In addition to hardware-
based TM implementations (HTM), TM can be found also implemented in soft-
ware (STM) or even in hybrid approaches [12].

TM is based in the concept of transaction, a piece of code that is executed
isolated and with atomicity, being a replacement of a critical section but with-
out the disadvantage of forcing a mandatory serialization. TM systems execute
transactions in parallel while tracking all memory accesses (read-set and write-
set). If two concurrent transactions conflict (write/write, read/write the same
shared memory location), one of them must abort: it restores its initial state and
it retries its execution. When a transaction concludes its execution without con-
flicts, it commits, making definitive its changes in memory. It is said that version
management is eager if changes are immediately translated into memory and an
undo-log is used to restore the state of aborted transactions. By contrast, in a
lazy version management, changes are stored in a write-buffer and not written
in memory until commit takes place. As well, a transaction can abort just when
the conflict is detected (eager conflict detection), or postpone the conflict checks
until its end (lazy conflict detection).

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 257–266, 2013.
c© Springer International Publishing Switzerland 2013
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Parallel programming based on the TM model is a relatively new concept
in the context of high performance computing. Only recently some authors are
experimenting with the model for parallelizing their own scientific applications
(for instance, [2]). Many scientific and engineering applications contains (irreg-
ular) reduction operations in their core and, frequently, they are responsible of
an important fraction of the overall computing time. Parallelizing effciently such
operations is of paramount importance. This paper explores the use of trans-
actions in the implementation of parallel irregular reductions. We analyze how
specific support for reductions can be added to a TM system, basically by adapt-
ing the data versioning mechanism and the commit phase. With the proposed
reduction-aware TM (R-TM) design all conflicts due to reductions are avoided,
reducing drastically the abort rate. Besides, R-TM allows programmers to use
a new design dimension, the size of the transaction, that permits a finer control
over the tradeoff between the frequency of thread synchronization and the im-
plicit memory privatization associated to the TM mechanism. R-TM has been
implemented in a simplified scenario, and compared with a base TM system. Its
evaluation has proved the benefits of the approach.

2 Motivation

A reduction statement is a pattern of the form O = O ⊕ ξ, where ⊕ is a com-
mutative and associative operator applied to the memory object O, and ξ is an
expression computed using objects different from O. A reduction loop is a com-
putational pattern that includes one or several reduction statements with the
same or different memory objects but with the same operator for each object.
In addition, no references to those memory objects can occur in other parts of
the loop outside the reduction statements [11].

Reductions are found in the core of many scientific and engineering applica-
tions such as sparse matrix computations, finite element solvers and molecular
dynamics, and they are frequently associated with irregular access patterns. Ex-
amples of reduction loops are shown in Fig. 1. A reduction operator ⊕ (+, ×,
max, min ...) is applied to a scalar variable A or the elements of a reduction
array A[]. In this last case, the irregular nature of the operation comes from
the access through the indirection arrays, f1 ... fn, acting as subscripts of the
reduction array, which, in turn, are subscripted by the loop index.

From the data dependence viewpoint, accesses to the reduction object could
give rise to loop-carried dependencies. In general, these memory conflicts can
not be detected until run–time as the references (indirections) to the memory
object are not known before execution. Moreover, the loop may include other true
cross-iteration dependencies apart from the reduction statements. Nevertheless,
the situation is more optimistic when the only true dependencies are caused
by the reduction statements. In such a case, the iterations of the loop can be
arbitrarily reordered without altering the final result, as a consequence of the
commutativity and associativity of the reduction operator. Hence the loop can
be executed in parallel in spite of the reduction dependencies.
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float A;
for (i=0; i<N; i++){

Calculate ξ;
A = A ⊕ ξ;

}

int f1[fDim], f2[fDim], ..., fn[fDim];
float A[ADim];
for (i=0; i<fDim; i++){

Calculate ξ1, ξ2, ..., ξn;
A[f1[i]] = A[f1[i]] ⊕ ξ1;
A[f2[i]] = A[f2[i]] ⊕ ξ2;

...
A[fn[i]] = A[fn[i]] ⊕ ξn;

}

(a) Single scalar reduction statement (b) Multiple irregular reduction statements

Fig. 1. Examples of reduction loops

Table 1. Techniques for parallelizing reduction loops

Mutual exclusion
Privatization of the
reduction array

Partitioning of the reduction
array

Implementations
Critical sections
Fine grain locks
Atomic operations

Pure privatization
Array Expansion
Selective privatization

LocalWrite (LW)
SynchWrite (SW)

Advantages Low programming effort
Low programming effort
High concurrency

Reference locatity exploitation
Low memory requirements

Disadvantages
Potential serialization
High synchronization cost
No locality exploitation

High memory overhead
No locality exploitation

Inspection phase required
Computation replication (LW)
Workload imbalance (SW)

Transactional memory can be useful to extract optimistic parallelism from
loops in the above situations, as TM has native support for tracking all memory
accesses and detecting memory conflicts in runtime. This support can help to
determine when the reduction conditions are met. As a first step to achieve this
goal, this paper deals with fully parallel irregular reduction loops, and study how
to support efficiently the parallel execution of those loops using TM. That is,
our main interest is to deal with the reduction statements with no interference
of other kind of dependence sources.

3 Reduction Parallelization Techniques

Solutions to parallelize irregular reduction loops can be classified into three
groups based on: mutual exclusion, privatization of the reduction array and
partitioning of the reduction array (see Table 1).

The first group involves a low programming effort as the loop can be executed
in parallel by just enclosing the accesses to the reduction array in a critical
section, solving all possible dependencies. Drawbacks of these techniques are
the degree of serialization and the cost of synchronization in typical multicore
processors. The degree of serialization is basically determined by the number of
conflicting iterations but also by the particular implementation. In this regard,
a pure critical section can yield to a high degree of serialization, which can be
improved by using fine-grain locks, although this would require a lock array with
as many positions as the reduction array. Notwithstanding, the use of atomic
operations can be a more efficient alternative when available in hardware, with
no need of additional data structures.
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The second group of solutions distributes the iteration space into threads,
each of which performs its reductions over a local reduction space. A preamble
is necessary in order to initialize the private reduction space to the identity (neu-
tral) element of the reduction operator. Similarly, a final reduction phase must
accumulate all private reduction values into the (global) reduction array. Two
representative examples in this class are Replicated Buffer [6] and Array Expan-
sion [3]. The main drawback of privatization-based techniques is the memory
overhead because the reduction memory space is multiplied by the number of
threads. As a consequence, optimizations aimed at reducing the memory over-
head have been proposed, such as Selective Privatization/Reduction Table [14].
These techniques try to minimize memory overhead by replicating selectively
only those elements of the reduction array that are written by several threads,
but at the cost of complex implementations.

Techniques in the third group avoid the privatization by partitioning the re-
duction array. They need an inspection phase that is in charge of determining
the computation assigned to each thread. In this group we find methods like
LocalWrite [7] and SynchWrite [5].

4 Supporting Irregular Reductions in TM

This paper is not focused on proposing TM as an alternative to parallelize irreg-
ular reduction loops because, in general, classic methods performs well enough.
In contrast, this work explores which mechanisms must be added to a TM system
to support efficiently the execution of reduction statements, by taking advan-
tage of the commutative and associative properties of the reduction operator to
relax the transactional conflict management. This study can be considered as a
starting point to extract optimistic concurrency from those loops that cannot
be recognized statically as reduction loops. This section considers the simplified
scenario where all memory conflicts come only from reduction statements, in
such a way that the loop iterations can be safely reordered.

Our proposal of the reduction-aware TM (R-TM) requires only light modifi-
cations in the data versioning mechanism and in the commit phase, that can be
implemented in any base TM system. It should be considered as an optimized
TM system designed to improve the performance of parallel reduction loops.

Hereinafter it is assumed a base TM system with lazy data versioning, that
is, all writes inside a transaction are buffered in a private storage, making the
updates to shared memory at commit time. Lazy versioning simplifies the ad-
ditional mechanisms required for privatizing reduction operations. On the other
hand, conflict detection can be eager or lazy. This fact is not critical because
in the simplified scenario we are assuming, all conflicts coming from reduction
statements will be ignored.

Considering such a base system, the modifications required by R-TM are
described as follows:
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(a) Reduction buffer (b) Reductive commit

Fig. 2. Support for R-TM

– Rdx-buffer: A new private storage, the reduction buffer (Rdx-buffer) is
added (see Fig. 2 (a)). This buffer stores all write operations on the re-
duction object made within a transaction. These writes are separated from
the other transactional writes (that use the write buffer) because they are
used during the commit phase to update correctly the reduction global data.
The Rdx-buffer can be implemented as a table that stores all writes to re-
duction locations together with the corresponding memory addresses. For
each write, the Rdx-buffer is searched for the memory address. If it is there,
the corresponding stored valued is updated according to the reduction oper-
ator. Otherwise, a new entry is allocated in the buffer to insert the new pair
(address, value).

Note that it is required a specific reduction buffer for each considered
reduction operator (+, ×, max() ...), and that every new allocated entry on
these buffers must be initialized to the identity element of the corresponding
operator.

– Reduction reads/writes: All reads and writes of shared reduction data
within a transaction must be instrumented in some way. Software TM (STM)
systems or explicitly transactional hardware TM (HTM) systems [8] already
provide special primitives/instructions to specify transactional memory op-
erations. In implicitly transactional HTM systems, on the other hand, only
the boundaries of the transactions are specified, and all memory accesses
within these boundaries are considered transactional. In such systems, we
may define special ISA instructions in order to distinguish between reduc-
tion reads/writes from the rest of transactional operations. A similar ap-
proach is followed in [13] for optional instructions useful for performance
optimizations.

Table 2 shows a description of the proposed reduction memory primitives.
A reduction read (tmrload) does not read the global memory. Instead, it
searches the Rdx-buffer for the memory address and takes the associated
value if it is found. If the memory address is not located in the Rdx-buffer, a
new entry, initialized to the identity element, is allocated in the buffer, and
the reduction read returns that default value. This occurs only for the first
read of a reduction address in the transaction. In addition, tmrload does
not add the address to the current transaction read-set.
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Table 2. Memory primitives needed for the R-TM system

Memory Operation Description

Reduction read
tmrload

Looks for memory address in the Rdx-buffer and returns the value if found.
Otherwise a default value (identity element) is returned.
The memory address is not added to the read set.

Reduction write
tmrstore

Looks for memory address in the Rdx-buffer and accumulates the new value
if found.
The memory address is not added to the write set.

Table 3. Reduction-aware TM vs. OpenMP parallel reductions

Reduction-aware TM OMP Reduction OMP Critical OMP Atomic

Reduc. Var. Type Int Float Int Float Int/Float Int Float

Privatization Yes Yes No No

Thread
Synchronization

Atomic Op. Lock Free
Lock /

Atomic Op.
Lock /

Lock Free
Lock Atomic Op. Lock Free

Privatization
Overhead

<O(#Threads×xactSize) O(#Threads×N) 0 0

Synchronization
Overhead

O(#Transactions) O(#Threads) O(#Iterations) O(#Iterations)

A reduction write (tmrstore) works similarly to a transactional write
but accumulating (according to the reduction operator) the new value in the
Rdx-buffer, instead of simply storing the value in the write buffer. Besides,
tmrstore does not add the address to the current transaction write-set.

– Commit phase: Not inserting the reduction addresses into the read and
write sets allows to avoid conflicts when accessing such data within transac-
tions. This behavior is valid in our simplified scenario because the reduction
object can be privatized safely. Indeed, the use of the described Rdx-buffer
is equivalent to a selective privatization of the reductive accesses inside the
transaction. Consequently, when the transaction reaches the commit point,
all these selectively privatized values must be properly accumulated into the
reduction object in global memory. In order to accomplish this, the commit
phase must include a process to atomically update shared memory with the
contents of the Rdx-buffer (see Fig. 2 (b)).

The mutually exclusive access to shared reduction data can be assured by
using locks. However, there are other options, like atomic operations, if they
are supported in hardware by the processor architecture. These operations
are usually implemented by locking the memory bus or the cache [9]. A third
alternative is the use of lock-free algorithms, based on an atomic compare-
and-swap (CAS) type operation. This last option is usual when reducing
floating-point data, as atomic native hardware support is not common.

The execution model of R-TM results in a dynamic and selective privatization
of the reduction object: The Rdx-buffer allocates a new entry only when required
(due to reduction writes), and it releases the used space every time the trans-
action commits. The extra memory overhead due to the privatization is thus
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Fig. 3. Probability density for the tested images used in the histogram benchmark

limited by the transaction size. On the other hand, the accumulations in global
memory carried out during commits are protected by locks or atomic operations,
which introduce some synchronization overhead among threads. The number of
thread synchronizations is the number of transaction commits. Observe that
this corresponds to a intermediate situation between reduction parallelization
using locks (or atomic operations) and full privatization. The tradeoff between
privatization and synchronization overheads depends on the transaction size, a
parameter that can be selected by the programmer/compiler. Table 3 summa-
rizes the above discussion.

5 Experimental Evaluation

The proposed modifications introduced by R-TM were implemented in a light-
weight software TM implementation, TinySTM [4], used as the base TM system.
The experimental evaluation of this implementation was conducted on a server
with quad Intel Xeon X7550 processors (32 cores in total) at 2GHz running Linux
Kernel 2.6.32 (64-bits). The C-based benchmark code and the STM runtime
were compiled with gcc v4.3.4. In all executions, only one thread was mapped
to a core (hyperthreading was disabled). Experimental data correspond to the
average of several dozens executions, in order to avoid random effects associated
to transactional executions.

R-TM was evaluated using a synthetic benchmark code that computes the
histogram of a grayscale image. The program (Histogram) comprises only one
irregular reduction statement (accumulation in the histogram array of the num-
ber of pixels for each gray value) with no additional computational workload.
We run experiments for four input images defined for testing different contention
areas in the histogram array. The images were generated as a random set of 4M
pixels within a range of 256 gray levels. Histogram contention areas were ob-
tained by selecting different truncated Gaussian distributions of the gray values.
Fig. 3 shows the probability density function for the tested images. All distribu-
tions were defined in the range [0,255] with the mean located in 0, except for the
first image whose mean was located in 127. The images differ in the standard
deviation (σ), ranging from 0 (uniform gray image, with maximum contention
in one location of the histogram array) to infinite (uniform random image, with
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Fig. 4. Experimental results for the Histogram benchmark

no contantion area). Two other standard deviation values were chosen, 16 and
70, that introduce narrow and wide contention areas, respectively.

Experimental results of R-TM for the Histogram benchmark are shown in
Fig. 4, in terms of speedup with respect to the base TinySTM (without reduction
support), Transaction Commit Rate (TCR) [1] and memory overhead involved
by the Rdx-buffer during the execution of transactions. TCR is a suitable met-
ric for the exploited concurrency and it measures the percentage of committed
transactions in relation to the number of all launched transactions. Regarding
the memory overhead, the percentage with respect to full privatization of the
reduction array has been considered.
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The speedup of R-TM with respect to the base TinySTM version (Fig. 4(a,d,g,j),
for different input matrices) is particularly interesting. The high values for the rel-
ative speedup are basically caused by the large disparities exhibited in the abort
rates. While R-TM exhibits a null abort rate (as all conflicts are originated in the
reduction statement, so they are ignored), TinySTM experiments a high abort
rate, that increases with the number of threads. In fact, in the highest-contention
case (σ = 0), R-TM is almost 90 times faster than TinySTM for 32 threads and
transactions of 100 (reduction) loop iterations. This relative speedup decreases
when σ increases, as the contention area in the histogram array widens. As a re-
sult, the abort rate for TinySTM is lower (conflict pattern is spread across transac-
tions) and the commit overhead for R-TM is higher (more values in the Rdx-buffer
to merge with those in shared memory). Note that, in general, R-TM performs best
for transaction sizes between 10 and 100 reduction loop iterations.

TCR measurements for Histogram is shown in Fig. 4(b,e,h,k) for different
input matrices. As R-TM is carrying out an implicit selective privatization, in
practice, this eliminates all aborts due to conflicts on the reduction array. This
fact does not happen in the base TM system, resulting in an important loss
of concurrency. In addition, the exploited concurrency for TinySTM decreases
with the size of the transaction, as a large transaction aborts several times until
succeeds to commit. Observe that the base system does not have good scalability,
neither with the number of threads nor with the transaction size. While for 32
threads, TCR drops down 35% in average, a transaction size of 10 iterations
makes the concurrency fall down about 70% in average because both parameters
increase the number of data conflicts.

Finally, Fig. 4(c,f,i,l) shows the memory space (per thread) required for the
Rdx-buffer for different input matrices. 100% memory overhead represents that of
full privatization. As expected, the worst situation occurs for large transactions.
In this benchmark, the memory overhead for the largest tested transaction (1000
loop iterations) is basically equivalent to the full privatization method. However,
for smaller transactions, R-TM allows saving a great amount of memory space as
the Rdx-buffer grows up dynamically acting as an effective selective privatization.
In the case of transaction sizes with the best relative speedup (between 10 and
100 iterations), the memory overhead due to Rdx-buffer is between 5% and 35%
of the full privatization case.

6 Conclusions

This work has explored how a specific support for irregular reductions can be
added to a TM system. Such a reduction-aware TM (R-TM) approach can be
regarded as a tradeoff between memory privatization overhead and thread syn-
chronization effort. With this purpose the reduction accesses are handled in a
special way, eluding all these conflicts, and introducing a specific write buffer
(reduction buffer) to achieve a dynamic and selective privatization. Although
the approach can be generalized, the study has been simplified by considering
the case where all dependencies come from the reduction objects. The discussed
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R-TM approach has been implemented on top of a lightweight STM, tinySTM,
although it could be translated into other existing TM systems. The evaluation
of the proposed solution has shown a high concurrency exploitation, compared
to the base TM system, and a low extra memory overhead, compared to the
full-privatization solution. Additionally, on being integrated into the transac-
tional mechanism, no extra effort is required from the programmer, while it also
provides control over the tradeoff between privatization and synchronization.
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Abstract. As multicore systems are requiring increasing main memory bandwidth 
and capacity, the processor is no longer the unique dominating energy consumption 
component, in contrast, main memory is responsible for a large and increasing 
fraction of the energy consumed by systems. Therefore, improving power efficiency 
of processor and memory has received a lot of attention. However, most existing 
solutions concentrate on processor or memory separately and cannot combine well 
to simultaneously improve both. This paper presents a solution to improve both 
processor and memory power efficiency simultaneously through coordinating task 
and memory management (CTMM). The main idea is to adopt the concept of group 
which contains thread group and memory rank group. According group 
management, simultaneously scale CPU frequency and control memory power 
mode to reduce both CPU and memory power. Experimental results demonstrate 
our CTMM is more power efficient than some state-of-the-art solutions both in CPU 
and memory while improving system performance. 

1 Introduction 

Reducing power consumption has become a critical design issue not just for battery-
operated mobile devices but also for high end systems due to the reliability issue and 
cooling/packaging cost. Historically, within the system, the processor has dominated 
energy consumption. However, as processors have become more energy-efficient and 
more effective at managing their own power consumption, their contribution has been 
decreasing. In contrast, main memory energy consumption has been growing [1, 2],  
as multi-core systems are requiring increasing main memory bandwidth and capacity 
[3, 4]. Today, main memory accounts for roughly 40% of system energy [5], which is 
comparable to or slightly higher than processor energy [13, 14]. So, to achieve an 
energy-efficiency design, all system components, especially processors and memory 
[2, 6], need to be considered simultaneously [1].  

And simply supporting separate processor and memory energy management techniques 
is insufficient, as independent control policies often conflict, leading to oscillations, 
unstable behavior, or sub-optimal power/performance trade-offs. To see an example of 
such behavior, consider a scenario in which a chip multiprocessor’s cores are stalled 
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waiting for memory a significant fraction of the time. In this situation, the CPU power 
manager might predict that lowering voltage/frequency will improve energy efficiency 
while still keeping performance within a pre-selected performance degradation bound and 
effect the change. The lower core frequency would reduce traffic to the memory 
subsystem, which in turn could cause its (independent) power manager to lower the 
memory power mode. After this latter mode change, the performance of the server as a 
whole may dip below the CPU power manager’s projections, potentially violating the 
target performance bound. So, at its next opportunity, the CPU manager might start 
increasing the core frequency [12], inducing a similar response from the memory sub-
system manager. Such oscillations waste energy. These unintended behaviors suggest that 
it is essential to coordinate power-performance management techniques across system 
components to ensure that the system is balanced to yield maximal energy savings [7]. 

To accomplish this coordinated control, however, faces several major challenges. First, 
the components of CPU and memory are heterogeneous. Thus, we cannot simply adopt 
power control policy of one component to widespread the whole system. Second, 
workloads in different components in a system are usually synergetic. For example, 
processor frequency downscaling may decrease the number of memory requests so that 
the memory power consumption decreases accordingly. Therefore, the synergy among 
components should be carefully addressed. Third, the workloads of different components 
are unpredictable at design time and may vary significantly at runtime. As a result, power 
control algorithms cannot rely on static power models or open-loop estimations. They 
must be self-adaptive to workload variations for improved server performance. 

To tackle these issues, in this paper, we propose the framework of coordinating task 
and memory management (CTMM) to improve system power efficiency in multi-core 
systems. CTMM combines page allocation, task scheduling, dynamic voltage and 
frequency scaling (DVFS) and dynamic power management (DPM) policies according 
to thread group. CTMM features a four-phase design. First, partition threads and 
DRAM memory into thread groups and memory rank group respectively according to 
threads’ behavior and memory characteristic. Threads in the same group are sharing 
memory address space and having similar behavior. Second, allocate memory page for 
thread based on group to achieve memory of the same group threads is in the same 
memory rank group. Third, adjust scheduler to achieve group scheduling which threads 
in the same group are scheduled simultaneously. Finally, scale frequency of CPU and 
adjust the power mode of memory ranks according to running thread group to 
simultaneously improve CPU and memory power efficiency. As a result, our solution 
can improve system power efficiency while improving system performance.  

Specifically, this paper makes the following major contributions: 

1) Through coordinating task and memory management, improve both CPU and 
memory power efficiency; 

2) Through combining page allocation with thread group scheduling, prolong 
memory idleness, which creates more idleness without excessively degrading 
performance; 

3) According running thread group to manage both CPU frequency and memory rank 
power modes, reduce the both frequency of CPU and all rank power modes transition; 

4) Based on sharing memory address space to partition threads, decrease switch 
overhead between two threads in the same group. 

We compare the proposed CTMM with two power aware policies, DVFS-based 
policy and PPT [9] policy. The DVFS-based policy scales frequency of CPU 
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according to thread behavior, and PPT policy periodically shutdown hardly request 
memory modules. The experimental results show that compared to the DVFS-based 
policy, CTMM reduces memory power consumption by 49.2% and delivers 
comparable CPU power; while PPT policy achieves 47.4% power reduction for 
memory at the cost of CPU power increasing 23.5%. So, our CMTT reduces 24.6% 
and 11.9% system power comparing DVFS-based policy and PPT policy respectively. 
From the performance, CMTT is better than both two policies. 

2 Background and Related Work 

2.1 DRAM System 

We describe DRAM memory systems and OS memory management mechanism. 

DRAM Organization: modern memory system is usually packaged as DIMMs, each 
of which usually contains 1 or 2 ranks and 8 banks. A memory system can contain 
multiple channels, and each channel is associated with 1 or 2 DIMMs. A rank is the 
smallest physical unit for power management. Banks can be accessed parallel, hence, 
memory requests to different banks can be served concurrently [8]. Figure 1 
demonstrates one organization of a modern memory subsystem. Memory device can 
be in four states – active standby, precharge standby, active power-down and 
precharge power-down – listed in a decreasing order of power dissipation [9]. 

OS Memory Management: Nowadays, Linux kernel’s memory management system 
uses a buddy system to manage physical memory pages. In the buddy system, the 
continuous 2order pages (called a block) are organized in the free list with the 
corresponding order, which ranges from 0 to a specific upper limit. When a program 
accesses an unmapped virtual address, a page fault occurs and OS kernel takes over 
the following execution wherein the buddy system identifies the right order free list 
and allocates on block (2order physical pages) for that program. Usually the first block 
of a free list is selected but the corresponding physical pages are undetermined [10]. 

 

Fig. 1. Organization of a modern memory subsystem 

3 CTMM Framework 

The main idea of the proposed CTMM framework is to orchestrate page allocation, task 
scheduling, DVFS policy for CPU and DPM policy for memory to improve power 
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efficiency. Figure 1 shows our memory configuration for a 2-channel memory system 
where each channel contains four ranks. In this paper, threads and ranks are partitioned 
into 4 groups, all kernel threads partitioned into one group, and all others partitioned into 3. 
Each group uses two ranks associated with two different channels. Threads of the same 
group are scheduled simultaneously. Threads in different groups are scheduled in round-
robin fashion. Only two rank groups are active at each scheduling interval, one for kernel 
group and the other for running user group. The memory ranks of non-active groups could 
be turned into the low-power mode to save memory energy. In our CPU configuration, 
four frequencies can scale. So, each thread group is partitioned into 4 child-groups. Each 
child-group maintains the same CPU frequency. Threads of the same child-group are 
scheduled simultaneously. Threads in different groups are scheduled in round-robin 
fashion. Switch between different child-groups is the chance to scale CPU frequency, 
which simultaneously reduces CPU power and frequency scaling overhead. 

Different DRAM organization affects the power and performance of the system. 
When the memory system is partitioned into more groups, ranks and channels 
allocated to each group are fewer; that means more memory ranks could be shut down 
to achieve more power savings, which in turn reduces available bandwidth. Also, the 
number of frequencies can be scaled affects the power and performance. The more 
numbers, the better performance and power efficiency, but more overhead. 

Figure 2 demonstrates the description of four-phase power control framework: 
In the first phase, all threads are partitioned into thread group according to their 

memory address space and load balance, and each thread group is partitioned into 
child-group according thread’s behavior. Also, DRAM memory is partitioned into 
groups according to memory rank.  

In the second phase, allocate memory according to thread group, threads in the 
same group are allocated memory in the same memory group. So memory of threads 
in the same thread group are aggregated into the same memory group. 

In the third phase, based on partitioned thread group and child-group, modifying 
default scheduler to group scheduler. 

In the final phase, based on DVFS and DPM to scale frequency for CPU and 
control power mode for memory according the running child-group/group to improve 
power efficiency. 

 

Fig. 2. The whole framework of our CTMM 
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3.1 Thread and Memory Rank Group Partition 

Because of the 4 memory rank groups, we partition all threads into a two-layer group, 
first layer is a 4 thread groups based on sharing memory address space and load 
balance, second layer is each thread group partitioned into 4 child-groups based on 
thead behavior. 

In the first layer, we find threads belonging to the same process are sharing 
memory address space and the CFS which is the default scheduler in current Linux 
operating system does not utilize this feature. We partition threads into the same 
thread group if they sharing memory address space. Specially, we partition all kernel 
threads into a unique group. And the two ranks allocating to kernel group is active all 
the time. Because only based on sharing memory address space partitioned groups are 
much more than 3, we partition them into 3 groups according load balance. So, all 
threads are partitioned into 4 groups, which one group contains all kernel threads, all 
non-kernel threads are divided into other 3 groups. 

In the second layer, we analyze thread’s behavior, in this paper we mainly take memory 
accessing into consideration when partition threads into different child-groups. We define 
the sensitive metric Sen to represent each thread’s need of the CPU frequency.                                                                        1  

Ion and I represents the on-chip instructions and total instructions respectively. And 
define three constant values C1, C2, C3. All 0≤Sen≤C1, C1＜Sen≤C2, C2＜Sen≤C3, and 
C3＜Sen≤1 threads are partitioned into child-group 1, 2, 3 and 4 respectively.  

3.2 Page Allocate 

In Linux operating system, the default page allocation is using buddy algorithm, 
which allocates the first block of a free list to the request thread. So, a thread’s 
occupying memory may cover all ranks of the memory. Buddy algorithm takes 
advantage of parallelism to improve performance. However, the necessary amount of 
banks one program requires is limited [15].  

In contrast, our page allocation focuses specifically on maximizing energy 
efficiency. Considering the smallest power management unit rank, our algorithm 
allocates physical memory page to a thread based on belonging group, threads of the 
same group occupy the same rank group. So, a thread’s pages aggregate in two ranks, 
spreading all banks of these two ranks, which improves power efficiency and prevents 
performance degradation simultaneously.  

Figure 3 demonstrates our organization of physical memory page. The difference 
between ours with the default is our organization adds the rank information. Each 
rank group has free block lists, which likes whole memory partitioning into 4 in this 
paper. Every time requiring a free block, firstly determine the rank group, and then 
allocate corresponding free block. 

3.3 Scheduling Based on Thread Group 

After all threads are partitioned into two-layer groups, we rearrange these threads 
according two-layer groups, showing in figure 4. Threads in each child-group are 
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organized into an rb-tree according each thread’s vruntime, which is the same with 
the default Completely Fair Schedule (CFS) of Linux. 4 child-groups and 4 groups are 
also organized into an rb-tree, and their respective location is based on child-
group/group vruntime. We define the child-group/group vruntime is the sum of all its 
threads’ vruntime.                                           2  

                                           3  

CGvruntime and Gvruntime represents the vruntime of child-group and group 
respectively. vruntimei represents the vruntime of thread i. Our rearrangement forms a 
three-level rb-tree. 

After getting each child-group and group’s vruntime, group is becoming the unit of 
getting CPU time in our scheduling. When a group running more time than obtained, 
switch to the next group. Also, child-groups obtain CPU time within a group 
according child-group’s vruntime. And threads obtain CPU time within a child-group 
according thread’s vruntime. Therefore, our CTMM forms a three-level scheduler. 
The first level is group schedule, which is the smallest unit seen in the operating 
system. The second level is child-group schedule within group, which uses CFS 
policy among child-group. And the third level is thread schedule within child-group, 
which also uses CFS policy. 

 

 

 

Fig. 3. Our organization of physical memory 
page 

Fig. 4. Arrange all threads according two-layer 
groups 

3.4 CPU Frequency Scale and Memory Mode Control Policies 

CPU frequency scale and Memory mode control in the CTMM framework are 
archieved through child-group and group swtiching respectively.  

Matching to the periodically scheduling threads in different child-groups, CPU 
frequency also periodically up and down. Because it takes several microseconds to 
scale up and down, which consumes power and time, therefore, in order to maximize 
energy efficiency, it must prevents scaling frequently. So, the question remains to be 
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answered is how long the child-group switch interval should be. As we know, the 
shortest scheduling period (sum_runtime) is 20ms in Linux, and so the shortest switch 
interval is 20/12 ms (because we only partition 3 non-kernel groups and each has 4 
child-groups). Even 20/12 ms is much longer than microseconds, so the cost of 
frequency scaling is negligible. Therefore, scaling CPU frequency according to child-
group switch could achieve power savings while preventing high overhead from 
frequently switch. The more threads in the system, the more CPU frequency can keep. 

Similarly, matching to the periodically scheduling threads in different groups, 
memory rank groups also periodically active and power down. And the shortest group 
switch interval is 20/3 ms (because we only partition 3 non-kernel groups). So the 
cost of rank mode switching is negligible. Therefore, setting rank mode switch 
according to thread group switch also could achieve power savings while better 
preventing high overhead from frequently switch. Also, the more threads in the 
system, the more memory rank idleness can prolong. 

4 Experimental Setup 

We use MARSSX86 [16] as the base full-system architectural simulator to run Linux 
2.6.31 and extend its memory part with DRAMSim simulator to simulate DDRx 
DRAM systems in the details. Table 1 shows the major simulation parameters. To 
estimate the power consumption of CPU, each core has 4 DVFS levels normalized to 
the maximum frequency (i.e. 1, 0.85, 0.7, 0.55). The power of the core reported by 
Wattch [17]. And to estimate the power consumption of DRAM devices, the 
DRAMSim simulator keeps tracking the states of each memory channel, rank and 
bank. It follows the Micron power calculation methodology by default [18]. The 
parameters used to calculate the DRAM power and energy are the same with [3]. 

Table 1. Processor and memory configurations 

Feature value 
CPU cores Quad core 
L1 I/D cache (per core) 16KB, 2-way 
L2 cache (shared) 64KB 
Cache block size 64bytes 
Memory configuration 2 GB, 2 channels, 8 ranks, 8banks per rank 

In order to evaluate our CTMM, we simultaneously run different combinations of 
selected from sysbench [19], SPEC2000 and SPEC2006. In table 2, the number-
appname notation is the number of threads of the application with the name of 
appname for sysbench; for SPEC2000 and SPEC2006 workload, it is the number of 
copies of the application with the name of appname.  

However, to analyze the effect of thread number, we classify the workloads into 
three categories: mix1, 2, 3 are 24 threads; mix4, 5, 6 are 48 threads, and mix7, 8, 9 
are 96 threads. Similarly, we classify the workloads into three categories for 
analyzing the effect of thread’s behavior: computation-intensive workloads (mix1, 4, 
7), memory-intensive workloads (mix3, 6, 9) and balanced workloads (mix2, 5, 8). 
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Table 2. Workload description 

mix Sysbench, SPEC2000 and SPEC2006 
mix1 12-sysbench cpu, 3-vortex, 3-gcc, 3-sixtrack, 3-mesa 
mix2 6-sysbench cpu, 6-sysbench memory, 3-ammp, 3-gap, 3-wupwise, 3-vpr  
mix3 12-sysbench memory, 3-swim, 3-applu, 3-art, 3-lucas 
mix4 24-sysbench cpu, 6-vortex, 6-gcc, 6-sixtrack, 6-mesa 
mix5 12-sysbench cpu, 12-sysbench memory, 6-ammp, 6-gap, 6-wupwise, 6-vpr  
mix6 24-sysbench memory, 6-swim, 6-applu, 6-art, 6-lucas 
mix7 48-sysbench cpu, 12-vortex, 12-gcc, 12-sixtrack, 12-mesa 
mix8 24-sysbench cpu, 24-sysbench memory, 12-ammp, 12-gap,12- wupwise, 12-vpr  
mix9 48-sysbench memory, 12-swim, 12-applu, 12-art, 12-lucas 

5 Experimental Results 

5.1 Memory Idleness Evaluation of CTMM 

One of the most important thing to reduce memory power consumption is to create 
enough memory idleness. But they are difficult because of either causing excessively 
overhead or degrading performance for recent works. In order to evaluate our CTMM in 
prolonging how much idleness, we propose a metric ior (idleness time of each rank), 
which represents the average idle time of each rank after entering into low power mode.  ∑                                                           

iori represents the average idle time of rank i after entering into low power mode.  ∑                                                            

Tik represents each idleness time of rank i. The bigger of the ior metric, the more 
idleness are created.  

Figure 5 demonstates the normalized ior value to non-optimization. In this figure, 
CFS, DVFS-based, PPT [10] and CPM [20] represents the Linux default policy which 
non-optimization both in CPU and memory power efficiency, non-optimization policy 
in memory power efficiency but CPU, state of art policy in reducing memory power 
through scheduling, and one policy reducing both CPU and memory power 
simultaneously respectively. From this figure, we can find PPT and CPM are creating 
more idleness than CFS, and our CTMM is better than them. Also, along with the 
more threads (mix1, 2, 3 are 24 threads, mix4, 5, 6 are 48, and mix7, 8, 9 are 96), the 
ior value are bigger, and means the more idleness are created. More threads in  
the system means each group has more threads, which also means each group has 
more time in each period. Therefore, less switching will happen. 

DVFS-based policy do nothing better in creating idleness than CFS, so they are the 
same in the ior value. Both PPT and CPM try to aggregate the memory access into the 
active ranks for a period time, so the ior value is better than CFS, but some times  
the memory access exceeds the active ranks, activating the low power ranks. But our 
CTMM hardly exceeds, so CTMM is better both PPT and CPM in creating memory 
idleness. 
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Both PPT and CPM are worse of the ior value as the workloads are more memory- 
intensive, mix3 is more memory-intensive, but worse in ior value than mix2 and mix1, 
the same circumstances are among mix4, 5, 6 and mix7, 8, 9. This is mainly from the 
reason of the more memory access the more possiblily exceeding the active ranks. But 
our CTMM is insensitive to the behavior, but to the thread number. Allocating the 
pages to thread according group and coordinating the group scheduling, CTMM 
prevents the exceeding circumstance. 

5.2 Power Efficiency Improvement of the CTMM 

Memory Power Efficiency Improvement. Through prolonging more idleness time, 
figure 6 demonstrates our CTMM reduces more memory power under using our 
group based mode control policy. Similarly, along with the more threads, more power 
is reduced for more idleness time prolonged. In 24 threads circumstances, our CTMM 
saves more 4% power than PPT and 9% than CPM on average; in 48 threads 
circumstances, more 10% than PPT and 16% than CPM; in 96 threads circumstances, 
more 14% than PPT and 19% than CPM. 

From the figure, we can find the more computation-intensive the better in reducing 
memory power among the same number threads for both PPT and CPM. The reason is 
also the more memory access the more possiblily exceeding the active ranks to 
frequently activate the low power ranks. CTMM not only prevents disturbing low 
power ranks but also reducing power in more threads for creating more idleness. 

CPU Power Efficiency Improvement. Figure 7 demonstrates different policies improve 
CPU power efficiency normalized to CFS. All DVFS-based, CPM and CTMM allocate 
CPU frequency according thread’s behavior, so they almost improve the same power. But 
our CTMM is better although weakly. And the better is moslty from our CTMM scales 
frequency based on child-group which reduces the scaling times. Our results show the 
scaling times of our CTMM is almost 45% of DVFS-based, and the more threads the 
smaller precent is. Figure 8 explains the processor’s frequency scaling in real time using 
DVFS-based and CTMM in 48 threads circumstance. The horizontal axis is the execution 
time slot, while the vertical index refers to the frequency. So, CTMM reduces more 
scaling times than DVFS-based. 

System Power Efficiency Improvement. Figure 9 demonstrates different polices 
improve system power efficiency normalized to CFS. Obviously, CTMM is better than all 
other policies. CPM is better than both DVFS-based and PPT for they only improving one 
component. And CTMM saves more 3% system power than CPM on average in 24 
threads circumstance, 6.6% in 48 threads, and 8.3% in 96 threads. 

 

Fig. 5. Normalized ior value to CFS 

 

Fig. 7. CPU power efficiency 
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Fig. 6. Memory power efficiency 

 
Fig. 9. System power efficiency 

 

Fig. 8. Situation of the frequency scaling 

5.3 Performance Analysis of CTMM 

Figure 10 demonstrates the finish time of all policies normalized to default. The 
longer the finish time, the more performance declined. From this figure, our CTMM 
has better performance than CPS obviously, almost as well as DVFS-based and PPT, 
and the more threads, the better performance our CTMM is.  

Table 3 and table 4 demonstrate the ratio switch between sharing memory address 
space and each thread occupies average bank number of four policies respectively, 
which explain the reason for more threads better performance of our CTMM. The 
more ratio of switching between sharing memory address space, the better 
performance it is. And also the more each thread occupies average bank number, the 
more parallelism it is, and the more performance will be. From table 3 and 4, we can 
easily to know the reason of our better performance than CPM. 

 
Fig. 10. Normalized finish time to CFS 

Table 3. each thread occupies average bank 
number 

 CFS DVFS-
based 

PPT CPM CTMM

mix 19.5 19.5 7.8 6.6 14.2 
 

Table 4. Ratio of switching between sharing 
memory 

 CFS DVFS-
based 

PPT CPM CTMM 

mix1 42% 42% 53% 45% 58% 
mix2 28% 28% 46% 34% 47% 
mix3 43% 43% 57% 48% 60% 
mix4 57% 57% 63% 60% 67% 
mix5 39% 39% 51% 49% 58% 
mix6 54% 54% 64% 64% 68% 
mix7 65% 65% 72% 70% 82% 
mix8 47% 47% 65% 56% 76% 
mix9 66% 66% 77% 72% 85% 
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6 Conclusion 

In this paper, we have presented a solution to improve both processor and memory 
power efficiency simultaneously through coordinating task and memory management 
(CTMM). Combining group partition, page allocation, group scheduling and group 
based frequency scale and mode control, our CTMM reduces CPU frequency scaling 
times and creating more memory idleness preventing frequently switching rank mode 
while reducing as much as CPU and memory power simultaneously. Experimental 
results show that CTMM can well reduce CPU and memory power simultaneously. 
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Abstract. In this paper, we discuss strategies to parallelize selected de-
convolution methods on a multi-GPU system. We provide a comparison
of several approaches to split the deconvolution into subtasks while keep-
ing the amount of costly data transfers as low as possible, and propose
own implementation of three deconvolution methods which achieves up
to 65× speedup over the CPU one. In the experimental part, we analyse
how the individual stages of the computation contribute to the overall
computation time as well as how the multi-GPU implementation scales
in various setups. Finally, we identify bottlenecks of the system.

1 Introduction

Three-dimensional imaging is being increasingly used in various biomedical modal-
ities, such as fluorescence microscopy, magnetic resonance imaging (MRI), compu-
tational tomography (CT) or ultrasound imaging. It allows scientists to visualise
and study structures, from individual genes to whole organs, inside human body
as well as their spatial organization.

The quality of the observed image is strongly affected by the properties of
imaging system, in particular, it contains blurring and noise. This image corrup-
tion can be partially eliminated by so-called deconvolution, an inverted process
that tries to restore the original image. It is an ill-posed problem because the
impulse response (also denoted as point-spread function, PSF) does in general
not have an inverse [24]. Therefore, a mathematical model describing the rela-
tion between original (ideal) image, observed image, PSF and noise is created;
an optimal solution to this model can be found using appropriate numerical
methods.

Respecting the fact, that the iterative methods produce better results than the
direct approaches, the deconvolution appears to be a challenging task for high-
performance computing—in practise, dozens of iterations are performed until a
desired quality criterion is met. Furthermore, in a typical biomedical experiment,
dozens of huge 3-D images (of size up to 100 million voxels) are acquired. The
whole processing task can hence last hours.

During past years, deconvolution has been parallelized on various architec-
tures, including a multi-core CPU [19, 26], a cluster of computers [18], graphics
hardware [4, 8, 20], or multi-GPU and heterogeneous platforms [6, 7].

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 279–290, 2013.
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Our contribution is (i) to study several approaches to split the problem into
subtasks—besides a popular overlap-save method, a frequency-based approach is
considered, (ii) to analyse the individual phases of the computation, (iii) to assess
the practical speedup on examples from the field of fluorescence microscopy, and
(iv) to identify bottlenecks of the system. As a practical result, we implement
deconvolution on a system with multiple GPUs. Using multiple GPUs allows us
not only to shorten the computation time from hours to minutes, but also to
process huge 3-D images which cannot fit in the GPU memory at once.

The paper is organized as follows: Firstly, we provide the necessary theoretical
background and review the prior work on the parallelization of deconvolution.
Secondly, we present the proposed method to split deconvolution into parallel
subtasks and to implement it on a multi-GPU system. Thirdly, we show and
discuss results of experiments conducted to test performance of our implemen-
tation. Finally, we conclude our work and achieved results.

2 Formulation of the Problem

The general mathematical model of the imaging process [24] is given by

g = N(Hf + b), (1)

where f , g, and b is the original image, the observed image, and the known
background, respectively, denoted by vectors of length M , N(·) is the noise
process, and H is the sampled PSF expressed by a blurring matrix M ×M .

In practical applications, the model is often simplified to a spatially-invariant
PSF which means that H has a block-circulant form. This simplification is fol-
lowed in this paper. In such case, we can formulate (1) using convolution:

g = N(h⊗ f + b), (2)

where ⊗ is the convolution operator. For general 3-D convolution kernels, the
most efficient approach is the so-called fast convolution which replaces the con-
volution with the point-wise multiplication in the Fourier domain [10, 14]. The
Fourier transform can be efficiently computed in O(M logM) using the fast
Fourier transform (FFT) algorithm [2, 12].

The blind deconvolution is the process of finding the optimal estimate of f ,
further denoted as f̂ , with the knowledge of functions g, b and the noise dis-
tribution N—usually, the Poisson or the Gaussian distribution are considered.
In this paper, we further assume that h is known—this problem is commonly
known as the non-blind deconvolution.

2.1 Selected Deconvolution Methods

Wiener deconvolution is an example of a linear non-iterative method [3]. In the
Fourier domain, it is given by

F̂ = G
H∗

|H |2 +
σ2
O

σ2
N

, (3)
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where H∗ is the complex conjugate of the Fourier transform of the PSF and σO,
σN are the variance of the object and the noise, respectively.

Iterative Constrained Tikhonov-Miller (ICTM) is a non-linear iterative

method [25]. The estimation of f̂ in the (k + 1)-th iteration can be computed as
follows:

fk+1 = P (
fk + αkdk

)
, (4)

where P(·) is the projection operator which cuts off the negative values and the
initial estimate f0 is usually set to g. For details about the estimation of the
step size αk and the search direction dk, refer to [24].

Expectation Maximization-Maximum Likelihood Estimation (EM-MLE): this it-

erative method [5, 21] maximizes the likelihood of f̂ for Poisson noise. The

estimation of f̂ in the (k + 1)-th iteration is given by

fk+1 =

[
g

h⊗ fk
⊗ hT

]
fk, (5)

and can be further restricted to non-negative values by P(·).
There exist many other approaches for deconvolution but the parallelization

principles we propose in our paper can simply be adopted for the most of those
methods as they are based on the same class of fundamental operators, such as
convolution, mapping (e.g. point-wise operations) and reduction [19].

2.2 Parallelization of Deconvolution

Coarse-grained. For the parallelization on multi-core CPU [26] or a small clus-
ter [18], a sectioned approach based on a popular overlap-save method [23] is
used. Here, input image is simply split into sections, each convolved separately
with the input PSF. The sections must hence overlap, the size of overlap is
equal to the size of PSF. After the computation, the overlaps are discarded if
the computation is complete, or exchanged between nodes if another iteration is
required. Extensive communication is hence the main drawback of the method.

Fine-grained. Many successful attempts [4, 8, 19, 20] proved the massively-
parallel graphics hardware to be suitable for the deconvolution problem. Im-
plementations are often based on the popular CUDA framework [16] with the
CUFFT library [15]. However, the size of the GPU memory may be insufficient
in applications where large images are processed [11, 13].

Hybrid approaches. On a multi-GPU system or a heterogeneous CPU-GPU plat-
form, one has to consider both coarse-grained and fine-grained parallelization
methods. Domanski et al. [6, 7] implemented the 3-D Richardson-Lucy deconvo-
lution on both architectures. On a coarse-grained level, the sectioned approach
with no overlaying image segments exchange was used, in order to avoid a com-
munication overhead. However, this simplification was possible due to fact that
only small PSF (19× 19× 16 pixels) was tested.
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Other approaches. Out of the three fundamental operators (convolution, map-
ping and reduction), convolution is the most difficult task in a parallel implemen-
tation of deconvolution, because it requires extensive communication between
nodes. Besides the aforementioned overlap-save method, other approaches can be
considered, such as the overlap-add method and the combination of the two [22].
Furthermore, the decimation-in-frequency algorithm [11, 13] can be employed.
In the following section, we discuss the optimal choice of the decomposition
approach and present our implementation on a multi-GPU system.

3 Proposed Method

3.1 Choice of the Optimal Decomposition Method

In order to achieve an optimal performance of a coarse-grained or a hybrid
parallel implementations, one has to select an appropriate method to decompose
the deconvolution. We will show that the optimal choice depends on a chosen
deconvolution algorithm and also on the size of the deconvolved image and the
PSF. There are basically two groups of the decomposition methods.

Spatial-based methods. The overlap-save and overlap-add methods [17] are based
on the image division in the spatial domain. Svoboda [22] implemented the
convolution of 3-D microscopy images on a cluster using the former to split the
image and the latter to split the PSF. In the paper, it is referred to as signal
and kernel tiling, respectively. It was shown that the signal tiling is the optimal
approach for the division of the image until the image sections are smaller than
the PSF. At that point, a combination with the kernel tiling should be used so
that the size of image and PSF sections are equal.

Frequency-based methods. The decimation in frequency (DIF) and decimation
in time (DIT) [17] provide the division in the frequency domain. They are the
cornerstone of the popular FFT algorithm. Karas et al. [11, 13] showed that the
DIF algorithm is suitable for the convolution of 3-D microscopy images on one
and multiple GPUs and that the DIT algorithm is not appropriate as it would
require the extensive data transfers between the nodes.

In [12], authors provide a detailed comparison of overlap-save, overlap-add,
DIF and DIT methods—refer to Table 1. In terms of the communication over-
head, the DIF algorithm is the most efficient method for the decomposition
of the convolution, it is hence the optimal choice for the linear deconvolution
methods including the Wiener deconvolution. On the other hand, the non-linear
deconvolution methods consist of a sequence of operations. Besides convolution,
reduction and point-wise operations are required. These operations cannot be
performed separately in individual image sections if the decomposition is per-
formed in the frequency domain. Here, the usage of the DIF is hence not optimal
and spatial-based approach should be used instead.
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Table 1. Comparison of methods for the parallel fast convolution
The size of input image g and PSF h is denoted as Mg = Mg

x ·Mg
y ·Mg

z and Mh =
Mh

x ·Mh
y ·Mh

z , respectively. For the convolution in the Fourier domain, both image and
PSF have to be padded to the size M = Mx ·My ·Mz where M∗ = Mg

∗ +Mh
∗ −1. Oh, Og

denote sizes of overlapping regions which are proportional to Mh and Mg, respectively.
The number of the computation nodes is denoted by d. In the 2nd and 3rd column, we
omit the size of the used datatype.

Method # of operations Data transfers Memory per node

DIF M
[
9
2

log2 M + 1
]

3M 2M/d

DIT M
[
9
2

log2 M + 2
]

(d + 1)M 4M/d

Signal tiling dM
[
9
2

log2(M
d

) + 1
]

3M + dOh 2M/d + Oh

Kernel tiling dM
[
9
2

log2(M
d

) + 1
]

3M + 2(d− 1)Og 2M/d + Og

3.2 Wiener Deconvolution

Our implementation consists of seven stages. For details, refer to Alg. 1:

1. The input image g and PSF h are padded to size (Mx,My,Mz) where M∗ =
Mg

∗ + Mh
∗ − 1. We choose M∗ to be the nearest larger integer which fulfils

additional constraints: (i) for the computation on d GPUs, Mz must be
divisible by d; (ii) Mx must be even because we use an optimization for real
(non-complex) images [13]; (iii) in order to achieve a better performance of
FFT, we choose M∗ to have the small prime factors, namely 2, 3, 5 and 7.

2. The DIF-based decomposition, optimized for real images [13], is performed
on CPU. Both the image and the PSF are split into sub-parts which are
stored in whole separate segments of the host memory.

3. The individual sub-parts are transferred from CPU to individual GPU nodes.
4. In each node, the Wiener deconvolution is performed according to Eq. (3).
5. The filtered sub-parts are transferred back to CPU. In order to achieve better

performace, the stages 3–5 may be overlapped.
6. The inverse operation to the decomposition is computed on CPU.
7. The resulting image is cropped to the original size.

3.3 ICTM and EM-MLE

The implementation consists of six stages. For the sake of brevity, we provide
details on the EM-MLE method only (Alg. 1), ICTM is implemented analogously.

1. Before the filtering, the input image g and PSF h are padded in the same
manner as in the previous case. Subsequently, they are split into sections.

2. The individual sections are copied from CPU to individual GPU nodes.
3. In each node, a single iteration is computed according to Eq. (5).
4. The overlapping regions are exchanged between the nodes.
5. After finishing all the iterations, output data are copied back to CPU.
6. The resulting image is merged and cropped to the original size.



284 P. Karas, M. Kuderjavý, and D. Svoboda

Algorithm 1. Deconvolution on a multi-GPU system
Wiener: g and h are input/output image and PSF, respectively, d denotes the
number of GPU nodes, and e = σ2

O/σ
2
N is the noise estimate—refer to Eq. (3).

EM-MLE: g, f and h are input and output image and PSF, respectively, d
denotes the number of GPU nodes, and n is the number of iterations.

procedure WienerDeconvolution(g,h, d, e)
g′ ←MirrorPad(g,Mx,My,Mz) � mirror padding of image
h′ ← ZeroPad(h,Mx,My,Mz) � zero padding of PSF
if d ≤ 2 then

g′ ← Decompose(g′, d) � DIF-based decomposition
h′ ← Decompose(h′, d)
for k ← 0, d− 1 do

Copy g′k, hk from host to k−th device
g′k ←Wiener(g′k, h

′
k, e) � evaluates Eq. (3) in the Fourier domain

Copy g′k from k−th device to host
end for
g′ ← Compose(g′, d) � DIF-based composition

else � if d > 2, the alternative function WienerAlt is used as the
result of convolution g ⊗ w depends on the recombination
of the sub-parts gk, hk with gd−k, hd−k [13]

g′ ← Decompose(g′, 2d)
h′ ← Decompose(h′, 2d)
for k ← 0, d− 1 do

Copy g′k, hk, g
′
2d−k, h

′
2d−k from host to k−th device

(g′k, g
′
2d−k)←WienerAlt(g′k, h

′
k, g

′
2d−k, h

′
2d−k, e)

Copy g′k, g
′
2d−k from k−th device to host

end for
g′ ← Compose(g′, 2d)

end if
g ← RemovePad(g′,Mg

x ,M
g
y ,M

g
z ) � removes padding

end procedure

procedure EM MLE(g, h, d, n)
g′ ←MirrorPad(g,Mx,My,Mz) � mirror padding of image
h′ ← ZeroPad(h,Mx,My,Mz) � zero padding of PSF
{g′k} ← SignalTiling(g′, d) � splits image into sections
for k ← 0, d− 1 do

Copy g′k, h
′ from host to k−th device � g is split using signal tiling [22]

f ′
k ← g′k
for i← 0, n− 1 do

f ′
k ← EM MLEIter(f ′

k, g
′
k, h

′) � evaluates Eq. (5)
Synchronize � exchanges regions of overlap between GPU nodes

end for
Copy f ′

k from k−th device to host
end for
f ′ ←Merge(f ′

k, d) � merges image from sections
f ← RemovePad(f ′,Mg

x ,M
g
y ,M

g
z ) � removes padding

return f
end procedure
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4 Experimental Results

All experiments were conducted on the computer described in Tab. 2. For FFT,
the FFTW library [9] and the CUFFT library [15] were used. The decomposition
and composition in the Wiener deconvolution were performed on CPU and im-
proved with SSE/SSE2 intrinsics and multi-threading for a better performance.

Table 2. Machine used for experiments

Parameters of a single node

CPU/GPU Nodes Cores Clock speed RAM size Bandwidth

Intel Xeon E5620 2 8 2.40 GHz 48 GB 25.6 GB/s

NVIDIA Tesla M2090 4 512 1.30 GHz 6 GB 177.4 GB/s

4.1 Wiener Deconvolution

We measure the performance of the Wiener deconvolution for various precisions
and system configurations, on randomly generated images. For the global compar-
ison, refer to Fig. 1(a),(b). The results show overall computation times including
data transfers. We can conclude that the GPU implementation is in average 7.9×
and 4.6× faster than the CPU one in the single and double precision, respectively.

The results also show that using more than one GPU does not bring any
further speedup. This is due to the fact that only a small portion of the time
is spent by the computation of the Wiener deconvolution itself which can be
performed in parallel on all nodes whereas the most of the time is spent by
padding and cropping of the images, in accordance with the well-known Amdahl’s
law [1]. Moreover, with larger number of GPU nodes, the time spent by the DIF
stages on CPU is longer. The overall time can be expressed as follows:

T =

ns∑

i=1

si +
1

d

np∑

i=1

pi, (6)

where si, pi is the time spent in a serial and a parallel stage, respectively, n∗
refers to their numbers, and d is the number of GPU nodes. In our case, si is
represented by steps 1–3 and 5–7 described in Section 3.2 and pi by step 4 only.
To compare Eq. (6) with empirical results, refer to Fig. 1(c).

Despite the above reservations, we note that the benefit of the decomposition
is the fact that the maximum size of the image that can be processed is no longer
limited by the memory size of the GPU node. In our case, it enables single-GPU
processing of the 128-Mpx image in the single precision and the 64- and 128-Mpx
images in the double precision, with a negligible performance decrease.

4.2 ICTM and EM-MLE

In the second experiment, we analysed the non-linear iterative methods using
the same approach as in the previous section. For the sake of brevity, we tested
the single precision only. The results are shown in Fig. 2.
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Fig. 1. Computation time of the Wiener deconvolution. As input, various image sizes
and a fixed PSF size of 65× 65× 65 voxels were used.

Depending on the image size, the speedup of the multi-GPU system over CPU
is 17–31× and 41–44× for the EM-MLE and the ICTM method, respectively.
We note that some data are missing due to insufficient GPU memory. It is not
straightforward to extend the implementation in order to process larger images
as it would require excessive data transfers after each iteration.

For iterative methods, the overall time is given by

T =

ns∑

i=1

si +
1

d

np∑

i=1

pi + n

(
ns′∑

i=1

s′i +
1

d

np′∑

i=1

p′i

)
, (7)

where n is the number of iterations, si, pi refer to serial and parallel stages per-
formed once only, and s′i, p

′
i relate to serial and parallel stages of each iteration.

For both the ICTM and the EM-MLE method, si is represented by steps 1,
2, 5 and 6 described in Section 3.3, s′i by step 4, and p′i by step 3. Refer to
Fig. 2(c),(d) to compare Eq. (7) with empirical results.
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Fig. 2. Computation time of the EM-MLE and ICTM deconvolution. As input, various
image sizes and a fixed PSF size of 65 × 65 × 65 voxels were used. For the sake of
simplicity, we provide the overall times for the EM-MLE/ICTM iteration and the
Exchange phase in the detailed view, instead of displaying each individual iteration.
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Fig. 3. Speedup reached by GPU over the CPU implementation of the EM-MLE and
ICTM deconvolution with respect to various PSF sizes.

We can conclude that the EM-MLE method scales well for 2 and 4 GPUs,
although the amount of data transfers increases quickly. The ICTM method
performs poorly on 4 GPUs due to the communication overhead. As we used the
signal tiling method [22], the amount of data exchanges is directly proportional
to the size of PSF. To analyse this behaviour, we conducted the final experiment
to study the scalability of both implementations with respect to the PSF size.

In Fig. 3, we provide speedup rates over the CPU implementation for various
PSF sizes. The image size was fixed and set to 257×257×129 voxels. The results
prove the communication to be the bottleneck of both implementations. This is
particularly true in the case of the ICTM deconvolution because it requires
overlapping regions to be two times larger.

5 Conclusions and Future Work

In this paper, we discussed strategies to parallelize selected deconvolution meth-
ods on a platform with multiple GPUs. Although the GPU itself is a massively
parallel unit, the coarse-grained decomposition of the problem is the key task.
We provided a theoretical analysis of four different approaches to split input
data into sub-parts and chose two of them for own implementation: decomposi-
tion in frequency (DIF) and signal tiling by means of the overlap-save method.
The third one, kernel tiling using the overlap-add technique, can be considered
in architectures with a larger number of computing nodes such as clusters, as
explained in Section 3.1.

The first approach was used for the linear Wiener deconvolution. Despite the
efficiency of the DIF decomposition, the speedup achieved by multiple GPUs
was negligible as the most of the time was spent by serial steps, such as image
padding/cropping and data transfers. Thus, the bandwidth of the CPU memory
and of the communication bus (PCI-Express) are the major bottlenecks in the
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system. We assume that iterative linear methods could be more suitable for the
multi-GPU implementation. This will be the subject of our future work. On the
other hand, we show that the decomposition allows to process even large images
that cannot fit in the GPU memory with a negligible loss of performance.

The second technique was chosen for the non-linear ICTM and EM-MLE
methods. In this case, we achieved a significant speedup over the CPU imple-
mentation (up to 65× for EM-MLE and 43× for ICTM). We showed that the
performance strongly depends on the size of the PSF which influences the amount
of data transfer. Here, the system is bottlenecked by the bandwidth of the PCI-
Express bus. We also demonstrated that the usability of the implementation is
determined by the size of the GPU memory which poses limits on the maximum
size of input images. This is a serious issue for biomedical applications which we
would like to deal with in our future work.

Finally, we note that although the results and conclusions presented in this
paper were achieved on the multi-GPU platform, they can also be applied to
other similar architectures such as small clusters.

Source Code. The source code of the program along with test images is avail-
able at http://sourceforge.net/projects/multigpudeconvolution/.
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Zemč́ık, P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 59–71. Springer, Heidelberg
(2012)

[14] Nussbaumer, H.: Fast Fourier transform and convolution algorithms. Springer Se-
ries in Information Sciences 2 (1982)

[15] NVIDIA Corporation: CUFFT Library (2012), http://docs.nvidia.com/cuda/
pdf/CUDA CUFFT Users Guide.pdf (cited August 1, 2013)

[16] NVIDIA Corporation: NVIDIA Developer Zone (2012),
http://developer.nvidia.com/category/zone/cuda-zone (cited August 1,
2013)

[17] Oppenheim, A., Schafer, R., Buck, J., et al.: Discrete-time signal processing, vol. 2.
Prentice Hall, Upper Saddle River (1989)

[18] Pawliczek, P., Romanowska-Pawliczek, A., Soltys, Z.: Parallel deconvolution of
large 3D images obtained by confocal laser scanning microscopy. Microscopy Re-
search and Technique 73(3), 187–194 (2010)

[19] Quammen, C.W., Feng, D., Taylor II, R.M.: Performance of 3D Deconvolution
Algorithms on Multi-Core and Many-Core Architectures. University of North Car-
olina at Chapel Hill, Dpt. of Computer Science, Tech. Rep. (2009)

[20] Serafini, T., Zanella, R., Zanni, L.: Gradient projection methods for image deblur-
ring and denoising on graphics processors. In: Int. Conf. on Parallel Computing
ParCo 2009. Advances in Parallel Computing, vol. 19, pp. 59–66 (2010)

[21] Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomog-
raphy. IEEE Transactions on Medical Imaging 1(2), 113–122 (1982)

[22] Svoboda, D.: Efficient computation of convolution of huge images. In: Maino, G.,
Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 453–462. Springer,
Heidelberg (2011)

[23] Trussell, H., Hunt, B.: Image restoration of space variant blurs by sectioned meth-
ods. In: IEEE International Conference on Acoustics, Speech, and Signal Process-
ing, ICASSP 1978, vol. 3, pp. 196–198. IEEE (1978)

[24] Verveer, P.J.: Computational and optical methods for improving resolution and
signal quality in fluorescence microscopy. Ph.D. thesis, Delft TU (1998)

[25] Voort, H., Strasters, K.: Restoration of confocal images for quantitative image
analysis. Journal of Microscopy 178(2), 165–181 (1995)

[26] Wendykier, P., Nagy, J.G.: Image processing on modern CPUs and GPUs. Tech.
rep., Emory University TR-2008-023 (2009)

http://docs.nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf
http://developer.nvidia.com/category/zone/cuda-zone


Hardware-Assisted Intrusion Detection

by Preserving Reference Information Integrity

Junghee Lee1, Chrysostomos Nicopoulos2, Gi Hwan Oh3, Sang-Won Lee3,
and Jongman Kim1

1 Georgia Institute of Technology, Atlanta, USA
junghee.lee@gatech.edu, jkim@ece.gatech.edu

2 University of Cyprus, Nicosia, Cyprus
nicopoulos@ucy.ac.cy

3 Sungkyunkwan University, Suwon, South Korea
{wurikiji,swlee}@skku.edu

Abstract. Malware detectors and integrity checkers detect malicious
activities by comparing against reference data. To ensure their trust-
worthy operation, it is crucial to protect the reference data from unau-
thorized modification. This paper proposes the Soteria Security Card
(SSC), an append-only storage. To the best of our knowledge, this work
is the first to introduce the concept of an append-only storage and its
application to information security. The SSC framework allows only read
and append operations, and forbids over-write and erase operations. By
exploiting this trait, we can protect the reference data that must be up-
dated constantly. It is demonstrated how SSC facilitates log protection
and file integrity checking.

Keywords: log, hardware, protection, security.

1 Introduction

There are numerous software tools that prevent or detect malicious activities
in a computer system by comparing against reference data. For example, anti-
virus programs detect malware by matching files or snapshots of memory against
signature databases. A signature database contains measurable characteristics
of known malware. On the other hand, integrity checkers validate their target by
comparing against the target’s integrity information. For example, file integrity
checkers validate files by checking if their checksum matches an a priori measured
one. Additionally, log information – which is a trace of various server activities
– also constitutes very important reference data when an attack is investigated.
Thus, protecting reference data is critical for the above-mentioned techniques,
because they would become useless once the reference data is contaminated.

Since reference data is constantly updated, we cannot protect it by enforcing
a read-only property on it. Encryption can effectively protect data, as long as
the key is not revealed. However, according to a recent report [1], 76% of data
breaches occurring in 2012 exploited weak or stolen credentials. It is not a trivial
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task to keep the key itself secret. Using a virtual machine is also an effective way
to protect or monitor important reference data. The host operating system (OS)
can serve as the protector of reference data in the guest OSes. In a virtual
machine environment, the integrity of the host OS becomes even more critical,
because all the guest OSes are threatened once the host OS is compromised.
There should be a mechanism to protect the reference data of the host OS.

Toward this end, this paper proposes the Soteria1 Security Card, or SSC. SSC
is a card that attaches to the host machine through a standard interface, such as
Serial AT Attachment (SATA). The purpose of SSC is to protect reference data
from unauthorized modification. SSC allows only read and append operations.
Overwriting and erasing stored data is physically impossible. Therefore, it can
be a secure foundation for storing important reference data. To the best of our
knowledge, this work is the first attempt to introduce the concept of append-only
storage and to apply it to information security. Note that write-once-read-many
(WORM) devices can also be considered as append-only storage; compact disks
(CD) and digital versatile disks (DVD) are typical examples. However, these
devices are significantly slower than hard-disk drives and their media should
be replaced once they become full. Instead, SSC offers better performance than
WORM devices and has the necessary intelligence to sweep old data. Log protec-
tion and file integrity checking will be presented as two proof-of-concept examples
of the capabilities of SSC.

The rest of this paper is organized as follows: the Soteria Security Card is
presented in Section 2, followed by the two case-study examples of log protection
and file integrity checking in Sections 3 and 4, respectively. Section 5 discusses
related work, while Section 6 concludes this paper.

2 The Soteria Security Card: An Append-Only Storage
Solution

Fig. 1. The high-level block diagram
of the developed Soteria Security Card

To implement append-only storage, we
have developed specialized hardware in the
form of (a) an add-on card that can be at-
tached to the host machine, (b) firmware
running on the hardware, and (c) a de-
vice driver that provides an interface to
the host OS. The architecture of the So-
teria Security Card is explained in sub-
section 2.1, followed by its implementation
and performance evaluation results in sub-section 2.2.

2.1 The SSC Architecture

The Soteria Security Card (SSC) consists of an interface controller to the host
system, non-volatile memory, and a main controller. A high-level block diagram
of the SSC is illustrated in Figure 1.

1 In ancient Greek mythology, Soteria was the goddess of safety and recovery from harm.
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The interface controller to the host system connects the SSC to the host
system through a standard system bus, such as Peripheral Component Inter-
connect (PCI), Serial AT Attachment (SATA), and Small Computer System
Interface (SCSI). In our specific implementation, the SATA interface is em-
ployed. The interface controller handles the protocol of the system bus. The
non-volatile memory is used to store the log files. The memory could be of
any non-volatile type, such as NAND flash, NOR flash, Phase-Change Memory
(PCM), or Spin-Transfer Torque Memory (STT-RAM). In this implementation,
we adopted NAND flash memory. The main controller is an embedded proces-
sor where the firmware runs. An ARM7 microprocessor is used in the current
implementation.

Fig. 2. The firmware architecture
of the Soteria Security Card. The
layers in the grey box are part
of the firmware. The term “LPN”
stands for Logical Page Number.

Figure 2 depicts the architecture of the
firmware running on the SSC. The layers
shown in the grey box are part of the firmware.
The heart of the firmware is the file man-
agement layer. It manages files according to
commands issued through the host interface.
Through the host interface, the firmware ac-
cepts only read and append commands. The
file management layer is a simple file system.
It maintains a file descriptor table that keeps
meta data for files, such as file name, file size,
and position pointer. It maintains a main data
region that stores data. Whenever an append
command is issued, it appends data to the end
of the data region and updates the meta data
accordingly.

Since the capacity of NAND flash memory
is limited, the data region eventually becomes
full. The file management layer then deletes
the oldest data to make space for new data.
This is the only situation where the stored
data are deleted. If this attribute is known to
attackers, it could be exploited. However, var-
ious defense mechanism are possible, which depend on the application. Details
of some defense mechanisms will be presented through the examples in the fol-
lowing sections.

The file management layer operates based on commands. The commands are
given through the host interface. The host interface interprets the SATA pro-
tocol. One way to implement the commands to the file management layer is to
modify the SATA protocol, because the SATA protocol also operates based on
commands. For example, we may extend the SATA protocol using unused SATA
commands. However, this requires modifications to the SATA device driver in
the host OS. To minimize modifications, we implement the commands on top of
the SATA protocol.
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We introduce two logical pipes on top of the SATA protocol, as illustrated
in the upper half of Figure 2. Logical page number 0 (LPN0) is always written
by the host and LPN1 is written by the SSC. Under normal SATA protocol,
writing to LPN0 means writing data to a physical page associated with LPN0.
In SSC, this is interpreted as a command. Similarly, writing data to LPN1 is
interpreted by the SSC as a response. From the perspective of the host, it is
not required to modify the SATA device driver. Since there are many variations
of SATA device drivers, depending on the manufacturer, modifying the entire
SATA device driver is impractical. Instead, using two logical pipes requires only
a simple device driver for the SSC. The SSC driver is, thus, independent of the
manufacturer and platform, because it works over existing SATA device drivers.

2.2 Hardware Implementation

Fig. 3. The Soteria Security Card
implemented on an OpenSSD
board and attached to a host ma-
chine through the SATA interface

We have developed a prototype of the SSC
framework by modifying the OpenSSD plat-
form [2]. This setup has a SATA 2.0 inter-
face with NCQ support. Its microcontroller
is the ARM7TDMI-S running at 87.5 MHz.
It has 96 KB of SRAM, 64 MB of SDRAM,
and 64 GB of NAND flash memory. Figure 3
shows the prototype OpenSSD board attached
to a host machine through the SATA inter-
face. The host machine has an Intel Core i3
processor running at 3.3 GHz and having 4
GB of DDR3 SDRAM. The OS installed is
Ubuntu 12.04, with a Linux kernel version of
3.9.2. The measured throughput of SSC in this
environment is 100.71 KB/s.

3 Log Protection Through the Use of the SSC Framework

3.1 Problem Statement

The primary target of log protection is any server generating logs. When the
administrator detects or suspects an attack, he/she usually investigates it by
examining the logs. If the logs are contaminated or removed, it is extremely
difficult for the administrator to deal with the attacks [3–6]. Even worse, the
administrator may not even be aware of the attack(s) if the logs are fabricated.
If the attacker manages to obtain root privileges, they can make changes to every
file, including the logs.

This paper assumes the strongest adversary, i.e., one that can obtain root
privileges and make changes to anything they want, including the OS, device
drivers, file systems, and applications. Our goal is to prevent the attacker from
modifying or removing the logs, even if they obtain root privileges. The ultimate
goal of the proposed mechanism is to prevent an attacker from modifying existing



Hardware-Assisted Intrusion Detection 295

logs. Of course, if the intruder obtains root privileges, they can stop logging, or
they can start generating forged logs after the intrusion. However, they cannot
make changes to existing logs that have been generated before the intrusion.
If the attacker obtains root privileges by using some sort of hacking tool, the
history of using the tool will be recorded in the logs and the logs would not be
modifiable. Additionally, the location where the attack originated from will also
be traced in the log file. Therefore, the logs would still hold valuable information
for the administrator to investigate, even if the attacker obtains all-encompassing
root privileges.

In summary, the scope of the proposed technique is as follows:

– Target system: Servers generating logs.
– Threat model: Attackers may have root privileges to modify or remove

logs.
– Goal: Prevent attackers from modifying and removing existing logs.

3.2 Employing SSC for Log Protection

Since SSC is an append-only storage solution, it is very well suited to applica-
tions that maintain log information, whereby new data is constantly added, but
existing data is not supposed to be overwritten. Figure 4 illustrates how SSC
may be used to protect logs.

Fig. 4. High-level system overview of how SSC
may be used to store and protect log information

We do not change the exist-
ing path to store logs. When a
server needs to generate logs, it
uses Application Programming
Interfaces (APIs) provided by a
file system, such as open, write,
and close. The file system up-
dates meta data and log data.
These are actually stored on a
hard drive through a block de-
vice driver.

To snoop logs from the existing path, we exploit the ionotify capability that
is supported by modern file systems. Users can be notified when an event occurs
to any file. The SSC device driver can be notified when new log data is written
to a log file. In the case of Linux, the shell command “tail -F” works using
ionotify.

It should also be noted that the “tail -F” command does not incur significant
performance overhead. This is because it does not keep monitoring (polling) the
file, but, instead, the file system issues a notification when an event occurs.
Also, this command runs in a separate process, independently from the server
that generates logs. Since the write operation to the SSC is performed by a
separate process – and not by the server itself – the access latency to the SSC
does not affect the performance of the server.

The intruder may generate a huge amount of dummy logs, so that the old
logs would be erased from the SSC memory. We call this a log flooding attack.
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To cope with log flooding attacks, we first need to detect them. To do so, we
employ a threshold-based mechanism. If the rate of incoming logs, in terms
of events per second (eps), exceeds a pre-defined threshold for longer than a
pre-defined period of time, a log flooding attack is declared. Since the range of
normal logging rates varies with the system, the threshold should be determined
by the administrator. When an attack is detected (or suspected), an alarm is
sent to the administrator. Upon notification, the firmware intentionally delays
any responses, so as to reduce the logging rate. If the responses from the SSC
are slowed down, the storing of logs is delayed, which, in turn, slows down the
generation of dummy logs. This reaction gives time to the administrator to find
a way to handle the attack. The administrator may shut down the network, or
copy existing protected logs to a safe place before valid logs are deleted. Each
file is identified by its associated minor number. When SSC is installed, the
administrator sets which minor number will store log files, so that the defense
mechanism can be enabled only for the log files. After initialization is performed,
the setting cannot be modified, unless SSC is physically re-installed.

3.3 Performance Evaluation

To evaluate the performance degradation incurred by the SSC, we measured
the response time of the Apache 2.2.22 Web Server by using the Apache Bench-
mark [7]. When the SSC technique is adopted, logs generated from the web server
– as well as those from the Linux OS – are recorded by the SSC. When SSC
is not employed, all logs are stored as regular files on the hard drive. Table 1
summarizes the results.

Table 1. Comparison of Apache Web Server response times
between an unprotected system and a system employing the
SSC engine. Note that the average response time (time per
request) increases by a near-negligible 0.88%.

Item No Log Protection SSC

Document length 117 bytes 117 bytes

Number of requests 10000 10000

Time per request
0.113 msec 0.114 msec
100.00 % 100.88 %

Transfer rate
3.812 MB/sec 3.794 MB/sec

100.00 % 99.51 %

The average response
time (time per request)
increases by a near-
negligible 0.88%. In fact,
the chosen settings
correspond to a very
pessimistic worst-case
scenario for the SSC,
because the response
time is unrealistically
small due to the very
small size of the re-
quested document (only
117 bytes). Moreover, we ran the Apache Benchmark on the same machine where
the web server was running. In other words, the reported response time did not
include any network delay. In real situations, the size of the request is usually
much larger than 117 bytes, and requests are made remotely over the network.
Thus, the absolute value of the response time is much larger than that of this
experiment. In such situations, the overhead incurred by the SSC would be
imperceptible.

The SSC framework aims to minimize its impact on the process(es) running
on the server whose operations are being logged, by employing a separate process
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for storing the logs. Of course, the maximum logging rate supported by SSC is
limited by the maximum attainable throughput of the card itself. The measured
throughput of the SSC prototype used in this work is 100.71 KB/s. Assuming
the log size of one event is 50 bytes, the SSC throughput can support up to
2062.54 events per second (eps). Obviously, the current SSC incarnation cannot
be used in a server generating logs at a higher rate than this. However, according
to a recent report [8], the average logging rate of various benchmarked devices is
lower than 50 eps, and even the average peak rate is less than 2000 eps, except in
one device (2414 eps). Therefore, even the throughput of the current prototype
SSC is enough to support the logging needs of most modern servers. We envision
the throughput of future SSC implementations to increase to levels well above
the maximum peak logging rates of most (if not all) servers available on the
market. The current implementation of the SSC has 64 GB NAND flash memory.
Assuming 20 eps and 50 bytes per event, this capacity can accommodate 795
days (2.18 years) worth of logs. This is a sufficiently long time to retain logs,
because 96% of data breaches are discovered within a few months [1].

4 File Integrity Checking by the SSC

4.1 Problem Statement

File modification is usually (if not always) a prerequisite or a result of malware.
In order for malware to be installed, an existing file is modified, or a new file is
secretly placed in the system. Some malware tries to hide itself by replacing ex-
isting software utilities, which results in file modification. Therefore, file integrity
checking is a powerful tool to find out the cause of attacks and malware. The
threat model is that the attacker may modify or install files. Further, our threat
model assumes that the attacker may be able to contaminate the reference data.

The scope of the proposed technique is summarized as follows:

– Target system: Any type of server.
– Threat model: Attackers may modify or install files, and they may be able

to update reference data in an authentic way.
– Goal: Detect file modification even if the reference data is contaminated.

4.2 Employing the SSC for File Integrity Checking

SSC is employed as storage for the reference data. The a priori measured integrity
information is added to SSC in the following format: (timestamp, comment,
reference data). The timestamp is the time the integrity information is measured.
The timestamp is provided by the SSC. The comment is a short description that
can be recognized by the administrator. The reference data is the actual integrity
information.

Let us consider an example to illustrate how SSC works for integrity checking.
The administrator wants to protect the netstat utility from unauthorized mod-
ification, right after a kernel upgrade. Its checksum is measured and stored to the
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SSC with a timestamp “2013-09-12 09:11:11” and a comment saying “upgraded
kernel to 3.10.11”. When netstat has not been modified further, the integrity
checker displays a message “The current file is matched to version 2013-09-12
09:11:11” when the administrator runs the checker. If netstat has been modi-
fied by an attacker, but the reference data has not been breached, the current
file cannot be matched with any record in the reference data. If netstat and
the reference data have been modified, a new record is added to SSC with a
different timestamp. Note that the timestamp is given by the SSC and cannot
be modified, nor erased under any circumstances. If the timestamp and the com-
ment are not recognizable to the administrator, the administrator can detect
the file modification. Note that if the reference data is modifiable, the attacker
may also modify the date of the data file, so that the data file may look unmod-
ified. Detecting unauthorized modification of the timestamp can be automated.
When the administrator runs the integrity checker, they specify a certain date
when the last authorized modification was made. The integrity checker reports
any file whose modification date is later than the given date, or whose integrity
information does not match.

Table 2. Comparison of response times between
an unprotected integrity checker and an integrity
checker employing SSC.

Item No protection SSC

Number of files checked 1000 1000

Average file size 108 KB 108 KB

Checksum MD5 MD5

Response time per file 1.59 msec 1.89 msec

The performance of an
integrity checker that em-
ploys the SSC is compared
with an unprotected one in
Table 2. The unprotected
integrity checker stores refer-
ence data as a regular file
on a hard-disk drive. Unlike
the case of log protection, in
this application the SSC af-
fects the overall system performance, because a separate process is not employed.
However, since the integrity checker is an off-line utility and runs in the back-
ground, the performance impact on foreground processes can be minimized by
assigning a low priority.

5 Related Work

Traditionally, hardware-assisted approaches for information security are involved
in encryption (authentication) or monitoring.

The Trusted Platform Module (TPM) [9] is a hardware-assisted approach that
offers secure generation of encryption keys. It can also encrypt data using the
TPM endorsement key, which is burnt in the hardware during manufacturing.
As mentioned in the introduction, once the key is revealed, or the software as-
sociated with the TPM is compromised, the encrypted data is not secure any
longer. Instead of keeping keys, a security protocol using Physically Unclone-
able Functions (PUFs) [10, 11] is an alternative way to provide authentication.
PUF is a disordered physical system that cannot be reproduced exactly [10].
TrustZone [12], provided by ARM, enables the implementation of a secure ex-
ecution environment, by separating the secure world from the normal world.
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The separation is facilitated by hardware. While the proposed SSC aims to pro-
tect data from unauthorized modification, the aforementioned approaches can
protect data from both unauthorized modification and breaches. SSC can easily
accommodate existing encryption techniques, if deemed necessary.

Another category of hardware-assisted security is monitoring. A separate
hardware keeps monitoring the main system to check for attacks. This approach
is especially useful for detecting rootkits, which compromise the OS kernel. Since
rootkits reside within the kernel, it is hard to detect by software-only approaches.
Copilot [13], RKRD [14], and KI-Mon [15] are typical examples.

Since logs contain essential information to detect and analyze intrusion, there
have been many software-based techniques that provide log protection [3–6]. All
of these techniques employ cryptography to prevent unauthorized access to logs.
However, encryption-based approaches only make it harder to access logs, but
not impossible. As described in Section 3, our threat model assumes that the
attacker can obtain root privileges and make changes to any software component.
In an extreme case, the attacker may delete everything on the hard drive in an
unrecoverable manner. In this extreme case, the above-mentioned software-based
techniques cannot protect logs from removal, even if the logs are encrypted. This
problem still exists in the hardware-assisted log protection technique proposed
by Boeck et al. [16], because the hardware is used only for authentication, but
the log files are still stored on the hard disk.

File integrity checkers are usually part of Host-based Intrusion Detection Sys-
tems (HIDS). Zhang et. al [17] discuss the feasibility of implementing HIDS
on a co-processor. In their implementation, the co-processor is attached to a
Peripheral Component Interconnect (PCI) bus, whereby the device can issue
commands to the main memory. The file integrity monitor can be secured by
a virtual machine [18]. The monitor in the host OS checks the integrity of the
guest OS.

6 Conclusion

Many software-based security solutions rely on reference data to prevent or
detect malicious activities. It is crucial for such approaches to protect the ref-
erence data from unauthorized modification in order to guarantee their trust-
worthy operation. In this paper, we propose the Soteria Security Card, which is
a hardware-based append-only storage solution for securing the reference data.
SSC is a card attachable to the host machine through a standard bus interface.
Since SSC allows only read and append operations, over-write and erase opera-
tions are physically impossible. Owing to its attributes, the SSC framework can
facilitate efficient log protection and file integrity checking. Experimental results
demonstrate that the performance degradation caused by the add-on hardware
is negligible. The two example case studies presented in this paper (i.e., log pro-
tection and file integrity checking) merely serve as proof-of-concept. The SSC
framework may be employed to protect any type of reference data.
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Abstract. The enormous parallel computing ability and high memory density of
DNA computing bring potential challenges and opportunities to traditional cryp-
tography. Finite field GF(2n) is one of the most commonly used mathematic sets
for cryptography. It is an open problem that how to implement the arithmetic
operations over finite field GF(2n) based on DNA computing. Existing research
has the problem that the lengths of parameters in the DNA tile assembly pro-
cess could not match each other strictly. This paper proposes a parallel molecular
computing system to compute the modular-multiplication, an operation combin-
ing multiplication and reduction over finite field GF(2n). The multiplication and
the reduction are executed simultaneously in this system. One concrete example
of 1100 · 1001 mod 10011 is proposed to show the details of our tile assembly
system. The time complexity of this system is Θ(n) and the space complexity
is Θ(n2). This system requires 210 types of computation tiles and 17 types of
boundary tiles.

Keywords: Modular-multiplication, Tile assembly model, Tile assembly sys-
tem, Finite field GF(2n), DNA tile.

1 Introduction

The field of DNA based computing, creatively proposed by Leonard Adleman [1], is a
new calculation method that used biological molecule DNA as calculation medium and
biochemical reaction as calculation tool. Two major advantages of DNA computing lie
in huge memory capacity and high parallelism, which — in data processing — leads
molecule computing procedures to solve many combinatorial optimization problems
(such as maximal clique problem [2], satisfiability problem [3], 0-1 integer knapsack
problem [4], graph isomorphism problem [5], set-partition problem [6], etc). Several
researches have also proved that the molecular computer is possible to perform parallel
computation in the future [7]. The tile assembly model [8–10] is a commonly used DNA
computing model. It is an extension of the model presented by Wang [11]. Tile assembly
system is a concept of the computation through self-assembly process of the DNA tiles

J. Kołodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 301–311, 2013.
c© Springer International Publishing Switzerland 2013



302 Y. Li et al.

based on the theoretical underpinnings of tile assembly model. The implementation of
tile assembly system is a process of folding a single long scaffold strand into an arbitrary
shape by using small helper strands [12–14].

Finite field GF(2n), in which carry bits do not need to be propagated, is one of the
most commonly used mathematic sets for error-correcting codes [15] and cryptography
[16–18]. There is very little research that has been proposed to compute the arithmetic
over finite field GF(2n). A few studies proposed parallel tile assembly models for basic
operations over finite field GF(2n)[19, 20]. However, the polynomials, the length of
which were not constant, were defined as the basic computing units, so the lengths of
parameters in the assembly process could not match each other strictly. Our previous
works[21–23], in which the basic parameters were coded as single bits, have discussed
the square, the modular-square and the modular-multiplication over finite field GF(2n).

This paper proposes one parallel tile assembly system which could compute the
modular-multiplication over finite field GF(2n). Differing our previous research in [23],
two operations — multiplication and reduction — are executed simultaneously to ob-
tained the final result over finite field GF(2n). In order to verify the correctness of the
tile assembly system, rigorous theoretical proofs are described and a specific computing
instance is given after defining the basic tiles and the assembly rules. This DNA comput-
ing system could complete process of parallel computing within linear assembly time,
and it cost less tile assembly steps compared with [23]. The modular-multiplication is
one of the fundamental operations over finite field GF(2n). Many researches have been
proposed to deal with parallel computation of these basic operations as part of elliptic
curves cryptosystem over this specific finite field. These studies mainly focus on re-
ducing computing unit [24, 25], accelerating computing speed [26, 27] and lowering
power consumption [28, 29]. Our work, differing from these researches, contributes on
figuring out the result in linear assembly time, and it is supposed to obtain the solution
space within as less tile assembly steps as possible.

The rest of this paper is organized as follows. Next section will introduce the tile
assembly model. Section 3 will describe our tile assembly system that computes the
modular-multiplication over finite field GF(2n). Section 4 will provide a conclusion of
the contributions.

2 Tile Assembly Model

The tile assembly model [30, 31] will be introduced in this section. ∑ is a four-tuple
{σN ,σS,σW ,σE} ∈ ∑4, including the binding domains on the north, south, west and
east. The set of directions D = {N,S,W,E} is a set of four functions from positions to
positions i.e. Z2 to Z

2.
The positions (x,y) and (x′,y′) are neighbors if ∃d ∈ D such that d(x,y) = (x′,y′).

For a tile t, for d ∈ D, bdd(t) is referred as the binding domain of tile t on d’s side. A
special tile empty =< null,null,null,null > represents the absence of all other tiles.
The position relationships are listed as follows:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E(x,y) = (x+ 1,y)

W (x,y) = (x− 1,y)

S(x,y) = (x,y− 1)

N(x,y) = (x,y+ 1)

(1)

A strength function g : ∑×∑→R, where g is commutative and ∀σ ∈∑, g(null,σ)=
0, denotes the strength of the binding domains, the value of which may be 0, 1 or 2
(called null, weak, strong bonds, respectively). It is common to assume that g(σ ,σ ′) =
0⇐⇒ σ 	= σ ′. The binding domains determine the interaction between tiles when two
tiles attach to each other. Finally, a tile system S is a triple < T,g,τ >, where T is a finite
set of tiles containing empty tile, g is a strength function, and τ ≥ 0 is a parameter about
the temperature. This paper uses g = 1 to denote ∀σ ∈ ∑, g(σ ,σ) = 1 and ∀σ 	= σ ′,
g(σ ,σ ′) = 0.

If A is a configuration, then within S, a tile t can attach to A at position (x,y) and
produce a new configuration A′. The conditions are listed as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(x,y) = empty

Σd∈D g(bdd(t),bdd−1(A(d(x,y)))) ≥ τ
∀(u,v) ∈ Z

2,(u,v) 	= (x,y)⇒ A′(u,v) = A(u,v)

A′(x,y) = t

(2)

Given a tile system S =< T,g,τ >, a set of seed tiles Γ , and a seed configuration
S : Z2 ← Γ , one may attach tiles of T to S if the above conditions are satisfied. A tile
can attach to a configuration only in empty positions and only if the appropriate binding
domains match the tiles in neighboring positions.

Configuration produced by S on S is the process of attaching tiles from T to S. If this
process terminates, the final configuration with no more attachments could be produced.
If all possible final configurations are identical for every sequence of tile attachment,
then S is said to produce a unique final configuration on S.

3 Modular-Multiplication

In this section, a tile assembly system will be presented to compute the modular-
multiplication over finite field GF(2n). According to the characteristic of finite field
GF(2n), carry bits do not need to be propagated in the process of mathematic
computation.

Fig. 1 shows the concept tile, with two input sides (west and south) and two output
sides (east and north), of the tile assembly system of modular-multiplication.

Theorem 1. Let Σ = { ###, #11, #10, 000, 001, 010, 011, 100, 101, 110, 111, 0′00,
0′01, 0′10, 0′11, 1′00, 1′01, 1′10, 1′11, 200, 201, 210, 211, 300, 301, 310, 311, 0##,
1##, 0′##, 1′##, 2##, 3##, 01#, 11#, 0′1#, 1′1#, 21#, 31# }, g = 1,τ = 2, and T be a
set of tiles over Σ as described in Fig. 2. Then S =< T,g,τ > computes the function
c(x) = a(x)b(x)mod f (x) over finite field GF(2n). 1′ only denotes the different case from
1 in the assembly process, and they represent the same value in the coding principle.
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Fig. 1. The concept tile. The tile has two input sides (west and south) and two output sides (east
and north). The lN bit is the value of the tile. In every computation tile, mNrN = mW rW , mE rE =
mSrS. The values of lN and lE depend on different input cases.
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Fig. 2. The computation tiles. The parameters d,e,x,y,z ∈ {0,1}. The total number of computa-
tion tiles is 210.

So is the encoding way of 0′. Let the actual values of 1′ and 0′ be equal to 1 and 0,
respectively.

As shown in Fig. 2, the lW bit of the west side has six different values. Once the mW

bit of the west side is fn while the lW bit of the west side is 1 or 0, the value of lE will
be assigned as another value, which is different from lW , to determine different cases.
Fig. 3 shows the boundary tiles that are used to construct the seed configuration. Fig. 4
shows the encoding principle of the common seed configuration.

Fig. 5 shows the final configuration of one example, with the solution 110 encoded
on the top row. The yellow tiles of the seed configuration are encoded by the four input
parameters. The gray tiles are only used for passing the parameter bi (0 ≤ i ≤ n− 1)
from left tile to right tile or performing the operation of a right-shift for the module f (x)
and parameter a(x). Magenta tiles identify that what kind of operation this assembly
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Fig. 3. The boundary tiles. The total number of boundary tiles is 17.

row would execute by assigning its lE bit as 3 or 2 or 1′ or 0′. In the magenta tiles, the
value of lE is not equal to lW . The white tiles are the actual computation tiles used in
the process of self-assembly. Fig. 6 shows the assembly order of this example.

The tile identification conditions are listed as follows:

– Magenta tile: lW ∈ {0,1} and mW rW 	= ##,
– White tile: lW ∈ {0′,1′,2,3} and mW rW 	= ##,
– Gray tile: mW rW = ##.

Proof of Theorem 1. Consider the tile system S. Let a(x) and b(x) be the numbers to
multiply over finite field GF(2n). Let f (x) and c(x) be the module and the result. The
sizes, in bits, of a(x),b(x), f (x) and c(x), are n,n,n+1 and 2n−1, respectively. For all
i ∈ N, let ai,bi, fi,ci ∈ {0,1} be such that a(x) = an−1 . . .a0, b(x) = bn−1 . . .b0, f (x) =
fn . . . f0 and c(x) = c2n−2 . . .c0. In this tile assembly system, we define that ∀u ∈ {0,1},
xor(#,u) = u, xor(u,#) = u and xor(#,#) = #.

Let Γ = { α#11 =< #11, null, null, null >, α#10 =< #10, null, null, null >, α000

=< 000, null, null, null >, α001 =< 001, null, null, null >, α010 =< 010, null, null,
null >, α011 =< 011, null, null, null >, α100 =< 100, null, null, null >, α101 =< 101,
null, null, null >, α110 =< 110, null, null, null >, α111 =< 111, null, null, null >,
α01# =< 01#, null, null, null >, α11# =< 11#, null, null, null >, α0## =< 0##, null,
null, null >, β0## =< null, null, null, 0## >, β1## =< null, null, null, 1## >, β0′##
=< null, null, null, 0′## >, β1′## =< null, null, null, 1′## > }.

In finite field GF(2n), fn and f0 — the highest bit and the lowest bit of the module
— would always be 1. Then the seed configuration S : Z2→ Γ is such that

– S(0,−1) = α# fnan−1 ,
– ∀i ∈ {1, . . . ,n− 1},S(i,−1) = α0 fn−ian−1−i ,
– S(n,−1) = α0 f0#,
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Fig. 4. The common seed configuration. Three of the input parameters, a(x), f (x) and c(x), are
coded on the bottom row and the fourth input parameter, b(x), is encoded on the leftmost column.
As the length of c(x) would be already smaller than f (x) on the top row, b0, the lowest bit of
b(x), have to be encoded as 1′ or 0′ — representing 1 or 0, respectively — to avoid executing one
reduction operation.

– ∀i ∈ {n+ 1, . . . ,2n− 1},S(i,−1) = α0##,
– ∀ j ∈ {0, . . . ,n− 2},S(−1, j) = βbn−1− j##,

– S(−1,n− 1) =

{
β0′##, if b0 = 0

β1′##, if b0 = 1
.

Σ has 210 computation tiles with the west side and the south side as the input sides,
and the east side and the north side as the output sides. There would be only one single
position where a tile may attach to S since its west neighbor tile and south neighbor
tile are fixed. Obviously, the self-assembly process begins from the position (0,0). For
∀t ∈ T , the two-tuple < bdS(t),bdW (t)> is unique. It is certain that S produces a unique
final configuration on S. The abutting binding domains of two tiles have to match each
other when a tile attaches to S.

Let the final configuration be F . For all 0≤ i≤ 2n−1, 0≤ j ≤ n−1, S and F agree
on S(i,−1) and S(−1, j). For 0≤ i≤ 2n−1, 0≤ j≤ n−1, let t = F(i, j). Since t binds
with two neighbor tiles, bdS(t) = bdN(F(i, j−1)), bdW (t) = bdE(F(i−1, j)). For those
tiles with three-bit binding domains bd, let l(bd) be the first bit, m(bd) be the second
bit, and r(bd) be the third bit. Then, mr(bd) represents the second bit and the third bit.
For all t ∈ T , let v(t) = l(bdN(t)). Thus, the initial inputs of all binding domains are

– l(bdS(F(0,0))) = #,
– ∀1≤ i≤ 2n− 1, l(bdS(F(i,0))) = 0,
– ∀0≤ i≤ n, m(bdS(F(i,0))) = fn−i,
– ∀n+ 1≤ i≤ 2n− 1, m(bdS(F(i,0))) = #,
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Fig. 5. The final configuration of one sample input of a(x) = 1100, b(x) = 1001, f (x) = 10011
and c(x) = 0000000. The top row reads the solution:110. Note that the colors are only used for a
better understanding, the tiles themselves have no sense of color.

– ∀0≤ i≤ n− 1, r(bdS(F(i,0))) = an−1−i,
– ∀n≤ i≤ 2n− 1, r(bdS(F(i,0))) = #,
– ∀0≤ j ≤ n− 2, l(bdW (F(0, j))) = bn−1− j,

– l(bdW (F(0,n− 1))) =

{
0′, if b0 = 0

1′, if b0 = 1
,

– ∀0≤ j ≤ n− 1, mr(bdW (F(0, j))) = ##.

For all computation tiles, the tile color determines which operation this tile would
perform. All cases are listed as follows:

– Gray tile: Only data transfer is performed in this tile. lN = lS, lE = lW .
– Magenta tile: The lN bit is assigned as #. The value of lE would be different from

lW . If l(bdW (t)) = 1 and xor(l(bdS(t)),r(bdW (t))) = 1, which means that the high-
est bit of the dividend c(x) is 1, one reduction would be needed to decrease the
power of the index. Therefore, the value of l(bdE(t)) would be assigned as 3 to
compute xor(l(bdS(t)),m(bdW (t)),r(bdW (t))) — bitwise XOR operation between
c(x), a(x) and f (x) — for the rest of the tiles on that row; If l(bdW (t)) = 1 and
xor(l(bdS(t)),r(bdW (t))) = 0, the highest bit of the dividend c(x) would be 0. Thus,
l(bdE(t)) would be assigned as 1′ and the rest tiles on that row only need to com-
pute the operation of xor(l(bdS(t)),r(bdW (t))), one bitwise addition between c(x)
and a(x) over finite field GF(2n); If l(bdW (t)) = 0 and l(bdS(t)) = 1, which means
the highest bit of the dividend c(x) is 1, one reduction has to be executed to de-
crease the power of the index, and the operation of xor(l(bdS(t)),m(bdW (t))) —
bitwise XOR operation between c(x) and f (x) — would be calculated by encoding
l(bdE(t)) as 2 on that row; If l(bdW (t)) = 0 and l(bdS(t)) = 0, only the operation
of a right-shift is needed on that row, so l(bdE(t)) is assigned as 0′.
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Fig. 6. The assembly order of this example. It costs 11 DNA assembly steps.

– White tile: The value of lE is assigned as lW . The value of lN is computed according
to lW . If l(bdW (t)) = 0′, lN = lS; If l(bdW (t)) = 2, the operation of xor(l(bdS(t)),
m(bdW (t))) would be calculated to decrease the power of the index; If l(bdW (t)) =
1′, only bitwise addition over finite field GF(2n) is needed to perform xor(l(bdS(t)),
r(bdW (t))); If l(bdW (t)) = 3′, both bitwise addition and decreasing the power of
the index are needed, so xor(l(bdS(t)),m(bdW (t)),r(bdW (t))) is performed.

For ∀0≤ i≤ 2n−1, ∀0≤ j≤ n−1, the followings expressions are the tile assembly
rules:

– l(bdN(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xor(l(bdS(t)),m(bdW (t)),r(bdW (t))),

if l(bdW (t)) = 3

xor(l(bdS(t)),r(bdW (t))),

if l(bdW (t)) = 1′

xor(l(bdS(t)),m(bdW (t))),

if l(bdW (t)) = 2

#, if l(bdW (t)) = 0 and

mr(bdW (t)) 	= ##

#, if l(bdW (t)) = 1 and

mr(bdW (t)) 	= ##

l(bdS(t)), else cases
– mr(bdN(t)) = mr(bdW (t))
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– l(bdE(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1′, if l(bdW (t)) = 1 and

mr(bdW (t)) 	= ## and

xor(l(bdS(t)),r(bdW (t)))

= 0

3, if l(bdW (t)) = 1 and

mr(bdW (t)) 	= ## and

xor(l(bdS(t)),r(bdW (t)))

= 1

0′, if l(bdW (t)) = 0 and

mr(bdW (t)) 	= ## and

l(bdS(t)) = 0

2, if l(bdW (t)) = 0 and

mr(bdW (t)) 	= ## and

l(bdS(t)) = 1

l(bdW (t)), else cases
– mr(bdE(t)) = mr(bdS(t))

The concrete process of tile self-assembly in Fig. 5 is listed as follows:

– the 0th row: b3 = 1, xor(l(bdS(F(1,0))), r(bdW (F(1,0)))) = 1, then, for 2 ≤ i ≤
7, l(bdW (F(i, 0))) = 3, l(bdN(F(i, 0))) = xor(l(bdS(F(i,0))), m(bdW (F(i,0))),
r(bdW (F(i, 0)))), c(x) = 101100,

– the 1st row: b2 = 0, l(bdS(F(2,1))) = 1, then, for 3 ≤ i≤ 7, l(bdW (F(i, 1))) = 2,
l(bdN(F(i, 1))) = xor(l(bdS(F (i, 1))), m(bdW (F(i, 1)))), c(x) = 01010,

– the 2nd row: b1 = 0, l(bdS(F(3,2))) = 0, then, for 4≤ i≤ 7, l(bdW (F(i, 2))) = 0′,
l(bdN(F(i, 2))) = l(bdS(F(i, 2))), c(x) = 1010,

– the 3rd row: b0 = 1′, then, for 4 ≤ i ≤ 7, l(bdN(F(i, 3))) = xor(l(bdS(F(i, 3))),
r(bdW (F(i, 3)))), c(x) = 0110.

As τ = 2, only one tile with two neighbors may attach at any time in this system.
Therefore, no tile could attach to the configuration unless its west neighbor and south
neighbor have already existed. When F(2n−1,n−1) tile attaches to the position (2n−
1,n− 1), this parallel molecular computation of modular-multiplication will terminate.
Obviously, the assembly time of this system is T (n) = 2n+n−1= 3n−1 =Θ(n) and
the space complexity is S(n) = 2n · n = Θ(n2). This system of modular-multiplication
over finite field GF(2n) requires a constant number of different tile types: 210 types of
computation tiles and 17 types of boundary tiles.

4 Conclusions

This paper proposes a tile assembly system to compute the modular-multiplication over
finite field GF(2n). This tile assembly system was extended from the methods of imple-
menting arithmetic computations used by Brun for binary addition and multiplication
[30]. One example over finite field GF(24) was provided to show the details of our sys-
tem. This system could fulfill the process of self-assembly and figure out the solution in
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linear assembly time. The assembly time of this system is T (n) = Θ(n) and the space
complexity is S(n) = Θ(n2). This system requires 210 types of computation tiles and
17 types of boundary tiles.
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Abstract. Fault-tolerance and its associated overheads are of great con-
cern for current high performance computing systems and future exas-
cale systems. In such systems, message logging is an important trans-
parent rollback recovery technique considering its beneficial feature of
avoiding global restoration process. Most previous work designed and
implemented message logging at the library level or even lower software
hierarchy. In this paper, we propose a new message logging protocol,
which elevates payload copy, failure handling and recovery procedure to
the user level to present a better handling of sender-based logging for
collective operations and guarantee a certain level of portability. The
proposed approach does not record collective communications as a set of
point-to-point messages in MPI library; instead, we preserve application
data related to the communications to ensure that there exists a process
which can serve the original result in case of failure. We implement our
protocol in Open MPI and evaluate it by NPB benchmarks on a subsys-
tem of Tianhe-1A. Experimental results outline a improvement on failure
free performance and recovery time reduction.

Keywords: Fault tolerance, Message logging, Checkpointing, User Level,
Rollback-recovery.

1 Introduction

In a constant effort to deliver steady performance improvements, the size of High
Performance Computing (HPC) systems, as observed by the Top 500 ranking,
has grown tremendously over the last decade [1]. Unfortunately, the rise in size
has been accompanied by an overall decrease in the mean time between failures
(MTBF) [2]. In order to make large-scale parallel applications simultaneously
survive crashes and mitigate the reliability-wall effects [3] in such systems, we
need efficient and reliable fault tolerance mechanisms.

The Message Passing Interface (MPI) has become a de facto standard used to
build high-performance applications [4], and fault tolerance for message passing
applications is usually achieved by Checkpoint/Restart approach because of its
simplicity of implementation and recovery [5]. However its recovery procedure is
relatively time-consuming since the failure of one process makes all application
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processes rollback to the last coordinated checkpoint. Message logging protocols
present a promising alternative to Checkpoint/Restart, as they do not require
coordinated checkpointing and globally rollback. Instead, only the crashed pro-
cessor is brought back to the previous checkpoint, while the other processors
may keep making progress or wait for the recovering processor in a low-power
state [2].

To be more precise, message logging is a family of algorithms that attempt to
provide a consistent recovery set from checkpoints taken at independent dates [6].
In message logging protocols, message exchanges between application processes
are logged during failure free execution to be able to replay them in the same
order after a failure, this is the so-called payload copy mechanism [7]. Also,
the event logging mechanism is used to correct the inconsistencies induced by
orphan messages and nondeterministic events, by adding the outcome of non-
deterministic events to the recovery set, so it can be forced to a deterministic
outcome (identical to the initial execution) during recovery.

Mainly due to the lack of support from the programming model, most of the
previous implementations of message logging are located at the MPI library level,
thus recent advances in message logging mostly focused on reducing the overhead
of payload copy and event logging in the MPI library and had indeed achieved a
reasonable fault tolerance cost [7–9]. But there are still few drawbacks in those
researches: firstly, MPI itself has several different implementations (MPICH,
Open MPI, etc.), thus it would take effort to transplant a message logging pro-
tocol designed for a specific MPI library to another environment. Secondly, fault
tolerance ability for collective communications is provided by recording fine-
grained point-to-point communications in the MPI library, which results in the
inefficiency of the handling of collective operations in payload copy and recovery
procedure.

In this paper, we adapt a message-logging protocol to run at the user level,
rather than the MPI library level by building it on top of the User Level Failure
Mitigation (ULFM) proposal [1]. Imposing a fault tolerance layer above ULFM
certainly guarantees a level of portability, and recording the collective commu-
nication result into the sender’s message logger as a whole alleviates the fault
tolerant overhead for collective communications.

The rest of the paper is organized as follows. Section 2 introduces the basic
idea behind the User Level Message Logging (ULML) by an example. Section
3 describes our fault-tolerance framework and the implementation. Section 4
discusses our evaluation methodology and demonstrates the superiority of our
protocol over the classical method by benchmarking. Then section 5 reviews the
related work, and finally, Section 6 concludes the paper.

2 Motivation and Basic Idea

This section starts by analyzing the drawbacks of classical library level mes-
sage logging when handling collective operations. Afterwards, we introduce the
motivation and basic idea behind the user level message logging (ULML).
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As with most previous researches on message logging, we assume that the pro-
cess execution is piecewise deterministic, and communications channels between
processes are reliable and FIFO. Therefore, we will concentrate on the faults of
computing processes with the assumption of fail-stop fault model.

2.1 Message Logging at Library Level

A parallel program with checkpointing is illustrated in the table below, its exe-
cution is constituted by 2 processes, denoted by P0, P1, which have been check-
pointed to disk before executing any code.

1 --CKPT_HERE --

2 int a, int b;

3 MPI_Barrier(MPI_COMM_WORLD );

4 if(my_rank == 0)

5 {

6 a=4;

7 MPI_Send (&a,1,MPI_INT ,1,0, MPI_COMM_WORLD );

8 }

9 if(my_rank == 1)

10 {

11 a=5;

12 MPI_Recv (&b,1,MPI_INT ,0,0, MPI_COMM_WORLD );

13 }

14 MPI_Allreduce (&a,&b,1,MPI_INT ,MPI_MAX ,MPI_COMM_WORLD );

The pessimistic message logging cited from [2] is chosen to illustrate the classi-
cal protocol at MPI library level. It is worth noting that even the recent advances
have further refined the logging scheme to record only important events and mes-
sages at library level [8–10], they still confront with the same drawback as the
original approach does when handling collective operations.

In this approach, a process, before sending a message, has to ask the receiver
for a ticket (the Reception Sequence Number) to compose the determinant for
that message. The determinant and the message are stored in the memory of
the sender, and at that point the message can be actually sent to the receiver.
Messages at the receiver are processed according to their assigned ticket number,
and on recovery ticket numbers can be used to recreate the reception order of
all messages. Furthermore, a collective communication should be divided into
two point-to-point communications at library level, for the reason that the MPI
library of a process must receive the ready signal of the opposing process to
finish the implementation. Fig.1 demonstrates the communication procedure at
the library level.

After executing this program, message m1, m2, m3, m4, m5 and their assigned
tickets will be recorded, which indicates that recording fine-grained point-to-
point messages for one collective operation induces multiple payload overhead.
If a process error occurs at this moment, the substitution needs to replay all the
receptions in order of their tickets, thus the performance of recovery will be also
remarkably slowed down when the scale of application rises.
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r3 m3t3r1

P0

P1
r2 t2t1 m1 m2

MPI_Barrier

r4 r5 t5t4 m4 m5

MPI_AllreduceMPI_Send

MPI_Recv

Fig. 1. The communication procedure of the example program with pessimistic mes-
sage logging at library level, ri represent requests, ti represent tickets and mi represent
messages

2.2 Our Approach: Message Logging at User Level

Rabenseifner presented A five-year profiling study of applications running in
production mode on the Cray T3E 900 at the University of Stuttgart, and it
revealed that more than 40% of the time spent in MPI functions was spent in
the two functions MPI Allreduce and MPI Reduce [11]. That implies collective
communications account for a substantial percentage of total communication
cost. Because of performing collectives frequently, scientific computing paral-
lel programs magnify the drawbacks of library level message logging markedly,
impelling us to explore an alternative solution at user level.

a
P0
P1

P1

substitution

Consistent

Fig. 2. The communication procedure of the example program with message logging
at user level, P ′

1 is the substitution of P1, and the system states are denoted by dashed
lines

Our approach elevates the checkpointing/rollback mechanism, payload copy
mechanism and recovery mechanism to user level, allowing us to record com-
munication as a whole statement without splitting it into implementation de-
tails, so that we can re-transmit the result of collectives instead of individual
point-to-point messages. For the same example program, Fig.2 presents all the
communications at user level, and the payload copy mechanism is detailed below:

– MPI Barrier: after finishing MPI Barrier, each process increases a local vari-
able representing the number of barrier operations executed by 1.

– MPI Send/MPI Recv: P0 simply preserves the variable a into the message
logger after sending the message to P1.

– MPI Allreduce: each process increases a local variable representing the
number of all-reduce operations by 1, and then it logs the local variable
b which is the result of the operation, into the message logger separately.
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After executing this program, P0 stores variables a, b in the volatile memory
as message logs, while P1 only stores variable b into the message logger. Mean-
while, the statistics information of collective communications is updated in each
process. If P1 malfunctions at the end of the program, as shown in Fig.2, a new
incarnation of the failed process denoted by P ′

1 is recovered from the checkpoint.
By exchanging information between process P0 and P ′

1, P0 is informed that vari-
able a needs to be resent and P ′

1 learns that there are a barrier operation and an
all-reduce operation in the coming recovery procedure. So during recovery, P ′

1

skips the barrier operation, replays reception in MPI Recv, and when executing
MPI Allreduce, P ′

1 does not replay the collective communication, instead, it re-
ceives the original operation result variable b from P0 with MPI Recv statement.
Finally, the recovery system reaches a consistent global state after a failure.

2.3 Comparison of Overhead

The user level message logging significantly reduces the overhead of fault-tolerance
for collective communications. taking MPI Allreduce as an example: the all-reduce
operation combines values from all processes and distributes the results to all pro-
cesses, so it is often used when calculating and determining whether the computa-
tional accuracy meets the requirement or not at the end of the iteration in scientific
computing programs. If we assume that (1)data are not compressed during the all-
reduce operation and (2)source data items are independent of one another, table
1 shows the comparison of fault-tolerant overhead when we perform an all-reduce
operation of X items of itsize bytes on P processes[12].

Table 1. Comparison of overhead induced by different message logging protocols

Message logging At library level At user level

Log number 2× (P − 1) P

Maximum size of
2× P−1

P
×X × itsize X × itsize

each message log

Fault free execution �lgP �(α+nβ+ nγ+nδ) �lgP �(α+nβ+nγ)+nδ
time-consumption

Minimum recovery
α + nβ α + nβ

time-consumption

Maximum recovery �lgP �(α + nβ) α + nβ
time-consumption

In the table above, a simple cost model is used to estimate the cost of the
algorithm in terms of latency and bandwidth use. To be specific, α is the latency
(or startup time) per message, independent of message size, β is the transfer
time per byte, and n is the number of bytes transferred. In the case of reduction
operations, we assume that γ is the computation cost per byte for performing
the reduction operation locally on any process, and δ is the preservation cost
per byte for storing the message into memory.
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3 Framework of the Protocol and Its Implementation

Our framework consists of three mechanisms: the sender based payload copy
mechanism saves exchanged messages into volatile memory; the communi-
cator maintenance mechanism is responsible for updating communicator
when a process fails; once the improper communicator is updated, the recovery
mechanism will resend logged messages to the substitution process and ensure
the consistency of the system.

P0

P1

P1'

Restart 
segment

m1 m2
ErrorHandler segment

m3m2

Isend()

Recovery 
Procedure 

m1

Allreduce
result

Waiting for P1
'

Recieve from 
errorhandler 

P0 send  m2 unsuccessfully,
Spawn P1'

Fig. 3. Example execution of the user level message logging framework, the ErrorHan-
dler segment and the Restart segment are highlighted in bold, and words in bubbles
explain the actions of processes

The flow of the framework is illustrated in Fig.3 by an example. At first the
application executes normally, P0 sends a message m1 to P1 via MPI Send and
then records m1 as a message log. When executing the all-reduce operation, both
P0 and P1 preserve the operation result into memory. After finishing the barrier
operation, P1 fails unexpectedly. P0 detects the communicator failure when it
is trying to send m2 to P1, so it moves into the Error Handler segment auto-
matically, then it spawns P ′

1 as a substitution process, re-transmits the logged
message to help P ′

1 recover. After that, P0 jumps out of the Error Handler, con-
tinues execution or waits for message m3 from the opposite. On the other side,
P ′

1 takes the place of P1 in the communicator, jumps to the checkpoint address,
reads the live variables and enters the recovery procedure by means of the exe-
cution of the Restart segment. During P ′

1’s recovery, all the external message it
needs will be resent by P0, and it will not replay any collective communication
until the recovery completes successfully.

Next, we discuss in further detail about how these three mechanisms work.

3.1 Sender Based Payload Copy

Sender based payload copy rules can be classified into two categories: point-to-
point payload copy and collective payload copy, which correspond to the two
types of MPI communications.

Point-to-point payload copy for senders, messages sent to the different
destinations are kept in different log queues, and those messages are sorted by the
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assigned Send Sequence Number (SSN) according to the transmission sequence.
Also, the length and tag of the message need be recorded alongside in order to
rewrite the send statement on demand. In preparation for the transmission, each
message will be packed into a flat format with the SSN appended at the end.

For receivers, they need to resolve the SSN after receiving a message, and
preserve it into the Highest Sequence number Received (HSR) array representing
the latest message received from the sending end. Any message that has a smaller
SSN is supposed to have been handled correctly according to our assumption.

Collective payload copy every process counts various collective communi-
cations to form the statistics of collectives, and records the operation results on
demand. Although every process can be considered as the sender of a collective
communication, only when a process exists will its application data be updated
by this collective operation, the operation results do require preservation by some
particular processes.

3.2 Communicator Maintenance

Since the failure of the communicator will be exposed to the user code in our
method, the communicator maintenance mechanism needs to be responsible for
the detection of the failure and the restoration of the communicator with the
help of the ULFM support.

The communicator could be modified for the purpose of fault tolerance in three
cases: process initialization, communicator fault, and the substitution process
restart. Thus the maintenance can be divided into three parts, and its work
requires the mutual cooperation between processes, as shown in Fig.4.

Communicator maintenance in process initialization for all processes,
process initialization is the procedure following the initialization of MPI environ-
ment. The maintenance duplicates the communicator from MPI COMM WORLD
to a globally defined symbol, and attaches our Errorhandler function to the com-
municator as the default error handling procedure.

Communicator maintenance in Errorhandler the Errorhandler function
will be automatically called whenever a process detects the failure on the com-
municator and returns the error code. In this function, surviving processes revoke
the original communicator so that any subsequent operation on the original com-
municator will eventually fail. Afterwards, they create a new communicator from
the revoked one by excluding its failed process. Then the failed processes is dis-
covered by comparing the group of processes in the shrunken communicator with
the group of processes in the original communicator. After that, a substitution
will be spawned and the inter communicator generated will be merged into an
intra-one. Finally the substitution will replace the failure process by reordering
the ranks on the new communicator.

Communicator maintenance in Restart segment the Restart segment is
a procedure where the substitution operates in collaboration with the surviving
processes to merge and reorder the communicator after the MPI environment
is initialized. Afterwards, it also attaches our Errorhandler function to the new
communicator.



A Message Logging Protocol Based on User Level Failure Mitigation 319

Revoke subsequent 
communications 

Shrink the 
communicator

Get the failure rank

Spawn the 
substitution process

Merge the 
commnicator

Reorder the ranks 
on communicator

Initialize MPI 
environment

Merge the 
communicator

Reorder the ranks 
on communicator

Co-
operating

Co-
operating

In Restart segment

In Errorhandler

Surviving Process

Substitution Process

Fig. 4. The flow of the communicator
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Exchange the HSR 
array

Send the statistics of 
collectives 

 Resend logged point-
to-point messages

Resend logged 
collective 

communication 
messages

Exchange the
HSR array

Receive the 
statistics 

Co-
operating

In Restart
 segment

In 
Errorhandler

Surviving Process Substitution Process

Complete 
point-to-point 

communications

Complete 
collective 

communications

During 
recovery

Fig. 5. The flow of the recovery, operations
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3.3 Recovery

Recovery mechanism ensures the consistency of the system by means of oper-
ations at user level. There are two key problems that need to be solved: (1)
determine which messages need to be re-issued, and (2) guide the substitution
process to jump over collective communications correctly during recovery. There-
fore the recovery mechanism should exchange the records of reception between
processes, and inform the substitution of the number of collective communica-
tions which have already been executed. The flow of the recovery mechanism is
illustrated in Fig.5.

Recovery mechanism in Errorhandler firstly, each process obtains the
Highest Sequence number Received (HSR) arrays which are kept in the other
processes’ memory, and forms the Highest Sequence number Delivered (HSD)
array to determine whether a point-to-point message has been delivered suc-
cessfully. After that, the logged messages whose SSN is bigger than HSD stored
will be resent in order. For the logged collective messages, one of the surviving
processes sends the statistics of collective communications to the substitution,
Then all the logged collective operation results should be sent successively.

Recovery mechanism in the Restart segment the substitution gets the
information it needs (HSR arrays and statistics of collective communication) by
the execution of the Restart segment. When entering the recovery procedure, all
the point-to-point receptions could be replayed by their original receive state-
ments, and the collective communications will turn into receptions of the logged
messages or even empty operations.

3.4 Implementation of User Level Message Logging

User level message logging (ULML) encapsulates the default MPI communication
functions (including point-to-point and collective), thereby integrating message
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logging fault tolerance capabilities in Open MPI. Each of the ULML MPI func-
tions is an implementation of a particular fault tolerant algorithm, and its goal
is to extend the communication with message logging features. ULML does not
modify any core Open MPI component or the communication semantics, it calls
the default MPI interface functions to perform the actual communications.

In order to implement the ULML in MPI programs, programmers need to
follow these steps detailed below: 1. Analyze the communication features of the
program, and insert user level checkpoints into the original programs with com-
piler directive #CKPTi. The method of choosing the positions of checkpoints
has already been discussed in [4]. 2. Replace the original error handler function
with our ULML error handler to bring in the communication maintenance and
recovery mechanism. 3. Replace the original MPI communication functions with
ULFM functions, in order to introduce the payload copy mechanism.

4 Experiments

4.1 Evaluation Methodology

Our computer platform is a subsystem of Tianhe-1A, located in Tianjin, China.
Each node of the computer is equipped with two 2.93G Intel Xeon X5670 CPUs
(12 cores per node) and 24 GB RAM. The interconnection is the same as de-
scribed in [4], and the simplex point-to-point bandwidth is 80 Gb/s. All the
experiments are executed in Redhat 5.5, and the results presented are mean
values over 5 executions of each test.

To investigate application performance we use the NAS Parallel Benchmark
suite. The CG benchmark presents heavy point-to-point latency driven commu-
nications, while the FT benchmark presents a collective communication pattern
by performing all-to-all operations. Thus the class C problem of those bench-
marks are tested in order to evaluate the performance of point-to-point payload
copy and collective payload copy respectively.

Moreover, we choose the naive pessimistic message logging approach from [2]
and the active optimistic message logging protocol (O2P) from [10] as compar-
ative methods at library level.

4.2 Fault Free Performance Evaluation on NAS Benchmarks

In Fig.6, we plot the normalized execution time of CG according to a growing
number of processors to evaluate the comparative scalability, the standard execu-
tion time of coordinated application-level checkpointing/restart equals 1. Notice
that only the performance penalty associated with message logging is presented
since no checkpoints and faults are imposed. Fig.6 shows that the performance
of the ULML and O2P is comparable, the executions of the two protocols are
very similar and exhibit the same scalability with the overhead stays under 5%.
Conversely pessimistic approach experiences a severe performance degradation
topping at 17% increase in execution time, the increasing point-to-point commu-
nication rate (19988 times at 64 cores to 25992 times at 128 cores for example)
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greatly affects the overhead induced by pessimistic message logging. But our
ULML is immune to this defect by avoiding any bandwidth consumption, ex-
cept for appending the SSN which has a negligible influence on the message
size. Overall, considering its simplicity of implementation, the ULML presents a
salutary alternative to refined message logging protocols at library level.

Fig. 6. Scalability of CG Class C Fig. 7. Scalability of FT Class C

Fig.7 presents the execution time of FT with processor numbers ranging from
16 to 512, normalized to each benchmark with standard execution. For up to 512
cores, the scalability of the proposed message logging approach is excellent since
the overhead is solely due to sender-based payload logging. Also, O2P works quite
well up to 64 processes, but when the amount of data piggybacked continues to
increase because the event logger is overloaded and does not manage to log the
determinants in time, O2P eventually suffers from at most a 6% slowdown in our
test case. The performance superiority is mainly imputed to the better handling
of collectives in the ULML, and the overhead induced by it is very close to the
error margin of measurements.

4.3 Recovery Performance Evaluation

We simulate a fault on a processor by sending SIGKILL to a process, CG Class
C running on 8 processes is chosen as our test case. First we checkpoint the
system at iteration 10, then introduce a failure to process 3 at iteration 70.
Table 2 presents the elapsed wall clock time and CPU time consumed to recover
the system. We find that the ULML reduces the wall clock time by 26.9% and
saving CPU time by 22.1%. Also, different phases of the recovery procedure
are timed to measure the factors limiting the speed of our restart protocol. Take
process 1 as an example: it spends 0.1253 seconds on communicator maintenance
in Errorhandler, and 0.002924 seconds on recovery mechanism in Errorhandler
to resend 4741 messages (these two time statistics are not stable, but will not
exceed 0.2 seconds). After finishing the Errorhandler segment, process 1 enters a
suspended state for 59.761 seconds. Therefore, we believe that our communicator
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Table 2. Comparison of recovery time-consumption (Seconds)

Checkpoint/Restart User level message logging
Failure free Failure occurred Failure free Failure occurred

Wall time 2.78 5.24 2.83 3.83

CPU time 21.33 38.54 22.12 30.01

maintenance and recovery mechanism are lightweight, and the bottleneck is the
re-execution of the substitution process.

5 Related Work

Research on message logging has a long history. The seminal paper by Strom
and Yemini presented a recovery protocol for distributed systems which per-
mits communication, computation and checkpoint to proceed asynchronously,
thus introducing the concept of message logging and causality tracking [13].
Sender-based message logging was introduced by Johson and Zwaenepoel [14],
by describing how to secure the correctness of the protocol with the Send Se-
quence Number and the messages logged in sender’s volatile memory. Alvisi
and Marzullo presented a classification of the different message logging schemes
into three families: pessimistic, optimistic, and causal, according to the different
methods of logging reception orders [6]. Recently, Bouteiller used determinism in
MPI applications to reduce the number of determinants to log [8]. Guermouche
proposed an uncoordinated checkpointing protocol for send-deterministic MPI
applications and achieved a satisfying overhead [9]. But all the researches above
rely on modifying the MPI library, thus they will face portability issues and
induce multiple overhead for collectives in all cases.

The User-Level Failure Mitigation proposal was put forward to improve the
resilience of application from programming model in 2012. This proposal allows
libraries and applications to increase the fault tolerance capabilities by support-
ing additional types of failures, and build other desired strategies and consistency
models to tolerate faults. The ULFM proposal makes it possible to elevate the
message logging layer and guarantee the portability.

6 Conclusion

In this article, we introduce the user level message logging protocol, a new kind
of portable fault tolerance method for MPI programs. The new methodology
proposed is simple yet effective, particularly suited for collective communication
intensive programs. Overall, our work facilitates the adoption of message logging
in large-scale scientific computing programs.
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Abstract. With the explosion of the amount of data, analytics applications re-
quire much higher performance and scalability. However, traditional DBMS 
encounters the tough obstacle of scalability, and could not handle big data easi-
ly. In the meantime, due to the complex relational data model, the large amount 
of historical data and the independent demand of subsystems, it is not suitable 
to use either shared-nothing MPP architecture (e.g. Hadoop) or existing hybrid 
architecture (e.g. HadoopDB) to replace completely. In this paper, considering 
the feasibility and versatility of building a hybrid system, we propose a novel 
prototype H-DB which takes DBMSs as the underlying storage and execution 
units, and Hadoop as an index layer and a cache. H-DB not only retains the ana-
lytical DBMS, but also could handle the demands of rapidly exploding data ap-
plications. The experiments show that H-DB meets the demand, outperforms 
original system and would be appropriate for analogous big data applications. 

1 Introduction 

In many areas such as science, internet and e-commerce etc, the volumn of data to be 
analyzed grows rapidly [1]. For example, the Large Hadron Collider near Geneva, 
Switzerland, produced about 15PB of data per year [2]. Petabyte datasets are 
increasingly the norm today, so do requirements for efficiently extracting value. Yet 
our ability to store data is fast overwhelming that to process what we store, even read 
back is distressing. Given the tendency for multi-terabyte and petabyte analytic data 
repositories, performance and scalability problems become increasingly severe [3]. 

Google File System (GFS) [4] and MapReduce [5, 6] are developed by Google for 
large-scale dataset storage and processing. Hadoop [7] is an open source system for 
distributed computing and big data processing, and is best known for MapReduce and 
its distributed file system (HDFS) [8, 9]. However, Hadoop yields an order of 
magnitude slower performance than parallel databases on structured data analysis 
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workloads [10]. It lacks many of features that have proven effective, thus, traditional 
data analytical processing, especially the standard reports and repeated queries, is 
poorly suited for this one-time query processing model. 

Database management system, by comparison, has optimized implementation to 
improve the efficiency. However, though parallel databases have been proven to scale 
well into tens of nodes, there exists no published deployment of a parallel database 
with nodes numbering into thousands.  

It is now clear that neither Hadoop nor parallel databases are ideal solutions for big 
data analytics applications [11,12]. HadoopDB [13] is therefore a hybrid system that 
combines the scalability advantages of Hadoop with the performance advantages of 
parallel databases. However, this method uses a data loader to dump the data out of 
the database and replicate them to some other nodes before processing, which causes 
loading to be the bottleneck of whole system and one node related to others. 

In this paper, we propose our approach to integrate DBMS and Hadoop for 
performing big data analytics. Similar to HadoopDB, we also take DBMSs as the 
underlying storage and execution units, and uses Hadoop as the task coordinator and 
network communication layer. Yet, we add a cache layer and a global index layer in 
HDFS to further improve the query performance. In our architecture, the following 
benefits are obtained: 

• The cache layer in HDFS is used to store tables with high frequency access but 
relatively small amount of data from the underlying DBMS nodes. The high 
concurrency of HDFS avoids the failure of DBMS due to the limit numbers of 
database connection when multi-user access. 

• The DBMS engine executes the sub-queries in parallel with the efficiency 
advantage as is the case for HadoopDB. The global index layer in HDFS is 
able to co-operate with the DBMS engines, and significantly improves the 
performance for certain queries. 

• Only few tables and indexes are loaded into HDFS, loading is no longer the 
bottleneck of whole system. And the underlying DBMS changed nothing to 
maintain the independence of the original system. 

The remainder of the paper is organized as follows: Section 2 introduces the re-
lated work; Section 3 analyzes the application requirements and existing systems, and 
then positions the desired solution; Section 4 describes our proposed system H-DB; 
Section 5 gives experiment results; and Section 6 concludes the paper. 

2 Related Work 

There has been some recent work on bringing MapReduce together with DBMS, 
mainly divided into two categories. The first one focuses on language and interface 
issues. Yahoo’s Pig [14] offers SQL-style high-level data manipulation constructs, 
which can be assembled in an explicit dataflow and interleaved with custom Map- and 
Recude- style functions or executables. Hive [15] supports queries expressed in a 
SQL-like declarative language-HiveQL, which are compiled into map-reduce jobs 
executed on Hadoop.  
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The second one focuses on hybrid solution at the system level. HadoopDB means 
Hadoop database, is the first, as we know, to try to merge parallel DBMS and Ha-
doop. While DBEHadoop [16] means database Hadoop, integrates modified DBMS 
engines as a read-only execution layer into Hadoop, where DBMS plays a role of 
providing efficient read-only operators rather than managing the data. EMC’s Green-
plum [17] is a unified engine for RDBMS and MapReduce, leverages a shared-
nothing architecture using commodity hardware. It is a database system provides both 
high performance of query processing for OLAP and scalability and fault-tolerance.  

3 Systems for Big Data Analytics 

3.1 Application Requirements 

Our case is the “Chinese Earthquake Precursor Network Data Management 
Program”. Fig. 1 shows the architecture of this network. It is a three-layer structure 
from bottom to top. There are hundreds of station nodes in bottom layer, tens of 
regional nodes in middle layer, and only one national node in top layer. One regional 
node manages several corresponding station nodes, and the national node manages all 
regional nodes. Each node is an independence DBMS, and establishes connection to 
others through network. All data stored in the lower-layer node have a replica in the 
corresponding upper-layer node, i.e. each data has three replicas in whole system. The 
national node has all the data, and provides analytics service for people. 

 

Fig. 1. Architecture of Earthquake Precursor Network 

Large-Scale Multi-user Parallel Processing. The data that we should analyze on 
National node is growing very fast, 2TB daily now. And the system should provide 
data processing services to at least hundreds of users simultaneously. Thus the 
National node built on DBMS always fails and we have an urgent need for 
infrastructure that could deal with large-scale multi-user parallel processing.  



 H-DB: Yet Another Big Data Hybrid System of Hadoop and DBMS 327 

High Query Performance. Our application is to do ad-hoc analytic queries over long 
existing dataset. It is worthwhile to take some optimized data structures, execution 
mechanism and advantages of system itself to improve the query performance. For 
example, a) Queries on the same data set often exist, so the cache is usable. b) Some 
queries are always with predicates on certain attributes, for which using index can 
reduce the execution time and get benefit to repeated usage. c) The characteristic of 
existed data replicas in our system can be used in parallel querying. 

Independent Original System. Our program is not a completely new development. 
Each station or regional node is an integral and independent subsystem where 
engineers do jobs on it. Thus, the previous DBMS-based system can’t be changed, 
and we should find a suitable way to solve the difficulties for new demands of the 
program. 

3.2 HadoopDB Discussed 

HadoopDB [23] is an important work to integrate MapReduce and DBMS. The basic 
idea behind HadoopDB is to take DBMS as the storage and execution units, and 
Hadoop as a coordination layer that manages task execution and network 
communication.  

However, HadoopDB uses batched approach to dump the data out of each DBMS 
and replicate them to others before data processing, which causes two troubles: a) It’s 
too stressful for HadoopDB’s loader to partition and load the big data, loading would 
be the bottleneck of system. b) Data movement from one node to another would de-
stroy the integrity and independence of underlying DBMSs. c) Since all DBMSs are 
single-node database with local index only, and there lacks any global structure me-
chanism in HadoopDB, it is unable to further improve the query performance when 
query is with predicates of high selectivity. 

4 H-DB System 

4.1 Overview 

There are two types of tables in our application: one is metadata table with high fre-
quency access but relatively small amount of data, while the other is data table with 
low frequency access but large amount of data and usually a Blob or Clob attribute to 
store big objects like files or photos. 

The system consists of four parts as shown in Fig. 2. The bottom is the storage 
layer DBMSs. On top of DBMSs is HDFS, which not only stores the system metadata 
and result set of query like that in HadoopDB, but also adds a cache layer for 
metadata tables and a global index layer for data tables. The top is MapReduce system 
responsible for parallelization and fault tolerance. The middleware contains the  
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Fig. 2. Architecture of H-DB 

 

Fig. 3. Middleware Functions of H-DB 

database connector, loader, indexer and query engine, and their functions are shown 
in Fig.3. 

Database Connector. The connector is the interface between original DBMSs 
residing on nodes and Hadoop. It uses DBInputFormat provided by Hadoop to access 
JDBC-compliant database, and TextOutputFormat to return result into HDFS. 

Loader. The loader loads metadata tables and local index of data tables from the 
underlying DBMS nodes to HDFS. The former are permanently stored in cache layer, 
while the latter are temporarily lay in global index layer. Only few tables and indexes 
are loaded into HDFS, thus loading is no longer the bottleneck of system. 

Indexer. The indexer creates global index on the loaded local index of data tables. It 
uses MapReduce paradigm to join the separated local index to be a global index, and 
delete the local index after success. If global index is too big to search, the indexer 
would automatically partition it into proper-size files. Besides, the index catalog in 
HDFS maintains the locations of global index, and is an XML file stored in the local 
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disk of Hadoop’s name node. The index cache is also in the same position, where 
LRU (Least Recently Used) algorithm is adopted as usual to store the index file. The 
detailed index structure and access method will be presented in Section 4.2. 

Query Engine. The query engine provides different execution methods for different 
input query. For query on metadata tables or data tables without predicate, it directly 
accesses the cache layer on HDFS or DBMS on National node. Yet, for query on data 
tables with predicate, it first accesses the global index layer on HDFS to obtain which 
underlying DBMSs should be sub-queried, then executes sub-queries in each desired 
DBMSs in parallel. The detailed execution method will be presented in Section 4.3. 

4.2 Global Index Mechanism 

In order to take advantage of data replicas in our system, we implement a global index 
mechanism which indexes the data across the whole underlying DBMSs. Using this 
mechanism, not only national node, but also other nodes with data replica will be 
accessed. Sub-queries are executed by these nodes in parallel, making performance 
more efficient.  

Index Creation 
Since many popular databases provide a pseudo column to locate the physical address 
of a row in a table, which is generally considered as the fastest way to search for a 
given row in the database, we use this existing pseudo column to achieve our goal. As 
a running example, we choose rowid (the representation of pseudo column in Oracle) 
to illustrate the algorithm index creation as follows. 

1) Load local indexes of all DBMSs into HDFS. 

• Do in parallel for each DBMS: load the < composite primary key, rowid> pairs 
from all the records in DBMS to the local index file in HDFS using 
MapReduce paradigm. 

2) Create global index of all local indexes in HDFS. 

• Join the local index files on predicate attribute (one of composite primary key) 
to be the global index using MapReduce paradigm. The joint-format of global 
index is < predicate attribute, rowid1, node1, rowid2, node2, …, rowidn, 
noden>. (n is the number of replicas, and nodei represents which node the 
replicas is in) 

• If the file size of global index is bigger than a threshold, partition the global 
index file into proper-size on predicate attribute, and update the index catalog. 

Considering simplicity, consistency and space utilization, we discuss the improved 
joint-format of global index in our scenario. Note that there are three data replicas in 
our application, one replica one layer (see Fig.1). We orderly write the < rowidi, nodei 

> (i=1, 2, 3) pairs based on the layer (from top to bottom) of node, while emit the 
column node1 due to the only one node (the national node) in top layer. Thus, the 
improved joint-format of global index in our scenario is < predicate attribute, rowid1, 
rowid2, node2, rowid3, node3 >. 
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Index Access  
When the query is with predicate of high selectivity on the attribute, the index access 
method can be adopted. Before the introduction of algorithm index access, we give the 
definition of index-tree which will be used in the algorithm. The index-tree is a subset of 
precursor network mentioned in Section 3.1. Each node of tree contains a list of rowid 
values, and each rowid value locates the desired record of this node. Thus, algorithm index 
access can be considered as the construction of index-tree as follows. 

1) Insert leaf node to index-tree. 

• Scan the entire global index file. Mark the row where the value of predicate 
attribute satisfies the predicate. Every different node appeared in the column 
node3 of these rows is the leaf node. 

• Create pointers for every marked row. Each pointer consists of an identifier of 
this (partition) global index file and an offset within the file to identify the 
given row. Assign them to the corresponding leaf node based on the value in 
column node3 of their pointed row. 

2) Insert non-leaf node to index-tree. 

• Insert the internal nodes and root node to index-tree based on the topological 
relationship of precursor network. Each non-leaf node contains an empty list of 
pointers temporarily. 

3) Update the list for each node in index-tree. 

• Let N be the number of nodes in index-tree, and P is the number of pointers of 
leaf nodes. Then each node should have  NPP /'=  pointers in average. 

• Do in parallel for each leaf node: If a node has more than 'P  pointers, 
remains the first 'P  pointers, and moves the rest to the list of its parent 
internal node. 

• Do in parallel for each internal node: If a node has more than 'P  pointers, 
remains the first 'P  pointers, and move the rest to the list of root node. 

• Do in parallel for each node: For each pointer in list, find the given row in 
global index file based on their identifier and offset, get the rowid value based 
on the layer of node (i.e. if node is in layer i, then get the value in column 
rowidi). Thus, a list of rowid values is obtained. 

4.3 Query Execution 

The algorithm query execution provides different execution methods for different 
input query as follows.  

1) Query on metadata tables 

• Query the table in HDFS using MapReduce paradigm. 

2) Query on data tables without predicate 

• Query the table in DBMS of national node. 
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3) Query on data tables with predicate 

• Based on index catalog and predicate, load the desired (partition) global index 
file from data node of HDFS to index cache in local disk of name node. If the 
file is existed already, skip this step. 

• Call algorithm index access on loaded global index file to obtain an index-tree. 

• Do in parallel for each node of index-tree: Based on the rowid value of node’s 
list, query the table of corresponding DBMS directly one by one. 

4.4 Summary and Analysis 

So far we have proposed a hybrid system H-DB integrating DBMS and Hadoop. H-
DB uses different optimization strategies for different types of table. For tables with 
high frequency access but relatively small amount of data (i.e. metadata table), H-DB 
loads all of them from underlying DBMS nodes to HDFS, and takes advantage of 
high concurrency of HDFS to guarantee the multi-user accesses. For tables with big 
data set (i.e. data table), H-DB concentrates on parallelization of query processing. Its 
global index mechanism makes the underlying DBMS engines execute the sub-
queries in parallel for certain queries. 

5 Experiments 

5.1 Configurations 

The experiments are conducted in a cluster consisting of four nodes connected by a 
gigabit Ethernet. Each node has two quad-core Intel x5550 2.6 GHZ processors, 
16GB Memory, and a 2TB RAID level 0 disk. The kernel of operating system is 
Ubuntu 11.04 x86_64. Hadoop 0.20.203 is set up on the cluster, and Oracle 10201 
x86_64 is running on each data node. 

The benchmark is from our application. Despite the specific Earthquake Precursor 
domain, the data schema is common to other applications. It contains two metadata 
table stations and stationpoints, and one data table data: table stations has 1 integer 
and 1 string attributes, which are stationid (key) and stationname; table stationpoints 
has 2 integer attributes, which are stationid (key) and pointid; table data has 1 string, 
3 integer and 1 blob attributes, which are startdate, stationid, pointid, itemid and 
obsvalue, and its composite primary key is the union of the first four attributes.  

Besides, stationid, pointid and itemid are respectively uniformly distributed in the 
integer range [1, 10000), [1, 10), and [1, 100); starttdate starts from 01-Jan-12, and 
increases by 1 day every 40000 records; stationname is a 20 character random string; 
and obsvalue is a binary sequence with 8.7KB average size. Table data, stations and 
stationpoints respectively have about 10,000,000, 1,000, 10,000 records, and their 
space occupancy are 95GB, 0.0625MB, 0.25MB correspondingly. 

For ease of testing, we assume that the Precursor Network contains 7 nodes, i.e. 1 
national node, 2 regional nodes, and 4 station nodes. Each regional node manages 2 
station nodes, and the national node manages all regional nodes. Considering that 
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there are only 4 machines in our cluster, we deploy the nodes within the same layer on 
one machine, and regard the remaining one machine as the name node in Hadoop.  

A data generator is designed to produce records. It yields all the same metadata 
table per node, while only 25% records (2.5 million) of data table per station nodes. 
An uploading of data records will be done from lower-layer node to upper-layer node 
next, and finally, each regional node contains 50% data records (5 million), and the 
national node contains the whole 10 million data records. 

The queries we use are as follows. The first query joins two metadata tables on 
stationid attribute. And the second query finds the records in table data by stationid 
and pointid attributes with a predicate on stationid attribute, where the where clause 
varies in different experiments. 

 

SELECT a.stationid, a.stationname, b.pointid 

FROM stations a, stationpoints b 

WHERE a.stationid=b.stationid; 

 

SELECT startdate, stationid, pointid, itemid, samplerate, obsvalue 

FROM data  

WHERE stationid IN (stationid_list) [and pointid IN (pointid_list)]; 

5.2 Initialization 

We report the initialization of H-DB, including loading metadata tables into HDFS 
and creating global index on stationid attribute of table data. Table I gives the result. 
The loading takes 0.9 minute for two metadata tables. This overhead is mainly due to 
the startup of MapReduce. The creation time of global index takes 16.1 minutes, and 
the entire global index files occupy 877.4MB. In summary, H-DB required as little as 
17 minute to completely initialize the whole 95GB dataset, and only few tables and 
indexes (0.9%) are loaded into HDFS, loading is not the bottleneck of H-DB. 

Table 1. Initialization of H-DB 

Metadata table 
 

Loading time (s) 
Table stations 28 
Table stationpoints 26 
Total time 54 

Data table 
Index creation 

time (s) 
Local index creation 493.5 
Global index creation 473.7 

 Total time 967.2 
Index size (MB) Each partition size 97.6 

Total size 877.4 
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5.3 Query with Multi-user 

This experiment tests whether system supports multi-user doing join operation on two 
metadata table simultaneously. Table 2 shows the elapsed time of two systems on join 
operation with multi-user. H-DB is slower than Oracle when there are fewer users, since 
its performance is affected by completely scanning all two tables in HDFS. However, with 
the exponential growth of the users, Oracle fails due to its limit number of database 
connection, while H-DB behaves well since it takes advantage of high concurrency of 
HDFS. In addition, the elapsed time of H-DB almost grows linearly with the number of 
users, namely that we can accommodate more users simply by adding more machines, yet 
without reducing the performance to existing users. 

Table 2. Elapsed Time of the Query with Multi-user 

Number of users 1 10 100 1000 10000 
Oracle (ms) 333 819 9338 crash crash 
H-DB (ms) 9813 10606 19599 95808 924763 

5.4 Query with Predicate 

We now test the query with predicate. These queries are to find records in data table 
with stationid value in stationid_list and sometimes with pointid value in pointid_list 
simultaneously. When the predicate is under high selectivity, for example, 
stationid=50000 [and pointid=5], or stationid ∈[50000,50010], it is worth using our 
global index mechanism to improve the performance.  

Fig. 6 illustrates the power of using our hybrid system H-DB. The elapsed time of H-
DB (both cache miss and cache hit) are much shorter than that of Oracle. H-DB (cache 
miss) represents that the desired global index file is not existed in index cache and should 
be loaded from data node of HDFS to local disk of name node first. Though the overhead 
of this loading is 270ms per 100MB, it takes an average increase of 81.2% in elapsed time 
than Oracle. And H-DB (cache hit), without this overhead of loading, takes a further 
increase of 76.2% on average than H-DB (cache miss). 
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In a word, H-DB (cache hit) only spends an average 5% elapsed time of Oracle’s. 
This significant performance improvement is because H-DB partitions a query among 
multiple DBMSs, executes the sub-queries in parallel and uses pseudo column rowid 
to directly locate the record. However, one thing to note: with the growth in the num-
ber of query result set (from 8 to 1134 in Fig.4), since Oracle does query optimization 
in choosing the lightest SQL plan, the performance improvement of H-DB decline. 

6 Conclusion 

DBMS and Hadoop are not ideal for big data analytics. HadoopDB as a hybrid system 
bringing their ideas together is prospective, but still limited due to some causes which 
are hard to conquer. Thus, we propose a novel hybrid system H-DB which takes 
DBMSs as the underlying storage and execution units, and Hadoop as an index layer 
and a cache. Though H-DB is similar to HadoopDB to some extent, it solves some 
limitations posed by HadoopDB: a) Only few tables and indexes are loaded from 
DBMS to HDFS, which solves the problem in loading bottleneck. b) The cache layer 
in HDFS is used to store tables with high frequency access but relatively small 
amount of data, which benefits for the multi-user accesses. c) The global index 
mechanism is adapted for certain queries, which shows much better performance than 
Oracle. All above make H-DB not only meets the demands of our application, but 
also would be appropriate for analogous big data applications. 
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Abstract. This paper deals with the implementation of the spectrum
sensing detector based on the Kolmogorov-Smirnov (K-S) statistical test
in the FPGA-based software defined radio system. After a brief introduc-
tion and the literature survey on the similar up-to-date implementation
works, the principle of K-S test is briefly reviewed. The core of the paper
describes the principles of two different algorithm implementations in the
Xilinx Spartan-3A DSP device. First implementation is straightforward
sequential solution, with low requirements on FPGA resources. After-
wards a new parallel solution with simpler structure and faster sensing
time is presented. Both approaches have been verified using both the
behavioral and the post place and route simulation. The integration of
the detector into the complete target software defined radio transceiver
- Universal Software Radio Peripheral (USRP N200) is also briefly dis-
cussed at the end of the paper.

1 Introduction

The cognitive radio (CR) approach is a potential enabler to overcome the spec-
trum scarcity and increased throughput problems for future wireless communica-
tion systems. From the first theoretical concepts defined by Mitola in [1] in 1999,
the CR technologies evolved to the stage of real-time implementations and evalu-
ation. The software defined radios, e.g. the Universal Software Radio Peripheral
(USRP) family are very suitable for testing of the cognitive radio technologies.
One of them is spectrum sensing - the process to detect the presence of primary
(licensed) users in the radio frequency spectrum.

One of the FPGA-based cognitive radio systems is presented in [2]. This sys-
tem is able to sense IEEE802.11a, IEEE802.11b and W-CDMA signals with
sensing times of 7056, 7056, and 8703 ms., respectively. The VHDL simulation
of the autocorrelation-based feature spectrum sensing detector was presented
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in [3]. The presented model consumes around 1000 LUT flip-flop pairs and is
suitable for detection of OFDM signals. In [4] we presented the implementation
of energy detector designed in the System Generator software targeted to Xilinx
Virtex 4 FPGA device and evaluated its performance on DVB-T broadcasting
signals. Besides the universal FPGA boards, some implementations were done
using the specialized hardware like the WARP system in [5] based on a Xilinx
Virtex 2 Pro device. In this paper the energy detector with double thresholding
has been proposed. Recently a demo has been presented and described in [12]
making use of a CRUSH platform - the Xilinx ML605 FPGA Development board
connected to the USRP N210 radio. Again, the energy detector is used for its
low complexity, standard-independence and ease of implementation.

If the dedicated hardware is not available, the FPGA board with the hardware-
in-the-loop simulation can be used, similarly as to [6] where the energy and cyclo-
stationary detectors were simulated. The System generator in Simulink was used
for the implementation of the progressive decimation filter bank spectrum sens-
ing detector in [7] with 300,000 gates necessary in the Virtex 2 device. The same
Simulink environment was used for the multitaper method implementation [11] in
Virtex 5 device. For the correctness of the spectrum sensing device utilization, the
proper setting of decision threshold has to be ensured. This aspect has been treated
for example in [8]. Several spectrum sensing detectors have been implemented with
the use of the USRP, similarly to our case. As the example we can mention the paper
[9] and the master thesis [13], describing the implementation of energy detector us-
ing the USRP2 radio. From the theoretical point of view the closest to our approach
is the master thesis [14] describing the Kolmogorov-Smirnov (K-S) and Anderson-
Darling tests implementation in the USRP2. But although this work uses the same
theoretical background as our presented contribution, the both works differ in the
implementation point of view - we perform an implementation in the VHDL to be
built-in directly in the FPGA inside the USRP, while the authors of [14] used the
GNU radio environment.

This paper follows up our approach presented in [10] in which two options
for the application of the K-S test for spectrum sensing have been proposed
and evaluated in MATLAB. The rest of the paper is structured as follows: The
section 2 briefly revises the principle of K-S test and its application in spectrum
sensing. Then the main principles and results of two distinct implementations of
K-S test (fully sequential and parallelized) are described in sections 3,4 and the
integration in the USRP N200 in section 5.

2 K-S Test as the Spectrum Sensing Technique

In the spectrum sensing problem, the goal is to distinguish between two hypoth-
esis - whether a received signal r(n) contains only a noise component w(n) (H0),
or whether also the primary signal s(n) is present (H1):

H0 : r(n) = w(n), H1 : r(n) = s(n) + w(n). (1)

Note that in our case we considered discrete time signals with sample index n.
The K-S test belongs to the goodness-of-fit tests (these test are based on the
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estimation and comparison of distribution functions) family. A null hypothesis
H0 corresponds to the case that the two probability distributions (one measured
from the received signal, second of the expected noise in the communication
channel) are not significantly different. The alternative hypothesis H1 corre-
sponds to the case that the measured (empirical) distribution F (r) differs with
respect to the expected theoretical distribution G(r) of the noise component.

Following three equations represent the three general steps of the K-S test
implementation. First the cumulative distribution function of the received signal
has to be estimated from its N samples. This formula can be used for that reason,
[10]

F (r) =
1

N

N∑

n=1

Γ (r(n) ≤ r) , (2)

with Γ denoting the indicator function, which is equal to one if its argument is
true, and equal to zero otherwise.

Subsequently, the supremum of the difference between the sampled versions
(at ri) of measured F (ri) and theoretical G(ri) distribution functions is approx-
imated with the test statistics TKS:

TKS = max
i
{F (ri)−G(ri)} (3)

The null hypothesis is rejected at the significance level α when the value of
test statistic is higher than a critical value k(α,N). In the case of N ≥ 50, the

critical values can be approximated as k(α,N) =
√

1
2N ln

(
2
α

)
.

3 Algorithm Implementation

The K-S test algorithm has been implemented in VHDL in the Xilinx ISE 13.4
software with the use of Xilinx IP core library to ease of the implementation of
blocks as memories or arithmetic operators.

3.1 Sequential Solution

In the first step, the sequential solution has been designed. A simplified schematic
of the system for cumulative distribution function estimation from the measured
data is shown on the left part of Fig. 1. The data are stored in the RAM memory
DATA. Another RAM memory (in schematic denoted as F ()) is used to store the
values of estimated CDF sampled at point r(ADRESS) approximated by the
sum (number of cases with non-zero indicator function) according to eq. 2. For
each data sample (consisting of baseband I and Q sample pair), its absolute value
is computed first. Then it is compared with the intervals spanning from r = 0 to
the maximal value of independent axis of CDF (r). If the output of the indicator
function from eg. 2 is equal to one (comparator is used), the corresponding entry
in RAM F () is increased by 1. Otherwise the RAM entry remains unchanged.
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Subsequently, the address for RAM F () is incremented and the process is re-
peated for the next address until the whole range of CDF is passed through.
As soon as the indicator function becomes equal to 0 (all remaining indicator
functions for higher r are equal to 0 too), the counter of addresses is initialized to
zero. This process is repeated for all input data samples. In order to control the

Fig. 1. Simplified schematic of circuit for CDF estimation (left) and maximum search
(right) -sequential solution

read and write operation of memory F () of CDF values, a simple Finite State
Machine (FSM) has been created, In the first state, the valid address is present
at the RAM F () address buss, second state is used for CDF entry read, third for
indicator function computation. In the final state the corresponding RAM entry
is increased by 1 (or let unchanged if the indicator function is equal to 0).

Once the CDF of the input data is estimated, the maximum according to eq.
3 is searched for with the use of circuit shown in the simplified form on the right
part of Fig. 1. All entries of the CDF RAM are subtracted with the corresponding
entries of RAM G() defining the values of theoretical CDF of the noise in the
channel. Subsequently the maximal difference between the two distributions is
stored in the register MAX. Final decision is done by comparison of the maximal
difference with the precomputed critical value k(α,N).

3.2 Parallelized Solution

The sequential solution presented above is advantageous (as will be confirmed
numerically below) from the point of view of FPGA resource utilization. For
each input sample, the indicator function is computed successively for all values
of CDF abscissa. On the other hand, such sequential approach is time consuming
if the goal is to estimate the CDF precisely (i.e. for fine abscissa resolution).
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The parallelized solution for CDF estimation is based on the parallel com-
putation of CDF samples for all points on the abscissa. The input sample is
compared with a set of M comparators, as depicted on the left part of Fig.
2. The comparator directly works as a indicator function generating unit, see
equation 2. The summation from this equation is implemented in the set of M
accumulators.

Fig. 2. Simplified schematic of circuit for CDF estimation (left) and maximum search
(right) - parallelized solution

Also the algorithm for searching the maximal difference between two CDF’s
(equation 3) can be implemented in more clever way than is the pure sequential
solution. The sequential solution described above requires number of compar-
isons (and thus corresponding number of clock cycles) equal to number of esti-
mated CDF points. This can be a drawback if the fast sensing time is required.
The proposed solution is based on the comparison at bit level rather than on the
sample level. Imagine we compare the differences between two CDF’s that are
represented in unsigned 16-bit format and are stored in M accumulators. The
algorithm to search for the maximal number stored in the accumulator can be
described (in simplified form) as:

1. At the begining, all m = 1..M numbers data1, data2, . . .dataM are candi-
dates for the maximum. The set of candidates for maximum is initialized as
Sc = {data1, data2, . . . dataM}
The membership of one particular datam in Sc is indicated with variables
Flagsm equal to 1 (datam ∈ Sc) or equal to 0 (datam /∈ Sc). The variables
Flagsm, m = 1..M are initialized to ones.

2. The data are processed from the MSB down to LSB.
FOR u=1:U (u = 1 corresponds to MSB, u = U corresponds to LSB)
∀ datav ∈ Sc :
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IF (u-th bit of datav is equal to 1) OR (u-th bits of all datav ∈ Sc are equal
to 0)
THEN
datav remains to be candidate for the maximum (variable Flagsv=1)
ELSE
datav is certainly not the maximum (set the variable Flagsv=0). The datav
is removed from the set of candidates Sc = Sc − {datav}

3. continue in 2) with the next bit (until the LSB is reached)
4. At the end, the value of Flags=1 at corresponding m−th position indicates

the maximum.

This parallelized solution requires the number of clock cycles to be equal to bit
resolution used for the representation of CDF’s difference only(e.g. in our case
only 16 clock cycles), even if the CDF is estimated in fine abscissa resolution of
e.g. 100 points. The method can be easily implemented using a set of registers
(D type) and OR/AND gates, see Fig.2.

4 Verification by Simulation

4.1 Sequential Solution

The results of post-place and route simulation of the sequential way of CDF
estimation blocks are shown on figure 3. This figure shows the timing of all
corresponding signals for the example case of indicator function equal to 1 (i.e.
CDF RAM write enabled). Note that for the sake of easy graphical represen-
tation, the CDF is approximated for 16 input entries only (address width of 4
bits). The 16 bits precision for data is used, as corresponds to the USRP devices
signal format. Both time plots starts at the instant when the input signal RAM
entry is read after the tick of clock CLK signal. The address ADRESS is then
successively incremented from the starting point 0000 in order to go through
the whole CDF. If the input data signal is below the limit of interval r (see eq.
2), the signal COMPARED (indicator function) is equal to 1 and the update of
RAM F () is enabled.

Fig. 3. Post place and route simulation results - CDF estimation (sequential solution),
indicator function equal to 1
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4.2 Parallelized Solution

Similarly to the sequential case, the parallelized solution has been verified by
the VHDL post place and route simulation. The results for the CDF estimation
and maximum search are shown in figure 4. The top part shows the results
for CDF estimation. The input signal samples (SIGNAL) are successively read
from the memory and compared with a set of comparators. For sake of clarity
only five comparators have been used in the simulation to create this figure.
The corresponding thresholds were set (Q5 format) to 000001, 000010, 000100,
001000 and 001100. It is possible to verify that the corresponding accumulators
are incremented only if the input sample is above the threshold.

The procedure for searching the maximum is illustrated in the bottom part.
Again, in order to provide easy interpretation of the results, only the four un-
signed numbers (1001,1001,1100 and 1101) represented in 4 bit format have been
used for the simulation. Note that a variable accumbits represents successively
the i-th bits of all numbers compared, i.e. first sample of accumbits represents
MSB’s of all four numbers, second sample of accumbits represents MSB-1’s etc.
As the numbers are compared starting from MSB to LSB, the variables Flags
are changed. At the end only the 4-th bit of Flags is equal to 1 indicating the
4th number (with a value of 1101) is the maximum.

Fig. 4. Simulation timing results - CDF estimation (top) and search for maximum
CDF difference (bottom) for parallelized solution

5 Integration to USRP Software Defined Radio

The K-S test module is currently integrated into the USRP N200. Its main
board is equipped with the Xilinx Spartan 3A-DSP 1800 device and dual 14 bits
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A/D converters with 100 MS/s. sampling rate. The USRP can be used in con-
nection with various different front-end modules ranging from DC to 6 GHz
frequency.

The simplified schematic of USRP N200 receiver chain is shown on top part of
the Fig. 5. Data from the antenna are received by the front-end, converted to dig-
ital domain by the A/D converters and subsequently Digitally Down-Converted
(DDC) to baseband. The USRP source code is ready to be modified by the cus-
tom Verilog code to be included in several positions of the transceiver chain.
In the receiver, the user can access data from the front-end (position 1 in Fig.
5), input to the DDC (position 2 in Fig. 5), output of the DDC (position 3)
or baseband data (position 4). In standard configuration, the custom blocks are
bypassed, i.e. the position 1 is connected to 2 and position 3 is connected to
position 4. From the I and Q samples of the received signal at the DDC out-
put we computed the signal absolute value and stored into the RAM F (), see
section 3.

The device utilization summaries for CDF estimation and MAX search for
both sequential and parallelized solutions are shown in Table 1, together with
the summary for the standard configuration of USRP N200 and total available
resources of in-built FPGA. It is possible to see that the number of resources
required by the spectrum sensing algorithm is very low in comparison with the
resources occupied by the standard configuration of USRP. The implementation
complexity is compared with the several state-of-the-art methods in Table 2 in
term of number of used FPGA slices. Note that this table presents only rough
comparison, as various authors used different FPGA devices and the slices are
not the only FPGA blocks. Most of the benchmark implementations from table
2 are slightly disadvantaged over our implementation, as the authors often used
Simulink-based development environment System Generator and not the VHDL
implementation.

Fig. 5. USRP receiver chain (top) and custom module
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Table 1. Device utilization summary - Post Place and Route reports for sequential
(seq.) and parallel(par.) implementations, resources consumed by the USRP itself and
total available resources for the specific FPGA device

CDF estimation (seq./par.) Max search (seq./par.) USRP alone Available

Slices 59/688 64/135 16529 16640

SliceMs 0 0 2182 8320

RAM16s 4/2 0 42 84

DSP48As 0 0 34 84

DCMs 0 0 1 8

Table 2. Comparison of resource utilization of several state-of-the-art spectrum sensing
implementations in term of number of slices

Reference Algorithm type Device family No. of Slices

[3] autocorrelation Virtex 5 993

[5] energy, double threshold Virtex 2 Pro 6600

[6] cyclostationary Virtex 2 1315

[6] energy detector Virtex 2 350-827

[11] multitaper energy Virtex 5 9954

6 Conclusions

This paper presents our work dealing with the implementation of spectrum sens-
ing device in the FPGA and its integration into the software defined radio USRP
N200. The used algorithm is the statistical test comparing the distribution of
received signal with a distribution of the expected channel noise. This approach
is advantageous from the point of view of easy implementation and low resources
requirements. The consumed resources of the sequential spectrum sensing detec-
tor are around 1 percent of the total device available resources, while the paral-
lelized version requires less than 5 percent of resources of the same device. Both
methods can thus be implemented also in the software defined radio systems like
the USRP family. The implementation complexity of the presented methods was
also briefly compared with several other state-of-the-art implementations. It can
be noticed that both proposed implementations require low amount of resources
compared to the state-of-the-art solutions.
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Abstract. Application code and processor parallelization, together with
instruction set customization, are the most common and effective ways
to enhance the performance and efficiency of application-specific proces-
sors (ASIPs). Both the effective code parallelization and data/task par-
allelism exploitation, as well as effective instruction set customization,
enable an ASIP to achieve a significant performance improvement using
limited extra hardware resources. However, a naive parallelization or in-
struction set customization may not result in the required performance
improvement, leading to a waste of computing and energy resources.
Therefore, when performing parallelization or custom instruction selec-
tion, complex tradeoffs between processing speed, circuit area and power
consumption must be closely observed. In this paper, we propose and
discuss an efficient ASIP-based Multi-Processor System-on-a-Chip (MP-
SoC) design for ray-tracing, exploiting application parallelism and hard-
ware replication-aware instruction set customization. Without hardware
sharing among the custom instructions units, the proposed parallel ray-
tracer MPSoC design with custom instructions achieves 77% speed up in
comparison to a single microprocessor design with the default instruction
set. However, with the replication-aware instruction set customization,
the speed up increases to 81%.

1 Introduction

Application-specific processors and hardware accelerators have become an at-
tractive alternative to general purpose processors [4,3], as they can be tailored
in order to better satisfy the requirements of modern highly-demanding applica-
tions. Specifically, communications and multimedia applications are often very
demanding regarding throughput and energy consumption, requiring sophisti-
cated application-specific (co-)processor implementations. For instance, a set of
operation patterns that are frequently executed by an application or a class of
applications can be implemented as a hardware accelerator or as a set of custom

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 346–356, 2013.
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instructions in an ASIP datapath, resulting in a possible substantial increase of
the execution speed [12].

The ray-tracing algorithm is an example of a multimedia application highly-
demanding in terms of throughput, circuit-area and energy consumption [6,8].
First of all, the algorithm performance can be considerably improved by means of
code and processor architecture parallelization [2]. Secondly, the algorithm may
compute several ray-object intersection tests for every ray vector, which requires
specific intersection computations/routines for each 3-D object of the whole 3-
D scene [1]. Thus, in an ASIP design process, each intersection computation
may be implemented as a specialized function unit in hardware, contributing to
further speed up the overall execution. However, the more processing elements
and specialized function units are added to the design, the higher becomes the
overall system circuit area and energy consumption [6,8].

Hardware sharing (or more generally resource sharing) [10,13], is a well-known
optimization approach, traditionally employed for saving circuit area, in which
two or more equivalent hardware parts (e.g. functional units) that are never used
at the same time during an application execution (unless they are pipelined [9])
are replaced by a single part. For instance, in a class of similar applications,
there is usually large sets of equivalent operation patterns that can be identified,
evaluated and finally selected for extending an existing instruction set. The in-
struction set extension may increase the processor performance, but it may also
significantly increase the processor circuit area. The increase of the circuit area
can be limited through hardware re-use. Thus, hardware sharing represents an
important optimization problem. While many hardware synthesis tools provide
some resource sharing transformations, their results are often far from ideal [11].

This paper presents a parallelization strategy of the ray-tracing algorithm to
be implemented in a Reconfigurable Multi-Processor System-on-a-Chip, as well
as, hardware replication-aware instruction set extension based on the identifica-
tion of equivalent computation patterns that are frequently executed in the ray-
tracing application. Based on the information collected during the application
profiling, which is performed using the LLVM compiler framework [7], candidates
for instruction set extension are decided and implemented as specialized function
units in the ASIP-based MPSoC to further speed up the ray-tracing execution
time. Such extensions may substantially increase the circuit-area. To mitigate
the impact on the area, the resource sharing maximal common subgraphs based
on maximal cliques [5] is used.

The rest of this paper is organized as follows: Section 2 briefly describes the
ray-tracing algorithm. Section 3 introduces and discusses the automatic instruc-
tion set extension tool based on the LLVM compiler framework. Subsequently,
Section 4 presents the MPSoC macro-architecture synthesis with Instruction
Set Extension. Section 5 discusses speed up and area results for the ray-tracing
MPSoC, comparing the instruction set extension with and without hardware
sharing. Finally, Section 6 draws some conclusions and ideas for future work.
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2 Ray Tracing

In contrast to traditional 3-D rendering algorithms [1], the ray tracing algorithm
produces a higher fidelity image representation of a 3-D scene. For every primary
ray (e.g. light vector), the ray tracing algorithm usually computes intersection
tests against all the 3-D primitives (a.k.a. objects) of the scene, looking for the
objects that are visible from a virtual camera’s perspective. If an intersection is
encountered, the object properties are used to determine wether the ray will be
reflected, refracted or completely absorbed. For instance, if the ray is reflected
or refracted, the algorithm is recursively executed to determine the objects that
are visible from the previous intersection point perspective, which is why the al-
gorithm can naturally produce mirror like effects in the final image. On the other
hand, if the ray is absorbed, the processing ends and all the information that has
been gathered until that point is merged to compose the color of the correspond-
ing pixel of the viewplane. The program main entry is presented in Algorithm 1,
in which the primary rays are being traced. The trace procedure in Algorithm
1 is responsible for determining the closest intersection point. Such procedure is
recursively executed until a maximum reflection/refraction threshold is reached.
Further details on ray tracing can be found in [1].

Algorithm 1. Ray Tracing primary rays

1 3-D scene = load3DScene(file);
2 viewplane = setupViewplane(width,height);
3 camera = setupCamera(viewplane,eye,view direction);
4 depth = 0;
5 for i = 1 to viewplane’s width do
6 for j = 1 to viewplane’s height do
7 ray = getPrimaryRay(i,j,camera);
8 image[i][j] = trace(3-D scene, ray, depth);

3 Automatic Instruction Set Extension

Instruction-set extension (ISE) is a well-known technique often used to improve
the performance of reconfigurable instruction-set processors and application-
specific instruction-set processors. In other words, such processors are optimized
to the execution of a specific application or class of applications through the im-
plementation of dedicated hardware (custom instructions) based on an extensive
profiling of the application for which the processor is being designed for.

Usually, the customization process involves three main steps: pattern identi-
fication, pattern selection and code transformation. Using the LLVM compiler
framework [7], an instruction set extension tool has been developed that au-
tomatically generates a library of custom instructions. Code transformation is
out of the scope of this work. Therefore, custom instructions must be manually
identified and tagged in the source code to force the compiler to use their custom
hardware units. Otherwise, a retargetable compiler should be used.
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3.1 Pattern Identification

The pattern identification step is usually the most complex. First, it compiles the
application specification (written in a high level language such as C or C++)
and produces an equivalent Control-Flow Graph (CFG) representation. Such
graph-based representation of the application is then optimized and partitioned
into Data-Flow Graphs (DFG), which are based on the application’s basic blocks
partitions. Each DFG is a Directed Acyclic Graph (DAG) that is analyzed to
identify patterns (set of basic operations) that are common to several basic
blocks. Our LLVM-based instruction set extension tool uses the LLVM-operation
code of each basic operation to appropriately color a node in its corresponding
data-flow graph representation, as depicted in Fig. 1.

Finding the maximal common subgraphs is equivalent to finding the maximal
clique in an edge product or vertex product graph (a.k.a compatibility graph)
[5,10]. For example, when applied to the graphs depicted in Fig. 1, the tool
identified the common patterns shown in Fig. 1c.

139 139

99 139

4148

4840

(a) DFG of B.Block 1.

139 139

99 139

4148

4840

139 139

99 139

913

139 139

99 139

911 1311

1311

1313

1311

462

(b) DFG of B.Block 2. (c) Common pattern.

Fig. 1. Data-flow Graph representation of two different basic blocks of the ray-tracing
application and their common pattern

3.2 Pattern Selection

Once the common patterns (maximal common subgraphs) are identified, they
are evaluated regarding their frequency of execution in the application and their
frequency of occurrence. Also, the simple arithmetic average of every basic block
execution frequency can indicate, for instance, the basic blocks that are more
frequently executed in comparison to the rest. In the chart of Fig. 2, the execution
average is 0.645 (in normalized logarithm scale), indicated by the dot line. Thus,
the pattern selection step can ignore the patterns that are not as frequently
executed as dictated by the average frequency.

The frequency of pattern occurrence is extracted together with the pattern
identification step, which also produces a histogram chart that shows how many
times each common pattern was identified in every basic block, as shown in Fig.
3. For the ray-tracing application, 26 patterns were identified. The average can
also indicate which patterns are good candidates for hardware implementation,
i.e. the ones that have appeared more often in all the basic blocks.
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Fig. 2. Ray-Tracing basic blocks frequency of execution histogram (in normalized log-
arithm scale)

4 Ray-Tracing MPSoC Macro-Architecture

The ray-tracing reconfigurable MPSoC macro-architecture consists of several
Xilinx MicroBlaze microprocessors running in parallel at 125MHz. They are
connected to a shared DDR memory via a Xilinx Multi-Port Memory Controller
(MPMC), which supports the connection of up to eight MicroBlaze micropro-
cessors. Thus, the multi-port memory controller, together with the constraint on
the available resources in the used FPGA, impose a limitation on the number
of microprocessors that can actually be synthesized. The macro-architecture is
depicted in Fig. 4.

Each microprocessor’s instruction set can be extended with up to 16 custom
instructions, implemented as co-processors through the Xilinx Fast Simplex Link
(FSL) bus. Thus, in the ray-tracing MPSoC, each custom instruction works as
a special floating-point co-processor.

4.1 Parallel Ray-Tracing in MPSoC

The parallel ray-tracing implementation is presented in Algorithm 2, where iter-
ations of the external for loop are split across the microprocessors, as shown in
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Fig. 4. The Ray-Tracing Reconfigurable MPSoC Macro-Architecture

line 5. Therefore, in Algorithm 2, groups of rays are assigned to different micro-
processors, because every ray can be processed independently from the others.

Each microprocessor will produce different columns of the final rendered im-
age. Every microprocessor knows which data to read and to write, according
to its own identification number (MB ID= 0, 1, 2, ..., n− 1) and also according
to the total number of enabled microprocessors (NUM OF MB= 1, 2, ..., n), as
shown in lines 5 and 9 of Algorithm 2. Observe that, at each inner-loop itera-
tion, an image pixel is produced, as shown in line 8. There are no memory write
conflicts, because the pixels produced by different microprocessors are always
written at different memory addresses. Due to the memory controller limitation
of eight ports, the total number n of MicroBlaze microprocessors is currently
limited to eight.

Algorithm 2. Parallel Ray Tracer in MPSoC

1 3-D scene = load3DScene(file);
2 view = setupViewplane(width,height);
3 cam = setupCamera(viewplane,eye,view direction);
4 u24 * image = (u24 *) XPAR DDR2 SDRAM MPMC BASEADDR;
5 for i = MB ID to viewplane’s width do
6 for j = 0 to viewplane’s height do
7 ray = getPrimaryRay(i,j,cam);
8 image[j + i * cam.view.height] = trace(3-D scene, ray);

9 i = i + NUM OF MB;

4.2 Ray-Tracing Instruction Set Extension

Using our LLVM-based instruction set extension tool, presented in Section 3,
three floating-point custom instructions were added to each microprocessor in-
struction set, as shown in Fig. 5. The instruction extensions were selected from
the most frequently executed operation patterns and accounting for the most
common pattern occurrences found between the basic blocks during the profil-
ing of the ray-tracing application. Finally, the custom instructions were manually
mapped into the application source code.
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5 Experimental Results

In this section, the MPSoC-based macro-architecture, as described in Section
4, was synthesized using Xilinx EDK 14.4 for a Virtex-5 XC5VFX70T FPGA
and the parallel algorithm implementation was compiled using MicroBlaze GCC
compiler, without optimizations. Two implementations and experimental results
are presented: the first one (Section 5.1) without ISE hardware sharing and the
second (Section 5.2) with ISE hardware sharing.

5.1 Results of ISE without Hardware Sharing

The results are based on the ISE without hardware sharing exploration. In this
ISE configuration, up to 4 MicroBlaze microprocessors were synthesized. The
execution time results, shown in Fig. 6a, are given in seconds and the speed up
in comparison to a single microprocessor implementation is presented in Fig. 6b.
It is easy to observe that the speed up grows linearly with using more processing
elements in parallel. Moreover, if the instruction set extensions are enabled, the
speedup grows in the direction of the linear parallel speed up. Whenever they
were enabled, the instruction set extensions provided altogether 8.2% speedup

(a) Execution time results, varying from
1 to 4 microprocessors.

(b) Parallel ray-tracer speed up, varying
from 1 to 4 microprocessors. A plus signal
(+) indicates usage of ISE.

Fig. 6. Parallel ray-tracer execution time results
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(a) FPGA resources usage for 4 microproces-
sors and peripherals.

(b) Ray-tracer output image (800 ×
600 pixels).

Fig. 7. MPSoC FPGA area occupancy and the final output image

in any configuration of microprocessors. Four microprocessors with enabled in-
struction set extensions achieved 77% speedup in comparison to the standard
single-processor solution.

In the MPSoC design, almost all the FPGA slices are used (80%), as well
as the available DSP48Es (81%), which are essential to lower the delay of the
floating-point units in FPGA. Therefore, we could only fit in 4 microprocessors
running in parallel with their instruction set extensions, as shown in Fig. 7a.
The resultant ray-traced image is presented in Fig. 7b.

Furthermore, in order to better evaluate the impact/improvement due to the
instruction set extensions, the complexity of the 3-D scene has been increased.
Namely, we included 100 extra spheres in the 3-D scene. In this way, the number
of required floating-point computations (during the intersection tests) has also
increased. In this case, the instruction set extensions provided 10% speedup.
Thus, the more data is fed into the custom instructions, the higher the speedup.

5.2 Results of ISE with Hardware Sharing

Observe in Fig. 5 that each custom instruction presents a few function units
in common. This is the same problem of maximal common subgraph identifica-
tion (common pattern identification), as discussed in Section 3.1. Therefore, we
analyzed the proposed instruction set extension regarding its hardware sharing
possibilities. Our instruction set extension tool was able to merge the common
patterns and produce a compact function unit hardware that can still compute
the custom instructions one at a time, as depicted in Fig. 8.

The instruction set extensions with hardware sharing saved enough circuit
area to enable the inclusion of an additional microprocessor with custom in-
structions along to the other 4 microprocessors. Thus, using the same Virtex
5 XC5VFX70T FPGA, up to 5 MicroBlaze microprocessors were included and
synthesized. All the execution time results, shown in Fig. 9a, are given in seconds
and the speed up is in reference to a single microprocessor implementation is
presented in Fig. 9b.



354 A.S. Nery et al.

Xilinx
MicroBlaze

microprocessor

FSL1

FSL 1

x x x

+

i0 i1 i2 i3 i4 i5

mux

o1

mux

+

i6 (select)
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(a) Execution time results, varying from 1
to 5 microprocessors with hardware shar-
ing.

(b) Parallel ray-tracer speed up, varying
from 1 to 5 microprocessors. A plus signal
(+) indicates usage of ISE with HS.

Fig. 9. MPSoC parallel ray-tracer execution time comparison, with hardware sharing

(a) FPGA resources usage for 5 micropro-
cessors with Hardware Sharing (HS).

(b) Speed up comparison, varying from 1
to 5 microprocessors. A plus signal (+)
indicates usage of ISE.

Fig. 10. MPSoC FPGA area occupancy and speedup results, with hardware sharing
and without it

The design with hardware sharing presented a better FPGA occupancy effi-
ciency, as shown in Fig. 10a. As expected, there is a very small loss of performance
in the version of ISEs with hardware sharing, because the selection hardware re-
quires an additional operation control signal to select which data-path should
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be followed at each time. Thus, altogether, the instruction set extensions with
hardware sharing provided 5% speedup when enabled. The speedup is almost
the same as that achieved by the ISEs with no hardware sharing, as shown
in the comparison depicted in Fig. 10b. Furthermore, the fifth microprocessor
further improved the overall speedup to 81%, in comparison to the standard
single-processor solution.

6 Conclusion

In this paper, we presented a Reconfigurable MPSoC with processors equipped
with custom instructions for speeding up the parallel ray-tracing algorithm. With
the MPSoC implementation on a single Virtex-5 XC5VFX70T FPGA we were
able to explore the usage of up to five MicroBlaze microprocessors in parallel,
running at 125MHz. The speed up is almost linear with increasing the number of
processing elements (microprocessors) employed in the parallel algorithm execu-
tion. Although the interactive performance is not yet achieved, an Application-
Specific Integrated Circuit (ASIC) implementation of such an application-specific
MPSoC design, instead of FPGA, could most probably run substantially faster,
while resulting in a much lower area and power consumption. Such ASIC-based
implementation is in our plans for future work.

Moreover, we introduced and discussed an automatic instruction set extension
tool, that is able to identify the most promising operation patterns (sets of basic
operations) throughout performing an application data-flow graph analysis. We
researched the problem of hardware sharing in the instruction set extension of
the ray-tracing MPSoC design. It is possible to observe that adequate optimiza-
tion techniques involving hardware sharing are of primary importance for the
design of ASIPs and hardware accelerators. For instance, after hardware sharing
optimizations in the proposed instruction set extensions, the saved circuit-area
enabled the inclusion of an extra microprocessor with its custom instructions,
further increasing the parallel capabilities of the MPSoC design. This is of ex-
treme importance for the ray-tracing speedup, because the algorithm strongly
benefits from the parallel processing of the ray vectors. Therefore, the overall
achieved speedup with 4 microprocessors is 77%, while with with 5 microproces-
sors the overall achieved speedup is 81%, in both cases with custom instructions
enabled. In the future, the automatic instruction set extension tool will also con-
sider circuit-area and power consumption information during the selection of a
given custom instruction.
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Abstract. This paper introduces a heuristic-based scheduler to optimise the
throughput and latency of stream programs with dynamic network structure. The
novelty is the utilisation of positive and negative demands of the stream communi-
cations. It is a centralised approach to provide load balancing for stream programs
with dynamic network structures. The approach is designed for shared-memory
multi-core platforms. The experiments show that our scheduler performs signifi-
cantly better than the reference implementation without demand considerations.

1 Introduction
Programming models based on stream programming have become an active research
topic, as stream programming has some nice benefits for parallel programming. For ex-
ample, it makes some forms of parallelism explicit and the communication over streams
facilitates implicit synchronisation. Because of this advantage, several research projects
have introduced stream programming frameworks such as StreamIt [18], Brook [2], S-
Net [9], and CnC [3] to name a few.

For a parallel programming model to gain practical acceptance, it has to be possible
to produce efficient code for parallel platforms. The idling time of individual physical
resources has to be minimised in order to use the parallel platform efficiently. Efficient
code in general depends on the combination of compilation techniques and resource
management strategies by the runtime system. There are rather static approaches like
StreamIt [18], which assume constant message arrival rates, and more dynamic ap-
proaches like S-Net [9], which do not make any assumptions on the message arrival
rate and also support dynamically changing streaming-network structures.

In this paper we present a novel heuristics-based scheduler to optimise both through-
put and latency of streaming programs with dynamic stream program structures. The
scheduler uses a heuristic based on data demand of stream communications. As we
address dynamic structures of stream programs, the particular challenge is that static
scheduling based on formal constraints or probabilities is not applicable.

The context of our scheduling problem is described in more detail in Section 2, which
includes the stream execution model we assume and also the performance metrics we
are interested in. Section 3 provides guidelines to design a stream scheduler targeting
throughput and latency optimisation. Based on these guidelines, the proposed sched-
uler is presented in Section 4. In Section 5 we give technical implementation details
including a pointer to the Light-weight Parallel Execution Layer (LPEL) [15], where
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we deployed our scheduler. In Section 6 we study the influence of some design param-
eters of our scheduling policy and present some performance comparisons, showing
that the new scheduler gives significant performance improvements compared to the
original LPEL scheduler. Section 7 discusses related work, followed by a conclusion in
Section 8.

2 Background

2.1 Stream Programs

Stream programming is a paradigm that allows concurrency to be expressed by decou-
pling computations and communications [18,2,9]. The structure of stream programs can
be illustrated as a graph whose vertices are computation nodes and edges are commu-
nication channels called streams. In this paper we refer to computation nodes simply as
nodes. Streams connect nodes in different ways, e.g., pipeline, parallel, feedback, etc.

Stream programs are classified by different properties of computation nodes and
communication streams [16]. In general, streams can be uni-directional or bi-directional,
while within this paper we limit ourselves to uni-directional streams. A node’s be-
haviour can be deterministic or non-deterministic. The program structure can be dy-
namic or static.

2.2 Data in Stream Programs

Data arrives to a stream program as a virtually infinite sequence of messages. Input
messages coming from the external environment are called external input messages.
Similarly output messages sent to the external environment are called external output
messages. Execution of a node consumes n input messages from its input streams and
produces m output messages to its output streams. An external input message is com-
pleted when all the associated external output messages are produced.

2.3 Stream Execution Model

Conceptually the stream execution model includes two layers: a runtime system (RTS)
and a scheduler. At the RTS layer, each stream is represented as a FIFO buffer for
storing messages and each node of the stream program is transformed into one task.
A task is an iterating process that reads messages from its input streams, performs the
associated node’s computations, and writes output messages to its output streams. Tasks
consuming external input messages are entry tasks, and tasks producing external output
messages are exit tasks. All other tasks are called middle tasks.

The RTS controls the state of tasks, i.e., it controls when a task is ready to be sched-
uled. A task is ready to be executed if all required messages are available on their input
streams. Otherwise the task is blocked.

The scheduler, which is the layer below the RTS, employs a policy to distribute ready
tasks to physical resources. The scheduler’s policy decides: i) which ready task will be
processed; ii) which physical resource will process the ready task; and iii) the length of
the scheduling cycle, i.e., the processing count of a task before re-scheduling.
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2.4 Performance of Stream Programs

Similar to communication networks, stream programs transfer messages from an entry
to an exit via interconnected nodes. Thus, their performance is evaluated by the same
metrics: throughput and latency.

Throughput. The throughput of stream programs is measured as the number of external
input messages that are completed per time unit.

Latency. In stream programs the latency of an external input message is the time in-
terval from when it is consumed by the program to when it is completed. The stream
programs is evaluated by the average latency as the arithmetic mean of the latency of
all observed external messages. In the context of this paper, latency is used to indicate
the average latency unless it is explicitly mentioned as latency of a specific message.

3 Guidelines for Scheduler Design
In this section we present guidelines to design a scheduler aiming for performance
optimisation. As unidirectional streams can be considered as queues of messages which
are required to pass through connected nodes, a stream program can be considered as
a queuing system. We consider here only stable queuing system where the arrival rate
does not exceed the maximum throughput and the number of external messages inside
the stream program Mcp is bounded [13].

3.1 Guidelines for Throughput Optimisation

Consider a stream program deployed on a platform of N homogeneous physical re-
sources for a time period P = [0, t]. After the periodP , M external messages have been
completed and Mcp external messages are partly processed. Let the average computa-
tional time required to complete one external message be C. The total computational
time required to complete these M messages is CM = M · C . The total computa-
tional time for partly processing these messages is CMcp. Since Mcp is bounded, Mcp

is bounded and so is CMcp.
During the period P, the total processing time of the N resources is T = N · t. The

total idling time of the N resources is W and the total overhead time is O. The relative
idling time of the system is defined as W̃ = W

t and similarly the relative overhead time

is Õ = O
t . During the period P, the N resources contribute to the computations of M

completed messages; the computations of Mcp partly processed messages; and idling
time. We therefore have:

T = N · t = CM + CMcp +W +O = M · C + CMcp + W̃ · t+ Õ · t
Therefore,

M =
N · t− CMcp − (W̃ + Õ) · t

C
(1)

The throughput over the period P is:

TP =
M

t
=

N · t− CMcp − (W̃ + Õ) · t
C · t =

1

C
·
(
N − CMcp

t
−
(
W̃ + Õ

))
(2)
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When the stream program processes infinite external input messages, the overall
throughput is obtained when t → +∞. As CMcp is bounded, limx→+∞

CMcp

t = 0.
Therefore, the overall throughput is:

TPt→∞ =
(N − W̃ − Õ)

C
(3)

As C varies on the implementation and the underlying hardware, it is not under the
sphere of control of the scheduler.

Therefore, to optimise the throughput the scheduler should: i) keep Mcp bounded
and ii) reduce W̃ and Õ.

3.2 Guidelines for Latency Optimisation

According to Little’s law [13], the latency is equal to the average number of external
messages in the stream program, decided by the message consumption rate of the stream
program:

L =
Mcp

λconsumption
(4)

Where L is the latency and λconsumption is the rate at which the stream program
consumes external messages. It is also called the consumption rate. To reduce the la-
tency, the scheduler needs to increase the consumption rate and at the same time keep
Mcp low. Within stable systems, the consumption rate is equivalent to the throughput,
therefore to maximise throughput is also to contribute in minimising the latency.

4 A Heuristic Stream Scheduler for Performance Optimisation
Generally, a scheduler consists of two sub-schedulers: a space scheduler which decides
on which resource a task should be executed; and a time scheduler which decides when
a task is executed and for how long. This section presents a scheduler based on the
above guidelines to optimise both the throughput and latency by minimising W̃ and
Mcp.

4.1 Space Scheduler

In the proposed scheduler, we can consider one CPU core as a worker. The terms core
and worker are used interchangeably in the rest of the paper. The space scheduler does
not mapped permanently tasks to any worker. Instead ready tasks are stored in a central
queue (CTQ). A task is assigned to a worker whenever it is free. Dynamic network
structures are well supported by using the CTQ with its dynamic scheduling of tasks to
available resources. That helps to reduce the W̃ but does not guarantee to minimise it.
This depends on the time scheduler which controls the availability of ready tasks. This
design of the space scheduler allows flexibility for the time scheduler to controls the
ready task availability as well as Mcp.

4.2 Time Scheduler

One responsibility of the time scheduler is to choose a relevant ready task from the CTQ
to be executed by a free worker, i.e. to define the task priority. Another responsibility
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is to decide for how long a worker should execute the assigned task, i.e. to define the
scheduling cycle. In stream programming, it is hard to derive an exact scheduling policy
providing the best performance because of the dynamic properties of stream programs.

Task Priority. The time scheduler on one side has to activate enough ready tasks and
on the other side controls Mcp. Note that the availability of ready tasks is also the avail-
ability of messages in side the stream program. We propose a demand-based heuristic
strategy for the task priority function which decides when a task should get executed.
Tasks with higher priorities will be executed first.

This heuristic is based on the positive demand SI and the negative demand SO,
where SI is the total number of messages in the input streams and and SO is the total
number of messages in the output streams. The heuristic is proposed as follows.

– The priority of an entry task should have a negative correlation with its SO.
Entry tasks are ready as soon as there are external messages. Their execution makes
following tasks ready. This heuristic helps entry tasks to be executed when the
potential of ready tasks is low. Once executed, their priority is reduced and after a
certain time they have to release resources for other tasks keeping Mcp bounded.

– The priority of exit tasks should be higher than other types of tasks. This is be-
cause exit tasks send messages to the external environment, they should be executed
as soon as possible to keep Mcp as low as possible.

– The priority of a middle task should have a positive correlation with SI and
negative correlation with SO. Exit tasks should be executed as soon as possible,
however they become ready only when messages are transferred over the stream
program passing other middle tasks. A middle task T0 while performing the asso-
ciated node’s computations consumes n messages from its input streams and pro-
duces m messages to its output streams which are read by other tasks Ti|1≤i≤n.
The task’s SI is reduced by n and its SO is increased by m. With this heuristic, T0’s
priority is reduced and its chance to hold physical resources is reduced. Meanwhile
the SI values of tasks Ti|1≤i≤n are increased. That means tasks Ti|1≤i≤n will
have a higher chance to be scheduled and the newly created messages are likely to
move forward to the output.

Scheduling Cycle. Ideally each task after performing one node execution should be
returned so that other higher priority tasks can proceed. However, task switching can
cause overhead and locality loss. Therefore the worker should run a task long enough
so that the task switching overhead becomes negligible. We propose a heuristic strategy
to define the scheduling cycle based on a timeout value Esc. Once assigned to a worker,
a task is executed until it is blocked or the timeout value has been reached. The time-
out value Esc can be defined based on the number of node executions, the number of
produced output messages or a time period. It is hard to analytically derive the value of
Esc. We therefore propose to derive this value through practical experiments.

5 Implementation of the Heuristic Stream Scheduler

The proposed stream scheduler is implemented as a new scheduler for the execution
layer LPEL [15] to support S-Net stream programs [9]. LPEL was chosen for supporting
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Fig. 1. The heuristic stream scheduler for perfor-
mance optimisation

Table 1. Priority functions of the middle
tasks

Priority Function TMiddle

PF1
SI+1
SO+1

PF2
(SI+1)2

SO+1

PF3
SI+1

(SO+1)2

PF4 SI − SO

At the first three priority functions, ’1’ is
added to SO to avoid division-by-zero. ’1’
is also added to SI to have a fair proportion
against SO.

task reallocation among CPU cores on a shared memory platform without extra cost; and
for providing a sufficient mailbox implementation for core-to-core communications.

The implementation of the proposed scheduler is demonstrated in Figure 1. As the
task priority is dynamically changing over time, one worker is dedicated as the conduc-
tor to keep track of the task priority. The conductor also arranges ready tasks according
to their priorities by using a heap structure. Once a worker is free, it requests a new task
from the conductor. The conductor then chooses the ready task with the highest priority
from the CTQ and sends to the requesting worker. All the communications between the
conductor and workers are exercised via mailboxes.

In this implementation, workers do not have to search through the CTQ for the high-
est priority task. Workers also do not need locks for accessing the shared CTQ. This
way of implementing minimises the overhead and waiting time on workers. Although
the dedicated conductor can be considered as scheduling overhead, this overhead can
be paid off with a large number of cores.

Table 1 lists some priority functions for middle tasks according to the proposed
heuristic in Section 4. Functions PF 1 and PF 4 are simple and typical for functions
with the same significance of SI and SO . Function PF 2 is an example for which SI

has higher significance and function PF 3 is an example for which SO has higher sig-
nificance. The priority function for entry tasks is the same for middle tasks but with SI

being zero. As an exit task (with SO = 0) should have higher priority than other tasks,
there are 2 choices. The first is to use the priority function of middle tasks but with SO

is zero; this makes an exit task a higher priority compared to a middle task with the
same SI value. The second is to set the priority of exit tasks to infinity (+∞).

We did experiments with all the combinations of these priority functions for en-
try, exit and middle tasks. None of them has shown superior performance compared
to the others. In fact, the variation coefficient is relatively small, about 2∼3%. For its
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simplicity, we choose to use the priority function PF 4 for middle tasks, for entry tasks
with SI = 0, and for exit task with SO = 0.

To obtain instant values of SI and SO during the runtime, the scheduler is supported
by the stream monitoring framework presented in [14]. This monitoring framework al-
lows us to observe the fill level of streams (i.e., the number of messages currently in
the stream). As the program structure is dynamic, a task’s input and output streams
are dynamic. This monitoring framework also allows us to keep track of this informa-
tion. From the listed monitoring information, the SI and SO values of each task can be
derived. In addition, the monitoring framework provides other required information to
analyse the throughput and latency of stream programs [14]. In the current implemen-
tation, the user can define the scheduling cycle based on the number of produced output
messages.

6 Evaluation
In this section we compare the performance between our new centralised scheduler with
heuristic task priority and LPEL’s default scheduler. We compare the peak throughput
and the corresponding processing latency when the peak throughput is achieved. The
default scheduler of LPEL has one global mapper that distributes generated tasks to
workers. Each worker employs a round-robin policy for time-scheduling of ready tasks.

We also evaluate the heuristic priority function by comparing it with random priority.
For convenience, we denote DS as the default scheduler of LPEL; CS-HP as the cen-
tralised scheduler with heuristic priority; and CS-RP as the centralised scheduler with
random priority.

The experiments were performed on a shared memory machine with 48 cores AMD
OpteronTM Processor 6174 and 256GB of shared memory. 2 cores are used to imitate
the source producing external input messages, and the sink consuming external output
messages. The experiments are performed with 5 different applications implemented in
the S-Net language:

– DES: performs DES encryption on 32KB-size messages
– FFT: computes FFT algorithm on messages of 220 discrete complex values
– HIST: calculates histogram of images with average size of 5342 x 3371
– IMF: applies a series of filters on images with average size of 4658 x 3083
– OBD: detects 4 different types of objects from 1920 x 1080 images

These applications are chosen for their common usages in stream processing. DES
is used for stream encryption and FFT is used in signal processing. HIST is used for
thresholding in image processing. Also IMF and OBD are commonly used in image
processing. The stream structure of each application is cloned into several copies con-
nected in parallel in order to increase concurrency. The number of copies is varied
depending on the number of cores.

We derived the scheduling timeout value Esc by experiments on these five applica-
tions with different values of Esc from 1 to 30. The observed difference in throughput
and latency has been relatively small. This shows that the task-switching overhead in
LPEL is negligible. Thus, for the further experiments we decided to just use an arbitrary
value for Esc in the range of 1 to 30.
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6.1 Performance Comparison

Figure 2 demonstrates the comparison in performance and throughput scalability be-
tween CS-HP and DS. We dedicate one worker as the conductor, we only measure
CS-HP with 2 or more cores. For a small number of cores the relative overhead of
the conductor is high, the peak throughput therefore is better in DS. When the number
of cores increases, this overhead is reduced and the peak throughput of CS-HP is im-
proved. In the case of 46 cores, the peak throughput of CS-HP is significantly higher
than DS. In particular, the peak throughput of the DES, FFT, HIST, IMF and OBD are
respectively 1.8, 1.8, 2.7, 2.0 and 2.3 times higher with CS-HP.
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Fig. 2. Normalised peak throughput and processing latency (with λ = TPpeak) of CS-HP and
DS on various applications

The processing latency of CS-HP and 2 cores is better than DS for IMF and the
same for FFT despite the higher overhead of CS-HP. Starting from 4 cores, the process-
ing latency of CS-HP is better than or equal to DS for all applications. Note that the
processing latency is measured when the peak throughput is achieved. CS-HP provides
higher peak throughput than DS in most of the cases, i.e., the applications can cope with
a higher arrival rate. Furthermore, if the arrival rate for CS-HP gets reduced down to
the peak throughput of DS, then CS-HP will exercise a significantly lower processing
latency. Figure 3 demonstrates this for the OBD application. With λ = TPpeak, i.e.,
when two schedulers are compared with their own peak throughput, the processing of
CS-HP is 1.5 to 2.4 times lower than DS. With λ = TPDS

peak, i.e., when two schedulers
are compared with the same arrival rate, the processing of CS-HP is 7.7 to 12.4 times
lower than DS. The cases of 2 and 4 cores are not shown because the peak throughput
of CS-HP is smaller or equivalent to DS, as mentioned above.
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6.2 Scalability Comparison

The processing latency depends on the concurrency level of the stream program which
is reflected in the structure of the program. For this reason, the comparison in the la-
tency scalability between 2 schedulers is not so appropriate. We therefore focus on the
throughput scalability. The results in Figure 2 shows that CS-HP has a better throughput
scalability than DS.

For the DES application, CS-HP and DS scales at the same rate from 2 to 16 cores.
DES is a special application where the stream program structure consist of multiple
pipelines. Each pipeline has 16 tasks with the same amount of computations. As DS
uses a round-robin approach to map tasks to cores, it creates a load balanced mapping
when the number of tasks is a multiple of the number of cores. In this case, the idling
time is minimal and therefore the best throughput is achieved. With 32 and especially
46 cores, the number of tasks is not a multiple of the number of cores, the round-robin
mapper of DS does not provide load balance. Consequently the throughput is not well
scaled for DS. In contrast, the scalability of CS-HP is not affected and overtakes DS.

6.3 Priority Function Evaluation

To evaluate the proposed priority function, we compare the performance of CS-HP
and CS-RP. The behaviour of all applications are quite similar. We thus present here
one illustrated case of the HIST application in Figure 4. As explained in Section 4,
with bounded Mcp the throughput is maximised when the idling and overhead time
is minimised. As Mcp is controlled by entry and exit tasks, the random task priority
cannot be guaranteed to have bounded Mcp though the unbounded chance is low. Using
the centralised approach, the CS-RP has minimised idling time W . CS-RP has less time
overhead O than CS-HP because it does not need to monitor the stream fill level and
keep track of the task-stream relationship. Therefore when Mcp is bounded the peak
throughput of CS-RP is better than CS-HP.

Since the stream structure of the program is cloned into more copies for more cores,
the number of tasks and streams is increased according to the number of cores. The
overhead for monitoring tasks and streams in CS-HP increases when the the number of
cores increases. The difference in throughput between CS-HP and CS-RP is higher for
the higher numbers of cores.

In contrast, the processing latency of CS-HP is significantly better than CS-RP for
all numbers of cores. This shows that the proposed priority function has a meaningful
influence on the processing latency. However, the overhead of calculating the priority
function at the same time reduces the maximum throughput.

7 Related Work

Maximising Throughput. The fundamental technique for maximising throughput is
balancing load among physical resources. There is a significant volume of prior works
dealing with load balancing. Here we list major work of load balancing in stream pro-
gramming and conceptually similar models.

Gordon et al. propose a static strategy using iterative greedy heuristic to partition a
StreamIt program into a set of balanced partitions and assign to tile processors of the
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Raw architecture [8,7]. Instead of using iterative heuristics, two successor approaches
have been introduced using ILP solvers [12] and approximative algorithms [6]. With
the assumption that the programmer has a prior knowledge of the expected load, Chen
et al. establishes a static user-specified load balance [4]. Another approach of statically
partitioning StreamIt programs is to use machine learning [19]. The approach first uses
supervised machine learning to predict the ideal structure of the partitioned program
and then selects from all partition possibilities the nearest one to the ideal structure.

Taking advantage of StreamIt filters (which are computation nodes in our terminol-
ogy) being stateless, the work in [5] proposes a dynamic load balance approach based
on the back pressure implications from the bounded streams. Another dynamic load
balance approach is proposed for the DIAMOND distributed search system [10]. This sys-
tem is similar to the stream programming model because data arrive in DIAMOND as an
infinite sequence of objects. The difference is that each object needs to independently
pass a fixed set of filters in a fixed order. The approach aims to efficiently distribute
the processing of these filters to the set of computing nodes. This approach is similar
to ours as it uses the state of upstream and downstream queues to avoid overfull and
under-full queues.

To maximise throughput for both predictable and unpredictable StreamIt programs,
Zhang et al. combine static and dynamic strategies [21]. For predictable stream pro-
grams, static software pipeline techniques from previous work [7] are used. For un-
predictable stream programs, a central scheduler is used to maintain the state of the
program to maximising only the throughput.

Another example of scheduling methods for fixed-structure networks, which is a
more specific problem than ours, is given by Tassiulas et al. [17]. This approach it is
actually more related to our work than the SDF-based scheduling work of StreamIt.
In [17] the authors are able to prove that their derived task execution leads to maximal
throughput for any input arrival rate where a stable schedule (bounded message queues)
is possible. However, as soon as dynamic network structures are involved, their formal
optimality proof would not be valid any more. In case of dynamic network structures
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the authors would have to, like we did, switch to a heuristic scheduling approach for
which they would need to experimentally show its effectiveness.

Minimising Latency. Work on latency optimisation focuses mostly on the processing
latency. In this direction there is not as much research available on stream programming
literature as is on throughput maximisation. Karczmarek et al. introduced the concept
of phase scheduling for StreamIt programs, exploiting the static nature of the streaming
graph [11]. The goal of phase scheduling is to address the trade-off between code size
and buffer size [1]. When the buffer size is zero, the phased schedule has an unlimited
number of phases and is referred as the minimum latency schedule. In this case the
entrance filter is not executed until the exit node has not been finished. That guaran-
tees that the processing latency is minimal, though the throughput is worst. Xing et al.
introduce a dynamic load distribution strategy for the Borealis stream processor [20].
Although it is not clearly explained, the strategy is based on the assertion that minimis-
ing the end-to-end processing latency can be achieved by minimising the load variance
or maximising the load correlation between processing nodes.

To the best of our knowledge, our approach is the first heuristic scheduler for stream
programs with dynamic network structures. Our heuristics with entry tasks having their
own priority function is novel as well, allowing for a stable schedule when the arrival
rate is higher than the peak throughput.

8 Conclusion and Future Work
In this paper we have presented a novel heuristics-based scheduler to optimise in terms
of throughput and latency the performance of stream programs with dynamic network
structures. The scheduler deploys a centralised approach with a demand-based heuris-
tics for task selection, which is geared towards optimising throughput and latency.

In contrast to the new scheduler, the default scheduler of the reference system does
not deploy knowledge about the structure and state of the streaming network. The
experimental results show that the new scheduler offers significant improvements of
throughput compared to the default scheduler. For 46 cores the throughput showed im-
provements by a factor of 1.6 to 2.7. When limiting the arrival rate of the new scheduler
down to the maximum throughput of the default scheduler, we observed at the same
time improvements of the latency by a factor of 7.7 to 12.4 for the OBD application on
8 and more cores.

As future work we plan to extend our approach with a hierarchical scheduler to
support distributed platforms. For this we will explore techniques to efficiently divide
the stream program into subprograms to be distributed.
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Abstract. One of the important paradigms in Cloud computing is Soft-
ware as a Service (SaaS). Saas has been provided by many cloud vendors
for different applications. One of the application that has not been ex-
plored is financial investment. In this work, we propose an architecture
for a SaaS model that provides service to financial investors who are not
familiar with various mathematical models. Such finance models are used
to evaluate financial instruments, for example, to price a derivative that
is currently being traded before entering into a contract. An we consider
a situation of an investor approaches the Cloud Service Provider (CSP)
to price a particular derivative and specify the time, budget, and accu-
racy constraints. Based on these constraints specified by investors, the
service provider will be able to compute the option value using our model
proposed in this study. To evaluate our proposed model, we compared
pricing results with the classical model that provides a closed-form so-
lution for option pricing. After establishing the accuracy of our pricing
results, we further ensure that the Service Level Agreement (SLA) be-
tween the Financial SaaS Provider (FSP) and the investors is honoured
by meeting the constraints put forth by the investors.

Keywords: Financial SaaS, Financial Derivatives, Investment Decision
Making, Option Pricing, and Financial Service Architecture.

1 Introduction and Motivation

Different sectors such as IT, business, manufacturing, travel, medical, and secu-
rity are benefitting from Cloud services.

Often clients would like to use an application a few times. For example, in
finance, an investor would like to modify the current portfolio by selling part of
his portfolio such as stocks and buying new assets. To buy new asset, an investor
is interested in finding the benefits of investing in a company in near future. To
verify if the asking price of the stock (asset) at a future date is worth for that
asset, the investor has to speculate price path of the assets performance towards
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the date of purchase in the future. There are many ways to create various price
paths using various finance models, which are highly mathematical and beyond
the comprehension of an average investor. These financial models can be provided
as Software as a Service (SaaS) on Cloud to potential investors.

The financial instrument that allows investors to decide over a period of time
(known as contract period) before buying/selling an asset is known as financial
option or financial derivative [1]. This contract does not obligate the investor
to buy/sell through the contract. To find the price of an option, we can use
different algorithmic approaches [2], [3], [4] [5]. The computations involved in
finding the price of an option is difficult for an average investor to understand
without having fundamental knowledge of how the algorithms work and hence
financial software as a service would be an attractive way to expand the customer
base for a cloud service provider.

In this study we develop a novel architecture that integrates a SaaS model
in Cloud with financial algorithms that enables providing services to ordinary
investors who are neither familiar with financial models to compute the price
of an option before deciding to invest nor do they have resources to do the
computation. To the best of our knowledge, no real financial SaaS model has been
developed that uses Cloud to compute option price and help making decisions
that best matches the investor’s need satisfying quality and time constraints.

1.1 Option Pricing

An option [1] is a contract between two parties where one party called holder of
the option gets the right to exercise (that is, buy or sell) the option at his/her
will during the contract period (T ) whereas the other party called writer of
the option, is obliged to the decisions of the holder. Options are of two types:
Call option and Put option. A Call (Put) option gives holder the right to buy
(sell) the assets underlying the option contract at a pre-specified price called
strike price (K). Option contract can be exercised in many different styles. A
European option allows the holder to exercise the option only at the expiration
date whereas an American option allows the holder to exercise the option on or
before the expiration date.

There are many fundamental algorithmic techniques available in the literature
for calculating option pricing. Some important techniques include are: binomial
lattice (BL) [4], [7] fast Fourier transform (FFT) [2], finite-difference (FD) tech-
nique [8], [5] and Monte-Carlo (MC) simulation [3], [9]. We refer the reader to
[1] for details of these techniques.

2 Related Work and Contribution

SaaS model in Cloud computing can be one of the choices that can be adopted
by investors to compute option prices.

Garg et al. [12] have developed a SaaS model for ordinary investors who
want to evaluate price of an option. The researchers implemented different HPC



372 R. Saha et al.

algorithms [2], [4], [9], [5] in a Cloud simulator [13] to compute the option price.
Our objective in the current study is to develop an architecture that integrates
financial algorithms that compute option values and to provide service to cloud
clients who have a little or no knowledge on finance models.

In our SaaS model, we have implemented several algorithms based on the
service requested by the customer. The CSP implements all option pricing al-
gorithms in advance and the customer who wants to know the worthiness of
investing in a particular financial option request for a service. The CSP specu-
lates the price path of the underlying asset using any or all of these algorithms.
The CSP collects few parameters from investors such as time budget and accu-
racy constraints to use as inputs to the algorithms in addition to the name of
the asset. Then, CSP collects other data on the underlying asset from reliable
on-line sources and determines an algorithm that is better suited for a customer
based on the accuracy and time constraint proposed by the customer. We assume
that the CSP also owns the infrastructure that is used to implement the model.
However, the algorithm is constrained with the demands of time over accuracy.

Prime contribution in this study is to build a FSM architecture that can
be used by CSP, to provide financial computing services and optimize the user
requests to meet the time, budget and accuracy constraints.

3 Financial SaaS Architecture

Initially, the investors will access the FSM to compute the price of a particular
option written on some underlying asset. The FSP will provide the investor
with a set of questionnaire to collect basic information such as name of the
stock, the constraints on the service and so on. While it is generally expected
that the investors would require high accuracy in the option pricing results,
many times the investors would like to get a feel for the trend in the price
of underlying asset by noting the option pricing result. Hence, accuracy is also
treated as a parameter. Based on three main parameters (time, budget contraints
and accuracy), one of the techniques [2], [3], [4] [5], [6] will be selected by our
FSM model to compute the option price.

To develop FSM for option pricing application, our study has four different
components/models. First, we develop a private Cloud using Eucalyptus open
source Cloud software [14] which will dynamically scale up or down the Cloud
resources depending on the application workload for financial services. It will
allow users to acquire and release required resources on-demand. In addition, this
Cloud system also has the ability to be used by multiple users simultaneously
where they will share resources based on the customer demand. Eucalyptus
also has very reliable security system which supports WS-Security policies and
features such as authentication, authorization, network and machine isolation
that prevents network trafficking from hackers.

Second, to support multiple customers, we have developed a unified and inno-
vative multi-layered customization model that supports and manages the vari-
ability of SaaS applications and customer-specific requirements.
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Third, our model incorporates a recommendation engine to support require-
ments of new customers based on the inputs given by them. This engine will
explore the financial needs of the customer and additional results on option
price based on a slightly different scenario (such as additional price path, dif-
ferent expiration date, and different initial asset price) than requested by the
customer. The recommendation engine will compute option values for various
parametric conditions around the initial values provided by the customer. This
is a value added service that further helps the customer in deciding to buy/sell
options confidently.

Fourth, we have implemented three option pricing algorithms (binomial lat-
tice, Monte Carlo simulation and finite-difference technique) on the back end
server to execute as and when needed for individual customers - .

Fig. 1. Proposed FSM model to compute option value

We have illustrated the proposed multilayered FSM in figure 1. The model
consists of three different layers: input layer, middleware, and server layer. The
input and server layer form the foundation of FSM model. The input layer takes
inputs from investors and provide the information to the middleware. The server
layer is the actual back end Cloud server which computes the option price and
returns the best suitable result back to the investor. The middleware decides on
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the particular algorithm based on the input parameter. In addition it includes a
recommendation system that helps the FSP to provide value added service.

To provide the required service, the middleware would undergo customiza-
tion based on the option pricing algorithms. Each of the algorithms has specific
strengths and weaknesses that match the investor’s requirements. Also, each
algorithm possesses different accuracy level.

4 Experiments and Results

Our evaluation methodology is based on the perspective of both customer satis-
faction as well as FSP. Deadline is one of the key performance measures in the
FSM model. Initially, at the input layer, the FSP enters into a SLA with the
investors during the input layer stage in the FSM model.

Our first set of experiments is designed to compare our European option
pricing algorithms [15] with closed-form solution provided by the Black-Scholes-
Merton [1] model to determine the correctness of the algorithms. Moreover,
we have compared our American option pricing algorithms with actual market
values available from Yahoo! Finance [16].

In another set of experiments, we have deployed multiple VMs into the Eu-
calyptus open source Cloud system. Furthermore, we have setup the required
software (as presented later) that is needed by the Cloud SaaS provider. Multi-
ple VMs can start and shutdown on-demand so that the FSM model can provide
maximum available resources to different specific requirements of the service re-
quests. In addition, multiple VMs can run concurrently with different software
environments since every VM is completely independent from one another on the
same physical machine. In our experiments, we followed the general approach of
deploying VMs on the data centers without knowing the network and application
requirements though we assume that the FSP owns the infrastructure.

Finally in the fourth set of experiments, we have evaluated the SLA policies
to determine the success rate of our application. In these experiments, the FSM
engine dynamically selects an algorithm to execute the investor’s request. The
selection depends on the desired accuracy and service completion time.

Fig. 2. Rank of Techniques for Accu-
racy Requirements

Fig. 3. Rank of algorithms for various
response types

For accuracy, the FSM model selects the option pricing algorithm based on
a pre-computed table designed using the benchmark results [15] of the option
price algorithms. The Table in Figure 2 designates a rank for each option pricing
algorithm used in our experimental study. We have classified accuracy into three
distinct levels (high, medium and low) to serve various clients’ needs better and
an algorithm gets a rank for each of these classification. Often an investor would
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like to get a feel of the market pulse without worrying about the accuracy of
the option values for an initial decision making. The last two columns on this
table are meant to be used for providing service for such clients. However, we
note that the FSM will not compromise on the the accuracy of the results for
a serious client. Likewise, the service completion time presented in the Table
in figure 3 ranks each option pricing algorithm based on three distinct response
type categories: immediate, moderate and slow. In our model, we have combined
the ranking of the algorithms in these two figures before selecting an algorithm
as per the request of the client on accuracy and timing. For example, if a client
requests for immediate response and moderate accuracy, then the model will
select binomial lattice for pricing the option. However, if an investor requests for
both high accuracy as well as immediate response time, then such a request is
declined as there is no algorithm that can help FSP to provide the service. This
can be seen as our admission control policy in the FSM for the stream of jobs
that are taken up for service.

For our experiments, we have considered a window of 90 seconds response
time. This response time window comprises of the entire workflow from the
start of the user interaction with FSM until the user receives the desires service.

4.1 FSM Implementation

We ran our experiments in two different environments: 1) on a local machine, 2)
on multiple Cloud VMs where each VM work as an independent computational
machine. The virtual machines each have 1 CPU core, 512 MB of RAM. Figure 4
illustrates the characteristics of the machines we used in our experiments.

Fig. 4. Type of machine used in the study

To run experiment in our FSM model, we have collected the required set
of option pricing data from Yahoo! Finance [16] for companies such as IBM,
Apple, Amazon, Chevron, Walmart, Google, Johnson & Johnson and Toyota
with expiration time of three, six and nine months.

4.2 Analysis of Results

Correctness of Option Pricing Algorithms. Initially, the investor enters
his/her trade details and requirements in input layer. This input layer of the
FSM model includes the name of the underlying (asset) stock, time of maturity,
accuracy and type of response. Then, the FSM model analyzes the accuracy and
response type requirements by the investor and dynamically selects the best-
suited algorithm to compute the option price.
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We carried out several experiments to verify the correctness of the option
pricing algorithms that we have developed.

Figure 5 and Figure 6 compare the Call and Put option price results obtained
from Monte-Carlo, binomial lattice, and finite-difference methods [15]. More-
over, we have executed all our experiments based on the expiration time of the
option price. As Black-Scholes [1] option pricing algorithm is considered to be a
benchmark for the European option pricing model, the aim of these experiments
is to evaluate the accuracy of the option values returned from our algorithms in
comparison to Black-Scholes closed-form solution.

Fig. 5. Comparison of European Call
Option Prices using various models for
different expiration dates

Fig. 6. Comparison of European Put
Option Prices using various models for
different expiration dates

We have ensured that our option pricing algorithms provide option price close
to the Black-Scholes model for both Call as well as Put options for various
expiration dates.

We have also compared our American Call and Put option pricing results
against the option values obtained from Yahoo Finance [16]. Figure 7 and Fig-
ure 8 show that the option value returned from various algorithms is slightly
more than the ask value for both Call as well as the Put options by 0.37%
((298.3-297.2)/297.2) to 2.37% ((302-295)/295).

Fig. 7. Comparison of real data versus
American option pricing for Call Option

Fig. 8. Comparison of real data versus
American option pricing for Put Option

The FSM model also acts as a recommendation engine and computes option
values by altering the strike price K to provide the investors with further op-
portunity to decide whether to invest into a particular option. This is achieved
by altering the strike price to return an option value between ask and bid price.
That is, the asking price in Yahoo! finance would only be good for the new strike
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price indicating that asking price would be too high for the unaltered strike
price. Figure 9 depicts the valued added service provided by the FSM model for
Johnson & Johnson European Call option for 3 months expiration time period
using the finite-difference algorithm.

Initially, the finite-difference algorithm returned the option value as $41.9247085
for strike price of $50, which did not lie between ask and bid price range. When the
recommendation engine of the FSM model is called, the strike price is altered to
$52.5 to recompute the option value as $39.4317737, which lies between the ex-
pected posted ask and bid prices. Therefore, the recommendation engine of the
FSM identifies profitable opportunities for the investor.

To support multitenancy, we have launched eight VMs instances in Eucalyptus
Cloud system.

The biggest advantage of multitenancy is that it is a cost-effective solution
that provides optimum usage of resources. In our multitenancy configuration,
each of the eight Eucalyptus instances are running on the same software and
hardware and yet providing service to eight different investors simultaneously
with specific requirements. In addition, the multitenancy environment also pro-
vides security to the investor data by customizing the application design so that
one investor cannot see data from another investor or cannot share data with
others.

Fig. 9. Value added service Fig. 10. Service completion time

Fig. 11. Comparing the SLA between investor request and service provided based on
service completion time

The success rate of a SLA is measured for the service provided against the
investor’s request based on desired accuracy and service completion time. Our
FSM model always selects the best-suited option pricing algorithm based on ac-
curacy and service completion time to calculate the option value as discussed
above. Figure 10 lists the service completion time obtained by each of eight
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Fig. 12. Success/Failure Result on SLA for customer based on service completion time

investors for each service request. The graph depicted in Figure 11 clearly marks
the service completion time category to which each request belongs. In addition,
Figure 12 shows the requested response type and calculates success or failure
using the response type obtained based on Figure 3 and Figure 10. We observed
from Figure 10 that our algorithm results in 0 failures out of 8 times, which
accounts for 100% success rate.

5 Conclusions

In this study we have developed a SaaS Architecture for financial investors called
FSM that will provide service to the ordinary investors who are not familiar with
complex financial algorithms that are used to compute the price of an option.
The Architecture has three different layers, namely input, middleware, and server
layer. The FSM computes the pricing of an option based on the input (time,
accuracy, and budget) given by the financial investors. The middleware includes a
recommendation engine which selects the best suitable algorithm to be executed
into the server layer and provides additional results than the requested result
to help the client make better decision. We have evaluated the SLA between
the investors and the FSP and show that the FSP provide required Quality of
Service (QoS) to meet the SLA. We have also measured the performance of our
FSM model based on several parameters such as time, budget and accuracy
constraints. There are three key contributions in this work. (1) Determine which
option pricing algorithm best meets the user’s requirements and constraints. (2)
Provide the option pricing results from this algorithm as well as more results to
capture variation in the market trend to help the investor decide better. This is
a value added service to the client. (3) Satisfying investor’s constraints on time,
accuracy and budget.
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Abstract. Platform as a Service providers deliver development and run-
time environments for applications that are hosted on the Cloud. In
this paper, we present a Platform as a Service model constructed over
a desktop-based Cloud infrastructure for developing high performance
computing applications taking advantage of unused resources opportunis-
tically. We highlight the key concepts and features of the platform, as
well as its innovation on an opportunistic computing and we present the
results of several tests showing the performance of the proposed model.

Keywords: IaaS, PaaS, Cloud Computing, High Performance Comput-
ing, Opportunistic Computing.

1 Introduction

Opportunistic computing is a very successful and mature concept in the field
of high performance computing (HPC). It is a sustainable alternative to satisfy
the growing demand of computing resources. In this paper, we introduce a novel
cloud platform for developing high performance computing applications over an
opportunistic environment. We consider a cloud-based opportunistic infrastruc-
ture called UnaCloud [1] over this, the new platform as a service has being
developed (UnaCloud PaaS). UnaCloud PaaS is a cloud computing platform
oriented to use of opportunistic IaaS to deploy high performance applications.
UnaCloud PaaS offers multipurpose platforms for low IT knowledge HPC users,
that wants to use an opportunistic infrastructures to deploy and run specific
applications. It is created to facilitate the complexity of opportunistic desktop
based infrastructures to run applications.

Taking advantage of unused resources opportunistically, we present the main
characteristics of UnaCloud PaaS as well as each of its components defined. Un-
aCloud PaaS can be deploy two platform types: Condor and MPI. Each platform
is specified by a set of roles. A role is a set of homogenous machines regarding
software, operating system and configuration.

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 380–389, 2013.
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To show the performance of the platforms, we conduct several experiments,
measuring system response time and execution time of running platforms as well
as one sample application execution called Gromacs. Furthermore a set of test,
using a well know benchmark, were made in one of the platforms. Our experimen-
tal settings reflect the need of an opportunistic aware PaaS for the execution of
successful platforms over opportunistic infrastructures. This paper is organized
as follows: Section 2 presents related work. The definition, features, and com-
ponents of UnaCloud PaaS are described in Section 3. Section 4 presents the
implementation and the evaluation performance of UnaCloud PaaS is described
in Section 5. Section 6 concludes the paper and presents future work.

2 Related Work

On the field of PaaS implementations for HPC we can find many solutions.
Manjrasoft c©presents Aneka [2], a solution to develop .NET applications using
multiple programming models, and run them over hybrid infrastructures. Mi-
crosoft Windows Azure [3] offers an entire set of services on a platform for
application development and deployment over Microsoft datacenters. It pro-
vides APIs, libraries and services for solving specific application problems like
storage, cache, application synchronization, scalability and resource acquisition.
MagosCloud [4] offers an opportunistic PaaS for web 2.0 services. It is focused
on developers and offers a declarative way to express platforms and requirements
over a XML schema. Amazon offers special HPC cloud VMs [5] with high per-
formance hardware instances in their data centers. Amazon also [6] offers an
Elastic Map Reduce service to execute Map Reduce workflows over a managed
and scalable infrastructure. The FEFF Project [7] makes an offer to deploy and
manage platforms for spectroscopy analysis and material science software. These
clusters are deployed over Amazon EC2.

Sabalcore [8] is a commercial solution for HPC that allows to deploy custom
virtual clusters over their specialized infrastructures. It offers solutions stacks
and software for engineering modeling, financial simulations, energy computa-
tions and more. ViteraaS [9] propose a PaaS model for running HPC programs.
ViteraaS is a virtual cluster management tool, which allows users to deploy on-
demand virtual clusters of various sizes. The objective of ViteraaS is to simplify
the creation/deletion of virtual HPC clusters and job submission.

Unlike the commercial and academic PaaS models implementations, Una-
Cloud PaaS is specially designed to use opportunistic infrastructures to deploy
managed platforms for scientific computations. UnaCloud PaaS makes use of
UnaCloud IaaS opportunistic infrastructure to deploy customized virtual clus-
ters (CVC) over it. Once this CVCs are deployed, UnaCloud PaaS configures
them to execute and manage user applications.

3 UnaCloud Platform Architecture for HPC

UnaCloud PaaS is a Platform-as-a-Service implementation that provides
managed and scalable platforms to deploy HPC applications over opportunistic
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infrastructures. It uses UnaCloud IaaS services to deploy and manage virtual
clusters over the available infrastructure. Once these clusters are deployed, Un-
aCloud PaaS configure and installs all software and configuration requirements
to build platforms for user program executions. Each execution is accomplished,
managed and monitored. Each platform execution runs on a virtualized environ-
ment that is completely isolated from other executions.

A platform, in UnaCloud PaaS, is defined as a set of machines that are config-
ured at hardware, operating system, network and software levels, and they are
offered as a scalable and managed service for application executions. UnaCloud
PaaS uses the concept of role. Each role is defined by its main module (which
identifies the platform type), its size and a set of software modules. A software
module is a collection of configurations and programs that are applied and in-
stalled on a virtual machine to satisfy a requirement. Each module have a set
of input parameters, whose values are established by the system and users. For
example, currently at UnaCloud PaaS there are two main modules: Condor and
OpenMPI. Those modules are used by two platform types that can be deployed:
Condor (BoT) and MPI. Also, there is a set of software modules that can be
applied to a platform role before its execution. For example a user can choose
to add Gromacs [10] to a MPI platform. Across these modules, an user can add
software dependencies required by its application or program. An user can also
add files to a platform execution. A file can be chosen from the local machine
where the user is consuming the PaaS services.

Finally a platform execution has a list of commands that are executed on
specific environments. The content and environment of a command is defined
by the user. The environment refers to the shared folder where the command is
executed and the multiplicity of the command.

3.1 UnaCloud PaaS Cloud Features

The characteristics of UnaCloud PaaS are summarized below:

– Fault tolerance: One of the most important feature needed to successful
deploy platforms and applications over opportunistic infrastructures is the
fault tolerance. UnaCloud PaaS provides a component that led the failures
of the platform called Failure manager and it is described later.

– Efficiency: Through the opportunistic environment, UnaCloud PaaS pro-
vides a framework for developing distributed application taking advantage
of the share utilization of the machine by its service oriented architecture.

– Usability: UnaCloud PaaS provides Web interfaces, whose operation is al-
most intuitive for a basic IT knowledge. Additionally it provides an API to
access UnaCloud PaaS services from other applications.

– self-service: The design of UnaCloud PaaS permits to users consumes uni-
laterally platform resources by a self-service model.

– Broad Network Access: UnaCloud PaaS provides platform executions services
that are available over internet and are consumed through standard secure
remote access mechanisms like https and ssh.
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– On-demand services customization: UnaCloud PaaS provides ways to cus-
tomize execution environments required on demand by end-users using the
API Client component defined in the following sections. This customization
is able to meet large scale computational requirements.

– Scalability: UnaCloud PaaS uses an opportunistic commodity horizontal scal-
ing infrastructure service that is based on a private cloud deployment model.

– Interoperability: UnaCloud PaaS is based in loose coupling and interoper-
ability services operating over highly heterogeneous, distributed and non-
dedicated infrastructures.

– Extensiblity: Based on open source tools, UnaCloud PaaS is broadly diffused
in order to facilitate its extensibility.

– Security: UnaCloud uses authentication, authorization, confidentiality and
non-repudiation mechanisms to secure the PaaS model deployment. Also,
each platform runs on an isolated virtualized environment.

– Measured service: UnaCloud PaaS records and reports, by logs, all events
regarding platform executions. It also takes traceability of used resources
and the operations over them.

3.2 UnaCloud PaaS Components

Figure 1 shows the component structure of UnaCloud PaaS. It is divided in three
major layers. IaaS layer, which provides infrastructure services. Currently the
IaaS layer is provided by UnaCloud IaaS. API layer, that provides a specification
to implement a web service client and it is connected to one of the two interfaces
of PaaS layer. And finally, a PaaS layer, it is the main module of UnaCloud
PaaS. It provides services to deploy and manage platforms from two interfaces:
a web user interface and web services. The web services are consumed by an

Fig. 1. UnaCloud PaaS component diagram
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API layer as above mentioned. This provides abstract access to UnaCloud PaaS
features due of its service oriented architecture.

Each UnaCloud PaaS component is described below.

+ Web Portal: is the main way of access to UnaCloud PaaS services. It pro-
vides a set of pages and web forms to manage all system entities. It also
provides a set of forms to deploy and manage platform executions.

+ Web Services: is a component that exposes the platform execution services
and operations through Web Services. This component only exposes services
to start, manage and stop platform executions. System administration should
be done through web portal.

+ API Client: it is a component specification that offers an abstraction to web
services. It facilitates the complexity of the use of web services, so the user
can consume UnaCloud PaaS operations in terms of objects and methods,
and not by complex web services.

+ User manager: It is in charge of user account management. It includes
passwords, user permissions and user traceability. This component is used
by other components to check user permissions and limits before any resource
or security related action.

+ Node connector: It allows the server to connect to the PaaS nodes. It
uses standard mechanisms like SSH as tunnel to execute remote commands
on each node. The main purpose of this component is to execute remote
commands on deployed clusters.

+ Platform manager: This is the main component of the system. It is in
charge of coordinate and orchestrate all other component to deploy cloud
platforms. It has the logic to deploy, manage and control the platform exe-
cutions. It is also in charge of storing a historic log of all deployed platforms.

+ Node monitor: This component is in charge of monitoring all node instances
of all running platforms to determine if there is a node with a hardware
failure. If so, it reports it to the Failure manager. The monitoring process
involves taking running commands SO ids and check for process health.
When a running VM cannot be accessed, it is marked as failed and sent to
Failure Manager

+ Failure manager: It is the component which have the algorithms and busi-
ness logic to recover a platform execution after a failure on one of its compo-
nents. It uses the platform manager to orchestrate this process. The recovery
process depends on deployed platform. It include checkpointing and platform
restart thecniques.

+ Node Configurator: This component configures and manage configuration
settings for the platform nodes. It implements an interface between the ex-
ternal configuration manager and UnaCloud PaaS. A node configuration is
specified by a set of modules and parameters that are used to install and
configure software and tools.

+ IaaS connector: This component connects to the underlying infrastructure
provider to deploy and manage virtual machines. This component get the
information of VM deployment retrieved after a cluster start operation on
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the underlying IaaS system and transform it into a UnaCloud PaaS managed
object.

+ PaaS node: This last component is mounted on every virtual machine used
by UnaCloud PaaS. It contains some basic configurations to be compatible
with Node connector and Configurator components. It is composed by an
SSH server and a configurator manager client.

4 Implementation

The implementation takes the design and architectural decisions of UnaCloud
to provide the following services to end users:

1. Platform deployments: Two platforms are offered to end users: Condor and
OpenMPI. These platforms can be consumed by a web interface that allows
the customization of each platform. Some software modules are offered to
be added to the platforms: Gromacs, Blast, High Performance Linpack and
Java.

2. Platform execution monitoring: Platform executions are monitored, so it
is restored in failure cases. Also, the program execution is checked so, at
successful termination the user is notified about the results.

3. Platform execution management: The user can stop and pause running exe-
cutions.

4. User folder management: The user can manage its user folder to add, move
and delete files that can be used on platform deployments.

5. PaaS management: Finally, the implementation offers a way to manage all
configurations, entities and services of UnaCloud PaaS. It can add and delete
software modules, platforms, files, users and more.

4.1 Parameter Tunning

To achieve the implementation, it was used UnaCloud IaaS infrastructure. Un-
aCloud IaaS has been deployed in three computer laboratories at Universidad
de los Andes. Each laboratory has 35 computers with Intel Core i5 (3.01GHz)
processors, 8GB of RAM and Windows 7 as their main operating system. In
addition, UnaCloud Servers (PaaS and IaaS) were deployed on virtual machines
running on a server, which is located in the data center (for availability reasons).

A set of tests was made to measure system response time and execution time
of running platforms varying the number of virtual machines for each platform
software. For each configuration, we ran an executable with an exact duration
of 60 seconds.

UnaCloud PaaS was tested using an MPI application with production dataset
inputs provided by the Department of Chemical Engineering at University of Los
Andes. The application executes a Molecular Dynamics simulation using the
GROMACS [10] package of the transmembrane domain from the Outer mem-
brane protein A (OmpA) of Escherichia coli. The purpose of the simulation is to
calculate the annihilation free energy of the transmembrane domain by coupling
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the intramolecular interactions of the protein in vacuo. The same simulation is
executed varying the number of virtual machines and the number of cores per
VM.

5 Testing and Results

A set of tests was made to evaluate the performance of the proposed PaaS
solution according to the objectives of the present work.

5.1 System Response and Run Times

As aforementioned, several platform executions were launched varying the num-
ber of virtual machines of the main role and the platform software modules.

Table 1. System Response Times

Platform Modules VMs VM Start Config. Run
time (s) time (s) time (s)

MPI - 1 60 90 83

MPI - 2 60 100 104

MPI - 4 61 111 81

MPI - 8 61 137 99

MPI - 16 60 208 99

MPI - 32 60 271 99

MPI Gromacs 1 55 330 89

MPI Gromacs 2 60 325 100

MPI Gromacs 4 60 352 85

MPI Gromacs 8 80 414 110

MPI Gromacs 16 70 463 90

MPI Gromacs 32 61 518 105

Condor - 1 90 111 136

Condor - 2 110 137 116

Condor - 4 120 156 151

Condor - 8 121 163 151

Condor - 16 120 207 131

Condor - 32 121 298 144

In Table 1 we can see the virtual machines start time, configuration time and
run time, in seconds, of different platforms varying its total size. We can see that
virtual machines starts in the same time, independently of the size. However,
condor platforms take about the double to start its VMs. It is because this
platform has two roles (master/slave), in contrast to MPI platforms that have
one (exec). On MPI cases it has a mean error of +30 seconds, it was due the fact
that each 60 seconds the platforms are inquired to determine if the executables
have finished. On condor cases the error is about +60 seconds because there is
a time expended on queue management.
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Fig. 2. Configuration time of different platforms varying the amount of VMs

In Figure 2 we present the configuration time for each platform setup as
the number of VMs is increased. A linear regression and the Pearson product-
moment correlation coefficient (R2) is shown for each setup. We can conclude
that configuration time is linear dependent with the size of the platform.

5.2 Sample Application Execution

Several executions were made varying the amount of VMs and cores per VM.
It was measured the execution time (T) in hours, the amount of nanoseconds
of simulation per day and the Gflops obtained from each test. Every test was
executed 3 times, the mean values are presented on Table 2. In total, the tests
takes 12 days of human execution time and more than 374 days of machine time.
Without a system to manage those platform executions it could be impossible
to run all these tests. Thank to our failure recovery algorithms and strategies,
these test could be executed on a reasonable time.

5.3 Benchmarking

Finally a set of tests were made to measure the performance of one of the plat-
forms, MPI platform. We use the High-Performance Linpack Benchmark imple-
mentation provided by the Innovative Computing Laboratory of the University
of Tennessee. We use OpenMPI to run it in parallel. As implementation of the
Basic Linear Algebra Subprograms is was used GotoBLAS2 [11] provided by the
Texas Advanced Computing Center.

Several tests were made varying the number of VMs and the amount of cores
per VM. Figure 3 shows the result. As we can see, there is not a despicable
potential that can be farmed from UnaCloud opportunistic infrastructure.
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Table 2. Gromacs Simulation Results

Cores VMs Cores/VM Gflops ns/day T(h)

1 1 1 4.84 0.89 8.06

2 2 1 5.39 1.00 7.30

5 5 1 8.52 1.58 4.59

10 10 1 7.97 1.47 4.88

15 15 1 11.12 2.06 3.61

20 20 1 11.18 2.07 3.65

2 1 2 9.02 1.67 4.31

4 2 2 7.41 1.37 5.27

10 5 2 11.84 2.19 3.34

20 10 2 10.9 2.2 3.59

30 15 2 9.93 1.84 3.93

40 20 2 10.02 1.85 3.99

4 1 4 11.19 2.07 3.48

8 2 4 7.58 1.40 5.26

20 5 4 770 1.43 5.07

40 10 4 5.27 0.98 8.00

60 15 4 5.07 0.94 9.15

80 20 4 5.79 1.07 17.15
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Fig. 3. Cluster Gflops varying the number of VMs and the cores per VM

6 Conclusions and Future Work

We presented UnaCloud PaaS, a novel implementation of the cloud comput-
ing PaaS model that can be deployed over opportunistic infrastructure for the
execution of HPC platforms. Our PaaS implementation offers a convergence be-
tween cloud computing paradigm and the opportunistic trend. It probes that
it is possible (and necessary) an opportunistic aware PaaS for the execution of
successful platforms over opportunistic infrastructures. UnaCloud PaaS repre-
sents a next step on opportunistic use of unused infrastructures. As future work
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we will increase the amount of platforms and software modules [12] offered on
UnaCloud PaaS. Additionally, we are planning to implement UnaCloud SaaS
model to complete the service level offer of UnaCloud Suite [13].
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Abstract. Recently, polyhedral optimization has become focused as a
parallelization method for nested loop kernels. However, access conflicts
to an off-chip RAM have been the performance bottleneck when applying
polyhedral optimization to high-level synthesis. In this paper, we propose
a method to accelerate synthesized circuits by buffering off-chip RAM
accesses. The buffers are constructed of on-chip RAM blocks that are
placed on each of processing elements (PEs) and can be accessed in less
cycles than the off-chip RAM. Our method differs from related works in
support for non-uniform data dependencies that cannot be represented
by constant vectors. The experimental result with practical kernels shows
that the buffered circuits with 8 PEs are on average 5.21 times faster than
the original ones.

Keywords: On-Chip Memory, Buffering, Polyhedral Optimization,
High-Level Synthesis.

1 Introduction

In the field of parallel computation, hardware implementations using high-level
synthesis (HLS) have been popular because of its high performance and pro-
ductivity. In this context, HLS means a method to compile high-level lan-
guage descriptions that are friendly to software engineers into descriptions for
FPGA/ASIC circuit designing. Most of languages used in HLS (e.g., Handel-
C[1], LegUp[2]) are designed to be similar to orthodox C language, although
some special syntaxes are usually added to describe parallelism. Thus HLS can
eliminate costs to implement parallel computation programs as hardwares.

However, the effect of parallel computation cannot be exploited when the
multiple processing elements (PEs) access the global off-chip RAM concurrently.
Therefore, an appropriate memory management method should be introduced
in designing of such a circuit, so as to eliminate waiting time for acquisition of
access permission to the off-chip RAM.

In this paper, we propose a new method to construct on-chip buffers for paral-
lelized nested loop kernels. Parallelization of nested loop kernels can be done by

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 390–401, 2013.
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using a state-of-the-art technology called polyhedral optimization[3,4] that splits
the iteration space of kernel into tiles. Our method uses this tiling information
and builds an appropriate buffer map that denotes how the off-chip RAM data
will be copied to the on-chip buffers. Although there have been some works for
applying polyhedral optimization into HLS[5,6], these works do not cover kernels
with complicated dependencies, e.g., a non-uniform data dependency that can-
not be represented by a constant vector. Our buffering method for non-uniform
dependencies has the following advantages:

Avoidance of Access Conflict. In our method, each of the multiple buffers
can be accessed by its owner PE at the same time. Hence the buffers con-
tribute to elimination of access conflicts to the off-chip RAM, which cannot
be concurrently accessed by multiple PEs.

Burst Access. When the word size (the size of an array element) is less than the
bus width of the off-chip RAM, multiple consecutive words can be accessed
at a single RAM access (burst access). Our method performs burst read
accesses for array elements, and then copies the read data into the buffer
before they are processed. After the data processing, burst write accesses are
also performed. This burst access contributes to elimination of the number
of access times to the off-chip RAM.

Data Reuse. In our method, the buffers keep data that can be reused for sev-
eral iterations. This data reuse contributes to elimination of wasteful re-
peated accesses to the same data on the off-chip RAM.

Fig. 1 shows the overview of our method. Threading means conversion of an
OpenMP directive that is generated by the polyhedral optimizer into a descrip-
tion for HLS. Buffering means building a buffer map and insertion of a buffer
management code into the description for HLS. In the synthesized circuit, the
global controller manages requests from the PEs for access to the off-chip RAM,
and synchronization of the PEs. Each of the PEs handles its own independent
on-chip buffer so as to reduce accesses to the off-chip RAM.

This paper is organized as the following. In Section 2, we present a brief look
at polyhedral optimization theory. Some related works in the field of HLS are
introduced in Section 3. In Section 4, we present the overview of our buffering
method. We present the compilation-time flow of our method in Section 5, and
then present the run-time flow in Section 6. We discuss an experimental result
of the proposed method in Section 7. We summarize the paper in Section 8.

2 Polyhedral Optimization

Polyhedral optimization is the general term for algorithms that perform paral-
lelization and locality improvement on nested loop kernels by applying several
linear algebra computations. In this section, we introduce an existing polyhedral
optimizer called PLUTO and its usage briefly.
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Fig. 1. Overview of our method

/* 8-bit unsigned integer */

uint8_t a[N][N]; 

#pragma scop

for (i=0; i<N; i++)

for (j=1; j<N; j++)

a[i][j] = a[j][i] + a[i][j-1];

#pragma endscop

/* 32-bit fixed-point num (16:16) */

fix16_t a[N][N]; 

for (k=0; k<N; k++) {

#pragma scop /* scop 1 */

for (j=k+1; j<N; j++)

a[k][j] /= a[k][k];

#pragma endscop

#pragma scop /* scop 2 */

for(i=k+1; i<N; i++)

for (j=k+1; j<N; j++)

a[i][j] -= a[i][k] * a[k][j];

#pragma endscop

}

/* 32-bit fixed-point num (16:16) */

fix16_t a[N][N]

fix16_t b[N][N];

for (i=0; i<N; i++)

#pragma scop

for (j=0; j<N; j++)

for (k=i+1; k<N; k++) {

if (k == i+1) 

b[j][i] /= a[i][i];

b[j][k] -= a[i][k] * b[j][i];

}

#pragma endscop

(a) pluto_template (b) lu (c) strsm

Fig. 2. Example of input SCoP codes for PLUTO

2.1 PLUTO

PLUTO [3,4] is the de facto standard polyhedral source-to-source C compila-
tion algorithm and its implementation. Variants of PLUTO have been adopted
in several practical compilers such as GCC [7] or clang[8]. We adopt PLUTO
due to its wide applicable scope including kernels with non-uniform dependen-
cies. PLUTO transforms a C source code description of what is called SCoP
(Static Control Parts) into parallelized C source code with OpenMP directives.
SCoP is a nested loop structure of which all loop boundaries, branch conditions,
and array indices can be represented by affine expressions of iteration variables.
Fig. 2 (a), (b), and (c) are examples of SCoP.

After applying PLUTO, the iteration space of input loop is split into
parallelogram-shaped tiles. The tiling is done by computation of space direction
vector and time direction vector. The space direction vector is used to assign
tiles into threads, and the time direction vector is used to represent execution
order of tiles within a thread.
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2.2 Example

The pluto template kernel (Fig. 2(a)) is an example of nested loop kernel with
non-uniform dependency, which is focused in several works [4,9]. Further details
of PLUTO and this example kernels are explained in [4].

By applying PLUTO, the tiling vectors of this kernel can be computed as:
(1, 1) for the space direction, (1, 0) for the time direction (Fig. 3 (a)).

Although we do not explain in here due to the limitation of the paper space,
PLUTO also analyzes dependency information. For the example kernel, there is
a uniform dependency across the space direction and a non-uniform one across
the time direction (Fig. 3 (b)).

2.3 Application into HLS

An OpenMP directive (#pragma omp parallel for) generated by PLUTO can
be easily converted to a description for HLS. In our method, a chunk of multiple
consecutive logical threads (iterations marked as parallel) is assigned to a PE.
Each of the PEs is synchronized using barrier functions that are provided by
HLS tools.

3 Related Works

In HLS, just parallelized circuits cannot achieve much better performance than
the original circuit due to access conflicts to the off-chip RAM. Although some
existing related works [5,6] handle this problem by copying array elements into
on-chip buffers, these works do not cover non-uniform dependencies such as the
one between a[i][j] and a[j][i] appeared in pluto template. Wu et al.’s
work [5] is the first work that integrated PLUTO into the field of HLS with
buffering capability. However, this work has been evaluated with only simple ker-
nels: matrix-matrix multiplication(MM) and matrix-vector multiplication(MV).
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PolyOpt/HLS [6] by Pouchet et al. also provides buffering for PLUTO-based
toolchains, but its applicable scope is limited to consecutive uniform accesses
such as a[i][j] and a[i][j-1].

4 Overview of Buffering Method

In the following sections, we propose a method to optimize accesses to the off-
chip RAM by constructing buffers using on-chip RAM blocks (a.k.a. BRAM) or
registers. The buffers are independently constructed on each of the PEs and can
be accessed in fewer cycles than the off-chip RAM. Our method differs from the
related works in support for non-uniform dependencies.

4.1 Applicable Scope

Our method can be applied to SCoP kernels which satisfies the following
conditions.

1. The kernel has up to two-dimensional iteration space. If the kernel has three
or more dimensional iteration space, our method can be applied to the inner
two-dimensional part. Currently we do not handle such a many-dimensional
iteration space directly, because the parallelized codes generated by PLUTO
tend to be too complicated for humans to debug manually.

2. The data array is up to two-dimensional.
3. The kernel has no irregular access (data-dependent access) such as a[b[i]].

We applied our method to three kernels shown in Fig. 2 (a), (b), and (c). The
pluto template kernel (a) is the example kernel that we referred in the previous
section. We assume that the bus width of off-chip RAM is 64-bit and the word
size of pluto template is 8-bit, i.e., 8 words can be accessed at once.

The lu kernel (b) (LU decomposer) and strsm kernel (c) (triangular matrix
solver) are adopted as practical examples for algebraic kernels. A branch condi-
tion k==i+1 appeared in strsm is treated as constantly true while applying the
compilation-time flow of our method. The word size of these kernels is 32-bit,
i.e., 2 words can be accessed at once. The tiling vectors of lu are (i, j) = (1, 0)
for space direction and (0, 1) for time direction. The tiling vectors of strsm are
(j, k) = (1, 0) for space direction and (0, 1) for time direction.

4.2 Overall Flow

Our method is composed of the compilation-time flow and the run-time flow.
On compilation-time, our method builds a buffer map that denotes how the

data will be copied to the buffers in a two-dimensional rectangular shape. The
buffer map is used to generate synthesizable codes.

On run-time, each of the PEs on the synthesized circuit copies the off-chip
RAM contents to its own on-chip buffer, and then processes the buffered data.
The buffered data are written back to the off-chip RAM with a careful consid-
eration for data consistencies.
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INPUT: data access statement set S and tile size (th, tw) of the given SCoP
OUTPUT: buffer map M = {Mu,Mn}

Initialize the empty buffer map M :
Mu = Mn = φ.

for all data access statement s ∈ S do
Construct a uniform part mu for the write access (i.e., left-hand side) expression aw appeared
in s:

mu = {LLCoord,RUCoord,Reusability} = {(0, 0), (th, tw), NotReusable}.
for all uniform dependent read access expression aru appeared in s do

Extend mu using a distance vector du = |aru − aw|:
mu = {. . . , RUCoord(mu) + du, . . .}.

end for
Align up coordinates of mu to the off-chip RAM bus width.
Add mu to Mu:

Mu = Mu ∪ mu.
for all non-uniform dependent read access expression arn appeared in s do

if the first index of arn is constant and the second one is uniform then
Construct a new non-uniform part mn along the uniform index. The size of mn is (1, tw)
before performing alignment:

mn = {MostLUCoord(M),MostRUCoord(M) + (1, 0), NotReusable}.
else if the first array access index of arn is uniform and the second one is constant then

Construct a new non-uniform part mn along the uniform index. The size is (th, 1):
mn = {MostRLCoord(M),MostRUCoord(M) + (0, 1), InnerReusable}.

else if all the indices of arn are constant then
Construct a new non-uniform part mn and put on the odd place. The size is (1, 1):

mn = {. . . , . . . , OuterReusable}.
else

Construct a new non-uniform part mn. The size is the domain of the non-uniform access
vector (aligned to (th, tw)).:

zn = AlignUp(DomainOf(arn ), (th, tw)).
mn = {MostLUCoord(M),MostRUCoord(M) + zn, NotReusable}.

end if
Align up coordinates of mn to the off-chip RAM bus width.
Add mn to Mn:

Mn = Mn ∪ mn.
end for

end for

Fig. 4. Compilation-time buffer mapping algorithm for a SCoP

5 Compilation-Time Flow

The compilation-time buffer mapping flow is summarized as Fig. 4. The buffer
map M is constructed from uniform parts Mu and non-uniform parts Mn. A
uniform part mu ∈ Mu is allocated for a write access and uniform dependent
read accesses appeared in a statement. A non-uniform part mn ∈Mn is allocated
for a non-uniform dependent read access with special consideration for particular
access patterns.

Before buffer mapping flow, the iteration space of logical thread is classified
as uniform parts and non-uniform parts as in Fig. 5 (a). Then the iteration space
is distorted to the rectangular buffer map as in Fig. 5 (b).

In this section, we present details of how data access expressions are classified
and used to construct the buffer map.
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5.1 Representation of Buffer Map

As shown in Fig. 4, an element m of the buffer map M (m ∈ {Mu ∪ Mn})
can be represented as a tuple of LLCoord, RUCoord and Reusability. The
LLCoord and RUCoord components are left-lower and right-upper coordinates
of the corresponding part in the buffer addressing space.
The Reusability = {NotReusable|InnerReusable|OuterUsable} component is
used to indicate the reusability of the corresponding part (Section 6). Fig. 5, 6,
and 7 represents the buffer maps for the example kernels graphically.
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The buffer map does not include an attribute that denotes ReadWrite or
ReadOnly, as all the uniform parts are defined as ReadWrite and all the non-
uniform ones are ReadOnly. This is because a write acccess expression (the left-
hand side of a data access statement) is just used for allocation of the uniform
parts. However, the uniform parts and the non-uniform parts may have common
element as in Fig. 7. How to handle such a case is explained in Section 6.

5.2 Uniform Parts

A uniform part is the union of the domain of the write access and the domains
of its uniform dependent read accesses when the iteration vector moves within
one tile shape. For pluto template, the uniform part is a union of the domain
of a[i][j] and the domain of a[i][j-1] as in Fig. 5 (a).

Suppose that the size of the original tile shape is (th, tw) and the set of the
distance vectors of uniform dependencies is Du. Then the size of the uniform
part in the iteration space (t′h, t

′
w) can be computed as : (t′h, t

′
w) = (th, tw) +∑

du∈Du
du . For pluto template, du = (0, 1). According to [6], components of

du are up to 1 in most cases.
In the buffer map, the actual size of the uniform part (t′′h, t

′′
w) is aligned to

the off-chip RAM bus width. For pluto template, t′′w is set to tw + 8 when tw
is multiplicand of 8 (Fig. 5 (b)). For lu and strsm, t′′w is set to just tw when tw
is multiplicand of 2 (Fig. 6 (b) and Fig. 7).

5.3 Non-Uniform Parts

A non-uniform part encloses the domain of a non-uniform dependent read access
when the iteration vector moves within one tile shape. A non-uniform part exists
per one non-uniform access expression, although a uniform part exists per one
statement.

In the buffer map, a non-uniform part is aligned to the size of uniform tiling
shape (t′′uh

, t′′uw
). For pluto example, the non-uniform part of its buffer map is

as large as two uniform tiles (Fig. 5 (b)). This alignment limitation enables the
burst read access for the whole domain of a[j][i] before processing it.

5.4 Special Non-Uniform Parts

The above generic method produces too wasteful buffer map for two-dimensional
non-uniform read accesses of which an array index is constant and the other index
is uniform. Therefore we handle such a non-uniform access separately to improve
actual usage of buffer mapping space. In the improved buffer map, non-uniform
parts for such a access are jointed to the uniform part along their uniform array
indices.

For lu, a[i][k] and a[k][j] are treated as such special accesses because k is
considered to be constant in the two-dimensional SCoP kernel. Fig. 6 (a) shows
that almost two tile shapes are wasted when the generic method is applied. In
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the improved buffer map (Fig. 6 (b)), the a[i][k] part is jointed along a[i][*]

and the a[k][j] part is jointed along a[*][j]. Note that the a[i][k] part
is reusable between inner iterations as it is considered to be constant until the
outer iteration variable i varies.

For the b[j][k] uniform part of strsm, b[j][i] and a[i][k] are respectively
jointed along b[j][*] and b[*][k], as i is considered to be constant. Then the
fully constant part a[i][i] is placed in the left over area. The b[j][i] part is
usable between inner iterations and the a[i][i] part is so until i varies (Fig. 7).
Note that the b[j][i] part is also attributed as a uniform part because b[j][i]
is updated when the value of expression (k == i+1) is true.

6 Run-Time Flow

Fig. 8 shows the run-time buffer management flow of each of the PEs. An access
to the off-chip RAM must be done exclusively so that a single PE can acquire
access rights at a time. In this section, we present some run-time data consistency
issues and solutions for them.

6.1 Consistency between a Uniform Part and a Non-Uniform Part

A uniform part and a non-uniform part may contain common buffer chunks.
In this context, a buffer chunk means a chunk of consecutive words that are
accessible at a single RAM access, e.g., 8 words for pluto template, 2 words
for lu and strsm. When such a common buffer chunk is accessed by one of the
PEs, the instance in the uniform part should be used, because the contents of the
uniform part may be updated while the non-uniform part is defined as read-only.

6.2 Consistency between Uniform Parts

The consistency problem also exists between multiple uniform parts. In our
method, when a write access to a common buffer chunk in a uniform part is
performed, the instances in the succeeding uniform parts are also updated. Fur-
thermore, the updated chunk is also written through to the off-chip RAM im-
mediately. Therefore the burst access advantage of buffering (Section 1) cannot
be exploited for writing back of such an overlapping uniform part content.

For strsm, this consistency problem happens between the “preceding” uniform
part b[j][i] and the “succeeding” uniform part b[j][k] because b[j][i] and
b[j][k] are loaded to the same buffer chunk when ((k == i+1) && (i % 2 ==

0)) is true.

7 Evaluation

We applied our proposal method to the three example kernels (Fig. 2) and eval-
uated its effectiveness. The array size parameter N is set to 256. We evaluated
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INPUT: buffer map M = {Mu,Mn}

Load the outer reusable non-uniform parts using Mn to the buffer.
for the first iteration variable moves in the original tile do

Load the inner reusable non-uniform parts using Mn.
for the second iteration variable moves in the original tile do

Load the rest of the non-uniform parts using Mn.
Load the uniform part using Mu.
for all data access statement s do

for all read access expression ar appeared in s do
if the accessed buffer chunk exist in both of mu ∈ Mu and mn ∈ Mn (Section 6.1)
then

Fetch the instance from the uniform part of the buffer into a register.
else

Fetch the instance from the buffer into a register.
end if

end for
Execute the operator of s using registers, and store the result to the buffer.
if the write access expression aw appeared in s overlaps the “succeeding” uniform part
(Section 6.2) then

Write through the updated buffer chunk to the off-chip RAM.
end if

end for
end for

end for
Write back the uniform part of the buffer if not yet fully written through.
Perform barrier synchronization between the PEs.

Fig. 8. Run-time buffer management flow of a PE

the execution cycles and the number of NAND gates of the synthesized circuit
for both of the non-buffered versions and the buffered versions. We used Mentor
Graphics Handel-C 5.1 as the HLS and simulation tool.

In the simulated environment, an access for the off-chip RAM needs 8 cycles
and on the other hand on-chip buffers can be accessed in only one cycle. The
bus width of the off-chip RAM is set to 64-bit as in Section 4. We validated
correctness of the synthesized circuit by calculating a checksum of the array
after all write accesses to the off-chip RAM have finished.

As shown in Fig. 9(a), the speed-ups (ratios of the execution cycles) from the
original sequential versions can be estimated using the Handel-C simulator. The
execution cycles of the original versions are shown in Table. 1. The non-buffered
versions stay at the almost same performances as the original versions even with
8 PEs. On the other hand, the buffered versions can achieve on average 5.21
times speed-up with 8 PEs. Even with just a single PE, the buffered versions
can achieve on average 2.22 times speed-up. This result is not strange because
our buffering method can exploit its advantages of burst access and data reuse
(Section 1) even for just a single PE.

How the speed-ups vary when the tile size varies can be estimated as in
Fig. 9(b). The best tile sizes are 16 × 16 for pluto template, 16 × 16 for
lu, and 32 × 32 for strsm. The result indicates that too small tile size leads
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Fig. 9. Estimated speed-ups from the original versions

Table 1. Estimated performances and circuit areas of the original versions

Kernel Execution Cycles NAND gates
pluto template 2, 415, 874 1, 278, 264
lu 329, 588, 610 4, 726, 396
strsm 496, 063, 746 4, 728, 309

Table 2. Buffer sizes (in # array elements) for tile size (th, tw)

Kernel Buffer Size
pluto template (3th) × (tw + 8)
lu (th + 1) × (tw + 2)
strsm (th + 1) × (tw + 2)
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Fig. 10. Estimated increase of the number of NAND gates

to poor performance because of small buffers. In contrast, too large tile size also
leads to poor performance. This seems to be caused by the waiting time of each
of the PEs to acquire rights to access the off-chip RAM.

When the tile size (th, tw) varies, the buffer sizes also varies as shown in
Table 2. These buffer sizes are independent from the array size e.g., N in Fig. 2.

The increases of the number of NAND gates (including controller/validator
circuits other than the kernel) can be estimated as in Fig. 10 (a) and (b). The
actual numbers of NAND gates of the original versions are shown in Table. 1.
The increases are almost linear to the number of the PEs. Although the increases
of the buffer sizes (Table 2) are polynomial to the tile sizes, the increases of the
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number of NAND gates are narrow. Therefore the tile sizes can be virtually
determined without consideration for the number of available gates.

8 Conclusions

We proposed a new buffering method to accelerate nested loop kernel with non-
uniform dependencies in HLS. Our method achieved on average 5.21 times speed-
up with 8 PEs. To the best of our knowledge, this is the first work to handle
non-uniform dependencies in the field of polyhedral optimization for HLS with
buffering.

We are planning to formulate an optimization method for the tile size and
the number of the PEs, with considerations for both of the performance and the
resource limitation.

Acknowledgements. This work is supported by VLSI Design and Education
Center(VDEC), The University of Tokyo with the collaboration with Mentor
Graphics Corporation.
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Abstract. Graph500 is a benchmark suite for big data analysis. Ma-
trices used for Graph500 inherit the properties of graph analysis such
as breadth first search for SNS and PageRank for web searching engine.
Especially power saving is very important for its execution on future
massively parallel processors and clouds. The spatial locality of sparse
matrices used for Graph500 and its behaviors on cache memory are in-
vestigated. The experimental results show the spatial locality of sparse
matrices used for Graph500 is very low. It is very difficult to solve the
problem by just software approach because of the huge size and the
randomness of their accesses. Therefore, we recommend hardwired scat-
ter/gather functions at memory side. They improve the processing speed
in an order of magnitude. For achieving both of low power and high
throughput of random access, we recommend implementing hardwired
scatter/gather functions on logic-base in Hybrid Memory Cube (HMC).
We also describe brief considerations of the power saving in the case of
low cache hit rate application such as graph500. For example, when the
hit rate is 15%, the power saving ratio of memory access is about 30-fold.

1 Introduction

In recent years, graph analysis meets real social needs as explosive growth of Web
and SNS. The characteristics of graph analysis workloads such as PageRank[1]
and Graph500[2] are essentially equivalent to large scale irregular sparse matrix
operations. It is known as an application area that is not effectively performed
by existing computer systems. Moreover the memory wall is getting higher year
after year. However, such kind of application should be well executed on high-
end computers, and it is regarded as an important demand for future high-
end computers. The final goal of this research is establishing green computer
architectures for large sparse matrix operations that are important both in HPC
and graph analysis. Dally[3] pointed out the importance of elimination of data
movements through long wires and controlling granularity for power efficient
exascale computers.
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The first contribution of this paper is showing the character of matrices used
in Graph500[2] and its behavior on cache memory with experiments. The sec-
ond contribution of this paper is showing a recommended solution and its big
potential of the effects on power saving and performance of graph processing.

In the rest of the paper, the problem from random accesses in graph processing
is shown in Section 2. We introduce a metric for the spatial locality in Section
3. The evaluations on the above metric of graph processing workloads , and
its behavior on cache memory are presented in Section 4. The recommended
memory system is presented in Section 5. The brief considerations of processing
speed and power consumption are shown in Section 6. We show related work in
Section 7, and conclusion and future works in Section 8.

2 Problem from Random Accesses in Graph Processing

2.1 Data Block Size and Access Granularity

Table 1 shows various data block sizes for well-known memory systems. Even a
1-bit access may trigger the movement of a large data block. Namely, frequent
data block movements directly increase the power consumption. When the tar-
get platform has the bottleneck of memory bandwidth, such a tiny access may
deteriorate the system performance.

Table 1. Data Block Size for Various Memory Systems

Name of block Block size Ratio

TLB (Large page) 2MB-256MB 512K - 128M

HDFS[4] (block) 64MB -128MB 16MB - 32MB

memcached[5](slab) 2MB 512K

memcached[5](chunk) 80B - 1MB 20 - 256K

TLB (Normal page) 4KB - 8KB 1K - 2K

HDD (Sector) 512B 128

NAND flash (Page) 512B 128

GPU (cacheline) 128B 32

CPU (cacheline) 64B - 128B 16 - 32

Conventional HMC[7][8] 32B - 128B 8 - 32

Recomended HMC[9][10] 4B 1

Table 2 shows access granularities in some applications with random accesses.
It is observed that there is a large gap between the grain sizes and the block sizes
shown in Table 1. It means that the larger the gap is, the worse performance the
platform has. For example, a large graph processing package Pegasus[6] included
in Microsoft R© Windows R© AzureTMprovides scalable sparse matrix-vector mul-
tiplication implemented on Hadoop[4] to easily support PageRank[1],etc. With
more computing nodes, the processing speed of Pegasus may be sufficient. How-
ever, there is a considerable gap between Pegasus’ granularity and the access
block size of the target platform. If the gap was controllable, the target platform
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with a single computing node would achieve significant speed-up that means
significant reduction of power consumption. Since Pegasus is implemented on
Hadoop, the huge gap between the access granularity of Pegasus and the data
block size of HDFS degrades the execution performance. It is possible to cache
the HDFS accesses on the main memory by memcached[5], but the accesses are
converted to be issued by chunkand the gap still remains.

Table 2. Access Granularities of Random Access Applications

Application Kernel Access granularity

PageRank[1] SpMV 4B

Graph500[2] BFS 1bit - 8B

FEM SpMV 4B - 8B

2.2 Gap Problem on Cache Memory

In general, cache memory has the performance degradation problem when it
receives non contiguous data accesses such as indirect array accesses. Since graph
analysis applications tend to have sparse matrices with randomly located non-
zero elements, the above mentioned problem of indirect memory accesses occurs
considerably for conventional cache based memory systems with CPUs and/or
GPUs as shown in Fig. 1.

(2) Efficiency of 
line usage &
Effective BW

are degraded &
consumes power

(3) Efficiency of
cache line & 
hit ratio are
degraded

(1) Index travels 
chip boundary &
consumes power

Index

Conventional 
memory

Line based transfer

Cache overflows & 
lines are replaced

Cache

(2) Efficiency of 
line usage &
Effective BW

are degraded &
consumes power

(3) Efficiency of
cache line & 
hit ratio are
degraded

(1) Index travels 
chip boundary &
consumes power

Index

Conventional 
memory

Line based transfer

Cache overflows & 
lines are replaced

Cache

Fig. 1. Problems caused by indirect accesses on conventional systems

Three of main problems caused by fine grained random accesses are shown
below. (1) Index array which is a kind of address trace has to make a round
trip between processor and memory through long wire. Therefore, power and
memory bandwidth are consumed. (2) Since the effective data on a cache line
decreases, efficiency of using long wire between chips and effective bandwidth.
Therefore, the power for transmission increases. (3) Since the effective data on
a cache line decreases, many cache lines are consumed. Therefore, the cache hit
rate decreases.

3 Spatial Locality Metric for Sparse Matrices

In this section, we introduce a metric[11] for the suitability of sparse matrices
to cache memory using the characteristics of sparse matrices. The metric is used
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for classifying sparse matrices to decide appropriate cache organizations, and
obtained as the spatial locality of sequences of row indices. Fig. 2 illustrates the
concept of the proposed metric in [11]. The definition of the characteristics of
sparse matrices is given below. Just non-zero elements of a given sparse matrix
are stored in the CSR format. When reading index arrays sequentially from
the beginning to obtain row vector x, we count the number of the non-zero
elements while their page addresses are the same except the lower 5 bits. When
a different page address is detected, the count value is recorded and the counter
is reset. We define the spatial locality of sequences of row indices as the average
of the recorded count values. Assume a cache memory module with just a single
cache line, when sparse matrix-vector multiplications are performed to a sparse
matrix in the CSR format, row vectors are accessed through the cache memory.
The spatial locality presents the average number of valid elements in the single
cache line. The reciprocal of the spatial locality represents the deterioration of
the memory bandwidth for the above described accesses. Note that the above
average values do not strictly represent the characteristics of real cache memory
but approximations because real cache memory provides a lot of cache lines to
increase the temporal locality. So the spatial locality index explains a part of
characteristics of cache memory and sparse matrices. In the above definition,
the meaning of 5 bits is as follows. Provided with 128 byte cache line (a typical
cache line size for GPUs), there are 32 (25) four byte data in the cache line and
an access to some of them corresponds to a cache hit.
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Fig. 2. Definition of Spatial locality of the sequences of row indices of sparse matrix[11]

4 Evaluation

4.1 Experimental Setup

Table 3 shows the evaluation environment1. We evaluate the suitability of mem-
ory access sequences in a graph of Graph500 to a cache memory system from
the view point of spatial locality. The problem size in Graph500 is expressed as
a parameter SCALE where the number of target graph nodes is 2 SCALE [2].

The experimented sparse matrices are shown in Table 4. To generate the
sparse matrices, we use kronecker generator.m and kernel 1.m that are Octave

1 Intel, Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.



406 N. Tanabe et al.

Table 3. Experimental Environment

Host Intel R©Xeon R©CPU X5670 @ 2.93GHz

GPU Nvidia Tesla C2050 (448cores,3GB,144GB/s)

Host I/F PCI express x16 Gen.2(8GB/s)

OS RedHat Enterprise Linux Client release5.5 + Cuda3.2

programs included in Graph500 Reference code2.1.4. We convert the sparse ma-
trices generated by kernel 1.m to the mtx form, and each spatial locality metric
shown in Fig.2 is calculated for the evaluation.

Table 4. Experimental matrices

SCALE # of Non-0 # of row

11 45,536 2,048

12 97,010 4,095

13 203,826 8,192

14 426,578 16,384

15 883,126 32,768

16 1,818,824 65,536

17 3,730,586 131,072

18 7,609,740 262,144

19 15,481,872 524,287

20 31,398,208 1,048,576

4.2 Spatial Locality of Sparse Matrices of Graph500

Fig. 3 shows each spatial locality of sparse matrices of Graph500 where SCALE
varies from 11 to 20. The results indicate that the spatial locality monotoni-
cally decreases as the number of sparse matrices rows increases, and the av-
erage number of valid data in a cache line is only 1.03 for the sparse ma-
trix with SCALE=20, which is one sixty-fourth of the Toy class sparse matrix
(SCALE=26). This means that there is almost no spatial locality for sparse
matrices of Graph500.

4.3 Cache Hit Rate of Graph500

It is known that L1 cache hit rates are strongly affected by the performance of
sparse matrix-vector multiplications. Fig.4 shows the cache hit rates of sparse
matrix-vector multiplications on a GPU Nvidia C2050. The L1 cache hit rate
monotonically decreases as the number of sparse matrix rows increases, and the
L1 cache hit rate for the sparse matrix with SCALE=20 is only 5.8%. The hit
rate includes contiguous accesses to the target array elements as well as indirect
memory accesses. The reason of the saturation of cache hit rate is that the sparse
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Fig. 3. Spatial locality of the sequence of row indices for matrix of Graph500

matrix-vector multiplications include a fixed amount of contiguous accesses to
the target array elements. The average number of valid data in a cache line
is about one while the capacity of cache line is 128 bytes for the most cases.
When the data type of vectors is 8 bytes, one indirect data access to the 8 bytes
data type vectors get just 8 byte valid data remaining other 120 bytes in the
same cache line wasted. 90% of memory accesses of the sparse matrix-vector
multiplication are performed as indirect memory accesses with extremely poor
bandwidth.

A hit ratio of a virtual cache combining L1 and L2 probably has a similar
shape as the shape of Fig.4(a). Therefore, the hit ratio has to be decreased as
the SCALE increases. According to Fig.4(a) and (b), a L2 hit ratio has not
completely gone down in SCALE20. Although the size of SCALE20 fits a device
memory on the GPU, a Graph500 has actually a large matrix size which is from
64-fold to 128-fold even though it is a single node. Thus, we expect that an
effect of cache is decreasing since L2 hit ratio degrades if a capacity of the device
memory is able to include the data for the SCALE.
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Fig. 4. Cache hit rate on executing SpMV for Graph500 sparse matrix on GPU

5 Recommended Solution

The problems in Fig. 1 and very low spatial locality for graph analysis work-
load presented in section 4 can be solved by using the hardwired scatter/gather
function on Hybrid Memory Cube(HMC)[9][10]as shown in Fig.5 HMC[7][8] is
consisted in several DRAM chips and another chip called logic-base which are
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stacked and connected with each of them with highly parallel Through Silicon
Viahole(TSV)s. Hardwired scatter/gather functions, which are implemented in
every cores of Intel R©Xeon R©PhiTM[16] for example, are the vector load instruc-
tions to read multiple data on the non-contiguous addresses (Gather) and the
vector store instructions to write multiple data on the non-contiguous addresses
(Scatter). Scatter/Gather functions for indirect accesses are important for graph
processing. They realize high throughput fine grained random accesses which
appear in graph processing such as PageRank[1] and Graph500[2]. We propose
implementing hardwired scatter/gather functions on logic-base of HMC. Vector
registers, which hold vector data, and command registers, which hold control
information to be executed, are implemented in logic-base of HMC. They are
mapped to the special region in user virtual memory space which is separated
to the normal paged region. Normal paged region on the HMC can be accessed
with the compatibility of HMC standard.

HMC realizes low power and high bandwidth transfer between DRAMs and
a logic base by using many TSV with short length. In the proposed memory
system, we can make interleaved memory system with highly parallel banks by
using HMC. In this way, both of low power consumption and high random access
throughput can be satisfied.

Since HMC includes a chip called logic-base in the package for the structural
reason, it is easy to implement hardwired scatter/gather functions on it. This
improves not only processing speed but also power efficiency which is important
for Green Graph500[2].The improvement of power efficiency is highly expected
for the following reasons: (i) Index information does not pass through wired
logic lines between packages, (ii) fine grain data accesses for gather operation
passes through highly parallel very short TSV between multi-layered memory
chips, and (iii) any data that is not used does not pass through wired logic lines
between packages.
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Fig. 5. Recommended solution using HMC with hardwired scatter/gather

6 Consideration on Performance and Power Consumption

In this section, we would like to show the processing speed of sparse matrix-vector
product and the power consumption modeling related to memory access, which
are for the cases that operating with cache architecture and the recommended
memory system with Scatter/Gather functions.



Character of Graph Analysis Workloads 409

6.1 Performance

A modeling in this section targets for the processing speed of sparse matrix-
vector product y = Ax. We define some values as follows for creating a formula
of a required bandwidth per one FLOPS.

hitxFA hit ratio of accessing to column vector x
SFSpatial locality metric (the number of effective data of 32 in the line)
IFA data size per one index[B]
The sum of three values as follows shows a required bandwidth per one FLOPS

on a processor based on a cache.

BPFcache = α + β + γ = 2 + I/2 + (1− hitx) ∗ 128/S (1)

α : A required bandwidth to get an indexFI/2[B/FLOP] (continuous & no
reuse)

β : A required bandwidth to get a matrix AF2[B/FLOP] (continuous & no
reuse)

γ : A required bandwidth to get a column vector x: A required bandwidth
to get 2[B/FLOP], the same as A, only with effective data

We assume that A is as a single precision real number (4 byte) to decide a
performance when it uses mixed precision which is improved the precision. In
addition, a column vector x is much larger than a capacity of a cache. It is taken
by the cache in the replacement operation of a cache miss.

The above γ corresponds to a bandwidth which is consumed while it brings x
of 0.5 pieces (2B) by the replacement. Moving 128B twice needs x(4B) of S pieces
only one miss by the replacement. Moving 0.5∗256/S[B] needs x of 0.5 pieces by
the replacement when the miss rate is 1. It means that it moves 128/S[B] per one
FLOPS. Also it moves γ = (1− hitx) ∗ 128/S[B] per one FLOPS when the miss
rate is 1 − hitx . Therefore a processing speed for a main memory bandwidth
Wcache[B/s] is as follows.

Fcache = Wcache/(2 + I/2 + (1− hitx) ∗ 128/S) (2)

In the case of a recommended memory system, Scatter/Gather is operated on
the memory. Index does not move from the memory side. Therefore bandwidth
consumption corresponding to α is included in Gather throughput Wgather [B/s].
β is 2[B/s] in the same rate as the case of cache. γ is 2[B/s] in the same rate as β
since Gather in memory side keeps x continuous as well as A. Overall, a formula
as follow shows required memory bandwidth per one FLOPS on a recommended
memory system.

BPFgather = 4 (3)

The processing speed for the case of Gather throughput Wgather [B/s] shows as
follow.

Fgather = Wgather/BPFgather = Wgather/4 (4)

We can observe an acceleration ratio by Gather function in memory against
the cache for fixed parameter setting with a real GPU environment. In order to
validate above performance model, we made an additional experiment.
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In this experiment, performance for Gather function in memory is measured
using pre-gathered x on the device memory. In this setting, array data A and
pre-gathered x are sequentially and simultaneously accessed by GPU in the same
access rate. Therefore, the performance is equivalent with that for the case of
Gather throughput Wgather is half bandwidth of a device memory bandwidth
of the GPU. In this experiment, a program which simulates the recommended
memory completes Gather on a device memory outside of measuerd part in
advance. In order not to add noise by Not-a-Number (NaN) interrupting, the
value is properly initialized. Then it is organized to be able to measure correctly
not the result but computation time. The program is applied Fold-method[17] as
preprocessing and zero padding for GPU. Zero padding was needed to avoid large
overhead of conditional branching on GPU. In this measurement, the folding is
executed at the folding point which is 1.5-fold of the average number of non-zero
elements per line.

A Fig.6 shows that an acceleration ratio by Gather function against the cache
when a sparse matrix vector product is running on the GPU. We change the
SCALE of the sparse matrix Graph500 from 11 to 20. 5.76-fold acceleration
ratio has been observed at SCALE = 20. As a result by using 0-padding, a
total number of accessing has increased approximately doubled (from 2.13-fold
to 2.25-fold). 0 should be read not from the main memory but from the register.
It includes unnecessary memory access with the zero padding. On the other
hand, the accesses for the zero padding in the program for the cache are counted
as hit. In other words, the performance of the proposed method is set up a
situation that the observed in half on this measurement program.
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Fig. 6. The Scale of a sparse matrix Graph500 and acceleration ratio by Scatter/Gather
function in memory against the cache(GPU : Nvidia C2050)

We try to assign values to the performance model mentioned above in order
to validate it. Maximum device memory bandwidth Wcache in GPU is 144GB/s.
The data type of index for SCALE20 can be 4B therefore it indicates as I =
4. A ratio hitting L1 or L2 is 35.1% in SCALE20, as shown in Figure 5. This
is a hit rate “hitall” that includes hit by sequence data and continuous access
of index (31 times of hit in the 32 times of access). In order to get hitx in a
performance model formula (2), it needs to convert formula(5) with S, which is
spatial locality metric, to formula(6).

hitall = hitx ∗ 32/S + 31/32 ∗ 2/(32/S + 2) (5)
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hitx = (32/S + 2) ∗ hitall − 31/32 ∗ 2 ∗ S/32 (6)

The result of Fig.3 leads that the value of a spatial locality index is
S = 1.03 in SCALE20. A formula(6), S, and hitall shows that hitx = 0.311
in SCALE20. Substituting Wcache ,I, S, and hitxinto a formula(2) indicates
Fcache = 1.61[GFLOPS].

On the other hand, since it operates by means of dividing a device memory
bandwidth in half with array data and the serialized x, Gather throughput is
Wgather = 72GB/s. Then substituting this into a formula(4) leads to Fgather =
18[GFLOPS]. Therefore an acceleration ratio that Fgather/Fcachederived from
performance model in SCALE20 is 11.2-fold. This value is about twice of 5.76-
fold that the acceleration ratio has been observed. This fits the effect by zero
padding, which we wrote before, observed value that is reduced to half. Then
we got an evidence that a performance model is valid. A graph of an accelera-
tion ratio in the measurement results of Fig.6 are bent in a zigzag shape. This
phenomenon is occurred by the overflow of L1 cache and L2 cache. Thus, when
the matrix size has been increased from SCALE 11 to SCALE14, a growth of
an acceleration ratio is remarkable since L1 hit ratio dropped to more than half.
When the matrix size has been increased from SCALE14 to SCALE17, a growth
of an acceleration ratio slowed down since a change of a hit ratio of L1 cache
goes worse and L2 cache hits. When the matrix size is increased from SCALE17
to SCALE20, L2 cache misses begin and then an acceleration ratio will begin to
go up again. That is a combination of several factors has made a zigzag curve.

6.2 Power Consumption

In this section and next section, a power modeling is approximated that power
for address calculation does not embed for the sake of simplicity. According to
Dally[3], a long distance movement of closed to calculated data would consume
much amounts of power in future semiconductor systems. That is the first basis
that its approximation is correct. In the case of the cache, a software can handle
the address calculation. A power of the processing is same as a processing by
a dedicated hardware on a proposed memory or larger. Therefore, a configura-
tion that the power for address calculation does not embed that does not have
advantageous one for the proposed method. That is the second basis.

When it runs the sparse matrix vector product in cached-based, energy con-
sumption Ecache of the memory access is modeled by the following formula (7).
Besides, Cache line size is 128B (1024bit), Data matrix data size and Vector
data size is 32bit and Index data size is 64bit. In addition, Rhit is the cache hit
ratio, Emiss is the energy consumption for a 1-bit memory access when a cache
hit occurs, and Naccess is the total number of accesses and baverage is the average
number of access bits when it runs the sparse matrix vector product.

Ehit is dose of consumption energy Eonin 1-bit on-chip memory access and
then Emiss is approximated to the sum of the dose of consumption energy Eon in
1-bit on-chip memory access and two doses of consumption energy Eoff in 1-bit
off-chip memory access. It would get the same number of times each 32bit in
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Matrix value, 64bit in index value, and 128B/S (S is spatial locality) in vector
value per one memory access. Thus, it would get the average (32+64+1024/S)/3
bit. Naccess is three times of total number of non-zero elements Nnz. In the case
of Eoff � Eon and S � 1, it shows a formula (10) that is approximated. In the
Graph500, we can guess both S and Rhit are small therefore Ecache has a large
consumed energy taken off-chip transfer of vector value.

Ecache = (Rhit ∗ Ehit + (1 −Rhit) ∗ Emiss) ∗Naccess ∗ baverage (7)

� (Rhit ∗ Eon + (1−Rhit) ∗ (Eon + 2Eoff)) ∗Naccess ∗ baverage (8)

= Rhit ∗Eon + (1−Rhit) ∗ (Eon + 2Eoff )) ∗ 3Nnz ∗ (32 + 64 + 1024/S)/3 (9)

= Rhit ∗ Eon + (1−Rhit) ∗ (Eon + 2Eoff )) ∗Nnz ∗ (32 + 64 + 1024/S) (10)

� 2240(1−Rhit)NnzEoff (If Eoff � Eon, S � 1) (11)

On the other hand, in the case of performing prefetch with Hybrid Method
Cube combined Gather function, consumption energy of memory access Egather

shows a formula (12) as follow when it runs the sparse matrix vector product.
Besides, Earray is the matrix value(32 bit), Egather is the index value(64 bit),
and Evector is the vector value(32 bit), which is an consumption energy to get
one element.

All of the matrix value and the vector value, which are as burst data, are
prefetched by the long distance transfer on the board and are on-chip accessed
from the cache to the arithmetic unit. The consumption energy by each transfer is
approximated that 32Eon +32Eoff . Additionally the vector value in the process
of Gather is transferred short distance in the Hybrid Memory Cube and then
the consumption energy is approximated 32Eon.

The index value is transferred not long distance on the board but all short
distance by way of TSV in Hybrid Memory Cube. Thus, the consumption energy
to get one index value is approximated 64Eon.

In the case of Eoff � Eon a formula (14) is approximated like a formula
(15). That is, it shows that Hybrid Memory Cube combined Gather function
has much smaller consumption energy instead of cache compared to a formula
(11).

In the case of Eoff � Eon and S � 1, a formula (16) shows the ratio of
consumption energy by Hybrid Memory Cube combined Gather function instead
of cache. It turns out to save electrical power of about thirty times when the
cache hit rate is 15% and about seventeen times when the cache hit rate is 50%.

Egather = Nnz ∗ (Earray + Eindex + Evector) (12)

� Nnz ∗ ((32Eon + 32Eoff) + 64Eon + (32Eon + 32Eoff + 32Eon)) (13)

= Nnz ∗ (160Eon + 64Eoff) (14)

� 64NnzEoff (If Eoff � Eon) (15)

Ecache/Egather = 35(1−Rhit) (16)
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In Fig.7, a hit ratio of L1 cache is nothing but 5.8% in SCALE20. A hit ratio
of L1 cache or L2 cache is 35.1%. Substituting these above values into a power
model formula(16) shows that a power ratio of memory access is the difference
of 22.7-fold. It is considered that it is a matter of time that L2 cache does not
hit like L1 cache increasing SCALE from 20 to much further. When a hit ratio
hitting L1 cache or L2 cache is 15%, a power of memory access has a difference
of 30-fold.

7 Related Works

Many efforts have been done for accelerating graph processing. Although Suzu-
mura [14] analyzes a reference implementation of Graph500 from several points
of view, there is no analysis about cache memory effect. Ueno[13] reported an
implementation of Graph500 using 2D partitioning. They propose an optimiza-
tion technique for cache named vertex sorting. However the resultant speedup
gain is only 10%.

As for the PageRank[1] speedup works, Yang[12] reported for GPUs. PageR-
ank on GPUs can be accelerated more effectively than on CPUs because the
memory bandwidth of GPUs is higher than that of CPUs. PEGASUS[6] that is
graph analysis processing framework represented in sparse matrix-vector multi-
plications are implemented with Hadoop. These works are aimed for scaling out
using many nodes. There is no analysis for cache memory effect among these
works, too.

Accelerating Scatter/Gather operations has long history. Vector supercomput-
ers have vector load/store instructions since antiquity. Strided vector load/store
instructions, Indexed (indirect reference) vector load/store instructions and Mask
vector load/store instructions support Scatter/Gather operations. Convey HC-
1[18] has hardwired Scatter/Gather functions on a memory controller on mother-
board. There is very small effect of saving power in memory controller on moth-
erboard based solution. DIMMnet-2[19] has them on a memory module (DIMM).
Although this is the nearest the recommended HMC based solution[9][10], there
is small effect of saving power in DIMM based solution.

Recently, the instructions executing Scatter/Gather have been implemented
on processor such as Intel Larabee[15] and Intel R©Xeon R©PhiTM[16] which is a
commercial many core CPU. These approaches based on processor side Scat-
ter/Gather invoke inefficient memory accesses, when the cache hit rate is low
on executing some applications such as graph processing. Therefore, there is no
effect of saving power and acceleration which are shown in this paper.

8 Conclusions

In this paper, the spatial locality of sparse matrices used for Graph500 and its
behaviors on cache memory are investigated. The experimental results show the
spatial locality of sparse matrices used for Graph500 is very low and there is
about 1 or a little more valid data on a cache line for the memory accesses
issued by SpMV in average. It is very difficult to solve the problem by just
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software approach because of the huge size of sparse matrices and the random-
ness of their accesses to degrade the optimization based on cache awareness.
Therefore, we recommend hardwired scatter/gather functions at memory side.
They are promising for taking advantage in the Graph500 lists. They improve
the processing speed in an order of magnitude. For achieving both of low power
and high throughput of random access, we recommend implementing hardwired
scatter/gather functions on logic-base in Hybrid Memory Cube (HMC). We also
describe brief considerations of the electrical power saving in the case of low
cache hit rate application such as graph500. For example, when the hit rate
is 15%, the power saving ratio of memory access is about 30-fold. Such effects
cannot be realized with scatter/gather functions on processor side such as them
on Xeon Phi. Our future work includes more precise simulator based perfor-
mance and power evaluation, implementation of Graph500 using scatter/gather
functions at memory side, etc.
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Abstract. Cloud Computing is a fairly new paradigm but evolving very
fast. Nowadays, business enterprise services and middle ware such as SAP
or Oracle are integrated into a Cloud infrastructure. Also, Cloud services
are used for computational or IO intensive applications from multiple sci-
ence fields like physics, microbiology or weather forecast, due to the large
amount of resources available. In this context, it must be paid attention
to resource utilization in Cloud environments. Therefore, the scheduling
of tasks on Cloud resources is a core issue, with impact for users and
service providers. We proposed HySARC2, a novel scheduling algorithm
based on traditional approaches, which considers clustering of the avail-
able resources in the infrastructure in the phase of resource allocation.
The resources clustering into groups is used by our proposed algorithm
in a hierarchical way, executed in two phases. First, tasks are assigned
to groups of resources and further, in a second phase, inside each group
of resources a classical scheduling algorithm is executed. The proposed
algorithm is suitable for heterogeneous systems and sets of applications
with various requirements (both IO and computational intensive).

Keywords: Scheduling, Resource Allocation, Clustering, Cloud Com-
puting.

1 Introduction

Cloud systems represent a significant choice for applications requiring intensive
computations or big data processing, because the Cloud infrastructure provides
a large amount of resources in terms of memory, disk and impressive processing
power [1] [2]. Multiple research applications in different domains, like: medicine,
weather forecasting, physics or national defense use the resources of a private,
public or hybrid Cloud for the above reasons. As a response to the fast evolving of
Cloud importance in nowadays activities, there were developed Cloud platforms
(provided by companies like Amazon, Google, SAP or Microsoft), frameworks
for evaluating Cloud platforms (OpenNebula, Eucalyptus or Nimbus [3]) and
also simulation environments (CloudSim, GreenCloud or ICanCloud).
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The applications that rely on the Cloud infrastructure are characterized by a
number of requirements: estimated processing time, required memory, IO opera-
tions, a budget or a deadline. Given the previous arguments, the role of schedul-
ing of tasks on resources is a key part of a Cloud infrastructure. The scheduling
must take into account all tasks requirements, improve the utilization of the
resources, load balancing or total execution time.

In this paper we propose HySARC2, a scheduling algorithm that improves
workload on the resources available into the Cloud and satisfies tasks require-
ments. The algorithm has three parts: (i) Analyse the available resources and
group them into clusters (resource aware algorithm); (ii) Provision different
groups of similar tasks to different clusters of resources; and (iii) Schedule the
tasks in each cluster of resources. HySARC2 is applied for Bag-of-Tasks (BaT)
applications such as data mining algorithms or Monte Carlo simulations, having
both IO and computational intensive phases.

The paper is structured as follows. Section 2 analyzes actual solution for
task scheduling in a data-center and discuss the related work. The third Section
describes in detail the proposed solution: architecture, the clustering algorithm
and scheduling algorithm. The experimental methodology is covered in Section 4.
For those we analyze the total execution time and scalability. Section 5 presents
HySARC2 integration in real Cloud platforms and in the last part, Section 6,
are presented the conclusions and future research work.

2 Related Work

The paper aims to find a way of improving the resource allocation in a given
Cloud environment. Therefore the execution of various tasks will be scheduled
on adequate resources in order to satisfy both user requirements and service
provider interests. In order to achieve this goal, we proposed an approach based
on the clustering and labeling of resources .

Cloud service providers are interested in optimizing available resources, in
order to being able to satisfy as many user requirements as possible and as a
result improving the profit. Efficient energy management is a challenging research
issue in resource management in Cloud [4] [5]. The HySARC2 algorithm aims an
efficient resource utilization: tasks assigned on suitable resources, having as effect
energy saving because inadequate resources could be put in a hibernate state,
in the limits of the Service Level Agreement (SLA). We will describe several
solutions that take into consideration the resource allocation.

In [6] it is described a Resource Aware Scheduling Algorithm which stands on
top of the analysis of two existing task scheduling algorithms: Min-min and Max-
min. Both algorithms use an estimation of tasks completion time and resource
execution time. Min-min algorithm selects the task with minimum completion
time and schedules it on the resource with the minimum execution time. Max-
min assigns the larger tasks first and after the smaller ones; in this case, a greater
number of large tasks causes problem in scheduling efficiency. The algorithm
alternates the two algorithms depending on input tasks.
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An important feature for scheduling algorithms is to have a dynamic behaviour
according to real environment evolution. Such an algorithm is described in [7].
The algorithm is suitable for arbitrary constraints tasks, their dependencies may
be organized as a graph, having as nodes the tasks and as edges the constraints.
It consists in to parts: first, the scheduling phase - select the first task in the list
and then allocate it on the resource with earliest start time; next, follows the
re-scheduling phase. For the second phase, the algorithm is treating separately
different types of tasks: entry task (no tasks depend on the task that fails, then
only the current task is re-scheduled) and inner task (all tasks depending on the
failure node have to be rescheduled).

In [8] is presented an algorithm having good results on the compromise cost-
execution time. The tests showed that the cost may descend with over 15%
while the execution time satisfy users requirements or the execution time may
be shorter with average 20% and the costs would remain almost the same. The
main steps of the algorithm are: (i) Reschedule tasks from previous rounds with
highest priority; (ii) Compute tasks sub-deadlines: latest completion time that
cannot be exceeded; (iii) Compute execution time and cost for each task on each
resource; (iv) Each task is distributed to the resource with lowest execution time
and lowest cost; (v) Allow the user to view a graph with the relation time-cost
and to choose desired compromise; (vi) Repeat for next scheduling round.

A heuristic genetic approach is described in [9] and [10], with a slight improve-
ment of execution time. The proposed algorithm generates an initial schedule
for tasks using a heuristic algorithm such as Min-min (described above in [6]);
compute parameters like make span for the generated allocation; select nodes
(scheduled resources) using the previous computed parameters; crossover and
mutation of tasks scheduling on resources; test stop condition. Another strategy
used as optimization method is co-allocation. Co-allocation provides a schedule
for task with dependencies, having as main purpose the efficiency of the schedule,
in terms of load balancing and minimum time for the execution of the tasks [11].

There are several scheduling algorithms and strategies adopted in private
Clouds. The scheduling in OpenStack [12] framework is accomplished by the
nova-scheduler. The main scheduling phases in the process are: 1. filtering avail-
able resources according to users requirements; and 2. weighting phase - the
filtered hosts are applied a cost function depending on the input tasks and then
sorted from the best to the worst. When using OpenNebula framework [13], the
default available scheduling is related to the allocation of VMs on hosts. It uses a
Rank Policy for that purpose: the hosts not fulfilling VMs requirements (memory
or CPU) are excluded; the remaining hosts are evaluated using a configurable
rank function; VMs are allocated to hosts with higher rank.

The most used Cloud simulator is CloudSim [14]. In CloudSim there are avail-
able default scheduling policies both for VMs allocation on hosts and for tasks
allocation on processing elements. The simulator offers space-shared and time-
shared policies for VMs and tasks provision and those two available policies may
be used in every combination having different effects in tasks execution.
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3 HySARC2: Model, Architecture and Algorithm

Theoretical Model. A task represents a sequence of operations, needing a re-
source in order to execute its operations. A set of tasks may be independent or
interdependent (having different types of constraints). In our model, the tasks
received from the user are independent (similar to BoT model) [15]. We have a
set of tasks T = {Ti}. A task is a set of four properties, Ti = (PT

1 , PT
2 , PT

3 , PT
4 ),

where PT
1 is CPU processing time, PT

2 is IO time, PT
3 is pre-emption flag (pre-

emptive or non-pre-emptive) and PT
4 is deadline. A resource is “anything that

can be scheduled” or allocated from a physical machine or processors to a net-
work. We have a set of resources R = {Rj}. A resource represents a physical
processing element, having a set of properties. The characteristics used by the
algorithm are Ri = (PR

1 , PR
2 ), where PR

1 is processing speed and PR
2 is IO speed.

Other properties that can be considered as extensions are: parallel (single, uni-
form or unrelated processors) or dedicated processors, network topology.

Architecture. To describe HySARC2 behavior, we consider as input a set of
tasks grouped into clusters. We monitor the resources from Cloud environment,
then classify them into clusters. We allocate tasks clusters on the available re-
sources according to the scheduling algorithm for each cluster of resources. We
consider four modules: Monitoring Service, Analyzer and Scheduler (Fig. 1).

Fig. 1. Proposed Architecture used by HySARC2

Monitoring Service. This module is used as a background process, starting at
the system initialization. At start up, the Monitoring Service finds the available
resources. Each time a resource is added to the system, it notifies the Monitor-
ing Service. The role played is to be aware of the available resources and their
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characteristics. This list is used by the Scheduler and Analyzer without having
to request information from the system each time an algorithm is ran.

The Analyzer is used for clustering the resources and tasks according to user
configuration or default predefined settings. We proposed the following behav-
ior: (a) the Analyzer supports user configuration. The user provides information
about how many groups of tasks and resources should be created after the clus-
tering phase. The default values are three clusters of tasks and three clusters of
resources: CPU intensive, I/O intensive or mixed (both CPU and I/O intensive);
(b) next, the Analyzer gets the list of resources and properties from the monitor-
ing service, apply a clustering algorithm on the set of resources and labels each
resource with the associated cluster; (c) the Analyzer receives the list of tasks
and their properties from the scheduler and applies the clustering algorithm; (d)
it provides the scheduler the list of clusters for the resources and tasks.

The Scheduler has the role of receiving input tasks and assign them to
available resources. The work-flow for the Scheduler module is:

1. The Scheduler receives the input tasks.
2. Next, the Scheduler sends the tasks to the Analyzer for clustering.
3. Further, the Scheduler receives from the Analyzer the clusters of tasks and

available cluster of resources.
4. Finally, the Scheduler applies a hierarchical scheduling algorithm and send

each task to the identified resource.

The solution uses a hierarchical algorithm for the resource scheduling:

A. the first step for scheduling a task is assigning it to a cluster of resources.
B. after that, the task is scheduled in the cluster using a classical algorithm.

A very useful aspect in the HySARC2 algorithm is that different groups of
resources are able to have different algorithms, more suitable for the resources
and associated tasks properties, rather than to have a scheduling algorithm for
all resources and tasks.

3.1 Clustering Proposal for HySARC2

A clustering approach is going to be used for HySARC2. In this case the abstract
data input for the algorithm is once, the available resources and second, the
input tasks having different characteristics. The clustering algorithm used in
this solution is K-Means [16]. It is applied twice, once for the resources and once
for the tasks by the Analyzer module. In order to apply the algorithm, we must
define the properties for tasks and resources taken into account by the clustering
and also the “distance” between two elements in the set, as follow:

The properties are the ones defined at the beginning of this section:

Tasks : estimated CPU processing time (PT
1 ) and I/O operations time (PT

2 )
Resources : CPU processing power (PR

1 ) and I/O operations speed (PR
2 )
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The “distance” between two tasks or resources is necessary for identifying
the “closest” cluster center. The “distance” highlights the similarity between
entities. We define the same distance for tasks and resources as follow:

1. normalize the values of parameters along the entire set of entities (E and K
denote a task or a resource). We define the normalized value for property

PE
i , where i = 1, 2 as: P̃E

i =
PE

i∑
K PK

i
.

2. the two normalized parameters are considered as coordinates, so the distance
between entity Ea and entity Eb having the properties P1 and P2 is the

Euclidean distance: distance(Ea, Eb) =

√(
P̃Ea

1 − P̃Eb
1

)2

+
(
P̃Ea

2 − P̃Eb
2

)2

.

Fig. 2. Clustering Phase for HySARC2

After the clustering phase is completed, we follows the actual scheduling of
the resources for the input tasks, now grouped into clusters (see Fig. 2).

3.2 HySARC2 Scheduling Algorithm

The scheduling algorithm is applied by the Scheduler module in two steps:

STEP 1 : associate groups of tasks with groups resources, according to average
parameters in tasks and resources groups. In other words, the clusters of tasks
having a high average processing time required (“large” tasks) are assigned
to resources with high computational capacity. The same reasoning applies
to “small” tasks.

STEP 2 : inside each group of resources run a scheduling algorithm in order
to allocate the tasks.

Scheduling Algorithms Used by HySARC2. Given the fact that the tasks
being processed by the scheduler are a set of independent tasks, we apply spe-
cific scheduling algorithms. The scheduler implements two scheduling algorithms
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for independent tasks: —Shortest Job First (SJF) and Earliest Deadline First
(EDF), and alternates them in each cluster of resources, for analysis and com-
parison purposes. The SJF algorithm associates with a task, its estimated CPU
processing time (“small” job means having a low processing time), and as soon a
resource is available, it assigns on it the shortest task in the waiting list. In order
to achieve this more efficiently, the list of tasks are sorted ascending after the
CPU processing time (see Algorithm 1). The EDF algorithm associates with a
task its deadline, and as soon a resource is available, it assigns on it the task with
the nearest deadline in the waiting list. The tasks are kept into a priority list,
the priorities are the inverse of the deadline, and the tasks with higher priority
are scheduled sooner (see Algorithm 1).

Algorithm 1. Earliest Deadline First / Shortest Job First

1: procedure Classical Scheduling(tasks, resources)
2: sort tasks: descending after deadline for Earliest Deadline First OR ascending

after CPU processing time for Shortest Job First.
3: while tasks �= φ do
4: if anyResourceAvailable(resources) == true then
5: R← getRandomResourceAvailable(resources)
6: T ← popTask(tasks)
7: execute T on R.
8: end if
9: end while

10: end procedure

We may observe that the difference between the two algorithms is how the
tasks are being sorted in the waiting list. The list is being used as a stack.

4 Experimental Methodology and Results

For the test cases, we generated tasks with various random requirements. The
same approach is also used for generating different resources. The characteristics
of the processing elements are chosen randomly from the following values:

– MIPS : 200, 400, 500, 800, 1000, 2000, 4000, 5000, 8000, 10000;
– RAM dimension: 512, 1024, 2048, 4096, 8192, 16384;
– we vary also the total storage value, but the values are not relevant.

Using CloudSim [14], we generate a maximum number of 1000 tasks, 1000
Processing Elements (PE) and 10 Virtual Machines (VM) with different number
of cores. In each simulation we vary the number of virtual machines from 1 to
10 and the number of processing elements from 10 to 1000, given 1000 tasks.

Tasks and Resources Clustering Phase. We analyze the Clustering Phase
duration, along the above set of scenarios and for different grades of variability of
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the generated parameters (the parameters are in certain different grades similar
or very different). In Fig. 3(left) we have the task clustering phase duration. In
Fig. 3(right) we have the resource clustering phase duration. A large number
of tasks produce an overhead and we can slit the set of submitted tasks into
multiple requests. For resource clustering we have similar times, so we can run
periodically this procedure without any inconvenient. The overhead observed
justifies itself because it slightly reduces the execution time.

Fig. 3. (left) Task clustering duration; (right) Resource clustering duration

Fig. 4. (left) Execution time comparison (simulation time/steps); (right) Scalability

Execution Time. We analyze the average execution time of tasks along a
combination of scenarios using a certain configuration (5 virtual machines and
100 processing elements): (i) we test by using or not the clustering algorithm; (ii)
we also test with or without the default scheduling algorithm inside clusters; (iii)
the tests are taken for three clusters of resources and three clusters of tasks or
four clusters of resources and four clusters of tasks. In Fig. 4(left) we present the
results for initial CloudSim Scheduling (2), only clustering (3), clustering and
SJF algorithm (1). The conclusion is that the clustering phase add an overhead,
but using a specialized scheduling algorithm we obtain a good improvement.

Scalability. We analyze the average execution time, along the entire above
set of scenarios and for different grades of variability of the generated param-
eters (the parameters are in certain different grades similar or very different).
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In Fig. 4(right) we have the average execution time for initial CloudSim schedul-
ing, for clustering and any scheduling algorithm (SJF or EDF). We can conclude
that by adding HySARC2 in a specific Cloud environment the scalability is pre-
served.

5 HySARC2 Integration in Real Cloud Platforms

The proposed architecture for HySARC2 is modular and can be integrated with
a Cloud platform as follow: the Monitoring Service could be deployed as a dae-
mon on the provider system, gathering at system start up information about
existing resources, and receive notifications each time a modification occurs; the
Analyzer and Scheduler could be deployed as middleware tools; a module for
user communication could be developed and deployed at the applications layer.

6 Conclusion

In this paper we proposed HySARC2 scheduling algorithm that considers cluster-
ing of the available resources before the phase of resource allocation. HySARC2 is
based on traditional scheduling algorithm and we used in this paper the Shortest
Job First and Earliest Deadline First algorithms. The clustering of the resources
and tasks brings efficiency to the scheduling, but it also introduce a certain
overhead once with the pre-processing of tasks and resources. As we seen in the
experimental results, the overhead justifies itself because it slightly reduces the
processing time. As future work we will consider the scheduling algorithms that
inspect the dynamic behavior of the resources or allow tasks to be preempted
according to a given priority, different natures of constraints (for example DAG,
considering ICPDP scheduling algorithm [17]), implementing specific scheduling
algorithms and adapt the scheduling algorithms dynamically [18].
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Abstract. Recently, researchers have focused on addressing incoherent caches 
on GPUs as current GPUs lack hardware to support that. Moreover, the support 
for inter-block communication also lacks which limits the scalability of parallel 
programming especially in the unstructured algorithm in which program would 
share data between different threads. Barrier synchronization can be a solution 
but it becomes invalid because of incoherent caches. In this paper, we propose a 
set of rules for programming on current GPUs to avoid the errors caused by 
incoherent caches when applying barrier synchronization. We also leverage 
these rules into an unstructured graphic algorithm -- constrained Delaunay 
triangulation. In comparison with traditional ways such as (1) disabling L1 
cache and (2) using keyword volatile, we find that when vertices is over 300K 
the error rate is lesser than (1) by 91.19% and than (2) by 84.2% on average. 

1 Introduction 

The graphics processing units (GPUs) have been widely used for parallel computing 
in recent years. A GPU has more streaming processors (SPs) than a traditional CPU 
and the bandwidth of memory is higher. Applications can be tremendously 
accelerated if they map well to GPU hardware, and it is cost-effective for those 
applications with plenty of data parallelism such as FFT, mesh generation, etc. But 
the bandwidth is still not enough. To get better performance, a multilevel cache 
hierarchy is introduced into GPUs to reduce the demand for bandwidth of global 
memory. Programmers can run their applications much faster ignoring the hardware 
details and paying attention to the algorithms instead of racking their brains to limit 
the access to global memory by data reuse. 

However, GPUs have no mechanism for cache coherence which is necessary  
for some algorithms. Besides the cache coherence, the lack of inter-block 
communication also limits the effectiveness and scalability of parallel programming 
on GPUs. Many solutions [1] [2] [8-10] are proposed but only a few can be practical 
for programmers. 
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Fig. 1. GPU synchronization function call 

Barrier synchronization is a practical option to solve the synchronization problem. 
Shucai Xiao [9] proposes a simple barrier synchronization by using functions like 
__gpusync() and threadfence() to synchronize all threads between SMs on a GPU. 
This method is friendly for the programmers because when they want to synchronize 
all threads on the GPU they just need to call those functions as shown in Fig. 1. These 
functions can synchronize program and coherent memory. But this synchronization 
does not provide a method to synchronize incoherent caches since the GPU had no 
caches at that time. 

As NVIDIA introduces caches into GPUs from Fermi architecture while without 
cache coherence, programmers need to address coherence by their own way, or else 
errors may occur as showed in Fig. 2. Thread i and Thread j are two threads running 
on different SMs. In function 1, they read values from global memory, and cache 
them into their private caches. Then they write a new value back. After that they call a 
barrier synchronization function to synchronize threads between different SMs. In the 
function 2, threads want to read the new value which is modified by another thread, 
but would get the old value from their caches, rather than the new value from the 
global memory. Then cache incoherence occurs and runtime errors are raised. 

Therefore, in this paper we propose three methods for programmers to address the 
cache coherence with barrier synchronization. The first method is to mark all the data 
needed by threads. The privileges to access data are determined by the thread id. One 
thread can only read and write its own data. The second method is to cluster those 
relative threads that are accessing same pieces of data and put these threads onto the 
same SM. Then the data can only have one copy in one SM and the coherence can be 
avoided. The third method called M&C which is short for Mark&Cluster is to 
combine these two methods together and take advantage of the benefits of both. 

We also introduce these methods into a typical unstructured graphic algorithm, 
constrained Delaunay triangulation. We adjust this algorithm with barrier 
synchronization first. Then we write two programs which disable the L1 cache on the 
GPU and declare parameters as volatile respectively. As these two methods are 
commonly used to provide trivial coherence, we set these two methods as the 
baselines to test the performance of our own. Then we modify the algorithm with our 
methods and measure their execution time and error rates to compare with baselines. 
Our experiments show our best method, M&C, is 91.19% better than disabling the L1 
cache and 84.2% than using keyword volatile when the vertices increase to 300K or 
more. 
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Fig. 2. Read errors caused by incoherent caches 

The rest of the paper is organized as follows. Section 2 describes the traditional 
ways to avoid cache coherence and gives a brief introduction to constrained Delaunay 
triangulation algorithm. Section 3 discusses related work. Section 4 interprets our 
three methods in details. Section 5 and 6 presents our methodology and results, and 
Section 7 concludes. 

2 Background 

2.1 Traditional Solutions 

Invalidation of the L1 Cache. Disabling L1 cache is a traditional way for the 
programmers to avoid the problems caused by cache coherence. Nowadays, GPUs 
have two hierarchical caches, L1 caches and L2 caches. L1 caches are private to each 
SM while L2 are shared by all SMs. L1 caches are incoherent while L2 caches are 
coherent. Besides L1 caches, each SM has its own registers, local memory and other 
memories which also have no mechanism to ensure the coherence with other SMs. So 
disabling L1 cache is not enough since there are some other incoherent resources in 
GPUs. Then disabling L1 caches cannot solve this problem perfectly. Our 
experiments show that disabling L1 cache is efficient when the dataset is small, but its 
performance decreases significantly as the dataset becomes larger. 
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Fig. 3. Pseudo code for using keyword volatile 

 

Fig. 4. Two triangle pairs (a) and two flipped triangle pairs (b) 

Use of the keyword Volatile. Using keyword volatile is common in multithreads 
programming, programmers tell the compiler not to optimize code for memory access 
and read the value from the memory rather than the cache. Here we use the keyword 
volatile as prefix to the parameters of the functions called in kernel (Fig. 3). Then the 
program would bypass the caches and get the data directly from global memory. 

2.2 Constrained Delaunay Triangulation  

Delaunay triangulation is a popular method to produce unstructured meshes for finite 
element analysis in CFD [11]. Delaunay triangulation is to divide an input domain by 
triangles. Each triangle’s circumcircle does not contain any vertices from other 
triangles. The domain could be non-convex and has prespecified constraints. 
Constructing a constrained Delaunay triangulation is the basis for Delaunay 
refinement. Chew et al. [12] proposed constrained Delaunay triangulation in 1989. 

Inserting constraints is one phase of the entire algorithm. Edge flipping is a 
traditional method first introduced by Lawson [13]. In order to ensure all the triangles 
would not intersect with the constraints inserted, these triangles need to flip their 
edges to reduce the amount of intersected edges as Fig. 4 depicts. 

In this paper, we take this algorithm as example because when flipping the edges, 
we need to update the triangle pairs’ data about vertices, edges and neighbor triangles. 
Besides that, we also need to update their neighbor triangles’ data (e.g. △ABE’s data 
about neighbor is updated from △ABD to △ABC by △ABC). When we flip these 
edges in parallel, every single triangle pair is mapped to a single thread. Then one 
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thread would change other threads’ data. So if these threads are not on the same SM, 
cache coherence problems occur. Our algorithm is modified from the work by Meng 
Qi et al. [14], and detailed information can be found in that paper. 

3 Related Work 

Cache coherence has been studied on CPUs for dozens of years. Providing a hardware 
cache coherence mechanism into processors is one way to guarantee memory 
consistency on general-purpose chip multiprocessors (CMPs) [3]. Recently, 
researchers also introduce coherence protocol into the hardware of GPUs as what they 
do earlier to CPUs. Inderpreet et al. [1] propose a hardware coherence protocol on 
GPUs and get 85% performance improvement compared with disabling the 
incoherent L1 cache. However, Inderpreet et al. implement their work on simulators, 
such as GEMS [4], GPGPU-Sim [5], rather than in real machines. So it would take a 
long time for current programmers to benefit from their ideas until manufacturers put 
them into new products. 

As for synchronization, programmers traditionally launch a new kernel to 
implement an implicit synchronization or call the function cudaThreadSynchronize() 
on host to synchronize explicitly. After that, all the code and data can be 
synchronized. Shucai Xiao and Wuchun Feng [8] [9] then implement a lock-free 
barrier synchronization on GPU and perform well for less-data-dependent algorithms 
because it takes less time in synchronization compared with the traditional ways. But 
it is invalidated on the current series of GPUs since coaches are introduced in while 
this mechanism cannot ensure that caches are coherent. Cederman et al. [10] also 
propose a dynamic load balancing queue by lock-free synchronization and performs 
better than Shucai’s work. Yilmazer Ayse et al. [2] provide a synchronization 
mechanism for GPUs which gets better performance in the simulation than the 
synchronization implemented by Spin Locks with Atomic (SLA) instructions. Just 
like mechanisms for cache coherence, most of the solutions for synchronization are 
also based on simulation except Shucai’s work which is easy for programmers to use 
into their algorithms. 

4 M&C Software Solution 

Since the incoherence is caused by data sharing between threads on different SMs, 
then here is our software solution: reduce the data shared and put relative threads on 
the same SM. We mark all the data that one thread dominates by thread id to reduce 
data sharing and make a task queue for every SM to process relative threads that 
scheduled to this SM. We merge these two methods together and get a better solution 
called M&C. 



 M&C: A Software Solution to Reduce Errors Caused by Incoherent Caches on GPUs 431 

 

 

Fig. 5. Mark all the triangles needed by a triangle pair 

4.1 Mark All: Reduction of Data Sharing 

As shown in Fig. 2, the incoherent error occurs when one thread tries to write to the 
data that threads on the other SMs will read later. Then we can mark all the data with 
thread’s id and only the thread with smallest/biggest id has the privilege to access that 
piece of data. Here we set an id array for all triangle pairs and use atomicMin/ 
atomicMax function to set thread id. 

In the original constrained Delaunay triangulation algorithm, we only need to mark 
the flappable triangle pairs if all the caches are coherent (e.g. △ABD and △ACD or △ACF and △CFI) and then we flip edges as Fig. 4 shows. 

But if the caches are incoherent, new flipped triangle would still see the old 
triangle as their neighbor, rather than the new one (e.g. △ABC still sees △ACF as its 
neighbor. △ACF still sees △ACD as its neighbor.) since it doesn’t know what its 
neighbors’ threads do. Although this thread’s neighbors try to tell this thread its new 
neighbor triangles by update this thread’s data about adjacent triangles, they can only 
alter the data in global memory while the old data in caches remain. So we mark all 
the triangles the triangle pairs needed (the triangle pair and all its neighbors) to avoid 
this problem. In Fig. 5, we mark these triangles in gray. Here we assume that triangle 
pair △ABD and △ACD has higher privilege and then the triangle pair △ACF and △CFI won’t be processed at this time. 

4.2 Cluster Threads: Relative Threads Cluster to a Same SM 

For those threads that would access the same pieces of data, we can put those threads 
on the same SM. Then the data they shared would only have one copy in all caches. 

Hence, our strategy is to put the triangles that intersect with the same constraint 
onto the same SM. Since triangle pair △ABD and △ACD and triangle pair △ACF and △CFI are intersected with the same constraint, we put these two triangle pairs into the 
same SM’s task queue. Since Shucai’s [9] synchronization mechanism limits that the 
blocks’ quantity should not be more than the amount of SMs. Then the amount of 
blocks we use here is the same to SMs. So the SM that one block maps is ensured and 
the task queue that one SM processes is guaranteed. 
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Fig. 6. Two triangle pairs intersecting with different constraints (a) and marked triangles (b) 

4.3 Mark&Cluster: Combination of Two Methods Above 

The weakness of the first method is that those adjacent triangle pairs cannot flip their 
edges in parallel. The shortcoming of the second method is that the incoherence still 
occurs when two adjacent triangle pairs intersect with different constraints and then 
they would map to threads on the different SMs as shown in Fig. 6 (a). 

By combining these two methods together, we can put those triangle pairs 
intersecting with the same constraint onto the same SM. Besides that, we only mark 
those adjacent triangles that intersect with different constraints (only △BDG and △CDH, while △ABE and △ACF are not included) as shown in Fig 6 (b). Here we still 
assume that triangle pair △ABD and △ACD has higher privilege, and the triangle pair △ABD and △ACD can be processed with triangle pair △ACF and △CFI in parallel. 

5 Methodology 

We have tested our modified algorithms on an Intel Xeon E5620 2.4GHz PC with 
24G DDR3 RAM and an NVIDIA Tesla C2070 with 5375MB DDR5 VRAM. Our 
GPU programs are written and compiled by NVIDIA CUDA 4.2. We disable the L1 
cache by setting the nvcc compiler flag -Xptxas -dlcm=cg when compiling the 
program and use keyword volatile as shown in Fig. 3.  

In order to verify the error rates and execution time of different methods, we use a 
1000-round for loop and calculate the mean value of the execution time and error 
rates. For those methods that have high error rates, the programs encounter run-time 
errors before the loop breaks. When the program fails, we record the running time and 
the counter of the cycle as the times of execution, and then increase the error counter 
by 1 as the program crashes for incoherent caches last time. Then we recalculate the 
mean running time and mean error rate with the data we calculated last time. Then we 
rerun the program for another round. We do the work above many times until the 
mean execution time and the mean error rate become stable. 
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Fig. 7. The error rate of inserting constraints by these five methods when computing the 
constrained Delaunay triangulation, with 100K constraints and varying the number of vertices 
from 200K to 1M 

6 Results 

We present the performance of these methods by execution time and error rate as 
shown in Fig. 7 and Fig. 8. 

In Fig. 7, we can see that the error rates are at a low level at the beginning when the 
amount of vertices is from 200K to 300K. The error rates of these five methods are 
2.38%, 1.49%, 0.97%, 8.96% and 1.67% respectively. As the volume of vertices 
increase, the error rate of disable L1 rises sharply. When the volume is up to 700K, 
the rate is up to 100% and disable L1 is not available any more. Volatile is a little 
better than disable L1, but still useless when there are 900K vertices or more. Cluster 
threads is better than the above two baselines because it solves incoherent problems 
within one constraint. But it does nothing to avoid the incoherent caches between 
different constraints. The last two methods can solve the incoherence both inter-
constraints and inner-constraints. So they can get the best performance. The mean 
error rate of mark&cluster (i.e. M&C) is only 1.8%. On average, when the amount of 
vertices is over 300K, M&C’s the error rate is lesser than disabling L1 cache by 
91.19% and lesser than using the keyword volatile by 84.2%. We also notice two 
peaks at 300K and 600K. It is because the error rate is also concerned with  
the condition of constraints. If many constraints are adjacent, the condition in Fig. 
would happen frequently and the error rate would be higher especially for mark all as 
it only cares about the coherence within one constraint. 
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Fig. 8. The running time of inserting constraints by these five methods when computing the 
constrained Delaunay triangulation, with 100K constraints and varying the number of vertices 
from 200K to 1M 

Fig. 8 shows the running times of these methods. As we only add new functions to 
avoid incoherent caches and do nothing to optimize the original algorithm, so our 
methods always execute longer. Mark all takes the longest time which is 188% of 
disable L1 and 173% of volatile because it reduces the parallel degree and need more 
loops. Cluster threads takes less time which is only 112% of disable L1 and 104% of 
volatile because storing the triangle id into task queue of the SM can be processed in 
parallel and it won’t spend too much time. Mark&cluster approximately takes the 
time as the meaning value of the two methods before, which is 147% of disable L1 
and 134% of volatile as it is implemented by combining these two methods together. 

7 Conclusion 

In this paper, we propose three new methods to avoid incoherence caches and reduce 
the errors caused by that. These methods do not change the original algorithm’s data 
structures. We implement these methods through a practical algorithm and evaluate 
their performance on a real machine. These three methods can be concluded into three 
rules: maximize the resources that one thread dominated, cluster those threads that 
share data and make a tradeoff to get a better performance. These rules could be 
useful for those programmers who also try to accelerate unstructured graphic 
algorithms on GPUs. Besides that, the experience about false sharing on CPUs would 
also be helpful. Programmers may need to redesign their algorithms’ data structures 
but performance would be better. We would also put this into our future work. 
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Abstract. Running multiple application programs on a multicore processor can 
maximize processor resources utilization. However, contention to the shared 
resources may result in interference among co-running programs, and make the 
program performance unstable and unpredictable. In order to optimize the 
performance of co-running programs and ensure the QoS of latency-sensitive 
applications, we propose an interference-aware scheduling strategy IA for 
systems based on multicore processors. Our work begins with analysis of the 
behavior of a set of benchmark programs, after that we train a simple program 
classifier. We use this classifier to classify the benchmark programs into three 
categories according to their interference with each other. The interference-
aware scheduler tries to schedule the programs with less interference to the 
same multicore processor. Experiments results show that our method improves 
system performance while maintaining reasonable resource utilization. It 
outperforms the previously published scheduling strategy in guaranteeing the 
QoS of latency-sensitive applications.  

1 Introduction 

Running multiple application programs on a multicore processor can maximize 
processor resources utilization. However, contention [1] to the shared resource may 
introduce performance interference among different programs and result in 
application performance degradation [2]. Also, many programs are latency-sensitive 
and require real-time response to the user. Running multiple programs at the same 
time on a multicore processor may affect the responsiveness of programs and lower 
the QoS of those real-time applications. One method to guarantee the performance of 
the latency-sensitive applications is to allocate dedicated resource for those programs. 
But the drawback is it will lower the resource utilization because some cores of the 
processor may be idle at most of the time. As a consequence, the resource utilization 
of data centers adopting this strategy is often low [3].  

The program run-time behavior and the way of competing for the shared resources 
[4] determine the degree of performance interference [5-7]. Experiments on typical 
multicore processor-based servers have shown that applications running on the same 
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processor (socket) are prone to compete for the shared resource and tend to lead to 
performance degradation, while applications running on different sockets have less 
chance to interfere with each other. Our work is focused on the interference caused by 
contention to the shared LLC and memory [8]. The purpose of our work is to 
investigate how the contention to the shred resource and the execution behavior of the 
program influence the performance of the co-running programs [9,10]. we have 
developed an interference-aware scheduler IA which can schedule the programs 
having less interference with each other to the same socket so that the overall 
application performance as well as the resource utilization are optimized [5,11]. 

In order to implement the online interference-aware scheduling strategy, several 
steps are taken. First, we sample the relevant events during program execution and 
obtain a profile of the program. Then we analyze the behavior of the program using 
the profiling information [12,13]. Based on the criteria for distinguishing program 
behaviors we classify the set of programs in our experiments into three categories, 
each category has a particular pattern of accessing shared resources and shows a 
specific degree of interference to the co-running programs. Then the scheduler uses 
the program category information to determine the appropriate combination of the co-
running programs and schedules the programs onto hardware resources for execution.  

The rest of this paper is organized as the follows: In section 2 we give the 
motivation of our research. Section 3 discusses the way of analyzing the application 
behaviors. Section 4 presents the principle and implementation of an online 
interference-aware scheduler. The scheme for evaluating the interference-aware 
scheduling and the experiment results are presented in section 5. Related works are 
discussed in section 6. Finally we conclude in paper in section 7 by summarizing the 
work we have done and propose the future research topics. 

2 Motivation 

One of the metrics adopted by the modern OS in scheduling threads across resources 
is load balancing. The OS scheduler balances tasks across processors. But the OS 
scheduler does not take interference between threads into consideration. This kind of 
scheduling often results in the situation of resource contention, making applications 
performance unstable and unpredictable, and in some cases even seriously degraded 
[14-16]. Therefore, interference due to resource contention must be one of the 
important considerations in scheduling. For example, we try two scheduling strategies. 
We run four programs simultaneously on a two-way computing node with two 
programs on one socket. In the first scheduling strategy we execute 445 and 453 on 
one socket, and 470 and 482 on another socket. In the second scheduling setting we 
run 445 and 470 on one socket, and 453 and 482 on the other. In the system running 
the tests, programs executed on the same socket share LLC. The experiment results 
are shown in Fig. 1. We can see that the total execution time of the second scheduling 
strategy is better than the first one. The reason is that the interference between 
programs in the second scheduling is less severe than that in the first one.  

Programs running together share a variety of resources, such as memory, memory 
controller, and LLC, etc. Which kind of contention to the shared resources exists and 
what is the main cause of interference? We find that when programs are executed on 
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the different sockets of the node, the execution time is substantially the same 
compared to the one when the program executes solely on the node. This means that 
programs running on different sockets do not interfere with each other very much. On 
the other hand, the programs executing on the same socket suffer significant 
performance degradation. It can be inferred from this fact that the LLC and memory 
associated with the socket are the main shared resource to compete and usually result 
in performance degradation. With this observation we focus our study to the 
interference caused by LLC and memory accesses. 

 

Fig. 1. Comparison of two scheduling stratrgies 

3 Behavior Profiling and Program Classification 

3.1 Co-running Program Behavior 

Our experimental platform is IBM HS22 server implemented with Intel Xeon E5620 
processor. The server has two sockets, on each of the socket is an eight-core Xeon 
E5620. Each socket is equipped with 12MB 16–way L3 shared cache and a IMC. 
Each core contains private L1 instruction and data cache and a private unified L2 
cache. We repeatedly execute a set of benchmark programs on the server to 
investigate their run-time behavior. Ten programs listed in Table 1 (group 1) are 
selected from SPEC CPU2006 as the workload. 

The programs are executed in group of two with every possible combination to see 
the interference between different programs. We can learn some facts from the 
experiment data. First, some programs, such as 416, 444, 445 and 453, have little 
influence to the performance of other programs running on the same socket, and are 
also not vulnerable to the execution of other co-running programs. Second, some 
programs, such as 429, 433, 450 and 482, tend to influence the performance of other 
programs running on the same socket, and are also prone to be affected by other co-
running programs. Third, some programs such as 410 and 470 do seriously affect the 
performance of other co-running programs on the same socket, but are less influenced 
by the execution of other programs. These three categories cover the behaviors of the 
10 programs and form a partition of the benchmark programs. With the above 
observation, we could characterize the program behavior with two attributes.  

For the first attribute, i.e., the influence to other co-running programs, the 
programs can be classified as either “mild” or “aggressive”. A mild program is a 
moderate program which hardly influences the performance of other co-running 
programs. An aggressive program, on the other hand, will significantly interfere the 
execution of programs running on the same socket. With this attribute, we can classify 
the 10 benchmark programs into to two types, with 416, 444, 445 and 453 as mild, 
and 410, 429, 433, 450, 470 and 482 as aggressive. 
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For the second attribute, the extent that a program is influenced by the co-running 
programs, the programs can be characterized as either “firm” or “fragile”. A firm 
program is less sensitive to the co-execution of other programs, while a fragile 
program is vulnerable to interference. We can characterize 429, 433, 450 and 482 as 
fragile, and 410, 416, 444, 445, 453 and 470 as firm. 

Table 1. Workloads used for experiments 

Group  Workloads 
1 410, 416, 429, 433, 444, 445, 450, 453, 470, and 482
2 416, 429, 433, 434, 458, 459,462, 464
3 435, 437,470,471

Table 2. Event profiling online  

Event Description 
Instruction Retired Instruction retired 
Unhalted Core Cycles Unhalted core cycles 
LLC Reference Last level cache reference 
LLC Miss Last level cache miss 
UNC_DRAM_OPEN.CH0 
 
UNC_DRAM_OPEN.CH1 
 
UNC_DRAM_OPEN.CH2 
 

Counts number of DRAM Channel 0 open 
commands issued either for read or write 
Counts number of DRAM Channel 1 open 
commands issued either for read or write 
Counts number of DRAM Channel 2 open 
commands issued either for read or write 

3.2 Program Classification 

We need to identify the parameters which can reflect the resource contention. We 
need to monitor events accessing those resources and quantitatively profile the 
program’s behavior. Table 2 gives a summary of events we gather from program 
execution. We use perf [17] to access the built-in performance counters [18] in Intel 
Xeon E5620. In order to get enough information while still keep reasonable profiling, 
we carry out sampling during the execution of first 107 instructions of each program. 

Mild and Aggressive Division 
We know from our experience that memory access dominates program performance. 
The mild program has less interference to other co-running programs because it 
usually has fewer accesses to the shared LLC resources [19]. On the other hand, an 
aggressive program must have more intensive access to the shared LLC. Therefore, 
we consider two aspects in defining a mild or aggressive program: first, LLC 
occupancy, and second, sensitivity to the LLC size. We use the following formula to 
distinguish a program as either mild or aggressive.  

Total LLC Reference < 30000 and Total LLC Miss <6000 

The threshold values are determined by executing the 107-instructions. With these 
threshold values, programs are divided into mild and aggressive. 
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Firm and Fragile Division 
A fragile program is vulnerable to interference from other programs. The literature 
[20] points out that memory-sensitive application has high bank parallelism. But we 
can’t get events related to bank parallelism with our profiling tool. So we use memory 
channel access [21] instead. This decision is based on the concept that a fragile 
program with more memory channel accesses tends to have contention with other co-
running programs. We set the threshold of being a fragile program as the follows: 

Channel Access>0.9*107 

Non-fragile programs are classified into the firm category. 

3.3 Training the Classifier 

We use the above criteria to train a simple classifier for online classification of 
programs. 18 representative programs listed in Table 1 are selected from SPEC CPU 
2006 benchmark SUITE to represent a wide range of program behavior. The ten 
programs in group 1 are the program mentioned in section 3.1 and used as the 
workload of offline training. The programs in group 2 and group 3 are the workloads 
for online classification and for evaluating the performance of our interference-aware 
scheduler. The program classification process is illustrated in Fig. 2. 

410,416,429,433,444,
445,450,453,470,482

A,B,C

Classifier

Classify

Interference‐aware 
scheduling

Architecture

416 429 433 434 458 459 462 464
offline

online

 

Fig. 2. Program classification for scheduling 

With the above process, we can classify the programs in our study (group 1 in 
Table 1) into categories as shown in Table 3. Note, the programs in the category D 
(mild, fragile) are missing. Logically, with two classifying attributes and two values 
for each attribute, there must be four program categories. But in our experiments we 
did not find the program which is both “mild” and “fragile”. It is because that a mild 
program is usually also “firm” since it has less LLC accesses and therefore less 
contention with the co-running program.  

 
 
 



 Interference-Aware Program Scheduling for Multicore Processors 441 

 

Table 3. Programs classification  

Category Behavior Description Benchmark 
Application 

A (mild, firm) no significant impact to the 
performance of co-running 
program on the same socket, 
and less vulnerable to the 
interference introduced by co-
running programs. 

416,444,445,453 

B (aggressive, 
fragile) 

significant impact to the 
performance  other co-running 
programs on the same socket, 
and vulnerable to the 
interference introduced by co-
running programs. 

429,433,450,482 

C (aggressive, 
firm) 

significant impact to the 
performance  other co-running 
programs on the same socket, 
and less vulnerable to the 
interference introduced by co-
running programs. 

410,470 

D (mild, fragile) no significant impact to the 
performance of co-running 
program on the same socket, 
and vulnerable to the 
interference introduced by co-
running programs. 

 

4 Interference-Aware Scheduling 

The concept of the interference-aware scheduling is to avoid bad combination of co-
running programs on the same socket to ensure the program performance and improve 
resource utilization. We obtain the profiling information from execution of the first 
107 instructions of the running program. The data is sent the input of the classifier, 
and the output from the classifier is the information indicating the category of the 
running program. This process is done online. So we profile as few parameters as 
possible to avoid heavy overhead. The scheduling policy is determined based on the 
knowledge of program categories. Table 4 shows the scheduling policies for 
scheduling two programs onto the same socket.  

We implement the interference-aware scheduling strategy as a separate module and 
insert it into the current OS scheduling program. We identify online the category of 
programs and map them to the home environment for execution according to the 
scheduling policy. The interference-aware scheduler records the information about 
what kind of program is running on each socket and assigns the new coming program 
to an appropriate socket. 
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Table 4. Scheduling policies 

Program pair Co-run characteristic 
A & B Good
A & C Good
B & C  Bad, should be avoid
A & A Good, but less preferred
B & B 
C & C 

Very bad, never do it
Fair, can do it

5 Evaluation 

5.1 Comparison with the Default Scheduling 

We first compare the performance of the interference-aware scheduling ( IA ) and the 
DIO scheduler with the default OS scheduler. Fig. 3 shows the percentage of 
performance gain over the default OS scheduling. Eight programs execute in pairs on 
four sockets, “sum” in Fig. 3 is the total execution time of the eight programs. We 
note that both IA and DIO are better than the default scheduler. But compared with 
DIO, IA is slightly better, but not very much. Then what is the advantage of IA in 
improving programs performance? In the next experiment we can see another benefit 
of using IA in satisfying the QoS requirement of different workload sets.  

5.2 QoS Guarantee 

Fig. 4 depict the QoS degradation of the three above mentioned schedulers relative to 
the solo execution. The QoS requirement is defined as the follows: The execution 
time of programs co-running on one socket cannot be more than 5% longer than that 
of non-solo scheduling. We can see from the results both the default OS scheduler and 
DIO cannot satisfy the above QoS requirement. The reason is that they are more 
dependent on the characteristics of the workload than IA.  

In the experiment shown by Fig. 4, the workload group 3 contains 4 programs, 
three of them are of large cache miss rate. DIO first matches the program 471 (with a 
high miss rate) with the program 435 (with a low miss rate), and assigns them to one 
socket. Then DIO is facing two programs left, 470 and 437, both having a high miss 
rate. DIO can do nothing but assign them to the same socket, resulting in serious 
interference and violation of the QoS requirement (prolong execution of program 
437). But the IA scheduling can solve the problem. By obtaining programs behavior 
online, the IA scheduler knows that the program 435 is in category A and other three 
are in category B. The IA scheduler first schedules 470 to co-run with 435. Then two 
left programs, 437 and 471, are both in B category (aggressive, fragile). Instead of 
mapping them to one socket, the IA scheduler applies for another extra socket and 
makes the two programs executing separately on different socket. This approach can 
guarantee the QoS requirement but at the cost of extra resource.  
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Fig. 3. Performance of DIO and IA relative to the default OS scheduling (workload group 2) 

 

Fig. 4. QoS degradation relative to solo execution (workload group 3) 

6 Related Work 

Regarding to performance interference, there are generally two methods to reduce the 
interference between applications. The first method is called resource partition [22], 
most of the works in this strategy are to partition the cache among multiple programs 
by re-mapping programs’ cache line. The second method is to re-map by scheduling.  
The approach in [1] re-maps programs by keeping the cache miss rate even on each 
socket. Reference [15,16] use a prediction model to predict program performance in 
different contention conditions. 

For QoS control, the Google data center uses a sizeable test program “bubble” to 
predict contention on shared resources [3,4]. Strategy in [2] directly estimates 
performance of applications in different cache configurations. Reference [11] 
proposes a compilation approach that statically manipulates contentions among 
applications to enable the co-location of applications with varying QoS requirements. 

There are some works done in understanding application behavior. One way is to 
characterize contentions among applications and to identify which resources is the 
cause of performance degradation [8]. Reference [20] reveals that the application 
behavior is closely related to the pattern of memory access. [19] shows that 
stabilization of application performance is relative to the last level cache sensibility.  

7 Conclusion 

In this paper, we propose an interference-aware scheduling for improving program 
execution performance and guaranteeing application’s QoS. Compared with other 
scheduling strategies, our interference-aware scheduling IA is definitely better than 
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the default OS scheduler, and achieve a slightly better performance than the DIO 
scheduler. In addition, IA introduces a mechanism of acquiring extra resources when 
encountering unsolvable conflict in scheduling, and can satisfy the QoS requirement 
at the cost of limited amount of extra hardware resources.  
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Abstract. Fueled by increasing demand of big data processing, distributed sto-
rage systems have been more and more widely used by enterprises. However, in 
these systems, few storage nodes holding enormous amount of hotspot data 
could become bottlenecks. This stems from the fact that most typical distributed 
storage systems mainly provide data amount balancing mechanisms without 
considering the difference of access load between different storage nodes. To 
eliminate bottlenecks and tune the performance, there is a demand for such sys-
tems to employ a work-load aware balancing and resource management frame-
work to optimize the performance and computation resource utilization. 

In this paper, we propose WABRM, a load balancing and resource manage-
ment framework for Work-load Aware Balancing and Resource Management in 
Swift, a typical distributed storage system. By designing such an optimization 
framework, it is possible to eliminate bottlenecks caused by hotspot data. Our 
experimental results show that the framework can achieve its goals. 

Keywords: distributed storage system, Swift, work-load balancing, resource 
management. 

1 Introduction 

The distributed storage system significantly improves the capacity of big data storage, 
process and security. Swift [1], as a well-known and typical distributed storage sys-
tem, is playing an important role in cloud storage. In Swift, there are mainly two 
kinds of nodes, including proxies and storage nodes. Data requests are sent to proxies 
and proxies fetch data stored in storage nodes to respond to users. 

Concurrently, virtualization technology is making a significant impact on how re-
source are used and managed in a cloud computing platform. Several virtualization 
solutions (Xen [2], XenServer [3] and VirtualBox) are getting more and more mature 
in resource management.  

Load balancing mechanisms for distributed system are also very important. There 
are mainly three default load balancing mechanisms in Swift. Firstly, scalable proxy 
mechanism allows users to set up more than one proxy to distribute requests from 
users to these proxies. Secondly, replica load balancing mechanism balances the 
work-load through responding with data replicas stored in different storage nodes. 
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Finally, data amount balancing mechanism tries to distribute data to all the storage 
nodes evenly. If the access load of each data is nearly the same, the work-load is ba-
lanced. In addition, there are also plenty of relative researches, such as research work 
[4, 5]. Their balancing targets are similar to the mechanisms’ of Swift. However,  
almost all the previous researches remain the static data storage mechanism unmodi-
fied. And how to achieve the goal of load balancing dynamically in distributed  
storage systems has not been well studied. Hence we propose the framework named 
WABRM. 

WABRM mainly contains three aspects, including discovery of work-load excep-
tion, algorithms of workload balancing and data migration method. Some relative 
work introductions are as follows. 

Discovery of work-load exception is the basis of work-load aware balancing. 
Compare with the monitoring architecture of [6], in WABRM, each node monitors 
itself. Consequently, it is much easier to locate the hotspot data. In [7], for each chunk 
in MongoDB [8], its access-load is evaluated by the numbers of various operations on 
it. In WABRM, the access-load is evaluated by computation resource utilization, 
which can more objectively reflect its actual access-load. In [9], the exception of 
work-load is detected based on the predicted access load. It is good, but large amount 
of historical records is needed to guarantee its precision. 

Algorithms of work-load balancing are the cores of work-load aware balancing 
framework. In [10], the files are divided into several zones according to the foreseen 
work-load in order to balance the access load. However, it is static since the location 
of a file will not be changed once it is stored into the zone. In [11], the data are dy-
namically re-partitioned to facilitate rapid data balancing by a graph theoretic way. 
Unfortunately, it is time consuming in some situations. In WABRM, we propose nov-
el work-load balancing algorithms, which is dynamic and efficient. 

Data migration is one way to achieve the goal of dynamic work-load balancing. In 
[12], a cost aware method is designed to minimize the interference between virtual 
machines. But the amount of data to be migrated is not reduced. In [13] and [14], a 
location-aware method is proposed to save energy when performing data migration in 
large-scale datacenters. Actually, we aim to balance access-load instead of storage 
amount. Thus, we can achieve this goal through virtual machine migration. WABRM 
adopts virtual machine live migration as its migration method. 

In summary, work-load aware balancing is crucial for storage applications with 
hotspot data. 

The contributions of this paper are summarized as follows. Firstly, we propose a 
work-load aware balancing and resource management framework based on the virtua-
lization technology, which can be applied to Swift. WABRM is lightweight and re-
quires no source code change in the guest OS and storage application. Secondly, we 
implement dynamic work-load balancing mechanisms for physical machines and 
virtual machines in WABRM. Finally, we conduct an experiment to demonstrate the 
effectiveness of WABRM in tuning the performance of Swift when hotspot data exist. 

The rest of the paper is organized as follows. Section 2 describes motivating expe-
riments to show the poor performance of the default load balancing mechanisms of 
Swift when hotspot data exist. Section 3 introduces the framework of WABRM as 
well as the design and implementation of the algorithms we integrated it. Section 4 
presents the experimental results and analysis. Section 5 draws some conclusions. 



448 Z. Wang, H. Chen, and Y. Ban 

2 Motivation 

This section mainly describes the motivating experiment to show the poor work-load 
balancing performance of Swift when hotspot data exist as well as the analysis of the 
problem. We conduct the experiment on 15 virtual machines created by XenServer. 
They are represented by VM1, VM2…VM15 respectively. Storage nodes of Swift are 
deployed in these virtual machines. This experiment is simple but effective. 

In this experiment, the number of replicas of a file is set to be 3, which is mostly 
accepted by the industry. Firstly, we upload some files to Swift. And we observe File 
A and its replicas are stored in VM1, VM9 and VM13 while File B and its replicas 
are stored in VM3, VM9 and VM14. We notice that VM9 stores both replicas of File 
A and File B. Through simulation of requests for File A and File B, we can observer 
the work-load difference of nodes. To simulate data access, Pylot [15], a web stress 
test tool is used to simulate clients. In this experiment, 100 clients and another 100 
clients are simulated to fetch File A and File B respectively. The simulation of client 
requests is last for 15 minutes. During the 15 minutes, the concurrent 200 simulated 
users send their requests to Swift continuously and the interval between two requests 
is 100ms. 

As Figure 1 shown, the work-load of VM1 and VM2 is significantly different and 
VM1 is much higher than VM2. The reasons are as follows. VM1 stores a replica of 
File A while VM2 stores no replicas of File A and File B, consequently, VM1 need 
more computation resource to respond to user requests and its work-load is much 
heavier. Even though there are three balancing mechanisms in Swift, they don’t work 
in this scenario. 

 

Fig. 1. Comparison of busy and free storage nodes 

 

Fig. 2. Comparison of busy storage nodes 
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As Figure 2 shown, both VM9 and VM14 are busy, however, their work-load is 
obviously different. As mentioned before, VM9 stores replicas of File A and File B 
and VM14 only stores replica of File B, as a result, work-load of VM9 is obviously 
higher than VM14’s. In Swift, this work-load imbalance is caused by its imperfect 
replica load balancing mechanism. Ideally, the storage system should first choose the 
replica in the storage node with the lightest work-load to respond. Actually, this im-
balance can be resolved through rescheduling the response replica. To reduce the 
work-load, another solution is dynamic computation allocation, which is used in 
WABRM. 

As Figure 1 and Figure 2 shown, the work-load of different storage nodes is differ-
ent. So it is irrational to distribute computation resource to each storage node evenly. 
In WABRM, with Swift storage node deployed in virtual machines, we can allocate 
the resource to the storage nodes elastically. Further, a physical machine’s resource 
utilization can be optimized through Split and Merge algorithms, which will be dis-
cussed in this paper. 

Based on the aforementioned analysis, we try to optimize the work-load balancing 
of storage node in Swift through virtualization technology, a novel method. Through 
our method, the system performance is tuned and computation resource utilization is 
improved. 

3 WABRM Architecture 

This section mainly discusses the design of WABRM as well as the algorithms we 
have incorporated it. Before introducing WABRM architecture, we first present the 
work-load balancing model of WABRM.  

3.1 Work-Load Balancing Model of WABRM 

In traditional distributed storage systems, there is only one mapping of data to storage 
locations. Data are distributed and stored into different storage nodes according to 
some mapping rules, e.g. hash values. The mapping rule is static and difficult to 
change. To achieve the goal of dynamic work-load balancing, in WABRM, in addi-
tion to such mapping, there is a mapping of storage nodes to physical machines, 
which is dynamic and easy to modify. In this model, storage nodes are deployed in 
virtual machines and virtual machines reside in physical machines. By this way, data 
are divided into several much smaller subset, which improves the efficiency of locat-
ing hotspot data. Through dynamic changing the mapping of virtual machines to 
physical machines, work-load is balanced in physical machines. 

As Figure 3 shown, WABRM is mainly composed of two layers, including physi-
cal layer and virtual layer. In this paper, a virtual machine with WABRM and Swift 
deployed is called a virtual node and a physical machine with WABRM and virtuali-
zation server deployed is called a physical node. 

In virtual layer, WABRM is responsible for monitoring the work-load of a virtual 
node and scheduling the computation resource allocated to it according to its work-load 
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through interacting with the WABRM in the physical node. And in physical layer, 
WABRM is responsible for monitoring the work-load of a physical node and regulating 
it through interacting with other physical nodes and virtual node migration. 

To achieve the optimization goal, we implement algorithms for virtual layer and 
physical layer. 

 

Fig. 3. WABRM Architecture 

3.2 Work-Load Monitoring and Analysis 

To achieve the goal of work-load aware balancing and resource management, work-
load monitor is necessary in the framework. It provides a foundation for the algo-
rithms we proposed. Through the monitor, work-load states of physical nodes and 
virtual nodes are collected and saved for further work-load analysis. In WABRM, 
there are two kinds of work-load monitors for different monitoring objectives. Work-
load monitor for virtual node intermittently collects computation resource utilization 
information, including CPU and Memory utilization for the input of the algorithms for 
virtual layer. And Work-load monitor for physical node intermittently collects Net-
workIO utilization in addition to the computation resource utilization information 
collected by work-load monitor for virtual node for the input of the algorithms for 
physical layer. 

The goal of work-load analysis is to learn the work-load state of a node. To simpli-
fy the problem, in WABRM, we define three work-load types of a node, including 
underloaded, normal and overloaded. Generally, a node’s work-load state can be 
represented by a computation resource utilization vector, which consists of CPU utili-
zation, memory utilization, etc.  

The current state vector of the node is calculated by historical monitoring states 
collected by work-load monitor of the node, since it is unreasonable to determine a 
node’s state through single monitoring. Currently, in WABRM, computation resource 
utilizations in the state vector are the averages of their recent historical monitoring 
values.  However, WABRM provides an interface for the realization of this node 
state calculation algorithm, any new algorithm, e.g. algorithms based on prediction 
can be integrated in to WABRM. 

If the state vector is calculated, we use the following function to determine the load 
type of the node. 
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n           i, u opt              ∑ µ opt u                                                               (1) 

In this function, u  represents the utilization of Resource i, µ  represents the weight 
of Resource i, opt  represents the defined ideal utilization of Resource i and t 
represents the threshold of underloaded. Since excessive utilization of any resource 
can lead to poor system performance, the rule for determining overloaded is rational. 
And the rule for determining underloaded takes all kinds of resource utilization into 
consideration as well as provides weight for elastic configuration. Therefore, it is 
rational, too. 

Apparently, excessive resource utilization can cause poor system performance. 
Based on this principle, WABRM optimizes the performance through regulation of 
the computation resource utilization. However, low resource utilization doesn’t mean 
high performance, since critical resources may lead to low resource utilization. This 
problem is caused by the design of the native system. So WABRM may not improve 
the native system performance by this way, but it can tune the performance. 

3.3 Algorithms 

Currently, WABRM mainly integrates algorithms for physical layer and virtual layer. 
Other algorithms are applicable to WABRM architecture as well. 

Resource Reallocate Algorithm  
To regulate a virtual node, Resource Reallocate Algorithm (RRA) is invoked in the 
virtual node when it is determined to be overloaded or underloaded. 

Because of the work-load difference between different storage nodes, it is irrational 
to distribute computation resource to each virtual node evenly. RRA reallocates the 
computation resource based on the load type of a virtual node. Generally, an over-
loaded node should be allocated more computation resource while an underloaded 
node’s computation resource should be deallocated. Thus, RRA is designed to achieve 
this goal in virtual nodes. 

To calculate the reallocation resource, we use the following function: 

        r  C  uopt   (2) 

In this function, C  represents the capacity of original allocated Resource i, u  
represents the current utilization of Resource i and opt  represents the ideal utiliza-
tion of Resource i. Theoretically, the utilization of resource will reach ideal value 
after operation and the load type of the node will become normal. Thus, busy nodes 
will be allocated more computation resource while free nodes’ resource will be deal-
located. After calculation, the operation sends the request to the physical node in 
which the virtual node resides and the request is processed by the physical node. 
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If a physical node doesn’t have enough computation resource to reallocate to an 
overloaded virtual node, it will allocate its resource to the virtual node as much as 
possible. Although it is possible that the virtual node remains overloaded after regu-
lating, the physical node and virtual node will be further regulated by the follows 
algorithms for physical layer. 

Split and Merge Algorithms 
To regulate a physical node, Split Algorithm (SA) is invoked in the physical node 
when it is determined to be overloaded while Merge Algorithm (MA) is invoked 
when it is determined to be underloaded. 

An overloaded physical node may be caused by the following reasons. 1. Numer-
ous overloaded virtual nodes reside in it. 2. Some extremely overloaded virtual nodes 
reside in it. Thus, to regulate an overloaded physical node, it is rational to regulate the 
virtual nodes in it. SA is designed to achieve this goal. SA relieves an overloaded 
physical node’s work-load through virtual node migration. 

Before virtual node migration, SA decides the virtual node to be migrated. The poli-
cy meets two constraints: the number of virtual node to be removed is as little as possi-
ble and after migration, the physical node is not overloaded. To meet these constraints, 
SA figures out the nodes through backtracking. When the virtual nodes are selected, 
Pair Algorithm is invoked to pair another physical node as target for migration. 

Correspondently, when a physical node is determined to be underloaded, MA is in-
voked and tries to move all the virtual nodes in it to other physical nodes. However, 
MA is not executed immediately since there may be some overloaded physical nodes 
searching for underloaded nodes for SA. Therefore, it waits for a specified period and 
if there are no requests from overloaded nodes, MA continues and invokes PA to 
determine the virtual node migration program. If the migration is successful, the phys-
ical node is empty. Hence, it can go to sleep for energy saving. 

Pair Algorithm 
To regulate a physical node, Pair Algorithm (PA) is invoked in the physical node 
when it is determined to be overloaded or underloaded. 

If the work-load exceptions of some physical nodes in the cluster are detected, we 
try to dispose of them through interaction with other physical nodes in the global 
cluster. PA is designed to achieve this goal. 

To an overloaded physical node, PA tries to pair a physical node or boot up a new 
physical node for it. Through migration of some virtual nodes in it to the paired phys-
ical node, its work-load is reduced. 

To an underloaded physical node, PA tries to pair one or more physical nodes for it. 
Through migration of all the virtual nodes in it to the paired physical node(s), the 
amount of physical nodes in service is reduced. 

Considered the maturity and advantages of P2P, all the physical nodes are orga-
nized as P2P structure. Similar to unstructured P2P, a physical node is joined the P2P 
network and searches other physical nodes for pair. It has some obvious advantages, 
including robustness, avoidance of single point failure, etc. 
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Before virtual node migration, to determine the suitability of the searched physical 
node, we use the following function to estimate the computation resource utilization 
after migration: 

,    ,  ,  ,                               (3) 

In this function,  represents the utilization of computation Resource i of the migra-
tion virtual node,  represents the capacity of its Resource i, ,  represents the 
utilization of computation Resource i of the searched physical node and ,  
represents the capacity of its Resource i. From this function, the computation resource 
utilization after virtual node migration can be estimated. 

Through the computation resource utilization estimation, the load type of the 
searched physical node after virtual node migration can be estimated by the rule 
above. If the estimating load type is not overloaded, the searched physical node is 
selected as a suitable one and the virtual nodes will be migrated to it. Otherwise, PA 
will try to search another node. If none of the physical nodes within the P2P network 
of physical nodes can be paired, the algorithm will be cancelled. 

4 Experiment and Evaluations 

4.1 Experiment Configuration 

To demonstrate the effectiveness of the proposed framework, we build an experiment 
environment with 4 physical nodes and 15 virtual nodes.  

In the physical nodes, XenServer is set up as the virtualization server. And in each 
physical node, WABRM is deployed and interact with the API of XenServer. 

In the virtual nodes, Ubuntu 12.04 Server is installed in each node. And Swift sto-
rage nodes are deployed in these virtual nodes. 

The details of the physical machines used to set up the experiment environment are 
as follows. 4 physical machines with Intel i5 3.30GHz CPU, 4GB memory and 
500GB disk are used as virtualization servers. There are another 4 physical machines 
with Intel i3 3.30GHz CPU, 4GB memory and 500GB disk. 2 of them are used as 
proxy nodes while the others are used as clients. 

The details of the values of the parameters mentioned above for work-load analysis 
are as follows. To physical nodes, opts of CPU, memory and NetworkIO are 0.6, 0.95 
and 0.95. And weights of CPU, memory and NetworkIO are 0.1, 0.2 and 0.2. Thre-
shold of underloaded is 0.3. To virtual nodes, opts of CPU and memory are 0.7and 
0.95. And weights of CPU and memory are 0.2 and 0.8. Threshold of underloaded is 
0.3. The choice of the parameters should weight the costs and performance. Presently, 
we choose the parameters according to the performance priority principle to guarantee 
the storage system performance. And the method for determining the values of para-
meters will be presented by the later work. 

Physical machine Clinet1 and Client2 are used to simulate clients for data access. 
200 users are simulated by them respectively. At the beginning of the experiment, 
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there is no user access to the storage system. It lasts for 1000s and the work-load of 
the entire system is quite light in the first 1000s. Then, the simulation of user access 
starts. The number of concurrent simulated users increases evenly in the first 1000s. 
Then it reaches steady state. The simulated users send their data requests continuously 
and the interval between two requests is 100ms. The state lasts for 5000s then the 
simulation stops. 

4.2 Improvement of Computation Resource Utilization 

As Figure 4 shown, the number of physical nodes is changed over the work-load of 
the entire system. At the beginning, since there is no user access to the system, the 
work-load is very light. Therefore, the virtual nodes can be integrated to 3 physical 
nodes and number of physical nodes in service is reduced from 4 to 3. With the 
increase of simulated concurrent user access, the work-load is getting heavier and 
heavier. Consequently, the number of physical nodes is increase from 3 to 4 to 
guarantee the performance of the entire system. At last, with the end of the 
simulation, the work-load is light again and the number of physical nodes is reduced 
from 4 to 3. 

4.3 Improvement of Work-Load Balancing in Physical Machines 

As Figure 5 shown, during the heavy work-load period, the work-load of P1 is  
extremely heavy at the beginning because of hotspot data. And its resource utilization 
exceeds the threshold, as shown in the yellow circle part. Fortunately, with the effect 
of WABRM, the work-load of the node is reduced. In addition, part of work-load is 
transferred to P3, another relatively light physical node. By this way, the work-load of 
the physical machines is balanced. 

The work-load of P2 and P4 is displayed by Figure 6. Compared Figure 6 with  
Figure 5, the computation resource utilization of each physical machine is controlled 
under its defined threshold, thus the work-load is controlled. It demonstrates the effect 
of work-load regulation of WABRM. 

4.4 Tuning of System Performance 

As Figure 7 shown, the response times of Swift with WABRM and without WABRM 
are different. With WABRM, the response time is less as a whole. 

However, WABRM can’t always improve the system performance. Since we set 
the threshold of resource utilization for overload according to the performance priori-
ty principle in this experiment, the average response time is shortened. Practically, 
low resource utilization may cause high costs of hardware resources. And to different 
service providers, they should find the suitable compromise of the performance and 
the costs. WABRM provides the parameters for elastic configuration and they are 
intuitive. Anyhow, WABRM can eliminate the system bottlenecks caused by hotspot 
data and guarantee the basic performance of the entire system. In a word, WABRM 
can achieve its goal of tuning of the system performance. 
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Fig. 4. Change of number of physical nodes over time 

 

Fig. 5. Effect of work-load balancing 

 

Fig. 6. Work-load of P2 and P4 

 

Fig. 7. Comparison of response times (secs) of Swift with and without WABRM 



456 Z. Wang, H. Chen, and Y. Ban 

5 Conclusions 

As discussed above, dynamic work-load aware balancing should be indispensably 
complementary to the traditional data amount balancing mechanisms. And WABRM, 
the proposed framework is effective for tuning system performance when hotspot data 
exist. 

We can draw some conclusions of WABRM. The advantages are as follows. 
Firstly, WABRM is lightweight and requires no source code modification of the guest 
OS and storage system. In addition, it provides plenty of interfaces for different im-
plementation of algorithms and environment API. Secondly, WABRM can achieve its 
design goal of tuning of system performance and improvement of computation re-
source utilization. Thirdly, through live virtual machine migration, during the regula-
tion operations of WABRM, the service is almost not interrupted. 

The disadvantages are as follows. WABRM regulates a node when its work-load 
exception is detected. However, to prevent the occurrence of the work-load exception, 
a node’s work-load state should be predicted and regulated before the exception. And 
how to set the values of parameters for work-load analysis remains an unsolved prob-
lem. In addition, WABRM is only applied to Swift, in future, we will apply WABRM 
onto other systems to demonstrate its ubiquitous effectiveness. 
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Abstract. Software streaming is a form of on-demand software distribu-
tion services, which means a program need not be installed on the client
for execution but parts of it can be delivered as needed. This paper has
analyzed a collection of real traces of desktop applications from a pro-
duction deployment, and located some opportunities for caching data:
First, several local cache strategies have been compared and adjusted to
fit the access pattern of data. Second, a special cooperative file caching
mechanism is designed between clients and server(s). In detail, the co-
operative caching mechanism employs the application-level semantics to
trace cache status for each application rather than each file, which re-
markably reduces the management overheads while the hint accuracy
is still high. In addition, we present DES3, the DistributEd Storage
for Software Streaming. It adopts the above optimizations; tests show
that DES3 can greatly reduce the server load and give acceptable client
latency.

Keywords: software as services, distributed storage, application virtu-
alization.

1 Introduction

Software streaming, referred to as one type of software-as-a-service, is a deliv-
ery model in which software and associated data are centrally hosted and are
available to clients over the network. From the aspects of virtualization tech-
nologies used, our work is based on application virtualization. This mode has
the virtualization layer positioned between the operating system and applica-
tions. Microsofts SoftGrid [1] is such an instance in the LAN environment, which
can convert applications into virtual services that are managed and hosted cen-
trally but run on demand locally. Some other similar systems include VMwares
ThinApp [2] and Citrixs XenApp [3] and so on. Fundamentally, application vir-
tualization decouples software from OS and delivers it to client machines on
demand.
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The contributions of this paper contain three parts:
Firstly, we analyze a 7 day-long trace of desktop applications from a produc-

tion deployment. We examine the breakdown of request workload and try to
locate the opportunities for caching data both within and across client machines
for optimizations. In addition, trace analysis shows that the characteristics of IO
workloads are different from those of solutions based on VM (Virtual Machine)
techniques.

Secondly, based on the trace analysis, we describe the design of corresponding
optimizations to reduce the aggregate load on central storage, as well as access
delays:

1. We design a segmented cache mechanism, which contains an extra victim
cache to occupy the replaced data belonging to Top N applications. Tests
show that, compared with the common LRU / LFU strategies, it performs
best in most cases.

2. A cooperative caching mechanism is introduced to reduce the aggregate load
on the central server(s) for scalability. Different from the traditional solution,
the server records the status of whole software (instead of each file), which
remarkably reduces the corresponding overheads and the hint accuracy is
still high.

Lastly, DES3, DistributEd Storage for Software Streaming, is presented. DES3
adopts the above optimizations, which can gives acceptable latencies for clients.

In contrast, most existing storage solutions, like Capo [4], Collective [5],
MokaFive [6], and Lithium [7] and so on are designed for VM. Compared with
them, our application virtualization solution has the following features: (1) it
works on the file-level so that application semantics can be grasped directly;
(2) it only handles storage accesses issued by applications, which show different
patterns from those issued by the whole VM.

2 Related Work

One early study is IBMs PDS [8]. PDS is a virtual execution environment and
infrastructure designed specifically for deploying software on demand while en-
abling management from a central location. PDS uses a file-based delivery mech-
anism between clients and the central server. One local cache on every client is
used to contain needed data to achieve low overhead, while no sophisticated
optimization has been deployed.

Another similar work is FVM (Feather-weight Virtual Machine) [9]. In FVM,
the streaming software is stored on the server and accessible to the client through
the Common Internet File System (CIFS), because Windows supports CIFS
inherently. Besides the default cache mechanism inside the OS, no optimization
has been used.

CDE [10] is a tool implemented for Linux systems. It uses sshfs to stream
uninstalled software from the server in a compatible way. CDE has implemented
its own caching mechanism. The key point is to employ a deep-copy technology
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to copy a file-system entity from the server into the local entity while preserving
its original structure.

In industry, some existing solutions are usually based on the single file system
and common network sharing solutions; VMwares ThinApp [11] is such a typical
case. It packages the whole application into a single file; the contents of this file
are streamed to client computers in a block-based fashion over the network using
some common file sharing protocols (like ftp, CIFS, etc.). Therefore, it also lacks
some sophisticated optimizations for application virtualization. Similar solutions
are used by Microsofts SoftGrid [1], Symantec Workspace Virtualization [12], and
so on.

Furthermore, as we know, the only one dedicated to storage for streaming
based on application-virtualization is [13]. It is implemented as a kernel file-
system driver to redirect accesses to the remote server and uses the local file
cache for optimizations.

3 Trace Analysis

3.1 Methodology

We record a 7 day-long trace of typical desktop applications from a production
deployment of 20 Windows desktops (Windows 7) in a research laboratory.

Here we mainly pay attention to accesses to any file of desktop applications:
after trace collection, we have picked up the information of Part Install and Part
Runtime1 of each desktop application involved and filtered out any unrelated
logs. We collected 21GB of logs and in the rest of this section we present our
analysis.

3.2 Analysis

1. Data vs. Metadata
At first we differentiate metadata operations from data, and then isolate reads
from writes: About 30.1% of workloads’ operations concern metadata accesses,
which account for only 0.2% of the total data traffic. For data operations, reads
account for large portion of the requests, about 68.1%, which account for 89.8%
of the traffic. These findings contrast those from [4] whose study showed that
65% of workloads are writes. The reason lies in that we only focus on accesses
to application files.

Another interesting fact is: a large portion of data is repeatedly read, which
occupies more than 85% of the total read traffic.

2. Usage frequencies of applications
The analysis shows that there are averagely 42 kinds of applications used on a
single machine. We list the top applications according to their access frequencies

1 For any streaming software, Part Install contains what are created/modified/deleted
by the installation process; Part Runtime is the data created/modified/deleted dur-
ing the runtime.
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(for any application, each visit to its files is regarded as one access) on each ma-
chine. Statistics show that the 10 top applications occupy the majority on each
machine, from 51% to 98%, and the average value is 89.2%. In addition, Top 10
applications occupy 41% of the read traffic on average. For Top 20 applications,
the ratio of request counts is higher than 94% averagely.

Furthermore, we consider the top applications across all machines and similar
results have been drawn: such Top 10 applications occupy about 41.3% of the
reads; for Top 30, the ratio is about 95.5%. Results also show that there is a high
similarity of usage frequencies between users: on each machine, accesses of these
30 top applications (across all machines) occupy more than 85% of the amount.

3. Access pattern of a single application
Here we focus on the 30 top applications mentioned in the previous section.
We compare the number of accessed files with the total file-number of each
application; the average ratio is about 60%. From the aspect of data amount,
the ratio is about 32%. It means that, compared with the whole space occupied
by software, the amount of really-used data is limited.

Based on the analysis, we can see that access patterns of application virtu-
alization are different from those of the whole VM: (1) For the latter (as men-
tioned by Capo [4]), the VM workload is write-heavy in IOps, and read-heavy in
throughput, both by approximately two to one. In contrast, our analysis shows
that read operations occupy the overwhelming majority. (2) Moreover, [4] dis-
claimed that directories typically managed by the OS are frequently accessed,
including the OS Page files and the TEMP folders. In our case, because only
software files have been considered, a large fraction of those accesses has been
excluded.

Enlightened by the previous analysis, local caches (including the data cache
and meta-data buffer) on the client are believed promising to satisfy a large
portion of access requests. From the aspect of all machines, the set of frequently-
used software is relatively fixed; thus some cooperative mechanism will be useful
to share common software between clients.

4 Optimizations

For application virtualization, any resource of streaming software can be saved
as files and the runtime environment redirects accesses to the real positions.
Therefore, the equivalent problem is how to access files in the multi-layer system
efficiently, as well as how to fully use application-level features for straight-
forward designs.

4.1 Local Caching

A persistent file cache is located on the client-side. When an application attempts
to access any file, this local cache will be checked first. If the file is not already
cached or the cached copy is not up to date, the client fetches a new version
either from other clients (the cooperative cache) or directly from the server.
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We design a particular caching mechanism that takes account of both the tra-
ditional LRU (Least Recently Used) and LFU (Least-Frequently Used) strate-
gies. It can be regarded as a type of SLRU (Segmented LRU) caches [14]: The
cache is divided into two segments, A and B; in each segment the LRU mecha-
nism is used. B is a victim cache to occupy the replaced data belonging to Top
N applications, while any other replaced data from A will be discarded directly.
In addition, hits are removed from wherever they currently reside and added to
the most recently accessed end of A. Cache data is identified by the software
name (combined with the version no.), the file name and its aligned offset in
the file. By replaying the collected traces using different local caching policies,
we evaluate the efficiency of our cache design and compare it with the LRU and
LFU strategies.

The evaluation process contains two phases: Phase 1 is the warming stage:
We use the traces of the first day to fulfill the local cache; Phase 2 simulates the
remaining data to give the evaluation miss-ratios of each day (from the second
day to the seventh). We also assume that the N top applications have been
identified based on the usage history before the simulation.

In the evaluation, the whole cache size is set to the following values respec-
tively: 20%, 40%, 60% and 80% of the data traffic (redundant data has been
excluded). In addition, there are other two configurations: the size of the victim
cache and the value of N. If N is too large (for example, 20), most accesses would
belong to the top set, which makes the segmentation meaningless. Thus, we set
N as 10. Moreover, tests show that, to set the size as about 25% of the whole
capacity has performed best.

On the other side, there are traces from 20 machines; thus we simulate the
traces respectively and present the final weighted averages of miss rates of these
six days: If the cache size is small (20% of the data amount), all of these strategies
behave similarly; As the size is increasing, the SLRU-like strategy performs best
in most cases and the LRU-based is the second. For example, as the cache size
is set as 40% of the traffic, in the seventh day the miss rate of the SLRU-like
strategy is 8.8% while the LRU is 12.3% and the LFU is 20%.

We know the LRU algorithm does not consider the usage-frequency entirely
so that some data of frequently-used applications may be kicked out; the victim
cache can remedy this situation. Similarly, the LFU cache may sacrifice those
recently used data, which usually happens when the cache is close to the full
and a new application is used. Therefore our hybrid design is a good tradeoff. In
other words, if we set the local cache size as 40% of the amount of data amount
without redundancies (about 800MB in our case averagely), the miss ratio can
be as low as 8.8%.

4.2 Cooperative Caching

The local persistent cache goes a long way towards eliminating redundant read
requests on individual machines. But as growing software deployments lead to
larger numbers of physical hosts, redundant reads across these hosts place addi-
tional burden on the central server(s).
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We introduce a cooperative caching mechanism to release the central burden
because the analysis shows that there is a high similarity of usage frequencies
between users.

Usually speaking, the cooperative cache is referred to as the layer in the
storage hierarchy positioned between the local client and the server. Whenever
a client misses data in its local cache, it attempts to fetch the data from the
caches of other clients. Therefore, how to trace and locate data accurately is the
focus.

A straight strategy is to trace status of each file. However, it will introduce
more overheads on the server: In the trace, there are about 120 kinds of desktop
applications used and the number of their files is more than 196000. Therefore,
to record cache status of each application rather than each file will greatly reduce
the amount of proxy information maintained on the server by several orders of
magnitude, as well as the received request number for one application.

It is necessary to note that, the proxy list provided by the server is only a
location hint: the needed files may be discarded or modified by the proxy. Thus
the key point is the location accuracy of each file.

We have analyzed it using the same simulation method as described in the
previous section: After the warming stage, we assume that one machine has lost
all cached data (it can be also regarded as a new machine has joined), and then
it has to fetch data from the network. For example, the second days trace of this
machine shows that on average, about 82% of the requested applications have
been used by other machines and 98.4% of these applications requested files will
be found on those machines. It means that up to 80.6% of the requested data
can be fetched from peers.

The second problem is how to identify the file gotten from other clients is
valid. We have computed the hash value of each application file and embedded
them into the meta-data package, which has been fetched at first. Thus, the
client can check file content by comparing hash-values.

At last, to show the design validity, we replay trace on our prototype using
different cache configurations and present the IOps observed at the server. The
details will be presented in Section 5.2.

5 Implementation

We implement a distributed storage system for software streaming, DES3, which
adopts the above optimizations and especially suitable for the enterprise envi-
ronment. DES3 includes the following components:

1. A virtual file system on the client OS. It achieves access transparency for
streaming software, which also acts as the local file cache to satisfy redundant
reads.

2. The centralized storage server(s). In addition, it is the supervisor that man-
ages all clients to form a cooperative file cache to reduce the load further.

The workflow of DES3 is: After connecting to the server for the first time,
the client machine downloads the metadata package of all subscribed software
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from the server. For any software, the package contains its information of folder
hierarchy and attributes of each file. Here attributes include a hash-value that
identifies the file contents. This package is stored locally and updated as neces-
sary during the runtime.

Next, when a client attempts to launch an application, it will connect the
server for files if missed in the local cache. Under heavy load, the server will use
the cooperative cache to provide the data.

5.1 The Client End

We use Dokan [15], an open-source framework of the user-space file system for
Windows OSes, to implement the local virtual file system on each client machine.
The file system is mounted as a local virtual drive and all streaming software
looks like located in this drive. Dokan contains a virtual file system program and
a kernel proxy driver. The latter can intercept requests targeted at the virtual
file system, and redirect them to the former for real handling.

All operations work on the file-level: When a file is first read/write, the access
will be redirected to the remote server to fetch the data and store it in the local.
To conform to the streaming principle, the workflow of the virtual file system is:

The server storage is read-only; all modifications are done locally. To do so,
any file or folder on the virtual file system is assigned one of three states: remote,
new, or deleted. The first type means the file is located in the server (but may
be cached locally); the second stands for any file created or modified during the
runtime while the last means the file has been erased.

Correspondingly, three file lists are maintained for data consistency. When
the file system is launched the first time, the new list and deleted list are both
empty while all files/folders of the virtual file system are remote. During the
runtime, the state of each file may change according to the concrete operations.

The organization of the local cache is straight: for any file that is cached, a
corresponding local sparse file is created in a reserved folder on the local file
system; the information of which range has been cached is recorded in a block
bitmap. Then, after the name mapping and lookup phases, to access the cache
is just as to read or write a common file.

The REST protocol is used as the transfer protocol between clients and the
server. To simplify management, the offset and size of data access are set as 8KB-
aligned. Therefore, any remote read during the runtime will be converted into
an HTTP GET request with the size of an integer multiple of 8KB; the fetched
data is stored in the local cache. In addition, some other key data-structures,
including the three file lists and the necessary cache-related statistics, will be
made persistent locally.

5.2 The Server End

An Apache WEB server is used as the storage server: all reads, including the
metada-ta download, will be converted into HTTP requests. Of course, we can
use any data delivery mechanism as the background: WEB server is only a
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choice of implementation, not an architectural requirement. Moreover, on the
server side, the cooperative caching module is implemented by inserting hooks
into the request-processing.

Moreover, DES3 is designed for the enterprise environment where a client usu-
ally accesses the server through its departments NAT gateway. Thus, the server
can simply judge whether multiple clients are located on the same subnet; it is
apt to redirect requests to proxies behind the same gateway with the requester.

Fig. 1. Running performance of software on the client

5.3 Server Test

We evaluate the optimization effects on the server by replaying the collected I/O
traces using three different caching policies: no cache, the SLRU cache without
/ with cooperative caching. On each machine, we set the cache size as 40% of
the amount of data traffic (redundant data has been excluded).

The test environment consists of two PCs which serve as client machines to
replay requests, and a server is used as the backend storage. Client machines are
equipped with 4 GBytes DDR3 SDRAM, one Intel Core i5 CPU (2.53GHz). The
server is a Windows server; equipped with one Intel Core 2 Duo E4500 CPU (2.2
GHz), 8 GBytes DDR3 SDRAM. All machines are connected by a 1Gb Ethernet
switch.

We replay workload on the two client machines synchronously. Of course, it
is impractical to replay all trace according to time stamps strictly, we select one
peak region from each days trace and each region is of about 30 minutes. There-
fore, after the warming phase (one days trace), six regions have been replayed
strictly and loads observed by the server have been recorded. In addition, we
recreated the state the local cache could be in at the start of each region by
priming it from whole trace up to that point, as well as proxy-information on
the server.
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Tests show that the cooperative caching, combined with local caches, can
reduce the access number of the server by about 94.6%; local caches themselves
can reduce the number by 85.1%.

5.4 Client Test

Here we evaluate the running effects of 10 kinds of software on one client, includ-
ing MS Office Word, Photoshop, Skype, Bittorrent, VLC, 7Zip and so on. All
of them are selected from the applications of the previous trace and converted
into the streaming version; we believe that they can represent a large class of
desktop software.

We design some scripts to control software to complete a series of operations,
which looks like triggered by a real user. Between any two continuous operations,
some random waiting time (less than 0.5 second) is inserted to simulate the
humans thinking.

The elapsed time since the software was being launched is logged as the run
time. Configurations of the client machines and the server are the same as the
previous test. The differences include: three client machines are used here; the
server is located in the campus, not in the same building of my laboratory.
The network throughput between the client and server is about 1.96MBps; the
average response time is about 10ms. The average response time between clients
is less than 3ms.

The following cases have been tested:
Case 1: All applications are installed locally. In this case, DES3 is not used;

it is the baseline for the following comparisons.
Case 2: DES3 is employed, and the hit ratio of the local cache is set to 100%.
Case 3: DES3 is employed; the hit ratio of the local cache is set to 90% . All

misses are handled by the server.
Case 4: DES3 is employed; the hit ratio of the local cache is set to 90%. All

misses are handled by the other 2 clients.
Results (elapsed time of each application) are presented in Figure 1. Because

the values have been normalized, only Case 2, 3, 4 are given. Compared with
the baseline, DES3 with the perfect local cache will introduce about 6.8% extra
running time; for the hit ratio of 90% (without cooperative caching), it is 21.6%
on average; for the last case, the overhead is 14.6%.

6 Conclusion

After analyzing a real trace of desktop applications from a production deploy-
ment, we presented DES3, a network file system designed for the enterprise-scale
desktop software deployment. DES3 uses the local disks on individual clients to
cache software files and uses an application-granularity cooperative cache to
reduce the server load further. Trace simulation has shown that the SLRU-like
local-cache strategy performs better than the common LRU and LFU algorithms.
Moreover, the simulation analysis also illustrates that the coarse-grained coop-
erative cache can locate target files accurately, as well as reducing the number of
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requests on the server remarkably. We have implemented the prototype of DES3
and test results have proven the designs efficiency.
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Abstract. Intelligent Transportation Systems (ITS) use communications and 
new technology to increase road throughput and optimize the traffic control for 
increased safety of drivers. This enables people to find services and information 
which they need to drive more safely and comfortably. Cloud computing is a 
new technology which can solve many issues such as real-time problem of the 
urban traffic control system and enable the end users to access the required 
services on demand without worrying where they actually exist. It delivers 
everything as a service and is generally termed as XaaS. In this paper, we 
propose a new system for intelligent traffic systems to manage and improve 
traffic condition as well as to solve the limited resource issue of car device to 
monitor and analyze events happening in the way of car by using cloud 
computing. To achieve this purpose, we use the facilities of Windows Azure 
and Ajax to implement the system.  

1 Introduction 

Today, transportation research and development is no longer a field dominated by civil, 
mechanical, operations research, and other traditional engineering and management 
disciplines. Rather, computer sciences, control, communication, the Internet, and 
methods developed in artificial intelligence (AI), computational intelligence, web 
sciences, and many other emerging information sciences and engineering areas have 
formed the core of new ITS technology and become integral and important parts of 
modern transportation engineering [1][2]. The increase of traffic congestion and 
accidents causing million injuries and mortalities exist in different regions of the world 
and wastes fuel and time and increases the costs. These problems are major obstacles for 
the development of society and they are growing day by day. They could be solved 
easily by providing relevant information to the vehicles or the drivers. It makes roads 
safer and more efficient for drivers and forces lower costs to governments and in 
general it makes optimal efficiency of vehicles and their features [3]. 

Intelligent traffic systems use communication technology to manage traffic flow 
enabling drivers to select the best route. Furthermore, avoiding traffic congestion 
helps much time and fuel be saved and large modern cities be restored. In this paper, 
we propose a new system for ITS using the facilities of Windows Azure to announce 
vehicles related with an accident quickly. Moreover, this system, considering the type 
of incident like a simple vehicle accident or an incident with injured driver, informs 
the nearest police and emergency stations, automatically. After an event happens, this 
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system using a matrix based approach, finds all streets and lines joined to the road on 
which the incident or changing traffic condition has happened. Then it creates 
messages about the event and puts in Azure Service Bus Topics providing a highly 
scalable, durable, flexible, and cost-effective way to publish messages and deliver 
them to vehicles moving in finding lines, police and emergency station, 
asynchronously. So these vehicle's drivers can avoid passing through streets that are 
closed or have heavy traffic; besides, police and ambulance can arrive on time, which 
in turn clears the road quickly and saves injured people without any waste of urgent 
time. In addition, to help drivers who do not understand the language, this system 
demonstrates the occurrence of the accident and the traffic condition on that street by 
using the related symbol of the incident and changing the color of the street on the 
monitor of vehicle, Ajax carries out all mentioned operations rapidly. In addition, a 
key challenge in building the effective car device to analyze street events is the 
resource limitation. Existing solutions consume much resources for their operation, 
such as memory, storage, and CPU which lead to increase the price of them and 
drivers avoid such solutions. To solve this matter, we offer a flexible solution, Car 
Device Agent, to perform various powerful analysis by using Windows Azure Worker 
Role, while imposing little resource utilization on the car device. 

The remainder of the article is organized as follows: Section 2 introduces the 
background of Vehicular Communication Networks, Cloud computing and Windows 
Azure. Section 3, provides the state of the art of ITS cloud computing. Section 4 shows 
an overall view of the proposed system. Section 5 shows the kinds of messages data 
formats used in our system. Section 6 describes symbols and streets colors related to an 
event. Section 7 describes the implementation of our proposed system and section 8 
present the advantage of this system. Finally, conclusions are drawn in Section 9. 

2 Background 

2.1 Vehicular Communications Networks 

Vehicular Communication Networks (VCNs) is a subcategory of Mobile 
Communications Networks that has the special characteristics of high node mobility and 
fast topology changes. It is a technology aim for improving traffic safety and efficiency 
in different road systems and networks that offer an efficient communication platform 
for intelligent transportation systems and related services, as well as multimedia and 
date services [4]. This will enable the formation of vehicular networks, commonly 
referred to as VANETs, an instance of mobile ad hoc networks with cars as the mobile 
nodes [5]. VANET is a special type of mobile ad-hoc network, utilizing vehicles as 
mobile nodes to create a network that provides safe aspects of roads [6]. 

The main goal of VANET is to provide the awareness to the vehicles about the 
safety measures and alert messages. The vehicular communication can be classified as 
vehicle to vehicle communication (V2V) and vehicle to infrastructure communication 
(V2I) [7]. Fig. 1 shows an example of a vehicular network. 

2.2 Cloud Computing 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing resources that can be rapidly 
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provisioned and released with minimal management effort or service provider 
interaction[10]. Cloud computing services are divided into three classes, namely: (1) 
Infrastructure as a Service (IaaS), (2) Platform as a Service (PaaS), and (3) Software as 
a Service (SaaS) [11].  

IaaS offering virtualized resources on demand. A cloud infrastructure enables on-
demand provisioning of servers running several choices of operating systems and a 
customized software stack[12] [13]. SaaS is a software delivery method that provides 
access to software and its functions remotely as a Web-based service [14]. PaaS 
offerings including facilities for application design, application development, testing, 
deployment and hosting [15].The Windows Azure platform fits best in the PaaS 
category, because it does not provide access to the underlying virtualization 
environment or operating system details [16]. 

 

Fig. 1. An example of a vehicular network 

2.3 Windows Azure 

Windows Azure is an operating system for the cloud that completely abstracts  
the physical components of the system: the developer chooses the features, the 
components, and the level of Service Level Agreement (SLA) without the 
configuration of hardware or software on the assigned machines and can build 
massively scalable applications with lots and lots of users. [17].  

2.3.1   Service Bus Topics 
The Windows Azure Service Bus provides a hosted, secure, and widely available 
infrastructure for widespread communication, large-scale event distribution, naming, 
and service publishing. Moreover, it provides durable, asynchronous messaging 
components such as Queues, Topics, and Subscriptions [8]. Service Bus topics and 
subscriptions implement a publish/subscribe pattern that delivers a highly scalable, 
flexible, and cost-effective way to publish messages from an application and deliver 
them to multiple subscribers. Fig. 2 below shows the structure of a Service Bus topics 
that a sending application sends messages to a topic, these messages are then routed to 
zero, one or more subscriptions based on a set of rules[9]. 
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Fig. 2. The structure of Service Bus topics 

2.3.2 The Worker Role 
A Worker Role is a type of service that, by default, is not exposed with an endpoint but 
is instead dedicated to performing process operations in the back end. Worker Role 
(back end) and Web Role (front end of a web application) instances can be adjusted 
independently. When there are more orders, the instances for the front-end can be 
increased. The queue will accept more orders without any problems, and the front-end 
thread that serves the user request can be placed in the pool to serve another incoming 
request. Similarly, if the queue length starts to increase, the number of Worker Role 
instances would rise accordingly. 

2.3.3 Windows Azure Traffic Manager 
This service reduces network latency by directing users to the nearest instance of an 
application running in the cloud. It maximize availability of cloud applications and can 
also detect whether an instance of a service has failed or is unreachable, automatically 
directing user requests to the next available service instance.  

2.3.4 Autoscaling and Windows Azure 
One of the key benefits that the Windows Azure delivers is the ability to rapidly scale 
application in the cloud in response to changes in demand. An autoscaling solution 
reduces the amount of manual work involved in dynamically scaling an application 
[19][20]. 

3 Related Works 

In the current literature, most urban traffic problems are studied in algorithms or 
models about several intersections or control agents [21]. Agent-based control methods 
provide a reliable and flexible approach for intelligent, effective management of traffic 
and transportation systems in connected environments [22].There are some works 
using cloud computing based urban traffic control system that propose several 
frameworks and applications trying to use cloud to store data and access traffic 
knowledge from cloud as a service. In addition, some works propose solutions to solve 
issue like real-time problems. In [23] the authors propose the application that combines 
geographical addressing and cloud service discovery mechanisms for requesting 
routing. The authors in [3] put forward a new system that tries to improve the current 
systems and reduce their limitation by using Grid and Cloud technologies. In [24] the 
authors present the concept of autonomous vehicular cloud (AVC) with application 
scenarios that related research challenges and the set up process of AVC are explained. 
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In [25] the authors present three tier vehicle cloud architecture from device, 
communication and service level providing several customized cloud vehicle services 
like driver healthcare monitoring and in-car resource sharing services is proposed. In 
[26] some survey work about the platform-as-a-service of public cloud requirements 
with target application in a mobile and interactive environment like a car is provided. 
The authors in [2] propose a prototype urban-traffic management system using multi 
agent using cloud to handle the large amount of storage resources and mass 
transportation of data effectively and efficiently. However, all mentioned works did 
not offer a real economic ITS cloud application that is able to support a numerous 
requests asynchronously. 

4 Proposed System Overview 

In this proposed system, we use Windows Azure facilities to build massively scalable 
and cost effective ITS cloud application with numerous vehicles of a metropolis, which 
processes all events happened on different streets immediately. Azure Service Bus 
Topics is used between cloud application and both on-premises (such as police station) 
and mobile applications (vehicles), allowing them to exchange messages in a loosely 
coupled way for improved scale and resiliency. It sends asynchronously messages to 
mobile device of vehicles and stations related to events taking place on various streets 
and also there will not be any worries about delivery assurance, reliable messaging and 
scale.  

By virtue of using multi-instances processing capability of windows Azure, our 
system is able to process several events happening in various parts of a metropolis on 
multiple instances simultaneously which leads to decrease the response time 
significantly. To accomplish it, the operators of program should increase the number of 
instance to deal with the rise of demands and then again reduce it to decline the cost. 
However, in our system, as it is explained in section VII, all mentioned operations are 
carried out automatically. Besides, the scalable and massive SQL Azure and Azure 
Storage are used to store the information of streets and some especial data such as 
videos and images provided by street cameras, respectively. 

When an incident or changing traffic conditions like heavy (or semi) traffic happens 
on a street, proposed cloud application, using a matrix based approach, finds all related  
lines of streets; then messages, the topic of which is the id of every finding line, are 
created. In addition, a message for police station and, in case any injury, a message for 
emergency station is generated. Then all messages are put in Azure Service Bus Topics 
which are delivered to corresponding vehicles (figure 6), the nearest police and 
emergency stations (figure 7), asynchronously. 

Fig. 3 shows a simple sample of using our proposed system in a part of a metropolis 
where the blue car is involved in a collision with a red car on which a tree has fallen, 
and not only is the driver of the red car injured, but also this line of the street is closed. 
Thus, messages for purple and yellow cars moving in related street, police and 
emergency stations are created and then put in Azure Service Bus Topics. For example, 
as you can see, after receiving the message of this incident, the purple car turns to right 
to pass from a parallel street and the yellow car avoids passing this street. 

Another noticeable capability of system is that drivers can be aware of the latest 
condition of every street throughout the city in the form of animation immediately by 
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proposed technique in section 6. Thus, after receiving a message revealing an event or 
congested condition on a street, driver can easily see the condition of other relevant 
streets and select the best one to go destination. 

Additionally, by using this system vehicles can communicate with cloud directly 
which leads to no need to establish infrastructure communication along streets and 
also when V2V communication is impossible; the message of vehicles are sent to 
cloud application delivering it to corresponding cars via Service Bus Topics 
asynchronously. 

 

 

Fig. 3. A sample of our proposed system 

5 Message Data Format 

In this system several types of messages are used that include the following: 

5.1 Vehicle to Cloud 

This message has separate fields to specify the id of vehicle, the id of street's line 
where the accident has happened and Data determining the type of events like 
ordinary vehicle accident or injury vehicle accident. Fig. 4 shows its data format. For 
example, when a vehicle reports an injury vehicle accident, our system informs not 
only the police and emergency stations but also the cars moving on the streets joined 
to Street-Line ID, the street's line of this message.  

Vehicle ID Street-Line ID Data Time Stamp 

Fig. 4. Vehicle to cloud message data format 

5.2 Cloud to Vehicles and Stations 

When receiving a message about an accident or new traffic condition on a street, our 
cloud application creates response messages and puts them in Azure Service Bus 
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topics. There are two types of response messages: cloud to vehicle and cloud to 
emergency stations. Fig. 5 exposes a cloud to vehicle message data format with 
separate fields to specify the id of finding (Target) Street line related to reported event 
and Data indicating the traffic condition or incident which has happened on the street. 
Target Street-Line ID is the topic of message that related vehicles can receive it from 
the Azure Service Bus topics. 
 

Target Street-Line ID Data Time Stamp 

Fig. 5. Cloud to vehicle 

Fig. 6 shows the data format of cloud to emergency station message with separate 
fields to specify the topic of message that can be P (police) or AMB (ambulance), the 
id of locality demonstrating the nearest police or emergency station, the id of street 
line where event has happened, the id of vehicle reported, the extra data like the cell 
phone number of the driver, and data indicating the traffic condition or the event. 

 
Topic Local ID Street-Line ID Vehicle ID Extra Data Data Time Stamp 

Fig. 6. Cloud to emergency station 

5.3 Vehicle to Vehicle 

This message includes the id of the street and data demonstrating the type of 
emergency events. When an accident happens, a vehicle can send a message about it 
so that other vehicles on the same street can receive it, by means of Street ID code.  
 

Street ID Data Time Stamp 

Fig. 7. Inter Vehicle communication 

6 Symbols and Colors 

For those who do not know the language, they can comprehend the pictorial 
representation easily. The event symbols and streets colors play a major role for 
understating things quickly. When an event happens or there is a changing traffic 
condition on a street, not only are the symbols of the event with related message  
shown but also the color of street is changed at monitor of vehicles. So this system 
helps drivers to understand the last condition of streets easily to select the best route. 
Table 1 shows corresponding color and symbol with each event which may take place 
on the streets. 

In addition, it is rare to build a new web application today and not include Ajax 
features. Technically, Ajax stands for asynchronous JavaScript and XML. In practice, 
Ajax stands for all the techniques you use to build responsive web applications with a 
great user experience. ASP.NET MVC 4 is a modern web framework, and like every 
modern web framework there is support for Ajax right from the start [19]. Thus, Ajax 
is used to change the color of streets and appear the symbols of the event with a 
related text message on vehicles monitor, all of which are carried out rapidly. 
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Table 1. Symbols and color of street conditions 

Color of Street Condition of Street symbols 
Maroon Street is closed 

 
Red Heavy Traffic

 
Pink Semi-Heavy Traffic 

 
Yellow ordinary 

 
Bronze ordinary vehicle 

accident  
Orange injury vehicle accident

 

7 Implementation 

To implement proposed cloud application, ASP.NET MVC 4 is used to utilize 
Windows Azure facilities like Service Bus Topics and Azure storage. This application 
is made up of cloud application code that Windows Azure deploys to every node and 
Configuration Settings files: ServiceDefinition and ServiceConfiguration.  

The ServiceDefinition file contains the metadata that is required by the Windows 
Azure environment for the requirements of your application. This file also contains 
configuration settings that apply to all instances. These configuration settings can be 
read at runtime using the Windows Azure Service Hosting Runtime API.  

The ServiceConfiguration file sets values for the configuration settings defined in 
the service definition file that can be updated while service is running in Windows 
Azure. Fig. 8 shows its simple form that Instances count (2) specifies the number of 
instances is required for each of application roles when developer first deploy the  
application to Windows Azure. 

This system by using Enterprise Library Autoscaling Application Block 
(“Wasabi”) of Windows Azure can automatically handle changes in the load levels 
that it might experience over time which leads to minimize its operational costs, while 
still providing excellent performance and availability to users. It also helps to reduce 
the number of manual tasks that operators must perform. To apply Wasabi we defined 
some rules in XML format stored in Windows Azure blob storage, and also we use 
Windows Azure Traffic Manager to maximize availability of proposed application. 

 

<?xml version="1.0" encoding="utf-8"?> 
<ServiceConfiguration serviceName="..."> 
  <Role name="AzureITSApp"> 
    <Instances count="2" /> 
    <ConfigurationSettings> 
      ... 
    </ConfigurationSettings> 
  </Role> 

 </ServiceConfiguration>

Fig. 8. ServiceConfiguration.cscfg 



476 S.N. Karimi 

 

7.1 Car Device Agent 

Car Device Agent is a lightweight software that runs on the smartphones registered to 
use AzureITS service. It collects sensor inputs from the device’s interfaces and sends 
them to the AzureITS ’s EmulatorRole. 

7.1.1 EmulatorRole 
EmulatorRole hosts the car device replicas as well as different analyzing solution that 
run in parallel over the replicas corresponding to several actual devices. Unlike an 
actual device, the emulation environment is not resource-limited, and hence can be 
used to deploy multiple analysis and security solutions concurrently to monitor sensor 
inputs from the device’s interfaces and device replicas for various types of likely 
compromises. Taking we use Windows Azure web Role and Worker Role to 
implement EmulatorRole into account, if there are more events to process, the 
instances for the front-end (Web Role) would increase to accept more event data. 
Subsequently, by increasing the queue length, the number of back-end (Worker Role) 
instances increase to process events. 

8 Advantages of the Proposed System 

Because of using cloud computing approach, Windows Azure facilities, and Ajax for 
implementation, our system has several advantages which can be summarized as 
following: 

First of all, the scalability of application is automatic and network latency is low. 
Secondly, only related vehicles are informed, which is done at a very high speed, 
without any trouble in sending messages, and, of course, in a loosely coupled way. 
Thirdly, there is no limit: neither on the number of users nor on the amount of data 
stored. Last but not least, it contributes to solve some problems of VANET, improve 
traffic condition considerably and save much money. 

9 Conclusion and Future Work 

Nowadays the necessity of drivers' awareness of road conditions to avoid undesirable 
situation such as collision and traffic congestion which wastes time and money, is 
obvious.  Cloud computing based on intelligent transportation systems (ITSs) concept 
is considered to solve these needs recently. In this paper, we proposed a new system 
based on cloud computing approach as well as Windows Azure facilities and Ajax 
which are used to implement it. So this system not only has all advantage of cloud 
computing that developers do not worry to support their application during peak 
demand time and the limitation of storages to store massive data increased every 
moment but also only vehicles and stations related to an event are informed. 
Moreover, because of using Azure Service Bus topics, this system can inform a lot of 
vehicles and stations related to an event asynchronously.  

In the future we will gather the statistics of Urban Traffic Centre to evaluate 
efficiency, availability, scalability and load balancing of our proposed system as well 
as compare traffic congestion, the amount of using fuel and air pollution, the rate of 
vehicle accidents and drivers' opinions before and after using this system. 
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Bücker, H. Martin I-226, II-30
Bui, Thach V. II-167

Cachopo, João I-15, I-153
Calafate, Carlos T. II-259
Cano, Juan-Carlos II-259
Cantiello, Pasquale I-186
Cao, Yulian II-303
Carvalho, Fernando Miguel I-15
Casola, Valentina II-125
Castro, Harold I-380
Chen, Guoliang I-324
Chen, Haopeng I-446, II-112
Chen, Heng I-196
Chen, Miao I-206
Chen, Quan I-196
Ciampi, Mario II-225

Cilardo, Alessandro II-177
Corporaal, Henk I-346
Cristea, Valentin I-416, II-94
Cukic, Bojan II-209

Dai, Dong I-267
Dai, Ziqing I-312
Dawson, Laurence I-216
De Pasquale, Davide II-185
Diaz, Cesar O. I-380
Di Martino, Beniamino I-186, II-251
Djebbar, Esma Insaf II-22
Dong, Fang I-206
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