

R. Prasath and T. Kathirvalavakumar (Eds.): MIKE 2013, LNAI 8284, pp. 611–617, 2013.
© Springer International Publishing Switzerland 2013

An Analytical Study on Frequent Itemset Mining
Algorithms

K. Pazhani Kumar and S. Arumugaperumal

Dept. of Computer Science
S.T. Hindu College, Nagercoil, TamilNadu

Abstract. Data mining is the process of collecting, extracting and analyzing large
data set from different perspectives. Fundamental and important task of data
mining is the mining of frequent itemsets. Frequent itemsets play an important role
in association rule mining. Many researchers invented ideas to generate the
frequent itemsets. The execution time required for generating frequent itemsets
play an important role. This study yields a detailed analysis of the FP-Growth,
Eclat and SaM algorithms to illustrate the performance with standard datasets
Hepatitis and Adault. The comparative study of FP-Growth, Eclat and SaM
algorithms includes aspects like different support values and different datasets.

Keywords: Frequent Itemset, Mining, Hepatitis, Adult.

1 Introduction

In recent years the size of database has increased rapidly. This has led to a growing
interest in the development of tools capable in the automatic extraction of knowledge
from data. Data mining refers to discover knowledge in huge amounts of data. It is a
scientific discipline that is concerned with analyzing observational data sets with the
objective of finding unsuspected relationships and produces a summary of the data in
novel ways that the owner can understand and use. Data mining as a field of study
involves the merging of ideas from many domains rather than a pure discipline.

The problem of mining frequent itemsets arose first as a sub-problem of mining
association rules. Frequent itemsets play an essential role in many data mining tasks
that try to find interesting patterns from databases such as association rules,
correlations, sequences, classifiers, clusters and many more of which the mining of
association rules is one of the most popular problems. The original motivation for
searching association rules came from the need to analyze so called supermarket
transaction data, that is, to examine customer behavior in terms of the purchased
products. Association rules describe how often items are purchased together. For
example, an association rules “beer, chips (80%)” states that four out of five
customers that bought beer also bought chips. Such rules can be useful for decisions
concerning product pricing, promotions, store layout and many others.

2 Problem Study

2.1 Motivation

Studies of Frequent Itemset (or pattern) Mining is acknowledged in the data mining
field because of its broad applications in mining association rules, correlations, and

612 K. Pazhani Kumar and S. Arumugaperumal

graph pattern constraint based on frequent patterns, sequential patterns, and many
other data mining tasks. Efficient algorithms for mining frequent itemsets are crucial
for mining association rules as well as for many other data mining tasks. The major
challenge found in frequent pattern mining is a large number of result patterns. As the
minimum threshold becomes lower, an exponentially large number of itemsets are
generated. Therefore, pruning unimportant patterns can be done effectively in mining
process and that becomes one of the main topics in frequent pattern mining.
Consequently, the main aim is to optimize the process of finding patterns which
should be efficient, scalable and can detect the important patterns which can be used
in various ways [4].

3 Frequent Itemset Mining Algorithms

3.1 FP-Growth Algorithm

One of the currently fastest and most popular algorithms for frequent item set mining
is the FP-growth algorithm [3]. It is based on a prefix tree representation of the given
database of transactions (called an FP-tree), which can save considerable amounts of
memory for storing the transactions. The basic idea of the FP-growth algorithm can
be described as a recursive elimination scheme: in a preprocessing step delete all
items from the transactions that are not frequent individually, i.e., do not appear in a
user-specified minimum number of transactions. Then select all transactions that
contain the least frequent item (least frequent among those that are frequent) and
delete this item from them. Recourses to process the obtained reduced (also known as
projected) database, remembering that the item sets found in the recursion share the
deleted item as a prefix. On return, remove the processed item also from the database
of all transactions and start over, i.e., process the second frequent item etc. In these
processing steps the prefix tree, which is enhanced by links between the branches, is
exploited to quickly find the transactions containing a given item and also to remove
this item from the transactions after it has been processed.

Fig. 1. An Example of FP-Tree

 An Analytical Study on Frequent Itemset Mining Algorithms 613

Table 1. An Example of Transaction Database

TID X
1 {a,b,c,d,e,f}
2 {a,b,c,d,e}
3 {a,d}
4 {b.d.f}
5 {a,b,c,e,f}

The core operation of the FP-growth algorithm is to compute an FP-tree. A

frequent pattern tree is a tree structure defined as figure 1.It consists of one root
labeled as “root”, a set of item prefix sub-trees as the children of the root, and a
frequent item header table 1.Each node in the item prefix sub-tree consists of three
fields: item-name, count and node-link, where item-name registers which item this
node represents, count registers the number of transactions represented by the portion
of the path reaching this node, and node-link links to the next node in the FP-tree
carrying the same item-name, or null if there is none. Each entry in the frequent-item
header table consists of two fields, 1. item name and 2. head of node-link, which
points to the first node in the FP-tree carrying the item-name.The algorithm FP-tree[4]
is as below:

Algorithm 1 (FP-tree construction):
Input: A transactional database DB and a minimum support threshold.
Output: Its frequent pattern tree, FP-tree
Method: The FP-tree is constructed in the following steps:

1. Scan the transaction database DB once. Collect the set of frequent items F
and their supports. Sort F in support descending order as L, the list of frequent items.

2. Create the root of an FP-tree, T, and label it as “root”.
After above process mining of the FP-tree will be done by Creating Conditional

(sub) pattern bases:
1 Start from node constructs its conditional pattern base.
2 Then, Construct its conditional FP-tree & perform mining on such a tree.
3 Join the suffix patterns with a frequent pattern generated from a conditional GP-

tree for achieving FP-growth.
4 The union of all frequent patterns found by above step gives the required

frequent itemset.
In this way frequent patterns are mined from the database using FP-tree.

3.2 Eclat Algorithm

It is a set intersection, depth first search algorithm [5], unlike the Apriori. It uses
vertical layout database and each item use intersection based approach for finding the
support. In this way, the support of an itemset P can be easily computed by simply
intersecting any two subsets Q, R ⊆ P, such that P = Q U R. In this type of algorithm,
for each frequent itemset i new database is created Di. This can be done by finding j

614 K. Pazhani Kumar and S. Arumugaperumal

which is frequent corresponding to i together as a set then j is also added to the
created database i.e. each frequent item is added to the output set. It uses the join step
like the Apriori only for generating the candidate sets but as the items are arranged in
ascending order of their support thus less amount of intersection is needed between
the sets. It generates the larger amount of candidates then Apriori because it uses only
two sets at a time for intersection [5]. There is reordering step takes place at each
recursion point for reducing the candidate itemsets. In this way by using this
algorithm there is no need to find the support of itemsets whose count is greater than
1because Tid-set for each item carry the complete information for the corresponding
support. When the database is very large and the itemsets in the database
corresponding are also very large then it is feasible to handle the Tid list thus, it
produce good results but for small databases its performance is not up to mark.

The Eclat algorithm is as given below [4].

Input: D, σ, i ⊆ I
Output: F [I](D, σ)
1: F [I] :={}
2: for all I Є I occurring in D do
3: F [I]:= F [I] ∪ {I ∪ {i}}
4: // Create Di
5: Di: = {}
6: for all j Є I occurring in D such that j>I do
7: C: = cover ({i}) ∩ cover ({j})
8: if |C| >= σ then
9: Di: = Di ∪ {(j, C)}
10: end if
11: end for
12: //Depth-first recursion
13: Compute F [I ∪ {i}](Di, σ)
14: F [I]:= F [I] ∪ F [I ∪ {i}]
15: end for

In this algorithm each frequent item is added in the output set. After that, for every
such frequent item i, the projected database Di is created. This is done by first finding
every item j that frequently occurs together with i. The support of this set {i, j} is
computed by intersecting the covers of both items. If {i, j} is frequent, then j is
inserted into Di together with its cover. The reordering is performed at every
recursion step of the algorithm between line 10 and line 11. Then the algorithm is
called recursively to find all frequent itemsets in the new database Di.

3.3 SaM Algorithm

The SaM (Split and Merge) algorithm established by [6] is a simplification of the
already fairly simple RElim (Recursive Elimination) algorithm. While RElim
represents a (conditional) database by storing one transaction list for each item

 An Analytical Study on Frequent Itemset Mining Algorithms 615

(partially vertical representation), the split and merge algorithm employs only a single
transaction list (purely horizontal representation), stored as an array. This array is
processed with a simple split and merge scheme, which computes a conditional
database, processes this conditional database recursively, and finally eliminates the
split item from the original (conditional) database.

SaM preprocesses a given transaction following the steps below:

1. The transaction database is taken in its original form. 2. The frequencies of
individual items are determined from this input in order to be able to discard
infrequent items immediately. 3. The (frequent) items in each transaction are sorted
according to their frequency in the transaction database, since it is well known that
processing the items in the order of increasing frequency usually leads to the shortest
execution times. 4. The transactions are sorted lexicographically into descending
order, with item comparisons again being decided by the item frequencies; here the
item with the higher frequency precedes the item with the lower frequency. 5. The
data structure on which SaM operates is built by combining equal transactions and
setting up an array, in which each element consists of two fields:An occurrence
counter and a pointer to the sorted transaction (array of contained items). This data
structure is then processed recursively to find the frequent item sets. The basic
operations of the recursive processing are based on depth-first/divide-and-conquer
scheme. In the split step the given array is split with respect to the leading item of the
first transaction. All array elements referring to transactions starting with this item are
transferred to a new array. The new array created in the split step and the rest of the
original arrays are combined with a procedure that is almost identical to one phase of
the well-known merge sort algorithm. The main reason for the merge operation in
SaM is to keep the list sorted, so that: 1.All transactions with the same leading item
are grouped together and 2.Equal transactions (or transaction suffixes) can be
combined, thus reducing the number of objects to process.

Fig. 2. Transaction database (left), item frequencies (middle), and reduced transaction database
with items in transactions sorted accordingly with respect to their frequency (right)

Each transaction is represented as a simple array of item identifiers (which are
integer numbers). The transaction list is prepared which are stored in a simple array,
each element of which contains a support counter and a pointer to the head of the list.
The list elements themselves consist only of a successor pointer and a pointer to the
transaction. The transactions are inserted one by one into this structure by simply
using their leading item as an index.

616 K. Pazhani Kumar and S. Arumugaperumal

Fig. 3. Procedure of the recursive elimination with the modification of the transaction lists (left)
as well as the transaction lists for the recursion (right)

4 Analytical Study

A detailed study has been conducted to assess the performance of the above-said
algorithms. The metrics used in the comparison study is the total execution time taken
and the number of itemsets generated for different data sets. For this comparison also
same data sets were selected as for the above experiment with 30% to 60% of
minimum support threshold.

Table 2. Adault data set execution time

SUPPORT Time in Seconds
FPGrowth Eclat SaM

30 11.2 10.35 9.25
40 8.30 7.52 6.12
50 5.55 5.20 4.10
60 3.90 3.60 2.80

Figure 4 shows that the execution time for the FP-growth,Eclat and SaM
algorithms decreases with the increase in support threshold form 30% to 60% for
adult dataset FPgrowth takes more time as that compared to Eclat and SaM.

 An Analytical Study on Frequent Itemset Mining Algorithms 617

Table 3. Hepatitis data set execution time

SUPPORT Time in Seconds
 FPGrowth Eclat SaM
30 1.34 1.02 0.9
40 0.71 0.58 0.51
50 0.17 0.12 0.09
60 0.07 0.04 0.03

Figure 5 shows that the execution time for the FP-Growth,SaM and Eclat

algorithms decreases with the increase in support threshold form 30% to 60% for
adult dataset FP-Growth takes more time as that compared to Eclat and SaM.

5 Conclusion

This paper presents the comparative study of three algorithms FP-Growth,Eclat and
SaM.This study shows that the SaM algorithm has high performance in various kinds
of data, out forms the FP-Growth and Eclat algorithms. The performances of the
algorithms strongly depend on the support levels and the feature of the data sets (the
nature and the size of the data sets) is observed.

References

[1] Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. Addison Wesley
Publishers (2006)

[2] Che, M.S., Han, Yu, P.S.: Data Mining: An Overview from a Database Perspective. Proc.
of the IEEE Transactions on Knowledge and Data Engineering 8(6), 866–883 (1996)

[3] Han, J., Pei, H., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proc.
Conf. on the Management of Data (SIGMOD 2000), Dallas, TX, ACM Press, New York
(2000)

[4] Pramod, S., Vya, O.P.: Survey on Frequent Itemset Mininbg Algorithms. International
Journal of Computer Applications (0975 - 8887)

[5] Borgelt, C.: Efficient Implementations of Apriori and Eclat. In: Proc. 1st IEEE ICDM
Workshop on Frequent Item Set Mining Implementations. CEUR Workshop Proceedings
90, Aachen, Germany (2003)

[6] Borgelt, C.: SaM: Simple Algorithms for Frequent Item Set Mining. IFSA/EUSFLAT
2009 Conference (2009)

	An Analytical Study on Frequent Itemset Mining Algorithms
	1 Introduction
	2 Problem Study
	2.1 Motivation

	3 Frequent Itemset Mining Algorithms
	3.1 FP-Growth Algorithm
	3.2 Eclat Algorithm
	3.3 SaM Algorithm

	4 Analytical Study
	5 Conclusion
	References

