
Roberto Baldoni
Nicolas Nisse
Maarten van Steen (Eds.)

 123

LN
CS

 8
30

4

17th International Conference, OPODIS 2013
Nice, France, December 2013
Proceedings

Principles of
Distributed Systems

Lecture Notes in Computer Science 8304
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Roberto Baldoni Nicolas Nisse
Maarten van Steen (Eds.)

Principles of
Distributed Systems
17th International Conference, OPODIS 2013
Nice, France, December 16-18, 2013
Proceedings

13

Volume Editors

Roberto Baldoni
Sapienza Research Center of Cyber Intelligence and Information Security
and
Università degli Studi di Roma "La Sapienza"
Dipartimento di Ingegneria Informatica, Automatica e Gestionale "Antonio Ruberti"
Via Ariosto 25, 00185 Rome, Italy
E-mail: baldoni@dis.uniroma1.it

Nicolas Nisse
Inria, France
and
Université Nice Sophia Antipolis CNRS, 13S, UMR 7271
06900 Sophia Antipolis, France
E-mail: nicolas.nisse@inria.fr

Maarten van Steen
Vrije Universiteit Amsterdam
Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
E-mail: steen@cs.vu.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-03849-0 e-ISBN 978-3-319-03850-6
DOI 10.1007/978-3-319-03850-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954562

CR Subject Classification (1998): C.2.4, C.2, F.2, D.2, I.2.11, G.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at OPODIS 2013. OPODIS, the In-
ternational Conference on Principles of Distributed Systems, is an international
forum for the exchange of state-of-the-art knowledge on distributed comput-
ing and systems among researchers from around the world. The 17th edition of
OPODIS was held during December 16–18, 2013 in Nice, France.

Papers were sought soliciting original research contributions to the theory,
specification, design and implementation of distributed systems. In response to
the call for papers, 41 submissions were received, out of which 18 papers were
accepted, after a rigorous reviewing process that involved 33 ProgramCommittee
members and at least three reviews per paper.

We would like to thank the Program Committee members, as well as the ex-
ternal reviewers, for their fundamental contribution in selecting the best papers.

In addition to the technical papers, the program included five invited pre-
sentations by: Marcos k. Aguilera (Microsoft Research, USA), Eitan Altman
(Inria, France), Hein Meling (University of Stravanger, Norway), Nuno Preguica
(Universidade Nova de Lisboa, Portugal) and Marc Shapiro (Inria, France).

September 2013 Roberto Baldoni
Nicolas Nisse

Maarten van Steen

Organization

Program Committee

Marco Aiello University of Groningen, The Netherlands
Roberto Baldoni Università di Roma “La Sapienza”, Italy
Christian Cachin IBM Research, Zurich, Switzerland
Antonio Carzaniga University of Lugano, Switzerland
Gregory Chockler IBM Haifa Research Laboratory, Israel
Allen Clement Max Planck Institute for Software Systems,

Germany
Paolo Costa Microsoft Research Cambridge, UK
Dick Epema Delft University of Technology,

The Netherlands
Patrick Eugster Purdue University, USA
Pascal Felber Université de Neuchâtel, Switzerland
Antonio Fernandez Anta Institute IMDEA Networks, Spain
Paola Flocchini University of Ottawa, Canada
Ali Ghodsi University of California at Berkeley, USA
Rachid Guerraoui EPFL, Switzerland
Aaron Harwood University of Merbourne, Australia
Konrad Iwanicki University of Warsaw, Poland
Mark Jelasity University of Szeged, Hungary
Ricardo Jimenez Peris Universidad Politécnica de Madrid, Spain
Anne-Marie Kermarrec Inria, France
Hein Meling University of Stavanger, Norway
Alessia Milani Bordeaux Institute of Technology, France
Alberto Montresor University of Trento, Italy
Nicolas Nisse Inria, France
Peter Pietzuch Imperial College London, UK
Maria Potop-Butucaru Université Pierre et Marie Curie-LIP6, France
Luis Rodrigues Universidade de Lisboa, Portugal
Cristina Seceleanu Malardalen University, Sweden
Marc Shapiro Inria, Univ. Pierre et Marie Curie-LIP6, France
Alex Shraer Google, USA
Peter Triantafillou University of Glasgow, Scotland
Frits Vaandrager Radboud University Nijmegen,

The Netherlands
Maarten van Steen VU University Amsterdam,

The Netherlands
Paulo Verissimo Universidade de Lisboa, Portugal

VIII Organization

Roman Vitenberg University of Oslo, Norway
Spyros Voulgaris Vrije Universiteit Amsterdam, The Netherlands
Masafumi Yamashita Kyushu University, Fukuoka, Japan

Additional Reviewers

Anagnostopoulos, Christos
Ananthanarayanan, Ganesh
Arad, Cosmin
Culhane, William
Dobre, Dan
Georgievski, Ilche
Godard, Emmanuel
Jehl, Leander
Kogan, Kirill
Lamani, Anissa
Lehmann, Anja
Marinescu, Raluca
Mostefaoui, Achour
Pagani, Giuliano Andrea

Perelman, Dmitri
Schmid, Ulrich
Sens, Pierre
Shafaat, Tallat M.
Shavit, Nir
Sutra, Pierre
Taherkordi, Amir
Travers, Corentin
Trehan, Amitabh
Tretmans, Jan
Tso, Posco
Urdaneta, Guido
Verbeek, Freek
Vilaca, Xavier

Invited Talks

Geo-Distributed Storage in Data Centers

Marcos K. Aguilera

Microsoft Research

Mountain View, CA, USA

Abstract. Data centers increasingly have a storage system that is geo-
distributed, that is, distributed across several geographic locations. We
explain the general characteristics of this setting and the challenges that
it brings, chief among them the need to operate with low latency despite
significant network delays. These challenges lead to many interesting
problems: migrating data online, dealing with congestion, providing effi-
cient transactions, and more. We discuss these problems and some recent
solutions, which bring together techniques from distributed computing,
distributed systems, and database systems. Despite much progress, how-
ever, several algorithmic and fundamental questions remain open and
serve as inspiration for further investigation.

Dynamic Game Models in Complex Systems

Eitan Altman �

Inria, France

eitan.altman@inria.fr

Abstract. We begin the tutorial with a theoretic part that covers two
areas: non-cooperative game theory, and population propagation models.
In the game theory part, a particular attention will be given to potential
games. We shall focus in particular on congestion games and on the game
version of the generalized Kelly mechanism problem, both of which are
known to be potential games. In our presentation of models for popula-
tion propagation models, we shall present several models which we shall
classify according to the size of population of potential interested desti-
nation nodes (which can be finite and constant, finite but non-constant
or infinite), and the virality of the content. This will include branching
and epidemic models. We shall then use these tools to study various ap-
plications to large networks. This will include (1) security issues related
to e-virus attacks, (2) the question of what type of content should ser-
vice providers specialize in, which will be solved by transforming it into
an equivalent congestion game, (3) issues related to viral marketing and
competition issues in social networks. In these problems the generalized
Kelly mechanism will be frequently used. The game theoretic analysis will
allow us to get insight on how much to spend on advertising products and
on what product should we advertise. Both journal and conference pa-
pers as well as video presentations covering this tutorial are available at
http://www-sop.inria.fr/members/Eitan.Altman/dodescaden.html

* This work was supported by CONGAS Project (FP7- ICT-2011-8-317672), see
www.congas-project.eu

Table of Contents

Tutorial Summary: Paxos Explained from Scratch . 1
Hein Meling and Leander Jehl

On Two-Party Communication through Dynamic Networks 11
Sebastian Abshoff, Markus Benter, Manuel Malatyali, and
Friedhelm Meyer auf der Heide

Eventual Leader Election in Evolving Mobile Networks 23
Luciana Arantes, Fab́ıola Greve, Pierre Sens, and Véronique Simon

Self-stabilizing Leader Election in Population Protocols over Arbitrary
Communication Graphs . 38

Joffroy Beauquier, Peva Blanchard, and Janna Burman

α-Register . 53
David Bonnin and Corentin Travers

How (Not) to Shoot in Your Foot with SDN Local Fast Failover:
A Load-Connectivity Tradeoff . 68

Michael Borokhovich and Stefan Schmid

Message Passing or Shared Memory: Evaluating the Delegation
Abstraction for Multicores . 83

Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy, Alex Kogan,
Virendra Marathe, and Mark Moir

Reputation-Based Mechanisms for Evolutionary Master-Worker
Computing . 98

Evgenia Christoforou, Antonio Fernández Anta, Chryssis Georgiou,
Miguel A. Mosteiro, and Angel (Anxo) Sánchez

State-Driven Testing of Distributed Systems . 114
Domenico Cotroneo, Roberto Natella, Stefano Russo, and
Fabio Scippacercola

Self-stabilizing Resource Discovery Algorithm . 129
Seda Davtyan, Kishori M. Konwar, and Alexander A. Shvartsman

Hybrid Distributed Consensus . 145
Roy Friedman, Gabriel Kliot, and Alex Kogan

XIV Table of Contents

Speculative Concurrent Processing with Transactional Memory
in the Actor Model . 160

Yaroslav Hayduk, Anita Sobe, Derin Harmanci,
Patrick Marlier, and Pascal Felber

An Optimal Broadcast Algorithm for Content-Addressable Networks . . . 176
Ludovic Henrio, Fabrice Huet, and Justine Rochas

On Local Fixing . 191
Michael König and Roger Wattenhofer

A Skiplist-Based Concurrent Priority Queue with Minimal Memory
Contention . 206

Jonatan Lindén and Bengt Jonsson

VirtuCast: Multicast and Aggregation with In-Network Processing :
An Exact Single-Commodity Algorithm . 221

Matthias Rost and Stefan Schmid

Mobile Byzantine Agreement on Arbitrary Network 236
Toru Sasaki, Yukiko Yamauchi, Shuji Kijima, and
Masafumi Yamashita

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous
Clouds with Budget Constraints . 251

Yang Wang and Wei Shi

Fast and Scalable Queue-Based Resource Allocation Lock
on Shared-Memory Multiprocessors . 266

Deli Zhang, Brendan Lynch, and Damian Dechev

Author Index . 281

Tutorial Summary: Paxos Explained from Scratch

Hein Meling and Leander Jehl

University of Stavanger, Norway

Abstract. Paxos is a flexible and fault tolerant protocol for solving the con-
sensus problem, where participants in a distributed system need to agree on a
common value. However, Paxos is reputed for being difficult to understand. This
tutorial aims to address this difficulty by visualizing Paxos in a completely new
way. Starting from a naive solution and strong assumptions, Paxos is derived in
a step-wise fashion. In each step, minimal changes are made to the solution and
assumptions, aimed at understanding why the solution fails. In this manner, a
correct solution that corresponds to Paxos is eventually reached.

1 Introduction

Paxos is a flexible and fault tolerant consensus protocol that can be used in applications
that need to agree on a common value among distributed participants. Paxos was pro-
posed by Lamport in his seminal paper [1] and later gave a simplified description in [2].
Paxos can be used to solve the atomic commit problem in distributed transactions, or
to order client requests sent to a replicated state machine (RSM). An RSM provides
fault tolerance and high availability, by implementing a service as a deterministic state
machine and replicating it on different machines. Paxos is relevant because it is often
used in production systems such as Chubby and ZooKeeper [3, 4] among many others.
Understanding Paxos is important because it reveals the distinction between a strongly
consistent RSM and a primary-backup system.

Both before and after its publication in [1], Paxos attracted much attention for its
unorthodox exposition in the form of a fictional parliamentary system, supposedly used
by legislators at the Greek island of Paxos. But the scientific contribution was also
significant; it provided a new way to implement RSMs, and proved that the protocol
guarantees that participants make consistent decisions, irrespective of the number of
failures. Clearly Paxos cannot always make progress, e.g. during network partitions, as
was shown in [5]. But perhaps most important, Paxos was described in a flexible and
general way, ignoring many technical details. This made it an excellent foundation for
further research into RSM-based protocols [6–9], aimed at supporting different failure
models, wide-area networking, to improve latency, and so on. The fact that these pro-
tocols build on the Paxos foundation, which has been formally proven, makes it much
easier to reason about their correctness through step-wise modifications of Paxos.

With this powerful foundation that Paxos offered, came also a challenge: the flexible
description made it harder to understand. This remains true to this day, even as numer-
ous papers have been written aimed at explaining Paxos for system builders [10, 11]
and more generally [12, 13]. These and other papers are still challenging for students
and others to understand without significant efforts.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 1–10, 2013.
c© Springer International Publishing Switzerland 2013

2 H. Meling and L. Jehl

The aim of this tutorial is to explain Paxos from the bare fundamentals by deriving
a Paxos-based RSM in a step-wise and pictorial manner. We start with a non-replicated
service that we want to harden with fault tolerance and high availability. That is, the
server must be replicated. Initially, we make unrealistic assumptions about the environ-
ment and propose the simplest protocol that we can imagine to coordinate the server
replicas to ensure that they remain mutually consistent, and explain why the protocol
is insufficient. Then in each step, minimal changes are introduced to the coordination
protocol aimed at understanding why each protocol fails. Continuing, we finally reach
a correct protocol that corresponds to a Paxos-based RSM.

Our objective is that you understand that many seemingly intuitive approaches do
not work and why. Having read this tutorial, we hope that you will gain appreciation for
Paxos’ contribution, and perhaps put you in a better position to read the Paxos literature.

2 A Stateful Service: Assumptions and Notation
We will explain Paxos starting from a simple stateful service that should be made fault-
tolerant and highly available. Initially the service is implemented by a single server
that receives requests from a set of clients, processes the requests, updates its state, and
replies back to the clients. This pattern is visualized as a message sequence diagram in
Fig. 1, where server S1 processes requests from clients, C1 and C2. Further notation is
explained below.

C2

S1

C1

〈m2〉

m2

〈m1〉

m1

〈σ2
1〉

〈σ21
1 〉

Fig. 1. Solution SingleServer: A single server can order and process requests from several clients

Notation. A request message received by the server causes a state transition affecting
the current state of the server. The outcome of processing requests sent to the server
depends on its current state. A box on the timeline is meant to illustrate that a state
change has taken place, caused by the processing of some message mi.

A common assumption also adopted here, is that requests from different clients are
unrelated, and the order in which they are executed is irrelevant. Clearly, requests from
the same client should be executed in sending order. We use σkl

i to denote the local
state of server Si after having processed messages mkml, in that order. We ignore the
server index and write σkl, when the origin is irrelevant. In our examples, the reply sent
to clients is determined by the server’s state, denoted 〈σkl

i 〉. In practice, the reply is
usually not the server’s state, but rather some value computed from the server’s state.

Single Server. In the single server case shown in Fig. 1, it is easy to see that the two
clients observe a consistent reflection of the server’s execution of the two requests. It
is easy for the server to determine an ordering for the client requests that it receives.
However, implementing the service with a single server is not fault-tolerant.

Tutorial Summary: Paxos Explained from Scratch 3

3 Fault Tolerance with Two Servers
As a first attempt at improving the fault tolerance and availability of our service, we
can add one server to the system, under the assumption that if one of the servers fail,
the other can take over and service client requests. This architecture is frequently used,
and is called primary-backup. In our first naive solution we use two servers without
coordination between them; i.e. the clients simply send their requests directly to the
two servers, as shown in Fig. 2. However, as is apparent from this diagram, the two
requests can be processed in different orders at the two servers, e.g. because of message
delays: m1m2 at S1 and m2m1 at S2, resulting in deviating server states. We say that
the servers become inconsistent. This inconsistency is also exposed to the clients: C1

observes possibly inconsistent replies σ1 and σ21, while C2 observes replies: σ2σ12.

C2

S2

S1

C1

〈m1〉

m1

〈σ1
1〉

m1

〈σ21
2 〉

〈m2〉

m2

m2

〈σ2
2〉 〈σ12

1 〉

Fig. 2. Problem: Two servers cannot order messages from several clients without coordination

Our first solution to coordinate among the servers is to let one server be leader, also
called the primary. The leader simply sends an accept message to the other server and
executes the request locally. The accept message 〈ACC,mi, j〉 is used to tell the other
server thatmi should be executed as the jth request, where j is a sequence number. This
approach is illustrated in Fig. 3. It is easy to see that both servers remain consistent and
that replies to clients are also consistent, since σ2 is a prefix of σ21. Since the service
is implemented as deterministic state machine, processing a request results in a unique
state transition. Therefore σ2

1=σ2
2 and σ21

1 =σ21
2 .

C2

S2

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC, m2, 1〉

m2

m2

〈σ2
1〉〈σ2

2〉

〈ACC, m1, 2〉

m1

m1

〈σ21
1 〉 〈σ21

2 〉

Fig. 3. Solution SendAccept: Leader (S1) sends an accept message to the other server telling it
the order in which the messages should be processed

This approach works fine as long as messages are not lost. However, if 〈ACC,m2, 1〉
in Fig. 3 is lost, then S2 gets stuck and cannot process the next message, m1.

4 H. Meling and L. Jehl

The solution to this problem is simply to add a lost message detection mechanism.
That is, let the leader retransmit its accept message until it is acknowledged by S2.
This solution is shown in Fig. 4, where a learn message 〈LRN,mi〉 corresponds to an
acknowledgement. This approach allows for the servers to eventually make progress as
long as messages are not lost infinitely often.

C2

S2

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m2, 1〉
m2

〈σ2
1〉

Retransmit

〈ACC,m2, 1〉

〈LRN,m2〉 m2

〈σ2
2〉

〈ACC,m1, 2〉
m1

〈σ21
1 〉

〈LRN,m1〉 m1

〈σ21
2 〉

Fig. 4. Solution RetransAccept: Retransmit the 〈ACC,m2, 1〉 message if it does not receive a
corresponding 〈LRN,m2〉 message

4 Server Crashes
We have seen that messages can be lost, and that our RetransAccept protocol can fix the
problem. However, if one server crashes, the other will wait indefinitely for an accept
or learn message. We therefore adopt the rule that once a server crashes, the remaining
server continues to serve clients following the SingleServer protocol (Fig. 1). With this
rule we can see from Fig. 5, that our RetransAccept protocol is insufficient. This is
because the initial leader (S1) replies to request m1 before learning that S2 has seen
its 〈ACC,m1, 1〉 message, and because S1 crashes before it can retransmit the accept.
Instead S2 takes over and decides to execute request m2 before m1, and thus the two
clients observe inconsistent replies; σ2 is seen by C2 while σ21 is expected.

C2

S2
Leader

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1〉
m1

〈σ1
1〉

m2

〈σ2
2〉

Fig. 5. Problem: The leader crashes after sending reply to client C1, without ensuring that S2 has
learned about the ordering message, 〈ACC, m1, 1〉

To solve this problem, we require that the leader wait for the 〈LRN,m1〉 message
before executing the request as shown in Fig. 6, and we also require a retransmission in
case of message loss. If S1 receives the learn message and replies toC1 before crashing,
the ordering information has already been propagated to S2. IfS1 crashes before sending

Tutorial Summary: Paxos Explained from Scratch 5

C2

S2
Leader

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1〉 〈ACC,m1, 1〉

Retransmit

〈LRN,m1〉

m1

m1

〈σ1
1〉 〈σ1

2〉

m2

〈σ12
2 〉

Fig. 6. Solution WaitForLearn: The leader waits for 〈LRN,m1〉 before executing the request m1

its reply to the client, S2 may or may not have seen the accept message. If S2 has seen
the accept, S2 will obey it. If the accept didn’t reach S2, it can decide its own ordering.

5 Network Partitions

So far we have not specified how failures are actually detected. In practice a server is
assumed to have failed if it is unresponsive for a given period of time. This is typically
done using a timer mechanism, which upon a timeout triggers a failure detection. How-
ever, identifying a suitable timeout period is difficult in practice, and there is always a
chance of false detections due to the stochastic nature of networked systems.

Recall that we adopted the rule to fall back to the SingleServer protocol when failure
is detected. This rule was intended to allow the service to make progress after a server
had failed. However, if we cannot reliably detect that the other server really failed, then
we have a problem, as is illustrated in Fig. 7. Here we see that both servers remain op-
erational, but are unable to communicate due to a network partition. After the failure
detection time, both servers fall back to the SingleServer protocol and continue to pro-
cess client requests, exposing the clients to different server states, σ1 and σ2. This state
divergence violates our desire to remain consistent, especially towards clients. This is
since reconciling the state divergence when communication is reestablished would in-
volve rollback on multiple clients, and would quickly become unmanageable.

C2

S2

Partition

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1〉

Retransmit

〈ACC,m1, 1〉

Failure Detection

Failure Detection

m1

m2

〈σ1
1〉

〈σ2
2〉

Fig. 7. Problem: Our SingleServer protocol can make progress in separate partitions, but it will
lead to inconsistencies

6 H. Meling and L. Jehl

A partition is indistinguishable from a crash, e.g. S2 cannot distinguish between the
situations shown in Fig. 5 and Fig. 7. Thus, waiting for a partition to end would also
require us to wait indefinitely for a failed server. The solution is to add another server
and use the WaitForLearn protocol, as shown in Fig. 8. WaitForLearn allows a partition
to make progress if it contains a majority of the servers. That way we can at least make
progress in one of two partitions. In this example we do not consider what needs to
happen when the two partitions merge and become one again. We defer this problem
until after we solve another problem.

C2

S3

S2
Leader

Partition

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1〉

Retransmit

〈ACC,m1, 1〉

Failure Detection

〈ACC,m2, 1〉

Retransmit

〈ACC,m1, 1〉

〈LRN, m2〉

m2

m2

〈σ2
2〉〈σ2

3〉

Fig. 8. Solution: Add another server and use the WaitForLearn protocol

6 Leader Change

Our WaitForLearn protocol tolerates either a crash or a partition. However, a concurrent
partition and crash is not handled by our protocol. In cases of false detection, several
servers may send out accepts concurrently. In Fig. 9 both S1 and S2 send accepts for
different messages. If S3 crashes shortly after receiving these accepts it might have
executed one of the requests and sent a reply to the client. In this case it is impossible
for the remaining servers (S1,S2) to decide whether or not a message was executed
before the crash. Fig. 9(a) and 9(b) depict the two possible executions at S3. These are
unknown to the other servers since learn messages may be lost.

The above problem is rooted in the possibility of multiple leaders sending accepts. It
can be solved by introducing an explicit leadership takeover protocol. To take over lead-
ership, a server sends a prepare message to the other servers, who acknowledge with a
promise to ignore all messages sent by the old leader. Only after receiving promise mes-
sages from at least one other server, can the new leader start sending accept messages.
This is depicted in Fig. 10. To distinguish between messages from the old and the new
leader, we now add the leader’s id to accept, learn, prepare, and promise messages.

Furthermore, to ensure that potentially executed requests become known to the other
servers, we add those requests to the promise message. Fig. 10 shows an example where
no requests have been executed, indicated as (−) in the promise. If the promise contains
requests, the new leader resends the accept for these requests, as depicted in Fig. 11.

Tutorial Summary: Paxos Explained from Scratch 7

C2

S3

S2

Partition

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1〉

Timeout
〈ACC,m2, 1〉

?

〈Lrn,m1〉 m1

〈σ1
3〉

(a) S3 executing m1.

〈Lrn,m2〉 m2

〈σ2
3〉

(b) S3 executing m2.

Fig. 9. Problem: Both S1 and S2 sent an accept message to S3. Since S3 crashes afterwards, the
remaining servers cannot determine whether S3 executed m1 or m2.

C2

S3

S2
Leader

Partition

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1, S1〉

Timeout

〈PREP, S2〉

〈PROM,−, S2〉 Ignore

〈ACC,m2, 1, S2〉

〈LRN,m2, S2〉 m2

〈σ2
3〉

Fig. 10. Solution LeaderChange: S2 announces its wish to become leader by sending a
〈PREP, S2〉. S3 replaces S1 by S2 as leader and confirms this with a 〈PROM,−, S2〉message. S2

acts as leader after receiving this promise.

Merging Partitions. When two partitions merge, the leader resends accept messages to
servers that missed them. However, the merged partition may now have several lead-
ers. For example, when the partition in Fig. 11 ends, both S1 and S2 consider them-
selves leaders. To establish a single leader, we assume a predefined ranking. In Fig. 11,

8 H. Meling and L. Jehl

S2 assumes leadership and resends accepts to S1. That is because we assume S2 to have
a higher rank than S1.

Round Numbers. The above scheme allows S2 to take over leadership from S1 because
of its higher rank. However, after the server with the highest rank (S3) has taken over,
we will be unable to change the leader. Paxos therefore uses round numbers instead of
leader ids. Thus in Fig. 10, we can replace the server id S1 with round 1 and S2 with
round 2 and so on. With this scheme, S1 can become leader again by sending a prepare
with a higher round, e.g. 4. To avoid that servers send a prepare for the same round, we
can preassign rounds, e.g. S1 can use rounds 1, 4, 7, . . . and S2 can use 2, 5, 8, . . .

C2

S3

S2
Leader

Partition

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1, S1〉

〈LRN,m1, S1〉 m1

Timeout

〈PREP, S2〉

〈PROM,m1, S2〉

〈ACC,m1, 1, S2〉

〈LRN,m1, S2〉 noop

〈ACC,m1, 1, S2〉

〈LRN,m1, S2〉
m1

m1

Fig. 11. Solution LeaderChange: Previous leader (S1) sent accept for m1, but only S3 executed
it. During leader change, S3 must tell the new leader about this execution in its 〈PROM,m1, S2〉
message.

7 Five Servers

Thus far we have explored a protocol that can tolerate a single crash using three servers.
To achieve a higher degree of fault tolerance, we can clearly add more servers. However,
to ensure that only a majority partition makes progress, as explained in Sec. 5, we can
only tolerate that fewer than half of the servers fail. Thus, to tolerate f crashes, we need
at least 2f + 1 servers.

In a scenario with five servers, we can no longer execute a request after receiving the
accept. Fig. 12(a) shows that otherwise all servers that knows about this request can fail.
We therefore adjust our protocol to send learns to all servers, as depicted in Fig. 12(b),
and only execute after receiving three learns for one message. Note that the accept is an
implicit learn from the leader, and every server can also send a learn to itself. Therefore
a follower can, in practice, execute after receiving one accept and one learn, while the
leader can execute after receiving two learns.

Similarly, the new leader needs to collect two promises from the other servers to
begin its leader role. Also here the new leader makes an implicit promise to itself as the
third one. After multiple, successive leader changes it is possible to receive promises

Tutorial Summary: Paxos Explained from Scratch 9

C2

S5

S4

S3

S2

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC, m1, 1, s1〉

〈LRN,m1, s1〉m1

〈σ1
2〉

(a) With five servers we can no longer execute
immediately after receiving an accept message.

C2

S5

S4

S3

S2

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1, s1〉

〈LRN,m1, s1〉

m1

m1

m1

m1

m1

(b) Execute after receiving one accept
and one learn, or two learn messages.

Fig. 12. Paxos with five servers requires additional messages

including different values, sent by different leaders. E.g. a leader receiving promises
〈PROM,m1, S3〉 and 〈PROM,m2, S3〉 has to choose wether to send an accept form1 or
m2. We solve this by adding the identity used in the accept to the promise. Our promises
now look like 〈PROM, (S1,m1), S3〉 and 〈PROM, (S2,m2), S3〉. The new leader S3

sends 〈ACC,m2, S3〉, since S2 has a higher rank than S1. As in Sec. 6, we can also here
replace the server identity with round numbers.

8 Summary

We have presented Paxos, aiming to understand the fundamental mechanisms. Our pre-
sentation differs significantly from previous attempts to explain Paxos, and in this sec-
tion we explain how it relates to the presentation in Paxos made Simple (PMS) [2].

The first distinction is that PMS introduces separate agent roles: proposers, accep-
tors, and learners. These roles are at the heart of Paxos’ flexibility, and allows one to
structure a Paxos system in different ways. While this is very useful for formal rea-
soning over a wide variety of structures, it can be challenging to comprehend at first.
Our servers each combine these three roles. Another difference is that PMS presents
the protocol for agreeing on a single client request, among several requests seen by the
servers. Thus, one instance of Paxos is used to agree on the next request to be executed.
PMS then explains how multiple Paxos instances can be combined to build a Paxos-
based RSM. These instances are numbered sequentially, and corresponds to our se-
quence numbers. In PMS, Lamport also explains that Paxos instances can be optimized
to run with only the accept and learn messages, when the leader is stable. Instead we

10 H. Meling and L. Jehl

delay this step, introducing the prepare and promise messages only to solve the leader
take over problem. We use the same message naming as in PMS for ease of recognition,
but we only gradually augment the content of each message as it is demanded by the
different mechanisms that we introduce. In particular, we deferred the introduction of
round numbers in messages, which is used in PMS to identify the leader, until the end
of Sec. 6. The purpose of the round numbers in PMS is a common source of confusion
for many students.

We have focused on scenarios illustrating the need for and function of each individual
mechanism in Paxos, sometimes omitting a complete and precise algorithmic descrip-
tion. PMS gives a short and precise description. For readers interested in a blueprint for
implementing Paxos, we recommend [13].

Acknowledgements. We would like to thank Maarten van Steen for asking all the right
questions that lead us down this path. Also thanks to Keith Marzullo and Alessandro
Mei for untangling some early confusions about Paxos back in 2010/11. This work is
partially funded by the Tidal News project under grant no. 201406 from the Research
Council of Norway.

References

1. Lamport, L.: The part-time parliment. ACM Trans. on Comp. Syst. 16(2), 133–169 (1998)
2. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
3. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In: Proc.

OSDI, pp. 335–350 (2006)
4. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination for internet-

scale systems. In: Proc. USENIX ATC (2010)
5. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one

faulty process. J. ACM 32(2), 374–382 (1985)
6. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secur. Com-

put. 3(3), 202–215 (2006)
7. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: building efficient replicated state machines

for wans. In: Proc. OSDI, pp. 369–384 (2008)
8. Meling, H., Marzullo, K., Mei, A.: When you don’t trust clients: Byzantine proposer fast

paxos. In: Proc. ICDCS, pp. 193–202 (2012)
9. Lamport, L.: Fast paxos. Distributed Computing 19(2), 79–103 (2006)

10. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. Technical
report, Stanford University (2013)

11. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering perspective. In:
Proc. PODC, pp. 398–407 (2007)

12. De Prisco, R., Lampson, B., Lynch, N.: Revisiting the paxos algorithm. Theor. Comput.
Sci. 243(1-2), 35–91 (2000)

13. van Renesse, R.: Paxos made moderately complex. Technical report, Cornell University
(2011)

On Two-Party Communication

through Dynamic Networks�

Sebastian Abshoff, Markus Benter, Manuel Malatyali, and
Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Computer Science Department,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{abshoff,benter,malatya,fmadh}@hni.upb.de

Abstract. We study two-party communication in the context of di-
rected dynamic networks that are controlled by an adaptive adversary.
This adversary is able to change all edges as long as the networks stay
strongly-connected in each round. In this work, we establish a relation be-
tween counting the total number of nodes in the network and the problem
of exchanging tokens between two communication partners which com-
municate through a dynamic network. We show that the communication
problem for a constant fraction of n tokens in a dynamic network with n
nodes is at most as hard as counting the number of nodes in a dynamic
network with at most 4n+3 nodes. For the proof, we construct a family
of directed dynamic networks and apply a lower bound from two-party
communication complexity.

Keywords: Directed Dynamic Networks, Two-Party Communication,
Counting, Token Dissemination, Communication Complexity.

1 Introduction

Many networks, such as wireless sensor and mobile ad-hoc networks, tend to be
highly dynamic in the sense that their topologies could change very fast and
in an unpredictable way. All these kinds of dynamics in networks pose a major
challenge for the design of distributed algorithms and they may even render
the computation of non-trivial functions impossible, especially for arbitrarily
adversarial dynamics.

Kuhn et al. [7,9,13] study dynamic networks from a worst-case perspective.
These networks may change almost completely from round to round and may
even be controlled by an adversary that tries to interfere with the algorithms
executed on the nodes by changing edges in the network. Under the restriction
that messages must be as small as Θ(log(n)) bits and that the adversary must

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901), by
the EU within FET project MULTIPLEX under contract no. 317532, and the Inter-
national Graduate School “Dynamic Intelligent Systems”.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 11–22, 2013.
c© Springer International Publishing Switzerland 2013

12 S. Abshoff et al.

give a strongly-connected network in each round, they investigate fundamental
problems such as counting the total number of nodes and k-token dissemination.

In the k-token dissemination problem, k pieces of information (or tokens),
that are initially stored somewhere in the network, have to be disseminated to
all nodes by exchanging small messages. Kuhn et al. [7] present an algorithm
for k-token dissemination that requires O(n(n+ k)) rounds even if the number
of nodes is not known beforehand. They and other authors give matching lower
bounds for k-token dissemination for restricted classes of algorithms [3].

The all-to-all token dissemination problem is a special instance of the k-token
dissemination problem with k = n, where each node initially holds exactly one
token. It is known that the counting problem can be solved if the nodes solve the
all-to-all token dissemination problem where they disseminate their unique IDs.
Using the algorithm by Kuhn et al., this gives an upper bound of O(n2) rounds
for counting which is currently the best known upper bound for deterministic
counting algorithms. It is an open question whether this bound can be improved.

1.1 Our Contribution

We are interested in a two-party version of the k-token dissemination problem,
where k tokens, that are initially stored in one node, have to be sent to a given
other node in the network. In this work, we show an interesting relation between
the counting problem and this two-party version for dynamic networks. It turns
out that if there is a fast counting algorithm, then this two-party version can
also be solved fast. Or stated differently, any lower bound for the two-party
version is also a lower bound for counting algorithms. We would like to point
out that our construction holds for any deterministic algorithm that may send
arbitrary messages of size Θ(log(n)) and that the algorithms are not restricted
to token-forwarding. To the best of our knowledge, this is the first approach
of applying classical results from two-party communication complexity to the
domain of dynamic networks.

1.2 Organization of the Paper

Our paper is organized as follows. In Section 2, we introduce the directed dy-
namic network model and the problems we are interested in. In Section 3, we
discuss related work on dynamic networks and on applying lower bounds from
communication complexity on static networks. After that, we state our main re-
sult in Section 4. Our construction starts in Section 4.1 with a directed dynamic
graph G for which we know the round complexity of the two-party version of k-
token dissemination. Then, copies of this dynamic network G are used to create
special dynamic networks, where the problem of deciding whether the predeces-
sors of some nodes are the same reduces to counting. Next, in Section 4.2, we
show that any algorithm for this decision problem can be simulated in a two-
party communication network where the channels are replaced by copies of G
to decide the set equality problem. By applying a result from communication
complexity in Section 4.3, we prove that many messages need to be exchanged

On Two-Party Communication through Dynamic Networks 13

in order to solve the set equality problem. From this, we reason that counting
cannot be solved faster than the two-party version of k-token dissemination in
G. Finally, Section 5 concludes the paper.

2 Models and Problems

A directed dynamic network is a directed dynamic graph G = (V,E) where V
is a static set of n nodes and E : N≥0 → V × V is a round-dependent set of
directed edges. We define the set of successors of node v in round r asN+(v, r) :=
{(v, u) ⊆ E(r)}, and accordingly, the set of predecessors asN−(v, r) := {(u, v) ⊆
E(r)} in the graph of each round r. We may omit the round parameter r if it
is clear from context. Furthermore, we assume that the graph G(r) is strongly-
connected in each round r, i.e., there must be a path from each node to every
other node in the graph. Apart from that, an adaptive adversary may choose an
arbitrary set of edges.

Throughout this paper, we assume that the nodes of the network have unique
IDs from a fixed range {1, . . . , nd} for a fixed constant d. Further, in each round
r, each node v can broadcast an arbitrary message of (bit-)size at most c log(n)
to its successorsN+(v, r+1) in the following round r+1. c is also a fixed constant
and we assume c > d. Thus, a node can broadcast, e.g., a constant number of IDs
in one round, but it may also broadcast any other type of information encoded in
at most c log(n) bits. As we cannot simulate the transmission of a long message
by transmission of several short messages in our dynamic setting, we have to
assume fixed values for the lengths of messages, IDs, and tokens. Note that the
nodes never know who their successors are due to the dynamic of the network.
We say an algorithm has terminated when all nodes have terminated and output
the results of their computation.

In particular, we are interested in the following fundamental problems that
have also been studied by Kuhn et al. [7,9,13].

Definition 1 (Counting Problem). All nodes should terminate and output
the number n of nodes in the network.

Definition 2 (k-Token Dissemination Problem). Each node u in the net-
work receives as input I(u) a possibly empty subset from some token universe T
such that

∣
∣
⋃

v∈V I(v)
∣
∣ = k. The nodes should disseminate the tokens such that

each node knows all k tokens when it terminates. Parameter k is not known by
the nodes beforehand.

Definition 3 (All-to-all Token Dissemination Problem). This problem is
an instance of the k-token dissemination problem with k = n, where each node
holds exactly one token in the beginning.

A typical application of the all-to-all token dissemination problem is to dis-
seminate IDs of nodes. Accordingly, we define a two-party version of the k-token
dissemination problem which we want to relate to the counting problem.

14 S. Abshoff et al.

Definition 4 (Two-Party k-Token Dissemination Problem). One node
vs in the network receives as input I(vs) a subset of cardinality k from some
token universe T . All other nodes do not receive any input. The nodes should
send the tokens through the network such that a given vt knows all k tokens when
it terminates. The nodes may know parameter k beforehand.

Throughout this paper, we assume that T = {1, . . . , nd′}, for some fixed
constant d′.

3 Related Work

Dynamic networks, where the set of bidirectional edges in the network may
change arbitrarily and in an adversarial way from round to round as long as
the graph is strongly-connected in each round, were introduced by Kuhn et al.
[7,9,13]. If there is a strongly-connected subgraph in every sequence of T graphs,
they call the dynamic network T -interval connected. On the one hand, for the
k-token dissemination problem, Kuhn et al. present a deterministic O(n(n +
k)/T) token-forwarding algorithm which is a randomized algorithm that is only
allowed to store and forward one token without modification. This algorithm
can be used to obtain an O(n2/T) algorithm for the counting problem. On
the other hand, they give an Ω(nk/T) lower bound for k-token dissemination
for a restricted class of knowledge-based token-forwarding algorithms1 and they
provide an Ω(n log(k)) lower bound for deterministic (even centralized) token-
forwarding algorithms.

Dutta et al. [3] improve the latter lower bound by Kuhn et al. toΩ(nk/ log(n)+
n) that holds for any randomized, centralized token-forwarding algorithm. More-
over, they show that k-token dissemination can be done inO((n+k) log(n) log(k))
w.h.p. if the adversary is only weakly-adaptive. Furthermore, they provide two
polynomial-time, randomized and centralized offline algorithms, where one of
them returns an O(n,min{k,√k log(n)}) schedule w.h.p. and the other one an

O((n+ k) log2 n) schedule w.h.p. if nodes can send a different token along every
edge.

Haeupler et al. [5] go beyond the class of token forwarding algorithms and send
linear combinations of tokens. They solve the k-token dissemination problem
in O(nk/ log(n)) rounds w.h.p. and their technique can be derandomized such
that a deterministic centralized algorithm is able to disseminate k tokens in
O(n ·min{k, nT }) rounds in a T -interval connected dynamic network.

Brandes et al. [2] develop algorithms for counting if additionally to the worst-
case dynamic every edge in the network fail with some probability.

Michail et al. [10] study counting and naming in anonymous unknown dy-
namic networks. Here, the nodes do not have IDs and naming refers to the

1 A token-forwarding algorithm is called knowledge-based if the probability distribu-
tion that determines which token is sent by some node in some round depends only
on its unique ID, the set of token it is aware of in each round and the sequence of
its coin tosses up to this round.

On Two-Party Communication through Dynamic Networks 15

problem of finding unique IDs for the nodes. Interestingly, they also introduce a
different communication model where the nodes in the network can send differ-
ent, individual messages to their neighbors but without any information about
their state. In a different paper [11], they study worst-case dynamic networks
under a temporal connectivity assumption, where the network is not necessarily
strongly-connected in each round.

Kuhn et al. [8] study consensus problems in dynamic networks where all nodes
have to agree on the input of one node, and they also study clock synchronization
problems in a different time model [6]. Consensus problems were also considered
by Biely et al. [1] in directed dynamic networks.

Das Sarma et al. [15] describe randomized algorithms based on random walks
on dynamic networks. Wattenhofer et al. [12] analyzed information dissemination
in a different but worst-case adversarial model. The field of gossiping algorithms
as well as some previous work on evolving graphs is related but different since
the communication graph is usually chosen randomly.

In static networks, Das Sarma et al. [14] apply techniques similar to the one
we use in this paper. They utilize lower bounds from communication complexity
to obtain lower bounds for distributed algorithms for many fundamental graph
problems such as the verification of a minimum spanning tree. Subsequently,
Frischknecht et al. [4] show that (static) networks require Ω(n/ log(n)) time to
compute their diameter.

4 Relating Counting to Communication through a
Dynamic Network

In this section, we state and prove our main result.

Theorem 1. Assume there is a distributed counting algorithm that needs at
most TCounting(n) rounds for counting in directed dynamic networks of size at
most n. Then, there is an algorithm that can solve the two-party αn-token dis-
semination problem in an arbitrary directed dynamic network of size n using at
most TCounting(4n+ 3) rounds for some fixed constant α > 0.

Remark 1. To be precise, we have to assume that the message size for the two-
party αn-token dissemination problem is somewhat longer than c log(n), the
one used for counting, but it is still logarithmic. Recall that the (bit-)sizes of
messages, IDs, and tokens are logarithmically bounded.

To prove this theorem, we define a family of directed dynamic networks of
size at most 4n + 3 where we embed two directed dynamic networks of size n.
For these, we show that many bits must have passed through them to solve a
problem defined on the family of directed dynamic networks.

16 S. Abshoff et al.

4.1 Special Dynamic Networks and the Same Predecessor Problem

Common Predecessors

Non Common Predecessors

CharlieAlice Bob

GBobGAlice

Fig. 1. Construction of the Special Dynamic Network G′

We start with any two directed dynamic networks GAlice and GBob with n
nodes and embed them into another dynamic network G′ with n′ nodes where
3n + 3 ≤ n′ ≤ 4n + 3. Beside GAlice and GBob, this dynamic network consists
of three special nodes Alice, Bob, and Charlie, and n to 2n other nodes. Both
Alice and Bob have one outgoing edge to one fixed node vs,Alice in GAlice or
vs,Bob in GBob respectively. Both GAlice and GBob have one fixed outgoing edge
from one node vt,Alice in GAlice or vt,Bob in GBob to Charlie. All other n to 2n
nodes become predecessors of Alice or Bob such that the in-degrees of Alice and
Bob are equal to n. Charlie is connected to all these predecessor nodes. GAlice

and GBob are dynamic, all other edges are static. The construction is depicted
in Figure 1.

The set of all these directed dynamic graphs G′ that can be constructed
based on any two directed dynamic graphs GAlice and GBob with n nodes will be
referred to as special dynamic network SDN n. We define SDN =

⋃

n∈N+ SDN n.
We allow that all nodes know that the instance is in SDN n. Also, the nodes
Alice and Bob know that they are Alice and Bob respectively but all other nodes
do not know whether they are Charlie, a common or a non common predecessor
or a node in GAlice, GBob. Furthermore, all nodes do not know the total number
of nodes n′ in SDN n.

Next, we define a problem defined on graphs from SDN n which we will reduce
to counting and prove afterwards that it is hard to solve.

Definition 5 (Same Predecessor Problem SPn). Let Un be the set of all

subsets of {1, . . . , n′d} with cardinality n. Furthermore, let A and B be the set of
predecessors N−(Alice) and N−(Bob) of Alice and Bob respectively. The same
predecessor function SPn : Un × Un → {0, 1} is defined as

SPn(A,B) =

{

1 if A = B

0 otherwise
.

On Two-Party Communication through Dynamic Networks 17

Although both Alice and Bob can easily obtain their own fixed set of prede-
cessors if the predecessors send their unique IDs, Alice and Bob have to commu-
nicate to determine if they have the same set of predecessors.

Lemma 1. Let TSPn(n
′) be the number of rounds a deterministic distributed

algorithm needs to decide SPn in a special dynamic network SDN n of size at
most n′, where 3n+ 3 ≤ n′ ≤ 4n+ 3. Then,

TSPn(n
′) ≤ TCounting(n

′) + 1.

Proof. A distributed algorithm for SPn can determine the in-degree d of Alice
and Bob if each node sends its own ID in the first round. Then, given an algorithm
for counting, Alice and Bob can count the total number of nodes n′ in the
network G′. In any graph G′, there are Alice, Bob, Charlie, GAlice with n nodes,
GBob with n nodes, and between n and 2n predecessors of Alice and Bob. All
predecessors are the same iff the number of predecessors is equal to n. Therefore,
iff n′ = 3 + 3d = 3 + 3n, then the predecessors of Alice and Bob are equal. ��

4.2 Dynamic Channel Networks and the Set Equality Problem

Alice Charlie Bob

GBobGAlice

Fig. 2. Construction of the Dynamic Channel Network G′′

To bound TSPn(n
′), we define another model which we will refer to as the dy-

namic channel network DCNn and define DCN :=
⋃

n∈N+ DCNn. Similar to
the construction of the graphs in SDN n, G

′′ ∈ DCN n with n′′ = 2n+ 3 nodes
is defined for any two networks GAlice and GBob with n nodes and three special
nodes Alice, Bob, and Charlie. Again, both Alice and Bob have one outgoing
edge to one node vs,Alice in GAlice or vs,Bob in GBob respectively, and both GAlice

and GBob have one fixed outgoing edge from one node vt,Alice in GAlice or vt,Bob

in GBob to Charlie. Charlie is connected to both Alice and Bob via a directed
edge. The construction of G′′ is depicted in Figure 2.

We can define a function where Alice and Bob are given two sets A and B
respectively from some universe T as input.

Definition 6 (Set Equality Problem EQn). Let Tn be the set of all subsets
of T with cardinality n. For A,B ∈ Tn, the set equality function EQn : Tn×Tn →
{0, 1} is defined as

EQn(A,B) =

{

1 if A = B

0 otherwise
.

18 S. Abshoff et al.

Note the similarity between SPn and EQn: While SPn is defined on subsets
of n IDs of the predecessors of Alice and Bob respectively, EQn is defined on
subsets of cardinality n of a token universe T given to Alice and Bob as input.

Lemma 2. Let TEQn(n
′′) be the number of rounds a deterministic distributed

algorithm needs to decide EQn in a dynamic channel network DCN n of size n′′,
where n′′ = 2n+ 3 and 3n+ 3 ≤ n′ ≤ 4n+ 3. Then,

TEQn(n
′′) ≤ TSPn(n

′).

Proof. Assume we are given an algorithm that solves SPn in TSPn(n
′) com-

munication rounds. Since every node has unbounded computational power, in
one round, Alice in the dynamic channel network can simulate the algorithm
executed on Alice and on a predecessor for each token in the special dynamic
network. Alice in the dynamic channel network gets all the messages Charlie is
broadcasting. So, she is able to simulate each of her predecessors in the special
dynamic network and sends, based on this simulation, the message Alice in the
special dynamic network would send to GAlice. Bob can do the same with a
predecessor for each of his tokens. Since Alice and Bob have the same prede-
cessors in the special dynamic network iff Alice and Bob have the same sets in
the dynamic channel network, Alice and Bob can decide the EQn problem in at
most TSPn(n

′) rounds. ��
We showed that the required amount of rounds an algorithm needs to solve

the counting problem is lower bounded by the number of rounds needed to decide
the EQn problem.

4.3 Two-Party Communication and the Set Equality Problem

Alice Bob

1

Fig. 3. Two-Party Communication

In this section, we show that Alice and Bob have to exchange at least
Ω(n log(n)) bits through the dynamic channels in the dynamic channel net-
work to bound TEQn(n

′′). We refer to the two-party communication model as
depicted in Figure 3.

In the two-party communication model, two nodes Alice and Bob are given
inputs A,B. Alice and Bob are connected by an undirected edge, which they
can use to alternately exchange messages to compute a function f(A,B). In
this model, two rounds correspond to at least one round if Alice and Bob are

On Two-Party Communication through Dynamic Networks 19

allowed to send messages at the same time. Yao [16] introduced a lower bounding
technique which can be used to get a lower bound on the number of bits that
need to be exchanged in our model.

Lemma 3. In the two-party communication model by Yao, any deterministic
algorithm for EQn requires at least

C′(EQn) := (d′ − 1) · n · log2(n)− 4 = Ω(n log(n))

rounds for at least 1
2 ·

(
nd′

n

)

inputs.

Proof. EQn is a Boolean function on Tn × Tn. Let Ã, B̃ be subsets of Tn con-
taining sets with cardinality n from universe T = {1, . . . , nd′}. To compute the
minimum depth of a decision tree for EQn, and thus the number of commu-
nication rounds required for deciding EQn, we need the minimum number of
leaves or equivalently the minimum number of EQn-monochromatic rectangles2

that decomposes EQn. Since each monochromatic rectangle has to be constant
over Ã × B̃, we state that |Ã × B̃| = 1 for arguments evaluating to 1, other-
wise two different arguments (X,X), (Y, Y) ∈ Ã × B̃, with X �= Y would lead
to EQn(X,Y) = 1. Hence, the number of EQn monochromatic rectangles with
result 1 is exactly the number of inputs (X,X) with X ∈ Tn. We conclude,

#EQn-monochromatic rectangles

≥ #EQn-monochromatic rectangles with result 1

= |Tn| =
(
nd′

n

)

≥ (nd′−1 − 1)n.

Applying Yao’s lower bound,

C(EQn) ≥ log2

(

(nd′−1 − 1)n
)

− 2 ≥ (d′ − 1) · n · log2(n)− 3,

yields that Ω(n log(n)) rounds are necessary for Alice and Bob to decide EQn.

Following a similar argument, it can be shown that for at least 1
2 ·

(
nd′

n

)

inputs
at least (d′ − 1) · n · log2(n)− 4 rounds are required: If we cut the decision tree

at level (d′− 1) ·n · log2(n)− 4, then it contains less than 1
2 ·

(
nd′

n

)

leaves. Hence,
all other leaves must have height greater than C′(EQn). ��

Next, we would like to transfer the round complexity from Yao’s model to
message complexity in terms of transferred bits between Alice and Bob in the
dynamic network model. While in Yao’s model, Alice and Bob have to send one
bit alternately, nodes are able to exchange messages logarithmic size simultane-
ously in the dynamic network model.

2 For a function f : M ×N → {0, 1}, the Cartesian product S×T (where S ⊆ M and
T ⊆ N) is called an f-monochromatic rectangle if f is constant over S×T . We refer
to [16] for more details.

20 S. Abshoff et al.

Lemma 4. In order to decide EQn, either Alice has to send at least

1

4
· C′(EQn) =

1

4
· (d′ − 1) · n · log2(n)− 1 = Ω(n log(n))

bits to Bob or vice versa for at least 1
2 ·

(
nd′

n

)

inputs.

Proof. Assume that both Alice and Bob have to send less than 1
4 ·C′(EQn) bits

to Bob or Alice respectively in order to solve EQn. So, in total, strictly less than
1
2 · C′(EQn) bits are needed. Consequently, strictly less than C′(EQn) rounds
are required if bits have to be sent alternately as in Yao’s model.

Since this model defines that the next bit some communication partner sends
is based on its given input and the complete history of received bits, there is a
strong interaction between Alice and Bob. Assume Alice and Bob are not allowed
to use their complete history to decide what reply to send. Clearly, this could only
increase the number of messages necessary to evaluate any function. Thus, the
communication complexity for a lower level of interaction is also lower bounded
by C′(EQn). It follows, that Alice and Bob could have solved the problem in
less than C′(EQn) rounds which contradicts Lemma 3. ��
Lemma 5. Let α = 1

5 . Let TDissemination(n) be the number of rounds a deter-
ministic distributed algorithm needs to solve the two-party αn-token dissemina-
tion problem in any directed dynamic network of size n, where n′′ = 2n + 3.
Then,

TDissemination(n) ≤ TEQn(n
′′).

Proof. If TDissemination(n) rounds are required to solve the two-party αn-token
dissemination problem in GAlice and GBob, then it is in particular not possible
to send any

⌈

log2

(
nd′

αn

)⌉

< α · n · d′ log2(n)

bit string from vs,Alice to vt,Alice (or from vs,Bob to vt,Bob) in strictly less than
TDissemination(n) rounds since this string could be used to encode the αn tokens
given to vs,Alice (or vs,Bob). However, by Lemma 4, at least 1

4 · C′(EQn) bits
have to be sent from Alice to Bob or vice versa, in order to solve EQn. Hence,
for α = 1

5 and d′ > 5, more bits have to be sent through the dynamic network
for solving the equality problem EQn than for solving the two-party αn-token
dissemination problem. Thus, we conclude TDissemination(n) ≤ TEQn(n

′′). ��
Now, we want to sum up the steps to our main result stated in Theorem 1. In

a directed dynamic network of size n, a counting algorithm needs TCounting(n)
rounds. Thus, in our special dynamic network SDN n of size n′ ≤ 4n + 3,
the counting algorithm needs at most TCounting(n

′) rounds. By Lemma 1, we
know that if there is an algorithm which solves the counting problem in the
special dynamic network, then there is an algorithm which solves SPn in at
most TCounting(n

′) + 1 rounds. By Lemma 2, we know the EQn problem in the
dynamic channel network can be decided by a counting algorithm in at most
TCounting(n

′) + 1 rounds. Finally by Lemma 5, the two-party αn-token dissemi-
nation problem can be solved in time TCounting(n

′) + 1 which proves the claim.

On Two-Party Communication through Dynamic Networks 21

5 Conclusion and Future Prospects

We showed that the number of rounds necessary to count the nodes in a directed
dynamic network can be lower bounded by the number of rounds necessary to
solve a two-party token dissemination problem. While our construction heavily
depends on directed edges, it would be interesting to see if the construction can
be extended for undirected dynamic networks. Also, since EQn can be solved
faster if randomization is used, we would like to know whether another function
such as the set disjointness function can be used to derive a stronger lower bound
for randomized algorithms.

We think that the two-party k-token dissemination problem is a challenging
problem. On the one hand, finding a non-trivial upper bound for this problem
seems to be difficult since it is not clear how a dissemination algorithm could
exploit the knowledge that vt is the only node that has to receive all tokens.
On the other hand, any non-trivial lower bound for this problem using our
construction yields a non-trivial lower bound for the counting problem in directed
dynamic networks which at this time does not exist. This poses an interesting
open question.

References

1. Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In:
SIROCCO, pp. 73–84 (2012)

2. Brandes, P., Meyer auf der Heide, F.: Distributed computing in fault-prone dy-
namic networks. In: TADDS, pp. 9–14 (2012)

3. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: SODA, pp. 717–736 (2013)

4. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their di-
ameter in sublinear time. In: SODA, pp. 1150–1162 (2012)

5. Haeupler, B., Karger, D.R.: Faster information dissemination in dynamic networks
via network coding. In: PODC, pp. 381–390 (2011)

6. Kuhn, F., Lenzen, C., Locher, T., Oshman, R.: Optimal gradient clock synchro-
nization in dynamic networks. In: PODC, pp. 430–439 (2010)

7. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: STOC, pp. 513–522 (2010)

8. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: PODC, pp. 1–10 (2011)

9. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT
News 42(1), 82–96 (2011)

10. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Brief announcement: Naming and
counting in anonymous unknown dynamic networks. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 437–438. Springer, Heidelberg (2012)

11. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and com-
putation in possibly disconnected synchronous dynamic networks. In: OPODIS,
pp. 269–283 (2012)

12. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: DIALM-POMC, pp. 104–110 (2005)

22 S. Abshoff et al.

13. Oshman, R.: Distributed Computation in Wireless and Dynamic Networks. PhD
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139 (September 2012)

14. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

15. Das Sarma, A., Molla, A.R., Pandurangan, G.: Fast distributed computation in
dynamic networks via random walks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 136–150. Springer, Heidelberg (2012)

16. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: STOC, pp. 209–213 (1979)

Eventual Leader Election

in Evolving Mobile Networks

Luciana Arantes1, Fab́ıola Greve2, Pierre Sens1, and Véronique Simon1

1 LIP6, Université Pierre et Marie Curie, Inria, CNRS, France
firstname.lastname@lip6.fr

2 DCC - Computer Science Department / Federal University of Bahia, Brazil
fabiola@dcc.ufba.br

Abstract. Many reliable distributed services rely on an eventual leader
election to coordinate actions. The eventual leader detector has been
proposed as a way to implement such an abstraction. It ensures that,
eventually, each process in the system will be provided by an unique
leader, elected among the set of correct processes in spite of crashes and
uncertainties. A number of eventual leader election protocols were sug-
gested. Nonetheless, as far as we are aware of, no one of these protocols
tolerates a free pattern of node mobility. This paper proposes a new
protocol for this scenario of dynamic and mobile unknown networks.

Keywords: Fault-tolerant leader election, dynamic networks, process
mobility, asynchronous systems.

1 Introduction

Dynamic distributed systems based on ad-hoc collections of distributed comput-
ing devices, wireless and mobile networks, unstructured peer to peer networks,
opportunistic grids, or clouds are supposed to allow participants to access ser-
vices and information regardless of their location, topology or mobility pattern.
Nonetheless, the issue of designing reliable services which can cope with the high
dynamics of these systems is a challenge.

Many reliable distributed services rely on an eventual leader election to coor-
dinate actions. The Ω leader detector has been proposed as a way to implement
such an abstraction [1]. It ensures that, eventually, each process in the system
will be provided by an unique leader, elected among the set of correct processes,
in spite of crashes, uncertainties and dynamics. However, the Ω detector cannot
be implemented in a purely asynchronous system [1]. Thus, some additional as-
sumptions on the underlying system should be made in order to implement it.
With this aim, two orthogonal approaches can be distinguished: timer-based and
message-pattern. The timer-based is the traditional approach and supposes that
channels are eventually timely; the system may be described as being partially
synchronous. An alternative approach assumes that the system satisfies a mes-
sage exchange pattern on the execution of a communication mechanism. While
the timer-based approach imposes a constraint on the physical time (to satisfy
message transfer delays), the message-pattern approach imposes a constraint on
the logical time (to satisfy a message delivery order) [2].

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 23–37, 2013.
c© Springer International Publishing Switzerland 2013

24 L. Arantes et al.

Anumber of leadershipprotocolswereproposed to implementΩ.Thefirst timer-
based solutions adopted strong assumptions concerning time and channel relia-
bility [1, 3]; afterwards, they seek to find weaker and weaker conditions regarding
synchrony and reliability [4–8]. Nonetheless, the totality of these protocols adopts
a classical model of “known” networks in which the set of participants (Π), its car-
dinality (n), and the maximum number of faults (f) are known.

It happens that the inherent dynamics of the new environments prevent pro-
cesses from gathering a global knowledge of the system properties. That is why
recent solutions, aiming to implement Ω in a dynamic system of “unknown” net-
works have emerged [9, 10]. They seek for models and solutions with the possible
weakest assumptions, regarding the knowledge of the topology, the communica-
tion graph, as well as the channel connectivity and reliability, trying to get as
close as possible to reality. Although these proposals lead to a breakthrough in
the implementation of the leader abstraction with dynamics requirements, none
of them tolerate node mobility.

Very few papers deal with node mobility [11–14]. However, to the best of our
knowledge, none of them consider a system with an arbitrary graph topology
that changes over time. In this paper we provide a first Ω algorithm to tolerate
a generic pattern of node mobility in an unknown network, subject to messages
losses and a topology that changes over time. [14] is perhaps the work with
most similarity with ours. However, differently from our solution which follows
a message-pattern approach, it considers a timer-based one and the existence of
stable periods that should last long enough to elect a leader.

The current paper brings thus two main contributions: (i) The proposition
of a model to solve the leader election problem in mobile dynamic systems. This
model, although simple, captures the requirements to solve the problem and
represents the network by a communication graph with a dynamic topology. (ii)
A leadership algorithm that implements the Ω class under the proposed model.
It follows the message-pattern approach and does not assume timely links.

2 Related Work

Leadership Protocols for “known” Networks. A number of leadership
protocols were proposed to implement Ω in an asynchronous system prone to
crash failures and taking into account the classical model of “known” networks in
whichΠ , n and f are known and moreover the communication graph is complete.

The first solutions [1, 3] adopted strong assumptions concerning reliability and
time. They consider that all links were reliable and eventually timely. Further solu-
tions seek to find weaker and weaker conditions regarding synchrony and channel
reliability. Aguilera et al. relax the necessity regarding the time constraints of all
links, firstly proposing an algorithm in which only one process should maintain
an eventual timely link to all the other processes [4]. Afterwards, they weaken the
condition to an outgoing link, in such a way that one node (namely, the ♦-source
process) should have an eventually outgoing timely link to all the other processes,
while the other links may still lose messages [5, 6]. These conditions ensure that
after some time only the current leader sends message forever.

Eventual Leader Election in Evolving Mobile Networks 25

Another important work in this line is due to Malkhi et al. [7] that proposes a
solution without having any eventual timely links, but which considers eventual
accessible links. Their algorithm assumes that eventually one process (namely,
the ♦-accessible process) can send messages such that every message obtains
f timely responses. One very practical interest of this assumption is that the
links are moving, that is, the f responders need not to be the same and may
change from one message to another. Most recently, [8] presents a solution with
a weaker model that unifies the assumptions made in [5, 6] and [7]. It shows
that Ω can be implemented with at least one process with f outgoing moving
eventual timely links, assuming either unicast or broadcast steps.

An orthogonal and totally different approach for implementing Ω is based
on the satisfaction of a message exchange pattern in the system. It has been
proposed by [15] to implement a ♦S failure detector and exploited so far by [2, 12]
to implement Ω. They show that Ω can be built as soon as the following process
behavior property is satisfied: there is a correct process p and a set Q of (f +1)
processes, such that eventually the response of p from any query issued by one
process q ∈ Q is always received by q among the first (n− f) responses.
Leadership Protocols for “unknown” Networks. Some recent works aim-
ing to implement Ω in dynamic systems with the possible weakest assumptions,
regarding the knowledge and communication graph have emerged. In common,
they share a reachability communication assumption between every pair of cor-
rect processes. Jimenez et al. [16] show that it is possible to implement Ω with
no knowledge about the membership of the system, even under the minimal con-
ditions regarding link synchrony and reliability. They provide an algorithm for
Ω considering an unknown network, a complete communication graph and links
that are fair-lossy, but timely.

Fernandez et al. [9] propose two Ω algorithms with weakest assumptions.
The first algorithm considers a partial unknown network, with a global knowl-
edge about the lower bound on the number of correct processes (represented by
α = n − f) and fair-lossy timely links. The communication graph is not com-
plete but there are direct links between a correct process p and a set of correct
processes. The second algorithm considers unknown networks and a complete
communication graph. Links are fair-lossy and timely composed of output direct
links between a correct process p and every correct process in the system.

Tucci et al. [10] study the Ω abstraction in a system with bounded concur-
rency. It assumes an unknown network, but a fully connected dynamic graph.
It provides the first proposal for Ω algorithms for the infinite arrival message-
passing mode [17], in which an infinite number of processes may arrive and
depart over time, but the number of processes which are simultaneously up is
finite (including the correct processes).

Leadership Protocols with Node Mobility. Masum et al. [11] present an Ω
algorithm which, contrarily to ours, assumes totally reliable and timely channels.
Cao et al. [12] provide an implementation of Ω for a network composed of mobile
hosts (MH) and mobile support stations (MSS). The eventual leader is an MH,

26 L. Arantes et al.

but it is elected by the MSSs. Differently from our work, the set of MSS forms
a static distributed system of reliable channels in a “known” network. Melit et
al. [13] propose both a model and an Ω algorithm that tolerate node mobility and
partitions. But, to converge, their approach requires that the topology eventually
does not change. Unlike ours, this last requirement prevents arbitrary changes
in the topology along the system existence.

Larrea et al. [18] propose an Ω specification and algorithm suited to dy-
namic systems, where processes join and leave, relying on eventually timely links.
Gomez-Calzado et al. [14] extended the previous works so as to take into account
graph joins/fragmentations and process mobility. They make a stability assump-
tion in which there is no graph partitioning and the existence of bidirectional
connectivity among processes. Differently from our solution, they adopt a timely
based assumption during stable periods and some other conditions in the graph.

3 Model for Eventual Leader Election in Mobile Systems

The system is a collection of mobile nodes which communicate by sending and
receiving messages via a network with broadcast facilities. The system is asyn-
chronous and there are no assumptions on the relative speed of processes or on
message transfer delays. We take the range T of the clock’s tick to be the set of
natural numbers. There is no global clock and processes do not have access to
T : it is introduced for the convenience of the presentation and proofs.

3.1 Communication Model

Time-Varying Communication Graph. Following [19], we consider that the dy-
namics of the network is represented by a time-varying graph, denoted TVG.

Definition 1. [Time-varying graph]. A TVG is a tuple G = (V,E, T , ρ, ζ, ψ),
where: (1) V = Π represents the set of nodes, (2) E ⊆ V × V represents the
set of communication links between nodes, (3) T ⊆ N is a time span, (4) ρ :
E × T → {0, 1} is an edge presence function: an edge e ∈ E is available at a
given time t ∈ T , such that ρ(e, t) = 1 iff e is present at t, otherwise ρ(e, t) = 0,
(5) ζ : E × T → N is a latency function, indicating the time taken to cross a
given edge e if starting at a given time t 1; (6) ψ : V × T → {0, 1} is a node
presence function, indicating whether a given process pi ∈ V is up at a given
time t ∈ T , such that ψ(pi, t) = 1 iff node pi is up at t, otherwise ψ(p, t) = 0.

Links are directed and the edge from pi to pj is denoted ei,j = (pi, pj). N
t
i is

the set of 1-hop neighbors of pi and E
t
i is the set of edges that connect pi to these

neighbors at time t. The neighborhood relationship establishes the edge set, in
such a way that pj ∈ N t

i iff ei,j ∈ Et
i , such that ρ(ei,j , t) = 1. The degree of pi

at time t is defined to be Degti = |Et
i |. Given a TVG G, the graph G = (V,E)

is called the underlying graph of G. G should be considered as a sort of footprint

1 Note that the effective delivery of a message sent at time t on an edge could be
subjected to further constraints regarding the latency function, such as the condition
that ρ(e) returns 1 for the whole interval [t; t+ ζ(e, t))].

Eventual Leader Election in Evolving Mobile Networks 27

of G which flattens the time dimension and indicates only the pair of nodes that
have relations at some time in T . Journeys can be thought of as paths over time
from a source to a destination.

Definition 2. [Journey] A sequenceof couplesJ ={(e1, t1), (e2, t2), . . . , (ek, tk)},
such that {e1, e2, . . . , ek} is a walk inG, is a journey in G if and only if ρ(ei, ti) = 1
and ti+1 ≥ ti+ ζ(ei, ti) for all i < k. Let departure(J) = t1 be the starting date and
arrival(J) = tk + ζ(ek, tk) be the last date of J . Let J(i,j) be a journey starting at
node pi and ending at node pj; in this case, we say that pi reaches pj or more simply,
pi � pj. Let us denote byJ ∗G the set of all possible journeys in G, and byJ ∗(i,j) ⊆ J ∗G
those journeys starting at pi and ending at pj.

Channels. Local broadcast between 1-hop neighbors is fair-lossy. This means
that messages may be lost, but, if a correct pi broadcasts m an infinite number
of times, then every pj permanently in its neighborhood receives m from pi
an infinite number of times, otherwise pj is faulty or out of pi’s neighborhood.
That is, if pi starts to send m at time t an infinite number of times, then, if
ρ(ei,j , t

′) = 1, ∀t′ ∈ [t; +∞), pj receives m an infinite number of times if pj is
a correct neighbor of pi. In the case of a wireless network, this condition is e.g.
attained if the MAC layer reliably delivers broadcast data, even in presence of
unpredictable behaviors, such as fading, collisions, and interference; solutions in
this sense were proposed in [20, 21].

3.2 Process Model

We consider the finite arrival model [17]: The network is a dynamic system
composed of infinitely many mobile processes, but each run consists of a finite set
Π of n nodes, namely, Π = {p1, . . . , pn}. The membership is unknown. Processes
are not aware of Π or n, because, moreover, these values can vary from run to
run [17]. There is one process per node; each process knows its own identity, but
it does not necessarily know the identities of the others. A process may fail by
crashing, i.e., by prematurely or by deliberately halting (switched off); a crashed
process does not recover. Indeed, a process can re-connect to the system, but
with a new identity, thus, it is considered as a new process. Processes may re-
connect as they wish, but the number of re-entries is bounded, due to the finite
arrival assumption. Until it possibly crashes, a process behaves according to its
specification. A process that does follow its algorithm specification and never
crashes is said to be correct.

Let us thus define the status that a process may exhibit along the system
execution. Informally, a stable process is a correct process that never leaves the
system; otherwise, it is faulty.

Definition 3. [Process status]. Let t ∈ T . A process pi may assume the follow-
ing status.
stablet(pi)⇔ ∀t′ ≥ t, ψ(pi, t′) = 1
faultyt(pi)⇔ (∃s, s < t, ψ(pi, s) = 1) ∧ (∀t′ ≥ t, ψ(pi, t′) = 0)

28 L. Arantes et al.

The failure pattern of the system, namely F (t), is the set of processes that
have failed in the system by time t. That is, F (t) = {pi : faultyt(pi)}. Similarly,
S(t), is the set of processes that are stable in the system by time t. That is,
S(t) = {pi : stablet(pi)}.
Definition 4. [Process sets]. The set of processes in the system may be divided

into: Stable
def
=

⋃

t∈T S(t) and Faulty
def
=

⋃

t∈T F (t)

3.3 Network Connectivity

To solve the eventual leader abstraction, we are mostly interested in the trans-
mission TVG induced by the stable nodes in the system.

Definition 5. [Transmission TVG]. The transmission TVG is a tuple GtrS =
(VS , ES , T , ρtr, ζ, ψ), in which VS = Stable; ES ⊆ VS × VS and ρtr is a trans-
mission edge presence function: ρtr(ei,j , t) = 1 iff a message sent from pi at time
t is delivered to pj at time t+ ζ(ei,j , t).

We can identify classes of TVG based on the temporal properties established
by the entities. The classes are important because they imply necessary con-
ditions and impossibility results for distributed computations. Notably, Class 5

(Recurrent connectivity) [19] is important to our study.

Assumption 1. [Network recurrent connectivity]. In the subsystemof stablenodes,
represented by TVG GtrS , ∀pi, pj ∈ VS , ∀t ∈ T , ∃J ∈ J ∗(pi,pj)

: departure (J) > t.

The recurrent connectivity is a fundamental assumption, mandatory to en-
sure reliable dissemination of messages to all stable processes in a dynamic net-
work [19] and thus to ensure the properties of the leader oracle [1, 16, 22]. It
means that, at any point t in time, the TVG GtrS remains connected over time.
Thus, for all stable nodes pi, pj, at any time, pi � pj .

3.4 The Ω Class

A leader oracle is a distributed entity that provides processes with a function
leader() that when invoked by any process p outputs a single process q, denoted
the leader. In the context of a dynamic system, a leader oracle of the Ω class
satisfies the following Eventual leadership property: There is a time after which
every invocation of leader() by any stable process returns the same stable process.
Therefore, a unique leader is eventually elected but no processes knows when the
leader is elected.

4 An Eventual Leader Oracle for Mobile Systems

4.1 Stable Query-Response Communication Mechanism

Our eventual leader oracle solution is based on the message pattern approach [15]
and uses, to this end, a local query-response communication mechanism [22]
adapted to a network with unknown membership. At each query-response round,
a node systematically broadcasts a query message to the nodes in its neigh-
borhood until it possibly crashes or leaves the system. The interval between two

Eventual Leader Election in Evolving Mobile Networks 29

consecutive queries is finite but arbitrary. Each couple of query-response mes-
sages is uniquely identified in the system. A process pi launches the primitive by
sending a query(m) with a message m. When a process pj delivers this query,
it updates its local state and answers by sending back a response(m′) with a
messagem′ to pi. Then, when pi has received at least αi responses from different
processes, the current query-response terminates. Without loss of generality,
the response for pi itself is among the αi responses.

Formally, the query–response primitive has the following properties: (i) QR-

Validity: If a query(m) is delivered by process pj , it has been sent by process pi;
(ii) QR-Uniformity: A query(m) is delivered at most once by a process; (iii) QR-

Termination: Let t be the time at which a process pi terminates to send a query. If
faultyt(pi) does not hold, then that query generates at least αi response(m

′)
messages from a subset of Xi processes, |Xi| ≥ αi.

An implementation of a couple of query-response communication over fair-
lossy local channels can be done by the repeated broadcast of the query by the
sender pi until it has received at least αi responses from its neighbors. Since the
communication pattern followed is local, αi is defined locally as a function of
the expected number of stable known neighbors with whom pi may communicate
at the time t in which the query is issued. We consider that fi is the maximum
number of faulty processes in pi’s neighborhood. Thus, since the set of responses
received by pi includes its own response, αi = |N t

i | − fi + 1, which guarantees
the liveness of query-response rounds. To ensure that at least one stable node
pj (pj �= pi) receives the query and sends a response to pi, αi > fi + 1.

The local choice for αi changes from existing solutions which consider a global
value proportional to the number of processes [12, 15, 22]. Moreover, it follows
recent works on fault tolerant communication in radio networks which propose
a “local” fault model, instead of a “global” fault model, as an adequate strat-
egy to deal with the dynamics and unreliability of wireless channels in spite of
failures [21]. To reliably deliver data in spite of crashes, the maximum number
of local failures should be fi < Degti/2 [23].

To implement Ω, a stable termination property is necessary for the reliable
dissemination of the information to the whole network and consequent election.

Property 1. Stable Termination Property (SatP). Let pi be a node which
issues a query. Thus, ∃pj ∈ Stable, pj �= pi, which receives that query.

SatP is a guarantee that information from/to pi is going to be sent/received
to/from at least a stable pj in its neighborhood.

4.2 Behavioral Property

Instead of synchrony assumptions, to ensure the accuracy of the election, we
have adopted amessage patternmodel which establishes conditions on the logical
time the messages are delivered by processes. These are unified in the stabilized
responsiveness property or SRP .
Property 2. Stabilized Responsiveness Property (SRP). Let Xt

j be the set
of processes whose respective response to the latest query of pj before t is among

30 L. Arantes et al.

the first αj responses received by pj . Process pi satisfies SRP at time t:

SRP t(pi) iff stablet(pi) ∧ ∀pj ∈ Π ((∃ei,j , ∃t′ ≥ t, ρtr(ei,j , t′) = 1)

⇒ ∀t′′ ≥ t′ + ζ(ei,j , t
′), pi ∈ Xt′′

j)

SRP t(pi) states that there exists a time t after which all nodes of pi’s neigh-
borhood receive, to every of their queries, a response from pi which is always
among the first αj responses to the query. It denotes the ability of a stable node
pi to eventually always reply, among the first αj nodes, to a query sent by pj .
Moreover, as nodes may move, the SRPt(pi) states as well that neighbors of pi
eventually stop moving outside pi’s neighborhood.

To solve Ω, the SRP(pi) property should hold for one stable node pi in the
system, thus preventing a probable leader pi to be permanently demoted. As a
matter of comparison, in the timer-based model, this property would be: there
is a time t after which the output channels from a stable node pi to every other
neighbor pj that communicates with pi are eventually timely.

4.3 An Eventual Leader Election Algorithm

Algorithm 1 describes a protocol for implementing Ω in a mobile system satis-
fying the model, properties, and assumptions stated in Sections 3 and 4.

Notations. The algorithm uses the following variables and functions:

– midi: a counter used to timestamp every couple of query-response mes-
sages. Before broadcasting a new query, pi increments midi. These two
operations are atomically performed.

– local knowni: the current knowledge of pi about its neighborhood, i.e., the
set of nodes that communicated directly with pi. It is composed of tuples of
the form 〈midj , pj〉: midj is associated with the greatest timestamp value of
a query or response message received by pi from pj.

– global knowni: the current knowledge of pi about the membership of the
system. Similarly to local knowni, it is composed of tuples of the form
〈midj , pj〉.

– punishi: a set of tuples of the form 〈ct, p〉 where ct is a punish counter and
p the identity of the punished node.

– recvfromi: the set of processes that replied to the latest query of pi.
– MaxKnown(): a boolean function that checks if pi has the greatest times-

tamp associated to a message received from pj . It is used to verify if a given
neighbor process has moved or not.

– UnionMax(set1, set2, ...): a function that performs the union of sets whose
tuple elements have the form 〈ct, p〉. If 〈−, p〉 belongs to several sets, the
function considers the one whose value ct is the greatest one.

– Update State(): a function used to update the state of pi’s sets with the most
recent information. It keeps the tuples 〈ct, p〉 with the greatest counters in
these sets. It is used to evaluate the contents of a receiving message (query
or response).

– leader(): function that returns the current leader.

Eventual Leader Election in Evolving Mobile Networks 31

Algorithm 1. Eventual Leader Election for Mobile Networks

1 Init:

2

3 punishi ← {〈0, pi〉}
4 local knowni ← {〈midi, pi〉}
5 global knowni ← {〈midi, pi〉}
6 recvfromi ← ∅
7 midi ← 1
8 broadcast query(midi, punishi, global knowni)

9

10 Task T1: [Punishment]

11 Repeat forever
12 Wait until |recvfromi| ≥ αi

13 { Punishing known processes which did not responded }
14 If ∀pj : 〈−, pj〉 ∈ local knowni ∧ pj
∈ recvfromi ∧MaxKnown(pj) then
15 If 〈0, pj〉 ∈ punishi then
16 cmin ← min c : 〈c,−〉 ∈ punishi

17 replace in punishi 〈0, pj〉 by 〈cmin + 1, pj〉
18 Else
19 replace in punishi 〈v, pj〉 by 〈v + 1, pj〉
20 recvfromi ← ∅
21 midi ← midi + 1
22 broadcast query(midi, punishi, global knowni)

23 End repeat
24 Task T2: [Response]

25 upon reception of response (midj , punishj, global knownj) from pj
26

27 UpdateState(midj , punishj, global knownj , pj)
28 recvfromi ← recvfromi ∪ {pj}
29

30 Task T3 [Query]

31 upon reception of query (midj , punishj, global knownj) from pj
32

33 UpdateState(midj , punishj, global knownj , pj)
34 send response (midi, punishi, global knowni) to pj
35

36 Task T4 [Leader Election]

37 upon the invocation of leader()

38

39 return l such that 〈c, l〉 = Min(punishi)
40

41 MaxKnown (p) [Max counter associated with p]

42

43 If x : 〈x, p〉 ∈ local knowni ≥ y : 〈y, p〉 ∈ global knowni then
44 return true

45 Else
46 return false

47

48 UpdateState (midj , punishj, global knownj, pj) [Union of states]

49

50 local knowni ← UnionMax(local knowni, {〈midj , pj〉})
51 global knowni ← UnionMax(global knowni, global knownj, {〈midj , pj〉})
52 punishi ← UnionMax(punishi, punishj)
53

32 L. Arantes et al.

Underlying Principle. The algorithm elects the leader on a basis of a pun-
ishment procedure and on the periodic exchange of query-response messages.
Processes exchange these messages to know each other, to show that they are
alive, as well as to exchange information to elect the leader. If a query sent by
process pi is not responded by a process pj that pi locally knows, then pj is pun-
ished by pi. Each time pi punishes pj, it increments the counter ctj associated
to pj in punishi.

The rationale behind the punishment procedure is that a process that fail will
be infinitely often punished. The algorithm thus will eventually elect a stable
process that has the smallest punish counter. To ensure that all the nodes will
elect the same leader, processes should exchange their information regarding
locally known processes and their respective punishment counters. Thus, each
query or response message sent by pi, beyond the message id (midi), carries
the sets punishi and global knowni. Since the network remains connected over
time (Assumption 1), the information will spread over all stable processes.

To tolerate the mobility of nodes, the algorithm makes use of the message
counters. The timestamp of the latest message received from processes is used
to avoid false suspicions in case of mobility. If pj is in local knowni and if it
moves from pi’s neighborhood, then it will be punished by pi according to the
latest message received. But, as soon as pi gets the information (by the contents
of a received message) that another node has received a message from pj with
a greater timestamp, pi stops to punish pj . In this case, pi suspects pj to have
moved from its neighborhood and considers that it is still alive in the network.

Description. Initially, pi sends a first query to introduce itself to the network
(line 8). Then, four tasks are launched: T 1, T 2, T 3 and T 4.

Task T 1 [Punishment] : This task is made up of an infinite loop. At each round,
process pi waits for at least αi responses, which includes pi’s own response. For
each response(midj , punishj, global knownj) not received from pj such that
pj is considered as a current neighbor of pi (i.e., it belongs to local knowni)
and pj is not suspected to have moved from pi’s neighborhood (i.e., pi has a
greater message timestamp received from pj than the other processes of which
pi is aware), then pj will be punished by pi (lines 15 – 19). Notice that if it is
the first time that pj is punished by pi, then, its punish counter will be equal to
〈cmin + 1, pj〉 (line 17). Then, midi counter is incremented and a query(midi,
punishi, global knowni) message is sent to all nodes in pi’s neighborhood.

Task T 2 [Response] : In this task, node pi handles the reception of a re-
sponse message sent by pj containing midj , as well as the sets punishj and
global knownj . Process pi calls upon Update State() to update its state about
punishment of processes, membership, and neighborhood with more recent in-
formation coming from pj . It also includes pj with the respective midj in the
set of processes that answered to its latest query (local knowi), as well as in the
set that keeps its membership knowledge (global knowni).

Task T 3 [Query] : In this task, node pi handles the reception of a query mes-
sage sent by pj containing midj, as well as the sets punishj and global knownj .
Similarly to T 2, node pi updates its state about punishment of processes,

Eventual Leader Election in Evolving Mobile Networks 33

membership, and neighborhood with more recent information coming from pj .
It also answers pj ’s query with a response message timestamped with its midi
counter.

Task T 4 [Leader] : This task handles the invocation of leader(). Whenever
called, the leader() function returns the process with the smallest counter in
punishi, thanks to the Min(punishi) function (line 39). In the case that more
than a node satisfies such a condition, the identities of the nodes break the tie.
Eventually, all nodes will elect the same leader, as proved in the next section.

5 Proof of Correctness

We present a sketch of proof that Algorithm 1 ensures the eventual leadership
property. We consider a mobile network of unknown membership that satisfies
the model and assumptions stated in Sections 3 and 4.

Notations
(i) The state of a process pi in time t is represented by the contents of its

variables at t. (ii) Let seti be one of the sets local knowni, global knowni or
punishi of process pi. We denote setti this set at time t. Moreover, setti(pj) = c
if the value 〈c, pj〉 ∈ seti at time t; otherwise setti(pj) = ⊥. We denote set∗i (pj)
as the set of all values of setti(pj) such that t ∈ T and set∗∗(pj) as the set of
all set∗i (pj), i ∈ Π . (iii) Let m be a message sent by pi. Then, m is either a
query or a response message and it contains midi and the sets punishi and
global knowni. (iv) We consider that process pj punishes pi if it executes lines 17
or 19 increasing the counter of pi in its punishj set. (v) Let us denote the set
SBP as the subset of processes that have a bounded value on the punish set of
all processes, SBP = {pi ∈ Π | punish∗∗(pi) is bounded}.

Lemma 1. Let J(i,j) be a journey from pi to pj in the TVG GtrS . Let t0 be the de-
parture and tf be the arrival of J(i,j). Let set be either punish or global known.

For any process pk, if set
t0
i (pk) �= ⊥ then set

tf
j (pk) �= ⊥ ∧ settfj (pk) ≥ sett0i (pk).

Proof. We first show that the lemma holds for the one-step journey J(i,j) =
{(ei,j , t0)}, i.e., there is a message m sent by pi at time t0 which is deliv-
ered and handled by pj at time tf = Arrival(J(i,j)). We denote punishm
and global knownm the sets punisht0i and global knownt0

i carried by m re-
spectively. Upon reception of m, pj calls the function UpdateState() and the
result of UnionMax(setj, setm, ...) is stored in setj. Thus, after m is handled,

if sett0i (pk) �= ⊥, then settfj (pk) �= ⊥ ∧ settfj (pk) ≥ sett0i (pk). Moreover, punishi
is modified either (i) when pi punishes some process or (ii) upon reception
of m. In (i), punishi is updated in line 17 and 19. In both cases, the as-
sociated counter values are increased by at least one. In (ii), the result of
UnionMax(punishi, punishk) is stored in punishi. Therefore, values in punishi
never decrease locally. On the other hand, global knowni is only updated on
reception of a message and, thus, similarly to punishi, values in global knowni

never decrease as well. Since in a journey, the arrival of a message precedes the

34 L. Arantes et al.

departure of the message that follows, by induction and transitivity of inequality,
the lemma holds for a journey of any step size.

Observation 1. Let midi = c at time t. If a process pj does not receive any

message sent by pi after t then local known
t′
j (pi) ≤ c or local knownt′

j (pi) = ⊥,
∀t′ ≥ t. This follows since local knownj(pi) is updated by pj upon the reception
of a message from pi and, from assumption, the value midm carried by this
message is such that midm ≤ c.
Lemma 2. Let pi be a stable process and t ∈ T . If SRPt(pi) then there is a
time u ≥ t after which no process punishes pi.

Proof. Let pj be a process. Three cases are possible.
Case 1: pj is faulty. If faultyu(pj), u ≥ t, then pj will not punish pi after u.
Case 2: pj is stable and it receives a message sent from pi at time t′ > t. Since

SRPt(pi) holds and t
′ > t, ∀u ≥ t′ + ζ(ei,j , t

′) pi ∈ Xu
j . Thus, after u, because

pi ∈ recvfromj , the predicate of line 14 will always return false and pj will
never punish pi after u.

Case 3: pj is stable and it never receives a message from pi, sent after t. In
this case, (i) either pj does not receive any message from pi or (ii) pj receives
at least one message from pi. In (i), if pj never receives a message from pi at
any time, the latter will never be added to the set local knownj . Therefore, the
predicate of line 14 always returns false and pj never punishes pi. In (ii), if pj
receives at least one message from pi, then pi sent this message at time t at the
latest. Let midi = c at time t. Due to Observation 1, local knownt

j(pi) ≤ c. As
pi is stable, there is a time t′ > t such that midi = c + 1 and pi broadcasts a
query. Upon reception of its own response at time t′′ > t′, pi updates its local
state. In particular global knownt′′

i (pi) is updated to c+1 (line 51). Furthermore,
Assumption 1 (recurrent connectivity) ensures that there is a journey J(i,j) from
pi to pj , such that departure(J(i,j)) > t′′ and arrival(J(i,j)) = u. According

to Lemma 1, global knownu
j (pi) ≥ global knownt′′

i (pi) = c + 1. Thus, ∀u′ ∈
T, u′ > u ⇒ global knownu′

j (pi) > c ≥ local knownt
j(pi) and, thus, every call

to Maxknown() will always return false. It follows then that after u, pj never
punishes pi.

We have shown that for any process pj , there is a time u after which pj never
punishes pi. As there is a finite number of processes, there is a finite time after
which no process punishes pi.

Lemma 3. Let pi be a process such that no process punishes pi after a finite
time t. Thus, pi ∈ SBP .
Proof. Since after t, no process punishes pi, a process pj punishes pi at most
the number of times pj broadcasts a query till t. As there is a finite num-
ber of processes (from the finite arrival assumption), over all processes, the
overall total number of times pi is punished is finite. Let puni be this num-
ber and let max puni be the maximum value by which the punish counter of
pi is incremented or updated ∀pj ∈ Π (note that at each punish step, the

Eventual Leader Election in Evolving Mobile Networks 35

counter associated to pi is either incremented by 1 at line 19 or set to cmin + 1
at line 17). Then, as the initial value of every punish counter is 0, we have
∀s ∈ T, ∀pj ∈ Π, punishsj(pi) ≤ puni ∗max puni ∨ punishsj(pi) = ⊥; and, by
definition of SBP , pi ∈ SBP .
Lemma 4. Let pi ∈ SBP . There is a time t after which pi is not punished by
any process.

Proof. The proof is by contradiction. Let us assume that ∀t ∈ T, ∃(t′, pj) ∈
T×Π , such that t′ > t and pj punishes pi at time t′. Hence, process pi is punished
infinitely often and, as the number of processes is finite, there is a process pj
that punishes pi infinitely often. It follows, therefore, that punish∗j(pi) is not
bounded, which is a contradiction.

Theorem 1. SBP is the set of processes that are eventually not punished.

Proof. Theorem 1 follows directly from lemma 3 and lemma 4.

Lemma 5. Let pj ∈ Faulty. pj will be punished an infinite number of times
by at least one process pi ∈ Stable. Thus, it follows that SBP ⊂ Stable.

Proof. When pj connects to the system, it broadcasts at least one query, cor-
responding to the first message sent upon execution of line 8. Let faultyt(pj)
and last midj be the last value of midj before t. Since the increment of vari-
able midj and the query (lines 7–8 or 21–22) are performed atomically (i.e.,
pj does not crash between these two operations), pj broadcasts a query with
midj = last midj before crashing. Furthermore, due to the stable termina-
tion Property 1 (SatP), there is at least one process pi ∈ Stable that re-
ceives this query. Thus, there is a time t′ such that local knownt′

i (pj) and

global knownt′
i (pj) equal to last midj.

We remark (lines 50 and 51) that no process pk inserts in its global knownk set
neither in its local knownk set the tuple 〈midj , pj〉, such that midj > last midj ,
since last midj is the greatest value of midj of any message received from pj .
Thus, after t′, each call by process pi to the function MaxKnown(pj) returns

true. Let be t′′ = max(t, t′). Since stablet
′′
(pi), the number of queries sent by

pi after t′′ is infinite. Moreover, since pj crashed at time t ≤ t′′, pj does not
respond to any of those queries. Therefore, pi will punish pj infinitely often.

Lemma 6. Let pj /∈ SBP be a process such that ∃pi, pi ∈ Stable which pun-
ishes pj infinitely often. Then, ∀pk ∈ Stable, punish∗k(pj) is unbounded.

Proof. Since pi punishes pj infinitely often, punish∗i (pj) is unbounded. Let pk ∈
Stable, pk �= pi. Let us show that punish∗k(pj) is unbounded as well. Let b ∈ N,
since punish∗i (pj) is unbounded, there is a time t ∈ T such as punishti(pj) ≥ b.
From Assumption 1 (recurrent connectivity) there is a journey J(i,k) from pi to
pk, such that t′ = departure(J(i,k)) > t and arrival(J(i,k)) = t′′. As punish values

increase over time and according to Lemma 1, punisht
′′
k (pj) ≥ punishti(pj) > b.

We conclude then that punish∗k(pj) is unbounded.

36 L. Arantes et al.

Lemma 7. Let pi ∈ SBP . There is a time t after which ∀pj , pj ∈ Stable will
carry the same punishtj(pi) value for pi and this value never changes after t.

Proof. Since pi ∈ SBP , ∃b ∈ N, such that ∀s ∈ T, ∀pj ∈ Π , punishsj(pi) < b ∨
punishsj(pi) = ⊥. This remains true if pj ∈ Stable. Furthermore, there is a time
when pi adds itself to punishi (line 3). Thus, punish

∗
∗(pi) �= ∅ and it is bounded.

As punish∗∗(pi) is composed of integer values, there exists a maximum value; let
max punish(pi) be such a maximum value. Let pj be the stable process such
that punishsj(pi) = max punish(pi). Due to Assumption 1 (recurrent connectiv-
ity), there is a journey J(j,k) from pj to pk, such that departure(J(j,k)) > s and

arrival(J(j,k)) = s′, s′ > s. On the one hand, following Lemma 1, punishs
′

k (pi) ≥
max punish(pi). On the other hand, since punishs

′
k (pi) ≤ max punish(pi), we

conclude that punishs
′

k (pi) = max punish(pi). Moreover, the punish values in-

crease over time. Thus, ∀s′′, s′′ ≥ s′ ⇒ punishs
′′

k (pi) = max punish(pi). Since
there is a finite number of stable processes, ∀pk ∈ Stable, there is a time s′k
where punish

s′k
k (pi) = max punish(pi). Let be t = max(s′k|pk ∈ Stable) then

∀pk ∈ Stable, ∀t′ ≥ t, punisht′k (pi) = max punish(pi).

Theorem 2. Algorithm 1 satisfies the eventual leadership property.

Proof. From assumption, there is at least one process pi ∈ Stable satisfy-
ing SRPs(pi) at time s. According to Lemma 2, pi ∈ SBP ; thus, SBP �=
∅. According to Lemma 7 and the finite arrival assumption, ∃t ∈ T, ∀t′ >
t, ∀pi ∈ SBP, ∀pj ∈ Stable, punisht

′
j (pi) = max punish(pi). Let maxSBP =

Max(max punish(pk)), pk ∈ SBP . From Lemma 6, the finite arrival assumption
and the fact that the punish values never decrease, ∃t′′ ∈ T, ∀pj ∈ Stable, ∀pk /∈
SBP, ∀t′ > t′′ maxSBP < punisht

′
j (pk). Thus, there exists a time u = max(t, t′′)

after which Min(punishj) will return the same tuple 〈c, pi〉, ∀pj , such that
pi ∈ SBP . Hence, upon invoking the leader() function after u, all stable pro-
cesses will return the same process identity as the leader.

6 Conclusion

This paper has provided a model and an algorithm to solve the eventual leader
election problem in mobile dynamic systems, in which both the network topology
and relations between mobile nodes evolve over time. The algorithm implements
the Ω class, following the message-pattern approach and exploiting the TVG
framework to represent the dynamics of the network topology. As a future re-
search, the timer-based approach will be considered.

References

1. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
JACM 43(2), 225–267 (1996)

2. Mostefaoui, A., Raynal, M., Travers, C.: Time-free and timer-based assumptions
can be combined to obtain eventual leadership. IEEE TPDS 17(7), 656–666 (2006)

3. Larrea, M., Fernandez, A., Arévalo, S.: Optimal implementation of the weakest
failure detector for solving consensus. In: SRDS 2000, pp. 334–334 (2000)

Eventual Leader Election in Evolving Mobile Networks 37

4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer,
Heidelberg (2001)

5. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implement-
ing omega with weak reliability and synchrony assumptions. In: PODC 2003,
pp. 306–314. ACM Press (2003)

6. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: PODC 2004,
pp. 328–337 (July 2004)

7. Malkhi, D., Oprea, F., Zhou, L.: O meets paxos: Leader election and stability
without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 199–213. Springer, Heidelberg (2005)

8. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model
for implementing omega and consensus. IEEE Transactions on Dependable and
Secure Computing 6, 269–281 (2009)

9. Fernandez, A., Jimenez, E., Raynal, M.: Eventual leader election with weak as-
sumptions on initial knowledge, communication reliability, and synchrony. Journal
of Computer Science and Technology 25(6), 1267–1281 (2010)

10. Tucci-Piergiovanni, S., Baldoni, R.: Eventual leader election in infinite arrival
message-passing system model with bounded concurrency. In: EDCC 2010,
pp. 127–134 (2010)

11. Masum, S.M., Ali, A.A., Touhid-youl Islam Bhuiyan, M.: Asynchronous leader
election in mobile ad hoc networks. In: AINA Conference, pp. 827–831 (2006)

12. Cao, J., Raynal, M., Travers, C., Wu, W.: The eventual leadership in dynamic
mobile networking environments. In: PRDC Conference, pp. 123–130 (2007)

13. Melit, L., Badache, N.: An Ω-based leader election algorithm for mobile ad hoc
networks. In: 4th Networked Digital Technologies Conf., pp. 483–490 (2012)

14. Gomez-Calzado, C., Larrea, M., Raynal, M.: Fault-tolerant leader election in mo-
bile dynamic distributed systems. Technical report, University of the Basque Coun-
try UPV/EHU (2013)

15. Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: DSN Conference, pp. 351–360 (2003)

16. Jiménez, E., Arévalo, S., Fernandez, A.: Implementing unreliable failure detectors
with unknown membership. Inf. Process. Lett. 100(2), 60–63 (2006)

17. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures.
SIGACT News 35(2), 36–59 (2004)

18. Larrea, M., Raynal, M., Soraluze, I., Cortiñas, R.: Specifying and implementing an
eventual leader service for dynamic systems. Int. J. Web Grid Serv. 8(3), 204–224
(2012)

19. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Adhoc-Now Conference, pp. 346–359 (2011)

20. Min-Te, S., Lifei, H., Arora, A., Ten-Hwang, A.L.: Reliable mac layer multicast in
ieee 802.11 wireless networks. In: ICPP Conference, pp. 527–536 (2002)

21. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: PODC 2004, pp. 275–282 (2004)

22. Mostefaoui, A., Raynal, M., Travers, C., Patterson, S., Agrawal, D., Abbadi, A.:
From static distributed systems to dynamic systems. In: SRDS 2005, pp. 109–118
(2005)

23. Bhandari, V., Vaidya, N.H.: Reliable broadcast in radio networks with locally
bounded failures. IEEE TPDS 21, 801–811 (2010)

Self-stabilizing Leader Election in Population
Protocols over Arbitrary Communication Graphs

Joffroy Beauquier1, Peva Blanchard2,�, and Janna Burman1

1 LRI, Paris-South 11 University, Orsay, France
{jb,blanchard,burman}@lri.fr

2 LRI, Bât. 650, Université Paris-Sud 11, 91405 Orsay Cedex France

Abstract. This paper considers the fundamental problem of self-
stabilizing leader election (SSLE) in the model of population protocols. In
this model, an unknown number of asynchronous, anonymous and finite
state mobile agents interact in pairs over a given communication graph.
SSLE has been shown to be impossible in the original model. This im-
possibility can been circumvented by a modular technique augmenting
the system with an oracle - an external module abstracting the added
assumption about the system. Fischer and Jiang have proposed solutions
to SSLE, for complete communication graphs and rings, using an oracle
Ω?, called the eventual leader detector. In this work, we present a solution
for arbitrary graphs, using a composition of two copies of Ω?. We also
prove that the difficulty comes from the requirement of self-stabilization,
by giving a solution without oracle for arbitrary graphs, when an uniform
initialization is allowed. Finally, we prove that there is no self-stabilizing
implementation of Ω? using SSLE, in a sense we define precisely.

Keywords: leader election, self-stabilization, population protocols,
global fairness, oracles.

1 Introduction

Leader election and consensus are among the most fundamental problems in
distributed computing. Both have been formally proven not to admit any solution
under some assumptions and especially under the presence of faults. Consensus
is impossible in asynchronous message passing or shared memory systems, even
with a single crash fault [15]. Leader election is impossible each time the system
is completely symmetrical, involving no identifiers, or is required to be self-
stabilizing [13], i.e., withstand state-corrupting transient failures (see, e.g., [7,4]).
To circumvent these impossibilities, a lot of studies have been performed for
devising and defining the (minimum) supplementary information or assumptions
needed to solve these problems. Such information generally should be available
or possible to retrieve in real systems, allowing practical implementations.

Devising such necessary supplementary information in a modular way can be
done using oracles. An oracle can be viewed as a black box, which, when asked
� Corresponding author.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 38–52, 2013.
c© Springer International Publishing Switzerland 2013

Leader Election in Population Protocols 39

by the system, provides some type of information, hopefully useful to solve a
given problem. A great number of studies, following Chandra and Toueg [11],
have been devoted to a specific type of oracles, named failure detectors, and
allowing to solve consensus with crashes in asynchronous networks. Generally,
failure detectors provide a quite precise type of information. It is a list of process
identifiers (estimated to have crashed). Obviously, the oracle that gives as few
information as possible, that is the weakest oracle, is both of theoretical and
practical interest. For instance, in their framework, Chandra et al. [10] exhibit
the weakest failure detector necessary to solve consensus. This oracle is called
the eventual leader elector and is denoted by Ω.

Fischer and Jiang [14] introduced a different type of oracles, for solving the
leader election problem in the model of tiny, asynchronously mobile and pairwise
communicating agents called population protocols [3]. In particular, this model
was introduced in order to characterize what can be computed with only mini-
mal assumptions in a network of mobile agents. The agents are assumed to be
undistinguishable (no identifiers and the same algorithm for all) and memory
bounded (actually, constant memory). An agent cannot know with which agent
it communicates, nor if the agent it communicates with presently is the same
as the agent it communicated with just before. Moreover, no knowledge or an
upper bound on the number of agents is available. Such characteristics, make
the classical failure detectors, or any variant involving a list or the number of
identifiers, not applicable to population protocols. This is one of the reasons why
Fischer and Jiang introduced a totally different type of oracle. Their oracle is
able to detect the presence or the absence of (at least) one leader. It is denoted
by Ω?, in reference to Ω, though it is quite different from a failure detector in
the sense that it provides information taken from a global configuration of a
system.

Fischer and Jiang studied the possibility to solve self-stabilizing leader election
(SSLE) over specific communication graphs. They prove that Ω? helps to solve
SSLE in complete graphs and on rings, while the same problem in complete
graphs is proven impossible without oracles [4,8]. After the introduction of Ω?,
other oracles for leader election in population protocols appeared in the liter-
ature, all based on some information related to global configurations. Michail
et al. [17] introduced the absence detector, an oracle that indicates which agent
states are not present in a configuration, as well as a covering service which
informs an agent that it has met (communicated with) all the other agents. In-
tuitively, both are much stronger than Ω?. In [6], we solve SSLE in arbitrary
graphs with Ω$, an oracle which distinguishes between the presence of zero, one
or more leaders in a configuration (in the way that Ω? does for zero or at least
one leader). Additional oracle WΩ? is introduced in [6]. It is a weaker version
of Ω? that can be used to solve SSLE over oriented or bounded degree trees.

Our Contribution
Comparing precisely and relating all these different oracles seemed necessary.
That is why the first contribution of this paper is to provide a formal framework
for dealing with oracles related to SSLE and encompassing all the particular

40 J. Beauquier, P. Blanchard, and J. Burman

oracles described above. Although it may seem complicated at a first glance, this
framework is necessary for two reasons. First, it provides a unified formalism,
taking into account both oracles that interact with a protocol (like Ω?), and
problems, which are independent of any protocol. A second important feature
of the framework is a formal definition of the implementation of an oracle by
another oracle. This step goes through the definition of compositions (sequential,
parallel, self), which, e.g., allows to express that two copies of Ω?, are stronger
than a single one, or that an oracle that provides information on a three value
variable is stronger than an oracle that provides only information on two. Then,
based on the notion of implementation, this framework allows to classify some
class of leader election oracles under the form of a double hierarchy, which leads
to a lattice.

We then show that one of the elements in the lattice, Ω?(2, 1) (a notation
which we define in the sequel and which represents two instances of Ω?, giving
independently two different outputs), allows to solve SSLE over any connected
communication graph (Sec. 6). The protocol is non trivial and, with its correct-
ness proof, may be considered as the major contribution of this paper. On the
contrary, we prove that if the property of self-stabilization is not mandatory,
that is if some (uniform) initialization is allowed, leader election can be solved
without oracle in any communication graph (Sec. 5). This result confirms the
fact that the difficulties for solving SSLE do come from the tolerance to (tran-
sient) failures, modeled by the framework of self-stabilization. In addition, to the
best of our knowledge, this is the first leader election population protocol over
arbitrary graphs.

All the protocols proposed in the paper assume and require the original global
fairness of populationprotocols.We show that,with only local fairness, leader elec-
tion in arbitrary graphs is impossible even with (uniform) initialization (Sec. 4).

Finally we show that Ω? cannot be implemented using SSLE over the family
of all graphs, even with multiple copies of SSLE (Sec. 7). This result is an
illustration of what can be done in the proposed framework. It should be put in
relation with a result in [6], stating that, over rings,Ω? and SSLE are equivalent.
The paper ends with some open problems (Sec. 8).

Due to the lack of space, most of the proofs are sketched. All complete proofs
appear in [5].

Related Work
Self-stabilization was introduced by Dijkstra [13]. A self-stabilizing protocol does
not depend on initialization of process states and converges towards a correct
behavior from arbitrary starting configurations. Self-stabilization is intended to
deal with transient failures, that hit a system punctually, corrupting memory
and channel contents. It also deals with dynamic networks, where the topology
changes during an execution.

Being an important primitive in distributed computing, leader election has
been extensively studied. Below, we mention only the most relevant literature.

Since the introduction of population protocols by Angluin et al. in [2], sev-
eral studies have been devoted to self-stabilizing leader election in this model.

Leader Election in Population Protocols 41

Angluin et al. [4] present a non-uniform SSLE algorithm for rings in the pop-
ulation protocol model. They also show in the same paper that there does not
exist a SSLE protocol for general connected networks.

Fischer and Jiang [14] propose the eventual leader detector Ω? and, using
it, present uniform SSLE protocols for complete graphs and rings. The first
protocol works under either a local or global fairness condition, whereas the
second requires global fairness. It is also shown that with only local fairness,
uniform self-stabilizing leader election in rings is impossible, even with the help
of Ω?. Canepa and Potop-Butucaru [9] propose deterministic and probabilistic
protocols in arbitrary graphs, assuming Ω? and different types of local fairness
conditions.

Cai et al. [8] show that, in complete communication graphs, n agent-states are
necessary and sufficient to solve SSLE , where n is the population size. This result
involves that an oracle is necessary for solving SSLE in population protocols. For
the enhanced model of mediated population protocols - MPP (allowing an extra
memory on every agent pair) [16], the work of Mizogushi et al. [18] shows that
(2/3)n agent states and a single bit memory on every agent pair are sufficient
to solve SSLE . They also show that there is no MPP that solves SSLE with
any constant agent-states and any constant size memory on each agent-pair, for
general n.

Michail et al. [17] introduce the absence detector, an oracle for population
protocols that indicates which agent states are not present in a configuration, as
well as a covering service which informs an agent that it has met (communicated
with) all the other agents. Intuitively, both are much stronger than Ω?.

Finally, in [6] we define Ω$ and WΩ?, two oracles respectively stronger and
weaker than Ω?, and prove that SSLE can be solved with Ω$ over weakly
connected communication graphs, with WΩ? over oriented trees and with Ω?
over weakly connected communication graphs of bounded degree.

2 Model and Definitions

2.1 Population Protocol

We use the same definitions as in [14] with some slight modifications. A network
is represented by a directed graph G = (V, E) with n vertices and no multi-
edges nor self-loops. Each vertex represents a finite-state sensing device called
an agent, and an edge (u, v) ∈ E indicates the possibility of a communication
between two distinct nodes u and v in which u plays the role of the initiator and
v of the responder. The orientation of an edge corresponds to this asymmetry in
roles. In this paper, we consider weakly connected networks.

A population protocol A(D,Q, Init,X, Y,O, δ) consists of a family of graphs
D (the domain of the protocol), a finite state space Q, a function Init that asso-
ciates every graph G(V, E) in D with a set Init(G) of initial configurations (see
below) on G , a finite input alphabet X , a finite output alphabet Y , an output
function O : Q → Y and a transition function δ : (Q × X)2 → P(Q2) that
maps any tuple (q1, x1, q2, x2) to a non-empty (finite) subset δ(q1, x1, q2, x2) in

42 J. Beauquier, P. Blanchard, and J. Burman

Q2. A (transition) rule of the protocol is a tuple (q1, x1, q2, x2, q
′
1, q
′
2) such that

(q′1, q
′
2) ∈ δ(q1, x1, q2, x2) and is denoted by (q1, x1)(q2, x2)→ (q′1, q

′
2). The pop-

ulation protocol A is deterministic if the set δ(q1, x1, q2, x2) always has exactly
one element.

Given a graph G(V, E) in D and a set Z, an assignment with values in Z is a
function from V to Z. A configuration C is an assignment with values in the state
space Q. An input assignment (resp. output assignment) is an assignment with
values in the input alphabet X (resp. output alphabet Y). Each configuration
C induces an output assignment O ◦ C where O is the output function of the
protocol. A trace T with values in Z on the graph G(V, E) is an infinite sequence
of assignments with values in Z, i.e., T = α0α1 . . . where αi : V → Z. An input
trace (resp. output trace) is a trace with values in the input alphabet X (resp.
the output alphabet Y). The trace α0α1 . . . is constant if α0 = α1 = . . . , and it
is uniform constant if it is constant and for every u, v ∈ V , α(u) = α(v).

Given a graph G(V, E) in D, an action is a pair σ = (e, r) where r is a rule
(q1, x1)(q2, x2)→ (q′1, q′2) and e = (u, v) an edge of G. Let C,C′ be configurations
and α be an input assignment. We say that σ is enabled in (C,α) if C(u) =
q1, C(v) = q2 and α(u) = x1, α(v) = x2. We say that (C,α) goes to C′ via σ in
one step, denoted (C,α)

σ−→ C′, if σ is enabled in (C,α), C′(u) = q′1, C
′(v) = q′2

and C′(w) = C(w) for all w ∈ V −{u, v}. In other words, C′ is the configuration
that results from C by applying the transition rule r to the node pair e. We also
denote by (C,α) → C′ when (C,α)

σ−→ C′ for some action σ. Given an input
trace Tin = α0α1 . . . , we write C ∗−→ C′ if there is a sequence of configurations
C0C1 . . . Ck such that C = C0, C′ = Ck and (Ci, αi) → Ci+1 for all 0 ≤ i < k,
in which case we say that C′ is reachable from C given the input trace Tin.

Given a graph G in D, a virtual execution E is an infinite sequence of configu-
rations, input assignments and actions E = (C0, α0, σ0)(C1, α1, σ1) . . . such that
C0 ∈ Init(G) and for each i, (Ci, αi)

σi−→ Ci+1. Such a virtual execution induces
an output trace denoted by O(E) defined as (O ◦C0)(O ◦C1) . . . where O is the
output function of the protocol. We denote by SE the (infinite) suffix of E such
that each couple (C,α) (C being a configuration, and α an input assignment) in
SE appears infinitely often in SE. This suffix is well-defined because the number
of couples (C,α) that occurs finitely often in E is bounded.

We now define fair executions. We first recall two fairness conditions used
with population protocols [14]:

(Local Fairness) a virtual execution (C0, α0, σ0)(C1, α1, σ1) . . . is locally fair
when, for every action σ, if σ is enabled in (Ci, αi) for infinitely many i, then
(Cj , αj)

σ−→ Cj+1 for infinitely many j.
(Global Fairness) a virtual execution (C0, α0, σ0)(C1, α1, σ1) . . . is globally fair

when, for every C,C′, α such that (C,α)→ C′, if (C,α) = (Ci, αi) for infinitely
many i, then C′ = Cj for infinitely many j.

In this paper, unless stated otherwise, an execution is a virtual execution that
is globally fair. Finally we consider two types of population protocols. A popu-
lation protocol is uniformly initialized if there exists a state q0 such that every

Leader Election in Population Protocols 43

initial configuration is an assignment with values in {q0}. In a non-initialized
population protocol, the set of initial configurations is the set of all possible
configurations.

2.2 Run, Behaviour, Oracle and Implementation

The definitions of runs, behaviours and oracles that we give below, are different
from those in [4,14] and are required to obtain a proper framework for defining
oracles and establishing relations between them. For instance, in this frame-
work, the oracles are self-implementable, in contrast with the traditional failure
detectors’ frameworks [12].

A schedule on a network G(V, E) is a sequence of edges S = e1e2 . . . , i.e.,
ei ∈ E for all i. The schedule S associated with an execution E is the sequence
S of edges that appear in the sequence of actions in E; we also say that E is an
execution with schedule S.

The following notion of compatibility of a trace with a schedule involves that
the changes in a trace are only caused by the interactions. A trace T = α0α1 . . .
onG is said to be compatible with the schedule S = (u0, v0)(u1, v1) . . . onG if, for
every i, for every w ∈ V − {ui, vi}, αi(w) = αi+1(w). That is, two consecutive
assignments can differ only in the assignment values of the two agents in the
corresponding edge in the schedule. Note that, by definition, the output trace
induced by an execution with schedule S of a population protocol on G, is
compatible with S.

(Run). A run R(X,Y) with an input alphabet X and output alphabet Y on
a network G(V, E) is a triple (Tin, Tout, S), where Tin is a trace with alphabet X
on G, Tout is a trace with alphabet Y on G and S is a schedule on G such that
Tin and Tout are both compatible with S. The trace Tin (resp. Tout) is referred
to as the input trace (resp. output trace) of the run.

(Behaviour). A behaviour B is given by a family D of graphs (the domain of
B), an input alphabet X , an output alphabet Y and a function that maps any
graph G in D to a set B(G) of runs with input alphabet X and output alphabet
Y . Given a population protocol A with domain D, input alphabet X and output
alphabet Y , we define the behaviour Beh(A) associated with the protocol A as
follows. The domain isD, the input alphabet is X , the output alphabet is Y , and,
for any graph G in D, for any run (Tin, Tout, S) on G, (Tin, Tout, S) ∈ Beh(A)(G)
if and only if there exists an execution of A on G with the input trace Tin, the
output trace Tout and the schedule S.

In the following paragraph, we define the notion of composition of behaviours.
Informally, a serial composition uses the output of one behaviour as the input
of another behaviour. A parallel composition consists in two behaviours being
used independently. Finally, a self composition uses (a part of) the output of a
behaviour as the input to the same behaviour, producing a sort of “feedback”. In
[14], the self composition is implicitly used, when the oracle Ω? produces a new
input to a protocol based on the output of the same protocol.

Formally, consider two behaviours B1, B2 with (respectively) domains D1, D2

such that D1 ∩ D2 �= ∅, input alphabets X1, X2, and output alphabets Y1, Y2.

44 J. Beauquier, P. Blanchard, and J. Burman

We denote by TX a trace with values in X . The parallel composition B = B1 ⊗
B2 is the behaviour with domain D1 ∩ D2, alphabets X1 × X2, Y1 × Y2 such
that, for every G ∈ F , B(G) is the set of runs ((TX1 , TX2), (TY1 , TY2), S) with
(TX1 , TY1 , S) ∈ B1(G) and (TX2 , TY2 , S) ∈ B2(G). If Y1 = X2 = U , the serial
composition B = B2◦B1 is the behaviour with domainD1∩D2 and alphabetsX1,
Y2 defined as follows. For every G ∈ F , B(G) is the set of runs (TX1 , TY2 , S) such
that there exists a trace TU satisfying (TX1 , TU , S) ∈ B1 and (TU , TY2 , S) ∈ B2.
If X1 = U × V and Y1 = U ×W , the self composition B = SelfU(B1) on U is
the behaviour with domain D1, alphabets V,W , where, for every G ∈ F , B(G)
is the set of runs ((T in

U , T in
V), (T out

U , T out
W), S) ∈ B such that T in

U = T out
U .

Given a family H of behaviours, a behaviour B is a composition of behaviours
from H if it is a combination of serial, parallel and self composition of behaviours
in H .

(Implementation, Comparison). A behaviour B2 is an implementation of
a behaviour B1 over a family F of graphs when F ⊂ D1 ∩ D2, and for every
graph G ∈ F , B2(G) ⊂ B1(G).

Consider a family H of behaviours and a family F of graphs. We say that a
behaviour B1 is weaker than a behaviour B2 over (F ,H), denoted by B1 � B2

mod (F ,H), when there exists a composition B involving the behaviour B2 and
behaviours fromH that implements B1 overF . In other words, if we can compose
behaviours from H with one copy of B2 to implement B1, then B1 is said to be
weaker than B2. This is analogous to the definition in [11] of an oracle being
weaker than another one.

The two behaviours are equivalent if B1 � B2 mod (F ,H) and B2 � B1

mod (F ,H). We denote this case by B1 � B2 mod (F ,H). When F and H are
clear from the context, we write B1 � B2 and B1 � B2.

A problem and an oracle are defined as behaviours. A population protocol A
is a solution to a problem P (resp. an implementation of an oracle Θ) using a
behaviour B over a family F of graphs if there exists a composition involving
the behaviours Beh(A) and B that implements the behaviour P (resp. Θ) over
F . Note that with these definitions, if there exists a population protocol in some
family H of protocols that solves the problem P1 using the problem P2 over a
family F , then P1 is weaker than P2 over (F ,H∗), where H∗ is the family of the
behaviours associated with the protocols in H.

Given a behaviour B, we define the stabilizing behaviour Bs associated with
B as follows. It has the same domain D, the same input and output alphabets
as B, and for any graph G in D, the set of runs Bs(G) comprises the runs
having a suffix1 belonging to B(G). Given a problem P (resp. an oracle Θ),
a population protocol A is a self-stabilizing solution to P (resp. self-stabilizing
implementation of Θ) if it is non-initialized and it is a solution to the stabilizing
problem Ps associated with P (resp. an implementation of the stabilizing oracle
Θs associated with Θ).

1 A run can be seen as a sequence of triples (αs, βs, es)s∈N where αs (resp. βs) is an
input (resp. output) assignment and es is an edge.

Leader Election in Population Protocols 45

Remark 1. The results in the paper concern the family Fall of all (weakly con-
nected) graphs. Note however that in Sec. 5 and 6, we present protocols that
solve the leader election problem in the family of all strongly connected graphs.
The extension of these protocols to the family of all weakly connected graphs is
detailed in [5]. Roughly speaking, given a weakly connected graph G, one can
simulate an execution over the symmetric closure G′ of G, which is strongly con-
nected. This can be done by performing, at each interaction, a non-deterministic
choice to select which agent plays the role of the initiator and which agent plays
the role of the responder. Then, it can be shown that such a non-deterministic
execution on G is an execution on G′. It is possible to get a deterministic version
of this simulation using the transformer in [4].

3 Specific Behaviours and Oracles

3.1 Eventual Leader Election Behaviour ELE
The domain of the behaviour ELE is the family Fall of all the graphs, the input
alphabet is {⊥} (no input), the output alphabet is {0, 1} and, for any graph
G ∈ Fall, a run (⊥, T, S) belongs to ELE(G) if and only if T has a constant
suffix T ′ = ααα . . . and there exists a node λ such that α(λ) = 1 and α(u) = 0
for every u �= λ. In other words, λ is the unique leader. Note that for all our
protocols, there is an implicit output function that maps a state to 1 if it is a
leader state, and to 0 otherwise.

In our settings, the (informal) problem of Self-Stabilizing Leader Election
(SSLE) is reformulated as the problem of constructing a population protocol
that is a self-stabilizing solution to the ELE problem (using some oracle, if
necessary).

3.2 Oracles Ω?(k, d)

We first define, for each d ≥ 1, an oracleΩ?(1, d). Its input alphabet is {0, 1}, and
its output alphabet is {0, . . . , d}. The domain of Ω?(1, d) is all the graphs. Given
an assignment α, we denote by l(α) the number of vertices that are assigned the
value 1 by α. Informally, if l(α) = c or l(α) ≥ c for all α in an (infinite) execution
suffix, then the oracle will eventually permanently output values in {c} in the
former case, and in {c, . . . , d} in the latter. When l(α) = 0 for all α in an (infinite)
execution suffix, it is only required that the oracle permanently outputs 0 at one
agent at least.

Given a graph G and a run (Tin, Tout, S) on G, (Tin, Tout, S) ∈ Ω?(1, d)(G)
when the following conditions hold. If Tin has a suffixα0α1 . . . such that ∀s, l(αs) =
0, then Tout has a suffix in which at least one agent is permanently assigned the
value 0. For every 1 ≤ r ≤ d−1, if Tin has a suffix α0α1 . . . such that ∀s, l(αs) = r,
then Tout has a suffix equal to the uniform constant trace r. For every 0 ≤ r ≤ d, if
Tin has a suffix α0α1 . . . such that ∀s, l(αs) ≥ r, then Tout has a suffix with values
in {r, r + 1, . . . , d}. Otherwise, any Tout (compatible with S) is valid.

46 J. Beauquier, P. Blanchard, and J. Burman

For any k, d ≥ 1, we formally define Ω?(k, d) =
⊗kΩ?(1, d). In other words,

Ω?(k, d) is the parallel composition of k copies of Ω?(1, d). Thus, the input
alphabet of Ω?(k, d) is {0, 1}k, and the output alphabet is {0, . . . , d}k.

Note that Ω?(1, 1) corresponds to the Fischer and Jiang’s oracle Ω? in [14],
while Ω?(1, 2) corresponds to the oracle Ω$ in [6], except that in the case of
absence of a leader, it is only required that at least one agent reports the fact. It
is easy to see that the oracles Ω?(k, d) form a lattice, i.e., if k ≤ k′ and d ≤ d′,
then Ω?(k, d) � Ω?(k′, d′) over any graph and behaviour families.

4 Impossibility of Leader Election under Local Fairness
with Uniform Initialization

In this section, we show that the eventual leader election problem cannot be
solved by any uniformly initialized population protocol under the local fairness
assumption.

We first recall the notion of graph covering [1,7]. A fibration (resp. opfibration)
between graphs G and B is a graph morphism φ : G → B such that for every
node b in B, for every node y satisfying φ(y) = b, φ induces a bijection between
the set of incoming (resp. outgoing) edges at y and the set of incoming (resp.
outgoing) edges at b. A covering from G to B is a graph morphism from G to
B that is both a fibration and an opfibration. The graph G is called the total
graph, and B is the base graph. The fiber over a node b in B is the set of nodes
in G that are mapped to b via φ, which we denote by φ−1(b). A fiber is trivial
if it is a singleton. A covering is a k-covering if every fiber has k elements, i.e.,
∀b, |φ−1(b)| = k. For instance, there is a covering from a ring of size 2 · n to a
ring of size n obtained by mapping two diametrically opposite nodes to the same
node.

The following theorem is inspired by the impossibility result of leader elec-
tion in the family of rings under local fairness [14] and the ideas developed in
[1,7]. Note that the models considered in [1,7] are different from the population
protocols. Hence, the results do not directly apply to our case.

Theorem 1. Let F be a family of graphs that contains graphs G and B such
that there exists a k-covering φ : G → B with k ≥ 2. There is no uniformly
initialized population protocol that solves the ELE problem over the family F
under the local fairness assumption.

Proof (Sketch). The result is proved by contradiction. Assume that such a proto-
col exists, and consider a locally fair execution EB on B with γ0γ1 . . . being the
corresponding sequence of configurations. Thanks to the property of covering,
we can lift EB to get a locally fair execution EG on G containing configurations
gs such that gs = γs ◦φ for every s ∈ N. Hence, since φ is a k-covering, and since
EB has a suffix during which there is a unique leader, EG contains infinitely
many configurations with k ≥ 2 leaders; whence a contradiction. ��

Leader Election in Population Protocols 47

5 Leader Election under Global Fairness with Uniform
Initialization

We establish that, under global fairness, solving the leader election problem on
arbitrary communication graphs is possible without oracle, when an uniform
initialization is possible (Alg. 1). In other words, there exists a uniformly ini-
tialized population protocol that solves the ELE problem over the family of all
graphs under the global fairness assumption. This result highlights the differ-
ence between global and local fairness. It also shows that the necessity to use
an oracle comes from the requirement of self-stabilization. As explained in Re-
mark 1, our protocol considers strongly connected graphs. Each agent x can be
leader or non-leader (implemented with a variable leaderx) and can hold a white
or black token (implemented with a variable tokenx). Initially, every agent is a
leader and holds a black token (uniform initialization). The tokens move through
the network by swapping between two agents during an interaction. When two
black tokens meet, one of them turns white. When a white token interacts with
a leader x, x becomes a non-leader and the token is destroyed.

Algorithm 1. Leader Election with Uniform Initialization
1 variables for every agent x:
2 leaderx : 0 (non-leader) or 1 (leader)
3 tokenx : ⊥ (no token), white or black

4 initialization: ∀x, (leaderx, tokenx) = (1, black) /* uniform */
5 protocol (initiator x, responder y):
6 if tokenx = tokeny = black then
7 tokeny ← white
8 if tokenx = white ∧ leadery = 1 then
9 leadery ← 0 /* y becomes a non-leader */

10 tokenx ← ⊥ /* the token is destroyed */
11 tokenx ↔ tokeny /* swap the tokens */

We consider an execution E of Alg. 1 and prove that there is eventually a
unique leader. Recall that SE denotes the infinite suffix of E such that each
couple (C,α) in SE occurs infinitely often in SE (see Sec. 2.1). Given a config-
uration C, let b(C) be the number of black tokens, w(C) the number of white
tokens and l(C) the number of leaders in C. In addition, for every agent x, we
denote by C.leaderx (resp. C.tokenx) the value of the variable leaderx (resp.
tokenx) in the configuration C.

Lemma 1. In each configuration C in every execution E of Alg. 1, b(C) +
w(C) = l(C) and b(C) ≥ 1.

Proof (Sketch). The initial configuration satisfies this relation. During an inter-
action, if no leader is turned into a non-leader, then the total number of tokens

48 J. Beauquier, P. Blanchard, and J. Burman

remains constant. When a leader is turned into a non-leader (by a white token),
the corresponding token is also destroyed. ��

Lemma 2. For every configuration C in SE, b(C) = 1.

Proof (Sketch). The global fairness and the fact that two colliding black tokens
yield one black token and one white token involves that eventually in E, there
is always a unique black token. ��

Theorem 2. In every execution E of Alg. 1, there exists exactly one agent λ
such that for every configuration C in SE, C.leaderλ = 1 and for every agent
μ �= λ, C.leaderμ = 0.

Proof (Sketch). By the previous lemmas, for every configuration C in SE, l(C) =
w(C) + 1. If a configuration C in SE has l ≥ 2 leaders, then C also has l − 1
white tokens. Thus there is a sequence of steps during which each white token
is moved to turn one leader into a non-leader, then reaching a configuration C′
with one leader. By global fairness, C′ occurs in SE. The configuration C′ has
exactly one leader, one black token and no white token, thus every subsequent
configuration has the same unique leader. ��

6 Self-stabilizing Leader Election Using Ω?(2, 1) under
Global Fairness

In this section, we exhibit a self-stabilizing solution to ELE using Ω?(2, 1), i.e.,
two copies of the Fischer and Jiang’s oracle, over the family Fall of all graphs
under the global fairness assumption. Alg. 2 below, referred to as the protocol
A, is a self-stabilizing solution2 to ELE using Ω?(2, 1) over Fall. In this protocol,
each agent can be a leader or not, and a leader can be either black or white.
An agent can also hold a token, and a token can be either black or white. We
denote by Ω?l, resp. Ω?t, the copy of the oracle Ω? used to detect the absence
of leaders, resp. tokens. As explained in Remark 1, we only consider strongly
connected graphs.

Whenever the oracle Ω?l (resp. Ω?t) outputs 0, a black leader (resp. a black
token) is created. The tokens keep moving through the network by swapping
between two agents during an interaction. When a black token interacts with
a white leader, the leader becomes a non-leader. When a white token interacts
with a black leader, the leader becomes white. When a token interacts with a
leader having the same color, then both the token and the leader turn into the
opposite color.

Given an input assignment α for the Alg. 2, we denote by α.Ω?lx (resp.
α.Ω?tx) the value assigned by α to the (read-only) variable Ω?lx (resp. Ω?tx).
Similarly, given a configuration C, for every agent x, we denote by C.leaderx

2 More formally, the behaviour Self(Ω?(2, 1) ◦ Beh(A)) implements the behaviour
ELE (see Sec. 2).

Leader Election in Population Protocols 49

Algorithm 2. Self-Stabilizing Leader Election
1 variables agent x

2 Ω?lx : input (read-only) from the leader detector
3 Ω?tx : input (read-only) from the token detector
4 leaderx : ⊥ (non-leader), white or black
5 tokenx : ⊥ (no token), white or black

6 protocol (initiator x, responder y)
7 if Ω?lx = 0 then leaderx ← black
8 if Ω?tx = 0 then tokenx ← black
9 if tokenx = black ∧ leadery = white then leadery ← ⊥

10 if tokenx = white ∧ leadery = black then leadery ← white
11 if tokenx = leadery = black then tokenx ← leadery ← white
12 if tokenx = leadery = white then tokenx ← leadery ← black
13 if tokenx �= ⊥ ∧ tokeny �= ⊥ then tokenx ← ⊥
14 tokenx ↔ tokeny

(resp. C.tokenx) the value of the variable leaderx (resp. tokenx) in the configu-
ration C.

Given a configuration C, let t(C) (resp. l(C)) be the total number of tokens
(resp. leaders) in C. In C, if an agent x is a leader and an agent y holds a
token (x and y not necessarily neighbours), we say that the leader at x and the
token at y are synchronized if they have the same color. Then, we say that the
configuration C contains a synchronized pair of leader and token. We consider
an execution E of Alg. 2 and its infinite suffix SE (each couple (C,α) in SE
occurs infinitely often in SE).

Lemma 3. For every (C,α) in SE, there is a unique token in C and α assigns
1 to every variable Ω?tx, i.e. t(C) = 1 and ∀x, α.Ω?tx = 1.

Proof (Sketch). The oracle Ω?t ensures that eventually there is at least one
token. Since the number of tokens decreases only when two tokens merge, there
is eventually always at least one token; whence eventually Ω?t always outputs
1 everywhere. Finally, by global fairness, all the tokens eventually merge, and
from that point there is exactly one (circulating) token3. ��
Lemma 4. Consider a configuration C that contains a synchronized pair of
leader and token such that l(C) ≥ t(C) = 1. Consider an input assignment α
that assigns 1 to every variable Ω?tx, i.e., for all x, α.Ω?tx = 1. Then for any
configuration C′ such that (C,α)→ C′, C′ contains a synchronized pair of leader
and token and l(C′) ≥ t(C′) = 1.

Proof. The assumption on α ensures that no token is created during the step
(C,α) → C′. If the unique token meets a leader with which it is synchronized,
the leader remains a leader, and both flip their colors. Hence, C′ still contains a
unique token and some leader synchronized with this token. ��
3 Note that this token may change its color.

50 J. Beauquier, P. Blanchard, and J. Burman

Lemma 5. There exists a configuration C in SE that contains a synchronized
pair of leader and token such that l(C) ≥ t(C) = 1.

Proof (Sketch). We already know that every configuration in SE has a unique
token. By contradiction, assume that no configuration in SE satisfies the con-
dition. This means that in every configuration C in SE, every leader (if any)
has a color opposite to the color of the unique token. Thanks to Ω?l, there is
a configuration C in SE that has at least one leader, thus l(C) ≥ t(C) = 1.
If the token is white, all the leaders are black, and it is possible to move the
token to whiten one of the leaders. The resulting configuration C′ contains a
synchronized pair of leader and token, and l(C′) ≥ t(C′) = 1. By global fairness,
C′ occurs in SE. On the other hand, if the token is black, it is possible to turn
all the white leaders into non-leaders and keep a black token. By global fairness,
the resulting configuration C′ occurs in SE. Since C′ has no leader, thanks to
the oracle Ω?l, a black leader is created at some point in SE. Hence, the cor-
responding configuration C′′ has a synchronized pair of leader and token, and
l(C′′) ≥ t(C′′) = 1. ��
Lemma 6. For every (C,α) in SE, C contains a synchronized pair of leader
and token, l(C) ≥ t(C) = 1 and for every agent x, α.Ω?lx = α.Ω?tx = 1.

Proof (Sketch). The result follows from Lemmas 3, 4, 5 and the definition of
Ω?l. ��
Theorem 3. Alg. 2 is a self-stabilizing solution to ELE using Ω?(2, 1). Pre-
cisely, in any execution, there exists exactly one agent λ such that for every con-
figuration C in SE, C.leaderλ �= ⊥ and for every agent μ �= λ, C.leaderμ = ⊥.

Proof (Sketch). Thanks to Lem. 6, no leader is ever created during SE. In ad-
dition, in every configuration in SE, there is a leader synchronized with the
token. On one hand, if the token is white, it can whiten all the black leaders,
interact with one white leader, become black and turn all the white leaders into
non-leaders. On the other hand, if the token is black, it can interact with a
black leader (the leader with which it is synchronized) and become white; the
next steps are the same as before. In both cases, the resulting configuration has
exactly one leader. By global fairness, this configuration occurs in SE. Since no
leader is created, there is actually a unique and permanent leader in SE. ��

7 Impossibility of Self-stabilizing Implementation of Ω?
Using ELE under Global Fairness

We show that there is no self-stabilizing implementation of Ω? (i.e. Ω?(1, 1))
using ELE , even if we are allowed to use many copies of ELE , under the global
fairness assumption.

Theorem 4. There is no non-initialized population protocol A such that, for
some k ≥ 1, the composition B = (ELE ⊗ · · ·⊗ELE)◦Beh(A), using k copies of
ELE , implements the behaviour Ω? over the family of all graphs under the global
fairness assumption.

Leader Election in Population Protocols 51

Proof (Sketch). The result is proved by contradiction. Assume that such a pro-
tocol A exists. We consider a complete graph G of size n ≥ k+1. We consider a
run of the composition B on G, with a constant input trace αα . . . that assigns
permanently 1 to a unique agent μ. In the corresponding execution E of A, at
some point in SE, the output of the different ELE oracles have stabilized, and all
the agents permanently output the value 1. However, by looking at the subgraph
obtained by excluding μ, thanks to the assumption on A and the global fairness,
there is a configuration in SE in which all the agents but μ output 0; whence a
contradiction. ��

8 Discussion and Open Problems

Although an abundant literature has been devoted to leader election in the pop-
ulation protocol model, some problems remain open. One of the most challenging
is maybe to decide whether or not an oracle is necessary for self-stabilizing so-
lutions to ELE over rings. Angluin et al. [4], who raised first the issue, present
non-uniform solutions (solutions depending on the size of the ring), but the ques-
tion of an uniform solution has been open for several years. In [14], Fischer and
Jiang tackle this issue, provided that the oracle Ω? is available.

The general framework we proposed allows to express several natural ques-
tions. We list some of them here.

In Sec. 3.2, we generalize Fischer and Jiang’s oracle and present a lattice
of oracles {Ω?(k, d)}k,d≥1 such that Ω? coincides with Ω?(1, 1). Analyzing the
relations among oracles, which are strong enough to solve leader election, is an
interesting way to assess the hardness of this problem. For instance, in a previous
work [6], the authors complement Fischer and Jiang’s approach by showing that
ELE is equivalent to Ω? over rings, for non-initialized protocols’ behaviours, i.e.,
each problem is as hard as the other. It seems that the same technique as in [6]
would show that all the oracles Ω?(k, d) are equivalent to ELE over rings, for
non-initialized protocols’ behaviours.

In addition, in this paper, we address the issue of comparing ELE with the or-
acles Ω?(k, d) over the family Fall of all graphs, for the family, denoted by PPNI ,
of non-inialized protocols’ behaviours. In Sec. 6, we show that ELE � Ω?(2, 1),
and in Sec. 7, we show that Ω? �� ELE . Since Ω? � Ω?(2, 1), we have the strict
relation ELE ≺ Ω?(2, 1). In addition, it has been shown in [6] that Ω?(1, 1) is
sufficient to solve ELE over the family BDeg(d) of d-bounded degree graphs (for
any d), i.e. ELE � Ω?(1, 1) mod (BDeg(d), PPNI). It is an open problem to
determine whether there exists a self-stabilizing implementation of ELE using
Ω?(1, 1) over Fall and if the relations Ω?(k, d) � Ω?(k′, d′) mod (Fall, PPNI)
(k ≤ k′ and d ≤ d′) are strict when k < k′ or d < d′.

References

1. Angluin, D.: Local and global properties in networks of processors. In: 12th Sym-
posium on the Theory of Computing, pp. 82–93. ACM (1980)

52 J. Beauquier, P. Blanchard, and J. Burman

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. ACM Trans. Auton. Adapt. Syst. 3(4) (2008)

5. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in pop-
ulation protocols over arbitrary communication graphs. Technical report, INRIA
(2013), http://hal.archives-ouvertes.fr/hal-00867287

6. Beauquier, J., Blanchard, P., Burman, J., Denysyuk, O.: Oracles for self-stabilizing
leader election in population protocols. Technical report, INRIA (2013),
http://hal.archives-ouvertes.fr/hal-00839759

7. Boldi, P., Shammah, S., Vigna, S., Codenotti, B., Gemmell, P., Simon, J.: Sym-
metry breaking in anonymous networks: Characterizations. In: ISTCS, pp. 16–26
(1996)

8. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: On
space complexity of self-stabilizing leader election on a population protocol model.
Theory Comput. Syst. 50(3), 433–445 (2012)

9. Canepa, D., Potop-Butucaru, M.G.: Self-stabilizing tiny interaction protocols. In:
WRAS, pp. 10:1–10:6 (2010)

10. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

11. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

12. Charron-Bost, B., Hutle, M., Widder, J.: In search of lost time. Inf. Process.
Lett. 110(21), 928–933 (2010)

13. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
of the ACM 17(11), 643–644 (1974)

14. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state
anonymous agents. In: OPODIS, pp. 395–409 (2006)

15. Fischer, M.H., Lynch, N.A., Paterson, M.S.: Impossibility of consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

16. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols.
Theor. Comput. Sci. 412(22), 2434–2450 (2011)

17. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Terminating population protocols
via some minimal global knowledge assumptions. In: SSS, pp. 77–89 (2012)

18. Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-
stabilizing leader election in mediated population protocol. Distributed Comput-
ing 25(6), 451–460 (2012)

http://hal.archives-ouvertes.fr/hal-00867287
http://hal.archives-ouvertes.fr/hal-00839759

α-Register�

David Bonnin and Corentin Travers

LaBRI, University Bordeaux 1, France
name.surname@labri.fr

Abstract. It is well known that in an asynchronous message-passing
system, one can emulate an atomic register providing that more than
half of the processes are non-faulty. By contrast, when a majority of the
processes may fail, simulating atomic register is not possible. This paper
investigates weak variants of atomic registers that can be simulated tol-
erating a majority of processes failures. Specifically, the paper introduces
a new class of registers, called α-register and shows how to emulate them.

For atomic registers, a read operation returns the last written value
when there is no concurrent write operations. α-registers generalize atomic
registers in the following sense: In any interval I , at most α values writ-
ten before I are returned by the read operations in I . A simulation of an
α-register tolerating f failures in a n-processes system is presented for
α = 2M−1, where M = max(1, 2f−n+2). The simulation is optimal up
to a constant multiplicative factor: the paper establishes that α-registers
cannot be simulated tolerating f failures if α ≤M .

Keywords: Message passing, fault-tolerance, shared-memory simulation.

1 Introduction

Registers. A register is a basic shared object that allows processes to store
and retrieve values. The state of a register consists in a value in some set V ;
it supports two operation: write(v), that changes its state to v and read()
that returns the value stored in the register. Several consistency conditions have
been defined that specify correct responses for read() operations overlapping
concurrentwrite() operations [22]. In their strongest form, registers are atomic:
each operation appears to take place instantaneously at some point between its
invocation and its response.

Twenty years ago, Attiya, Bar-Noy and Dolev showed that atomic registers
can be emulated in asynchronous, crash prone message passing systems provided
that a majority of the processes do not fail [5]. This fundamental result enables
shared-memory algorithms to be automatically implemented in message passing
environment. Furthermore, impossibility results and lower bounds established
in the shared memory model can directly be translated to message passing.
For example, the asynchronous computability theorem that characterizes tasks

� This work is supported in part by the ANR project DISPLEXITY.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 53–67, 2013.
c© Springer International Publishing Switzerland 2013

54 D. Bonnin and C. Travers

wait-free solvable in shared memory [21] and its extensions to the t-resilient
case [18] apply as well to the asynchronous message passing model with a ma-
jority of non-faulty processes.

Beyond the Majority Barrier. A key ingredient of the simulation of registers in
message passing is a quorumsystem, that is a collection of sets of processes such that
any two sets intersect. In Attiya, Bar-Noy and Dolev protocol (ABD protocol [5]),
a quorum is any set of n − f processes, where n is the total number of processes
in the system and f < n

2 an upper bound on the number of failures. Intuitively, a
write(v) involves communicating v to a quorumwhile a read() returns the most
recent value in a quorum. By the intersection property, some process participate
in both operations, allowing the read() to return an up to date value. Quorums
defined as set ofn−f processes are live, in the sense that any process can broadcast
a request and eventually receives replies fromn−f processes. However, if less than
a majority of the processes are non-faulty, i.e. f ≥ n

2 , contacting n − f processes
in a read() operation may not ensure that the value returned by that operation is
up to date. Indeed, simulating atomic registers while tolerating f ≥ n

2 failures in
asynchronous message passing is not possible [5].

A few approaches has been proposed to circumvent this impossibility. Prob-
abilistic quorums systems allow two quorums to be non-intersecting with some
small probability [1,16,23], leading to a small probability that read() operations
return stall values. Dynamic atomic storage systems, such as RAMBO [20] and
DynaStore [3] emulate atomic registers in dynamic environments. They support
a reconfiguration operation for adding or removing processes. Reconfiguration
may thus be used to replace failed processes. However, failures are typically as-
sumed to be limited when reconfigurations take place. The approaches [17,25]
are also based on stronger model assumptions.

Another approach consists in relaxing the consistency guarantees of the imple-
mentation. Eventual consistency [15,24] essentially only requires that if finitely
many write() operations are performed, eventually every read() operation
returns the last written value. When availability is a primary concern, even-
tually consistent services has been implemented and deployed for large-scale,
geo-replicated systems (e.g.,[10,13]). In this settings, network partitions may oc-
cur but operation must complete even in the case of such events.

The Question Addressed in the Paper. The paper investigates the following
question:

Given n and n
2 ≤ f < n, what type of (weak) register can be simu-

lated in an n-processes asynchronous message passing system tolerating
f failures?

By the ABD emulation, shared memory may be seen as an high-level language to
design message passing algorithms tolerating a minority of failures. The question
above thus amounts to finding an equivalent high level construct for the case in
which a majority of the processes may fail.

α-Registers 55

Moreover, recently, non-trivial asynchronous algorithms for k-set agreement
and k-parallel consensus1 that tolerate f(k) ≥ {n2 , k} failures have been designed
for message passing systems [8,9]. While the liveness of these algorithms depends
on some additional assumption (such as, e.g., an eventual, non-faulty leader),
the safety part relies solely on the bound f(k) on the number of failures. As
f(k) ≥ n

2 , the existence of those algorithms cannot be inferred from shared
memory results. Identifying weak types of registers, that one can simulate when
a majority of the processes could fail, might help understanding what can be
computed in such systems.

Contributions of the Paper. The paper introduces a new type of registers, called
α-register and shows an implementation in message passing systems tolerating
a majority of faulty processes. Implementations of α-registers are required to be
available, that is any write() or read() request must eventually complete, and
partition-tolerant. Indeed, in an asynchronous system in which f ≥ n

2 processes
may fail, processes can be partitioned in two or more sets of at least n− f pro-
cesses, and messages exchanged between partitions may be arbitrarily delayed.
Hence, according to the CAP theorem ([19], Corollary 1.1), it is unavoidable that
some read() operations return outdated values. The parameter α specifies how
many distinct outdated values can be read in any interval I, that is values that
have been written before I. When α = 1, the definition boils down to atomic
register.

In more detail, the contribution of the paper is threefold: (1) it introduces
α-registers, a new type of register that generalizes atomic registers (Section 2);
(2) for f ≥ n

2 and M = 2f − n + 2, it presents a f -resilient message pass-
ing implementation of a single-writer multi-reader α-register with α = 2M − 1
(Section 3); (3) finally, the paper establishes a lower bound linking f, n and α,
namely there is no n-processes, f -resilient implementation of an α-register for
α ≤M (Section 4). This lower bound implies that our α-register implementation
is within an additive term of at most α

4 of the maximal number of failures that
can be tolerated.

2 Computational Model and Definition of α-Registers

Message Passing Asynchronous Distributed System. We consider a distributed
system made of a set Π of n asynchronous processes {p1, . . . , pn}, as described
in e.g. [6,11]. Each process runs at its own speed, independently of the other
processes.

Processes communicate by sending and receiving messages over a reliable but
asynchronous network. Each pair of processes {pi, pj} is connected by a bi-
directional channel. Channels are reliable and asynchronous, meaning that each

1 k-set agreement [12] and k-parallel consensus [2] generalize the consensus problem.
In k-set agreement, at most k distinct values may be decided. k-parallel consensus
consider k instances of consensus and requires each non-faulty process to decide in
at least one of them.

56 D. Bonnin and C. Travers

message sent by pi to pj is received by pj after some finite, but unknown, time;
there is no global upper bound on message transfer delays. The algorithm in
Section 3 assumes FIFO channels, that is for any pair of processes pi, pj , the
order in which the messages sent by pi to pj are received is the same as the order
in which they are sent.

The system is equipped with a global clock whose ticks range T is the set of
positive integers. This clock is not available to the processes, it is used from an
external point of view to state and prove properties about executions.

In a step, a process may send a message to some other process, performs arbi-
trary local computation and receives a message that has been previously sent to
it but has not been already received. An execution is a possibly infinite sequence
of steps. Processes may fail by crashing. A process that crashes prematurely
halts and never recovers. In an execution, a process is faulty if it fails and cor-
rect otherwise. f denote an upper bound on the maximal number of processes
that may fail.

Definition of α-Registers. As classical read/write registers, an α-Register sup-
ports two operations: write(v), where v is a value taken from some set V , and
read(). A write(v) operation returns an acknowledgment ok and a read()
returns a value u ∈ V ∪ {⊥} where u is the input of a write() operation or
the initial value ⊥ of the α-Register. In an admissible execution, no process
starts a write(v) or read() operation while its previous operation, if any, has
not returned. The execution interval I(op) of an operation instance op by pro-
cess p begins when p calls write() or read() and ends when p returns from
that call; if p never returns, I(op) has no end. We sometimes simply say oper-
ation instead of operation instance. Two operations op1 and op2 are concurrent
if I(op1) ∩ I(op2) �= ∅. A terminating operation op1 precedes operation op2 if
I(op1) ∩ I(op2) = ∅ and I(op1) ends before I(op2) begins. An operation op is
active in an interval I if I ∩ I(op) �= ∅. To simplify the exposition, we assume
without loss of generality that no two distinct write() operations have the same
input value2.

In any admissible execution e, a α-Register satisfies the following properties.

1. Termination. Any read() or write(v) operation performed by a correct
process terminates.

2. Non-spurious value. For any terminating read() operation R that returns
u, either u = ⊥ or there exists a write(u) operation that precedes or is
concurrent with R.

3. Chronological read. Let R,R′ be two terminating read() operations per-
formed by the same process in that order and let u, u′ be the values re-
turned. If u �= ⊥, then u′ �= ⊥ and write(u) precedes or is concurrent with
write(u′).

4. Non-triviality. Let R be a read() operation by process p and let u be the
value returned by R. If there is a write() operation by p that precedes R,

2 This can be enforced by appending a sequence number and the id of the writer to
each value to be written.

α-Registers 57

u �= ⊥. Moreover, if W is the last write() operation by p that precedes
R, write(u) is either W or a write() operation by another process that is
concurrent with or is preceded by W .

5. Propagation. Let u be the input of a terminating write() or the value re-
turned by a read() performed by a correct process. Eventually, for every ter-
minating read() operationR′ with return value u′ either u = u′ orwrite(u)
is concurrent with or precedes write(u′).

6. α-Bounded reads. In any interval I, the set of values that have been written
by write() operations that terminate before I and returned by the read()
operations whose execution interval is contained in I is of size at most α.

The termination property implies that an α-register is always available. In par-
ticular, any read() operation by a non-faulty process always returns a value.
The properties chronological read and non-triviality express consistency require-
ments in the context of a single process. Chronological read requires that suc-
cessive read() by the same process pi do not return older values. Non-triviality
intuitively requires that pi “sees” its writes. After a write(u) operation, every
subsequent read() by pi returns a value as least as recent as u. The propagation
properties implies that α-register are eventually consistent. If after some time no
write() operations are performed, eventually every read() operation returns
the last value written.

Since f ≥ n
2 , it can be shown by a partition argument that read() may

return arbitrary old values. Consider two sets Q1, Q2 of n− f processes that do
not intersect and suppose that every process not in Q1 ∪ Q2 initially fails. As
communication is asynchronous, messages exchanged betweenQ1 and Q2 may be
delayed during an arbitrary long interval I. For some process pi ∈ Qi, 1 ≤ i ≤ 2,
the operations by pi may thus return after messages have been exchanged only
with the processes in Qi (this is indistinguishable for pi from an execution in
which every process not in Qi fail before I.). Therefore, if p1 performs write()
operations, the values it writes are not seen by p2. Thus read() operations by
p2 may return values that have written before any write() operations by p2.

Rather that bounding the staleness of values returned by read() operation,
which is impossible if asynchrony and a majority of failures have to be tolerated,
the α-bounded read property imposes that not too many stale values, namely
no more that α, are returned by read() operations.

3 Single-Writer Multiple-Reader α-Register

This section presents a protocol (Algorithm 3.1) that implements a single-writer
multiple-readers (SWMR) α-Register in an asynchronous system in which up to
f ≤ n− 1 processes may fail. The value of α depends on the number of failures
the protocol tolerates, namely α = 2M − 1, where M = 2f − n+2 if f ≥ n

2 and
M = 1 otherwise. The algorithm assumes that channels are FIFO.

The algorithm is similar to the ABD protocol [5]. Each time a new value is
written it is first associated with a unique timestamp (line 7). Timestamps are
increasing so that more recent values get larger timestamps. As there is a single

58 D. Bonnin and C. Travers

Algorithm 3.1. SWMR α-Register (code for process pi)

1: initialization
2: seq i ← 1; 〈vi, tsi〉 ← 〈⊥, 0〉; 〈vr i, tsr i〉 ← 〈⊥, 0〉;
3: Qr i ← ∅;Qei ← ∅;Qw i ← ∅;
4: Accept i[1..n]← [2, . . . , 2] � array of n integers initialized to 2
5: for each pj : 1 ≤ j ≤ n do send UPDATE(seqi, 〈vi, tsi〉, 0)
6: function write(v)
7: 〈vi, tsi〉 ← 〈v, tsi + 1〉; seqi ← seqi + 1; Qwi ← ∅;
8: wait until |Qw i| ≥ n− f ;
9: return ok
10: function read()
11: n iter← 0;
12: repeat
13: 〈vr i, tsr i〉 ← 〈vi, tsi〉; seqi ← seqi + 1; Qr i ← ∅; Qei ← ∅;
14: wait until |Qr i ∪Qei| ≥ n− f ;
15: n iter ← n iter + 1
16: until (|Qei| ≥ n− f) or (n iter ≥ N) � N = 2(2f + 1)(
 n

n−f
�+ 1) + 1

17: return vr i

18: when UPDATE(seq, 〈v, ts〉, old seq) from process pj is received
19: if old seq = seqi then
20: if ts = tsi then Qw i ← Qw i ∪ {pj}
21: if ts > tsr i then Qr i ← Qr i ∪ {pj}
22: if ts = tsr i then Qei ← Qei ∪ {pj}
23: if ts > tsi then
24: if Accepti[j] > 0 then Accepti[j]← Accepti[j]− 1
25: else 〈vi, tsi〉 ← 〈v, ts〉; Accepti[1..n] ← [2, . . . , 2] � Accepti[j] = 0

26: send UPDATE(seqi, 〈vi, tsi〉, seq) to pj

writer, no two values are associated with the same timestamp. Each process pi
maintains a pair of local variables 〈vi, tsi〉 which store the most recent value pi
knows of together with its timestamp. We say that pi accepts a pair 〈v, t〉 when
pi changes 〈vi, tsi〉 to 〈v, t〉 (line 25).

Processes constantly exchangemessages of typeUPDATEthat contain themost
recent value and its timestamp known by the message’s sender3. For any pair of
processes pi, pj , UPDATE messages are exchanged between pi and pj following a
“ping-pong” pattern. Initially, pi and pj send UPDATE messages to each other,
and each time pi (resp. pj) receives UPDATE from pi (resp. pj), it replies with an
UPDATEmessage. Each such message contains a triple (sq, 〈v, ts〉, osq), where sq
and osq are sequence numbers, and 〈v, ts〉 is the current value and timestamp of the
process sending the message. pi maintains a sequence number that is incremented
each time pi starts a newwrite() operation or a new phase in a read() operation

3 The algorithm is not quiescent: processes keep sending and receiving messages even if
nowrite() or read() operations are performed. The algorithm can be made quiescent
at the price of an increasing complexity in the pseudo-code. We choose to ignore this
issue to keep the pseudo-code simple.

α-Registers 59

(see below). If message m = UPDATE(sq, 〈v, ts〉, osq) is sent by pi in reply to a
message UPDATE(sq′, 〈v′, ts′〉, osq′) from pj (see line 18–line 26), then osq = sq′

and sq is the current sequence number of pi. Thus, by comparing osq with its cur-
rent sequence number, process pj can determine whetherm is related to its current
operation or to a previous operation.

Write() Operations. The implementation of write(v) is similar to the imple-
mentation in the ABD protocol. After a new timestamp t has been associated
with v on line 7, the writer pn changes its local variable 〈vn, tsn〉 to 〈v, t〉. It then
waits until each process in a quorum of (n − f) processes have accepted 〈v, t〉,
and the operation then returns (line 8–line 9). In more detail, the local variable
Qwn, intended to contain a set of processes ids, is emptied at the beginning of
the operation (line 7). Then, each time, a message UPDATE containing the pair
〈v, t〉 from a process pj is received, pj is added to Qwn (line 20). The operation
returns when |Qw| ≥ n− f .

The new pair 〈v, t〉 is disseminated by the UPDATE messages sent by the
writer: once 〈vn, tsn〉 has been changed to 〈v, t〉, and until a new write() oper-
ation is initiated, every UPDATE sent by pn contains 〈v, t〉.
Value Dissemination.As newly written values are propagated asynchronously,
at any point in time there might be pending UPDATE that have been sent
to pi by the processes in some set S, but not yet received by pi. Each of
these messages may contain a distinct pair 〈value, timestamp〉 from some set
{〈w1, t1〉, . . . , 〈wm, tm〉}. If 〈vi, tsi〉 changes each time pi receives a newer value,
the successive values of vi might be w1, . . . , wm. Furthermore, if the same hap-
pens at each process in set of size at least n − f , it could be the case that
each value w1, . . . , wm is returned by a read() operation. Instead, to avoid that
read() operations return many old values, we ensure that if 〈vi, tsi〉 changes
from 〈w, t〉 to 〈w′, t′〉, some process pj stores 〈w′, t′〉 after 〈vi, tsi〉 is set to 〈w, t〉
and before it is changed to 〈w′, t′〉.

Due to the “ping-pong” pattern followed by messages exchanged between
processes pi and pj , there are at most two messages that have been sent by pj
but have not yet been received by pi at any point in time. Hence, if pi receives
three UPDATE from pj in some interval I, the last one of these messages has been
sent during I. The array Accepti is used to keep track of how many consecutive
messages from the same process carrying new values have been received. Initially,
Accepti[j] = 2 and at any time, Accepti[j] ∈ {0, 1, 2} for any j, 1 ≤ j ≤ n.
Accepti[j] is decremented each time pi receives an UPDATE from pj (line 24)
carrying a value newer than pi’s current value. The array is also reset to [2, . . . , 2]
when 〈vi, tsi〉 changes (line 25). Hence, Accepti[j] < 2 means that pi knows
that its current value is outdated by pj ’s current value (line 23 – line 24). If
UPDATE(∗, 〈w, t〉, ∗) where 〈w, t〉 is newer than 〈vi, tsi〉 is received from pj when
Accepti[j] = 0, 〈vi, tsi〉 is changed to 〈w, t〉 (line 25).

Suppose that at some point a set X of messages have not been yet received
by pi. Note that if, when some message m ∈ X is received, 〈vi, tsi〉 changes,
then no other message in X updates 〈vi, tsi〉. This is because Accepti is reset to

60 D. Bonnin and C. Travers

[2, . . . , 2] each time 〈vi, tsi〉 changes, messages are received in FIFO order and
at any point time and for any process pj , no more than two messages sent by pj
have not been received by pi.

Read() Operations.A read() operation (line 11–line 17) by process pi consists
in up to N = O(fn

n−f) iterations. Each iteration is identified by an increasing

sequence number seqi. At the beginning of iteration s, the pair 〈v, ts〉 currently
hold by pi is stored in 〈vri, tsri〉 and the two sets Qei and Qri, intended to
contain processes that hold a pair equal to or more recent than, respectively,
〈vri, tsri〉 are emptied (line 13). An iteration terminates when pi knows that at
least n − f processes store values as least as recent than vri, i.e., when |Qri ∪
Qei| ≥ n−f . The read() operation terminates (1) immediately if |Qei| ≥ n−f ,
i.e., for each process pj ∈ Qei, there is a time at which vj = vri or (2) after
N iterations have been performed. The value returned is then vri, the value of
vi at the beginning of the last iteration. We show in the proof that for every
read() operation op that returns a value w written before the operation starts,
the operation terminates by condition (1) above. That is, each process pj in a
set Q of size n− f stores v at some point during the interval of op. Intuitively,
in each iteration for which condition (1) is not satisfied, pi learns a newer value.
This value is propagated to at least n− f processes in the following iterations.
Since the number of values that have been written before op starts and that can
be learned and propagated is bounded by a function of f and n, every process
knows the last value written before op starts after some constant number of
iterations or new values are written concurrently with op.

Consider an interval I. Let w� be the value written by the last write() that
terminates before I. When write(w�) returns, each process in a set Q� of size
n− f stores w�. Since a process can only replace its value with a newer one, the
value stored by any process of Q� at any point in I is w� or a more recent value.
Therefore, any value older than w� present in the system at the beginning of I is
stored or contained in a message not yet received by a processes of Π \Q�. Let
L, T be respectively the values stored by the processes of Π \Q� and the values
contained in the messages not yet received by the processes of Π \Q�.

In the worst case, |L| = f . The protocol ensures that if v ∈ L is returned
by a read() performed during I, then at least n− f processes stores v at some
point during I. Since no process changes its value for an older one, the n− f − 1
oldest values in L cannot be returned by read() operations. Hence, at most
f − (n− f − 1) = 2f − n+ 1 =M − 1 distinct values of L can be read in I.

As previously explained, for each process pi ∈ Π \ Q�, at most one message
not yet received by pi at the beginning of I may change the value vi stored
by pi. Therefore, at most f values of T may be stored by the processes and
thus be returned by read() operations. As in the case of the values of L, the
n− f − 1 oldest values cannot be returned by read() operations. Therefore, at
most f − (n− f − 1) = 2f − n+ 1 =M − 1 distinct values of T can be read in
I. In addition, w� may be read in I. It thus follows that the number of values
written before I and returned by read() operations during this interval is at
most 2(M − 1) + 1 = 2M − 1 = α.

α-Registers 61

3.1 Proof of the Protocol

We consider an arbitrary infinite admissible execution α in which the unique
writer is the process pn. var i denote the local variable var of process pi and
varτi its value at time τ . Due to space constraints, some proofs are omitted.
They can be found in [7].

Whenever the writer initiates a new write() operation, it increases a counter
whose value ts is assigned as a timestamp to the value v being written (line 7).
This timestamp is unique and no other timestamp is ever associated to v. That
is, for any process pi, whenever the local variable vi is changed to v, tsi is
changed accordingly to the timestamp ts associated with v (line 25). Values can
thus be totally ordered according to their timestamp. In particular we say that
value v is newer than or more recent than value v′ is the timestamp ts assigned
to v is larger than or equal to the timestamp ts′ assigned to v′ and we note
〈v′, ts′〉 〈v, ts〉. Note that, for any process pi, whenever the pair 〈vi, tsi〉 is
modified (line 7 or line 25), it is replaced by a more recent value. That is,

Observation 1. For every process pi, and every times τ < τ ′, 〈vτi , tsτi 〉
〈vτ ′

i , ts
τ ′
i 〉.

Each time a process pi receives a message UPDATE from a process pj , it
sends back an UPDATE to process pj (line 18 and line 26). Moreover, initially
each process sends an UPDATE message to every process (line 5). It thus follows
that messages UPDATE are perpetually exchanged between pi and pj if both
processes are correct:

Lemma 1. Let pi, pj be two correct processes. pi receives infinitely many mes-
sages UPDATE from pj.

Proof. Initially, pi sends an UPDATE message to pj (initialization, line 5). By
the code (line 18 and line 26), each time a correct process p receives a mes-
sage UPDATE from a process q, p sends a message UPDATE to q. Since pi
and pj are two correct processes, pi receives infinitely many messages UPDATE
from pj .

Next Lemma shows that whenever a correct process learns a new value, every
other correct eventually learn that value or a more recent one. It forms the basis
to show that read() (Lemma 3) and write() (Lemma 4) operations performed
by correct processes terminate.

Lemma 2. Let pi, pj be two correct processes. If at some time, 〈vi, tsi〉=〈v, ts〉 �=
〈⊥, 0〉, then eventually 〈v, ts〉 〈vj , tsj〉.
Lemma 3. Let pi be a correct process. Every invocation of read() by pi
returns.

Lemma 4. Assume that the writer pn is a correct process. Every invocation of
write() by pn returns.

62 D. Bonnin and C. Travers

Proof of the Bounded Reads Property. Let I be an arbitrary interval. Let R =
{R1, . . . , Rm} be a set of read() operations whose execution intervals are con-
tained inI. Letwi be thevalue returnedbyoperationRiand letVR={w1, . . . , wm}.

The remainder of this section is devoted to the proof of the following Lemma:

Lemma 5. |VR \ VW | ≤ 2M − 1 where M = max(1, 2f − n + 2), where VW is
the set of values written during I.

The values returned by each read() of R is a value that is either written by
one of the Write operation active during I, or a value present in the system at
the beginning of I. A value v with timestamp ts is present in the system at the
beginning of I if it is the value locally stored by a process, i.e., 〈v, ts〉 = 〈vi, tsi〉
for some process pi or 〈v, ts〉 is carried by a message UPDATE that has not yet
been delivered. Let τb be the time at which I starts. We define:

– VW the set of the values written during I. That is, w ∈ VW if I(write(w))∩
I �= ∅;

– Incj→i as the set of incoming messages UPDATE that have been sent by pj
but has not yet been received by pi by time τb ;

– VL = {v : v /∈ VW and ∃pi, 〈vi, tsi〉 = 〈v, ts〉 at time τb } ;
– VI = {v : v /∈ VL ∪ VW and ∃pi, pj ,UPDATE(∗, 〈v, ts〉, ∗) ∈ Incj→i} ;
– vlast, the value written by the last write() operation that precedes I.

That is, VL is the set of values locally stored by the processes at the beginning
of I, while VI is the set of values that are not locally stored, but part of the
content of some messages still in transit. Note that VR \ VW ⊆ VL ∪ VI .

We first observe that |VL| ≤ f +1 (Corollary 1). Essentially, this follows from
the fact that a quorum Qlast of at least n− f processes must have accepted the
value written by the last write() operationWlast preceding I in order for that
operation to return (Lemma 6). As a process replace the value it stores locally
only with a more recent one (Observation 1), the value locally stored by each
process pi ∈ Qlast is newer than or equal to vlast, at any time in I. In other
words, the value stored by pi during I belongs to {vlast} ∪ VW .

Lemma 6. Let vlast be the value written by the last write() operation pre-
ceding I and let tslast denote the timestamp associated with it. There is a set
Qlast of at least n− f processes such that at any time in I, vi ∈ {vlast} ∪ VW
and tsi ≥ tslast.
Proof. Let Wlast be the last write() that precedes I. When this operation
returns, pn has received a message UPDATE(∗, 〈vlast, tslast〉, ∗) from each pro-
cess in a set Q of size at least n− f (line 8). This means that for each pi ∈ Q,
we have at some time 〈vi, tsi〉 = 〈vlast, tslast〉 (line 26).

Moreover, by the code each value v written by the single writer pn before
vlast is associated with a timestamp strictly smaller than tslast. As each time
the value stored locally (in vi for process pi) is modified, it is replaced by a more
recent value, i.e., a value associated with a larger timestamp (Observation 1), it
follows from the fact that Wlast is the last write operation preceding I that for
every process pj ∈ Q, tsj ≥ tslast and vj ∈ {vlast} ∪ VW at any time in I.

α-Registers 63

Corollary 1. |VL| ≤ f + 1

Proof. By Lemma 6, at the beginning of I, for each process pi ∈ Qlast, vi ∈
{vlast} ∪ VW . As VW ∩ VL = ∅ and as |Qlast| ≥ n− f , |VL| ≤ f + 1.

Consider two processes pj and pi. By the code pj sends a message UPDATE to
pi each time it receives a message UPDATE from that process (line 18–line 26).
Since initially both pi and pj send a message UPDATE to each other, it follows
that at any time at most two messages UPDATE have been sent by pj to pi and
has not yet been received by the latter:

Observation 2. For every pair of processes pi, pj, |Incj→i| ≤ 2.

Let U ⊆ VI be the set of values that are not locally stored by any process at
the beginning of I, but later stored by at least one process at some time in I.
That is,

u ∈ U ⇐⇒ u ∈ VI and at some time in I , vi = u for some process pi

We upper-bound the size of U (Lemma 7) by f . This upper bound is a key
ingredient in establishing that, for any value v read during I, there is set of at
least (n− f) processes pj that hold v at some point in I, that is vj = v at some
time in I (Lemma 8).

Lemma 7. |U| ≤ f
Proof. Let u ∈ VI be a value and let ts denote the timestamp associated with it.
Suppose that at some time τ in I, 〈vx, tsx〉 = 〈u, ts〉 for some process px. At the
beginning of I, no process stores locally u (for every process pj , vj �= u) but a
message UPDATE whose content contains u has been sent to some process but
has not yet been received by that process.

Let pi be the first process that, during I change its pair 〈local value,
timestamp〉 to 〈u, ts〉 (at line 25). Since u /∈ VL, this occurs when pi receives
a message m = UPDATE(∗, 〈u, ts〉, ∗) sent to it before I, that is there exists a
process pj such that m ∈ Incj→i.

Consider another value u′ �= u that similarly to u (1) is contained in VI and
(2) at some time τ ′ in I is stored locally by some process px′ (i.e., at time τ ′,
vx′ = u′). Let pi′ be the first process that changes during I its local value vi′ to
u′. As explained above, this occurs when pi′ receives a message m′ ∈ Incj′→i′ .

Suppose for contradiction that pi = p′i. Assume without loss of generality
that pi first changes vi to u and then later to u′. By the code, immediately
after 〈vi, tsi〉 has been modified, the array Accepti is reset to [2, . . . , 2] (line 25).
As the channels are FIFO, any message received from pj′ by pi during I and
before m′ is received are contained in Incj′→i. Hence, after m has been received
and before the reception of m′, pi has received at most |Incj′→i| − 1 messages
from pj′ . As |Incj′→i| ≤ 2 (Observation 2), it thus follows that Accepti[j

′] > 0
when m′ is received by pi (Recall that the counter Accepti[j

′] is decremented at
most once each time a message from pj′ is received line 23–line 24). Therefore
(line 24–line 25), vi remains unchanged when m′ is received: a contradiction.

64 D. Bonnin and C. Travers

Finally, note that neither pi nor pi′ are contained in Qlast since for each
process pj in this set, vj is vlast or a more recent value (Lemma 6). As |Qlast| ≥
n− f , we conclude that |U| ≤ f .
Lemma 8. Let R ∈ R be a read() operation and let v be the value returned by
R. Either v ∈ VW , or there is a set QR of at least n− f processes such that for
each pi ∈ QR, there is a time in I(R) at which vi = v.

Finally, we bound the number of values that are read and, on one hand,
stored by at least one process (Lemma 9), or, on the other hand, only contained
in messages that have not yet been delivered at the beginning of I (Lemma 10).
As any old value (i.e., a value not in VW) that is read during I is either stored
locally by some process or contains in message not yet delivered at the beginning
of I, the bound on the number of values read during I follows.

Lemma 9. |VL ∩ VR| ≤M = 2f − n+ 2

Lemma 10. |VI ∩ VR| ≤M − 1 = 2f − n+ 1

Proof of Lemma 5. Any value that is returned by a read() operation during I
is either contained in VL or VI or VW . As |VL ∩ VR| ≤ 2f − n + 2 (Lemma 9),
and |VI ∩ VR| ≤ 2f − n + 1 (Lemma 10), |VR \ VW | = |VR ∩ (VL ∪ VI)| ≤
(2f − n+ 2) + (2f − n+ 1) = 2M − 1

Finally, the correctness of Algorithm 3.1 is implied by the following theorem.

Theorem 3. Algorithm 3.1 implements a SWMR (2M−1)-register, where M =
2f − n+ 2.

Proof. Consider an admissible execution of Algorithm 3.1. The termination
property of α-registers immediately follows from Lemma 3 and Lemma 4. For
the Non-spurious value, the value returned by a read() operation by process
pi is the value of the variable vi at some time in the execution interval of the
operation. At any point in the execution, vi stores ⊥ or a value that has been
introduced by the writer.

For the Chronological read property, consider u, u′ two values returned in that
order by read() operations performed by the same process and let t, t′ be the
timestamp associated with u, u′ respectively. By Observation 1, 〈u, t〉 〈u′, t′〉.
Henceforth, write(u) precedes write(u’) since there is a single writer. The
Non-triviality property immediately follows from Observation 1: For the single
writer, every read() operation returns the input of its last preceding write()
or ⊥ if there is no preceding write().

To see why the propagation property is satisfied, let u be the input of a
terminating write() or the value returned by a read() performed by a correct
process pi and let t denote its timestamp. By the code, at some point 〈vi, tsi〉 =
〈u, t〉. Then, by Lemma 2, for every non-faulty process pj , eventually 〈u, t〉
〈vj , tsj〉. Hence, eventually every value u′ returned by read() operations is either
u or a value written after u. Finally, the α-Bounded reads property with α =
2M − 1 follows immediately from Lemma 5.

α-Registers 65

4 Lower bound

This section presents a lower bound on α for any implementation of an α-register.
More precisely, it proves the following theorem:

Theorem 4. Let n, f such that f ≥ n
2 . For any implementation of a SWMR

α-register for n processes that tolerates f failures, α ≥M .

Proof. (Sketch) Without loss of generality, assume that A is a full information
f -resilient protocol that implements a SWMR α-register. That is, the state of
each process consists in its initial state and all its history and each time a process
sends a message, it sends its entire state. The single writer is the process pn.

We construct a family of executions of A. Each execution is parametrized by
M integers k1, . . . , kM . We show that for some values of k1, . . . , kM , M distinct
values are returned by read() operations in an interval in which no write() op-
eration is active. Each execution is divided into two phases, each phase consisting
in M sequential rounds.

Recall that M = 2f − n + 2. Let V = {v1, . . . , vM} be a set of M distinct
values. k = (k1, . . . , kM) is a M -tuple of positive integers. For i, 1 ≤ i ≤ M ,
let Qi, Q

′
i denote the sets of n − f processes Qi = {pi} ∪ {pf+2, . . . , pn} and

Q′i = {pi}∪ {pM+1, . . . , pM+(n−f)−1}, respectively. Observe that Qi∩Q′i = {pi}
since M + (n− f)− 1 = f + 1. Execution Ek is defined as follows:
First Phase. This phase consists in M rounds r1, . . . , rn. For each i, 1 ≤ i < M ,
round ri+1 begins after the end of round ri. Only processes in Qi take steps
in round ri. We first let every message that have been sent to processes in Qi

during the previous rounds (if any) to be received. Then, ki + 2 operations on
the α-register implemented by A are performed sequentially, in that order:

1. write(vi) is performed by process pn;

2. Process pn performs read();

3. ki read() operations are performed by process pi.

The messages sent to processes pj /∈ Qi are delayed until some time specified
later. As |Qi| = n−f , the execution is indistinguishable by processes in Qi from
an execution that is the same as Ek until the end of round ri−1 and in which
the f processes /∈ Qi fail at the beginning of ri. As A tolerates f failures, every
operation performed during round ri terminates.

Note that the read() operation performed by pn return vi by the non-
triviality property of α-registers. Moreover, observe that if ki is chosen large
enough, the last read() operation performed by pi returns also vi by the prop-
agation property.
Second Phase. This phase consists also inM rounds r′1, . . . r

′
M . In round r′i, which

begins after round r′i−1 has ended, only processes in Q′i take steps. We first let
the messages that have been sent to the processes in Q′i during previous rounds
r′j , 1 ≤ j < i to be delivered. Then, process pi performs a read() operation. As
in round ri, the execution is indistinguishable to the processes in Q′i from an

66 D. Bonnin and C. Travers

execution that is the same until the end of round ri−1 and in which the f pro-
cesses /∈ Qi fail at the beginning of r′i. Since A tolerates f failures, the read()
operation terminates.

Assuming that ki has been chosen large enough, the previous read() opera-
tion performed by pi (in round ri) returns vi. By the chronological read property
of α-registers, the read() by pi in r

′
i must return vi or more recent value, that

is a value vj with j > i.
Consider the rounds ri+1, . . . , rM . The set of processes that take steps in

these rounds is P = {pi+1, . . . , pM} ∪ {pf+2, . . . , pn}. On the other hand, the
set of processes that takes steps during rounds r′1, . . . , r

′
i is P

′ = {p1, . . . , pi} ∪
{pM+1, . . . , pM+(n−f)−1}. Note that P ∩ P ′ = ∅. Moreover, by construction, for
every pair of processes p ∈ P, p′ ∈ P ′, every message sent by p (if any) to p′

during any round ri+1, . . . , rM has not been received by p′ by the end of r′i.
Therefore, until the end of r′i the execution is indistinguishable to the processes
in P ′ from an execution E ′ that is the same except that rounds ri+1, . . . , rM do
not occur in E ′. Therefore, the read() performed by pi in r

′
i cannot return vj ,

for any j > i. That is, this operation returns vi.
In the second phase, no write() operation is active. M distinct values are

returned by read() operation performed during this phase. Hence α ≥M .

Remark. The lower bound can be slightly improved by a similar, though more
involved, argument to yield α ≥M + 1. See [7].

5 Conclusion

The paper has introduced α-registers. For n processes and at most f ≥ n
2 failures,

an implementation of a SWMR (2M − 1)-register is presented, where M =
2f −n+2. The implementation is complemented by a lower bound stating that
f -resilient simulation of an α-register for α < M + 1 is impossible.

Many questions remain open for future research including closing the gap be-
tween the implementation and the lower bound, designing a multi-writer multi-
reader implementation and understanding the computing power of α-registers.
Another challenging direction is to generalize the bounded version of the ABD
simulation [5]. Doing so may entail solving problems similar to the ones encoun-
tered in the design of fault-tolerant and self-stabilizing atomic registers [4,14].

References

1. Abraham, I., Malkhi, D.: Probabilistic quorums for dynamic systems. Distributed
Computing 18(2), 113–124 (2005)

2. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: The k-simultaneous
consensus problem. Distributed Computing 22(3), 185–195 (2010)

3. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2), 7 (2011)

α-Registers 67

4. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Prag-
matic self-stabilization of atomic memory in message-passing systems. In: Défago,
X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 19–31. Springer,
Heidelberg (2011)

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

6. Attiya, H., Welch, J.: Distributed Computing. Wiley (2004)
7. Bonnin, D., Travers, C.: α-register. Technical report hal#00863060 (2013),

http://hal.inria.fr/hal-00863060/PDF/

8. Bouzid, Z., Travers, C.: (anti−Ωx×Σz)-based k-set agreement algorithms. In: Lu,
C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 189–204.
Springer, Heidelberg (2010)

9. Bouzid, Z., Travers, C.: Parallel consensus is harder than set agreement in message
passing. In: ICDCS. IEEE Computer Society (2013)

10. Apache cassandra, http://cassandra.apache.org/
11. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving

consensus. J. ACM 43(4), 685–722 (1996)
12. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally

asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)
13. DeCandia, G., et al.: Dynamo: amazon’s highly available key-value store. In: SOSP,

pp. 205–220. ACM (2007)
14. Dolev, S., Dubois, S., Gradinariu Potop-Butucaru, M., Tixeuil, S.: Crash resilient

and pseudo-stabilizing atomic registers. In: Baldoni, R., Flocchini, P., Binoy, R.
(eds.) OPODIS 2012. LNCS, vol. 7702, pp. 135–150. Springer, Heidelberg (2012)

15. Fekete, A., Gupta, D., Luchangco, V., Lynch, N.A., Shvartsman, A.A.: Eventually-
serializable data services. Theor. Comput. Sci. 220(1), 113–156 (1999)

16. Friedman, R., Kliot, G., Avin, C.: Probabilistic quorum systems in wireless ad hoc
networks. ACM Trans. Comput. Syst. 28(3) (2010)

17. Friedman, R., Raynal, M., Travers, C.: Two abstractions for implementing atomic
objects in dynamic systems. In: Anderson, J.H., Prencipe, G., Wattenhofer, R.
(eds.) OPODIS 2005. LNCS, vol. 3974, pp. 73–87. Springer, Heidelberg (2006)

18. Gafni, E.: The extended bg-simulation and the characterization of t-resiliency. In:
STOC, pp. 85–92. ACM (2009)

19. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

20. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: Rambo: a robust, reconfigurable
atomic memory service for dynamic networks. Distributed Computing 23(4),
225–272 (2010)

21. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

22. Lamport, L.: On interprocess communication. Distributed Computing 1(2), 77–101
(1986)

23. Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems.
Inf. Comput. 170(2), 184–206 (2001)

24. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.B.:
Session guarantees for weakly consistent replicated data. In: PDIS, pp. 140–149.
IEEE Computer Society (1994)

25. Yu, H.: Overcoming the majority barrier in large-scale systems. In: Fich, F.E. (ed.)
DISC 2003. LNCS, vol. 2848, pp. 352–366. Springer, Heidelberg (2003)

http://hal.inria.fr/hal-00863060/PDF/
http://cassandra.apache.org/

How (Not) to Shoot in Your Foot

with SDN Local Fast Failover

A Load-Connectivity Tradeoff

Michael Borokhovich1,� and Stefan Schmid2

1 Ben-Gurion University of the Negev, Israel
borokhom@cse.bgu.ac.il

2 TU Berlin & T-Labs, Germany
stefan@net.t-labs.tu-berlin.de

Abstract. This paper studies the resilient routing and (in-band) fast
failover mechanisms supported in Software-Defined Networks (SDN). We
analyze the potential benefits and limitations of such failover mecha-
nisms, and focus on two main metrics: (1) correctness (in terms of con-
nectivity and loop-freeness) and (2) load-balancing. We make the fol-
lowing contributions. First, we show that in the worst-case (i.e., under
adversarial link failures), the usefulness of local failover is rather limited:
already a small number of failures will violate connectivity properties un-
der any fast failover policy, even though the underlying substrate network
remains highly connected. We then present randomized and determin-
istic algorithms to compute resilient forwarding sets; these algorithms
achieve an almost optimal tradeoff. Our worst-case analysis is comple-
mented with a simulation study.

1 Introduction

The software-defined networking (SDN) paradigm separates the control plane from
the network data plane, and introduces a (software) controller that manages the
flows in the network from a (logically) centralized perspective. This architecture
has the potential to make the network management and operation more flexible
and simpler, and to enable faster innovation also in the network core. For example,
the controllermayexploit applicationandnetwork state information (including the
switches under its control) to optimize the routing of the flows through the network,
e.g., to implement isolation properties or improve performance.

However, the separation of the control from the data plane may have draw-
backs. For example, a reactive flow control can introduce higher latencies due to
the interaction of the switch with the remote controller. Moreover, the separation
raises the question of what happens if the switches lose connectivity to the con-
troller. One solution to mitigate these problems is to keep certain functionality
closer to the switches or in the data plane [9].

An important tradeoff occurs in the context of network failures: Theoretically,
e.g., a link failure, is best handled by the controller which has the logic to update

� Michael Borokhovich was supported in part by the Israel Science Foundation (grant
894/09).

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 68–82, 2013.
c© Springer International Publishing Switzerland 2013

How (Not) to Shoot in Your Foot with SDN Local Fast Failover 69

forwarding rules according to the current network policies. However, as the indi-
rection via the controller may take too long, modern network designs incorporate
failover (or “backup”) paths into the (switches’ or routers’) forwarding tables.
For example, OpenFlow (since the 1.1 specification [6]), incorporates such a fast
failover mechanism: it allows to predefine resilient and in-band failover routes
which kick in upon a topological change. Only after the failover took place,
the controller may learn about the new situation and install forwarding (and
failover) rules accordingly.

Our Contributions. Given that the in-band failover tables need to be pre-
computed and the corresponding rules are based on limited local network in-
formation only, we ask the question: “Can you shoot in your foot with local
fast failover?” We formalize a simplified local failover problem, and first as-
sume a conservative (or worst-case) perspective where link failures are chosen
by an adversary who knows the entire network and all the pre-installed failover
rules. For this setting, we provide a lower bound which shows that a safe fast
failover can potentially come at a high network load, especially if the failover
rules are destination-based only (Section 2). We then present randomized and
deterministic algorithms to pre-compute resilient forwarding sets and show that
the algorithms are (almost) optimal in the sense that they match the lower
bound mentioned above (Section 3). Finally, we report on a simulation study
(Section 4) which indicates that under random link failures, local fast failover
performs better in general. In technical report [1], we give the formal specifica-
tion of the two additional algorithms used in our simulations, and we extend the
discussion to alternative adversary and traffic models.

Model and Terminology. We attend to the following model. We assume an
SDN-network G = (V,E) with n switches (or nodes) V = {v1, . . . , vn} (e.g.,
OpenFlow switches) connected by bidirectional links E. We assume that all
nodes are directly connected, i.e., G forms a full mesh (a clique). This net-
work serves an all-to-one communication pattern where any node vi ∈ V \ {vn}
communicates with a single destination vn; in other words, we have n− 1 com-
municating (source-destination) pairs. Henceforth, by slightly abusing terminol-
ogy, we will refer to the corresponding n− 1 communication paths as the flows
F = {f1, . . . , fn−1}. The source-destination flows are unsplittable, i.e., each flow
fi ∀i ∈ {1, . . . , k} travels along a single path. For simplicity, we will assume
that all flows fi carry a constant amount of traffic w = w(fi), and that edge
capacities e ∈ E are infinite.

In order to ensure an efficient failover, each switch v ∈ V can store the fol-
lowing kind of failover rules : Each rule r ∈ R considers a specific local failure
scenario, namely the set of failed incident links, and defines an alternative for-
warding port for each source-destination pair. (This is slightly more general than
what is provided e.g., by OpenFlow today: in OpenFlow, all paths need to resort
to the same failover port, rending the connectivity-load tradeoff even worse.)

Formally, let Γ (v) ∀v ∈ V denote the links (or equivalently: the switch ports)
incident to node v in G, and let FW(v) define how the source-destination pairs (or

70 M. Borokhovich and S. Schmid

flows) that are routed via node v (the “forwarding set”). A rule r is of the form:
r :

(

2Γ (v), FW(v)
) �→ FW(v), that is, for each possible failure scenario 2Γ (v) (i.e.,

the subset of ports which failed at v), the failover rule defines an alternative set
of forwarding rules FW(v) at v. Note that the number of rules can theoretically be
large; however, as we will see, small rule tables are sufficient for the algorithms
presented in this paper.

We study failover schemes that pursue two goals: (1) Correctness: Each source-
destination pair is connected by a valid path; there are no forwarding loops.
(2) Performance: The resulting flow allocations are well balanced. Formally, we
want to minimize the load of the maximally loaded link in G after the failover:
minmaxe∈E λ(e), where λ(e) describes the number of flows fi crossing edge e.

Henceforth, let λ̂ = maxe∈E λ(e) denote the maximum load.
For our randomized failover schemes, we will typically state our results with

high probability (short: w.h.p.): this means that the corresponding claim holds
with at least polynomial probability 1− 1/nc for an arbitrary constant c. More-
over, throughout this paper, log will refer to the binary logarithm.

2 You Must Shoot in Your Foot!

Let us first investigate the limitations of local failover mechanisms from a conser-
vative worst-case perspective. Concretely, we will show that even in a fully meshed
network (i.e., a clique), a small number of link failures can either quickly disrupt
connectivity (i.e., the forwarding path of at least one source-destination pair is
incorrect), or entail a high load. This is true even though the remaining physical
network is still well connected: the minimum edge cut (short:mincut) is high, and
there still exist many disjoint paths connecting each source-destination pair.

Theorem 1. No local failover scheme can tolerate n − 1 or more link failures
without disconnecting source-destination pairs, even though the remaining graph
(i.e., after the link failures) is still n/2-connected.

Proof. We consider a physical network that is fully meshed, and we assume a
traffic matrix where all nodes communicate with a single destination vn. To prove
our claim, we will construct a set of links failures that creates a loop, for any local
failover scheme. Consider a flow v1 → vn connecting the source-destination pair
(v1, vn). The idea is that whenever the flow from v1 would be directly forwarded
to vn in the absence of failures, we fail the corresponding physical link: that is, if
v1 would directly forward to vn, we fail (v1, vn). Similarly, if v1 forwards to (the
backup) node vi, and if vi would send to vn, we fail (vi, vn), etc. We do so until
the number of intermediate (backup) nodes for the flow v1 → vn becomes

⌊
n
2

⌋

.

This will require at most
⌊
n
2

⌋

failures (of links to vn) since every such failure
adds at least one intermediate node.

In the following, let us assume that the last link on the path v1 → vn is
(vk, vn). We simultaneously fail all the links (vk, v∗), where v∗ are all the nodes
that are not the intermediate nodes on the path v1 → vn, and not v1. So, there
are n − ⌊

n
2

⌋ − 2 nodes v∗ (the minus 2 accounts for v1 and vk). By failing the

How (Not) to Shoot in Your Foot with SDN Local Fast Failover 71

links to v∗, we left vk without a valid routing choice: All the remaining links
from vk point to nodes which are already on the path v1 → vn, and a loop is
inevitable.

In total, we have at most
⌊
n
2

⌋

+n− ⌊
n
2

⌋− 2 = n− 2 failures. Notice, that the
two nodes with the smallest degrees in the graph are the nodes vn (with degree
of at least n

2 − 1) and vk (with degree of at least n
2). The latter is true since the

first
⌊
n
2

⌋

failures were used to disconnect links to vn, and another n − ⌊
n
2

⌋ − 2
failures were used to disconnect links from vk. All the other nodes have a degree
of n− 2.

The network is still n
2 − 1 connected: the mincut of the network is at least n

2 .
Consider some cut with k nodes on the one side of the cut, and n− k nodes on
the other side. Obviously, one of the sets has a size of at most

⌊
n
2

⌋

; let us denote
this smaller set by S. If S includes at least one of the nodes V \ {vk, vn}, then
the number of outgoing edges form the set is at least n− 2− (|S| − 1), thus the
mincut is at least n

2 −1. If S includes only both vk and vn, the mincut is at least
n− 1 (the link (vk, vn) was failed). If only one of the nodes {vk, vn} is in S, then
the mincut is at least n

2 − 1. �

Regarding the maximal link load, we have the following lower bound.

Theorem 2. For any local failover scheme tolerating ϕ link failures (0 < ϕ < n)
without disconnecting any source-destination pair, there exists a failure scenario
which results in a link load of at least λ̂ ≥ √ϕ, although the minimum edge cut
(mincut) of the network is still at least n− ϕ− 1.

Proof. Let us first describe an adversarial strategy that induces a high load: Re-
call that in the absence of failures, each node vi (i �= n) may use its direct link to
vn for forwarding. However, after some links failed, vi may need to resort to the
remaining (longer) paths from vi to vn. Since the failover scheme S tolerates ϕ
failures and vi remains connected to vn, S will fail over to one of ϕ+ 1 possible
paths. To see this, let vji (j ∈ [1, . . . , ϕ]) be one of the ϕ possible last hops on

the path (vi → · · · → vji → vn), and let us consider the paths generated by S:
(vi → vn),

(vi → · · · → v1i → vn),

(vi → · · · → v1i → · · · → v2i → vn),

. . .

(vi → · · · → v1i → · · · → v2i → · · · → vϕi → vn).

For example, the path (vi → · · · → v1i → vn) will be generated if the first failure
is link (vi, vn), and the path (vi → · · · → v1i → · · · → v2i → vn) if the second

failure is link (v1i , vn) (see Fig. 1 for an illustration). Notice that the last hop vji
is unique for every path; otherwise, the loop-freeness property would be violated.

For each i ∈ [1, . . . , n − 1] (i.e., for each possible source) consider the set

Ai = {vi, v1i , . . . , v
√
ϕ

i }, and accordingly, the multiset
⋃

iAi is of size |⋃iAi| =
(n−1)(

√
ϕ+1) many nodes. Since we have n−1 distinct nodes (we do not count

72 M. Borokhovich and S. Schmid

vn

vi

vn

v1
i

vi

vn

v1
i

vi

v2
i

vn

v1
i

v3
i

vi

v2
i

Fig. 1. From left to right: failover path (vi → vn) where each time the last hop to vn
is failed

vn), by a counting argument, there exists a node w ∈ ⋃

iAi which appears in at
least

√
ϕ sets Ai.

If for each i such that w ∈ Ai, the adversary will cause vi to route to vn via
w, then the load of the link (w, vn) will be at least

√
ϕ. This can be achieved by

failing at most
√
ϕ links to vn in each such set Ai. Thus, the adversary will fail√

ϕ×√ϕ = ϕ links incident to vn, while the maximum loaded link (w, vn) will
have a load of at least

√
ϕ.

It remains to prove that the network remains highly connected, despite these
failures: The proof is simple. In a clique network without failures, the mincut
is n − 1. In the worst case, each link failure will remove one link from some
cut, and hence the mincut must eventually be at least n − ϕ − 1. By the same
argument, there are at least n−ϕ− 1 many disjoint paths from each node vi to
the destination: initially, without failures, there are n−1 disjoint paths (a direct
one and n− 1 indirect ones), and each failure affects at most one path. �

Interestingly, it can be proved analogously that if a failover rule only depends
on destination addresses, the situation is even worse.

Theorem 3. Consider any local destination-based failover scheme in a clique
graph. There exists a set of ϕ failures (0 < ϕ < n), such that the remaining

graph will have a mincut of n− ϕ− 1 and λ̂ ≥ ϕ.
Proof. In order to construct a bad example, we first fail the direct link (v1, vn),
and hence v1 will need to reroute to some path with the last node before vn
being some node vi. When we fail the link (vi, vn), vi will have to reroute and
some other node vj will become the last hop on the path to vn. We repeat this
strategy to fail the links from the newly selected last hop and the destination
vn. This results in a routing path v1 → · · · → vi → · · · → vj → · · · → w → vn
with at least ϕ intermediate nodes. Since the algorithm is destination-based, i.e.,
forwarding rules depend only on the destination address of a packet, the load
on the link (w, vn) will be at least ϕ+ 1: all the nodes on the path v1 → vn will
send their packets via the same route. �

How (Not) to Shoot in Your Foot with SDN Local Fast Failover 73

3 How Not to Shoot in Your Foot!

We have seen that what can be achieved with local fast failover is rather lim-
ited. On the positive side, this section shows that there exist algorithms to
pre-compute failover schemes which at least match the derived lower bounds:
we present algorithms to pre-compute robust failover paths that jointly optimize
the loop-freeness property and the load, i.e., find an almost optimal tradeoff.

Naturally, randomization can help to spread the communication load well, but
we must ensure that paths remain loop-free. We first present such a randomized
solution, discuss how to derandomize it, and finally look at deterministic failover
algorithms.

We introduce a family of failover schemes S which can be represented in a
generic matrix form δi,j . Any failover scheme instance in this family will always
forward a message directly to the destination if the corresponding link is avail-
able. Otherwise, if a given node vi cannot reach the destination vn via (vi, vn), it
will resort to the sequence of alternatives represented as the row i in the matrix
δi,· (the “backup nodes” for vi): vi will first try to forward to node δi,1, if this
link is not available to node δi,2, and so on. Similarly and more generally, start-
ing from node δi,j , if the link (δi,j , vn) is not available, the failover scheme will
try δi,j+1, δi,j+2, etc. In summary, the matrix representation can be depicted as
follows:

δ1,1, δ1,2, . . . , δ1,n−2
. . .

δi,1, δi,2, . . . , δi,n−2
. . .

δn−1,1, δn−1,2, . . . , δn−1,n−2

The following auxiliary claim characterizes the best adversarial strategy against
the failover schemes S.
Claim 4. For the family of failover schemes S, the highest load is induced if
links towards the destination node vn are failed.

Proof. To achieve a load of ϕ on some link, the adversary first needs to bring
at least ϕ flows to some node w. Consider a failover sequence δi,· in which w is
located at j’s position, i.e., δi,j = w. In order to bring the flow vi → vn to node
w, the adversary needs to fail at least j links (every failure requires at most a
single additional backup node). Thus, the adversary can remove the links to the
destination from every node δi,k, k < j and from the source vi. The optimality is
due to the fact that once one of the nodes δi,k, k < j appears in other sequences,
these failures are automatically reused: the links (δi,k, vn) already failed. If the
adversary would instead choose to fail other links (not towards the destination),
e.g., (δi,j , δi,j+1) , the failures can only be reused if the same link (and not only
an endpoint) appears in other sequences before w. Therefore, we conclude that

74 M. Borokhovich and S. Schmid

the strategy of failing the links to the destination is optimal: (1) it requires no
more failures to bring a specific flow to w than any other strategy, and (2) link
failures to the destination can strictly be reused more often than the failures of
links to any other nodes. �

3.1 Randomized Failover

What does a good failover matrix δi,j look like? Naively, one may choose the
matrix entries (i.e., the “failover ports”) uniformly at random from the set of
next hops which are still available, and depending on the source and destination
address, in order to balance the load. However, note that a random and indepen-
dent choice will quickly introduce loops in the forwarding sequences: it is likely
that a switch will forward traffic to a switch which was already visited before on
the failover path.

Thus, our randomized failover scheme RFS will choose random permutations,
i.e., for a source-destination pair (vi, vn), the sequence δi,1, δi,2, . . . , δi,n−2 (with
δi,j ∈ V \{vi, vn}) is always loop-free (deterministically). Technically,RFS draws
all δi,j uniformly at randomly from V \ {vi, vn} but eliminates repetitions (e.g.,
by redrawing a repeated node). We can show that RFS is almost optimal, in
the following sense.

Theorem 5. Using the RFS scheme, in order to create a maximum load of

λ̂ =
√
ϕ, the adversary will have to fail at least Ω

(
ϕ

logn

)

links w.h.p., where

0 < ϕ < n.

Proof. To create a link load of
√
ϕ with the minimal number of link failures, the

adversary must in particular be able to route at least
√
ϕ flows to some node

w. Given the
√
ϕ load on the node, in the best case (for the adversary), the

entire flow will be forwarded by w on a single outgoing link. (E.g., the link to
the destination vn.) We will show that w.h.p., it is impossible for the adversary
to route more than

√
ϕ flows to a single node.

The adversary can put a high load on some node w only if: 1) Node w is lo-
cated close to the beginning of many sequences (i.e., is in a small “prefix” of the
sequences); thus, a small number of failures is sufficient to redirect the flow to w.
2) Many nodes appearing before w in the sequence prefixes occur early in many
other prefixes as well; thus, the adversary can “reuse” failed links to redirect also
other source-destination pairs. Note that these two requirementsmay conflict, but
to prove the lower bound on the number of required failures, we can assume that
both conditions are satisfied: the set of

√
ϕ sequences with the largest number of

node repetitions in the w-prefixes also have the shortest w-prefixes.
With this intuition in mind, let us compute the probability that a node w ap-

pears more than approximately logn times at position j. Let Y j
i be an indicator

random variable that indicates whether w is located at position j ∈ [1, . . . , n−2]
in sequence i ∈ [1, . . . , n − 1]. Let Y j =

∑n
i=1 Y

j
i be a random variable rep-

resenting the number of times that w appears at position j. Since the failover
sequences are random, Pr(Y j

i = 1) = 1
n−2 (w is neither the source nor the

How (Not) to Shoot in Your Foot with SDN Local Fast Failover 75

destination) and thus, ∀j,E [

Y j
]

= n−1
n−2 . Applying the Chernoff bound on the

sum of n i.i.d. Poisson trials, we obtain (for any δ > 0):

Pr
(

Y j > (1 + δ)E
[

Y j
]) ≤ 2−δE[Y

j]

Pr

(

Y j >
(1 + 3 logn)(n− 1)

n− 2

)

≤ 2−(3 logn)×n−1
n−2

≤ 2−3 logn = 1/n3.

Let us denote z = (1+3 logn)(n−1)
n−2 and rewrite:

Pr
(

Y j > z
) ≤ 1/n3.

We can now apply a union bound argument1 over all possible nodes w and over
all possible positions j, which yields that with probability at least 1 − 1

n , any
node will appear no more than z times at each position.

The adversary needs to select the
√
ϕ sequences with the shortest w-prefixes.

For a chosen sequence i, let us denote by ki the prefix length for node w (the
prefix length includes w itself). Since each node will appear no more than z
times at each position (with probability of at least 1− 1

n) the minimum length
of a total prefix for any node w can be derived. Let us denote the minimum
total prefix by k. Clearly, k is minimized for the shortest possible prefixes ki.
According to the analysis above, with high probability, there are no more than
z prefixes of length 1, no more than z prefixes of length 2, and so on. Therefore:

k =

√
ϕ

∑

i=1

ki ≥
z∑

i=1

1 +
z∑

i=1

2 + · · ·+
z∑

i=1

√
ϕ

z

= z

(

1 + 2 + · · ·+
√
ϕ

z

)

=
ϕ+
√
ϕz

2z
≥ ϕ

2z

≥ ϕ

8 logn
. (1)

Eq. 1 is true since for n ≥ 6, (1+3 logn)(n−1)
n−2 ≤ 8 logn.

In conclusion, we know that in order to achieve a load of
√
ϕ, the adversary has

to fail the entire total prefix of w that consists of at least ϕ
8 log n nodes. However,

the nodes in the prefixes are not necessarily all distinct, and the number of links
the adversary needs to fail only depends on the distinct nodes in the total prefix
of the node w. The latter is true due to the fact that the best adversarial strategy
is to fail only the links to the destination since in this case every such failure is
reused once the same node appears again in the total prefix of w (see Claim 4).
Hence, we next compute the minimum number of distinct nodes D in any set
of k random nodes. As we are interested in lower bounding D, we can choose
k minimal, i.e., k = ϕ

8 logn . The analysis follows from a balls-and-bins argument

1 The union bound argument says that the probability of the union of the events is
no greater than the sum of the probabilities of the individual events.

76 M. Borokhovich and S. Schmid

where bins represent node IDs and balls are the k positions that should be failed
by the adversary. Thus, D is a number of occupied bins (i.e., bins that contain
at least one ball). Let Di be a binary random variable indicating that the i-th

ball falls into an empty bin (i.e., D =
∑k

i=1Di). So, Pr(Di = 1) ≥ n−1−k
n−1 . Since

k = ϕ
8 logn and ϕ < n, we obtain that:

Pr(Di = 1) ≥ n− 1− k
n− 1

≥ 8 logn− 1

8 logn
≥ 0.8.

Thus, E[D] = kE[Di] ≥ 0.8k. Now we can apply the Chernoff bound (for any
δ ∈ (0, 1]):

Pr(D ≤ (1− δ)0.8k) ≤ Pr(D ≤ (1− δ)E[D])

≤ e−E[D]δ2/2 ≤ e−0.8kδ2/2.

By taking δ = 0.5 we obtain Pr(D ≤ 0.4k) ≤ e−0.1k.
It remains to prove that this bound still holds under the union bound for

all
(
n−1√

ϕ

)

possible sets of sequences that the adversary can choose. In other

words, we have to ensure that
(

n√
ϕ

)

e−0.1k ≤ 1
n (we took a larger number, since:

(
n√
ϕ

) ≥ (
n−1√

ϕ

)

).

(
n√
ϕ

)

e−0.1k ≤ n√ϕe−0.1k = n
√
ϕe−

ϕ
80 log n (2)

= e
√
ϕ lnn− ϕ

80 log n = e
ϕ
(

lnn√
ϕ
− 1

80 log n

)

≤ eϕ
(

log n√
ϕ − 1

80 log n

)
.

For ϕ ≥ 822 log4 n, we have (log n√
ϕ − 1

80 logn) ≤ −2
822 logn , and hence

(
n√
ϕ

)

e−0.1k ≤
e

−2ϕ

822 log n ≤ e−2 log3 n ≤ 1
n2 . Since

(
n√
ϕ

)

Pr(D ≤ 0.4k) =
(

n√
ϕ

)

Pr(D ≤ 0.4ϕ
8 logn) ≤ 1

n2 ,

w.h.p., any set of
√
ϕ sequences (i.e., w-prefixes) will requireΩ(ϕ

logn) failures. �

3.2 Deterministic Failover

Theoretically, the result of Theorem 5 can be derandomized, i.e., the RFS
scheme can deterministically ensure low loads. The idea is that we could verify
whether an (improbable) situation occurred and the random sequences gener-
ated by RFS actually yield a high load (we just need to check all possible loads
at any w); if so, another set of random permutations is generated. However, this
verification is computationally expensive.

We hence now initiate the discussion of efficient deterministic schemes. In
particular, we propose an optimal failover scheme (which matches our lower
bound in Section 2), at least for small ϕ. Similar to RFS, the deterministic
failover scheme DFS is defined by a failover matrix δi,j ; however, here δi,j will
simply refer to a node’s index (and not the node itself): We define the index of

How (Not) to Shoot in Your Foot with SDN Local Fast Failover 77

any node v� to be �−1, i.e., the nodes {v1, v2, . . . , vn} are mapped to the indices
{0, 1, . . . , n− 1}. Given a destination node vn, DFS is defined by the following
index matrix:

1, 2, 4, 8, . . . ,
(

0 + 2�logn�
)

mod n

2, 3, 5, 9, . . . ,
(

1 + 2�logn�
)

mod n

3, 4, 6, 10 . . . ,
(

2 + 2�logn�
)

mod n

. . .

In general, the index in sequence i ∈ [1, . . . , n−1] at position j ∈ [1, . . . ,
logn�]
is δi,j = (i−1)+2j−1 mod n. For example, if the link (v1, vn) fails, v1 will reroute
via the node with index 1, i.e., via v2; and so on. We can show the following
result.

Theorem 6. The DFS scheme achieves a maximum load of λ̂ = O(
√
ϕ) in any

scenario with ϕ <
logn� failures.
Proof. We will prove something even stronger: the adversary cannot choose link
failures such that any node w forwards more than

√
ϕ flows. Clearly, an upper

bound on the node load is an upper bound on the (incident) links: in the worst
case, w will forward all traffic to the same link. To create a high load at some
node w, the adversary needs to find failover sequences in the matrix δi,j where
the node w appears close to the beginning of the sequence, and fail all the links
(vi, vn), where vi is a node preceding w in a sequence: i.e., the adversary fails the
total prefix of w. Note that failing the links to the destination is the best strategy
for the adversary as failures are automatically reusable in other sequences (see
Claim 4).

The following two claims will help us to show that the adversary wastes its
entire failure budget in order to achieve a maximum load of

√
ϕ.

Claim 7. Every node index participates in only
logn� sequences.
Proof. The DFS failover matrix is defined as δi,j = (i−1)+2j−1 mod n, where
i ∈ [1, . . . , n− 1] and j ∈ [1, . . . ,
logn�]. From this construction, it follows that
there are no index repetitions in the matrix columns. Since there are
logn�
columns, the claim follows. �

Claim 8. For any node index �, all �-prefixes (sets of indices preceding � in the
sequences) are disjoint.

Proof. Let us define m = i − 1 and k = � − 1. The index in sequence m ∈
[0, . . . , n − 2] at position k ∈ [0, . . . ,
logn� − 1] is m + 2k mod n. Consider
a sequence m′ where the index w appears at position k′ and a sequence m′′

where the index � appears at position k′′. Without loss of generality, assume

78 M. Borokhovich and S. Schmid

that k′′ > k′. Let m′ + 2k
∗

mod n and m′′ + 2k
∗∗

mod n represent the indices
in the prefixes of � in sequencesm′ andm′′ accordingly. Assume by contradiction
that these indices are the same. We have that

m′ + 2k
′
= m′′ + 2k

′′
mod n

m′ + 2k
∗
= m′′ + 2k

∗∗
mod n (assumption)

and hence

m′ −m′′ = 2k
′′ − 2k

′
+ n · C1

m′ −m′′ = 2k
∗∗ − 2k

∗
+ n · C2

Therefore

2k
∗∗ − 2k

′′
+ 2k

′ − 2k
∗
= n · C3

where C1, C2 and C3 are some integer constants.
Notice that max(2k

∗∗
, 2k

′′
, 2k

′
, 2k

∗
) < n, so the only possible values for C3

are: {−1, 0, 1}. Moreover, (2k
∗∗ − 2k

′′
) < 0, while (2k

′ − 2k
∗
) > 0, and since the

absolute value of these differences is bounded by 2�logn�−1 ≤ 0.5n, we can write:

−0.5n < 2k
∗∗ − 2k

′′
+ 2k

′ − 2k
∗
< 0.5n.

Thus, 0 remains the only possible value for C3. The values {2k∗∗
, 2k

′′
, 2k

′
, 2k

∗}
are distinct since there are no repetitions in the columns of the sequence matrix.
Since 2k

′′
> 2k

∗∗
+ 2k

′
+ 2k

∗
, due to a geometric series argument (the largest

element is greater than the sum of all previous elements), we can state that

2k
∗∗ − 2k

′′
+ 2k

′ − 2k
∗
< 0.

We conclude that there is no integer constant C3 satisfying our assumption
m′ + 2k

∗
= m′′ + 2k

∗∗
mod n (i.e., there are two identical indices in the �-

prefixes). �

Armed with these claims, we are ready to continue with the proof. Since all
prefixes are disjoint, the adversary cannot reuse failures of one flow for another.
Thus, the adversary will be able to route one flow to w using a single failure (by
finding a sequence in which w appears at the first position); to add another flow,
the adversary takes a sequence δi in which w is located at position 2 and will
fail the links (vi, vn), and (v(δi,1)+1, vn). And so on. Thus, the number of used
failures can be represented as

1 + 2 + 3 + 4 + · · ·+ L ≤ ϕ

How (Not) to Shoot in Your Foot with SDN Local Fast Failover 79

2

 10

 100

 60000 120000 180000

M
A

X
 L

O
A

D

NUM OF FAILED LINKS

n=500, single dest, random attack

ROB
RFS
DFS

Fig. 2. Like Figure 4, but under random failures

 1

 10

 100

 1000

10 100 1

F
R

E
Q

LOAD

n=500, single dest, eclipse, 150 failures

ROB
RFS
DFS

 1

 10

 100

 1000

 10000

10 100 1

F
R

E
Q

LOAD

n=500, single dest, eclipse, 450 failures

ROB
RFS

Fig. 3. Load distribution over links

where L is the number of flows passing through w on the way to the destination
vn. So:

1 + 2 + 3 + 4 + · · ·+ L ≤ ϕ
L(L+ 1)

2
≤ ϕ

L <
√

2ϕ.

Note that the index of the destination node (n − 1 in our case) can appear
inside the failover sequences. In this case, the index will be skipped since the
link to it from the source already failed. By skipping one index, we shorten the
failover sequence by 1, and since every sequence has length
logn�, our failover
scheme holds for any ϕ <
logn�. �

80 M. Borokhovich and S. Schmid

 1

 10

 100

 100 200 300 400

M
A

X
 L

O
A

D

NUM OF FAILED LINKS

n=500, single dest, eclipse

ROB
RFS
DFS

2

 10

 100

 0 100 200 300 400

M
A

X
 L

O
A

D

NUM OF FAILED LINKS

n=500, single dest, eclipse

ROB
RFS
DFS

Fig. 4. Left: Load for different algorithms (n = 500). Right: Boxplot

4 Beyond Worst-Case Failures

 1

 10

 100

 1000

 10000

 100000

 60000 120000 180000

M
A

X
 L

O
A

D

NUM OF FAILED LINKS

n=500, all-to-all, random attack

ROB
RFS
DFS
BAL

Fig. 5. Max load in all-to-all communication

To complement our worst-case bounds,
we conducted simulations with differ-
ent failure scenarios. (1) Ran: links
are failed uniformly at random; (2)
Ecl (an “eclipse attack”): links are
removed at random around destina-
tion vn. We used two traffic patterns.
(1) Single dest: one unit of flow from
each node to vn; (2) all-to-all: one
unit of flow from each node to every
other node. In addition to our failover
schemesRFS andDFS, we also simu-
late the following naive strategies. (1)
Bal (“balanced”): If the destination
cannot be reached directly, forward
to an available port chosen uniformly
at random (depending on the destina-
tion and the set of failed links). This strategy seeks to balance traffic but does not
ensure loop-freeness. (2) Rob (“robust”): If the destination cannot be reached,
forward to the available neighboring switch which has the lowest identifier (in a
modulo manner, and assuming that switches have unique identifiers). We start
with the single dest traffic pattern. Figure 4 (left) plots the load as a function of
the number of failed links under Ecl. (Note the logarithmic scale on the y-axis.)
We observe that compared to Theorem 5 which deals with worst-case failures,
RFS performs significantly better: while our conservative bound suggests that
to create a load of 10 =

√
ϕ, ϕ/ logn = 100/ log 500 = 11.15 failures are needed,

more than 300 are necessary in our experiment. Moreover, we observe that RFS
yields a much lower load than the naive approachRob; for the single-destination

How (Not) to Shoot in Your Foot with SDN Local Fast Failover 81

scenario, Bal is similar to Rob and is not shown explicitly here. The DFS al-
gorithm also gives a low load; however, it is only defined up to a certain ϕ (see
Theorem 6). The variance of these experiments is typically small, see the boxplot
in Figure 4 (right).

As expected, under Ran failures, the load is generally lower, and our scheme
can tolerate more failures without creating loops (see Figure 2).

As the maximal link load reveals a partial picture only, Figure 3 studies the
load distribution over multiple links (under Ecl), once for 150 failures (left) and
once for 450 failures (right). Obviously, most links hardly contain more than one
or two flows under RFS; again, under the naive Rob strategy (and similarly for
Bal), the situation is worse.

Let us have a look at alternative traffic matrices. Figure 5 shows the results
for an all-to-all communication pattern (under Ran). Interestingly, for RFS,
the load is not much higher than in the single-destination scenario; this confirms
the good load-balancing properties of RFS. However, we also see that DFS
performs poorly and needs to be generalized for the multi-destination scenario.
Finally, we note that in this scenario, we can exploit Bal’s flexibility and in
contrast to the single destination case, the algorithm significantly outperforms
Rob (in terms of load).

5 Related Work

This work is motivated by the trend towards Software-Defined Networking and
in particularly the fast failover mechanism which supports the in-band mask-
ing of failures (see Section 5.8 of the OpenFlow 1.1 specification). However, as
the convergence time of routing algorithms is often relatively high compared to
packet forwarding speeds, ranging from 10s of milliseconds to seconds depending
on the network [2], many networks today incorporate some robustness already
in the forwarding tables of a router or switch: Thus, robust routing concepts
and link protection schemes have been studied intensively for many years, also
outside SDN.

For example, robust Multiprotocol Label Switching (MPLS) supports local
and global path protection to compute shortest backup paths around an outage
area [7,11], where “shortest” is often meant in terms of congestion [8,12]. Related
to our connectivity and load-balancing tradeoff is also the work by Suchara
et al. [10] who analyze how to jointly optimize traffic engineering and failure
recovery from pre-installed MPLS backup paths. However, in contrast to our
paper, their solution is path-based and not local, and the focus is on robust
optimization.

Alternative solutions to make routing more resilient rely on special header bits
(e.g., to determine when to switch from primary to backup paths, as in MPLS
Fast Reroute [7], or to encode failure information to make failure-aware forward-
ing decisions [3,5]), or on fly table modifications [4]. Recently, Feigenbaum et
al. [2] made an interesting first step towards a better theoretical understand-
ing of resilient SDN tables. The authors prove that routing tables can provide

82 M. Borokhovich and S. Schmid

guaranteed resilience (i.e., loop-freeness) against a single failure, when the net-
work remains connected.

6 Conclusion

So, will or won’t you shoot in your foot with fast failover? Our results show
that there exists an interesting tradeoff between a “safe” and “efficient” failover.
The usefulness of the local failover depends on whether link failures are rather
adversarial or random, and on how flexibly the failover rules can be specified.
In particular, we have seen that the possibilities of destination-based failover
schemes are very limited. But also more expressive failover schemes where flows
can be forwarded depending on arbitrary local matching rules (this is more
general than today’s OpenFlow specification), can lead to high network loads
in the worst case. On the positive side, relatively simple algorithms exist which
match these lower bounds.

Acknowledgments. We would like to thank Chen Avin for valuable discussions
and advice.

References

1. Borokhovich, M., Schmid, S.: How (not) to shoot in your foot with sdn local fast
failover: A load-connectivity tradeoff. Technical Report, arXiv:1309.3150 (2013)

2. Ba, J.F., et al.: On the resilience of routing tables. In: Proc. ACM Symposium on
Principles of Distributed Computing (PODC), pp. 237–238 (2012)

3. Lakshminarayanan, K., Caesar, M., Rangan, M., Anderson, T., Shenker, S., Sto-
ica, I.: Achieving convergence-free routing using failure-carrying packets. In: Proc.
SIGCOMM, pp. 241–252 (2007)

4. Liu, J., Yan, B., Shenker, S., Schapira, M.: Data-driven network connectivity. In:
Proc. HotNets, pp. 8:1–8:6 (2011)

5. Lor, S.S., Landa, R., Rio, M.: Packet re-cycling: eliminating packet losses due to
network failures. In: Proc. HotNets, pp. 2:1–2:6 (2010)

6. OpenFlow Spec (2013),
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf,
openflow.org

7. Pan, P., Swallow, G., Atlas, A.: Fast reroute extensions to RSVP-TE for LSP
tunnels. In: RFC 4090 (2005)

8. Saito, H., Yoshida, M.: An optimal recovery LSP assignment scheme for MPLS
fast reroute. In: Proc. NETWORKS (2002)

9. Schmid, S., Suomela, J.: Exploiting locality in distributed sdn control. In: Proc.
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN
(2013)

10. Suchara, M., Xu, D., Doverspike, R., Johnson, D., Rexford, J.: Network architecture
for joint failure recovery and traffic engineering. In: Proc. ACM SIGMETRICS,
pp. 97–108 (2011)

11. Vasseur, J.-P., Pickavet, M., Demeester, P.: Network Recovery: Protection and
Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan Kaufmann Publish-
ers Inc. (2004)

12. Wang, D., Li, G.: Efficient distributed bandwidth management for MPLS fast
reroute. IEEE/ACM Trans. Netw. (2008)

http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
openflow.org

Message Passing or Shared Memory: Evaluating

the Delegation Abstraction for Multicores

Irina Calciu1, Dave Dice2, Tim Harris2, Maurice Herlihy1,2, Alex Kogan2,
Virendra Marathe2, and Mark Moir2

1 Brown University
{irina,mph}@cs.brown.edu

2 Oracle Labs
{dave.dice,timothy.l.harris,alex.kogan,
virendra.marathe,mark.moir}@oracle.com

Abstract. Even for small multi-core systems, it has become harder and
harder to support a simple shared memory abstraction: processors access
somememory regions more quickly than others, a phenomenon called non-
uniformmemory access (NUMA).These trends have prompted researchers
to investigate alternative programming abstractions based on message
passing rather than cache-coherent shared memory. To advance a prag-
matic understanding of these models’ strengths and weaknesses, we have
explored a range of different message passing and shared memory designs,
for a variety of concurrent data structures, running on different multicore
architectures. Our goal was to evaluate which combinations perform best,
and where simple software or hardware optimizations might have themost
impact. We observe that different approaches perform best in different
circumstances, and that the communication overhead of message passing
can often outweigh its benefits. Nonetheless, we discuss ways in which this
balance may shift in the future. Overall, we conclude that, by emphasiz-
ing high-level shared data abstractions, software should be designed to be
largely independent of the choice of low-level communication mechanism.

Keywords: NUMA, message passing, shared memory, delegation, locks,
concurrent data structures.

1 Introduction

As modern processor architectures evolve, programming abstractions are strain-
ing to keep up. The transition from single-core to increasingly multi-core ar-
chitectures means that scalability, that is, the ability to exploit parallelism and
manage concurrency, has become a central concern for software system design.

Even for small multi-core systems, it has become harder and harder to
support a simple shared-memory abstraction. This abstraction is already start-
ing to fail with respect to performance: processors observe that some mem-
ory regions can be accessed more quickly than others, a phenomenon called
non-uniform memory access (NUMA). Once a concern primarily for large-scale,
high-performance workloads, NUMA effects are increasingly visible to smaller,

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 83–97, 2013.
c© Springer International Publishing Switzerland 2013

84 I. Calciu et al.

“everyday” programs. In the long term, some researchers have even suggested
that cache coherence will no longer be feasible across a single multi-core chip,
or that individual cores may perform better in the absence of coherence.

In reaction to these trends, researchers have investigated alternative program-
ming abstractions in which—even within a shared-memory system—coordination
is based on message passing rather than via direct access to shared-memory data
structures. A key example is a design pattern we call delegation, in which one
thread requests that another thread perform an operation on its behalf, and the
request and response (if any) are sent by message passing. For instance, Bar-
relfish [1] runs a separate kernel on each core, and cores communicate only via
a message passing interface, itself implemented in shared memory.

Advocates for delegation appeal to its simplicity: it promises to support appli-
cation designs that span NUMA architectures, heterogeneous architectures, and
even architectures that lack global coherence. Moving platform-specific engineer-
ing concerns—such as cache line sizes or idiosyncratic coherence protocols—out
of the application and into the message passing substrate could ease porting
applications from one platform to another, or from one platform to its successor.

Many of these proposals (surveyed in Section 7), however, are ad-hoc in nature,
focusing on a specific implementation of a specific data structure, yielding little
insight into where the message passing abstraction performs better than the
shared-memory abstraction. Our contribution is to explore a range of message
passing and shared-memory designs, on various benchmarks running on different
multicore architectures, and to evaluate which combinations perform best.

This paper does not take sides in the ongoing debate about the relative mer-
its of shared-memory versus message-passing abstractions [9]. In contrast, our
contribution is to advance a pragmatic understanding of these models’ strengths
and weaknesses. In particular, such debates often present a false dichotomy: that
we must choose between these models, and that one is superior. Instead, by em-
phasizing high-level abstractions, software can be designed largely independently
of the choice of low-level communication mechanism. The choice itself should be
based on pragmatic performance evaluations.

We will use the following terminology. Many modern large-scale multiproces-
sor architectures are composed of multiple sockets or nodes, each encompassing
multiple cores. Each core has access to a local cache hierarchy and to dynamic
random-access memory (DRAM), along with multiple threads. Such systems typ-
ically utilize a cache-coherence protocol, which creates the illusion that threads
share a common memory. Nevertheless, as noted, cache coherence protocols do
not hide NUMA effects in the form of differences in the times needed to com-
municate between local and remote memories. We use the term NUMA domain
to indicate a set of threads with identical memory access times.

Section 2 explains our notion of delegation, and Section 3 describes alternative
ways of implementing message passing on a shared-memory multicore. Section 4
describes the range of benchmarks used, and Section 5 describes the experimental
results, which are discussed further in Section 6. Section 7 surveys related work,
and Section 8 presents conclusions.

Evaluating the Delegation Abstraction for Multicores 85

2 Delegation

In delegation, access to a data structure is mediated by one or more server
threads, which are the only threads allowed to manipulate the data directly.
Even though all threads share a common (NUMA) memory, client and server
threads communicate by a message passing protocol whose implementation is
optimized to take advantage of the underlying shared memory.

When a client thread needs to apply an operation to a data structure, it
delegates that operation by sending a request message to the server thread. When
the server thread receives the message, it carries out the operation directly on
the data structure, and stores the result value, if any, in a client-allocated buffer.

Delegation is attractive for several reasons. First, the server thread can oper-
ate directly on the data structure—without synchronizing its accesses with other
threads, in which case programmers need not worry about synchronization. Fur-
thermore, a server thread may encounter fewer cache misses and generate less co-
herence traffic than threads operating on the data structure directly. Advocates
of delegation often suggest that delegation can produce more robust software
designs: to be cost-effective, applications must be designed to work over a wide
range of parallel platforms, making it difficult to optimize shared data structures
for any specific platform. Delegation introduces an abstraction layer, allowing
implementations to be optimized for different platforms with no changes to ap-
plications. This abstraction layer allows applications to be more easily scaled
out from multicores to multiple machines by replacing the shared-memory com-
munication protocol with one that operates over a distributed system.

Nevertheless, delegation also has its pitfalls. From the point of view of an
individual operation on a data structure, a central question is how the time
spent operating directly on a shared data structure compares with the cost of
(i) sending and receiving messages, (ii) queuing time of a message at a server
thread, and (iii) execution time at the server thread. Server threads are statically
assigned to cores, so they may be idle some of the time. If there are enough
cores, however, this static assignment removes the need for complex mechanisms
to enable server threads to be quickly identified and dispatched (as with active
messages [17]). Server threads may become a bottleneck, so the underlying data
structure may need to be partitioned and delegated to multiple servers, a problem
similar to moving from coarse to fine-grained locking. Finally, delegation imposes
some inconvenience on programmers, as operation requests and responses must
be marshalled into messages before being sent and unmarshalled upon receipt.

In short, while delegation has some attractive properties, it does not follow
that delegation-based data structures are inherently preferable.

3 Communication

Message Passing. Clients communicate with servers via a message-passing proto-
col implemented in shared memory. Although we consider several different mech-
anisms for communication, the messages themselves are similar across schemes.

86 I. Calciu et al.

Each message contains an opcode identifying the requested operation (e.g., add a
key-value pair to a table), one or more arguments (the values to add), a pointer
to a buffer where the call’s result is to be stored (e.g., the value returned by a
get() call), and a ready flag that the server sets when the result is ready. We
follow the convention that the client manages the memory occupied by messages
(most messages are allocated on the client’s stack).

In our experiments, when a client issues a request, it blocks until the response
is available. Straightfoward alternative approaches could allow clients to issue
requests for multiple operations to be performed in parallel.

We evaluate three communication mechanisms: MPSCChannel, InletQueue,
and DNCInletQueue, each making different synchronization trade-offs.

The MPSCChannel (multiple producer, single consumer), based on the “Mul-
tilane” structure of Dice and Otenko [6], uses an array of request slots. A shared
variable PutCursor indicates the next available slot. A client uses a compare-and-
swap (CAS) instruction to increment PutCursor atomically, and uses the previous
value (modulo the size of the array) to choose a slot. Because that slot might
still be in use, the client repeatedly calls CAS to swap null with a pointer to its
request message. The server uses a private variable TakeCursor to cycle around
slots, waiting for each one to contain a non-null pointer to a request. It then
reads the opcode and arguments from the request, resets the array slot to null
(making it available to other clients), performs the operation, stores the result
in the buffer provided, and finally sets the ready flag.

In NUMA architectures, memory accesses not satisfied by local cache are
substantially slower when applied to remote memory than to local memory. A
disadvantage of MPSCChannel is that it requires threads to repeatedly apply
CAS to remote PutCursor locations, and, more rarely, to remote slots.

The InletQueue channel provides one slot per NUMA domain. Each client uses
CAS to attempt to replace the slot’s null value with a pointer to its message.
When the server reads the request, it resets the slot to null to make it available
again, performs the operation, copies the result (if any) to the client’s buffer,
and sets the message’s ready flag.

The DNCInletQueue channel (“direct, no CAS”) uses only load and store oper-
ations to access remotely share variables, and a lock for synchronization among
threads on a single node. In this channel, the node’s slot contains the message
itself, not just a pointer to the message. When a client thread acquires the lock
for its node’s slot, it copies the request message into the slot, including a pointer
to the client buffer where the result is to be stored.

The motivation for DNCInletQueue is to ensure that the mechanism used for
actual inter-socket communication is as simple as possible (simple stores by the
client and simple loads by the server): synchronization such as acquiring the lock
that protects the slot is performed only among threads on the same node. (With
InletQueue, although only clients on the same node attempt to modify the slot,
slots are still shared remotely with the server reading them.) We believe this
approach creates the best opportunity for potential future hardware optimiza-
tions to reduce communication overhead. Even without such optimizations, the

Evaluating the Delegation Abstraction for Multicores 87

“direct” aspect of DNCInletQueue ensures that, when a server reads a slot writ-
ten by a client, it already knows the operation to perform. In contrast, methods
that send a pointer to the message require the server to initiate another round
of inter-socket communication to fetch the message contents.

Shared Memory. For shared-memory mechanisms, we consider lock-based struc-
tures employing the following kinds of locks: a simple spin lock, theMCS lock [11],
and fair and unfair versions of a NUMA-aware “cohort” lock C−TKT−MCS [5]
that uses MCS for synchronization between threads on the same socket, and a
global ticket lock to explicitly manage when the lock is handed off to a thread
on another socket. Handing off the lock preferentially within a socket can reduce
lock handoff time, and increase cache locality for data accessed in the critical
section. However, doing so blindly can result in “gross unfairness”, in which high
throughput is achieved, but some threads are essentially starved. Perhaps sur-
prisingly, depending on the architecture, this phenomenon can occur even with
simple locks that do not explicitly seek to keep the lock within a socket. Thus,
it is important to manage such pitfalls. We therefore include “fair” and “unfair”
variants of C−TKT−MCS (denoted as C−TKT−MCS-fair and C−TKT−MCS-
unfair, respectively). The fair version imposes a limit on how many times the
lock can be handed off within a socket, avoiding grossly unfair behavior.

4 Benchmarks

In this paper, we restrict our analysis to two representative cases among the
data structures we explored. Both implement a map interface, storing key-value
pairs with standard insert (), remove() and get() operations.

4.1 Concurrent Hash Maps

The hash map is partitioned into multiple pieces; with delegation, each is man-
aged by a server thread. Each partition has a preconfigured number of buckets,
where each bucket is a linked list of chunks. Each chunk is a fixed-size, cache-
line-aligned structure that holds a set of key-value pairs whose keys lie within a
fixed range. Chunk size is a multiple of 64 bytes (the unit of cache coherence).
To speed searches, adjacent chunks’ key ranges do not overlap, and each chunk
records the maximum key that it stores. Chunks in a bucket are sorted by their
maximum stored keys, but key-value pairs within a chunk are unordered.

Each bucket is a linked list of cache-aligned chunks, instead of the more tra-
ditional list of key-value pairs, because loading each chunk brings in multiple
key-value pairs, reducing cache coherence traffic. This structure should benefit
both shared-memory and delegation-based methods. However, it is likely to favor
shared-memory more because delegation ensures that all accesses to this data
are from the same NUMA node, resulting in more effective use of lower level
caches, and more ability to place data in memory near where it will be accessed.

To store a key-value pair in a partition, the key is hashed to identify the
bucket where the pair will be stored. The bucket’s list of chunks is then scanned

88 I. Calciu et al.

to identify which chunk should contain the given key, skipping chunks whose
maximum key is smaller than it. The target chunk is then scanned linearly for
the given key. If found, the value is updated. If not, but the chunk is full, the
chunk is split and half of its elements are moved to a new chunk, making space
for the new pair. Chunk size is subject to a trade-off: smaller chunks are better
for cache locality, but larger chunks reduce the frequency of splitting.

Although many other possibilities exist, we have chosen shared-memory and
delegation-based implementations that each exploit a key advantage they have
over the other. For delegation, by having a single server thread manage each
partition, it can do so without additional synchronization. For shared memory,
we have chosen an example in which fine-grained locking is straightforward: a
fixed-size hash map implemented using a single lock for each bucket, allowing
one thread per bucket to access the hash map concurrently.

While multiple server threads could also use this technique to collectively
manage a partition, this would impose overhead on each operation, introduce is-
sues such as how clients balance requests over these multiple servers, and require
additional hardware threads to be reserved for the additional severs. In contrast,
in the lock-based hash map, as long as the total number of buckets (and therefore
locks) remains the same, the actual number of partitions has almost no effect on
performance or on the number of hardware threads required.

4.2 Concurrent Linked Lists

The concurrent linked list is a degenerate hash map, where each partition consists
of a single bucket. In particular, each bucket is a linked list of chunks, as ex-
plained in Section 4.1. One important point is that the whole partition/bucket
is protected by a single lock, so the concurrency achievable in the lock-based
linked list is bounded by the number of partitions, much as with delegation.

4.3 Workloads

We used both small and large workloads. The small (large) hash map has 500
(50,000) buckets per partition. In the small (large) workload, the hash map is
initialized by storing a key-value pair with a randomly-chosen key 1000 (100,000)
times. For the linked list, the small (large) workload initializes the list by storing
a key-value pair with a randomly-chosen key 1000 (100,000) times. Thus, the
small workload has better cache locality than the large workload. After some
experimentation, we sized chunks to accommodate 64 key-value pairs.

We experimented with three mixes of operations: read-only, consisting entirely
of get() calls, write-only, consisting of 50% insert () and 50% remove() calls, and
read-write, a mixture of 50% get(), 25% insert (), and 25% remove() calls. There
are too many combinations of data structures, architectures, and workloads to
present them all, so we focus here on the most interesting cases.

Results were qualitatively similar for the three operation mixes (read-only,
write-only, and read-write); for brevity, we present only the read-write results.

Evaluating the Delegation Abstraction for Multicores 89

5 Performance Results

The experiments were conducted on two systems with different architectures.
The first is an 8-socket Nehalem system [13] (“X4800”), each socket containing
a Xeon X7560 processor chip with 8 hyperthreaded cores running at a 2.26Ghz
clock frequency, with a total of 128 hardware threads. The second system is an
Oracle T4-4 [14] (“SPARC T4-4”), which consists of 4 T4 SPARC sockets, each
socket containing 8 cores, and each core containing 8 hardware thread contexts,
for a total of 256 hardware thread contexts, running at a 3 GHz clock frequency.

For the delegation-based implementations, server threads were placed uni-
formly among the sockets (see Section 5.4 for additional details). Placement of
client threads was controlled by the OS in all cases. In each experiment, each
thread repeatedly chooses at random whether to insert or delete an item, and
performs the operation. No “external” work is performed between operations.
We measure the total number of operations completed by all threads over a
measurement period of ten seconds, and report throughput as the number of
operations performed by all client threads per millisecond. Each experiment was
repeated 6 times, and the average throughput for each configuration is reported.

5.1 Hash Map

The first set of experiments was conducted on the concurrent hash map data
structure of Section 4.1. We experimented with both small (Figures 1(a) and
1(b)), and large (Figure 1(c) and 1(d)) workloads. Unless stated otherwise, the
number of partitions (as well as the number of server threads in the case of
delegation) is constant at 8 (which is equal to or a small multiple of the number
of sockets), and we use the read-write operation mix.

Figure 1 shows that, for the hash map benchmark, shared-memory mecha-
nisms with any of locks performs much better than delegation for any channel
type. This difference is because the fine-grained locking employed in our hash
map implementation allows many threads to manipulate the shared hash map
data structure concurrently. On the other hand, concurrency is limited by the
number of servers in the case of delegation. Indeed, the performance of delega-
tion scales only up to 32 threads (which is more than 8, the number of servers,
because clients perform work such as choosing a random key and determining
which server thread will perform the operation before sending the request).

For small hash maps (Figures 1 (a) and (b)), all locks eventually stop scaling
(and most perform worse) as the number of threads increases. This is due to
contention on the (relatively) small number of buckets/locks. The performance
of delegation, though worse than that of locking, is less sensitive to this con-
tention because it is limited primarily by the sequential server threads, whose
performance is largely insensitive to contention on message queues. (Nonethe-
less, MPSCChannel’s centralized PutCursor makes it more sensitive to contention
than the other message queues.)

The simple MCS lock is typically the best-performing lock at low contention.
However, MCS’s performance degrades under heavy contention. By contrast,

90 I. Calciu et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1 4 8 32 64 96 108

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(a) Small RW Hash Map (X4800)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 8 32 64 96 128 160 180

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(b) Small RW Hash Map (SPARC T4-4)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 4 8 32 64 96 108

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(c) Large RW Hash Map (X4800)

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 1 8 32 64 96 128 160 180

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(d) Large RW Hash Map (SPARC T4-4)

Fig. 1. Hash Map experiment

NUMA-aware locks perform better under high contention because there is an
increased likelihood that locks can be handed off to threads on the same socket.
The unfair C−TKT−MCS variant provides better high-contention performance
than the fair variant because it permits more consecutive, local hand-offs. We
return to this point in Section 5.3.

5.2 Linked List

Figure 2 summarizes results for the linked list benchmark. As noted in Sec-
tion 4.2, each partition contains just one bucket protected by a lock. Further-
more, each operation performs more memory accesses with the linked list than
with the hash map, as all key-value pairs of a partition are stored in one bucket.
A larger number of memory accesses per operation favors delegation if bet-
ter server cache locality outweighs the cost of client-server communication. In-
deed, the delegation methods performed considerably better than all locking
schemes for large linked lists (Figures 2(c) and 2(d)), where operations access a
large number of memory locations during list traversals. For small linked lists

Evaluating the Delegation Abstraction for Multicores 91

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 4 8 32 64 96 108

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(a) Small RW Linked List (X4800)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 8 32 64 96 128 160 180

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(b) Small RW Linked List (SPARC T4-4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 32 64 96 108

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(c) Large RW Linked List (X4800)

 0

 500

 1000

 1500

 2000

 2500

 1 8 32 64 96 128 160 180

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(d) Large RW Linked List (SPARC T4-4)

Fig. 2. Linked List experiment

(Figures 2(a) and 2(b)), delegation provided competitive performance, losing
only to MCS on X4800, and to the C−TKT−MCS variants on SPARC T4-4.

Although the simple MCS algorithm [11] provides superior performance in
many cases, its performance degrades severely in some cases. There are two rea-
sons for this. First, when contention increases, MCS has no facility to encourage
consecutive lock handoffs within the same socket. As a result, the Tail vari-
able that is modified by every lock acquisition “bounces” around the system
frequently. This in turn causes data accessed in the critical section to similarly
bounce around the system. NUMA-aware locks are able to avoid this effect and
thus outperform MCS in this case (Figure 2(b)).

To evaluate these mechanisms in less balanced workloads, we repeated the
experiment using only one partition, representing a partition that receives a dis-
proportionate fraction of the requests, or alternatively a configuration in which
there are not enough partitions, so all partitions may be overloaded.

Results are shown in Figure 3. (We omit results for large linked lists for this
case, as sequential execution of operations dominates performance. Thus, the
synchronization mechanism used has little bearing on performance.)

92 I. Calciu et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 4 8 32 64 96 108

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(a) Small RW Linked List (X4800)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 8 32 64 96 128 160 180

T
hr

ou
gh

pu
t (

op
s/

m
s)

threads

 DNCInletQueue
 InletQueue

 MPSCChannel
 MCSLock

C-TKT-MCS-unfair
C-TKT-MCS-fair

 SpinLock

(b) Small RW Linked List (SPARC T4-4)

Fig. 3. Linked List experiment with single partition

Although InletQueue usually outperforms DNCInletQueue, recall that
DNCInletQueue was specifically designed to be more amenable to hypothetical
future hardware enhancements (Section 3). Interestingly, while MPSCChannel’s
performance often degrades going from low to medium thread counts, it im-
proves at even higher threading levels on SPARC T4-4. We believe that this is
because, with more client threads, there is more contention for slots, thus reduc-
ing contention on PutCursor, the primary bottleneck. We have not yet evaluated
sensitivity to the number of slots, which would shed some light on this issue.

Superficially, C−TKT−MCS-unfair seems to significantly outperform all other
methods and—to a lesser extent—both C−TKT−MCS-fair and MPSCChannel
also stand out. However, some caution is needed in interpreting these results. As
discussed in Section 3, some methods provide deceptively high throughput by
“gross unfairness”: they provide high throughput to some threads, while other
threads receive much lower throughput or even starve completely. If this issue is
overlooked, it is easy to conclude that a method that would be unacceptable in
practice delivers the best results. We discuss this issue in more detail next.

5.3 Fairness

As a crude indicator of unfairness, we use spread, defined as the maximum per-
thread count divided by the minimum per-thread count (plus one to avoid divide
by zero). If the throughput of all threads is approximately equal, the spread will
be close to 1. Methods that are grossly unfair—particularly those that starve
some threads completely—exhibit very high spread.

In Figure 3(b), C−TKT−MCS-unfair consistently delivers the highest or nearly
the highest throughput, but exhibits a spread value of over 560,000 at 32 threads.
Its fair counterpart typically exhibits a spread value close to 1 (we occasionally
see values of up to 4.5), but delivers significantly lower throughput in most cases.
Similarly, on X4800, C−TKT−MCS-unfair exhibits spread over 1,000,000 in the

Evaluating the Delegation Abstraction for Multicores 93

highest contention case (single partition, 108 threads), while C−TKT−MCS-fair
almost always yields spread very close to 1 (with rare outliers not exceeding 40).

The delegation methods also exhibited high spread values (for example, on
SPARC T4-4, up to 2,100 for InletQueue, 670,000 for DNCInletQueue and 360,000
for MPSCChannel; the situation is not as bad on X4800, but still we occasionally
see spread values up to 1,200).

Next we describe a preliminary exploration of how the fairness of the dele-
gation methods might be improved. MPSCChannel suffers from CAS contention
on the remotely-shared PutCursor variable. InletQueue applies CAS on the mes-
sage slot to swap in a pointer to the message, and DNCInletQueue uses a simple
spinlock to acquire ownership of the message slot. When threads compete in this
manner, unfairness can result because a thread that releases the message slot
has the corresponding synchronization variable in cache and is therefore likely
to be able to acquire the slot again before another thread can.

To address this issue, we experimentedwith simple backoffmechanismswhereby,
if a thread experiences too many consecutive CAS failures, it sets a flag causing
all threads accessing that channel to pause before retrying, conditional on a func-
tion of their thread IDs and the number of times the slot lock has been acquired.
This reduces contention and gives “priority” to different threads over time. This
eliminated the gross unfairness on SPARC T4-4 without impacting throughput,
but we still observed spread values of up to 2000 for DNCInletQueue and 1150 for
InletQueue, indicating that there is still considerable room for improvement. We
found that parameters controlling the threshold and backoff could be tuned to
different points in a tradeoff between spread and throughput. We are still experi-
menting to improve our results here.

Unlike SPARC T4-4, X4800 yielded spread values at worst in the low hundreds
even before these optimizations, which were less effective on X4800, although we
have not yet tuned them for this platform.

5.4 Hardware-Related Details

In earlier experiments, InletQueue and DNCInletQueue degraded significantly at
higher thread counts. After some investigation, we hypothesized that this was
due to “sibling rivalry”: client threads executing on the same core as a server
thread would compete with the server thread for resources, thus indirectly slow-
ing client threads making requests to that server. To address this issue, when
placing a server thread on a core, we reserve all other hardware threads on
that core so that they are not used by clients. This resulted in a significant im-
provement, allowing the delegation methods to outperform all others across the
threading range for large linked lists on both platforms, for example Figures 2(c)
and 2(d). Although this dedicates more hardware threads to delegation, these
threads could potentially be used to benefit the server, rather than interfering
with it. We leave investigation of this direction for future work.

This experience highlights one potential downside of delegation. Apart from
using cores that might otherwise be used by additional application threads,
reserving sibling threads requires server threads to be “pinned” to a specific

94 I. Calciu et al.

hardware thread, which can be a mixed blessing. First, overriding the operating
system’s thread placement policy prevents it from choosing the best placement
based on the current workload. This is clearly demonstrated in Figure 2(b): at
low thread counts, the lock-based methods have a significant advantage because
the operating system is able to place all threads on the same socket.

On the other hand, a fixed relationship between data and the hardware threads
that access it can be exploited in some contexts. To illustrate this point we
performed an experiment (not shown), in which we controlled the placement of
these structures so that each delegation message queue was allocated on the same
NUMA node as the corresponding server thread. In contrast, these structures
are usually allocated by a single thread at initialization and are thus all allocated
in physical memory of the same NUMA node.

This simple placement optimization substantially improved the performance
of delegation on X4800, especially for InletQueue and DNCInletQueue; the latter
improved by more than 2x in most cases. This may be counterintuitive given
that these structures are likely to remain in cache. However, on X4800, each
memory access requires communication with the location’s “home node” (see [4]
for a detailed explanation). Thus, locating each communication structure near
the server thread that accesses it most often improves performance.

The substantial performance gains achieved by even this modest optimization
reinforces our belief that significantly more could be achieved if hardware were
explicitly optimized for such communication patterns.

Reducing coherence traffic between nodes can reduce consumption of inter-
socket bandwidth, which may in turn avoid a system-wide bottleneck that may
indirectly reduce performance [3]. The delegation methods we have presented
were in large part motivated by similar concerns. Using hardware performance
counters, we have found that the delegation methods typically generate a small
number of remote cache misses per operation (typically around 4-5, although we
sometimes observe significantly higher rates in high-contention cases). Software
techniques—such as discussed in [2,8], and hardware optimizations tailored for
these communication patterns could both significantly reduce this number.

However, recent progress in building NUMA-aware locks [5] has changed the
landscape. By limiting how often locks (and therefore associated data) migrate
between sockets—while avoiding gross unfairness exhibited by locks that do so
“accidentally”, such locks can reduce the per-operation remote cache miss rate
almost to zero by performing large numbers of operations protected by a lock
on one socket before allowing the lock to migrate to another. This depends on
sufficient demand for a lock within a socket, suggesting that such techniques are
excellent for avoiding performance disasters due to lock contention, but may not
be as effective in scalable applications with little lock contention.

6 Discussion

Our results show that delegation can sometimes outperform direct shared-memory
approaches, particularly when operations access enough data to ensure that the

Evaluating the Delegation Abstraction for Multicores 95

benefits of delegation outweigh its communication costs. Nonetheless, the best
shared-memory mechanisms often performed about the same as or substantially
better than the delegationmechanisms. Synchronization granularity is a key issue,
for both locking and delegation. For easily partitionable data structures, like those
considered in this paper, fine-grained locking is straightforward. For delegation,
it is similarly straightforward to partition the data structure, allowing multiple
server threads to service requests from client threads in parallel, but finer granu-
larity requires additional hardware threads to be used.

While granularity affects both approaches in similar ways, there are interesting
differences. Suppose, for example, that we want to make our hash map resizeable.
Resizing is straightforward in the case of delegation, because operations need not
synchronize with each other. In contrast, resizing a hash map implemented with
per-bucket locks is more challenging, as the resizing must be coordinated with
threads accessing the partition using these locks.

Different challenges and opportunities exist when workloads face contention.
NUMA-aware locks such as the C−TKT−MCS variants can help limit the perfor-
mance degradation of lock-based approaches, although these locks impose over-
head in the hopefully more common case in which there is no lock contention.

With delegation, an overloaded server thread can become a bottleneck. Client-
side techniques that combine multiple requests into one equivalent one, thus
reducing the communication costs and the demand on the server thread, may
improve performance. Elimination [8] can be used to complete operations with-
out communicating with the server at all [2].

Server-side techniques may help too. For example, a server thread experiencing
high demand could repartition its own partition and create an additional server
thread to manage it. This may be effective if the execution of operations is the
bottleneck. If, however, the communication channel for requests is the bottleneck,
simple repartitioning will not help, and more ambitious techniques would be
required in which client threads also become aware of the repartitioning.

7 Related Work

Lozi et al. [10] propose structuring a client-server system so that one or more
cores are dedicated to server threads that execute critical sections on behalf
of client threads. Client and server threads communicate through an array of
contexts, one per client. A client’s context includes the lock address, the critical
section’s private variables, and a function that encapsulates the critical section’s
code. (Note that some effort is required to encapsulate critical sections in this
way.) Clients and servers use atomic operations on shared variables to signal
when a request starts and completes. The authors observe that their scheme
improves lock access contention and cache locality, but do not explore alternative
signaling or communication structures.

Suleman et al. [16] consider an asymmetric multicore architecture encompass-
ing a small number of high-performance cores and many smaller, less powerful
cores. The paper examines architectural support for delegating critical sections
to the high-performance cores; evaluation is via an in-house simulator.

96 I. Calciu et al.

Metreveli et al. [12] describe CPHASH, a concurrent hash map that uses a
form of delegation to enhance cache locality. They show that delegation can out-
perform locking for one data structure on one platform configuration. Our goal,
in contrast, is to characterize the relative merits of delegation and direct shared-
memory mechanisms in a range of data structures, communication mechanisms,
workloads, and platform configurations.

Hendler et al. [7] and Oyama et al. [15] propose mechanisms in which threads
execute operations on behalf of others while holding a lock. (Again, critical sec-
tions must be encapsulated as self-contained functions.) This approach resembles
delegation: a single thread serially executes multiple operations. But that thread
is determined dynamically, not statically as in delegation schemes.

8 Conclusions

Delegation works well when the data structure can be partitioned so that it fits in
the servers’ collective caches. Delegation also works well when critical sections
encompass many memory accesses, as in the case of the linked lists, because
the communication overhead is outweighed by the savings in cache misses and
coherence traffic. These savings are more substantial when the cost of remote
memory access is high, allowing delegation to beat efficient NUMA-aware locks.

However, delegation is often outperformed by the best locking implementa-
tions. In particular, when critical sections are short, and especially in “small”
workloads in which data accessed in the critical section is likely to be cached,
locking approaches require little or no remote communication, while delegation
still pays in communication overhead but delivers less benefit.

Nevertheless, as the number of sockets in multicore machines grows, so will
the cost of remote memory access. Furthermore, techniques not explored in this
paper (such as elimination and combining), as well as potential hardware im-
provements, may make delegation more attractive in the future.

Our experience has shown that low-level hardware details can make a consider-
able difference to the behavior of synchronization algorithms. Thus, we conclude
that multicore applications should be designed around high-level data abstrac-
tions, hiding the low-level communication details, so that one mechanism can be
replaced by another as workloads and platforms change.

Acknowledgments. We are grateful to Nir Shavit for useful input and feedback
and to Bill Bridge and Garret Swart who suggested this research direction.

References

1. Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., Singhania, A.: The multikernel: a new OS architecture for
scalable multicore systems. In: Proc. ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), pp. 29–44 (2009)

Evaluating the Delegation Abstraction for Multicores 97

2. Calciu, I., Gottschlich, J.E., Herlihy, M.: Using elimination and delegation to im-
plement a scalable NUMA-friendly stack. In: Proc. Usenix Workshop on Hot Topics
in Parallelism (HotPar) (2013)

3. Dashti, M., Fedorova, F., Funston, J., Gaud, F., Lachaize, R., Lachaize, B., Quema,
V., Quema, M.: Traffic management: a holistic approach to memory placement on
NUMA systems. In: Proc. Conf. on Arch. Support for Prog. Lang. and Op. Systems
(ASPLOS), pp. 381–394 (2013)

4. Dice, D.: NUMA-aware placement of communication variables (November 2012),
blogs.oracle.com/dave/entry/numa_aware_placement_of_communication1

5. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: a general technique for de-
signing NUMA locks. In: Proc. ACM Symp. on Principles and Practice of Parallel
Programming (PPoPP), pp. 247–256 (2012)

6. Dice, D., Otenko, O.: Brief announcement: multilane - a concurrent blocking mul-
tiset. In: Proc. ACM SPAA, pp. 313–314 (2011)

7. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat-combining and the synchroniza-
tion parallelism tradeoff. In: Proceedings of the Twenty Third ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pp. 355–364 (June 2010)

8. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
Proc. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pp. 206–215 (2004)

9. Lauer, H.C., Needham, R.M.: On the duality of operating system structures.
SIGOPS Oper. Syst. Rev. 13(2), 3–19 (1979)

10. Lozi, J.-P., David, F., Thomas, G., Lawall, J., Muller, G.: Remote core locking:
Migrating critical-section execution to improve the performance of multithreaded
applications. In: Proc. USENIX Annual Technical Conference, ATC (2012)

11. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

12. Metreveli, Z., Zeldovich, N., Kaashoek, M.F.: Cphash: a cache-partitioned hash
table. In: Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2012, pp. 319–320. ACM, New York (2012)

13. Oracle Corporation. Oracle’s Sun Fire X4800 Server Architecture (2010),
www.oracle.com/technetwork/articles/systems-hardware-architecture/

sf4800g5-architecture-163848.pdf

14. Oracle Corporation. Oracle’s SPARC T4-1, SPARC T4-2, SPARC T4-4, and
SPARC T4-1B Server Architecture (2012),
www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/

documentation/o11-090-sparc-t4-arch-496245.pdf

15. Oyama, Y., Taura, K., Yonezawa, A.: Executing parallel programs with synchro-
nization bottlenecks efficiently. In: Proc. Int. Workshop on Parallel and Distributed
Computing for Symbolic and Irregular Applications, PDSIA (1999)

16. Suleman, M.A., Mutlu, O., Qureshi, M.K., Patt, Y.N.: Accelerating critical sec-
tion execution with asymmetric multi-core architectures. In: Proc. Conf. on Arch.
Support for Prog. Lang. and Op. Systems (ASPLOS), pp. 253–264 (2009)

17. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: a
mechanism for integrated communication and computation. In: Proc. Int. Sympo-
sium on Computer Architecture (ISCA), pp. 256–266 (1992)

blogs.oracle.com/dave/entry/numa_aware_placement_of_communication1
 www.oracle.com/technetwork/articles/systems-hardware-architecture/sf4800g5-architecture-163848.pdf
 www.oracle.com/technetwork/articles/systems-hardware-architecture/sf4800g5-architecture-163848.pdf
 www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o11-090-sparc-t4-arch-496245.pdf
 www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o11-090-sparc-t4-arch-496245.pdf

Reputation-Based Mechanisms for Evolutionary
Master-Worker Computing

Evgenia Christoforou1,2, Antonio Fernández Anta1, Chryssis Georgiou3,
Miguel A. Mosteiro4, and Angel (Anxo) Sánchez2,5

1 Institute IMDEA Networks, Madrid, Spain
2 Universidad Carlos III de Madrid, Madrid, Spain

3 University of Cyprus, Nicosia, Cyprus
4 Kean University, Union, NJ, USA & Univ. Rey Juan Carlos, Madrid, Spain

5 BIFI Institute, Zaragoza, Spain

Abstract. We consider Internet-based Master-Worker task computing systems,
such as SETI@home, where a master sends tasks to potentially unreliable work-
ers, and the workers execute and report back the result. We model such computa-
tions using evolutionary dynamics and consider three type of workers: altruistic,
malicious and rational. Altruistic workers always compute and return the correct
result, malicious workers always return an incorrect result, and rational (selfish)
workers decide to be truthful or to cheat, based on the strategy that increases their
benefit. The goal of the master is to reach eventual correctness, that is, reach a
state of the computation that always receives the correct results. To this respect,
we propose a mechanism that uses reinforcement learning to induce a correct be-
havior to rational workers; to cope with malice we employ reputation schemes.
We analyze our reputation-based mechanism modeling it as a Markov chain and
we give provable guarantees under which truthful behavior can be ensured. Simu-
lation results, obtained using parameter values that are likely to occur in practice,
reveal interesting trade-offs between various metrics, parameters and reputation
types, affecting cost, time of convergence to a truthful behavior and tolerance to
cheaters.

Keywords: Volunteer computing, evolutionary game theory, reinforcement
learning, reputation.

1 Introduction

Motivation and Prior Work. The need for high-performancecomputing and the growing
use of personal computers and their capabilities (i.e. CPU and GPU), and the wide
access to the Internet, have led to the development of Internet-based computing. At
present, Internet-based computing is mostly embraced by the scientific community in
the form of volunteer computing; where computing resources are volunteered by the
public to help solve scientific problems. Among the most popular volunteering projects
is SETI@home [22] running on the BOINC [4] platform. A profit-seeking computation
platform has also been developed by Amazon, called Mechanical Turk [3]. Although the
potential is great, the use of Internet-based computing is limited by the untrustworthy
nature of the platform’s components [4, 18].

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 98–113, 2013.
c© Springer International Publishing Switzerland 2013

Reputation-Based Mechanisms for Evolutionary 99

In Internet-based Master-Worker task computing systems a master process sends
tasks, across the Internet, to worker processes, that execute and report back the re-
sult. However, these workers are not trustworthy, and hence might report incorrect re-
sults [4, 5, 20]. Prior work has considered different approaches in tackling the problem.
A classical Distributing Computing approach is to model the malfunctioning (due to a
hardware or a software error) or cheating (intentional wrongdoer) as malicious work-
ers that wish to hamper the computation and thus always return an incorrect result. The
non-faulty workers are viewed as altruistic ones [8] that always return the correct result.
Under this view, malicious-tolerant protocols have been considered, e.g., [14, 21, 24],
where the master decides on the correct result based on majority voting. A Game-
theoretic approach is to assume that workers are rational [1, 17, 25], that is, a worker
decides whether to truthfully compute and return the correct result or return a bogus
result, based on the strategy that best serves its self-interest (increases its benefit). Un-
der this view, incentive-based algorithmic mechanisms have been devised, e.g., [15,30],
that employ reward/punish schemes to “enforce” rational workers to act correctly.

In prior work [16], all three types were considered, and both approaches were com-
bined in order to produce an algorithmic mechanism that provides incentives to rational
workers to act correctly, while alleviating the malicious workers’ actions. All the so-
lutions described are one-shot (or stateless) in the sense that the master decides about
the outcome of an interaction with the workers involving a specific task, without using
any knowledge gained by prior interactions. In [10], we took advantage of the repeated
interactions between the master and the workers, assuming the presence of only rational
workers. For this purpose, we studied the dynamics of evolution [23] of such master-
worker computations through reinforcement learning [27] where both the master and
the workers adjust their strategies based on their prior interaction. The objective of the
master is to reach a state in the computation after which it always obtains the correct
results, while the workers attempt to increase their benefit. Hence, prior work either
considered all three types of workers in one-shot computation, or multi-round interac-
tions assuming only rational workers.

In volunteer computing workers join projects to support a scientific goal and/or to
gain prestige [5], while in non-volunteer computing workers expect payment. Whatever
the reason, Internet-based computing can not be considered a reliable platform [4, 5,
18,20]. Thus provable guarantees must be given that the designed mechanism provides
a reliable platform, especially in commercial platforms where one can not consider
altruistic workers. The existence of all three types of workers must be assumed since
workers can have a predefined behavior (malicious or altruistic) or not (rational) as we
observe from the survey conducted by BOINC [8] and the behavior of its users [7].
A mechanism must be designed that benefits from the repeated interaction with the
workers and thus detaches the knowledge of the distribution over the type of workers
from the assumptions (in comparison with [16]).

Our contributions

– We design such an algorithmic mechanism that uses reinforcement learning to induce
a correct behavior to rational workers while coping with malice using reputation.
We consider a centralized reputation scheme controlled by the master that may use
three different reputation metrics to calculate each worker’s reputation. The first is

100 E. Christoforou et al.

adopted from [26], the second, which we introduce, allows for a more drastic change
of reputation and the third is inspired by BOINC’s reputation scheme [6].

– We analyze our reputation-based mechanism modeling it as a Markov chain and we
identify conditions under which truthful behavior can be ensured. We analytically
prove that by using the second reputation type (introduced in this work for the first
time) reliable computation is eventually achieved.

– Simulation results, obtained using parameter values that are likely to occur in prac-
tice, reveal interesting trade-offs between various metrics and parameters, such as
cost, time of convergence to a truthful behavior, tolerance to cheaters and the type
of reputation metric employed. Simulations also reveal better performance of our
reputation type (second type) in several realistic cases.

Background and related work. As part of our mechanism we use reinforcement learning
to induce the correct behavior of rational workers. Reinforcement learning [27] models
how system entities, or learners, interact with the environment to decide upon a strat-
egy, and use their experience to select or avoid actions according to the consequences
observed. Positive payoffs increase the probability of the strategy just chosen, and neg-
ative payoffs reduce this probability. Payoffs are seen as parameterizations of players’
responses to their experiences. There are several models of reinforcement learning. A
well-known model is that of Bush and Mosteller [9]; this is an aspiration-based rein-
forcement learning model where negative effects on the probability distribution over
strategies are possible, and learning does not fade with time. The learners adapt by
comparing their experience with an aspiration level. In our work we adapt this rein-
forcement learning model and we consider a simple aspiration scheme where aspiration
is fixed by the workers and does not change during the evolutionary process.

The master reinforces its strategy as a function of the reputation calculated for each
worker. Reputation has been widely considered in on-line communities that deal with
untrustworthy entities, such as online auctions (e.g., eBay) or P2P file sharing sites
(e.g., BitTorrent); it provides a mean of evaluating the degree of trust of an entity [19].
Reputation measures can be characterized in many ways, for example, as objective or
subjective, centralized or decentralized. An objective measure comes from an objective
assessment process while a subjective measure comes from the subjective belief that
each evaluating entity has. In a centralized reputation scheme a central authority evalu-
ates the entities by calculating the ratings received from each participating entity. In a
decentralized system entities share their experience with other entities in a distributed
manner. In our work, we use the master as a central authority that objectively calculates
the reputation of each worker, based on its interaction with it; this centralized approach
is also used by BOINC.

The BOINC system itself uses a form of reputation [6] for an optional policy called
adaptive replication. This policy avoids replication in the event that a job has been sent
to a highly reliable worker. The philosophy of this reputation scheme is to require a long
time for the worker to gain a good reputation but a short time to lose it. Our proposed
mechanism differs significantly from the one that is used in BOINC. One important
difference is that we use auditing to check the validity of the worker’s answers while
BOINC uses only replication; in this respect, we have a more generic mechanism that
also guarantees reliability of the system. Notwithstanding inspired by the way BOINC

Reputation-Based Mechanisms for Evolutionary 101

handles reputation we have designed a BOINC-like reputation type in our mechanism
(called type three).

Sonnek et al. [26] use an adaptive reputation-based technique for task scheduling in
volunteer setting (i.e., projects running BOINC). Reputation is used as a mechanism to
reduce the degree of redundancy while keeping it possible for the master to verify the
results by allocating more reliable nodes. In our work we do not focus on scheduling
tasks to more reliable workers to increase reliability but rather we design a mechanism
that forces the system to evolve to a reliable state. We also demonstrate several tradeoff
between reaching a reliable state fast and master’s cost. We have created a reputation
function (called reputation type 1) that is analogous to the reputation function used
in [26] to evaluate this function’s performance in our setting.

Aiyer et al. [2] introduced the BAR model to reason about systems with Byzantine
(malicious), Altruistic, and Rational participants. They introduced the notion of BAR-
tolerant protocols, i.e., protocols that are resilient to both Byzantine faults and rational
manipulation. As an application, they designed a cooperative backup service for P2P
systems, based on a BAR-tolerant replicated state machine. More recent works have
considered other problems in the BAR model (e.g., data transfer [29]). Although the
objectives and the model considered are different, our reputation-based mechanism can
be considered, in some sense, to be BAR-tolerant.

2 Model

In this section we characterize our model and we present the concepts of auditing,
payoffs, rewards and aspiration. We also give a formal definition of the three reputation
types used by our mechanism.
Master-Worker Framework. We consider a master and a set W of n workers. The
computation is broken into rounds, and in each round the master sends a task to the
workers to compute and return the result. Based on the workers’ replies, the master
must decide which is the value most likely to be the correct result for this round. We
assume that tasks have a unique solution; although such limitation reduces the scope of
application of the presented mechanism [28], there are plenty of computations where
the correct solution is unique: e.g., any mathematical function.
Eventual Correctness. The goal of the master is to eventually obtain a reliable com-
putational platform: After some finite number of rounds, the system must guarantee
that the master (with minimal cost) obtains the correct task results in every round with
probability 1. We call such property eventual correctness.
Worker Types. We consider three type of workers: rational, altruistic and malicious.
Rational workers are selfish in a game-theoretic sense and their aim is to maximize their
utility (benefit). In the context of this paper, a worker is honest in a round, when it truth-
fully computes and returns the correct result, and it cheats when it returns some incorrect
value. Altruistic and malicious workers have a predefined behavior, to always be honest
or cheat, respectively. Instead, a rational worker decides to be honest or cheat depending
on which strategy maximizes its utility. We denote by pCi(r) the probability of a rational
worker i cheating in round r. This probability is not fixed and the worker adjusts it over
the course of the computation. The master is not aware of the worker types, neither of a
distribution of types (our mechanism does not rely on any statistical information).

102 E. Christoforou et al.

While workers make their decision individually and with no coordination, following
[24] and [14], we assume that all the workers that cheat in a round return the same
incorrect value; this yields a worst case scenario (and hence analysis) for the master
with respect to obtaining the correct result using mechanisms where the result is the
outcome of voting. It subsumes models where cheaters do not necessarily return the
same answer. (This can be seen as a weak form of collusion.)

For simplicity, unless otherwise stated, we assume that workers do not change their
type over time. Observe that in practice it is possible that changes occur. For example,
a rational worker might become malicious due to a bug, or a malicious worker (e.g., a
worker under the influence of a virus) become altruistic (e.g., if an antivirus software
reinstates it). If this may happen, then all our results still apply for long enough periods
between two changes.
Auditing, Payoffs, Rewards and Aspiration. To induce the rational workers to be honest,
the master employs, when necessary, auditing and reward/punish schemes. The master,
in a round, might decide to audit the response of the workers, at a cost. In this work,
auditing means that the master computes the task by itself, and checks which workers
have been honest. We denote by pA(r) the probability of the master auditing the re-
sponses of the workers in round r. The master can change this auditing probability over
the course of the computation, but restricted to a minimum value pmin

A > 0. When the
master audits, it can accurately reward and punish workers. When the master does not
audit, it rewards only those in the weighted majority (see below) of the replies received
and punishes no one.

In this work we consider three worker payoff parameters: (a)WPC: worker’s pun-
ishment for being caught cheating, (b) WCT : worker’s cost for computing a task, and
(c) WBY : worker’s benefit (typically payment) from the master’s reward. Also, follow-
ing [9], we assume that, in every round, a worker i has an aspiration ai: the minimum
benefit it expects to obtain in a round. In order to motivate the worker to participate in
the computation, the master usually ensures that WBY ≥ ai; in other words, the worker
has the potential of its aspiration to be covered. We assume that the master knows the
aspirations. Finally, we assume that the master has the freedom of choosing WBY and
WPC with goal of eventual correctness.
Reputation. The reputation of each worker is measured by the master; a centralized
reputation mechanism is used. In fact, the workers are unaware that a reputation scheme
is in place, and their interaction with the master does not reveal any information about
reputation; i.e., the payoffs do not depend on a worker’s reputation.

In this work, we consider three reputation metrics. The first one, called type 1 is
analogous to a reputation metric used in [26] and the third one, called type 3 is inspired
by BOINC. We also define our own type called type 2 that is not influenced by any
other reputation type, and as we show in Section 4 it possesses beneficial properties. In
all types, the reputation of a worker is determined based on the number of times it was
found truthful. Hence, the master may update the reputation of the workers only when it
audits. We denote by aud(r) the number of rounds the master audited up to round r, and
by vi(r) we refer to the number of auditing rounds in which worker iwas found truthful
up to round r. We let ρi(r) denote the reputation of worker i after round r, and for a
given set of workers Y ⊆W we let ρY (r) =

∑

i∈Y ρi(r) be the aggregated reputation
of the workers in Y , by aggregating we refer to summing the reputation values. Then,
the three reputation types we consider are the following:

Reputation-Based Mechanisms for Evolutionary 103

Type 1: ρi(r) = (vi(r) + 1)/(aud(r) + 2).

Type 2: ρi(r) = εaud(r)−vi(r), for ε ∈ (0, 1), when aud(r) > 0, and ρi(r) = 1/2, otherwise.
Type 3: Here we define βi(r) as the error rate of worker i at round r and by A = 0.05 the error
bound. Reputation for this type is calculated as follows:
Step 1:
βi(r)← 0.1
if worker truthful then
βi(r)← βi(r) · 0.95 \\ calculating error rate

else βi(r)← βi(r) + 0.1

Step 2:
if βi(r) > A then

ρi(r)← 0.001 \\ calculating reputation

else ρi(r)← 1−
√

βi(r)
A

In each round, when the master does not audit, the result is obtained from the
weighted majority as follows. Consider a round r. Let F (r) denote the subset of work-
ers that returned an incorrect result, i.e., the rational workers who chose to cheat plus
the malicious ones; recall that we assume as a worst case that all cheaters return the
same value. Then, W \ F (r) is the subset of workers that returned the correct value,
i.e., the rational workers who chose to be truthful plus the altruistic ones. Then, if
ρW\F (r)(r) > ρF (r)(r), the master will accept the correct value, otherwise it will ac-
cept an incorrect value. The mechanism, presented in the next section, employs auditing
and appropriate incentives so that rational workers become truthful with high reputa-
tion, while malicious workers (alternatively altruistic workers) end up having very low
(altr. very high) reputation after a few auditing rounds.

3 Reputation-Based Mechanism

We now present our reputation-based mechanism. The mechanism is composed by an
algorithm run by the master and an algorithm run by each worker.

Master’s Algorithm. The algorithm begins by choosing the initial probability of audit-
ing and the initial reputation (same for all workers). The initial probability of auditing
will be set according to the information the master has about the environment (e.g.,
workers’ initial pC). For example, if it has no information about the environment, a
possibly safe approach is to initially set pA = 0.5. The master also chooses the reputa-
tion type to use (e.g., type 1, 2 or 3).

After that, at each round, the master sends a task to all workers and, when all an-
swers are received, the master audits the answers with probability pA. In the case the
answers are not audited, the master accepts the value returned by the weighed major-
ity, and continues to the next round with the same probability of auditing and the same
reputation values for each worker. In the case the answers are audited, the value pA of
the next round is reinforced (i.e., modified according to the accumulated reputation of
the cheaters) and the reputations of the workers are updated based on their responses.
Then, the master rewards/penalizes the workers appropriately. Specifically, if the mas-
ter audits and a worker i is a cheater (i.e., i ∈ F), then Πi = −WPC ; if i is honest,
then Πi = WBY . If the master does not audit, and i returns the value of the weighted
majority (i.e., i ∈ Wm), then Πi = WBY , otherwise Πi = 0.

We include a threshold, denoted by τ , that represents the master’s tolerance to cheat-
ing (typically, we will assume τ = 1/2 in our simulations). If the ratio of the aggre-
gated reputation of cheaters with respect to the total is larger than τ , pA is increased,
and decreased otherwise. The amount by which pA changes depends on the difference

104 E. Christoforou et al.

Algorithm 1. Master’s Algorithm
pA← x, where x ∈ [pmin

A , 1]
aud = 0
// initially all workers have the same reputation
∀i ∈W : vi = 0; ρi = 0.5
for r← 1 to∞ do

send a task T to all workers in W
upon receiving all answers do

audit the answers with probability pA
if the answers were not audited then

// weighted majority, coin flip in case of a tie
accept the value returned by workers in Wm ⊆W,

where ρWm > ρW\Wm

else // the master audits
aud← aud+ 1
Let F ⊆W be the set of workers that cheated.
∀i ∈W :

if i /∈ F then vi← vi + 1 // honest workers
update reputation ρi of worker i

pA←min{1,max{pmin
A , pA + αm(ρF

ρW
− τ)}}

∀i ∈W : return payoff Πito worker i

Algorithm 2. Algorithm for Rational Worker i
pCi← y, where y ∈ [0, 1]
for r← 1 to∞ do

receive a task T from the master
Si←−1 with probability pCi,
and Si← 1 otherwise
if Si = 1 then

σ← compute(T),
else

σ← arbitrary solution
send response σ to the master
get payoff Πi

if Si = 1 then
Πi←Πi −WCT

pCi←max{0,min{1, pCi − αw(Πi − ai)Si}}

between these values, modulated by a learning rate αm. This latter value determines
to what extent the newly acquired information will override the old information. (For
example, if αm = 0 the master will never adjust pA.) A pseudocode of the algorithm
described is given as Algorithm 1.

Workers’ Algorithm. This algorithm is run only by rational workers (recall that altruistic
and malicious workers have a predefined behavior).1 The execution of the algorithm
begins with each rational worker i deciding an initial probability of cheating pCi. In
each round, each worker receives a task from the master and, with probability 1 −
pCi computes the task and replies to the master with the correct answer. Otherwise, it
fabricates an answer, and sends the incorrect response to the master. We use a flag Si to
model the stochastic decision of a worker i to cheat or not. After receiving its payoff,
each worker i changes its pCi according to payoff Πi, the chosen strategy Si, and its
aspiration ai.

The workers have a learning rate αw. In this work, we assume that all workers have
the same learning rate, that is, they learn in the same manner (see also the discussion
in [27]; the learning rate is called step-size there); note that our analysis can be ad-
justed to accommodate also workers with different learning rates. A pseudocode of the
algorithm is given as Algorithm 2.

4 Analysis

We now analyze the reputation-based mechanism. We model the evolution of the mech-
anism as a Markov Chain, and then discuss the necessary and sufficient conditions for
achieving eventual correctness. Modeling a reputation-based mechanism as a Markov
Chain is more involved than previous models that do not consider reputation (e.g. [10]).

1 Since the workers are not aware that a reputation scheme is used, this algorithm is the one
considered in [10]; we describe it here for self-containment.

Reputation-Based Mechanisms for Evolutionary 105

The Markov Chain. Let the state of the Markov chain be given by a vector s. The com-
ponents of s are: for the master, the probability of auditing pA and the number of audits
before state s, denoted as aud; and for each rational worker i, the probability of cheat-
ing pCi and the number of validations (i.e., the worker was honest when the master au-
dited) before state s, denoted as vi. To refer to any componentx of vector swe use x(s).
Then, s =

〈

pA(s), aud(s), pC1(s), pC2(s), . . . , pCn(s), v1(s), v2(s), . . . , vn(s)
〉

.
In order to specify the transition function, we consider the execution of the protocol

divided in rounds. In each round, probabilities and counts (i.e. numbers of validations
and audits) are updated by the mechanism as defined in Algorithms 1 and 2. The state
at the end of round r is denoted as sr. Abusing the notation, we will use x(r) instead
of x(sr) to denote component x of vector sr. The workers’ decisions, the number of
cheaters, and the payoffs of each round r > 0 are the stochastic outcome of the proba-
bilities and counts at the end of round r − 1. We specify the transition from sr−1 to sr
by the actions taken by the master and the workers during round r.

In the definition of the transition function that follows, the probabilities are limited
to pA(s) ∈ [pmin

A , 1] and for each rational worker i to pCi(s) ∈ [0, 1], for any state s.
The initial state s0 is arbitrary but restricted to the same limitations. Let PF (r) be the
probability that the set of cheaters in round r is exactly F ⊆ W . (That is, PF (r) =
∏

j∈F pCj(r − 1)
∏

k/∈F (1 − pCk(r − 1)).) Then, the transition from state sr−1 to sr
is as follows.

– Malicious workers always have pC = 1 and altruistic workers always have pC = 0.
– With probability pA(r − 1) · PF (r), the master audits when the set of cheaters is F .

Then, according to Algorithms 1 and 2, the new state is as follows.

For the master: pA(r) = pA(r − 1) + αm (ρF (r)/ρW (r) − τ) and
aud(r) = aud(r − 1) + 1.

(1) For each worker i ∈ F : vi(r) = vi(r − 1) and, if i is rational, then pCi(r) =
pCi(r − 1)− αw(ai +WPC).

(2) For each worker i /∈ F : vi(r) = vi(r− 1)+1 and, if i is rational, then pCi(r) =
pCi(r − 1) + αw(ai − (WBY −WCT)).

– With probability (1 − pA(r − 1))PF (r), the master does not audit when the set of
cheaters is F . Then, according to Algorithms 1 and 2, the following updates are
carried out.

For the master: pA(r) = pA(r − 1) and aud(r) = aud(r − 1).
For each worker i ∈W : vi(r) = vi(r − 1).
For each rational worker i ∈ F ,

(3) if ρF (r) > ρW\F (r) then pCi(r) = pCi(r − 1) + αw(WBY − ai),
(4) if ρF (r) < ρW\F (r) then pCi(r) = pCi(r − 1)− αw · ai,
For each rational worker i /∈ F ,

(5) if ρF (r) > ρW\F (r) then pCi(r) = pCi(r − 1) + αw(ai +WCT),
(6) if ρF (r) < ρW\F (r) then pCi(r) = pCi(r−1)+αw(ai−(WBY−WCT)).

Recall that, in case of a tie in the weighted majority, the master flips a coin to choose one
of the answers, and assigns payoffs accordingly. If that is the case, transitions (3)–(6)
apply according to that outcome.

106 E. Christoforou et al.

Conditions for Eventual Correctness. We show now the conditions under which the
system can guarantee eventual correctness. The analysis is carried out for a universal
class of reputation functions characterized by the following properties.

Property 1: For any X ⊂ W and Y ⊂ W , if the Markov chain evolves
in such a way that ∀i ∈ X, limr→∞(vi(r)/aud(r)) = 1 and ∀j ∈
Y, limr→∞(vj(r)/aud(r)) = 0, then there is some r∗ such that ∀r > r∗, ρX(r) >
ρY (r).
Property 2: For any X ⊂ W and Y ⊂ W , if aud(r + 1) = aud(r) + 1 and ∀j ∈
X ∪Y it is vj(r+1) = vj(r)+1 then ρX(r) > ρY (r)⇒ ρX(r+1) > ρY (r+1).

Observe that all reputation functions (type 1, type 2 and type 3) we consider (cf. Sec-
tion 2), satisfy Property 1. However, regarding Property 2, while reputation type 2 sat-
isfies it, reputation type 1 and 3 do not. As we show below, this makes a difference with
respect to guaranteeing eventual correctness.

The following terminology will be used throughout. For any given state s, a set
X of workers is called a reputable set if ρX(r) > ρW\X(r). In any given state s,
let a worker i be called an honest worker if pCi(s) = 0. Let a state s be called a
truthful state if the set of honest workers in state s is reputable. Let a truthful set be any
set of truthful states. Let a worker be called a covered worker if the payoff of returning
the correct answer is at least its aspiration plus the computing cost. I.e., for a covered
worker i, it is WBY ≥ ai +WCT . We refer to the opposite cases as uncovered worker
(WBY < ai+WCT), cheater worker (pCi(s) = 1), untruthful state (the set of cheaters
in that state is reputable), and untruthful set, respectively. Let a set of states S be called
closed if, once the chain is in any state s ∈ S, it will not move to any state s′ /∈ S.
(A singleton closed set is called an absorbing state.) For any given set of states S, we
say that the chain reaches (resp. leaves) the set S if the chain reaches some state s ∈ S
(resp. reaches some state s /∈ S).

In the master’s algorithm, a non-zero probability of auditing is always guaranteed.
This is a necessary condition. Otherwise, unless the altruistic workers outnumber the
rest, a closed untruthful set is reachable, as we show in [11].

Eventual correctness follows if we can show that the Markov chain always ends in
a closed truthful set. We prove first that having at least one worker that is altruistic or
covered rational is necessary for a closed truthful set to exist. Then we prove that it is
also sufficient.
Lemma 1. If all workers are malicious or uncovered rationals, no truthful set S is
closed, if the reputation type satisfies Property 2.
Proof. Let us consider some state s of a truthful set S. Let Z be the set of honest work-
ers in s. Since s is truthful , then Z is reputable. Since there are no altruistic workers,
the workers in Z must be uncovered rational. Let us assume that being in state s the
master audits in round r. From Property 2, since all nodes in Z are honest in r, Z is
reputable after r. From transition (2), after round r, each worker i ∈ Z has pCi(r) > 0.
Hence, the new state is not truthful , and S is not closed.
Lemma 2. If at least one worker is altruistic or covered rational, a truthful set S is
reachable from any initial state, if the reputation type satisfies Properties 1 and 2.
Proof (Proof Sketch). Let C be the set of workers that are altruistic or covered ratio-
nal. From any initial state, there is a non-zero probability that the master audits in all

Reputation-Based Mechanisms for Evolutionary 107

subsequent rounds. Then, from transition (2) and Properties 1 and 2, there is a non-zero
probability of reaching a truthful state s∗ in which (a) all workers in C are honest and
(b) C is reputable. Once s∗ is reached, all subsequent states satisfy these two properties
(which define the set S), independently of whether the master audits (from transition
(2) and (6), and Property 2).

Now, putting together Lemmas 1 and 2 we obtain the following theorem.

Theorem 1. Having at least one worker altruistic or covered rational is necessary and
sufficient to eventually reach a truthful set S from any initial state, and hence to guar-
antee eventual correctness, if the reputation type satisfies Properties 1 and 2.

Observe that if there is no knowledge on the distribution of the workers among the
three types (altruistic, malicious and rationals), the only strategy to make sure eventual
correctness is achieved, if possible, is to cover all workers. Of course, if all workers
are malicious (an unlikely situation, as shown in [8, 12, 13]) there is no possibility of
reaching eventual correctness.

5 Simulations

This section complements our analytical results with illustrative simulations. The
graphical representation of the data obtained captures the tradeoffs between reliability
and cost and among all three reputation types, concepts not visible through the analysis.
Here we present simulations for a variety of parameter combinations likely to occur in
practice (extracted from [12,13]) and similar to our earlier work [10]. We have designed
our own simulation setup by implementing our mechanism (the master’s and the work-
ers’ algorithms, including the three types of reputation discussed above) using C++.
The simulations were contacted on a dual-core AMD Opteron 2.5GHz processor, with
2GB RAM running CentOS version 5.3. We consider a total of 9 workers (that will be
rational, altruistic or malicious in the different experiments). The figures represent the
average over 10 executions of the implementation, unless otherwise stated (when we
show the behavior of typical, individual realizations). The chosen parameters are indi-
cated in the figures. Note that, for simplicity, we consider that all workers have the same
aspiration level ai = 0.1, although we have checked that with random values the results
are similar to those presented here, provided their variance is not very large. We con-
sider the same learning rate for the master and the workers, i.e., α = αm = αw = 0.1.
Note that the learning rate, as discussed for example in [27] (called step-size there), is
generally set to a small constant value for practical reasons. Finally we set τ = 0.5
(see [10]), pmin

A = 0.01 and ε = 0.5 in reputation type 2.
The contents of this section can be summarized as follows: In the next paragraph we

present results considering only rational workers and, subsequently, results involving
all three type of workers. We continue with a discussion on the number of workers
that must be covered and how the choice of reputation affects this. Finally, we briefly
show that our mechanism is robust even in the event of having workers changing their
behavior (e.g. rational workers becoming malicious due to software or hardware error).
An exhaustive account of simulation results is presented in [11].

108 E. Christoforou et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

pA

time

no reputation
reputation type 1
reputation type 2
reputation type 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

pA

time

no reputation
reputation type 1
reputation type 2
reputation type 3

(a) (b)

Fig. 1. Rational workers. Auditing probability of the master as a function of time (number of
rounds) for parameters pA = 0.5, α = 0.1, ai = 0.1, WBY = 1, WPC = 0 and WCT = 0.1.
(a) initial pC = 0.5 (b) initial pC = 1.

Rational Workers. While the main reason for introducing reputation was to cope with
malicious workers, as a first step we checked whether reputation improves the algorithm
performance for rational workers only. In this case as we see in Figure 1, the first two
reputation types give similar results as in the case of no reputation. Reputation type 3, on
the other hand, seems to perform better in the case that the initial pC = 0.5, while in the
case of pC = 1 the system has a slower convergence rate, but the auditing probability at
the first 50 rounds is lower. This has to do with the fact that in type 3 the reputation of
a worker is reinforced indirectly, what is directly reinforced depending on the workers
honesty is the error rate. Our observations in Figure 1 reveals an interesting tradeoff:
depending on whether the master has information on the workers’ initial behavior or
on the auditing that is willing to perform it will choose to use or not reputation type 3.
From Figure 1 we can also see that the mechanism of [10] is enough to bring rational
workers to produce the correct output, precisely because of their rationality. Although
Figure 1 depicts the pA of the master and not the pC of the workers we have observed
(see [11]) that for all the initial pC studied, by the time the master’s auditing probability
reaches pmin

A , the system had already reached eventual correctness.
Figure 2 allows to compare the behavior of the three reputation types, with reputation

ratio defined as
∑

i∈W ρiSi/|W |. Reputation type 1 leads rational workers to reputation
values close to 1 (at a rate that depends on the value of the initial pC). However, when
type 2 is applied reputation takes values between (0,0.3). This happens because when
the master catches a worker cheating, its reputation decreases exponentially, never in-
creasing again. Reputation type 3, on the other hand, allows for dramatic increases and
decreases of reputation. This is a result of the indirect way we calculate reputation type
3, as we mentioned above.

Different Types of Workers. We now move to our main case of interest and include
different types of workers in our experiments. Figure 3 shows results for the extreme
case, with malicious workers, no altruistic workers, and rational workers that initially
cheat with probability pC = 1. We observe that if the master does not use reputation and
a majority of malicious workers exist, then the master is enforced by the mechanism to
audit in every round. Even with a majority of rational workers, it takes a long time for the
master to reach pmin

A , if reputation is not used. Introducing reputation can indeed cope
with the challenge of having a majority of malicious workers. For type 1, the larger the

Reputation-Based Mechanisms for Evolutionary 109

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

re
pu

ta
tio

n

time

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

re
pu

ta
tio

n

time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

re
pu

ta
tio

n

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

audit
reputation ratio

(a) (b) (c)
Fig. 2. Rational workers, for an individual realization with initially pC = 0.5, pA = 0.5,
WCT = 0.1, WPC = 0, α = 0.1 and ai = 0.1. Left, reputation type 1. Middle, reputation
type 2. Right, reputation type 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

pA

time

no reputation
type 1
type 2
type 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

pA

time

no reputation
type 1
type 2
type 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

pA

time

no reputation
type 1
type 2
type 3

(a) (b) (c)
Fig. 3. Master’s auditing probability as a function of time in the presence of rational and malicious
workers. Parameters in all plots, rationals’ initial pC = 1, master’s initial pA = 0.5, WCT =
0.1, WPC = 0 and α = 0.1, ai = 0.1. In (a) 4 malicious and 5 rationals, (b) 5 malicious and 4
rationals , (c) 8 malicious and 1 rational.

number of malicious workers, the slower the master reaches pmin
A . On the contrary, the

time to convergence to the pmin
A is independent of the number of malicious workers for

reputation type 2. This is due to the different dynamical behavior of the two reputations
discussed above. For reputation type 3, if a majority of rationals exists then convergence
is slower. This is counter-intuitive, but as we mentioned before it is linked to the way
reputation and error rate are calculated. On the other hand, with type 3, pA is slightly
lower in the first rounds. We thus conclude that reputation type 2 gives better results, as
long as at least one rational worker exists and the master is willing to audit slightly more
in the first rounds. We have checked that if rational workers are replaced by altruistic
ones, the performance of the two reputation schemes improves, as expected.

Covering only a Subset of Rational Workers. In the previous paragraphs we considered
only cases where the master was covering all workers, that is, WBY > a +WCT for
all workers. For the case with malicious workers, as explained in Section 4, this is
unavoidable. But for the case with rational workers, as was argued in the same section,
we may avoid covering all workers, a scenario which we now explore. In Figure 4(a)
the extreme case of only one covered worker is presented. We see that with reputation
type 1 our system does not converge, which is consistent with the results of Section 4.
The master tolerates a significant percentage of cheaters (since τ = 0.5), creating a
very unstable system, where the probability of the master receiving the correct answer
varies greatly. This occurs because by tolerating more cheaters, the master creates a

110 E. Christoforou et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

time

type 1
type 2
type 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 500 600 700 800 900 1000 1100 1200

time

type 1
type 2
type 3

(a) (b)

Fig. 4. Correct reply rate as a function of time. Parameters are initial pA = 0.5 WCT = 0.1,
WPC = 0 and α = 0.1, ai = 0.1. (a) Reputation types 1 and 3 have initial pC = 0.5, while in
type 2, pC = 1. (b) initial pC = 1.

system where the cheating probability of the uncovered workers spikes between zero
and one. We have found that introducing punishment or reducing the tolerance do not
fix this (see [11]). Basically, the reason is that the reputation of honest workers does not
always exceed the reputation of cheaters, as indicated by the reputation ratio. In fact,
we have checked that for the covered worker, pC vanishes eventually, but for uncovered
workers this is not the case: their pC takes values usually below 0.6 but close to that
value. Given that uncovered workers’ pC is greater than zero, it may occur that the
master does not audit and a number of uncovered workers, with reputation higher than
the rest, cheat. Because of this, even if the master maintains a high auditing probability,
eventual correctness is not guaranteed.

For reputation type 3 our system does not converge, which is consistent with the
results of Section 4 since reputation type 3 does not satisfy Property 2. Type 3 gives
even worse results than type 1, since the correct reply ratio is always lower compared
to type 1. Finally, Figure 4(a) shows that our system always converges using reputation
type 2, as expected by the analysis in Section 4. A collection of elaborative simulation
figures (see [11]) show that, the exponential dynamics of this reputation type works for
all the parameters considered, and the master always reaches pA = pmin

A with eventual
correctness. In addition, we see that the master also decreases its auditing cost, unlike
the case of reputation type 1 where pA goes to values close to one in order for the master
to receive the correct reply with a high probability. We have also verified that when a
majority (5 out of 9) of workers is covered, the system converges independently of the
reputation type used.

Finally, for the sake of experimentation we checked that our mechanism reaches
eventual correctness (with reputation type 2) by covering only 1 out of the 5 rational
workers when the other 4 are malicious ones. The performance of the system to reach
eventual correctness is similar to the analogous case where all workers are covered.
Reputation type 1 and 3 have the same problems as before, whereas the fact that reputa-
tion becomes constant with type 2 allows rational covered workers to form a reputable
set by itself and achieve fast eventual correctness.
Dynamic Change of Roles. As a further check of the stability of our procedure, we
now study the case when after convergence is reached some workers change their type,
possibly due to a software or hardware error. We simulate a situation in which 5 out of 9

Reputation-Based Mechanisms for Evolutionary 111

rational workers suddenly change their behavior to malicious at time 500, a worst-case
scenario. Figure 4 shows that after the rational behavior of 5 workers turns to malicious,
convergence is reached again after a few hundred rounds and eventual correctness re-
sumes. Notice that it takes more time for reputation type 2 to deal with the changes in
the workers’ behavior because this reputation can never increase, and hence the system
will reach eventual correctness only when the reputation of the workers that turned ma-
licious becomes less than the reputation of the workers that stayed rational. It also takes
more time for reputation type 3 to deal with the changes in the worker’ behavior. In the
case of reputation type 1 not only the reputation of the workers that turned malicious
decreases but also the reputation of the workers that stayed rational increases. There-
fore, reputation type 1 exhibits better performance in dealing with dynamic changes of
behavior than reputation types 2 and 3.

6 Conclusions and Future work

In this work we study a malicious-tolerant generic mechanism that uses reputation. We
consider three reputation types, and give provable guarantees that only reputation type 2
(first presented here) provides eventual correctness in the case of covering only one al-
truistic or rational worker, something that is confirmed by our simulations. We show that
reputation type 2 has more potential in commercial platforms where high reliability to-
gether with low auditing cost, rewarding few workers and fast convergence are required.
This will help in developing reliable commercial Internet-based Master-Worker Com-
puting services. From our simulations we make one more interesting observation: in the
case when only rational workers exist and reputation type 3 (BOINC-like) is used, al-
though the system takes more time to converge, in every round auditing is lower. Thus,
reputation type 3 may fit better in volunteering setting where workers are most prob-
ably altruistic or rational and fast convergence can be sacrificed for lower auditing. In
particular, our simulations reveal interesting tradeoffs between our reputation types and
parameters and show that our mechanism is a generic one that can be adjusted to various
settings. In a follow-up work we plan to investigate what happens if workers are con-
nected to each other, forming a network (i.e, a social network through which they can
communicate) or if malicious workers develop a more intelligent strategy against the
system. Also the degree of trust among the players has to be considered and modeled
in this scenario.

Acknowledgments. This work is supported by the Cyprus Research Promotion
Foundation grant TΠE/ΠΛHPO/0609(BE)/05, the National Science Foundation (CCF-
0937829, CCF-1114930), Kean University UFRI grant, Comunidad de Madrid grants
S2009TIC-1692 and MODELICO-CM, and MICINN grants TEC2011-29688-C02-
01 and PRODIEVO, and National Natural Science Foundation of China grant
61020106002.

References
1. Abraham, I., Dolev, D., Goden, R., Halpern, J.Y.: Distributed computing meets game the-

ory: Robust mechanisms for rational secret sharing and multiparty computation. In: Proc. of
PODC 2006, pp. 53–62 (2006)

112 E. Christoforou et al.

2. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J., Porth, C.: BAR fault tolerance
for cooperative services. In: Proc. of SOSP 2005, pp. 45–58 (2005)

3. Amazon’s Mechanical Turk, https://www.mturk.com
4. Anderson, D.: BOINC: A system for public-resource computing and storage. In: GRID

(2004)
5. Anderson, D.: Volunteer computing: the ultimate cloud. Crossroads 16(3), 7–10 (2010)
6. BOINC reputation,

http://boinc.berkeley.edu/trac/wiki/AdaptiveReplication
7. BOINC stats, http://boincstats.com/en/forum/10/4597
8. BOINC user survey, http://boinc.berkeley.edu/poll_results.php
9. Bush, R.R., Mosteller, F.: Stochastic Models for Learning. Wiley (1955)

10. Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M., Sánchez, A.: Applying the
dynamics of evolution to achieve reliability in master-worker computing. Concurrency and
Computation: Practice and Experience (2013); A preliminary version appears in Euro-Par
(2012)

11. Christoforou, E., Fernandez Anta, A., Georgiou, C., Mosteiro, M.A., Sánchez, A.:
Reputation-based Mechanisms for Evolutionary Master-Worker Computing. ArXiv (2013)

12. The Einstein@home project, http://einstein.phys.uwm.edu
13. Estrada, T., Taufer, M., Anderson, D.P.: Performance prediction and analysis of BOINC

projects: An empirical study with EmBOINC. J. of Grid Computing 7(4), 537–554 (2009)
14. Fernández, A., Georgiou, C., Lopez, L., Santos, A.: Reliable Internet-based computing in the

presence of malicious workers. Parallel Processing Letters 22(1) (2012)
15. Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Designing mechanisms for reliable

Internet-based computing. In: Proc. of NCA 2008, pp. 315–324 (2008)
16. Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorithmic Mechanisms for Internet-

based Master-Worker Computing with Untrusted and Selfish Workers. In: IPDPS 2010
(2010)

17. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D. (ed.) CT-RSA
2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001)

18. Heien, E.M., Anderson, D.P., Hagihara, K.: Computing low latency batches with unreliable
workers in volunteer computing environments. J. of Grid Computing (2009)

19. Josang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online Ser-
vice Provision. Decision Support Systems Journal 43(2), 618–644 (2007)

20. Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L.M., Fedak, G., Cappello, F.:
Characterizing result errors in internet desktop grids. In: Kermarrec, A.-M., Bougé, L., Priol,
T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 361–371. Springer, Heidelberg (2007)

21. Konwar, K.M., Rajasekaran, S., Shvartsman, M.M.A.A.: Robust network supercomputing
with malicious processes. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 474–488.
Springer, Heidelberg (2006)

22. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home: Massively
distributed computing for SETI. Computing in Science and Engineering (2001)

23. Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University Press (1982)
24. Sarmenta, L.: Sabotage-tolerance mechanisms for volunteer computing systems. Future Gen-

eration Computer Systems 18(4), 561–572 (2002)
25. Shneidman, J., Parkes, D.C.: Rationality and self-interest in P2P networks. In: Kaashoek,

M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148. Springer, Heidelberg
(2003)

https://www.mturk.com
http://boinc.berkeley.edu/trac/wiki/AdaptiveReplication
http://boincstats.com/en/forum/10/4597
http://boinc.berkeley.edu/poll_results.php
http://einstein.phys.uwm.edu

Reputation-Based Mechanisms for Evolutionary 113

26. Sonnek, J., Chandra, A., Weissman, J.B.: Adaptive Reputation-Based Scheduling on Unreli-
able Distributed Infrastructures. IEEE TPDS 18(11) (2007)

27. Szepesvári, C.: Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool Publishers (2010)

28. Taufer, M., Anderson, D., Cicotti, P., Brooks, C.L.: Homogeneous redundancy: a technique
to ensure integrity of molecular simulation results using public computing. In: IPDPS (2005)

29. Vilaça, X., Denysyuk, O., Rodrigues, L.: Asynchrony and Collusion in the N-party BAR
Transfer Problem. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355,
pp. 183–194. Springer, Heidelberg (2012)

30. Yurkewych, M., Levine, B.N., Rosenberg, A.L.: On the cost-ineffectiveness of redundancy
in commercial P2P computing. In: Proc. of CCS 2005, pp. 280–288 (2005)

State-Driven Testing of Distributed Systems

Domenico Cotroneo, Roberto Natella, Stefano Russo, and Fabio Scippacercola

Università degli Studi di Napoli Federico II
{cotroneo,roberto.natella,sterusso,fabio.scippacercola}@unina.it

Abstract. In distributed systems, failures are often caused by software
faults that manifest themselves only when the system enters a particu-
lar, rarely occurring system state. It thus becomes important to iden-
tify these failure-prone states during testing. We propose a state-driven
testing approach for distributed systems, able to execute tests in hard-
to-reach states in a repeatable and accurate way. Moreover, we present
the implementation and experimental evaluation of the approach in the
context of a fault-tolerant flight data processing system. Experimental
results confirm the feasibility of the approach, and the accuracy and
reproducibility of tests.

Keywords: Experimental Dependability Assessment, Fault Tolerance,
Fault Injection, Workload, Genetic Algorithms, State-based Testing.

1 Introduction

Distributed computing systems are today adopted in many business- and safety-
critical domains, such as air traffic control, healthcare, and e-banking systems.
In these contexts, it is mandatory to perform rigorous verification and validation
activities to assure that distributed systems are highly dependable.

As a matter of fact, distributed systems tend to fail in subtle ways. These
failures can be caused by software faults that manifest themselves only when the
system enters a particular, rarely occurring system state [1,2,3]. Failure-prone
states often evade testing since they only occur for specific sets of events and
inputs (workload), as showed in several studies on testing of distributed systems,
including filesystems [4,2], DBMSs [5], and multicast and group membership pro-
tocols [2,6,7]. Thus, identifying these states during testing is a challenging prob-
lem. This problem is exacerbated by the non-determinism of distributed systems,
the need for minimal instrumentation of the system, and the presence of Off-The-
Shelf (OTS) components whose internals are unknown. Past studies have mainly
focused on exercising the system using synthetically generated workloads [8,9], or
using workloads derived from performance benchmarks [5,10,11]. Nevertheless,
these approaches are not effective at covering rare (hard-to-reach) states. Other
approaches generate a workload from stochastic or non-deterministic models of
the system, but do not scale well for complex systems [12,13].

In our previous paper [14], we proposed a workload generation technique that
automatically drives the system’s state towards the hard-to-reach states. In this

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 114–128, 2013.
c© Springer International Publishing Switzerland 2013

State-Driven Testing of Distributed Systems 115

paper, we integrate this technique into a state-driven testing approach able to
execute tests in hard-to-reach states, in a repeatable and accurate way. It does
not rely on a detailed model of the system in terms of probabilities or time,
and is suitable for testing the actual implementation of complex, OTS-based,
distributed systems. Moreover, we present the implementation and experimental
evaluation of the approach in the context of a fault-tolerant flight data processing
system. The evaluation shows the feasibility of the approach and its ability to
perform accurate and reproducible tests in the correct global state.

The paper is organized as follows. Section 2 presents past work on state-
driven testing of distributed systems. Section 3 provides basic concepts and
assumptions, and Section 4 describes our approach. Section 5 and 6 presents the
experimental evaluation. Section 7 closes the paper.

2 Related Work

Studies on the verification of distributed systems can be classified into two broad
classes: analytical-simulation studies and experimental ones. Experimental stud-
ies, in which our work is included, assess the actual implementation of a system
by executing it. They include, for instance, fault injection methods, which assess
fault tolerance mechanisms and algorithms through the deliberate injection of
faults in the actual system or in a prototype [6].

In experimental studies,model-based testing (MBT) approaches are commonly
adopted for generating test cases from a formal description of the system [15]. For
instance, conformance testing and FSM-based testing approaches generate test
cases aimed at covering the states of the model and at assuring that the system
evolves as described by the model. Early approaches adopted graph-searching
techniques to identify inputs able to drive the system along a given path in
the state model [16]. Later approaches [12,13] extended these approaches to
drive the system state in spite of random factors that change the system state in
unpredictable ways. Nevertheless, the application of these approaches in complex
systems is limited by scalability issues due to state space explosion, the need for
a detailed model of the system, and by restrictive assumptions they implicitly
make about the system: for instance, they only consider “stable” states, in which
the system waits for inputs or events [17].

For these reasons, fault injection approaches do not rely on a system model
to generate a workload. Some of them assess dependability by adopting a work-
load representative of the real workload that will be experienced during oper-
ation [5,10,11], in a similar way to performance benchmarks. In other cases,
synthetic workloads are randomly generated, according to a high-level workload
specification provided by the tester [18], for instance in terms of input probabil-
ity distributions [8,19]. Moreover, most fault injection studies randomly inject
faults during an experiment, repeating this process several times [20,21,7]. In
these studies, the tested system states are limited to those exercised by the
considered workload, and testers must manually tune the workload in order to
bring the system in “hard-to-reach” states, from which they can perform tests.

116 D. Cotroneo et al.

Moreover, random injection can require a significant number of experiments to
“hit” the system at hard-to-reach states.

More advanced fault injection approaches trigger the injection when a spe-
cific events occur in the system [22,23,2], and perform an a-posteriori state-based
sampling of experiments to compute dependability measures [24,2]. For instance,
Loki [2] considers the global state of a distributed system for triggering fault in-
jection: to assure that a fault has been injected in a desired state, it performs an
off-line analysis of execution traces and repeats the experiment if the injection
has been triggered in a wrong state. These approaches still rely on a workload
provided by the tester, either hand-written or using a representative workload,
which does not assure that all important states are covered during testing. Com-
pared to these works, our approach actively tunes the workload in order to cover
a specific state specified by the tester, thus complementing experimental assess-
ment approaches such as Loki. In our preliminary work [14], we discussed the
issues behind state-driven workload generation in distributed systems, and first
proposed the use of genetic algorithms to this aim. In this study, we integrate
this technique in a comprehensive approach for fault injection testing.

3 Basic Concepts and Problem Statement

In the design of our approach for state-driven testing, we make practical assump-
tions about the architecture of the distributed system (DS) under evaluation. We
consider DSs in which a set of services is exported by a frontend process, masking
the complexity of the system to its users (Fig. 1). A client sends requests to the
frontend process by means of one or more messages, the frontend interacts with
the other processes of the DS and, once the computation has finished, replies
to the client. In this context, a workload W consists of a set of service requests
generated during an execution. This view of DSs applies to several systems,
including orchestrated web services and three-tier web applications.

Network

Process Process

ProcessProcess

Frontend
Process

Client

s1

s2

sn

Interface for
the system

m11

mn1

mn2

mn...

m12

m1...

Fig. 1. The distributed system under test

In state-based testing of DSs, the workload is adopted to bring the system in
a global state defined by the tester (target state), in order to let him to perform
a test right after the DS has reached the target state, for instance by submitting
a set of inputs or by injecting a fault while the system is in the target state. The
aim of State-Driven Workload Generation (SDWG) is to search for a workload

State-Driven Testing of Distributed Systems 117

W such that the likelihood that the system under test (SUT) spends at least a
period τ in the target state is high enough to allow the accurate and reproducible
test execution in the desired state. The τ period includes the time for allowing
a Test Executor (TE) program to notice (by collecting event logs) that the DS
has entered the target state during the experiment, and to perform the test after
the state has been reached: for instance, in a fault injection experiment, the TE
(e.g., a fault injection tool) will require a small amount of time to corrupt a
message or to kill a process [22,2].

The state of an individual process in the DS is referred to as local state,
whereas the global state of the DS, denoted with s ∈ S, is the union of all the local
states. The target state or, more in general, the set of target states SG, is a subset
of the global states in which the tester aims to perform a state-driven test. Local
and global states of the DS, and target states, should be defined by the tester
before generating state-driven tests. We refer as the system model to a high-level
specification (using a formalism such as Finite State Machines (FSM) or Petri
Nets (PN)) by which the tester describes the set of global states, including the
target states. The tester should define the system model on the basis of system
requirements and its high-level design. The model should account for the state of
local resources and the state of computation at each process, in addition to the
testing goals. The model can be specified using well-known formalisms such as
Finite State Machines (FSM) or Petri Nets (PN). Using the system model, the
tester can focus workload generation on those target states that are important for
testing. For instance, to test the effectiveness of a deadlock detection mechanism
in a distributed DBMS, the system model should reflect the contents of the lock
table and distributed transactions. The target state can be expressed in terms of
markings of a PN, e.g., in terms of number of tokens in places that represent the
ongoing execution of a transaction. More detailed examples of high-level system
models adopted for fault injection testing of a distributed filesystem and a group
membership protocol are provided respectively in [4,25].

For SDWG, we only require a relatively simple model that reflects the software
under development at a high-level of abstraction, which should not necessarily
provide details about low-level hardware and software layers of the system (e.g.,
OS, middleware). In particular, we do not require the system model to character-
ize the time and the probability of events in the system, but only the relationship
between events and states: time, including communication and computation de-
lays, can be unfeasible to characterize even in a probabilistic way, especially for
complex distributed systems with third-party and OTS components, whose in-
ternals are unknown. Since the time of events are unknown, transitions in the
system model are not timed, and only express the relationship between events
and the state of the DS (according to [15], it is an untimed, non-deterministic
and operational model). In our approach, the system model is used after the
execution of the workload to obtain, from raw event logs of an execution, the
sequence of states that the system has followed during the execution, and refine
the workload based on this feedback.

118 D. Cotroneo et al.

4 A State-Driven Testing Approach

We are proposing an MBT approach composed by two phases, namely the work-
load search phase and the testing phase. The workload search phase is only
briefly summarized in the following because it has been the focus of our previ-
ous work [14], while the testing phase is the main topic of this section. Fig. 2
shows the overall approach: the tester first searches a workload, using the Work-
load Generator (WG) [14], then performs the actual testing of the SUT using
the workload W found in the previous phase. To find W , the WG applies “can-
didate” workloads to the system, and evaluates whether such workloads bring
the system in the target state. The WG determines if the system reached the
target state collecting the system events during the execution, e.g., messages and
outputs produced by processes, and analyzing them after the events have been
“translated” into the history of global states traversed by the system.

In the testing phase, the tester links his module, the Test Executor, to the
WG: the TE is responsible for executing tests, e.g., it may be deputed to inject a
fault and to observe its effects on the SUT. The WG supplies again the workload
W to the system, but here, during runtime, it triggers the Text Executor when
it notices the occurrence of test triggering conditions (e.g., a specific sequence
of messages sent within the system). These conditions are defined by the WG
such that the likelihood that the test is performed in the target global state is
maximized. This likelihood represents an evaluation of the accuracy and repro-
ducibility of the test when using a given workload. Test reproducibility allows
their re-execution after applying a fix, given that the fix does not impact the sys-
tem model or the execution ofW . The likelihood is evaluated by the WG during
the workload search phase, so the search can be stopped when it is high enough.
Moreover, after the execution of a test, the WG framework checks whether the
experiment has been conducted in the correct global state, in order to assure the
correctness of results. The test is repeated in the unlikely case that the state of
the test was not the desired one.

System
Under
Test

Workload
Generator
Framework

r
rk

Candidate workloads

Event logs

Workload
Generator
Framework

Workload Search

Testing

System
Under
Test

Test
Executor

orkloa Systemd
r

Probability
of test
success

Selected
workload

specification

Selected workload

Event logs

Test
case

Test trigger
specification

lity
t
ss

E
Test

success
indication

Test
trigger

orkloa

Target
state

Fig. 2. Workflow of a test using the proposed approach

State-Driven Testing of Distributed Systems 119

4.1 The Workload Search Phase

In the workload search phase (described in detail in [14]), the WG interacts
with the DS under test in a closed-loop configuration. It exercises the DS with
a workload, analyzes its behavior, and modifies the workload until a specified
target state is reached. In this loop, the WG alternates an on-line phase, in
which the DS is executed, and an off-line phase, in which the behavior of the
DS is analyzed. The distinction between the off-line and on-line phases allows to
reduce the intrusiveness of the WG, since only minimal information is collected
during the on-line phase, and most of the processing for analyzing the system
evolution and computing the workload occurs off-line. In the on-line phase, the
WG executes for a fixed time period the DS with a candidate workload W .
Then, in the off-line phase, the WG analyzes the behavior of the system through
event logs collected during execution, and evaluates whether the target state has
been reached. The off-line phase adopts a Petri Net system model (Section 3)
to obtain, from raw event logs of an execution, the sequence of states that the
system reached during the execution, and how much time has been spent at
each state. Candidate workloads are iteratively generated and executed until
the target state is reached with a given probability and for a given sojourn time.

Local events are collected at each process of the DS, timestamping them using
local clocks. When the experiment is over, an off-line synchronization algorithm
is executed to align the events of an execution on a single global timeline [2,26].
Off-line synchronization was preferred over on-line synchronization approaches,
such as NTP, since on-line synchronization protocols exchange packets during
the execution of the system and can thus interfere with its evolution. For each
event, the algorithm estimates a lower and an upper bound of its timestamp,
representing the uncertainty interval of the event. We showed in [27] that, when
a PN system model is adopted, the global state of the system can be exactly
identified in those periods where uncertainty intervals do not overlap.

A workload W leads the SUT to traverse one or more global states sk ∈ S,
and sojourns in each of them for a finite time dk > 0. The behavior of the SUT
under a workload W is evaluated from a set of executions. The sequence of all
the states traversed by the system in an execution under the workload W forms
an execution report ri ∈ RW , where each state traversal is denoted with (sk, dk).

The WG adopts a workload configuration wc ∈Wc to represent workloads; wc

is a vector of parameters, representing the frequency and the type of requests to
be sent, i.e., the workload to be generated. The tester should specify, for each
parameter, a discrete set of allowed values (e.g., values uniformly distributed
within a range). The WG explores, with the WL Navigator component, several
combinations of such parameters to find a combination able to reach the target
state. The parameters represent the periodicity of the messages exchanged with
the DS and other customizable factors, such as the delays to introduce in the
processes for increasing the likelihood of sojourning in the target state for long
enough. The WL Navigator makes use of a Genetic Algorithm (GA) to search
for a suitable wc. It starts from a random configuration, and then generates new
candidate workloads by randomly mutating and combining candidate solutions

120 D. Cotroneo et al.

from a previous iteration, by replacing a parameter value of an existing solution
with (i) another value from the set of allowed values, or (ii) a value of the same
parameter taken from another workload. The quality (fitness) of wc is evaluated
using a fitness function, which takes into account the “distance” between the
tentative solution and the target states, and the “continuity” of periods spent
in the target state. Based on wc, the WG generates the actual workload W , by
acting as a client of the SUT using a WL Feeder component.

4.2 The Testing Phase

After the workload search, in which a state-driven workload has been found, the
system is actually tested using the selected workload. During a test (Fig. 2),
events logs are still collected, and they are analyzed at run-time to trigger the
Test Executor when the WG notices that the SUT has reached the target state.
However, due to delays in the transmission of events and to the lack of clock syn-
chronization, the test could be triggered in a global state that is different than
the desired target state. In order to avoid incorrect experiments, we perform off-
line synchronization after the test, analyze the execution report, and evaluate
whether the test has been triggered in the correct global state. If the execution
report points out that the test was triggered in an incorrect or undetermined
state, the experiment is discarded and must be repeated. This “optimistic” ap-
proach is based on the observation that if the system sojourns in the target state
for long enough, it is likely that the test will triggered in a correct global state,
which is also assumed by other testing and fault injection tools for distributed
systems such as the Loki [2]. Therefore, we can expect that tests will be correctly
triggered most of times, and that only a few experiments will be discarded, as
the WG seeks for a workload that maximizes the sojourn time in the target
state. In any case, the off-line analysis assures that incorrect experiments are
discarded and do not affect the evaluation of the system.

An important issue that we noticed in a preliminary implementation of our
approach is that, even if the workload brings the SUT in the target state for
a long enough time, it often happens that, during the same execution, the DS
enters the target state only for short periods: in such cases, the test would be in-
correctly triggered since the system leaves the target state during the execution
of the test. In other terms, during an execution, there can be many state traver-
sals shorter than the required τ , and only a few traversals longer than τ , where τ
is the time required for the execution of the test (see Section 3). To mitigate this
issue and to improve the likelihood of triggering the test in the desired global
state, we adopt the following test triggering mechanism: we avoid (incorrect)
triggering when a target state is traversed only for a short time, by raising the
trigger only when a triggering-delay θ has been elapsed since the system entered
in the target state. Figure 3 shows an example of the whole process, based on a
hypothetical system model with two places and two transitions. The test trigger
specification consists of the following conditions: (i) the place p2 should have
at least one token, and (ii) the first condition should hold for at least a delay
θ∗. During the testing phase, the WG collects events and updates its internal

State-Driven Testing of Distributed Systems 121

representation of the global state. When an event happens, a message is sent to
the WG, which updates the system state and checks if the target state (e.g., the
marking 〈p1 = 0, p2 = 1〉) has been reached. If so, the θ-delay starts, and the
test is triggered only after θ is elapsed. Therefore, traversals of the target states
shorter than θ∗ will be filtered out. The delay θ is selected by the WG as follows,
by maximizing the probability of correct test execution. A test is correct (i.e.,
triggered in the correct global state) if, after the SUT has reached the target
state and remains in that state for a period θ, it does not change state for an
additional period τ to allow the Test Executor to perform the test. We estimate
the probability of test success ptsSG,τ (θ) by:

ptsSG,τ (θ) =Pr (dk ≥ θ + τ | dk ≥ θ ∧ sk ∈ SG) ·
· Pr (∃ek = (sk, dk) ∈ rw : dk ≥ θ ∧ sk ∈ SG) (1)

where the first factor of the product represents the probability to stay in the
target state sk for θ + τ given that the triggering delay has been elapsed, and
the second factor represents the probability that the workload will bring the
system in target state for a long enough period at least once during the ex-
periment. These probabilities can be empirically estimated from the execution
reports collected during the workload search. The value of the triggering-delay
θ∗ is selected by the WG by maximizing the pts:

θ∗ = arg max
θ∈[0;θmax]

ptsSG,τ (θ) (2)

t1 evt

t2 evt

t1 evt process1

process2

WG

θ*-delayθ*-delay

21 3 4
1. Initial state
2. Target state reached
 but test not triggered
3. State of no interest
4. Target state reached
 and test triggered

t1t2

p2

p1

t2

p2

p1

t2

p2

p1

t1t2

p2

p1

t1 t1

Fig. 3. Test triggering based on event logs and on a triggering delay

5 Case Study

We implemented and evaluated our approach within the Flight Data Processing
System (FDPS) described in [14], and here summarized. FDPS is a distributed
software developed in C++ which uses CARDAMOM, a fault-tolerant CORBA-
compliant middleware. It is a part of an Air Traffic Control (ATC) system, in
charge of managing and keeping up-to-date Flight Data Plans (FDPs).

The architecture of FDPS (Fig. 4) is composed by a Façade component, which
acts as the frontend of the system and is replicated by the CARDAMOM Fault-
Tolerance (FT) Service, and by a set of three Processing Servers (PSs), managed

122 D. Cotroneo et al.

by the Load-Balancing (LB) Service. Service requests are delivered to the Façade
by the middleware: the Façade forwards requests to a specific PS according to
a round robin scheduler; once the requests are completed, they are sent back to
the Façade, which disseminates the updated FDP through a Data Distribution
Service (DDS) and replies to the clients.

Processing
Server

Logger

WL
Navigator

Logger

WL Feeder

Cardamom Middleware

Processing
Server

Logger Logger

Primary
Façade

Cardamom Middleware

Processing
Server

Logger Logger

Backup
Façade

Cardamom Middleware

WL
UtilAgent

System
Model

WL
UtilAgent

WL
UtilAgent

Log

Log

Log

Workload
Log record

Checkpoint
Fault injection

shmemmqueuemqueue

mqueue mqueue

mqueuemqueue

Fig. 4. The FDPS case study

Requests are associated to a specific flight track, which is identified by an
FDP-ID number: for each FDP-ID, the Façade dispatches no more than one
request at time towards the PSs, and enqueues other requests for the same
FDP-ID until the request under processing has been processed. The state of
requests for each FDP is stored in an FDP Table of the Façade. Because the PSs
are managed with a mono-threaded policy, the middleware in turn enqueues the
requests forwarded to a PS if that PS is busy. The FT Service performs a warm
replication of the Façade process: the FDP Table is checkpointed at each update
and transmitted to backup replicas, which are activated in the case of failure of
the primary replica. In our experimental setup, the application is installed on a
LAN of RHEL Linux PCs connected through a 100Mbps Ethernet network; the
FDPS deploys 3 Processing Servers, one active Façade and one backup Façade
replica. The hosts adopted for the experiments were configured by disabling
services that could interfere with the FDPS and the WG. In particular, we had
to disable the NTP synchronization service, which modifies the system clock and
can affect our synchronization algorithm [14].

In a previous study [3], we adopted fault injection to assess the fault toler-
ance of the warm replication mechanism implemented in the FDPS based on
the CARDAMOM FT Service. The warm replication mechanism should copy
the state of the FDP Table to a backup replica, and its effectiveness can be
affected by the amount of data that has to be copied to the backup replica (i.e.,
the number of requests enqueued by the Façade) and by requests sent to PSs

State-Driven Testing of Distributed Systems 123

(both under processing and enqueued by the middleware). In this case study, we
perform fault injection experiments in different states of the FDPS, by taking
into account the number of requests enqueued by the Façade and sent to PSs.
We include in the system model of the FDPS (and thus in the definition of the
global state) the number of requests enqueued at the Façade and at each PS. The
system model, described in [28], was not included here due to space constraints.

In this experiment the workload configuration wc has a pair of parameters for
each FDP-ID i, namely Tmi and Di: the first one specifies the period between
two consecutive requests sent by the client for the i-th FDP-ID; the second
one represents a delay that is introduced in the PSs during the processing of
requests for the i-th FDP-ID. The WL Feeder generates a stream of requests
for each FDP-ID according to wc. These parameters are communicated by the
Workload Navigator to the Workload Feeder through a UNIX shared memory,
whereas the Feeder transmits the delays Di to the Processing Servers in the
request messages. Fig. 4 also includes the implementation of our state-driven
testing approach in the FDPS (the shaded boxes in the figure). The Loggers are
small libraries linked to FDPS processes; the CORBA objects were instrumented
to collect application events by invoking Loggers, which in turn send event logs
to the WL UtilAgents using UNIX message queues. We log events that represent
transitions in the system model. In particular, we log the invocation of CORBA
methods (by invoking the Logger at the beginning of the CORBA method),
and the accesses to request queues (e.g., by invoking the Logger when a private
method for enqueuing requests is called). Event logs are processed by the WG
(both during the search and the testing phases), which are translated into a
sequence of global states: for instance, when a client request for the FDP #1 is
received, a new global state is added in the sequence of global states, with A1 = 1
in the marking of the PN (see [28]). As an alternative to instrumenting the SUT,
the events required by the system model can be obtained by system logs, if
available. The WL UtilAgents are processes that perform all the tasks required
by the Workload Generator, such as log collection and off-line log analysis, and
by the Test Executor, such as triggering a test. For instance, in our experiments
we used the WL UtilAgent to inject faults in the Façade. We adopted the process
crash as fault model, which is often adopted to evaluate the fault tolerance of
distributed systems [2,7]. In our setup, the Test Executor is a process that forces
a process crash, by killing the Façade process using UNIX signals. It is important
to note that our approach can be adopted for injecting arbitrary fault models,
depending on the type of system and on evaluation goals.

In the search phase, we configured the fitness function ([14], eqq. 4, 5) with
parameters α = 10.4 and ε = 24. A workload configuration wc represents an
individual for the genetic algorithm, with 2 · #FDPs chromosomes (i.e., the
parameters Tmi and Di). At each iteration, the GA generates a new population
of individuals (where each population consists of 8 individuals) from an old
population, by repeatedly applying the following two rules:

– two individuals are randomly selected, with a probability based on their
fitness; with probability c = 90% (crossover rate), the two individuals are

124 D. Cotroneo et al.

split in two parts (at a random point of the vector) and mixed (crossover),
thus obtaining a new pair of individuals;

– with probability m = 35% (mutation rate), each parameter of the newly
generated individuals are replaced (mutation), by randomly selecting a new
value according to a normal distribution centered around the old value.

6 Experimental Evaluation

We conducted a set of fault injection experiments on the FDPS, in order to
evaluate the feasibility and effectiveness of the approach. In these experiments,
we evaluate the ability and the speed of the WG to bring the system into a given
target state, and the ability to correctly trigger fault injection while the system
is in the target state. The target states are defined using a set of constraints, that
is, conditions that the global state needs to satisfy: in the case of a system model
based on Petri nets, the target states are represented by a set of conditions on the
marking of the Petri net. If several global states satisfy the constraints, they are
considered equally useful from the perspective of testing the DS. The Workload
Generator is adopted for bringing the system in three different targets states,
where each experiment introduces an additional constraint to the constraints of
the previous experiment. Introducing additional constraints makes the search for
a workload increasingly difficult, since each constraint reduces the set of target
states. The experiments are defined as follows:

Experiment #1: The workload should bring the distributed system into a
global state in which two out of three PSs are busy, and one out of three PS
is idle. This condition is expressed by a constraint stating that the sum of
tokens in the places WRKi (where WRKi = 1 if the i-th PS is busy, and 0
otherwise [28]) should be exactly 2:

3∑

i=1

WRKi = 2 (3)

Experiment #2: In addition to the previous constraint (Equation 3), the
workload should bring the system into a global state such that the Façade
should have enqueued at least 6 and at most 30 requests in its FDP Table
(Equation 4). Both constraints should hold at the same time in order to
reach the target state. The second constraint states that the sum of tokens
in the places Aj , representing the number of requests in the FDP queue j
(with six FDP queues in total) [28], should be between 6 and 30 tokens:

6 ≤
6∑

j=1

Aj ≤ 30 (4)

Experiment #3: The set of target states is further restricted, by (i) including
the constraint of experiment #1 (Equation 3), (ii) replacing the constraint
of Equation 4 with the more restrictive condition of Equation 5, and (iii)

State-Driven Testing of Distributed Systems 125

adding the condition that there should be at least one request enqueued by
the PSs (Equation 6). All three constraints should hold at the same time in
order to reach the target state. Equation 5 states that each FDP queue j
should have between at least 1 and at most 5 enqueued requests (instead,
Equation 4 disregards how enqueued requests are distributed across FDP
queues); in Equation 6, tokens in the place BF represent requests enqueued
by the middleware for the PSs, which should be more than zero [28]:

1 ≤ Aj ≤ 5 , j = 1, 2, . . . , 6; (5)

BF > 0 (6)

It is important to note that, even though the first and the third constraints
(Equations 3 and 6) appear to be contradictory, it is in fact possible to satisfy
them at the same time. These constraints state that there should be an idle
Processing Server, while the other two PSs should be busy and have requests
enqueued for them, i.e., the enqueued requests should not be forwarded to
the idle PS. This condition is actually possible since the request scheduler
selects the PS for an incoming request on a round-robin basis, regardless of
whether the selected PS is busy and whether there are idle PSs. Therefore,
this condition is hard-to-reach, but possible.

We imposed a minimum sojourn time in the target state of τ = 0.3s, which is
large enough to allow our Test Executor module to be triggered and to kill the
Façade process. We fixed the number of FDP-IDs to six, and set the domains for
the parameters of the workload configuration ranging from 500ms to 5s, with a
step of 500ms. Finally, we set |RW | = 3.

In Fig. 5, we depict the sojourn time in the target state attained by generated
workloads. At each iteration of the genetic algorithm, a generation (i.e., set
of solutions) is obtained by mutating and combining solutions from the best
solutions of the previous generation (on the basis of the fitness function). We
evaluated, for each generation, the sojourn time attained by the best solution
of each generation. In every experiment, the WG was able to find a workload
able to bring the system into the target state for an uninterrupted time period
of at least 1.5s; the convergence to a “good” solution was very quick in the case
of experiments #1 and #2, and in the case of experiment #3, which imposed
more restrictive constraints to the target state, the algorithm converged after 14
iterations, which were executed in about 3 hours.

For each experiment, we selected the workload with the highest uninterrupted
sojourn times across all generations of the search, and then we used that work-
load for fault injection experiments.

The table 1 shows the probabilities of correct test execution and compares
them with the estimations obtained by ptsSG,τ (θ

∗) (eq. 1). The probabilities of
correct test executions has been obtained by performing 100 fault injection ex-
periments on the system for each target state, and by evaluating whether faults
where injected in the correct global state: most of fault injection experiments

126 D. Cotroneo et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

B
es

t s
oj

ou
rn

 ti
m

e
(s

)

Generation

Exp. #1
Exp. #2
Exp. #3

Fig. 5. Sojourn time of the best solution at each generation of the genetic algorithm

 0

 2

 4

 6

 8

 10

10 20 50 100

R
eq

ue
st

 c
om

pl
et

io
n

tim
e

(s
)

Input requests per second

+4.09% +4.06%

+2.91%

+2.99%without instrumentation
 with instrumentation

Fig. 6. Overhead of event log collection and processing

were correctly performed, with a probability of correctly reproducing the exper-
iment of 60% in the worst case. In every case, the estimated probability of test
success was close to the probability actually experienced during experiments,
with a difference less than 10%. Since the probability of test success is high, it
is likely that the test is performed in the correct state on the first try, or after a
small number of repetitions.

Table 1. Probability of injecting a fault in the correct global state

Exp. #1 Exp. #2 Exp. #3

Experimental test success probability 82.6% 82.9% 57.1%
Predicted test success probability 92.2% 75.0% 60.0%

We analyzed the overhead of our WG approach on fault injection experi-
ments, by evaluating the performance loss due to our instrumentation. The only
instrumentation we introduced was the logging of events in the FDPS, and the

State-Driven Testing of Distributed Systems 127

collection of these events in order to trigger the injection of faults. Fig. 6 shows
the average response time of the FDPS over 20 executions, at different rates of in-
put requests, when logging and collection are disabled and enabled, respectively.
The increase of the request completion time is 4% in the worst case, and is less
significant at higher rates of input requests. Therefore, the performance overhead
incurred during execution with instrumentation can be considered negligible,
meaning that the program behavior remains realistic during an experiment.

7 Conclusion

The global state is a major concern in the verification of a distributed system.
State-driven testing of distributed systems proves to be challenging due to system
complexity, the use of OTS components, the clock drift and the non-determinism
of distributed systems. We proposed an approach for state-driven testing of com-
plex distributed systems, that automates the search for a state-driven workload,
and perform tests in a desired global state with probabilistic guarantees.

Acknowledgments. This work has been supported by the project “Embedded
Systems in Critical Domains” (CUP B25B09000100007), by the TENACE PRIN
Project (n. 20103P34XC) funded by the Italian Ministry of Education, University
and Research, and by the Finmeccanica industrial group in the context of the
project “Iniziativa Software CINI-Finmeccanica”.

References

1. Lee, I., Iyer, R.: Faults, Symptoms, and Software Fault Tolerance in the Tandem
GUARDIAN90 Operating System. In: Proc. Symp. on Fault-Tolerant Computing,
pp. 20–29 (1993)

2. Chandra, R., Lefever, R., Joshi, K., Cukier, M., Sanders, W.: A Global-State-
Triggered Fault Injector for Distributed System Evaluation. IEEE Trans. Parallel
and Distributed Sys. 15(7), 593–605 (2004)

3. Natella, R., Cotroneo, D.: Emulation of transient software faults for dependability
assessment: A case study. In: Proc. Eur. Dependable Comp. Conf., pp. 23–32 (2010)

4. Lefever, R., Cukier, M., Sanders, W.: An experimental evaluation of correlated net-
work partitions in the Coda distributed file system. In: Proc. Intl. Symp. Reliable
Distributed Systems, pp. 273–282 (2003)

5. Vieira, M., Madeira, H.: A dependability benchmark for OLTP application envi-
ronments. In: Proc. 29th Intl. Conf. on Very Large Data Bases, pp. 742–753 (2003)

6. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J., Laprie, J., Martins, E.,
Powell, D.: Fault injection for dependability validation: A methodology and some
applications. IEEE Trans. Software Eng. 16(2), 166–182 (1990)

7. Meling, H., Montresor, A., Helvik, B., Babaoglu, O.: Jgroup/ARM: a distributed
object group platform with autonomous replication management. Soft.: Pract.
Exp. 38(9), 885–923 (2008)

8. Tsai, T., Hsueh, M., Zhao, H., Kalbarczyk, Z., Iyer, R.: Stress-Based and Path-
Based Fault Injection. IEEE Trans. Computers 48(11), 1183–1201 (1999)

9. Kiskis, D., Shin, K.: SWSL: A synthetic workload specification language for real-
time systems. IEEE Trans. Soft. Eng. 20(10), 798–811 (1994)

128 D. Cotroneo et al.

10. Duraes, J., Madeira, H.: Generic faultloads based on software faults for depend-
ability benchmarking. In: Proc. Intl. Conf. Dependable Systems and Networks,
pp. 285–294 (2004)

11. Kalakech, A., Kanoun, K., Crouzet, Y., Arlat, J.: Benchmarking the Dependability
of Windows NT4, 2000 and XP. In: Proc. Intl. Conf. Dependable Systems and
Networks, pp. 681–686 (2004)

12. Zhang, F., Cheung, T.Y.: Optimal transfer trees and distinguishing trees for testing
observable nondeterministic finite-state machines. IEEE Trans. Soft. Eng. 29(1),
1–14 (2003)

13. Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.: Optimal
strategies for testing nondeterministic systems. ACM Soft. Eng. Notes 29(4), 55–64
(2004)

14. Natella, R., Scippacercola, F.: Issues and Ongoing Work on State-Driven Workload
Generation for Distributed Systems. In: Vieira, M., Cunha, J.C. (eds.) EWDC
2013. LNCS, vol. 7869, pp. 96–110. Springer, Heidelberg (2013)

15. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability 22(5), 297–312 (2012)

16. Bourhfir, C., Dssouli, R., Aboulhamid, E., Rico, N.: Automatic executable test
case generation for extended finite state machine protocols. In: Kim, M., Kang,
S., Hong, K. (eds.) Testing of Communicating Systems. IFIP, pp. 75–90. Springer-
Verlag US (1997)

17. Kerbrat, A., Jéron, T., Groz, R.: Automated test generation from SDL specifica-
tions. In: Proc. 9th SDL Forum, pp. 135–152 (1999)

18. Kiskis, D.L., Shin, K.G.: A synthetic workload for a distributed real-time system.
Real-Time Systems 11(1), 5–18 (1996)

19. Weyuker, E.J., Vokolos, F.I.: Experience with performance testing of software
systems: issues, an approach, and case study. IEEE Trans. Soft. Eng. 26(12),
1147–1156 (2000)

20. Arlat, J., Aguera, M., Crouzet, Y., Fabre, J., Martins, E., Powell, D.: Experimen-
tal evaluation of the fault tolerance of an atomic multicast system. IEEE Trans.
Reliab. 39(4), 455–467 (1990)

21. Basile, C., Wang, L., Kalbarczyk, Z., Iyer, R.: Group communication protocols
under errors. In: Proc. Intl. Symp. Reliable Distributed Systems, pp. 35–44 (2003)

22. Dawson, S., Jahanian, F., Mitton, T., Tung, T.: Testing of fault-tolerant and real-
time distributed systems via protocol fault injection. In: Proc. Fault Tolerant Com-
puting Symp., pp. 404–414 (1996)

23. Hoarau, W., Tixeuil, S.: A language-driven tool for fault injection in distributed
systems. In: Wksp. Grid Comp., pp. 194–201 (2005)

24. Helvik, B.E., Meling, H., Montresor, A.: An approach to experimentally obtain
service dependability characteristics of the Jgroup/ARM system. In: Dal Cin, M.,
Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 179–198.
Springer, Heidelberg (2005)

25. Joshi, K.R., Cukier, M., Sanders, W.H.: Experimental evaluation of the unavailabil-
ity induced by a group membership protocol. In: Bondavalli, A., Thévenod-Fosse,
P. (eds.) EDCC 2002. LNCS, vol. 2485, pp. 140–158. Springer, Heidelberg (2002)

26. Poirier, B., Roy, R., Dagenais, M.: Accurate offline synchronization of distributed
traces using kernel-level events. ACM SIGOPS Operating Systems Review 44(3),
75–87 (2010)

27. Scippacercola, F.: State-Driven Workload Generation in Distributed Systems. Mas-
ter’s thesis, Università degli Studi di Napoli Federico II (2012)

28. Cotroneo, D., Natella, R., Russo, S., Scippacercola, F.: State-driven testing of
distributed systems: Appendix. Technical report (2013),
http://www.mobilab.unina.it/techreports.html

http://www.mobilab.unina.it/techreports.html

Self-stabilizing Resource Discovery Algorithm�

Seda Davtyan1, Kishori M. Konwar2, and Alexander A. Shvartsman1

1 Department of Computer Science & Engineering,
University of Connecticut, Storrs CT 06269, USA

{seda,aas}@engr.uconn.edu
2 University of British Columbia, Vancouver BC V6T 1Z3, Canada

kishori@interchange.ubc.ca

Abstract. Massive distributed cooperative computing in networks in-
volves marshaling large collections of network nodes possessing the nec-
essary computational resources. In order for the willing nodes to act in a
concerted way they must first discover one another. This is the general
setting of the Resource Discovery Problem (RDP). There are solutions
for this problem that achieve impressive efficiency in the absence of fail-
ures, however, their correctness and performance cannot be guaranteed
in the presence of failures. In practical environments it is important to
have solutions that can cope with intermittent failures, and, in partic-
ular to design self-stabilizing algorithms for the problem. This paper
presents a self-stabilizing algorithm that solves RDP in a determinis-
tic synchronous setting. The approach is formulated in terms of evolv-
ing knowledge graphs, where vertices represent the participating network
nodes, and edges represent one node’s knowledge about another. Ideally,
the diameter of such a graph is one, i.e., each node knows all others. The
algorithm works in rounds as it evolves the knowledge graph by nodes
sharing knowledge through gossip messages with the goal of reducing its
diameter. We prove that the algorithm is self-stabilizing, that is, the algo-
rithm is able to tolerate arbitrary perturbations in the nodes’ local states
and is guaranteed to solve the problem once such failures subside. We
show that the algorithm has stabilization time of O(logD), and it takes
at most 2 logD+10 complete round to stabilize, where D is the diameter
of the initial knowledge graph. The corresponding message complexity is
O(|V |2 · logD), where V is the set of participating nodes.

Keywords: Resource Discovery, Self-Stabilization, Distributed Algorithm.

1 Introduction

A large collection of networked computers may need to cooperate in implement-
ing a distributed system, for example, to provide a shared data service, or to
perform a set of tasks. The necessary first step in such settings is to discover the
relevant resources in the network. This step can be formulated as the Resource
Discovery Problem, where each willing resource must find all other available re-
sources. This problem was introduced by Harchol-Balter, Leighton, and Lewin [7]

� This work is supported in part by the NSF award 1017232.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 129–144, 2013.
c© Springer International Publishing Switzerland 2013

130 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

in the context of an application at Akamai Technologies with the motivation to
build an Internet-wide content-distribution system that would speed up the ac-
cess to web pages of major content providers. Before the computing nodes start
cooperating in implementing the service, they need to find each other. Simi-
lar problems appear in peer-to-peer Internet systems where a large number of
users share files without having to rely on centralized servers. Such systems are
highly dynamic, with nodes constantly joining and leaving the network, making
it desirable to efficiently discover the nodes that are willing to cooperate.

In studying message-passing algorithms for such problems, the commonly used
efficiency metrics are the time and communication complexities. Kutten, Peleg,
and Vishkin [12] provided a very efficient deterministic algorithm for the prob-
lem. However it does not provide strong fault-tolerance properties and does not
deal with dynamic situations, and so its correctness and performance cannot
be guaranteed in the presence of failures. The authors suggested that in order
for their algorithm to handle dynamic networks their algorithm could be re-run
from time to time. However, this is not easy because of the associated problem
of detecting termination without any a priori knowledge of the number of the
participating nodes ; this is referred to as Lipton’s question.

Our goal is to design algorithms that are able to deal with intermittent failures,
and in particular we are interested in self-stabilizing solutions. Here the algorithm
must automatically bring a system into a legitimate state in spite of transient
failures. The self-stabilization requirement is that a legitimate state is reached
from an arbitrary state in a finite time, cf. [4,5,15]. Our recent work [3] presented
a self-stabilizing solution for the Resource Discovery Problem in synchronous
settings. The stabilization time of the algorithm is linear in the diameter of the
graph that represents the initial collective knowledge of the nodes about other
nodes. Here we aim to substantially reduce the stabilization time.

Contributions. We present a self-stabilizing algorithm that solves the Resource
Discovery Problem (RDP) in deterministic synchronous settings. The solution is
formulated in terms of evolving knowledge graphs, where vertices represent the
participating nodes, and edges represent one node’s knowledge about another.
Ideally, the diameter of such a graph is one, i.e., each node knows all others. We
assume that initially each node is aware of only one neighbor other than itself,
with whom it is able to communicate directly. Starting with this knowledge,
nodes share their knowledge through gossip messages, allowing the nodes to
discover one another and to reduce the graph diameter. We specify the algorithm
and prove that it is self-stabilizing, that is, the algorithm is able to tolerate
arbitrary perturbations to the nodes’ local states so that it is guaranteed to
solve the problem once such failures subside. We show that the algorithm has
stabilization time O(logD), where D is the diameter of the initial knowledge
graph. The corresponding message complexity is O(|V |2 · logD), where V is the
set of participating nodes; this set is determined by the environment and it is
unknown to the nodes. We now detail the setting and our contributions.

Let G = (V,E) be the directed graph induced by the fixed initial knowledge of
the nodes, i.e., E contains the edges (v, u) exactly when node v knows about node

Self-stabilizing Resource Discovery Algorithm 131

u. We assume that the initial connectivity graph G is at least weakly connected
and that initially each node has the knowledge of only one other node. As nodes
communicate they learn about other nodes, and we model the global knowledge
as the evolving connectivity graph. Following [12] we say that an algorithm solves
RDP if it establishes and maintains the global state where there exists a node
v ∈ V , called the root node, such that every node u ∈ V recognizes v as the root
node, and moreover v knows all nodes in V . Additionally we require that once
the root node v knows V , every other node u �= v also learns V .

The nodes communicate using point-to-point messages. Sending (or multicas-
ting) messages requires that the sending node has the knowledge of the desti-
nation nodes. The communication is synchronous in the sense that there is a
known upper bound d on message delays; if a message is sent to a node in V ,
then it is delivered within d time units. Nodes have access to synchronous timers
that can be used to implement message time-outs. Local computation takes neg-
ligible time relative to d. We do not assume that all nodes begin participating
in the computation simultaneously; instead we allow the nodes to join the com-
putation at arbitrary times. At a high level, the computation is structured in
terms of synchronous rounds, however the activities within each round are not
synchronized across the nodes.

The nodes are subject to arbitrary perturbations to their local (volatile) states;
this includes arbitrary patterns of crash and restart events that occur in matched
pairs, with the associated corruption of local states. The static code of each node,
its constants, and the clock are incorruptible. All other variables are subject to
corruption. Moreover, a corrupted variable may contain a value that is syntacti-
cally indistinguishable from a valid value. This is in contrast with some works in
self-stabilization, where failures cause erasures of variable values, making such
failures easily detectable, cf. [6]. Other works, e.g., [14], assume that any node
identifier must represent an actual node in the system. Finally, we allow the
adversary to corrupt messages in transit.

This work makes the following contributions.

1. We formulate models of computation and adversity, and we formally define
the resource discovery problem (RDP) for our network setting. We formalize the
properties of self-stabilizing solutions (in terms of the closure and the conver-
gence conditions [2]). Our formalization enables one to reason rigorously about
algorithms solving the problem.

2. We present an algorithm for the resource discovery problem, where we use the
Timed Input/Output Automata formalism [8] to precisely specify its behavior.
The algorithm works in rounds and it handles node joins, transient state and
channel corruptions, and crash/restarts of nodes. (Note that if a node crashes
permanently, thus possibly partitioning the connectivity graph, the algorithm
solves the problem for every connected component.)

3. We formulate an invariant that implies that RDP is solved. We rigorously
prove the self-stabilization properties of the algorithm: (a) in the absence of fail-
ures the invariant is maintained once it is established, and (b) when the failures

132 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

subside, the invariant is eventually established. We reason about the performance
of the algorithm and show that its stabilization time isO(logD), and that it takes
at most 2 logD+10 complete rounds to stabilize; this asymptotically meets the
lower bound [7]. The associated message complexity is O(|V |2 · logD).

4. We consider the overall formalization, the formal treatment of the algorithm
specification, and the rigorous reasoning about its properties to be an impor-
tant contribution. We believe that our approach can provide valuable tools for
methodical study of self-stabilizing algorithms.

Related Work. Harchol-Balter, Leighton, and Lewin [7] presented several al-
gorithms for the resource discovery problem; their randomized algorithms have
time complexity O(log2 n) and message complexity O(n log2 n), both with high
probability, where n is the number of participating nodes. Law and Siu [13] gave
a randomized algorithm for strongly connected initial graphs; one variant of
the algorithm has time complexity O(log n) and message complexity O(n2), and
another variant has time complexity O(log2 n) and message complexity O(n).

Kutten, Peleg, and Vishkin [12] gave a deterministic algorithm for RDP; its
time complexity is O(log n) and message complexity is O(n log n). Kutten and
Peleg [11] extended [12] to asynchronous networks and gave an algorithm with
time ΔT + O(log n), where ΔT is the difference between the wake-up times of
the last and first vertices to be awakened; the message complexity is O(n log n).

Abraham and Dolev [1] provide upper and lower bounds for the asynchronous
RDP and provedΩ(n log n) message complexity lower bound when the size of the
network is unknown. When each node knows the size of the connected component
they provide an algorithm with message complexity O(nα(n, n)), where α(n, n)
is the inverse of the Ackermann’s function.

Konwar et al. [9] considered RDP in a static synchronous setting and studied
it under different assumptions about the ability of the nodes to communicate.
They showed lower and upper bounds on the number of rounds needed to solve
RDP. Konwar et al. [10] considered dynamic settings where the set of participants
changes over time. They studied the number of communication rounds needed
to solve the problem under a variety of assumptions about joins and failures.

Dolev and Herman [6] pursued a super-stabilizing approach to designing algo-
rithms that maintain topological structures (e.g., a spanning tree) in the presence
of perturbations. Nor, Nesterenko, and Scheideler [14] consider a self-stabilizing
algorithm for skip-list construction in asynchronous networks. They prove that
in their model one must constrain the states from which self-stabilizing solutions
can be constructed: the state information has to form a weakly connected graph
and it must only contain identifiers that are present in the system.

We note that, while it may be possible to adapt some existing self-stabilizing
algorithms (e.g., [6] and [14]) to solve RDP, our algorithm, to the best of our
knowledge, is the first to handle state perturbations that result in corruptions
that can be indistinguishable from valid states.

Document Structure. Section 2 describes models of computation and
failures, and self-stabilization properties. In Section 3 we present our algorithm.

Self-stabilizing Resource Discovery Algorithm 133

In Section 4 we prove its correctness and self-stabilization. We conclude in Sec-
tion 5. For paucity of space, additional technical details and proofs of some
lemmas are given in the addendum available from the authors.

2 Models and Definitions

Model of Computation. We consider a universe of processes, with unique
identifiers from a well-ordered set U . Let V ⊆ U be the subset of processes that
participate in the computation; this set is chosen by the environment. We let v0
stand for min{v : v ∈ V }. The set V , its cardinality, and v0 are unknown to the
processes, but each process in V is aware of one other process in V .

The processes communicate over a fully connected synchronous network. There
is a known upper bound d on message delays. If a node expects a message from
another node and the message is sent, then it is delivered within d time units.
Nodes have access to local timers that can be used to implement message time-
outs. Local computation takes negligible time relative to d.

We define a round to be some constant period of time sufficient for a process
to send/multicast messages, to perform some local computation, and to accept
any incoming messages. Let t be a time duration sufficient for implementing a
round; t is established at compile time with the knowledge of the delay upper
bound d. For our purposes it suffices to set t to 2d.

The round structure provides only a coarse notion of synchrony. Distinct pro-
cesses may execute different sequences of instructions during rounds, and the
algorithm cannot assume that the individual instructions at different processes
within concurrent rounds are synchronized. Lastly, we do not assume that all pro-
cesses begin participating in the computation simultaneously; instead we allow
the processes to join the computation at arbitrary times.

Failure Model. The processes are subject to transient failures. A transient fail-
ure is an event that corrupts the state of the system, but it does not change
the algorithmic behavior of the system: the static code of each process and any
constants are incorruptible. A failure may arbitrarily perturb state variables, in-
cluding the program counter. A corrupted variable may contain a value that is
syntactically indistinguishable from a valid value (this is in contrast with some
works in self-stabilization, where failures cause erasures of variable values, thus
making such failures detectable, cf. [6], or where it is assumed that a state con-
tains only identifiers of the nodes that are present in the system, e.g., [14]). Thus,
in our model it is possible for a state variable to contain incorrect information
even though it appears to hold a valid value of a correct type. Messages in transit
can also be arbitrarily corrupted.

Local States, Configurations, and Transitions. The local state of a process
consists of the values of its variables and its program counter. We denote by sv
the state of node v. A configuration is a cross product of the local states.

Definition 1. A system S is a triple (C,A, τ), where C is a set of configurations,
A is a set of actions, and τ is a transition function τ : C×A→ C. An execution
of S is a sequence c0, a0, c1, a1, c2, ... such that for all i ≥ 0, τ(ci, ai) = ci+1.

134 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

We denote some transition from configuration ci to ci+1 by ci −→
τ

ci+1 and

we let c ∗−→
τ

c′ stand for the fact that c′ can be reached from c by zero or more

transitions. We denote the state variable X of node v in configuration c by c.Xv.

Self-stabilization. Self-stabilization is the ability of a system to recover from
transient failures following their cessation. The impact of a failure is that the
transition from configuration c to configuration c′ may not obey the transition
function τ , that is, a failure may cause c′ �= τ(c). In addition to local state cor-
ruption we assume that a system can start in any configuration. In designing
solutions resilient to transient failures we use self-stabilization techniques, for-
malizing self-stabilization in terms of closure and convergence properties (cf. [2]).

Definition 2. (Self-stabilization) Let problem P be to establish and maintain
invariant ψ(), given as a predicate on configurations. System S = (C,A, τ) is a
self-stabilizing solution for problem P , if the following two conditions hold:
Closure: ∀c ∈ C, ∀a ∈ A : ψ(c) =⇒ ψ(τ(c, a)), i.e., τ maintains the invariant.
Convergence: ∀c ∈ C : ∃c′ ∈ C : c ∗−→

τ
c′ ∧ψ(c′), i.e., ψ() can be established in

the absence of failures.

Resource Discovery Problem.We let each process v have a constant nbv ∈ V ,
where v �= nbv, representing the knowledge of node v of some other node (a
neighbor). This induces a directed graph.

Definition 3. Given the set V and nbv for all v ∈ V , we define the connectiv-
ity graph as the directed graph G = (V,E), where E = {(u, v) : nbu = v}.

The connectivity graph is at least weakly-connected, representing the assump-
tion that any process has the knowledge of at least one other process (as in the
original formulation in [7]). Each process v has three local variables, prtv ∈ V ,
Cv ∈ 2V , and worldv , where prtv = u means that v considers u to be its parent,
u ∈ Cv means that v considers u to be its child, where Cv is the set of all children
of v, and finally u ∈ worldv means that v knows u. We now define our problem.

Definition 4. Given the weakly-connected graph G, the Resource Discovery
Problem (RDP) is to establish and maintain the following invariant on config-
urations: (∃v ∈ V : (Cv = V) ∧ (∀u ∈ V : prtu = v))∧(∀u ∈ V : worldu = V),
that is, (1) there exists a node v ∈ V such that Cv = V , and (2) for every node
u ∈ V we have prtu = v, and (3) for every node u ∈ V we have worldu = V .

For convenience we let Gu = (V,Eu) be the undirected graph induced by
G = (V,E), called the initial knowledge graph. Let D be the diameter of Gu and
dist(u, v) be the length of the shortest path from node u to v in Gu.

Measures of Efficiency. We assess the efficiency of the algorithm in terms of
stabilization time and stabilization message complexity. The stabilization time
is measured in terms of the worst case number of rounds following the cessation
of perturbations needed to establish the resource discovery invariant.

Self-stabilizing Resource Discovery Algorithm 135

Message complexity deals with the number of point-to-point messages, where
in the case of multicast, each instance of multicast is assessed as the number
of the resulting point-to-point messages. The stabilization message complexity
is measured in terms of the worst case number of point-to-point messages sent
among the participants to establish the resource discovery invariant following the
cessation of perturbations. Note that local state corruptions may cause messages
to be sent to an arbitrary subset of processes in U . In assessing stabilization
message complexity we charge to the environment any messages sent by an
algorithm prior to the cessation of perturbations, and any messages sent to bogus
destinations as the result of state corruptions. This is because the adversary
may cause an arbitrary number of messages sent in each round; in particular, in
the case when |V | = o|U |, bogus messages may dominate message complexity,
rendering any algorithm inefficient. In the analysis we show that, following the
cessation of perturbations, after at most two complete iterations no messages
are sent to bogus destinations.

Programming Notation. We use Timed Input/Output Automata (TIOA) [8]
formalism to specify and reason about our algorithm. A timed automaton is a
labeled state transition system. The state of the automaton is defined by its
state variables. The discrete transitions of the automaton are defined in terms
of actions, where each action is of the type input, output, or internal. The state
of the timed automaton may change in two ways: by discrete transitions that
change the state atomically, and by trajectories that describe the evolution of
the state over intervals of time. The overall system is composed of the automata
for all processes and its state is composed of the states of all automata.

The automata must be input-enabled and must not block time passage. A
timed automaton executes by performing a sequence of alternating trajectories
and discrete transitions, in which the states match up properly. We consider only
executions where during any finite time period no infinite number of actions oc-
cur. We also consider only fair executions, where during each (algorithm-specific)
round every locally-controlled enabled action (i.e., internal and output actions)
occurs by the end of that round, and for every message sending action that is en-
abled at the beginning of the round the corresponding message receiving action
occurs before the end of the round.

Communication Primitives. Nodes communicate via multicast, where each
multicast results in a point-to-point message from the source to each destination.
A multicast is invoked using the msend(m, I)i action, where m is the message,
I is the set of destinations, and i is the node invoking the multicast. Multicast
messages are received through themrecv(m,u)i action, wherem is the message, u
is the source node, and i is the node receiving the message. Actions msend(m, I)i
and mrecv(m,u)i are implemented in a straightforward way using point-to-point
send/receive. We denote by Channeli,j the conventional synchronous channel
from node i to node j (the implementation is not specified here). We assume
that each Channeli,j contains state variable Si,j storing messages m in transit
from node i to node j.

136 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Modeling State and Message Corruption. The adversary can perturb the
state of any node and corrupt any message in transit. We model state corruption
at node i by means of the action perturbi that is always enabled and whose
effects contain the HAVOC command (borrowed from Lampson’s SPEC language)
that arbitrarily changes the state of node i: “perturbi : Effect: HAVOC”.

Action corrupt(m,m′)i,j models the corruption of a message in transit:
“corrupt(m,m′)i,j : Precondition: m ∈ Si,j ; Effects: Si,j ← (Si,j − {m}) ∪ {m′},”
i.e., any message m in transit (in Si,j) can be replaced by some message m′.

While such explicit modeling of message corruption is straightforward, doing
so would complicate the reasoning about our algorithm. However, we can model
message corruptions in terms of state perturbations. In fact, for any execution
that corrupts messages there is an execution that does not corrupt messages
and instead suitably perturbs local states, so that the two executions are indis-
tinguishable for any node. (The explicit construction is given in the addendum.)

3 Description of Resource Discovery Algorithm RDS

The algorithm, which we call RDS, has an iterative structure consisting of two
synchronous rounds. We refer to the first round as the gossip phase and to the
second round as the confirm phase. In both phases nodes propagate information
to other nodes, while in the confirm phase nodes additionally validate the iden-
tities of the nodes contacted in the gossip phase. The unique root is ultimately
discovered as the node with the smallest identifier. Each node computes a local
minimum based on its knowledge and it considers the node with the smallest
identifier to be its parent. Conversely, any node includes among its children ev-
ery node that considers it to be the parent. Each node also maintains knowledge
about neighbors based on the initial graph G. The communication takes the
form of a constrained “gossip,” where in the gossip phase a node multicasts to
its parent, children, a neighbor in G, and to all other nodes it discovers, and
in the confirm phase each node responds to the messages received in the gossip
phase and to its neighbors. Thus, a node receiving such responses validates the
identities of the nodes it contacted in the gossip phase. Because failures can cor-
rupt the state of any node, if a node does not hear from its parent during an
iteration it decides that something is wrong and resets its state.

The behavior of each node i ∈ V is specified as a timed I/O automaton, called
RD i. The specification in Figure 1 defines data types, constants, signature, and
state variables, and Figure 2 contains the definition of the transitions and the
trajectory. The full system, called RDS, is the composition of automata RD i for
i ∈ V , the multicast implementation, and the Channeli,j automata for i, j ∈ V .

Algorithmic Details. We now detail the state and operation of RD i. When a
state variable x appears outside of the scope of its definition we use notation xi.
The main variables are activei, Ci, worldi, Nbrsi, and prti. Boolean activei
indicates whether node i is active or not, set Ci contains the children of node i,
set worldi contains the universe known to i, set Nbrsi contains the identifiers
of the nodes that i considers to be neighbors in Gu, lastly prti is the identifier
of the node that node i views as its parent. The remaining variables are phasei,

Self-stabilizing Resource Discovery Algorithm 137

Data-types:
U , the set of node identifiers M , the set of messages

Constants:
nb : U outgoing neighbor of i t : real > 0

Derived Constants:
N̂ = {i} ∪ {nb}

Signature:
Input:
mrecv(m,u)i, m ∈M, u ∈ U
joini

perturbi

Output:
msend(m, I)i, m ∈M, I ⊂ U

Internal:
restarti
reseti
end-roundi

State:
active : bool
phase : {gossip, confirm}
clock : real
do msend : bool

prt : U
R : 2U

Dest : 2U

world : 2U

C : 2U set of children of i
New C : 2U

Nbrs : 2U set of all neighbors of i

Fig. 1. Data types, signature, and state of RDi at node i for i ∈ V

New Ci, do msendi, Ri, and Desti. Here phasei controls the phase (gossip or
confirm). Set New Ci is used to keep Ci up to date. Boolean do msendi enables
multicast exactly once in each round. Set Ri contains the identifiers of all nodes
that contacted node i in the current iteration. And finally set Desti contains the
identifiers of the target nodes for multicast in the current phase.

We next describe the transitions. The environment may activate node i by
using input action joini, and it may disable and/or corrupt the state of node i by
means of input action perturbi, where HAVOC assigns arbitrary values to the state
variables. If HAVOC sets active to false, the action models a crash of the node.
Internal action restarti is always enabled, modeling the assumption that each
node i ∈ V is eventually active. Nodes gossip by sending and receiving messages
through actions msendi and mrecvi (detailed later).

Local operation of a node is structured in terms of rounds. Variable clock
represents the time of the synchronous system. Recall that failures cannot change
the synchronous nature of the system, and thus this is the only variable that
is not affected by transient failures. The variable records the passage of time
consistently at all nodes: the trajectory evolves clock at the same rate as real
time (d(clock) = 1). We establish the compile-time constant t to be sufficient for
a node to multicast outgoing messages, to perform the needed local computation,
and to accept any incoming messages (this constant is readily obtained from the
structure of the algorithm and from the knowledge of the worst case message
delivery delay d). The constant t is used to control the duration of rounds. The
trajectory specification says that time “stops” when clock% t = 0 for an active
node. The value of clock is used to determine whether an active node is in the
gossip or confirm phase. When clock%2t = 0 the node enters the gossip phase,
and when clock%2t = t the node enters the confirm phase.

A round ends with either action end-roundi or action reseti. Action end-roundi
is enabled every t time units when clock% t = 0 at the conclusion of each round
if the node’s state suggests that its parent is active (this does not mean that

138 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Transitions:
Input joini

Effect:
active← true

Input perturbi
Effect:
HAVOC

Output msend(〈N, p, ch,W 〉, I)i
Precondition:
active
do msend
N = N̂
p = prt
ch = C
W = world
I = Dest

Effect:
do msend← false

Input mrecv(〈N, p, ch,W 〉, s)i
Effect:
if active then
R← R ∪ {s}
if phase = gossip then
if i ∈ N then
Nbrs← Nbrs ∪ {s}

if p = i then
New C ← New C ∪ {s}

if phase = confirm then
world← world ∪W ∪ {s}

Trajectories
stop when
active ∧ clock% t = 0

evolve
d(clock) = 1

Internal restarti
Effect:
active← true

Internal end-roundi
Precondition:
active
clock% t = 0
clock%2t = t ∨ prt ∈ R

Effect:
if clock%2t = 0 then /* gossip phase */

prt← min {u : u ∈ R ∪ N̂}
R← ∅
New C ← ∅
Nbrs← N̂
Dest← {prt} ∪Nbrs ∪ C ∪ world
phase← gossip

else /* confirm phase */
world← R ∪Nbrs
C ← New C
Dest← R ∪Nbrs
phase← confirm

do msend← true
clock ← clock + ε

Internal reseti
Precondition:
active ∧ clock%2t = 0 ∧ prt /∈ R

Effect:
prt← min{u : u ∈ N̂}
world← R← ∅
C ← New C ← ∅
Nbrs← N̂
Dest← {prt} ∪Nbrs ∪ C
phase← gossip
do msend← true
clock ← clock + ε

Fig. 2. Transitions of RD i at node i for i ∈ V

perturbations did not occur). Action reseti is enabled every 2t time units when
clock%2t = 0 and the parent does not respond during the iteration. In this case
the node gives up, resets its state and starts anew.

In more detail, when clock%2t = 0 action end-roundi concludes the current
phase and starts a new iteration with the gossip phase. For this phase the vari-
ables are updated as follows: prti is set to the smallest identifier among the
nodes in N̂ i and those that sent a message to i in the previous iteration. Note
that while updating prti we also consider N̂ i just in case a failure causes Ri

to be empty. Sets Ri and New Ci are set to ∅, since those sets reflect the

Self-stabilizing Resource Discovery Algorithm 139

corresponding knowledge of node i in the current iteration. Set Nbrsi is set to
the neighbors in graph G (i.e., self and its fixed neighbor), and finally Desti is
set to the destinations for the multicast in this new phase. Essentially, here the
node establishes a parent and cleans up its state so as to not rely on variable
values that may have been corrupted.

When clock%2t = t, action end-roundi concludes the current phase and com-
mences the confirm phase. In the confirm phase node i propagates its knowledge
to all nodes from which it received a message in the previous gossip phase and to
the neighbors in Gu that were discovered in that phase. Node i also sets Ci to
the set of nodes that considered it the parent in the previous phase. Furthermore,
node i sets worldi to the set of nodes from whom messages were received in the
gossip phase united with the neighbors of i in graph Gu.

Note that the preconditions of actions end-roundi and reseti are mutually ex-
clusive. Each of these actions also cause clock to advance by ε (ε� d), modeling
the passage of time after it was “stopped” by the trajectory, and enable msend
by setting do msend to true.

We now detail msendi and mrecvi. Action msendi is enabled at the beginning
of every round and its invocation multicasts a message from node i to the nodes
in Desti. The message contains the set of neighbors in graph G (i.e., self and its
fixed neighbor), the parent, the set of children, and worldi. Recall that destina-
tions are established at the end of the previous phase. The action sets do msendi
to false to prevent multiple invocations of msendi in a round.

Action mrecvi updates the state based on the messages received. First, the set
Ri accumulates the identifiers of the nodes from whom messages are received.
Additionally, if a message is received from node s and s considers node i to be
a neighbor in the gossip phase, then s is added to Nbrsi. If node s considers
node i to be its parent, it is added to New Ci. In the confirm phase node i also
updates the set worldi by including node s and worlds received from s.

4 Algorithm Analysis

We now prove the self-stabilization properties of algorithm RDS and analyze
its performance. We start by stating the algorithm’s invariant ψ() that directly
implies the RDP invariant in Definition 4.

Resource Discovery Invariant. Configuration c ∈ C is a legitimate configu-
ration if invariant ψ(c) holds, where the invariant is defined as follows.

(1) For every node v ∈ V we have activev = true and prtv = min{u : u ∈ V }.
(2) There exists a node v0 ∈ V such that v0 = min{u : u ∈ V } and Cv0 = V ,

while for every other node w �= v0, with w ∈ V , we have Cw = ∅.
(3) For every node v ∈ V we have worldv = V .

We use τ̃ to denote the transition function of RDS, with Ã denoting the corre-
sponding set of actions. We use τ to denote the transition function that excludes
transitions corresponding to actions join and perturb that are caused exclusively
by the environment; we use A to denote the corresponding set of actions. In
reasoning about the self-stabilization properties of executions we consider only
those executions where join and perturb occur only in some finite execution prefix.

140 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Knowledge Graph. Let c be some configuration of the system. The knowledge
graph at c is a derived state variable c.G = (c.V , c.E), where (1) V = {v ∈
V : c.activev = true} is the set of nodes that joined the computation, and
(2) c.E = {(u, v) : u, v ∈ c.V ∧ v ∈ c.worldu} is the set of edges.

In this definition of c.E an edge (u, v) models the fact the u knows v, however,
this does not imply that v knows u. Where the configuration c is implied by
the context, we use the simplified notation G = (V , E). We denote by Gu the
undirected version of graph G.

We start with Lemmas 1 and 2 showing that in two iterations of the algorithm
the state variables of every node v ∈ V that appear in the invariant ψ are free
of bogus identifiers. Lemma 2 also shows that reset action is not invoked after
two iterations, allowing the algorithm to converge.

Lemma 1. Consider an execution prefix of RDS that ends with configuration c.
Any fair extension of the execution of a sufficient length using only the actions
from A reaches configuration c′ in at most one complete iteration, where in c′:
(1a) for every node v ∈ V we have activev = true, and (1b) for any two distinct
nodes u, v ∈ V we have phaseu = phasev = gossip, and (2) in any further
execution extension following c′, any invocation of action msendv in a state with
phasev = confirm, results in a message sent to all neighbors of v in Gu.

Lemma 2. Consider an execution prefix of RDS that ends with configuration c.
Any fair extension of the execution of a sufficient length using only the actions
from A reaches configuration c∗ in at most two complete iterations, where for
every node v ∈ V the following hold: (a) Cv ⊆ V and worldv ⊆ V , and (c) prtv ∈
V , and (d) action resetv is not invoked following configuration c∗.

Next we show that after a constant number of rounds following the cessation
of failures no message is sent to bogus destinations.

Lemma 3. Consider an execution prefix α of RDS that ends with configuration
c. Any fair extension of α of a sufficient length that uses only the actions from A
reaches a configuration c∗ in at most two complete iterations, where no messages
are sent to bogus destinations by any node v ∈ V following c∗.

Proof sketch. Let execution α1 be an extension of α, reaching configuration c∗

exactly as in Lemma 2. The proof follows from the algorithm and from Lemmas 1
and 2. This is because according to the algorithm messages are only sent to the
nodes in Dest. Note that after c∗ for every node i ∈ V we have prti ∈ V . On
the other hand, sets Nbrsi, Ci, and worldi are reset in every iteration and any
node v added to these sets after c∗ is an active node that belongs to V . �

We now reason about the algorithm’s self-stabilization properties.

Theorem 1. (Closure) Consider any execution prefix of RDS consisting of
complete iterations, where c is the final configuration. If c is legitimate, then any
extension of the execution by up to one complete iteration using only the actions
from A results in c

∗−→
τ

c′, where c′ is a legitimate configuration.

Self-stabilizing Resource Discovery Algorithm 141

The proof of Theorem 1 is by induction on the length of the execution exten-
sion. We next address convergence, starting with preparatory lemmas. Lemma 4
shows that in gossip phase if a node v knows u at the beginning of the phase,
then by the end of the gossip phase node u knows v.

Lemma 4. Consider an execution prefix of RDS that ends with configuration c.
Any fair extension of the execution of a sufficient length using only the actions
from A reaches a configuration c∗ in at most two complete iterations, where
following configuration c∗ for any two distinct nodes u, v ∈ V the following
holds: if phaseu = phasev = gossip and u ∈ worldv then v ∈ Ru and v ∈ worldu
following the invocation of end-roundu action.

The following lemma shows that every node v ∈ V retains its knowledge about
the network from one iteration to the next.

Lemma 5. Consider an execution prefix α of RDS that ends with configuration
c. Let execution α1 be an extension of α, reaching configuration c1 exactly as
in Lemma 2. Let execution α2 be an extension of α1 by 0 or more complete
iterations reaching configuration c2. Furthermore, let α3 be an extension of α2

by exactly one iteration reaching configuration c3. Then for every node v ∈ V
we have c2.worldv ⊆ c3.worldv .

The next lemma shows that in at most logD + 3 complete iterations every
node v ∈ V knows v0.

Lemma 6. Consider an execution prefix α of RDS that ends with configuration
c. Any fair extension of the execution of a sufficient length using only the actions
from A reaches a configuration c∗ in at most logD+3 complete iterations, such
that in configuration c∗ for every node u ∈ V , we have v0 ∈ worldu.
Proof. Let execution α1 be an extension of α, reaching configuration c1 exactly
as in Lemma 2. Based on the specification of action end-round and according to
Lemmas 1 and 2 it is clear that in configuration c1 for every node v ∈ V we have
Nbrsv ⊆ worldv , where Nbrsv is the set of neighbors of v, including v itself, in
the initial knowledge graph Gu = (V,Eu). Hence, Eu ⊆ c1.Eu, where c1.Eu is
the set of edges of the evolving knowledge graph Gu in configuration c1.

Let us consider any path u = u0, u1, ..., uk−1, uk = v0 in graph c1.Gu, where
0 ≤ k ≤ D. Consider any three consecutive nodes uj−1, uj and uj+1, for 0 < j <
k. From configuration c1 it follows that (uj , uj−1) and (uj , uj+1) are in c1.Eu.
Let us extend α1 by one complete round reaching configuration c2, after the
invocation of action end-roundv for every node v ∈ V . Let α2 be the extended
execution. From Lemma 4 it follows that for any node uj , such that 0 < j < k,
we have uj−1, uj+1 ∈ c2.worlduj , this is because in configuration c1 we have
uj ∈ worlduj−1 and uj ∈ worlduj+1 for all 0 < j < k. Note also, that from the
specification of end-round it follows that worldv ⊆ Destv for every node v ∈ V .

Let us further extend α2 by a complete round reaching configuration c3. Let α3

be the extended execution. From the specification of actions msend and mrecv
it follows that uj−2, uj+2 ∈ worlduj . This is because, as we argued above, in

142 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

configuration c2 we have uj−2, uj ∈ worlduj−1 and uj, uj+2 ∈ worlduj+1 . Hence,
in configuration c3 there exists a path u = u0, u2, ..., u2i, ..., uk = v0 for k even,
or u = u0, u2, ..., u2i, ..., uk−1,uk = v0 for k odd between nodes u and v0 in
the undirected knowledge graph c3.Gu. Observe that the length of above path
between the nodes u and v0 is �k2 �.

Hence, based on Lemma 5 and from above, after at most logD subsequent
finite extensions of α3 by a complete iteration configuration c∗ is reached in
which for every node u ∈ V we have v0 ∈ worldu. This completes the proof. �

Theorem 2. (Convergence) Consider an execution prefix of RDS that ends
with configuration c. Any fair extension of the execution of a sufficient length
using only the actions from A reaches a configuration cl in at most logD + 5
complete iterations, such that cl is a legitimate configuration.

Finally we reason about the stabilization time and message complexity.

Theorem 3. Any execution prefix of RDS ending in an arbitrary configuration
can be infinitely extended to solve the resource discovery problem. The stabiliza-
tion time of the algorithm is O(logD), taking at most 2 logD + 10 complete
rounds to stabilize. The stabilization message complexity is O(|V |2 · logD).

Proof. From the proofs of Lemma 2, Lemma 6, and Theorem 2 it follows that after
the cessation of transient failures, and given that no new nodes join the computa-
tion, any fair execution extension of a sufficient length takes at most logD+5 com-
plete iterations to reach a legitimate configuration from any configuration c, and
hence 2 logD + 10 complete rounds. Theorem 1 (closure) guarantees that all sub-
sequent configurations are legitimate. Thus the algorithm establishes the resource
discovery invariant (Definition 4), taking at most 2 logD+ 10 complete rounds to
stabilize, and then maintains the resource discovery invariant in perpetuity.

We now assess the stabilization message complexity. Consider some execution
that includes an arbitrary configuration after which no actions from Ã−A occur.
The proof of Lemma 3 reasons that in a constant number of rounds no node
identifiers from U − V occur in any local state. Prior to this the algorithm may
send messages to arbitrary sets of nodes due to corruptions of local states. We
charge such messages to the environment (per model assumptions) and do not
include them in the message complexity. Here we only consider messages sent
to the nodes in V . From the specification of action end-round it follows that in
both gossip and confirm phases the number of accountable messages sent by each
node v ∈ V is at most |V |. Therefore, since the stabilization time is O(logD),
the message complexity of RDS is O(|V |2 · logD). �

5 Discussion

We considered the distributed resource discovery problem in the self-stabilization
context, we formalized the setting, presented a solution, and rigorously reasoned
about its properties. In our formulation, the set of nodes to be discovered is

Self-stabilizing Resource Discovery Algorithm 143

established by the environment, and its size is unknown. Nodes join the com-
putation at arbitrary times, and the states of the participants and messages
in transit can be arbitrarily perturbed. The algorithm solves the problem once
the perturbations subside; the participants establish and maintain the invariant,
where there is a unique node that knows the set of participants, who in turn
know the identity of that unique node. Our synchronous algorithm solves the
problem starting from any arbitrary state. Its stabilization time is O(logD), and
the message complexity of our solution is O(|V |2 ·logD), whereD is the diameter
of the weakly-connected initial knowledge graph induced by the local knowledge
of each participant. If the graph is not connected, or if permanent crashes dis-
connect the graph then our algorithm solves the problem for each connected
component. Future work will deal with more virulent adversarial behaviors.

References

1. Abraham, I., Dolev, D.: Asynchronous resource discovery. In: Proceedings of the
22nd ACM Symposium on Principles of Distributed Computing, pp. 143–150 (2003)

2. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Trans. Software Eng. 19(11), 1015–1027 (1993)

3. Davtyan, S., Konwar, K., Shvartsman, A.A.: Brief announcement: Self-stabilizing
resource discovery algorithm. In: Proceedings of the ACM Symposium on Principles
of Distributed Computing (2013)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974)

5. Dijkstra, E.W.: A belated proof of self-stabilization. Distributed Computing 1(1)
(1986)

6. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science (1997)

7. Harchol-Balter, M., Leighton, F.T., Lewin, D.: Resource discovery in distributed
networks. In: Proceedings of the 18th Symposium on Principles of Distributed
Computing, pp. 229–237 (1999)

8. Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: The theory of timed i/o au-
tomata, 2nd edn. Morgan & Claypool (2011)

9. Konwar, K.M., Kowalski, D.R., Shvartsman, A.A.: Node discovery in networks.
In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS,
vol. 3974, pp. 206–220. Springer, Heidelberg (2006)

10. Konwar, K., Kowalski, D.R., Shvartsman, A.A.: The join problem in dynamic net-
work algorithms. In: Proceedings of the International Conference on Dependable
Systems and Networks, pp. 315–324 (2004)

11. Kutten, S., Peleg, D.: Asynchronous resource discovery in peer to peer networks. In:
Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS
2002), pp. 224–231 (2002)

12. Kutten, S., Peleg, D., Vishkin, U.: Deterministic resource discovery in distributed
networks. In: Proceedings of the 13th ACM Symposium on Parallel Algorithms
and Architectures, pp. 77–83 (2001)

144 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

13. Law, C., Siu, K.-Y.: An o(log n) randomized resource discovery algorithm. In: Brief
Announcements of the 14th International Symposium on Distributed Comput-
ing, Technical Report FIM/110.1/DLSIIS/2000, Technical University of Madrid,
pp. 5–8 (2000)

14. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A stabilizing deterministic
message-passing skip list. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011.
LNCS, vol. 6976, pp. 356–370. Springer, Heidelberg (2011)

15. Tel, G.: Distributed algorithms. Cambridge University Press (2000)

Hybrid Distributed Consensus�

Roy Friedman1, Gabriel Kliot2, and Alex Kogan3,��

1 Department of Computer Science, Technion, Haifa, Israel
2 Microsoft Research, Redmond, WA

3 Oracle Labs, Burlington, MA

Abstract. Inspired by the proliferation of cloud-based services, this paper stud-
ies consensus, one of the most fundamental distributed computing problems, in
a hybrid model of computation. In this model, processes (or nodes) exchange in-
formation by passing messages or by accessing a reliable and highly-available
register hosted in the cloud. The paper presents a formal definition of the model
and problem, and studies performance tradeoffs related to using such a register.
Specifically, it proves a lower bound on the number of register accesses in de-
terministic protocols, and gives a simple deterministic protocol that meets this
bound when the register is compare-and-swap (CAS). In addition, two efficient
protocols are presented; the first one is probabilistic and solves consensus with a
single CAS register access in expectation, while the second one is deterministic
and requires a single CAS register access when some favorable network condi-
tions occur. A benefit of those protocols is that they can ensure both liveness
and safety, and only their efficiency is affected by the probabilistic and timing
assumptions.

Keywords: Consensus, cloud computing, message passing, lower bounds.

1 Introduction

Distributed consensus [19] is one of the most fundamental distributed computing prob-
lems. Over the last few decades, it was intensively explored in different computation
models, including message passing and shared memory models. In this paper, we con-
sider a novel hybrid model, where computing parties, or nodes, may exchange infor-
mation by passing messages and/or by accessing a shared reliable and highly-available
register. Our work is inspired by the proliferation of cloud computing, which may pro-
vide services that implement such a register.

Cloud computing is an emerging paradigm in which various services can be placed in
a data center equipped with a management middleware that ensures the service’s avail-
ability, fault-tolerance, and scalability in an almost transparent manner. Consequently,
when designing contemporary distributed systems, it is tempting to resort to centralized
architectures, in which the crux of the system is executed as a cloud service, which is

� This work is partially supported by the Israeli Science Foundation grant 1247/09 and by the
Technion Hasso Plattner Research School.

�� The work of this author on the paper was done while he was with the Department of Computer
Science, Technion.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 145–159, 2013.
c© Springer International Publishing Switzerland 2013

146 R. Friedman, G. Kliot and A. Kogan

accessed in a client/server fashion by the participating nodes. As an example, the dis-
tributed consensus problem can be solved with a single cloud based compare-and-swap
(CAS) register1 as follows. Assume the range of decision values is D; let ⊥ be a value
not in D and initialize the CAS register to ⊥. The consensus protocol is simply to have
every node pi invoke CAS with ⊥ and its initial value vi and then decide based on the
value read from the CAS register [25]. It is easy to verify that this simple protocol solves
consensus despite any number of benign failures among the (non-cloud) participants in
a completely asynchronous environment (outside the cloud), while as we discuss later,
such a CAS register can be easily implemented by existing cloud services.

The problem with this well known solution is that it requires each process (or node)
participating in the consensus protocol to access the cloud hosted register at least once
on each instantiation of the consensus protocol. This imposes a high load on the cloud
servers, limiting their scalability, and may incur high monetary cost to the nodes them-
selves [30]. Hence, we are motivated to develop protocols that exploit a cloud hosted
register to obtain simplicity and guaranteed fast termination while minimizing the num-
ber of accesses to the register.

Specifically, we make the following contributions: First, we present the formal model
of hybrid distributed computing and a formal definition of efficient distributed consen-
sus within this model. Second, we prove a lower bound on the number of cloud hosted
register accesses required to solve consensus in the benign crash failure model. We
show that whenever the number of potential failures is f (for f < n), any deterministic
protocol that solves consensus in a hybrid asynchronous system requires invoking at
least f + 1 cloud-based register operations. The proof itself relies on the proof of the
famous FLP result [19]. However, unlike the FLP model, here we cannot immediately
deduce the case of f > k directly from f = k (for any k). This is because whenever
we increase f , we allow the protocol to use more CAS operations, giving it more power
than it has with smaller values of f . Thus, we develop a novel inductive argument to
show our result.

Third, we develop three efficient protocols for solving consensus despite benign fail-
ures. The first protocol always invokes exactly f + 1 CAS operations, thereby
meeting the lower bound, as described above, for deterministic protocols in a hybrid
asynchronous system. The second protocol utilizes an Ω-like oracle [2]2. However, the
reliance on the Ω-like oracle is only in order to ensure efficiency, so that only a single
CAS operation will be invoked when certain network conditions are met. Termination
and safety are always ensured, regardless of whether the oracle/black-box really pro-
vides its semantics or not. Our third protocol is probabilistic, and it ensures that the
expected number of CAS invocations will be 1. Here again, termination and safety are
always ensured, and randomization only affects the expected efficiency of the protocol.

Finally, in the Appendix, we show how to apply the hybrid approach to the non-
blocking atomic commit problem [9]. In the full version of this paper, we also discuss
how the approach can be extended to cover Byzantine failures [29].

1 We assume the common semantics for the CAS register; see formal definition in Section 2.2.
2 Later in the paper, we use the term black-box rather than oracle, to emphasize the fact that both

the liveness and safety properties of the protocol are guaranteed even if the black-box fails to
provide its semantics.

Hybrid Distributed Consensus 147

The rest of this paper is organized as follows: The model and basic definitions appear
in Section 2. The main results appear in Section 3. We compare our work with related
work in Section 4 and conclude with a discussion in Section 5.

2 Preliminaries

2.1 Basic Model and Assumptions

We assume an asynchronous distributed system as modeled in [7], but enhance it with
a cloud hosted register. That is, a hybrid asynchronous system consists of a set of n
nodes as well as a register R implemented by means of a cloud service. The register
may support any set of operations that have a sequential specification [26], exposed
through a well defined interface. The register is assumed to be highly available and
fault-tolerant, meaning that any invocation of one of the operation on the register by
any of the nodes is guaranteed to terminate with a response within a finite time3.

The nodes themselves can be modeled as deterministic automata similar to what
is done in [7], and their state therefore advances by taking steps. The communication
between nodes is performed by sending and receiving messages over a network. Each
step of a node includes receiving 0 or more messages, performing some computation,
and then generating 0 or more messages to be sent to other nodes and/or to the cloud
hosted register. The node that generates a message is called the sender and the node
that receives the message is called a receiver. The receiver is always known to the
sender and vice versa. The network is further assumed to be reliable, meaning that
messages transmitted are eventually delivered once and only once, they are delivered
without being altered and messages that are delivered were indeed sent by their sender.
Note that these properties can be easily provided on top of weaker networks, e.g., by
adding summaries to protect against data corruption and by an ACK or NACK based
retransmission mechanism in fair-lossy networks [8].

Yet, the nodes and the network are assumed to be asynchronous in the sense that
there is no bound on the time for performing a step of a node and the time between the
sending of a message until its delivery at the receiver, also known as the latency of the
message. Nodes can have access to a local clock, but the local clocks of different nodes
are not synchronized.

External observers of the system may have access to a global time. Hence, this global
time can only be useful for external analysis of events in the system. For convenience,
we further assume that the range of the global time T is the set of natural numbersN .

For our lower bounds, we further borrow the well known definitions of a protocol
execution, a protocol configuration, an execution prefix, an execution extension, and
indistinguishable executions from the textbook of [7]. Intuitively, we can assume a se-
quential scheduler that may schedule one node at a time in any order it wishes to. A
protocol execution is the sequence of steps taken by each process whenever it is sched-
uled by the scheduler. Such a step depends on the node’s code (the protocol) and its state

3 We note that in reality even a highly reliable cloud service can become temporarily unavailable
due to, e.g., network congestion. The liveness of hybrid consensus protocols discussed in this
paper depends on the liveness of the cloud service implementing R.

148 R. Friedman, G. Kliot and A. Kogan

at the beginning of the step. An execution prefix is a prefix of the sequence of operations
composing an execution. A configuration for a given execution prefix is the collection
of states of each node at the end of this prefix as well as the messages already sent but
not received during this prefix. An initial configuration is the collection of initial states
of each process. An execution extension is a possible sequence of steps that can be ob-
tained from a given configuration based on the protocol and the scheduler. Finally, two
executions (or execution prefixes) are indistinguishable if the processes participating in
them receive exactly the same messages in each of their steps.

2.2 Benign Failures

In the benign crash failure model, up to f nodes may fail by crashing anytime during the
execution of their protocol. A crashed node stops executing its steps and, in particular,
stops sending messages. A node that fails is called faulty. Nodes that do not fail are
called non-faulty, or alive.

2.3 Additional Services

CAS register: Our consensus protocols make use of a cloud hosted compare-and-swap
(CAS) register object providing its usual semantics. That is, its interface includes a
single method, whose signature is

object oldValue = compareAndSwap(object expectedValue,
object newValue).

When invoked, this method atomically sets the value of the object to newValue if and
only if its value at the time of invocation is equal to expectedValue. The method
always returns the value of the object as it was just before its execution. The register is
initialized with a special ⊥ value, which cannot be a valid input of any node participat-
ing in the consensus protocol.

We focus on CAS since it is supported by existing cloud APIs, such as Windows
Azure’s REST API for accessing Azure Table and Blob Storage services (using the IF-
MATCH header)4 and Amazon Web Services Conditional Put for SimpleDB5. It can
also be implemented by Yahoo’s PNUTS Test-and-Set-Write operation [16].
Yet, the results for the benign failures model can be applied to any other object whose
consensus number is∞. Also, note that our lower bound does not assume any specific
interface supported by the cloud hosted register. In particular, the lower bound holds for
a register that supports any set of operations that have a sequential specification.

The Ω̃ black-box: In one of our deterministic consensus protocols, we make use of a
Ω̃ black-box, which provides the following service. When invoked, it always returns
the id of a single process that is presumed to be alive. Yet, whenever the system starts
behaving in a synchronous way, then eventually all invocations of this black-box by

4 http://msdn.microsoft.com/en-us/library/dd179427.aspx
5 http://docs.aws.amazon.com/AmazonSimpleDB/latest/
DeveloperGuide/ConditionalPut.html

http://msdn.microsoft.com/en-us/library/dd179427.aspx
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/ConditionalPut.html
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/ConditionalPut.html

Hybrid Distributed Consensus 149

all nodes return the id of the same process, which is also indeed alive. Clearly, any
known implementation of an Ω failure detector in a system that eventually becomes
synchronous, or in other words has a Global Synchronization Time (GST) [12, 18], can
be used to implement a Ω̃ black-box regardless of the timing assumptions. Examples of
such implementations include, e.g., [2]. Thus, implementing Ω̃ is out of scope.

Given an execution σ of a protocol using a specific implementation of a black-box
BX of the class Ω̃, if there exists a time t1 such that from t1 onward, every call by any
node to BX returns the same node id and this returned node is non-faulty in σ, then
we say that the execution stabilization time, denoted EST(σ,BX), is t1. Otherwise, we
define EST(σ,BX) to be∞. Denote t0 the global starting time of the protocol. Whenever
EST(σ,BX)≤ t0 we say that BX is well behaved in σ.

Random generator: In our randomized protocols, we assume that each node has ac-
cess to a random numbers generator, which in the analysis is assumed to return truly
uniformly distributed results. In practice, as the correctness of the protocols does not
depend on this assumption, the assumption can be safely relaxed to any modern pseudo-
random number generator that is common in modern computers with negligible impact
on the actual performance of the protocols.

3 Hybrid Consensus with Benign Failures

3.1 Problem Statement

In the consensus problem, each node pi starts with an initial value vi from some range
V . Each node pi is required to compute a decision value. A protocol solving the con-
sensus problem must satisfy the following properties:

Validity: The value decided on by each non-faulty node is one of the initial values.
Agreement: The decision values of all non-faulty nodes that decide are the same.
Termination: Eventually, every non-faulty node decides on some value.

As mentioned in the introduction, given that we assume the presence of a highly-
available (CAS) register object, it is possible to solve consensus despite any number
of nodes’ crash failures by having each node access the register once with its initial
value. Yet, this imposes scalability and economical problems as each instantiation of
such a protocol involves a total of n CAS invocations. Consequently, we introduce the
following definitions of hybrid efficient consensus protocols.

Definition 1 (Hybrid k-efficient execution). Given an execution σ of a protocol for
solving distributed consensus in which f nodes are faulty, σ is called hybrid k-efficient
if the total number of register accesses in σ is at most k.

Definition 2 (Hybrid k-efficient protocol). A protocol for solving distributed consen-
sus is called hybrid k-efficient if all its executions are hybrid k-efficient.

Definition 3 (Hybrid efficient probabilistic protocol). A randomized protocol for
solving distributed consensus is called hybrid efficient probabilistic if the expected num-
ber of register accesses in an arbitrary execution of the protocol is 1.

150 R. Friedman, G. Kliot and A. Kogan

3.2 Lower Bounds

For simplicity, we show the proof for the binary case, i.e., when the only allowed values
are 0 and 1. Extending it to a larger domain is trivial. Also, before stating and proving
the lower bound, we repeat the known definition of valency [7,19], which plays a crucial
role in the proof. Specifically, a configuration of a protocol solving consensus in called
bi-valent if it has at least one execution extension in which the decision value is 0 and
at least one execution extension in which the decision value if 1. A configuration is uni-
valent if in all of its execution extensions nodes decide on the same value; if the value
is 0, the configuration is called 0-valent and it is said to be 1-valent otherwise.

Theorem 1. In a hybrid asynchronous system prone to f benign failures, there does
not exist a hybrid f -efficient protocol.

Before going into the proof’s details, let us remark that, as mentioned in the intro-
duction, unlike the standard asynchronous system model, here the fact that consensus
cannot be solved in a hybrid f -efficient manner for f = 1 does not immediately imply
that it holds for f > 1. This is because by the definition of a hybrid efficient protocol,
increasing f also increases the power of the system by allowing the protocol to invoke
more operations on the shared cloud hosted register. The proof below builds upon the
FLP proof as it appears in the textbook of [7]6.

Proof. We prove the theorem by induction on f , the number of allowed failures and
register accesses. As for the base of the induction, when f = 1, only a single register
access is permitted. Clearly, when the register can only be accessed once, only the
process that accessed the register knows the result of that access. (Note that in a trivial
case when the register always returns the same value so that processes know the result of
the access without actually accessing the register, the existence of a hybrid 1-efficient
protocol would immediately contradict the FLP result [19]). Hence, this process can
intuitively simulate the register access without anyone noticing.

More formally, if there exists a hybrid f -efficient protocol P with f = 1, then de-
fine a corresponding protocol P ′ in which whenever a process accesses the register in
P , then this same process would execute locally in P ′ the same computation as in the
function supported by the register according to its sequential specification for a sin-
gle invocation. By the assumption about P , all its executions terminate and ensure the
validity and agreement properties of consensus. Moreover, by construction, each exe-
cution σ of P has a corresponding execution σ′ of P ′ that is indistinguishable from
it. Hence, each such execution σ′ also terminates and ensures validity and agreement.
In other words, P ′ solves consensus in an asynchronous environment prone to failures
with f = 1 (without accessing the cloud hosted register). This contradicts the famous
FLP result [19].

Induction Step: Assume that the theorem holds for f = k, we will show that it holds
for f = k + 1 as well. To that end, assume by contradiction that there exists a hybrid

6 To be precise, in [7] there is only a proof for the read/write shared memory model. However,
an earlier version [5] includes a complete proof for the message passing model that follows
the same steps and terminology.

Hybrid Distributed Consensus 151

0

11

0/10/1

step s (by p)

σ′

σ′′ (p-free)

σ′′ (p-free)

(a)

11

0/10/1 ? 0

1

?

step s (by p)

step sσ′′1 (p-free)σ′ σ′′2

σ′′2σ′′1 (p-free)

(b)

Fig. 1. Illustrations for the lower bound proof. Valences of configurations are indicated by values
in boxes. Question marks specify configurations that might be either bi-valent or univalent.

f -efficient protocol P with f = k + 1. Hence, by the induction hypothesis, some of
the executions of P must involve k+1 register accesses (else, P solves consensus with
only k operations on the register despite f = k + 1 failures).

We claim that P has at least one bi-valent initial configuration. The proof of this
claim is exactly the same as the proof of the corresponding claim in the FLP result. Now,
consider all executions ofP that start from bi-valent initial configurations. Clearly, there
is at least one such execution σ of P (that starts from a bi-valent configuration) in which
at most k nodes have failed prior to the invocation of the k+1 operation on the register.
The existence of this execution can be easily proved by contradiction using a simple
indistinguishability argument on the last failure prior to invoking the k+1 operation on
the register – this proof is eliminated for lack of space.

We further claim that the configuration immediately after invoking the k+1 operation
on the register has to be uni-valent. Otherwise, we remain with a bi-valent configuration
in an asynchronous system and no additional operations on the register can be invoked.
Here we can apply the same arguments as in the FLP result showing that there has to
be at least one such execution that is either infinite or violates agreement.

Thus, there has to be some step s taken by some process p in σ such that the config-
uration prior to s is bi-valent and the configuration after s is uni-valent. Also, s is either
the k + 1 invocation of the register mentioned above, or a prior step in σ. Consider the
prefix σ′ of σ that ends just before s. Note that due to the determinism of P and the
asynchrony of the system, for every (possibly empty) valid extension σ̃ of σ′ that does
not include any step of p, σ̃s is also a valid extension of σ′.

Assume, w.l.o.g., that the configuration immediately after s is 1-valent. Since the
configuration at the end of σ′ is bi-valent, σ′ has a valid extension σ′′ such that σ′σ′′

ends in a 0-valent configuration; denote by σ′′ the shortest such extension. If σ′′ does
not include any step by p, then σ′σ′′s is a valid extension of σ′. Moreover, it is by
definition 0-valent. Similarly, due to the fact that σ′′ does not include any operation
by p and the asynchrony of the system, σ′sσ′′ is also a valid extension of σ′, yet is
1-valent. However, processes cannot distinguish between executions that extend σ′σ′′s
and σ′sσ′′ (see illustration in Figure 1a). A contradiction.

On the other hand, if σ′′ does include a step by p, then σ′′ can be written as σ′′1 sσ
′′
2 ,

where σ′′1 must include at least one operation and none of the operations in σ′′1 are by
p while σ′′2 may include zero or more operations by any processes. Thus, we have that
σ′σ′′1 sσ

′′
2 is 0-valent. However, since σ′′1 does not include any operation by p and due

to the asynchrony of the system, σ′sσ′′1σ′′2 is also a valid extension of σ′, which is 1-
valent. Yet, processes cannot distinguish between executions that extend σ′σ′′1 sσ

′′
2 and

σ′sσ′′1σ
′′
2 (see illustration in Figure 1b). A contradiction.

152 R. Friedman, G. Kliot and A. Kogan

Algorithm 1. An (f + 1)-efficient protocol - code for node i

1: undecided := true

2: if i ≤ (f + 1) then
3: r := CAS(⊥, vi)
4: if r == ⊥ then
5: decide(vi)
6: else
7: decide(r)
8: end if
9: end if

10: decide(v)
11: if undecided then
12: undecided := false
13: broadcast(DEC,v)
14: return v
15: end if

16: upon receiving broadcast(DEC,v)
17: decide(v)

3.3 Upper Bounds

A Hybrid (f + 1)-efficient Protocol. Our first protocol utilizes the CAS register
implemented by cloud-based services as following. Each node having id smaller than
or equal to f+1 invokes CAS. The first node to succeed, i.e., the first node to receive the
special ⊥ value as a response from CAS, decides on its value. Other nodes that invoke
CAS and get some non-⊥ value decide on that value. The rest of the nodes simply wait
until a decide message broadcasted by one of the deciders reaches them.

The pseudo-code of this simple protocol is given in Algorithm 1. In the following
theorem we prove that our first protocol is hybrid (f + 1)-efficient.

Theorem 2. Protocol 1 is hybrid (f + 1)-efficient.

Proof. The safety properties of the protocol follow trivially from the properties of the
CAS register and the fact that it is always invoked with the initial value of the process
that calls it. As for termination, since at most f nodes can be faulty, in every execution
there is at least one live process that will invoke CAS and therefore terminate. The
failure efficiency of the protocol follows trivially from the code, where only the first
f + 1 nodes invoke CAS.

Notice that the code for handling DEC messages, and in particular Line 13 involve
n (unreliable) broadcasts. These can be replaced by a more efficient reliable broadcast
protocol, e.g., [27]. As this is a known trick, details are omitted for clarity and brevity.

An Ω̃-Based Protocol. The problem with Protocol 1 is that in each execution of the
protocol, the CAS register object is invoked f+1 times regardless of the actual number

Hybrid Distributed Consensus 153

Algorithm 2. Ω̃-based protocol - code for node i

1: for {j = 1; j <= limit && undecided; j++} do
2: if pi == Ω̃.get() or j == limit then
3: r := CAS(⊥, vi)
4: if r == ⊥ then
5: decide(vi)
6: else
7: decide(r)
8: end if
9: end if

10: wait Δ time
11: end for
{The code for decide and for handling DEC messages is the same as in Algorithm 1}

of faulty nodes. It also requires knowing f up front. This brings the question of whether
we can devise a protocol that will terminate with fewer CAS invocations (preferably,
just one), at least when the environment behaves “favorably”. We answer this affirma-
tively by presenting Protocol 2, which relies on an Ω̃ black-box to limit the number of
CAS invocations whenever it is well behaved.

The pseudo-code is given in Algorithm 2. There, a node repeatedly queries the Ω̃
black-box and accesses the CAS register only when the black-box returns its id, or
a threshold of iterations controlled by the configuration parameter limit has passed.
Notice also that due to the properties of the CAS register object, safety and termination
are always ensured with this protocol, regardless of the behavior of Ω̃. The latter only
impacts the performance of the protocol in terms of running time and the number of
CAS invocations (or cloud accesses). In particular, if the failure detector is guaranteed
to meet its specification (even at an arbitrary, unknown but finite, eventual time), then
limit can be eliminated (or set to∞).

Between iterations, each node waits for Δ time, which is the node’s estimate for the
time required for a computation step of the protocol including the expected latency of
decision messages to propagate through the network. Clearly, a bad estimation of Δ
does not hurt the correctness of the protocol, only its performance. Specifically, overes-
timatingΔmay slightly increase the running time of the protocol as it delays polling the
failure detector while underestimating Δ may result in redundant polling of the failure
detector and potentially reaching limit iterations and invoking CAS redundantly simply
due to a node that did not wait long enough for a decision message (DEC) to arrive.

The following lemma shows that in any execution in which the black-box is well
behaved, only a single node needs to invoke the CAS register at the cloud.

Lemma 1. Every execution of the protocol in which Ω̃ is well behaved is hybrid
1-efficient.

154 R. Friedman, G. Kliot and A. Kogan

Algorithm 3. Randomized protocol - code for node i

1: for {j = 1; j <= limit && undecided; j++} do
2: if Random(n) == 0 or j == limit then
3: r := CAS(⊥, vi)
4: if r == ⊥ then
5: decide(vi)
6: else
7: decide(r)
8: end if
9: end if

10: wait Δ time
11: end for
{The code for decide and for handling DEC messages is the same as in Algorithm 1}

Proof. Consider an execution σ of the protocol. From the assumption that Ω̃ is well
behaved in σ, a single non-faulty process will evaluate the condition in Line 2 to true
and therefore a single node will invoke CAS, decide, and transmit its decision to all
others. Hence, all other alive nodes will decide and terminate without invoking CAS.

A Randomized Protocol. The randomized protocol is presented in Algorithm 3. It
utilizes a random generator that accepts a parameter k and returns a uniformly selected
integer value in the range [0, . . . , (k− 1)]. This protocol also relies on the configuration
parameter called limit, which limits the maximal number of iterations that a node is
willing to wait before invoking CAS deterministically. In each iteration, every node
chooses to invoke CAS with probability 1/n, as listed in Line 2. As before, between
iterations, each node waits forΔ time. Here, underestimatingΔmay result in redundant
invocations of CAS simply due to a node that did not wait long enough for a decision
message (DEC) to arrive.

Clearly, the worst case running time of the protocol is Δ·limit and in the worst case,
there will be n invocations of CAS. For the following analysis, assume that Δ is cor-
rectly estimated. That is, once some node invokes CAS in a given iteration, then all
nodes will decide in this iteration.

Denote byX the number of iterations required by the algorithm. When limit is set to
∞, the probability p that none of the nodes will invoke CAS in an arbitrary iteration is
given by (1− 1/n)n. Obviously, the probability that at least one node will invoke CAS
is 1 − p. Thus, the expected number of iterations until at least one node invokes CAS
(and decides) is given by

E(X) =

∞∑
j=1

[(1− p) · j · pj−1] =
1

1− p
=

1

1− (1− 1
n
)n

.

Notice that when n is very large, (1 − 1
n)

n approaches e−1, in which case the above
expression becomes roughly 1.588. Moreover, the lower the value of limit is, the closer
the expected number of iterations becomes to 1.

Hybrid Distributed Consensus 155

It is worth noting that when limit is set to∞, the probability that the algorithm will
require more than a > 0 rounds is given by Pr(X > a) =

[

1− 1
n

]n·a
. It follows then

Pr(X > lnn) =

[
1− 1

n

]n·lnn

< e− lnn =
1

n
.

In other words, with high probability, the algorithm requires lnn rounds or less.
We now calculate the expected number of CAS invocations. From the assumption

on Δ, it is enough to consider the first iteration in which CAS was invoked (i.e., the
last iteration of the protocol). Notice that the invocations of CAS in each individual
iteration can be viewed as a set of n Bernoulli trials, each with probability 1/n of
success. Hence, the expected number of invocations in each iteration is 1. As this is true
for each iteration, it is also true for the iteration in which CAS was indeed invoked.

Note that safety and termination are always deterministically ensured for the prob-
abilistic protocol we have presented. The randomization aspect only controls the ex-
pected running time and the number of CAS invocations. In other words, probability
only affects performance, but not correctness. It is always possible to play with the pa-
rameter limit and the distribution of the random number generator in order to tradeoff
faster termination vs. fewer CAS invocations.

4 Related Work

Since the famous FLP impossibility result for solving consensus was introduced [19], a
plethora of papers on how to circumvent it have been published. Some follow the line
of Chandra and Toueg as well as Lamport by enriching the environment with failure
detector oracles [12, 13, 28], while others weaken the termination guarantees to being
probabilistic, e.g., [6, 10, 11] to list a few.

In Disk-Paxos [20] and Byzantine Disk-Paxos [1], consensus is solved by relying
of shared disks, such that each process can write to a certain block and read a certain
fraction of other processes’ blocks. These works also rely on a shared storage service.
However, they only require read-write semantics from the shared storage, and hence
must also rely on a leader oracle to ensure termination. The inspiration for these works
are storage area networks (SAN).

Motivated by SAN and active storage technology, in Active Disk-Paxos [14], multi-
ple fail prone read-modify-write registers are used to implement a ranked-register ab-
straction, which is then used to implement a Paxos style consensus protocol. The main
benefit of this is that it enables solving consensus with an unbounded number of clients.
In our work, we merely use the number of clients in the random protocol to ensure that
with high probability only a single client will access the CAS object. As this number
is not required for correctness, we can replace it with a rough estimate on the actual
number of clients rather than an exact figure. Also, similarly to the original Disk-Paxos
works, Active Disk-Paxos does not try to minimize the number of storage accesses.

Past work has investigated the minimal synchrony, and in particular the minimal
number of synchronous links required to solve consensus [3,4,24]. The idea in this line
of work is that synchrony is hard to ensure (whereas total lack of synchrony prevents
deterministic solutions for consensus [19]). Thus, synchronous links are likely to be

156 R. Friedman, G. Kliot and A. Kogan

expensive or have lower bandwidth than asynchronous ones, which motivates investi-
gating how to use them in the most parsimonious manner.

Wormholes is another approach for solving consensus, both Byzantine and benign,
by relying on special secure, synchronous, and temper-proof channels [17]. As was
shown in [17], wormholes can greatly reduce the complexity of solving consensus and
improve the ratio of faulty processes required to solve the problem. There, too, worm-
holes are assumed to be expensive and offer lower bandwidth than the “standard” net-
work. Consequently, wormholes should be used judiciously.

Both lines of research (minimal synchrony and wormholes) share the vision of adding
some expensive service to enable and simplify solving consensus. Both also investigate
how to use such a service wisely. In that sense, it is related to our work. However, in
their case, the service is a special type of a communication link, whereas in our case it
is a cloud hosted service.

Golab et al. [21] use the remote memory references (RMRs) metric to measure the
performance of algorithms that solve consensus and other related problems in two asyn-
chronous shared memory models. They consider blocking algorithms, and distinguish
between local and remote memory accesses, where the latter traverse the processor-
to-memory interconnect. They show that in this setting the consensus problem can be
solved using only a constant number of RMRs, while the progress is guaranteed only
when all active process are alive.

Guerraoui and Schiper discuss a related idea of a consensus service, which might be
used by client processes to solve an agreement problem [23]. The consensus service is
implemented by a set of server processes, which might be the same as or distinct from
client processes. The paper concentrates on the generality of the suggested service,
showing how it can be used to solve a series of agreement problems. Even though
Guerraoui and Schiper consider communication costs of the described protocols, they
do not distinguish between messages sent by clients and by servers, and thus do not
strive to optimize the communication between clients and servers.

5 Discussion

In this paper we have focused on solving consensus in hybrid systems, where processes
communicate by message passing and by accessing a shared highly-available register.
In particular, inspired by the proliferation of cloud-based services, we have studied
the problem of minimizing the number of register accesses for better scalability and
cost reduction in cloud assisted implementations of the suggested hybrid model. The
hybrid approach brings several benefits. First, in the case of benign failures, it enables
solving consensus in an otherwise asynchronous environment with f < n failures.
The protocols are very simple and terminate quickly. Also, our randomized and Ω̃-
based deterministic protocol enable solving consensus with a single register access in
expectation or in the “typical” case, respectively.7 We have also shown a lower bound
on the number of register accesses for deterministic protocols as well as a protocol that

7 Let us reiterate that in these protocols, termination and safety are always ensured regardless of
any synchrony assumptions and only the efficiency of the protocol depends on the behavior of
the black-box or timeout setup.

Hybrid Distributed Consensus 157

satisfies this bound. A shortcoming of the Ω̃-based and the randomized protocol is that
when the black-box in not well behaved in the former or the timeout is not accurate
in the latter, the protocol may require up to n accesses to the cloud hosted register.
Limiting this number to f + 1 in such cases is left for future work.

For the Byzantine case, we conjecture that the lower bound for deterministic proto-
cols is 3f+1 register accesses and f < 3n. In the full version of this paper, we show an
algorithm that meets this presumed bound. We also show there a probabilistic protocol
that terminates with just one cloud access by correct nodes in expectation while always
ensuring termination and safety. In addition to proving the conjectured lower bound, an
open problem related to Byzantine failures is the impact of the semantics of the regis-
ter on the minimal number of register accesses in the deterministic case. That is, can
stronger objects reduce the required number of register accesses?

Acknowledgments. We would like to thank Sergey Bykov and Alan Geller from Mi-
crosoft Research for their help and advice.

References

1. Abraham, I., Chockler, G.V., Keidar, I., Malkhi, D.: Byzantine disk paxos: optimal resilience
with byzantine shared memory. In: Proc. of the 23rd Annual ACM Symposium on Principles
of Distributed Computing (PODC), pp. 226–235 (2004)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega with
weak reliability and synchrony assumptions. In: Proc. of the 22nd Annual ACM Symposium
on Principles of Distributed Computing (PODC), pp. 306–314 (2003)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient
leader election and consensus with limited link synchrony. In: Proc. of the 23rd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 328–337 (2004)

4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with byzantine
failures and little system synchrony. In: Proc. of the International IEEE Conference on De-
pendable Systems and Networks (DSN), pp. 147–155 (2006)

5. Attiya, H.: Lecture notes for course #236357: Distributed algorithms (spring 1993); Techni-
cal report, Department of Computer Science, The Technion (January 1994)

6. Attiya, H., Censor-Hillel, K.: Lower bounds for randomized consensus under a weak adver-
sary. SIAM J. Comput. 39(8), 3885–3904 (2010)

7. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced
Topics, 2nd edn. John Wiley and Sons, Inc. (2004)

8. Basu, A., Charron-Bost, B., Toueg, S.: Simulating reliable links with unreliable links in the
presence of process crashes. In: Babaoğlu, Ö., Marzullo, K. (eds.) WDAG 1996. LNCS,
vol. 1151, pp. 105–122. Springer, Heidelberg (1996)

9. Bernstein, P., Hadzilacos, V., Goodman, H.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading (1987)

10. Bracha, G.: An o(lgn) expected rounds randomized byzantine generals protocol. In: Proc.
17th Annual ACM Symposium on Theory of Computing (STOC), pp. 316–326 (1985)

11. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In:
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 42–51 (1993)

158 R. Friedman, G. Kliot and A. Kogan

12. Chandra, T., Toueg, S.: Unreliable failure detectors for asynchronous systems. J. ACM 43(4),
685–722 (1996)

13. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus.
J. ACM 43, 685–722 (1996)

14. Chockler, G., Malkhi, D.: Active disk paxos with infinitely many processes. In: Proc. of the
21st Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 78–87
(2002)

15. Chu, F.: Reducing ω to �s. Information Processing Letters 67(6), 298–293 (1998)
16. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.-

A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving platform. Proc. of
VLDB Endowment 1, 1277–1288 (2008)

17. Correia, M., Neves, N.F., Lung, L.C., Verı́ssimo, P.: Low complexity byzantine-resilient con-
sensus. Distributed Computing 17, 237–249 (2005)

18. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Synchrony.
Journal of the ACM 35(2), 288–323 (1988)

19. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32, 374–382 (1985)

20. Gafni, E., Lamport, L.: Disk paxos. Distributed Computing 16, 1–20 (2003)
21. Golab, W., Hadzilacos, V., Hendler, D., Woelfel, P.: Constant-RMR implementations of CAS

and other synchronization primitives using read and write operations. In: Proc. ACM Sym-
posium on Principles of Distributed Computing, PODC (2007)

22. Guerraoui, R.: Non-Blocking Atomic Commit in Asynchronous Distributed Systems with
Failure Detectors. Distributed Computing 15, 15–17 (2002)

23. Guerraoui, R., Schiper, A.: The generic consensus service. IEEE Transactions on Software
Engineering 27(1), 29–41 (2001)

24. Hamouma, M., Mostefaoui, A., Trédan, G.: Byzantine consensus with few synchronous
links. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 76–89.
Springer, Heidelberg (2007)

25. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13(1), 124–149
(1991)

26. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent objects. ACM
Trans. on Programming Languages and Systems 12(3), 463–492 (1990)

27. Kaashoek, M.F., Tanenbaum, A.S., Hummel, S.F.: An efficient reliable broadcast protocol.
ACM SIGOPS Operating Systems Review 23, 5–19 (1989)

28. Lamport, L.: The part-time parliament. IEEE Transactions on Computer Systems 16(2),
133–169 (1998)

29. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transactions on
Programming Languages and Systems 3(4), 382–401 (1982)

30. Wang, H., Jing, Q., Jiao, S., Chen, R., He, B., Qian, Z., Zhou, L.: Distributed systems meet
economics: Pricing in the cloud. In: Proc. USENIX HotCloud (2010)

A Non-Blocking Atomic Commit

Non-blocking atomic commit (NBAC), originating in the area of databases [9], is a
related problem to consensus, but with a twist. That is, in NBAC, each process starts
with a ‘yes’ or ‘no’ value and the processes also need to decide on the same output
value, which is either ‘commit’ or ‘abort’. However, if at least one of the initial values
is ‘no’, then the only allowed decision value is ‘abort’. Further, if all initial values are
‘yes’, then the only allowed decision value is ‘commit’ unless at least one process has

Hybrid Distributed Consensus 159

Algorithm 4. A hybrid NBAC protocol - code for node i

1: send(vi) to everyone
2: wait until received vj from every node or ?P ==true or (∃j, vj ==no)
3: if received vj from every node and (∀j, vj ==yes) then
4: decide(hybrid-efficient-consensus(commit))
5: else
6: decide(hybrid-efficient-consensus(abort))
7: end if

failed, in which case it is also permissible to decide ‘abort’. As was shown in [22],
when n > 2f , any solution to the NBAC problem requires a failure detector of the class
�S+?P , where ?P is a failure detector that eventually returns ‘true’ if and only if at
least one process has failed. We also remind the reader that the failure detector class �S
is equivalent to Ω [15]. Clearly, it is possible to define a hybrid k-efficient (or efficient
probabilistic) protocol for solving NBAC in a similar manner to what has been done
above for consensus (cf. Section 3.1).

As was shown in [22], NBAC can be easily solved using a reduction to consensus.
For self-containment, this reduction is repeated in Figure 4, in which we replaced the
invocation of consensus with an invocation to hybrid-efficient-consensus, which stands
for any of the hybrid k-efficient or efficient probabilistic protocols mentioned above. In
the listing in Figure 4, the initial vote of each node is denoted vi. It is easy to verify that
when invoked with a ?P failure detector in Line 2 and the consensus protocol of Lines 4
and 6 is hybrid k-efficient (or efficient probabilistic), then the overall NBAC protocol
becomes hybrid k-efficient (or efficient probabilistic), solves NBAC for any f < n, and
only relies on ?P for ensuring the safety and liveness properties of NBAC.

Notice that the use of a register does not eliminate the need for a ?P failure detector.
This is because in NBAC, it may not be safe to decide ‘commit’ before hearing from
every process or knowing with certainty that at least one of the processes has failed.
Hence, the benefits of the hybrid approach for the NBAC problem is in increasing the
resilience to n−1 failures while eliminating the need for the �S (orΩ) failure detector.

Speculative Concurrent Processing

with Transactional Memory in the Actor Model

Yaroslav Hayduk, Anita Sobe, Derin Harmanci,
Patrick Marlier, and Pascal Felber

University of Neuchatel, Switzerland
first.last@unine.ch

Abstract. The actor model has been successfully used for scalable com-
puting in distributed systems. Actors are objects with a local state, which
can only be modified by the exchange of messages. One of the fundamen-
tal principles of actor models is to guarantee sequential message process-
ing, which avoids typical concurrency hazards, but limits the achievable
message throughput. Preserving the sequential semantics of the actor
model is, however, necessary for program correctness.

In this paper, we propose to add support for speculative concurrent
execution in actors using transactional memory (TM). Our approach is
designed to operate with message passing and shared memory, and can
thus take advantage of parallelism available on distributed and multi-core
systems. The processing of each message is wrapped in a transaction exe-
cuted atomically and in isolation, but concurrently with other messages.
This allows us (1) to scale while keeping the dependability guarantees
ensured by sequential message processing, and (2) to further increase
robustness of the actor model against threats due to the rollback ability
that comes for free with transactional processing of messages. We vali-
date our design within the Scala programming language and the Akka
framework. We show that the overhead of using transactions is hidden by
the improved message processing throughput, thus leading to an overall
performance gain.

Keywords: Concurrency, actors, transactional memory, speculative
processing.

1 Introduction

The actor model, initially proposed by Hewitt [1], is a successful message-passing
approach that has been integrated into popular frameworks [2]. The actor model
introduces desirable properties such as encapsulation, fair scheduling, location
transparency, and data consistency to the programmer. It also perfectly uni-
fies concurrent and object-oriented programming. While the data consistency
property of the actor model is important for preserving application safety, it is
arguably too conservative in concurrent settings as it enforces sequential pro-
cessing of messages, which limits throughput and hence scalability.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 160–175, 2013.
c© Springer International Publishing Switzerland 2013

Speculative Concurrent Processing with Transactional Memory 161

In this paper, we address this limitation by proposing a mechanism to boost
the performance of the actor model while being faithful to its semantics [2]. The
key idea is to apply speculation, as provided by transactional memory (TM),
to handle messages concurrently as if they were processed sequentially. In cases
where these semantics might be violated, we rely on the rollback capabilities of
TM to undo the operations potentially leading to inconsistencies.

We see a high potential for improvement in scenarios where actors maintain
state that is read or manipulated by other actors via message passing. With
sequential processing, access to the state will be suboptimal when operations
do not conflict (e.g., modifications to disjoint parts of the state, multiple read
operations). TM can guarantee safe concurrent access in most of these cases and
can handle conflicting situations by aborting and restarting transactions.

Speculation can also significantly improve performance when the processing
of a message causes further communication. Any coordination between actors
requires a distributed transaction, which we call coordinated transaction. We
combine coordinated transactions and TM to concurrently process messages in-
stead of blocking the actors while waiting for other transactions to commit.

We have implemented our approach in the Scala programming language and
the integrated Akka framework [3]. Since this implementation cover changes
to the Akka framework only, the developer is not affected at all. We evaluate
our approach using a distributed linked list benchmark already used with other
concurrent message processing solutions [4]. We show that concurrent message
processing and non-blocking coordinated processing can considerably reduce the
execution time for both read-dominated and write-dominated workloads.

The rest of the paper is organized as follows. We first give an overview of
the actor models, transactional memory, and related work in Section 2. We then
discuss the limits of the sequential message processing in Section 3 and propose
improvements to sequential message processing in Section 4. We describe our
implementation in Section 5 and present evaluation results in Section 6. We
finally conclude in Section 7.

2 Background and Related Work

Actor models are inherently concurrent. They are widely used for implementing
parallel, distributed, and mobile systems. An actor is an independent, asyn-
chronous object with an encapsulated state that can only be modified locally
based on the exchange of messages. It comprises a mailbox in which messages
can be queued, as well as a set of dedicated methods for message processing [5].

The actor model provides macro-step semantics [6] by processing messages
sequentially. As a consequence, it also guarantees the following properties:

Atomicity. The state of an actor can only be observed before or after operations
took place, therefore changes on the state are perceived either all at once or not
at all.

162 Y. Hayduk et al.

Isolation. The actor model forbids any concurrent access to the local state of
an actor. This means that any operation on the state of the actor is done as if
it were running alone in the system.

These characteristics make actor models particularly attractive and contribute
to their popularity. Numerous implementations of actor models exist in many
languages like Java, C, C++, and Python. We decided to use Scala, which is a
general-purpose language that runs on top of the JVM and combines functional
and object-oriented programming patterns. The recent versions of Scala integrate
the Akka Framework [3] for realizing actors. They also supports transactional
memory (TM) [7], a programming model that provides atomicity, isolation, and
rollback capabilities within transactional code regions [8]. The programmer sim-
ply has to demarcate the blocks of instructions that must execute atomically
and the TM performs all the necessary bookkeeping to ensure that the target
code is executed in a transaction, i.e., the consistency of data accessed within the
block are not affected by concurrent accesses. TM provides built-in support for
check-pointing and rollback, which we exploit for controlling concurrent message
processing.

Existing actor frameworks such as surveyed by Karmani et al. in [2] do not
include TM and differ regarding the way they handle parallelism. As an exam-
ple, implementations of Habanero-Scala and Habanero-Java [4] introduce paral-
lelism by mixing the actor model with a fork-join design (async-finish model).
Actors can start concurrent sub-tasks (async blocks) for the handling of a single
message.

Since the processing of a message terminates only when all sub-tasks are fin-
ished, this approach enforces sequential handling of messages. To alleviate this
restriction and improve scalability, Habanero also allows messages to be pro-
cessed in parallel. To ensure that the actor’s state is not accessed concurrently,
a pause and resume model that works similar to wait and notify is used. While
processing a message, the actor can spawn external sub-tasks it must then pause
to avoid intermediate modification to its state. When the sub-tasks finish with
changing the state, the actor resumes its operation and can process further mes-
sages. While this approach avoids concurrent access to an actor’s state, it must
be used carefully as it provides no protection against synchronization hazards
such as data races and deadlocks.

Parallel actor monitors (PAM) [9] support concurrent processing by scheduling
multiple messages in actor queues. Using PAM, the programmermust understand
the concurrency patterns within the application and define application-specific
schedulers. This may prove particularly challenging for applications where con-
currency patterns vary during execution. In contrast, our approach (see Section 4)
removes any programmer intervention and automatically allows concurrent exe-
cutions when possible. Further, we do not break the original actor semantics at any
time, while using an inappropriate scheduler with PAM can cause inconsistencies.

Speculative Concurrent Processing with Transactional Memory 163

3 Problem Statement

Despite its inherent concurrency, the actor model requires sequential message
processing. While this requirement is a deliberate choice to avoid synchronization
hazards, it unnecessarily limits the performance (i.e., throughput) of individual
actors, in particular when they execute on multi- or many-core computers.

We elaborate the problem of sequential processing with the help of the exam-
ples depicted in the left part of Figure 1. They involve three actors (A, B and
C) performing operations as illustrated on their respective time lines (horizontal
dashed line). The transfer of a message between actors is indicated by an arrow
and its processing is indicated by thick solid lines, where we explicitly mark the
beginning and end of processing with brackets. In our examples, the actors are
responsible for maintaining a distributed linked list of ordered integers. Actor B
stores the first part of the list and actor C the second part, while actor A acts
as a client and performs operations on the list (e.g., search, insert, remove).

Sequential processing in the actor model limits performance in two ways:

A

B

C

remove insert

Coordination delay

Coordination delay

A

B

C

insert

search

Queueing delay

Queuing delay
A

B

C

insert

search

A

B

C

remove
insert

Hiding queuing delay Hiding coordination delay

messages do
not wait

in the queue

 processing
terminates

earlier

Additional message(s)
processed within

coordination delay

Fig. 1. Sequential (left), concurrent and non-blocking coordinated processing (right)
and their effect on execution time

Queuing Delay: In the first block of Figure 1 we depict the delay that is
introduced upon arrival of multiple messages on a single actor. If actor A and B
send messages to actor C, which is busy, both messages are stored in a queue.
The queuing delay is the time a message has to wait at a given actor from arrival
to the start of its processing.

Coordination Delay: In the second block of Figure 1 we depict a common
communication pattern.

Consider that actor A wants to move the value x from the list of actor B to
the list of actor C. For doing so, it sends messages remove(x) to actor B and
insert(x) to actor C. To fulfill the macro-step semantics in actor A, the list
operations have to be part of a coordinated transaction, which commits when
all three actors successfully finish their task. The coordinated commit protocol
defines a barrier on which actors B and C block until they can resume processing
other messages. Hence, the coordination delay describes the time actors have to
wait after finishing their own tasks until the distributed transaction commits.

164 Y. Hayduk et al.

4 Message Processing Model

Queuing delays are inherent to the structure of the actor model and its sequential
processing operation; their reduction may become particularly important for
actors that receive many messages. Further, upon coordination delay, actors
block and thus cannot perform any useful work. We claim that these delays are
unnecessarily long and can be significantly reduced by thoughtful changes to the
message processing of actors.

Our main idea is based on the observation that we can guarantee atomicity and
isolation if we encapsulate the handling of messages inside transactions. Thanks
to the rollback and restart capability of transactions, several messages can be
processed concurrently, even if they access the same state. We call this approach
concurrent message processing. Additionally, we exploit the characteristics of
transactions to avoid blocking actors while waiting for a coordinated commit
(non-blocking coordinated processing).

S C

S C

S C

S C

S C

S C

S C

S CS CS C

Thread pool

TM

Method schedule
(assuming system messages arrived later)

Methods
(message processing

code sections)
Demux

Dispatcher

User messages

System messages

Embedding message processing
in transactions (S: Start, C: Commit)

Fig. 2. Implementation of concurrent message processing

To explain the principle of our two optimizations, consider the same example
as in Figure 1 with actor A performing operations on a list stored on actors B
and C. The right part of Figure 1 illustrates how the delays caused by sequential
processing can be reduced.

Queuing Delay: By processing several messages concurrently on a single actor,
we can reduce the queuing delay as shown in the first block of Figure 1. Therefore,
if A and B send a message to C, which is currently busy, the messages do not
have to wait. If the transactions do not conflict and can immediately commit,
the queuing delay is avoided.

Coordination Delay: Actor A wants to move a value from the list of actor B
to the list of actor C, which requires both an insertion and a removal action.
This is typically achieved using a coordinated transaction. To ensure consistency,
however, participating actors cannot process new messages until the coordinated
transaction commits. By treating messages speculatively, one can avoid block-
ing the actors and allow concurrent execution of non-conflicting transactions

Speculative Concurrent Processing with Transactional Memory 165

(e.g., as in actors B and C in the second block of Figure 1), therefore hiding the
coordination delay.

5 Implementation

To hide the delays as explained before, we extend Scala version 2.10.2. Specifi-
cally, we concentrated on two parts of Scala: the Akka framework version 2.10.0
and the Scala-STM [10] library version 0.7. Akka provides a clean and efficient
implementation of the actor model for the JVM. Scala-STM supports transac-
tional memory in Scala and, while it adds some overhead for checkpointing and
concurrency control, it is particularly non-invasive and well integrated in the
language. In the following we describe the specific changes we made to Akka and
Scala-STM to realize the proposed optimizations.

Concurrent Processing of Messages. The concurrent message processing
only involves changes of the message handling provided by the Akka framework.
Specifically, we changed the behavior of the actor’s mailbox. In the original Akka
implementation a dispatcher is responsible for ensuring that the same mailbox is
not scheduled for processing messages more than once at a given time. Another
particularity of Akka is that every actor has one mailbox with two queues: the
first one stores user messages, i.e., messages received from other actors, while
the second one is used for maintaining system messages specific to Akka, which
control lifecycle operations (i.e., start, stop, resume). Once a user message is
scheduled, the dispatcher checks first if there are any system messages. Then, all
existing system messages are treated before the user message. The same is done
after the processing of the user message. As system messages are rare, actors
spend most of their time processing user messages.

To facilitate concurrent message processing, we reimplemented the mailbox
and message treatment as shown in Figure 2. System messages are handled as
in the sequential case, before and after user messages, but instead of processing
user messages one at a time, we process them concurrently in batches. Each user
message from a batch is submitted to a thread-pool for execution. The actual
message processing is performed concurrently inside a transaction, as indicated
by the start (S) and commit (C) events in the figure. For the transactional
handling of messages we use the default Scala-STM. If the concurrent operations
do not conflict, we can hide the queuing delay as illustrated in Figure 1.

Non-blocking Coordinated Transactions. The non-blocking coordinated
transaction alters the commit behavior of the Scala-STM. By default, a co-
ordinated transaction is blocking (see Figure 1). All actors participating to a
coordinated transaction must reach a commit barrier before any other message
can be processed.

Consider the case of a transaction that executes a block of code correspond-
ing to the processing of a message. After the transactional code is executed, the
STM makes an attempt to commit the changes, possibly rolling back and try-
ing again upon failure. In the process of a commit, several steps are performed:

166 Y. Hayduk et al.

Actors Dedicated
thread

x

y

z

Coordinated transaction N
(consists of x,y,z) Queue for N

Commits for
x, y and z

k

l

m

x, y and z are
all committed
at this point

Fig. 3. Sketch of the implementation of non-blocking coordinated processing

(1) locks for the variables accessed in the transaction are obtained; and (2) if
the transaction belongs to a coordinated transaction, an external decider is con-
sulted. The coordinated transaction’s commit barrier blocks as long as some of
its transactions are still executing. Once they have all successfully completed,
the commit barrier is unlocked and control is returned to the caller. After the
external decider returns, the transaction does final sanity checks and flushes out-
standing writes to main memory. In our implementation, illustrated in Figure 3,
we perform the following operations instead of blocking the thread when waiting
for other parties to arrive at the barrier. We first save the current transaction
descriptor in a queue (queue for N). Then, we return from the atomic block im-
mediately, bypassing any additional logic associated with the commit operation.
By doing so, we do not fully commit the transaction; we instead suspend its
commit at the point where it would normally block.

While an actor is busy with a coordinated transaction, it can handle other
messages concurrently, hiding the coordination delay as illustrated on transac-
tions k, l, and m in Figure 3. If concurrent messages are independent, they can
commit immediately. If there is a write-write conflict, the processing of one of
the messages rolls back. Read-write conflicts represent a special case: if the co-
ordinated transaction reads a value and a concurrent message wants to write the
same value, we delay the commit of the write until the coordinated transaction
completes.

In a system comprising multiple actors, it is likely that several coordinated
transactions execute concurrently. Each coordinated transaction uses its own
queue to store its suspended pre-committed transactions (N corresponds to the
identifier of the coordinated transaction in the figure). Hence, we do not mix
pre-committed transactions belonging to different coordinated transactions. To
resume the commit, a dedicated thread is notified when all the parties belonging
to the same coordinated transaction have completed their work.

6 Evaluation

Our optimizations are expected to be most useful in applications where state
is shared among distributed actors. Hence, to evaluate our approach, we use a

Speculative Concurrent Processing with Transactional Memory 167

benchmark application provided by Imam and Sarkar [4] that implements a state-
ful distributed sorted integer linked-list. The architecture considers two types of
actors: request and list actors. Request actors only send requests such as lookup,
insert, remove, and sum. List actors are responsible for handling a range of val-
ues (buckets) of a distributed linked list. In a list with l actors, where each actor
can store at most n elements representing consecutive integer values, the ith list
actor is responsible for elements in the [(i− 1) · n, (i · n)− 1] range, e.g., in a list
with 4 actors and 8 entries, each actor is responsible for two values. A request
forwarder matches the responsible list actors with the incoming requests. We ex-
tend this benchmark to evaluate different facets of our proposed optimizations.
We evaluate different workloads, different numbers of actors holding elements of
the list, etc. For the sum operation, each actor holds a variable that represents
the current sum of all its list elements, called partial sum, which is updated
upon insertion and removal. When computing the sum of the whole list, we only
accumulate the partial sum of each list actor without the need of traversing all
list elements. While the lookup, insert, and remove operations execute on a sin-
gle list actor, the sum operation needs to traverse all the list actors in order to
return the partial sums. Hence, the sum operation involves multiple list actors.
The original benchmark did not initially ensure atomicity of the sum operation;
we therefore changed the implementation so that the computation of the sum is
performed within a coordinated transaction.

We execute the benchmark on a 48-core machine equipped with four 12-core
AMD Opteron 6172 CPUs running at 2.1GHz. Each core has private L1 and L2
caches and a shared L3 cache. The sizes of both instruction and data caches are
64KB at L1, 512KB at L2, and 5MB at L3.

We apply each of the extensions—concurrent message processing and non-
blocking coordinated processing—to a read-dominated workload and then to
a write-dominated workload. Each sample corresponds to the geometric mean
of 7 runs. We first evaluate both extensions separately to better assess their
benefits and drawbacks, i.e., for the first results, non-blocking coordinated pro-
cessing does not include concurrent message processing. Then, we conduct exper-
iments with both approaches combined. Their performance is compared against
sequential message processing, i.e., using default Akka/Scala constructs with-
out transactions for read and write operations. The sum operation is put into
a coordinated transaction as provided by Akka/Scala. We finally complete our
evaluation with a comparison against the Habanero-Scala implementation.

Our experiments are either read-dominated (lookup) or write-dominated (in-
sert, remove). These workloads additionally contain a number of sum opera-
tions, which are treated as coordinated messages. More precisely, each actor
performs R = x% reads, W = y% writes, and S = z% sum operations, where
R + W + S = 100%. Since sum requests are likely to be rare in comparison
with other operations, we keep this parameter constant at S = 1%. For read-
dominated workloads, we choose R = 97% and W = 2%. The write-dominated
workload is configured with R = 1% and W = 98%.

168 Y. Hayduk et al.

 0.1

 1

 10

 100

 125 250 375 500

E
xe

cu
tio

n
tim

e
(s

)

Request actors

Sequential

1 list actor
2 list actors
4 list actors
8 list actors
16 list actors
32 list actors

 125 250 375 500

Request actors

Concurrent

 125 250 375 500

Request actors

Non-blocking coordinated

Fig. 4. Execution time for sequential, concurrent, and non-blocking message processing
on a read-dominated workload

 0.1

 1

 10

 100

 125 250 375 500

E
xe

cu
tio

n
tim

e
(s

)

Request actors

1 list actor

Sequential
Concurrent
Non-blocking
coordinated

 125 250 375 500

Request actors

8 list actors

 125 250 375 500

Request actors

32 list actors

Fig. 5. Execution time for sequential, concurrent, and non-blocking message processing
using 1, 8, and 32 list actors on a read-dominated workload

Insert and remove operations are handled independently and are chosen at
random, but each evaluation run gets the same input. We vary the number of
list and request actors, each of the latter sending 1,000 requests. The request
actors wait for a response before sending the next message. The list can contain
a maximum of 41,216 integers split evenly between actors. For instance, if there
are 32 list actors, each will be responsible for 1,288 buckets. The list is pre-filled
to 20 % of its capacity.

6.1 Read-Dominated Workload

Figure 4 presents the results for the three separate scenarios: sequential message
processing, concurrent message processing, and non-blocking coordinated pro-
cessing. On the x-axis we show the effects of increasing the number of request
actors (125–500), while the y-axis displays the execution time in seconds (log
scale), i.e., the time needed to finish processing all requests. The lower the exe-
cution time, the better. One can see in all cases that adding more request actors
leads to higher execution times, which is not surprising because the workload
becomes higher.

The concurrent execution time (Figure 4, center) is lower than the sequential
scenario up to 16 list actors, which indicates that allowing multiple messages
to be processed concurrently introduces an immediate performance gain. In our
linked-list example, messages sent from request actors R1 and R2 to a list ac-
tor L1 will be treated within a transaction. If there are no conflicts—which is
likely in a read-dominated workload—concurrent transactions commit success-
fully. Therefore, the time required to process a batch of messages will be equal

Speculative Concurrent Processing with Transactional Memory 169

to the execution time of the longest associated transaction (max (T1, T2, . . .))
instead of the sum of all execution times (

∑
Ti). The performance with 16 and

32 actors starts to degrade because the workload provides less exploitable con-
currency. With 32 list actors the performance is even worse than with a single
list actor.

When considering non-blocking coordinated message processing (Figure 4,
right), the explanation for the increase of the execution time for concurrent pro-
cessing with 16 and 32 list actors is clear: when the number of list and request
actors is high, coordinated transactions are likely to fail because of increased
contention. Non-blocking coordinated message processing allows us to reduce
this execution time considerably. Actors can process other messages while the
sum operation is in progress. The reduction of execution time is especially high
for read-dominated workloads, because a lookup operation and the read of the
partial sum are non-conflicting operations. With large numbers of list and re-
quest actors, however, the likelihood of insert and remove operations increases
significantly.

Figure 5 shows a more detailed comparison for an increasing number of list
actors. The left graph in presents the execution time for a single list actor.
One can see that concurrent message processing improves the execution time
considerably, while non-blocking coordinated processing exhibits worse perfor-
mance than sequential message processing. Indeed, since there is only one list
actor, no coordinated transactions are executed, i.e., the sum operation only
returns the partial sum of the current list actor. Hence, the execution time of
the non-blocking coordinated processing shows the overhead of executing all
operations inside transactions. When increasing the number of list actors, this
overhead is compensated by the benefits of non-blocking coordinated process-
ing. When increasing the number of list actors to at least 8 (Figure 5, center),
the contention of coordinated transactions increases and non-blocking processing
performs even better than concurrent message processing. When the number of
coordinated transactions and write-write conflicts becomes too high, concurrent
message processing yields performance similar to sequential processing, as can be
observed in the right graph of Figure 5 for 32 list actors. In contrast, non-blocking
coordinated transactions lead to significantly lower execution times than both
sequential and concurrent message processing.

To summarize our findings so far, concurrent message processing has the high-
est impact if the number of list actors is low because each will have more mes-
sages to process, i.e., the penalty from serialization is more important and the
workload provides more exploitable concurrency. The opposite trend can be ob-
served with non-blocking coordinated transactions: they benefit most when the
number of list actors is high because coordinated transactions become longer,
i.e., the penalty of the blocking operation is higher and contention is relatively
low. Therefore, the combination of both techniques is expected to provide good
overall performance for all considered scenarios.

170 Y. Hayduk et al.

6.2 Write-Dominated Workload

We expect to observe more conflicts with a write-dominated workload because
each insert and remove operation also modifies the value of the partial sum. As
a consequence the execution time generally increases in comparison with the
read-dominated load, as shown by the graphs in Figure 6.

 0.1

 1

 10

 100

 1000

 125 250 375 500

E
xe

cu
tio

n
tim

e
(s

)

Request actors

Sequential

1 list actor
2 list actors
4 list actors
8 list actors
16 list actors
32 list actors

 125 250 375 500

Request actors

Concurrent

 125 250 375 500

Request actors

Non-blocking coordinated

Fig. 6. Execution time for sequential, concurrent, and non-blocking message processing
on a write-dominated workload

 0.1

 1

 10

 100

 1000

 125 250 375 500

E
xe

cu
tio

n
tim

e
(s

)

Request actors

1 list actor

Sequential
Concurrent
Non-blocking
coordinated

 125 250 375 500

Request actors

8 list actors

 125 250 375 500

Request actors

16 list actors

Fig. 7. Execution time for sequential, concurrent, and non-blocking message processing
using 1, 8, and 16 list actors on a write-dominated workload

Sequential processing (Figure 6, left) performs similarly to the read-dominated
workload case. The execution time first improves when adding more list actors.
Then, we observe similar execution times for 8 and 16 list actors, and the degra-
dation starts for 32 actors as the impact of coordinated transactions becomes
more significant. Concurrent processing (Figure 6, center) provides better over-
all performance, but the best improvement is obtained with 16 list actors when
there is sufficient exploitable concurrency. Finally, with non-blocking coordinated
processing, performance improves with the number of list actors. The execution
time is better than concurrent processing starting from 4 list actors. The reason
is that sum operations are read operations. Thus, for coordinated transactions
a write-write conflict is not possible. We expect that write operations in coordi-
nated transactions conflicting with other writes lead to execution times close to
concurrent processing.

Figure 7 shows the execution times of sequential, concurrent, and non-blocking
coordinated processing for various sizes of list actors. With a single list ac-
tor (Figure 7, left), we observe that concurrent and non-blocking coordinated
processing perform poorly due to the many write-write conflicts and resulting
aborts.

Speculative Concurrent Processing with Transactional Memory 171

 0.1

 1

 10

 125 250 375 500

E
xe

cu
tio

n
tim

e
(s

)

Request actors

Read dominated workload
8 list actors

 0.1

 1

 10

 125 250 375 500
Request actors

Write dominated workload
16 list actors

Sequential
Concurrent
Non-blocking
Concurrent
non-blocking

Fig. 8. Execution time for sequential, concurrent, non-blocking, and combined message
processing

With 8 list actors (Figure 7, center) the performance of non-blocking coor-
dinated processing becomes close to sequential processing, whereas concurrent
processing still has a higher execution time. Finally, with 16 list actors the ad-
vantage of non-blocking coordinated processing is obvious, while concurrent pro-
cessing now performs similarly to sequential processing because the coordination
delays dominate.

Summing up the write-dominated workload results, we conclude that con-
current processing becomes less beneficial when the likelihood of write conflicts
is high. In some cases, the high number of roll backs becomes high enough
that sequential processing should be preferred. Coordinated transactions have
a high influence on the execution time and significantly improve performance
with many list actors. Therefore, a write-dominated workload can benefit more
from non-blocking coordinated transactions than concurrent ones, and it is de-
batable whether the latter extension should be used at all when the number of
write-write conflicts becomes very high.

6.3 Non-blocking Concurrent Processing

We conducted the same experiment as before, but combined concurrent and non-
blocking coordinated message processing, which we call non-blocking concurrent
processing, for the read and write-dominated workload. In the read workload,
concurrent processing leads to lower execution times when the number of list
actors is below 16. Indeed, one can observe that the performance of non-blocking
concurrent processing is even better than non-blocking coordinated processing
(Figure 8, left). When we increase the number of list actors, we see again the
same behavior as for the write-dominated workload. The combination is thus
useful when both concurrent and non-blocking coordinated processing lead to a
lower execution time than sequential processing.

The results for the write-dominated workload show that concurrent process-
ing does not have much influence on the execution time (Figure 8, right). In
the 16 buckets scenario, pure concurrent processing has execution times simi-
lar to sequential processing, while non-blocking concurrent processing results in
performance close to non-blocking coordinated processing.

To fully exploit the capabilities of the proposed mechanisms, it is
therefore necessary to properly understand the nature of the workload. If it

172 Y. Hayduk et al.

is read-dominated and the number of list actors is high, one should favor non-
blocking coordinated processing. If the number of list actors is low, one should
rather use non-blocking concurrent processing. Finally, with a write-dominated
load, one should prefer non-blocking coordinated processing or even switch back
to sequential processing.

6.4 Comparison to Habanero-Scala

In the original Habanero-Scala benchmark shown in Figure 20 in [4], the authors
ran their experiments with 64 list actors, each responsible for 400 buckets. Ad-
ditionally, the authors used a workload with a balanced mix of reads and writes
(50:50). 50 read actors are used to access the list elements, with 32,000 accesses
by actor. For these settings, Habanero-Scala (LightActor implementation) per-
formed slightly better than default sequential processing (Akka). Note that the
LightActor implementation of the list benchmark does not spawn any sub-tasks.
It use a finish construct instead of the default countdown latch for coordinating
list and request actors of the list. Thus, the difference in performance is due
to their lightweight implementation of actors, a custom task scheduler, and a
different thread-pool implementation.

 0.1

 1

 10

 100

 125 250 375 500

E
xe

cu
tio

n
tim

e
(s

)

Request actors

Read - 32 list actors

Sequential
Habanero
Concurrent
Non-blocking
Concurrent
non-blocking

 125 250 375 500

Request actors

Write - 2 list actors

 125 250 375 500

Request actors

Write - 16 list actors

Fig. 9. Execution time comparison with Habanero-Scala

To show the full capabilities of our approach, we executed our experiments
with Habanero-Scala. For this, we use the default Habanero-Scala constructs for
read and write operations (no transactions). The behavior of the sum operation
is provided by a barrier implemented in the list actors using the DataDriveFuture
construct (including sub-tasks) of Habanero-Scala.

For the read-dominated workload, Habanero-Scala performs similarly to se-
quential message processing, except for 32 buckets where Habanero-Scala per-
forms better by approximately 40%. There, the difference is higher, because of
the penalty of the blocking coordinated sums used in the sequential implementa-
tion. As seen in the left graph of Figure 9, our approach outperform Habanero-
Scala by 50 to 70%.

In the write-dominated workload, Habanero-Scala performs again similarly to
sequential message processing. With our speculative extensions, the contention
is too high for less than 8 list actors. With 16 list actors the improvement of our
approach is significant (Figure 9, right).

Speculative Concurrent Processing with Transactional Memory 173

6.5 Discussion

Our approach, which combines concurrent and non-blocking coordinated pro-
cessing, guarantees the same correctness as the original actor model. We perform
the processing of messages within transactions, which means that concurrent op-
erations on the actor’s state will execute atomically and in isolation. Therefore,
conflicting operations will be serialized, but non-conflicting messages should be
processed concurrently.

It is important to note that the actor model does not impose any order on
the processing of messages that are in its incoming queues. Therefore the non-
deterministic order in which transactions will commit does not break the seman-
tics of the actor model. If ordering were required, we could extend the STM as
proposed in [11] to enable parallel processing but commit transactions in order.

As we rely on transactional memory to process messages equivalently to a
serial execution and we preserve the original actor model, concurrent process-
ing also provides the same correctness guarantees. The same applies for non-
blocking coordinated processing. All messages are handled within transactions,
which means that the conflicts are handled as for concurrent message processing.
However, for read-write conflicts (e.g., concurrent sum and insert operations) the
order will be preserved by our delayed commit mechanism. An issue that cur-
rently limits our approach is that the code of ”transactified” message processing
should not contain any action that is not under the control of the TM, such as
I/O or OS library code (irrevocable code). Strategies for supporting irrevocable
actions are left to the responsibility of the underlying TM and are not specific
to our extensions.

Our approach has the important benefit of being adaptable. The transactional
processing of a message can be aborted at any time without side effects on the
current state of the actors. This implies that each of our extensions can be en-
abled or disabled at any time during execution, and one can switch from one
extension to the other within the same execution. Such flexibility can be ex-
ploited to play with trade-offs between performance and resource utilization. On
the performance side, messages need to be processed anyways, either sequentially
or concurrently. Hence, if we have idle resources and we can process messages
concurrently, the overall task can be completed in a shorter time. On the re-
source utilization side, the adaptability of our approach allows us, for example,
to apply simple energy-efficiency strategies that enable or disable transactional
execution, possibly even temporarily switching off some cores, in order to fit the
consumption of the application to the desired energy requirements.

7 Conclusion

The actor model implements synchronization by the means of message passing.
This decoupled communication paradigm is particularly scalable since it allows
multiple actors to perform independent computations concurrently as they do
not share state. However, each actor processes arriving messages sequentially.

174 Y. Hayduk et al.

To address this limitation, we proposed an approach that combines trans-
actional memory (TM) and actors as implemented by the Akka Framework.
Incoming messages are dequeued in batches and processed speculatively inside
transactions. The atomicity, consistency, and isolation properties of TM guar-
antee that messages do not interfere when being processed concurrently. In ad-
dition, as the actor model does not impose any order on the handling of user
messages in the incoming queues, our approach preserves its semantics.

To further improve concurrency, we also extended the coordinated transaction
mechanism of Scala-STM to support non-blocking operations. The traditional
design prevents actors involved in a coordinated transaction to process any ad-
ditional message until the transaction commits. The resulting delays can be
especially high when actors are distributed on several nodes and communication
has non-negligible latency. We solve this issue by speculative concurrent message
processing.

Together, these two mechanisms can significantly lower the queuing and coor-
dination delays, and hence increase concurrency. We implemented both mecha-
nisms in the Scala language using the integrated Akka framework. Experiments
on a 48-core server show that our extensions provide important performance
benefits over sequential processing on both read-dominated and write-dominated
workloads.

Future work regards dynamic switching between sequential and concurrent
processing and the investigation of a real-world application.

Acknowledgements. This research has been funded in part by the European
Community’s Seventh Framework Programme under the ParaDIME Project
(www.paradime-project.eu), grant agreement no. 318693.

References

1. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for ar-
tificial intelligence. In: IJCAI 1973: Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, pp. 235–245 (1973)

2. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a com-
parative analysis. In: PPPJ 2009: Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java, pp. 11–20 (2009)

3. Haller, P.: On the integration of the actor model in mainstream technologies: the
scala perspective. In: Proceedings of the 2nd Edition on Programming Systems,
Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, AGERE! 2012, pp. 1–6. ACM, Tucson (2012)

4. Imam, S.M., Sarkar, V.: Integrating task parallelism with actors. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA 2012, Tucson, Arizona, USA, pp. 753–772
(2012)

5. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7(1), 1–72 (1997)

6. Karmani, R.K., Agha, G.: Actors. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 1–11. Springer (2011)

Speculative Concurrent Processing with Transactional Memory 175

7. Goodman, D., Khan, B., Khan, S., Luján, M., Watson, I.: Software transactional
memories for scala. Journal of Parallel and Distributed Computing (2012)

8. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and
Claypool Publishers (2010)

9. Scholliers, C., Tanter, E., Meuter, W.D.: Parallel actor monitors. In: SBLP 2010:
14th Brazilian Symposium on Programming Languages, Salvador, Brazil (2010)

10. ScalaSTM, http://nbronson.github.com/scala-stm/
11. Brito, A., Fetzer, C., Sturzrehm, H., Felber, P.: Speculative out-of-order event

processing with software transaction memory. In: DEBS 2008: Proceedings of the
International Conference on Distributed Event-Based Systems, pp. 265–275 (2008)

http://nbronson.github.com/scala-stm/

An Optimal Broadcast Algorithm

for Content-Addressable Networks

Ludovic Henrio, Fabrice Huet, and Justine Rochas

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France
ludovic.henrio@cnrs.fr, fabrice.huet@unice.fr, justine.rochas@inria.fr

Abstract. Structured peer-to-peer networks are powerful underlying
structures for communication and storage systems in large-scale setting.
In the context of the Content-Addressable Network (CAN), this paper
addresses the following challenge: how to perform an efficient broadcast
while the local view of the network is restricted to a set of neighbours? In
existing approaches, either the broadcast is inefficient (there are dupli-
cated messages) or it requires to maintain a particular structure among
neighbours, e.g. a spanning tree. We define a new broadcast primitive
for CAN that sends a minimum number of messages while covering the
whole network, without any global knowledge. Currently, no other al-
gorithm achieves those two goals in the context of CAN. In this sense,
the contribution we propose in this paper is threefold. First, we pro-
vide an algorithm that sends exactly one message per recipient without
building a global view of the network. Second, we prove the absence of
duplicated messages and the coverage of the whole network when using
this algorithm. Finally, we show the practical benefits of the algorithm
throughout experiments.

Keywords: Broadcast, Peer-to-Peer, Content-Addressable Network.

1 Introduction

In this work, we are interested in Structured Overlay Networks (SONs) where
peers are organised in a well-defined topology and resources are stored at a
deterministic location. The underlying geometric topology is used by communi-
cation primitives and ensures their efficiency. We are interested in CAN (Content-
Addressable Network) [1] P2P networks, where peers are organised according to
a multi-dimensionary cartesian space. This space is organised in a geometrical
way; the geometrical organisation dictates the dependencies between peers, as
we will see in Section 2.

This paper presents a broadcast algorithm for the CAN overlay network that
prevents a peer from receiving the same message more than once. We call such
a broadcast algorithm efficient, in the sense that it minimises the number of
exchanged messages between peers. Of course, a broadcast algorithm also has to
be correct, and reach every peer of the network.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 176–190, 2013.
c© Springer International Publishing Switzerland 2013

An Optimal Broadcast Algorithm for Content-Addressable Networks 177

In previous works, Bongiovanni and Henrio proved, using the Isabelle/HOL
theorem prover, that an efficient broadcast protocol for CAN existed [2]. How-
ever, the algorithm that was exhibited to prove the existence of an optimal
solution was naive and had a very high latency, making it unusable in practice.
In this work, we are interested in the design and implementation of an effective
broadcast protocol that, in practice, also has an acceptable latency.

The contribution of this paper is as follows:

– Firstly, we propose a new broadcast algorithm that greatly improves the
state of the art.

– Secondly, we prove that this algorithm is both correct (it covers the whole
network) and optimal in terms of exchanged messages.

– Thirdly, we set an experimental comparison of the algorithm with others in
a realistic distributed environment and show its efficiency in practice.

This paper is organised as follows. First, Section 2 will show that several broad-
cast algorithms exist for CAN but none of them was able to completely
remove duplicated messages purposes. Section 3 will present our broadcast algo-
rithm, together with its proof of efficiency and correctness. Section 4 will present
the evaluation of our algorithm over a distributed peer-to-peer network. Finally
Section 5 concludes this paper.

2 Related Works and Objectives

2.1 Context and Motivation

A CAN [3] is a structured P2P network based on a d -dimensional Cartesian
coordinate space labeled D. This space is dynamically partitioned among all
peers in the system such that each node is responsible for storing data, in the
form of (key, value) pairs, in a sub-zone of D. To store a (k, v) pair, the key
k is deterministically mapped onto a point in D and the value v is stored by
the node responsible for the zone comprising this point. The search for the value
corresponding to a key k is achieved by applying the same deterministic function
on k to find the node responsible for storing the corresponding value. These two
mechanisms are performed by an iterative routing process starting at the query
initiator and which traverses its adjacent neighbours (a peer only knows its
neighbours), and so on and so forth until it reaches the zone responsible for
the key to store/retrieve. One can find several definitions for a valid CAN, i.e.
which shape can the zone of each peer have and how peers can be organised
(see [2]). Here we rely on a very generic and simple definition: each zone is an
hyperrectangle, and the only structure is the neighbouring relation: each peer
only knows the peers whose zones are adjacent to its own zone. Additionally,
a CAN is a torus, and the peers on the left border know the ones on the right
border, but we will not use this feature in this paper. Figure 1 shows a 2-
dimension CAN and some exchanged messages between neighbours.

Filali et al. [4] used a CAN to store large set of RDF data, and to perform
queries taken from the BSBM benchmark [5]. They realised that the multicast

178 L. Henrio, F. Huet, and J. Rochas

I

Message

Forwarding
directions

Lower corner

A
B

C

Avoided
duplicate
message

E

D
Z

F

Fig. 1. M-CAN - Message forwarding

queries over several dimensions of the CAN did not scale properly because even
the best performing broadcast algorithm generates a lot of duplicate messages
(Section 4). These messages take valuable network resources, decreasing the
overall performance. Our objective is to design an efficient broadcast algorithm
that minimises the number of communications and that is only based on local
information in a CAN.

2.2 Positioning

Problem Statement. The basic problem of optimal broadcast in a CAN is
that, as a CAN is a P2P network, each peer only has information about the
zone it manages, and the zones managed by its neighbours. Consequently, it is
impossible to split the entire network into sub-spaces such that each zone exactly
belongs to one sub-space: in Figure 1, the initiator has no knowledge about Z
and cannot know that it must give the whole responsibility for zone Z to either
D or F. Indeed, the initiator could decide that F is responsible for the lower
half of Z, and that D is responsible for the upper half. In that case, Z would
receive the message twice. It is possible to design an optimal algorithm based
on sub-spaces, but this algorithm is inefficient because it almost never splits
the space to be covered, and only one message is communicated at a time1 [2].
Consequently, contrarily to the case of Chord [6], a broadcast algorithm for CAN
that is both efficient and optimal cannot simply rely on the partitioning of the
space to be covered.

Robustness. One can argue that having duplicated messages should increase
the robustness of the algorithm in case of failure, but there are much more effi-
cient ways to replicate the messages than an inefficient algorithm. A much better
way to ensure robustness would be simply to perform two efficient broadcasts
carrying the same message from two different initiators and along different di-
rections. In M-CAN [7], for example, some nodes receive the message once, while

1 More precisely the space to be covered is only split if it is not path-connected.

An Optimal Broadcast Algorithm for Content-Addressable Networks 179

others can receive it an arbitrarily high number of times, in an unpredictable
manner. This is clearly not the best way to ensure robustness.

Churns. Peers joining and leaving during a communication might require ad-
ditional mechanisms to ensure that each peer correctly receives the message.
Dealing with this issue generally relies on low-level synchronisations that de-
pends on the implementation of CAN and is out of scope here. However, in
order to tolerate churns between two broadcasts, our algorithm must rely only
on the structure provided by CAN. For example, a classical additional structure
for efficient broadcast is a spanning tree [8] but we do not use such a structure
here because it is difficult and costly to maintain on an evolving CAN.

Multicast. A crucial question is whether the primitive we aim for is a broadcast
or a multicast, i.e., whether it can be targeted at only some of the nodes. In M-
CAN [7], the authors suggest to reduce the problem of multicast to the one of
broadcast on another (CAN) network. While this approach is valid here, we are
interested in multicast over a range of values, i.e. along hyperrectangles included
in the CAN. Indeed, considering our definition of a CAN (each node is responsible
for a hyperrectangle zone), the intersection between an hyperrectangle to be
covered and a CAN remains a CAN, thus our algorithm is still valid to multicast
on a range of coordinates, or to cover only a certain number of dimensions.

An alternative definition of CAN [3] keeps track of the history of joining nodes,
which forms a tree. Using this tree as a spanning tree has two disadvantages:
first, this would limit the contribution to a subset of all possible CAN. Second,
this tree would not allow to perform range multicast because the restriction of
a CAN to an hyperrectangle leads to disconnected branches.

Our approach is the only one that allows efficient multicast over any particular
zone of a CAN, without relying on additional structures. Our algorithm addi-
tionally features the following characteristics (1) It can perform either broadcast
or range multicast. (2) It avoids duplicates, while replication is generally needed
in a peer-to-peer network; but for reliability reasons it should be added above
an efficient algorithm in a controlled way. (3) It tolerates churns in between two
executions of the algorithm as it only relies on the CAN structure; dealing with
churns during communications could only be done specifically for a particular
implementation of the CAN.

2.3 Related Works

A lot of work has been dedicated to broadcast and multicast on overlay networks.
The availability of efficient algorithms depends mostly on the ability to build
a spanning tree on the overlay. A tree-based system such as P-Grid [9] offers
a natural support for broadcast. Others such as Chord [10], Tapestry [11] or
Kademlia [12], can be seen as k-ary trees. Based on this observations, authors
in [6] propose an efficient broadcast algorithm. Although this work is close to
our own, it cannot be applied to CAN overlays, as building and maintaining a
spanning tree is difficult and costly.

180 L. Henrio, F. Huet, and J. Rochas

M-CAN [7] is an application-level multicast primitive which is almost efficient,
but does not eliminate all duplicates if the space is not perfectly partitioned (i.e.
if the zones managed by the peers have not an equal size). The authors measured
3% of duplicates on a realistic example. In a publish/subscribe context, Megh-
doot [13], built atop CAN, proposes a mechanism that totally avoids duplicates
but requires the dissemination to originate from one corner of the zone to be cov-
ered. In general, finding the corner of the area to be covered would introduce a
significant overhead (in terms of messages), resulting in an inefficient broadcast.

Compared to those approaches, our algorithm can originate from any node
of the CAN and still avoid duplicates. In this sense, we position our algorithm
as an improvement of M-CAN that completely eliminates duplicates. Below, we
describe more precisely the dissemination algorithm proposed by M-CAN, which
is the closest work to our approach.

2.4 M-CAN

In the following, the broadcast starts from one particular node, that we will call
the initiator. A message is sent along a given dimension (from 1 to D, where D
is the dimension of the CAN), and according to a given direction (which is either
ascending if the coordinates along the considered dimension are increasing, or
descending in the other case). It is only possible to forward the message to a
node that is a neighbour along the considered dimension and direction.

The basic steps of the M-CAN algorithm are as follows:

1. The initiator sends the message to all of its neighbours.
2. A node receiving the message from a neighbour along dimension i in direction
dir will forward the message to neighbours:
– along dimensions 1. . . (i-1)
– along dimension i in direction dir.

Figure 1 shows a 2-dimensional CAN where initiator Init, starts a broadcast.
In this figure, since node B has received a message from C along dimension 1, in
the ascending direction, node B will forward it only on the ascending direction
in dimension 1. Node C, on the other hand, has received the message along
dimension 2, in the ascending direction. Thus it will forward the message in
both directions along dimension 1, and only in the ascending direction along
dimension 2. In Figure 1, the set of directions that each node is responsible for
is pictured with red circled arrows.

This algorithm can lead to duplicated messages. For example, node B re-
ceives the same message from C and A. A deterministic condition is used to
remove some of the duplicates: a node only forwards the message if it abuts
the lowest corner of the neighbour it wants to forward to. This determinis-
tic condition is called the corner criteria. The lowest corner is defined here as
the corner which touches the propagation dimension and minimises the coor-
dinates in all other dimensions. According to this corner criteria, node A will
not forward the message to node B since A does not touch B’s lowest corner.

An Optimal Broadcast Algorithm for Content-Addressable Networks 181

However, this only removes duplicates arising from the first dimension and can-
not be applied in higher dimensions, otherwise the correctness of the broad-
cast could not be ensured. This is why some duplicates are still left with this
algorithm. For example in Figure 1, node E receives the message twice.

3 Efficient Broadcast Algorithm

Our algorithm extends M-CAN, and remove duplicated messages that arise in
dimensions higher than one. For this, we introduce a spatial constraint that
allows us to always apply the corner criteria: we always propagate on the first
dimension of a constrained sub-CAN.

3.1 Principles

The algorithm reasons on a set of nodes, where each node manages a rectangular
zone. Considering a dimension i, the lower bound and the upper bound of the
zone managed by node N are denoted N.LB[i] and N.UB[i]. We denote by D the
dimension of the CAN. Each message is sent according to a dimension (between
1 and D), and according to a direction (either ascending or descending).

Remember that the corner criteria prevents duplicates along the first dimen-
sion on which all the nodes forward. To prevent duplicates in the second dimen-
sion, we constraint the algorithm to only send the message to nodes belonging
to a particular hyperplane in the CAN space. Each of the nodes belonging to the
hyperplane will be responsible for propagating the message along the first di-
mension. We define the hyperplane as a set of fixed values in each dimension but
the last one. These values are arbitrarily chosen in the zone of the initiator and,
together, form what we call the spatial constraint. This spatial constraint is then
an hyperplane of dimension d− 1. The nodes belonging to this hyperplane form
a sub-CAN of dimension d−1. So we can recursively apply our algorithm on this
sub-CAN, with an hyperplane of dimension d − 2 as spatial constraint ; and so
on. When the hyperplane becomes a line, no duplicate can arise when following
the propagation direction if we send the message to the only one neighbour that
contains the line in this direction.

Here is how the algorithm works. When a message is received along dimension
k, it is forwarded to neighbours along dimensions 1..k−1 in both directions, and
along dimension k in only one direction (ascending or descending, identically to
the reception). We then apply our additional condition: among the neighbours
that are left, we send the message only to the ones that intersect the spatial
constraint on dimensions 1..k− 1, and that satisfy the corner criteria on dimen-
sions k + 1..d. All dimensions but k are thus constrained either by the spatial
constraint or by the corner criteria. We show that this ensures efficiency and
correctness of the algorithm in Section 3.3.

Figure 2 illustrates the algorithm on the same configuration as Figure 1. In
Figure 2, there is only one spatial constraint (on dimension 1) because the CAN
only has two dimensions. In this case, it is set to the upper bound of the initiator

182 L. Henrio, F. Huet, and J. Rochas

Fig. 2. Efficient broadcast in 2D

I

constraint x=10
constraint x=10 and y=5

corner
constraint

Fig. 3. Efficient broadcast in 3D

(node Init), where constraintx = 10. When D receives the message from Init
along dimension 2, D only forwards the message to neighbours which intersect
the line defined with constraint x = 10. Here, D only sends the message to C. E
is also a neighbour of D along dimension 2 in the ascending direction, but E does
not intersect the line. E will receive the message along dimension 1 afterwards.
More formally, with a CAN of 2 dimensions, a node forwards the message to a
neighbour if the following conditions are valid:

– when propagating along dimension 1:

Sender.LB[2] ≤ Neighbor.LB[2] < Sender.UB[2]

– when propagating along dimension 2:

Neighbor.LB[1] ≤ constraint[1] < Neighbor.UB[1]

As illustrated in Figure 3, this principle can be generalised to dimensions
greater than 2. Thanks to our additional condition, we still have no duplicate.
In dimension 3, the initiator first sends the message to the nodes intersecting a
plane. In this plane, the problem is reduced to the example shown in Figure 2. In
particular, one spatial constraint is used and a 2 dimensional corner criteria is
applied. Then, when propagating along dimension 1, a three dimensional corner
criteria is applied as depicted in Figure 3.

3.2 Broadcast Algorithm

We describe below the general algorithm in a more formal way. The data struc-
tures used in our algorithm are the following. A message embeds the spatial
constraint that is transmitted without modification. The spatial constraint is
a set of D coordinates that should represent a point belonging to the initia-
tor node; for example it can be its lowest corner. constraint[i] denotes the ith

An Optimal Broadcast Algorithm for Content-Addressable Networks 183

coordinate of this constraint. As the spatial constraint is transmitted without
modification together with the message, we denote it as a global value. Each
message is sent and received along a given dimension (dimension ∈ [1..D]) and
in a given direction (direction ∈ {ascending, descending}). Neighbours can be
formally defined as follows:

Definition 1. The neighbours of node N on dimension k and direction ascending
are the set of nodes N ′ such that:

N ′.LB[k] = N.UB[k] ∧ ∀i �=k. [N.LB[i], N.UB[i][∩ [N ′.LB[i], N ′.UB[i][�= ∅
Symmetrically, neighbours of node N on dimension k and direction descending
are the set of nodes N ′ such that:

N ′.UB[k] = N.LB[k] ∧ ∀i �=k. [N.LB[i], N.UB[i][∩ [N ′.LB[i], N ′.UB[i][�= ∅

Algorithm 3.1. Efficient broadcast algorithm

1: upon event reception of message M on dimension d0 and direction dir0 on node
2: for each k≤d0 do

3: if k=D+1 then

4: direction← ∅

5: else

6: if k < d0 then

7: direction← {descending,ascending}
8: else

9: direction←dir0
10: for each dir in direction do

11: for each neighbour on dimension k and direction dir do

12: for each i in 1 .. k − 1 do � Spatial Constraint
13: if not (neighbour.LB[i] ≤ constraint[i] < neighbour.UB[i]) then

14: skip neighbour

15: for each i in k + 1 .. D do � Corner Criteria
16: if not(node.LB[i] ≤ neighbour.LB[i] < node.UB[i]) then

17: skip neighbour

18: send message on dimension k and direction dir to neighbour

19: end event

The detailed algorithm is given in Algorithm 3.1. Upon message reception
along dimension d0, a node must forward it along lower dimensions (line 2) in
both directions (line 7), and along dimension d0 in the same direction (line 9).
For each neighbour in the considered dimensions and directions, their coordi-
nates in dimensions lower than the propagating dimension are checked against
the spatial constraints (line 12-14), and their coordinates in dimensions higher
than the propagating dimensions are checked against the corner criteria (line
15-17). The spatial constraint condition on a dimension i checks that the neigh-
bour’s zone contains the ith value of the spatial constraint in the dimension i:

184 L. Henrio, F. Huet, and J. Rochas

neighbour.LB[i] ≤ constraint[i] < neighbour.UB[i]

The corner criteria on dimension i checks that, along dimension i, the lower
bound of the neighbour in the dimension i is in the zone of the sender:

node.LB[i] ≤ neighbour.LB[i] < node.UB[i]

If a neighbour verifies both conditions, the message is sent to it. This algorithm
is initiated by sending a broadcast message to the initiator from an artificial
dimension D + 1 (line 3).

3.3 Properties of the Algorithm

In the following, we prove the main properties of the algorithm. Those properties
ensure that each node of the CAN receives the message exactly once. We first
introduce two lemmas that are crucial to prove the properties of the algorithm.

Lemma 1. If node N sends a message to node N ′ along dimension d and in
direction dir then:

∀i < d.N ′.LB[i] ≤ constraint[i] < N ′.UB[i]

and if N ′ is not the initiator (i.e., d ≤ D) then:

– either dir = ascending and N ′.LB[d] > constraint[d],
– or dir = descending and N ′.UB[d] ≤ constraint[d].

Proof. By recurrence on the length of the path needed to reach node N ′, i.e., on
the number of messages needed to reach node N ′.

The initiator artificially receives a message from outside the CAN on dimen-
sion D + 1; Here it is sufficient to verify:
∀i < D + 1. N ′.LB[i] ≤ constraint[i] < N ′.UB[i]
As the constraint must belong to the initiator node, this is trivial.

Now suppose that N ′ is not the initiator; node N sends a message to node N ′

on dimension d and from direction dir. First, as the message was sent from node
N (possibly the initiator), by executing Algorithm 3.1, the algorithm ensures
that ∀i < d.N ′.LB[i] ≤ constraint[i] < N ′.UB[i], else N ′ would have been
skipped at line 16. Second, suppose dir = ascending (the message is sent towards
increasing coordinates). Then two cases are possible:

– N is the initiator and d < D + 1, then N.LB[d] ≤ constraint[d] < N.UB[d]
(because the constraint belongs to the initiator’s zone).

– N is not the initiator, thus there was a message sent from N0 to N on
dimension d′ and direction dir′. By definition of the algorithm, we have two
possibilities:

An Optimal Broadcast Algorithm for Content-Addressable Networks 185

• d = d′ and dir′ = ascending; by recurrence hypothesis
N.LB[d] > constraint[d]; additionally, we always have N.UB[d] >
N.LB[d].
• d < d′; in that case, by recurrence hypothesis N.LB[d] ≤ constraint[d] <
N.UB[d].

In all cases, we have N.UB[d] > constraint[d]. As N ′ is a neighbour of N on
dimension d and direction ascending, by Definition 1, N ′.LB[d] = N.UB[d], con-
sequently, N ′.LB[d] > constraint[d].

The case where dir = descending is similar: we have by recurrence N.LB[d] ≤
constraint[d], and by the neighbouring definition N ′.UB[d] ≤ constraint[d].

The following corollary is a direct consequence of the preceding lemma.

Lemma 2 (Corollary). If node N sends a message to node N ′ on dimension
d and direction dir then:

(∀i < d′. N ′.LB[i] ≤ constraint[i] < N ′.UB[i])⇒ d′ ≤ d

(N ′.LB[i] > constraint[i] ∨N ′.UB[i] ≤ constraint[i])⇒ i ≥ d
From the two lemmas above, we can prove the efficiency and correctness of

the algorithm. First, our broadcast algorithm is efficient in the sense that the
same message is never received twice by the same node:

Theorem 1 (Efficiency). Two nodes cannot send the message to the same
third one.

Proof. We prove the theorem by contradiction: we suppose node N1 sends the
broadcast message on dimension d1 and direction dir1 to node N and that N2

sends the broadcast message on dimension d2 and direction dir2 to node N , with
N1 �= N2.

Let us first prove that d1 = d2 by contradiction too. Suppose without loss
of generality that d1 < d2, then by Lemma 1 applied on the message from
N2 to N on dimension d2, as d1 < d2 we have N.LB[d1] ≤ constraint[d1] <
N.UB[d1]. Additionally, by Lemma 1 applied on the message from N1 to N we
have either dir = ascending and N.LB[d1] > constraint[d1] or dir = descending
and N.UB[d1] ≤ constraint[d1]. In both cases there is a contradiction; thus d1 =
d2. Also dir1 = dir2, else the application of Lemma 1 would also lead to a
contradiction.

Secondly, suppose again that dir = ascending (the case descending is similar).
By definition of Algorithm 3.1, the message was not skipped at line 21, neither
by N1 nor N2, and so:
∀i ∈ d1 + 1..D.N1.LB[i] ≤ N.LB[i] < N1.UB[i]

∧ N2.LB[i] ≤ N.LB[i] < N2.UB[i].
Additionally, as N is neighbour of N1 and N2 along dimension d1 and direc-

tion ascending,

186 L. Henrio, F. Huet, and J. Rochas

N.LB[d1] = N1.UB[d1] = N2.UB[d1] (Definition 1). Finally, we also have:
∀i ∈ 1..d1−1. N1.LB[i] ≤ constraint[i] < N1.UB[i]

∧ N2.LB[i] ≤ constraint[i] < N2.UB[i],
because N1 and N2 themselves received the message on a dimension greater or
equal to d1 and by Lemma 1. Now consider the point P of coordinates:
(constraint[1], .., constraint[d1 − 1], N.LB[d1]− ε,N.LB[d1 + 1], .., N.LB[D])
where ε is a small value (e.g., half the smallest dimension of the smallest zone of
the CAN). The arguments above allow us to prove that P is both in the zone of
N1 and in the zone of N2, which is contradictory with the definition of a CAN:
each point of the Cartesian space is managed by one and only one node. Hence
N1 and N2 are necessarily the same node.

We proved that Algorithm 3.1 is efficient. Note that showing that the initiator
does not receive the message twice needs a separate but similar proof. Finally,
we can prove that this broadcast algorithm covers the whole network. Overall,
we show that each node of the CAN receives the message exactly once.

Theorem 2 (Coverage). Each node of the network receives the message.

The proof of this theorem is provided in the research report associated to this
paper [14]. It heavily relies on Lemma 1 and 2. The principle is simple: according
to Lemma 1 and 2 we can deduce the node that is “responsible” for sending the
message to each node. Consider the highest dimension on which a node does not
intersect the constraint. If, on this dimension, this node is above the constraint,
then the responsible node is a neighbour located along this dimension in the
descending direction that should send it the message. Additionally, we say that
a node N1 is “closer” than another node N2 to the constraint if either the highest
dimension on which the node does not intersect the constraint is bigger for N2

than forN1 (i.e.N1 meets more constraints), or if this dimension is the same, and
the lower bound of N1 is closer to the constraint than N2 on this dimension. The
proof works by contradiction: we consider N0, the uncovered node the “closest”
to the constraint. We then prove that the node N ′ “responsible” for sending the
message to N0 effectively meets all the constraints for sending the message and
that it is “closer” to the constraint. If N ′ received the message it should have
sent it to N0, and if it did not, the N0 is not the closest uncovered node as N ′

is closer. This is contradictory.
It is worth noticing that it is easy to make our algorithm robust to commu-

nication failures. Indeed, it is sufficient to perform two independent broadcasts
from two different initiators, and reversing the role of each dimension, this way
each node receives the message exactly twice and from different senders.

4 Evaluation

In this section we present experiments highlighting the performance of our algo-
rithm. We show that, in realistic situations, it significantly reduces the volume
of data exchanged. We have based our implementation on the EventCloud [15]
platform. Entirely written in Java, EventCloud is a system that uses CANs as

An Optimal Broadcast Algorithm for Content-Addressable Networks 187

the underlying structure for event processing. It currently runs a flooding-based
(naive) broadcast algorithm. We have added a version of our algorithm and an
implementation of M-CAN to this framework, and studied the performance of
these three algorithms.

4.1 Variation of the Number of Peers

Experimental Setup. We have experimented on a grid of four geographically
distant clusters, using up to 200 physical machines. All the machines involved
in the experiment have two 4-core CPUs and at least 16GB of memory. In
each site, the machines are linked with a 1Gb/s Ethernet network. Inter-site
communications rely on a 10Gb/s dark fiber.

The software setup was as follows. In all experiments we built CAN overlays
with a variable number of peers (from 50 to 1500) and 5 dimensions. Applications
that use CAN usually vary from two to an infinite number of dimensions, as in
works [16,17]. The improvement due to our algorithm is greater as the CAN has
more dimensions, as detailed in [14]. We considered that 5 dimensions would
be a good compromise to show that, even with a small number of dimensions,
our algorithm can already achieve a meaningful speedup. Each peer runs in
its own Java Virtual Machine and we ensure that no machine executes more
than 8 peers. The construction of the overlay was performed using the canonical
algorithm described in [1]: when a new peer wants to join the overlay, it randomly
chooses a point in the whole space. It then finds the peer responsible for the zone
where this point lies, and takes half of it.

Since we wanted our experiments to represent realistic scenarios and to com-
pare the different algorithms in similar conditions, we have used the following
experimental protocol:

1. A CAN is randomly built with a given number of peers.
2. For each algorithm, ten broadcasts are started simultaneously from different

peers chosen at random.
3. Step 1 and step 2 are repeated ten times.

Experimental Results. Figure 4 shows the average number of exchanged messages
per broadcast algorithm. The horizontal lines highlight the optimal (minimum)
number of messages required to cover the entire network. The naive broadcast
algorithm produces a high number of duplicate messages. By contrast, the M-
CAN algorithm improves a lot the naive algorithm but a non-negligible number
of duplicate messages is still left, especially in large networks. With 1500 peers,
395 duplicate messages are recorded on average. Moreover, from the error bars,
we can see that the M-CAN algorithm is unpredictable. The number of messages
is very dependent on the CAN configuration and on the location of the broad-
cast initiator. This is why a particular execution can generate up to twice the
optimal number of messages. On the other hand, our algorithm always requires
the minimum number of messages in order to reach every peer in the network.

We have measured the total size of exchanged data for each algorithm. Note
that the messages did not contain any useful payload, thus we only measure the

188 L. Henrio, F. Huet, and J. Rochas

Fig. 4. Average number of messages and optimal number of messages with 5 dimensions

Fig. 5. Average execution time and speed up from the naive broadcast

cost of the broadcast operation. With 1500 peers in the network, the M-CAN
algorithm generated 25.6 MB of data on average. Our algorithm generated only
20.3 MB of data on average, i.e. a 20% reduction. Aside, we have also experi-
mented with various number of dimensions: from 2 to 15 [14]. The percentage of
duplicate messages with 15 dimensions using M-CAN was 112%. But even with
a small number of dimensions, from 3 to 5 dimensions, we measured in average
25% of duplicate messages with M-CAN. As a consequence, our algorithm is
always significantly more efficient in terms of messages than M-CAN.

We have also measured the execution time, i.e. the time needed for each peer to
receive at least one of the broadcastmessage. Figure 5 shows the average execution

An Optimal Broadcast Algorithm for Content-Addressable Networks 189

time of the three algorithms, and the speed up compared to the naive broadcast
algorithm. The naive broadcast algorithm is significantly slowed down as the net-
work grows. This is due to the quantity of duplicate messages that overload the
network. On the other hand, both M-CAN and our algorithm maintain good per-
formance as the network size increases. However,M-CAN exhibits a lower scalabil-
ity because of the remaining duplicate messages. Compared to the naive broadcast
on 1500 peers, M-CAN has only a speed-up of 5 whereas our algorithm reaches 8.

The previous experiments show that, although the number of duplicates with
M-CAN is low, it still has a clear impact on realistic systems. Our algorithm,
by totally avoiding duplicate messages, offers a significant improvement in terms
of bandwidth and execution time, even when the CAN has a small number of
dimensions.

5 Conclusion

In this article we have provided an algorithm for efficient broadcast over CAN
peer-to-peer networks. We have proven that this algorithm covers the whole
network, while preventing any node from receiving the same message twice.
Moreover, it solely relies on the structure of the overlay and does not require to
maintain a spanning tree, which would be too costly. To show the practical use-
fulness of our algorithm, we have implemented it in a large scale platform and
performed extensive experiments using up to 1500 peers on 200 physical ma-
chines. Our experiments show that the algorithm scales and completely prevents
duplicated messages. Compared to the previously best broadcast algorithm, we
reduce the amount of data on the network by up to 20%. As a consequence,
when performing a high number of parallel broadcast queries, we were able to
show a significant speedup compared to existing solutions.

Overall, this article shows that CAN overlays can be used effectively as in-
formation dissemination architectures. One of the main advantages of our ap-
proach is that we rely on a very broad definition of CAN overlays: a CAN is
a N-dimensional space partitioned into hyperrectangles. As a consequence, our
algorithm can be adapted to many variants of CAN, as long as zones are hyper-
rectangles and neighbours correspond to adjacent zones.

Acknowledgments. This work was funded by the EU FP7 STREP PLAY
(www.play-project.eu) and French ANR SocEDA (www.soceda.org). Experi-
ments presented in this paper were carried out using the Grid’5000 experimental
testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding
bodies (see www.grid5000.fr).

References

1. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMM), pp. 161–172. ACM (2001)

www.play-project.eu
www.soceda.org
www.grid5000.fr

190 L. Henrio, F. Huet, and J. Rochas

2. Bongiovanni, F., Henrio, L.: A mechanized model for can protocols. In: Cortellessa,
V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 266–281.
Springer, Heidelberg (2013)

3. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: A Scalable Content Address-
able Network. In: Proceedings of the Third International COST264 Workshop on
Networked Group Communications (August 2001)

4. Filali, I., Pellegrino, L., Bongiovanni, F., Huet, F., Baude, F., et al.: Modular p2p-
based approach for rdf data storage and retrieval. In: Advances in P2P Systems
(2011)

5. Bizer, C., Schultz, A.: The berlin sparql benchmark. International Journal on Se-
mantic Web and Information Systems (2009)

6. El-Ansary, S., Alima, L., Brand, P., Haridi, S.: Efficient broadcast in structured
P2P networks. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735,
pp. 304–314. Springer, Heidelberg (2003)

7. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Application-Level multicast
using Content-Addressable Networks. In: Crowcroft, J., Hofmann, M. (eds.) NGC
2001. LNCS, vol. 2233, pp. 14–29. Springer, Heidelberg (2001)

8. Perlman, R.: An algorithm for distributed computation of a spanningtree in an
extended lan. In: Proceedings of the Ninth Symposium on Data Communications,
SIGCOMM 1985. ACM (1985)

9. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. ACM
SIGMOD Record 32(3), 33 (2003)

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In: Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), pp. 149–160. ACM, New York (2001)

11. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22(1), 41–53 (2004)

12. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the xor metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

13. Gupta, A., Sahin, O.D., Agrawal, D.P., El Abbadi, A.: Meghdoot: content-based
publish/subscribe over P2P networks. In: Jacobsen, H.-A. (ed.) Middleware 2004.
LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004)

14. Henrio, L., Huet, F., Rochas, J.: An Optimal Broadcast Algorithm for Content-
Addressable Networks – Extended Version. Research report (September 2013),
http://hal.inria.fr/hal-00866228

15. INRIA: The EventCloud middleware (2012),
http://www.play-project.eu/solutions/event-cloud

16. Li, M., Ye, F., Kim, M., Chen, H., Lei, H.: Bluedove: A scalable and elastic pub-
lish/subscribe service. In: IPDPS (2011)

17. Anceaume, E., Le Merrer, E., Ludinard, R., Sericola, B., Straub, G.: Fixme: A
self-organizing isolated anomaly detection architecture for large scale distributed
systems. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS,
vol. 7702, pp. 1–15. Springer, Heidelberg (2012)

http://hal.inria.fr/hal-00866228
http://www.play-project.eu/solutions/event-cloud

On Local Fixing

Michael König and Roger Wattenhofer

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland
{mikoenig,wattenhofer}@ethz.ch

Abstract. In this paper we look at the difficulty of fixing solutions
of classic network problems. We study local changes in graphs (edge
resp. node insertion resp. deletion), and network problems (e.g. maximal
independent set, minimum vertex cover, spanning trees, shortest paths).
A change/problem combination is locally fixable if an existing solution
of a problem can be fixed in constant time in case of a local change in
the graph. We analyze a variety of well-studied classic network problems
with different characteristics.

Keywords: Local Fixing, Fault Tolerance, Graph Problems, Complex-
ity Classes and Maximal Independent Set.

1 Introduction

Every driver knows about the buying vs. fixing dilemma: Is it worth it to repair
the old car, or should one instead rather buy a new model? This dilemma also
exists in the context of distributed computing: If a solution to a problem breaks
because of a small topology or input change, is it cheaper to fix the solution, or
should one rather compute a new solution from scratch? Clearly the answer to
this general question depends on many parameters, such as the studied problem,
or how broken a solution is, or the measure of cost for fixing and computing.

For the weighted matching problem, Lotker, Patt-Shamir, and Rosen proved
that fixing [21] is indeed strictly cheaper than computing [14]. Even more surpris-
ingly, there are also examples where computing is cheaper than fixing. Kutten
and Peleg show that fixing a maximal independent set (MIS) is NP -complete
in a footnote in [17], whereas computing is known to take at most polyloga-
rithmic time [22]. These two examples motivated our quest towards a better
understanding of the distributed complexity of fixing vs. computing.

In this paper we freeze two of the many parameters of the problem space.
First, we are only interested in whether graph changes can be fixed locally (in
constant time). Second, we assume that a solution is pretty much intact, i.e.,
the broken pieces are small, and well-separated in space or time. The topology
changes we are looking at in particular are deletions and insertions of single
nodes and edges, as they would happen in a moderately dynamic network. For
node changes we further differentiate between nodes with one or more edges.
We believe that this array of changes is a suitable model for typical failures in

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 191–205, 2013.
c© Springer International Publishing Switzerland 2013

192 M. König and R. Wattenhofer

real networks, where a single node might crash or a single edge could become
disconnected. In our analysis we only cover one such change in the entire network,
however, it is possible that several such changes happen, as long these changes
are either well-separated in space (such that they do not influence each other) or
time (such that there is enough time to fix one change before the next happens).
We examine a diversity of well-studied classic network problems with different
characteristics.

Our main findings are as follows: (i) Many problems that feature a constant or
polylogarithmic distributed computing complexity can be fixed locally. However,
there is no general rule, as there are exceptions. (ii) Global problems are generally
not locally fixable. However, adding or removing leaves (nodes with a single edge)
often seems to pose no difficulty. Again, there is no general rule, as there are
exceptions. (iii) In addition, we show relations between different types of changes.

In summary, even though fixing is often cheaper than computing, in a math-
ematical sense the two are orthogonal. An overview of our concrete findings is
given in Table 1.

Table 1. Overview of our results. On the left side we present the known lower and
upper bounds to compute a solution for a given problem; these bounds are in the
local model, where message size is not bounded. The problems are subdivided by their
distributed complexity classes (local, polylogarithmic and global). On the right hand
side we list the cost of fixing each problem/change combination (the shorthands for the
changes are explained in Section 2.3). A “✔” entry means that the combination can
be fixed locally (in constant time), a “✗” entry means that it is not possible to fix the
combination locally, and “—” entries only appear in rows where the problem instance
does not have edge weights, i.e., where weight changes are not defined. Note that there
is a “✔” and a “✗” in every column, in all distributed complexity classes.

Computation Local Fixing
lower bound upper bound +e −e w→ w′ +v1 −v1 +v∗ −v∗

Γ1-Count Ω(1) O(1) ✔ ✔ — ✔ ✔ ✔ ✔

o(n)-MDS Ω(1) O(1) [16] ✗ ✗ — ✗ ✗ ✗ ✗

MIS Ω(
√
log n) [14] O(log n) [22] ✔[17] ✔[17] — ✔[17] ✔[17] ✔ ✔

O(1)-MWM Ω(
√
log n) [14] O(log n) [21] ✔ ✔ ✔ ✔ ✔ ✔[21] ✔[21]

MM Ω(
√
log n) [14] O(log n) [12] ✔ ✔ — ✔ ✔ ✔ ✔

2-MVC Ω(
√
log n) [14] O(log n) [12] ✔ ✔ — ✔ ✔ ✔ ✔

Γlogn-Count Ω(log n) O(log n) ✗ ✗ — ✗ ✗ ✗ ✗

ST Ω(D) O(D) ✔ ✗ — ✔ ✔ ✔ ✗

MST Ω(D) O(D) ✗ ✗ ✗ ✔ ✔ ✗ ✗

SPT Ω(D) O(D) ✗ ✗ ✗ ✔ ✔ ✗ ✗

Flow Ω(D) O(D) ✗ ✗ ✗ ✔ ✔ ✗ ✗

Leader Ω(D) O(D) ✔ ✔ — ✔ ✔ ✔ ✔

Count Ω(D) O(D) ✔ ✔ — ✗ ✗ ✗ ✗

On Local Fixing 193

2 Model

2.1 Distributed Computing

We are given a network modeled as a graph G = (V,E), in which the nodes
must base their computations and decisions on the knowledge about their local
neighborhoods. More precisely, a distributed algorithm needs time t if each node
v ∈ V can decide based on its t-hop neighborhood Γt(v). Nodes decide individ-
ually on their outputs without communication. Hence, the output of each node
v is a function of Γt(v).

This neighborhood model, first introduced by Linial [19], is related to the classic
message passing model of distributed computing. In the message passing model,
the distributed system is modeled as a communication network, again described
by an undirected graph G = (V,E). Each vertex v ∈ V represents a node (host,
device, processor, . . .) of the network, and an edge (u, v) ∈ E is a bidirectional
communication channel that connects two nodes.

Initially, nodes have no knowledge about the network graph; they only know
their own identifier and potential additional inputs. All nodes wake up simulta-
neously and computation proceeds in synchronous rounds. In each round, every
node can send one message to each of its neighbors. A node may send different
messages to different neighbors in the same round. Additionally, every node is
allowed to perform local computations based on information obtained in mes-
sages of previous rounds. Communication is reliable, i.e., every message that is
sent during a communication round is correctly received by the end of the round.
A message passing algorithm has time complexity t if all nodes compute their
output in t communication rounds.

If messages may be large, it is well known that the message passing model
is equivalent to the neighborhood model, i.e., nodes can compute their output
based on their t-hop neighborhood if and only if they can compute their output
in t rounds of synchronous communication in the message passing model. This
common t is known as the distributed time complexity.

Similarly, we can define the time t to fix a change to be either the size of the
neighborhood Γt(v) of a node v that is involved in the fix, or as the number of
communication rounds t in a message passing algorithm to fix the change.

Various distributed complexity classes are known for t. The most important
classes are

– local algorithms, where the time t is a constant independent of any parameter
of the network, i.e., t ∈ Θ(1),

– polylog algorithms where the time t is polylogarithmic in the number of nodes
n, i.e., t ∈ Θ(polylog n), and

– global algorithms which need Θ(D) time, where D is the diameter of the
network.

194 M. König and R. Wattenhofer

Depending on the application, the boundary between local and polylog [23,27]
or the boundary between polylog and global [19] are considered more important.
In this paper we deal with all three classes. Regarding the fixing time, we are only
interested in strictly local algorithms, i.e., a change must be fixed in constant
time, in the O(1)-neighborhood. Regarding the computing time, we look at both
the polylog and the global class in order to get a broader sense of the fixing vs.
computing issue.

2.2 Network Problems

The different network problems we discuss are, grouped by complexity class:

– local
• o(n)-Minimum Dominating Set
• Counting the 1-neighborhood

– polylog
• Maximal Independent Set
• Maximal Matching
• O(1)-Maximum Weighted Matching
• 2-Minimum Vertex Cover
• Counting the logn-neighborhood

– global
• Spanning Trees
• Minimum Spanning Trees
• Shortest Paths Tree
• Maximum Flow
• Leader Election
• Counting the whole graph

For space reasons we omit the full problem definitions here and ask the interested
reader to consult the full version.

2.3 Examined Graph Changes

We considered the following graph changes when examining the possibility of
local fixing:

– Edge insertion (+e): adding a previously absent edge to the graph without
changing the nodes of the graph.

– Edge deletion (−e): removing a previously present edge from the graph with-
out changing the nodes of the graph.

– Edge weight change (w → w′): changing the weight of an already present
edge in the graph without changing the nodes of the graph.

– 1-edge vertex insertion (+v1): adding a vertex to the graph plus a single
edge connecting the new vertex to an existing one.

– 1-edge vertex deletion (−v1): removing a vertex which is only adjacent to
one edge together with its edge from the graph.

On Local Fixing 195

– Vertex insertion (+v∗): adding a vertex to the graph plus any amount of
edges connecting the new vertex to existing ones.

– Vertex deletion (−v∗): removing any vertex and all edges adjacent to it from
the graph at once.

For weighted graphs inserted edges may have any positive weights assigned to
them. The insertion and deletion of nodes without any edges is trivial for all the
problems in question. We assume that after a change occurs all nodes directly
adjacent to the change are notified of the exact kind of change that occurred.

Further, we allow treating a node “crash” (i.e., a sudden removal from the
communication graph) as if the node gracefully “signed off” (organizing any
necessary restructuring of the system prior to the node’s departure). For this
we let every node whose sudden removal would be critical create a “last will”
and deploy it at its immediate neighbors. The last will contains the results a
proper sign-off procedure would have had. To compute the last will, the sign-off
procedure is simulated beforehand, which we require to be local (i.e., conclude
within O(1) rounds). Note that every time a state change in the graph could
cause the results of a sign-off to change the respective last will must be computed
and distributed anew. However, also note that this procedure does not affect the
time complexity of computing or fixing a problem, as we require the computation
of the last will to only take O(1) rounds. We require last wills for some local
fixability results in Sections 4.4 and 4.10.

Definition 1 (PC Notation). We write PC to denote the problem of fixing a
solution of the graph problem P after a graph change C. For instance, MIS+e

denotes the problem of fixing a maximal independent set after an edge insertion.

3 Related Work

Distributed network algorithms have been studied ardently for almost 30 years.
One of the most basic problems is the maximal independent set (MIS) prob-
lem. It was shown that the distributed computation of an MIS can be done in
O(log n) time [2,22]. Closely related to the MIS problem is the maximal match-
ing problem, as a maximal matching can essentially be computed by computing
an MIS on the edges, and as such both algorithms are similar [12]. Since the
vertices adjacent to a maximal matching are a 2-approximation for vertex cover,
also 2-MVC can be solved in O(log n) time.

The study of distributed weighted matching is more recent, the first constant
approximation in polylogarithmic time was shown less than a decade ago [28].
Later, [21] discovered that some of the steps of the algorithm of [28] can be
executed in parallel, improving the distributed time complexity to O(log n). It
was shown by [20] that one can even achieve a (1+ε)-approximation in the same
time, using a different method.

Kuhn et al. showed that a polylogarithmic approximation for MVC cannot
be solved in less than polylogarithmic time [13,14]. Using reductions, one can

196 M. König and R. Wattenhofer

immediately prove an Ω(
√
logn) lower bound for our problems with polyloga-

rithmic distributed complexity. This lower bound was strengthening the earlier
log-star lower bound by Linial [19], showing that all these problems (and some
more) are indeed in the polylogarithmic distributed complexity class.

Our tree-based problems are in the global distributed complexity class, as one
must send information across the whole network, and as such Ω(D) is a time
lower bound. If message size is not bounded, just gathering all the information
at all the nodes, and then computing the solution locally solves all problems
in asymptotically optimal O(D) time. Using a simple flooding process, one can
compute a spanning tree in O(D) time using small messages only. In the syn-
chronous model, this spanning tree will be a shortest path tree. For the MST
problem, it is not possible to get a solution in O(D) time using short messages
only [25,9,26]. For flow and other global problems, there are results which also
suggest a distributed complexity polynomial in n [26,10]. Our overview table
contains the results in the unbounded message size model, also known as the
local model.

The subject of our paper is not so much the complexity of distributed comput-
ing, but rather the complexity of distributed fixing. Clearly, faults have played a
major role in distributed computing since an early time. In fact, one may argue
that distributed fixing was in fact studied even earlier, as early as in the 1970s
when Dijkstra introduced the concept of self-stabilization [6,7]. In contrast to
our work, a self-stabilizing algorithm must survive many failures, not just one,
and as such it seems to be a difficult challenge. However, as shown 20 years
ago [4,1,5], efficient self-stabilization often boils down to distributed computa-
tion. As such, surprisingly, computation and self-stabilization are more closely
related than computation and fixing. See [8,18] for an overview. More recently,
“self-healing” algorithms have gained attention [24,11].

Dynamic networks are another area related to our work, in which the graph
topology is permanently changing, either because of changing environmental
conditions (edge changes in wireless networks), mobility (edge changes because
of moving nodes in mobile networks), algorithmic dynamics (edge changes due
to algorithmic decisions in overlay networks), or churn (nodes constantly joining
or leaving as in peer-to-peer systems). In dynamic networks no node is capable
of maintaining up-to-date global information on the network. Instead, nodes
have to perform their intended (global or polylogarithmic) task based on locally
available information only, i.e., all computation in these systems is inherently
local. In the last decade there was a tremendous rise in interest in dynamic
networks, see [15] for an overview. This line of work is also more ambitious than
ours in the sense that large fractions of the network can change concurrently.
On the other hand, we restrict ourselves to constant time solutions.

Regarding fixing vs. computing, a most inspiring prior work is by Kutten and
Peleg [17]. For the MIS problem, if P �= NP , they show that fixing can be much
harder than computing. For this, they consider a model, in which each node is in
one of three states: (‘1’) in the MIS, (‘0’) not in the MIS, or (‘?’) forgot whether
or not in the MIS. They then study how long it takes to compute the missing

On Local Fixing 197

node states. 3SAT can be reduced to this problem in a straightforward way. We
briefly describe the construction here, because Kutten and Peleg only mention
it in a footnote, and did not bother to describe it in detail. Every clause of a
3SAT instance is represented by a node in state ‘0’. Every variable is represented
by two connected nodes (one for true, one for false), both in state ‘?’. For each
clause, there are 3 edges between the clause node and the variable nodes of
the variables in the clause. We conclude that fixing an MIS in their model is
NP -complete.

In a more relaxed model they consider fixing an MIS where every node knows
whether it is in the MIS but may be in a conflicting state, i.e., be in the MIS
while having a neighbor in the MIS or not being in the MIS while having no
neighbors in the MIS. They present a transformation for MIS algorithms yielding
a O(log x) randomized and a 2O(

√
log x) deterministic fixing algorithm, where x

is the number of nodes in conflicting states. Our model has a certain overlap
with this model: In case a topology change in our model only puts a constant
number of nodes into a conflicting state, their method also offers a local fix.

Another milestone is Chapter 4 of the previously mentioned paper by Lotker,
Patt-Shamir, and Rosen [21], where they prove that their technique can be
adapted to dynamic graphs. In fact, not only do they introduce our notion of
topology changes, but they also show that a single node insertion or deletion
with any amount of adjacent edges in a maximum weighted matching solution
can indeed be fixed in constant time, keeping a constant approximation ratio.
Since this beats the lower bound regarding the computational complexity for this
problem, it is a nice example that fixing can be strictly easier than computing.

4 Results

An overview of our results can be found in Table 1. For space reasons we will
omit some of the lemmas and proofs here and ask the interested reader to consult
the full version, which contains proofs for all of the listed results.

In the following we will make use of the two graph classes defined below.

Definition 2 (Paths, Rings). A path graph with n vertices is given by G =
(V,E):

V = {0, . . . , n− 1},

E =
n−1⋃

i=1

(i − 1, i) .

A ring graph additionally has the edge (0, n− 1).

4.1 Graph Change Relationships

The different graph changes we are studying are related. The following lemmas
summarize some implications that can be made.

198 M. König and R. Wattenhofer

Lemma 1. For any graph problem P :

– If we can fix P+v∗ locally, we can also fix P+v1 locally.

– If we can fix P−v∗ locally, we can also fix P−v1 locally.

Lemma 2. For any weighted graph problem P , if we can fix both P+e and P−e

locally, we can also fix Pw→w′
locally.

Lemma 3. For any graph problem P , if we can fix both P+v∗ and P−v∗ locally,
we can also fix P+e, P−e and Pw→w′

locally.

4.2 Vertex Counting

In this section we will discuss the problem of each node knowing the number of
nodes in its r-neighborhood for different values of r.

While very straightforward, Γ1-Count is a typical example of a problem which
can be computed and also fixed in constant time:

Lemma 4. Γ1-Count
+e,Γ1-Count

−e,Γ1-Count
+v1 ,Γ1-Count

+v∗ ,Γ1-Count
−v1

and Γ1-Count
−v∗ are local.

Proof. After any change all directly adjacent nodes can simply recompute their
count values. This requires O(1) rounds. Any node not adjacent to a change will
still have a valid count. The lemma follows.

For r ∈ ω(1), i.e., non-constant r, counts can generally not be fixed in constant
time anymore:

Lemma 5. For any r ∈ ω(1): Γr-Count
+v1 , Γr-Count

+v∗ , Γr-Count
−v1 and

Γr-Count
−v∗ are not local.

Proof. Adding or removing a node with any (positive) amount of edges anywhere
requires updating the node counts in all nodes up to r hops away. This requires
r /∈ O(1) rounds. The lemma follows.

Lemma 6. For any r ∈ ω(1): Γr-Count
+e and Γr-Count

−e are not local if
r < D; Γr-Count

+e and Γr-Count
−e are local for r ≥ D.

Proof. Consider a path graph. Removing edge (0, 1) or adding edge (0, n − 1)
requires updating the node counts in all nodes with indices 0 through r−1. This
requires r − 1 /∈ O(1) rounds. The first part of the lemma follows.

If r ≥ D every node is counting all nodes in the graph, since we are not
considering graph changes which disconnect the graph. Adding and removing
edges would not change any node counts in that case. The second part of the
lemma follows.

On Local Fixing 199

4.3 Minimum Dominating Set

In this section we will discuss the problem of approximating minimum dominat-
ing sets. This problem does not allow for any local fixing and was chosen to give
an example for this particular phenomenon. We are considering only non-trivial
approximations, i.e., within o(n) of the minimum dominating set.

Note that although we can compute an o(n)-MDS from scratch in constant
time [16], fixing one within O(1) hops of a graph change is an entirely different
problem!

Lemma 7. o(n)-MDS+v1 is not local.

Proof. First, we will show, that no algorithm can solve k-MDS+v1 in any con-
stant number of steps c (“locally”), for any k with 1 ≤ k ≤ n+1

c − 2. Let us
define:

a1a2

a3

a4 a5

b1 b2 b3 b4 b5 b6 b7

Fig. 1. Example graph with x=5 and y=7

x = �(k − 1)(c+ 1)	,
y = 3c+ 1,

G = (V,E),

V = (a1, a2, . . . , ax, b1, b2, . . . , by),

E = {(ai, b1) | 1 ≤ i ≤ x} ∪ {(bi, bi+1) | 1 ≤ i < y},
U = {ai | 1 ≤ i ≤ x} ∪ {b2} ∪ {b3i | 1 ≤ i ≤ c},
U∗ = {b3i+1 | 0 ≤ i ≤ c} .

See fig. 1 for an example of G. Note that U is a k-MDS and U∗ is a 1-MDS
with respect to G. Adding a new vertex v and a new edge (by, v) to G will
now invalidate U as a dominating set, while U∗ still is a 1-MDS. While it is
possible to create a new dominating set U ′ from U by fixing it locally, i.e., only
within c hops of vertex by, at least one additional vertex will have to be added:
|U ′| ≥ |U |+1. Since U∗ stayed the same, this entails an increased approximation
factor k′ for U ′:

k′ =
|U ′|
|U∗| =

x+ c+ 2

c+ 1
=
�(k − 1)(c+ 1)	+ c+ 2

c+ 1
>

(k − 1)(c+ 1) + c+ 1

c+ 1
= k

Since k′ > k, k-MDS+v1 is not local for 1 ≤ k ≤ n+1
c −2, and hence o(n)-MDS+v1

is not local.

200 M. König and R. Wattenhofer

The proofs for the non-locality of o(n)-MDS−v1 , o(n)-MDS+e and
o(n)-MDS−e are analogous.

4.4 Maximal Independent Set

In this section we will discuss fixing maximal independent sets. Kutten and Peleg
[17] already showed that MIS+e, MIS−e, MIS+v1 and MIS−v1 can be fixed
in constant time by running a transformed MIS algorithm. We will nevertheless
still provide a set of simple proofs for those graph changes. Additionally, we will
show that MIS+v∗ and MIS−v∗ are locally fixable as well.

We say a vertex is covered if it is part of the MIS or has a neighbor in the
MIS. Note that all vertices in a graph being covered is a sufficient condition for
an MIS to be maximal.

We assume that every MIS node knows its 2-hop-neighborhood and is made
aware of changes to it (this can be achieved by flooding a message for 2 hops
each time a change occurs). This is necessary to allow each MIS node to compute
a last will (see Section 2.3), which contains which of its neighbors should enter
the MIS in case of a “crash” to ensure retaining a valid MIS.

To compute its last will an MIS node computes the subset of its direct neigh-
bors which are only covered by itself and then computes an MIS on the subgraph
of only these neighbors and the edges between them. The nodes of the subgraph’s
MIS are then chosen to become MIS nodes of the actual graph should the node
the last will is for fail. Note that this computation does not require any further
messages to be exchanged. Hence, updating the last wills only adds O(1) time
to the fixing procedures for each graph change.

Below we will detail the actions which need to be taken in the cases of edge
addition and removal of a node with any number of edges. The actions to be
taken for the other graph changes are trivial and can be found the in the full
version.

Lemma 8. MIS+e is local.

Proof. The MIS can be fixed by doing the following: when an edge e = (v, u)
is added and both v ∈ MIS and u ∈ MIS, pick one of v and u (for instance,
whichever has the lower identifier), remove it from the MIS and add those nodes
to the MIS which are designated in its last will.

If v /∈ MIS or u /∈MIS the MIS remains valid: both nodes directly affected
by the change are still covered by either being in the MIS themselves or having
a neighbor in the MIS (we know this because we had a valid MIS prior to the
edge insertion), and independence is still warranted since not both nodes are in
the MIS.

Lemma 9. MIS−v∗ is local.

Proof. The case where the removed node is not part of the MIS is trivial – the
remaining MIS on the remaining nodes is still valid. In the following we will
consider the other case.

On Local Fixing 201

Without the node performing a “sign-off” (i.e., participating in the fixing
before actually leaving) or an adequate preparation (such as a last will) it is
not possible to salvage the MIS in constant time. To see this just imagine an
arbitrarily complex graph where one node is connected to every other node. If
an MIS is formed by that node alone, its unprepared removal would require
computing a new MIS on the whole remaining graph which is known to take at
least Ω(

√
logn) time.

Luckily, we stated that every MIS node deposits a last will at each of its
neighbors stating which nodes should enter the MIS. This way every node can
decide in constant time whether it should join the MIS.

4.5 Maximal Matching

Maximal matchings can be fixed locally as well. Two individual graph changes
are discussed below.

We say an edge a blocks another edge b with respect to a matching M if the
edges share a vertex and a ∈ M and b /∈ M . A matching being maximal is
equivalent to every edge either being part of the matching or being blocked.

Lemma 10. MM−e is local.

Proof. An edge being removed potentially allows for two edges to be added in
turn: one at each of the vertices of the edge. Both vertices can identify and
choose an unblocked edge adjacent to them to join the matching in constant
time, which restores maximality.

Lemma 11. MM+v∗ is local.

Proof. Of the new edges at most one can become part of the matching, because
they all share a vertex. No existing edge can become part of the matching through
this change or the matching would not have been maximal before the change.
Therefore, by picking any of the new edges which are not blocked (if there are
any) and adding the picked edge to the matching, we can obtain a valid maximal
matching again.

4.6 Spanning Trees

In this section we will discuss spanning trees which do not necessarily have
minimum weight. We will not consider graph changes which cause the graph to
become disconnected.

Lemma 12. ST−e and ST−v∗ are not local.

Proof. Consider a spanning tree on a ring graph: it consists of all the graph’s
edges except for one at some vertex i. Removing vertex (i +

⌊
n
2

⌋

) mod n, or an
edge adjacent to it, requires the edge at vertex i to be added to the spanning
tree. For this to happen messages must be sent across up to

⌊
n
2

⌋ ∈ Ω(n) links.
Hence, ST−e and ST−v∗ cannot be fixed locally.

202 M. König and R. Wattenhofer

4.7 Minimum Spanning Trees

In this section we will discuss minimum spanning trees. We will not consider
graph changes which cause the graph to become disconnected.

Lemma 13. MST−e and MST−v∗ are not local.

The proof for Lemma 13 follows that of Lemma 12.

Lemma 14. MSTw→w′
is not local.

Proof. Consider a minimum spanning tree on a ring graph where every edge
has weight 1: it consists of all the graph’s edges except for one at some vertex
i. Increasing the weight of an edge adjacent to vertex (i +

⌊
n
2

⌋

) mod n by any
amount requires the edge at vertex i to be added to the minimum spanning tree.
For this to happen messages must be sent across up to

⌊
n
2

⌋ ∈ Ω(n) links. Hence,

MSTw→w′
cannot be fixed locally.

Lemma 15. MST+e and MST+v∗ are not local.

Proof. Consider a minimum spanning tree on a path graph where every edge
has weight 1 except for the edge between vertices

⌊
n
2

⌋

and
⌊
n
2

⌋

+ 1 which has
weight 2: it consists of all the graph’s edges. Adding an edge between vertices
0 and n − 1 with weight 1, or adding a vertex with two edges of weight 1 to
vertices 0 and n− 1 of the original graph, requires the edge with weight 2 to be
removed from the minimum spanning tree. For this to happen messages must
be sent across up to

⌊
n
2

⌋ ∈ Ω(n) links. Hence, MST+e and MST+v∗ cannot be
fixed locally.

4.8 Shortest Paths Trees

In this section we will discuss shortest paths trees. We will not consider graph
changes which cause the graph to become disconnected or which remove the root
of the SPT.

Lemma 16. SPT−e and SPT−v∗ are not local.

The proof for Lemma 16 follows that of Lemma 12. Which node the SPT is
rooted in is irrelevant for this proof.

Lemma 17. SPTw→w′
is not local.

Proof. Consider a SPT rooted in node 0 on a ring graph where every edge has
weight 1: it consists of all the graph’s edges except for one adjacent to node
⌊
n
2

⌋

. Increasing the weight of the edge (0, 1) to n requires the missing edge to be
inserted into the spanning tree replacing edge (0, 1). For this to happen messages
must be sent across up to

⌊
n
2

⌋ ∈ Ω(n) links. Hence, SPTw→w′
cannot be fixed

locally.

On Local Fixing 203

4.9 Maximum Flow

In this section we will discuss maximum flows. We will not consider graph
changes which cause source and sink to become to become parts of different
graph components or which remove source or sink.

Lemma 18. Floww→w′
, Flow−e and Flow−v∗ are not local.

Proof. Consider a ring graph where all edge weights are 1 and which has an
additional vertex vsource which is only attached to vertex

⌊
n
2

⌋

over an edge with
weight 1. Let vsource be the flow’s source and vertex 0 be the flow’s sink. All
maximum flows on this graph have a strength of 1 and are divided into two parts
which travel over vertices {0, 1, . . . , ⌊n

2

⌋} and over vertices {0, ⌊n
2

⌋

, . . . , n − 1}
respectively.

Decreasing the weight of either edge (0, 1) or edge (n−1, 0) below the strength
of the part of the flow on that respective side will require the flow across all edges
to be changed (save for the edge adjacent to vsource). The same may be caused
by removing or removing the adjacent non-sink vertex of either edge (0, 1) or
edge (n−1, 0). Hence, Floww→w′

, Flow−e and Flow−v∗ cannot be fixed locally.

Lemma 19. Flow+e and Flow+v∗ are not local.

Proof. Consider a path graph where all edge weights are 1. Let vertex 0 be the
source of the flow and let vertex

⌊
n
2

⌋

be the sink of the flow. Any maximum flow

only uses the edges {(a− 1, a) | 0 < a ≤ ⌊
n
2

⌋}.
Adding an edge between vertices 0 and n−1, or adding a vertex with two edges

of weight 1 to vertices 0 and n− 1 of the original graph, requires any maximum
flow on the resulting graph to use all edges. Hence, Flow+e and Flow+v∗ cannot
be fixed locally.

4.10 Leader Election

In this section we will discuss the problem of fixing a leader election. Note that
we do not require any node but the leader itself to know who the leader is. The
sole requirement is that there is exactly one leader at any time. We will not
consider graph changes which cause the graph to become disconnected.

This problem is particularly interesting, because computing it initially takes
Ω(D) rounds [3], while fixing requires little to no effort and can always be done
in constant time.

Lemma 20. Leader+e, Leader−e, Leader+v1 , Leader−v1 , Leader+v∗ and
Leader−v∗ are local.

Proof. In all cases where merely edges or non-leader nodes get added or removed,
we do not need to change the leader node. This takes constant time.

To cover cases in which the leader node gets deleted, we will make use of the
“last will” technique again (see Section 2.3). The leader node has at all times
exactly one last will deployed at one of its neighbors, stating that that node

204 M. König and R. Wattenhofer

should become the leader should the leader node be deleted. However, the node
should not become a leader if merely the edge to the leader is deleted; in that
case it should scrap the last will. Should the last will node be deleted or should
its edge to the leader node be deleted, the leader node will issue a new last will.
These operations ensure that there is always exactly one leader after any graph
change and also take constant time.

References

1. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for gen-
eral networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486,
pp. 15–28. Springer, Heidelberg (1991)

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7(4), 567–583 (1986)

3. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election, and related problems. In: Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing, pp. 230–240. ACM (1987)

4. Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks. In:
Proc. of 29th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 206–219. IEEE (1988)

5. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for build-
ing self-stabilizing distributed protocols. In: Proc. of 32nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 258–267. IEEE (1991)

6. Dijkstra, E.W.: Self-stabilization in spite of distributed control. Manuscript
EWD391 (October 1973)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

8. Dolev, S.: Self-stabilization. The MIT Press (2000)

9. Elkin, M.: Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In: Proc. of the 36th ACM Sympo-
sium on Theory of Computing (STOC), Chicago, USA, pp. 331–340 (2004)

10. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their di-
ameter in sublinear time. In: Proc. of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1150–1162. SIAM (2012)

11. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure
for low stretch under adversarial attack. Distributed Computing 25(4), 261–278
(2012)

12. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters 22(2), 77–80 (1986)

13. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proc. of the 23rd ACM Symposium on the Principles of Distributed Computing
(PODC), pp. 300–309. ACM (2004)

14. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper
bounds. CoRR, abs/1011.5470 (2010)

15. Kuhn, F., Oshman, R.: Dynamic networks: Models and algorithms. ACM SIGACT
News 42(1), 82–96 (2011)

16. Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approxi-
mation. Springer Journal for Distributed Computing 17(4) (May 2005)

On Local Fixing 205

17. Kutten, S., Peleg, D.: Tight fault locality. In: Proc. of 36th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 704–713. IEEE (1995)

18. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: Self-stabilization on
speed. In: Proc. of 11th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), Lyon, France (November 2009)

19. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

20. Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate match-
ing. In: Proc. of the 20th Annual Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 129–136. ACM (2008)

21. Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed approximate matching. In:
Proc. of the 26th Annual ACM Symposium on Principles of Distributed Computing
(PODC), Portland, Oregon, USA, pp. 167–174. ACM (2007)

22. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15, 1036–1053 (1986)

23. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc. of the 25th
Annual ACM Symposium on Theory of Computing (STOC), San Diego, California,
USA, pp. 184–193. ACM (1993)

24. Pandurangan, G., Trehan, A.: Xheal: localized self-healing using expanders. In:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pp. 301–310. ACM (2011)

25. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM Journal on Com-
puting 30(5), 1427–1442 (2001)

26. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. Arxiv preprint arXiv:1011.3049 (2010)

27. Suomela, J.: Survey of local algorithms. ACM Computing Surveys (2011)
28. Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: Guerraoui,

R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 335–348. Springer, Heidelberg (2004)

A Skiplist-Based Concurrent Priority Queue

with Minimal Memory Contention�

Jonatan Lindén and Bengt Jonsson

Uppsala University, Department of Information Technology
P.O. Box 337, SE-751 05 Uppsala, Sweden
{jonatan.linden,bengt}@it.uu.se

Abstract. Priority queues are fundamental to many multiprocessor ap-
plications. Several priority queue algorithms based on skiplists have been
proposed, as skiplists allow concurrent accesses to different parts of the
data structure in a simple way. However, for priority queues on multipro-
cessors, an inherent bottleneck is the operation that deletes the minimal
element. We present a linearizable, lock-free, concurrent priority queue
algorithm, based on skiplists, which minimizes the contention for shared
memory that is caused by the DeleteMin operation. The main idea
is to minimize the number of global updates to shared memory that
are performed in one DeleteMin. In comparison with other skiplist-
based priority queue algorithms, our algorithm achieves a 30 - 80%
improvement.

Keywords: Concurrent Data Structures, Priority Queue, Lock-free,
Non-blocking, Skiplist.

1 Introduction

Priority queues are of fundamental importance in many multiprocessor applica-
tions, ranging from operating system schedulers, over discrete event simulators,
to numerical algorithms. A priority queue is an abstract data type, contain-
ing a set of key-value pairs. The keys are ordered, and typically interpreted
as priorities. It supports two operations: Insert of a given key-value pair, and
DeleteMin, which removes the pair with the smallest key and returns its value.
Traditionally, priority queues have been implemented on top of heap or tree data
structures, e.g., [10]. However, for priority queues that are accessed by large
numbers of concurrent processor cores, skiplists [15] are an increasingly popu-
lar basis. A major reason is that skiplists allow concurrent accesses to different
parts of the data structure in a simple way. Several lock-free concurrent skiplist
implementations have been proposed [3,4,16].

The performance of skiplist-based data structures can scale well when con-
current threads access different parts of the data structure. However, priority

� This work was supported in part by the Swedish Foundation for Strategic Research
through the CoDeR-MP project as well as the Swedish Research Council within the
UPMARC Linnaeus centre of Excellence.

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 206–220, 2013.
c© Springer International Publishing Switzerland 2013

A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention 207

queues offer the particular challenge that all concurrent DeleteMin operations
try to remove the same element (viz. the element with the smallest key). This
makes DeleteMin the obvious bottleneck for scaling to large numbers of cores.
In existing skiplist-based concurrent priority queues [8,11,17], the deletion of an
element proceeds in two phases: first, the node is logically deleted by setting a
delete flag in the node; second, the node is physically deleted by moving pointers
in adjacent node(s). Both the logical and the physical deletion involve at least
one global update operation, which must either be protected by a lock, or use
atomic primitives such as Compare-and-Swap (CAS). Each CAS is expensive in
itself, but it also incurs other costs, viz. (i) concurrent CAS operations to the
same memory cell cause overhead due to contention, since they must be serial-
ized and all but one will fail, and (ii) any other write or read to the same memory
location (more precisely, the same cache line) by another core must be serialized
by the coherence protocol, thus generating overhead for inter-core communica-
tion. In our experimentation, we have found that the global update operations in
the DeleteMin operation are the bottleneck that limits scalability of priority
queues. To increase scalability, one should therefore devise an implementation
that minimizes the number of such updates.

In this paper, we present a new linearizable, lock-free, concurrent priority
queue algorithm, which is based on skiplists. The main advantage of our algo-
rithm is that almost allDeleteMin operations are performed using only a single
global update to shared memory. Our algorithm achieves this by not performing
any physical deletion of nodes in connection with logical deletion. Instead, our
algorithm performs physical deletion in batches when the number of logically
deleted nodes exceeds a given threshold. Each batch deletion is performed by
simply moving a few pointers in the sentinel head node of the list, so that they
point past logically deleted nodes, thus making them unreachable. Thus only one
CAS per DeleteMin operation is required (for logical deletion). To enable this
batch deletion, we have developed a novel technique to maintain that logically
deleted nodes always form a prefix of the skiplist.

Since logically deleted nodes are not immediately physically deleted, this im-
plies that subsequent operations may have to perform a larger number of read
operations while traversing the list. However, these reads will be cheap, so that
the algorithm overall performs significantly better than previous algorithms,
where these reads would conflict with concurrent physical deletions, i.e., writes.

The absence of physical deletion makes our algorithm rather simple in compar-
ison to other lock-free concurrent skiplist algorithms. It is furthermore lineariz-
able: in the paper, we present a high-level proof, and we report on a verification
effort using the SPIN model checker, which we have used to verify linearizability
by extensive state-space exploration [9,19].

We have compared the performance of our algorithm to two skiplist-based
priority queue algorithms, each of which employs one of the currently existing
DeleteMin techniques: (i) a lock-free adaptation of Lotan and Shavit’s non-
linearizable priority queue [11], which is similar to the algorithm by Herlihy and
Shavit [8], and (ii) an algorithm which uses the same procedure for DeleteMin

208 J. Lindén and B. Jonsson

as the algorithm by Sundell and Tsigas [17]. Our algorithm achieves a perfor-
mance improvement of 30 - 80 % in relation to the compared algorithms, on a
limited set of benchmarks. The implementation of the algorithm, and the SPIN
model, are both available at user.it.uu.se/~jonli208/opodis2013.

Furthermore, by comparing our algorithm to a specifically designed micro-
benchmark, we show that for many cores, it is entirely limited by the logical
deletion mechanism in DeleteMin.

In summary, this paper shows a technique for removing scalability bottlenecks
in concurrent data structures that are caused by concurrent memory accesses to
the same memory location. We show that it is crucial to minimize the number
of concurrent global updates, and present a novel internal representation of a
skiplist that allows to use only a single global update per DeleteMin operation.
We hope that this work will inspire analogous work to develop other concurrent
data structures, e.g., concurrent heaps, that minimize conflicts due to concurrent
updates.

The paper is organized as follows. In Section 2, we give an overview of related
work. In Section 3, we present the main new ideas of our algorithm. In Section 4,
we present our algorithm in detail, and prove its correctness in Section 5. The
performance evaluation is shown in Section 6. Section 7 contains conclusions.

2 Related Work

Skiplists were first proposed for concurrent data structures by Pugh [14,15], one
reason being that they easily allow concurrent modification of different parts
of the list. Using skiplists for priority queues was first proposed by Lotan and
Shavit [11]. They separated logical and physical deletion, as described in the
previous section, which allowed physical deletion of different nodes to proceed
in parallel. This still incurs costs of type (ii) (i.e., serializing CAS operations
with other accesses to the same memory cell), since many other threads are
simultaneously accessing the list. By adding a timestamping mechanism, their
algorithm was made linearizable. A lock-free adaptation of this algorithm was
presented by Herlihy and Shavit [8], who also observed the contention caused by
concurrent physical deletions.

Sundell and Tsigas [17] were first to present a lock-free implementation of
a skiplist-based priority queue. Their DeleteMin operation performs logical
deletion followed by physical deletion. To achieve linearizability, only a single
logically deleted node at the lowest level of the skiplist is allowed at any point
in time. Any subsequent thread observing a logically deleted node will help
complete the physical deletion. This may reduce latency in some cases, but
suffers in general a high cost of both type (i) and (ii). Their skiplist further has
back pointers to speed up deletion of elements, and employs back-off to reduce
contention of the helping scheme.

Crain et al. [1] propose a technique to reduce memory contention by deferring
the physical insertion and removal of logically deleted nodes to a point in the
execution when contention is low. In the context of skiplist-based priority queues,

user.it.uu.se/~jonli208/opodis2013

A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention 209

this would reduce contention between conflicting global updates, but not reduce
the number of needed updates, as is done in our algorithm. Thus, they do not
reduce the contention between updates and concurrent reads.

Hendler et al. [6] present a methodology, called flat-combining, which reduces
contention in arbitrary concurrent data structures (exemplified using a priority
queue) that employ coarse-grained locking. In their approach, contended op-
erations are combined into bigger operations, that are handled by the thread
currently owning unique access to the structure. Their methodology is orthogo-
nal to ours.

3 Overview of Main Ideas

In this section, we informally motivate and describe our algorithmic invention.
Today’s multicore processors are typically equipped with a non-uniform mem-

ory architecture, and a cache coherence system, which provides a coherent view
of memory to the processor cores. Whenever a core updates a shared memory
location, the cache system must first invalidate copies in caches at cores that
have previously accessed this location, and afterwards propagate the update to
caches in cores that subsequently access the location. The effect is that updates
(i.e., writes) cause high latencies if they update memory locations that are ac-
cessed by other cores. Thus, a limiting factor for scalability of concurrent data
structure is the number of global updates that must be performed to locations
that are concurrently accessed by many cores.

Let us now discuss the overhead caused by DeleteMin operations, and how
our algorithm reduces it. Skiplists are search structures consisting of hierarchi-
cally ordered linked lists, with a probabilistic guarantee of being balanced. The
lowest-level list is an ordered list of all stored elements. Higher-level lists serve as
shortcuts into lower-level lists, achieving logarithmic search time. Fig. 1a shows
a skiplist with 3 elements, having keys 1, 2, and 5. There are sentinel head and
tail nodes at the beginning and end. In existing lock-free skiplists [4,8,17], a node
is deleted by first logically deleting it, by setting a delete flag in it. Thereafter it
is physically deleted, by moving pointers in adjacent node(s). In Fig. 1a, nodes 1
and 2 have been logically deleted by setting their delete flags, indicated by black
dots. In order to physically remove them, all pointers in the head node and node
1 must be moved. Both logical and physical deletion of a node thus require global
update operations, typically CASes. During this deletion, many other threads
will read the pointers in the first nodes of the list, thus incurring large costs by
invalidations and update propagation in the cache coherence system.

In our new algorithm, we implement the DeleteMin operation without per-
forming physical deletion of nodes, in the sense that nodes are never unlinked
from the list. Physical deletion is performed in batches, i.e., instead of perform-
ing a physical deletion after each logical deletion, we update the pointers in
the head node to remove a large number of nodes from the list at a time. The
reduction in physical deletion implies that concurrent DeleteMin operations
may have to perform a larger number of read operations when traversing the

210 J. Lindén and B. Jonsson

H 1 2 5 T

(a)

H 1 2 5 T

DeleteMin()

(b)

Fig. 1. To the left, memory positions affected by physical deletion of node 1 and 2 in
skiplist. To the right, ongoing deletion of node 5 in the new algorithm.

list to find the node to be deleted. However, due to the microarchitecture of
today’s processors, the cost of these reads, relative to the latencies incurred by
an increased number of global writes (e.g., CAS), will be very cheap. A read
of a non-modified memory position can be up to 30 times faster than that of a
modified memory position, in a multi-socket system [13].

A prerequisite for our scheme is that the logically deleted nodes always form
a prefix of the list. This is not the case in existing skiplist-based priority queue
algorithms. We have therefore added two mechanisms to our algorithm, whose
combined effect is the essence of our algorithmic invention.

1. The delete flag, which signals logical deletion of a node is colocated with the
pointer of the preceding node (for example in the least-order bit, as detailed
by Harris [5]), and not in the deleted node itself.

2. The list contains always at least one logically deleted node (or has never
contained such a node).

The first mechanism prevents insertions in front of logically deleted nodes, and
the second mechanism guarantees that insertions close to the first non-deleted
node are safe. Without the second, Insert would no longer be guaranteed to be
correct, as a consequence of the first mechanism.

Fig. 1b shows how the list in Fig. 1a is represented in our algorithm. Note how
the delete flags for nodes 1 and 2 are located in the preceding nodes. A typical
DeleteMin operation only needs to traverse the lowest level of the skiplist, and
set the delete flag of the first node in which it is not already set.

To illustrate how our location of the delete flag prevents insertions in front
of logically deleted nodes, Fig. 2 depicts a situation in which nodes 1 and 2
are deleted, and two concurrent threads are active: a DeleteMin operation is
about to set the delete flag in node 2, and an Insert(3) operation is about
to move the lowest level pointer of node 2 to point to the new node 3. Two
outcomes are possible. If Insert(3) succeeds first, resulting in the situation at
bottom right, the DeleteMin operation will just proceed to set the delete bit
on the new pointer pointing to the new node 3, which is then logically deleted.
If DeleteMin succeeds first, resulting in the situation at top right, the CAS of
the Insert(3) will fail, thus preventing insertion in front of the logically deleted
node 5, since the pointer has changed, and Insert will thus have to restart.

A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention 211

H 1 2

3

5 T

DeleteMin()

Insert(3)

H 1 2

3

5 T

Insert(3)

H 1 2

3

5 T

DeleteMin()

Fig. 2. Concurrent DeleteMin and Insert operation in the new algorithm

4 The Algorithm

Algorithm 1. Node
and skiplist structures

1 Structure node t:
2 value t value
3 key t key
4 bool d
5 bool inserting
6 node t ∗next[]

7 Structure skiplist t:
8 node t ∗head
9 node t ∗tail

10 integer nlevels

In this section, we describe our algorithm in detail.
A skiplist stores a set of key-value pairs, ordered ac-
cording to the keys. Internally, it consists of a set of
hierarchically ordered linked lists. The lowest-level list
is a complete ordered list of all stored key-value pairs,
which also defines the logical state of the skiplist.
Higher level linked lists are sublists of the lists at lower
levels, and serve as shortcuts into lower levels. Thus, a
skiplist with only one level is simply an ordinary linked
list. We assume unique keys, but duplicates could be
handled as detailed in previous work [4,17].

A node in the skiplist is a structure, as described
in Algorithm 1, which contains a value, a key, and an
array of next pointers, which contains one pointer for
each level in which the node participates. Each node also contains a delete flag
d, which is true if the successor of the node is deleted from the logical state of
the list. In the actual implementation, the delete flag is stored together with
the lowest-level next pointer, in its least-order bit, so that atomic operations
can be performed on the combination of the lowest-level next pointer and the
delete flag. In our pseudocode, we use the notation 〈x.next[0], x.d〉 to denote the
combination of a pointer x.next[0] and a delete flag x.d, which can be stored
together in one word. Each node also has a flag inserting, which is true until
Insert has completed the insertion.

The DeleteMin Operation. The DeleteMin operation is shown in Algo-
rithm 2. In the main repeat-until loop, it traverses the lowest-level linked list
from its head, by following next pointers (which are read at line 4) until it finds
a node, whose delete flag (checked at line 9) has not yet been set. At line 5, it
is checked whether this next pointer points to the dummy tail node, in which
case DeleteMin returns Empty. Otherwise, DeleteMin attempts to set the
delete flag using a CAS instruction. If the CAS fails, then either the delete flag

212 J. Lindén and B. Jonsson

Algorithm 2. Deletion of minimal element in new algorithm

1 function DeleteMin(skiplist t q)
2 x← q.head, offset ← 0, newhead ← Null, oldhead ← x.next[0]
3 repeat
4 〈nxt , d〉 ← 〈x.next[0], x.d〉
5 if nxt = q.tail then // If queue is empty, return.
6 return Empty
7 if x.inserting and newhead = Null then
8 newhead ← x // Head may not surpass pending insert.

9 if not d then // If succ. of x not deleted.
10 if not CAS(&〈x.next[0], x.d〉, 〈nxt , 0〉, 〈nxt , 1〉) then //Set x’s del. bit.
11 continue // CAS failed. Retry the loop, still at x.

12 offset ← offset +1
13 x ← x.next[0] // Traverse list to next node.
14 until not d // If delete bit of x set, traverse.
15 v ← x.value // Exclusive access to node x, save value.
16 if offset < BoundOffset then return v

17 if newhead = Null then newhead ← x
18 if CAS(&〈q.head.next[0], q.head.d〉, 〈oldhead , 1〉, 〈newhead , 1〉) then
19 Restructure(q) // Update head’s upper level pointers.
20 cur ← oldhead
21 while cur �= newhead do // Mark segment for memory reclamation.
22 nxt ← cur.next[0]
23 MarkRecycle(cur)
24 cur ← nxt
25 return v

has already been set by some other DeleteMin operation, or an insertion has
completed between x and nxt, and the loop is retried. Otherwise, it has suc-
cessfully deleted the node, and may safely read its value (at line 15). After the
traversal, it checks whether the prefix of logically deleted nodes (measured by
variable offset) has now become longer than the threshold BoundOffset. If
so, DeleteMin tries to update the next[0] pointer of q.head to the value of
newhead, using a CAS instruction; it can be proven that all nodes that precede
the node pointed to by newhead are already logically deleted. It should be noted
that newhead will never go past any node with inserting set to true (i.e., in the
process of being inserted), as ensured by the lines 7 and 17. If the CAS is suc-
cessful, this means that DeleteMin has succeeded to physically remove a prefix
of the lowest-level list. If the CAS is unsuccessful, then some other DeleteMin
operation has started to perform the physical deletion, and the operation re-
turns. In the successful case, the operation must proceed to update the higher
level pointers, which is done in the Restructure operation, shown in Algo-
rithm 3. After the completion of the Restructure operation, the DeleteMin
operation proceeds to mark the nodes between the observed first node, oldhead,
and the newhead node, as ready for recycling (lines 21 - 24).

A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention 213

Algorithm 3. Restructure operation

1 function Restructure(skiplist t q)
2 i← q.nlevels −1
3 h← q.head.next[i], cur ← h
4 while i > 0 do
5 if cur = q.tail then
6 i ← i− 1
7 continue
8 while cur.d do
9 cur ← cur.next[i]

10 success←CAS(&q.head.next[i],
h, cur)

11 if success then i← i− 1

12 h ← q.head.next[i]
13 if not success then cur ← h

The Restructure operation up-
dates the pointers of q.head, except
for level 0, starting from the high-
est level. At each level, the state of
the head’s pointer at the current level
is first recorded (at lines 3 and 12).
Thereafter, that level is traversed un-
til encountering the first node not
having a deleted successor, at lines 8
- 9. The head node’s next pointer at
that level is then updated by means
of a CAS, at line 10. If another thread
is concurrently modifying the point-
ers, the CAS operation may fail. The
same procedure will then be repeated
for the same level.

Algorithm 4. Insertion of node with priority k

1 function Insert(skiplist t q, key t k, value t v)
2 height ← Random(1, q.nlevels), new ← AllocNode(height)
3 new.key ← k, new.value ← v, new.d ← 0, new.inserting ← 1
4 repeat
5 (preds, succs, skew) ← LocatePreds(q, k)
6 new.next[0] ← succs[0] //Prepare new to be inserted.
7 until CAS(&〈preds[0].next[0], preds[0].d〉, 〈succs [0], 0〉, 〈new , 0〉)
8 i ← 1
9 while i < height and not skew do //Insert node at higher levels.

10 new.next[i] ← succs[i] //Set next pointer of new node.
11 if new.d then //new already deleted, finish.
12 break
13 if CAS(&preds[i].next[i], succs[i], new) then
14 i ← i+ 1 //If success, ascend to next level.
15 else
16 (preds, succs, skew) ← LocatePreds(q, k)
17 if succs[0] �= new then break //New has been deleted.

18 new.inserting ← 0 //Allow batch deletion past this node.

The Insert Operation. The Insert operation is similar to a typical con-
current insert operation in skiplist algorithms [4,8,17]. The main difference is
that the logically deleted prefix has to be taken into account. The operation
(Algorithm 4) works as follows. The new node is first initialized at lines 2 - 3.
Thereafter, a search for the predecessor nodes, at each level, of the position where
the new key value is to be inserted, is performed by the operation LocatePreds
(at line 5). The LocatePreds operation itself is shown in Algorithm 5.

214 J. Lindén and B. Jonsson

Once the candidate predecessors and successors have been located, the new
node is linked in at the lowest level of the skiplist, by updating the lowest-level
predecessor’s next pointer to point to new using CAS, at line 7. Note that this
pointer also contains the delete flag: this implies that if meanwhile succs[0] has
been deleted, the delete bit in preds[0].next[0] has been modified, and the
CAS fails. If the CAS is successful, then Insert proceeds with insertion of the
new node at higher levels. This is done bottom up, so that a node is visible on
all lower levels before it is visible on a higher level. As a consequence, it is always
possible to descend from a level i+ 1 list to a level i list.

The insertion at higher levels first sets the new node’s next pointers to point to
the candidate successor, at line 10. Thereafter, it checks whether the successor of
the new node has been deleted since new was inserted, at line 11. If so, this means
that new is deleted as well, in which case the insertion is considered completed.
Otherwise, the level i insertion is attempted at line 13. If successful, the insertion
ascends to the next level. If unsuccessful, predecessors and successors will be
recorded anew (line 16), and the insertion procedure will be repeated for level
i. If at any point skew is true, as reported by LocatePreds, the insertion at
higher level is aborted. When Insert is done, completion of the insertion is
signaled to other threads by setting inserting to 0, at line 18.

Algorithm 5. LocatePreds operation

1 function LocatePreds(skiplist t q,key t k)
2 i← q.nlevels −1,skew ← 0, pred ← q.head
3 while i ≥ 0 do
4 〈cur , d〉 ← 〈pred .next[i], pred .d〉
5 while cur.key < k or cur.d or

(d and i = 0) do
6 if i < q.nlevels −1 and

cur = succs[i + 1] then
7 skew ← 1
8 pred ← cur
9 〈cur , d〉 ← 〈pred .next[i], pred .d〉

10 preds[i] ← pred
11 succs[i] ← cur
12 i ← i− 1

13 return (preds, succs, skew)

The LocatePreds opera-
tion (Algorithm 5), locates the
predecessors of a new node that
is to be inserted. Starting with
the highest-level list, each list
is traversed, until a node with
a greater key is found, or un-
til either a) a node not hav-
ing its delete flag set is found
and the level, i, is greater than
0, or b) a non-deleted node is
found at the lowest level (lines 5
to 9). When such a node is
found, the search descends to
the level below, or is completed.
While traversing level i, if at
some point succs[i+1] is ob-
served, this is signaled to the Insert operation by means of the skew variable,
at line 7. This situation occurs when the insertion point is close to the first
non-deleted node of the queue.

Memory Management. The memory of deleted nodes have to be safely deal-
located. This is particularly difficult for non-blocking algorithms, since a thread
may be observing outdated parts of the shared state. We use Keir Fraser’s epoch
based reclamation (EBR) [4] to handle memory reclamation. In short terms, EBR
works as follows. Each thread signals when it enters and leaves an operation that
accesses the skiplist. After a node has been marked for memory reclamation by

A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention 215

some thread, the node will be deallocated (or reused) only when all threads that
may possibly have a (direct or indirect) reference to it have returned. Since in our
algorithm, a node is marked for recycling only when it can no longer be reached
from any pointer of form q.head.next[i], we guarantee that any thread that
enters after the marking, cannot reach a node that is recycled.

One property of EBR is that the memory reclamation is not truly non-
blocking, but in general it is very fast. Since we focus on global performance, we
do not consider this a problem. If it is important to have non-blocking memory
reclamation, there are other standard solutions, such as hazard pointers [12] or
reference counting [18] for memory reclamation.

5 Correctness and Linearizability

In this section, we establish that our algorithm is a linearizable [7] implementa-
tion of a priority queue. We first establish a sequence of invariants of the algo-
rithm. Thereafter, we prove that the algorithm is a linearizable implementation
of a priority queue. The linearizability of the algorithm has also been verified us-
ing the SPIN model checker, and the model is available at the companion website
of the paper. In this SPIN model, we use the same approach as Vechev et al. [19],
i.e., whenever the model reaches a linearization point, the update is verified
against the state of a sequential model.

In the rest of this section, we will outline a correctness proof for our algorithm.
Let us consider the (global) state of the algorithm at some point during its
execution. By a node, we mean a node of type node_t that has been allocated
at some previous point in time. A head-pointed node is a node that is pointed to
by a head pointer (i.e., a pointer of the form q.head.next[i]). A live node is a
node that is reachable by a sequence of 0 or more pointers of form next[i] from
a head-pointed node. A deleted node is a node that is pointed to by a lowest-
level pointer (of form next[0]) from a node, which has its delete flag set to 1. A
recycled node is a node that has been marked for recycling by MarkRecycle.

Lowest-Level Invariants. We first establish a set of invariants that charac-
terize the lowest-level list. For each invariant, we provide a short proof sketch
which motivates why it is preserved by our algorithm.

A) The set of live nodes and the next[0]-pointers form a linear singly linked
list, terminated by the node q.tail.

Proof Sketch: Since nodes are not unlinked from the list, the invariant follows
by noting that an insertion into the lowest-level list (at line 8 of Insert)
always inserts new nodes between two contiguous ones.

B) The set of live deleted nodes form a strict prefix of the live nodes in the
lowest-level list.

Proof Sketch: The statements that may affect this invariant are: (i)DeleteMin,
line 10, which logically deletes x.next[0]: since x is either deleted or the

user.it.uu.se/~jonli208/priorityqueue.html

216 J. Lindén and B. Jonsson

head node, DeleteMin may only extend an existing prefix of deleted nodes,
and (ii) Insert, line 8, which inserts a node: LocatePreds and the seman-
tics of CAS guarantee that then preds[0].next[0] does not have its delete
flag set, i.e., the node following the inserted one is not deleted.

C) An inserted node n such that n.inserting is set, is live.
Proof: By observing the statements at line 14 - 15 ofDeleteMin, together with

the CAS at line 18, we see that the q.head.next[0] will not point past n.
D) The non-live nodes are partitioned into sets of nodes, such that for each set,

either a) all nodes in the set have been marked for recycling, or b) a thread
is allotted to the set, which currently executes lines 21 - 24 of DeleteMin,
and is in the process of marking all nodes in the set for recycling.

Proof: Nodes are made non-live at line 18 of DeleteMin, together with the
Restructure, at line 19. If that CAS statement succeeds, then the thread
gains exclusive access to the segment of non-live nodes between the nodes
pointed to by local variables oldhead and newhead. The segments are disjoint
since oldhead of a DeleteMin invocation must equal newhead of a preceding
DeleteMin invocation.

E) Only non-live nodes are marked for recycling.
Proof: Follows from invariant D, and by noting that when DeleteMin reaches

line 24, then Restructure guarantees that q.head.next[i], for any i, is
reachable from the node pointed to by newhead.

Higher Level Invariants. We then establish invariants for the higher-level
lists.

F) When LocatePreds returns, then, for any i, the node pointed to by preds[i]
is reachable from the node pointed to by preds[i+1], via a sequence of
next[i] pointers. Conversely, for any i, the node pointed to by succs[i+1]
is reachable from the node pointed to by succs[i], or skew = 1.

Proof: The reachability follows by the mechanism for traversing nodes at lines 5-
9 in LocatePreds. That skew = 1, follows by the test at line 6 in Lo-
catePreds, since at that point, the future node pointed to by succs[i]
will be reachable from cur.

G) Whenever n is a live node, for any i > 0, the node pointed to by n.next[i]
is reachable from n by a non-empty sequence of next[i-1] pointers.

Proof: The critical statements in Insert are (i) line 7, which inserts a new node
at level 0, between two existing nodes, and (ii) line 13, which is correct for
the same reason as in the preceding case if the pointers concern level i, and
if the pointers concern level i + 1, then by invariant F, the inserted node is
reachable from preds[i+1] by a non-empty sequence of next[i] pointers.

Linearizability. We can now establish that our algorithm is a linearizable
implementation of a priority queue. Recall that a priority queue can be abstractly
specified as having a state which is an ordered sequence of (key,value)-pairs, and
two operations:DeleteMin, which removes the pair with the smallest key value,
and Insert, which inserts a (key,value)-pair at the appropriate position.

A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention 217

To establish that our algorithm is a linearizable implementation, we first define
the abstract state of our implementation, at any point in time, to be the sequence
of (key,value)-pairs in non-deleted live nodes, connected by next[0] pointers.
To prove linearizability, we must then for each operation specify a linearization
point, i.e., a precise points in time at which the implemented operation affects
the abstract state. These are as follows.

DeleteMin: The linearization point is at line 10 of DeleteMin in the case
that the operation succeeds: clearly the abstract state is changed in the
appropriate way. In the case of an unsuccessful DeleteMin, it linearizes at
line 4, if the statement assigns q.tail to nxt (this is discovered at line 5).

Insert: The operation is linearized when the new node is inserted at line 7 of
Insert: clearly the new node is inserted at the appropriate place. Note that
Insert cannot fail: it will retry until successful.

6 Performance Evaluation

In this section, we evaluate the performance of our new algorithm in comparison
with two lock-free skiplist-based priority queues, representative of two different
DeleteMin approaches. We also relate its performance to the limits imposed
by the necessity of performing one global update per DeleteMin operation.

The compared algorithms are all implemented on top of Keir Fraser’s [4]
skiplist implementation, an open source state of the art implementation. Since
the same base implementation is used for all compared algorithms, the perfor-
mance differences between the implementations are directly related to the algo-
rithms themselves, and hence, the DeleteMin operations. The two compared
algorithms are respectively based on:

– SaT – Sundell and Tsigas’ [17] linearizable algorithm, in which only the first
node of the lowest- level list in the skiplist may be logically deleted, at any
given moment. If a subsequent thread observes a logically deleted node, it will
first help with completing the physical deletion. The algorithm implemented
here is a simplified version of their algorithm, neither using back link pointers
nor exponential back-off, but it uses the same DeleteMin operation.

– HaS – Herlihy and Shavit’s [8] non-linearizable lock-free adaptation of Lotan
and Shavit’s [11] algorithm, in which DeleteMin operations are distributed
over a prefix of the queue, using atomically updated delete flags. Physical
deletion is initiated directly after the logical deletion. Insertions are allowed
to occur between logically deleted nodes.

The algorithms are evaluated on two types of synthetic microbenchmarks, and
as a part of one real application, URDME [2]. The benchmarks are:

– Uniform – Each thread randomly chooses to perform either an Insert or a
DeleteMin operation. Inserted keys are uniformly distributed. This is the
de facto standard when evaluating concurrent data structures [5,11,17].

218 J. Lindén and B. Jonsson

– DES – The second synthetic benchmark is set up to represent a discrete
event simulator (DES) workload, in which the priorities represent the time of
future events. Hence the key values are increasing: each deleted key generates
new key values that are increased by an exponentially distributed offset.

– URDME – URDME [2] is a stochastic DES framework for reaction-diffusion
models. In this benchmark, the priority queue is used as the event queue in
URDME. A model with a queue length of 1000 has been simulated.

The experiments were performed on two machines, (i) a 4-socket Intel Xeon
E5-4650 machine, of which each socket has 8 cores and a 20 MB shared L3-
cache, and (ii) a 2-socket AMD Opteron 6220 machine, of which each socket has
8 cores and a 16 MB shared L3-cache. In addition, every two cores share a L2-
cache. The compiler used was GCC 4.7.2 respectively 4.4.7, at O3 optimization
level. Each benchmark was run 5 times, for 10 seconds each time, of which the
average throughput is presented. The number of threads varied between 1 to
32. The threshold for updating the head node, BoundOffset, was chosen in
accordance to the maximum latency of the setup, with a higher value for a
larger number of threads, ranging from 2 to 200. Threads were pinned to cores,
to reduce the variance of the results and to make cache coherence effects visible.

The scaling of the different priority queues is shown in Fig. 3. We see that in
general, the new algorithm is between 30 - 80% faster. The largest performance
improvement is seen in the DES benchmark, on the Intel machine. The perfor-
mance improvement of the Uniform benchmark is slightly smaller. We note that
when using uniformly distributed keys, a majority of the inserts occur close to
the head, and as a consequence the CAS instructions are more prone to fail,
causing retrials of the operations. The penalty of the retry-search loop is slightly
higher in our case, because of the traversal of the prefix of logically deleted nodes.

We note a steep drop in performance going from 8 to 9 threads on the Intel
machine. This is a direct effect of threads being pinned to cores: up to 8 threads
all threads share the L3-cache. At 9 threads or more, communication is done
across sockets, with increased latency as a consequence. Likewise, for the AMD
machine: every 2 threads share an L2-cache, outside which communication is
more expensive.

Performance Limitations. We investigated the scalability bottleneck of the
algorithm. For this goal, we devised a microbenchmark in which n threads access
a data structure consisting of n nodes in a circular linked list. Each thread k
traverses n− 1 nodes, and then perform a CAS modifying the kth node. Thus,
each node is modified by only one thread, but the modification is read by all other
threads. This behavior is intended to represent the read-write synchronization of
the DeleteMin operations. This corresponds to traversing the prefix of deleted
nodes, then updating the first non-deleted node using CAS. Of the nodes in the
deleted prefix, we can expect one modified node per other thread running, if we
assume fair scheduling.

When n reaches 32 threads, the microbenchmark achieves roughly 2.6 million
operations per second. This coincides with the maximal throughput of the new

A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention 219

1
2
3
4
5
6
7
8
9

4 8 12 16 20 24 28

M
o
p
er
a
ti
o
n
s/
s

Number of threads

Uniform, Intel machine.

New
HaS
SaT

0

1

2

3

4

5

6

7

4 8 12 16 20 24 28

M
o
p
er
a
ti
o
n
s/
s

Number of threads

DES, Intel machine.

New
HaS
SaT

0

1

2

2 4 6 8 10 12 14

M
o
p
er
a
ti
o
n
s/
s

Number of threads

DES, AMD.

New
HaS
SaT

0
10
20
30
40
50
60
70
80

4 8 12 16 20 24 28

K
O
p
er
a
ti
o
n
s/
s

Number of threads

URDME benchmark.

New
HaS
SaT

Fig. 3. Throughput of algorithms for the benchmarks

algorithm in Uniform. We then conclude that the priority queue is entirely lim-
ited by the DeleteMin operation, and that, to achieve better performance, one
would have to read less than one modified memory position per other thread
and operation, on average.

7 Conclusion

We have presented a new linearizable skiplist-based priority queue algorithm,
which achieves better performance than existing such algorithms, mainly due to
reduced contention for shared memory locations. The absence of direct physi-
cal deletions makes our algorithm relatively simple to implement, and to verify
correct. In addition, a simple benchmark indicates that the scalability of our
algorithm is entirely limited by the logical deletion part of the DeleteMin op-
eration. We believe that similar ideas for improved performance can be applied
to other concurrent data structures, whose scalability is limited by contention
for shared memory locations.

220 J. Lindén and B. Jonsson

Acknowledgment. The authors would like to thank Pavol Bauer and Stefan
Engblom, whose work on the URDME framework inspired this work, and who
provided and set up the URDME benchmark. We also thank Nikos Nikoleris for
insightful discussions.

References

1. Crain, T., Gramoli, V., Raynal, M.: Brief announcement: a contention-friendly,
non-blocking skip list. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611,
pp. 423–424. Springer, Heidelberg (2012)

2. Drawert, B., Engblom, S., Hellander, A.: URDME: a modular framework for
stochastic simulation of reaction-transport processes in complex geometries. BMC
Systems Biology 6(76), 1–17 (2012)

3. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC 2004,
pp. 50–59. ACM (2004)

4. Fraser, K.: Practical lock freedom. Ph.D. thesis, University of Cambridge (2003)
5. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,

J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)
6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the

synchronization-parallelism tradeoff. In: SPAA, pp. 355–364. ACM (2010)
7. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
8. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-

mann Publishers Inc. (2008)
9. Holzmann, G.: The model checker SPIN. IEEE Trans. on Software Engineering

SE-23(5), 279–295 (1997)
10. Hunt, G.C., Michael, M.M., Parthasarathy, S., Scott, M.L.: An efficient algorithm

for concurrent priority queue heaps. Inf. Process. Lett. 60(3), 151–157 (1996)
11. Lotan, I., Shavit., N.: Skiplist-based concurrent priority queues. In: IPDPS,

pp. 263–268. IEEE (2000)
12. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.

IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)
13. Molka, D., Hackenberg, D., Schone, R., Muller, M.: Memory performance and

cache coherency effects on an intel nehalem multiprocessor system. In: PACT 2009,
pp. 261–270. ACM (2009)

14. Pugh, W.: Concurrent maintenance of skip lists. Tech. Rep. CS-TR-2222, Dept. of
Computer Science, University of Maryland, College Park (1990)

15. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM 33(6), 668–676 (1990)

16. Sundell, H., Tsigas, P.: Scalable and lock-free concurrent dictionaries. In: SAC
2004, pp. 1438–1445. ACM (2004)

17. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. J. Parallel Distrib. Comput. 65(5), 609–627 (2005)

18. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: PODC 1995,
pp. 214–222. ACM (1995)

19. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol. 5578, pp. 261–278.
Springer, Heidelberg (2009)

VirtuCast: Multicast and Aggregation
with In-Network Processing

An Exact Single-Commodity Algorithm

Matthias Rost and Stefan Schmid

Telekom Innovation Laboratories (T-Labs) & TU Berlin, Germany
{mrost,stefan}@net.t-labs.tu-berlin.de

Abstract. As the Internet becomes more virtualized and software-defined, new
functionality is introduced in the network core: the distributed resources available
in ISP central offices, universal nodes, or datacenter middleboxes can be used to
process (e.g., filter, aggregate or duplicate) data. Based on this new networking
paradigm, we formulate the Constrained Virtual Steiner Arborescence Problem
(CVSAP) which asks for optimal locations to perform in-network processing, in
order to jointly minimize processing costs and network traffic while respecting
link and node capacities.

We prove that CVSAP cannot be approximated (unless NP ⊆ P), and ac-
cordingly, develop the exact algorithm VirtuCast to compute optimal solutions to
CVSAP. VirtuCast consists of: (1) a compact single-commodity flow Integer Pro-
gramming (IP) formulation; (2) a flow decomposition algorithm to reconstruct
individual routes from the IP solution. The compactness of the IP formulation
allows for computing lower bounds even on large instances quickly, speeding up
the algorithm significantly. We rigorously prove VirtuCast’s correctness and show
its applicability to solve realistically sized instances close to optimality.

Keywords: Network Virtualization, Network Functions Virtualization,
Multicast, In-Network Aggregation, Data-Center, Middleboxes, ISP, Integer
Programming.

1 Introduction

Multicast and aggregation are two fundamental functionalities offered by many com-
munication networks. In order to efficiently distribute content (e.g., live TV) to multiple
receivers, a multicast solution should duplicate the content as close to the receivers as
possible. Analogously, in aggregation applications such as distributed network monitor-
ing, data may be filtered or aggregated along the path to the observer, to avoid redundant
transmissions over physical links. Efficient multicasting and aggregation is a mature re-
search field, and many important theoretical and practical results have been obtained
over the last decades. Applications range from IPTV [14] over sensor networks [10,11]
to fiber-optical transport [14].

This paper is motivated by the virtualization trend in today’s Internet, and in par-
ticular by network (functions) virtualization [9] and software-defined networking, e.g.,

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 221–235, 2013.
c© Springer International Publishing Switzerland 2013

222 M. Rost and S. Schmid

(a) 5× 5 Grid Topology (b) Steiner Arborescence (c) Virtual Arborescence

Fig. 1. An aggregation example on a 5×5 grid. Terminals are depicted as triangles and the receiver
as a star. The terminals must establish a route towards the receiver, while multiple data streams
may be aggregated by activated processing locations. Such processing locations are pictured as
squares or, in case that an active processing location is collocated with a terminal, pentagons. In
Figure (c), equally colored and dashed edges represent logical connections (routes), originating
at the node with the same color.

OpenFlow [23]. In virtualized environments, resources can be allocated or leased flex-
ibly at the locations where they are most useful or cost-effective: computational and
storage resources available at middleboxes in datacenters [5], in universal nodes, or
in distributed (micro-)datacenters in the wide-area network [7,20,29] can be used for
in-network processing, e.g., to reduce traffic during the MapReduce shuffle phase [6].
Such distributed resource networks open new opportunities on how services can be
deployed. Especially in the context of aggregation and multicasting a new degree of
freedom arises: the sites (i.e., the number and locations) used for the data processing,
becomes subject to optimization.

This paper initiates the study of how to efficiently allocate in-network processing
functionality in order to jointly minimize network traffic and computational resources.
Importantly, for many of these problem variants, classic Steiner Tree models [28] are
no longer applicable [19]. Accordingly, we coin our problem the Constrained Virtual
Steiner Arborescence Problem (CVSAP), as the goal is to install a set of processing
nodes and to connect all terminals via them to a single root.

Example. To illustrate our model, consider the aggregation example depicted in Fig-
ure 1. The terminals must connect to the single receiver (root), while processing func-
tionality can be placed on nodes to aggregate any number of incoming data flows into a
single one. Assuming no costs for placing processing functionality, the problem reduces
to the Steiner Arborescence Problem: the optimal solution, depicted in Figure 1b, uses
16 edges and 9 processing locations, i.e. nodes where data flows are merged. However,
assuming unit edge costs and activation costs of 5 for processing locations, this solution
is suboptimal. Figure 1c depicts a solution which only uses 2 processing locations and
26 edges overall: terminals in the first column directly connect to the receiver, while the
remaining terminals use one of the two processing nodes. Note that we allow for nested
processing of flows: the upper processing node forwards its aggregation result to the
lower processing node, from where the result is then forwarded to the receiver.

VirtuCast: Multicast and Aggregation with In-Network Processing 223

Contribution. We introduce the Constrained Virtual Steiner Arborescence Problem
(CVSAP) which captures the trade-off between traffic optimization benefits and
in-network processing costs arising in virtualized environments, and which also gen-
eralizes many classic in-network processing problems related to multicasting and ag-
gregation. We prove that CVSAP cannot be approximated unless NP ⊆ P holds and
therefore focus on obtaining provably good solutions for CVSAP in non-polynomial
time. To this end we introduce the algorithm VirtuCast, which is based on Integer Pro-
gramming (IP) and allows to obtain optimal solutions. The advantage of VirtuCast lies
in the fact that even for large problem instances, when optimal solutions cannot be com-
puted in reasonable time, our approach bounds the gap to optimality as lower bounds
are computed on the fly.

VirtuCast consists of two components: a single-commodity IP formulation which
can be solved by branch-and-cut methods and a decomposition algorithm to construct
the routing scheme. Our IP formulation not only uses a smaller number of variables
compared to alternative multi-commodity IP formulations, but also yields good linear
relaxations in practice, speeding up the branch-and-bound algorithm (see [26] for an
in-depth discussion).

Our main contribution is the constructive proof that any solution to our IP formu-
lation can be decomposed to yield a valid routing scheme connecting all terminals via
processing nodes to the root. This is intriguing, as the single-commodity flow in the
network is not restricted to directed acyclic graphs (cf. Figure 1c). In fact, as already
shown in [19], forbidding directed acyclic graphs (DAGs) may yield suboptimal solu-
tions only. Rather, we allow for the iterative processing of flows, such that processing
nodes may be connected to other processing nodes.

To implement VirtuCast, we have developed a branch-and-cut framework, including
a primal heuristic. Due to space constraints, we refer the interested reader to our tech-
nical report [26] for a detailed discussion of the implementation as well as for the full
computational evaluation.

Overview. We formally introduce CVSAP and show its inapproximability in Section 2.
We continue by presenting our VirtuCast algorithm in Section 3. In Section 4 we shortly
outline the results of our computational study. We conclude this paper with summariz-
ing related work in Section 5.

2 The Constrained Virtual Steiner Arborescence Problem

The Constrained Virtual Steiner Arborescence Problem (CVSAP) generalizes several
in-network processing problems related with multicasting and aggregation of data where
processing locations can be chosen to reduce traffic. As using (or leasing) in-network
processing capabilities comes at a certain cost (e.g., the corresponding resources cannot
be used by other applications), there is a trade-off between additional processing and
traffic reduction. In contrast to the classic Steiner Tree Problems [28], our model dis-
tinguishes between nodes that merely relay traffic and nodes that may actively process
flows. Informally, the task is to construct a minimal cost spanning arborescence on the

224 M. Rost and S. Schmid

set of active processing nodes, sender(s) and receiver(s), such that edges in the arbores-
cence correspond to paths in the original graph. As edges in the arborescence represent
logical links (i.e. routes) between nodes, we refer to the problem as Virtual Steiner Ar-
borescence Problem. Based on the notion of virtual edges, the underlying paths may
overlap and may use both the nodes and edges in the original graph multiple times (cf.
Figure 1c). We naturally adopt the notion of Steiner nodes in our model, and refer to
processing nodes contained in the virtual arborescence as active Steiner nodes. As will
be discussed at the end of this section, the multicast case can be easily reduced to the
aggregation case. Hence, in the following we only introduce the variant of CVSAP in
which data flows are directed towards the root. The following notations will be used
throughout this paper.

Notation. In a directed graph G = (VG, EG) we denote by PG the set of all simple,
directed paths in G. Given a set of simple paths P , we denote by P [e] the subset of
paths of P that contains edge e. We use the notation P = 〈v1, v2, . . . , vn〉 to denote the
directed path P of length |P | = n where Pi � vi ∈ VG for 1 ≤ i ≤ n and (vi, vi+1) ∈
EG for 1 ≤ i < n. We denote the set of outgoing and incoming edges, restricted on a
subsetF ⊆ EG inG, by δ+F (v) = {(v, u) ∈ F} and δ−F (v) = {(u, v) ∈ F} for v ∈ VG.
We naturally extend this definition to sets: δ+F (W) = {(v, u) ∈ F |v ∈ W,u /∈ W} and
δ−F (W) = {(u, v) ∈ F |v ∈ W,u /∈ W} respectively. We abridge f((y, z)) to f(y, z) for
functions defined on tuples.

Formal Problem Statement. We model the physical infrastructure as capacitated, di-
rected networkG = (VG, EG, cE , uE), where uE : EG → N defines integral capacities
and cE : EG → R

+ defines real-valued, positive costs on the edges. On top of this net-
work, we define an abstract request RG = (r, S, T, ur, cS , uS), where T ⊆ VG defines
the set of terminals that need to be connected with the root r ∈ VG \ T , for which an
integral capacity ur ∈ N is given. The set S ⊆ VG \ ({r} ∪ T) denotes the set of pos-
sible Steiner sites, i.e. nodes at which processing nodes may be activated. Such Steiner
sites are attributed with a positive cost cS : S → R

+ that is incurred upon using it, and
an integral capacity uS : S → N. It should be noted that we require the sets S and T
to be disjoint for terminological reasons. A node v ∈ S ∪ T can easily be modeled by
introducing a new node vT ∈ T and letting v ∈ S such that vT is only connected to v
with cE(vT , v) = 0 and uE(vT , v) = 1.

In the aggregation scenario considered henceforth the terminals hold data that needs
to be forwarded to the root (the single receiver) while data may be aggregated at active
Steiner nodes. The capacities on the Steiner sites (and on the root) limit the number of
flows that can be actively processed: any number of incoming flows less than or equal
to uS(s) can be merged into a single flow by s ∈ S upon activation. To model both
routing decisions and paths taken, we introduce the concept of Virtual Arborescences:

Definition 1 (Virtual Arborescence). Given a directed graph G = (VG, EG) and a
root r ∈ VG, a Virtual Arborescence (VA) on G is defined as TG = (VT , ET , r, π)
where {r} ⊆ VT ⊆ VG, ET ⊆ VT × VT , r is the root and π : ET → PG maps each
edge in the virtual arborescence on a simple directed path P ∈ PG such that

VirtuCast: Multicast and Aggregation with In-Network Processing 225

(VA-1) (VT , ET , r) is an arborescence rooted at r with edges directed towards r,
(VA-2) for all (u, v) ∈ ET the directed path π(u, v) connects u to v in G.

A link (v, w) ∈ ET represents a logical connection between nodes v and w while
the function π(v, w) = P defines the route taken to establish this link: in Figure 1c
equally colored and dashed paths represent edges of the Virtual Arborescence. Note
that the directed path P must, pursuant to the orientation (v, w) of the logical link in
the arborescence, start with v and end atw. Using the concept of Virtual Arborescences,
we can concisely state the problem we are attending to.

Definition 2 (Constrained Virtual Steiner Arborescence Problem). Given a directed
capacitated network G = (VG, EG, cE , uE) and a request RG = (r, S, T, ur, cS , uS)
as above, the Constrained Virtual Steiner Arborescence Problem (CVSAP) asks for
a minimal cost Virtual Arborescence TG = (VT , ET , r, π) satisfying the following
conditions:

(CVSAP-1) {r} ∪ T ⊆ VT and VT ⊆ {r} ∪ S ∪ T ,

(CVSAP-2) for all terminals t ∈ T holds δ+ET
(t) = 1,

(CVSAP-3) for the root δ−ET
(r) ≤ ur holds,

(CVSAP-4) for all activated Steiner sites s ∈ S ∩ VT holds δ−ET
(s) ≤ uS(s) and

(CVSAP-5) for all edges e ∈ EG holds | (π(ET)) [e]| ≤ uE(e).
Any VA TG satisfying CVSAP-1 - CVSAP-5 is said to be a feasible solution. The cost
of a Virtual Arborescence is defined to be

CCVSAP(TG) =
∑

e∈EG

cE(e) · | (π(ET)) [e]|+
∑

s∈S∩VT

cS(s) ,

where | (π(ET)) [e]| is the number of times an edge is used in different paths.

In the above definition, CVSAP-1 states that terminals and the root must be included
in VT , whereas non Steiner sites are excluded. We identify VT \ ({r} ∪ T) with the
set of active Steiner nodes. Condition CVSAP-2 states that terminals must be leaves in
TG and CVSAP-3 and CVSAP-4 enforce degree constraints in TG. The term π(ET) in
Condition CVSAP-5 determines the set of all used paths and consequently π(ET)[e]
yields the set of paths that use e ∈ ET . As π is injective and maps on simple paths,
Condition CVSAP-5 enforces that edge capacities are not violated.

The following theorem motivates our approach in Section 3, namely to search for
provably good solutions in non-polynomial time.

Theorem 1. Checking whether a feasible solution for CVSAP exists is NP-complete.
Thus, unless NP ⊆ P holds, there cannot exist an (approximation) algorithm yielding
a feasible solution in polynomial time.

Proof. We give a reduction on the decision variant of set cover. Let U denote the uni-
verse of elements and let S ⊆ 2U denote a family of sets coveringU . To check whether
a set cover using at most k many sets exists, we construct the following CVSAP in-
stance. We introduce a terminal tu for each element u ∈ U and a Steiner site sS for

226 M. Rost and S. Schmid

each S ∈ S. A terminal tu is connected by a directed link to each Steiner site sS iff.
u ∈ S. Each Steiner site sS is connected to the root r. We set the capacity of the root
to k and capacities of Steiner sites to |U |. It is easy to check that there exists a feasible
solution to this CVSAP instance iff. there exists a set cover of less than k elements.

Similarly to the above definitions, CVSAP can be defined for multicasting applica-
tions in which the task is to distribute a single data item from the root (single sender) to
terminals (receivers) via processing nodes (with routing capability) that may duplicate
the data and route it to several different destinations. To obtain a formal definition for
this scenario, edges in the VA must be oriented away from the root and δ−(·) must be
replaced by δ+(·) and vice versa in Definition 2. Subject to this slight adaption, the root
and active Steiner nodes can reproduce an incoming stream, such that terminals must
receive this stream. By essentially reversing the direction of edges, the multicasting
version of CVSAP can be reduced to the aggregation version presented above.

3 VirtuCast Algorithm

In this section we present the Algorithm VirtuCast to solve CVSAP. VirtuCast first
computes a solution for a single-commodity flow Integer Programming formulation
and then constructs the corresponding Virtual Arborescence. Even though our IP for-
mulation can be used to compute the optimal solution for any CVSAP instance, feasible
solutions to our IP formulation already yield feasible solutions to CVSAP. This allows
to derive near-optimal solutions during the solution process. Our single-commodity ap-
proach improves dramatically upon naive multi-commodity flow formulations and en-
ables us to solve realistically sized instances in the first place (see [26] for a discussion).

3.1 IP Formulation

Our IP (see IP-CVSAP) is based on an extended graph containing a single super source
o+ and two distinct super sinks o−S and o−r (see Definition 3). While o−r may only
receive flow from the root r, all possible Steiner sites s ∈ S are connected to o−S .
Distinguishing between these two super sinks is necessary, as we will require activated
Steiner nodes to not absorb all incoming flow, but forward at least one unit of flow
towards o−r , which will ensure connectivity.

Definition 3 (Extended Graph). Given a directed network G = (VG, EG, cE , uE)
and a request RG = (r, S, T, ur, cS , uS) as introduced in Section 2, we define the
extended graph Gext = (Vext, Eext) as follows

(EXT-1) Vext � VG ∪ {o+, o−S , o−r } ,
(EXT-2) Eext � EG ∪ {(r, o−r)} ∪ ES−

ext ∪ ES+

ext ∪ET+

ext ,

where ES−

ext � S × {o−S }, ES+

ext � {o+} × S and ET+

ext � {o+} × T . We define

ER
ext � Eext \ ES−

ext , such that edges towards o−S are excluded in ER
ext.

VirtuCast: Multicast and Aggregation with In-Network Processing 227

Further Notation. To clearly distinguish between variables and constants, we typeset
constants in bold font: instead of referring to cE , cS and uE , ur, uS we use cy and uy,
where y may either refer to an edge or a Steiner site. Similarly, we use uy where y may
either refer to an edge, the root or a Steiner site. We abbreviate

∑

y∈Y fy by f(Y). We
use Y + y to denote Y ∪ {y} and Y − y to denote Y \ {y} for a set Y and a singleton y.
For f ∈ Z

Eext
≥0 we define the flow-carrying subgraph Gf

ext � (V f
ext, V

f
ext) with V f

ext � Vext

and V f
ext � {e|e ∈ Eext ∧ f(e) ≥ 1}.

The IP Model. The IP formulation IP-CVSAP uses an integral single-commodity flow.
We define flow variables fe ∈ Z≥0 for each edge e ∈ Eext in the extended graph
(see IP-11). As we use an aggregated flow formulation, that does not model routing
decisions explicitly, we show in Section 3.2 how this single-commodity flow can be
decomposed into paths for constructing an actual solution for CVSAP.

The binary variable xs ∈ {0, 1} (see IP-10) decides, whether a Steiner site s ∈ S is
activated. By Constraint IP-8, each terminal t ∈ T is forced to send a single unit of flow,
as flow conservation is enforced on all original nodes v ∈ VG (see IP-1). Therefore, all
flow originating at o+ must be forwarded to one of the super sinks o−r or o−S , while not
violating link capacities (see IP-7).

As the definition of CVSAP requires that each terminal t ∈ T establishes a path to
r, we need to enforce connectivity; otherwise active Steiner nodes would simply absorb
flow by directing it towards o−S . To prohibit this, we adopt well-known Connectivity
Inequalities IP-2 [18] and Directed Steiner Cuts IP-3� [16]. Our connectivity inequali-
ties (see IP-2) state that each set of nodes containing a Steiner site s ∈ S must emit at

Integer Program IP-CVSAP

minimize CIP(x, f)=
∑

e∈EG

cefe +
∑
s∈S

csxs (IP-OBJ)

subject to f(δ+Eext
(v)) = f(δ−Eext

(v)) ∀ v ∈ VG (IP-1)

f(δ+
ER

ext
(W))≥xs ∀W ⊆ VG, s ∈W ∩ S �= ∅ (IP-2)

f(δ+
ER

ext
(W))≥ 1 ∀W ⊆ VG, T ∩W �= ∅ (IP-3�)

fe ≥xs ∀ e = (s, o−
S) ∈ ES−

ext (IP-4�)

fe ≤usxs ∀ e = (s, o−
S) ∈ ES−

ext (IP-5)

f
(r,o−r)

≤ur (IP-6)

fe ≤ue ∀ e ∈ EG (IP-7)

fe =1 ∀ e ∈ ET+

ext (IP-8)

fe =xs ∀ e = (o+, s) ∈ ES+

ext (IP-9)

xs ∈{0, 1} ∀ s ∈ S (IP-10)

fe ∈Z≥0 ∀ e ∈ Eext (IP-11)

228 M. Rost and S. Schmid

least one unit of flow in ER
ext, if s is activated. As ER

ext does not contain edges towards
o−S , this constraint therefore enforces that there exists a path in Gf

ext from each activated
Steiner node s to the root r. Analogously, Constraint IP-3� enforces that there exists a
path from each terminal t ∈ T towards r in Gf

ext. The directed Steiner cuts constitute
valid inequalities which are implied by IP-1 and IP-2 (see [26] for the proof). How-
ever, these cuts can strengthen the model by improving the LP-relaxation during the
branch-and-cut process. As discussed in [26], including these constraints substantially
improved the quality of lower bounds in our computational evaluation. As they are not
needed for proving the correctness and could technically be removed, we mark them
with a � (star).

As a Steiner node s ∈ S is activated iff. xs = 1, Constraint IP-9 requires activated
Steiner nodes to receive one unit of flow while being able to maximally absorb us many
units of flow by forwarding it to o−S (see IP-5). Furthermore, by IP-5 inactive Steiner
sites may not absorb flow at all. The Constraint IP-4� requires active Steiner nodes to at
least absorb one unit of flow. This is a valid inequality, as activating a Steiner site s ∈ S
incurs a non-negative cost. We introduce this constraint here, as it specifies a condition
needed in the proof of correctness later on.

Constraint IP-6 defines an upper bound on the amount of flow that the root may
receive and the objective function IP-OBJ mirrors the CVSAP cost function (see Def-
inition 2). We denote with FIP = {(x, f) ∈ {0, 1}S × Z

Eext
≥0 |IP-1 - IP-11} the set of

feasible solutions to IP-CVSAP.

3.2 Decomposition Algorithm

Given a feasible solution (x̂, f̂) ∈ FIP for IP-CVSAP, Algorithm Decompose constructs
a feasible solution T̂G ∈ FCVSAP for CVSAP. Similarly to well-known algorithms for
computing flow decompositions for simple s-t flows (see e.g. [2]), our algorithm iter-
atively deconstructs the flow into paths from the super source o+ to one of the super
sinks o−S or o−r and reduces flow along the found paths to yield a solution to a subprob-
lem. However, as IP-CVSAP does not pose a simple flow problem, we constantly need

to ensure that Connectivity Inequalities IP-2 hold after removing flow in Gf̂
ext. We first

present Algorithm Decompose in more detail and then prove its correctness.

Synopsis of Algorithm. Algorithm Decompose constructs a feasible VA T̂G given a
solution (x̂, f̂) ∈ FIP. In Line 2, T̂G is initialized without any edges but containing all
the nodes the final solution will consist of, namely the root r, the terminals T and the
activated Steiner nodes {s ∈ S|xs = 1}.

Unconnected terminals in T̂ are connected iteratively. For an unconnected terminal
t ∈ T̂ the path generation procedure from Line 6 to 14 computes a path P from o+

via t to o−S or o−r . If the path P terminates in o−r then t is connected to r. Otherwise,
if P terminates in o−S , then the second last node of P is an active Steiner node and t is
connected to it (see Line 18). During the path generation procedure the flow variables f̂
are decremented. If the second last node of P was indeed an active Steiner node s ∈ Ŝ
and s does not forward any flow towards o−S anymore, s itself is added to the set of
unconnected terminals (see Line 16). Note that in Line 18 the (virtual) edge (t, P|P |−1)

VirtuCast: Multicast and Aggregation with In-Network Processing 229

Algorithm Decompose
Input : Network G = (VG, EG, cE , uE), Request RG = (r, S, T, ur, cS, uS),

Solution (x̂, f̂) ∈ FIP to IP-CVSAP
Output: Feasible Virtual Arborescence T̂G for CVSAP

1 set Ŝ � {s ∈ S|xs ≥ 1} and T̂ � T

2 set T̂G � (V̂T , ÊT , r, π̂) where V̂T � {r} ∪ Ŝ ∪ T̂ , ÊT � ∅ and π̂ : ÊT → PG

3 while T̂ �= ∅ do
4 let t ∈ T̂ and T̂ ← T̂ − t

5 choose P � 〈o+, t, . . . , o−
r 〉 ∈ Gf̂

ext

6 for j = 1 to |P | − 1 do
7 set f̂(Pj , Pj+1)← f̂(Pj , Pj+1)− 1

8 if Constraint IP-2 is violated with respect to f̂ and Ŝ then
9 choose W ⊆ VG such that W ∩ Ŝ �= ∅ and f̂(δ+

ER
ext
(W)) = 0

10 choose P ′ � 〈Pj , . . . , o−
S 〉 ∈ Gf̂

ext such that Pi ∈W for 1 ≤ i < m

11 set f̂(Pj , Pj+1)← f̂(Pj , Pj+1) + 1 and f̂(P ′
1, P

′
2)← f̂(P ′

1, P
′
2)− 1

12 set P ← 〈P1, . . . , Pj−1, Pj = P ′
1, P

′
2, . . . , P

′
m〉

13 end
14 end
15 if P|P | = o−

S and f̂(P|P |−1, P|P |) = 0 then
16 set Ŝ ← Ŝ − P|P |−1 and x̂(P|P |−1)← 0 and T̂ ← T̂ + P|P |−1

17 end
18 set ÊT ← ÊT + (t, P|P |−1) and π̂(t, P|P |−1) � simplify(〈P2, . . . , P|P |−1〉)
19 end

is added to ÊT and π̂(t, P|P |−1) is set accordingly to the truncated path P , where any
cycles are removed (function simplify).

Proof of Correctness. We will now prove the correctness of Algorithm Decompose,
thereby showing that IP-CVSAP can be used to compute (optimal) solutions to CVSAP.
Our proof relies on an inductive argument similar to the one used for proving the ex-
istence of flow decompositions (see [2]): we assume that all constraints of IP-CVSAP
hold and show that for any terminal t ∈ T a path towards the root or to an active Steiner
node can be constructed, such that decrementing the flow along the path by one unit
does again yield a feasible solution to IP-CVSAP, in which t has been removed from
the set of terminals (see Theorem 2 below). During the course of this induction, the
well-definedness of the choose operations is shown. As the complete proof is included
in [26], we allow us to mainly sketch the proofs.

Theorem 2. Assuming that the constraints of Decompose hold with respect to Ŝ, T̂ , f̂ , x̂
before executing Line 4, then the constraints of Decompose will also hold in Line 18
with respect to the then reduced problem Ŝ, T̂ , f̂ , x̂.

To prove the above theorem, we use the following Lemmas 1 through 3 of which
we only prove the essential third one; the proofs for Lemmas 1 and 2 are included

230 M. Rost and S. Schmid

in [26]. Lemma 1 shows the well-definedness of choosing the path in Line 5 and is easy
to check. Lemma 2 states that flow conservation (IP-1) holds during the execution of
Decompose except at node Pj+1 at which the outgoing flow exceeds the incoming flow
by exactly one unit.

Lemma 1. Assuming that IP-1 and IP-2 hold, there exists a pathP = 〈o+, t, . . . , o−r 〉 ∈
Gf̂

ext in Line 5.

Lemma 2. Assuming that IP-1 has held in Line 5, f(δ+Eext
(v)) − f(δ−Eext

(v)) = δv,Pj+1

holds for all v ∈ VG during construction of P (Lines 8-13), where δx,y ∈ {0, 1} and
δx,y = 1 iff. x = y.

Lemma 3. Assuming that connectivity inequalities IP-2 have held before executing
Line 7, these inequalities will hold again at Line 13.

Proof Sketch. We only need to consider the case in which the Constraint IP-2 was vi-
olated after executing Line 7. Assume therefore that IP-2 is violated in Line 8. The
choose operation in Line 9 is well-defined, as IP-2 is violated. Let W ⊆ VG be any
violated set with Ŝ ∩W �= ∅. Our proof relies on the following four statements:

(a) Pj is contained in W while Pj+1 is not contained in W .
(b) f̂(Pj , Pj+1) = 0 holds in Lines 9-10.
(c) Before flow reduction in Line 7, there existed a path

P ′′ = 〈s, . . . , Pj , Pj+1, . . . , o−r 〉 ∈ Gf̂
ext for s ∈ Ŝ ∩W .

(d) There exists a path P ′ = 〈Pj , . . . , o
−
S 〉 with P ′i ∈ W for 1 ≤ i < |P ′| in Gf̂

ext

after reduction of flow.

To see that statement (a) holds, consider the following. Before the reduction of flow
on (Pj , Pj+1) all inequalities IP-2 held. For the expression f̂(δ+Eext

(W)) = 0 to hold
after reduction of flow, the edge (Pj , Pj+1) must be contained in δ+Eext

(W).
The correctness of (b) directly follows from (a), as (Pj , Pj+1) ∈ δ+Eext

(W) holds.
We now prove statement (c). As connectivity inequalities IP-2 have held before the

flow reduction in Line 7, for each activated Steiner node s ∈ Ŝ∩W there existed a path

from s to o−r in Gf̂
ext. By (b), (Pj , Pj+1) was the only edge in Gf̂

ext leaving W before
reduction of flow. Therefore a path as claimed in (c) must have existed before reduction
of flow.

By statement (c), the prefix 〈s, . . . , Pj〉 of path P ′′ still exists in Gf̂
ext after reduction

of flow. This implies that Pj is reached by a positive amount of flow. By Lemma 2 flow
conservation holds for all nodesw ∈W , since by (a) Pj+1 is not included in W . As o−r
is not included in W , there must exist a path P ′ = 〈Pj , . . . , o

−
S 〉 ∈ Gf̂

ext after reduction
of flow with P ′i ∈ W for 1 ≤ i < |P ′|. This proves the fourth statement (d) and shows
that the choose operation in Line 10 is well-defined.

To see that the main statement of this lemma holds, consider the case that after
Line 11 any connectivity inequality of IP-2 is violated. Let W ′ ⊆ VG with W ′ ∩ Ŝ �= ∅
be a violated node set such that f̂(δ+Eext

(W ′)) = 0 holds. By the same argument as used
for proving statement (a), it is easy to see that P ′1 ∈ W ′ and P ′2 /∈ W ′ must hold. How-
ever, by statement three, after having reverted the flow reduction along (Pj , Pj+1), the

VirtuCast: Multicast and Aggregation with In-Network Processing 231

path 〈Pj , Pj+1, . . . , o−r 〉was re-established inGf̂
ext. As flow along any of the edges con-

tained in this path is greater or equal to one,W ′ cannot possibly violate IP-2. Therefore
all Connectivity Inequalities IP-2 hold.

Using the above lemmas, we now outline the proof of Theorem 2. By Lemmas 1 and
3 the algorithm is well-defined. Lemma 2 implies that flow preservation holds at Line 18
as node Pj+1 is one of the super sinks. Lemma 3 directly ensures that connectivity
constraints IP-2 hold. As capacity related constraints trivially hold as flow was only
decreased, it only remains to check that placing a former active Steiner node into the
set of terminals in Line 16 does not violate the terminal related constraint IP-8. This
however is easy to check as constraint IP-9 ensured that this node received one unit of
flow from the super source.

Using Theorem 2 it is easy to check that Algorithm Decompose terminates: Since
no constraint is violated during the execution of the path generation and as flow is only
reduced, the inner loop must eventually terminate

Theorem 3. Algorithm Decompose terminates.

We can now turn to proving that Algorithm Decompose indeed constructs a feasible
solution for CVSAP. As the proof is of a rather technical nature, we again only sketch
the proof and refer the interested reader to [26] for the complete argument.

Theorem 4. Algorithm Decompose constructs a feasible solution T̂G ∈ FCVSAP for
CVSAP given a solution (x̂, f̂) ∈ FIP. Additionally, CCVSAP(T̂G) ≤ CIP(x̂, f̂) holds.

By Theorem 3 the algorithm terminates such that we only need to check feasibility
of the solution. First note that, as the VA T̂G is constructed using only resources ac-
counted for in IP-CVSAP, CCVSAP(T̂G) ≤ CIP(x̂, f̂) must hold. Clearly, as capacity
constraints of CVSAP are modeled explicitly in IP-CVSAP, it must only be checked
whether indeed T̂G is a Virtual Arborescence. For proving that, first note that at the end
of executing Decompose both sets Ŝ and T̂ are empty and therefore all terminals and
active Steiner nodes have been connected. While this holds by definition of the outer
loop for T̂ , proving Ŝ = ∅ requires the following argument. Assume that Ŝ �= ∅ while
T̂ = ∅. By constraint IP-9 each active Steiner node s ∈ Ŝ receives one unit of flow
from the super source. On the other hand constraint IP-4� safeguards that each active
Steiner node absorbs at least a single unit of flow. This implies that no flow reaches o−r ,
violateing Constraint IP-2. Lastly, to check that T̂G defines an arborescence note that
the order in which terminals (or former active Steiner sites) are removed from T̂ defines
a topological order on (V̂T , ÊT , r).

To prove that formulation IP-CVSAP indeed computes optimal solutions, we need
the following technical lemma showing that each solution to CVSAP can be mapped on
a solution of IP-CVSAP with equal cost. As this mapping is straightforward, we refer
the reader to [26] for the construction and only state the following lemma.

Lemma 4. Given a networkG=(VG, EG, cE , uE), a requestRG=(r, S, T, ur, cS , uS)
and a feasible solution T̂G = (V̂T , ÊT , r, π̂) to the corresponding CVSAP. There exists
a solution (x̂, f̂) ∈ FIP with CCVSAP(T̂G) = CIP(x̂, f̂).

232 M. Rost and S. Schmid

The above lemma fills the last gap in our proof to show that algorithm VirtuCast,
which first computes an optimal solution to IP-CVSAP and then constructs a corre-
sponding Virtual Arborescence using Decompose, solves CVSAP to optimality.

Theorem 5. Algorithm VirtuCast solves CVSAP to optimality.

We conclude this section with stating that each choose operation in Algo-
rithm Decompose and checking whether connectivity inequalities IP-2 hold can
be implemented using depth-first search. Implementing Decompose in this way
and assuming that an optimal solution for IP-CVSAP is given and that G
does not contain zero-cost cycles, we can bound the runtime of Decompose by
O (|VG|2 · |EG| · (|VG|+ |EG|)

)

[26].

4 Computational Evaluation

We have implemented VirtuCast using SCIP [1] as underlying branch-and-cut frame-
work. As the separation procedures employed to enforce Constraints IP-2 and IP-3� are
well-known [16], we only shortly outline the results of our computational evaluation.
A detailed discussion of all our results can be found in [26]. Furthermore, our solver as
well as the test instances are obtainable from [25]. All our experiments were conducted
on machines equipped with an 8-core Intel Xeon L5420 processor running at 2.5 Ghz
and 16 GB RAM.

In our computational evaluation we consider two complementary graph topologies
with varying sizes: symmetric n × n grid graphs and ISP topologies generated by
IGen [24]. We report only on results obtained for the largest topology sizes, namely on
a 20×20 grid and an IGen topology with 3200 nodes (further refered to by IGen.3200).
The IGen.3200 topology is created by populating a world map with 3200 nodes, apply-
ing a local clustering and then connecting these clusters, yielding 19410 edges.

For each of the both test sets we generated 25 instances according to the following
parameters. The receiver as well as the Steiner sites and the terminals are picked uni-
formly at random. For the grid instances we selected 80 Steiner sites and 100 terminals.
For the IGen.3200 topology we chose 400 Steiner sites and 600 terminals. Common to
both test sets, we set the edge capacities to 3 and the capacity of Steiner sites and the
root to 5. On the grid topology, we set edge costs to 1 and activation costs for Steiner
sites to 20. For IGen.3200 instances, edge costs are defined by the euclidean distance
and activation costs are distributed uniformly according to μ(cE) · U(25, 75), where
μ(cE) denotes the average edge length.

Figure 2 shows the objective gap, i.e. the relative quality guarantee, over time for
both test sets, consisting of 25 instances each. Independent of the test set, the objective
gap stabilizes after one hour of computation. For the highly symmetric grid instances
as well as for the IGen.3200 instances, a median gap of less than 4% is achieved. As
documented in [26], the lower bound improves by less than 2% for IGen.3200 instances
and by less than 12% for grid instances. Hence, the lower bounds obtained initially are
already reasonably accurate and the progress of the objective gap (cf. Figure 2) is driven
by the quality of the solutions found. Based on this observation, we have implemented
a primal heuristic to generate feasible solutions based on the linear relaxations during
the branch-and-bound search (see [26]).

VirtuCast: Multicast and Aggregation with In-Network Processing 233

●
●
●● ●

●

●
●● ●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●

●

●● ●

●

●● ●

●

●● ●

●

●● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

20 x 20 Grid

time [s]

ob
je

ct
iv

e
ga

p
[%

]

300 1700 3380 5060 6740

2
8

32

2
8

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

IGen.3200

time [s]

300 1700 3380 5060 6740

0
4

8
12

∞

0
4

Fig. 2. Objective gap over time for the 20×20 grid and IGen.3200 test sets. Note the logarithmic
y-axis for the grid instances. A gap of∞ indicates that no primal solution has been found.

5 Related Work

The CVSAP problem differs from many models studied in the context of IPTV [14],
sensor networks [10,11], fiber-optical transport [14], or Active Networking [3], to just
name a few, in that the number and placement of processing locations is subject to
optimization as well. The problem is complicated further by the fact that the commu-
nication between sender and receiver may be processed repeatedly within the network.
The result from [19] on multi-constrained multicast routing also applies to CVSAP: any
algorithm limited to (directed) acyclic graphs cannot solve the problem in general. Gen-
erally, while there exist many heuristic and approximate algorithms for related problem
variants, we are the first to consider exact solutions.

The two closest models to CVSAP are studied in [21] and [27]. While [27] already
showed the applicability of selecting only a few processing nodes for multicasting, no
concise formalization is given and the described heuristic does not provide performance
guarantees. In a series of publications, Oliviera and Pardalos consider the Flow Stream-
ing Cache Placement Problem (FSCPP) [21]. Unfortunately, their FSCPP definition is
inherently flawed as it does not guarantee connectivity (see [26] for a discussion). In-
terestingly, the authors also provide a correct approximation algorithm, which however
only considers the rather weak model which ignores traffic.

Other Related Problems and Algorithms. The CVSAP is related to several classic
problems. For example, CVSAP generalizes the light-tree concepts [4] in the sense that
“light splitting” locations can be chosen depending on the repeatedly processed traf-
fic; our approach can directly be used to optimally solve the light-tree problem. In the
context of wave-length assignment, Park et al. [22] show that a small number of virtual
splitters can be sufficient for efficient multicasting. Our formalism and the notion of hi-
erarchy is based on the paper by Molnar [19] who studies the structure of the so-called
multi-constrained multicast routing problem. However, unlike in CVSAP, an edge may
be only used once in the solution. If the cost of in-network processing is zero and all
nodes are possible Steiner sites, the CVSAP boils down to the classic Steiner Tree Prob-
lem [12] and its degree-bounded variants [17]. A closer look shows that CVSAP can

234 M. Rost and S. Schmid

be easily modified to generalize the standard formulation of prize-collecting Steiner
trees [15] where used edges entail costs, and visited nodes may come with a benefit.
However, CVSAP does not generalize other STP variants where disconnected nodes
yield penalties [15] or which need to support anycasts [8]. Lastly, CVSAP generalizes
the standard facility location problem [13].

6 Conclusion

This paper presented VirtuCast to optimally solve CVSAP. We rigorously proved that
although the optimal IP solution may contain directed cyclic structures and flows may
be merged repeatedly, there exists an algorithm to decompose the solution into indi-
vidual routes. Using VirtuCast, we solved realistically sized instances to within 4%
of optimality. Since CVSAP is related to several classical optimization problems, we
believe that our approach is of interest beyond the specific model studied here.

An interesting direction for future research regards the design of approximation al-
gorithms as an efficient alternative to the rigorous optimization approach proposed in
this paper. While in its general form CVSAP cannot be approximated, we believe that
there exist good approximate solutions, e.g., for uncapacitated variants or bi-criteria
models where capacities may be violated slightly.

Acknowledgement. We would like to thank Marten Schönherr from Deutsche Telekom.
This research was supported by the EU projects BigFoot and UNIFY.

References

1. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Programming
Computation 1(1), 1–41 (2009)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applica-
tions. Prentice Hall (1993)

3. Banchs, A., Effelsberg, W., Tschudin, C., Turau, V.: Multicasting Multimedia Streams with
Active Networks. In: Proc. Local Computer Network Conference (LCN). IEEE (1998)

4. Cai, Z., Lin, G., Xue, G.: Improved Approximation Algorithms for the Capacitated Multi-
cast Routing Problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 136–145.
Springer, Heidelberg (2005)

5. Costa, P., Donnelly, A., Rowstron, A., Shea, G.O.: Camdoop: Exploiting In-network Aggre-
gation for Big Data Applications. In: Proc. USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (2012)

6. Costa, P., Migliavacca, M., Pietzuch, P., Wolf, A.L.: NaaS: Network-as-a-Service in the
Cloud. In: Proc. USENIX Hot-ICE Workshop (2012)

7. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: A Stream Database for
Network Applications. In: Proc. ACM SIGMOD International Conference on Management
of Data, pp. 647–651 (2003)

8. Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-weighted steiner tree and group steiner
tree in planar graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 328–340. Springer, Heidelberg
(2009)

VirtuCast: Multicast and Aggregation with In-Network Processing 235

9. European Telecommunications Standards Institute. Network Functions Virtualisation - Intro-
ductory White Paper. SDN and OpenFlow World Congress, Darmstadt-Germany (2012)

10. Eyal, I., Keidar, I., Patterson, S., Rom, R.: In-Network Analytics for Ubiquitous Sensing. In:
Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 507–521. Springer, Heidelberg (2013)

11. Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-Network Aggregation Techniques for Wire-
less Sensor Networks: A Survey. IEEE Wireless Communications 14, 70–87 (2007)

12. Goemans, M.X., Myung, Y.-S.: A catalog of Steiner tree formulations. Networks 23(1), 19–
28 (1993)

13. Gollowitzer, S., Ljubić, I.: MIP models for Connected Facility Location: A theoretical and
computational study. Computers & Operations Research 38(2), 435–449 (2011)

14. Hermsmeyer, C., Hernandez-Valencia, E., Stoll, D., Tamm, O.: Ethernet aggregation and core
network models for effcient and reliable IPTV services. Bell Labs Technical Journal 12(1),
57–76 (2007)

15. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem: the-
ory and practice. In: Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 760–769. Society for Industrial and Applied Mathematics (2000)

16. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32(3),
207–232 (1998)

17. Lee, Y., Lu, L., Qiu, Y., Glover, F.: Strong formulations and cutting planes for designing
digital data service networks. Telecommunication Systems 2(1), 261–274 (1993)

18. Lucena, A., Resende, M.G.: Strong lower bounds for the prize collecting Steiner problem in
graphs. Discrete Applied Mathematics 141(1), 277–294 (2004)

19. Molnár, M.: Hierarchies to Solve Constrained Connected Spanning Problems. Technical Re-
port lrimm-00619806, University Montpellier 2, LIRMM (2011)

20. Narayana, S., Jiang, W., Rexford, J., Chiang, M.: Joint Server Selection and Routing for Geo-
Replicated Services. In: Proc. Workshop on Distributed Cloud Computing (DCC) (2013)

21. Oliveira, C., Pardalos, P.: Streaming Cache Placement. In: Mathematical Aspects of Network
Routing Optimization. Springer Optimization and Its Applications, pp. 117–133. Springer,
New York (2011)

22. Park, J.-W., Lim, H., Kim, J.: Virtual-node-based multicast routing and wavelength as-
signment in sparse-splitting optical networks. Photonic Network Communications 19(2),
182–191 (2010)

23. Qazi, Z., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., Yu, M.: SIMPLE-fying Middlebox Policy
Enforcement Using SDN. In: Proc. ACM SIGCOMM (2013)

24. Quoitin, B., Van den Schrieck, V., Franois, P., Bonaventure, O.: IGen: Generation of router-
level Internet topologies through network design heuristics. In: Proc. 21st International Tele-
traffic Congress (ITC), pp. 1–8 (2009)

25. Rost, M., Schmid, S.: CVSAP-Project Website (2013),
http://www.net.t-labs.tu-berlin.de/˜stefan/cvsap.html

26. Rost, M., Schmid, S.: The Constrained Virtual Steiner Arborescence Problem: Formal Defi-
nition, Single-Commodity Integer Programming Formulation and Computational Evaluation.
Technical report, arXiv: 1310.0346 (2013)

27. Shi, S.: A Proposal for A Scalable Internet Multicast Architecture. Technical Report WUCS-
01-03, Washington University (2001)

28. Voß, S.: Steiner Tree Problems in Telecommunications. In: Handbook of optimization in
telecommunications, ch. 18. Spinger Science + Business Media, New York (2006)

29. Zhang, Z., Zhang, M., Greenberg, A., Hu, Y.C., Mahajan, R., Christian, B.: Optimizing cost
and performance in online service provider networks. In: Proc. 7th USENIX Conference on
Networked Systems Design and Implementation (NSDI) (2010)

http://www.net.t-labs.tu-berlin.de/~stefan/cvsap.html

Mobile Byzantine Agreement

on Arbitrary Network�

Toru Sasaki, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita

Graduate School of Information Science and Electrical Engineering, Kyushu
University, Japan, 744, Motooka, Nishi, Fukuoka, Japan
{toru.sasaki,yamauchi,kijima,mak}@inf.kyushu-u.ac.jp

Abstract. The mobile Byzantine agreement problem on general net-
work is investigated for the first time. We first show that the problem is
unsolvable on any network with the order n and the vertex connectivity
d, if n ≤ 6t or d ≤ 4t, where t is an upper bound on the number of
faulty processes. Assuming full synchronization and the existence of a
permanently non-faulty process, we next propose two t-resilient mobile
Byzantine agreement algorithms for some families of not fully connected
networks. They are optimal on some networks, in the sense that they
correctly work if n > 6t and d > 4t.

Keywords: agreement problem, Byzantine fault, distributed network,
distributed algorithm, mobile Byzantine agreement problem.

1 Introduction

Reaching an agreement among processes on a distributed network is a funda-
mental distributed problem, and becomes formidable when processes are subject
to Byzantine faults. The problem was originally formulated by Pease et al. [13]
in 1980, and a huge number of researches followed this pioneering work. A few
of the earliest ones, which are closely related to this paper, are [6–8, 10]. They,
in particular, showed that Byzantine agreement is possible only on synchronous
networks [8], and there is a t-resilient Byzantine agreement algorithm on a syn-
chronous network with the order n and the vertex connectivity d, if and only if
n > 3t and d > 2t [6]. They all assumed that Byzantine fault is permanent and
a faulty process never recover.

Transient Byzantine faults were investigated by Garay [9], in the context of
the mobile Byzantine agreement problem. He investigated a distributed network
which includes a malicious mobile agent who controls its host process and forces
it to behave as an adversary to the algorithm. The process is faulty as long
as the malicious agent is there, but can recover when it leaves. (A malicious
agent may stay on a process forever to cause a permanent Byzantine fault.) The
mobile Byzantine agreement problem differs from the self-stabilizing agreement

� This work is supported in part by JSPS KAKENHI (No. 22300004, No. 24650008,
No. 23700019, and No. 24106005).

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 236–250, 2013.
c© Springer International Publishing Switzerland 2013

Mobile Byzantine Agreement on Arbitrary Network 237

problem in that, in the former, an algorithm is requested to achieve and maintain
an agreement, in the presence of possibly infinite number of transient faults
plus some finite number of permanent faults. Provided that 1) the network is
synchronous, 2) it is fully connected, 3) there are at most t malicious agents in
a round, and 4) there is a process which is non-faulty forever, Garay presented
a t-resilient mobile Byzantine algorithm, assuming n > 6t.1 Burhman et al. [4]
slightly changed the fault model and assumed that only a message can carry
a malicious agent from a process to another. Under this model, which is more
generous to the algorithm, they could provide a t-resilient mobile Byzantine
algorithm, when n > 3t.2 As for the Garay’s original model, Banu et al. [1]
proposed a t-resilient mobile Byzantine algorithms provided n > 4t, but they
did not discuss its necessity. Other moving failures were also investigated in
[2, 3, 14, 15].

The mobile Byzantine agreement problem has been investigated only on a
complete network in the literature, as far as we know. In this paper, we investi-
gate it on general networks to obtain results similar to those in [6].

Compared with the Garay’s model, our system model, which we present in
Section 2, is slightly more generous to an adversary, and (we think) is more
natural. We assume that a round consists of the send, receive and (local) com-
putation steps, and all messages being sent in the next round are prepared in
the computation step of this round. We then show that there is no t-resilient
mobile Byzantine algorithm, if either n ≤ 6t or d ≤ 4t holds, where d is the
vertex connectivity of the network. As for the positive side, let G(α, β) be the
family of networks such that for any pair of processes, there are at least α dis-
joint paths connecting them, whose lengths are at most β. Then we show that
there is a t-resilient mobile Byzantine algorithm on any network in G(α, β), if
both n > 6t and α > 2βt hold. The algorithm is optimal when α = d and β = 2.
We also propose another mobile Byzantine agreement algorithm that works on
a network which is the k-th power of a graph. The algorithm is also optimal on
some networks.

To construct these algorithms, we take the same approach as in [6]; we combine
an algorithm to realize reliable communication on an arbitrary network with a
mobile Byzantine algorithm MBA in [1] for a complete network.

The paper is organized as follows: Section 2 formalizes the mobile Byzan-
tine agreement problem and describes mobile Byzantine agreement algorithm
MBA proposed in [1]. Section 3 derives a necessary condition for a network to
have a t-resilient mobile Byzantine agreement algorithm, and Section 4 presents
two mobile Byzantine agreement algorithms. We then conclude the paper by
presenting some open problems in Section 5.

1 The number of rounds necessary for a malicious agent to move from a process to
another is called the roaming pace, and is denoted by ρ. This algorithm works for
ρ = 1. Ref. [9] includes another algorithm for ρ = 2, provided n > 4t. We assume
ρ = 1, unless otherwise stated.

2 The algorithm is optimal, since the Byzantine algorithm is unsolvable if n ≤ 3t [13].

238 T. Sasaki et al.

2 Preliminaries

2.1 System Model

Consider a distributed network consisting of processes, some pairs of which can
directly communicate with each other through a bidirectional communication
link between them. We model the network by a simple, connected, undirected
graph G = (Π,E), where vertex set Π represents the set of processes and edge
set E the set of communication links. We use graph and network, vertex and
process, and edge and communication link, interchangeably. Graph G may not
be complete, and some pair of processes not in E cannot directly exchange
messages. By Ni = {j ∈ Π : (i, j) ∈ E} ∪ {i}, we denote the closed set of the i’s
neighbors. Then i can send a message to, and receive a message from a process
j ∈ Ni.

3 Let d be the (vertex) connectivity of G, which is the minimum number
of vertices necessary to remove to disconnect G. Without loss of generality, we
assume that Π = {1, 2, . . . , n} and regard i ∈ Π as the ID of process i. We also
assume that every process knows G, as a part of its initial information.

In this paper, we consider a synchronous network, whose execution consists
of a sequence of rounds. A round consists of the send, receive and computation
steps. In round r = 1, 2, . . ., every process i sends a message mr

ij to each process
j ∈ Ni and receives a message mr

ji from each j ∈ Ni, where m
r
ij was computed

in the computation step of the previous round r − 1. Process i then computes
its new local state sri and messages mr+1

ij for its neighbors j ∈ Ni, for the next
round r + 1, using a given deterministic algorithm A.

Round 0 is a special round representing the initialization; in round 0, every
process i receives initial data and prepares an initial local state s0i . It also con-
structs messages m1

ij for each of the neighbors j ∈ Ni. This paper investigates a
(local) algorithm A to compute local state sri and messages mr

ij in each round
r on every process i, in such a way that the network executing A can solve the
mobile Byzantine problem, which we will define shortly.

2.2 Fault Model: Mobile Byzantine Faults

In this paper, every communication link in the network is reliable, and a message
is never lost, duplicated, and corrupted. More clearly, when a process i sends a
message m to a process j ∈ Ni in a round r, then ID i is automatically attached
to m, and m and i are correctly received by j in the same round r, if j is non-
faulty. Although i can send a corrupted m when i is faulty, j always receives the
correct ID of the sender i.

Some process i may be unreliable on the other hand. It may suffer from a
Byzantine fault, and independently of its algorithm A, it can take any malicious
actions by corrupting local memories, as well as by skipping the send and/or

3 We regard that every process can send a message to itself, to simplify descriptions.

Mobile Byzantine Agreement on Arbitrary Network 239

receive steps. We make two assumptions. First, despite the definition, we can
assume that a faulty process never skip the send and receive steps, without
loss of generality, as those omissions do not help it. Second, we assume that
ID i, algorithm A and its program counter (i.e., the current round number) are
stored in the anti-tamper memory, and are not subjected to corruption, like
transient faults in the literature of self-stabilization, although a faulty process
can arbitrarily change the messages waiting for being sent, those received from
other processes, and of course the contents of local variables.

Unlike the conventional Byzantine faults, faults in this paper are mobile as
in [9]. Let Fr be the set of faulty processes in round r = 0, 1, Then Fr may
change round by round. We consider that Fr is chosen by a malicious adversary,
but assume that for some known constant t, |Fr| ≤ t holds for any r.4 There
may be faulty processes even in round 0, i.e., F0 may not be empty, and they
may corrupt the initial local state and messages for round 1.

There is a delicate difference between our and the Garay’s models in how a
process recovers from a fault. In the Garay’s model, when a malicious agent leaves
a process i at the end of round r, i autonomously notices the fact when round
r + 1 starts, skips the send step, and learns its algorithm A and the current
computation state from the messages received in round r + 1. It then starts
participating in the on-going computation from round r + 2. In our model, on
the other hand, i does not notice the fact, but i in round r+1 can start executing
A, since A is not corrupted (as we assumed in above). The computation however
is possibly based on corrupted messages and local state. Intuitively, in our model,
recovery from a fault is the responsibility of A, which is a natural requirement
when we consider fault tolerant algorithms, but is not, in the Garay’s model.
We consider the worst behavior of Byzantine faults, including the case where
the current computation states of processes are modified without the processes
recognizing it.

Finally, we assume that there is a process i0 which is non-faulty all the time,
i.e., there is an i0 such that i0 �∈ ∪rFr, since the agreement problem is unsolvable,
if there is no permanently non-faulty process [9, 14].

2.3 Mobile Byzantine Agreement Problem

In the mobile Byzantine agreement problem, each process i has an initial value
di ∈ {0, 1}, and we wish to design an algorithm A for each process i to eventually
decide on a value vi satisfying all of the following four properties:

(Decision). Every process i which is not faulty in infinite number of rounds
eventually irreversibly decides on a value vi ∈ {0, 1}, i.e., there is a round r0

4 Besides an upper bound t on the number of faulty processes, we do not make any
assumption on Fr. That is, we consider the case in which the roaming pace ρ is
1(that is, faults can move every round).

240 T. Sasaki et al.

after which process i outputs this very same value vi as its decision at the
end of every round r ≥ r0 where i is non-faulty.5

(Agreement). All processes i which are not faulty in infinite number of rounds
decide on the same value vi ∈ {0, 1}.

(Validity). If all processes which are not faulty in round 0 have the same initial
value v, then for all non-faulty processes i, vi = v.

(Consistency Maintenance). Once an agreement is reached among the cur-
rently non-faulty processes, it is preserved among the (possibly different)
non-faulty processes.

Note that the first three conditions are borrowed from the definition of the
Byzantine agreement problem [10]. Unlike a Byzantine agreement algorithm, any
mobile Byzantine agreement algorithm never terminate to satisfy Consistency
Maintenance property.

2.4 MBA: Banu et al.’s Mobile Byzantine Agreement Algorithm

Banu et al.[1] proposed a mobile Byzantine agreement algorithmMBA for a com-
plete graph, using broadcast as the communication primitive 6. They showed that
if 4t < n, MBA correctly solves the mobile Byzantine algorithm on a complete
graph under the Garay’s model. We slightly modify MBA so that it can run
in our model. We call this algorithm mMBA and use it as the skeleton of our
mobile Byzantine agreement algorithms for general graphs in Section 4.

We present mMBA on process i. It is based on the rotating coordinator
paradigm, and consists of infinite number of phases s = 1, 2, . . ., each of which
consists of three rounds. In the first round, process i collects other processes’
decision values and stores them in PVi, and sets its decision value vi to either
v ∈ {0, 1} or ⊥. In the second round, it stores other processes’ decision values in
SVi, then if most of them are the same value, say v, i adopts v as a new decision
value. Finally, in the third round, i stores other processes’s SV ’s and tries to
make all processes have the same decision value by checking the coordinator’s
SV at the end of this round. The coordinator in phase s is ci = s mod n, where
ci = 0 means ci = n. An agreement is reached when ci is non-faulty. Since there

5 Specifically, algorithm DP-Byz (we will show in 4.1) guarantees r0 = 3βn and KP-
Byz (we will show in 4.2) guarantees r0 = 3n(DG−k+1). Both literature [1, 9] defined
Decision property as follows: Every non-faulty process i eventually irreversibly de-
cides on a value vi ∈ {0, 1}. Since the meaning of “non-faulty process” is not clear
enough, we correct the definition. To preserve Consistency Maintenance property be-
low, any mobile Byzantine agreement algorithm does not terminate, and a process
may become faulty infinitely many times. The variable that stores the decision value
thus may be corrupted infinitely many times. After r0, whenever it is corrupted, the
algorithm correct it with the decision value as soon as the process recovers (once
deciding it). This is what “irreversibly decides” means. We note that this correction
does not change the essence of the problem, and both algorithms [1, 9] solve the
mobile Byzantine agreement in the sense of the corrected definition.

6 MBA is a binary consensus algorithm.

Mobile Byzantine Agreement on Arbitrary Network 241

is a process i0 who is permanently non-faulty, an agreement is always achieved
up to (and including) s = i0. Among local variables that mMBA uses, di and
vi store the initial and the decision (i.e., output) values. We assume that, when
mMBA starts, the initial value has been assigned to di in each process i, but di
may be corrupted in at most t processes.7 Although every process i is requested
to irreversibly decide the value vi by the definition of agreement problem, we
allow i to change vi to save the number of symbols; vi stabilizes after phase i0
and satisfies Consistency Maintenance property forever after phase i0.

Algorithm 2.1. mMBA on process i

1: vi ← di
2: for Phase s = 1 to ∞ do
3: PVi[1..n]← [⊥, . . . ,⊥];
4: (Round 1)
5: send vi to all processes;
6: for all j ∈ Π do
7: PVi[j]← vj (if vj /∈ {0, 1}, store ⊥ instead of vj);
8: if w ∈ {0, 1} occurs at least n− 2t times in PVi[1..n] then
9: vi ← w;
10: else
11: vi ← ⊥;
12: SVi[1..n] ← [⊥, . . . ,⊥];
13: (Round 2)
14: send vi to all processes;
15: for all j ∈ Π do
16: SVi[j]← vj (if vj /∈ {0, 1}, store ⊥ instead of vj);
17: if w ∈ {0, 1} occurs more than 2t times in SVi[1..n] then
18: vi ← w;
19: else
20: vi ← ⊥;
21: EVi ← [⊥, . . . ,⊥][⊥, . . . ,⊥];
22: (Round 3)
23: send SVi[1..n] to all processes;
24: for all j ∈ Π do
25: EVi[j][1..n] ← SVj [1..n];
26: RECONSTRUCT(EVi);
27: ci ← s mod n;
28: if w ∈ {0, 1} occurs more than 2t times in EVi[ci][1..n] then
29: cvi ← w;
30: else
31: cvi ← 0;
32: if accepti = True then
33: vi ← cvi;

7 This assumption is consistent with our fault model.

242 T. Sasaki et al.

Algorithm 2.2. RECONSTRUCT(EVi) on process i

1: for all j ∈ Π do
2: if w ∈ {0, 1} occurs more than n− 2t times in column j of EVi then
3: SVi[j]← w;
4: else
5: SVi[j]← ⊥;
6: if w ∈ {0, 1} occurs more than 4t times in SVi[1..n] then
7: vi ← w;
8: accepti ← False;
9: else if w ∈ {0, 1} occurs more than 2t times in SVi[1..n] then
10: vi ← w;
11: accepti ← True;
12: else
13: vi ← ⊥;
14: accepti ← True;

Observe that mMBA executes three message exchanges between any two pro-
cesses in Lines 5–7, 14–16 and 23–25. On a complete graph, a reliable message
exchange between two non-faulty processes is obviously realizable just by using
the communication primitives, as mMBA does. Suppose that there is a reliable
message exchange algorithm between any two non-faulty processes on some non-
complete graph. Then we can modify mMBA so that it can correctly work on
the graph, by replacing the direct message exchange between two processes i
and j in Lines 5–7, 14–16 and 23–25 with a reliable message transmission algo-
rithm for i and j (provided that mMBA correctly works on a complete graph).
In Section 4, we propose two algorithms DPT and PerT to implement a reliable
communication. As a corollary to Theorem 1 in [1], we have:

Corollary 1. Provided n > 6t, mMBA solves the mobile Byzantine agreement
problem on a complete graph under our model.

Proof. By following the argument in the proof of Theorem 1 in [1], one can show
the corollary, since mMBA is a slight modification of MBA. �

3 Upper Bound on the Number of Faulty Processes

A main technique we use in this section to derive an impossibility result is
to reduce the impossibility regarding the static (i.e., conventional) Byzantine
agreement problem to that of the mobile Byzantine agreement problem. To this
end, we first compare the behavior of any algorithm A on a graph G = (Π,E)
under the static and mobile Byzantine settings. Let C (resp. Ĉ) be an execution
of A on G under the static (resp. mobile) setting, where, in C (resp. Ĉ), a
message mr

ij (resp. m̂r
ij) is sent from process i to j in round r, and sri (resp. ŝri)

is the local state of i at the end of round r. Despite that A is deterministic and G
is synchronous, C (resp. Ĉ) is not unique, because of the adversary that controls

Mobile Byzantine Agreement on Arbitrary Network 243

Byzantine faults. Let F be the set of faulty processes in the static Byzantine
setting, and Fr be the one in round r in the mobile Byzantine setting.

Lemma 1. Suppose that |F | = 2maxr{|Fr|} = 2t. Then for any C that termi-
nates in round rf , there is a Ĉ that satisfies the following two conditions:

∀i ∈ Π, ∀j ∈ Ni, ∀r(0 ≤ r ≤ rf),mr
ij = m̂r

ij , (1)

∀i ∈ Π \ F, ∀r(0 ≤ r ≤ rf), sri = ŝri . (2)

Proof. For any C, we construct Ĉ that satisfies the conditions. It is worth empha-
sizing that Ĉ depends on the adversary, so that a main part of the construction
explains Fr in each round r and how the faulty processes in Fr behave. Recall
that we have assumed that the contents of mr

ij (resp. m̂r
ij) is s

r−1
i (resp. ŝr−1i)

for any j ∈ Ni, if i is non-faulty in round r.
We arbitrarily partition F (of size 2t) into two sets Fodd and Feven with the

same size t, and define that Fr = Fodd if r is odd, and otherwise if r is even,
then Fr = Feven. By induction on r, we show that a desired Ĉ is constructible
by arranging the behaviors of faulty processes in Fr.

The base case (r = 0) is obvious, since s0i = ŝ0i for all non-faulty processes
i �∈ F because Feven ⊆ F .

For induction step, consider round r ≥ 1, and assume that r is odd. (The
case in which r is even can be shown by a symmetric argument.) By induction
hypothesis, for all i ∈ Π and j ∈ Ni, m

r−1
ij = m̂r−1

ij , and for all i ∈ Π \ F ,
sr−1i = ŝr−1i .

We first show mr
ij = m̂r

ij for all i ∈ Π and j ∈ Ni. If i �∈ F , that is, if i is
non-faulty both in rounds r− 1 and r, and in both static and mobile Byzantine
settings, then, by induction hypothesis, in round r − 1, for each of neighbors
j ∈ Ni, A constructed the same message in C and Ĉ, and i sends it to j in
round r. Thus mr

ij = m̂r
ij for all j ∈ Ni. If i ∈ Fodd = Fr, since i is faulty in

round r (in the mobile Byzantine setting), it can send any message to each of
neighbors j ∈ Ni, in particular, it can send mr

ij . Finally, if i ∈ Feven, then i �∈ Fr

and i is non-faulty in round r in the mobile Byzantine setting. Since i ∈ F and i
is faulty in round r in the static Byzantine setting, so that mr

ij can be arbitrary.
In this case, since i is faulty in round r − 1 in the mobile Byzantine setting, i
could choose an arbitrary message as m̂r

ij in round r − 1. In particular, i could
choose mr

ij as m̂r
ij .

We go on showing sri = ŝri for any i �∈ F . If i �∈ F , then obviously the claim
holds, since sr−1i = ŝr−1i and mr

ji = m̂r
ji for all j ∈ Ni. �

Theorem 1. There is no algorithm to solve the mobile Byzantine agreement
problem on any (simple, connected, undirected) graph G = (Π,E), if n ≤ 6t or
d ≤ 4t, where |Π | = n and d is the vertex connectivity of G.

Proof. To derive a contradiction, let us assume that there is an algorithm A to
solve the mobile Byzantine agreement problem on G, despite that either n ≤ 6t

244 T. Sasaki et al.

or d ≤ 4t holds, where t is an upper bound on the number of faulty processes
in a round r, i.e., |Fr| ≤ t. Fix any initial value vi assigned to each process i,
and assume that A achieves an agreement up to round rf . That is, Decision,
Agreement and Validity properties hold when round rf finishes.

Now, on G, we execute A to solve the static Byzantine agreement problem for
the same initial values vi, assuming that |F | = 2t, where F is the set of faulty
processes (in the static Byzantine setting). Note that n ≤ 3|F | and d ≤ 2|F |.
Since there is no algorithm to solve the static Byzantine algorithm when either
n ≤ 3|F | or d ≤ 2|F | holds [6], A of course cannot solve the problem. Let C
be an execution that A does not reach the agreement in the static Byzantine
setting. It is a contradiction, since there is an execution Ĉ that does not reach
the agreement in the mobile Byzantine setting by Lemma 1.

�

4 Two Mobile Byzantine Agreement Algorithms

In this section, we propose two mobile Byzantine agreement algorithms DP-Byz
and KP-Byz. Both of them are based on mMBA, and only the algorithms to
realize reliable communication differ. They work on different families of graphs.
Both algorithms are shown to be optimal for some graphs, in the sense that they
work if n > 6t and d > 4t.

4.1 Algorithm DP-Byz

The celebrated Menger’s theorem (see, e.g., [5]) says that every graph with vertex
connectivity d contains, for any two distinct vertices, d (vertex) disjoint paths
connecting them. Let G(α, β) be the class of graphs G = (Π,E) such that, for
any pair (i, j) of vertices in Π , there are α disjoint paths connecting i and j,
whose length (in terms of the number of edges) is at most β. If d is the vertex
connectivity of G, then d ≥ α by the Menger’s theorem. In this subsection, we
present an algorithm DP-Byz (Disjoint Path Byzantine), and shows that it solves
the mobile Byzantine agreement problem on any graph G ∈ G(α, β), if an upper
bound t on the number of faulty processes satisfies n > 6t and α > 2βt. Thus
DP-Byz is optimal for any graph in G(d, 2) by Theorem 1.

Dolev [6] combined an algorithm to establish a reliable communication route
between any two non-faulty processes with a Byzantine agreement algorithm on
a complete graph to solve the Byzantine agreement problem on arbitrary graphs.
To establish a reliable communication route, based on the Menger’s theorem, a
process i sends d copies of a message m to another process j along d vertex
disjoint paths connecting i and j. Then j can correctly decide m simply by
taking the majority of the received messages, if d > 2t.

Algorithm DP-Byz extends this trick to the mobile Byzantine case and applies
it to mMBA. In the Dolev’s algorithm, 2t+1 vertex disjoint paths are sufficient
to tolerate t Byzantine faults, since the faults are stationary and a single fault
can corrupt at most one path. In the mobile Byzantine setting, on the other

Mobile Byzantine Agreement on Arbitrary Network 245

hand, one fault may be able to corrupt many paths. Procedure DPT (Disjoint
Path Transmission) is an implementation of the trick to guarantee a reliable
transmission of a message in the mobile Byzantine setting. We now present
DPT.

DPT on process i takes two parameters, a value wi (which may be a vector)
and an array Xi, where wi is a message that i wishes to send to all processes
j ∈ Π , and Xi is used to store received messages wj from all processes j ∈ Π .
If all processes invoke DPT(wi, Xi) in round r, in the presence of at most t
mobile faulty processes, Xi[j] = wj holds for each of the non-faulty processes
j �∈ (Fr−1 ∪ Fr), i.e., those which are non-faulty both in rounds r − 1 and r.
DPT on i makes use of the α vertex disjoint paths connecting i and j for all
j ∈ Π , which are guaranteed to exist, since G ∈ G(α, β). For any 1 ≤ k ≤ α, we
denote the k-th path by πk

ij , where for any 1 ≤ � ≤ |πk
ij |, πk

ij [�] is the �-th vertex

in πk
ij . Here |πk

ij | − 1, which is the length of path πk
ij , is at most β, πk

ij [1] = i,

and πk
ij [|πk

ij |] = j. An array Wi is used as a working memory. Wi[j][k] holds the

message relayed to i through the k–th path from j. We assume that πk
ij for all

i, j, k are available to DPT, although the description of DPT does not explicitly
state this fact.

We will take vi as the actual parameter of wi. As usual, when DPT is invoked,
the value of vi is copied to wi, which is a local variable of DPT. Notice that vi also
appears in DPT as a global variable, whose value may change when i becomes
faulty while DPT is executed. DPT makes use of vi to preserve Consistency
Maintenance.

Note that in some round r, a process i may send more than one messages to
a process j ∈ Ni. In such a case, we assume that these messages are aggregated
into a single message before sending them.

Lemma 2. Suppose that G ∈ G(α, β). If each process i �∈ Fr0−1∪Fr0 has a value
wi and invokes DPT(wi, Xi) on G in a round r0, then for any i �∈ Fr0+β and
j �∈ Fr0−1 ∪ Fr0 , Xi[j] = wj holds in round rf when α > 2βt, where rf = r0 + β
is the round that DPT terminates. Furthermore, Consistency Maintenance is
preserved between (and including) rounds r0 and rf + β.

Proof. Suppose that i �∈ Frf and j �∈ Fr0−1 ∪ Fr0 . Since α paths πk
ji are vertex

disjoint, and there are at most βt faulty processes between rounds r0 and rf−1,8
at most βt paths πk

ji are corrupted; in other words, i receives the correct value
wj via at least α − βt > βt paths in round rf . Thus taking the majority i can
easily obtain the correct wj .

We should also consider the following case. If many of the paths πk
ji are shorter

than β, and if we send wj to i in round r0 + |πk
ji| − 1, which is earlier than rf ,

i cannot compute the correct wj , when i is faulty in round rf − 1. That is, we
need to send wj to i via all paths exactly in round rf simultaneously. To this
end, a process immediately before i in a path πk

ji postpones sending wj to i until

round rf , if |πk
ji| < β.

8 Observe that a faulty process in round r0 can corrupt some πk
ji.

246 T. Sasaki et al.

Algorithm 4.1. DPT(wi, Xi) on process i

1: Wi[1..n][1..α] ← [⊥ · · ·⊥][⊥ · · ·⊥];
2: LASTi ← ∅
3: (Round r (1 ≤ r ≤ β − 1))
4: for r = 1 to β − 1 do
5: if r = 1 then
6: for all j ∈ Π do
7: for all k = 1 to α do
8: send (wi, k, i, j) to πk

ij [2];
9: for all j ∈ Ni do
10: send vi to j;
11: else
12: for all (w, k, h, j) ∈ NEXTi do
13: send (w, k, h, j) to πk

hj [r + 1];
14: for all j ∈ Ni do
15: send vi to j;
16: NEXTi ← ∅
17: for all messages (w, k, h, j) received do
18: if (w, k, h, j) arrived from πk

hj [r − 1] then

19: if |πk
hj | = r + 1 then

20: LASTi ← LASTi ∪ {(w, k, h, j)};
21: else
22: NEXTi ← NEXTi ∪ {(w, k, h, j)};
23: if v arrived from more than 2t processes then
24: vi ← v;
25: (Round β)
26: for all (w, k, h, j) ∈ LASTi do
27: send (w, k, h, j) to πk

hj [|πk
hj |];

28: for all messages (w, k, h, i) received do
29: if (w, k, h, i) arrived from πk

hi[|πk
hi| − 1] then

30: Wi[h][k] ← w;
31: for all j ∈ Π do
32: if w occurs in Wi[j][1..α] more than βt times then
33: Xi[j]← w;

To observe that Consistency Maintenance is preserved after reaching agree-
ment, notice that, in each round, vi is exchanged among neighbors j in Lines
9–10 (when round r = 1) or in Lines 14–15 (r ≥ 2), and i corrects vi with the
agreed value v in Line 24, which is the value that occurs more than 2t times
in the received vj ’s. Since incorrect values are at most 2t, v must be the cor-
rect agreed value after reaching agreement. Note that there is always a value v
satisfying the condition, since |Ni| ≥ d ≥ α > 2βt and β ≥ 2. �

Now we propose a mobile Byzantine agreement algorithm DP-Byz.

Algorithm DP-Byz: DP-Byz is exactly the same as mMBA, except that the
following three algorithm segments (of mMBA) are replaced with three DPT
invocations:

Mobile Byzantine Agreement on Arbitrary Network 247

– Replace Lines 5–7 with DPT(vi, PVi).
– Replace Lines 14–16 with DPT(vi, SVi).
– Replace Lines 23–25 with DPT(SVi, EVi).

Theorem 2. Algorithm DP-Byz solves the mobile Byzantine agreement problem
on any G ∈ G(α, β), when both n > 6t and α > 2βt hold.9

Proof. Immediate from Lemma 2 and Corollary 1. �

Corollary 2. Algorithm DP-Byz solves the mobile Byzantine agreement prob-
lem on any G ∈ G(α, 2), when both n > 6t and α > 4t hold; it is optimal by
Theorem 1.

A complete k-partite graph with partite sets V1, V2, . . . , Vk is a graphG = (V1∪
V2∪. . .∪Vk, E) such that for any two vertices vi ∈ Vi and vj ∈ Vj (i �= j), (vi, vj) ∈
E. Without loss of generality, we may assume that |V1| ≤ |V2| ≤ . . . ≤ |Vk|.
Corollary 3. Suppose k ≥ 3. Algorithm DP-Byz solves the mobile Byzantine
agreement problem on any k-partite graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E), if n > 6t
and n− |Vk| − |Vk−1|+ 1 > 4t.

Proof. Since k ≥ 3, the vertex connectivity of G is n − |Vk| − |Vk−1| + 1. On
the other hand, for any two vertices, there are at least n − |Vk| − |Vk−1| + 1
vertex disjoint paths of length 2. Thus DP-Byz can solves the mobile Byzantine
agreement problem on complete k-partite graph, if n > 6t and n−|Vk|−|Vk−1|+
1 > 4t by Theorem 2. �

Corollary 4. Algorithm DP-Byz solves the mobile Byzantine agreement prob-
lem on any complete bipartite graph G = (V1 ∪ V2, E), if |V1| > 6t.

Proof. Since there are at least |V1| vertex disjoint paths of length at most 3
between any pair of vertices from different partites. �

4.2 Algorithm KP-Byz

The kth power of a connected graph G, denote Gk, is the graph having the same
vertex set as G and an edge between any two vertices such that the distance
between them is at most k in G. This subsection proposes a mobile Byzantine
agreement algorithm KP-Byz on Gk. To this end, we present an algorithm PerT
(Permeate Transmission) that is used to realize reliable communication on Gk.
As in Subsection 4.1, KP-Byz is constructed from mMBA by replacing the three
message exchange sections into invocations of PerT.

We explain the idea behind reliable communication by PerT in Gk, assuming
k > 4t. For any pair (i, j) of vertices in Π , let i0(= i), i1, . . . , im(= j) be the
shortest path in G (not Gk) from i to j, and consider the following message
exchanges in Gk to safely carry a value w from i to j. In the first round, i0

9 Recall that we have assumed that there is a process which is non-faulty all the time.

248 T. Sasaki et al.

simply broadcasts w to all neighbors NGk

i in Gk. In each of the later rounds, a
process h takes the majority of the values received, put it to a variable wh, and

broadcasts it to all neighbors NGk

h . Suppose that i0 is non-faulty in the initial
round r0 and the round immediately before it. In the first round, by the definition
of Gk, in particular, processes i0, i1, . . . , ik receive w. In the second round, each

process ih (0 ≤ h ≤ k) receives at least k+1 values wp from p ∈ NGk

ih
. Obviously

all the values except at most 2t values are w, and hence ih takes w as wih , since
k > 4t. Furthermore, ik+1 also receives at least k values from i1, i2, . . . , ik, and
ik+1 takes w as the value of wik+1

. By an easy induction, we can show that every
non-faulty process ix in {i0, i1, . . . , ik+h} has w as the value of wix in the (h+1)-
st round, and hence j(= im) assigns w to wj in the (m− k + 1)-st round. Since
m is at most the diameter DG of G, PerT can terminate, in the DG − k + 1-st
round, with reliably sending w to all processes in Π .

The algorithm description of PerT looks a bit difficult to understand, because
of the two reasons. First, it also includes the trick to preserve Consistency Main-
tenance we used in DPT. Second, it tries to reduce the number of messages
by omitting unnecessary message exchanges described in the above explanation.
For example, in the second round, ik does not need to send wik to the processes
further than ik+1 from ik, and they are thus eliminated in PerT.

PerT plays exactly the same role as DPT on Gk; PerT on process i takes
two parameters, a value wi (which may be a vector) and an array Xi, where
wi is a message that i wishes to send to all processes j ∈ Π , and Xi is used
to store received messages wj from all processes j ∈ Π . If all processes invoke
PerT(wi, Xi) in round r, in the presence of at most t mobile faulty processes,
Xi[j] = wj for each of the non-faulty processes j �∈ (Fr−1 ∪Fr), i.e., those which
are non-faulty both in rounds r− 1 and r, when it terminates. Let LG

j (�) be the
set of processes in Π whose distance from j in G is at most �, and let DG be the
diameter of G. We assume that Gk, G, LG

j (�) and DG are all available to PerT.

In the description of PerT, NGk

i is the closed neighbors of i in Gk.
It is easy to show the next lemma by the explanation of the basic idea of

PerT.

Lemma 3. If each process i has a value wi and invokes PerT(wi, Xi) on G
k in

a round r0, then for any i �∈ Frf and j �∈ Fr0−1 ∪Fr0 , Xi[j] = wj holds in round
rf , when k > 4t, where rf = r0+DG−k is the round that PerT terminates, and
DG is the diameter of G. Furthermore, Consistency Maintenance is preserved
between (and including) rounds r0 and rf .

Now we propose algorithm KP-Byz.

Algorithm KP-Byz: Algorithm KP-Byz is exactly the same as mMBA, except
that the following three algorithm segments (of mMBA) are replaced with
three PerT invocations as follows:
– Replace Lines 5–7 with PerT(vi, PVi).
– Replace Lines 14–16 with PerT(vi, SVi).
– Replace Lines 23–25 with PerT(SVi, EVi).

Mobile Byzantine Agreement on Arbitrary Network 249

Algorithm 4.2. PerT(wi, Xi)

1: (Round1)

2: for all j ∈ NGk

i do
3: send (wi, i) and vi to j;
4: for all messages (w, j) received do
5: if (w, j) arrived from j then
6: Xi[j]← w;
7: if v arrived from more than 2t processes then
8: vi ← v;
9: (Round r (2 ≤ r ≤ DG − k + 1))
10: for r = 2 to DG − k + 1 do
11: Wi[1..n][1..n] ← [⊥, · · · ,⊥][⊥, · · · ,⊥];
12: for all j ∈ Π do
13: if i ∈ LG

j (k + r − 2) then

14: send (Xi[j],j) to p ∈ NGk

i ;

15: for all j ∈ NGk

i do
16: send vi to j;
17: for all messages (w, j) received do
18: if (w, j) arrived from p ∈ LG

j (k + r − 2) then
19: Wi[j][p]← w;
20: for all j ∈ {p|i ∈ LG

p (k + r − 1)} do
21: if w occurs in Wi[j][1..n] more than 2t times then
22: Xi[j]← w
23: if receive v more than 2t times then
24: vi ← v;

Recall that we have assumed that there is a process which is non-faulty all
the time.

Theorem 3. Algorithm KP-Byz solves the mobile Byzantine agreement problem
on the k-th power graph Gk of any graph G, when both n > 6t and k > 4t hold.

Proof. Immediate from Lemma 3 and Corollary 1. �

Corollary 5. Suppose that G has a “tail” of length more than k (like a lollipop
graph and a path graph). Since KP-Byz solves the mobile Byzantine agreement
problem on the k-th power graph Gk, if n > 6t and d > 4t, where d is the vertex
connectivity of Gk, it is optimal for Gk.

Proof. Since the vertex connectivity of Gk is k. �

5 Conclusion

We have considered the mobile Byzantine agreement problem on general net-
work for the first time, and derived a necessary condition for a t-resilient mobile
Byzantine algorithm on a network to exist. We then designed two mobile Byzan-
tine agreement algorithms DP-Byz and KP-Byz. DP-Byz works on any graph

250 T. Sasaki et al.

such that, for any two vertices, there are at least α vertex disjoint paths con-
necting them, whose lengths are at most β, if n > 6t and α > 2βt, and KP-Byz,
on the other hand, works on the k–th power of a graph G, if n > 6t and k > 4t.

As observed, both algorithms are optimal for some graphs, but, unfortunately,
we could not find an optimal mobile Byzantine agreement algorithm that works
on any graph as long as n > 6t and k > 4t hold, nor a tighter upper bound on
t. Those are the main open problems we left. Also, investigating an algorithm
on general graph for a roaming pace ρ greater than 1 is an interesting issue. In
the context of self-stabilization, networks which may contain both transient and
Byzantine faults have been investigated as a problem of the fault containment
[11, 12]. It would be a good research direction to relate these two fields.

References

1. Banu, N., Souissi, S., Izumi, T., Wada, K.: An improved Byzantine agreement
algorithm for synchronous systems with mobile faults. Int’l J. Computer Applica-
tions 43, 21 (2011)

2. Biely, M., Hutle, M.: Consensus when all processes may be Byzantine for some
time. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 120–132.
Springer, Heidelberg (2009)

3. Biely, M., Charron, B., Gaillard, A., Hutle, M., Schiper, A., Widder, J.: Tolerat-
ing Corrupted Communication. Swiss National Science Foundation, 200021–111701
(2007)

4. Buhrman, H., Garay, J.A., Hoepman, J.: Optimal resiliency against mobile faults.
In: Proc. 25th Int’l Symp. Fault-Tolerant Computing (FTCS 1995), pp. 83–88
(1995)

5. Diestel, R.: Graph Theory. Springer (1997)
6. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3, 14–30 (1982)
7. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM

J. Computing 12(4), 656–666 (1983)
8. Fisher, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2), 374–382 (1985)
9. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mo-

bile faults. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857,
pp. 253–264. Springer, Heidelberg (1994)

10. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Programming Languages and Systems 4, 382–401 (1982)

11. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in sta-
bilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
pp. 440–453. Springer, Heidelberg (2006)

12. Nesterenko, M., Rora, A.: Tolerance to unbounded Byzantine faults. In: Proc. of
21st IEEE Symposium on Reliable Distributed Systems (SRDS 2002), pp. 22–29
(2002)

13. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of fault.
J. ACM 27(2), 228–234 (1980)

14. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)

15. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for con-
census under link failures. SIAM J. Computing 38(5), 1912–1951 (2009)

On Scheduling Algorithms for MapReduce

Jobs in Heterogeneous Clouds
with Budget Constraints

Yang Wang1 and Wei Shi2

1 Faculty of Computer Science
University of New Brunswick, Fredericton, Canada
2 Faculty of Business and Information Technology

University of Ontario Institute of Technology, Ontario, Canada

Abstract. In this paper, we consider task-level scheduling algorithms
with respect to budget constraints for a bag of MapReduce jobs on a
set of provisioned heterogeneous (virtual) machines in cloud platforms.
The heterogeneity is manifested in the popular ”pay-as-you-go” charg-
ing model where the service machines with different performance would
have different service rates. We organize a bag of jobs as a κ-stage work-
flow and consider the scheduling problem with budget constraints. In
particular, given a total monetary budget, by combining a greedy-based
local optimal algorithm and dynamic programming techniques, we first
propose a global optimal scheduling algorithm to achieve a minimum
scheduling length of the workflow in pseudo-polynomial time. Then, we
extend the idea in the greedy algorithm to efficient global distribution
of the budget among the tasks in different stages for overall scheduling
length reduction. Our empirical studies verify the proposed optimal al-
gorithm and show the efficiency of the greedy algorithm to minimize the
scheduling length.

1 Introduction

The Cloud, with its abundant on-demand computing resources and elastic charg-
ing models, have emerged as a promising platform to address various data pro-
cessing and task computing problems [7,10]. Also, MapReduce [6], characterized
by its remarkable simplicity, fault tolerance, and scalability, is becoming a popu-
lar programming framework to automatically parallelize large scale data process-
ing as in web indexing, data mining, and bioinformatics. Since a cloud supports
on-demand “massively parallel” applications with loosely coupled computational
tasks, it is amenable to the MapReduce framework and thus suitable for diverse
MapReduce applications. Therefore, many cloud infrastructure providers have
deployed the MapReduce framework on their commercial clouds as one of their
infrastructure services (e.g., Amazon Elastic MapReduce).

Given MapReduce is extremely powerful and runs fast for diverse application
areas, it is becoming a viable service in the form of MapReduce as a Service
(MRaaS) for cloud service providers (CSPs). It is typically set up as a kind of

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 251–265, 2013.
c© Springer International Publishing Switzerland 2013

252 Y. Wang and W. Shi

Software as a Service (SaaS) on the provisioned MapReduce cluster of cloud
instances. Clearly, for CSPs to reap the benefits of such a deployment, many
challenging problems have to be addressed. However, most current studies focus
solely on the system issues pertaining to deployment, such as overcoming the
limitations of the cloud infrastructure to build-up the framework [15], evaluating
the performance harm from running the framework on virtual machines [8], and
other issues in fault tolerance [4], reliability [16], data locality [21], etc.

We are also aware of some recent research tackling the scheduling problem
of MapReduce in Clouds [12, 13, 19]. These contributions mainly address the
scheduling issues with various concerns placed on dynamic loading [19], energy
reduction [13], and network performance [12]. To the best of our knowledge, no
one has optimized the scheduling of MapReduce jobs with budget constraints
at the task level. In our opinion several factors that may account for this status
quo. Specifically, as mentioned above, the MapReduce service, like other basic
database and system services, could be provided as an infrastructure service
by the cloud infrastructure providers (e.g., Amazon), rather than CSPs. Conse-
quently, it would be charged together with other infrastructure services. Hence,
the problem we are proposing to study would be irrelevant. Also, some properties
of the MapReduce framework (e.g., automatic fault tolerance with speculative
execution [22]) make it difficult for CSPs to track job execution in a reasonable
way, thus making scheduling very complex.

Since cloud resources are typically provisioned on demand with a ”pay-as-you-
go” billing model, cloud-based applications are usually budget driven.
Consequently, in practice the cost-effective use of resources to satisfy relevant
performance requirements within budget is always a pragmatic concern for CSPs,
and solving this problem with respect to MapReduce framework could dramat-
ically exploit the cloud potentials.

A MapReduce job essentially consists of two sets of tasks: map tasks and
reduce tasks as shown in Fig. 1. The executions of both sets of tasks are syn-
chronized into a map stage followed by a reduce stage. In the map stage, the
entire dataset is partitioned into several smaller chunks in forms of key-value
pairs, each chunk being assigned to a map node for partial computation results.
The map stage ends up with a set of intermediate key-value pairs on each map
node, which are further shuffled based on the intermediate keys into a set of
scheduled reduce nodes where the received pairs are aggregated to obtain the
final results.

A bag of MapReduce jobs may have multiple stages of MapReduce compu-
tation, each stage running either map or reduce tasks in parallel, with enforced
synchronization only between them. Therefore, the executions of the jobs can be
viewed as a fork&join workflow characterized by multiple synchronized stages,
each consisting of a collection of sequential or parallel map/reduce tasks. An
example of such a workflow is shown in Fig. 2 which is composed of 4 stages,
respectively with 8, 2, 4 and 1 (map or reduce) tasks. These tasks are to be
scheduled on different nodes for parallel execution. However, in heterogeneous
clouds, different nodes may have different performance and/or configuration

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds 253

Fig. 1. MapReduce framework Fig. 2. A 4-stage MapReduce workflow

specifications, and thus may have different service rates. Since resources are
provisioned on-demand in cloud computing, the CSPs are faced with a general
practical problem: how are resources to be selected and utilized for running each
task in a cost-effective way? This problem is, in particular, directly relevant
to CSPs wanting to compute their MapReduce workloads, especially when the
computation budget is fixed.

In this paper, we investigate the problem of scheduling a bag of MapReduce
jobs within budget constraints. This bag of MapReduce jobs could be an iterative
MapReduce job, a set of independent MapReduce jobs, or a collection of jobs
related to some high-level applications such as Hadoop Hive [17]. We address
task-level scheduling, which is fine grained compared to the frequently-discussed
job-level scheduling, where the scheduled unit is a job instead of a task. Specif-
ically, given a fixed amount of budget, we focus on how to efficiently select a
machine from a candidate set for each task so that the total scheduling length
of the job (aka makespan of the job) is minimum without breaking the budget.
This problem is of particular interest to CSPs wanting to deploy MRaaS on
heterogeneous cloud instances in a cost-effective way.

To address this problem, we first design an efficient greedy algorithm for
computing the minimum execution time with a given budget for each stage
and show its optimality with respect to execution time and budget use. Then,
with this result we develop a dynamic programming algorithm to achieve a
global optimal solution within time of O(κB2). To overcome the time complexity,
we extend the idea in the greedy algorithm to efficient global distribution of
the budget among the tasks in different stages for overall scheduling length
reduction. Our empirical studies verify the proposed optimal algorithm and show
the efficiency of the greedy algorithm to minimize the scheduling length.

The rest of this paper is organized as follows: in Section 2, we introduce some
background knowledge regarding the MapReduce framework and survey some
related work. Section 3 formulates our problem. The proposed budget-driven
algorithms including the optimal and the greedy algorithms are discussed in

254 Y. Wang and W. Shi

Section 4. We follow with the results of our empirical studies in Section 5, and
conclude the paper in Section 6.

2 Background and Related Work

The MapReduce framework was first advocated by Google in 2004 as a program-
ming model for its internal massive data processing [5]. Since then it has been
widely discussed and accepted as the most popular paradigm for data intensive
processing in different contexts. Therefore there are many implementations of
this framework in both industry and academia (such as Hadoop [1], Dryad [9],
Greenplum [2]), each with its own strengths and weaknesses.

MapReduce is made up of an execution runtime and a distributed file system.
The execution runtime is responsible for job scheduling and execution. It is
composed of one master node and slave nodes. A distributed file system is used
to manage task and data across nodes. When the master receives a submitted job,
it first splits the job into a number of map and reduce tasks and then allocates
them to the slave nodes, As with most distributed systems, the performance of
the task scheduler greatly affects the scheduling length of the job, as well as, in
our particular case, the budget consumed.

There exists research on the scheduler of MapReduce aiming at improving its
scheduling policies. For instance, Hadoop adopts speculative task scheduling to
minimize the slowdown in the synchronization phases caused by straggling tasks
in a homogeneous environment [1]. To extend this idea to heterogeneous clus-
ters, Zaharia et al. [22] proposed the LATE algorithm. But this algorithm does
not consider the phenomenon of dynamic loading, which is common in practice.
This limitation was studied by You et al. [19] who proposed a load-aware sched-
uler. In addition, there are Other work on power-aware scheduling [14], deadline
constraint scheduling [11], and scheduling based on automatic task slot assign-
ments [18]. While these contributions do address different aspects of MapReduce
scheduling, they are mostly centred on system performance and do not consider
the budget, which is our main focus.

Budget constraints have been considered in studies focusing on scientific work-
flow scheduling on HPC platforms including the Grid and Cloud [3, 20, 23]. For
example, Yu et al. [20] discussed this problem based on service Grids and pre-
sented a QoS-based workflow scheduling method to minimize execution cost and
yet meet the time constraints imposed by the user. In the same vein, Zeng et
al. [23] considered the executions of large scale many-task workflows in Clouds
with budget constraints. They proposed ScaleStar, a budget-conscious schedul-
ing algorithm to effectively balance execution time with the monetary costs.
Now recall that, in the context of this paper, we view the executions of the
jobs as a fork&join workflow characterized by multiple synchronized stages,
each consisting of a collection of sequential or parallel map/reduce tasks. From
this perspective, this abstract fork&join workflow can be viewed as a special
case of general workflows. However, our focus is on MapReduce scheduling with
budget constraints, rather than on general workflow scheduling. Therefore, the

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds 255

Table 1. Time-price table of task Jjl

⎡

⎣

t1jl t
2
jl ... t

mjl

jl

p1jl p
2
jl ... p

mjl

jl

⎤

⎦

characteristics of MapReduce framework are fully exploited in the designs of the
scheduling algorithms.

3 Problem Formulation

3.1 Workflow Model

We model a bag of MapReduce job as a multi-stage fork&join workflow that
consists of κ stages (called a κ-stage job), each stage j having a collection of
independent map or reduce tasks, denoted as Jj = {Jj0, Jj1, ..., Jjnj}, where 0 ≤
j < κ, and nj +1 is the size of stage j. In a cloud, each map or reduce task may
be associated with a set of machines that are provided by a cloud infrastructure
provider to run this task, each machine with possibly distinct performance and
configuration and thus with different charge rates. More specifically, for Task
Jjl, 0 ≤ j < κ and 0 ≤ l ≤ nj the available machines and corresponding
prices (service rates) are listed in Table 1, the values could be determined by
the VM power and the computational loads of each task, where tujl, 1 ≤ u ≤ mjl

represents the time to run task Jjl on machine Mu whereas pujl represents the
corresponding price for using that machine, and mjl is the total number of the
machines that can run Jjl.

Table 2. Notation frequently used in model and algorithm descriptions

Symbol Meaning Symbol Meaning

κ the number of stages mjl the total number of the machines
Jji the ith task in stage j m the total size of time-price tables of

the workflow
Jj task set in stage j Bjl the budget used by Jjl

nj the number of tasks in stage j B the total budget for the MapReduce job
n the total number of tasks in Tjl(Bjl) the shortest time to finish Jjl given Bjl

the workflow
tujl time to run task Jjl on machine Mu Tj(Bj) the shortest time to finish stage j given Bj

pujl the cost rate for using Mu T (B) the shortest time to finish the job given B

Without loss of generality, we assume that times have been sorted in increasing
order and prices in decreasing order, and furthermore, that both time and price
values are unique in their respective sorted sequence. These assumptions are
reasonable since given any two machines with same run time for a task, the

256 Y. Wang and W. Shi

expensive one should never be selected. Similarly, given any two machines with
same price for a task, the slow machine should never be chosen.

For clarity and quick reference, we provide in Table 2 a summary of some
symbols frequently used hereafter.

3.2 Budget Constraints

Given budget Bjl for task Jjl, the shortest time to finish it, denoted as Tjl(Bjl)
is defined as

Tjl(Bjl) = tujl pu+1
jl < Bjl < pu−1

jl (1)

Obviously, if Bjl < p
mjl

jl , Tjl(Bjl) = +∞.
The time to complete a stage j with budget Bj , denoted as Tj(Bj), is defined

as the time consumed when the last task in that stage completes within the
given budget:

Tj(Bj) = max∑
l∈[0,nj]

Bjl≤Bj

{Tjl(Bjl)} (2)

In fork&join, a stage cannot start until its immediately preceding stage has
terminated. Thus the total makespan under budget B to complete the workflow
is defined as the sum of all stages’ time. Our goal is to minimize the time within
the given budget B.

T (B) = min∑
j∈[0,κ) Bj≤B

∑
j∈[0,κ)

Tj(Bj) (3)

Some readers may question the feasibility of this model since the number
of stages and the number of tasks in each stage need to be known a prior to
the scheduler. But, in reality, it is entirely possible since a) the number of map
tasks for a given job is driven by the number of input splits (which is known to
the scheduler) and b) the number of reduce tasks can be preset as with all other
parameters (e.g., parameter mapred.reduce.tasks in Hadoop). As for the number
of stages, it is not always possible to predefine it for MapReduce workflows. This
is the main limitation of our model. But under the default FIFO job scheduler,
we can treat a set of independent jobs as a single fork&join workflow. Therefore,
we believe our model is still representative of most cases in reality.

4 Budget-Driven Algorithms

In this section, we propose our task-level scheduling algorithms for MapReduce
workflows with the goals of optimizing Equations (3) under budget constraints.
To this end, we first leverage dynamic programming techniques to obtain an
optimal solution and then present an efficient greedy algorithm to overcome its
inherent complexity.

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds 257

4.1 Optimization under Budget Constraints

The proposed algorithm should be able to distribute the budget among the
stages, and in each stage distributing the assigned budget to each constituent
task in an optimal way. To take these effects, we design the algorithm in two
steps:

1. Given budget Bj for stage j, distribute the budget to all constituent tasks
in such a way that Tj(Bj) is minimum (see Equation (2)). Clearly, the com-
putation for each stage is independent of other stages. Therefore such com-
putations can be treated in parallel using κ machines.

2. Given budget B for a workflow and the results in Equation (2), optimize our
goal of Equation (3).

In-Stage Distribution. To address the first step, we develop an optimal local
greedy algorithm to distribute budget Bj between the nj + 1 tasks for stage
j, 0 ≤ j ≤ κ− 1 in such a way that Tj(Bj) is minimized.

The idea of the algorithm is simple. To ensure that all the tasks in stage j
have sufficient budget to finish while minimizing Tj(Bj), we first require B′j =

Bj −
∑

l∈[0,nj]
p
mjl

jl ≥ 0 and then iteratively distribute B′j in a greedy manner

each time to the task whose current execution time determines Tj(Bj) (i.e., the
slowest one). This process continues until no sufficient budget is left. Clearly,
having considered the structure of this problem, we can easily show its optimality
with respect to minimizing the scheduling length within the given budget.

Global Distribution. Given the results of the first step, we now consider the
second step by using a dynamic programming recursion to compute the global
optimal result. To this end, we use T (j, r) to represent the minimum total time to
complete stages indexed from j to κ when budget r is available and use Tj [nj , q]
to store the optimal time computed for stage j given budget q. Then, we have
the following recursion (0 < j ≤ κ, 0 < r ≤ B):

T (j, r) =

{
min

0<q≤r
{Tj(nj , q) + T (j + 1, r − q)} if j < κ

Tj(nj , r) if j = κ
(4)

where the optimal solution can be found in T (1, B). The scheduling scheme
can be reconstructed from T (1, B) by recursively backtracking the Dynamic
Programming (DP) matrix in (4) up to the initial budget distribution at stage
κ which can, phase by phase, steer to the final optimal result. To this end, in
addition to the time value, we only store the budget q and the index of the
previous stage (i.e., T (j + 1, r − q)) in each cell of the matrix since, given the
budget for each stage, we can simply use the algorithm in the first step to
recompute the budget distribution. Based on these descriptions, we can easily
have the following results:

258 Y. Wang and W. Shi

Theorem 1. Given budget B for a κ-stage MapReduce job, each stage j having
nj tasks, Recursion (4) yields an optimal solution to the distribution of budget B
to all the κ stages with time complexity O(κB2) when Tj(nj , q), 0 < j ≤ κ, 0 <
q ≤ B is pre-computed.

4.2 Efficiency Improvements

In the previous subsection, we briefly introduced an optimal solution to the
distribution of a given budget among different stages to minimize the work-
flow execution time. The time complexity of the proposed algorithm is pseudo-
polynomial and proportional to the square of the budget, which is fairly high.
To address this problem, we now propose a heuristic algorithm, called Global
Greedy Budget (GGB), which extends the idea of the algorithm in computing
Tj[nj , Bj] (Section 4.1) to the whole multi-stage workflow. More specifically,
GGB applies the idea of the algorithm in Section 4.1 with some extensions to
the selection of candidate tasks for budget assignments across all the stages of
the workflow. The pseudo code of GGB is shown in Algorithm 1. Similar to the
algorithm in Section 4.1, we also need to ensure the given budget has a lower
bound

∑

j∈[1,κ]Bj where B′j =
∑

l∈[0,nj]
p
mjl

jl that guarantees the completion of

the workflow (Lines 2-3). We also use the three profile variables Tjl, Bjl and Mjl

for each task Jjl in stage j to record its execution time, assigned budget, and
selected machine (Lines 6-12).

Since in each stage, the slowest task determines the stage completion time,
we first need to allocate the budget to the slowest task in each stage. After the
slowest task is allocated, the second slowest will become the bottleneck. In our
heuristic, we must consider this fact. To this end, we first identify the slowest
and the second slowest tasks in each stage j, which are indexed by jl and jl′,
respectively. Then we gather these index pairs in a set L thereby determining
which task in L should be allocated budget (Lines 14-18). To measure the quality
of a budget investment, we define a utility value, vujl, for each given task Jjl, which

is a value assigned to an investment on the basis of anticipated performance:1

vujl = αβj + (1− α)β′
j (5)

where βj =
tujl−tu

′
jl′

pu−1
jl −pu

jl

≥ 0, β′j =
tujl−tu−1

jl

pu−1
jl −pu

jl

≥ 0, and α is defined as:

α =

{
1 if

∑κ
j=1 βj > 0

0 Otherwise
(6)

βj represents time saving on per-budget unit when task Jjl is moved from ma-
chine u to run on the next faster machine u − 1 in stage j (βj > 0) while β′j is
used when there are multiple slowest tasks in stage j (βj = 0). α is defined to
allow βj to have a higher priority than β′j in task selection. Put simply, unless
for ∀j ∈ [1, κ], βj = 0 in which case β′j is used, we use the value of βj , j ∈ [1, κ]
as the criteria to select the allocated tasks.
1 Recall that the sequences of tujl and pujl are sorted, respectively in Table 1.

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds 259

Algorithm 1. Global-Greedy-Budget Algorithm (GGB)

1: procedure T (1, B) � Dist. B among κ stages

2: B′ = B −∑
j∈[1,κ] B

′
j � B′

j =
∑

l∈[0,nj]
p
mjl
jl

3: if B′ < 0 then return (+∞)
4: end if � No sufficient budget!
5: � Initialization
6: for j ∈ [1, κ] do � O(

∑κ
j=1 nj) = # of tasks

7: for Jjl ∈ Jj do

8: Tjl ← t
mjl
jl � record exec. time

9: Bjl ← p
mjl
jl � record budget dist.

10: Mjl ← mjl � record assigned machine index.
11: end for
12: end for
13: while B′ ≥ 0 do � ≤ O(B

min1≤j≤κ,0≤l≤nj
{δjl})

14: L← ∅

15: for j ∈ [1, κ] do � O(
∑κ

j=1 lognj)

16: < jl, jl′ >∗← argmax
l∈[0,nj]

{Tjl(Bjl)}

17: L← L ∪ {< jl, jl′ >∗} � |L| = κ
18: end for
19: V ← ∅

20: for < jl, jl′ >∈ L do � O(κ)
21: u←Mjl

22: if u > 1 then
23: < pu−1

jl , pu
jl >← Lookup(Jjl, u− 1, u)

24: vu
jl ← αβj + (1− α)β′

j

25: V ← V ∪ {vu
jl} � |V | ≤ κ

26: end if
27: end for
28: while V
= ∅ do � O(κ log κ)
29: � sel. task with max. u.value
30: jl∗ ← argmax

vu
jl

∈V

{vu
jl}

31: u←Mjl∗ � Lookup matrix in Table 1

32: δjl∗ ← pu−1
jl∗ − pu

jl∗ � u > 1

33: if B′ ≥ δjl∗ then � reduce Jjl∗ ’s time

34: B′ ← B′ − δjl∗
35: Bjl∗ ← Bjl∗ + δjl∗
36: Tjl∗ ← tu−1

jl∗
37: Mjl∗ ← u− 1
38: break � restart from scratch
39: else
40: V ← V \ {vu

jl∗} � select the next one in V
41: end if
42: end while
43: if V = ∅ then
44: return � Bj =

∑
l∈[0,nj]

Bjl

45: end if
46: end while
47: end procedure

260 Y. Wang and W. Shi

1000 2000 3000 4000 5000
200

300

400

500

600

700

800

Sc
he

du
lin

g
L

en
gt

h

Opt(4)
GGB(4)
Opt(8)
GGB(8)

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

Sc
he

du
lin

g
T

im
e(

s)

0 5000 10000 15000 20000
Budget

0

500

1000

1500

2000

2500

3000

Sc
he

du
lin

g
L

en
gt

h

Opt(16)
GGB(16)
Opt(32)
GGB(32)

0 5000 10000 15000 20000
Budget

0

5

10

15

Sc
he

du
lin

g
T

im
e(

s)

Fig. 3. Impact of time-price table (TP) size on the scheduling length (e.g., makespan
of the job in terms of indivisible time units) and the scheduling time (Stage:8, Task:
≤ 20/each stage, and the numbers in the brackets represent the different TP table
sizes)

In the algorithm, all the values of the tasks in L are collected into a set V
(Lines 19-28). We note that the tasks running on machine u = 1 in each stage
have no definition of this value since they are already running on the fastest
machine under the given budget (and thus no further improvement is available).

Given set V , we can iterate over it to select the task in V that has the largest
utility value, indexed by jl∗, to be allocated budget for minimizing the stage
computation time (Lines 29-30). We fist obtain the machine u to which the
selected task is currently mapped and then compute the extra monetary cost
δjl∗ if the task is moved from u to the next faster machine u− 1 (Lines 31-32).
If the leftover budget B′ is insufficient, the selected task will not be considered
and removed from V (Line 40). In the next step, a task in a different stage will
be selected for budget allocation (given each stage has at most one task in V).
This process will be continued until either the leftover budget B′ is sufficient for
a selected task or V becomes empty. In the former case, δjl∗ will be deducted
from B′ and added to the select task. At the same time, other profile information
related to this allocation is also updated (Lines 33-37). After this, the algorithm
exits from the loop and repeats the computation of L (Line 13) since L has
been changed due to this allocation. In the latter case, when V becomes empty,
the algorithm returns directly, indicating that the final results of the budget
distribution and the associated execution time of each tasks in each stage are
available as recorded in the corresponding profile variables.

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds 261

Theorem 2. The time complexity of GGB is not greater than O(B(n+κ log κ)).
In particular, when n ≥ κ log κ, the complexity of GGB is upper bounded by
O(nB).

Proof. The time complexity of this algorithm is largely determined by the nested
loops (Lines 13-42). Since each allocation of budgetB′ is at least min

1≤j≤κ,0≤l≤nj

{δjl},
the algorithm has at most O(B

min{δjl}), 1 ≤ j ≤ κ, 0 ≤ l ≤ nj iterations at Line

13. On the other hand, if some advanced data structure such as a priority queue is
used to optimize the search process, the algorithm can achieve a time complexity
ofO(

∑κ
j=1 log nj) at Line 15 andO(κ log κ) at Line 29. Therefore, the overall time

complexity can be written as

O(n+
B

min{δjl} (
κ∑

j=1

log nj + κ log κ)) < O(B(n+ κ log κ)) (7)

where δjl = pu−1jl − pujl, 1 ≤ j ≤ κ, 0 ≤ l ≤ nj and n =
∑κ

j=1 nj the total number
of tasks in the workflow. Here, we leverage the fact that logn < n. Obviously,
when n ≥ κ logκ, which is reasonable in multi-stage MapReduce jobs, we obtain
a time complexity of O(nB).

5 Empirical Studies

To verify and evaluate the proposed algorithms and study their performance
behaviours in reality, we developed a Budget Distribution Solver (BDS) in Java
that efficiently implements the algorithms for the specified scheduling problem
in MapReduce. Since the monetary cost is our primary interest, in BSD we did
not consider some properties and features of the network platforms. Rather, we
focus on the factors closely related to our research goal. In practical, how efficient
the algorithms are in minimizing the scheduling lengths of the workflow subject
to different budget constraints are our concern.

The BDS accepts as an input a bag of MapReduce jobs that are organized
as a multi-stage fork&join workflow by the scheduler at run-time. Each task of
the job is associated with a time-price table, which is pre-defined by the cloud
providers. As a consequence, the BDS can be configured with several parameters,
including those described time-price tables, the number of tasks in each stage and
the total number of stages in the workflow. Since there is no well-accepted model
to specify these parameters, we assume them to be automatically generated in a
uniform distribution where the task execution time and the corresponding prices
in particular are varied in the ranges of [1, 12.5*table size] and [1, 10*table size],
respectively. As intuitively, with the table size being increased, the scheduler has
more choices to select the candidate machines to execute a task. On the other
hand, in each experiment we allow the budget resources to be increased from
its lower bound to upper bound and thereby comparing the scheduling lengths
and the scheduling time of the proposed algorithms with respect to different
configuration parameters. Here, the lower and upper bound are defined to be

262 Y. Wang and W. Shi

the minimal and maximal budget resources, respectively, that can be used to
complete the workflow.

All the experiments are conducted by comparing the proposed GGB algo-
rithm with the optimal algorithm Opt and the numerical results are obtained
from a Ubuntu 12.04 platform having a hardware configuration of 3392.183 MHz
processors, with a total of 8 processors activated, each with 8192K cache.

5.1 Impact of Time-Price Table Size

We first evaluate the impact of the time-price table size on the total scheduling
length of the workflow with respect to different budget constraints. To this end,
we fix a 8-stage workflow with at most 20 tasks in each stage. The size of the
time-price table associated with each task varies from 4, 8, 16 to 32.

The results of the GGB algorithm compared with those of the optimal algo-
rithm are shown in Fig. 3. While the budget increases, for all sizes of the tables,
the scheduling lengths decrease super-linearly. These results are interesting also
difficulty to make from algorithm analysis alone. We attribute these results to
the fact that the opportunities of reducing the execution time of each stage are
super-linearly increased with the budget growth, especially for those large size
workflows. This phenomenon implies that the performance/cost ratio increases
if cloud users are willing to pay more for MapReduce computation. This figure
also shows that the performance of GGB is very close to the optimal algorithm,
but its scheduling time is significantly less than that of the optimal algorithm

0 2000 4000 6000 8000
0

500

1000

1500

2000

Sc
he

du
lin

g
L

en
gt

h

Opt(4)
GGB(4)
Opt(8)
GGB(8)

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3

Sc
he

du
lin

g
T

im
e(

s)

0 5000 10000 15000 20000 25000 30000
Budget

0

1000

2000

3000

4000

5000

6000

Sc
he

du
lin

g
L

en
gt

h Opt(16)
GGB(16)
Opt(32)
GGB(32)

0 5000 10000 15000 20000 25000 30000
Budget

0

50

100

150

Sc
he

du
lin

g
T

im
e(

s)

Fig. 4. Impact of the number of stages on the total scheduling length (e.g., makespan
of the job in terms of indivisible time units) and scheduling time (Task: ≤ 20, Table
Size ≤ 16, and the numbers in the brackets represent the different number of stages)

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds 263

(quadratic in its time complexity). These results demonstrate how effective and
efficient the proposed GGB algorithm is to achieve the best performance for
MapReduce workflows subject to different budget constraints.

5.2 Impact of Workflow Size

In this set of experiments, we evaluate the performance changes with respect
to different workflow sizes when the budget resources for each workflow are
increased from the lower bound to the upper bound as we defined before. To
this end, we fix the maximum number of tasks in the MapReduce workflow
to 20 in each stage, and each task is associated with a time-price table with
a maximum size of 16. We vary the number of stages from 4, 8, 16 to 32, and
observe the performance and scheduling time changes in Fig. 4. From this figure,
we can see that all the algorithms exhibit the same performance patterns with
those we observed when the impact of the table size is considered. These results
are expected as both the number of stages and the size of tables are linearly
correlated with the total workloads in the computation. This observation can be
also made when the number of tasks in each stage is changed.

6 Conclusions

In this paper, we studied the scheduling of a bag of MapReduce jobs with bud-
get constraints on a set of (virtual) machines in Clouds. To this end, we first
presented a parallel optimal algorithm to address the constraints within pseudo
polynomial time. The algorithm is based on dynamic programming techniques
and integrates an in-stage local greedy algorithm to achieve the global optimality.

To further improve the efficiency, we then developed a global greedy algorithm
GGB that extends the idea of the local greedy algorithm to the distribution of the
budget among the tasks across different stages of the workflow while minimizing
the scheduling length as a goal. The performance of the proposed algorithms
were evaluated by empirical studies. The results show that the GGB is close to
the optimal results in terms of the scheduling length but entails much lower time
overhead.

References

1. Apache Software Foundation. Hadoop, http://hadoop.apache.org/core
2. Greenplum HD, http://www.greenplum.com
3. Caron, E., Desprez, F., Muresan, A., Suter, F.: Budget constrained resource alloca-

tion for non-deterministic workflows on an iaas cloud. In: Xiang, Y., Stojmenovic,
I., Apduhan, B.O., Wang, G., Nakano, K., Zomaya, A. (eds.) ICA3PP 2012, Part
I. LNCS, vol. 7439, pp. 186–201. Springer, Heidelberg (2012)

4. Correia, M., Costa, P., Pasin, M., Bessani, A., Ramos, F., Verissimo, P.: On the
feasibility of byzantine fault-tolerant mapreduce in clouds-of-clouds. In: 2012 IEEE
31st Symposium on Reliable Distributed Systems (SRDS), pp. 448–453 (2012)

http://hadoop.apache.org/core
http://www.greenplum.com

264 Y. Wang and W. Shi

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation, OSDI 2004, vol. 6, p. 10 (2004)

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good,
J.: On the use of cloud computing for scientific workflows. In: IEEE Fourth Inter-
national Conference on eScience, eScience 2008, pp. 640–645 (December 2008)

8. Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S., Shi, X.: Evaluating mapreduce on
virtual machines: The hadoop case. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.)
Cloud Computing 2009. LNCS, vol. 5931, pp. 519–528. Springer, Heidelberg (2009)

9. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, Eu-
roSys 2007, pp. 59–72 (2007)

10. Juve, G., Deelman, E., Berriman, G.B., Berman, B.P., Maechling, P.: An evalu-
ation of the cost and performance of scientific workflows on amazon ec2. J. Grid
Comput. 10(1), 5–21 (2012)

11. Kc, K., Anyanwu, K.: Scheduling hadoop jobs to meet deadlines. In: 2010 IEEE
Second International Conference on Cloud Computing Technology and Science,
CloudCom, pp. 388–392 (2010)

12. Kondikoppa, P., Chiu, C.-H., Cui, C., Xue, L., Park, S.-J.: Network-aware schedul-
ing of mapreduce framework ondistributed clusters over high speed networks. In:
Proceedings of the 2012 Workshop on Cloud Services, Federation, and the 8th
Open Cirrus Summit, FederatedClouds 2012, pp. 39–44 (2012)

13. Li, Y., Zhang, H., Kim, K.H.: A power-aware scheduling of mapreduce applica-
tions in the cloud. In: 2011 IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing (DASC), pp. 613–620 (2011)

14. Li, Y., Zhang, H., Kim, K.H.: A power-aware scheduling of mapreduce applica-
tions in the cloud. In: 2011 IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing (DASC), pp. 613–620 (2011)

15. Liu, H., Orban, D.: Cloud mapreduce: A mapreduce implementation on top of a
cloud operating system. In: 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 464–474 (2011)

16. Marozzo, F., Talia, D., Trunfio, P.: Enabling reliable mapreduce applications in
dynamic cloud infrastructures. ERCIM News 2010(83), 44–45 (2010)

17. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,
H., Murthy, R.: Hive - a petabyte scale data warehouse using hadoop. In: 2010
IEEE 26th International Conference on Data Engineering (ICDE), pp. 996–1005
(2010)

18. Wang, K., Tan, B., Shi, J., Yang, B.: Automatic task slots assignment in hadoop
mapreduce. In: Proceedings of the 1st Workshop on Architectures and Systems for
Big Data, ASBD 2011, pp. 24–29 (2011)

19. You, H.-H., Yang, C.-C., Huang, J.-L.: A load-aware scheduler for mapreduce
framework in heterogeneous cloud environments. In: Proceedings of the 2011 ACM
Symposium on Applied Computing, SAC 2011, pp. 127–132 (2011)

20. Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and
budget constraints using genetic algorithms. Sci. Program 14(3,4), 217–230 (2006)

On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds 265

21. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: Proceedings of the 5th European Conference on Computer Systems,
pp. 265–278 (2010)

22. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 29–42 (2008)

23. Zeng, L., Veeravalli, B., Li, X.: Scalestar: Budget conscious scheduling precedence-
constrained many-task workflow applications in cloud. In: Proceedings of the 2012
IEEE 26th International Conference on Advanced Information Networking and
Applications, AINA 2012, pp. 534–541 (2012)

Fast and Scalable Queue-Based Resource

Allocation Lock on Shared-Memory
Multiprocessors

Deli Zhang, Brendan Lynch, and Damian Dechev

Department of EECS, University of Central Florida
Orlando, FL 32816, USA

{de-li.zhang,brendan.lynch}@knights.ucf.edu, dechev@eecs.ucf.edu

Abstract. We present a fast and scalable lock algorithm for shared-
memory multiprocessors addressing the resource allocation problem. In
this problem, threads compete for k shared resources where a thread may
request an arbitrary number 1 ≤ h ≤ k of resources at the same time.
The challenge is for each thread to acquire exclusive access to desired
resources while preventing deadlock or starvation. Many existing ap-
proaches solve this problem in a distributed system, but the
explicit message passing paradigm they adopt is not optimal for shared-
memory. Other applicable methods, like two-phase locking and resource
hierarchy, suffer from performance degradation under heavy contention,
while lacking a desirable fairness guarantee. This work describes the first
multi-resource lock algorithm that guarantees the strongest first-in, first-
out (FIFO) fairness. Our methodology is based on a non-blocking queue
where competing threads spin on previous conflicting resource requests.
In our experimental evaluation we compared the overhead and scalability
of our lock to the best available alternative approaches using a micro-
benchmark. As contention increases, our multi-resource lock obtains an
average of ten times speedup over the alternatives including GNU C++’s
lock method and Boost’s lock function.

1 Introduction

Improving the scalability of resource allocation algorithms on shared-memory
multiprocessors is of practical importance due to the trend of developing many-
core chips. The performance of parallel applications on a shared-memory multi-
processor is often limited by contention for shared resources, creating the need for
efficient synchronization methods. In particular, the limitations of the synchro-
nization techniques used in existing database systems leads to poor scalability
and reduced throughput on modern multicore machines [16]. For example, when
running on a machine with 32 hardware threads, Berkeley DB spends over 80%
of the execution time in its Test-and-Test-and-Set lock [16].

Mutual exclusion locks eliminate race conditions by limiting concurrency and
enforcing sequential access to shared resources. Comparing to more intricate
approaches like lock-free synchronization [15] and software transactional mem-
ory [14], mutual exclusion locks introduce sequential ordering that eases the

R. Baldoni, N. Nisse, and M. van Steen (Eds.): OPODIS 2013, LNCS 8304, pp. 266–280, 2013.
c© Springer International Publishing Switzerland 2013

Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors 267

reasoning about correctness. Despite the popular use of mutual exclusion locks,
one requires extreme caution when using multiple mutual exclusion locks to-
gether. In a system with several shared resources, threads often need more than
just one resource to complete certain tasks, and assigning one mutual exclusion
lock to one resource is common practice. Without coordination between locks
this can produce undesirable effects such as deadlock, livelock and decrease in
performance.

Consider two clerks, Joe and Doe, transferring money between two bank ac-
counts C1 and C2, where the accounts are exclusive shared resources and the
clerks are two contending threads. To prevent conflicting access, a lock is as-
sociated with each bank account. The clerks need to acquire both locks before
transferring the money. The problem is that mutual exclusion locks cannot be
composed, meaning that acquiring multiple locks inappropriately may lead to
deadlock. For example, when Joe locks the account C1 then he attempts to
lock C2. In the meantime, Doe has acquired the lock on C2 and waits for the
lock on C1. In general, one seeks to allocate multiple resources among contending
threads that guarantees forward system progress, which is known as the resource
allocation problem [12]. Two pervasive solutions, namely resource hierarchy [9]
and two-phase locking [10], prevent the occurrence of deadlocks but do not re-
spect the fairness among threads and their performance degrades as the level of
contention increases. Nevertheless, both the GNU C++ library1 and the Boost
library2 adopt the two-phase locking mechanism as a means to avoid deadlocks.

In this paper, we propose the first FIFO (first-in, first-out) multi-resource
lock algorithm for solving the resource allocation problem on shared-memory
multiprocessors. Given k resources, instead of having k separate locks for each
one, we employ a non-blocking queue as the centralized manager. Each element
in the queue is a resource request bitset3 of length k with each bit representing
the state of one resource. The manager accepts the resource requests in a first-
come, first-served fashion: new requests are enqueued to the tail, and then they
progress through the queue in a way that no two conflicting requests can reach
the head of the queue at the same time. Using the bitset, we detect resource
conflict by matching the correspondent bits. The key algorithmic advantages of
our approach include:

1. The FIFO nature of the manager guarantees fair acquisition of locks, while
implying starvation-freedom and deadlock-freedom

2. The lock manager has low access overhead and is scalable with the cost of
enqueue and dequeue being only a single compare and swap operation

3. The maximum concurrency is preserved as a thread is blocked only when
there are outstanding conflicting resource requests

4. Using a bitset allows an arbitrary number of resources to be tracked with
low memory overhead, and does not require atomic access

1 http://gcc.gnu.org
2 http://www.boost.org
3 A bitset is a data structure that contains an array of bits.

268 D. Zhang, B. Lynch, and D. Dechev

We evaluate the overhead and scalability of our lock algorithm using a micro-
benchmark. We compare our work to the state-of-the-art approaches in the field,
which include resource hierarchy locking combined with std::mutex, two-phase
locking, such as std::lock and boost::lock, and an extended Test-and-Test-and-
Set (TATAS) lock. At low levels of contention, our lock sacrifices performance for
fairness resulting in a worst case slowdown of 2 times. As contention increases, it
outperforms the two-phase locking methods by a factor of 10 with a worst case
speedup of 1.5 to 2 times against the resource hierarchy lock and the extended
TATAS lock. Moreover, the timings of our multi-resource lock are significantly
more consistent and regular throughout all test scenarios when compared to
other approaches.

2 Background

In this section, we briefly review the mutual exclusion problem and its variations,
with emphasis on the resource allocation problem and the desirable properties
for a solution. We also provide a summary on the lock-free data structures and
the atomic primitives used in our algorithm.

2.1 Mutual Exclusion and Resource Allocation

Mutual exclusion algorithms are widely used to construct synchronization primi-
tives like locks, semaphores and monitors. Designing efficient and scalable mutual
exclusion algorithms has been extensively studied (Raynal [21] and Anderson [1]
provide excellent surveys on this topic). In the classic form of the problem, com-
peting threads are required to enter the critical section one at a time. In the
k-mutual exclusion problem [12], k units of an identical shared resource exist
so that up to k threads are able to acquire the shared resource at once. Fur-
ther generalization of k-mutual exclusion gives the h-out-of-k mutual exclusion
problem [20], in which a set of k identical resources are shared among threads.
Each thread may request any number 1 ≤ h ≤ k of the resources, and the thread
remains blocked until all the required resources become available.

We address the resource allocation problem [17] on shared-memory multipro-
cessors, which extends the h-out-of-k mutual exclusion problem in the sense that
the resources are not necessarily identical. The resource allocation problem can
also be seen as a generalization to the prominent Dining Philosophers Problem
(DPP) originally formulated by Dijkstra [9]. It drops the static resource con-
figuration used in the DPP and allows an arbitrary number of resources to be
requested from a pool of k resources. The minimal safety and liveness proper-
ties for any solution include mutual exclusion and deadlock-freedom [1]. Mu-
tual exclusion means a resource must not be accessed by more than one thread
at the same time, while deadlock-freedom guarantees system wide progress.
Starvation-freedom, a stronger liveness property than deadlock-freedom, ensures
every thread eventually gets the requested resources. In the strongest FIFO or-
dering, the threads are served in the order they arrive. It is preferable for ensuring
starvation-freedom because it enforces strict fairness between contenders [18].

Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors 269

2.2 Atomic Primitives and Synchronization

Atomic primitives are the cornerstones of any synchronization algorithm. com-

pare and swap(address, expectedValue, newValue)4, or CAS for short, always
returns the original value at the specified address but only writes newValue to
address if the original value matches expectedValue. A slightly different version
compare and set returns a Boolean value indicating whether the comparison
succeeded. In C++ memory model, the use of an atomic operation is accompa-
nied by std::memory order, which specify how regular memory accesses made
by different threads should be ordered around the atomic operation. More specif-
ically, a pair of std::memory order acquire and std::memory order release re-
quires that when a thread does a atomic load operation with acquire order, prior
writes made to other memory locations by the thread that did the release be-
come visible to it. std::memory order relaxed, on the hand, poses no ordering
constraints.

Algorithm 1. TATAS lock for resource allocation
1 typedef uint64 bitset;
2
3 // i n pu t l : a d d r e s s o f the l o c k
4 // i n pu t r : r e q u e s t b i t mask
5 void lock(bitset* l, bitset r){
6 bitset b;
7 do{
8 b = *l; // read b i t s v a l u e
9 if(b & r) // check f o r

c o n f l i c t i o n
10 continue ; // s p i n wi th r e a d s

11 }while(! compare_and_set(l, b, b |
r));

12 }
13
14 void unlock (bitset* l, bitset r){
15 bitset b;
16 do{
17 b = *l;
18 }while(! compare_and_set(l, b, b &

~r));
19 }

Given the atomic CAS instruction, it is straightforward to develop simple
spin locks. In Algorithm 1 we present an extended TATAS lock that solves the
resource allocation problem for a small number of resources. The basic TATAS
lock is a spin lock that allows threads to busy-wait on the initial test instruction
to reduce bus traffic. The key change we made is to treat the lock integer value
as a bit array instead of a Boolean flag. A thread needs to specify the resource
requests through a bitset mask when acquiring and releasing the lock. With each
bit representing a resource, the bits associated with the desired resources are set
to 1 while others remain 0. The request updates the relevant bits in the lock
bitset if there is no conflict, otherwise the thread spins. One drawback of this
extension is that the total number of resources is limited by the size of integer
type because a bitset capable of representing arbitrary number of resources may
span across multiple memory words. Updating multiple words atomically is not
possible without resorting to multi-word CAS [13], which is not readily available
on all platforms.

Non-blocking synchronization, eliminates the use of locks completely. A con-
current object is lock-free if at least one thread makes forward progress in a
finite number of steps [15]. It is wait-free if all threads make forward progresses

4 Also known as compare exchange

270 D. Zhang, B. Lynch, and D. Dechev

in a finite number of steps [7]. Compared to their blocking counterparts, non-
blocking objects promise greater scalability and robustness. In this work, we take
advantage of a non-blocking queue to increase the scalability and throughput of
our lock mechanism.

3 Algorithms

We implement a queue-based multi-resource lock that manages an arbitrary
number of exclusive resources on shared-memory architectures. Our highly scal-
able algorithm controls resource request conflicts by holding all requests in a
FIFO queue and allocating resources to the threads that reach the top of the
queue. We achieve scalable behavior by representing resource requests as a bitset
and employing a non-blocking queue that grants fair acquisition of the locks.

3.1 Handle Locking Request with FIFO Queue

Our conflict management approach is built on an array-based bounded lock-free
FIFO queue [15]. The lock-free property is desirable as our lock manager must
guarantee deadlock freedom. The FIFO property of the data structure allows
for serving threads in their arriving order, implying starvation-freedom for all
enqueued requests. We favor an array-based queue over other high performance
non-blocking queues because it does not require dynamic memory management.
Link-list based queues involve dynamic memory allocation for new nodes, which
could lead to significant performance overhead and the ABA problem [19]. With
a pre-allocated continuous buffer, our lock algorithm is not prone to the ABA
problem and has low runtime overhead by using a single CAS for both enqueue
and dequeue operations.

Given a set of resources, each bit in a request bitset is uniquely mapped
to one resource. A thread encapsulates a request of multiple resources in one
bitset with the correspondent bit of the requested resources set to 1. The multi-
resource lock handles requests atomically meaning that a request is fulfilled only
if all requested resources are made available, otherwise the thread waits in the
queue. This all-or-nothing atomic acquisition allows the maximum
number of threads, without conflicting requests, to use the shared resources.

01000010
00011010

10100000
00000101
00111000
11101000

TAIL

HEAD1:
2:
3:
4:
5:

6:

(a) Cell 6 spins on cell 3

01000010
00011010

10100000
00000101
00111000
00000000

TAIL

HEAD1:
2:
3:
4:
5:

6:

(b) Release of cell 3. Cell 6 spins on cell 4

Fig. 1. Atomic lock acquisition process

Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors 271

The length of the bitset is unlimited and can be determined either at runtime
as in boost::dynamic bitset, or at compile time as in std::bitset. Using variable
length bitset is also possible to accommodate growing number of total resources
at runtime, as long as the resource mapping is maintained. Figure 1a demon-
strates this approach. A newly enqueued request is placed at the tail. Starting
from the queue head, it compares the bitset value with each request. In the ab-
sence of conflict, it moves on to the next one until it reaches itself. Here, the
thread on 5th cell successfully acquires all needed resources. The thread on the
tail (6th cell) spins on the 3rd request due to conflict. In Figure 1b, the thread
on the tail proceeds to spin on the 4th cell when the 3rd request was released.

Algorithm 2. Multi-Resource Lock Data Structures
1 #include <bitset.h>
2 #include <atomic>
3 using namespace std;
4
5 struct cell{
6 atomic <uint32> seq;
7 bitset bits;
8 }
9 struct mrlock{

10 cell* buffer;
11 uint32 mask;
12 atomic <uint32> head;
13 atomic <uint32> tail;
14 }
15
16 // i n pu t l : r e f e r e n c e to the l o c k
17 // i n pu t s i z : s ugges ted b u f f e r s i z e
18 void init(mrlock& l, uint32 siz){

19 l.buffer = new cell[siz];
20 l.mask = siz - 1;
21 l.head.store(0,

memory_order_relaxed);
22 l.tail.store(0,

memory_order_relaxed);
23 // i n i t i a l i z e b i t s to a l l 1 s
24 for (uint32 i = 0; i < siz; i++)

{
25 l.buffer[i].bits.set();
26 l.buffer[i].seq.store(i,

memory_order_relaxed);
27 }
28 }
29
30 void uninit (mrlock& l){
31 delete [] l.buffer;
32 }

Algorithm 2 defines the lock manager’s class. The cell structure defines one
element in the queue, it consists of a bitset that represents a resource request
and an atomic sequence number that coordinates concurrent access. The mrlock

structure contains a cell buffer pointer, the size mask, and the queue head and
tail. We use the size mask to apply fast index modulus. In our implementation,
the head and tail increase monotonically; we use an index modulus to map them
to the correct array position. Expensive modulo operation can be replaced by
bitwise AND operation if the buffer size is chosen to be a power of two.

3.2 Acquiring and Releasing Locks

We list the code for lock acquire function in Algorithm 3, which consists of two
steps: enqueue and spin. The code from line 7 to 16 outlines a CAS-based loop,
with threads competing to update the queue tail on line 13. If the CAS attempt
succeeds the thread is granted access to the cell at the tail position, and the tail
is advanced by one. The thread then stores its resource request, which is passed
to lock function as the variable r, in the cell along with a sequence number.
The sequence number serves as a sentinel in our implementation. During the
enqueue operation the thread assigns a sequence number to its cell as it enters
the queue as seen on line 18. The nature of a bounded queue allows the head and

272 D. Zhang, B. Lynch, and D. Dechev

Algorithm 3. Lock Acquire
1 // i n pu t l : r e f e r e n c to mr lock
2 // i n pu t r : r e s o u r c e r eq u e s t
3 // output : the l o c k hand l e
4 uint32 lock(mrlock& l, bitset r){
5 cell* c;
6 uint32 pos;
7 for(;;){
8 pos = l.tail.load(

memory_order_relaxed);
9 c = &l.buffer[pos & l.mask];

10 uint32 seq = c->seq.load(
memory_order_acquire);

11 int32 dif = (int32)seq - (int32
)pos;

12 if(dif == 0){
13 if(l.tail.

compare_exchange_weak(
pos, pos + 1,
memory_order_relaxed))

14 break;
15 }
16 }
17 c->bits = r;
18 c->seq.store(pos + 1,

memory_order_release);
19 uint32 spin = l.head;
20 while(spin != pos){
21 if(pos - l.buffer[spin & l.mask

].seq > l.mask || !(l.
buffer[spin & l.mask].bits
& r))

22 spin++;
23 }
24 return pos;
25 }

Algorithm 4. Lock Release
1 // i n pu t l : r e f e r e n c e to mr lock
2 // i n pu t h : the l o c k hand l e
3 void unlock(mrlock& l, uint32 h){
4 l.buffer[h&l.mask].bits.reset();
5 uint32 pos = l.head.load(

memory_order_relaxed);
6 while(l.buffer[pos & l.mask].bits

== 0){
7 cell* c = &l.buffer[pos & l.

mask];
8 uint32 seq = c->seq.load(

memory_order_acquire);
9 int32 dif = (int32)seq - (int32

)(pos + 1);
10 if(dif == 0){
11 if(l.head.

compare_exchange_weak(
pos , pos + 1,
memory_order_relaxed)){

12 c->bits.set();
13 c->seq.store(pos + l.mask

+ 1,
memory_order_release
);

14 }
15 }
16 pos = l.head.load(

memory_order_relaxed);
17 }
18 }

tail pointers to move through a circular array. Dequeue attempts to increment
the head pointer towards the current tail, while a successful call to enqueue will
increment the tail pointer pulling it away from head. The sequence numbers are
initialized on line 26 in Algorithm 2.

Once a thread successfully enqueues its request, it spins in the while loop
on line 20 to 23. It traverses the queue beginning at the head. When there is
a conflict of resources indicated by the bitset, the thread will spin locally on
the conflicting request. Line 21 displays two conditions that allow the thread to
advance: 1) the cell the thread is spinning on is free and recycled, meaning the
cell is no longer in front of this thread. This condition is detected by the use
of sequence numbers; 2) The request in the cell has no conflict, which is tested
by bitwise and of the two requests. Once the thread reaches its position in the
queue, it is safe to assume the thread has acquired the requested resources. The
position of the enqueued request is returned as a handle, which is required when
releasing the locks.

The unlock function releases the locks on the requested resources by set-
ting the bitset fields to zero using the lock handle, on line 4 of Algorithm 4.
This allows threads waiting for this position to continue traversing the queue.

Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors 273

The removal of the request from the queue is delayed until the request in the
head cell is cleared (line 6). If a thread is releasing the lock on the head cell,
the releasing operation will perform dequeue and recycle the cell. The thread
will also examine and dequeue the cells at the top of the queue until a nonzero
bitset is found. The code between lines 6 and 17 outlines a CAS loop that is
similar to the enqueue function. The difference is that here threads assist each
other with the work of advancing the head pointer. With this release mecha-
nism, threads which finish before becoming the head of the queue do not block
the other threads.

4 Related Work

As noted in section 2.1, a substantial body of work addresses the mutual ex-
clusion problem and the generalized resource allocation problem. In this sec-
tion, we summarize the solutions to the resource allocation problem and related
queue-based algorithms. We skip the approaches targeting distributed environ-
ments [4,20]. These solutions do not transfer to shared-memory systems because
of the drastically different communication characteristics. In distributed envi-
ronments processes communicate with each other by message passing, while in
shared-memory systems communication is done through shared memory objects.
We also omit early mutual exclusion algorithms that use more primitive atomic
read and write registers [21,1]. As we show in section 2.2, the powerful CAS
operation on modern multiprocessors greatly reduces the complexity of mutual
exclusion algorithms.

4.1 Resource Allocation Solutions

Assuming each resource is guarded by a mutual exclusion lock, lock acquiring
protocols can effectively prevent deadlocks. Resource hierarchy is one protocol
given by Dijkstra [9] based on total ordering of the resources. Every thread
locks resources in an increasing order of enumeration; if a needed resource is not
available the thread holds the acquired locks and waits. Deadlock is not possible
because there is no cycle in the resource dependency graph. Lynch [17] proposes a
similar solution based on a partial ordering of the resources. Resource hierarchy
is simple to implement, and when combined with queue mutex it is the most
efficient existing approach. However, total ordering requires prior knowledge of
all system resources, and dynamically incorporating new resources is difficult.
Besides, FIFO fairness is not guaranteed because the final acquisition of the
resources is always determined by the acquisition last lock in this hold-and-wait
scheme. Two-phase locking [10] was originally proposed to address concurrency
control in databases. At first, threads are allowed to acquire locks but not release
them, and in the second phase threads are allowed to release locks without
acquisition. For example, a thread tries to lock all needed resources one at a
time; if anyone is not available the thread releases all the acquired locks and
start over again. When applied to shared-memory systems, it requires a try lock

method that returns immediately instead of blocking the thread when the lock

274 D. Zhang, B. Lynch, and D. Dechev

is not available. Two-phase locking is flexible requiring no prior knowledge on
resources other than the desired ones, but its performance degrades drastically
under contention, because the release-and-wait protocol is vulnerable to failure
and retry. Time stamp ordering [5] prevents deadlock by selecting an ordering
among the threads. Usually a unique time stamp is assigned to the thread before
it starts to lock the resources. Whenever there is a conflict the thread with
smaller time stamp wins.

4.2 Queue-Based Algorithms

Fischer et al. [11] describes a simple FIFO queue algorithm for the k-mutual
exclusion problem. Awerbuch and Saks [3] proposed the first queuing solution
to the resource allocation problem. They treat it as a dynamic job scheduling
problem, where each job encapsulates all the resources requested by one process.
Newly enqueued jobs progress through the queue if no conflict is detected. Their
solution is based on a distributed environment in which the enqueue and dequeue
operation are done via message communication. Due to this limitation, they need
to assume no two jobs are submitted concurrently. Spin locks such as the TATAS
lock shown in Algorithm 1 induce significant contention on large machines, lead-
ing to irregular timings. Queue-based spin locks eliminate these problems by
making sure that each thread spins on a different memory location [22]. Ander-
son [2] embeds the queue in a Boolean array, the size of which equals the number
of threads. Each thread determines its unique spin position by drawing a ticket.
When relinquishing the lock, the thread resets the Boolean flag on the next
slot to notify the waiting thread. The MCS lock [18] designed by Scott et al.,
employs a linked list with pointers from each thread to its successor. The CLH
lock by Craig et al. [6] also employs a linked list but with pointers from each
thread to its predecessor. A Recent queue lock based on flat-combining synchro-
nization [8] exhibits superior scalability on NUMA architecture than the above
classic methods. The flat-combining technique reduce contention by aggregating
lock acquisitions in batch and processing them with a combiner thread. A key
difference between this technique and our multi-resource lock is that our method
aggregates lock acquisition requests for multiple resources from one thread, while
the flat-combining lock gathers requests from multiple threads for one resource.
Although the above queue-based locks could not solve the resource allocation
problem on their own, they share the same inspiration with our method: using
queue to reduce contention and provide FIFO fairness.

5 Performance Evaluation

In this section, we assess the overhead, scalability and performance consistency
of our multi-resource lock (MRLock) and compare it with the std::lock function
from GCC 4.7 (STDLock), the boost::lock function from Boost library 1.49
(BSTLock), the resource hierarchy scheme combined with std::mutex (RHSTD),
and the extended TATAS lock (ETATAS) described in Algorithm 1. We use

Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors 275

std::mutex as the underlying lockable object for std::lock, and boost::mutex

for boost::lock. These alternative approaches have been widely used in practice
and highly optimized for our testing system.

We employ a micro-benchmark to evaluate the performance of these ap-
proaches for multiple resource allocation. It consists of a tight loop that acquires
and releases a predetermined number of locks. The loop increments a set of in-
teger counters, where each counter represents a resource. The counters are not
atomic, so without the use locks their value will be incorrect due to data races.
When the micro-benchmark’s execution is complete, we check each counter’s
value to verify the absence of data races and validate the correctness of our lock
implementations. All tests are conducted on a 64-core ThinkMate RAX QS5-
4410 server running Ubuntu 12.04 LTS. It is a NUMA system with four AMD
Opteron 6272 CPUs (16 cores per chip @2.1 GHz) and 64 GB of shared memory
(16 × 4GB PC3-12800 DIMM). Both the micro-benchmark and the lock imple-
mentations are compiled with GCC 4.7 (with the options -o1 -std=c++0x to
enable level 1 optimization and C++ 11 support).

When evaluating classic mutual exclusion locks, one may increase the number
of concurrent threads to investigate their scalability. Since all threads contend
for a single critical section, the contention level scales linearly with the number of
threads. However, the amount of contention in the resource allocation problem
can be raised by either increasing the number of threads or the size of the
resource request per thread. Given k total resources with each thread requesting
h of them, we denote the resource contention by the fraction h/k or its quotient in
percentage. This notation reveals that resource contention may be comparable
even though the total number of resources is different. For example, 8/64 or
12.5% means each request needs 8 resources out of 64, which produces about
the same amount of contention as 4/32. We show benchmark timing results in
Section 5.2 that verifies this hypothesis. The product of the thread number p
and resource contention level roughly represents the overall contention level.

To fully understand the efficiency and scalability in these two dimensions, we
test the locks in a wide range of parameter combinations: for thread number
2 ≤ p ≤ 64 and for resource number 4 ≤ k ≤ 64 each thread requests the same
number of resources 2 ≤ h ≤ k. We set the loop iteration in the micro-benchmark
to 10,000 and get the average time out of 10 runs for each configuration.

5.1 Single-Thread Overhead

To measure the lock overhead in the absence of contention, we run the micro-
benchmark with a single thread requesting two resources and subtract the loop
overhead from the results. Table 1 shows the total timing for the completion of
a pair of lock and unlock operations. In this scenario MRLock is slightly slower
than ETATAS because of the extra queue traversing operation. The other four
methods take about twice the time of MRLock because each of them takes at a
minimum two lock operations to solve a non-trivial resource allocation problem.
Although std::mutex and boost::mutex does not solve the resource allocation
problem, we compare against them as a baseline performance metric.

276 D. Zhang, B. Lynch, and D. Dechev

Table 1. Lock overhead obtained without contention

MRLock STDLock BSTLock RHLock ETATAS std::mutex boost::mutex

42ns 95ns 105ns 88ns 34ns 35ns 35ns

5.2 Resource Scalability

Our performance evaluation exploring the scalability of the tested approaches
when increasing the level of resource contention is shown in Figures 2a, 2b and 2c.
The y-axis represents the total time needed to complete the micro-benchmark in
a logarithmic scale, where a smaller value indicates better performance. The x-
axis represents levels of resource contention, and it is divided by five tick marks
into six sections. Each tick mark on the x-axis represents the beginning of the
section to its right, and the tick mark label denotes the total number of resources
in that section. For example, the section between Tick 32 and 64 has a total of
32 resources, while the section to the right of Tick 64 has 64 resources. Within
each section, the level of contention increases from 1% to 100%. We observe a
saw pattern because the resource contention level alternates as we move along
the x-axis. In addition, we observe that the timing pattern is similar among
different sections, supporting our argument that the contention is proportional
to the quotient of the request size divided by total number of resources.

When increasing the number of requested resources per thread, the proba-
bility of threads requesting the same resources increases. This poses scalability
challenges for both two-phase locks and the resource hierarchy implementations
because they rely on a certain protocol to acquire the requested locks one by one.
As the request size increases, the acquiring protocol is prolonged thus prone to
failure and retry. At high levels of contention, such as the case with 64 threads
(Figure 2c) when the level contention exceeds 75%, STDLock is more than 50
times slower when compared to MRLock. BSTLock exhibits the same problem,
and its observed performance closely resembles STDLock’s performance. Unlike
the above two methods, RHLock acquires locks in a fixed order, and it does not
release current locks if a required resource is not available. This hold-and-wait
paradigm helps stabilize the timings and reduce the overall contention. RHLock
resembles the performance of STDLock in the two thread scenario (Figure 2a),
but it outperforms both BSTLock and STDLock by about three times under
50% resource contention on 16 threads (Figure 2b).

While the time of all alternative methods show linear growth with respect
to resource contention, MRLock remains constant throughout all scenarios. In
the case of 64 threads and request size of 32, MRLock achieves a 20 times
speedup over STDLock, 10 times performance gain over BSTLock and 2.5 times
performance increase over RHLock. The fact that MRLock provides a centralized
manager to respond the lock requests from threads in one batch contributes
to this high degree of scalability. ETATAS also adopts the same all-or-nothing
scheme, thus it could be seen as an MRLock algorithm with a queue size of

Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors 277

 0.001

 0.01

 0.1

 1

4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

ETATAS

(a) 2 threads

 0.01

 0.1

 1

 10

 100

4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

ETATAS

(b) 32 threads

 0.1

 1

 10

 100

 1000

4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

ETATAS

(c) 64 threads

 0.01

 0.1

 1

 10

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
(s

ec
on

ds
)

MRLock
STDLock
BSTLock
RHLock
ETATAS

(d) resource contention 4/64

 0.01

 0.1

 1

 10

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
(s

ec
on

ds
)

MRLock
STDLock
BSTLock
RHLock
ETATAS

(e) resource contention 8/64

 0.01

 0.1

 1

 10

 100

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
(s

ec
on

ds
)

MRLock
STDLock
BSTLock
RHLock
ETATAS

(f) resource contention 32/64

Fig. 2. Performance scaling when increasing resource contention (2a, 2a, and 2a) and
the number of threads (2d, 2e, and 2f)

one. It outperforms MRLock on two threads by about 40% (Figure 2a), and
almost ties with MRLock on 32 threads. However, MRLock is 1.7 time faster on
64 threads, because the queuing mechanism relieves the contention of the CAS
loop.

278 D. Zhang, B. Lynch, and D. Dechev

5.3 Thread Scalability

Figures 2d, 2e and 2f show the execution time for our benchmark in the sce-
narios when the threads experience contention levels of 4/64, 8/64 and 32/64,
respectively. In these graphs, the contention level is fixed and we investigate
the performance scaling characteristics by increasing the number threads. We
cluster five approaches on the x-axis by the number of threads, while the y-axis
represents the total time needed to complete the benchmark in logarithm scale.

When the level of contention is low, MRLock and ETATAS do not exhibit
performance advantages over the other approaches. This is shown in Figure 2d.
In this scenario we observe that when using 32 threads, MRLock is 3.7 times
slower than STDLock. The difference in performance decreases to about 2 times
on 64 threads, which implies that our approach has a smaller scaling factor. We
also observe better scalability of the MRLock approach against ETATAS; when
moving from 32 threads to 64 threads the performance of ETATAS degrades
threefold resulting in a 2 times slowdown compared to MRLock.

The contention level that is a pivot point for our algorithm’s performance is
about 12.5% as shown in Figure 2e. MRLock ties with RHLock and outperforms
all other algorithms. MRLock is 4 times faster than STDLock and twice as
fast as ETATAS on 64 threads. In addition, MRLock exhibits better scalability
compared to its alternatives. The time needed to complete the benchmark for
ETATAS, BSTLock and STDLock almost tripled when the number of threads
is increased from 32 to 64, while the time of MRLock only increases by 100%.
In Figure 2f, STDLock takes more than 20 times longer than MRLock. MRLock
outperforms all other methods on all scales except for the ETATAS.

Overall, MRLock exhibits high scalability on all levels of contention, it out-
performs STDLock and BSTLock by 10 to 20 times in regions of high contention
levels. It is also faster than the RHLock by a factor of 1.5 to 2.5. Even though
it does not hold an advantage against the ETATAS when the number of thread
are small, it outperforms the ETATAS by at least 2 times on 64 threads.

5.4 Performance Consistency

It is often desirable that an algorithm produces predicable execution time. We
demonstrated in Section 5.2 that our multi-resource lock exhibits reliable execu-
tion time regardless the level of resource contention. Here, we further illustrate
that our lock implementation achieves more consistent timings among different
runs when compared to the competing implementations. Figures 3b and 3a dis-
play the percentage deviation of execution times from 10 different runs. Since
we generate randomized resource requests at the beginning of each test run, the
resource conflicts is different for each run. We show the deviation normalized
by the average execution time of each approach on the y-axis, and the number
of threads on the x-axis. Overall, MRLock produces the smallest deviation that
is often within 2% or its executing time. Notably ETATAS, which adopts the
same batch request handling approach as MRLock, reached a maximum devia-
tion of 18%. This indicates that the incorporation of a FIFO queue alleviated
the contention and stabilized our lock algorithm.

Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors 279

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

20 %

2 4 8 16 32 64

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Number of Threads

MRLock
STDLock
BSTLock
RHLock
ETATAS

(a) Resource contention 32/64

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

2 4 8 16 32 64

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Number of Threads

MRLock
STDLock
BSTLock
RHLock
ETATAS

(b) Resource contention 32/64

Fig. 3. Normalized deviation out of 10 runs

6 Conclusion and Future Work

Our multi-resource lock algorithm (MRLock) provides a robust solution to the
resource allocation problem on shared-memory multiprocessors. The MRLock
algorithm provides FIFO fairness for contending threads, and is scalable with
minimal overhead increase over the best available solutions. As demonstrated
by our performance evaluation, the MRLock algorithm exhibits reliability and
scalability that can be beneficial to applications with high contention or when
system scalability is desired.

Possible extension for this algorithm includes creating a NUMA aware al-
gorithm by adopting the hierarchical queue structure and an adaptive method
to choose from several locking algorithms based on the level of contention in a
system.

Acknowledgment. This material is based upon work supported by the Na-
tional Science Foundation under CCF Award No.1218100. The authors would
like to thank Dimitry Vyukov for providing insightful implementation tips on
the non-blocking queue.

References

1. Anderson, J., Kim, Y., Herman, T.: Shared-memory mutual exclusion: Major re-
search trends since 1986. Distributed Computing 16(2), 75–110 (2003)

2. Anderson, T.E.: The performance of spin lock alternatives for shared-money mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems 1(1), 6–16
(1990)

3. Awerbuch, B., Saks, M.: A dining philosophers algorithm with polynomial response
time. In: Proceedings of the 31st Annual Symposium on Foundations of Computer
Science, pp. 65–74. IEEE (1990)

4. Bar-Ilan, J., Peleg, D.: Distributed resource allocation algorithms. In: Segall, A.,
Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 277–291. Springer, Heidelberg
(1992)

280 D. Zhang, B. Lynch, and D. Dechev

5. Bernstein, P., Goodman, N.: Timestamp based algorithms for concurrency control
in distributed database systems. In: Proceedings 6th International Conference on
Very Large Data Bases (1980)

6. Craig, T.: Building fifo and priorityqueuing spin locks from atomic swap. Tech.
rep., Citeseer (1994)

7. Dechev, D., Pirkelbauer, P., Stroustrup, B.: Lock-free dynamically resizable arrays.
In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 142–156.
Springer, Heidelberg (2006)

8. Dice, D., Marathe, V.J., Shavit, N.: Flat-combining numa locks. In: Proceedings
of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 65–74. ACM (2011)

9. Dijkstra, E.: Hierarchical ordering of sequential processes. Acta Informatica 1(2),
115–138 (1971)

10. Eswaran, K., Gray, J., Lorie, R., Traiger, I.: The notions of consistency and pred-
icate locks in a database system. Communications of the ACM 19(11), 624–633
(1976)

11. Fischer, M.J., Lynch, N.A., Burns, J.E., Borodin, A.: Distributed fifo allocation of
identical resources using small shared space. ACM Transactions on Programming
Languages and Systems (TOPLAS) 11(1), 90–114 (1989)

12. Fischer, M., Lynch, N., Burns, J., Borodin, A.: Resource allocation with immunity
to limited process failure. In: 20th Annual Symposium on Foundations of Computer
Science, pp. 234–254. IEEE (1979)

13. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap
operation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer,
Heidelberg (2002)

14. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

15. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint.
Morgan Kaufmann (2012)

16. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.: Shore-mt: a
scalable storage manager for the multicore era. In: Proceedings of the 12th Inter-
national Conference on Extending Database Technology: Advances in Database
Technology, pp. 24–35. ACM (2009)

17. Lynch, N.: Fast allocation of nearby resources in a distributed system. In: Proceed-
ings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 70–81.
ACM (1980)

18. Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems (TOCS) 9(1),
21–65 (1991)

19. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 267–275. ACM (1996)

20. Raynal, M.: A distributed solution to the k-out of-m resources allocation problem.
In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds.) ICCI 1991. LNCS, vol. 497,
pp. 599–609. Springer, Heidelberg (1991)

21. Raynal, M., Beeson, D.: Algorithms for mutual exclusion. MIT Press (1986)
22. Scott, M.L., Scherer, W.N.: Scalable queue-based spin locks with timeout. In: Pro-

ceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming, PPoPP 2001, pp. 44–52. ACM (2001)

Author Index

Abshoff, Sebastian 11
Arantes, Luciana 23

Beauquier, Joffroy 38
Benter, Markus 11
Blanchard, Peva 38
Bonnin, David 53
Borokhovich, Michael 68
Burman, Janna 38

Calciu, Irina 83
Christoforou, Evgenia 98
Cotroneo, Domenico 114

Davtyan, Seda 129
Dechev, Damian 266
Dice, Dave 83

Felber, Pascal 160
Fernández Anta, Antonio 98
Friedman, Roy 145

Georgiou, Chryssis 98
Greve, Fab́ıola 23

Harmanci, Derin 160
Harris, Tim 83
Hayduk, Yaroslav 160
Henrio, Ludovic 176
Herlihy, Maurice 83
Huet, Fabrice 176

Jehl, Leander 1
Jonsson, Bengt 206

Kijima, Shuji 236
Kliot, Gabriel 145
Kogan, Alex 83, 145

König, Michael 191
Konwar, Kishori M. 129

Lindén, Jonatan 206
Lynch, Brendan 266

Malatyali, Manuel 11
Marathe, Virendra 83
Marlier, Patrick 160
Meling, Hein 1
Meyer auf der Heide, Friedhelm 11
Moir, Mark 83
Mosteiro, Miguel A. 98

Natella, Roberto 114

Rochas, Justine 176
Rost, Matthias 221
Russo, Stefano 114

Sánchez, Angel (Anxo) 98
Sasaki, Toru 236
Schmid, Stefan 68, 221
Scippacercola, Fabio 114
Sens, Pierre 23
Shi, Wei 251
Shvartsman, Alexander A. 129
Simon, Véronique 23
Sobe, Anita 160

Travers, Corentin 53

Wang, Yang 251
Wattenhofer, Roger 191

Yamashita, Masafumi 236
Yamauchi, Yukiko 236

Zhang, Deli 266

	Preface
	Organization
	Table of Contents
	Tutorial Summary: Paxos Explained from Scratch
	1Introduction
	2A Stateful Service: Assumptions and Notation
	3Fault Tolerance with Two Servers
	4Server Crashes
	5Network Partitions
	6Leader Change
	7Five Servers
	8Summary

	On Two-Party Communication Through Dynamic Networks
	1Introduction
	1.1Our Contribution
	1.2Organization of the Paper

	2Models and Problems
	3Related Work
	4Relating Counting to Communication through a Dynamic Network
	4.1Special Dynamic Networks and the Same Predecessor Problem
	4.2Dynamic Channel Networks and the Set Equality Problem
	4.3Two-Party Communication and the Set Equality Problem

	5Conclusion and Future Prospects

	Eventual Leader Election in Evolving Mobile Networks
	1Introduction
	2Related Work
	3Model for Eventual Leader Election in Mobile Systems
	3.1Communication Model
	3.2Process Model
	3.3Network Connectivity
	3.4The Class

	4An Eventual Leader Oracle for Mobile Systems
	4.1Stable Query-Response Communication Mechanism
	4.2Behavioral Property
	4.3An Eventual Leader Election Algorithm

	5Proof of Correctness
	6Conclusion

	Self-stabilizing Leader Election in Population Protocols over Arbitrary Communication Graphs
	1Introduction
	2Model and Definitions
	2.1Population Protocol
	2.2Run, Behaviour, Oracle and Implementation

	3Specific Behaviours and Oracles
	3.1Eventual Leader Election Behaviour ELE
	3.2Oracles ?(k,d)

	4Impossibility of Leader Election under Local Fairness with Uniform Initialization
	5Leader Election under Global Fairness with Uniform Initialization
	6Self-stabilizing Leader Election Using ?(2,1) under Global Fairness
	7Impossibility of Self-stabilizing Implementation of ? Using ELE under Global Fairness
	8Discussion and Open Problems

	α-Register
	1Introduction
	2Computational Model and Definition of -Registers
	3Single-Writer Multiple-Reader -Register
	3.1Proof of the Protocol

	4Lower bound
	5Conclusion

	How (Not) to Shoot in Your Footwith SDN Local Fast Failover
	1Introduction
	2You Must Shoot in Your Foot!
	3How Not to Shoot in Your Foot!
	3.1Randomized Failover
	3.2Deterministic Failover

	4Beyond Worst-Case Failures
	5Related Work
	6Conclusion

	Message Passing or Shared Memory: Evaluating the Delegation Abstraction for Multicores
	1Introduction
	2Delegation
	3Communication
	4Benchmarks
	4.1Concurrent Hash Maps
	4.2Concurrent Linked Lists
	4.3Workloads

	5Performance Results
	5.1Hash Map
	5.2Linked List
	5.3Fairness
	Hardware-Related Details

	6Discussion
	7Related Work
	8Conclusions

	 Reputation-Based Mechanisms for Evolutionary Master-Worker Computing
	1Introduction
	2Model
	3Reputation-Based Mechanism
	4Analysis
	5Simulations
	6Conclusions and Future work

	State-Driven Testing of Distributed Systems
	1Introduction
	2Related Work
	3Basic Concepts and Problem Statement
	4A State-Driven Testing Approach
	4.1The Workload Search Phase
	4.2The Testing Phase

	5Case Study
	6Experimental Evaluation
	7Conclusion

	Self-stabilizing Resource Discovery Algorithm
	1Introduction
	2Models and Definitions
	3Description of Resource Discovery Algorithm RDS
	4Algorithm Analysis
	5Discussion

	Hybrid Distributed Consensus
	1Introduction
	2Preliminaries
	2.1Basic Model and Assumptions
	2.2Benign Failures
	2.3Additional Services

	3Hybrid Consensus with Benign Failures
	3.1Problem Statement
	3.2Lower Bounds
	3.3Upper Bounds

	4Related Work
	5 Discussion
	6Non-Blocking Atomic Commit

	Speculative Concurrent Processing with Transactional Memory in the Actor Model
	1Introduction
	2Background and Related Work
	3Problem Statement
	4Message Processing Model
	5Implementation
	6Evaluation
	6.1Read-Dominated Workload
	6.2Write-Dominated Workload
	6.3Non-blocking Concurrent Processing
	6.4Comparison to Habanero-Scala
	6.5Discussion

	6Conclusion

	An Optimal Broadcast Algorithm for Content-Addressable Networks
	1Introduction
	2Related Works and Objectives
	2.1Context and Motivation
	2.2Positioning
	2.3Related Works
	2.4M-CAN

	3Efficient Broadcast Algorithm
	3.1Principles
	3.2Broadcast Algorithm
	3.3Properties of the Algorithm

	4Evaluation
	4.1Variation of the Number of Peers

	5Conclusion

	On Local Fixing
	1Introduction
	2Model
	2.1tributed Computing
	2.2Network Problems
	2.3Examined Graph Changes

	3Related Work
	4Results
	4.1Graph Change Relationships
	4.2Vertex Counting
	4.3Minimum Dominating Set
	4.4Maximal Independent Set
	4.5Maximal Matching
	4.6Spanning Trees
	4.7Minimum Spanning Trees
	4.8Shortest Paths Trees
	4.9Maximum Flow
	4.10Leader Election

	A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention
	1Introduction
	2Related Work
	3Overview of Main Ideas
	4The Algorithm
	5Correctness and Linearizability
	6Performance Evaluation
	7Conclusion

	VirtuCast: Multicast and Aggregation with In-Network Processing
	1Introduction
	2The Constrained Virtual Steiner Arborescence Problem
	3VirtuCast Algorithm
	3.1IP Formulation
	3.2Decomposition Algorithm

	4Computational Evaluation
	5Related Work
	6Conclusion

	Mobile Byzantine Agreement on Arbitrary Network
	1Introduction
	2Preliminaries
	2.1System Model
	2.2Fault Model: Mobile Byzantine Faults
	2.3Mobile Byzantine Agreement Problem
	2.4MBA: Banu et al.'s Mobile Byzantine Agreement Algorithm

	3Upper Bound on the Number of Faulty Processes
	4Two Mobile Byzantine Agreement Algorithms
	4.1Algorithm DP-Byz
	4.2Algorithm KP-Byz

	5Conclusion

	On Scheduling Algorithms for MapReduce Jobs in Heterogeneous Clouds with Budget Constraints
	1Introduction
	2Background and Related Work
	3Problem Formulation
	3.1Workflow Model
	3.2Budget Constraints

	4Budget-Driven Algorithms
	4.1Optimization under Budget Constraints
	4.2Efficiency Improvements

	5Empirical Studies
	5.1Impact of Time-Price Table Size
	5.2Impact of Workflow Size

	6Conclusions

	Fast and Scalable Queue-Based Resource Allocation Lock on Shared-Memory Multiprocessors
	1Introduction
	2Background
	2.1Mutual Exclusion and Resource Allocation
	2.2Atomic Primitives and Synchronization

	3Algorithms
	3.1Handle Locking Request with FIFO Queue
	3.2Acquiring and Releasing Locks

	4Related Work
	4.1Resource Allocation Solutions
	4.2Queue-Based Algorithms

	5Performance Evaluation
	5.1 Single-Thread Overhead
	5.2Resource Scalability
	5.3Thread Scalability
	5.4Performance Consistency

	6Conclusion and Future Work

	Author Index

