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Abstract. A graph is I-planar if it can be embedded in the plane with at most
one crossing per edge. A graph is outer-1-planar if it has an embedding in which
every vertex is on the outer face and each edge has at most one crossing. We
present a linear time algorithm to test whether a graph is outer-1-planar. The
algorithm can be used to produce an outer-1-planar embedding in linear time if it
exists.

1 Introduction

A recent research topic in topological graph theory is the study of graphs that are almost
planar in some sense. Examples of such almost planar graphs are /-planar graphs,
which can be embedded in a plane with at most one crossing per edge.

Ringel [3] introduced 1-planar graphs in the context of simultaneously coloring ver-
tices and faces of planar graphs. Subsequently, various aspects of 1-planar graphs have
been investigated. Borodin [4] gives colouring methods for 1-planar graphs. Pach and
Toth [S]] prove that a 1-planar graph with n vertices has at most 4n — 8 edges, which
is a tight upper bound. There are a number of structural results on 1-planar graphs [6],
and maximal 1-planar embeddings [7]] (a 1-planar embedding of a graph G is maximal,
if no edge can be added without violating the 1-planarity of G).

The class of 1-planar graphs is not closed under edge contraction; accordingly, com-
putational problems seem difficult. Korzhik and Mohar proved that testing 1-planarity

* This paper is an extended abstract. For omitted proofs, see the full version of this paper [I].
The problem studied in this paper was initiated at the Port Douglas Workshop on Geometric
Graph Theory, June, 2011, held in Australia, organized by Peter Eades and Seok-Hee Hong,
supported by IPDF funding from the University of Sydney.

** Independently, another linear time algorithm is reported in [2].
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of a graph is NP-complete [8]]. On the positive side, it has been shown that the problem
of testing maximal 1-planarity of a graph G can be solved in linear time if a rotation
system (i.e., the circular ordering of edges for each vertex) is given by Eades et al [9].
The existence of a 1-planar embedding does not guarantee the existence of a straight-
line 1-planar drawing, as shown by Eggleton [[10] and Thomassen [11]. However, re-
cently Hong et al. [12] give a linear time testing algorithm, and a linear time drawing
algorithm to construct such a drawing if it exists. Very recently, the more general prob-
lem on straight-line drawability of embedded graphs is studied by Nagamochi [13].
Eggleton [[10] introduced the investigation of outer-1-planar graphs: a graph is outer-
1-planar if it has a 1-planar drawing in which every vertex is on the outer face. Examples
of outer-1-planar graph drawings are shown in Fig.[Ila), (b), (¢) and (d); in Fig.[I(e) a
graph that has no outer-1-planar drawing is illustrated. Eggleton describes a number of
geometric, topological, and combinatorial properties of outer-1-planar graphs.

Fig. 1. (a), (b), (c) and (d) are examples of outer-1-planar graph drawings. (a) illustrates the
only triconnected outer-1-planar graph. (c) and (d) are examples of graphs that are one-sided
outer-1-planar (OSOIP) with respect to (s,t). (d) illustrates a graph with no outer-1-planar
drawing.

In this paper, we investigate algorithmics of outer-1-planar graphs. More specifically,
we describe a linear time algorithm to test outer-1-planarity of a given graph G.

Theorem 1. There is a linear time algorithm to test whether a graph is outer-1-planar.
The algorithm produces an outer-1-planar embedding if it exists.

To prove Theorem[I] we define a sub-class of outer-1-planar graphs as follows. Sup-
pose that G is a graph with vertices s and ¢. Let G (5 ¢) denote the graph obtained by
adding the edge (s, ¢), if this edge is not already in G. If G (, 4 has an outer-1-planar
embedding in which the edge (s, t) is completely on the outer face, then we say that G
is one-sided-outer-1-planar (OSO1P) with respect to (s, t). Examples of such graphs
are shown in Fig.[Il(c) and (d). For these graphs, we prove the following result.
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Theorem 2. There is a linear time algorithm to test whether a biconnected graph G
is one-sided outer-1-planar with respect to a given edge (s,t) of G. The algorithm
produces a one-sided outer-1-planar embedding if it exists.

Section @ describes an algorithm to test whether a graph is one-sided outer-1-planar,
and Section [3] shows how to use one-sided outer-1-planarity to test outer-1-planarity.
The adaption of the algorithms of Sections[dand[Blto construct an embedding is straight-
forward, and described in Section[6l In conclusion, Section[7] cites drawing algorithms
and discusses future work.

2 Terminology

In this Section we define the terminology used throughout the paper.

A topological graph or embedding G = (V, E) is a representation of a simple graph
in the plane where each vertex is a point and each edge is a Jordan arc between the
points representing its endpoints.

Two edges cross if they have a point in common, other than their endpoints. The
point in common is a crossing. To avoid some pathological cases, some standard non-
degeneracy conditions apply: (1) two edges intersect in at most one point; (2) an edge
does not contain a vertex other than its endpoints; (3) no edge crosses itself; (4) edges
must not meet tangentially; (5) no three edges share a crossing point; and (6) no two
edges that share an endpoint cross.

A topological graph is I-planar if no edge has more than one crossing. A graph is
I-planar if it has a 1-planar embedding. A graph is outer-1-planar if it has a 1-planar
embedding in which every vertex is on the outer face. The aim of this paper is to give
an algorithm to test whether a graph is outer-1-planar, and to provide an outer-1-planar
embedding if it exists.

Our algorithm uses an SPOR tree to represent the decomposition of a biconnected
graph into triconnected components. We recall some basic terminology of SPQR trees;
for details, see [14]. Each node v in the SPQR tree is associated with a graph called
the skeleton of v, denoted by o(v). There are four types of nodes v in the SPQR tree:
(1) S-nodes, where o(v) is a simple cycle with at least 3 vertices; (2) P-nodes, where
o(v) consists of two vertices connected by at least 3 edges; (3) Q-nodes, where o (v)
consists of two vertices connected by a real edges and a virtual edge; and (4) R-nodes,
where o(v) is a simple triconnected graph. We treat the SPQR tree as a rooted tree by
choosing an arbitrary node as its root. Note that every leaf is a Q-node and that the root
is not a Q-node.

Let p be the parent of an internal node v. The graph o(p) has exactly one virtual
edge e in common with o (v); this is the parent virtual edge of o(v), and a child virtual
edge in o(p). We denote the graph formed by the union of o(v) over all descendants v
of pby G,,.

If G is an outer-1-planar graph, then o(v) and G, are outer-1-planar graphs, using
the embedding induced from G. If G, is a one-sided outer-1-planar (OSO1P) graph
with respect to the parent virtual edge (s,t) of v then we say that v is a one-sided
outer-1-planar (OSO1P) node with respect to (s, t).
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For this paper, we need to define a specific type of S-node. Suppose that p is an
S-node with parent separation pair (u,v). A tail at u for p is a Q-node child (that is, a
real edge) with parent virtual edge (u, x) for some vertex .

Further, we need to define a specific type of P-node. A P-node v is almost one-sided
outer-1-planar (AOSOIP) with respect to (the directed edge) (s,t) if G, consists of a
parallel composition of an OSO1P graph with respect to (s,¢) and an S-node u such
that y has a tail at ¢ and p is OSO1P with respect to (s, t). See Fig. 2l for examples.

%,
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Fig.2. An AOSOIP graph consists of a parallel composition of an OSO1P graph and an OSO1P
S-node with a tail. (a) The general shape of a graph that is AOSOIP with respect to (s,t). (b)
A graph that is AOSOIP with respect to (s, t). (¢) A graph that is AOSOIP with respect to both
(s,t) and (t,s).

3 Structural Results

In this Section we present structural results that support the algorithms defined in the
subsequent sections.

First we note that the only triconnected outer-1-planar graph is K4, embedded as
depicted in Fig.[[(a).

Lemma 1. If G is outer-1-planar and triconnected, then G is isomorphic to K4 and
every outer-1-planar drawing of G has exactly one crossing.

Proof. Suppose that G is an outer-1-planar embedding of a triconnected graph; we can
assume that G is maximal in the sense that no edge can be added without destroying
the property of outer-1-planarity. Eggleton [10] shows that the outer face is a simple
cycle v.

Suppose that (a, b) and (¢, d) are a pair of edges, neither on -, that cross at point p.
Suppose that a precedes c in clockwise order around . Suppose that there is at least
one vertex v that lies between a and c on -, as shown in Fig.[3l

All edges incident with the vertices between a and ¢ on v must have both endpoints
in the region r bounded by , the curve ap and the curve cp. Removing a and c separates
v from the remainder of the graph; this contradicts the triconnectivity of G, and we can
deduce that there is no such vertex v.
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region r

~

Fig. 3. Here the pair a, c must be a separation pair, since all edges incident with vertices between
a and c on the outer face v must have both endpoints in the region r.

Using the same argument, we can show that the only vertices on y are a, b, ¢ and d;
thus G is K. a

Secondly, we note that we can restrict our attention to the biconnected case.

Lemma 2. A graph is outer-1-planar if and only if its biconnected components are
outer-1-planar.

Next we present a simple fact about how an edge can cross a cycle in an outer-1-
planar embedding.

Lemma 3. Suppose that v is a cycle in an outer-1-planar graph G and G’ is an outer-
1-planar embedding of G. Suppose that an edge (u,v) is not on -y but crosses an edge
of v in G'. Then either w or v is on .

The next result is a relatively technical but fundamental Lemma about embeddings
of paths which share endpoints, illustrated in Fig. dl A path from a vertex s to a vertex
t is non-trivial if it contains more than two vertices. If an edge from a path p; crosses
an edge from a path p, then we say that p; crosses po.

Lemma 4. Suppose that P is a set of paths between two vertices s and t. Let G be the
union of the paths in P, and let G’ be an outer-1-planar embedding of G. Then |P| < 5,
and:

(a) If |P| > 3 and an edge from one non-trivial path p1 € P crosses an edge from
another non-trivial path ps € P then this crossing occurs between an edge incident
with s and an edge incident with t.

(b) If |P| = 3 and all paths in P are non-trivial, then there are two paths p1 and ps
in P such that there is exactly one crossing between edges of p1 and edges of pa;
furthermore, every edge in the third path is on the outer face.

(¢) If |P| = 3 and one path in P is trivial and is on the outer face, then there are two
paths p1 and po in P such that there is exactly one crossing between edges of p1
and edges of pa.
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Fig. 4. Embeddings of paths that share endpoints. (a) A planar embedding. (b) An outer-1-planar
embedding of 3 non-trivial paths. (c) An outer-1-planar embedding of 3 paths, where one path is

trivial. (d) An outer-1-planar embedding of 4 non-trivial paths. (e) An outer-1-planar embedding
of 4 paths, where one path is trivial. (f) An outer-1-planar embedding of 5 paths.

(d) If P contains 4 non-trivial paths, then we can divide P into two pairs of paths
{p1,p2} and {ps,ps} such that there is exactly one crossing between edges of p
and edges of p2 and exactly one crossing between edges of ps and edges of p4, and
there are no other crossings.

(e) If |P| = 4 and P contains a trivial path, then there are two paths p1 and py in P
such that there is exactly one crossing between edges of p1 and edges of pa, and
one non-trivial path in P is on the outer face.

(f) If |P| = 5 then one path in P is trivial, and we can divide the other paths into two
pairs of paths {p1, p2} and {ps, pa} such that there is exactly one crossing between
edges of p1 and edges of p2 and exactly one crossing between edges of ps and edges
of p4, and there are no other crossings.

4 Testing OSO1P and AOSO1P

In this Section we describe a linear time algorithm that takes a graph G and vertices s
and ¢ of GG as input and tests whether G has an OSO1P or AOSO1P embedding with
respect to (s, t).

From Lemma 2] we only need to consider biconnected graphs. Our algorithm com-
putes the SPQR tree T and then works from the leaves of T upward toward the root,
computing boolean labels OSO1P(v, s,t) and AOSO1P(v, s,t) that indicate whether
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v is OSO1P or AOSOI1P with respect to (s, t). The label OSO1P(v, s,t) is computed
for each node v of T, and the label AOSO1P (v, s,t) is computed for every P-node v.

Algorithm test-One-Sided-Outer-1-Planar
1. Construct the SPQR tree T of G.
2. Traverse T bottom up, and for each node v of T with parent virtual edge (s, t):

(a) if risaQ-node then return true.

(b) elseif v is an R-node then return OSO1P(v,s,t) as described in
Section [A.1] using the values OSO1P(V,s',t') for each child v/ of v with
child virtual edge (s',t').

(c) elseif visaP-node thenreturnOSO1P(v,s,t)and AOSO1P(v, s, t),
as described in Section 4.2} using the values OSO1P(v', s', ') for each child
V' of v with child virtual edge (s, ).

(d) else /# visan S-node x/ then return OSO1P(v,s,t), as described in
Section [4.3] using the values OSO1P (v, s',t') and AOSO1P(v,s',t') for
each child v/ of v with child virtual edge (s',t').

The time complexity of Step 1 is linear [[14/15]]. Step 2(a) is trivial and takes constant
time for each Q-node. We show below that Steps 2(b), 2(c), and 2(d) each take time
proportional to the number of children of the node v. Summing over all nodes of the
SPQR tree T results in linear time for the whole algorithm.

The cases for R-nodes and P-nodes are quite straightforward, and we deal with them
first in Sections.Tland[4.2l The extension for the computation of the AOSO1P property
for P-nodes is again straightforward and described in Section[4.2l The case for S-nodes
is a little more involved, and we deal with this in Section[4.3]

4.1 R-nodes
Lemmal[Il can be generalised to R-nodes as in the following Lemma.

Lemma 5. Suppose that v is an R-node of the SPQR tree of a biconnected graph G;
suppose that (u,v) is its parent virtual edge. Then G,, is OSO1P with respect to (u,v)
if and only if:

1. o(v) is isomorphic to K4; and

2. an edge (u,a) of o(v) with a # v incident with u represents a child Q-node of v,
an edge (v,b) of o(v) with b # u represents a child Q-node of v, and (u, a) crosses
(v,b); and

3. forevery child V' of v, V' is OSOIP with respect to (c, d), where the parent virtual
edge of V' is (¢, d).

An algorithm to test whether an R-node v is OSO1P can be derived directly from
Lemmal[3 It is clear that, given the boolean labels OSO1P(v;, s, t) for each child v; of
v, the algorithm runs in time proportional to the number of children of v.
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Fig. 5. Possibilities for an OSOIP P-node

4.2 P-nodes

Here we use Lemmallto show that a P-node can have at most three children, as depicted
in Fig.[5l More specifically, we have the following Lemma:

Lemma 6. Suppose that v is a P-node of the SPOR tree of a biconnected graph G,
suppose that (s, t) is its parent virtual edge. Then G, is OSOI1P with respect to (s,t) if
and only if either:

(a) v has two children, of which one is a Q-node (s,t), and the other is OSOIP with
respect to (s,t); or

(b) v has two children, of which one is an S-node with tail at s which is OSOI1P with
respect to (s,t), and the other is an S-node with tail at t which is OSOIP with
respect to (s,t); or

(¢c) v has three children, of which one is a Q-node (s, t), one is an S-node with tail at s
which is OSO1P with respect to (s,t), and the other is an OSO1P S-node with tail
at t which is OSOI1P with respect to (s, t).

It is straightforward to extend Lemmal@l to test whether a node v is AOSO1P, using
the definition of AOSO1P together with Lemmal6]

Algorithms to test whether a P-node v is OSO1P or AOSO1P can be derived directly
from Lemmal6l It is clear that, given the boolean labels OSO1P(v', s, t) for each child
V' of v, the algorithm runs in time proportional to the size of the skeleton o (v) of v.

4.3 S-nodes

Suppose that v is an S-node with children vy, v, . .
of v; is (si—1, 8;), as shown in Fig.[la).

If every child v; is OSO1P with respect to (s;—1, $;), then clearly v is OSO1P with
respect to (S, Sx); however, the converse is false. Consider the example shown in
Fig.[lb). Here v is OSO1P with respect to (g, sx). However, the child 5 is not OSO1P

., Vi, where the parent virtual edge
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~

__________

Fig.6. (a) An S-node. (b) An OSOIP S-node with a child (v2) that is not OSOIP. (c) An S-node
that satisfies the conditions of Lemmall but is not OSOIP. (d) Two paths p1 and p2 in the graph
G,. (e) The path pi crosses the edge (si, Si+1).

with respect to (s1, s2) (by Lemmal6). Note that v5 is a Q-node, and an edge from the
skeleton of v5 crosses this edge. In fact the example shown in Fig. [6lb) illustrates the
necessary conditions stated in the next lemma.

Lemma 7. Suppose that v is an S-node with children vy, v, . .., vy, where the parent
virtual edge of v; is (s;—1, $;). Suppose that G, is OSO1P with respect to (s, Sk ). Then
for 1 < i<k, either:

(a) v; is OSOIP with respect to (s;—1, Si); or
(b) i <k, v; is AOSOIP with respect to (s;, $;—1), and v, 41 is a Q-node; or
(¢) i > 1, v; is AOSOIP with respect to (s;—1, si), and v;_1 is a Q-node.

Lemmalf[7l gives necessary conditions for an S-node to be OSO1P. However the con-
ditions are not sufficient. Consider, for example, the graph shown in Fig. [6(c). This
satisfies the necessary conditions as in Lemma[Z] but it is not OSO1P. The problem is
that the Q-node represented by the edge (s1, s2) has two crossings, one with an edge of
the AOSO1P graph at the top and one with an edge of the AOSO1P graph at the bottom.
Nevertheless, this situation does not occur when £ = 2, and we shall show that in this
case the conditions of Lemma [7] are sufficient. One can express sufficient conditions
for an S-node to be OSOI1P in a recursive way, as in the following Lemma. If v is an
S-node with children v, 19, ..., v, then we denote the series combination of graphs
Gy, Guyy ..o, Gy, by G(v1, 12, .. k).

Lemma 8. Suppose that v is an S-node with children vy, vs, . .., vk, where the parent
virtual edge of v; is (s;-1, ;). Then G, is OSOIP with respect to (s, si) if and only if
either:
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1. G,, is OSOIP withrespectto (8o, s1) and G(va,vs, . .., vy) is OSOIP with respect
to (81, 8k); or

2. 11 is a Q-node, G, is AOSOIP with respect to (s1, s2), and G(v3,v4, ..., V) is
OSOI1P with respect to (S2, S); or

3. G, is AOSOIP with respect to (s1,80), V2 is a Q-node, and G(v3, vy, ..., vy) is
OSOIP with respect to (S, Si).

Lemma[§] leads to the recursive algorithm for S-nodes; see [1I]. The algorithm runs
in time proportional to the number of children of v.
This completes the proof of Theorem[2l

5 Testing Outer-1-Planarity

Once we compute the labels OSO1P(v, s,t) and AOSO1P(v,s,t) for all internal
nodes v of the SPQR tree, we can test whether the whole graph (that is, the root p) is
outer-1-planar. This requires separate tests depending on the type of the root node. See
Fig.[

We can require the root node to be an R-node or a P-node, since if the SPQR tree
contains no R-node and no P-node, then the graph is a cycle and thus outerplanar. Both
tests for an R-node and a P-node are detailed below.

For R-nodes, we have the following Lemma.

Lemma 9. Suppose that p is an R-node at the root of the SPOR tree. Then G is outer-
1-planar if and only if

1. o(p) is isomorphic to K4, and

2. at least two children of p are Q-nodes, and

3. for every child node v' of o(p) with parent virtual edge (a,b), G, is OSOIP with
respect to (a,b).

(a) (b) ()

Fig.7. (a) An R-node at the root. (b) P-node at the root. (c) S-node at the root.

It is clear that one can test the conditions of Lemma|[9]in constant time, as long as
the labels OSO1P(V', a,b) for all children v/ of p have already been computed.
For P-nodes, the following result applies.
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Lemma 10. Suppose that p is a P-node at the root of the SPOR tree. Then G is outer-
1-planar if and only if it is a parallel composition of two OSOIP graphs.

Using Lemma] one can show that the number of children of a P-node p at the root is
bounded (in fact, at most 5). It follows that the number of ways to partition the children
is bounded by a constant. Thus we can define a constant time algorithm to implement
Lemma[I0| (given that the labels O.SO1P (v, a,b) for all children v/ of p have already
been computed).

This completes the proof of Theorem [Tl

6 Outer-1-Planar Embedding

One can construct a one-sided outer-1-planar embedding of an input graph G using an
extension of the methods in Sectiondl The methods for R-nodes and S-nodes described
in Lemmas 3 and [6] define crossings; treating these crossings as dummy vertices gives
a planar graph G*. A one-sided outer-1-planar embedding of GG is a specific planar
embedding of G*.

Every planar embedding of G* is defined by an orientation and an ordering for nodes
v in the SPQR tree with respect to the parent separation pair of v. For P-nodes, R-
nodes, and S-nodes, it is possible to “flip” the orientation of v around its parent separa-
tion pair. For P nodes, a left-right order for the children can be chosen. To produce an
outer-1-planar embedding we use the same bottom-up strategy as in Algorithm test-
One-Sided-Outer-1-Planar in Section [l Throughout the algorithm we maintain an
embedding; in particular we keep track of the outside face. At each node v, we “flip” v
so that all vertices of G, lie on the outside face. Also, at each P-node v, we order the
children of v so that all vertices of GG, lie on the outside face. This requires linear time
manipulation of the SPQR tree, using methods outlined in [14].

7 Conclusion

The algorithm presented in this paper takes a graph G as input and determines whether
it has an outer-1-planar embedding. We show that if such an embedding does exist, then
we can compute it in linear time.

Given the topological embedding computed by our algorithm, the methods of Eggle-
ton [10] can be used to construct a straight-line drawing. In fact, Eggleton gives condi-
tions that determine whether a given set of points support a straight-line outer-1-planar
drawing. Dekhordi et al. [[16] show further that every outer-1-planar topological embed-
ding has a straight-line RAC (right-angle crossing) drawing, at the cost of exponential
area.

Many algorithms for drawing outerplanar graphs exist, with a number of properties
(see [17U18]). It would be interesting to see if these results extend to outer-1-planar
graphs.
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