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Abstract. A morph between two straight-line planar drawings of the same graph
is a continuous transformation from the first to the second drawing such that
planarity is preserved at all times. Each step of the morph moves each vertex
at constant speed along a straight line. Although the existence of a morph be-
tween any two drawings was established several decades ago, only recently it has
been proved that a polynomial number of steps suffices to morph any two planar
straight-line drawings. Namely, at SODA 2013, Alamdari et al. [1] proved that
any two planar straight-line drawings of a planar graph can be morphed in O(n4)
steps, while O(n2) steps suffice if we restrict to maximal planar graphs.

In this paper, we improve upon such results, by showing an algorithm to morph
any two planar straight-line drawings of a planar graph in O(n2) steps; further,
we show that a morph withO(n) steps exists between any two planar straight-line
drawings of a series-parallel graph.

1 Introduction

A planar morph between two planar drawings of the same plane graph is a continuous
transformation from the first drawing to the second one such that planarity is preserved
at all times. The problem of deciding whether a planar morph exists for any two draw-
ings of any graph dates back to 1944, when Cairns [7] proved that any two straight-line
drawings of a maximal planar graph can be morphed one into the other while maintain-
ing planarity. In 1981, Grünbaum and Shephard [10] introduced the concept of linear
morph, that is a continuous transformation in which each vertex moves at uniform speed
along a straight-line trajectory. With this further requirement, however, planarity can-
not always be maintained for any pair of drawings. Hence, the problem has been sub-
sequently studied in terms of the existence of a sequence of linear morphs, also called
morphing steps, transforming a drawing into another while maintaining planarity. The
first result in this direction is the one of Thomassen [13], who proved that a sequence
of morphing steps always exists between any two straight-line drawings of the same
plane graph. Further, if the two input drawings are convex, this property is maintained
throughout the morph, as well. However, the number of morphing steps used by the
algorithm of Thomassen might be exponential in the number of vertices.
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Recently, the problem of computing planar morphs gained increasing research atten-
tion. The case in which edges are not required to be straight-line segments has been
addressed in [11], while morphs between orthogonal graph drawings preserving pla-
narity and orthogonality have been explored in [12]. Morphs preserving more general
edge directions have been considered in [6]. Also, the problem of “topological morph-
ing”, in which the planar embedding is allowed to change, has been addressed in [2].

In a paper appeared at SODA 2013, Alamdari et al. [1] tackled again the original
setting in which edges are straight-line segments and linear morphing steps are required.
Alamdari et al. presented the first morphing algorithms with a polynomial number of
steps in this setting. Namely, they presented an algorithm to morph straight-line planar
drawings of maximal plane graphs with O(n2) steps and of general plane graphs with
O(n4) steps, where n is the number of vertices of the graph.

In this paper we improve upon the result of Alamdari et al. [1], providing a more
efficient algorithm to morph general plane graphs. Namely, our algorithms uses O(n2)
linear morphing steps. Further, we provide a morphing algorithm with a linear number
of steps for a non-trivial class of planar graphs, namely series-parallel graphs. These
two main results are summarized in the following theorems.

Theorem 1. Let Γa and Γb be two drawings of the same plane series-parallel graph
G. There exists a morph 〈Γa, . . . , Γb〉 with O(n) steps transforming Γa into Γb .

Theorem 2. Let Γs and Γt be two drawings of the same plane graph G. There exists a
morph 〈Γs, . . . , Γt〉 with O(n2) steps transforming Γs into Γt .

The rest of the paper is organized as follows. Section 2 contains preliminaries and
basic terminology. Section 3 describes an algorithm to morph series-parallel graphs.
Section 4 describes an algorithm to morph plane graphs. Section 5 provides geometric
details for the morphs described in Sections 3 and 4. Finally, Section 6 contains con-
clusions and open problems. Because of space limitations, some proofs are omitted or
sketched. Full proofs can be found in the extended version of the paper [4].

2 Preliminaries

A straight-line planar drawing Γ (in the following simply drawing) of a graph G(V,E)
maps vertices in V to distinct points of the plane and edges in E to non-intersecting
open straight-line segments between their end-vertices. Given a vertex v of a graph G,
we denote by deg(v) the degree of v in G, that is, the number of vertices adjacent to
v. A planar drawing Γ partitions the plane into connected regions called faces. The
unbounded face is the external face. Also, Γ determines a clockwise order of the edges
incident to each vertex. Two planar drawings are equivalent if they determine the same
clockwise ordering of the incident edges around each vertex and if they have the same
external face. A planar embedding is an equivalence class of planar drawings. A plane
graph is a planar graph with a given planar embedding.

A series-parallel graph G is a planar graph that does not contain the complete graph
on four vertices as a minor. A plane series-parallel graph is a graph together with a pla-
nar embedding. Let G be a plane biconnected series-parallel graph and let e be an edge
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incident to its outer face. Graph G has a unique decomposition tree Te rooted at e hav-
ing nodes of three types: Q-, S-, and P-nodes. A Q-node represents a single edge, while
an S-node (a P-node) μ represents a series (a parallel, respectively) composition of the
sugraphs associated to the subtrees of Te rooted at the children of μ. An embedding of
G naturally induces an ordering for the children of each node of Te.

A (linear) morphing step 〈Γ1, Γ2〉, also referred to as linear morph, of two straight-
line planar drawings Γ1 and Γ2 of a plane graph G is a continuous transformation of
Γ1 into Γ2 such that all the vertices simultaneously start moving from their positions in
Γ1 and, moving along a straight-line trajectory, simultaneously stop at their positions
in Γ2 so that no crossing occurs between any two edges during the transformation. A
morph 〈Γs, . . . , Γt〉 of two straight-line planar drawings Γs into Γt of a plane graph G
is a finite sequence of morphing steps that transforms Γs into Γt. Let u and w be two
vertices of G such that edge (u,w) belongs to G and let Γ be a straight-line planar
drawing of G. The contraction of u onto w results in (i) a graph G′ = G/(u,w) not
containing u and such that each edge (u, x) of G is replaced by an edge (w, x) in
G′, and (ii) a straight-line drawing Γ ′ of G′ such that each vertex different from v is
mapped to the same point as in Γ . In the following, the contraction of an edge (u,w)
will be only applied if the obtained drawing Γ ′ is planar. The uncontraction of u from
w in Γ ′ yields a straight-line planar drawing Γ ′′ of G. A morph in which contractions
are performed, possibly together with other morphing steps, is a pseudo-morph. Let v
be a vertex of G and let G′ be the graph obtained by removing v and its incident edges
from G. Let Γ ′ be a planar straight-line drawing of G′. The kernel of v in Γ ′ is the set
P of points such that straight-line segments can be drawn in Γ ′ connecting each point
p ∈ P to each neighbor of v in G without intersecting any edge in Γ ′.

3 Morphing Series-Parallel Graph Drawings in O(n) Steps

In this section we show an algorithm to compute a pseudo-morph between any two
drawings of the same plane series-parallel graph G. In Section 3.1 we assume that G is
biconnected, and in Section 3.2 we show how to remove this assumption, thus proving
the following theorem.

Theorem 3. Let Γa and Γb be two drawings of the same plane series-parallel graph G.
There exists a pseudo-morph 〈Γa, . . . , Γb〉 with O(n) steps transforming Γa into Γb .

3.1 Biconnected Series-Parallel Graphs

Our approach consists of morphing any drawingΓ of a biconnected plane series-parallel
graph G into a “canonical drawing” Γ ∗ of G in a linear number of steps. As a conse-
quence, any two drawings Γ1 and Γ2 of G can be transformed one into the other in a
linear number of steps, by morphing Γ1 to Γ ∗ and Γ ∗ to Γ2.

A canonical drawing Γ ∗ of a biconnected plane series-parallel graph G is defined as
follows. The decomposition tree Te of G is traversed top-down and a suitable geometric
region of the plane is assigned to each node μ of Te; such a region will contain the
drawing of the series-parallel graph associated with μ. The regions assigned to the nodes
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Fig. 1. (a) A left boomerang. (b) A right boomerang. (c) A diamond. (d) Diamonds inside a
boomerang. (e) Boomerangs (and a diamond) inside a diamond.

of Te are similar to those used in [5,3] to construct monotone drawings. Namely, we
define three types of regions: Left boomerangs, right boomerangs, and diamonds. A
left boomerang is a quadrilateral with vertices N,E, S, and W such that E is inside
triangle �(N,S,W ), where |NE| = |SE| and |NW | = |SW | (see Fig. 1(a)). A
right boomerang is defined symmetrically, with E playing the role of W , and vice
versa (see Fig. 1(b)). A diamond is a convex quadrilateral with vertices N,E, S, and
W , where |NW | = |NE| = |SW | = |SE|. Observe that a diamond contains a left
boomerangNl, El, Sl,Wl and a right boomerang Nr, Er, Sr,Wr , where S = Sl = Sr,
N = Nl = Nr, W = Wl, and E = Er (see Fig. 1(c)).

We assign boomerangs (either left or right, depending on the embedding of G) to
S-nodes and diamonds to P- and Q-nodes, as follows.

First, consider the Q-node ρ corresponding to the root edge e of G. Draw edge e as
a segment between points (0, 1) and (0,−1). Also, if ρ is adjacent to an S-node μ, then
assign to μ the left boomerang N = (0, 1), E = (−1, 0), S = (0,−1),W = (−2, 0)
or the right boomerang N = (0, 1), E = (2, 0), S = (0,−1),W = (1, 0), depending
on the embedding of G; if ρ is adjacent to a P-node μ, then associate to μ the diamond
N = (0, 1), E = (+2, 0), S = (0,−1),W = (−2, 0).

Then, consider each node μ of Te(G) according to a top-down traversal.
If μ is an S-node (see Fig. 1(d)), let N,E, S,W be the boomerang associated with

it and let α be the angle ̂WNE. We associate diamonds to the children μ1, μ2, . . . , μk

of μ as follows. Consider the midpoint C of segment WE. Subdivide NC into �k
2 �

segments with the same length and CS into �k
2 	 segments with the same length. Enclose

each of such segments NiSi, for i = 1, . . . , k, into a diamond Ni, Ei, Si,Wi, with
̂WiNiEi = α, and associate it with child μi of μ.

If μ is a P-node (see Fig. 1(e)), let N,E, S,W be the diamond associated with it.
Associate boomerangs and diamonds to the children μ1, μ2, . . . , μk of μ as follows.
If a child μl of μ is a Q-node, then left boomerangs are associated to μ1, . . . , μl−1,
right boomerangs are associated to μl+1, . . . , μk, and a diamond is associated to μl.
Otherwise, right boomerangs are associated to all of μ1, μ2, . . . , μk. We assume that a
child μl of μ that is a Q-node exists, the description for the case in which no child of μ is
a Q-node being similar and simpler. We describe how to associate left boomerangs to the
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children μ1, μ2, . . . , μl−1 of μ. Consider the midpoint C of segment WE and consider
2l equidistant points W = p1, . . . , p2l = C on segment WC. Associate each child μi,
with i = 1, . . . , l − 1, to the quadrilateral Ni = N,Ei = p2i, Si = S,Wi = p2i+1.
Right boomerangs are associated to μl+1, μl+2, . . . , μk in a symmetric way. Finally,
associate μl to any diamond such that Nl = N,Sl = S, Wl is any point between C and
El−1, and El is any point between C and Wl+1.

If μ is a Q-node, let N,E, S,W be the diamond associated with it. Draw the edge
corresponding to μ as a straight-line segment between N and S.

Observe that the above described algorithm constructs a drawing of G, that we call
the canonical drawing of G. We now argue that no two edges e1 and e2 intersect in the
canonical drawing of G. Consider the lowest common ancestor ν of the Q-nodes τ1 and
τ2 of Te representing e1 and e2, respectively. Also, consider the children ν1 and ν2 of
ν such that the subtree of Te rooted at νi contains τi, for i = 1, 2. Such children are
associated with internally-disjoint regions of the plane. Since the subgraphs G1 and G2

of G corresponding to ν1 and ν2, respectively, are entirely drawn inside such regions, it
follows that e1 and e2 do not intersect except, possibly, at common endpoints.

In order to construct a pseudo-morph of a straight-line planar drawing Γ (G) of G
into its canonical drawing Γ ∗(G), we do the following: (i) We perform a contraction of
a vertex v of G into a neighbor of v, hence obtaining a drawing Γ (G′) of a graph G′

with n − 1 vertices; (ii) we inductively construct a pseudo-morph from Γ (G′) to the
canonical drawing Γ ∗(G′) of G′; and (iii) we uncontract v and perform a sequence of
morphing steps to transform Γ ∗(G′) into the canonical drawing Γ ∗(G) of G.

We describe the three steps in more detail.
Let Te(G) be the decomposition tree of G rooted at some edge e incident to the

outer face of G. Consider a P-node ν such that the subtree of Te(G) rooted at ν does
not contain any other P-node. This implies that all the children of ν, with the exception
of at most one Q-node, are S-nodes whose children are Q-nodes. Hence, the series-
parallel graph G(ν) associated to ν is composed of a set of paths connecting its poles
s and t. Let p1 and p2 be two paths joining s and t and such that their union is a cycle
C not containing other vertices in its interior (see Fig. 2(a)). Such paths exist given that
the “rest of the graph” with respect to ν is in the outer face of G(ν), since the root e
of Te(G) is incident to the outer face of G. Internally triangulate C by adding dummy
edges (dashed edges of Fig. 2). Cycle C and the added dummy edges yield a drawing of
a biconnected outerplane graph O which, hence, has at least two vertices of degree two.

If there exists a vertex v with deg(v) = 2 and v 
= s, t (Case 1), then apply the
following contraction. Assume that v belongs to p2. Since O is internally triangulated,
both the neighbors v1 and v2 of v belong to p2, and they are joined by a dummy edge.
We obtain Γ (G′) from Γ (G) by contracting v onto one of its neighbors, while preserv-
ing planarity (see Figs. 2(a) and 2(b)). If p2 contains more than two edges (Case 1.1),
then p2 is replaced in G′ with a path p′2 that contains edge (v1, v2) and does not contain
vertex v. Otherwise, p2 contains exactly two edges (v, v1) and (v, v2). If there exists
edge (v1, v2) in G (Case 1.2), then G′ = G \ {v}. Finally, if edge (v1, v2) does not
exist in G (Case 1.3), then p2 is replaced in G′ with edge (v1, v2). Otherwise, the only
two vertices of degree 2 in O are s and t (Case 2). In this case, one of the two vertices
u1 and u2 of O adjacent to s has degree 3, say u2 (since removing s and its incident
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Fig. 2. The internally triangulated cycle C formed by paths p1 and p2. Dummy edges are drawn
as dashed lines. (a–b) Vertex v of degree 2 can be contracted onto v1. (b–c) Vertex u2 of degree
3 can be contracted onto u1.

edges from O yields another biconnected outerplane graph with two vertices of degree
2, namely t and one of u1 and u2). We obtain Γ (G′) from Γ (G) by contracting u2 onto
u1. Let u3 be the neighbor of u1 and u2 different from s. Since the edges incident to u2

are contained into triangles �s,u1,u2 and �u1,u2,u3 during the contraction, planarity is
preserved (see Figs. 2(b) and 2(c)). Let p′2 be the path composed of edge (u1, u3) and
of the subpath of p2 between u3 and t, and let p′1 be the subpath of p1 between u1 and
t. Note that G′ contains edge (u1, u3) and does not contain vertex u2. In both Case 1
and Case 2, the decomposition tree Te(G

′) of G′ differs from the decomposition tree
Te(G) of G only “locally” to ν. A precise description of the differences between Te(G)
and Te(G

′) can be found in the extended version of the paper [4].
Let Γ (G′) be the drawing of the graph G′ = G \ {v} obtained after the contraction

performed in Case 1 or Case 2. Inductively construct a pseudo-morphing fromΓ (G′) to
the canonical drawing Γ ∗(G′) of G′ in c · (n− 1) steps, where c is a constant. Drawing
Γ ∗(G) can be obtained from Γ ∗(G′) by uncontracting v and by performing a constant
number of morphing steps, as described in the following.

Here we only describe how to obtain Γ ∗(G) from Γ ∗(G′) if Case 1.1 was applied to
contract v into one of its neighbors in p2. The other cases can be handled in a similar
way (a full description can be found in the extended version of the paper [4]).

Drawings Γ ∗(G′) and Γ ∗(G) coincide except for the fact that path p2 in Γ ∗(G)
contains v, while path p′2 in Γ ∗(G′) does not contain v. Paths p′2 and p2 are drawn inside
two equal boomerangs in Γ ∗(G′) and in Γ ∗(G), respectively, however v and some of
the vertices of p′2 need to be moved in order to obtain the drawing of p2 as in Γ ∗(G′).
Namely, the drawing Γ ∗(p′2) of p′2 inside the boomerangN,E, S,W associated to τ2 in
Γ ∗(G′) is composed of edges lying on two straight-line segments NC and SC, where
C is the midpoint of segment EW (see Fig. 3(a)). The drawing Γ ∗(p2) of p2 in Γ ∗(G)
also lies inside N,E, S,W and is composed of edges lying on NC and SC, but vertices
lie on different points (see Fig. 3(e)).

With one morphing step, uncontract v from the vertex it had been contracted onto
and place it on any point of segment v1v2 (note that edge (v1, v2) exists in G′ and not
in G; see Fig. 3(b)). Then, in order to redistribute the vertices of p2 on NC and SC,
perform the following operation. Assume w.l.o.g. that s is on point N and t is on point
S in Γ ∗(G′) and in Γ ∗(G). Consider the verticesw ∈ p2 and w′ ∈ p′2 that are placed on
point C in Γ ∗(G) and Γ ∗(G′), respectively. Note that either w = w′ or (w,w′) ∈ p2.
If w = w′, either the subpath p2(s, w) of p2 between s and w or the subpath p2(w, t)
of p2 between w and t has the same drawing in Γ ∗(G) and Γ ∗(G′), say p2(w, t) has
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Fig. 3. Construction of Γ ∗(G) from Γ ∗(G′) when Case 1.1 applied. (a) Γ ∗(p′2). The boomerang
associated to τ2 is light-grey. (b) Vertex v is uncontracted and placed on segment v1v2. (c) Ver-
tices on the path between s and w are placed in their final position, and vertex w′ is placed
arbitrarily close to C on the elongation of NC. (d) Vertex w′ is placed on CS. (e) Vertices on
the path between w and t are placed in their final position, hence obtaining Γ ∗(G).

such a property. With one morphing step move the vertices of p2(s, w) on segment NC
till reaching their positions in Γ ∗(G). If w 
= w′, assume without loss of generality that
w ∈ p2(s, w

′). With one morphing step, move the vertices of p2(s, w) and vertex w′

along the line through N and C, so that the vertices of p2(s, w) reach their positions in
Γ ∗(G) and w′ is placed arbitrarily close to C on the elongation of NC (see Fig. 3(c)).
With a second morphing step, move w′ to any point of SC between w and its other
neighbor in p2 (see Fig. 3(d)). Finally, with a third morphing step, move the vertices of
p2(w, t) on segment SC till reaching their positions in Γ ∗(G) (see Fig. 3(e)).

3.2 Simply-Connected Series-Parallel Graphs

In this section we show how, by preprocessing the input drawings Γa and Γb of any
series-parallel graph G, the algorithm presented in Section 3.1 can be used to com-
pute a pseudo-morph M =〈Γa, . . . , Γb〉. The idea is to augment both Γa and Γb to
two drawings Γ ′

a and Γ ′
b of a biconnected series-parallel graph G′, compute the morph

M ′ =〈Γ ′
a, . . . , Γ

′
b〉, and obtain M by restricting M ′ to the vertices and edges of G.

This augmentation is performed on G by repeatedly applying the following lemma.

Lemma 1. Let v be a cut-vertex of a plane series-parallel graph G with nb blocks. Let
e1 = (u, v) and e2 = (w, v) be two consecutive edges in the circular order around
v such that e1 belongs to block b1 of G and e2 belongs to block b2 
= b1 of G. The
graph G∗ obtained from G by adding a vertex z and edges (u, z) and (w, z) is a plane
series-parallel graph with nb − 1 blocks.

Observe that, when augmenting G to G∗, both Γa and Γb can be augmented to two
planar straight-line drawings Γ ∗

a and Γ ∗
b of G∗ by placing vertex z suitably close to v

and with direct visibility to vertices u and w, as in the proof of Fáry’s Theorem [9].
By repeatedly applying such an augmentation we obtain a biconnected series-parallel
graph G′ and its drawings Γ ′

a and Γ ′
b, whose number of vertices and edges is linear in
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the size of G. Hence, the algorithm described in Section 3.1 can be applied to obtain a
pseudo-morph 〈Γa, . . . , Γb〉, thus proving Theorem 3. We will show in Section 5 how
to obtain a morph starting from the pseudo-morph computed in this section.

4 Morphing Plane Graph Drawings in O(n2) Steps

In this section we prove the following theorem.

Theorem 4. Let Γs and Γt be two drawings of the same plane graph G. There exists a
pseudo-morph 〈Γs, . . . , Γt〉 with O(n2) steps transforming Γs into Γt .

Preliminary Definitions. Let Γ be a planar straight-line drawing of a plane graph G. A
face f of G is empty in Γ if it is delimited by a simple cycle. Consider a vertex v of G
and let v1 and v2 be two of its neighbors. Vertices v1 and v2 are consecutive neighbors
of v if no edge appears between edges (v, v1) and (v, v2) in the circular order of the
edges around v in Γ . Let v be a vertex with deg(v) ≤ 5 such that each face containing
v on its boundary is empty. We say that v is contractible [1] if, for each two neighbors
u1 and u2 of v, edge (u1, u2) exists in G if and only if u1 and u2 are consecutive
neighbors of v. We say that v is quasi-contractible if, for each two neighbors u1 and
u2 of v, edge (u1, u2) exists in G only if u1 and u2 are consecutive neighbors of v.
In other words, no edge exists between non-consecutive neighbors of a contractible or
quasi-contractible vertex; also, each face incident to a contractible vertex v is delimited
by a 3-cycle, while a face incident to a quasi-contractible vertex might have more than
three incident vertices. We have the following.

Lemma 2. Every planar graph contains a quasi-contractible vertex.

Further, given a neighbor x of v, we say that v is x-contractible onto x in Γ if: (i) v
is quasi-contractible, and (ii) the contraction of v onto x in Γ results in a straight-line
planar drawing Γ ′ of G′ = G/(v, x).

The Algorithm. We describe the main steps of our algorithm to pseudo-morph a draw-
ing Γs of a plane graph G into another drawing Γt of G.

First, we consider a quasi-contractible vertex v of G, that exists by Lemma 2. Sec-
ond, we compute a pseudo-morph with O(n) steps of Γs into a drawing Γ x

s of G and
a pseudo-morph with O(n) steps of Γt into a drawing Γ x

t of G, such that v is x-
contractible onto the same neighbor x both in Γ x

s and in Γ x
t . We will describe later

how to perform these pseudo-morphs. Third, we contract v onto x both in Γ x
s and in

Γ x
t , hence obtaining two drawings Γ ′

s and Γ ′
t of a graph G′ = G/(v, x) with n− 1 ver-

tices. Fourth, we recursively compute a pseudo-morph transforming Γ ′
s into Γ ′

t . This
completes the description of the algorithm for constructing a pseudo-morphing trans-
forming Γs into Γt. Observe that the algorithm has p(n) ∈ O(n2) steps, thus prov-
ing Theorem 4. Namely, as it will be described later, O(n) steps suffice to construct
pseudo-morphings of Γs and Γt into drawings Γ x

s and Γ x
t of G, respectively, such

that v is x-contractible onto the same neighbor x both in Γ x
s and in Γ x

t . Further, two
steps are sufficient to contract v onto x in both Γ x

s and Γ x
t , obtaining drawings Γ ′

s
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Fig. 4. Vertex v and its neighbors. (a) Vertices a and b do not have direct visibility and the triangle
〈a, b, v〉 is not empty. (b) A vertex u is added suitably close to v and connected to v, a, and b. (c)
The output of CONVEXIFIER on the quadrilateral 〈a, b, v, u〉. (d) Vertex u and its incident edges
can be removed in order to insert edge (a, b).

and Γ ′
t , respectively. Finally, the recursion on Γ ′

s and Γ ′
t takes p(n − 1) steps. Thus,

p(n) = p(n− 1) + O(n) ∈ O(n2). We will show in Section 5 how to obtain a morph
starting from the pseudo-morph computed in this section.

We remark that our approach is similar to the one proposed by Alamdari et al. [1].
In [1] Γs and Γt are augmented to drawings of the same maximal planar graph with m ∈
O(n2) vertices, and a morph with O(m2) steps is constructed between two drawings
of the same m-vertex maximal planar graph. This results in a morphing between Γs

and Γt with O(n4) steps. Here, we also augment Γs and Γt to drawings of maximal
planar graphs. However, we only require that the two maximal planar graphs coincide
in the subgraph induced by the neighbors of v. Since this can be achieved by adding a
constant number of vertices to Γs and Γt, namely one for each of the at most five faces
v is incident to, our morphing algorithm has O(n2) steps.

Making v x-contractible. Let v be a quasi-contractible vertex of G. We show an
algorithm to construct a pseudo-morph with O(n) steps transforming any straight-line
planar drawing Γ of G into a straight-line planar drawing Γ ′ of G such that v is x-
contractible onto any neighbor x. If v has degree 1, then it is contractible into its unique
neighbor in Γ , and there is nothing to prove.

In order to transform Γ into Γ ′, we use a support graph S and its drawingΣ, initially
set equal to G and Γ , respectively. The goal is to augment S and Σ so that v becomes
a contractible vertex of S. In order to do this, we have to add to S an edge between
every two consecutive neighbors of v. However, the insertion of these edges might not
be possible in Σ, as it might lead to a crossing or to enclose some vertex inside a cycle
delimited by v and by two consecutive neighbors of v (see Fig. 4(a)).

Let a and b be two consecutive neighbors of v. If the closed triangle 〈a, b, v〉 does
not contain any vertex other than a, b, and v, then add edge (a, b) to S and to Σ as a
straight-line segment. Otherwise, proceed as follows.

Let Σu be the drawing of a plane graph Su obtained by adding a vertex u and the
edges (u, v), (u, a), and (u, b) to Σ and to S, in such a way that the resulting drawing is
straight-line planar and each face containing u on its boundary is empty. As in the proof
of Fáry’s Theorem [9], a position for u with such properties can be found in Σ, suitably
close to v. See Fig. 4(b). Augment Σu to the drawing Θ of a maximal plane graph T
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by first adding three vertices p, q, and r to Σu, so that triangle 〈p, q, r〉 encloses the rest
of the drawing, and then adding dummy edges [8]. If edge (a, b) has been added in this
augmentation (this can happen if a and b share a face not having v on its boundary),
subdivide (a, b) in Θ (namely, replace (a, b) with edges (a, w) and (w, b), placing w
along the straight-line segment connecting a and b) and triangulate the two faces vertex
w is incident to. Next, apply the algorithm described in [1], that we call CONVEXIFIER,
to construct a morph ofΘ into a drawingΘ′ of T in which polygon 〈a, v, b, u〉 is convex.
The input of algorithm CONVEXIFIER consists of a planar straight-line drawing Γ ∗ of
a plane graph G∗ and of a set of at most five vertices of G∗ inducing a biconnected
outerplane graph not containing any other vertex in its interior in Γ ∗. The output of
algorithm CONVEXIFIER is a sequence of O(n) linear morphing steps transforming Γ ∗

into a drawing of G∗ in which the at most five input vertices bound a convex polygon.
Since, by construction, vertices a, v, b, u satisfy all such requirements, we can apply
algorithm CONVEXIFIER to Θ and to a, v, b, u, hence obtaining a morph with O(n)
steps transformingΘ into the desired drawing Θ′ (see Fig. 4(c)). Let Σ′

u be the drawing
of Su obtained by restricting Θ′ to vertices and edges of Su. Since 〈a, v, b, u〉 is a
convex polygon containing no vertex of Su in its interior, edge (u, v) can be removed
from Σ′

u and an edge (a, b) can be introduced in Σ′
u, so that the resulting drawing Σ′

is planar and cycle (a, b, v) does not contain any vertex in its interior (see Fig. 4(d)).
Once edge (a, b) has been added to S (either in Σ or after the described procedure

transforming Σ into Σ′), if deg(v) = 2 then v is both a-contractible and b-contractible.
Otherwise, consider a new pair of consecutive vertices of v not creating an empty trian-
gular face with v, if any, and apply the same operations described before.

Once every pair of consecutive vertices has been handled, vertex v is contractible in
S. LetΣv be the current drawing ofS. AugmentΣv to the drawingΘv of a triangulation
Tv (by adding three vertices and a set of edges), contract v onto a neighborw such that v
is w-contractible (one of such neighbors always exists, given that v is contractible), and
apply CONVEXIFIER to the resulting drawingΘ′

v and to the neighbors of v to construct a
morphing Θ′

v to a drawing Σ′
v in which the polygon defined by such vertices is convex.

Drawing Γ ′ of G in which v is x-contractible for any neighbor x of v is obtained by
restricting Σ′

v to the vertices and the edges of G. We can now contract v onto x in Γ ′

and recur on the obtained graph (with n− 1 vertices) and drawing.
It remains to observe that, given a quasi-contractible vertex v, the procedure to con-

struct a pseudo-morph of Γ into Γ ′ consists of at most deg(v) + 1 executions of CON-
VEXIFIER, each requiring a linear number of steps [1]. As deg(v) ≤ 5, the procedure
to pseudo-morph Γ into Γ ′ has O(n) steps. This concludes the proof of Theorem 4.

5 Transforming a Pseudo-Morph into a Morph

In this section we show how to obtain an actual morph M from a given pseudo-morph
M, by describing how to compute the placement and the motion of any vertex v that
has been contracted during M. By applying this procedure to Theorems 3 and 4, we
obtain a proof of Theorems 1 and 2.
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Let Γ be a drawing of a graph G and let M =〈Γ, . . . , Γ ∗〉 be a pseudo-morph that
consists of the contraction of a vertex v of G onto one of its neighbors x, followed by a
pseudo-morph M′ of the graph G′ = G/(v, x), and then of the uncontraction of v.

The idea of how to compute M from M is the same as in [1]: Namely, morph M
is obtained by (i) recursively converting M′ into a morph M ′; (ii) modifying M ′ to
a morph M ′

v obtained by adding vertex v (and its incident edges) to each drawing of
M ′, in a suitable position; (iii) replacing the contraction of v onto x, performed in
M, with a linear morph that moves v from its initial position in Γ to its position in
the first drawing of M ′

v; and (iv) replacing the uncontraction of v, performed in M,
with a linear morph that moves v from its position in the last drawing of M ′

v to its final
position in Γ ∗. Note that, in order to guarantee the planarity of M when adding v to any
drawing of M ′ in order to obtain M ′

v, vertex v must lie inside its kernel. Since vertex x
lies in the kernel of v (as x is adjacent to all the neighbors of v in G′), we achieve this
property by placing v suitably close to x, as follows.

At any time instant t during M ′, there exists an εt > 0 such that the disk D centered
at x with radius εt does not contain any vertex other than x. Let ε be the minimum
among the εt during M ′. We place vertex v at a suitable point of a sector S of D
according to the following cases. Case (a): v has degree 1 in G. Sector S is defined
as the intersection of D with the face containing v in G. See Fig. 5(a). Case (b): v has
degree 2 in G. Sector S is defined as the intersection of D with the face containing v
in G and with the halfplane defined by the straight-line passing through x and r, and
containing v in Γ . See Fig. 5(b). Otherwise, deg(v) ≥ 3 in G′. Let (r, v) and (l, v)
be the two edges such that (r, v), (x, v), and (l, v) are clockwise consecutive around v
in G. Observe that edges (r, x) and (l, x) exist in G′. Assume that x, r, and l are not
collinear in any drawing of M ′, as otherwise we can slightly perturb such a drawing
without compromising the planarity of M ′. Let αi be the angle ̂lxr in any intermediate
drawing of M ′. Case (c): αi < π. Sector S is defined as the intersection of D with the
wedge delimited by edges (x, r) and (x, l). See Fig. 5(c). Case (d): αi > π. Sector
S is defined as the intersection of D with the wedge delimited by the elongations of
(x, r) and (x, l) emanating from x. See Fig. 5(d). By exploiting the techniques shown
in [1], the motion of v can be computed according to the evolution of S over M ′, thus
obtaining a planar morph M ′

v.
Observe that, in the algorithm described in Section 4, the vertex x onto which v has

been contracted might be not adjacent to v in G. However, since a contraction has been
performed, x is adjacent to v in one of the graphs obtained when augmenting G during
the algorithm. Hence, a morph of G can be obtained by applying the above procedure
to the pseudo-morph computed on this augmented graph and by restricting it to the
vertices and edges of G.

x v
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x r

v

(b)

l

vx
r
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x
rv

l
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Fig. 5. Sector S (in grey) when: (a) deg(v) = 1, (b) deg(v) = 2, and (c)-(d) deg(v) ≥ 3.
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6 Conclusions and Open Problems

In this paper we studied the problem of designing efficient algorithms for morphing two
planar straight-line drawings of the same graph. We proved that any two planar straight-
line drawings of a series-parallel graph can be morphed with O(n) linear morphing
steps, and that a planar morph with O(n2) linear morphing steps exists between any
two planar straight-line drawings of any planar graph.

It is a natural open question whether the bounds we presented are optimal or not. We
suspect that planar straight-line drawings exist requiring a linear number of steps to be
morphed one into the other. However, no super-constant lower bound for the number of
morphing steps required to morph planar straight-line drawings is known. It would be
interesting to understand whether our techniques can be extended to compute morphs
between any two drawings of a partial planar 3-tree with a linear number of steps. We
recall that, as observed in [1], a linear number of morphing steps suffices to morph any
two drawings of a maximal planar 3-tree.
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