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Abstract. Researchers have used Idiotypic Networks in a myriad of
applications ranging from function optimization to pattern recognition,
learning and even robotics and control. Most of the reported works that
have used the Idiotypic network have been simulations wherein not all
entities perform in a true distributed, parallel and asynchronous manner.
The concentration of an antibody within the network is always assumed
to be single valued, which is easily available as a global parameter in such
simulated systems. This paper describes a novel architecture and dy-
namics to emulate an Idiotypic network wherein antibodies within a real
physical network interact at antigen-affected nodes, sense their respec-
tive global populations stigmergically and form Localized Idiotypic Net-
works that eventually control their respective global populations across
the network. Typhon, a mobile agent platform, running at the various
nodes forming the physical network, was used for the emulation. While
the mobile agents acted as antibody carriers and ensured their mobility,
the nodes forming the physical network formed the antigenic sites. Re-
sults, portrayed herein, show the selective rise in global populations of
the set of antibodies that are more effective in neutralizing a range of
antigens across the network.

Keywords: Idiotypic networks, Emulation, Distributed Intelligence, Mo-
bile agents, Typhon.

1 Introduction

The Idiotypic network model [1] which is inherently autonomous and has the
ability of self-tuning, is a model which postulates that the antibodies interact
with one-another even in the absence of an antigen. These interactions among the
antibodies modulate the responses of the immune system as a whole. The formal
mathematical model proposed by Farmer et al. [2] describes the concentration
of an antibody to be affected by the amount of stimulations and suppressions it
receives from other antibodies and antigens respectively together with the rate
at which new ones are added and old ones removed. The Idiotypic network is
a dynamic network which is regulated by the virtue of the concentrations of
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the various antibodies within the body. The concentration of an antibody refers
metaphorically to its population in the system. In most AIS literature [3–6], these
concentrations are always presumed to be single valued parameters. Further most
of the implementations available for the Idiotypic network model are in the form
of simulations [7] thus providing less room for its practical viability. To exploit
the characteristics of the Idiotypic network model in real distributed systems,
an architecture for the seamless interactions and operations of the concerned
antibodies is crucial.

This paper presents a novel emulation architecture for realizing an Idiotypic
network model over a real system of networked nodes which perform in a dis-
tributed and asynchronous manner. The novelty of our approach is that the
intelligence is scattered in the environment (network of nodes) in the form of
mobile agents [8] that act as antibodies, which selectively mitigate the problems
arising at different nodes along with a competition among themselves to evolve
the optimal solution. The succeeding sections provide a background on the re-
lated work, details of the proposed model for emulating an Idiotypic network
over real systems followed by experimental results, discussions and conclusions.

2 Mobile Agents and Artificial Immune System

Mobile agents are autonomous chunks of software programs that can migrate
within a network, carry payload, clone whenever required and terminate them-
selves if required [9]. These agents provide for a possible solution to emulate
various population-based computational models in real systems. Using a mo-
bile agent-based paradigm, Dasgupta et al. [10] describe a system for intru-
sion/anomaly detection and subsequent responses in networked computers. In
his approach, the immunity-based agents roam around the nodes and routers
monitoring the situation of the network. Inspired by the Clonal-Selection theory
[11], the mobile immune agents used herein interact freely and dynamically with
the environment and also with one another. Castro et al. [12], have proposed
an artificial immune network model, for data clustering and filtering redundant
data. They have used a Euclidean shape-space model in which the network units
correspond to the antibodies. The input patterns were treated as the antigens
to be recognized and clustered. This network model was successfully applied
to several clustering problems, including non-linearly separable tasks. Godfrey
et al. [13] describe an architecture of a multi-robot system that uses the AIS
concepts and mobile agents to service robots. Based on pain, nodes that control
the robot are triggered to indicate an antigenic attack. Mobile agents moving
in a round-robin manner within the network carry the programs (antibodies) to
decrease the pain levels of the robot.

3 Motivation for Idiotypic Network Emulation

Most of the systems that have used the Idiotypic network implement Farmer’s
[2] equation to deliver their models. These works are mostly simulations of the
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Idiotypic network where the parameters involved are in some form accessible to
all the entities in the network. The functioning of real systems, however remains
grossly different and no real efforts seem to have been attempted to emulate
Idiotypic networks on real networks. The biological Idiotypic network comprises
several antibodies that stimulate or suppress one another and are generated
based on their affinities with the concerned antigen. A stimulation causes the
concerned antibody to increase its concentration i.e. its population increases
since it has proved to be more effective in curtailing the antigenic attack. The
opposite happens in case of a suppression whereby its concentration reduces.
Successive suppressions may eventually lead to the removal of such antibodies.
Thus, there need not actually be real physical link between all the individual
members of the different antibody populations. At any moment of time during
antigenic attacks, a distributed system could contain a repertoire of antibodies
whose population sizes differ. If a specific antibody population seems more effi-
cient in containing the antigenic attack its population (concentration) increases
since the other less effective antibody populations stimulate it to grow. The more
effective population may also suppress the growth of the other less effective ones.

(b)

(a) (c)

Fig. 1. (a) The proposed emulated Idiotypic model based architecture (b) An ap-
proximate visualization of the spatial distribution of antibody concentration and the
localized Idiotypic network (c) Antigen and antibody in the proposed architecture

In the work reported herein, we have viewed the Idiotypic network as a net-
work of populations (concentrations) of different antibodies. Each population
communicates with the other using stimulations and suppressions, which cause
dynamic changes in their respective populations thus contributing to a dynamic
network. An approximate visualization of this network is shown in Figure 1(b).
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As can be seen the populations of the different antibodies constitute a meta-
level network but actual Idiotypic networks are formed at different spatial loca-
tions due to interactions of their sub-populations. What possibly is difficult to
comprehend is the manner in which the idiotopes of all the antibodies of one
population communicate and stimulate or suppress the others. Though in Figure
1(b) it seems that all the antibodies of one population stimulate all the others
in another population via their idiotopes, this is not the way we envisage things
in the work reported herein. We postulate that such stimulations happen only
locally at the sites where an antigenic attack occurs. During an antigenic attack,
the heterogeneous set of antibodies or sub-populations available in the locality
of the attack, which are able cope up with the attack, compete with one another.
The ones that are effective in containing the attack suppress those that are not,
forming a Localized Idiotypic Network (LIN) in the locality of the attack. The
sub-population of antibodies in this locality that performs better generate sig-
nals of suppression to reduce the number of the other sub-populations while the
latter stimulate the former to increase the number of the more effective anti-
bodies. The resultant effect is an increase in the number of the more effective
antibodies in the locality of attack, thus containing the local antigen population
quickly. Since antigens may attack in large numbers at different areas of a body,
such small idiotypic interactions at these places add up to automatically increase
the count of the more effective antibodies in the whole body. More effective an-
tibodies are those solutions which have proved to be more effective against the
problems or antigens. They also cause the numbers (populations) of other less
effective ones to decrease, accordingly. All this happens in a stigmergic [14] and
decentralized manner without all the antibodies of one kind interacting with all
those of the others.

In the next section we describe the manner in which we portray a set of mobile
agents acting as antibodies that move around within a real network of computers
(nodes), finding and priming on antigenic attacks at the nodes and eventually
increasing or decreasing their populations (concentrations) stigmergically, finally
serving to emulate the Idiotypic network as described above.

4 The Emulated Idiotypic Network Model

The emulated Idiotypic network consists of a physical network comprising n
nodes (computers) as shown in Figure 1(a). This set of networked nodes acts as
the body of the system, parts (nodes) of which need to be defended or serviced
by providing the best set of antibodies. A set of mobile agents move through
this network of nodes and comprise (carry) the antibodies. Each node hosts a
mobile agent platform to facilitate all mobile agent related functions including
migration, cloning, antigen-antibody affinity measurements and generation of
stimulations and suppressions. Antigenic attacks are initiated by presenting an
antigen at the concerned nodes. Antigenic attacks can be viewed as a service
required at a node while the antibodies that nullify these attacks could be seen
as the relevant service providers. A node is thus the basic entity or the part
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Table 1. Immune network metaphors in the Emulated Idiotypic network

Biological Immune network Entities within the Emulated Idiotypic Net-
work

Antigen Service required at a node
Antibody Mobile agent carrying services
Organs or parts of the body being de-
fended

Nodes comprising the physical network

Antibody circulation Mobile agent migration
Concentrations of various antibodies Populations of the various mobile agents in the net-

work
Stimulations/Suppressions Increase/decrease in the sub-populations of con-

cerned mobile agents within the node under attack
Increase/decrease in antibody count Cloning of the stimulated mobile agents/ Termina-

tion of the suppressed ones, within the node-under-
attack

Idiotypic Network formed by changes in
stimulations and suppressions of antibod-
ies in fluid (plasma) form

Dynamic changes in populations of each type of anti-
body due to stimulations and suppressions (received
from others at nodes attacked by antigens), within
the network

(organ) being defended or serviced within the system. Table 1 lists some of
the mapping between the entities of the emulated Idiotypic network and their
biological counterparts.

4.1 Antigen-Antibody Interactions at the Node-under-Attack

For the sake of explanation, we consider a random binary (m-bit) sequence to
form an antigen which is presented at a node (node-under-attack or antigenic
site). The binary sequence here is the representation of a problem at the node.
The corresponding best antibody could be an m-bit complemented sequence
capable of neutralizing the antigen. An antigen and its corresponding best anti-
body together with the epitopes and paratopes are shown in the Figure 1(c). In
the proposed model, every mobile agent that acts as an antibody carries with
it one neutralizing m-bit sequence. An affinity function (ψ(Ag , Ai)) defines the
degree of interaction between the epitopes of an antigen (Ag) and the paratopes
of the antibody (Ai).

ψ(Ag, Ai) =
1

(Epitopes of Ag) XNOR (Paratopes of Ai)
(1)

The inverse of the XNOR distance between the bits corresponding to the epitopes
and paratopes of an antigen and an antibody respectively describes the affinity
of interaction between them. Hence, the best antibody would be the one, which
has the complemented version of the antigenic epitope as its paratope.

4.2 Emulating Danger Signals at the Node-under-Attack

When a node is presented with an antigen (an m-bit string), it immediately
radiates danger signals to its immediate neighbours which in turn diffuse the
same onto their neighbours at a lesser intensity than that received. As shown in
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Figure 1(a), these danger signals thus penetrate the immediate neighbourhood
of the node-under-attack similar to the pheromone diffusion model proposed by
Godfrey et al. [15]. In order to manage the diffusion within this sub-network each
danger signal contains five parameters which include the identifier of the node-
under-attack and the previous node, the epitopes of the antigen, a Diffused Signal
Strength (DSS) whose intensity decreases as it diffuses to other nodes away
from the node-under-attack and the life-time of the signal which also decreases
similarly. The propagation of the danger signal continues till its strength dies
down to zero at nodes in the neighbourhood of the node-under-attack, thus
forming a danger zone around it as shown in Figure 1(a).

4.3 Antibody Migration and Generation

The mobile agents that represent the antibodies flowing in the network con-
tinuously migrate based on a combination of conscientious and danger signal
oriented strategies, similar to that described in [15, 16]. The conscientious strat-
egy ensures that the agents avoid recently visited nodes. However, when an agent
detects a danger signal at a node, it ascertains whether it is a candidate anti-
body that can cater to the attack. This is done by calculating the affinity ψ
between the neutralizing sequence carried by the mobile agent (antibody) and
the epitope of the antigen within the danger signal. If this ψ is greater than
χ, the affinity threshold (a non-zero positive constant), then the mobile agent
assumes itself to be a candidate antibody and proceeds to tracking the increas-
ing signal strength gradient towards the node-under-attack. This gradient aids
the mobile agent to reach the node-under-attack via the shortest path [15]. This
mechanism of attracting the relevant antibodies could lead to many candidate
antibodies reaching the node-under-attack, some of which may be redundant.
This redundancy is used to stigmergically sense the population of the candidate
antibodies in the network. The numbers of each of the distinct candidate an-
tibodies attracted to the node-under-attack is proportional to their respective
global populations in the network.

If ψ is less than χ the mobile agents ignore the danger signals and continue
to migrate to other nodes using the conscientious approach. It may be noted
that only one out of the many antibodies that eventually reach the node-under-
attack is chosen to neutralize the antigen. In addition, if the same type of antigen
affects several nodes across the network simultaneously, it could be neutralized
by different antibodies. It may also happen that the danger signals have died
down due to the inherent lifetimes and no candidate antibodies have reached
the node-under-attack. Under such a condition, the node itself starts generating
antibodies proactively. In the present case, it generates random m-bit patterns
and ascertains its ψ value. If the same is greater than χ then it uses this pattern
(antibody) to neutralize the antigen. This new antibody is then encapsulated
within a mobile agent and released into the network. This feature accounts for
antibody generation within the network.
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4.4 Stigmergy Based Antibody Population (Concentration) Control

In order to emulate Jerne’s Idiotypic network [1], we have used a variant of
Farmer’s computational model [2] at each node-under-attack. The Farmer’s equa-
tion in a general form can be written as:

Change in Concentration of an antibody = Antigenic Stimulation (AgSt) +
Stimulations received from other antibodies (St) - Suppressions from the selected
antibodies (Su) - Deletions due to disuse or lapse of Lifetime (Lt).

Whenever an antigenic attack occurs at a node (node-under-attack), the dan-
ger signal diffusions attract one or more antibodies, of the same or different
types, to arrive at this node. Let ζ = {Type-1, Type-2,. . . . . . . . .,Type-k} be the
set of such distinct candidate antibodies that have arrived at the node-under-
attack. Since multiple numbers of each of these types of antibodies could arrive
at this node, each type of candidate antibody will have a population of its own
within the node-under-attack. As can be seen in Figure 1(a) the node-under-
attack at the bottom has three distinct types of candidate antibodies (shown
in different shades) for the concerned antigen whose local population sizes are
2, 3 and 4 respectively. This is different from the global population sizes of the
respective candidate antibodies which are not known to any single entity in
the Idiotypic network emulation. Using the size of these local populations, the
node-under-attack chooses that type of candidate antibody which has the highest
local population as the best one for the neutralization of the antigen. We assume
herein that in a distributed system, since more number of antibodies of this type
have arrived at this node, the global population of this selected candidate anti-
body is high. Hence, it can be inferred that this type of antibody was possibly
more effective in neutralizing attacks by this type of antigen at other nodes
across the network. The node-under-attack thus senses the population size and
decides the best candidate antibody by an indirect stigmergic manner. After the
antigenic neutralization, the stimulations and suppressions received are used to
increase or decrease the local population sizes of all the candidate antibodies at
the node-under-attack based on an activation factor τ carried by each antibody
within the network, details of which have been discussed later. These stimula-
tions and suppressions create the Localized Idiotypic Network (LIN) among the
local populations of the candidate antibodies at the node-under-attack some of
which are shown and explained later in Figure 4. The LINs in turn alter the local
population sizes increasing those that are stimulated and decreasing ones that
are suppressed. These changes in the local populations (concentrations) at the
node-under-attack contribute to the global ones and ensure that the more effec-
tive antibodies dominate the entire set of antibodies that flow in the network. It
may be noted that in the emulated Idiotypic network, those mobile agents that
carry such more effective antibodies, grow in number.

The equations that govern the dynamics of the formation of the LINs and
the consequent changes in the local populations of candidate antibodies within
the node-under-attack are given below. For all antibodies belonging to the local
population, ai ∈ Ai, the value of τ is given by -
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τai
new =

{
τai
old + AgSt+ St,For selected candidate antibody population (Stimulation)
τai
old − Su,For other candidate antibody populations (Suppression)

(2)

where,
AgSt = ηψ(ag, ai) (3)

St = λ1

∑
x∈ASelected

τax

∑
y∈ANotSelected

τay
(4)

Su = λ2{φ(ASelected)− φ(Ai)} (5)

τ ∈ [τmin, τmax]
η = Antigen stimulation factor (non-zero positive value)
ai = The ith candidate antibody
ag = Antigen at the node-under-attack
Ai = The antibodies forming the local population of the ith candidate antibody
that have arrived at the node-under-attack, i ∈ ζ
ASelected = The local population of the selected type of candidate antibody used
to neutralize the antigen
ANotSelected = The local population of those non-selected candidate antibodies
φ(Ai) = The population of set of antibodies Ai

λ1 and λ2 constitute the stimulation and suppression factors respectively which
are positive non-zero values.

The ageing due to the Lifetime of the antibodies as mentioned in the Farmer’s
equation is handled separately. The change in population of the antibodies thus
takes place by cloning or termination of antibodies (mobile agents) based on the
following condition. For each candidate antibody ai:

If {τai ≥ τmax } then clone ai, τ
ai = 0, τai

clone = 0
Else If {τai ≤ τmin } then terminate ai
Since ageing is an integral part of an Idiotypic network, we have implemented

this by conferring a fixed hop-count (H) to every mobile agent (antibody) in the
network, which is reduced by unity at every hop. Once this hop-count becomes
zero, the agents are terminated and hence removed from the system. In future, we
intend to use concepts similar to that proposed in [17] to stigmergically control
the agent population.

5 Experimentation and Results

The proposed model was emulated using Typhon, a mobile agent framework [18]
on a 50-node network. Since we can instantiate multiple Typhon nodes on a
single PC, the entire network was emulated using six PCs connected to each
other via TCP/IP connections.

Initially since there were no antibodies in the network, the system used the
method described in Section 4.3 to generate antibodies at various nodes-under-
attack. At each of these nodes the concerned antibody was inserted as a payload
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(a) (b)

Fig. 2. Antibody population in the system (a) when the same antigen was presented
at five different nodes (b) when four different types of antigens were presented at five
different nodes

Fig. 3. Immunity of the system when four different types of antigens were presented
at five different nodes

on to a mobile agent and empowered with H = 100, hop-lifetime which is an
empirical estimate. Hence, each mobile agent carried a 5-bit string (a single
antibody) as its payload. A 5-bit string was presented at a node to generate a
node-under-attack. It must be noted that the antigens are the representations of
problems occurring at a node and the antibodies are the corresponding solutions.

Each experiment performed consisted of multiple rounds of antigenic attacks.
In each round, the system was made to be attacked by the same or different anti-
gens at various nodes. The antibodies generated in each round were retained for
use in the next. Experiments were performed by presenting antigens at various
nodes, either simultaneously or consecutively. Results which highlight the effec-
tiveness of the proposed architecture in a true distributed setting are presented.

Figures 2(a) and (b) show the variations of population (concentration) of each
type of antibody along with the overall total population of antibodies in the sys-
tem over several rounds. The antibodies generated and the antigen(s) presented
are also shown within these graphs. When only one type of antigen was presented
to five different nodes simultaneously for 20 rounds (20 attacks per node), six
distinct antibodies (Type-1, Type-2, . . . . . . . . .,Type-6) were generated across the
network. It can be clearly seen that the population of the Type-5 antibody domi-
nated the network while those of the others decreased drastically due to repeated
suppressions at the various node-under-attack. Figure 2(b) shows a similar graph
but the nature of antigen attack is different. Here, four different antigens were
randomly presented at five different nodes for 30 rounds (30 antigenic attacks
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Fig. 4. Snapshots of the LINs formed during the rounds shown in Figure 2(b)

per node). It can be seen here that the Type-5 and Type-2 dominate the popu-
lations of antibodies. This possibly shows that these two types were capable of
neutralizing all the four different antigens. This may also be verified from the
bit sequences of the antigens and antibodies shown in the Figures 2(a) and (b).
The ups and downs in the total antibody population in both the graphs shown
in Figures 2(a) and (b) clearly indicate the regeneration and death of antibodies
respectively.

Figure 3 depicts the manner in which the immunity of the network increases
when four different antigens were made to attack five different nodes for 30
rounds as mentioned, in Figure 2(b). In the first round, since no antibodies
populated the network, all 5 nodes-under-attack needed to generate antibodies
locally as mentioned in Section 4.3. As the rounds increased, more antigenic
attacks caused the generation of more effective antibodies that catered to some
of the other nodes-under-attack. Eventually, beyond the 25th round all nodes
seemed to be catered to by the circulating antibodies and no new ones needed
to be generated. For subsequent rounds possibly the populations of only two
types of antibodies viz. Type-2 and Type-5 (see Figure 2(b) ) were sufficient to
neutralize attacks by the four distinct antigens. Figure 4 shows a few snapshots
of the LINs formed during some of the rounds when four different antigens were
presented at five different nodes in the network, as discussed earlier. Each circle
with a solid boundary corresponds to a single antibody. The dotted boundary
around the antibodies represent the local population of that type of antibody at
the node-under-attack during the specified round. The number or the identifier
within the antibody (solid circles) indicates the type number of the antibody.
The empty dotted circles indicate that no antibody reached the node-under-
attack. The arrow-heads indicate the direction of stimulations while their tails
form the suppressions. It can be clearly seen that as the rounds progress the
populations of antibodies of Type-2 and Type-5 grow and dominate the global
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population in the entire network. At the 30th round these two antibodies are the
ones that have the highest sub populations at all the nodes-under-attack (viz.
nodes 1 through 5) and are thus responsible for neutralizing the antigens at all
the nodes.

6 Conclusions

In this paper, we discuss the manner in which the emulation of a real open-
world model of an Idiotypic network on a physical network of computers, can be
conceived. Results have shown how stigmergy based local interactions (stimu-
lations and suppressions) at antigen-affected nodes can help generate Localized
Idiotypic Networks of sub-populations of candidate antibodies, which in turn
govern and control their respective global populations across the network thus
validating the assumption made in Section 4.4. The emulation results also show
how the populations of the more effective antibodies grow while the others die
out and are thus removed from the network. The Idiotypic network can also
generate new antibodies if required. The network also seems to be able to con-
verge onto the more generic antibodies that are able to neutralize a set of varied
antigens. Hence, given various solutions to solve similar problems arising in an
distributed environment, the proposed architecture can evolve the optimal solu-
tion and purge the others.

We envisage that this emulation model, with customized modifications and
improvements, will aid the realization of a plethora of real-world applications
and aid AIS researchers to gain more insights into the actual distributed and
parallel working of the Idiotypic network. We are currently working towards
incorporating new features such as Clonal selection to evolve memory cells in
lieu of the random method of generating antibodies, making some nodes act as
lymph nodes and also vaccinating the network with antibodies which are known
a priori, to eventually realize a networked Artificial Being.
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