COAST: A Convex Optimization Approach
to Stress-Based Embedding

Emden R. Gansner, Yifan Hu, and Shankar Krishnan

AT&T Labs - Research, Florham Park, NJ

Abstract. Visualizing graphs using virtual physical models is probably the most
heavily used technique for drawing graphs in practice. There are many algorithms
that are efficient and produce high-quality layouts. If one requires that the layout
also respect a given set of non-uniform edge lengths, however, force-based ap-
proaches become problematic while energy-based layouts become intractable. In
this paper, we propose a reformulation of the stress function into a two-part con-
vex objective function to which we can apply semi-definite programming (SDP).
We avoid the high computational cost associated with SDP by a novel, compact
re-parameterization of the objective function using the eigenvectors of the graph
Laplacian. This sparse representation makes our approach scalable. We provide
experimental results to show that this method scales well and produces reasonable
layouts while dealing with the edge length constraints.

1 Introduction

For visualizing general undirected graphs, algorithms based on virtual physical mod-
els are some of the most frequently used drawing methods. Among these, the spring-
electrical model [7l8]] treats edges as springs that pull nodes together, and nodes as
electrically-charged entities that repel each other. Efficient and effective implementa-
tions [13114,26] usually utilize a multilevel approach and fast force approximation with
a suitable spatial data structure, and can scale to millions of vertices and edges while
still producing high-quality layouts.

In certain instances, the graph may assign non-uniform lengths to its edges, and the
layout problem will have the additional constraint of trying to match these lengths. A
suitable formulation of the spring-electrical model that works well when edges have
predefined target lengths is still an open problem.

In contrast, the (full) stress model assumes that there are springs connecting all vertex
pairs of the graph. Assuming we have a graph G = (V, E), with V the set of vertices and
E the set of edges, the energy of this spring system is

Z W,‘j(“X,‘*)CjH—dij)z, (1)
i,jev
where d;; is the ideal distance between vertices i and j, and w;; is a weight factor.
The weight factor can modify the impact of an error. Weights can be arbitrary but are
frequently taken as a negative power of d;;, thus lessening the error for larger ideal
distances. A layout that minimizes this stress energy is taken as an optimal layout of the

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 268-279] 2013.
(© Springer International Publishing Switzerland 2013

COAST: A Convex Optimization Approach to Stress-Based Embedding 269

graph. The justification for this is clear: in most cases, it is not possible to find a drawing
that respects all of the edge lengths, while expression () is basically the weighted mean
square error of a drawing. (See also the work of Brandes and Pich [2]].)

The stress model has its roots in multidimensional scaling (MDS) [[19] which was
eventually applied to graph drawing [16/20]]. Note that typically we are given only the
ideal distance between vertices that share an edge, which is taken to be unit length for
graphs without predefined edge lengths. For other vertex pairs, a common practice is
to define d;; as the length of a shortest path between vertex 7 and j. Such a treatment,
however, means that an all-pairs shortest path problem must be solved. Johnson’s algo-
rithm [15] takes O(|V [*1og |V |+ |V||E|) time, and O(|V|*) memory. (A slightly faster,
but still quadratic, algorithm is also known [23]].) For large graphs, such complexities
make solving the full stress model infeasible.

A number of techniques have been proposed for circumventing this problem,
typically focused on approximate solutions, using only a few computed distances, or
approximating the shortest path calculations. Gansner et al. [[12] proposed another ap-
proach for solving the “stress model” efficiently, by redefining the problem. The key
idea was to note that only the edge distances are given, while using shortest path lengths
for the remainder is somewhat arbitrary, and could be replaced with some other con-
straint that is faster to compute but still works in terms of layout quality. This led them
to propose a two-part modified stress function

> wij ([l — x| - dij)* — oH (x), 2
{i,j}€E

where the first term encodes the stress associated with the given distances, and the
second handles the remaining pairs.

In this paper, we also consider minimizing a two-part modified stress function. How-
ever, our formulation is such that the objective function is convex. More specifically,
it is quartic in the positions of the nodes, and can be expressed as a quadratic func-
tion of auxiliary variables, where each of the auxiliary variables is a product of po-
sitions. We solve the problem by projecting the positions into a subspace spanned by
the eigenvectors of the Laplacian, and transform the minimization problem into one of
convex programming. We call our technique COAST (Convex Optimization Approach
to STress-based emdedding).

The rest of the paper is organized as follows. In Section2] we discuss related work.
Section [3] gives the COAST model, and discusses a way to solve the model by semi-
definite programming. Section 4l evaluates our algorithm experimentally by comparing
it with some of the existing fast approximate stress models. Section [3] presents a sum-
mary and topics for further study.

2 Related Work

Most of the earlier approaches [24110/111712] for efficiently handling graph drawings
with edge lengths relied on approximately minimizing the stress model, typically using
some sparse model [10]. One notable effort is that of PivotMDS of Brandes and Pich

270 E.R. Gansner, Y. Hu, and S. Krishnan

[L]. This is an approximation algorithm which only requires distance calculations from
all nodes to a few chosen nodes.

While PivotMDS is very efficient and works well for some graphs, for graphs such
as trees, multiple nodes can share the same position. Khoury et al. [[17] approximate the
solution of the linear system in a stress majorization procedure [[10] by a low-rank sin-
gular value decomposition (SVD). They used a result of Drineas et al. [6]] which states
that for a matrix with well-distributed SVD values, the SVD values and left SVD vec-
tors of the submatrix consisting of randomly sampled columns of the original matrix
are a good approximation to the corresponding SVD values and vectors of the origi-
nal matrix. With this result, they were able to calculate only the shortest paths from
a selected number of nodes, as in PivotMDS. The method avoided having nodes in a
tree-like graph being embedded into the same position by using the exact (instead of ap-
proximate) right-hand-side of the stress majorization procedure, using an observation
that this right-hand-side can be calculated efficiently for the special case of w;; = 1/d;;.

The work most akin to that presented here is the maxent-stress model [[12]. That
approach borrows from the principle of maximal entropy, which says that items should
be placed uniformly in the absence of constraints. The model tries to minimize the
local stresses, while selecting a layout that maximizes the dispersion of nodes. This
leads to the function shown in expression @2), where typically H(x) = Ing; j¢||xi —
xj||. The authors introduce an algorithm, called force-augmented stress majorization, to
minimize this objective function.

Although it essentially ignores edge lengths, the binary stress model of Koren and
Civril [18] is stylistically related, in that the first term attempts to specify edge lengths
(as uniformly 0) and the second term has the effect of uniformly spacing the nodes.
Specifically, there is a distance of 0 between nodes sharing an edge, and a distance of 1
otherwise, giving the model

Y lwi—xlP o X (-l - 17
{ij}eE (ij}¢E

Similarly, Noack [21/22] has proposed the LinLog model and, more generally, the
r-PolyLog model,

2 il = X dnfl—xl,

{i.jteE Ljev

where, in particular, the second term is suggestive of the use of entropy in the maxent-
stress model.

The most significant attempt to use a force-directed approach for encoding edge
distances was the GRIP algorithm [9]. The multilevel coarsening uses maximal in-
dependent set based filtration, with the length of an edge at a coarse level computed
from lengths of its composite edges. On coarse levels, the algorithm uses a version
of the Kamada-Kawai algorithm [16] applied to each node within a local neighbor-
hood of the original graph, thus handling the relevant edge lengths. On the finest level,
however, a localized Fruchterman-Reingold algorithm [8]] is used, with no modeling of
edge lengths.

COAST: A Convex Optimization Approach to Stress-Based Embedding 271

In the area of data clustering, Chen and Buja [3]] present LMDS, a model based on
localized versions of MDS. Algebraically, this reduces to

> (=il —dy)’ =1 3 =l

{i.jtes (L.))&s

where S contains {7, j} if node j is among the k nearest neighbors if i. It is difficult to
determine how scalable this approach is but some tests indicate it is not appropriate for
graph drawing.

3 The COAST Algorithm

Let G = (V,E) denote an undirected graph, with the node set (vertices) V and edge set
E. We use n = |V| for the number of vertices in G. We assume that each edge (i, j) has
a desired length d;; with weight w;;. Typically, one sets w;; = 1/d; jz’ but our analysis
does not require that assumption. We wish to embed G into d-dimensional Euclidean
space. Let x; represent the coordinates of vertex i in R, and let P be the n x d matrix
whose rows are the x;. We define the Gram matrix X = (x;;) where x;; = x; - x;, the
matrix of inner products. It is well known that X is a positive semi-definite matrix.
We consider minimizing a two-part modified stress function:

T(P)= %, (wijlba—xjl* =wid)* =AY, |lxi—xll, 3)

{i.jteE (i./)¢E
where the first term attempts to assign edges their ideal edge lengths, and the second
term separates unrelated nodes as much as possible. The parameter ¢ can be used to
balance the two terms, emphasizing either conformity to the specified edge lengths
(small #) or uniform placement (large r). Without loss of generality, we can assume a

zero mean for the x;, i.e., Y;x; = 0. We set AL = |E|/ ((;) —|E|+ 1) to balance the

relative size of the two terms, as suggested by Chen and Buja [3]]. To minimize T (P),
let 71 and 75 be the first and second terms of 7', respectively, so that T = T} — 75, and
consider the first term. We have the following derivation:

2
Ti= %, {wil —xij—xjit+xj;) —wiidi;}
{i,jteE
2
= 2 {W,‘jTF(E,‘jX)—W,‘jd,‘jZ} . (4)
{i.jteE

where T'r() is the trace function and E;; = (ey) is the n x n matrix with
I, ifk=l=iork=1=j
—1,ifk=iandl=j

=N 1 ifk=jandl =i
0, otherwise

272 E.R. Gansner, Y. Hu, and S. Krishnan

Using standard properties of the trace, the expression () can be rewritten as

> wit{vee(Ey) 2 —difY, (5)
{i,j}€E
where 2" = vec(X) and vec() is the matrix vectorization operator.

Functions defined on nodes of a graph can be well approximated by the eigenvectors
of the graph Laplacian [4], and the smoother the function is, fewer eigenvectors are re-
quired to approximate it well. It is reasonable to assume that the function that embeds
the vertices in R is smooth over the graph. Therefore, the bottom k eigenvectors of the
graph’s Laplacian provide a good sparse basis for the position vectors. Typical values
of k range from 10-30 depending on the size of the graph. Let Q € R"*¥ be the matrix
composed of the eigenvectors of the Laplacian corresponding to the k smallest eigen-
values, ignoring the eigenvalue 0. It is well known that the eigenvector corresponding to
eigenvalue O accounts for the center of mass of the function. Removing it from consid-
eration automatically places the embedding at the origin. We can then find k vectors y;
in R¥ so that we can write each x; as ¥, ¢;/v; where ¢; = (gi1,4i2, - - -, qi) is the ith row of
Q. If we then define the k x k positive semi-definite matrix ¥ = (y;;) where y;; = y;-y;,
we have

X =pPPT =0vQ".

Using 2" = vec(X) and letting % = vec(Y), we can rewrite the above as

2 =000,
where ® is the Kronecker product. Using this in expression (@), we have
2
T = Z w,-jz{vec(E,-j)T(Q® Q)@*dijz} . (6)

{i,j}cE

Since x; —x; = ¥,;(qi — qj1)y;, it is fairly straightforward to see that the following
holds:

vec(Eij)" (Q® Q) = (i —4;) ® (¢i — q)-
Applying this to equation (6), we have

2
=Y wi{(gi—q)®(q—q)¥ —dj’}

{i.jteE

= > w2 ((gi—q)®(qi—4;) (9 —a) © (q;—)Y —
{ij}eE
2 Y wiltdit((gi—a)® (qi—a)Z + Y, widij.
{i,j}€E {i,j}€E

Now, turning to the second term of T'(P), we have

T, =tA 2 ||xi—x]-H2
(i,/)¢E

—M{lez'lez > |x,-xj|2}.)

COAST: A Convex Optimization Approach to Stress-Based Embedding 273

Lemma 1. 3, ; |lxi—x;||> =nTr(Y) and 3; peg |xi—xj)1* = ((9i— ;) ® (qi—q,)) ¥ -

Proof. Because the x; have zero mean, the first summation is equal to nY; [|x;]|> =
nTr(X)=nTr(Y). O

Using lemmal[ll we can rewrite equation () as

T = tA{nTr(Y) — ((qi —q;) @ (qi — ;)% }
:tl{nvec(I)T— 2 ((gi—qj)®(qi—q))}¥ .

{i.j}eE

Combining our recastings of the two terms of equation (3)), we have:

T(P)=T,—-T
=’ L Z}, wii{((qi—a) @ (g —)" (g1 —q) @ (qi—4;)} | ¥ —
ij}eE
LZ}, widi* —tA)((qi — q;) @ (qi— q;)) — ntAvec(I)" | & +
ij}EE
2 W,'jzd,'j4.
{i,j}€E

To simplify the exposition, we can write T(P) as # T A% +b’ % -+ constant. Since A
and Y are symmetric positive semi-definite matrices, this is a convex function inside the
semi-definite cone. It can be solved easily by any off-the-shelf semi-definite program
(SDP). SDP is usually inefficient, taking cubic time in the size of the variables and
constraints. A key novelty in our approach is the use of the approximation using the
graph Laplacian. Instead of minimizing with n? variables, our re-parameterization with
Y reduces the number of variables to k%. This is usually constant for most graphs and
hence makes our approach scalable. Because of the special structure of our problem, we
can further improve the running time by converting our quadratically-constrained SDP
to a Semidefinite Quadratic Linear Program (SQLP) and use a specialized solver like
SDPT3 [25]. Details of this conversion are given in the report [[L1]].

4 Experimental Results

We implemented the COAST algorithm in a combination of Python, Matlab and C
code. The main parts consist of forming the matrix A and vector b, calculating the
eigenvectors of the Laplacian, and solving the optimization problem. Time for the last
part is dependent only on the number of eigenvectors k, hence is constant for a fixed
number of eigenvectors. For graphs of size up to 100,000, the minimization using SQLP
takes less than 10 seconds inside Matlab.

We tested the COAST algorithm for solving the quartic stress model on a range of
graphs. For comparison, we also tested PivotMDS; PivotMDS(1), which uses Pivot-
MDS, followed by a sparse stress majorization; the maxent-stress model Maxent; and

274 E.R. Gansner, Y. Hu, and S. Krishnan

Table 1. Algorithms tested

Algorithm Model Fits distances?
COAST quartic stress model Yes. Edges only
PivotMDS approx. strain model Yes/No
PivotMDS(1) PivotMDS + sparse stress Yes.
Maxent PivotMDS + maxent-stress Yes.
FSM full stress model Yes. All-pairs

the full stress model, using stress majorization. We summarize all the tested algorithms
in Table [Tl

With the exception of graph gd, which is an author collaboration graph of the In-
ternational Symposium on Graph Drawing between 1994-2007, the graphs used are
from the University of Florida Sparse Matrix Collection [5]. Our selection is exactly
the same as that used by Gansner et al. [12]. Two of the graphs (commanche and
luxembourg) have associated pre-defined non-unit edge lengths. In our study, a rect-
angular matrix, or one with an asymmetric pattern, is treated as a bipartite graph. Test
graph sizes are given in Table 2]

Table 2. Test graphs. Graphs marked * have pre-specified non-unit edge lengths. Otherwise, unit
edge length is assumed.

Graph \4 |E| description
gd 464 1311 Collaboration graph
btree 1023 1022 Binary tree
1138 bus 1138 1358 Power system
gh882 1764 3354 Quebec hydro power

1p ship041 2526 6380 Linear programming
USpowerGrid 4941 6594 US power grid
commanche® 7920 11880 Helicopter
besstk31l 35586 572913 Automobile component
luxembourg® 114599 119666 Luxembourg street map

Tables [3] and (] present the outcomes for two graphs. (The drawings for all of the
graphs tested, with additional color detail, can be found in the companion report [11]].)
Following Brandes and Pich [2]], each drawing has an associated error chart. In an error
chart, the x-axis gives the graph distance bins, the y-axis is the difference between the
actual geometric distance in the layout and the graph distance. The chart shows the
median (black line), the 25 and 75 percentiles (gray band) and the min/max errors (gray
lines) that fall within each bin. For ease of understanding, we plot graph distance against
distance error, instead of graph distance vs. actual distance as suggested by Brandes
and Pich [2]]. Because generating the error chart requires an all-pairs shortest paths
calculation, we provide this chart only for graphs with less than 10,000 nodes.

COAST: A Convex Optimization Approach to Stress-Based Embedding 275

Table 3. Drawings and error charts of the tested algorithms for btree

PivotMDS PivotMDS(1) Maxent COAST

With the error chart, we also include a graph distance distribution curve (line with
dots), representing the number of vertex pairs in each graph distance bin. This distri-
bution depends on the graph, and is independent of the drawing. In making the error
charts, the layout is scaled to minimize the full stress model (), with w; =1 / dlzj

As an example, the error chart for PivotMDS on btree (Table Bl column 1,
bottom) shows that, on average, the median line is under the x-axis for small graph
distances. This means that the PivotMDS layout under-represents the graph distance
between vertex pairs that are a few hops away. This is because it collapses branches of
tree-like structures. The leaves of such structures tend to be a few hops away, but are
now positioned very near to each other. To some extent the same under-representation
of graph distance for vertex pairs that are a few hops away is seen for PivotMDS and
PivotMDS(1) on other non-rigid graphs, including 1138 bus, btree, 1p ship041
and USpowerGrid. Compared with PivotMDS and PivotMDS(1), the median line for
Maxent (column 3) does not undershoot the x-axes as much.

Comparing the COAST layouts with the others, we note that it appears to track the
x-axis more tightly and uniformly than the others, except for large lengths where, in
certain cases, it dives significantly. In general, COAST has a more consistent bias for
under-representation than the other layouts. The others tend to under-represent short
lengths and over-represent long lengths. Visually, most of the COAST layouts are satis-
factory, certainly avoiding the limitations of PivotMDS. For example, although it does
not capture the symmetry of bt ree as well as Maxent, it does a better job of handling
the details.

While visually comparing drawings made by different algorithms is informative, and
may give an overall impression of the characteristics of each algorithm, such inspection
is subjective. Ideally we would prefer to rely on a quantitative measure of performance.
However such a measure is not easy to devise. For example, if we use sparse stress
as our measure, PivotMDS, which minimizes sparse stress, is likely to come out best,

276 E.R. Gansner, Y. Hu, and S. Krishnan

Table 4. Drawings and error charts of the tested algorithms for 1p ship041

PivotMDS PivotMDS(1) Maxent COAST FSM

despite its shortcomings. As a compromise, we propose to measure full stress, as de-
fined by (), with w;; =1/ a’,zj Bear in mind that this measure naturally favors the full
stress model.

Table 3] gives the full stress measure achieved by each algorithm, as well as the
corresponding timings. Because it is expensive to calculate all-pairs shortest paths, we
restrict experimental measurement to graphs with less than 10,000 nodes. From the
table we can see that, as expected, FSM is the best, because it tries to optimize this
measure. We note that COAST is mostly competitive with the other non-FSM layouts.

As for timings, COAST, although a hybrid implementation, is comparable with Max-
ent, and appears to work well on large graphs.

4.1 Measuring Precision of Neighborhood Preservation

Sometimes, in embedding high dimensional data into a lower dimension, one is inter-
ested in preserving the neighborhood structure. In such a situation, exact replication of
distances between objects becomes a secondary concern.

For example, imagine a graph where each node is a movie. Based on some recom-
mender algorithm, an edge is added between two movies if the algorithm predicts that a
user who likes one movie would also like the other, with the length of the edge defined
as the distance (dissimilarity) between the two movies. The graph is sparse because
only movies that are strongly similar are connected by an edge. For a visualization of
this data to be helpful, we need to embed this graph in 2D in such a way that, for each
node (movie), nodes in its neighborhood in the layout are very likely to be similar to
this node. This would allow the user to explore movies that are more likely of interest
to her by examining, in the visualization, the neighborhoods of the movies she knew
and liked.

COAST: A Convex Optimization Approach to Stress-Based Embedding 277

Table 5. Full stress measure (x 1000) and CPU time (in seconds) for PivotMDS, PivotMDS(1),
Maxent, COAST and FSM. Smaller is better. We limit the measurements to graphs with less than
10,000 nodes and 10 hours of CPU time. A “-” is used to denote these missing data points.

Graph PivotMDS PivotMDS(1) Maxent COAST FSM

gd 19 03 15 03 12 08 13 46 10 23
btree 130 1.1 110 1.1 64 27 8 04 60 10.0
1138 bus 78 0.1 67 02 45 21 58 34 40 160
gh882 147 0.1 120 03 103 22 184 2.7 84 390

lp ship041 667 0.1 769 0.1 363 22 368 5.0 251 58.0
USpowerGrid 1124 0.1 932 0.9 1018 6.5 1073 5.3 702 272.0
commanche 2305 0.2 1547 0.9 1545 9.0 2853 8.8 654 1025.0

bcsstk3l - 24 - 216 -102.0 - 226.7 - -
luxembourg - 24 - 630.0 -209.0 - 1289 - -
od biree
08 07
07 06
06
05
05
s 5 04
2 04 2
8 8
g 5 o3
03|
02
02 PivolMDS PivolMDS
PivotMDS(1) PivotMDS(1)
0.1 Maxent 0.1 Maxent
COAST COAST
. FSM . FSM
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
K K

Fig. 1. Precision of neighborhood preservation of the algorithms, as a function of K. The higher
the precision, the better.

Following Gansner et al. [[12]], we look at the precision of neighborhood preservation.
We are interested in answering the question: if we see vertices nearby in the embedding,
how many of these are actually also neighbors in the graph space? We define the preci-
sion of neighborhood preservation as follows. For each vertex i, K neighboring vertices
of i in the layout are chosen. These K vertices are then checked to see if their graph dis-
tance is less than a threshold d(K), where d(K) is the distance of the K-th closest vertex
to i in the graph space. The percentage of the K vertices that are within the threshold,
averaged over all vertices i, is taken as the precision. Note that precision (the fraction of
retrieved instances that are relevant) is a well-known concept in information retrieval.
Chen and Buja [3] use a similar concept called LC meta-criteria.

Figure[Ilgives the precision as a function of K for two representative graphs. (Figures
for the remaining are available in the report [11]].) From the figure, it is seen that, in
general, COAST has the highest, or nearly the highest, precision. PivotMDS(1) tends
to have low precision. The precision of other algorithms, including Maxent, tends to be
between these two extremes.

278 E.R. Gansner, Y. Hu, and S. Krishnan

Overall, precision of neighborhood preservation is a way to look at one aspect of
embedding not well-captured by the full stress objective function, but is important to
applications such as recommendations. COAST performs well in this respect.

5 Conclusion and Future Work

In this paper, we described a new technique for graph layout that attempts to satisfy
edge length constraints. This technique uses a modified two-part stress function, one
part for the edge lengths, the other to guide the relative placement of other node pairs.
The stress is quartic in the positions of the nodes, and can be transformed to a form that
is suitable for solution using convex programming. The results produced are good and
the algorithm is scalable to large graphs.

Although the performance of the COAST algorithm is already competitive, we rely
on an ad hoc implementation using a combination of Python, Matlab and C code. It
would be very desirable to re-implement the algorithm entirely in C.

Our technique follows the general strategy of doing length-sensitive drawings for
large graphs by reformulating the energy function, keeping the core length constraints,
and then applying some appropriate mathematical machinery. Variations of this tech-
nique have been successfully used by others [[17/12]. It would be interesting to explore
additional adaptations of this approach.

Acknowledgements. We would like to thank the reviewers for their helpful comments.

References

1. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large
data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42-53. Springer,
Heidelberg (2007)

2. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing. In: Tollis,
I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218-229. Springer, Heidelberg
(2009)

3. Chen, L., Buja, A.: Local multidimensional scaling for nonlinear dimension reduction, graph
drawing, and proximity analysis. J. Amer. Statistical Assoc. 104, 209-219 (2009)

4. Chung, FR.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics,
No. 92). American Mathematical Society, Providene (1996)

5. Davis, T.A., Hu, Y.: U. of Florida Sparse Matrix Collection. ACM Transaction on Mathemat-
ical Software 38, 1-18 (2011),
http://www.cise.ufl.edu/research/sparse/matrices/

6. Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the
singular value decomposition. Machine Learning 56, 9-33 (2004)

7. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149-160 (1984)

8. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force directed placement. Software
- Practice and Experience 21, 1129-1164 (1991)

9. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed
layouts of large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211-221. Springer,
Heidelberg (2001)

http://www.cise.ufl.edu/research/sparse/matrices/

20.

21.

22.

23.

24.

25.

26.

COAST: A Convex Optimization Approach to Stress-Based Embedding 279

. Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J.

(ed.) GD 2004. LNCS, vol. 3383, pp. 239-250. Springer, Heidelberg (2005)

. Gansner, E.R., Hu, Y., Krishnan, S.: COAST: A convex optimization approach to stress-based

embedding (2013), http://arxiv.org/abs/1308.5218

. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis.

Comput. Graph. 19(6), 927-940 (2013)

. Hachul, S., Jiinger, M.: Drawing large graphs with a potential-field-based multilevel algo-

rithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285-295. Springer, Heidelberg
(2005)

. Hu, Y.: Efficient and high quality force-directed graph drawing. Mathematica Journal 10,

37-71 (2005)

. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1),

1-13 (1977)

. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information

Processing Letters 31, 7-15 (1989)

. Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.: Drawing large graphs by low-rank stress

majorization. Computer Graphics Forum 31(3), 975-984 (2012)

. Koren, Y., Civril, A.: The binary stress model for graph drawing. In: Tollis, I.G., Patrignani,

M. (eds.) GD 2008. LNCS, vol. 5417, pp. 193-205. Springer, Heidelberg (2009)

. Kruskal, J.B.: Multidimensioal scaling by optimizing goodness of fit to a nonmetric hypoth-

esis. Psychometrika 29, 1-27 (1964)

Kruskal, J.B., Seery, J.B.: Designing network diagrams. In: Proc. First General Conference
on Social Graphics, pp. 22-50. U. S. Department of the Census, Washington, D.C. (July
1980), Bell Laboratories Technical Report No. 49

Noack, A.: Energy models for graph clustering. J. Graph Algorithms and Applications 11(2),
453-480 (2007)

Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79, 026102
(2009)

Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical
Computer Science 312(1), 47-74 (2004)

de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality
reduction. In: Advances in Neural Information Processing Systems 15, pp. 721-728. MIT
Press, Cambridge (2003)

Tiitiincii, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using
SDPT3. Mathematical Programming 95(2), 189-217 (2003)

Walshaw, C.: A multilevel algorithm for force-directed graph drawing. J. Graph Algorithms
and Applications 7, 253-285 (2003)

http://arxiv.org/abs/1308.5218

	COAST: A Convex Optimization Approach
to Stress-Based Embedding
	1 Introduction
	2 Related Work
	3 The COAST Algorithm
	4 Experimental Results
	4.1 Measuring Precision of Neighborhood Preservation

	5 Conclusion and Future Work
	References

