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Abstract. The visualization community has drawn heavily on the al-
gorithmic and systems-building work that has appeared with the graph
drawing literature, and in turn has been a fertile source of applications.
In the spirit of further promoting the effective transfer of ideas between
our two communities, I will discuss a framework for analyzing the design
of visualization systems. I will then analyze a range of graph drawing
techniques through this lens. In the early stages of a project, this sort
of analysis may benefit algorithm developers who seek to identify open
problems to attack. In later project stages, it could guide algorithm de-
velopers in characterizing how newly developed layout methods connect
with the tasks and goals of target users in different application domains.

1 Introduction

Visualization researchers and practitioners have long drawn on the algorithmic
work conducted by the graph drawing community, and in turn have helped estab-
lish connections between that community and end users for specific application
areas. Moreover, the network data that is the focus of the graph drawing commu-
nity’s efforts can be considered as a special case of the broader spectrum of data
that is of interest in visualization, and thus its general principles are relevant.

I propose analysis of visualization techniques through methods; that is, an
enumeration of the design space of techniques in terms of specific sets of choices.
This kind of analysis supports thinking systematically about the space of possi-
bilities. It may help a designer in the early stages of developing a new technique
to identify gaps in the previous work to address. It can also be used to charac-
terize existing work, in service of matching up which algorithms and techniques
are suitable for which real-world problems. Further reading about this analysis
framework can be found in an existing book chapter [13] and a forthcoming
book [14]. These sources include many more references to the extensive related
work that underlies this framework, which I do not directly include here.

In this talk, I begin with a distinction between four levels of visualization de-
sign, and continue with a brief discussion of abstraction for data. I introduce the
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principles of marks and channels, and discuss the use of space in a visualization
context. I continue with further examples of analysis drawn from graph drawing,
and then conclude.

2 Levels of Visualization Design

In recent work, I proposed separating the design concerns of visualization into
four levels: domain problem, data and task abstraction, visual encoding and
interaction technique, and algorithm, as shown in Figure [ [10]. In that paper, I
also discuss the problem of how to validate designs at each of these levels. In this
talk I will emphasize techniques, which are at a level just above the algorithm
level that is the focus of much of the research from the graph drawing community.
I also discuss the abstraction level briefly, to provide background context.

domain problem

data/task abstraction

encoding/interaction technique

algorithm

Fig.1. Four levels of visualization design concerns |10]

My characterization here focuses on one major issue: how is space used? This
question is an explicit consideration in visualization, but the motivation is not
quite so obvious when considered purely from the perspective of problems that
arise in graph drawing. I conjecture that the reason for this difference is that
the very common cases in graph drawing, such as force-directed placement with
node-link representations, or compound graphs that combine an underlying net-
work with a hierarchy on top of it, are not trivial to analyze. My goal is to
encourage more upwards characterization to map from algorithms up to tech-
niques; that is, where algorithms are characterized in terms of the visual encoding
and interaction techniques that they support.

When considering the four levels of design, another obvious route of attack is
downwards from the top level of a domain problem; that is, to design a visual-
ization system intended to solve some specific problem for a set of target users
who have real data and real tasks. This sort of problem-driven work, often called
design studies in the visualization literature has rich and interesting challenges,
many of which are quite different than those that arise from technique-driven
work. A detailed discussion of these issues appears elsewhere, in a recent paper
on the methodology of design studies [17], and is beyond the scope of this talk.
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3 Abstraction for Data

For the purposes of this framework, I will define only two basic types of data
abstractions. At the dataset level, there are two major dataset types: tables and
networks. In a simple table, I will call the rows items and the columns attributes.
In a network, I distinguish between two kinds of items: nodes, and the links
between them; either can have attributes. Obviously, the network dataset type
is the focus of interest in graph drawing, but I will also present some analyses
of table data as part of building up the framework. Attributes also have types.
Categorical attributes have no implicit ordering, in contrast to ordered attributes;
these are split into quantitative attributes that support full arithmetic operations
such as addition or subtraction, in contrast to ordinal. For example, type of fruit
is a categorical attribute; weight is quantitative; T-shirt size is ordinal.

The common case in visualization of complex, real-world data is that the
designer will need to derive additional data beyond the original dataset. This
derived data might be new attributes, or even a transformation from one dataset
type to another, as with transforming a network into a table or vice versa. One
example of a derived quantitative attribute computed from an original network is
the Strahler number, a node-based centrality metric. Auber proposed exploiting
it for fast interactive rendering of large graphs: by drawing nodes in priority order
according to this attribute, a comprehensible skeleton of the network results from
drawing only a small fraction of the nodes, in contrast to the poor results from
drawing a random sampling [2].

4 Principles of Marks and Channels

I will introduce the idea of breaking down a visual encoding in terms of marks
and channels by first considering some easy cases from statistical graphics that
show tabular data: bar charts and scatterplots. These plots are straightforward
to break down into marks, namely geometric primitives that represent items,
and visual channels that control the appearance of marks. Marks are classified
by their dimensionality: points, lines, areas, or volumes. Visual channels include
spatial position, color, shape, size, orientation/tilt, and many others. A simple
bar chart uses line marks, and encodes one attribute according to vertical spatial
position channel. A scatterplot uses point marks, and encodes two attributes:
one with the vertical spatial position channel, and one with horizontal position.
A third attribute can be added to a scatterplot by encoding with the color
channel, and a fourth by encoding with the size channel. The principles of marks
and channels can be used to analyze more complex visual encoding techniques
beyond these simple statistical graphics.

In addition to marks that represent items or nodes, marks may represent links.
Link marks should implicitly convey the idea of relationships between items at
a perceptual level. There are two particularly perceptually appropriate ways to
do so: containment and connection. Containment uses an area mark to enclose
a set of other marks within it; connection uses a line mark to directly connect



64 T. Munzner

two other marks together. I use the terms connection and containment for link
marks, in contrast to line and area for item marks, to underscore that they
communicate relationships between multiple items. A third perceptual way to
indicate relationship is proximity, where items that are close to each other are
implicitly perceived as being more related than those that are far apart. It is not
possible to directly use proximity as a mark type, but in the next section I will
discuss where it fits within the analysis of space use in visualization.

A crucial aspect of visual channels is that they also have implicit perceptual
types, and these can and should be matched with attribute types. Some channels
intrinsically convey how much in a way that maps well to ordered attributes, such
as the spatial position along a common scale, or the length of a line mark, or
the size of a point mark. Other channels convey what in a way that maps well
to categorical attributes, such as what spatial region a mark is within, or what
color a mark is, or what shape a mark is. The channels associated with the use of
space have the strongest perceptual impact, leading to my choice to emphasize
the spatial channels in this talk. The other channels can also be roughly ranked in
terms of perceptual impact. In another talk, I discuss the underlying reasons for
these rankings and a number of visualization principles that arise from them [11].

5 Using Space

I now discuss in more detail the ways to use space in the design of visual encoding
and interaction techniques, emphasizing the different possible uses of spatial
channels to control the appearance of marks.

I distinguish between five ways to use space: use given data; express values;
and separate, order, and align regions. In the first case, the spatial layout is
given, whereas in the other four the use of space is chosen. Using the data as
given is the common case with geographic data. Although there are still many
nuances in design considerations, as discussed in the cartographic literature, the
fundamental use of space is constrained by this choice. This approach is also the
common case when dealing with scalar, vector, or tensor spatial fields, where
data is sampled at many points in the field, as in volume graphics and flow
visualization. Of course, the existence of spatial data does not dictate its use as
the fundamental use of space in a visual encoding; a designer may still choose
to derive additional data and use space differently, as discussed below. I will not
discuss this case further in this talk, where I focus on choosing the use of space.
Although sometimes networks are drawn using given geographic data for node
positions, the common case in graph drawing is on making choices about the use
of space.

The case of expressing values spatially closely follows the discussion of marks
and channels in the previous section: a quantitative attribute is encoded using
the spatial position of a mark. Scatterplots are the quintessential example of
expressing values in this way. In contrast, the other three uses of space pertain
to establishing regions. Separating space into distinct regions, where each region
shows something different, has major implications for how we perceive the struc-
ture of the dataset. Spatial proximity strongly implies grouping at a perceptual
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level, and so items in different regions are perceived as being in different cat-
egories. The regions themselves can be ordered with respect to each other, for
example in a data-driven way according to an ordered attribute. Finally, regions
can also be aligned to a shared baseline. Lengths and positions can be compared
with higher precision between aligned regions than with unaligned regions, again
for fundamental perceptual reasons. A 1D alignment is a list, while aligning in
2D yields a matrix, and in 3D a volumetric grid. In any of these cases, recursive
subdivision is possible to accommodate hierarchical attribute structure.

The most extreme form of separation between regions is to divide the display
into multiple separate views. There are three major approaches of combining
views: showing multiple views side by side, superimposing multiple views on top
of each other, and having a single view that changes over time. When superim-
posing multiple views as layers, they must all have a shared spatial layout. A
single changing view is the common case for interactive navigation. Using multi-
ple views side by side is a particularly powerful method because of the principle
that “eyes beat memory” [11]. It is easy to compare by moving one’s eyes be-
tween side by side views, where the views act as external cognitive supports.
It is harder to compare a visible item to the memory of what one saw before,
because of the limits of internal working memory.

Fig. 2. Three ways to show a multidimensional table. a) Separate bar charts. b) Single
interleaved bar chart. ¢) Heatmap. Figure credit: http://commons.wikimedia.org/
wiki/File:Heatmap.png

Another seemingly simple example from statistical graphics is nevertheless a
good example of the more complex uses of space: a multidimensional table of
data with three attributes, one quantitative and two categorical. One categorical
attribute is the type of export and there are two possible values: wine or cheese.
The other categorical attribute is the name of the city, and there are four possible
values. The quantitative attribute is the value in euro of the city’s exports for
a type over a year. We might encode this table as two separate bar charts, one
for wine and one for cheese, with simple line marks in each, as in Figure 2al
An alternative is one interleaved bar chart where each item of data is depicted
with two marks side by side,as in Figure bl We now have the vocabulary to
analyze this choice in more detail in terms of channels and attributes: with
separate charts, we have first separated into two large regions based on one
categorical attribute, export type, then separated each of those into four smaller
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regions based on the other categorical attribute, city name. These subregions
are aligned, and within each a single line mark expresses a value. The subregions
are also ordered, for example either alphabetically by the name of the city, or
in a data-driven way by the value of quantitative attribute, the exports. With
interleaved charts, there is only one level of separation into regions: there are four
regions, one for each item. Each region shows information about two attributes,
as two side-by-side marks. The value of description at this level of detail is that
we can reason about what kinds of information can be easily perceived by the
viewer based on the partition into regions. In the first case, with two separate
simple charts, the partition into one region for each type of export allows the
easy perception of trends for that type. In the second case, having the two marks
side by side allows the easy comparison of the export mix for a particular city.

We can now consider a quite different visual encoding of a heatmap display,
which shows exactly the same data abstraction: a table with one quantitative
attribute indexed by two categorical attributes. In a heatmap, regions are sepa-
rated and aligned into a 2D matrix, and within each cell of the matrix an area
mark is used in conjunction with the color channel to encode a quantitative at-
tribute. The scale of the data is different: there are dozens or hundreds of values
for each categorical attributes. In Figure [2d these are genes and experimental
conditions, and the quantitative attribute is the expression level of a gene in a
specific condition.

I now turn from table to network datasets. A matrix view of a network is
essentially the same as a heatmap, in terms of both data abstraction choice and
use of space. The transformation at the data abstraction level is to transform
the original network into a table, where a list of the nodes in the graph is used
as both of the categorical attributes, and the weighted edge between a pair of
nodes is the quantitative attribute. Thus, a cell in the matrix shows the presence
or absence of an edge.

In contrast, the most common case in graph drawing is to use link marks
to explicitly show links. As the name suggests, all node-link diagrams are an
instance of using link connection marks. These diagrams best support tasks that
pertain to the topological structure of networks [7], for example path tracing.
In tree drawing, containment is also used; for example, all treemap variants are
an instance of using link containment marks. These diagrams typically use the
size channel to encode attribute values, either just for leaf nodes or recursively
for interior nodes as well, and thus support tasks that pertain to understanding
those attribute values.

In addition to the five choices for the use of spatial channels, it is useful to con-
sider the orientation of the spatial axes within the layout. The two most common
cases in graph drawing are rectilinear and radial. In 2D, the rectilinear choice yields
Cartesian coordinates and the radial choice is polar coordinates. A third choice
is to orient all of the axes parallel to each other. The limitations of these choices
have been investigated in the visualization literature. Rectilinear layouts have the
obvious scalability issue that the number of axes is highly constrained. A 2D rec-
tilinear layout allows very high-precision perception of information encoded with
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spatial position. While 3D rectilinear layouts are possible, there are many percep-
tual problems in using three dimensions of space to encode nonspatial data [11].
Four or more rectilinear axes cannot be directly encoded. There has also been em-
pirical work to investigate the strengths and weaknesses of radial layouts, in light
of the known limitation that we perceive angles with less accuracy than lengths [5].

The work of McGuffin and Robert is a good example of analyzing many dif-
ferent tree drawing methods according to the efficiency of their use of space [g].
The information density of a diagram is as a measure of the amount of infor-
mation encoded vs. the amount of unused space; there is a tradeoff between
encoding as much information as possible, and the potential for visual clutter or
other legibility problems. The examples that they analyze can be considered in
terms of the methods that I have covered: whether connection or containment
link marks are used, whether the layout is rectilinear or radial, how the spatial
position channels are used to encode information. The information encoded in
these diagrams is the link relationships, the depth in the tree of a node, and the
order of siblings. Other analysis considerations are whether some information
is encoded redundantly, for example through both spatial position and explicit
link marks, and whether any arbitrary information is expressed through the use
of spatial ordering. For example, in some trees, sibling order is not specifically
defined, yet there is a visible spatial order.

Force-directed placement is a widely adopted approach for visually encoding
network datasets. The visual encoding is in some sense straightforward because
it is a node-link diagram: point marks represent nodes, and connection marks
represent links as lines. However, considering the meaning of spatial position is
somewhat tricky, because no meaning is directly encoded; instead it is left free
to minimize crossings. Thus, the semantics of proximity are mixed: sometimes
it is meaningful, for example when a cluster of nodes placed near to each other
truly reflects strong interconnections of links between them. Sometimes it is an
arbitrary artifact of the layout algorithm, and two nodes that happen to be
nearby in one layout may be quite far in another. There is also an interesting
tension between proximity cues and edge length: long edges are more visually
salient than short ones that connect nodes close to each other.

A great deal of work has been devoted to developing better algorithms for
force-directed placement through multilevel methods; the sfdp algorithm is one
example [6]. The data abstraction is more complex, namely a compound graph: in
addition to the original network dataset, the additional derived data of a cluster
hierarchy atop the original network is computed. Although this hierarchy is used
within the algorithm, it is not shown explicitly within the drawing. Thus, the
fundamental use of space is the same as with simpler versions of force-directed
placement; this multilevel approaches is an example of a better algorithm for
the same visual encoding technique.

The GrouseFlocks system for the interactive analysis of compound graphs [1]
has some instructive similarities and differences from sfdp. The data abstrac-
tion is the same, a compound graph. However, the visual encoding is different,
as shown in Figure Bk. In addition to connection marks for the network links
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(a) (b) (c)

Fig. 3. Compound graph representation in GrouseFlocks ﬁl] a) Original network. b)
Cluster hierarchy. c¢) Visual encoding in tool, fully expanded.

and point marks for the nodes, the hierarchy links are shown with contain-
ment marks. The system features dynamic interaction in order to support large
datasets, where typically only an interactively-selected subset of the full com-
pound graph is shown. The user can expand and contract individual metanodes
in the hierarchy, which also shows the associated nodes from the base network.

6 Further Analysis Examples

In the talk, I will analyze three more systems within this framework: Cerebral E,
4], Constellation [12, ], and Noack’s LinLog energy model [16]. All three are
examples of design motivated by explicit prior analysis of the use of space.

The Cerebral system B, @] features both multiple side by side views, and
superimposed layers within each view. The network layout is designed to mimic
the semantics of hand-drawn diagrams of biological networks. I will analyze its
visual encoding and design choices pertaining to the use of space in detail.

The Constellation system ﬂﬂ, @] features a complex multi-level linguistic
network that is laid out with spatial position reflecting specific attributes, where
edge crossings are resolved using perceptual layers rather than through algorith-
mically reducing the number of instances.

Noack’s LinLog energy model is designed to reveal clusters in data, by re-
quiring that edges between clusters are longer than those within HE] Noack
specifically indicates that his approach uses the same minimization algorithms
as previous work, and frames the energy model in terms of its visual results.
I thus consider it a contribution at the visual encoding technique level, even
though that exact vocabulary out of the visualization community does not ap-
pear in the paper. I note that it was published at a previous Graph Drawing
conference, in contrast to the many other examples in this talk that come out
of the visualization literature. I encourage more papers like this that can act as
bridges between the communities!
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7 Conclusions

I have discussed a general framework for systematically analyzing visualization
techniques in terms of the methods of using space, and applied it to graph
drawing examples in particular. It relies on breaking down visual encodings
into marks that are geometric primitives representing either nodes or links, and
channels that control their appearance to encode attributes. In this talk I focus
on the channels related to the use of space. The simple case is using spatial
position to express a quantitative attribute value, but space can also be separated
into regions that partition according to a categorical attribute to indicate groups
via proximity. These regions can also be ordered and aligned. This framework is a
mix of ideas of that are widespread in the visualization literature and those that
are new; for a more detailed discussion of the previous work, see the existing
chapter [13] and the forthcoming full book [14]. These sources also describe
principles in detail, and also the more complete analysis framework from which
the subset discussed here was drawn. The full framework includes the nonspatial
channels in addition to the spatial ones and a much more detailed discussion
of methods for combining multiple views. It covers interactive techniques in
addition to visual encoding techniques, particularly in terms of methods for the
reduction of the amount of data shown.

This kind of analysis can guide the development of new techniques, or be used
to characterize existing ones. While sometimes it is easy to map from a specific
algorithm to the visual encoding technique that it supports, for example when
the mapping is explicitly discussed in a paper or in work that it directly cites,
sometimes this mapping is difficult to reverse-engineer. Algorithm descriptions
may not facilitate analysis of the resulting visual encoding, either for the use
of space or for other channels. In these cases, the line between technique and
algorithm can be blurry: does a new algorithm support an existing technique,
or does it result in a new one? Carrying out more such characterization may
facilitate the transfer of algorithms from the graph drawing community to the
visualization community. It is also important to characterize mappings between
the other levels of visualization design [9], but this important question is beyond
the scope of this talk.

Of course, characterization according to this sort of framework is only one
of many possible ways to analyze graph drawing and visualization approaches.
Benchmarks and complexity analysis are a different way to compare approaches,
as are user studies in the form of controlled experiments or more qualitative
investigation of how people use visualization systems [10].
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