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Abstract. Data mining is the process of collecting, extracting and analyzing large 
data set from different perspectives. Fundamental and important task of data 
mining is the mining of frequent itemsets. Frequent itemsets play an important role 
in association rule mining. Many researchers invented ideas to generate the 
frequent itemsets. The execution time required for generating frequent itemsets 
play an important role. This study yields a detailed analysis of the FP-Growth, 
Eclat and SaM algorithms to illustrate the performance with standard datasets 
Hepatitis and Adault. The comparative study of FP-Growth, Eclat and SaM 
algorithms includes aspects like different support values and different datasets. 
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1 Introduction 

In recent years the size of database has increased rapidly. This has led to a growing 
interest in the development of tools capable in the automatic extraction of knowledge 
from data. Data mining refers to discover knowledge in huge amounts of data. It is a 
scientific discipline that is concerned with analyzing observational data sets with the 
objective of finding unsuspected relationships and produces a summary of the data in 
novel ways that the owner can understand and use. Data mining as a field of study 
involves the merging of ideas from many domains rather than a pure discipline. 

The problem of mining frequent itemsets arose first as a sub-problem of mining 
association rules. Frequent itemsets play an essential role in many data mining tasks 
that try to find interesting patterns from databases such as association rules, 
correlations, sequences, classifiers, clusters and many more of which the mining of 
association rules is one of the most popular problems. The original motivation for 
searching association rules came from the need to analyze so called supermarket 
transaction data, that is, to examine customer behavior in terms of the purchased 
products. Association rules describe how often items are purchased together. For 
example, an association rules “beer, chips (80%)” states that four out of five 
customers that bought beer also bought chips. Such rules can be useful for decisions 
concerning product pricing, promotions, store layout and many others. 

2 Problem Study 

2.1 Motivation  

Studies of Frequent Itemset (or pattern) Mining is acknowledged in the data mining 
field because of its broad applications in mining association rules, correlations, and 
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graph pattern constraint based on frequent patterns, sequential patterns, and many 
other data mining tasks. Efficient algorithms for mining frequent itemsets are crucial 
for mining association rules as well as for many other data mining tasks. The major 
challenge found in frequent pattern mining is a large number of result patterns. As the 
minimum threshold becomes lower, an exponentially large number of itemsets are 
generated. Therefore, pruning unimportant patterns can be done effectively in mining 
process and that becomes one of the main topics in frequent pattern mining. 
Consequently, the main aim is to optimize the process of finding patterns which 
should be efficient, scalable and can detect the important patterns which can be used 
in various ways [4]. 

3 Frequent Itemset Mining Algorithms 

3.1 FP-Growth Algorithm 

One of the currently fastest and most popular algorithms for frequent item set mining 
is the FP-growth algorithm [3]. It is based on a prefix tree representation of the given 
database of transactions (called an FP-tree), which can save considerable amounts of 
memory for storing the transactions. The basic idea of the FP-growth algorithm can 
be described as a recursive elimination scheme: in a preprocessing step delete all 
items from the transactions that are not frequent individually, i.e., do not appear in a 
user-specified minimum number of transactions. Then select all transactions that 
contain the least frequent item (least frequent among those that are frequent) and 
delete this item from them. Recourses to process the obtained reduced (also known as 
projected) database, remembering that the item sets found in the recursion share the 
deleted item as a prefix. On return, remove the processed item also from the database 
of all transactions and start over, i.e., process the second frequent item etc. In these 
processing steps the prefix tree, which is enhanced by links between the branches, is 
exploited to quickly find the transactions containing a given item and also to remove 
this item from the transactions after it has been processed. 
 

 

Fig. 1. An Example of FP-Tree 
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Table 1. An Example of Transaction Database 

TID X 
1 {a,b,c,d,e,f} 
2 {a,b,c,d,e} 
3 {a,d} 
4 {b.d.f} 
5 {a,b,c,e,f} 

 
The core operation of the FP-growth algorithm is to compute an FP-tree. A 

frequent pattern tree is a tree structure defined as figure 1.It consists of one root 
labeled as “root”, a set of item prefix sub-trees as the children of the root, and a 
frequent item header table 1.Each node in the item prefix sub-tree consists of three 
fields: item-name, count and node-link, where item-name registers which item this 
node represents, count registers the number of transactions represented by the portion 
of the path reaching this node, and node-link links to the next node in the FP-tree 
carrying the same item-name, or null if there is none. Each entry in the frequent-item 
header table consists of two fields, 1. item name and 2. head of node-link, which 
points to the first node in the FP-tree carrying the item-name.The algorithm FP-tree[4] 
is as below: 

 
Algorithm 1 (FP-tree construction): 
Input: A transactional database DB and a minimum support threshold. 
Output: Its frequent pattern tree, FP-tree  
Method: The FP-tree is constructed in the following steps: 

1. Scan the transaction database DB once. Collect the set of frequent items F 
and their supports. Sort F in support descending order as L, the list of frequent items. 

2. Create the root of an FP-tree, T, and label it as “root”. 
After above process mining of the FP-tree will be done by Creating Conditional 

(sub) pattern bases: 
1 Start from node constructs its conditional pattern base. 
2 Then, Construct its conditional FP-tree & perform mining on such a tree. 
3 Join the suffix patterns with a frequent pattern generated from a conditional GP-

tree for achieving FP-growth. 
4 The union of all frequent patterns found by above step gives the required 

frequent itemset. 
In this way frequent patterns are mined from the database using FP-tree. 

3.2 Eclat Algorithm 

It is a set intersection, depth first search algorithm [5], unlike the Apriori. It uses 
vertical layout database and each item use intersection based approach for finding the 
support. In this way, the support of an itemset P can be easily computed by simply 
intersecting  any two subsets Q, R ⊆ P, such that P = Q U R. In this type of algorithm, 
for each frequent itemset i new database is created Di. This can be done by finding j 



614 K. Pazhani Kumar and S. Arumugaperumal 

 

which is frequent corresponding to i together as a set then j is also added to the 
created database i.e. each frequent item is added to the output set. It uses the join step 
like the Apriori only for generating the candidate sets but as the items are arranged in 
ascending order of their support thus less amount of intersection is needed between 
the sets. It generates the larger amount of candidates then Apriori because it uses only 
two sets at a time for intersection [5].  There is reordering step takes place at each 
recursion point for reducing the candidate itemsets. In this way by using this 
algorithm there is no need to find the support of itemsets whose count is greater than 
1because Tid-set for each item carry the complete information for the corresponding 
support. When the database is very large and the itemsets in the database 
corresponding are also very large then it is feasible to handle the Tid list thus, it 
produce good results but for small databases its performance is not up to mark. 

 

The Eclat algorithm is as given below [4]. 
 

Input: D, σ, i ⊆ I 
Output: F [I](D, σ) 
1: F [I] :={}  
2: for all I Є I occurring in D do 
3: F [I]:= F [I] ∪ {I ∪ {i}} 
4: // Create Di 
5: Di: = {} 
6: for all j Є I occurring in D such that j>I do 
7: C: = cover ({i}) ∩ cover ({j}) 
8: if |C| >= σ then 
9: Di: = Di ∪ {(j, C)} 
10: end if 
11: end for 
12: //Depth-first recursion 
13: Compute F [I ∪ {i}](Di, σ) 
14: F [I]:= F [I] ∪ F [I ∪ {i}] 
15: end for 
 

In this algorithm each frequent item is added in the output set. After that, for every 
such frequent item i, the projected database Di is created. This is done by first finding 
every item j that frequently occurs together with i. The support of this set {i, j} is 
computed by intersecting the covers of both items. If {i, j} is frequent, then j is 
inserted into Di together with its cover. The reordering is performed at every 
recursion step of the algorithm between line 10 and line 11. Then the algorithm is 
called recursively to find all frequent itemsets in the new database Di. 

3.3 SaM Algorithm 

The SaM (Split and Merge) algorithm established by [6] is a simplification of the 
already fairly simple RElim (Recursive Elimination) algorithm. While RElim 
represents a (conditional) database by storing one transaction list for each item  
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(partially vertical representation), the split and merge algorithm employs only a single 
transaction list (purely horizontal representation), stored as an array. This array is 
processed with a simple split and merge scheme, which computes a conditional 
database, processes this conditional database recursively, and finally eliminates the 
split item from the original (conditional) database. 

 

SaM preprocesses a given transaction following the steps below: 
 

1. The transaction database is taken in its original form. 2. The frequencies of 
individual items are determined from this input in order to be able to discard 
infrequent items immediately. 3. The (frequent) items in each transaction are sorted 
according to their frequency in the transaction database, since it is well known that 
processing the items in the order of increasing frequency usually leads to the shortest 
execution times. 4. The transactions are sorted lexicographically into descending 
order, with item comparisons again being decided by the item frequencies; here the 
item with the higher frequency precedes the item with the lower frequency. 5. The 
data structure on which SaM operates is built by combining equal transactions and 
setting up an array, in which each element consists of two fields:An occurrence 
counter and a pointer to the sorted transaction (array of contained items). This data 
structure is then processed recursively to find the frequent item sets. The basic 
operations of the recursive processing are based on depth-first/divide-and-conquer 
scheme. In the split step the given array is split with respect to the leading item of the 
first transaction. All array elements referring to transactions starting with this item are 
transferred to a new array. The new array created in the split step and the rest of the 
original arrays are combined with a procedure that is almost identical to one phase of 
the well-known merge sort algorithm. The main reason for the merge operation in 
SaM is to keep the list sorted, so that: 1.All transactions with the same leading item 
are grouped together and 2.Equal transactions (or transaction suffixes) can be 
combined, thus reducing the number of objects to process. 

 

Fig. 2. Transaction database (left), item frequencies (middle), and reduced transaction database 
with items in transactions sorted accordingly with respect to their frequency (right) 

Each transaction is represented as a simple array of item identifiers (which are 
integer numbers). The transaction list is prepared which are stored in a simple array, 
each element of which contains a support counter and a pointer to the head of the list. 
The list elements themselves consist only of a successor pointer and a pointer to the 
transaction. The transactions are inserted one by one into this structure by simply 
using their leading item as an index. 
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Fig. 3. Procedure of the recursive elimination with the modification of the transaction lists (left) 
as well as the transaction lists for the recursion (right) 

4 Analytical Study 

A detailed study has been conducted to assess the performance of the above-said 
algorithms. The metrics used in the comparison study is the total execution time taken 
and the number of itemsets generated for different data sets. For this comparison also 
same data sets were selected as for the above experiment with 30% to 60% of 
minimum support threshold. 

Table 2. Adault data set execution time 

SUPPORT  Time in Seconds 
FPGrowth Eclat SaM 

30 11.2 10.35 9.25 
40 8.30 7.52 6.12 
50 5.55 5.20 4.10 
60 3.90 3.60 2.80 

 

 
 

Figure 4 shows that the execution time for the FP-growth,Eclat and SaM 
algorithms decreases with the increase in support threshold form 30% to 60% for 
adult dataset FPgrowth takes more time as that compared to Eclat and SaM. 
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Table 3. Hepatitis data set execution time 

SUPPORT  Time in Seconds 
 FPGrowth Eclat SaM 
30 1.34 1.02 0.9 
40 0.71 0.58 0.51 
50 0.17 0.12 0.09 
60 0.07 0.04 0.03 

 

 
 
Figure 5 shows that the execution time for the FP-Growth,SaM and Eclat 

algorithms decreases with the increase in support threshold form 30% to 60% for 
adult dataset FP-Growth takes more time as that compared to Eclat and SaM. 

5 Conclusion 

This paper presents the comparative study of three algorithms FP-Growth,Eclat and 
SaM.This study shows that the SaM algorithm has high performance in various kinds 
of data, out forms the FP-Growth and Eclat algorithms. The performances of the 
algorithms strongly depend on the support levels and the feature of the data sets (the 
nature and the size of the data sets) is observed. 
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