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Preface

This volume contains the papers that were presented at the 21st International
Symposium on Graph Drawing, which was held during September 23–25, 2013,
in Bordeaux, France. The symposium was hosted by the University of Bordeaux I
and was attended by 99 participants from 15 countries. We thank David Auber,
the local arrangements chair, and his team for their warm hospitality and their
effort to keep the conference fee low. Everyone enjoyed the nice weather, the
beauty of Bordeaux, and the excellent cuisine.

As was the case for GD 2012, paper submissions were partitioned into two
tracks and there was a separate poster track. Track 1 deals with combinatorial
and algorithmic aspects; track 2 with visualization systems and interfaces. There
was a record of 110 submissions: 94 papers—79 long (with 12 pages) and 15
short (with 6 pages)—and 16 posters (each with a two-page description). Each
submission was reviewed by at least three Program Committee members. The
committee decided to accept 42 papers and 12 posters. The acceptance rates were
36/72 in track 1, 6/22 in track 2, and 12/16 for posters. Only one short paper
was accepted (in track 1). We thank the Program Committee, the sub-reviewers,
the session chairs, and all authors for their hard work.

As a novelty, GD 2013 had three invited talks, one from applications, one
from theory, and one from industry. Tamara Munzner from the University of
British Columbia had a look at graph drawing through the lens of a framework
for analyzing visualization methods. EmoWelzl from ETH Zurich showed us how
to count crossing-free geometric graphs. And Joe Marks, co-founder and CTO
of Upfront Analytics Ltd., analyzed the value of research in an industrial envi-
ronment. We thank the speakers for their excellent talks, which complemented
each other nicely and were very well received.

As another novelty, GD 2013 awarded prizes for the best presentations. The
conference participants who stayed until the last talk voted for the winners.
Michael Bannister from the University of California at Irvine received the largest
number of votes and hence the first prize for his talk on the paper “Superpatterns
and Universal Point Sets.” Maarten Löffler from Utrecht University received the
second prize for his talk “Colored Spanning Graphs for Set Visualization.”

Following a well-established tradition, the 20th Annual Graph Drawing con-
test was held during the conference. It had two main categories: an off-line
and an on-line challenge. This year’s contest committee was chaired by Carsten
Gutwenger (University of Dortmund). We thank the committee for preparing
challenging problems and problem instances. A report of the contest is included
in these proceedings.

We also wish to thank our sponsors; “diamond” sponsor Microsoft, “gold”
sponsor Tom Sawyer Software, “silver” sponsor Vis4, “bronze” sponsor yWorks,
and the local sponsors Région Aquitaine, CNRS, LaBRI, Université Bordeaux I,



VI Preface

and LACUB. Without their support, the registration fees would have been
roughly twice as high.

We thank Philipp Kindermann from the University of Würzburg for his tech-
nical support in producing these proceedings.

The 22nd International Symposium on Graph Drawing (GD 2014) will be
held in Würzburg, Germany, September 24–26, 2014. Christian Duncan and
Antonios Symvonis will be the program committee chairs; Alexander Wolff will
be the organizing committee chair.

September 2013 Stephen Wismath
Alexander Wolff
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Graph Drawing through the Lens of a

Framework for Analyzing Visualization Methods

Tamara Munzner

University of British Columbia, Department of Computer Science
Vancouver BC, Canada

tmm@cs.ubc.ca, http://www.cs.ubc.ca/~tmm

Abstract. The visualization community has drawn heavily on the al-
gorithmic and systems-building work that has appeared with the graph
drawing literature, and in turn has been a fertile source of applications.
In the spirit of further promoting the effective transfer of ideas between
our two communities, I will discuss a framework for analyzing the design
of visualization systems. I will then analyze a range of graph drawing
techniques through this lens. In the early stages of a project, this sort
of analysis may benefit algorithm developers who seek to identify open
problems to attack. In later project stages, it could guide algorithm de-
velopers in characterizing how newly developed layout methods connect
with the tasks and goals of target users in different application domains.



The Counting of Crossing-Free Geometric

Graphs — Algorithms and Combinatorics

Emo Welzl�

Institute for Theoretical Computer Science
ETH Zurich, CH-8092 Zurich, Switzerland

emo@inf.ethz.ch

Abstract. We are interested in the understanding of crossing-free ge-
ometric graphs–these are graphs with an embedding on a given planar
point set where the edges are drawn as straight line segments without
crossings. Often we are restricted to certain types of graphs, most promi-
nently triangulations, but also spanning cycles, spanning trees, or (per-
fect) matchings (and crossing-free partitions), among others. A primary
goal is to enumerate, to count, or to sample graphs of a certain type for a
given point set–so these are algorithmic questions–, or to give estimates
for the maximum and minimum number of such graphs on any set of n
points–these are problems in extremal combinatorial geometry.

In this talk we will encounter some of the recent developments (since
my GD‘06 talk). Among others, I will show some of the new ideas for pro-
viding extremal estimates, e.g. for the number of crossing-free spanning
cycles: the support-refined estimate for cycles versus triangulations, the
use of pseudo-simultaneously flippable edges in triangulations, and the
employment of Kasteleyn’s beautiful linear algebra method for count-
ing perfect matchings in planar graphs–here, interestingly, in a weighted
version. Moreover, Raimund Seidel’s recent 2n-algorithm for counting
triangulations is discussed, with its extensions by Manuel Wettstein to
other types of graphs (e.g. crossing-free perfect matchings).

Keywords: computational geometry, geometric graphs, counting, sam-
pling, enumeration.

� Supported by EuroCores/EuroGiga/ComPoSe SNF grant 20GG21 134318/1.



The Value of Research

Joe Marks

Upfront Analytics Ltd.
1Marine Terrace, Dun Laoghaire, Co. Dublin, Ireland

Abstract. Which outcome would you prefer for your current research
project: a paper with 500 citations, or a business worth $5M? Or maybe
it doesn’t matter to you as long as you’re doing interesting work and
having fun. But even if academic and industrial researchers tend to value
research differently, deciding what to work on is the first and fundamental
step in any inquiry, and so it is worth thinking about the process and
criteria that researchers use for project selection.

To get you thinking about this issue, I will present a selection of re-
cent industrial projects with which I was involved as a researcher or
manager. In the tradition of reality TV, you the audience will be invited
to predict a 10-year citation count, estimate a dollar value, and assess
general coolness for each of the projects presented. Active participation
is encouraged! Although the focus is on research from the media and en-
tertainment industry, hopefully you will come away with thoughts about
how to estimate the value of your own research from both an academic
and a commercial perspective. I will end with some speculative poten-
tial graph-drawing projects to which we can apply our just-practiced
judgment on project selection.
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On the Upward Planarity of Mixed Plane Graphs�

Fabrizio Frati1, Michael Kaufmann2, János Pach3,
Csaba D. Tóth4, and David R. Wood

1 School of Information Technologies, The University of Sydney, Australia
brillo@it.usyd.edu.au

2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
mk@informatik.uni.tuebingen.de

3 EPFL, Lausanne, Switzerland and Rényi Institute, Budapest, Hungary
pach@cims.nyu.edu

4 California State University Northridge, USA and University of Calgary, Canada
cdtoth@acm.org

5 School of Mathematical Sciences, Monash University, Melbourne, Australia
david.wood@monash.edu

Abstract. A mixed plane graph is a plane graph whose edge set is partitioned
into a set of directed edges and a set of undirected edges. An orientation of a
mixed plane graph G is an assignment of directions to the undirected edges of G
resulting in a directed plane graph G. In this paper, we study the computational
complexity of testing whether a given mixed plane graph G is upward planar,
i.e., whether it admits an orientation resulting in a directed plane graph G such
that G admits a planar drawing in which each edge is represented by a curve
monotonically increasing in the y-direction according to its orientation.

Our contribution is threefold. First, we show that the upward planarity testing
problem is solvable in cubic time for mixed outerplane graphs. Second, we show
that the problem of testing the upward planarity of mixed plane graphs reduces
in quadratic time to the problem of testing the upward planarity of mixed plane
triangulations. Third, we exhibit linear-time testing algorithms for two classes of
mixed plane triangulations, namely mixed plane 3-trees and mixed plane triangu-
lations in which the undirected edges induce a forest.

1 Introduction

Upward planarity is the natural extension of planarity to directed graphs. When visu-
alizing a directed graph, one usually requires an upward drawing, that is, a drawing in
which the directed edges flow monotonically in the y-direction. A drawing is upward
planar if it is planar and upward. Testing whether a directed graph G admits an upward
planar drawing is NP-hard [9], however, it is polynomial-time solvable if G has a fixed
planar embedding [2], if it has a single-source [3,13], if it is outerplanar [15], or if it is
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a series-parallel graph [7]. Exponential-time algorithms [1] and FPT algorithms [12]
for upward planarity testing are known.

In this paper we deal with mixed graphs. A mixed graph is a graph whose edge set
is partitioned into a set of directed edges and a set of undirected edges. Mixed graphs
unify the expressive power of directed and undirected graphs, as they allow one to
simultaneously represent hierarchical and non-hierarchical relationships. A number of
problems on mixed graphs have been studied, e.g., coloring mixed graphs [11,17] and
orienting mixed graphs to satisfy connectivity requirements [5,6].

Upward planarity generalizes to mixed graphs as follows. A drawing of a mixed
graph is upward planar if it is planar, every undirected edge is a y-monotone curve, and
every directed edge is an arc with monotonically increasing y-coordinates. Hence, test-
ing the upward planarity of a mixed graph is equivalent to testing whether its undirected
edges can be oriented to produce an upward planar directed graph. Since the upward
planarity testing problem is NP-hard for directed graphs [9], it is NP-hard for mixed
graphs as well. Binucci and Didimo [4] studied the problem of testing the upward pla-
narity of mixed plane graphs, that is, of mixed graphs with a given plane embedding.
They describe an ILP formulation for the problem and present experiments showing the
efficiency of their solution. Different graph drawing questions on mixed graphs (related
to crossing and bend minimization) have been studied in [8,10].

We show the following results.
In Section 3 we show that the upward planarity testing problem can be solved in

O(n3) time for n-vertex mixed outerplane graphs. Our dynamic programming algo-
rithm uses a characterization for the upward planarity of directed plane graphs due to
Bertolazzi et al. [2], and it tests the upward planarity of a mixed outerplane graph G
based on the upward planarity of two subgraphs of G.

In Section 4 we show that, for every n-vertex mixed plane graph G, there exists an
O(n2)-vertex mixed plane triangulation G′ such that G is upward planar if and only if
G′ is upward planar. As a consequence, the problem of testing the upward planarity of
mixed plane graphs is polynomial-time solvable (NP-hard) if and only if the problem of
testing the upward planarity of mixed plane triangulations is polynomial-time solvable
(resp., NP-hard).

In Section 5, motivated by the previous result, we present linear-time algorithms to
test the upward planarity of two classes of mixed plane triangulations, namely mixed
plane 3-trees and mixed plane triangulations in which the undirected edges induce a
forest. The former algorithm uses dynamic programming, while the latter algorithm
uses induction on the number of undirected edges in the mixed plane triangulation.

Because of space limitations, some proofs are omitted or sketched in this extended
abstract. Complete proofs are available in the full version of the paper.

2 Preliminaries

A planar drawing of a graph determines a circular ordering of the edges incident to each
vertex. Two planar drawings of the same graph are equivalent if they determine the same
circular orderings around each vertex. A planar embedding is an equivalence class of
planar drawings. A planar drawing partitions the plane into topologically connected
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regions, called faces. The unbounded face is the outer face and the bounded faces are
the internal faces. An edge of G incident to the outer face (not incident to the outer
face) is called external (resp., internal). Two planar drawings with the same planar
embedding have the same faces. However, they could still differ in their outer faces.
A plane embedding is a planar embedding together with a choice for the outer face.
A plane graph is a graph with a given plane embedding. An outerplane graph is a
plane graph whose vertices are all incident to the outer face. A plane triangulation is a
plane graph whose faces are delimited by 3-cycles. An outerplane triangulation is an
outerplane graph whose internal faces are delimited by 3-cycles.

A block of a graph G(V,E) is a maximal (both in terms of vertices and in terms of
edges) 2-connected subgraph of G; in particular, an edge of G whose removal discon-
nects G is considered as a block of G. In this paper, when talking about the connectivity
of mixed graphs or directed graphs, we always refer to the connectivity of their under-
lying undirected graphs.

A vertex v in a directed graph is a sink (source) if every edge incident to v is incoming
at v (resp., outgoing at v). A vertex v in a directed plane graph is bimodal if the incoming
edges at v are consecutive in the cyclic ordering of edges incident to v (which implies
that the outgoing edges at v are also consecutive). A directed plane graph is bimodal
if every vertex is bimodal. A vertex v in a 2-connected directed outerplane graph is a
sink-switch (source-switch) if the two external edges incident to v are both incoming
(resp., outgoing) at v.

Bertolazzi et al. [2] characterized the directed plane graphs that are upward planar.
In this paper, we will use such a characterization when dealing with two specific classes
of directed plane graphs, namely directed outerplane triangulations and directed plane
triangulations. Thus, we state such a characterization directly for such graph classes.

Theorem 1 ([2]). A directed outerplane triangulation G is upward planar if and only
if it is acyclic, it is bimodal, and the number of sources plus the number of sinks in G
equals the number of sink-switches (or source-switches) plus one.

Theorem 2 ([2]). A directed plane triangulation G is upward planar if and only if it is
acyclic, it is bimodal, and G has exactly one source and one sink that are incident to
the outer face of G.

A mixed plane graph is upward planar if and only if each of its connected compo-
nents is upward planar. Thus, without loss of generality, we only consider connected
mixed plane graphs. In the following lemma, we show that a stronger condition can in
fact be assumed for each considered plane graph G, namely that G is 2-connected.

Lemma 1. Every n-vertex mixed plane graph G can be augmented with new edges
and vertices to a 2-connected mixed plane graph G′ with O(n) vertices such that G
is upward planar if and only if G′ is. If G is outerplane, than G′ is also outerplane.
Moreover, G′ can be constructed from G in O(n) time.

Proof Sketch: While G has a cutvertex c that is incident to a face f (if G is outerplane,
then f is its outer face), we consider two edges (v1, c) and (u2, c) that are consecutively
incident to c in G and that belong to different blocks of G. We add a vertex w inside
f and connect it to v1 and u2. The repetition of such an augmentation leads to a 2-
connected mixed plane graph G′ satisfying the conditions of the lemma. �
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3 Upward Planarity Testing for Mixed Outerplane Graphs

This section is devoted to the proof of the following theorem.

Theorem 3. The upward planarity of an n-vertex mixed outerplane graph can be tested
in O(n3) time.

Let G be any n-vertex mixed outerplane graph. By Lemma 1, an O(n)-vertex 2-
connected mixed outerplane graph G∗ can be constructed in O(n) time such that G is
upward planar if and only if G∗ is.

We introduce some notation and terminology. Let u and v be distinct vertices of G∗.
We denote by G∗ + (u, v) the graph obtained from G∗ by adding edge (u, v) if it is not
already in G∗, and by G∗−u the graph obtained from G∗ by deleting u and its incident
edges. Consider an orientation G∗ of G∗. A vertex is sinky (sourcey) in G∗ if it is a
sink-switch but not a sink (if it is a source-switch but not a source, resp.). A vertex that
is neither a sink, a source, sinky, nor sourcey is ordinary; that is, v is ordinary if the two
external edges incident to v are one incoming at v and one outgoing at v in G∗. We say
the status of a vertex of G∗ in G∗ is sink, source, sinky, sourcey, or ordinary.

First note that G∗ is upward planar if and only if there is an upward planar directed
outerplane triangulation T of G∗, that is, if and only if G∗ can be augmented to a mixed
outerplane triangulation, and the undirected edges of such a triangulation can be ori-
ented in such a way that the resulting directed outerplane triangulation T is upward
planar. The approach of our algorithm is to determine if there is such a T using recur-
sion. The algorithm can be easily modified to produce T if it exists.

We observe that a directed outerplane triangulation T is acyclic if and only if every
3-cycle in T is acyclic. One direction is trivial. Conversely, suppose that T contains a
directed cycle. Let C be a shortest directed cycle of T . If C is a 3-cycle, then we are
done. Otherwise, an edge (x, y) /∈ C exists in T between two vertices x and y both
in C. Thus, C + (x, y) contains two shorter cycles, one of which is a directed cycle,
contradicting the choice of C. Hence, to ensure the acyclicity of a directed outerplane
triangulation, it suffices to ensure that its internal faces are acyclic.

A potential edge ofG∗ is a pair of distinct vertices x and y in G∗ such that G∗+(x, y)
is outerplane, which is equivalent to saying that x and y are incident to a common
internal face of G∗ (notice that an edge of G∗ is a potential edge of G∗). Fix some
external edge r of G∗, called the root edge. Let e = {x, y} be an internal potential
edge of G∗. Then {x, y} separates G∗, that is, G∗ contains two subgraphs G∗

1 and G∗
2,

such that G∗ = G∗
1 ∪ G∗

2 and V (G∗
1 ∩ G∗

2) = {x, y}. (Thus, there is no edge between
G∗

1 − x − y and G∗
2 − x − y.) W.l.o.g., r ∈ E(G∗

1). Let G∗
e := G∗

2 + (x, y). Observe
that G∗

e is a 2-connected mixed outerplane graph with e incident to the outer face. Also,
let e = {x, y} �= r be an external potential edge of G∗. Then, we define G∗

e to be the 2-
vertex graph containing the single edge (x, y). Further, let G∗

r := G∗. For any (internal
or external) potential edge e = {x, y} of G∗ and for an orientation −→xy of e, let G∗−→xy be

G∗
e with e oriented−→xy. Define a partial order≺ on the potential edges of G∗ as follows.

For distinct potential edges e and f of G∗, say e ≺ f if both end-vertices of f are in
G∗

e . Loosely speaking, e ≺ f if G∗ + e+ f is outerplane and e is “between” r and f .
A potential arc of G∗ is a potential edge that is assigned an orientation preserving

its orientation in G∗. So if e is an undirected edge of G∗ or a potential edge not in
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G∗, then there are two potential arcs associated with e, while if e is a directed edge
of G∗, then there is one potential arc associated with e. If a potential arc −→xy is part
of a triangulation T of G∗, then x is a source, sourcey, or ordinary, and y is a sink,
sinky, or ordinary in G∗−→xy. We define the status of −→xy in G∗−→xy as an ordered pair S of
S(x) ∈ {source, sourcey, ordinary} and S(y) ∈ {sink, sinky, ordinary}.

We now define a function UP(−→xy, S), that takes as an input a potential arc −→xy and
a status S of −→xy, and has value “true” if and only if there is an upward planar directed
outerplane triangulation T−→xy of G∗−→xy that respects S(x) and S(y); notice that, if −→xy is
external and does not correspond to r, then T−→xy is a single edge.

First, the values of UP(−→xy, S) can be computed in total O(n) time for all the exter-
nal potential arcs −→xy of G∗ not corresponding to r and for all statuses of −→xy. Indeed,
UP(−→xy, S) is true if and only if S(x) = source and S(y) = sink.

We show below that, for each potential arc−→xy in G∗ that is internal or that is external
and corresponds to r, and for each status S of −→xy, the value of UP(−→xy, S) can be com-
puted in O(n) time from values associated to potential arcs corresponding to potential
edges e with {x, y} ≺ e. Since there are at most n(n + 1) potential arcs and nine sta-
tuses for each potential arc, all the values of UP(−→xy, S) can be computed in O(n3) time
by dynamic programming in reverse order to a linear extension of ≺. Then, there is an
upward planar directed outerplane triangulation of G∗ if and only if UP(−→xy, S) is true
for some orientation −→xy of r and some status S of −→xy.

Let −→xy be a potential arc that is internal to G∗ or that corresponds to r. Let S be a
status of −→xy. Suppose that UP(−→xy, S) is true. Then, there is an upward planar directed
outerplane triangulation T−→xy of G∗−→xy that respects S(x) and S(y). Such a triangulation
contains a vertex z ∈ V (G∗

xy) − x − y such that (x, y, z) is an internal face of T−→xy.
Since T−→xy has edge (x, y) oriented from x to y, then edges (x, z) and (y, z) cannot be
simultaneously incoming at x and outgoing at y, respectively, as otherwise T−→xy would
contain a directed cycle, which is not possible by Theorem 1. Hence, edges (x, z) and
(y, z) in T−→xy are either outgoing at x and incoming at y, or outgoing at x and outgoing
at y, or incoming at x and incoming at y, respectively.

Now, for any status S of −→xy and for a particular vertex z ∈ V (G∗
xy) − x − y, we

characterize the conditions for which an upward planar directed outerplane triangula-
tion T−→xy exists that respects S(x) and S(y) and that contains edges (x, z) and (y, z)
oriented according to each of the three orientations described above.

Lemma 2. There is an upward planar directed outerplane triangulation T−→xy that re-
spects S(x) and S(y), that contains edge (x, z) outgoing at x, and that contains edge
(z, y) incoming at y, if and only if −→xz and −→zy are potential arcs of G∗ and there are
statuses S1 of −→xz and S2 of −→zy such that the following conditions hold: (a) S1(x) =
S(x) ∈ {source, sourcey, ordinary}, (b) S2(y) = S(y) ∈ {sink, sinky, ordinary},
(c) S1(z) ∈ {sink, ordinary}, (d) S2(z) ∈ {source, ordinary}, (e) S1(z) = sink or
S2(z) = source, and (f) both UP(−→xz, S1) and UP(−→zy, S2) are true.

Proof: (=⇒) Let T−→xy be an upward planar directed outerplane triangulation of G∗−→xy
that respects S(x) and S(y), that contains edge (x, z) outgoing at x, and that con-
tains edge (z, y) incoming at y. Then, −→xz and −→zy are potential arcs of G∗. Further, T−→xy
determines upward planar directed outerplane triangulations T−→xz and T−→zy
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respectively of G∗−→xz and G∗−→zy (where T−→xz and T−→zy are single edges if −→xz and −→zy are

external, respectively), as well as statuses S1 and S2 of −→xz and −→zy, respectively, such
that (f) both UP(−→xz, S1) and UP(−→zy, S2) are true. Since −→xy and −→xz are consecutive
outgoing arcs at x, we have (a) S1(x) = S(x) ∈ {source, sourcey, ordinary}. Simi-
larly, (b) S2(y) = S(y) ∈ {sink, sinky, ordinary}. Since −→xz is incoming at z, we have
S1(z) ∈ {sink, ordinary, sinky}. However, if S1(z) = sinky, then z is not bimodal
in T−→xy. Thus (c) S1(z) ∈ {sink, ordinary}. Similarly, (d) S2(z) ∈ {source, ordinary}.
Finally, if z is ordinary in both T−→xz and T−→zy , then z is not bimodal in T−→xy. Thus (e)
S1(z) = sink or S2(z) = source.

(⇐=) Let T−→xz be an upward planar directed outerplane triangulation of G∗−→xz respect-
ing S1 (T−→xz is a single edge if −→xz is external). Let T−→zy be an upward planar directed
outerplane triangulation of G∗−→zy respecting S2 (T−→zy is a single edge if −→zy is external).

Such triangulations exist because UP(−→xz, S1) and UP(−→zy, S2) are true. Let T−→xy be the
triangulation of G∗−→xy determined from T−→xz and T−→zy by adding the arc −→xy. Since T−→xz,
T−→zy, and (x, y, z) are acyclic, T−→xy is acyclic. Since x is bimodal in T−→xz, it is bimodal in
T−→xy. Similarly, y is bimodal in T−→xy. As described above, the conditions on S1(z) and
S2(z) imply that z is bimodal in T−→xy. Every other vertex is bimodal in T−→xy because it is
bimodal in T−→xz or in T−→zy. Hence, T−→xy is bimodal.

Let s1, t1 and w1 (s2, t2 and w2; s, t and w) be the number of sources, sinks, and
sink-switches in T−→xz (resp., in T−→zy; resp., in T−→xy), respectively. By Theorem 1, si+ ti =
wi + 1, for i ∈ {1, 2}. If z is a sink in T−→xz and ordinary in T−→zy , then s = s1 + s2,
t = t1 + t2 − 1 (for z), and w = w1 + w2. If z is a source in T−→zy and ordinary in
T−→xz, then s = s1 + s2 − 1 (for z), t = t1 + t2, and w = w1 + w2. If z is a sink in
T−→xz and a source in T−→zy, then s = s1 + s2 − 1 (for z) and t = t1 + t2 − 1 (for z) and
w = w1 + w2 − 1 (for z). In all three cases, it follows that s+ t = w + 1.

By Theorem 1, T−→xy is upward planar. By construction, T−→xy respects S(x) and S(y)
and contains edge (x, z) outgoing at x and edge (z, y) incoming at y. �

Lemma 3. There is an upward planar directed outerplane triangulation T−→xy that re-
spects S(x) and S(y) and that contains edges (x, z) and (y, z) incoming at z if and only
if −→xz and −→yz are potential arcs of G∗ and there are statuses S1 of−→xz and S2 of −→yz such
that the following conditions hold: (a) S1(x) = S(x) ∈ {source, sourcey, ordinary},
(b) S(y) ∈ {sinky, ordinary}, (c) S2(y) ∈ {source, ordinary}, (d) S(y) = ordinary
if and only if S2(y) = source, (e) S(y) = sinky if and only if S2(y) = ordinary,
(f) S1(z) ∈ {sink, sinky, ordinary}, (g) S2(z) ∈ {sink, sinky, ordinary}, (h) S1(z) ∈
{sink, ordinary} or S2(z) = sink, (i) S2(z) ∈ {sink, ordinary} or S1(z) = sink, and
(j) both UP(−→xz, S1) and UP(−→yz, S2) are true.

Lemma 4. There is an upward planar directed outerplane triangulation T−→xy that re-
spects S(x) and S(y) and that contains edges (z, x) and (z, y) outgoing at z if and
only if −→zx and −→zy are potential arcs of G∗ and there are statuses S1 of −→zx and S2 of −→zy
such that the following conditions hold: (a) S2(y) = S(y) ∈ {sink, sinky, ordinary},
(b) S(x) ∈ {sourcey, ordinary}, (c) S1(x) ∈ {sink, ordinary}, (d) S(x) = ordinary
if and only if S1(x) = sink, (e) S(x) = sourcey if and only if S1(x) = ordinary,
(f) S1(z) ∈ {source, sourcey, ordinary}, (g) S2(z) ∈ {source, sourcey, ordinary}, (h)
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S1(z) ∈ {source, ordinary} or S2(z) = source, (i) S2(z) ∈ {source, ordinary} or
S1(z)=source, and (j) both UP(−→zx, S1) and UP(−→zy, S2) are true.

For any status S of −→xy and for a particular vertex z ∈ V (G∗
xy) − x − y, it can be

checked in O(1) time whether an upward planar directed outerplane triangulation T−→xy
exists that respects S(x) and S(y) and that contains edges (x, z) and (y, z) by checking
whether the conditions in at least one of Lemmata 2-4 are satisfied. Further, UP(−→xy, S)
is true if and only if there exists a vertex z ∈ V (G∗

xy) − x − y such that an upward
planar directed outerplane triangulation T−→xy exists that respects S(x) and S(y) and that
contains edges (x, z) and (y, z). Thus, we can determine UP(−→xy, S) in O(n) time since
there are less than n possible choices for z.

This completes the proof of Theorem 3. The time complexity analysis can be strength-
ened as follows. Suppose that every internal face of G∗ has at most t vertices. Then each
vertex v is incident to less than t · degG∗(v) potential edges and the total number of po-
tential arcs is less than 2

∑
v t · degG∗(v) ≤ 8tn. Since each potential arc has nine

statuses, and since there are less than t choices for z, the time complexity is O(t2n). In
particular, if G∗ is an outerplane triangulation, then the time complexity is O(n).

4 Reducing Mixed Plane Graphs to Mixed Plane Triangulations

This section is devoted to the proof of the following theorem.

Theorem 4. Let G be an n-vertex mixed plane graph. There exists an O(n2)-vertex
mixed plane triangulation G′ such that G is upward planar if and only if G′ is. More-
over, G′ can be constructed from G in O(n2) time.

Proof: By Lemma 1, an O(n)-vertex 2-connected mixed plane graph G∗ can be con-
structed in O(n) time such that G is upward planar if and only if G∗ is.

We show how to construct a graph G′ satisfying the statement of the theorem. In
order to construct G′, we augment G∗ in several steps. At each step, vertices and edges
are inserted inside a face f of G∗ delimited by a cycle Cf with nf ≥ 4 vertices. Such
an insertion is done in such a way that one of the faces that is created by the insertion
of vertices and edges into f has nf − 1 vertices, while all the other such faces have 3
vertices. The repetition of such an augmentation yields the desired graph G′.

We now describe how to augment G∗. Consider any face f of G∗ delimited by a
cycle Cf with nf ≥ 4 vertices. Let (u1, u2, . . . , unf

) be the clockwise order of the
vertices along Cf starting at any vertex. Insert a cycle C′

f inside f with nf − 1 vertices
v1, v2, . . . , vnf−1 in this clockwise order alongC′

f . For any 1 ≤ i ≤ nf−1, insert edges
(vi, ui) and (vi, ui+1) inside Cf and outside C′

f ; also, insert edge (v1, unf
) inside cycle

(unf
, u1, v1, vnf−1). All the edges inserted in f are undirected. See Fig. 1. Denote by

G′
f the graph consisting of cycle Cf together with the vertices and edges inserted in f .

Observe that the face of G′
f delimited by C′

f has nf − 1 vertices, while all the other
faces into which f is split by the insertion of xf and of its incident edges have 3 vertices.

We show that G∗ before the augmentation is upward planar if and only if G∗ after
the augmentation is upward planar. One implication is trivial, given that G∗ before the
augmentation is a subgraph of G∗ after the augmentation. For the other implication,
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u1

u2
u3

unf

v1
v2

v3

unf−1

vnf−1

Fig. 1. Augmentation of a face f

it suffices to prove that, for any upward planar orientation Cf of Cf , there exists an
upward planar orientation G′

f of G′
f that coincides with Cf when restricted to Cf .

Consider an upward planar drawing Γf of Cf with orientation Cf . We shall place
the vertices of C′

f inside f in Γf , thus obtaining a drawing Γ ′
f of G′

f .
Pach and Tóth [14] proved that any planar drawing of a graph G in which all the

edges are y-monotone can be triangulated by the insertion of y-monotone edges inside
the faces of G (the result in [14] states that the addition of a vertex might be needed to
triangulate the outer face ofG, which however is not the case if the outer face is bounded
by a simple cycle, as in our case). Hence, there exists an index j, with 1 ≤ j ≤ nf ,
such that a y-monotone curve can be drawn connecting uj−1 and uj+1 inside f .

If j < nf , then for 1 ≤ i ≤ j−1, we place vi inside f close to ui, with y(vi) �=
y(ui), so that y-monotone curves can be drawn inside f connecting vi with ui−1, with
ui, and with ui+1 (we draw y-monotone curves corresponding to edges of G′

f ). Then,
we place vj inside f close to uj+1, with y(vj) �= y(uj+1), so that y-monotone curves
can be drawn inside f connecting vj with uj−1, with uj , with uj+1, and with uj+2

(we in fact draw y-monotone curves corresponding to edges of G′
f ). This is possible,

since a y-monotone curve can be drawn inside f connecting vj and uj , by construction,
and since a y-monotone curve can be drawn inside f connecting uj−1 and uj+1, by
assumption, hence a y-monotone curve can be drawn inside f connecting vj and uj−1.
Then, for j+1 ≤ i ≤ nf−1, we place vi inside f close to ui+1, with y(vi) �= y(ui+1),
so that y-monotone curves can be drawn inside f connecting vi with ui, with ui+1, and
with ui+2 (we in fact draw y-monotone curves corresponding to edges of G′

f ). For any
1 ≤ i ≤ nf−1, since y-monotone curves can be drawn inside f connecting vi with the
vertices of Cf to which vi−1 and vi+1 are close, y-monotone curves can be drawn inside
f representing the edges of C′

f (we in fact draw such curves). If j = nf , the drawing is
constructed analogously by placing vi inside f close to ui, for any 1 ≤ j ≤ nf−1.

The number of vertices of the mixed plane triangulation G′ resulting from the aug-
mentation is O(n2). Namely, the number of vertices inserted inside a face f of G∗ with
nf vertices is (nf − 1) + (nf − 2) + · · · + 3, hence the number of vertices of G′ is∑

f (nf (nf − 1)/2− 3) = O(n2), given that
∑

f nf ∈ O(n) (where the sums are over
all the faces of G∗). Finally, the augmentation of G∗ to G′ can be easily performed in a
time that is linear in the size of G′, hence quadratic in the size of the input graph. �

Corollary 1. The problem of testing the upward planarity of mixed plane graphs is
polynomial-time equivalent to the problem of testing the upward planarity of mixed
plane triangulations.
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5 Upward Planarity Testing of Mixed Plane Triangulations

In this section we show how to test in linear time the upward planarity of two classes of
mixed plane triangulations.

A plane 3-tree is a plane triangulation that can be constructed as follows. Denote by
Habc a plane 3-tree whose outer face is delimited by a cycle (a, b, c), with vertices a, b,
and c in this clockwise order along the cycle. A cycle (a, b, c) is the only plane 3-tree
Habc with three vertices. Any plane 3-tree Habc with n > 3 vertices can be constructed
from three plane 3-trees Habd, Hbcd, and Hcad by identifying the vertices incident to
their outer faces with the same label. See Fig. 2(a).

Theorem 5. The upward planarity of an n-vertex mixed plane 3-tree can be tested in
O(n) time.

Consider an n-vertex mixed plane 3-tree Huvw. We define a function UP(xy,Habc)
as follows. For each graph Habc in the construction of Huvw and for any distinct x, y ∈
{a, b, c} we have that UP(xy,Habc) is true if and only if there exists an upward planar
orientation of Habc in which cycle (a, b, c) has x has a source and y as a sink.

Observe that Huvw is upward planar if and only if UP(xy,Huvw) is true for some
x, y ∈ {u, v, w} with x �= y. The necessity comes from the fact that, in any upward
planar orientation of Huvw, the cycle delimiting the outer face of Huvw has exactly one
source x and one sink y, by Theorem 2. The sufficiency is trivial.

We show how to compute the value of UP(xy,Habc), for each graph Habc in the
construction of Huvw.

If |Habc| = 3, then let x, y, z ∈ {a, b, c} with x �= y, x �= z, and y �= z. Then,
UP(xy,Habc) is true if and only if edges (x, y), (x, z), and (z, y) are not prescribed to
be outgoing at y, outgoing at z, and outgoing at y, respectively. Hence, if |Habc| = 3
the value of UP(xy,Habc) can be computed in O(1) time.

Second, if |Habc| > 3, denote by Habd, Hbcd, and Hcad the three graphs that com-
pose H . We have the following:

Lemma 5. For any distinct x, y, z ∈ {a, b, c}, UP(xy,Habc) is true if and only if:
(1) UP(xy,Hxyd), UP(xd,Hzxd), and UP(zy,Hyzd) are all true; or
(2) UP(xy,Hxyd), UP(xz,Hzxd), and UP(dy,Hyzd) are all true.

Proof Sketch: (=⇒) Assume that Habc has an upward planar orientation Habc with x
and y as a source and sink in {a, b, c}, respectively, (let z ∈ {a, b, c} with z �= x, y).
Edge (z, d) might be outgoing or incoming at z, as in Figs. 2(b) and 2(c), respectively.
In the first case, UP(xy,Hxyd), UP(zy,Hyzd), and UP(xd,Hzxd) are all true, while in
the second case UP(xy,Hxyd), UP(dy,Hyzd), and UP(xz,Hzxd) are all true.

(⇐=) Consider the case in which UP(xy,Hxyd), UP(xd,Hzxd), and UP(zy,Hyzd)
are all true, the other case is analogous. Then, there exist upward planar orientations
Hxyd, Hzxd, and Hyzd of Hxyd, Hzxd, and Hyzd with x and y, with x and d, and with
z and y as a source and sink, respectively. OrientationsHxyd, Hzxd, andHyzd together
yield an orientation UP(xy,Hxyz) of Hxyz, which is upward planar by Theorem 2. �

For each graph Habc in the construction of Huvw and for any distinct x, y ∈ {a, b, c},
the conditions in Lemma 5 can be computed in O(1) time by dynamic programming.
Thus, the running time of the algorithm is O(n). This concludes the proof of Theorem 5.
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Fig. 2. (a) Construction of a plane 3-tree Habc with n > 3 vertices. (b)-(c) Distinct orientations
of edge (z, d) in two upward planar orientations of Habc.

We now deal with mixed plane triangulations with no cycle of undirected edges.

Theorem 6. The upward planarity of an n-vertex mixed plane triangulation in which
the undirected edges induce a forest can be tested in O(n) time.

Proof: Let G be an n-vertex mixed plane triangulation. Let F be the set of undirected
edges of G. We assume that F contains no external edge of G. Indeed, F contains at
most two external edges: We can guess the orientation of all the external edges in F ,
and for each of the four possibilities, independently, test the upward planarity for the
mixed graph G in which only the internal edges of F are undirected.

We prove the statement by induction on the size of F .
If |F | = 0, then G is a directed plane triangulation and its upward planarity can be

tested in linear time by checking whether G satisfies the conditions in Theorem 2.
If |F | > 0, consider a leaf v in the forest whose edge set is F . Denote by (v, w) the

only undirected edge of G incident to v. By the assumptions, (v, w) is an internal edge
of G. Let (v, w, x1) and (v, w, x2) be the internal faces of G incident to edge (v, w).

Suppose that both edges (x1, v) and (x2, v) are incoming at v. If v has an outgoing
incident edge, then by the bimodality condition in Theorem 2, edge (v, w) is incoming
at v in every upward planar orientation of G. Suppose that v has no outgoing incident
edge. If v is the sink of G (recall that the edges incident to the outer face of G are
directed), then edge (v, w) is incoming at v in every upward planar orientation of G, by
the single sink condition in Theorem 2. Otherwise, edge (v, w) is outgoing at v in every
upward planar orientation of G, again by the single sink condition in Theorem 2.

Analogously, if both (x1, v) and (x2, v) are outgoing at v, the orientation of edge
(v, w) can be decided without loss of generality.

Assume that (x1, v) and (x2, v) are incoming and outgoing at v, respectively, the
case in which they are outgoing and incoming at v is analogous. We have two cases.

Case 1: (x1, x2) is an edge of G. By the acyclicity condition in Theorem 2, edge
(x1, x2) is outgoing at x1 in every upward planar orientation of G.

If deg(v) = 3, then remove v and its incident edges from G, obtaining a mixed plane
triangulation G′ with one fewer undirected edge than G. Inductively test whether G′

admits an upward planar orientation. If not, then G does not admit any upward planar
orientation, either. If G′ admits an upward planar orientation G′, then construct an
upward drawing Γ ′ of G′; insert v in Γ ′ inside cycle (w, x1, x2), so that y(v) > y(x1),
y(v) < y(x2), and y(v) �= y(w). Draw y-monotone curves connecting v with each of
w, x1, and x2. The resulting drawing Γ of G is an upward planar orientation G of G,
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provided that it coincides with G′ when restricted to G′, the edges (x1, v) and (x2, v)
are drawn as y-monotone curves according to their orientations, and the edge (v, w) is
drawn as a y-monotone curve.

If deg(v) > 3, then the cycle (w, x1, x2) does not delimit a face of G, and it con-
tains non-empty sets V ′ and V ′′ of vertices in its interior and its exterior, respectively.
Then, two upward planarity tests can be performed, namely one for the subgraph G′

of G induced by V ′ ∪ {w, x1, x2}, and one for the subgraph G′′ of G induced by
V ′′ ∪ {w, x1, x2}. If one of the tests fails, then G admits no upward planar orientation.
Otherwise, upward planar orientations G′ of G′ and G′′ of G′′ together form an up-
ward planar orientation G of G, provided that each edge of (w, x1, x2) has the same
orientation in G′ and in G′′.

Case 2: (x1, x2) is not an edge of G. Remove (v, w) from G and insert a directed
edge (x1, x2) outgoing at x1 inside face (x1, v, x2, w). This results in a graph G′ with
one fewer undirected edge than G. We show that G is upward planar iff G′ is.

Suppose that G admits an upward planar orientation G. Let Γ be an upward planar
drawing of G. Remove edge (v, w) from G in Γ . Draw edge (x1, x2) inside cycle
Cf = (x1, v, x2, w), thus ensuring the planarity of the resulting drawing Γ ′ of G′,
following closely the drawing of path (x1, v, x2), thus ensuring the upwardness of Γ ′.

Suppose that G′ admits an upward planar orientationG′. Let Γ ′ be an upward planar
drawing of G′. Remove (x1, x2) from Γ ′. Since G′ is acyclic, Cf has three possible
orientations in G′. In Orientation 1, w is its source and x2 its sink; in Orientation 2, x1

is its source and w its sink; finally, in Orientation 3, x1 is its source and x2 its sink. If Cf

is oriented in G′ as in Orientation 1 (as in Orientation 2), then draw edge (v, w) inside
Cf in Γ ′, thus ensuring the planarity of the resulting drawing Γ of G, following closely
the drawing of path (w, x1, v) (resp., of path (v, x2, w)), thus ensuring the upwardness
of Γ . If Cf is oriented in G′ as in Orientation 3, slightly perturb the position of the
vertices in Γ ′ so that y(v) �= y(w). Draw edge (v, w) in Γ ′ as follows. Suppose that
y(v) < y(w), the other case being analogous. Draw a line segment inside Cf starting
at v and slightly increasing in the y-direction, until reaching path (x1, w, x2). Then,
follow such a path to reach w. This results in an upward drawing of edge (v, w) inside
Cf , hence in an upward planar drawing of G.

Finally, the running time of the described algorithm is clearly O(n). �

6 Conclusions

We considered the problem of testing the upward planarity of mixed plane graphs. We
proved that the upward planarity testing problem is O(n3)-time solvable for mixed
outerplane graphs. It would be interesting to investigate whether our techniques can be
strengthened to deal with larger classes of mixed plane graphs, e.g. series-parallel plane
graphs. Also, since testing upward planarity is a polynomial-time solvable problem
for directed outerplanar graphs [15], it might be polynomial-time solvable for mixed
outerplanar graphs without a prescribed plane embedding as well.

We proved that the upward planarity testing problem for mixed plane graphs is
polynomial-time equivalent to the upward planarity testing problem for mixed plane
triangulations (and showed two classes of mixed plane triangulations for which the
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problem can be solved efficiently). This, together with the characterization of the up-
ward planarity of directed plane triangulations in terms of acyclicity, bimodality, and
uniqueness of the sources and sinks (see [2] and Theorem 2), might indicate that a
polynomial-time algorithm for testing the upward planarity of mixed plane triangu-
lations should be pursued. On the other hand, Patrignani [16] proved that testing the
existence of an acyclic and bimodal orientation for a mixed plane graph is NP-hard.

Acknowledgments. Thanks to Hooman Reisi Dehkordi, Peter Eades, Graham Farr,
Seok-Hee Hong, and Brendan McKay for useful discussions on the problems consid-
ered in this paper.
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Abstract. A directed acyclic graph (DAG) is upward planar if it can
be drawn without any crossings while all edges—when following them
in their direction—are drawn with strictly monotonously increasing y-
coordinates. Testing whether a graph allows such a drawing is known to
be NP-complete, but there is a substantial collection of different algo-
rithmic approaches known in literature.

In this paper, we give an overview of the known algorithms, rang-
ing from combinatorial FPT and branch-and-bound algorithms to ILP
and SAT formulations. Most approaches of the first class have only been
considered from the theoretical point of view, but have never been imple-
mented. For the first time, we give an extensive experimental comparison
between virtually all known approaches to the problem.

Furthermore, we present a new SAT formulation based on a recent
theoretical result by Fulek et al. [8], which turns out to perform best
among all known algorithms.

1 Introduction

When drawing directed graphs, in particular DAGs, one often wants to make
the edges’ orientations clearly recognizable by having all edges pointing in the
same general direction, w.l.o.g. upward. A y-monotone drawing is thus one,
where the curves representing the edges have strictly monotonously increasing
y-coordinates when traversing them from their source to the target vertices.
More formally, a y-monotone edge intersects any horizontal line at most once,
while its source vertex is drawn below its target vertex.

A second central concept in graph drawing is planarity, i.e., we want to avoid
crossing edges if possible. The question of upward planarity of a DAG G is hence
the question whether there exists a crossing-free y-monotone drawing ofG. While
(undirected) planarity is linear time solvable, upward planarity turns out to be
NP-complete to decide [9]. Nonetheless, due to the problem’s centrality, several
exponential-time algorithms have been developed.

A core result is that the problem becomes polynomial time solvable if the
graph’s embedding (i.e., the order of the edges around their vertices) is fixed [1].
Based thereon, the historically first algorithms are fixed-parameter tractable
(FPT) algorithms where the parameters are essentially bounding the (in general
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exponential) number of possible embeddings; the algorithms are testing upward
planarity for each possible embedding [10]. The process can be sped up using a
polynomial time algorithm to solve the important special case of series-parallel
graphs [7]. The special case of single-source DAGs is also polynomial time solv-
able [1, 5, 11, 13] but not the focus of this paper.

A different approach is based on relaxing the upward requirement (quasi-
upward planarity [2], see below) and considering the optimization problem to
minimize the violating edges. There, the embedding enumeration is coupled with
a sophisticated method to obtain upper and lower bounds for partially embedded
graphs, allowing for a branch-and-bound algorithm. Finally, the most recent
approach [3] is to formulate the problem as an integer linear program (ILP) or
boolean satisfiability problem (SAT), to be solved with a corresponding solver.

In Section 2, we summarize the core ideas of these algorithms. We also present
a new SAT formulation based on a recent theoretical result by Fulek et al. [8].

Before this paper, the only reported implementations were for the branch-
and-bound and the ILP/SAT approach. The former implementation is in fact
considering the more general optimization problem (instead of the decision ver-
sion), and both implementations are based on two different underlying libraries.
This made a direct comparison worrisome. In this paper (Section 3), we report
on our consistent implementations of all the discussed algorithms. They share as
much code as was feasibly possible, to maximize the fairness of the comparison.
Hence, we are for the first time able to make substantiated claims about the
algorithms’ respective applicability in practice.

2 Algorithms

We always consider a DAG G = (V,E) to test for upward planarity. A combina-
torial embedding of G is specified by cyclically ordering the edges around their
incident vertices. A planar embedding additionally chooses an external face.

2.1 FPT Algorithms

A fixed-parameter tractable (FPT) algorithm, with respect to some parameter k,
is an algorithm with running time O(f(k)·poly (n)) where poly(n) is a polynomial
function in the size of the input (here, n := |G|), and f(k) is any computable
function (typically an exponential function) only dependent on k. A central
ingredient of all known combinatorial FPT algorithms is the following result [1]:

Theorem 1 (Bertalozzi, Di Battista, Liotta, Mannino). Let G = (V,E)
be an embedded DAG. There is an algorithm testing whether this embedding of
G allows an upward planar drawing in O(n2) time.

Let G be planar and biconnected. We can decompose the underlying undi-
rected graph into its triconnectivity components in linear time. These can be
efficiently organized as an SPQR-tree [6]. For notational simplicity, we may talk
about an SPR-tree (as Q-nodes, representing single edges, are not necessary):
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The SPR-tree T (G) is a tree with three kinds of nodes : S- and P-nodes rep-
resent serial and parallel components, respectively; R-nodes represent planar
triconnected components. We call these components the skeletons associated to
the nodes. An edge in a skeleton S may be real or virtual ; in the latter case, it
represents a subgraph, described by the subtree attached to S’s node in T (G).

Embedding Enumeration (EE). The natural approach to test upward pla-
narity of an unembedded graph is to test every possible embedding of G, using
the algorithm of Theorem 1. As the number of embeddings is, in general, ex-
ponential in the size of the graph, one has to seek for a meaningful parameter
to bound the number of embeddings. The SPR-tree can be used to efficiently
enumerate all possible embeddings of a graph. We can bound the number of
embeddings by O(t! · 2t), where t is the number of nodes in our SPR-tree, which
leads to an overall running time of O(t! · 2t · n2) to test upward planarity [10].

In the same publication, a kernelization algorithm for sparse (not necessarily
biconnected) graphs is presented. Using the following preprocessing steps (until
none is applicable anymore), leaves a graph with at most 30k2 + 2k vertices
and at most (2k + 1)! embeddings; thereby, k = |E| − |V | is the number of
edges (minus 1) the (preprocessed) graph has more than a tree. Let a chain
be a path in G where all inner vertices have degree 2, The preprocessing steps
are: (PP1) remove vertices of degree 1; (PP2) replace chains where each inner
vertex v has indeg(v) = outdeg(v) = 1 by single correspondingly oriented edges;
(PP3) remove chains where both end vertices coincide; (PP4) for each set of
parallel chains, remove all but one chain (parallel chains are those that have a
common start vertex, a common end vertex, and an identical sequence of edge
orientations along the chain). This preprocessing requires O(n2) time.

After the preprocessing steps, again, all embeddings are tested in overall
O(n2 + k4 · (2k + 1)!) time. Observe that (PP1)–(PP4) are valid in general
(although one has to specifically consider the case of biconnectivity-breaking
PP4). Hence, when testing all embeddings after preprocessing, we in fact obtain
an algorithm—denoted by EE in the following—with running time O(min(t! · 2t ·
n2, n2 + k4 · (2k + 1)!)) for biconnected DAGs.

Upward Spirality (SPIR). Consider the SPR-tree rooted at some arbitrary
node. Informally, upward spirality is a measure of how much a skeleton is “rolled
up” around its poles (the end nodes of the virtual edge representing the node’s
parent). Furthermore, one has to distinguish several pole categories, i.e., local
properties of the embedding around the pole vertices. For details of the defini-
tions and the following algorithms cf. [7].

For series-parallel graphs, upward spirality allows to develop a polynomial
dynamic programming algorithm that traverses the SPR-tree bottom up—recall
that for such graphs it only has S- and P-nodes. At each node μ, we store a set
of feasible (spirality/pole category)-pairs to upward embed the graph encoded
by the SPR-tree rooted at μ. This information can then be used to obtain a
corresponding set for the parent node, etc. We denote this algorithm by SPIR-sp.
Its running time is O(n4), but there are large constants hidden in the O-notation,
cf. Section 3.1.
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Using this algorithm as a building block, one can establish an FPT algorithm
for general DAGs, where the different configurations of the R-nodes w.r.t. each
other have to be enumerated. This leads to a running time of O(drn3 + dr2n+
d2n2) where d is the largest diameter of any skeleton and r is the number of
R-nodes. We call this algorithm SPIR.

2.2 Branch-and-Bound via Quasi-Upward Planarity (BB)

In a quasi-upward planar drawing, we relax upwardness such that each edge
only has to be drawn y-monotonously within an arbitrary small neighborhood
of its incident vertices. In [2], a branch-and-bound algorithm is established which
produces a quasi-upward drawing maximizing the number of fully y-monotone
edges: For a given embedding, the minimum number of non-y-monotone edges
can be computed in O(n2 logn) time using minimum cost-flow techniques.

Now, we can consider all possible embeddings of the graph via the SPR-tree.
At any moment we have a partial embedding—several embeddings are fixed
while the others are free. The algorithm in [2] is able to compute upper and
lower bounds for the number of non-y-monotone edges in this case. If the cur-
rent lower bound is worse than the global upper bound, we can avoid testing all
embeddings further down in the search tree, which have the same fixed embed-
dings in common.

Observe that a DAG is upward planar iff there is a quasi-upward planar
drawing where all edges are y-monotone. Hence, when testing upward planarity,
we can prune a partial embedding in the search tree whenever we obtain a lower
bound strictly greater than 0. We denote this algorithm by BB. Formally, this
algorithms could also be considered an FPT algorithm with the same worst-case
running time as EE.

2.3 SAT Formulations

A SAT formulation of a decision problem instance I is a propositional logic
formula that is satisfiable if and only if I has the answer true. The formula is
typically given in conjunctive normal form, i.e., as a set of clauses, each of which
has to be satisfied. Each clause is a disjunction of (possibly negated) variables.
For the sake of readability, we will provide rules as propositional formulae; it is
straight-forward to transform them into their corresponding clauses.

Ordered Embeddings (OE). An edge e dominates an edge f if there is a
directed path (possibly of length 0) from e’s target to f ’s source vertex in G.
Clearly, f has to be drawn above e in any upward drawing. A pair of edges is
non-dominating if neither edge dominates the other. Let N denote the set of all
non-dominating edge pairs of G.

In [3], a SAT formulation based on ordered embeddings has been proposed.
We consider a strict total (vertical) order of the vertices together with a strict
partial (horizontal) order of the edges; edges are comparable w.r.t. this order iff
they are non-dominating each other. We model the vertical order by introducing
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boolean variables τ(v, w) for each proper pair of vertices v and w. Intuitively,
τ(v, w) = true means that v is drawn below w. Since the vertex order is to be
strict, τ(v, w) = false means that v is above w. We may use the shorthand
τ(w, v) := ¬τ(v, w) for notational simplicity. To establish a strict total order, it
then suffices to require transitivity via (Rt

τ ). The upward rules (Ru) ensure that
all edges are drawn upward.

τ(u, v) ∧ τ(v, w)→ τ(u,w) ∀ pairwise distinct u, v, w ∈ V. (Rt
τ )

τ(v, w) = true ∀ (v, w) ∈ E. (Ru)

Similarly, we can establish the horizontal order of the edges by introducing vari-
ables σ(e, f) for each pair {e, f} ∈ N . Thereby (if both edges are vertically
overlapping), σ(e, f) = true implies that e is to the left of f , and the satisfied
shorthand σ(f, e) := ¬σ(e, f) implies that e is to the right of f . Again, we simply
require transitivity:

σ(e, f) ∧ σ(f, g)→ σ(e, g) ∀ {e, f}, {f, g}, {e, g} ∈ N . (Rt
σ)

Based on this (upward) order system, we can establish planarity using sur-
prisingly simple planarity rules : We only have to ensure that two adjacent edges
e and f are on the same side of g (non-incident to the common vertex of e and
f) if they both vertically overlap with g. Let e ·∩f denote the common vertex
of two edges e, f , and P := {(e, f, g) | {e, g}, {f, g} ∈ N ∧ e ·∩f �∈ g} the set of
edge-triplets as described above. We have:(

τ(x, e ·∩f) ∧ τ(e ·∩f, y)
)
→

(
σ(e, g)↔ σ(f, g)

)
∀ (e, f, g = (x, y)) ∈ P . (Rp)

The collection of the above rules allows a satisfying truth assignment to τ and
σ if and only if G is upward planar [3]. Given such an assignment, it is trivial to
construct the embedding in linear time. We denote this formulation by OE.

Hanani-Tutte type characterization (FPSS). The classical Hanani-Tutte
theorem shows that a graph drawn such that all pairs of non-adjacent edges
cross an even number of times is planar. A similar result has been established
by Pach and Tóth [12], and was only recently improved upon by Fulek et al. [8]:

Theorem 2 (Pach, Tóth; Fulek, Pelsmajer, Schaefer, Štefankovič). Let
G = (V,E) be a DAG. If G has a y-monotone1 drawing such that every pair of
non-adjacent edges crosses an even number of times, then there is a y-monotone
planar embedding of G with the same location of vertices.

To prove this theorem, [8] gives a quadratic time algorithm testing whether
G allows a y-monotone drawing with prespecified vertex positions. This is es-
sentially done by solving an equation system over (e, v)-moves. Such a move
redraws the edge e by deforming it, close to the y-coordinate of v, into a hori-
zontal “spike” that passes around v. There is a y-monotone embedding iff there

1 In the original publications, these theorems were stated in terms of x-monotonicity.
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is a set of (e, v)-moves turning a y-monotone drawing into a drawing in which
every non-adjacent pair of edges crosses an even number of times. A simple set of
only two equation classes suffices to describe all possible selections of (e, v)-moves
that may lead to an even-crossing solution. These equations, in fact, resemble a
2SAT formulation (each clause has at most 2 literals), with the only prerequisite
to know the vertical relationship between the DAG’s vertices. This allows us to
cast this powerful theoretical tool into a new SAT formulation not unlike OE:

We reuse the above boolean variables τ and rules (Rt
τ )∪ (Ru) to guarantee an

upward strict total order on V . We can then use these variables as indicators to
activate or deactivate the above 2SAT-clauses to link move-variables. For every
edge e and node v, we introduce a boolean variable �(e, v) that indicates whether
we perform an (e, v)-move. Let se and te denote the start and target vertex of
an edge e, respectively. We obtain(

τ(se, sf) ∧ τ(sf , te) ∧ τ(te, tf )
)
→

(
�(e, sf )↔ ¬�(f, te)

)
∀ e, f ∈ E (Rm

0 )(
τ(se, sf) ∧ τ(tf , te)

)
→

(
�(e, sf )↔ �(e, tf)

)
∀ e, f ∈ E (Rm

1 )

where the subformulae after the implication are the clauses from the 2SAT sug-
gested by [8], for the scenario described by the rules’ left-hand sides.

Corollary 1. Let G = (V,E) be a DAG. G is upward planar if and only if the
formula composed of rules (Rt

τ ) ∪ (Ru) ∪ (Rm
0 ) ∪ (Rm

1 ) is satisfiable.

Hybrid formulations. Constructing an upward planar embedding (in polyno-
mial time) using only a feasible truth assignment for FPSS is non-trivial, and in
fact an open problem.2 In order to obtain an embedding from the FPSS formu-
lation, we consider two variants of hybridizing FPSS and OE, as extracting an
embedding is trivial for the latter. Recall that both formulations use the same τ
variables to establish a vertical order of the vertices. Hence we can simply put
all rules together in one large formulation, denoted by HF.

Alternatively (denoted by HL), we can first compute a satisfying assignment
to FPSS. If it exists, we can “learn” the subsolution for the τ variables to fix the τ
variables in OE and solve the so-restricted OE to obtain a matching σ assignment.

3 Experiments

3.1 Considered Algorithms and Their Implementations

Overall, we consider the practical performances of the following algorithms:

FPT b&b SAT ILP (see note below)

EE, SPIR-sp, (SPIR) BB OE, FPSS, HF, HL iOE, iFPSS, iHF, iHL

2 An algorithm achieving this is currently under development [personal communication
with Marcus Schaefer]
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All experiments were performed on an Intel Xeon E5520, 2.27GHz, 8GB
RAM running Debian 6. We implemented the algorithms as part of the Open
Graph Drawing Framework (www.ogdf.net), using minisat as our SAT solver
and CPLEX 12 as our ILP solver. For both solvers, we used their default settings.
For all considered instances (available at www.cs.uos.de/theoinf), we first per-
formed the preprocessing steps (PP1)–(PP4), as described in Section 2.1.

A note on the ILPs. Given the SAT formulations, it is straight-forward to con-
struct integer linear programs (using only binary variables) along the same lines,
for which to test feasibility. This has been done for OE in [3], leading to a vastly
weaker practical performance than the SAT approach. We note that FPSS (and
the hybridizations) also allow such ILPs. We performed all the below experiments
also for the ILP variants. However, also for iFPSS and the hybridizations, the
pure feasibility testing functionality of ILP solvers—lacking sophisticated prop-
agation and backtracking—is clearly too weak to allow compatible performance.
We will hence disregard the ILP approaches in the following discussions.

A note on BB. The branch-and-bound algorithm has only been devised for
biconnected graphs. Our implementation hence inherits this restriction. As de-
scribed above, we strengthened BB for the special case of upward planarity testing
by pruning any subproblems with a lower bound larger than 0.

In [2], the practical performance of an implementation (within GDToolkit) has
been reported on a set of random instances, denoted by BDD in the following.
Out of the originally 300 considered instances, only 200 are still available3. Of
those, we can discard 139, as they are not DAGs. The largest remaining instances
have 100 vertices and take 0.03 seconds on average (cf. Table 2). In [2]—on a
clearly slower PC and not restricted to the pure upward planarity test!—the
graphs with 100 vertices require roughly 100 seconds on average. This gives us
a hint that our implementation is not vastly inefficient.

A note on EE. As BB is already restricted to biconnected graphs, we also re-
stricted our implementation of EE to this case, to be able to efficiently generate all
embeddings purely via the SPR-tree. Our implementation is able to enumerate
≈100,000 (bimodal) embeddings per second (disregarding any testing time).

A note on SPIR-sp and SPIR. The spirality-based algorithms are very theo-
retically demanding algorithms. We provide the seemingly first implementation
of the polynomial case for series-parallel graphs (SPIR-sp). However, the al-
gorithm’s theoretical beauty is unfortunately not matched with practicability.
E.g., when combining tables in the bottom-up dynamic programming, there is
a very large number of possible combinations of choices to check. Although this
number is bounded by a constant, we often need to check close to the theoret-
ical worst-case of 249 (≈ 5.6 × 1014) combinations. This constitutes the main
bottleneck of the algorithm; further theoretical research may be able to bring
down this vast number. In our implementation, we parallelized this checking via
OpenMP to mitigate the effect. However, it remains to slow down the algorithm
dramatically.—We will see experimental evidence in Figure 3 below.

3 Personal communication with Walter Didimo.

www.cs.uos.de/theoinf
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Table 1. # of solved instances within given time frames in seconds (Rome and North)

Rome North
time (s) [0, 0.01] (0.01, 0.1] (0.1, 1] (1, 10] > 10 [0, 0.01] (0.01, 0.1] (0.1, 1] > 1

FPSS 1922 993 46 4 2 710 120 6 0
OE 1474 1223 257 11 2 625 172 39 0
HL 1384 1324 253 4 2 614 185 37 0
HF 1393 1311 254 6 3 609 187 40 0

The series-parallel algorithm SPIR-sp, as a base case for SPIR, can essentially
be used as a lower bound for the running time of the latter, when applying it on
the SPR-subtrees induced by only S- and P-nodes. This resembles the situation
that SPIR could decide the R-nodes and all their embedding combinations (i.e.,
the reason for the exponential running time) in no time. Since obtaining these
bounds is already not competitive enough, we refrained from a full implementa-
tion of the even more demanding enumeration procedures within SPIR.

3.2 Evaluation

In the course of our investigation, we will observe the following central findings
throughout all benchmark instances, summarized here:

F1 FPSS gives the best solution time over virtually all scenarios. When extrac-
tion of the embedding is required, HL dominates OE; both dominate HF.

F2 FPSS (and to some extent OE) are rather independent of the number of
embeddings and on whether we consider a yes- or a no-instance.

F3 Generally, all SAT approaches are preferable over their competitors.
F4 SPIR (and SPIR-sp) and the ILP variants are not competitive.
F5 EE and BB work well when the number of embeddings is small. For triv-

ial instances, and for large instances with few embeddings, EE and BB can
dominate the SAT approaches.

F6 EE is usually far weaker for no-instances than for yes-instances (as all em-
beddings have to be checked), while the effective pruning of BB allows it to
typically solve the former faster than the latter.

Instances from Literature. There are mainly three instance sets that have
been used in the context of upward planarity:

The Rome graphs [14] are (originally undirected) graphs with up to 100 ver-
tices. They can be directed canonically to obtain DAGs. The North DAGs [4]
were originally collected by AT&T and Stephen North. After filtering for bimodal
planar graphs, 2967 and 836 remain, respectively. As some of our algorithms are
restricted to biconnected graphs, we also consider sets Rome2 , North2 that are
generated from the above by planar biconnectivity augmentation, obtaining (af-
ter filtering for bimodal planar graphs) 2671 and 780 instances, respectively.
Furthermore, we consider the 61 BDD instances [2], described above in the con-
text of BB’s implementation.

We observe in Table 1 that all SAT formulations solve the North instances
very fast: each is solved within 1 second, most of them (≈80%) in less than 0.01
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Table 2. Number of solved instances (yes- and no-instances) within given time frames
in seconds (Rome2 , North2 , and BDD). In brackets, are the number of no-instances.

Rome2 North2 BDD
time (s) [0, 0.1] (0.1, 1] > 1 [0, 0.1] (0.1, 1] (1, 10] > 10 [0.0.1] (0.1, 1] (1, 10] > 10

FPSS 2474 (26) 195 ( 6) 2 (2) 711 (33) 68 ( 7) 1 (0) 0 ( 0) 27 (3) 23 ( 1) 11 (2) 1 (1)
OE 1743 (12) 915 (17) 13 (5) 600 (24) 149 (13) 31 (3) 0 ( 0) 24 (3) 25 ( 1) 12 (2) 1 (1)
HL 1844 (26) 820 ( 6) 7 (2) 610 (33) 143 ( 7) 27 (0) 0 ( 0) 24 (3) 26 ( 1) 11 (2) 1 (1)
HF 1743 (11) 923 (19) 14 (5) 605 (28) 143 ( 9) 32 (3) 0 ( 0) 21 (3) 27 ( 1) 13 (2) 1 (1)
EE 2665 (29) 5 ( 4) 1 (1) 753 (27) 5 ( 1) 6 (4) 16 ( 8) 62 (7) 0 ( 0) 0 (0) 0 (0)
BB 2635 (22) 22 ( 9) 4 (3) 667 (14) 30 (11) 13 (4) 70 (11) 58 (4) 4 ( 3) 0 (0) 0 (0)

seconds. Generally, FPSS is the fastest SAT, solving 99% of Rome in under 0.1
seconds, whereas OE achieves a ratio of 90% (→F1).
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Fig. 1. North2 ; avg. runtime vs. # of
edges. The different SATs are visually in-
distinguishable.

On the biconnected benchmark sets,
we can compare the SAT approaches
to the other implementations (Table 2):
For Rome2 and BDD , both EE and BB

seem faster than any SAT formulation.
This is mainly due to the triviality of
many instances and the necessary over-
head of SAT formulations and solvers.
Already when considering ≤ 1 second
computation time, all approaches solved
nearly the same number of instances.
We observe that instances of both these
sets have only very few embeddings
(Rome2 : max. 36,864, avg. 372), BDD :
max. 11,528, avg. 512) (→F5). As an in-
teresting side note, the lone instance in

the last BDD column requires roughly 200 seconds for all SAT approaches; it
is solved trivially by BB and EE as it has only two planar bimodal embeddings
to check. The North2 instances, however, have many embeddings (avg: 1017),
cf. Fig. 1. There, all SAT formulations dominate EE and BB for the non-trivial
instances (→F1,F5).

Constructed Instances. The above instances are very simple, small, and are
solved too quickly to deduce general findings. Therefore, we consider a set Rand
of generated biconnected instances with n = 50, 100, 150, 200 nodes and density
|E|/|V | = 1.2, 1.4, . . . , 2.4. As suggested in [2], we start with a triangle graph
and iteratively perform random edge-subdivisions and face-splits (adding an edge
within a face). Now, we orient this embedded graph to be upward planar, and in-
vert i = 1%, 2%, 3%, 4% of the edges (retaining the DAG property). We generate
1120 instances, 10 per possible parameter setting, which have up to 2.5 × 1015

embeddings (3.7× 1012 on average). See Fig. 2 for a detailed graphical analysis.
We use a timeout of 600 seconds, using this value for unsolved instances when
averaging. Overall (Fig. 2, top-left), we can observe FPSS < HL < OE < HF < BB

< EE for the running times, FPSS being the clear winner (→F1,F3,F5,F6). The
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Fig. 2. Rand instances; avg. runtime vs. # of nodes (left) or embeddings (right). The
latter is given as powers of 10, i.e., > 1012 embeddings are considered. We group SAT
formulations if they are visually indistinguishable. The first row considers all instances;
the second and third row considers only the yes- and no-instances, respectively.

SATs, in particular FPSS, seem nearly oblivious to the number of embeddings
in the graph (Fig. 2, top-right, →F2). It is instructive to consider the yes- and
no-instances independently: We see that EE performs somewhat reasonable for
yes-instances, but fails for no-instances (where it has to check all bimodal em-
beddings). In contrast to this, BB becomes even faster for the latter instances,
due to its efficient pruning of large classes of “hopeless” subembeddings (→F6).
The SAT approaches behave very similar for both kinds of instances (→F2).

Now, we consider biconnected series-parallel graphs SP to evaluate SPIR-sp.
We generated a test set of 4500 instances (10 instances per parameter setting)
with m = 20, 40, . . . , 300 edges. They are constructed bottom up with probabil-
ity p = 0.1, 0.3, . . . , 0.9 to perform a serialization instead of a parallelization. We
embed the graph, choose an upward planar orientation for the edges, and invert
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Fig. 3. SP instances; avg. runtime vs. # of edges (left) and embeddings (right)
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Fig. 4. Rand (left) and SP (right); the line plots show the number of generated clauses,
relative to the number of embeddings (as a power of 10). The bars show the percentage
of the running time spent to generate the formula (in contrast to solving it).

i = 0, 10, 20, 30, 40, 50% of the edges (retaining the DAG property). Again, we
use a timeout of 600 seconds, using this value for unsolved instances when aver-
aging. SPIR-sp—although formally the only polynomial time algorithm in this
comparison—offers the clearly weakest performance, solving no instance with
over 100 vertices in under 5 minutes and running into the time limit for all
graphs with more than 120 edges (Fig. 3, left). The picture is analogous (Fig. 3,
right) when looking at the runtime depending on the number of embeddings
(→F4). On SP , EE performs better than BB, but this is since nearly 90% of
the instances happen to be upward planar. Considering yes- and no-instances
independently, we can observe the same pattern as for Rand (→F6).

Details on SAT. Although FPSS and OE have the same number of clauses in
O-notation—dominated by (Rt

τ ) over the common τ variables—the former has
considerably fewer additional clauses. In fact, this seems to be one of the main
reasons of FPSS’s superior performance. To back-up this assumption, consider
the line diagrams in Fig. 4. They show that FPSS is rather independent of the
number of embeddings (→F2). Impressively, the (minor) difference between OE

and HF (=“OE ∪FPSS”) shows that the number of clauses FPSS has to consider
additionally to (Rt

τ ) is negligible.
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The bar diagrams in Fig. 4 show that the SATs spend a large portion of
their time (≈70%) with (trivially) constructing the formula. This explains the
overhead for trivial instances where EE and BB can be faster than SAT (→F5).

Acknowledgements. We thank Marcus Schaefer for pointing us to [8] and its
potential applicability within our SAT approach, Walter Didimo for helpful dis-
cussions on BB, and Fabrice Stellmacher and Kerstin Gössner for implementation
support with BB and SPIR, respectively.
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Abstract. A graph layout describes the processing of a graph G by a
data structure D, and the graph is called a D-graph. The vertices of G are
totally ordered in a linear layout and the edges are stored and organized
in D. At each vertex, all edges to predecessors in the linear layout are
removed and all edges to successors are inserted. There are intriguing
relationships between well-known data structures and classes of planar
graphs: The stack graphs are the outerplanar graphs [4], the queue graphs
are the arched leveled-planar graphs [12], the 2-stack graphs are the
subgraphs of planar graphs with a Hamilton cycle [4], and the deque
graphs are the subgraphs of planar graphs with a Hamilton path [2]. All
of these are proper subclasses of the planar graphs, even for maximal
planar graphs.

We introduce splittable deques as a data structure to capture planarity.
A splittable deque is a deque which can be split into sub-deques. The
splittable deque provides a new insight into planarity testing by a game
on switching trains. Here, we use it for a linear-time planarity test of a
given rotation system.

1 Introduction

In a graph layout, the vertices are processed according to a total order, which
is called linear layout. The edges correspond to data items that are inserted to
and removed from a data structure: Each edge is inserted at the end vertex
that occurs first according to the linear layout and is removed at its other end
vertex. These operations obey the principles of the underlying data structure,
such as “last-in, first-out” for a stack or “first-in, first-out” for a queue. Stack
layouts (also known as book embeddings) and queue layouts have been studied
extensively, e. g., in [4, 5, 7, 8, 10–12, 16, 18], and are used for 3D drawings of
graphs [16], in VLSI design [5] and in other application scenarios [12]. Moreover,
Gauss codes and permutation networks of two parallel stacks are characterized
by two-stack graphs [14].

Graph layouts are a powerful tool to study planar graphs. A graph G is a
D-graph if it has a layout in D. The stack graphs are the outerplanar graphs,
and the 2-stack graphs are the subgraphs of planar graphs with a Hamiltonian
cycle [4]. Heath et al. [8, 12] have characterized queue graphs as the arched
leveled-planar graphs. Such graphs have a planar drawing with vertices placed
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on levels. Inter-level edges connect vertices between two adjacent levels and intra-
level edges (the arches) connect the left-most vertex to accessible vertices on the
right side. In [2], we have characterized the proper leveled-planar graphs, i. e.,
the arched leveled-planar graphs without arches, as the bipartite queue graphs.
Graph layouts can be extended to subdivisions where edges of the graph are
replaced by paths. A graph is planar if and only if it has a subdivision that has
a layout in two stacks [8].

In [1, 2], we have studied double-ended queue (deque) layouts: A deque has
two ends, a head and a tail, and items can be inserted and removed at both
sides. It can emulate two stacks and additionally allows for queue edges, i. e.,
edges inserted and removed at opposite sides. In [2], we have shown that the
surplus power of a deque in comparison to two stacks captures the difference
between Hamiltonian paths and cycles: A graph is a deque (2-stack) graph if
and only if it is the subgraph of a planar graph with a Hamiltonian path (cycle).
In fact, a planar embedding of a graph with a Hamiltonian path reflects the way
the edges are processed in the deque: Fig. 1(c) shows an embedded graph with
the Hamiltonian path 1, 2, 3, 4, 11, 12, 13, which is the linear layout. An edge to
the right of the path, e. g., edges e6 and e9, is inserted and removed at the tail
of the deque whereas the queue edges change sides, e. g., e3 and e4 are inserted
at the tail and removed at the head. Although more powerful than two stacks,
not all planar graphs are deque graphs since there are maximal planar graphs
with no Hamiltonian path and the respective decision problem is NP-hard [2].
Yannakakis has shown that four stacks are sufficient and necessary for all planar
graphs [17]. However, there are non-planar graphs that have a layout in four
and even three stacks. This raises the following question: What is the additional
operation a deque must perform to layout exactly the planar graphs? It turns
out that the ability to split the deque into pieces is the adequate operation. We
show that a graph is planar if and only if it is a splittable deque (SD) graph.

Our proof takes an algorithmic viewpoint: We give a linear-time algorithm to
test whether or not a rotation system is planar, which uses the SD to process all
edges. A rotation system defines the counterclockwise order of edges around each
vertex and it is planar if it admits a plane drawing of the graph. In a nutshell, the
algorithm is a depth-first search (DFS) which tries to process all edges in the SD
according to the rotation system. Planarity follows if this is possible. Otherwise,
an edge that cannot be processed, e. g., removed from the deque, causes a crossing.
The algorithm is a means to an end for our characterization of planarity and there
are other algorithms especially designed for solving the same problem [6]. Never-
theless, our algorithmhas the benefit that it operates on an elementary data struc-
ture, i. e., a deque, which is very simple in comparison to other ones used for general
planarity tests [15]. Note that any two-cell embedding on a surface of genus k can
be defined by a rotation system. In particular, it is not sufficient to only test lo-
cally at each face whether the rotation system causes crossings. Another challenge
are crossings between edges incident to the same vertex, which are ignored in the
general case. As the SD exploits the structure of a graph’s DFS tree, our charac-
terization is related to the characterization of planarity by de Fraysseix et al. [9].
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The SD also provides a playful characterization of planarity: At GD 2012,
we presented the poster “Testing Planarity by Switching Trains” [3]. There,
the edges are modeled as cars which have to be appended at the head and
tail of a train which models the deque. The vertices are train stations which
are the sources and destinations of the cars and, at junctions, the train can be
split. We also implemented a Java game1, which uses the time-reversed variant
of the SD, i. e., the mergeable deque. The player is asked to switch the cars
such that all can be removed at their destination station. The graph under-
lying a game level is obtained from a GraphML file. If it is possible to bring
all cars to their destination without an error, then the underlying graph is
planar.

2 Preliminaries

We consider simple, undirected, and connected graphs G = (V,E) with ver-
tices V and edges E such that |V | ≥ 2. A graph G = (V,E) is planar if it has
a plane drawing which maps the vertices to distinct points in the plane and
edges {u, v} to Jordan arcs from u to v such that Jordan arcs do not cross ex-
cept at common end points. A rotation system Rv defines a cyclic order of edges
around each vertex v. From a plane drawing, we obtain a planar rotation system
which is the counterclockwise ordering of the edges around each vertex in the
drawing. Given a rotation system Rv, each edge e has a successor edge Succv(e)
and a predecessor edge Prev(e) at vertex v.

A DFS tree T = (V,ET ) is a rooted, directed spanning tree of G obtained
from a DFS traversal starting at a root vertex r. We assume that the tree edges
ET are directed from the parent to its children. We denote by u → v that

(u, v) ∈ ET . By u
+→ v, we denote a path of tree edges (at least one) from u

to v. Vertex u is an ancestor of v and v is a descendant of u. By u
∗→ v, we

denote u = v or u
+→ v. T partitions E into tree edges ET and forward edges F .

For each forward edge {u, v} ∈ F , there is a path u
+→ v where u is an ancestor

of v.
A linear layout if a total ordering ≺ of the vertices. If u ≺ v, then u is called

predecessor of v and v successor of u. In a graph layout, a vertex v can be seen
as a processing unit that receives as input a data structure from which v’s edges
to predecessors are removed and edges to successors are inserted. Insertions and
removals obey the modus operandi of the data structure. The resulting data
structure is the output of the vertex and the input to the immediate successor.
The input to the first and output of the last vertex is empty.

A deque is a doubly linked list whose content is denoted by C = (e1, . . . , ek),
where e1 is at the head h and ek is at the tail t. The empty deque is denoted by
(). We denote by ei ∈ C that ei is in C and by ei �C ej that i < j in C. We omit
the subscript in �C if it is clear from the context which configuration is meant.

1 http://www.infosun.fim.uni-passau.de/br/games/derail.jar

http://www.infosun.fim.uni-passau.de/br/games/derail.jar
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An edge e ∈ C can be removed if it is situated at the head or the tail of C. In
the following, we denote by Cv the input of vertex v.

Let G = (V,E) be a graph endowed with a rotation system and assume that
G contains Hamiltonian path p = (v1, . . . , vn). Path p is a (degenerate) DFS
tree of G and it induces a linear layout with vi ≺ vj if and only if i < j for
all 1 ≤ i, j ≤ n. The edges on p are directed from each vertex to its immediate
successor. A rotation system ofG defines the order in which the edges are inserted
to and removed from a deque and Algorithm 1 shows how: It takes as input a
vertex v and its rotation system Rv along with a deque Cv. ep and es are the
edges to the immediate predecessor and successor of v on p, respectively. The
value ⊥ indicates that v is the first or last vertex. Let vi with 1 < i < n be an
inner vertex of p. Its rotation system is sketched in Fig. 1(a). In Algorithm 1,
all edges eh1, . . . , e

h
k between ep and es are inserted and removed at the head in

counterclockwise order of the rotation system (lines 1–4). An edge is removed if
it points to a predecessor and it is inserted if it points to a successor. We say
that these edges are to the left of p at v. Then, at v, all edges et1, . . . , e

t
l to the

right of p between ep and es are processed at the deque’s tail in reversed, i. e.,
clockwise, order of the rotation system (lines 5–10). Whereas an edge can always
be inserted, removing might not be possible if the edge is not accessible at the
corresponding side of the deque. In this case, Algorithm 1 aborts and returns ⊥.
At the endpoints v1 and vn of p, the rotation system can be divided at an
arbitrary position. In this case, Algorithm 1 processes all edges at the head. Note
that the edges of the Hamiltonian path p are not processed in the deque. The
reason is that these edges can always be processed canonically without interfering
with any other edges: First of all, the edge to the immediate predecessor is
removed at the head and, last of all, the edge to the immediate successor is
inserted at the head. Hence, we can safely ignore all edges on p. We say that a
rotation system admits a deque layout if subsequently calling ProcessDeque for
all vertices v1, . . . , vn in order never returns ⊥ and the input to v1 is the empty
deque and so is the output of vn. From [2], we obtain the following proposition.

Proposition 1. The rotation system of a graph with a Hamiltonian path is
planar if and only if it admits a deque layout.

For an example, consider Fig. 1(c). The input of vertex 3 is the deque with
content (e4, e3) and edge e6 is inserted to the tail of the deque, which results
in (e4, e3, e6). Consider edge e′ which crosses e6. This is also reflected in the
deque layout: At vertex 4, e4 is removed at the deque’s head and e′ inserted
to the tail resulting in (e3, e6, e

′). At vertex 11, e6 must be removed at the tail
which is not possible since e′ is in its way.

3 The Splittable Deque

The SD enhances the deque by allowing it to be split. This is the dual to the
mergeable deque of Kosaraju [13]. In order to define SD layouts, we generalize
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Algorithm 1. ProcessDeque

Input: vertex v with rotation system Rv = (e1, . . . , ek), deque Cv, edges ep (es)
to immediate predecessor (successor); or ⊥ if v is first (last)

Output: new content of the deque or ⊥ if deque layout is not possible
1 e ← Succv(ep) if ep �= ⊥, else Succv(es)
2 while e �= es ∧ e �= ep do
3 if e is edge to successor then Cv.insertAtHead(e)
4 else Cv.removeAtHead(e) or return ⊥ if not possible e ← Succv(e)

5 if es �= ⊥ ∧ ep �= ⊥ then v is an inner vertex
6 e ← Prev(ep)
7 while e �= es do
8 if e is edge to successor then Cv.insertAtTail(e)
9 else Cv.removeAtTail(e) or return ⊥ if not possible

10 e ← Prev(e)

11 return Cv

linear layouts to tree layouts. A tree layout is an ordered DFS tree T = (V,ET )
of a graph G, i. e., a DFS tree in which the children of each inner vertex are
totally ordered from left to right. Remember that the linear layout of a deque
layout describes the processing pipeline, i. e., if u is the immediate predecessor of
v, then the output of u is the input of v. With a tree layout T , a vertex v can have
multiple immediate successors, namely, its children w1, w2, . . . , wl in order. For a
graphG, let T = (V,ET ) be a tree layout with root r. The input Cr = () of root r
is empty. Let Cv = (e1, . . . , ek) be the input of vertex v ∈ V and let w1, . . . , wl

be the children of v in T in order. Assume for now that v has at least one child.
At first, Cv is split into l ≤ 1 consecutive and disjoint pieces cw1 , . . . , cwl

, where
Cv is the concatenation of cw1 , . . . , cwl

. These l pieces constitute l new SDs. Each
forward edge from an ancestor of v in T has to be removed and each forward
edge to a descendant has to be inserted at one of these SDs. The SD obtained
from cwi after all removals and insertions is the input Cwi of child wi. If v is a
leaf, its output must be empty. If T is a path, the SD is never split and behaves
like a deque. A graph is an SD graph if it has a tree layout such that all edges
can be processed in the SD.

For an example, consider the graph in Fig. 1(b) whose rotation system can be
obtained from the drawing. The vertices are numbered according to a DFS run
starting at root 1. The red, dashed edges are ignored for the moment. All tree
edges are directed from parent to children and drawn bold. In Fig. 1(d), the tree
layout as defined by the DFS tree is displayed where the children are ordered
from left to right according to the rotation system. In fact, the rotation system as
shown in Fig. 1(d) is equal to the one obtained from Fig. 1(b). In the example, the
input SD of vertex 4 is C4 = (e5, e2, e1, e4, e3, e6). At vertex 4, the SD is split into
three pieces c5 = (e5, e2), c10 = (e1), and c11 = (e4, e3, e6). Afterwards, forward
edge e4 is removed at the head of c11. We obtain C5 = (e5, e2), C10 = (e1), and
C11 = (e3, e6) as inputs to vertices 5, 10, and 11, respectively. In principle, C4 can



30 C. Auer et al.

ep

es

eh1
eh2

ehk−1
ehk

et1
et2

etl−1
etl

(a) 1 2

3

456

7 8

9 10

11

1213e′

e′′

(b)

1

2

3

4

11

12

13

e6

e9

e′

e3
e4

(c)
1

2

3

4

5

6

7

8

9

10 11

12

13

e5 e6

e′

e8

e9
e7

e2

e2

e1

e1

e3

e3

e4

e4

e′′

e6e3e4e1e2e5

e2e5

e1

e3 e6(d)

Fig. 1. (a) shows how a path splits the rotation system of a vertex and at which side
of the deque the edges are processed. A planar graph with its DFS tree (directed and
bold drawn edges) is shown in (b) and its tree layout in (d) along with the input SD
for some vertices. (c) shows a path from the root to a leaf in the DFS tree, which
corresponds to a deque layout.

also be split such that c10 = (e1, e4) and c11 = (e3, e6) and then e4 is removed at
the tail of c10. This ambiguity occurs at vertices with more than one child and
does not influence the property of a graph of being an SD graph.

4 Testing Planarity of a Rotation System by the SD

In this section, we prove our main result.

Theorem 1. A graph G is an SD graph if and only if G is planar.

To prove this theorem, we use Algorithm 2 which uses the SD to test whether a
given rotation system is planar. By showing its correctness, Theorem 1 follows.
Algorithm 2 defines the recursive routine PlanarRS which takes as input a ver-
tex v endowed with a rotation system, a tree layout T , the input SD Cv for v, and
the tree edge ea from its parent p in T or ⊥ if v is the root. The tree layout T is
obtained from a prior DFS run, where the children of each vertex v are ordered
from left to right as given by the rotation system. In a nutshell, PlanarRS first
splits Cv into pieces cw1 , . . . , cwl

, one for each of v’s children w1, . . . , wl, and
then removes and inserts all forward edges according to the rotation system of
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Algorithm 2. PlanarRS

Input: vertex v with rotation system Rv = (e1, . . . , ek), tree
layout T = (V,ET ), SD Cv, tree edge ep from parent p or ⊥ if v is the
root

Output: true R is planar; false if one of e1, . . . , ek causes a crossing
1 if v is leaf then return whether ProcessDeque(v,Rv , Cv, ep,⊥) = ()
2 w1, . . . , wl ← children of v in ET
3 Split Cv into pieces cw1 , . . . , cwl such that ∀e ∈ cwi : e is removed at v, wi or one

of wi’s descendents or return false if this is not possible

4 foreach wi ∈ {w1, . . . , wl} do R̃i←[ ]; removed[wi] ← false S ← empty stack
5 e1, . . . , ek ← rotation system of v with e1 = ep if v is not root; else e1 = (v, w1)

foreach e = e1, . . . , ek do
6 wi ← child wi with e ∈ cwi , e is removed at descendant of wi, or e = (v, wi)

7 if e is forward edge then R̃i.append(e) if S .top() = wi then continue
with next edge in line 5 if wi ∈ S then

8 while S .top() �= wi do
9 wi′ ← S .pop(); removed[wi′ ] ← true

10 Cwi′ ← ProcessDeque(v, R̃i′ , cwi′ , ep, (v, wi′))
11 if Cwi′ = ⊥ then return false else if

¬PlanarRS(wi′ ,Rwi′ , T , Cwi′ , (v, wi′)) then return false

12 else if ¬removed[wi] then S .push(wi) else return false

13 while ¬S .isEmpty() do
14 wi ← S .pop()
15 Cwi ← ProcessDeque(v, R̃i, cwi , ep, (v, wi))
16 if Cwi = ⊥ then return false else if ¬PlanarRS(wi,Rwi , T , Cwi , (v, wi))

then return false

17 return true

v. Afterwards, it recursively calls PlanarRS for all its children. If at some point,
the SD cannot be split adequately or an edge cannot be removed, false is re-
turned and propagated back to the initial caller of PlanarRS. Otherwise, true
is returned. In the following, we assume that in a drawing of G which respects
the rotation system no pair of edges crosses more than once and no edge crosses
any of the tree edges: As the tree layout T itself contains no cycles, it is always
planar regardless of the rotation system. Also, all forward edges can be drawn
such that they cause no crossing with any tree edge. This is also reflected in the
SD where all tree edges can be processed canonically without interfering with
any forward edge: After splitting the SD, the tree edge from the parent can be
removed at the head of the first SD and, as the last step, each tree edge to
child wi can be inserted at the head of the SD for child wi. As with the deque,
we only consider forward edges in the SD layout.

To actually insert and remove forward edges to an SD, PlanarRS uses the
routine ProcessDeque. The observation behind is that a deque is a special case
of the SD, namely, whenever the tree layout is a path: Let G be a graph endowed
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with a rotation system and T be a tree layout of G. Further, let p be a path from
the root to a leaf of T and denote by Gp the subgraph of G induced by p which
inherits G’s rotation system. For instance, the subgraph Gp for the root-to-leaf

path p = 1
+→ 13 in Fig. 1(d) is shown in Fig. 1(c). Gp’s rotation system is planar

if and only if it admits a deque layout by Proposition 1. Hence, if G’s rotation
system is planar, then the rotation system on every root-to-leaf path admits a
deque layout. In PlanarRS, all edges that lie on a common root-to-leaf path p
are processed in the SD just like in a deque. If this is possible, then the rotation
system of each root-to-leaf path is planar. This is already reflected in line 1: If
v is a leaf, then the SD is not split and must be emptied by ProcessDeque and
true is returned if and only if ProcessDeque returns an empty SD.

In line 3, the SD Cv is split into pieces cw1 , . . . , cwl
such that for each edge e ∈

cwi edge e is removed at v, wi or one of wi’s descendants. If this is not possible,
false is returned. Consider edge e′′ in Figs. 1(b) and (d), which crosses edge e1.
Edge e1 is inserted at the head at vertex 1 and e′′ at the tail at vertex 2, i. e.,
e1 � e′′. At vertex 4, the deque has to be split such that e1 ∈ c10 and e′′ ∈ c5.
However, as e1 � e′′ and vertex 5 is left of vertex 10, this is not possible. In
general, we obtain the following lemma:

Lemma 1. Let e and e′ be two forward edges in Cv such that e (e′) is removed
at wi (wi′) or one of its descendants. It is possible to split Cv such that e ∈ cwi

and e′ ∈ cwi′ if and only if e and e′ do not cross.

Proof. We assume that e and e′ are inserted at u and u′ and removed at x and

x′, respectively. Since e and e′ are forward edges, there are paths p = u
+→ v →

wi
∗→ x and p′ = u′ +→ v → wi′

∗→ x′.
⇐: We prove the contrapositive and assume that Cv cannot be split such that

e ∈ cwi and e′ ∈ cwi′ . Either e and e′ are inserted to the same side of the deque
or to different sides. For the first case, assume that e and e′ are both inserted at
the head and, w. l. o. g., wi is left of wi′ in the total order of children at v. This
implies that e′ �Cv e. This situation is depicted in Fig. 2(a). Remember that
PlanarRS inserts and removes edges to the SD as with a deque. Hence, both
edges e and e′ are to the left of p and p′ at u and u′, respectively. There is a
cycle formed by path p and forward edge e. In a drawing of G which respects
the rotation system, this circle encloses a region R (dark shaded in Fig. 2(a))
such that R does not contain wi′ . As e′ �Cv e, e is inserted before e′ and,
thus, either u is an ancestor of u′, or u = u′ and the rotation system at u is
Ru = (. . . , e, . . . , e′, . . . , ed, . . .), where ed is the tree edge from u to u’s child
on p. In either case, the edge curve of e′ starts within region R and must end
outside R which inevitably causes a crossing with e. The reasoning if e and e′

are inserted at the tail is analogous.
In the second case, e and e′ are inserted at different sides where, w. l. o. g., e is

inserted at the tail and e′ at the head (cf. Fig. 2(b)). Hence, e′ �Cv e. Since Cv
cannot be split adequately, this implies that wi must be left of wi′ at v. Again,
let R be the region enclosed by p and e (dark shaded in Fig. 2(b)) such that
R contains wi′ . As e is to the right of p at u and e′ to the left of p′ at u′, the
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Fig. 2. The two cases where the SD cannot be split appropriately (Figs. (a) and (b)).
Fig. (c) sketches nesting sectors and Fig. (d) clashing sectors.

edge curve of e′ starts outside of R and must reach x′ within R which leads to
a crossing with e.
⇒: Again, we prove the contrapositive. We have two cases: Either e and e′ lie

on the same side of p and p′ at u and u′, respectively, or on different sides. For
the first case, we assume w. l. o. g. that wi is left of wi′ at v. If a crossing between
e and e′ is unavoidable, then u is either an ancestor of u′, or u = u′ and rotation
system of u is Ru = (. . . , e, . . . , e′, . . . , ed, . . .), where ed is the tree edge from u
to u’s child on p (Fig. 2(a)). In either case, e is inserted at the head before e′

and e′ �Cv e. Thus, Cv cannot be split such that e ∈ cwi and e′ ∈ cwi′ . For the
second case, e lies to the right of p and e′ to the left of p′ (w. l. o. g.). Thus, e is
inserted at the tail and e′ at the head and e′ �Cv e. If a crossing between e and
e′ is unavoidable, then wi is to the left of wi′ at v (cf. Fig. 2(b)) and, again, Cv
cannot be split such that e ∈ cwi and e′ ∈ cwi′ . ��

Let Rv = (e1, . . . , ek) be the rotation system of v such that e1 is the tree edge
from v’s parent if v is an inner vertex of T . If v is the root, then e1 is the tree
edge to v’s first child w1. After Cv is successfully split into pieces cw1 , . . . , cwl

,
PlanarRS finds for each piece a subsequence of Rv which contains all forward
edges that must be removed from and inserted to cwi . A sector R̃i of child wi

is a subsequence of v’s rotation system such that all edges in R̃i are forward
edges incident to an ancestor of v or a descendant of wi. Further, for each
forward edge e there is exactly one sector R̃i with e ∈ R̃i. If the rotation system
is planar, then all sectors must properly nest: Consider Fig. 2(c) in which v
has five children corresponding to five subtrees. In the rotation system of v,
the sector that corresponds to subtree 2 encloses the sector corresponding to
subtree 1, and the sector belonging to 3 encloses both. Let R̃i = (ep, . . . , eq)

and R̃i′ = (ep′ , . . . , eq′) be two sectors of Rv = (e1, . . . , ek). We say that R̃i

and R̃i′ clash if there exist edges er ∈ R̃i and er′ ∈ R̃i′ with p < p′ < r < r′

(see Fig. 2(d)) or r < r′ < q < q′.
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Lemma 2. In a planar rotation system, no pair of sectors clash.

Proof. Assume for contradiction that G’s rotation system is planar but the sec-
tors R̃i = (ep, . . . , eq) and R̃i′ = (ep′ , . . . , eq′) clash. Let er ∈ R̃i and er′ ∈ R̃i′

be edges with p < p′ < r < r′. The reasoning for the case r < r′ < q < q′ is
similar. The situation is shown in Fig. 2(d). There is a circle formed by v, ep,
er and a simple path between the endpoints of ep and er distinct from v. In a
plane drawing of G respecting the rotation system, this circle encloses a region
R (shaded in Fig. 2(d)) such that it contains the endpoints of ep′ and er′ other
than v. As p < p′ < r < r′, the edge curve of er′ starts outside of R and ends
inside which leads to a crossing; a contradiction. ��

Corollary 1. In a planar rotation system, all pairs of sectors R̃i = (ep, . . . , eq),

R̃i′ = (ep′ , . . . , eq′) with p < p′, are either disjoint, i. e., p ≤ q < p′ ≤ q′, or
nesting, i. e., p < p′ < q′ < q.

If all sectors are disjoint or nesting, we can construct a plane drawing at ver-
tex v given plane drawings of all subgraphs that belong to the subtrees of v’s
children. To test if the sectors are nesting, PlanarRS uses a stack in which v’s
children w1, . . . , wl are inserted and removed. Further, for each child wi, it main-
tains the boolean variable removed[wi] which stores if wi has been removed from
the stack. PlanarRS subsequently processes all edges e of v in order of the ro-
tation system (line 5). In line 6, the child wi “responsible” for e, is determined,
i. e., either e is the tree edge from v to wi, or e is a forward edge and must be
removed from cwi or e must be inserted at v and is removed at a descendant of
wi. If e is a forward edge, it is appended to sector R̃i. If wi is currently on top of
the stack, no further action is needed (line 7). If wi ∈ S, all children wi′ on the
stack are removed until wi is on top. For all removed children wi′ , removed[wi′ ]
is set to true. If wi /∈ S and removed[wi] = false, wi is pushed onto the stack
(line 12).

If wi is not in the stack and has previously been removed, false is returned
(line 12) as the rotation system is not planar for the following reasons: Child wi

has been removed in a previous iteration when another child wi′ further below
in the stack needed to be on top. Let R̃i = (ep, . . . , eq) be the sector of wi and

R̃i′ = (ep′ , . . . , eq′) the sector of wi′ . wi′ has been inserted to S before wi and,
thus, p′ < p. In the iteration when wi is removed from S, the edge of the iteration
is er′ ∈ Rwi′ . Further, there is an edge er ∈ Rwi when wi would be reinserted

with r′ < r. Altogether we get p′ < p < r′ < r and, hence, R̃i and R̃i′ clash.
Thus, the rotation system of G is not planar by Lemma 2.

Whenever a child wi′ is removed from S, it must never be inserted again
and, hence, R̃i′ must contain all edges to be processed in cwi′ . In line 10,

ProcessDeque is called with sector R̃i′ and cwi′ as parameters. Remember that
ProcessDeque needs two edges on a path which divide the rotation system into
a left and right half. Here, these two edges are the tree edge from the parent
of v, if existent, and the tree edge from v to wi′ . If the return value Cwi′ of
ProcessDeque is ⊥, not all edges could be processed in the deque and the rota-
tion system is not planar by Proposition 1. Thus, false is returned in line 11.
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Otherwise, PlanarRS is called recursively on wi′ with input deque Cwi′ (line 11).
After all forward edges of the rotation system are processed, all children remain-
ing in S are removed (lines 13–16) and ProcessDeque and PlanarRS are called.
If all calls of PlanarRS return true, the rotation system of each root-to-leaf
path is planar and so are the rotation systems at each vertex with more than
one child.

Lemma 3. PlanarRS in Algorithm 2 returns true if and only if the rotation
system of its input graph is planar.

Since PlanarRS obeys the SD’s modus operandi, Theorem 1 follows. Each edge
is inserted and removed exactly once. Further, in the loop from lines 5–12 each
forward edge is processed at most twice during the algorithm and, by using the
DFS numbers, it is possible to decide in time O(1) in which subtree the end
vertex of a forward edge lies. Also, each vertex is inserted at most twice to the
stack for each edge. The operation that needs more arguing is splitting the deque
(line 3) for which also a linear running time can be achieved.

Whenever PlanarRS returns false, the edges that cause a crossing can be
determined: If one of the calls of ProcessDeque returns ⊥, then an edge could
not be removed from the SD since at least one other edge is blocking its way.
Hence, these edges must cross. If the SD cannot be split adequately (line 3),
then we obtain one of the situations as in Figs. 2(a) or (b) and the edges which
prevent the SD from being split adequately are those that cause a crossing. Last,
if some of v’s children wi were reinserted into the stack (lines 12 and 16), then
the corresponding sectors would be classhing and, hence, there exist two edges
that cross according to the proof of Lemma 2 (see Fig. 2(d)).

5 Conclusion

We characterized planarity by graph layouts in the splittable deque (SD): Al-
though a stack, two stacks, or the deque characterize large classes of planar
graphs, they do not capture all. We enhanced the deque by a split-operation and
showed that it characterizes planarity. For our proof, we devised a linear-time
algorithm operating on the SD to test the planarity of a rotation system. If it
is not planar, the operations on the SD indicate crossing edges. Our test also
works for graphs with multi-edges. Given a rotation system, it defines the order
of order of insertions and removals to the SD. Conversely, given the order of
insertions and removals to the SD, we can find a (planar) rotation system. So a
planarity testing algorithm can use the SD to find an embedding of a graph.
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Abstract. In this paper we introduce and study the strip planarity testing prob-
lem, which takes as an input a planar graph G(V,E) and a function γ : V →
{1, 2, . . . , k} and asks whether a planar drawing of G exists such that each edge
is monotone in the y-direction and, for any u, v ∈ V with γ(u) < γ(v), it holds
y(u) < y(v). The problem has strong relationships with some of the most deeply
studied variants of the planarity testing problem, such as clustered planarity, up-
ward planarity, and level planarity. We show that the problem is polynomial-time
solvable if G has a fixed planar embedding.

1 Introduction

Testing the planarity of a given graph is one of the oldest and most deeply investigated
problems in algorithmic graph theory. A celebrated result of Hopcroft and Tarjan [20]
states that the planarity testing problem is solvable in linear time.

A number of interesting variants of the planarity testing problem have been consid-
ered in the literature [25]. Such variants mainly focus on testing, for a given planar
graph G, the existence of a planar drawing of G satisfying certain constraints. For ex-
ample the partial embedding planarity problem [1,22] asks whether a plane drawing
G of a given planar graph G exists in which the drawing of a subgraph H of G in
G coincides with a given drawingH of H . Clustered planarity testing [10,23], upward
planarity testing [5,16,21], level planarity testing [24], embedding constraints planarity
testing [17], radial level planarity testing [4], and clustered level planarity testing [14]
are further examples of problems falling in this category.

In this paper we introduce and study the strip planarity testing problem, which is
defined as follows. The input of the problem consists of a planar graph G(V,E) and of
a function γ : V → {1, 2, . . . , k}. The problem asks whether a strip planar drawing
of (G, γ) exists, i.e. a planar drawing of G such that each edge is monotone in the y-
direction and, for any u, v ∈ V with γ(u) < γ(v), it holds y(u) < y(v). The name
“strip” planarity comes from the fact that, if a strip planar drawing Γ of (G, γ) exists,
then k disjoint horizontal strips γ1, γ2, . . . , γk can be drawn in Γ so that γi lies below
γi+1, for 1 ≤ i ≤ k− 1, and so that γi contains a vertex x of G if and only if γ(x) = i,
for 1 ≤ i ≤ k. It is not difficult to argue that strips γ1, γ2, . . . , γk can be given as part
of the input, and the problem is to decide whether G can be planarly drawn so that each
edge is monotone in the y-direction and each vertex x of G with γ(x) = i lies in the
strip γi. That is, arbitrarily predetermining the placement of the strips does not alter the
possibility of constructing a strip planar drawing of (G, γ).

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 37–48, 2013.
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Fig. 1. (a) A negative instance (G, γ) of the strip planarity testing problem whose associated
clustered graph C(G,T ) is c-planar. (b) A positive instance (G, γ) of the strip planarity testing
problem that is not level planar.

Before presenting our result, we discuss the strong relationships of the strip planarity
testing problem with three famous graph drawing problems.

Strip Planarity and Clustered Planarity. The c-planarity testing problem takes as an
input a clustered graph C(G, T ), that is a planar graph G together with a rooted tree T ,
whose leaves are the vertices of G. Each internal node μ of T is called cluster and is
associated with the set Vμ of vertices of G in the subtree of T rooted at μ. The problem
asks whether a c-planar drawing exists, that is a planar drawing of G together with a
drawing of each cluster μ ∈ T as a simple closed region Rμ so that: (i) if v ∈ Vμ, then
v ∈ Rμ; (ii) if Vν ⊂ Vμ, then Rν ⊂ Rμ; (iii) if Vν ∩ Vμ = ∅, then Rν ∩ Rμ = ∅;
and (iv) each edge of G intersects the border of Rμ at most once. Determining the time
complexity of testing the c-planarity of a given clustered graph is a long-standing open
problem. See [10,23] for two recent papers on the topic. An instance (G, γ) of the strip
planarity testing problem naturally defines a clustered graphC(G, T ), where T consists
of a root having k children μ1, . . . , μk and, for every 1 ≤ j ≤ k, cluster μj contains
every vertex x of G such that γ(x) = j. The c-planarity of C(G, T ) is a necessary
condition for the strip planarity of (G, γ), since suitably bounding the strips in a strip
planar drawing of (G, γ) provides a c-planar drawing of C(G, T ). However, the c-
planarity of C(G, T ) is not sufficient for the strip planarity of (G, γ) (see Fig. 1(a)). It
turns out that strip planarity testing coincides with a special case of a problem opened
by Cortese et al. [8,9] and related to c-planarity testing. The problem asks whether a
graph G can be planarly embedded “inside” an host graph H , which can be thought
as having “fat” vertices and edges, with each vertex and edge of G drawn inside a
prescribed vertex and a prescribed edge of H , respectively. It is easy to see that the strip
planarity testing problem coincides with this problem in the case in which H is a path.

Strip Planarity and Level Planarity. The level planarity testing problem takes as an
input a planar graph G(V,E) and a function γ : V → {1, 2, . . . , k} and asks whether
a planar drawing of G exists such that each edge is monotone in the y-direction and
each vertex u ∈ V is drawn on the horizontal line y = γ(u). The level planarity
testing (and embedding) problem is known to be solvable in linear time [24], although a
sequence of incomplete characterizations by forbidden subgraphs [15,18] (see also [13])
has revealed that the problem is not yet fully understood. The similarity of the level
planarity testing problem with the strip planarity testing problem is evident: They have
the same input, they both require planar drawings with y-monotone edges, and they both
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Fig. 2. Two negative instances (G1, γ1) (a) and (G2, γ2) (b) whose associated directed graphs
are upward planar, where G1 is a tree and G2 is a subdivision of a triconnected plane graph

constrain the vertices to lie in specific regions of the plane; they only differ for the fact
that such regions are horizontal lines in one case, and horizontal strips in the other one.
Clearly the level planarity of an instance (G, γ) is a sufficient condition for the strip
planarity of (G, γ), as a level planar drawing is also a strip planar drawing. However, it
is easy to construct instances (G, γ) that are strip planar and yet not level planar, even
if we require that the instances are strict, i.e., no edge (u, v) is such that γ(u) = γ(v).
See Fig. 1(b). Also, the approach of [24] seems to be not applicable to test the strip
planarity of a graph. Namely, Jünger et al. [24] visit the instance (G, γ) one level at a
time, representing with a PQ-tree [7] the possible orderings of the vertices in level i that
are consistent with a level planar embedding of the subgraph of G induced by levels
{1, 2, . . . , i}. However, when visiting an instance (G, γ) of the strip planarity testing
problem one strip at a time, PQ-trees seem to be not powerful enough to represent
the possible orderings of the vertices in strip i that are consistent with a strip planar
embedding of the subgraph of G induced by strips {1, 2, . . . , i}.
Strip Planarity and Upward Planarity. The upward planarity testing problem asks
whether a given directed graph

−→
G admits an upward planar drawing, i.e., a drawing

which is planar and such that each edge is represented by a curve monotonically in-
creasing in the y-direction, according to its orientation. Testing the upward planarity of
a directed graph

−→
G is an NP-hard problem [16], however it is polynomial-time solv-

able, e.g., if
−→
G has a fixed embedding [5], or if it has a single-source [21]. A strict

instance (G, γ) of the strip planarity testing problem naturally defines a directed graph
−→
G , by directing an edge (u, v) of G from u to v if γ(u) < γ(v). It is easy to argue
that the upward planarity of

−→
G is a necessary and not sufficient condition for the strip

planarity of (G, γ) (see Fig.s 2(a) and 2(b)). Roughly speaking, in an upward planar
drawing different parts of the graph are free to “nest” one into the other, while in a strip
planar drawing, such a nesting is only allowed if coherent with the strip assignment.

In this paper, we show that the strip planarity testing problem is polynomial-time
solvable for planar graphs with a fixed planar embedding. Our approach consists of per-
forming a sequence of modifications to the input instance (G, γ) (such modifications
consist mainly of insertions of graphs inside the faces of G) that ensure that the in-
stance satisfies progressively stronger constraints while not altering its strip planarity.
Eventually, the strip planarity of (G, γ) becomes equivalent to the upward planarity of
its associated directed graph, which can be tested in polynomial time.



40 P. Angelini et al.

The paper is organized as follows. In Section 2 we give some preliminaries; in Sec-
tion 3 we prove our result; finally, in Section 4 we conclude and present open problems.
For space limitations, proofs are sketched or omitted; refer to [3] for complete proofs.

2 Preliminaries

A planar drawing of a graph determines a circular ordering of the edges incident to each
vertex. Two drawings of the same graph are equivalent if they determine the same cir-
cular orderings around each vertex. A planar embedding (or combinatorial embedding)
is an equivalence class of planar drawings. A planar drawing partitions the plane into
topologically connected regions, called faces. The unbounded face is the outer face.
Two planar drawings with the same combinatorial embedding have the same faces.
However, such drawings could still differ for their outer faces. A plane embedding of
a graph G is a planar embedding of G together with a choice for its outer face. In this
paper, we will assume all the considered graphs to have a prescribed plane embedding.

For the sake of simplicity of description, in the following we assume that the con-
sidered plane graphs are 2-connected, unless otherwise specified. We will sketch in the
conclusions how to extend our results to simply-connected and even non-connected
plane graphs. We now define some concepts related to strip planarity.

An instance (G, γ) of the strip planarity testing problem is strict if it contains no
intra-strip edge, where an edge (u, v) is intra-strip f γ(u) = γ(v). An instance (G, γ)
of strip planarity is proper if, for every edge (u, v) of G, it holds γ(v) − 1 ≤ γ(u) ≤
γ(v) + 1. Given any non-proper instance of strip planarity, one can replace every edge
(u, v) such that γ(u) = γ(v)+ j, for some j ≥ 2, with a path (v = u1, u2, . . . , uj+1 =
u) such that γ(ui+1) = γ(ui)+1, for every 1 ≤ i ≤ j, thus obtaining a proper instance
(G′, γ′) of the strip planarity testing problem. It is easy to argue that (G, γ) is strip
planar if and only if (G′, γ′) is strip planar. In the following, we will assume all the
considered instances of the strip planarity testing problem to be proper.

Let (G, γ) be an instance of the strip planarity testing problem. A path (u1, . . . , uj)
in G is monotone if γ(ui) = γ(ui−1) + 1, for every 2 ≤ i ≤ j. For any face f in G, we
denote by Cf the simple cycle delimiting the border of f . Let f be a face of G, let u be
a vertex incident to f , and let v and z be the two neighbors of u on Cf . We say that u
is a local minimum for f if γ(v) = γ(z) = γ(u) + 1, and it is a local maximum for f
if γ(v) = γ(z) = γ(u) − 1. Also, we say that u is a global minimum for f (a global
maximum for f ) if γ(w) ≥ γ(u) (resp. γ(w) ≤ γ(u)), for every vertex w incident to f .
A global minimum um and a global maximum uM for a face f are consecutive in f if
no global minimum and no global maximum exists in one of the two paths connecting
um and uM in Cf . A local minimum um and a local maximum uM for a face f are
visible if one of the paths P connecting um and uM in Cf is such that, for every vertex
u of P , it holds γ(um) < γ(u) < γ(uM ).

Definition 1. An instance (G, γ) of the strip planarity problem is quasi-jagged if it is
strict and if, for every face f of G and for any two visible local minimum um and local
maximum uM for f , one of the two paths connecting um and uM in Cf is monotone.
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Definition 2. An instance (G, γ) of the strip planarity problem is jagged if it is strict
and if, for every face f of G, any local minimum for f is a global minimum for f , and
every local maximum for f is a global maximum for f .

3 How to Test Strip Planarity

In this section we show an algorithm to test strip planarity.

3.1 From a General Instance to a Strict Instance

In this section we show how to reduce a general instance of the strip planarity testing
problem to an equivalent strict instance.

Lemma 1. Let (G, γ) be an instance of the strip planarity testing problem. Then, there
exists a polynomial-time algorithm that either constructs an equivalent strict instance
(G∗, γ∗) or decides that (G, γ) is not strip planar.

Consider any intra-strip edge (u, v) in G, if it exists. We distinguish two cases.
In Case 1, (u, v) is an edge of a 3-cycle (u, v, z) that contains vertices in its interior

in G. Observe that, γ(u) − 1 ≤ γ(z) ≤ γ(u) + 1. Denote by G′ the plane subgraph
of G induced by the vertices lying outside cycle (u, v, z) together with u, v, and z (this
graph might coincide with cycle (u, v, z) if such a cycle delimits the outer face of G);
also, denote by G′′ the plane subgraph of G induced by the vertices lying inside cycle
(u, v, z) together with u, v, and z. Also, let γ′(x) = γ(x), for every vertex x in G′, and
let γ′′(x) = γ(x), for every vertex x in G′′. We have the following:

Claim 1. (G, γ) is strip planar if and only if (G′, γ′) and (G′′, γ′′) are both strip planar.

The strip planarity of (G′′, γ′′) can be tested in linear time as follows.
If γ′′(z) = γ′′(u), then (G′′, γ′′) is strip planar if and only if γ′′(x) = γ′′(u) for

every vertex x of G′′ (such a condition can clearly be tested in linear time). For the
necessity, 3-cycle (u, v, z) is entirely drawn in γ′′(u), hence all the internal vertices of
G′′ have to be drawn inside γ′′(u) as well. For the sufficiency, G′′ has a plane embed-
ding by assumption, hence any planar y-monotone drawing (e.g. a straight-line drawing
where no two vertices have the same y-coordinate) respecting such an embedding and
contained in γ′′(u) is a strip planar drawing of (G′′, γ′′).

If γ′′(z) = γ′′(u) − 1 (the case in which γ′′(z) = γ′′(u) + 1 is analogous), then
we argue as follows: First, a clustered graph C(G′′, T ) can be defined such that T con-
sists of two clusters μ and ν, respectively containing every vertex x of G′′ such that
γ′′(x) = γ′′(u) − 1, and every vertex x of G′′ such that γ′′(x) = γ′′(u). We show
that (G′′, γ′′) is strip planar if and only if C(G′′, T ) is c-planar. For the necessity, it
suffices to observe that a strip planar drawing of (G′′, γ′′) is also a c-planar drawing
of C(G′′, T ). For the sufficiency, if C(G′′, T ) admits a c-planar drawing, then it also
admits a c-planar straight-line drawing Γ (C) in which the regions R(μ) and R(ν) rep-
resenting μ and ν, respectively, are convex [2,12]. Assuming w.l.o.g. up to a rotation of
Γ (C) that R(μ) and R(ν) can be separated by a horizontal line, we have that disjoint
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horizontal strips can be drawn containing R(μ) and R(ν). Slightly perturbing the posi-
tions of the vertices so that no two of them have the same y-coordinate ensures that the
the edges are y-monotone, thus resulting in a strip planar drawing of (G′′, γ′′). Finally,
the c-planarity of a clustered graph containing two clusters can be decided in linear
time, as independently proved by Biedl et al. [6] and by Hong and Nagamochi [19].

In Case 2, a 3-cycle (u, v, z) exists that contains no vertices in its interior in G.
Then, contract (u, v), that is, identify u and v to be the same vertex w, whose incident
edges are all the edges incident to u and v, except for (u, v); the clockwise order of the
edges incident to w is: All the edges that used to be incident to u in the same clockwise
order starting at (u, v), and then all the edges that used to be incident to v in the same
clockwise order starting at (v, u). Denote by G′ the resulting graph. Since G is plane,
G′ is plane; since G contains no 3-cycle (u, v, z) that contains vertices in its interior,
G′ is simple. Let γ′(x) = γ(x), for every vertex x �= u, v in G, and let γ′(w) = γ(u).
We have the following.

Claim 2. (G′, γ′) is strip planar if and only if (G, γ) is strip planar.

Claims 1 and 2 imply Lemma 1. Namely, if (G, γ) has no intra-strip edge, there is
nothing to prove. Otherwise, (G, γ) has an intra-strip edge (u, v), hence either Case 1 or
Case 2 applies. If Case 2 applies to (G, γ), then an instance (G′, γ′) is obtained in linear
time containing one less vertex than (G, γ). By Claim 2, (G′, γ′) is equivalent to (G, γ).
Otherwise, Case 1 applies to (G, γ). Then, either the non-strip planarity of (G, γ) is
deduced (if (G′′, γ′′) is not strip planar), or an instance (G′, γ′) is obtained containing
at least one less vertex than (G, γ) (if (G′′, γ′′) is strip planar). By Claim 1, (G′, γ′)
is equivalent to (G, γ). The repetition of such an argument either leads to conclude in
polynomial time that (G, γ) is not strip planar, or leads to construct in polynomial time
a strict instance (G∗, γ∗) of strip planarity equivalent to (G, γ).

3.2 From a Strict Instance to a Quasi-Jagged Instance

In this section we show how to reduce a strict instance of the strip planarity testing
problem to an equivalent quasi-jagged instance. Again, for the sake of simplicity of
description, we assume that every considered instance (G, γ) is 2-connected.

Lemma 2. Let (G, γ) be a strict instance of the strip planarity testing problem. Then,
there exists a polynomial-time algorithm that constructs an equivalent quasi-jagged
instance (G∗, γ∗) of the strip planarity testing problem.

Consider any face f of G containing two visible local minimum and maximum um

and uM , respectively, such that no path connecting um and uM in Cf is monotone.
Insert a monotone path connecting um and uM inside f . Denote by (G+, γ+) the re-
sulting instance of the strip planarity testing problem. We have the following claim:

Claim 3. (G+, γ+) is strip planar if and only if (G, γ) is strip planar.

Proof Sketch: The necessity is trivial. For the sufficiency, consider any strip planar
drawing Γ of (G, γ). Denote by P the path connecting um and uM along Cf and such
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that γ(um) < γ(v) < γ(uM ) holds for every internal vertex v of P . Because of the
existence of some parts of the graph that “intermingle” with P , it might not be possible
to draw a y-monotone curve inside f connecting um and uM in Γ . Thus, a part of Γ
has to be horizontally shrunk, so that it moves “far away” from P , thus allowing for the
monotone path connecting um and uM to be drawn as a y-monotone curve inside f .
This results in a strip planar drawing of (G+, γ+). �

Claim 3 implies Lemma 2, as proved in the following.
First, the repetition of the above described augmentation leads to a quasi-jagged in-

stance (G∗, γ∗). In fact, whenever the augmentation is performed, the number of triples
(vm, vM , g) such that vertices vm and vM are visible local minimum and maximum for
face g, respectively, and such that both paths connecting vm and vM along Cf are not
monotone decreases by 1, thus eventually the number of such triples is zero, and the
instance is quasi-jagged.

Second, (G∗, γ∗) can be constructed from (G, γ) in polynomial time. Namely, the
number of pairs of visible local minima and maxima for a face g of G is polynomial in
the number of vertices of g. Hence, the number of triples (vm, vM , g) such that vertices
vm and vM are visible local minimum and maximum for face g, over all faces of G,
is polynomial in n. Since a linear number of vertices are introduced in G whenever
the augmentation described above is performed, it follows that the the construction of
(G∗, γ∗) from (G, γ) can be accomplished in polynomial time.

Third, (G∗, γ∗) is an instance of the strip planarity testing problem that is equivalent
to (G, γ). This directly comes from repeated applications of Claim 3.

3.3 From a Quasi-Jagged Instance to a Jagged Instance

In this section we show how to reduce a quasi-jagged instance of the strip planarity
testing problem to an equivalent jagged instance. Again, for the sake of simplicity of
description, we assume that every considered instance (G, γ) is 2-connected.

Lemma 3. Let (G, γ) be a quasi-jagged instance of the strip planarity testing problem.
Then, there exists a polynomial-time algorithm that constructs an equivalent jagged
instance (G∗, γ∗) of the strip planarity testing problem.

Consider any face f of G that contains some local minimum or maximum which is
not a global minimum or maximum for f , respectively. Assume that f contains a local
minimum v which is not a global minimum for f . The case in which f contains a local
maximum which is not a global maximum for f can be discussed analogously. Denote
by u (denote by z) the first global minimum or maximum for f that is encountered
when walking along Cf starting at v while keeping f to the left (resp. to the right).

We distinguish two cases, namely the case in which u is a global minimum for f and
z is a global maximum for f (Case 1), and the case in which u and z are both global
maxima for f (Case 2). The case in which u is a global maximum for f and z is a
global minimum for f , and the case in which u and z are both global minima for f can
be discussed symmetrically.

In Case 1, denote by Q the path connecting u and z in Cf and containing v. Con-
sider the internal vertex v′ of Q that is a local minimum for f and that is such that
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Fig. 3. Augmentation of (G, γ) inside a face f in: (a) Case 1 and (b) Case 2

γ(v′) = minu′ γ(u′) among all the internal vertices u′ of Q that are local minima for f .
Traverse Q starting from u, until a vertex v′′ is found with γ(v′′) = γ(v′). Notice that,
the subpath of Q between u and v′′ is monotone. Insert a monotone path connecting
v′′ and z inside f . See Fig. 3(a). Denote by (G+, γ+) the resulting instance of the strip
planarity testing problem. We have the following claim:

Claim 4. Suppose that Case 1 is applied to a quasi-jagged instance (G, γ) to construct
an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is strip
planar. Also, (G+, γ+) is quasi-jagged.

Proof Sketch: The necessity is trivial. For the sufficiency, consider any strip planar
drawing Γ of (G, γ). First, Γ is modified so that v′′ has y-coordinate smaller than
every local minimum of Q different from u. Then, a y-monotone curve can be drawn
inside f connecting v′′ and z, thus resulting in a strip planar drawing of (G+, γ+). �

In Case 2, denote by M a maximal path that is part of Cf , whose end-vertices are two
global maxima uM and vM for f , that contains v in its interior, and that does not contain
any global minimum in its interior. By the assumptions of Case 2, such a path exists.
Assume, w.l.o.g., that face f is to the right of M when walking along M starting at uM

towards vM . Possibly uM = u and/or vM = z. Let um (vm) be the global minimum
for f such that um and uM (resp. vm and vM ) are consecutive global minimum and
maximum for f . Possibly, um = vm. Denote by P the path connecting um and uM

along Cf and not containing v. Also, denote by Q the path connecting vm and vM
along Cf and not containing v. Since M contains a local minimum among its internal
vertices, and since (G, γ) is quasi-jagged, it follows that P and Q are monotone.

Insert the plane graph A(uM , vM , f) depicted by white circles and dashed lines in
Fig. 3(b) inside f . Consider a local minimum u′

m ∈ M for f such that γ(u′
m) =

minv′
m
γ(v′m) among the local minima v′m for f in M . Set γ(zM ) = γ(uM ), set

γ(am) = γ(bm) = γ(um), and set γ(a′m) = γ(b′m) = γ(u′
m). The dashed lines

connecting am and uM , connecting a′m and uM , connecting am and zM , connecting
a′m and zM , connecting bm and zM , connecting b′m and zM , connecting bm and vM ,
connecting b′m and vM , connecting am and a′m, and connecting bm and b′m represent
monotone paths. Denote by (G+, γ+) the resulting instance of the strip planarity testing
problem. We have the following claim:
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Claim 5. Suppose that Case 2 is applied to a quasi-jagged instance (G, γ) to construct
an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is strip
planar. Also, (G+, γ+) is quasi-jagged.

Proof Sketch: The necessity is trivial. For the sufficiency, consider any strip planar
drawing Γ of (G, γ). If P is to the left of Q, then a region R is defined as the region
delimited by P , by M , by Q, and by the horizontal line delimiting γ(um) from above.
Then, the part of Γ that lies inside R is redrawn so that it lies inside a region RQ ⊂ R
arbitrarily close to Q. Such a redrawing “frees” space for the drawing of A(uM , vM , f)
inside f , which results in a strip planar drawing of (G+, γ+). If P is to the right of Q,
then M might “wiggle” to the right of P and to the left of Q. Thus, we first horizontally
shrink a part of Γ that “intermingles” with P and Q, and we then draw A(uM , vM , f)
using its four monotone paths connecting global minima with global maxima in order
to “circumvent” M . This results in a strip planar drawing of (G+, γ+). �

Claims 4–5 imply Lemma 3, as proved in the following.
First, we prove that the repetition of the above described augmentation leads to a

jagged instance (G∗, γ∗) of the strip planarity testing problem. For an instance (G, γ)
and for a face g of G, denote by n(g) the number of vertices that are local minima for g
but not global minima for g, plus the number of vertices that are local maxima for g but
not global maxima for g. Also, let n(G) =

∑
g n(g), where the sum is over all faces g

of G. We claim that, when one of the augmentations of Cases 1 and 2 is performed and
instance (G, γ) is transformed into an instance (G+, γ+), we have n(G+) ≤ n(G)−1.
The claim implies that eventually n(G∗) = 0, hence (G∗, γ∗) is jagged.

We prove the claim. When a face f of G is augmented as in Case 1 or in Case 2, for
each face g �= f and for each vertex u incident to g, vertex u is a local minimum, a local
maximum, a global minimum, or a global maximum for g in (G+, γ+) if and only if it
is a local minimum, a local maximum, a global minimum, or a global maximum for g
in (G, γ), respectively. Hence, it suffices to prove that

∑
n(fi) ≤ n(f)− 1, where the

sum is over all the faces fi that are created from the augmentation inside f .
Suppose that Case 1 is applied to insert a monotone path between vertices v′′ and z

inside f . Such an insertion splits f into two faces, which we denote by f1 and f2, as in
Fig. 3(a). Face f2 is delimited by two monotone paths, hence n(f2) = 0. Every vertex
inserted into f is neither a local maximum nor a local minimum for f1. As a conse-
quence, no vertex x exists such that x contributes to n(f1) and x does not contribute to
n(f). Further, vertex v′ is a global minimum for f1, by construction, and it is a local
minimum but not a global minimum for f . Hence, v′ contributes to n(f) and does not
contribute to n(f1). It follows that n(f1) + n(f2) ≤ n(f)− 1.

Suppose that Case 2 is applied to insert plane graph A(uM , vM , f) inside face f .
Such an insertion splits f into six faces, which are denoted by f1, . . . , f6, as in Fig. 3(b).
Every vertex of A(uM , vM , f) incident to a face fi, for some 1 ≤ i ≤ 6, is either a
global maximum for fi, or a global minimum for fi, or it is neither a local maximum nor
a local minimum for fi. As a consequence, no vertex x exists such that x contributes to
some n(fi) and x does not contribute to n(f). Further, for each vertex x that contributes
to n(f), there exists at most one face fi such that x contributes to n(fi). Finally, vertex
u′
m of M is a global minimum for f1, by construction, and it is a local minimum but
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not a global minimum for f . Hence, u′
m contributes to n(f) and does not contribute to

n(fi), for any 1 ≤ i ≤ 6. It follows that
∑6

i=1 n(fi) ≤ n(f)− 1.
Second, (G∗, γ∗) can be constructed from (G, γ) in polynomial time. Namely, the

number of local minima (maxima) for a face f that are not global minima (maxima)
for f is at most the number of vertices of f . Hence, the number of such minima and
maxima over all the faces of G, which is equal to n(G), is linear in n. Since a linear
number of vertices are introduced in G whenever the augmentation described above is
performed, and since the augmentation is performed at most n(G) times, it follows that
the construction of (G∗, γ∗) can be accomplished in polynomial time.

Third, (G∗, γ∗) is an instance of the strip planarity testing problem that is equivalent
to (G, γ). This directly comes from repeated applications of Claims 4 and 5.

3.4 Testing Strip Planarity for Jagged Instances

In this section we show how to test in polynomial time whether a jagged instance (G, γ)
of the strip planarity testing problem is strip planar. Recall that the associated directed
graph of (G, γ) is the directed plane graph

−→
G obtained from (G, γ) by orienting each

edge (u, v) in G from u to v if and only if γ(v) = γ(u) + 1. We have the following:

Lemma 4. A jagged instance (G, γ) of the strip planarity testing problem is strip pla-
nar if and only if the associated directed graph

−→
G of (G, γ) is upward planar.

Proof Sketch: The necessity is trivial. For the sufficiency, we first insert dummy edges
in
−→
G to augment it to a plane st-digraph

−→
Gst, which is an upward planar directed graph

with exactly one source s and one sink t incident to its outer face [11]. Each face f of−→
Gst consists of two monotone paths, called left path and right path, where the left path
has f to the right when traversing it from its source to its sink. The inserted dummy
edges only connect two sources or two sinks of each face of

−→
G . Since (G, γ) is jagged,

the end-vertices of each dummy edge are in the same strip.
We divide the plane into k horizontal strips. We compute an upward planar drawing

of
−→
G st starting from a y-monotone drawing of the leftmost path of

−→
Gst and adding to

the drawing one face at a time, in an order corresponding to any linear extension of the
partial order of the faces induced by the directed dual graph of

−→
Gst [11]. When a face

is added to the drawing, its left path is already drawn as a y-monotone curve. We draw
the right path of f as a y-monotone curve in which each vertex u lies inside strip γ(u),
hence the rightmost path of the graph in the current drawing is always represented by a
y-monotone curve. A strip planar drawing of (G, γ) can be obtained from the drawing
of
−→
Gst by removing the dummy edges. �
We thus obtain the following:

Theorem 1. The strip planarity testing problem can be solved in polynomial time for
instances (G, γ) such that G is a plane graph.

Proof: By Lemmata 1–3, it is possible to reduce in polynomial time any instance of
the strip planarity testing problem to an equivalent jagged instance (G, γ). By Lemma 4,
(G, γ) is strip planar if and only if the associated directed plane graph

−→
G of (G, γ) is

upward planar. Finally, by the results of Bertolazzi et al. [5], the upward planarity of
−→
G

can be tested in polynomial time. �
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4 Conclusions

In this paper, we introduced the strip planarity testing problem and showed how to
solve it in polynomial time if the input graph is 2-connected and has a prescribed plane
embedding. We now sketch how to remove the 2-connectivity requirement.

Suppose that the input graph (G, γ) is simply-connected (possibly not 2-connected).
The algorithmic steps are the same. The transformation of a general instance into a strict
instance is exactly the same. The transformation of a strict instance into a quasi-jagged
instance has some differences with respect to the 2-connected case. In fact, the visibility
between local minima and maxima for a face f of G is redefined with respect to occur-
rences of such minima and maxima along f . Thus, the goal of such a transformation
is to create an instance in which, for every face f and for every pair of visible occur-
rences σi(um) and σj(uM ) of a local minimum um and a local maximum uM for f ,
respectively, there is a monotone path between σi(um) and σj(uM ) in Cf . This is done
with the same techniques as in Claim 3. The transformation of a quasi-jagged instance
into a jagged instance is almost the same as in the 2-connected case, except that the
2-connected components of G inside a face f have to be suitably squeezed along the
monotone paths of f to allow for a drawing of a monotone path between v′′ and z or
for a drawing of plane graph A(uM , vM , f) This is done with the same techniques as
in Claims 4 and 5. Finally, the proof of the equivalence between the strip planarity of a
jagged instance and the upward planarity of its associated directed graph holds as it is.

Suppose now that the input graph (G, γ) is not connected. Test individually the strip
planarity of each connected component of (G, γ). If one of the tests fails, then (G, γ)
is not strip planar. Otherwise, construct a strip planar drawing of each connected com-
ponent of (G, γ). Place the drawings of the connected components containing edges
incident to the outer face of G side by side. Repeatedly insert connected components
in the internal faces of the currently drawn graph (G′, γ) as follows. If a connected
component (Gi, γ) of (G, γ) has to be placed inside an internal face f of (G′, γ), check
whether γ(uM ) ≤ γ(uf

M ) and whether γ(um) ≥ γ(uf
m), where uM (um) is a vertex of

(Gi, γ) such that γ(uM ) is maximum (resp. γ(um) is minimum) among the vertices of
Gi, and where uf

M (uf
m) is a vertex of Cf such that γ(uf

M ) is maximum (resp. γ(uf
m)

is minimum) among the vertices of Cf . If the test fails, then (G, γ) is not strip planar.
Otherwise, using a technique analogous to the one of Claim 3, a strip planar drawing of
(G′, γ) can be modified so that two consecutive global minimum and maximum for f
can be connected by a y-monotone curve C inside f . Suitably squeezing a strip planar
drawing of (Gi, γ) and placing it arbitrarily close to C provides a strip planar drawing
of (G′ ∪Gi, γ). Repeating such an argument leads either to conclude that (G, γ) is not
strip planar, or to construct a strip planar drawing of (G, γ).

The main question raised by this paper is whether the strip planarity testing problem
can be solved in polynomial time or is rather NP-hard for graphs without a prescribed
plane embedding. The problem is intriguing even if the input graph is a tree.
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Abstract. A morph between two straight-line planar drawings of the same graph
is a continuous transformation from the first to the second drawing such that
planarity is preserved at all times. Each step of the morph moves each vertex
at constant speed along a straight line. Although the existence of a morph be-
tween any two drawings was established several decades ago, only recently it has
been proved that a polynomial number of steps suffices to morph any two planar
straight-line drawings. Namely, at SODA 2013, Alamdari et al. [1] proved that
any two planar straight-line drawings of a planar graph can be morphed in O(n4)
steps, while O(n2) steps suffice if we restrict to maximal planar graphs.

In this paper, we improve upon such results, by showing an algorithm to morph
any two planar straight-line drawings of a planar graph in O(n2) steps; further,
we show that a morph withO(n) steps exists between any two planar straight-line
drawings of a series-parallel graph.

1 Introduction

A planar morph between two planar drawings of the same plane graph is a continuous
transformation from the first drawing to the second one such that planarity is preserved
at all times. The problem of deciding whether a planar morph exists for any two draw-
ings of any graph dates back to 1944, when Cairns [7] proved that any two straight-line
drawings of a maximal planar graph can be morphed one into the other while maintain-
ing planarity. In 1981, Grünbaum and Shephard [10] introduced the concept of linear
morph, that is a continuous transformation in which each vertex moves at uniform speed
along a straight-line trajectory. With this further requirement, however, planarity can-
not always be maintained for any pair of drawings. Hence, the problem has been sub-
sequently studied in terms of the existence of a sequence of linear morphs, also called
morphing steps, transforming a drawing into another while maintaining planarity. The
first result in this direction is the one of Thomassen [13], who proved that a sequence
of morphing steps always exists between any two straight-line drawings of the same
plane graph. Further, if the two input drawings are convex, this property is maintained
throughout the morph, as well. However, the number of morphing steps used by the
algorithm of Thomassen might be exponential in the number of vertices.

� Part of the research was conducted in the framework of ESF project 10-EuroGIGA-OP-003
GraDR “Graph Drawings and Representations”.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 49–60, 2013.
© Springer International Publishing Switzerland 2013



50 P. Angelini et al.

Recently, the problem of computing planar morphs gained increasing research atten-
tion. The case in which edges are not required to be straight-line segments has been
addressed in [11], while morphs between orthogonal graph drawings preserving pla-
narity and orthogonality have been explored in [12]. Morphs preserving more general
edge directions have been considered in [6]. Also, the problem of “topological morph-
ing”, in which the planar embedding is allowed to change, has been addressed in [2].

In a paper appeared at SODA 2013, Alamdari et al. [1] tackled again the original
setting in which edges are straight-line segments and linear morphing steps are required.
Alamdari et al. presented the first morphing algorithms with a polynomial number of
steps in this setting. Namely, they presented an algorithm to morph straight-line planar
drawings of maximal plane graphs with O(n2) steps and of general plane graphs with
O(n4) steps, where n is the number of vertices of the graph.

In this paper we improve upon the result of Alamdari et al. [1], providing a more
efficient algorithm to morph general plane graphs. Namely, our algorithms uses O(n2)
linear morphing steps. Further, we provide a morphing algorithm with a linear number
of steps for a non-trivial class of planar graphs, namely series-parallel graphs. These
two main results are summarized in the following theorems.

Theorem 1. Let Γa and Γb be two drawings of the same plane series-parallel graph
G. There exists a morph 〈Γa, . . . , Γb〉 with O(n) steps transforming Γa into Γb .

Theorem 2. Let Γs and Γt be two drawings of the same plane graph G. There exists a
morph 〈Γs, . . . , Γt〉 with O(n2) steps transforming Γs into Γt .

The rest of the paper is organized as follows. Section 2 contains preliminaries and
basic terminology. Section 3 describes an algorithm to morph series-parallel graphs.
Section 4 describes an algorithm to morph plane graphs. Section 5 provides geometric
details for the morphs described in Sections 3 and 4. Finally, Section 6 contains con-
clusions and open problems. Because of space limitations, some proofs are omitted or
sketched. Full proofs can be found in the extended version of the paper [4].

2 Preliminaries

A straight-line planar drawing Γ (in the following simply drawing) of a graph G(V,E)
maps vertices in V to distinct points of the plane and edges in E to non-intersecting
open straight-line segments between their end-vertices. Given a vertex v of a graph G,
we denote by deg(v) the degree of v in G, that is, the number of vertices adjacent to
v. A planar drawing Γ partitions the plane into connected regions called faces. The
unbounded face is the external face. Also, Γ determines a clockwise order of the edges
incident to each vertex. Two planar drawings are equivalent if they determine the same
clockwise ordering of the incident edges around each vertex and if they have the same
external face. A planar embedding is an equivalence class of planar drawings. A plane
graph is a planar graph with a given planar embedding.

A series-parallel graph G is a planar graph that does not contain the complete graph
on four vertices as a minor. A plane series-parallel graph is a graph together with a pla-
nar embedding. Let G be a plane biconnected series-parallel graph and let e be an edge
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incident to its outer face. Graph G has a unique decomposition tree Te rooted at e hav-
ing nodes of three types: Q-, S-, and P-nodes. A Q-node represents a single edge, while
an S-node (a P-node) μ represents a series (a parallel, respectively) composition of the
sugraphs associated to the subtrees of Te rooted at the children of μ. An embedding of
G naturally induces an ordering for the children of each node of Te.

A (linear) morphing step 〈Γ1, Γ2〉, also referred to as linear morph, of two straight-
line planar drawings Γ1 and Γ2 of a plane graph G is a continuous transformation of
Γ1 into Γ2 such that all the vertices simultaneously start moving from their positions in
Γ1 and, moving along a straight-line trajectory, simultaneously stop at their positions
in Γ2 so that no crossing occurs between any two edges during the transformation. A
morph 〈Γs, . . . , Γt〉 of two straight-line planar drawings Γs into Γt of a plane graph G
is a finite sequence of morphing steps that transforms Γs into Γt. Let u and w be two
vertices of G such that edge (u,w) belongs to G and let Γ be a straight-line planar
drawing of G. The contraction of u onto w results in (i) a graph G′ = G/(u,w) not
containing u and such that each edge (u, x) of G is replaced by an edge (w, x) in
G′, and (ii) a straight-line drawing Γ ′ of G′ such that each vertex different from v is
mapped to the same point as in Γ . In the following, the contraction of an edge (u,w)
will be only applied if the obtained drawing Γ ′ is planar. The uncontraction of u from
w in Γ ′ yields a straight-line planar drawing Γ ′′ of G. A morph in which contractions
are performed, possibly together with other morphing steps, is a pseudo-morph. Let v
be a vertex of G and let G′ be the graph obtained by removing v and its incident edges
from G. Let Γ ′ be a planar straight-line drawing of G′. The kernel of v in Γ ′ is the set
P of points such that straight-line segments can be drawn in Γ ′ connecting each point
p ∈ P to each neighbor of v in G without intersecting any edge in Γ ′.

3 Morphing Series-Parallel Graph Drawings in O(n) Steps

In this section we show an algorithm to compute a pseudo-morph between any two
drawings of the same plane series-parallel graph G. In Section 3.1 we assume that G is
biconnected, and in Section 3.2 we show how to remove this assumption, thus proving
the following theorem.

Theorem 3. Let Γa and Γb be two drawings of the same plane series-parallel graph G.
There exists a pseudo-morph 〈Γa, . . . , Γb〉 with O(n) steps transforming Γa into Γb .

3.1 Biconnected Series-Parallel Graphs

Our approach consists of morphing any drawingΓ of a biconnected plane series-parallel
graph G into a “canonical drawing” Γ ∗ of G in a linear number of steps. As a conse-
quence, any two drawings Γ1 and Γ2 of G can be transformed one into the other in a
linear number of steps, by morphing Γ1 to Γ ∗ and Γ ∗ to Γ2.

A canonical drawing Γ ∗ of a biconnected plane series-parallel graph G is defined as
follows. The decomposition tree Te of G is traversed top-down and a suitable geometric
region of the plane is assigned to each node μ of Te; such a region will contain the
drawing of the series-parallel graph associated with μ. The regions assigned to the nodes
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Fig. 1. (a) A left boomerang. (b) A right boomerang. (c) A diamond. (d) Diamonds inside a
boomerang. (e) Boomerangs (and a diamond) inside a diamond.

of Te are similar to those used in [5,3] to construct monotone drawings. Namely, we
define three types of regions: Left boomerangs, right boomerangs, and diamonds. A
left boomerang is a quadrilateral with vertices N,E, S, and W such that E is inside
triangle �(N,S,W ), where |NE| = |SE| and |NW | = |SW | (see Fig. 1(a)). A
right boomerang is defined symmetrically, with E playing the role of W , and vice
versa (see Fig. 1(b)). A diamond is a convex quadrilateral with vertices N,E, S, and
W , where |NW | = |NE| = |SW | = |SE|. Observe that a diamond contains a left
boomerangNl, El, Sl,Wl and a right boomerang Nr, Er, Sr,Wr , where S = Sl = Sr,
N = Nl = Nr, W = Wl, and E = Er (see Fig. 1(c)).

We assign boomerangs (either left or right, depending on the embedding of G) to
S-nodes and diamonds to P- and Q-nodes, as follows.

First, consider the Q-node ρ corresponding to the root edge e of G. Draw edge e as
a segment between points (0, 1) and (0,−1). Also, if ρ is adjacent to an S-node μ, then
assign to μ the left boomerang N = (0, 1), E = (−1, 0), S = (0,−1),W = (−2, 0)
or the right boomerang N = (0, 1), E = (2, 0), S = (0,−1),W = (1, 0), depending
on the embedding of G; if ρ is adjacent to a P-node μ, then associate to μ the diamond
N = (0, 1), E = (+2, 0), S = (0,−1),W = (−2, 0).

Then, consider each node μ of Te(G) according to a top-down traversal.
If μ is an S-node (see Fig. 1(d)), let N,E, S,W be the boomerang associated with

it and let α be the angle ŴNE. We associate diamonds to the children μ1, μ2, . . . , μk

of μ as follows. Consider the midpoint C of segment WE. Subdivide NC into �k2 �
segments with the same length and CS into �k2 � segments with the same length. Enclose
each of such segments NiSi, for i = 1, . . . , k, into a diamond Ni, Ei, Si,Wi, with
ŴiNiEi = α, and associate it with child μi of μ.

If μ is a P-node (see Fig. 1(e)), let N,E, S,W be the diamond associated with it.
Associate boomerangs and diamonds to the children μ1, μ2, . . . , μk of μ as follows.
If a child μl of μ is a Q-node, then left boomerangs are associated to μ1, . . . , μl−1,
right boomerangs are associated to μl+1, . . . , μk, and a diamond is associated to μl.
Otherwise, right boomerangs are associated to all of μ1, μ2, . . . , μk. We assume that a
child μl of μ that is a Q-node exists, the description for the case in which no child of μ is
a Q-node being similar and simpler. We describe how to associate left boomerangs to the
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children μ1, μ2, . . . , μl−1 of μ. Consider the midpoint C of segment WE and consider
2l equidistant points W = p1, . . . , p2l = C on segment WC. Associate each child μi,
with i = 1, . . . , l − 1, to the quadrilateral Ni = N,Ei = p2i, Si = S,Wi = p2i+1.
Right boomerangs are associated to μl+1, μl+2, . . . , μk in a symmetric way. Finally,
associate μl to any diamond such that Nl = N,Sl = S, Wl is any point between C and
El−1, and El is any point between C and Wl+1.

If μ is a Q-node, let N,E, S,W be the diamond associated with it. Draw the edge
corresponding to μ as a straight-line segment between N and S.

Observe that the above described algorithm constructs a drawing of G, that we call
the canonical drawing of G. We now argue that no two edges e1 and e2 intersect in the
canonical drawing of G. Consider the lowest common ancestor ν of the Q-nodes τ1 and
τ2 of Te representing e1 and e2, respectively. Also, consider the children ν1 and ν2 of
ν such that the subtree of Te rooted at νi contains τi, for i = 1, 2. Such children are
associated with internally-disjoint regions of the plane. Since the subgraphs G1 and G2

of G corresponding to ν1 and ν2, respectively, are entirely drawn inside such regions, it
follows that e1 and e2 do not intersect except, possibly, at common endpoints.

In order to construct a pseudo-morph of a straight-line planar drawing Γ (G) of G
into its canonical drawing Γ ∗(G), we do the following: (i) We perform a contraction of
a vertex v of G into a neighbor of v, hence obtaining a drawing Γ (G′) of a graph G′

with n − 1 vertices; (ii) we inductively construct a pseudo-morph from Γ (G′) to the
canonical drawing Γ ∗(G′) of G′; and (iii) we uncontract v and perform a sequence of
morphing steps to transform Γ ∗(G′) into the canonical drawing Γ ∗(G) of G.

We describe the three steps in more detail.
Let Te(G) be the decomposition tree of G rooted at some edge e incident to the

outer face of G. Consider a P-node ν such that the subtree of Te(G) rooted at ν does
not contain any other P-node. This implies that all the children of ν, with the exception
of at most one Q-node, are S-nodes whose children are Q-nodes. Hence, the series-
parallel graph G(ν) associated to ν is composed of a set of paths connecting its poles
s and t. Let p1 and p2 be two paths joining s and t and such that their union is a cycle
C not containing other vertices in its interior (see Fig. 2(a)). Such paths exist given that
the “rest of the graph” with respect to ν is in the outer face of G(ν), since the root e
of Te(G) is incident to the outer face of G. Internally triangulate C by adding dummy
edges (dashed edges of Fig. 2). Cycle C and the added dummy edges yield a drawing of
a biconnected outerplane graph O which, hence, has at least two vertices of degree two.

If there exists a vertex v with deg(v) = 2 and v �= s, t (Case 1), then apply the
following contraction. Assume that v belongs to p2. Since O is internally triangulated,
both the neighbors v1 and v2 of v belong to p2, and they are joined by a dummy edge.
We obtain Γ (G′) from Γ (G) by contracting v onto one of its neighbors, while preserv-
ing planarity (see Figs. 2(a) and 2(b)). If p2 contains more than two edges (Case 1.1),
then p2 is replaced in G′ with a path p′2 that contains edge (v1, v2) and does not contain
vertex v. Otherwise, p2 contains exactly two edges (v, v1) and (v, v2). If there exists
edge (v1, v2) in G (Case 1.2), then G′ = G \ {v}. Finally, if edge (v1, v2) does not
exist in G (Case 1.3), then p2 is replaced in G′ with edge (v1, v2). Otherwise, the only
two vertices of degree 2 in O are s and t (Case 2). In this case, one of the two vertices
u1 and u2 of O adjacent to s has degree 3, say u2 (since removing s and its incident
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Fig. 2. The internally triangulated cycle C formed by paths p1 and p2. Dummy edges are drawn
as dashed lines. (a–b) Vertex v of degree 2 can be contracted onto v1. (b–c) Vertex u2 of degree
3 can be contracted onto u1.

edges from O yields another biconnected outerplane graph with two vertices of degree
2, namely t and one of u1 and u2). We obtain Γ (G′) from Γ (G) by contracting u2 onto
u1. Let u3 be the neighbor of u1 and u2 different from s. Since the edges incident to u2

are contained into triangles�s,u1,u2 and�u1,u2,u3 during the contraction, planarity is
preserved (see Figs. 2(b) and 2(c)). Let p′2 be the path composed of edge (u1, u3) and
of the subpath of p2 between u3 and t, and let p′1 be the subpath of p1 between u1 and
t. Note that G′ contains edge (u1, u3) and does not contain vertex u2. In both Case 1
and Case 2, the decomposition tree Te(G

′) of G′ differs from the decomposition tree
Te(G) of G only “locally” to ν. A precise description of the differences between Te(G)
and Te(G

′) can be found in the extended version of the paper [4].
Let Γ (G′) be the drawing of the graph G′ = G \ {v} obtained after the contraction

performed in Case 1 or Case 2. Inductively construct a pseudo-morphing fromΓ (G′) to
the canonical drawing Γ ∗(G′) of G′ in c · (n− 1) steps, where c is a constant. Drawing
Γ ∗(G) can be obtained from Γ ∗(G′) by uncontracting v and by performing a constant
number of morphing steps, as described in the following.

Here we only describe how to obtain Γ ∗(G) from Γ ∗(G′) if Case 1.1 was applied to
contract v into one of its neighbors in p2. The other cases can be handled in a similar
way (a full description can be found in the extended version of the paper [4]).

Drawings Γ ∗(G′) and Γ ∗(G) coincide except for the fact that path p2 in Γ ∗(G)
contains v, while path p′2 in Γ ∗(G′) does not contain v. Paths p′2 and p2 are drawn inside
two equal boomerangs in Γ ∗(G′) and in Γ ∗(G), respectively, however v and some of
the vertices of p′2 need to be moved in order to obtain the drawing of p2 as in Γ ∗(G′).
Namely, the drawing Γ ∗(p′2) of p′2 inside the boomerangN,E, S,W associated to τ2 in
Γ ∗(G′) is composed of edges lying on two straight-line segments NC and SC, where
C is the midpoint of segment EW (see Fig. 3(a)). The drawing Γ ∗(p2) of p2 in Γ ∗(G)
also lies inside N,E, S,W and is composed of edges lying on NC and SC, but vertices
lie on different points (see Fig. 3(e)).

With one morphing step, uncontract v from the vertex it had been contracted onto
and place it on any point of segment v1v2 (note that edge (v1, v2) exists in G′ and not
in G; see Fig. 3(b)). Then, in order to redistribute the vertices of p2 on NC and SC,
perform the following operation. Assume w.l.o.g. that s is on point N and t is on point
S in Γ ∗(G′) and in Γ ∗(G). Consider the verticesw ∈ p2 and w′ ∈ p′2 that are placed on
point C in Γ ∗(G) and Γ ∗(G′), respectively. Note that either w = w′ or (w,w′) ∈ p2.
If w = w′, either the subpath p2(s, w) of p2 between s and w or the subpath p2(w, t)
of p2 between w and t has the same drawing in Γ ∗(G) and Γ ∗(G′), say p2(w, t) has
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Fig. 3. Construction of Γ ∗(G) from Γ ∗(G′) when Case 1.1 applied. (a) Γ ∗(p′2). The boomerang
associated to τ2 is light-grey. (b) Vertex v is uncontracted and placed on segment v1v2. (c) Ver-
tices on the path between s and w are placed in their final position, and vertex w′ is placed
arbitrarily close to C on the elongation of NC. (d) Vertex w′ is placed on CS. (e) Vertices on
the path between w and t are placed in their final position, hence obtaining Γ ∗(G).

such a property. With one morphing step move the vertices of p2(s, w) on segment NC
till reaching their positions in Γ ∗(G). If w �= w′, assume without loss of generality that
w ∈ p2(s, w

′). With one morphing step, move the vertices of p2(s, w) and vertex w′

along the line through N and C, so that the vertices of p2(s, w) reach their positions in
Γ ∗(G) and w′ is placed arbitrarily close to C on the elongation of NC (see Fig. 3(c)).
With a second morphing step, move w′ to any point of SC between w and its other
neighbor in p2 (see Fig. 3(d)). Finally, with a third morphing step, move the vertices of
p2(w, t) on segment SC till reaching their positions in Γ ∗(G) (see Fig. 3(e)).

3.2 Simply-Connected Series-Parallel Graphs

In this section we show how, by preprocessing the input drawings Γa and Γb of any
series-parallel graph G, the algorithm presented in Section 3.1 can be used to com-
pute a pseudo-morph M =〈Γa, . . . , Γb〉. The idea is to augment both Γa and Γb to
two drawings Γ ′

a and Γ ′
b of a biconnected series-parallel graph G′, compute the morph

M ′ =〈Γ ′
a, . . . , Γ

′
b〉, and obtain M by restricting M ′ to the vertices and edges of G.

This augmentation is performed on G by repeatedly applying the following lemma.

Lemma 1. Let v be a cut-vertex of a plane series-parallel graph G with nb blocks. Let
e1 = (u, v) and e2 = (w, v) be two consecutive edges in the circular order around
v such that e1 belongs to block b1 of G and e2 belongs to block b2 �= b1 of G. The
graph G∗ obtained from G by adding a vertex z and edges (u, z) and (w, z) is a plane
series-parallel graph with nb − 1 blocks.

Observe that, when augmenting G to G∗, both Γa and Γb can be augmented to two
planar straight-line drawings Γ ∗

a and Γ ∗
b of G∗ by placing vertex z suitably close to v

and with direct visibility to vertices u and w, as in the proof of Fáry’s Theorem [9].
By repeatedly applying such an augmentation we obtain a biconnected series-parallel
graph G′ and its drawings Γ ′

a and Γ ′
b, whose number of vertices and edges is linear in
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the size of G. Hence, the algorithm described in Section 3.1 can be applied to obtain a
pseudo-morph 〈Γa, . . . , Γb〉, thus proving Theorem 3. We will show in Section 5 how
to obtain a morph starting from the pseudo-morph computed in this section.

4 Morphing Plane Graph Drawings in O(n2) Steps

In this section we prove the following theorem.

Theorem 4. Let Γs and Γt be two drawings of the same plane graph G. There exists a
pseudo-morph 〈Γs, . . . , Γt〉 with O(n2) steps transforming Γs into Γt .

Preliminary Definitions. Let Γ be a planar straight-line drawing of a plane graph G. A
face f of G is empty in Γ if it is delimited by a simple cycle. Consider a vertex v of G
and let v1 and v2 be two of its neighbors. Vertices v1 and v2 are consecutive neighbors
of v if no edge appears between edges (v, v1) and (v, v2) in the circular order of the
edges around v in Γ . Let v be a vertex with deg(v) ≤ 5 such that each face containing
v on its boundary is empty. We say that v is contractible [1] if, for each two neighbors
u1 and u2 of v, edge (u1, u2) exists in G if and only if u1 and u2 are consecutive
neighbors of v. We say that v is quasi-contractible if, for each two neighbors u1 and
u2 of v, edge (u1, u2) exists in G only if u1 and u2 are consecutive neighbors of v.
In other words, no edge exists between non-consecutive neighbors of a contractible or
quasi-contractible vertex; also, each face incident to a contractible vertex v is delimited
by a 3-cycle, while a face incident to a quasi-contractible vertex might have more than
three incident vertices. We have the following.

Lemma 2. Every planar graph contains a quasi-contractible vertex.

Further, given a neighbor x of v, we say that v is x-contractible onto x in Γ if: (i) v
is quasi-contractible, and (ii) the contraction of v onto x in Γ results in a straight-line
planar drawing Γ ′ of G′ = G/(v, x).

The Algorithm. We describe the main steps of our algorithm to pseudo-morph a draw-
ing Γs of a plane graph G into another drawing Γt of G.

First, we consider a quasi-contractible vertex v of G, that exists by Lemma 2. Sec-
ond, we compute a pseudo-morph with O(n) steps of Γs into a drawing Γ x

s of G and
a pseudo-morph with O(n) steps of Γt into a drawing Γ x

t of G, such that v is x-
contractible onto the same neighbor x both in Γ x

s and in Γ x
t . We will describe later

how to perform these pseudo-morphs. Third, we contract v onto x both in Γ x
s and in

Γ x
t , hence obtaining two drawings Γ ′

s and Γ ′
t of a graph G′ = G/(v, x) with n− 1 ver-

tices. Fourth, we recursively compute a pseudo-morph transforming Γ ′
s into Γ ′

t . This
completes the description of the algorithm for constructing a pseudo-morphing trans-
forming Γs into Γt. Observe that the algorithm has p(n) ∈ O(n2) steps, thus prov-
ing Theorem 4. Namely, as it will be described later, O(n) steps suffice to construct
pseudo-morphings of Γs and Γt into drawings Γ x

s and Γ x
t of G, respectively, such

that v is x-contractible onto the same neighbor x both in Γ x
s and in Γ x

t . Further, two
steps are sufficient to contract v onto x in both Γ x

s and Γ x
t , obtaining drawings Γ ′

s
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Fig. 4. Vertex v and its neighbors. (a) Vertices a and b do not have direct visibility and the triangle
〈a, b, v〉 is not empty. (b) A vertex u is added suitably close to v and connected to v, a, and b. (c)
The output of CONVEXIFIER on the quadrilateral 〈a, b, v, u〉. (d) Vertex u and its incident edges
can be removed in order to insert edge (a, b).

and Γ ′
t , respectively. Finally, the recursion on Γ ′

s and Γ ′
t takes p(n − 1) steps. Thus,

p(n) = p(n− 1) + O(n) ∈ O(n2). We will show in Section 5 how to obtain a morph
starting from the pseudo-morph computed in this section.

We remark that our approach is similar to the one proposed by Alamdari et al. [1].
In [1] Γs and Γt are augmented to drawings of the same maximal planar graph with m ∈
O(n2) vertices, and a morph with O(m2) steps is constructed between two drawings
of the same m-vertex maximal planar graph. This results in a morphing between Γs

and Γt with O(n4) steps. Here, we also augment Γs and Γt to drawings of maximal
planar graphs. However, we only require that the two maximal planar graphs coincide
in the subgraph induced by the neighbors of v. Since this can be achieved by adding a
constant number of vertices to Γs and Γt, namely one for each of the at most five faces
v is incident to, our morphing algorithm has O(n2) steps.

Making v x-contractible. Let v be a quasi-contractible vertex of G. We show an
algorithm to construct a pseudo-morph with O(n) steps transforming any straight-line
planar drawing Γ of G into a straight-line planar drawing Γ ′ of G such that v is x-
contractible onto any neighbor x. If v has degree 1, then it is contractible into its unique
neighbor in Γ , and there is nothing to prove.

In order to transform Γ into Γ ′, we use a support graph S and its drawingΣ, initially
set equal to G and Γ , respectively. The goal is to augment S and Σ so that v becomes
a contractible vertex of S. In order to do this, we have to add to S an edge between
every two consecutive neighbors of v. However, the insertion of these edges might not
be possible in Σ, as it might lead to a crossing or to enclose some vertex inside a cycle
delimited by v and by two consecutive neighbors of v (see Fig. 4(a)).

Let a and b be two consecutive neighbors of v. If the closed triangle 〈a, b, v〉 does
not contain any vertex other than a, b, and v, then add edge (a, b) to S and to Σ as a
straight-line segment. Otherwise, proceed as follows.

Let Σu be the drawing of a plane graph Su obtained by adding a vertex u and the
edges (u, v), (u, a), and (u, b) to Σ and to S, in such a way that the resulting drawing is
straight-line planar and each face containing u on its boundary is empty. As in the proof
of Fáry’s Theorem [9], a position for u with such properties can be found in Σ, suitably
close to v. See Fig. 4(b). Augment Σu to the drawing Θ of a maximal plane graph T
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by first adding three vertices p, q, and r to Σu, so that triangle 〈p, q, r〉 encloses the rest
of the drawing, and then adding dummy edges [8]. If edge (a, b) has been added in this
augmentation (this can happen if a and b share a face not having v on its boundary),
subdivide (a, b) in Θ (namely, replace (a, b) with edges (a, w) and (w, b), placing w
along the straight-line segment connecting a and b) and triangulate the two faces vertex
w is incident to. Next, apply the algorithm described in [1], that we call CONVEXIFIER,
to construct a morph ofΘ into a drawingΘ′ of T in which polygon 〈a, v, b, u〉 is convex.
The input of algorithm CONVEXIFIER consists of a planar straight-line drawing Γ ∗ of
a plane graph G∗ and of a set of at most five vertices of G∗ inducing a biconnected
outerplane graph not containing any other vertex in its interior in Γ ∗. The output of
algorithm CONVEXIFIER is a sequence of O(n) linear morphing steps transforming Γ ∗

into a drawing of G∗ in which the at most five input vertices bound a convex polygon.
Since, by construction, vertices a, v, b, u satisfy all such requirements, we can apply
algorithm CONVEXIFIER to Θ and to a, v, b, u, hence obtaining a morph with O(n)
steps transformingΘ into the desired drawing Θ′ (see Fig. 4(c)). Let Σ′

u be the drawing
of Su obtained by restricting Θ′ to vertices and edges of Su. Since 〈a, v, b, u〉 is a
convex polygon containing no vertex of Su in its interior, edge (u, v) can be removed
from Σ′

u and an edge (a, b) can be introduced in Σ′
u, so that the resulting drawing Σ′

is planar and cycle (a, b, v) does not contain any vertex in its interior (see Fig. 4(d)).
Once edge (a, b) has been added to S (either in Σ or after the described procedure

transforming Σ into Σ′), if deg(v) = 2 then v is both a-contractible and b-contractible.
Otherwise, consider a new pair of consecutive vertices of v not creating an empty trian-
gular face with v, if any, and apply the same operations described before.

Once every pair of consecutive vertices has been handled, vertex v is contractible in
S. LetΣv be the current drawing ofS. AugmentΣv to the drawingΘv of a triangulation
Tv (by adding three vertices and a set of edges), contract v onto a neighborw such that v
is w-contractible (one of such neighbors always exists, given that v is contractible), and
apply CONVEXIFIER to the resulting drawingΘ′

v and to the neighbors of v to construct a
morphing Θ′

v to a drawing Σ′
v in which the polygon defined by such vertices is convex.

Drawing Γ ′ of G in which v is x-contractible for any neighbor x of v is obtained by
restricting Σ′

v to the vertices and the edges of G. We can now contract v onto x in Γ ′

and recur on the obtained graph (with n− 1 vertices) and drawing.
It remains to observe that, given a quasi-contractible vertex v, the procedure to con-

struct a pseudo-morph of Γ into Γ ′ consists of at most deg(v) + 1 executions of CON-
VEXIFIER, each requiring a linear number of steps [1]. As deg(v) ≤ 5, the procedure
to pseudo-morph Γ into Γ ′ has O(n) steps. This concludes the proof of Theorem 4.

5 Transforming a Pseudo-Morph into a Morph

In this section we show how to obtain an actual morph M from a given pseudo-morph
M, by describing how to compute the placement and the motion of any vertex v that
has been contracted during M. By applying this procedure to Theorems 3 and 4, we
obtain a proof of Theorems 1 and 2.
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Let Γ be a drawing of a graph G and let M =〈Γ, . . . , Γ ∗〉 be a pseudo-morph that
consists of the contraction of a vertex v of G onto one of its neighbors x, followed by a
pseudo-morphM′ of the graph G′ = G/(v, x), and then of the uncontraction of v.

The idea of how to compute M from M is the same as in [1]: Namely, morph M
is obtained by (i) recursively converting M′ into a morph M ′; (ii) modifying M ′ to
a morph M ′

v obtained by adding vertex v (and its incident edges) to each drawing of
M ′, in a suitable position; (iii) replacing the contraction of v onto x, performed in
M, with a linear morph that moves v from its initial position in Γ to its position in
the first drawing of M ′

v; and (iv) replacing the uncontraction of v, performed in M,
with a linear morph that moves v from its position in the last drawing of M ′

v to its final
position in Γ ∗. Note that, in order to guarantee the planarity of M when adding v to any
drawing of M ′ in order to obtain M ′

v, vertex v must lie inside its kernel. Since vertex x
lies in the kernel of v (as x is adjacent to all the neighbors of v in G′), we achieve this
property by placing v suitably close to x, as follows.

At any time instant t during M ′, there exists an εt > 0 such that the disk D centered
at x with radius εt does not contain any vertex other than x. Let ε be the minimum
among the εt during M ′. We place vertex v at a suitable point of a sector S of D
according to the following cases. Case (a): v has degree 1 in G. Sector S is defined
as the intersection of D with the face containing v in G. See Fig. 5(a). Case (b): v has
degree 2 in G. Sector S is defined as the intersection of D with the face containing v
in G and with the halfplane defined by the straight-line passing through x and r, and
containing v in Γ . See Fig. 5(b). Otherwise, deg(v) ≥ 3 in G′. Let (r, v) and (l, v)
be the two edges such that (r, v), (x, v), and (l, v) are clockwise consecutive around v
in G. Observe that edges (r, x) and (l, x) exist in G′. Assume that x, r, and l are not
collinear in any drawing of M ′, as otherwise we can slightly perturb such a drawing
without compromising the planarity of M ′. Let αi be the angle l̂xr in any intermediate
drawing of M ′. Case (c): αi < π. Sector S is defined as the intersection of D with the
wedge delimited by edges (x, r) and (x, l). See Fig. 5(c). Case (d): αi > π. Sector
S is defined as the intersection of D with the wedge delimited by the elongations of
(x, r) and (x, l) emanating from x. See Fig. 5(d). By exploiting the techniques shown
in [1], the motion of v can be computed according to the evolution of S over M ′, thus
obtaining a planar morph M ′

v.
Observe that, in the algorithm described in Section 4, the vertex x onto which v has

been contracted might be not adjacent to v in G. However, since a contraction has been
performed, x is adjacent to v in one of the graphs obtained when augmenting G during
the algorithm. Hence, a morph of G can be obtained by applying the above procedure
to the pseudo-morph computed on this augmented graph and by restricting it to the
vertices and edges of G.

x v

(a)

x r

v

(b)

l

vx
r

(c)

x
rv

l

(d)

Fig. 5. Sector S (in grey) when: (a) deg(v) = 1, (b) deg(v) = 2, and (c)-(d) deg(v) ≥ 3.
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6 Conclusions and Open Problems

In this paper we studied the problem of designing efficient algorithms for morphing two
planar straight-line drawings of the same graph. We proved that any two planar straight-
line drawings of a series-parallel graph can be morphed with O(n) linear morphing
steps, and that a planar morph with O(n2) linear morphing steps exists between any
two planar straight-line drawings of any planar graph.

It is a natural open question whether the bounds we presented are optimal or not. We
suspect that planar straight-line drawings exist requiring a linear number of steps to be
morphed one into the other. However, no super-constant lower bound for the number of
morphing steps required to morph planar straight-line drawings is known. It would be
interesting to understand whether our techniques can be extended to compute morphs
between any two drawings of a partial planar 3-tree with a linear number of steps. We
recall that, as observed in [1], a linear number of morphing steps suffices to morph any
two drawings of a maximal planar 3-tree.
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Abstract. The visualization community has drawn heavily on the al-
gorithmic and systems-building work that has appeared with the graph
drawing literature, and in turn has been a fertile source of applications.
In the spirit of further promoting the effective transfer of ideas between
our two communities, I will discuss a framework for analyzing the design
of visualization systems. I will then analyze a range of graph drawing
techniques through this lens. In the early stages of a project, this sort
of analysis may benefit algorithm developers who seek to identify open
problems to attack. In later project stages, it could guide algorithm de-
velopers in characterizing how newly developed layout methods connect
with the tasks and goals of target users in different application domains.

1 Introduction

Visualization researchers and practitioners have long drawn on the algorithmic
work conducted by the graph drawing community, and in turn have helped estab-
lish connections between that community and end users for specific application
areas. Moreover, the network data that is the focus of the graph drawing commu-
nity’s efforts can be considered as a special case of the broader spectrum of data
that is of interest in visualization, and thus its general principles are relevant.

I propose analysis of visualization techniques through methods; that is, an
enumeration of the design space of techniques in terms of specific sets of choices.
This kind of analysis supports thinking systematically about the space of possi-
bilities. It may help a designer in the early stages of developing a new technique
to identify gaps in the previous work to address. It can also be used to charac-
terize existing work, in service of matching up which algorithms and techniques
are suitable for which real-world problems. Further reading about this analysis
framework can be found in an existing book chapter [13] and a forthcoming
book [14]. These sources include many more references to the extensive related
work that underlies this framework, which I do not directly include here.

In this talk, I begin with a distinction between four levels of visualization de-
sign, and continue with a brief discussion of abstraction for data. I introduce the
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principles of marks and channels, and discuss the use of space in a visualization
context. I continue with further examples of analysis drawn from graph drawing,
and then conclude.

2 Levels of Visualization Design

In recent work, I proposed separating the design concerns of visualization into
four levels: domain problem, data and task abstraction, visual encoding and
interaction technique, and algorithm, as shown in Figure 1 [10]. In that paper, I
also discuss the problem of how to validate designs at each of these levels. In this
talk I will emphasize techniques, which are at a level just above the algorithm
level that is the focus of much of the research from the graph drawing community.
I also discuss the abstraction level briefly, to provide background context.

domain problem 

data/task abstraction

encoding/interaction technique

algorithm

Fig. 1. Four levels of visualization design concerns [10]

My characterization here focuses on one major issue: how is space used? This
question is an explicit consideration in visualization, but the motivation is not
quite so obvious when considered purely from the perspective of problems that
arise in graph drawing. I conjecture that the reason for this difference is that
the very common cases in graph drawing, such as force-directed placement with
node-link representations, or compound graphs that combine an underlying net-
work with a hierarchy on top of it, are not trivial to analyze. My goal is to
encourage more upwards characterization to map from algorithms up to tech-
niques; that is, where algorithms are characterized in terms of the visual encoding
and interaction techniques that they support.

When considering the four levels of design, another obvious route of attack is
downwards from the top level of a domain problem; that is, to design a visual-
ization system intended to solve some specific problem for a set of target users
who have real data and real tasks. This sort of problem-driven work, often called
design studies in the visualization literature has rich and interesting challenges,
many of which are quite different than those that arise from technique-driven
work. A detailed discussion of these issues appears elsewhere, in a recent paper
on the methodology of design studies [17], and is beyond the scope of this talk.
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3 Abstraction for Data

For the purposes of this framework, I will define only two basic types of data
abstractions. At the dataset level, there are two major dataset types: tables and
networks. In a simple table, I will call the rows items and the columns attributes.
In a network, I distinguish between two kinds of items: nodes, and the links
between them; either can have attributes. Obviously, the network dataset type
is the focus of interest in graph drawing, but I will also present some analyses
of table data as part of building up the framework. Attributes also have types.
Categorical attributes have no implicit ordering, in contrast to ordered attributes;
these are split into quantitative attributes that support full arithmetic operations
such as addition or subtraction, in contrast to ordinal. For example, type of fruit
is a categorical attribute; weight is quantitative; T-shirt size is ordinal.

The common case in visualization of complex, real-world data is that the
designer will need to derive additional data beyond the original dataset. This
derived data might be new attributes, or even a transformation from one dataset
type to another, as with transforming a network into a table or vice versa. One
example of a derived quantitative attribute computed from an original network is
the Strahler number, a node-based centrality metric. Auber proposed exploiting
it for fast interactive rendering of large graphs: by drawing nodes in priority order
according to this attribute, a comprehensible skeleton of the network results from
drawing only a small fraction of the nodes, in contrast to the poor results from
drawing a random sampling [2].

4 Principles of Marks and Channels

I will introduce the idea of breaking down a visual encoding in terms of marks
and channels by first considering some easy cases from statistical graphics that
show tabular data: bar charts and scatterplots. These plots are straightforward
to break down into marks, namely geometric primitives that represent items,
and visual channels that control the appearance of marks. Marks are classified
by their dimensionality: points, lines, areas, or volumes. Visual channels include
spatial position, color, shape, size, orientation/tilt, and many others. A simple
bar chart uses line marks, and encodes one attribute according to vertical spatial
position channel. A scatterplot uses point marks, and encodes two attributes:
one with the vertical spatial position channel, and one with horizontal position.
A third attribute can be added to a scatterplot by encoding with the color
channel, and a fourth by encoding with the size channel. The principles of marks
and channels can be used to analyze more complex visual encoding techniques
beyond these simple statistical graphics.

In addition to marks that represent items or nodes, marks may represent links.
Link marks should implicitly convey the idea of relationships between items at
a perceptual level. There are two particularly perceptually appropriate ways to
do so: containment and connection. Containment uses an area mark to enclose
a set of other marks within it; connection uses a line mark to directly connect
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two other marks together. I use the terms connection and containment for link
marks, in contrast to line and area for item marks, to underscore that they
communicate relationships between multiple items. A third perceptual way to
indicate relationship is proximity, where items that are close to each other are
implicitly perceived as being more related than those that are far apart. It is not
possible to directly use proximity as a mark type, but in the next section I will
discuss where it fits within the analysis of space use in visualization.

A crucial aspect of visual channels is that they also have implicit perceptual
types, and these can and should be matched with attribute types. Some channels
intrinsically convey how much in a way that maps well to ordered attributes, such
as the spatial position along a common scale, or the length of a line mark, or
the size of a point mark. Other channels convey what in a way that maps well
to categorical attributes, such as what spatial region a mark is within, or what
color a mark is, or what shape a mark is. The channels associated with the use of
space have the strongest perceptual impact, leading to my choice to emphasize
the spatial channels in this talk. The other channels can also be roughly ranked in
terms of perceptual impact. In another talk, I discuss the underlying reasons for
these rankings and a number of visualization principles that arise from them [11].

5 Using Space

I now discuss in more detail the ways to use space in the design of visual encoding
and interaction techniques, emphasizing the different possible uses of spatial
channels to control the appearance of marks.

I distinguish between five ways to use space: use given data; express values;
and separate, order, and align regions. In the first case, the spatial layout is
given, whereas in the other four the use of space is chosen. Using the data as
given is the common case with geographic data. Although there are still many
nuances in design considerations, as discussed in the cartographic literature, the
fundamental use of space is constrained by this choice. This approach is also the
common case when dealing with scalar, vector, or tensor spatial fields, where
data is sampled at many points in the field, as in volume graphics and flow
visualization. Of course, the existence of spatial data does not dictate its use as
the fundamental use of space in a visual encoding; a designer may still choose
to derive additional data and use space differently, as discussed below. I will not
discuss this case further in this talk, where I focus on choosing the use of space.
Although sometimes networks are drawn using given geographic data for node
positions, the common case in graph drawing is on making choices about the use
of space.

The case of expressing values spatially closely follows the discussion of marks
and channels in the previous section: a quantitative attribute is encoded using
the spatial position of a mark. Scatterplots are the quintessential example of
expressing values in this way. In contrast, the other three uses of space pertain
to establishing regions. Separating space into distinct regions, where each region
shows something different, has major implications for how we perceive the struc-
ture of the dataset. Spatial proximity strongly implies grouping at a perceptual
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level, and so items in different regions are perceived as being in different cat-
egories. The regions themselves can be ordered with respect to each other, for
example in a data-driven way according to an ordered attribute. Finally, regions
can also be aligned to a shared baseline. Lengths and positions can be compared
with higher precision between aligned regions than with unaligned regions, again
for fundamental perceptual reasons. A 1D alignment is a list, while aligning in
2D yields a matrix, and in 3D a volumetric grid. In any of these cases, recursive
subdivision is possible to accommodate hierarchical attribute structure.

The most extreme form of separation between regions is to divide the display
into multiple separate views. There are three major approaches of combining
views: showing multiple views side by side, superimposing multiple views on top
of each other, and having a single view that changes over time. When superim-
posing multiple views as layers, they must all have a shared spatial layout. A
single changing view is the common case for interactive navigation. Using multi-
ple views side by side is a particularly powerful method because of the principle
that “eyes beat memory” [11]. It is easy to compare by moving one’s eyes be-
tween side by side views, where the views act as external cognitive supports.
It is harder to compare a visible item to the memory of what one saw before,
because of the limits of internal working memory.

(a) (b) (c)

Fig. 2. Three ways to show a multidimensional table. a) Separate bar charts. b) Single
interleaved bar chart. c) Heatmap. Figure credit: http://commons.wikimedia.org/
wiki/File:Heatmap.png

Another seemingly simple example from statistical graphics is nevertheless a
good example of the more complex uses of space: a multidimensional table of
data with three attributes, one quantitative and two categorical. One categorical
attribute is the type of export and there are two possible values: wine or cheese.
The other categorical attribute is the name of the city, and there are four possible
values. The quantitative attribute is the value in euro of the city’s exports for
a type over a year. We might encode this table as two separate bar charts, one
for wine and one for cheese, with simple line marks in each, as in Figure 2a.
An alternative is one interleaved bar chart where each item of data is depicted
with two marks side by side,as in Figure 2b. We now have the vocabulary to
analyze this choice in more detail in terms of channels and attributes: with
separate charts, we have first separated into two large regions based on one
categorical attribute, export type, then separated each of those into four smaller
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regions based on the other categorical attribute, city name. These subregions
are aligned, and within each a single line mark expresses a value. The subregions
are also ordered, for example either alphabetically by the name of the city, or
in a data-driven way by the value of quantitative attribute, the exports. With
interleaved charts, there is only one level of separation into regions: there are four
regions, one for each item. Each region shows information about two attributes,
as two side-by-side marks. The value of description at this level of detail is that
we can reason about what kinds of information can be easily perceived by the
viewer based on the partition into regions. In the first case, with two separate
simple charts, the partition into one region for each type of export allows the
easy perception of trends for that type. In the second case, having the two marks
side by side allows the easy comparison of the export mix for a particular city.

We can now consider a quite different visual encoding of a heatmap display,
which shows exactly the same data abstraction: a table with one quantitative
attribute indexed by two categorical attributes. In a heatmap, regions are sepa-
rated and aligned into a 2D matrix, and within each cell of the matrix an area
mark is used in conjunction with the color channel to encode a quantitative at-
tribute. The scale of the data is different: there are dozens or hundreds of values
for each categorical attributes. In Figure 2c, these are genes and experimental
conditions, and the quantitative attribute is the expression level of a gene in a
specific condition.

I now turn from table to network datasets. A matrix view of a network is
essentially the same as a heatmap, in terms of both data abstraction choice and
use of space. The transformation at the data abstraction level is to transform
the original network into a table, where a list of the nodes in the graph is used
as both of the categorical attributes, and the weighted edge between a pair of
nodes is the quantitative attribute. Thus, a cell in the matrix shows the presence
or absence of an edge.

In contrast, the most common case in graph drawing is to use link marks
to explicitly show links. As the name suggests, all node-link diagrams are an
instance of using link connection marks. These diagrams best support tasks that
pertain to the topological structure of networks [7], for example path tracing.
In tree drawing, containment is also used; for example, all treemap variants are
an instance of using link containment marks. These diagrams typically use the
size channel to encode attribute values, either just for leaf nodes or recursively
for interior nodes as well, and thus support tasks that pertain to understanding
those attribute values.

In addition to the five choices for the use of spatial channels, it is useful to con-
sider the orientation of the spatial axes within the layout. The two most common
cases in graphdrawing are rectilinear and radial. In 2D, the rectilinear choice yields
Cartesian coordinates and the radial choice is polar coordinates. A third choice
is to orient all of the axes parallel to each other. The limitations of these choices
have been investigated in the visualization literature. Rectilinear layouts have the
obvious scalability issue that the number of axes is highly constrained. A 2D rec-
tilinear layout allows very high-precision perception of information encoded with
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spatial position. While 3D rectilinear layouts are possible, there are many percep-
tual problems in using three dimensions of space to encode nonspatial data [11].
Four or more rectilinear axes cannot be directly encoded. There has also been em-
pirical work to investigate the strengths and weaknesses of radial layouts, in light
of the known limitation that we perceive angles with less accuracy than lengths [5].

The work of McGuffin and Robert is a good example of analyzing many dif-
ferent tree drawing methods according to the efficiency of their use of space [8].
The information density of a diagram is as a measure of the amount of infor-
mation encoded vs. the amount of unused space; there is a tradeoff between
encoding as much information as possible, and the potential for visual clutter or
other legibility problems. The examples that they analyze can be considered in
terms of the methods that I have covered: whether connection or containment
link marks are used, whether the layout is rectilinear or radial, how the spatial
position channels are used to encode information. The information encoded in
these diagrams is the link relationships, the depth in the tree of a node, and the
order of siblings. Other analysis considerations are whether some information
is encoded redundantly, for example through both spatial position and explicit
link marks, and whether any arbitrary information is expressed through the use
of spatial ordering. For example, in some trees, sibling order is not specifically
defined, yet there is a visible spatial order.

Force-directed placement is a widely adopted approach for visually encoding
network datasets. The visual encoding is in some sense straightforward because
it is a node-link diagram: point marks represent nodes, and connection marks
represent links as lines. However, considering the meaning of spatial position is
somewhat tricky, because no meaning is directly encoded; instead it is left free
to minimize crossings. Thus, the semantics of proximity are mixed: sometimes
it is meaningful, for example when a cluster of nodes placed near to each other
truly reflects strong interconnections of links between them. Sometimes it is an
arbitrary artifact of the layout algorithm, and two nodes that happen to be
nearby in one layout may be quite far in another. There is also an interesting
tension between proximity cues and edge length: long edges are more visually
salient than short ones that connect nodes close to each other.

A great deal of work has been devoted to developing better algorithms for
force-directed placement through multilevel methods; the sfdp algorithm is one
example [6]. The data abstraction is more complex, namely a compound graph: in
addition to the original network dataset, the additional derived data of a cluster
hierarchy atop the original network is computed. Although this hierarchy is used
within the algorithm, it is not shown explicitly within the drawing. Thus, the
fundamental use of space is the same as with simpler versions of force-directed
placement; this multilevel approaches is an example of a better algorithm for
the same visual encoding technique.

The GrouseFlocks system for the interactive analysis of compound graphs [1]
has some instructive similarities and differences from sfdp. The data abstrac-
tion is the same, a compound graph. However, the visual encoding is different,
as shown in Figure 3c. In addition to connection marks for the network links
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(a) (b) (c)

Fig. 3. Compound graph representation in GrouseFlocks [1]. a) Original network. b)
Cluster hierarchy. c) Visual encoding in tool, fully expanded.

and point marks for the nodes, the hierarchy links are shown with contain-
ment marks. The system features dynamic interaction in order to support large
datasets, where typically only an interactively-selected subset of the full com-
pound graph is shown. The user can expand and contract individual metanodes
in the hierarchy, which also shows the associated nodes from the base network.

6 Further Analysis Examples

In the talk, I will analyze three more systems within this framework: Cerebral [3,
4], Constellation [12, 15], and Noack’s LinLog energy model [16]. All three are
examples of design motivated by explicit prior analysis of the use of space.

The Cerebral system [3, 4] features both multiple side by side views, and
superimposed layers within each view. The network layout is designed to mimic
the semantics of hand-drawn diagrams of biological networks. I will analyze its
visual encoding and design choices pertaining to the use of space in detail.

The Constellation system [12, 15] features a complex multi-level linguistic
network that is laid out with spatial position reflecting specific attributes, where
edge crossings are resolved using perceptual layers rather than through algorith-
mically reducing the number of instances.

Noack’s LinLog energy model is designed to reveal clusters in data, by re-
quiring that edges between clusters are longer than those within [16]. Noack
specifically indicates that his approach uses the same minimization algorithms
as previous work, and frames the energy model in terms of its visual results.
I thus consider it a contribution at the visual encoding technique level, even
though that exact vocabulary out of the visualization community does not ap-
pear in the paper. I note that it was published at a previous Graph Drawing
conference, in contrast to the many other examples in this talk that come out
of the visualization literature. I encourage more papers like this that can act as
bridges between the communities!
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7 Conclusions

I have discussed a general framework for systematically analyzing visualization
techniques in terms of the methods of using space, and applied it to graph
drawing examples in particular. It relies on breaking down visual encodings
into marks that are geometric primitives representing either nodes or links, and
channels that control their appearance to encode attributes. In this talk I focus
on the channels related to the use of space. The simple case is using spatial
position to express a quantitative attribute value, but space can also be separated
into regions that partition according to a categorical attribute to indicate groups
via proximity. These regions can also be ordered and aligned. This framework is a
mix of ideas of that are widespread in the visualization literature and those that
are new; for a more detailed discussion of the previous work, see the existing
chapter [13] and the forthcoming full book [14]. These sources also describe
principles in detail, and also the more complete analysis framework from which
the subset discussed here was drawn. The full framework includes the nonspatial
channels in addition to the spatial ones and a much more detailed discussion
of methods for combining multiple views. It covers interactive techniques in
addition to visual encoding techniques, particularly in terms of methods for the
reduction of the amount of data shown.

This kind of analysis can guide the development of new techniques, or be used
to characterize existing ones. While sometimes it is easy to map from a specific
algorithm to the visual encoding technique that it supports, for example when
the mapping is explicitly discussed in a paper or in work that it directly cites,
sometimes this mapping is difficult to reverse-engineer. Algorithm descriptions
may not facilitate analysis of the resulting visual encoding, either for the use
of space or for other channels. In these cases, the line between technique and
algorithm can be blurry: does a new algorithm support an existing technique,
or does it result in a new one? Carrying out more such characterization may
facilitate the transfer of algorithms from the graph drawing community to the
visualization community. It is also important to characterize mappings between
the other levels of visualization design [9], but this important question is beyond
the scope of this talk.

Of course, characterization according to this sort of framework is only one
of many possible ways to analyze graph drawing and visualization approaches.
Benchmarks and complexity analysis are a different way to compare approaches,
as are user studies in the form of controlled experiments or more qualitative
investigation of how people use visualization systems [10].
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Abstract. A graph is 1-planar if it can be embedded in the plane with at most
one crossing per edge. A graph is outer-1-planar if it has an embedding in which
every vertex is on the outer face and each edge has at most one crossing. We
present a linear time algorithm to test whether a graph is outer-1-planar. The
algorithm can be used to produce an outer-1-planar embedding in linear time if it
exists.

1 Introduction

A recent research topic in topological graph theory is the study of graphs that are almost
planar in some sense. Examples of such almost planar graphs are 1-planar graphs,
which can be embedded in a plane with at most one crossing per edge.

Ringel [3] introduced 1-planar graphs in the context of simultaneously coloring ver-
tices and faces of planar graphs. Subsequently, various aspects of 1-planar graphs have
been investigated. Borodin [4] gives colouring methods for 1-planar graphs. Pach and
Toth [5] prove that a 1-planar graph with n vertices has at most 4n − 8 edges, which
is a tight upper bound. There are a number of structural results on 1-planar graphs [6],
and maximal 1-planar embeddings [7] (a 1-planar embedding of a graph G is maximal,
if no edge can be added without violating the 1-planarity of G).

The class of 1-planar graphs is not closed under edge contraction; accordingly, com-
putational problems seem difficult. Korzhik and Mohar proved that testing 1-planarity

� This paper is an extended abstract. For omitted proofs, see the full version of this paper [1].
The problem studied in this paper was initiated at the Port Douglas Workshop on Geometric
Graph Theory, June, 2011, held in Australia, organized by Peter Eades and Seok-Hee Hong,
supported by IPDF funding from the University of Sydney.

�� Independently, another linear time algorithm is reported in [2].
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of a graph is NP-complete [8]. On the positive side, it has been shown that the problem
of testing maximal 1-planarity of a graph G can be solved in linear time if a rotation
system (i.e., the circular ordering of edges for each vertex) is given by Eades et al [9].

The existence of a 1-planar embedding does not guarantee the existence of a straight-
line 1-planar drawing, as shown by Eggleton [10] and Thomassen [11]. However, re-
cently Hong et al. [12] give a linear time testing algorithm, and a linear time drawing
algorithm to construct such a drawing if it exists. Very recently, the more general prob-
lem on straight-line drawability of embedded graphs is studied by Nagamochi [13].

Eggleton [10] introduced the investigation of outer-1-planar graphs: a graph is outer-
1-planar if it has a 1-planar drawing in which every vertex is on the outer face. Examples
of outer-1-planar graph drawings are shown in Fig. 1(a), (b), (c) and (d); in Fig. 1(e) a
graph that has no outer-1-planar drawing is illustrated. Eggleton describes a number of
geometric, topological, and combinatorial properties of outer-1-planar graphs.

t 

(a) (b) 

s 

t 

s 

(c) (d) (e) 

Fig. 1. (a), (b), (c) and (d) are examples of outer-1-planar graph drawings. (a) illustrates the
only triconnected outer-1-planar graph. (c) and (d) are examples of graphs that are one-sided
outer-1-planar (OSO1P) with respect to (s, t). (d) illustrates a graph with no outer-1-planar
drawing.

In this paper, we investigate algorithmics of outer-1-planar graphs. More specifically,
we describe a linear time algorithm to test outer-1-planarity of a given graph G.

Theorem 1. There is a linear time algorithm to test whether a graph is outer-1-planar.
The algorithm produces an outer-1-planar embedding if it exists.

To prove Theorem 1, we define a sub-class of outer-1-planar graphs as follows. Sup-
pose that G is a graph with vertices s and t. Let G+(s,t) denote the graph obtained by
adding the edge (s, t), if this edge is not already in G. If G+(s,t) has an outer-1-planar
embedding in which the edge (s, t) is completely on the outer face, then we say that G
is one-sided-outer-1-planar (OSO1P) with respect to (s, t). Examples of such graphs
are shown in Fig. 1(c) and (d). For these graphs, we prove the following result.
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Theorem 2. There is a linear time algorithm to test whether a biconnected graph G
is one-sided outer-1-planar with respect to a given edge (s, t) of G. The algorithm
produces a one-sided outer-1-planar embedding if it exists.

Section 4 describes an algorithm to test whether a graph is one-sided outer-1-planar,
and Section 5 shows how to use one-sided outer-1-planarity to test outer-1-planarity.
The adaption of the algorithms of Sections 4 and 5 to construct an embedding is straight-
forward, and described in Section 6. In conclusion, Section 7 cites drawing algorithms
and discusses future work.

2 Terminology

In this Section we define the terminology used throughout the paper.
A topological graph or embedding G = (V,E) is a representation of a simple graph

in the plane where each vertex is a point and each edge is a Jordan arc between the
points representing its endpoints.

Two edges cross if they have a point in common, other than their endpoints. The
point in common is a crossing. To avoid some pathological cases, some standard non-
degeneracy conditions apply: (1) two edges intersect in at most one point; (2) an edge
does not contain a vertex other than its endpoints; (3) no edge crosses itself; (4) edges
must not meet tangentially; (5) no three edges share a crossing point; and (6) no two
edges that share an endpoint cross.

A topological graph is 1-planar if no edge has more than one crossing. A graph is
1-planar if it has a 1-planar embedding. A graph is outer-1-planar if it has a 1-planar
embedding in which every vertex is on the outer face. The aim of this paper is to give
an algorithm to test whether a graph is outer-1-planar, and to provide an outer-1-planar
embedding if it exists.

Our algorithm uses an SPQR tree to represent the decomposition of a biconnected
graph into triconnected components. We recall some basic terminology of SPQR trees;
for details, see [14]. Each node ν in the SPQR tree is associated with a graph called
the skeleton of ν, denoted by σ(ν). There are four types of nodes ν in the SPQR tree:
(1) S-nodes, where σ(ν) is a simple cycle with at least 3 vertices; (2) P-nodes, where
σ(ν) consists of two vertices connected by at least 3 edges; (3) Q-nodes, where σ(ν)
consists of two vertices connected by a real edges and a virtual edge; and (4) R-nodes,
where σ(ν) is a simple triconnected graph. We treat the SPQR tree as a rooted tree by
choosing an arbitrary node as its root. Note that every leaf is a Q-node and that the root
is not a Q-node.

Let ρ be the parent of an internal node ν. The graph σ(ρ) has exactly one virtual
edge e in common with σ(ν); this is the parent virtual edge of σ(ν), and a child virtual
edge in σ(ρ). We denote the graph formed by the union of σ(ν) over all descendants ν
of ρ by Gρ.

If G is an outer-1-planar graph, then σ(ν) and Gν are outer-1-planar graphs, using
the embedding induced from G. If Gν is a one-sided outer-1-planar (OSO1P) graph
with respect to the parent virtual edge (s, t) of ν then we say that ν is a one-sided
outer-1-planar (OSO1P) node with respect to (s, t).
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For this paper, we need to define a specific type of S-node. Suppose that μ is an
S-node with parent separation pair (u, v). A tail at u for μ is a Q-node child (that is, a
real edge) with parent virtual edge (u, x) for some vertex x.

Further, we need to define a specific type of P-node. A P-node ν is almost one-sided
outer-1-planar (AOSO1P) with respect to (the directed edge) (s, t) if Gν consists of a
parallel composition of an OSO1P graph with respect to (s, t) and an S-node μ such
that μ has a tail at t and μ is OSO1P with respect to (s, t). See Fig. 2 for examples.

O
SO

1P O
SO

1P 

s 

t 

s 

t 

(a) (b) (c) 
s 

t 

Fig. 2. An AOSO1P graph consists of a parallel composition of an OSO1P graph and an OSO1P
S-node with a tail. (a) The general shape of a graph that is AOSO1P with respect to (s, t). (b)
A graph that is AOSO1P with respect to (s, t). (c) A graph that is AOSO1P with respect to both
(s, t) and (t, s).

3 Structural Results

In this Section we present structural results that support the algorithms defined in the
subsequent sections.

First we note that the only triconnected outer-1-planar graph is K4, embedded as
depicted in Fig. 1(a).

Lemma 1. If G is outer-1-planar and triconnected, then G is isomorphic to K4 and
every outer-1-planar drawing of G has exactly one crossing.

Proof. Suppose that G is an outer-1-planar embedding of a triconnected graph; we can
assume that G is maximal in the sense that no edge can be added without destroying
the property of outer-1-planarity. Eggleton [10] shows that the outer face is a simple
cycle γ.

Suppose that (a, b) and (c, d) are a pair of edges, neither on γ, that cross at point p.
Suppose that a precedes c in clockwise order around γ. Suppose that there is at least
one vertex v that lies between a and c on γ, as shown in Fig. 3.

All edges incident with the vertices between a and c on γ must have both endpoints
in the region r bounded by γ, the curve ap and the curve cp. Removing a and c separates
v from the remainder of the graph; this contradicts the triconnectivity of G, and we can
deduce that there is no such vertex v.
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Fig. 3. Here the pair a, c must be a separation pair, since all edges incident with vertices between
a and c on the outer face γ must have both endpoints in the region r.

Using the same argument, we can show that the only vertices on γ are a, b, c and d;
thus G is K4. ��

Secondly, we note that we can restrict our attention to the biconnected case.

Lemma 2. A graph is outer-1-planar if and only if its biconnected components are
outer-1-planar.

Next we present a simple fact about how an edge can cross a cycle in an outer-1-
planar embedding.

Lemma 3. Suppose that γ is a cycle in an outer-1-planar graph G and G′ is an outer-
1-planar embedding of G. Suppose that an edge (u, v) is not on γ but crosses an edge
of γ in G′. Then either u or v is on γ.

The next result is a relatively technical but fundamental Lemma about embeddings
of paths which share endpoints, illustrated in Fig. 4. A path from a vertex s to a vertex
t is non-trivial if it contains more than two vertices. If an edge from a path p1 crosses
an edge from a path p2 then we say that p1 crosses p2.

Lemma 4. Suppose that P is a set of paths between two vertices s and t. Let G be the
union of the paths in P , and let G′ be an outer-1-planar embedding of G. Then |P | ≤ 5,
and:

(a) If |P | ≥ 3 and an edge from one non-trivial path p1 ∈ P crosses an edge from
another non-trivial path p2 ∈ P then this crossing occurs between an edge incident
with s and an edge incident with t.

(b) If |P | = 3 and all paths in P are non-trivial, then there are two paths p1 and p2
in P such that there is exactly one crossing between edges of p1 and edges of p2;
furthermore, every edge in the third path is on the outer face.

(c) If |P | = 3 and one path in P is trivial and is on the outer face, then there are two
paths p1 and p2 in P such that there is exactly one crossing between edges of p1
and edges of p2.
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Fig. 4. Embeddings of paths that share endpoints. (a) A planar embedding. (b) An outer-1-planar
embedding of 3 non-trivial paths. (c) An outer-1-planar embedding of 3 paths, where one path is
trivial. (d) An outer-1-planar embedding of 4 non-trivial paths. (e) An outer-1-planar embedding
of 4 paths, where one path is trivial. (f) An outer-1-planar embedding of 5 paths.

(d) If P contains 4 non-trivial paths, then we can divide P into two pairs of paths
{p1, p2} and {p3, p4} such that there is exactly one crossing between edges of p1
and edges of p2 and exactly one crossing between edges of p3 and edges of p4, and
there are no other crossings.

(e) If |P | = 4 and P contains a trivial path, then there are two paths p1 and p2 in P
such that there is exactly one crossing between edges of p1 and edges of p2, and
one non-trivial path in P is on the outer face.

(f) If |P | = 5 then one path in P is trivial, and we can divide the other paths into two
pairs of paths {p1, p2} and {p3, p4} such that there is exactly one crossing between
edges of p1 and edges of p2 and exactly one crossing between edges of p3 and edges
of p4, and there are no other crossings.

4 Testing OSO1P and AOSO1P

In this Section we describe a linear time algorithm that takes a graph G and vertices s
and t of G as input and tests whether G has an OSO1P or AOSO1P embedding with
respect to (s, t).

From Lemma 2, we only need to consider biconnected graphs. Our algorithm com-
putes the SPQR tree T and then works from the leaves of T upward toward the root,
computing boolean labels OSO1P (ν, s, t) and AOSO1P (ν, s, t) that indicate whether
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ν is OSO1P or AOSO1P with respect to (s, t). The label OSO1P (ν, s, t) is computed
for each node ν of T , and the label AOSO1P (ν, s, t) is computed for every P-node ν.

Algorithm test-One-Sided-Outer-1-Planar
1. Construct the SPQR tree T of G.
2. Traverse T bottom up, and for each node ν of T with parent virtual edge (s, t):

(a) if ν is a Q-node then return true.
(b) elseif ν is an R-node then return OSO1P (ν, s, t) as described in

Section 4.1, using the values OSO1P (ν′, s′, t′) for each child ν′ of ν with
child virtual edge (s′, t′).

(c) elseif ν is a P-nodethen returnOSO1P (ν, s, t) andAOSO1P (ν, s, t),
as described in Section 4.2, using the values OSO1P (ν′, s′, t′) for each child
ν′ of ν with child virtual edge (s′, t′).

(d) else /∗ ν is an S-node ∗/ then return OSO1P (ν, s, t), as described in
Section 4.3, using the values OSO1P (ν′, s′, t′) and AOSO1P (ν, s′, t′) for
each child ν′ of ν with child virtual edge (s′, t′).

The time complexity of Step 1 is linear [14,15]. Step 2(a) is trivial and takes constant
time for each Q-node. We show below that Steps 2(b), 2(c), and 2(d) each take time
proportional to the number of children of the node ν. Summing over all nodes of the
SPQR tree T results in linear time for the whole algorithm.

The cases for R-nodes and P-nodes are quite straightforward, and we deal with them
first in Sections 4.1 and 4.2. The extension for the computation of the AOSO1P property
for P-nodes is again straightforward and described in Section 4.2. The case for S-nodes
is a little more involved, and we deal with this in Section 4.3.

4.1 R-nodes

Lemma 1 can be generalised to R-nodes as in the following Lemma.

Lemma 5. Suppose that ν is an R-node of the SPQR tree of a biconnected graph G;
suppose that (u, v) is its parent virtual edge. Then Gν is OSO1P with respect to (u, v)
if and only if:

1. σ(ν) is isomorphic to K4; and
2. an edge (u, a) of σ(ν) with a �= v incident with u represents a child Q-node of ν,

an edge (v, b) of σ(ν) with b �= u represents a child Q-node of ν, and (u, a) crosses
(v, b); and

3. for every child ν′ of ν, ν′ is OSO1P with respect to (c, d), where the parent virtual
edge of ν′ is (c, d).

An algorithm to test whether an R-node ν is OSO1P can be derived directly from
Lemma 5. It is clear that, given the boolean labels OSO1P (νi, s, t) for each child νi of
ν, the algorithm runs in time proportional to the number of children of ν.
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Fig. 5. Possibilities for an OSO1P P-node

4.2 P-nodes

Here we use Lemma 4 to show that a P-node can have at most three children, as depicted
in Fig. 5. More specifically, we have the following Lemma:

Lemma 6. Suppose that ν is a P-node of the SPQR tree of a biconnected graph G;
suppose that (s, t) is its parent virtual edge. Then Gν is OSO1P with respect to (s, t) if
and only if either:

(a) ν has two children, of which one is a Q-node (s, t), and the other is OSO1P with
respect to (s, t); or

(b) ν has two children, of which one is an S-node with tail at s which is OSO1P with
respect to (s, t), and the other is an S-node with tail at t which is OSO1P with
respect to (s, t); or

(c) ν has three children, of which one is a Q-node (s, t), one is an S-node with tail at s
which is OSO1P with respect to (s, t), and the other is an OSO1P S-node with tail
at t which is OSO1P with respect to (s, t).

It is straightforward to extend Lemma 6 to test whether a node ν is AOSO1P, using
the definition of AOSO1P together with Lemma 6.

Algorithms to test whether a P-node ν is OSO1P or AOSO1P can be derived directly
from Lemma 6. It is clear that, given the boolean labels OSO1P (ν′, s, t) for each child
ν′ of ν, the algorithm runs in time proportional to the size of the skeleton σ(ν) of ν.

4.3 S-nodes

Suppose that ν is an S-node with children ν1, ν2, . . . , νk, where the parent virtual edge
of νi is (si−1, si), as shown in Fig. 6(a).

If every child νi is OSO1P with respect to (si−1, si), then clearly ν is OSO1P with
respect to (s0, sk); however, the converse is false. Consider the example shown in
Fig. 6(b). Here ν is OSO1P with respect to (s0, sk). However, the child ν2 is not OSO1P
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Fig. 6. (a) An S-node. (b) An OSO1P S-node with a child (ν2) that is not OSO1P. (c) An S-node
that satisfies the conditions of Lemma 7 but is not OSO1P. (d) Two paths p1 and p2 in the graph
Gνi . (e) The path p1 crosses the edge (si, si+1).

with respect to (s1, s2) (by Lemma 6). Note that ν3 is a Q-node, and an edge from the
skeleton of ν2 crosses this edge. In fact the example shown in Fig. 6(b) illustrates the
necessary conditions stated in the next lemma.

Lemma 7. Suppose that ν is an S-node with children ν1, ν2, . . . , νk, where the parent
virtual edge of νi is (si−1, si). Suppose that Gν is OSO1P with respect to (s0, sk). Then
for 1 ≤ i ≤ k, either:

(a) νi is OSO1P with respect to (si−1, si); or
(b) i < k, νi is AOSO1P with respect to (si, si−1), and νi+1 is a Q-node; or
(c) i > 1, νi is AOSO1P with respect to (si−1, si), and νi−1 is a Q-node.

Lemma 7 gives necessary conditions for an S-node to be OSO1P. However the con-
ditions are not sufficient. Consider, for example, the graph shown in Fig. 6(c). This
satisfies the necessary conditions as in Lemma 7, but it is not OSO1P. The problem is
that the Q-node represented by the edge (s1, s2) has two crossings, one with an edge of
the AOSO1P graph at the top and one with an edge of the AOSO1P graph at the bottom.
Nevertheless, this situation does not occur when k = 2, and we shall show that in this
case the conditions of Lemma 7 are sufficient. One can express sufficient conditions
for an S-node to be OSO1P in a recursive way, as in the following Lemma. If ν is an
S-node with children ν1, ν2, . . . , νk then we denote the series combination of graphs
Gν1 , Gν2 , . . . , Gνk by G(ν1, ν2, . . . , νk).

Lemma 8. Suppose that ν is an S-node with children ν1, ν2, . . . , νk, where the parent
virtual edge of νi is (si−1, si). Then Gν is OSO1P with respect to (s0, sk) if and only if
either:
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1. Gν1 is OSO1P with respect to (s0, s1) andG(ν2, ν3, . . . , νk) is OSO1P with respect
to (s1, sk); or

2. ν1 is a Q-node, Gν2 is AOSO1P with respect to (s1, s2), and G(ν3, ν4, . . . , νk) is
OSO1P with respect to (s2, sk); or

3. Gν1 is AOSO1P with respect to (s1, s0), ν2 is a Q-node, and G(ν3, ν4, . . . , νk) is
OSO1P with respect to (s2, sk).

Lemma 8 leads to the recursive algorithm for S-nodes; see [1]. The algorithm runs
in time proportional to the number of children of ν.

This completes the proof of Theorem 2.

5 Testing Outer-1-Planarity

Once we compute the labels OSO1P (ν, s, t) and AOSO1P (ν, s, t) for all internal
nodes ν of the SPQR tree, we can test whether the whole graph (that is, the root ρ) is
outer-1-planar. This requires separate tests depending on the type of the root node. See
Fig. 7.

We can require the root node to be an R-node or a P-node, since if the SPQR tree
contains no R-node and no P-node, then the graph is a cycle and thus outerplanar. Both
tests for an R-node and a P-node are detailed below.

For R-nodes, we have the following Lemma.

Lemma 9. Suppose that ρ is an R-node at the root of the SPQR tree. Then G is outer-
1-planar if and only if

1. σ(ρ) is isomorphic to K4, and
2. at least two children of ρ are Q-nodes, and
3. for every child node ν′ of σ(ρ) with parent virtual edge (a, b), Gν′ is OSO1P with

respect to (a, b).
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Fig. 7. (a) An R-node at the root. (b) P-node at the root. (c) S-node at the root.

It is clear that one can test the conditions of Lemma 9 in constant time, as long as
the labels OSO1P (ν′, a, b) for all children ν′ of ρ have already been computed.

For P-nodes, the following result applies.
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Lemma 10. Suppose that ρ is a P-node at the root of the SPQR tree. Then G is outer-
1-planar if and only if it is a parallel composition of two OSO1P graphs.

Using Lemma 4, one can show that the number of children of a P-node ρ at the root is
bounded (in fact, at most 5). It follows that the number of ways to partition the children
is bounded by a constant. Thus we can define a constant time algorithm to implement
Lemma 10 (given that the labels OSO1P (ν′, a, b) for all children ν′ of ρ have already
been computed).

This completes the proof of Theorem 1.

6 Outer-1-Planar Embedding

One can construct a one-sided outer-1-planar embedding of an input graph G using an
extension of the methods in Section 4. The methods for R-nodes and S-nodes described
in Lemmas 5 and 6 define crossings; treating these crossings as dummy vertices gives
a planar graph G∗. A one-sided outer-1-planar embedding of G is a specific planar
embedding of G∗.

Every planar embedding of G∗ is defined by an orientation and an ordering for nodes
ν in the SPQR tree with respect to the parent separation pair of ν. For P-nodes, R-
nodes, and S-nodes, it is possible to “flip” the orientation of ν around its parent separa-
tion pair. For P nodes, a left-right order for the children can be chosen. To produce an
outer-1-planar embedding we use the same bottom-up strategy as in Algorithm test-
One-Sided-Outer-1-Planar in Section 4. Throughout the algorithm we maintain an
embedding; in particular we keep track of the outside face. At each node ν, we “flip” ν
so that all vertices of Gν lie on the outside face. Also, at each P-node ν, we order the
children of ν so that all vertices of Gν lie on the outside face. This requires linear time
manipulation of the SPQR tree, using methods outlined in [14].

7 Conclusion

The algorithm presented in this paper takes a graph G as input and determines whether
it has an outer-1-planar embedding. We show that if such an embedding does exist, then
we can compute it in linear time.

Given the topological embedding computed by our algorithm, the methods of Eggle-
ton [10] can be used to construct a straight-line drawing. In fact, Eggleton gives condi-
tions that determine whether a given set of points support a straight-line outer-1-planar
drawing. Dekhordi et al. [16] show further that every outer-1-planar topological embed-
ding has a straight-line RAC (right-angle crossing) drawing, at the cost of exponential
area.

Many algorithms for drawing outerplanar graphs exist, with a number of properties
(see [17,18]). It would be interesting to see if these results extend to outer-1-planar
graphs.
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5. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17, 427–439
(1997)

6. Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Mathematics 307,
854–865 (2007)

7. Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math. 24,
1527–1540 (2010)

8. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity
testing. Journal of Graph Theory 72, 30–71 (2013)

9. Eades, P., Hong, S.-H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal
1-planarity of graphs with a rotation system in linear time - (extended abstract). In: Didimo,
W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 339–345. Springer, Heidelberg
(2013)

10. Eggleton, R.: Rectilinear drawings of graphs. Utilitas Mathematica 29, 149–172 (1986)
11. Thomassen, C.: Rectilinear drawings of graphs. Journal of Graph Theory 12, 335–341 (1988)
12. Hong, S.H., Eades, P., Liotta, G., Poon, S.H.: Fáry’s theorem for 1-planar graphs. In: [19],
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Straight-Line Grid Drawings of 3-Connected
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Abstract. A graph is 1-planar if it can be drawn in the plane such that each
edge is crossed at most once. In general, 1-planar graphs do not admit straight-
line drawings. We show that every 3-connected 1-planar graph has a straight-line
drawing on an integer grid of quadratic size, with the exception of a single edge
on the outer face that has one bend. The drawing can be computed in linear time
from any given 1-planar embedding of the graph.

1 Introduction

Since Euler’s Königsberg bridge problem dating back to 1736, planar graphs have pro-
vided interesting problems in theory and in practice. Using the elaborate techniques of
a canonical ordering and Schnyder realizers, every planar graph can be drawn on a grid
of quadratic size, and such drawings can be computed in linear time [15, 21]. The area
bound is asymptotically optimal, since the nested triangle graphs are planar graphs and
require Ω(n2) area [10]. The drawing algorithms were refined to improve the area re-
quirement or to admit convex representations, i.e., where each inner face is convex [5,8]
or strictly convex [1].

However, most graphs are nonplanar and recently, there have been many attempts
to study larger classes of graphs. Of particular interest are 1-planar graphs, which in
a sense are one step beyond planar graphs. They were introduced by Ringel [20] in an
attempt to color a planar graph and its dual. Although it is known that a 3-connected pla-
nar graph and its dual have a straight-line 1-planar drawing [24] and even on a quadratic
grid [13], little is known about general 1-planar graphs. It is NP-hard to recognize 1-
planar graphs [16, 18] in general, although there is a linear-time testing algorithm [11]
for maximal 1-planar graphs (i.e., where no additional edge can be added without vio-
lating 1-planarity) given the the circular ordering of incident edges around each vertex.
A 1-planar graph with n vertices has at most 4n − 8 edges [4, 14, 19] and this upper
bound is tight. On the other hand straight-line drawings of 1-planar graphs may have
at most 4n − 9 edges and this bound is tight [9]. Hence not all 1-planar graphs ad-
mit straight-line drawings. Unlike planar graphs, maximal 1-planar graphs can be much
sparser with only 2.64n edges [6].
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Fig. 1. (a)–(b) A 3-connected 1-planar graph and its straight-line grid drawing (with one bend in
one edge), (c)–(d) another 3-connected 1-planar graph and its straight-line grid drawing

Thomassen [23] refers to 1-planar graphs as graphs with cross index 1 and proved
that an embedded 1-planar graph can be turned into a straight-line drawing if and only if
it excludes B- and W -configurations; see Fig. 2. These forbidden configurations were
first discovered by Eggleton [12] and used by Hong et al. [17], who show that the
configurations can be detected in linear time if the embedding is given. They also proved
that there is a linear time algorithm to convert a 1-planar embedding without B- and W -
configurations into a straight-line drawing, but without bounds for the drawing area.

In this paper we settle the straight-line grid drawing problem for 3-connected 1-
planar graphs. First we compute a normal form for an embedded 1-planar graph with
no B-configuration and at most one W -configuration on the outer face. Then, after
augmenting the graph with as many planar edges as possible and then deleting the
crossing edges, we find a 3-connected planar graph, which is drawn with strictly convex
faces using an extension of the algorithm of Chrobak and Kant [8]. Finally the pairs of
crossing edges are reinserted into the convex faces. This gives a straight-line drawing on
a grid of quadratic size with the exception of a single edge on the outer face, which may
need one bend (and this exception is unavoidable); see Fig. 1. In addition, the drawing
is obtained in linear time from a given 1-planar embedding.

2 Preliminaries

A drawing of a graph G is a mapping of G into the plane such that the vertices are
mapped to distinct points and each edge is a Jordan arc between its endpoints. A draw-
ing is planar if the Jordan arcs of the edges do not cross and it is 1-planar if each edge
is crossed at most once. Note that crossings between edges incident to the same vertex
are not allowed. For example,K5 and K6 are 1-planar graphs. An embedding of a graph
is planar (resp. 1-planar) if it admits a planar (resp. 1-planar) drawing. An embedding
specifies the faces, which are topologically connected regions. The unbounded face is
the outer face. A face in a planar graph is specified by a cyclic sequence of edges on its
boundary (or equivalently by the cyclic sequence of the endpoints of the edges).

Accordingly, a 1-planar embedding E(G) specifies the faces in a 1-planar drawing
of G including the outer face. A 1-planar embedding is a witness for 1-planarity. In
particular, E(G) describes the pairs of crossing edges and the faces where the edges
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Fig. 2. (a) An augmented X-configuration, (b) an augmented B-configuration, (c) an augmented
W -configuration. The graphs induced by the solid edges are called an X-configuration (a), a
B-configuration (b), and a W -configuration (c).

cross and has linear size. Each pair of crossing edges (a, c) and (b, c) induces a crossing
point p. Call the segment of an edge between the vertex and the crossing point a half-
edge. Each half-edge is impermeable, analogous to the edges in planar drawings, in the
sense that no edge can cross such a half-edge without violating the 1-planarity of the
embedding. The non-crossed edges are called planar. A planarization G× is obtained
from E(G) by using the crossing points as regular vertices and replacing each crossing
edge by its two half-edges. A 1-planar embedding E(G) and its planarization share
equivalent embeddings, and each face is given by a list of edges and half-edges defining
it, or equivalently, by a list of vertices and crossing points of the edges and half edges.

Eggleton [12] raised the problem of recognizing 1-planar graphs with rectilinear draw-
ings. He solved this problem for outer-1-planar graphs (1-planar graphs with all vertices
on the outer-cycle) and proposed three forbidden configurations. Thomassen [23] solved
Eggleton’s problem and characterized the rectilinear 1-planar embeddings by the exclu-
sion ofB- and W-configurations; see Fig. 2. Hong et al. [17], obtain a similar characteri-
zation where the B- and W -configurations are called the “Bulgari” and “Gucci” graphs.
They also show that all occurrences of these configurations can be computed in linear
time from a given 1-planar embedding.

Definition 1. Consider a 1-planar embedding E(G):
A B-configuration consists of an edge (a, b) and two edges (a, c) and (b, d) which

cross in some point p such that c and d lie in the interior of the triangle (a, b, p). Here
(a, b) is called the base of the configuration.

An X-configuration consists of a pair (a, c) and (b, d) of crossing edges which does
not form a B-configuration.

A W-configuration consists of two pairs of edges (a, c), (b, d) and (a, f), (b, e) which
cross in points p and q, such that c, d, e, f lie in the interior of the quadrangle a, p, b, q.
Here again the edge (a, b), if present is the base.

Observe that for all these configurations the base edges may be crossed by another
edge, whereas the crossing edges are impermeable; see Fig 2.

Thomassen [23] and Hong et al. [17] proved that for a 1-planar embedding to admit
straight-line drawing, B- and W -configurations must be excluded:
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Proposition 1. A 1-planar embedding E(G) admits a straight-line drawing with a
topologically equivalent embedding if and only if it does not contain a B- or a W -
configuration.

Augment a given 1-planar embedding E(G) by adding as many edges to E(G) as
possible so that G remains a simple graph and the newly added edges are planar in
E(G). We call such an embedding a planar-maximal embedding of G and the operation
planar-maximal augmentation. (Note that Hong et al. [17] color the planar edges of a
1-planar embedding red and call a planar-maximal augmentation a red augmentation.)
The planar skeletonP(E(G)) consists of the planar edges of a planar-maximal augmen-
tation. It is a planar embedded graph, since all pairs of crossing edges are omitted. Note
that the planar augmentation and the planar skeleton are defined for an embedding, not
for a graph. A graph may have different embeddings which give rise to different config-
urations and augmentations. The notion of planar-maximal embedding is different from
the notions of maximal 1-planar embeddings and maximal 1-planar graphs, which are
such that the addition of any edge violates 1-planarity (or simplicity) [6].

The following claim, proven in many earlier papers [6, 14, 17, 22, 23], shows that a
crossing pair of edges induces a K4 in planar-maximal embedding, since missing edges
of a K4 can be added without inducing new crossings.

Lemma 1. Let E(G) be a planar-maximal 1-planar embedding of a graph G and let
(a, c) and (b, d) be two crossing edges. Then the four vertices {a, b, c, d} induce a K4.

By Lemma 1, for a planar-maximal embedding each X-, B-, and W -configuration
is augmented by additional edges. Here we define these augmented configurations.

Definition 2. Let E(G) be a planar-maximal 1-planar embedding of a graph G. An
augmentedX-configuration consists of aK4 with vertices (a, b, c, d) such that the edges
(a, c) and (b, d) cross inside the quadrangle abcd. An augmented B-configuration con-
sists of a K4 with vertices (a, b, c, d) such that the edges (a, c) and (b, d) cross beyond
the boundary of the quadrangle abcd. An augmented W-configuration consists of two
K4’s (a, b, c, d) and (a, b, e, f) one of which is in an augmented X-configuration and
the other in an augmented B-configuration.

For an augmentedX- or augmentedB-configuration, the edges not inducing a cross-
ing with other edges in the configuration define a cycle, we call it the skeleton. In each
configuration, the edges on the outer-boundary of the embedded configuration and not
inducing a crossing with other edges in the configuration are the base edges.

Using the results of Thomassen [23] and Hong et al. [17], we can now characterize
when a planar-maximal 1-planar embedding of a graph admits a straight-line drawing:

Lemma 2. Let E(G) be a planar-maximal 1-planar embedding of a graph G. Then
there is a straight-line 1-planar drawing of G with a topologically equivalent embed-
ding as E(G) if and only if E(G) does not contain an augmented B-configuration.

Proof. Assume E(G) contains an augmented B-configuration. Then it contains a B-
configuration and has no straight-line 1-planar drawing by Proposition 1. Conversely,
if E(G) has no straight-line 1-planar drawing then by Proposition 1 it contains at least
one B- or W -configuration. Since Γ is a planar-maximal embedding, by Lemma 1 each
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crossing edge pair in E(G) induces a K4. Thus the dotted edges in Fig. 2(b)–(c) must
be present in any B- or W - configuration, inducing an augmented B-configuration. ��

The normal form for an embedded 1-planar graph E(G) is obtained by first adding
the four planar edges to form a K4 for each pair of crossing edges while routing them
closely to the crossing edges and then removing old duplicate edges if necessary. Such
an embedding of a 1-planar graph is a normal embedding of it. A normal planar-
maximal augmentation for an embedded 1-planar graph is obtained by first finding a
normal form of the embedding and then by a planar-maximal augmentation.

Lemma 3. Given a 1-planar embedding E(G), the normal planar-maximal augmenta-
tion of E(G) can be computed in linear time.

Proof. First augment each crossing of two edges (a, c) and (b, d) to a K4, such that the
edges (a, b), (b, c), (c, d), (d, a) are added and in case of a duplicate the former edge
is removed. Then all augmented X-configurations are empty and contain no vertices
inside their skeletons. Next triangulate all faces which do not contain a half-edge, a
crossing edge, or a crossing point. Each step can be done in linear time. ��

3 Characterization of 3-Connected 1-Planar Graphs

Here we characterize 3-connected 1-planar graphs by a normal embedding, where the
crossings are augmented to K4’s such that the resulting augmented X-configurations
have vertex-empty skeletons and there is no augmented B-configuration except for at
most one augmented W-configuration with a pair of crossing edges in the outer face.

Let E(G) be a 1-planar embedding of a graph G. Each pair of crossing edges induces
a crossing point and the crossing edges and their half-edges are impermeable as they
cannot be crossed by other edges without violating 1-planarity. An impermeable path
in E(G) is an internally-disjoint sequence P = v1, p1, v2, p2, . . . , vn, pn, vn+1, where
v1, v2, . . . , vn+1 are (regular) vertices of G, p1, p2, . . . , pn are crossing points in E(G)
and (vi, pi), (pi, vi+1) for each i ∈ {1, 2, . . . , n} are half edges. If vn+1 = v0, then P
is an impermeable cycle. An impermeable cycle is separating when it has vertices both
inside and outside of it, since deleting its vertices disconnects G.

Lemma 4. Let G = (V,E) be a 3-connected 1-planar graph with a planar-maximal
1-planar embedding E(G). Then the following conditions hold.

A. (i) Two augmented B-configurations or two augmented X-configurations cannot
be on the same side of a common base edge.

(ii) Suppose an augmented B-configuration B and an augmented X-configuration
X are on the same side of a common base edge (a, b). Let p and q be the
crossing points for X and B, respectively and let R(X) and R(B) be the
regions inside the skeletons of X and B. Then all vertices of V \ {a, b} are
inside the impermeable cycle apbq if R(X) ⊂ R(B); otherwise all vertices of
V \ {a, b} are outside the impermeable cycle apbq.

B. (i) If two augmented B-configurations are on opposite sides of a common base
edge (a, b), with crossing points p and q, respectively, then all the vertices of
V \ {a, b} are inside the impermeable cycle apbq.
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Fig. 3. Illustration for the proof of Lemma 4

(ii) If two augmented X-configurations are on opposite sides of a common base
edge (a, b), with crossing points p and q, respectively, then all the vertices of
V \ {a, b} are outside the impermeable cycle apbq.

(iii) An augmented B-configuration and an augmented X-configuration cannot share
a common base edge from opposite sides.

Proof. Condition A.(i) and B.(iii) hold because each of these configurations induces a
separating impermeable apbq cycle in E(G) with only two (regular) vertices from G, a
contradiction with the 3-connectivity of G; see Fig. 3(a)–(b) and (f). Similarly, if any
of the Conditions A.(ii) and B.(i)–(ii) is not satisfied, then the impermeable cycle apbq
becomes separating and hence the pair {a, b} becomes separation pair of G, again a
contradiction with the 3-connectivity of G; see Fig. 3(c)–(d), (e) and (g). ��

Corollary 1. Let G be a 3-connected 1-planar graph with a planar-maximal 1-planar
embedding E(G). Then no three crossing edge-pairs in E(G) share the same base edge.

Proof. Each crossing edge pair induces either an augmented B- or an augmented X-
configuration. This fact along with Lemma 4[A.(i), B.(iii)] yields the corollary. ��

Lemma 5. Let G be a 3-connected 1-planar graph. Then there is a planar-maximal 1-
planar embedding E(G∗) of a supergraph G∗ of G so that E(G∗) contains at most one
augmented W-configuration in the outer face and no other augmented B-configuration,
and each augmented X-configuration in E(G∗) contains no vertex inside its skeleton.

Proof. Let E(G) be a 1-planar embedding of G. We claim that by a normal planar-
maximal augmentation of E(G) we get the desired embedding of a supergraph of G.
Note that due to the edge-rerouting this operation converts any B-configuration whose
base is not shared with another configuration into an X-configuration; see Fig. 4(a).
If a base edge is shared by two B-configurations, they are converted into one W -
configuration and by Lemma 4 this W -configuration is on the outer face; see Fig. 4(b).
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Fig. 4. Illustration for the proof of Lemma 5

By Corollary 1, a base edge cannot be shared by more than two B-configurations. Fur-
thermore this operation does not create any new B-configuration. It also makes the
skeleton of any augmented X-configuration vertex-empty; by Lemma 4 a base edge
can be shared by at most two augmented X-configurations from opposite sides and if it
is shared by two augmented X-configurations, the interior of the induced impermeable
cycle is empty; see Fig. 4(c). ��

Lemma 5 together with Proposition 1 implies the following:

Theorem 1. A 3-connected 1-planar graph admits a straight-line 1-planar drawing
except for at most one edge in the outer face.

4 Grid Drawings

In the previous section we showed that a 3-connected 1-planar graph has a straight-
line 1-planar drawing, with the exception of a single edge in the outer face. We now
strengthen this result and show that there is straight-line grid drawing with O(n2) area,
which can be constructed in linear time from a given 1-planar embedding.

The algorithm takes an embedding E(G) and computes a normal planar-maximal
augmentation. Consider the planar skeleton P(E(G)) for the embedding. If there is an
augmented W-configuration and a crossing in the outer face, one crossing edge on the
outer face is kept and the other crossing edge is treated separately. Thus the outer face of
P(E((G)) is a triangle and the inner faces are triangles or quadrangles. Each quadrangle
comes from an augmented X-configuration. It must be drawn strictly convex, such that
the crossing edges can be re-inserted. This is achieved by an extension of the convex
grid drawing algorithm of Chrobak and Kant [8], which itself is an extension of the
shifting method of de Fraysseix, Pach and Pollack [15]. Since the faces are at most
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quadrangles, we can avoid three collinear vertices and the degeneration to a triangle by
an extra unit shift. Note that our drawing algorithm achieves an area of (2n−2)×(2n−
3), while the general algorithms for strictly convex grid drawings [1, 7] require larger
area, since strictly convex drawings of n-gons need Ω(n3) area [2]. Barany and Rote
give a strictly convex grid drawing of a planar graph on a 14n×14n grid if the faces are
at most 4-gons, and on a 2n×2n grid if, in addition, the outer face is a triangle. However,
their approach is quite complex and does not immediately yield these bounds. It is also
not clear how to use this approach for planar graphs in our 1-planar graph setting, in
particular when we have an unavoidable W-configuration in the outer face.

The algorithm of Chrobak and Kant and in particular the computation of a canonical
decomposition presumes a 3-connected planar graph. Thus the planar skeleton of a 3-
connected 1-planar graph must be 3-connected, which holds except for the K4, when
it is embedded as an augmented X-configuration. This results parallels the fact that the
planarization of a 3-connected 1-planar graph is 3-connected [14].

Lemma 6. Let G be a graph with a planar-maximal 1-planar embedding E(G) such
that it has no augmented B-configuration and each augmented X-configuration in E(G)
has no vertex inside its skeleton. Then the planar skeleton P(E(G)) is 3-connected.

We will prove Lemma 6 by showing that there is no separation pair inP(E(G)). First
we obtain a planar graph H from G as follows. Let (a, c) and (b, d) be a pair of crossing
edges that form an augmented X-configuration X in Γ . We then delete the two edges
(a, c), (b, d); add a vertex u and the edges (a, u), (b, u), (c, u), (d, u) to triangulate the
face abcd. Call v a cross-vertex and call this operation cross-vertex insertion on X . We
then obtain H from G by cross-vertex insertion on each augmented X-configuration.
Call H a planarization of G and denote the set of all the cross-vertices by U . Then
P(E(G)) = H \ U . Before proving Lemma 6 we consider several properties of H , the
planarization of the 1-planar graph.

Lemma 7. Let G = (V,E) be a graph with a planar-maximal 1-planar embedding
E(G) such that E(G) contains no augmented B-configuration and each augmented X-
configuration in E(G) contains no vertex inside its skeleton. Let H be a planarization
of G, where U is the set of cross-vertices. Then the following conditions hold.

(a) H is a maximal planar graph (except if H is the K4 in an X-configuration)
(b) Each vertex of U has degree 4.
(c) U is an independent set of H .
(d) There is no separating triangle of H containing any vertex from U .
(e) There is no separating 4-cycle of H containing two vertices from U .

Proof. For convenience, we call each vertex in V − U a regular vertex.

(a) Since H is a planar graph, we only show that each face of H is a triangle. Each
crossing edge pair in Γ induces an augmented X-configuration whose skeleton
has no vertex in its interior. Hence each face of H containing a crossing vertex
is a triangle. Again, Hong et al. [17] showed that in a planar-maximal 1-planar
embedding a face with no crossing vertices is a triangle. Thus H is a maximal
planar graph.
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(a) (b)
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b
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p
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Fig. 5. Illustration for the proof of Lemma 6

(b)–(c) These two conditions follow from the fact that the neighborhood of each cross-
ing vertex consists of exactly four regular vertices that form the skeleton of the
corresponding augmented X-configuration.

(d) For a contradiction suppose a vertex u ∈ U participates in a separating triangle
T of H . Since the neighborhood of u forms the skeleton of the corresponding
augmented X-configuration X , the other two vertices, say a and b, in T are
regular vertices. The edge (a, b) cannot form a base edge for X , since if it did,
then the interior of the separating triangle T would be contained in the interior
of the skeleton for X and hence would be empty. Assume therefore that a and b
are not consecutive on the skeleton of X . In this case the edge (a, b) is a crossing
edge in G and hence has been deleted when constructing H ; see Fig. 5(a).

(e) Suppose two vertices u, v ∈ U participate in a separating 4-cycle T of H . Due
to Condition (c), assume that T = aubv, where a, b are regular vertices. If the
two vertices a, b are adjacent in H , assume without loss of generality that the
edge (a, b) is drawn inside the interior of T . Then the interior of at least one of
the two triangles abu and abv is non-empty, inducing a separating triangle in
H , a contradiction with Condition (d). We thus assume that the two vertices a
and b are not adjacent in H . Then for both the augmented X-configurations X
and Y , corresponding to the two crossing vertices u and v, the two vertices u
and v are not consecutive on their skeleton. This implies that the crossing edge
(a, b) participates in two different augmented X-configurations in Γ , again a
contradiction; see Fig. 5(b). ��

We are now ready to prove Lemma 6.

Proof (Lemma 6). Assume for a contradiction that P(E(G)) is not 3-connected. Then
there exists some separation pair {a, b} in P(E(G)). Let H be the planarization of G,
where U is the set of cross-vertices. Then S = U∪{a, b} is a separating set for H . Take
a minimal separating set S′ ⊂ S such that no proper subset of S′ is a separating set.
Since H is a maximal planar graph (from Lemma 7(a)), S′ forms a separating cycle [3].
The 3-connectivity of the maximal planar graph H implies |S′| ≥ 3. Again since S′

contains at most two regular vertices a, b and no two cross-vertices can be adjacent in
H (Lemma 7(c)), |S′| < 5. Hence S′ is a separating triangle or a separating 4-cycle
with at most two regular vertices; we get a contradiction with Lemma 7(d)–(e). ��
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Finally, we describe our algorithm for straight-line grid drawings. This drawing algo-
rithm is based on an extension of the algorithm of Chrobak and Kant [8] for computing
a convex drawing of a planar 3-connected graph. For convenience we refer to this al-
gorithm as the CK-algorithm and we begin with a brief overview. Let G = (V,E) be
an embedded 3-connected graph and let (u, v) be an edge on the outer-cycle of G. The
CK-algorithm starts by computing a canonical decomposition of G, which is an ordered
partition V1, V2, . . . , Vt of V such that the following conditions hold:

(i) For each k ∈ {1, 2, . . . , t}, the graph Gk induced by the vertices V1 ∪ . . . ∪ Vk is
2-connected and its outer-cycle Ck contains the edge (u, v).

(ii) G1 is a cycle, Vt is a singleton {z}, where z /∈ {u, v} is on the outer-cycle of G.
(iii) For each k ∈ {2, . . . , t− 1} the following conditions hold:

– If Vk is a singleton {z}, then z is on the outer face of Gk−1 and has at least
one neighbor in G−Gk.

– If Vk is a chain {z1, . . . , zl}, each zi has at least one neighbor in G−Gk, z1,
zl have one neighbor each on Ck−1 and no other zi has neighbors on Gk−1.

For each k ∈ {1, 2, . . . , t}, we say that the vertices that belong to Vk have rank k.
We call a vertex of Gk saturated if it has no neighbor in G − Gk. The CK-algorithm
starts by drawing the edge (u, v) with a horizontal line-segment of unit length. Then
for k = 1, 2, . . . , t, it incrementally completes the drawing of Gk. Let Ck−1 = {(u =
w1, . . . , wp, . . . , wq, . . . , wr = v)} with 1 ≤ p < q ≤ r where wp and wq are the
leftmost and the rightmost neighbor of vertices in Vk. Then the vertices of Vk are placed
above the vertices wp, . . . , wq . Assume that Vk = {z1, . . . , zl}. Then z1 is placed on
the vertical line containing wp if wp is saturated in Gk; otherwise it is placed on the
vertical line one unit to the right of wp. On the other hand, zl is placed on the negative
diagonal line (i.e., with−45◦ slope) containingwq . If vk is a singleton then z = z1 = zl
is placed at the intersection of these two lines. Otherwise (after necessary shifting of wq

and other vertices), the vertices z1, . . . zl are placed on consecutive vertical lines one
unit apart from each other. In order to make sure that this shifting operation does not
disturb planarity or convexity, each vertex v is associated with an “under-set” U(v) and
whenever v is shifted, all vertices in U(v) are also shifted along with v. Thus the edges
between vertices of any U(v) are in a sense rigid.

Theorem 2. Given a 1-planar embedding E(G) of a 3-connected graph G, a straight-
line drawing on the (2n− 2)× (2n− 3) grid can be computed in linear time. Only one
edge on the outer face may require one bend.

Proof. Assume that E(G) is a normal planar-maximal embedding; otherwise we com-
pute one by a normal planar-maximal augmentation in linear time by Lemma 3. Con-
sider the planar skeleton P(E(G)). If there is no unavoidable W-configuration on the
outer face of the maximal planar augmentation, then the outer-cycle ofP(E(G)) is a tri-
angle. Otherwise we add one of the crossing edges in the outer face to P(E(G)) to make
the outer-cycle a triangle. The other crossing edge is treated separately. By Lemma 6,
P(E(G)) is 3-connected, its outer face is a triangle (a, b, c) and the inner faces are tri-
angles or quadrangles, where the latter result from augmented X-configurations and are
in one-to-one correspondence to pairs of crossing edges.
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We wish to obtain a planar straight-line grid drawing of P(E(G)) such that all quad-
rangles are strictly convex. Although the CK-algorithm draws any 3-connected planar
graph of n vertices on a grid of size (n − 1) × (n − 1) with convex faces, the faces
are not necessarily strictly convex [8]. Hence we must modify the algorithm so that all
quadrangles are strictly convex. Note that by the assignment of the under-sets, the CK-
algorithm guarantees that once a face is drawn strictly convex, it would remain strictly
convex after any subsequent shifting of vertices.

For P(E(G)) each Vk is either a single vertex or a pair with an edge, since the faces
are at most quadrangles. If Vk is an edge (z1, z2) then, by the definition of the canonical
decomposition, exactly one quadrangle face wpz1z2wq is formed and by construction
this face is drawn convex. We thus assume that Vk contains a single vertex, say v. Let
Ck−1 = {(u = w1, . . . , wp, . . . , wq, . . . , wr = v)} with 1 ≤ p < q ≤ r where wp

and wq are the leftmost and the rightmost neighbors of vertices in Vk . Then the new
faces created by the insertion of v are all drawn strictly convex unless there is some
quadrangle vwp′−1wp′wp′+1 where p < p′ < q and wp′−1, wp′ , wp′+1 are collinear in
the drawing of Gk−1. In this case wp′ must be saturated in Gk−1 and this occurs in the
CK-algorithm only when the line containing wp′−1, wp′ , wp′+1 is a vertical line or a
negative diagonal (with −45◦ slope). In the former case, wp−1 should have also been
saturated in Gk−1, which is not possible since v is its neighbor. It is thus sufficient to
ensure that no saturated vertex of Gk is in the negative diagonal of both its left and right
neighbors on Ck. We do this by the following extension of the CK-algorithm.

Suppose v is placed above wq with slope −45, wq was placed above its rightmost
lower neighbor w′

q′ with slope −45, and there is a quadrangle (v, wq , w
′
q′ , u) for some

vertex u with higher rank to be placed later. Then shift w′
q′ by one extra unit to the right

when v or u is placed. This implies a bend at wq and a strictly convex angle above wq .
The CK-algorithm starts by placing the first two vertices one unit away and it requires

a unit shift to the right for each following vertex. On the other hand, a 1-planar graph
has at most n − 2 pairs of crossing edges. Hence, there are g ≤ n − 3 augmented
X-configurations, each of which induces a quadrangle in the planar skeleton. Thus the
width and height are n− 1 + g, which is bounded by 2n− 4. The vertices a, b, c of the
outer triangle are placed at the grid points (0, 0), (0, n− 1 + g), (n− 1 + g, 0).

If the graph had an unavoidable W -configuration in the outer face, we need a post-
processing phase to draw the extra edge (b, d), which induces a crossing with the edge
(a, c). Since a is the leftmost lower neighbor of d when d is placed and d is not saturated,
d is placed at (1, j) for some j < n− 2 + g. Shift b one unit to the right, insert a bend
at (−1, n+ g), one diagonal unit left above c and route (b, d) via the bend point. ��

5 Conclusion and Future Work

We showed that 3-connected 1-planar graphs can be embedded on O(n)×O(n) integer
grid, so that edges are drawn as straight-line segments (except for at most one edge
on the outerface that requires a bend). Moreover, the algorithm is simple and runs in
linear time given a 1-planar embedding. Note that even a path may require exponential
area for a given fixed 1-planar embedding, e.g., [17]. Recognition of 1-planar graphs is
NP-hard [18]. How hard is the recognition of planar-maximal 1-planar graphs?
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Abstract. A topological graph is k-quasi-planar if it does not contain
k pairwise crossing edges. An old conjecture states that for every fixed
k, the maximum number of edges in a k-quasi-planar graph on n ver-
tices is O(n). Fox and Pach showed that every k-quasi-planar graph
with n vertices and no pair of edges intersecting in more than O(1)
points has at most n(log n)O(log k) edges. We improve this upper bound
to 2α(n)cn log n, where α(n) denotes the inverse Ackermann function,
and c depends only on k. We also show that every k-quasi-planar graph
with n vertices and every two edges have at most one point in common
has at most O(n log n) edges. This improves the previously known upper
bound of 2α(n)cn log n obtained by Fox, Pach, and Suk.

1 Introduction

A topological graph is a graph drawn in the plane so that its vertices are
represented by points and its edges are represented by curves connecting the
corresponding points. The curves are always simple, that is, they do not have
self-intersections. The curves are allowed to intersect each other, but they can-
not pass through vertices except for their endpoints. Furthermore, the edges are
not allowed to have tangencies, that is, if two edges share an interior point, then
they must properly cross at that point. We only consider graphs without parallel
edges or loops. Two edges of a topological graph cross if their interiors share
a point. A topological graph is simple if any two of its edges have at most one
point in common, which can be either a common endpoint or a crossing.

It follows from Euler’s polyhedral formula that every topological graph on
n vertices and with no two crossing edges has at most 3n − 6 edges. A graph
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is called k-quasi-planar if it can be drawn as a topological graph with no k
pairwise crossing edges. Hence, a graph is 2-quasi-planar if and only if it is
planar. According to an old conjecture (see Problem 1 in Section 9.6 of [4]), for
any fixed k ≥ 2 there exists a constant ck such that every k-quasi-planar graph
on n vertices has at most ckn edges. Agarwal, Aronov, Pach, Pollack, and Sharir
[2] were the first to prove this conjecture for simple 3-quasi-planar graphs. Later,
Pach, Radoičić, and Tóth [14] generalized the result to all 3-quasi-planar graphs.
Ackerman [1] proved the conjecture for k = 4.

For larger values of k, several authors have proved upper bounds on the maxi-
mum number of edges in k-quasi-planar graphs under various conditions on how
the edges are drawn. These include but are not limited to [5,7,8,15,19]. In 2008,
Fox and Pach [7] showed that every k-quasi-planar graph with n vertices and
no pair of edges intersecting in more than t points has at most n(log n)c log k

edges, where c depends only on t. In this paper, we improve the exponent of the
polylogarithmic factor from O(log k) to 1 + o(1) for fixed t.

Theorem 1. Every k-quasi-planar graph with n vertices and no pair of edges
intersecting in more than t points has at most 2α(n)

c

n logn edges, where α(n)
denotes the inverse of the Ackermann function, and c depends only on k and t.

Recall that the Ackermann function A(n) is defined as follows. Let A1(n) =
2n, and Ak(n) = Ak−1(Ak(n− 1)) for k ≥ 2. In particular, we have A2(n) = 2n,
and A3(n) is an exponential tower of n two’s. Now let A(n) = An(n), and let
α(n) be defined as α(n) = min{k ≥ 1: A(k) ≥ n}. This function grows much
slower than the inverse of any primitive recursive function.

For simple topological graphs, Fox, Pach, and Suk [8] showed that every k-
quasi-planar simple topological graph on n vertices has at most 2α(n)

c

n logn
edges, where c depends only on k. We establish the following improvement.

Theorem 2. Every k-quasi-planar simple topological graph on n vertices has
at most ckn logn edges, where ck depends only on k.

We start the proofs of both theorems with a reduction to the case of topolog-
ical graphs containing an edge that intersects every other edge. This reduction
introduces the O(log n) factor for the bound on the number of edges. Then, the
proof of Theorem 1 follows the approaches of Valtr [19] and Fox, Pach, and
Suk [8], using a result on generalized Davenport-Schinzel sequences, which we
recall in Section 3. Although the proofs in [19] and [8] heavily depend on the
assumption that any two edges have at most one point in common, we are able
to remove this condition by establishing some technical lemmas in Section 4.
In Section 5, we finish the proof of Theorem 1. The proof of Theorem 2, which
relies on a recent coloring result due to Lasoń, Micek, Pawlik, and Walczak [10],
is given in Section 6.

2 Initial Reduction

We call a collection C of curves in the plane decomposable if there is a partition
C = C1∪· · ·∪Cw such that each Ci contains a curve intersecting all other curves
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in Ci, and for i �= j, no curve in Ci crosses nor shares an endpoint with a curve
in Cj .

Lemma 1 (Fox, Pach, Suk [8]). There is an absolute constant c > 0 such
that every collection C of m ≥ 2 curves such that any two of them intersect in
at most t points has a decomposable subcollection of size at least cm

t logm .

In the proofs of both Theorem 1 and Theorem 2, we establish a (near) linear
upper bound on the number of edges under the additional assumption that the
graph has an edge intersecting every other edge. Once this is achieved, we use
the following lemma to infer an upper bound for the general case.

Lemma 2 (implicit in [8]). Let G be a topological graph on n vertices such
that no two edges have more than t points in common. Suppose that for some
constant β, every subgraph G′ of G containing an edge that intersects every
other edge of G′ has at most β|V (G′)| edges. Then G has at most ctβn logn
edges, where ct depends only on t.

Proof. By Lemma 1, there is a decomposable subset E′ ⊂ E(G) such that |E′| ≥
c′t|E(G)|/ log |E(G)|, where c′t depends only on t. Hence there is a partition
E′ = E1 ∪ · · · ∪Ew, such that each Ei has an edge ei that intersects every other
edge in Ei, and for i �= j, the edges in Ei are disjoint from the edges in Ej . Let
Vi denote the set of vertices that are the endpoints of the edges in Ei, and let
ni = |Vi|. By the assumption, we have |Ei| ≤ βni for 1 ≤ i ≤ w. Hence

c′t|E(G)|
log |E(G)| ≤ |E

′| ≤
w∑
i=1

βni ≤ βn.

Since |E(G)| ≤ n2, we obtain |E(G)| ≤ 2(c′t)
−1βn logn. ��

3 Generalized Davenport-Schinzel Sequences

A sequence S = (s1, . . . , sm) is called l-regular if any l consecutive terms of S are
pairwise different. For integers l,m ≥ 2, the sequence S = (s1, . . . , slm) is said
to be of type up(l,m) if the first l terms are pairwise different and si = si+l =
· · · = si+(m−1)l for 1 ≤ i ≤ l. In particular, every sequence of type up(l,m) is
l-regular. For convenience, we will index the elements of an up(l,m) sequence as

S = (s1,1, . . . , sl,1, s1,2, . . . , sl,2, . . . , s1,m, . . . , sl,m),

where s1,1, . . . , sl,1 are pairwise different and si,1 = · · · = si,m for 1 ≤ i ≤ l.

Theorem 3 (Klazar [9]). For l ≥ 2 and m ≥ 3, every l-regular sequence over
an n-element alphabet that does not contain a subsequence of type up(l,m) has
length at most

n · l · 2(lm−3) · (10l)10α(n)
lm

.

For more results on generalized Davenport-Schinzel sequences, see [13,16,17].
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4 Intersection Pattern of Curves

In this section, we will prove several technical lemmas on the intersection pattern
of curves in the plane. We will always assume that no two curves are tangent,
and that if two curves share an interior point, then they must properly cross at
that point.

Lemma 3. Let λ1 and λ2 be disjoint simple closed curves. Let C be a collection
of m curves with one endpoint on λ1, the other endpoint on λ2, and no other
common points with λ1 or λ2. If no k members of C pairwise cross, then C
contains �m/(k − 1)2� pairwise disjoint members.

Proof. Let G be the intersection graph of C. Since G does not contain a clique of
size k, by Turán’s theorem, |E(G)| ≤ (1−1/(k−1))m2/2. Hence there is a curve
a ∈ C and a subset S ⊂ C, such that |S| ≥ m/(k− 1)− 1 and a is disjoint from
every curve in S. We order the elements in S∪{a} as a0, a1, . . . , a|S| in clockwise
order as their endpoints appear on λ1, starting with a0 = a. Now we define the
partial order ≺ on the pairs in S so that ai ≺ aj if i < j and ai is disjoint
from aj . A simple geometric observation shows that ≺ is indeed a partial order.
Since S does not contain k pairwise crossing members, by Dilworth’s theorem
[6], S ∪ {a} contains �m/(k − 1)2� pairwise disjoint members. ��

A collection of curves with a common endpoint v is called a fan with apex v.
Let C = {a1, . . . , am} be a fan with apex v, and γ = γ1 ∪ · · · ∪ γm be a curve
with endpoints p and q partitioned into m subcurves γ1, . . . , γm that appear in
order along γ from p to q. We say that C is grounded by γ1 ∪ · · · ∪ γm, if

(i) γ does not contain v,
(ii) each ai has its other endpoint on γi.

We say that C is well-grounded by γ1∪· · ·∪γm if C is grounded by γ1∪· · ·∪γm
and each ai intersects γ only within γi. Note that both notions depend on a
particular partition γ = γ1 ∪ · · · ∪ γm.

Lemma 4. Let C = {a1, . . . , am} be a fan grounded by a curve γ = γ1 ∪ · · · ∪
γm. If each ai intersects γ in at most t points, then there is a subfan C′ =
{ai1 , . . . , air} ⊂ C with i1 < · · · < ir and r = �logt+1 m� that is grounded by a
subcurve γ′ = γ′

1 ∪ · · · ∪ γ′
r ⊂ γ. Moreover,

(i) γ′
j ⊃ γij for 1 ≤ j ≤ r,

(ii) aij intersects γ′ only within γ′
1 ∪ · · · ∪ γ′

j for 1 ≤ j ≤ r.

Proof. We proceed by induction on m. The base case m ≤ t is trivial. Now
assume that m ≥ t + 1 and the statement holds up to m − 1. Since a1 inter-
sects γ in at most t points, there exists an integer j such that a1 is disjoint
from γj ∪ γj+1 ∪ · · · ∪ γj+�m/(t+1)�−1. By the induction hypothesis applied to
{aj, aj+1, . . . , aj+�m/(t+1)�−1} and the curve γj ∪ γj+1 ∪ · · · ∪ γj+�m/(t+1)�−1, we
obtain a subfan C∗ = {ai2 , . . . , air} of r−1 = �logt+1�m/(t+1)�� = �logt+1 m�−
1 curves, and a subcurve γ∗ = γ′

2∪· · ·∪γ′
r ⊂ γj∪γj+1∪· · ·∪γj+�m/(t+1)�−1 with
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the desired properties. Let γ′
1 be the subcurve of γ obtained by extending the

endpoint of γ1 to the endpoint of γ∗ along γ so that γ′
1 ⊃ γ1. Set γ

′ = γ′
1 ∪ γ∗.

Hence the collection of curves C′ = {a1} ∪ C∗ and γ′ have the desired proper-
ties. ��

Lemma 5. Let C = {a1, . . . , am} be a fan grounded by a curve γ = γ1 ∪ · · · ∪
γm. If each ai intersects γ in at most t points, then there is a subfan C′ =
{ai1 , . . . , air} ⊂ C with i1 < · · · < ir and r = �logt+1 logt+1 m� that is well-
grounded by a subcurve γ′ = γ′

1 ∪· · ·∪γ′
r ⊂ γ. Moreover, γ′

j ⊃ γij for 1 ≤ j ≤ r.

Proof. We apply Lemma 4 to C and γ = γ1 ∪ · · · ∪ γm to obtain a subcollection
C∗ = {aj1 , aj2 , . . . , ajm∗} of m∗ = �logt+1 m� curves, and a subcurve γ∗ =
γ∗
1 ∪ · · · ∪ γ∗

m∗ ⊂ γ with the properties listed in Lemma 4. Then we apply
Lemma 4 again to C∗ and γ∗ with the elements in C∗ in reverse order. By the
second property of Lemma 4, the resulting subcollection C′ = {ai1 , . . . , air} of
r = �logt+1 logt+1 m� curves is well-grounded by a subcurve γ′ = γ′

1∪· · ·∪γ′
r ⊂ γ,

and by the first property we have γ′
j ⊃ γij for 1 ≤ j ≤ r. ��

We say that fans C1, . . . , Cl are simultaneously grounded (simultaneously well-
grounded) by a curve γ = γ1 ∪ · · · ∪ γm to emphasize that they are grounded
(well-grounded) by γ with the same partition γ = γ1 ∪ · · · ∪ γm.

Lemma 6. Let C1, . . . , Cl be l fans with Ci = {ai,1, . . . , ai,m}, simultaneously
grounded by a curve γ = γ1 ∪ · · · ∪ γm. If each ai,j intersects γ in at most

t points, then there are indices j1 < · · · < jr with r = �log(2l)t+1 m� ( 2l-times
iterated logarithm of m) and a subcurve γ′ = γ′

1 ∪ · · · ∪ γ′
r ⊂ γ such that

(i) the subfans C′
i = {ai,j1 , . . . , ai,jr} ⊂ Ci for 1 ≤ i ≤ l are simultaneously

well-grounded by γ′
1 ∪ · · · ∪ γ′

r,
(ii) γ′

s ⊃ γjs for 1 ≤ s ≤ r.

Proof. We proceed by induction on l. The base case l = 1 follows from Lemma
5. Now assume the statement holds up to l − 1. We apply Lemma 5 to the
fan C1 = {a1,1, . . . , a1,m} and the curve γ = γ1 ∪ · · · ∪ γm, to obtain a subfan
C∗

1 = {a1,w1 , . . . , a1,ws} ⊂ C1 with w1 < · · · < ws and s = �logt+1 logt+1 m�
that is well-grounded by a subcurve γ∗ = γ∗

1 ∪ · · · ∪ γ∗
s ⊂ γ and satisfies γ∗

i ⊃
γwi for 1 ≤ i ≤ s. For 2 ≤ i ≤ l, let C∗

i = {ai,w1 , . . . , ai,ws} ⊂ Ci. Now
we apply the induction hypothesis on the collection of l − 1 fans C∗

2 , . . . , C
∗
l

that are simultaneously grounded by the curve γ∗ = γ∗
1 ∪ · · · ∪ γ∗

s . Hence we
obtain indices j1 < · · · < jr with r = �log(2l−2)

t+1 s� = �log(2l)t+1 m� and a subcurve
γ′ = γ′

1 ∪ · · · ∪ γ′
r ⊂ γ∗ such that each subfan C′

i = {ai,j1 , . . . , ai,jr} ⊂ Ci with
2 ≤ i ≤ l is well-grounded by γ′

1 ∪ · · · ∪ γ′
r, and moreover γ′

z ⊃ γ∗
z ⊃ γz for

1 ≤ z ≤ r. By setting C′
1 = {a1,j1 , . . . , a1,jr} ⊂ C∗

1 , the collection C′
1, . . . , C

′
l is

simultaneously well-grounded by the subcurve γ′ = γ′
1 ∪ · · · ∪ γ′

r ⊂ γ. ��

Let C = {a1, . . . , am} be a fan with apex v grounded by a curve γ = γ1∪· · ·∪
γm with endpoints p and q. We say that ai is left-sided (right-sided) if moving
along ai from v until we reach γ for the first time, and then turning left (right)
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onto the curve γ, we reach the endpoint q (p). We say that Ci is one-sided, if
the curves in Ci are either all left-sided or all right-sided.

Lemma 7. Let C1, . . . , Cl be l fans with Ci = {ai,1, . . . , ai,m}, simultaneously
grounded by a curve γ. Then there are indices j1 < · · · < jr with r = �m/2l�
such that the subfans C′

i = {ai,j1 , . . . , ai,jr} ⊂ Ci for 1 ≤ i ≤ l are one-sided.

Proof. We proceed by induction on l. The base case l = 1 is trivial since at
least half of the curves in C1 = {a1,1, . . . , a1,m} form a one-sided subset. For
the inductive step, assume that the statement holds up to l − 1. Let C∗

1 =
{a1,w1 , . . . , a1,w�m/2�} with w1 < · · · < w	m/2
 be a subset of �m/2� curves that
is one-sided. For i ≥ 2, set C∗

i = {ai,w1 , . . . , ai,w�m/2�}. Then apply the induction
hypothesis on the l − 1 fans C∗

2 , . . . , C
∗
l , to obtain indices j1 < · · · < jr with

r = ��m/2�/2l−1� = �m/2l� such that the subfans C′
i = {ai,j1 , . . . , ai,jr} ⊂ C∗

i

for 2 ≤ i ≤ l are one-sided. By setting C′
1 = {a1,j1 , . . . , a1,jr} ⊂ C∗

1 , the collection
C′

1, . . . , C
′
l have the desired properties. ��

Since at least half of the fans obtained from Lemma 7 are either left-sided or
right-sided, we have the following corollary.

Corollary 1. Let C1, . . . , C2l be 2l fans with Ci = {ai,1, . . . , ai,m}, simultane-
ously grounded by a curve γ. Then there are indices i1 < · · · < il and j1 < · · · <
jr with r = �m/22l� such that the subfans C′

iw = {aiw,j1 , . . . , aiw,jr} ⊂ Ciw for
1 ≤ w ≤ l are all left-sided or all right-sided.

By combining Lemma 6 and Corollary 1, we easily obtain the following lemma
which will be used in Section 5.

Lemma 8. Let C1, . . . , C2l be 2l fans with Ci = {ai,1, . . . , ai,m}, simultaneously
grounded by a curve γ = γ1 ∪ · · · ∪ γm. Then there are indices i1 < · · · < il and
j1 < · · · < jr with r = ��log(4l)t+1 m�/22l� and a subcurve γ∗ = γ∗

1 ∪ · · · ∪ γ∗
r ⊂ γ

such that

(i) the subfans C′
iw = {aiw,j1 , . . . , aiw ,jr} ⊂ Ciw for 1 ≤ w ≤ l are simultane-

ously well-grounded by γ∗
1 ∪ · · · ∪ γ∗

r ,
(ii) γ∗

s ⊃ γjs for 1 ≤ s ≤ r,
(iii) the subfans C′

i1 , . . . , C
′
il

are all left-sided or all right-sided.

5 Proof of Theorem 1

By Lemma 2 and the fact that the function α(n) is non-decreasing, it is enough
to prove that every k-quasi-planar topological graph on n vertices such that no
two edges have more than t points in common and there is an edge that intersects
every other edge has at most 2α(n)

c

n edges, where c depends only on k and t.
Let G be a k-quasi-planar graph on n vertices with no two edges intersecting

in more than t points. Let e0 = pq be an edge that intersects every other edge
of G. Let V0 = V (G) \ {p, q} and E0 be the set of edges with both endpoints in
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V0. Hence we have |E0| > |E(G)| − 2n. Assume without loss of generality that
no two elements of E0 cross e0 at the same point.

By a well-known fact (see e.g. Theorem 2.2.1 in [3]), there is a bipartition
V0 = V1∪V2 such that at least half of the edges in E0 connect a vertex in V1 to a
vertex in V2. Let E1 be the set of these edges. For each vertex vi ∈ V1, consider
the graph Gi whose each vertex corresponds to the subcurve γ of an edge e ∈ E1

such that

(i) e is incident to vi,
(ii) the endpoints of γ ⊂ e are vi and the first intersection point in e ∩ e0 as

moving from vi along e.

Two vertices are adjacent in Gi if the corresponding subcurves cross. Each graph
Gi is isomorphic to the intersection graph of a collection of curves with one
endpoint on a simple closed curve λ1 and the other endpoint on a simple closed
curve λ2 and with no other points in common with λ1 or λ2. To see this, enlarge
the point vi and the curve e0 a little, making them simple closed curves λ1 and
λ2, and shorten the curves γ appropriately, so as to preserve all crossings between
them. Since no k of these curves pairwise intersect, by Lemma 3, Gi contains
an independent set of size �|V (Gi)|/(k − 1)2�. We keep all edges corresponding
to the elements of this independent set, and discard all other edges incident
to vi. After repeating this process for all vertices in V1, we are left with at
least �|E1|/(k − 1)2� edges, forming a set E2. We continue this process on the
vertices in V2 and the edges in E2. After repeating this process for all vertices
in V2, we are left with at least �|E2|/(k − 1)2� edges, forming a set E′. Thus
|E(G)| < 2(k − 1)4|E′| + 2n. Now, for any two edges e1, e2 ∈ E′ that share an
endpoint, the subcurves γ1 ⊂ e1 and γ2 ⊂ e2 described above must be disjoint.

For each edge e ∈ E′, fix an arbitrary intersection point s ∈ e ∩ e0 to be
the main intersection point of e and e0. Let e1, . . . , e|E′| denote the edges in
E′ listed in the order their main intersection points appear on e0 from p to
q, and let s1, . . . , s|E′| denote these points respectively. We label the endpoints
of each ei as pi and qi, as follows. As we move along e0 from p to q until we
arrive at si, then we turn left and move along ei, we finally reach pi, while as
we turn right at si and move along ei, we finally reach qi. We define sequences
S1 = (p1, . . . , p|E′|) and S2 = (q1, . . . , q|E′|). They are sequences of length |E′|
over the (n− 2)-element alphabet V0.

Lemma 9 (Valtr [19]). For 2l ≥ 1, at least one of the sequences S1, S2 defined
above contains a 2l-regular subsequence of length at least �|E′|/(8l)�.

The proof of Lemma 9 can be copied almost verbatim from the proof of Lemma
5 in [19]. Indeed, the only fact about the sequences S1 and S2 it uses is that the
edges ej1 , ej1+1, . . . , ej2 are spanned by the vertices pj1 , . . . , pj2 and qj1 , . . . , qj2 ,
for any j1 < j2.

For the rest of this section, we set l = 2k
2+2k andm to be such that (log(4l)t+1 m)/

22l = 3 · 2k − 4.

Lemma 10. Neither of the sequences S1 and S2 has a subsequence of type
up(2l,m).
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Proof. By symmetry, it suffices to show that S1 does not contain a subsequence
of type up(2l,m). We will prove that the existence of such a subsequence would
imply that G has k pairwise crossing edges. Let

S = (s1,1, . . . , s2l,1, s1,2, . . . , s2l,2, . . . , s1,m, . . . , s2l,m)

be a subsequence of S1 of type up(2l,m) such that the first 2l terms are pairwise
distinct and si,1 = · · · = si,m = vi for 1 ≤ i ≤ 2l. For 1 ≤ j ≤ m, let ai,j be the
subcurve of the edge corresponding to the entry si,j in S1 between the vertex vi
and the main intersection point with e0. Let Ci = {ai,1, . . . , ai,m} for 1 ≤ i ≤ 2l.
Hence C1, . . . , C2l are 2l fans with apices v1, . . . , v2l respectively. Clearly, there is
a partition e0 = γ1∪· · · ∪γm such that C1, . . . , C2l are simultaneously grounded
by γ1 ∪ · · · ∪ γm.

We apply Lemma 8 to the fans C1, . . . , C2l that are simultaneously grounded
by γ1 ∪ · · · ∪ γm to obtain indices i1 < · · · < il and j1 < · · · < jr with r =
(log(4l)t+1 m)/22l = 3 · 2k − 4 and a subcurve γ∗ = γ∗

1 ∪ · · · ∪ γ∗
r ⊂ e0 such that

(i) the subfans C′
iw

= {aiw,j1 , . . . , aiw,jr} ⊂ Ciw for 1 ≤ w ≤ l are simultane-
ously well-grounded by γ∗

1 ∪ · · · ∪ γ∗
r ,

(ii) γ∗
z ⊃ γjz for 1 ≤ z ≤ r,

(iii) the subfans C′
i1
, . . . , C′

il
are all left-sided or all right-sided.

We will only consider the case that C′
i1
, . . . , C′

il
are left-sided, the other case

being symmetric.
Now for 1 ≤ w ≤ l and 1 ≤ z ≤ r, we define the subcurve a∗w,z ⊂ aiw ,jz whose

endpoints are viw and the first point from aiw,jz ∩ γ∗ as moving from viw along
aiw,jz . Hence the interior of a∗w,z is disjoint from γ∗. Let A∗

w = {a∗w,1, . . . , a
∗
w,r}

for 1 ≤ w ≤ l. Note that any two curves in A∗
w do not cross by construction,

and all curves in A∗
w enter γ∗ from the same side. For simplicity, we will call

this the left side of γ∗ and we will relabel the apices of the fans A∗
1, . . . , A

∗
l from

vi1 , . . . , vil to v1, . . . , vl. To finally reach a contradiction, we prove the following.

Claim 1. For l = 2k
2+2k and r = 3 · 2k − 4, among the l fans A∗

1, . . . , A
∗
l with

the properties above, there are k pairwise crossing curves.

The proof follows the argument of Lemma 4.3 in [8]. We proceed by induction
on k. The base case k = 1 is trivial. For the inductive step, assume the statement
holds up to k − 1. For simplicity, we let a∗i,j = a∗i,j′ for all j ∈ Z, where j′ ∈
{1, . . . , r} is such that j ≡ j′ (mod r). Consider the fan A∗

1, which is of size r.
By construction of A∗

1, the arrangement A∗
1 ∪ {γ∗} partitions the plane into r

regions. By the pigeonhole principle, there is a subset V ′ ⊂ {v1, . . . , vl} of size

|V ′| = l− 1

r
=

2k
2+2k − 1

3 · 2k − 4
,

such that all the vertices in V ′ lie in the same region. Let j0 ∈ {1, . . . , r} be an
integer such that V ′ lies in the region bounded by a∗1,j0 , a

∗
1,j0+1, and γ∗.

Let vi ∈ V ′ and 1 < j1 < r, and consider the curve a∗i,j0+j1 . Recall that a
∗
i,j0+j1

is disjoint from γ∗
j0 ∪ γ∗

j0+1 and thus intersects a∗1,j0 ∪ a∗1,j0+1. Let a ⊂ a∗i,j0+j1
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be the maximal subcurve with an endpoint on γ∗ whose interior is disjoint from
a∗1,j0∪a

∗
1,j0+1. If a intersects a∗1,j0+1 (i.e. the second endpoint of a lies on a∗1,j0+1),

then vi and the left side of γ∗
j0+2 ∪ · · · ∪ γ∗

j0+j1−1 lie in different connected

components of R2 \ (a∗1,j0+1 ∪ γ∗ ∪ a). Likewise, if a intersects a∗1,j0 , then vi and
the left-side of γ∗

j0+j1+1 ∪ · · · ∪ γ∗
j0+r−1 lie in different connected components of

R2 \ (a∗1,j0 ∪ γ∗ ∪ a).
If a intersects a∗1,j0+1, then all curves a∗i,j0+2, . . . , a

∗
i,j0+j1−1 must also cross

a∗1,j0+1. Indeed, they connect vi with the left-side of γ∗
j0+2 ∪ · · · ∪ γ∗

j0+j1−1, but
their interiors are disjoint from γ∗ and a∗i,j0+j1 . Likewise, if a intersects a∗1,j0 ,
then all curves a∗i,j0+j1+1, . . . , a

∗
i,j0+r−1 must also cross a∗1,j0 . Therefore, we have

the following.

Claim 2. For half of the vertices vi ∈ V ′, the curves emanating from vi satisfy
one of the following:

(i) a∗i,j0+2, a
∗
i,j0+3, . . . , a

∗
i,j0+r/2 all cross a∗1,j0+1,

(ii) a∗i,j0+r/2+1, a
∗
i,j0+r/2+2, . . . , a

∗
i,j0+r−1 all cross a∗1,j0 .

We keep all curves satisfying Claim 2, and discard all other curves. Since r/2−2 =
3 · 2k−1 − 4 and

|V ′|
2
≥ l− 1

2r
=

2k
2+2k − 1

6 · 2k − 8
≥ 2(k−1)2+2(k−1),

by Claim 2, we can apply the induction hypothesis on these remaining curves
which all cross a∗1,j0+1 or a∗1,j0 . Hence we have found k pairwise crossing edges,
and this completes the proof of Claim 1 and thus Lemma 10. ��

We are now ready to prove Theorem 1.

Proof (Theorem 1). By Lemma 9 we know that, say, S1 contains a 2l-regular sub-
sequence of length �|E′|/(8l)�. By Theorem 3 and Lemma 10, this subsequence
has length at most

n · 2l · 2(2lm−3) · (20l)10α(n)2lm .

Therefore, we have ⌈ |E′|
8l

⌉
≤ n · 2l · 2(2lm−3) · (20l)10α(n)2lm ,

which implies

|E′| ≤ 8n · 2l2 · 2(2lm−3) · (20l)10α(n)
2lm

.

Since l = 2k
2+2k and m depends only on k and t, for sufficiently large c (depend-

ing only on k and t) and α(n) ≥ 2, we have

|E(G)| < 2(k − 1)4|E′|+ 2n ≤ 2α(n)
c

n,

which completes the proof of Theorem 1. ��
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6 Proof of Theorem 2

A family of curves in the plane is simple if any two of them share at most one
point. A family C of curves is Kk-free if the intersection graph of C is Kk-free,
that is, no k curves in C pairwise intersect. By χ(C) we denote the chromatic
number of the intersection graph of C, that is, the minimum number of colors
that suffice to color the curves in C so that no two intersecting curves receive
the same color.

Let � be a horizontal line in the plane. Our proof of Theorem 2 is based on
the following result, proved in [10] in a more general setting, for simple Kk-free
families of compact arc-connected sets in the plane whose intersections with a
line � are non-empty segments.

Theorem 4 (Lasoń, Micek, Pawlik, Walczak [10]). Every simple Kk-free
family of curves C all intersecting � at exactly one point satisfies χ(C) ≤ ak,
where ak depends only on k.

Special cases of Theorem 4 have been proved by McGuinness [11] for k = 3 and
by Suk [18] for y-monotone curves and any k. We will also use the following
graph-theoretical result.

Lemma 11 (McGuinness [12]). Let G be a graph, ≺ be a total ordering of
V (G), and a, b ≥ 0. For u, v ∈ V (G), let G(u, v) denote the subgraph of G
induced by the vertices strictly between u and v in ≺. If χ(G) > 2a+b+1, then
there is an induced subgraph H of G such that χ(H) > 2a and χ(G(u, v)) ≥ 2b

for any uv ∈ E(H).

Let β be a segment in �. We will consider curves crossing β at exactly one
point, always assuming that this intersection point is distinct from the endpoints
of β. Any such curve γ is partitioned by β into two subcurves: γ+ that enters
β from above and γ− that enters β from below, both including the intersection
point of β and γ.

Lemma 12. Let C be a simple Kk-free family of curves all crossing β at exactly
one point. If γ+

1 ∩ γ+
2 = ∅ and γ−

1 ∩ γ−
2 = ∅ for any γ1, γ2 ∈ C, then χ(C) ≤

23k−6.

Proof. We proceed by induction on k. The base case k = 2 is trivial. For the
induction step, assume k ≥ 3 and the statement holds up to k−1. Assume for the
sake of contradiction that χ(C) > 23k−6. Let ≺ be the ordering of C according
to the left-to-right order of the intersection points with β. Apply Lemma 11 with
a = 0 and b = 3k− 7. It follows that there are two intersecting curves δ1, δ2 ∈ C
such that χ(C(δ1, δ2)) ≥ 23k−7, where C(δ1, δ2) = {γ ∈ C : δ1 ≺ γ ≺ δ2}. The
curves β, δ1 and δ2 together partition the plane into two regions R+ and R− so
that for γ ∈ C(δ1, δ2), γ

+ enters β from the side of R+, while γ− enters β from
the side of R−. Take any γ1, γ2 ∈ C(δ1, δ2) that intersect at a point p. It follows
from the assumptions of the lemma that p ∈ γ+

1 ∩ γ−
2 or p ∈ γ−

1 ∩ γ+
2 . If p ∈ R+,

then one of γ−
1 , γ−

2 (whichever contains p) must intersect δ1 or δ2. Similarly,
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if p ∈ R−, then one of γ+
1 , γ+

2 must intersect δ1 or δ2. In both cases, one of
γ1, γ2 intersects δ1 or δ2. Let C1 and C2 consist of those members of C(δ1, δ2)
that intersect δ1 and δ2, respectively. Clearly, both C1 and C2 are Kk−1-free,
and thus the induction hypothesis yields χ(C1) ≤ 23k−9 and χ(C2) ≤ 23k−9.
Moreover, χ

(
C(δ1, δ2)\ (C1 ∪C2)

)
≤ 1 as C(δ1, δ2)\ (C1∪C2) is independent by

the assumption γ+
1 ∩ γ+

2 = ∅ and γ−
1 ∩ γ−

2 = ∅ for any γ1, γ2 ∈ C. To conclude,
χ(C(δ1, δ2)) ≤ 2 · 23k−9 + 1 < 23k−7, which is a contradiction. ��

Now we prove the following theorem, which can also be generalized to simple
Kk-free families of compact arc-connected sets in the plane whose intersections
with a segment β are non-empty subsegments.

Theorem 5. Every simple Kk-free family of curves C all crossing β at exactly
one point satisfies χ(C) ≤ bk, where bk depends only on k.

Proof. Assume without loss of generality that no curve in C passes through the
endpoints of β. One can transform the family C+ = {γ+ : γ ∈ C} into a family
C̃+ = {γ̃+ : γ ∈ C} so that

• C̃+ is simple,
• each γ̃+ is entirely contained in the upper half-plane delimited by �,
• γ̃+

1 and γ̃+
2 intersect if and only if γ+

1 and γ+
2 intersect.

Similarly, one can transform the family C− = {γ− : γ ∈ C} into a family C̃− =
{γ̃− : γ ∈ C} so that

• C̃− is simple,
• each γ̃− is entirely contained in the lower half-plane delimited by �,
• γ̃−

1 and γ̃−
2 intersect if and only if γ−

1 and γ−
2 intersect.

The curves γ̃+ and γ̃− are respectively the upper and lower parts of the curve
γ̃ = γ̃+ ∪ γ̃− intersecting � at exactly one point. The family C̃ = {γ̃ : γ ∈ C} is
clearly simple and Kk-free. Therefore, by Theorem 4, χ(C̃) ≤ ak. Fix a proper
ak-coloring φ of C̃ and consider the set Ci consisting of those γ ∈ C for which
φ(γ̃) = i. It follows that γ+

1 ∩ γ+
2 = ∅ and γ−

1 ∩ γ−
2 = ∅ for any γ1, γ2 ∈ Ci.

Therefore, by Lemma 12, χ(Ci) ≤ 23k−6. Summing up over all colors used by φ
we obtain χ(C) ≤ 23k−6ak. ��

Proof (Theorem 2). By Lemma 2, it is enough to prove that every k-quasi-planar
simple topological graph on n vertices that contains an edge intersecting every
other edge has at most ckn edges, where ck depends only on k.

Let G be a k-quasi-planar simple topological graph on n vertices, and let pq be
an edge that intersects every other edge. Remove all edges with an endpoint at p
or q except the edge pq. Shorten each curve representing a remaining edge by a
tiny bit at both endpoints, so that curves sharing an endpoint become disjoint,
while all crossings are preserved. The resulting set of curves C is simple and Kk-
free and contains a curve γ crossing every other curve in C. Therefore, C \ {γ}
is Kk−1-free and |C \ {γ}| > |E(G)| − 2n. Since C can be transformed into an
equivalent set of curves so that γ becomes the horizontal segment β, Theorem 5
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yields χ(C \ {γ}) ≤ bk−1. Consequently, C \ {γ} contains an independent set S
of size

|S| ≥ |C \ {γ}|
bk−1

>
|E(G)| − 2n

bk−1
.

The edges of G corresponding to the curves in S form a planar subgraph of G,
which implies |S| < 3n. The two inequalities give |E(G)| < (3bk−1 + 2)n. ��
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Abstract. A graph is outer 1-planar (o1p) if it can be drawn in the
plane such that all vertices are on the outer face and each edge is crossed
at most once. o1p graphs generalize outerplanar graphs, which can be
recognized in linear time and specialize 1-planar graphs, whose recogni-
tion is NP-hard.

Our main result is a linear-time algorithm that first tests whether a
graph G is o1p, and then computes an embedding. Moreover, the algo-
rithm can augment G to a maximal o1p graph. If G is not o1p, then
it includes one of six minors (see Fig. 3), which are also detected by
the recognition algorithm. Hence, the algorithm returns a positive or
negative witness for o1p.

1 Introduction

Planar graphs are one of the most studied areas in graph theory and an important
class in graph drawing. Outerplanar graphs are in turn an important subfamily
of planar graphs. Here, all vertices are on the outer face and edges do not cross.
Every outerplanar graph has at least two vertices of degree two, which is used
for a recognition in linear time [16].

There were several attempts to generalize planarity to graphs that are “al-
most” planar in some sense. Such attempts are important as many graphs are
not planar. One generalization is 1-planar graphs, which were introduced by
Ringel [17] in an approach to color a planar graph and its dual. A graph is 1-
planar if it can be drawn in the plane such that each edge is crossed at most
once and incident edges do not cross. 1-planar graphs are a hot topic in graph
drawing, see also [1, 4–6, 8, 9, 13, 15].

The combination of 1-planarity and outerplanarity leads to o1p graphs, which
are graphs with an embedding in the plane with all vertices on the outer face and
at most one crossing per edge. They were introduced by Eggleton [10] who called
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�� A linear-time algorithm for testing outer 1-planarity was independently obtained by
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them outerplanar graphs with edge crossing number one. He showed that edges
of maximal o1p graphs do not cross in the outer face and each face is incident to
at most one crossing, from which he concluded that every o1p graph has an o1p
drawing with straight-line edges and convex (inner) faces. Thomassen [18] gener-
alized Eggleton’s result and characterized the class of 1-planar graphs which ad-
mit straight-line drawings by the exclusion of so-called B- and W-configurations
in embeddings. These configurations were rediscovered by Hong et al. [13], who
also provide a linear-time drawing algorithm that starts from a given embedding.

From the algorithmic perspective there is a big step from zero to some cross-
ings. It is well-known that planar graphs can be recognized in linear time, and
there are linear-time algorithms to construct an embedding and drawings, e. g.,
straight-line drawings and visibility representations in quadratic area. On the
contrary, dealing with crossings generally leads to NP-hard problems. It is NP-
hard to recognize 1-planar graphs [15], even if the graph is given with a rotation
system, which determines the cyclic ordering of the edges at each vertex [2].
1-planarity remains NP-hard even if the treewidth is bounded [3]. There also
is no efficient algorithm to compute the crossing number of a graph [12] and
to compute the number of crossings induced by the insertion of an edge into a
planar graph [5]. However, there is a linear-time recognition algorithm of Eades
et al. [8] for maximal 1-planar graphs, which needs a given rotation system.

In this paper we study o1p graphs. Our main result is a linear-time recognition
algorithm for o1p graphs. This is the first efficient algorithm for a test of 1-
planarity that takes solely a graph as input. Our recognition algorithm is based
on SPQR-trees. It analyzes its nodes and then either computes an o1p embedding
or detects one of six minors. If the graph is o1p, it can be augmented to a
maximal o1p graph. In a maximal o1p graph, adding a new edge violates its
defining property. From the structure of a maximal o1p graph we derive that
every o1p graph is planar. Thus, they are subgraphs of planar graphs with a
Hamiltonian cycle, and the SPQR-tree reveals a treewidth of at most three.

2 Preliminaries

We consider simple, undirected graphs G = (V,E) with n vertices and m edges.
The graphs are biconnected, otherwise, the components are treated separately.
A drawing of a graph is a mapping of G into the plane such that the vertices are
mapped to distinct points and each edge is a Jordan arc between its endpoints.
A drawing is planar if the Jordan arcs of the edges do not cross and it is 1-
planar if each edge is crossed at most once. Accordingly, a graph is planar
(1-planar) if it has a planar (1-planar) drawing. Crossings of edges with the
same endpoint, i. e., incident edges, are excluded. A planar drawing of a graph
partitions the plane into faces. A face is specified by a cyclic sequence of edges
that forms its boundary. The set of all faces forms the embedding of the graph.
In 1-planar drawings, every crossing divides an edge into two edge segments. An
uncrossed edge consists of one segment. Therefore, a face of a 1-planar embedding
is specified by a cyclic list of edge segments.
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A graph G is outerplanar if it has a planar drawing with all vertices on one
distinguished face. This face is referred to as the outer face and corresponds to
the unbounded, external face in a drawing on the plane. G is maximal outerpla-
nar if no further edge can be added without violating outerplanarity. Then, the
edges on the outer face form a Hamiltonian cycle. A graph G is outer 1-planar,
o1p for short, if it has a drawing with all vertices on the outer face and such
that each edge is crossed at most once. G is maximal o1p if the addition of any
edge violates outer 1-planarity.

In an o1p embedding, an edge is either crossing or plane (non-crossing). We
say that it is inner, if none of its segments is part of the boundary of the outer
face. Analogously, an edge is outer, if it is entirely part of this boundary. Observe
that a crossed edge cannot be outer. If the embedding is maximal, we can classify
every edge as outer or inner.

Maximal outerplanar graphs have a unique embedding. This does no longer
hold for maximal o1p graphs. Consider a graph with 6 vertices and 11 edges
consisting of two K4s. If the left K4 is fixed, the right can be flipped. In order to
gain more insight into the structure of an o1p graph G, we consider its SPQR-
tree T . SPQR-trees were first introduced by Di Battista and Tamassia [7] and
provide a description of how the graph is composed. Fig. 2(a) depicts an example
graph along with its SPQR-tree in Fig. 2(b). In the definition we adopt here,
the SPQR-tree is unrooted. The nodes of T either represent a series composition
(S), a parallel composition (P), a single edge (Q), or a triconnected component
(R). Associated with each node μ of T is a graph that is homeomorphic to a
subgraph of G and called the skeleton skel(μ) of μ. In its original definition,
every edge e = {u, v} of a skeleton, except for one of each Q-node, is a virtual
edge, i. e., an edge that represents the subgraph of G which connects u and v.
This subgraph is also referred to as the expansion graph expg(e) of e. For every
virtual edge e in the skeleton of a node μ, there is another node ν that refines
the structure of expg(e). We say that ν is the refining node refn(e) of e. This
link is represented by an edge between μ and ν in T and we say that μ and ν
are adjacent in T . Therefore, every leaf of T is a Q-node. For simplification, we
represent edges of the graph directly in the skeleton of an S-, P-, or R-node, so
that we can neglect Q-nodes. We also call these edges non-virtual. Observe that
all nodes are always as large as possible, so neither two S-nodes nor two P-nodes
may be adjacent. For a more detailed introduction to SPQR-trees, the reader is
referred to [7].

3 Recognition

There are linear-time algorithms for the recognition of (maximal) outerplanar
graphs, that use the fact that there are at least two vertices of degree two. A
single K4 implies that this property no longer holds for o1p graphs. In contrast,
the recognition of 1-planar graphs is NP-hard [15], even if the graphs are given
with a rotation system [2].
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Algorithm 1. o1p Recognition

1: procedure TestOuter1Planarity(G)
2: if G is not planar then return ⊥
3: T ← SPQR-tree of G
4: for all R- and P-nodes μ ∈ T do
5: if μ is R-node then
6: if skel(μ) �= K4 or contains vertex incident to > 2 virtual edges then
7: return ⊥ � Lemma 1, Corollary 1

8: for all neighbors ν of μ do
9: if ν is S-node or R-node then insert plane edge � Proposition 1

10: else if μ is P-node then
11: if skel(μ) contains > 4 virtual edges then return ⊥ � Corollary 1
12: else if μ has only virtual edges then insert plane edge � Lemma 4

13: compute mapping C
14: PF ← {fixable P-nodes} ; PN ← {P-nodes with crossings, but none fixable}
15: while PF ∪ PN �= ∅ do
16: while PF �= ∅ do
17: remove next P-node π from PF with fixable S-nodes σ1, σ2

18: z ←FixCrossingAtPNode(G, T , π, σ1, σ2)
19: if z = ⊥ then return ⊥
20: for all π′ ∈ z do update C
21: if π′ is fixable then move π′ from PN to PF

22: if PN �= ∅ then � Lemma 5
23: choose any element π of PN with S-nodes σ1, σ2 conformant to C
24: z ← FixCrossingAtPNode(G, T , π, σ1, σ2)
25: for all π′ ∈ z do update C
26: if π′ is fixable then move π′ from PN to PF

27: for all S-/P-/R-nodes μ ∈ T do fix embedding

28: return 2-clique-sum of skeleton embeddings

Theorem 1. There is a linear-time algorithm to test whether a biconnected
graph G is o1p and, if so, returns an embedding.

We prove this theorem by first establishing a number of necessary conditions for
a graph to have an o1p embedding. At the same time, we implement a linear-time
algorithm (Algorithm 1) that checks these conditions and, if positive, constructs
an o1p embedding of the input graph. The algorithm starts by ensuring that the
input graph is planar (cf. Corollary 4) and computes its SPQR-tree. Both subrou-
tines take O(n) time [11]. Observe that, although the graph will be augmented
during the next steps, it remains o1p and therefore also planar. Consequently,
the number of nodes in T always is in O(n). In a second step, we show that the
conditions are not only necessary, but also sufficient.

We start with two observations regarding o1p embeddings. For maximal 1-
planar embeddings, a well-known fact is that every crossing induces a K4. This
holds in an even tightened form for o1p embeddings:
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Fig. 1. (a): Proposition 2, (b) and (c): Proposition 3

Proposition 1 ([6]). Let {a, b} and {c, d} be a pair of crossing edges in an o1p
embedding of a maximal o1p graph. Then the vertices a, b, c, and d form a K4

and the edges {a, b}, {b, c}, {c, d}, and {d, a} are plane.

Consider a plane, inner edge {u, v} in an o1p embedding of a graph G. Then,
{u, v} “partitions” the embedding and the deletion of u and v disconnects G (cf.
Fig. 1(a)).

Proposition 2. Every plane, inner edge in an o1p embedding connects a sepa-
ration pair.

Let T be the SPQR-tree of an o1p graph G.

Lemma 1. The skeleton of every R-node is a K4.

Proof. Recall that outerplanar graphs are series-parallel. Hence, the SPQR-tree
of an outerplanar graph has no R-nodes. Let μ be an R-node in T . Then, skel(μ)
must be embedded such that at least two edges cross, e. g., edges {a, b} and
{c, d}. By Proposition 1, the vertices a, b, c, and d form a K4.
There must be an embedding of skel(μ) such that all vertices are on the boundary
of the same face. Suppose skel(μ) has more than four vertices. Then, at least one
of {a, b}, {b, c}, {c, d}, and {d, a} is an inner edge. By Proposition 1, all of them
are plane. As an inner edge cannot be virtual, by Proposition 2, skel(μ) has a
separation pair, so skel(μ) is not triconnected, a contradiction. ��

Instead of considering the possible embeddings of G on the whole, we study those
of the skeletons of the nodes in T . As G is o1p, there must be an embedding of
every skeleton of T such that the 2-clique-sums over all skeletons result in an o1p
embedding of G. In short, a 2-clique-sum combines two graphs by selecting an
edge (2-clique) in each one and glueing them together at those edges. The selected
edges are removed from the new graph. If the input graphs were embedded, the
embedding is inherited for the 2-clique-sum such that in each case the other
graph takes the position of the removed edge.

Consequently, we need to derive properties of o1p embeddings of skeletons.
Like in usual o1p embeddings, there must be a face (the outer face) such that all
vertices lie on its boundary. However, as virtual edges represent entire subgraphs,
they demand special attention. Observe that the expansion graph of every virtual
edge contains, besides the separation pair, at least one more vertex. Consider
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Fig. 2. Input graph (a), its SPQR-tree (b), the SPQR-tree after the algorithm (c) (new
edges and nodes colored), and the found o1p embedding (d).

the virtual edge {u, v} in Fig. 1(b). The crossing edge {x, y} partitions {u, v}
into two segments, hence, expg({u, v}) must be embedded such that it replaces
the edge segment of {u, v} that lies on the outer face. Suppose a virtual edge
e is embedded such that it has at least two crossings. Then there is either an
edge in expg(e) that is crossed more than once or at least one vertex is enclosed
between two crossings and hence does not lie on the outer face (cf. Fig. 1(c)).

Proposition 3. Every virtual edge may consist of at most two edge segments
and the embedding must be such that at least one segment is part of the boundary
of the outer face.

Observe that in contrast to the o1p embedding of the whole graph, we must allow
the crossing of two virtual edges with a common end vertex in the embedding of
a skeleton. We qualify the virtual edges that must always be embedded plane.

Lemma 2. Let μ be a node of T and let e = {u, v} be a virtual edge in skel(μ).
If both u and v have degree > 1 in expg(e), then e must be embedded plane.

Proof. Suppose e is embedded such that it crosses another edge e′, which can
be virtual or not. In either case, e′ may be crossed at most once. As skel(μ)
is biconnected and expg(e) contains at least one additional vertex, in expg(e),
either all edges incident to u or all edges incident to v must be crossed in order
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to have all vertices lie on the outer face. If both u and v have degree > 1 in
expg(e), e′ has at least two crossings. ��
Note that unlike planar embeddings, neither the skeleton of an S-node nor that
of an R-node has a unique o1p embedding. However, Lemma 2 limits the number
of possible o1p embeddings for skeletons considerably:

Lemma 3. Let μ be a node in T . Then for every virtual edge e = {u, v} in
skel(μ) holds:
If refn(e) is a P- or an R-node, then e must be embedded plane in skel(μ).
If refn(e) is an S-node whose skeleton is the cycle graph (u, c1, c2, . . . , ck, v, u),
then e must be embedded such that the segment incident to u (v) lies on the outer
face if the edge {u, c1} ({ck, v}) is virtual.

Proof. If refn(e) is a P- or an R-node, both u and v have degree > 1 in expg(e),
hence by Lemma 2, e must be embedded plane. Suppose refn(e) is an S-node
whose skeleton is the cycle graph (u, c1, c2, . . . , ck, v, u). As the embedding must
be such that all vertices lie on the outer face, only the edges {u, c1} or {ck, v}
may be crossed. Recall that by the structure of an SPQR-tree, if {u, c1} ({ck, v})
is virtual, then refn({u, c1}) (refn({ck, v})) is either a P- or an R-node, so {u, c1}
({ck, v}) must be embedded plane. ��
Lemma 1, Proposition 3, and Lemma 3 allow us to draw the following conclusion:

Corollary 1. Every virtual edge in an S-node must be embedded plane.
The skeleton of every R-node contains at most four virtual edges, which must be
embedded plane, and no vertex may be incident to more than two virtual edges.
The skeleton of a P-node may have at most 4 virtual edges.

The conditions for R-nodes are easily checked by Algorithm 1 in time O(1)
per R-node. Additionally, if an R-node is adjacent to another R-node or an S-
node, then one of the edges of the K4 is not present. For an example, see the
R-nodes ρ1 and ρ2 in Fig. 2(b). By Proposition 1, however, the edge may be
inserted and is always plane. Observe that this introduces a new P-node π5 in
Fig. 2(c). As an R-node may have at most four neighbors and as the SPQR-tree
can be updated in O(1) time, this modification takes constant time, too.

The following lemma allows us to insert a non-virtual edge in every P-node,
if none is present. In Fig. 2(b), this would apply, e. g., to π1.

Lemma 4. Let u, v be the vertices in the skeleton of a P-node without non-
virtual edges. Then, the insertion of {u, v} does not violate outer 1-planarity
and {u, v} is plane for every o1p embedding of G.

Proof. Let π be a P-node with separation pair u, v, that is connected by virtual
edges only. According to the definition of SPQR-trees, every skeleton of a P-
node has at least three edges. Hence, π is adjacent to at least three other nodes.
Subsequently, at least two virtual edges must be refined by S-nodes and are
embedded with a crossing. This results in a crossing of two non-virtual edges in
G that are, by Lemma 3, incident to u and v, respectively. By Proposition 1, the
edge {u, v} can always be inserted and is plane. ��
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Again, Algorithm 1 can check these two conditions and augment the graph for
a P-node in time O(1), which results in a running time of O(n) for ll. 4 – 12.

Consider a P-node π with vertices u, v. If skel(π) has at most two virtual edges,
they can be embedded without a crossing and such that both completely lie on
the outer face. Suppose skel(π) has at least three virtual edges. In consequence
of Proposition 3, two of them must cross each other. In Fig. 2(b), this holds for
π1 and π2. We say that a P-node π claims a non-virtual edge e, and express this
by defining the mapping C(e) = π, if e is crossed in every embedding of skel(π)
that conforms with Lemma 3. Observe that C is uniquely defined, since G is o1p
and thus, no edge may be crossed more than once. We say that an embedding
of the skeleton of a P-node is admissible if it conforms with Lemma 3 and
does not imply the crossing of non-virtual edges claimed by other P-nodes. In
Fig. 2(b), e. g., π1 has two admissible embeddings, but both imply crossing the
edge {f,m}, either by {d, i} or by {h, i}. Hence, π1 claims {f,m}. Computing C
involves checking the embeddings of all P-nodes. As every P-node has at most
four virtual edges, there are at most

(
4
2

)
· 2 = 12 embeddings. Hence, the total

time needed for this step is in O(n).
If every admissible embedding of skel(π) yields the same set of edges that are

crossed, then π is called fixable. Let e, e′ be two virtual edges that are embedded
crossing each other. Observe that in this case, two S-nodes, namely refn(e) and
refn(e′), are “crossing”. By Proposition 1, the crossing can be augmented to a
K4. The insertion of these additional edges transforms the crossing S-nodes into
an R-node that represents the K4. In Fig. 2(b), this happens to π1, σ1, and
σ2. If the skeleton of an S-node previously had exactly three vertices, it is now
completely contained in the K4. Otherwise, its number of vertices is reduced by
exactly 1, i. e., the vertex u or v, respectively. Note that completing the K4 may
affect the number of admissible embeddings and hence the fixability of other
P-nodes if there was an admissible embedding of their skeletons that implied
crossing one of e or e′. Algorithm 2 checks whether the virtual edges may cross
each other and fixes the embedding of π. The next lemma enables us to also
proceed when there is no fixable P-node.

Lemma 5. Let π be a non-fixable P-node. If T has no fixable P-nodes, then ev-
ery admissible embedding of skel(π) maintains at least one admissible embedding
for every other P-node.

Proof. Consider the fixing procedure of an embedding for a P-node π and S-
nodes σ′ and σ′′. Let e′ and e′′ be the non-virtual edges that are crossed thereby.
This affects the number of admissible embeddings for the skeletons of at most two
other P-nodes π′ and π′′, that are adjacent to σ′ and σ′′, respectively. Observe
that π′ �= π′′, as T is a tree, and that every non-virtual edge is represented in
the skeleton of exactly one node of T .

Consider π′. W. l. o. g., let e′ be the non-virtual edge in skel(σ′) that is crossed
after the fixing. Then, the number of admissible embeddings of skel(π′) is reduced
by exactly those that implied crossing e′, too. However, π′ did not claim e′, so
there is at least one other admissible embedding of skel(π′). The same argument
holds for π′′ and e′′. ��
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Algorithm 2. Fix Embedding of P-node with two crossing S-nodes

1: procedure FixCrossingAtPNode(G, T , P-Node π, S-Node σ1, S-Node σ2)
2: Let u, v be the separation pair of π,
3: Let (u, c1, . . . , ck, v, u) be the cycle in skel(σ1).
4: Let (u, d1, . . . , dl, v, u) be the cycle in skel(σ2).
5: if {ck, v} virtual or {u, d1} virtual then
6: if {u, c1} virtual or {dl, v} virtual then return ⊥
7: else swap roles of σ1, σ2

8: Pd ← ∅ � possibly affected P-nodes
9: if k > 1 then insert edge {u, ck} in G, update T
10: if {ck−1, ck} virtual then add its associated P-node to Pd

11: else if {u, ck} virtual then add its associated P-node to Pd

12: if l > 1 then insert edge {v, d1} in G, update T
13: if {d1, d2} virtual then add its associated P-node to Pd

14: else if {v, d1} virtual then add its associated P-node to Pd

15: insert edge {ck, d1}, update T
16: if π has two (other) virtual edges then add π to Pd

17: return Pd

Hence, by applying Lemma 5, we can step by step fix all embeddings of the
skeletons of P-nodes with at least three virtual edges. Afterwards, every P-node
has exactly two virtual edges and one non-virtual (cf. Fig. 2(c)). In Algorithm 1,
this corresponds to ll. 15 – 26. FixCrossingAtPNode takes O(1) time per call
and there are embeddings of at most O(n) P-nodes to fix. Hence, the time for
this part is O(n). The algorithm concludes by selecting an admissible embedding
for all P- and R-nodes. All remaining S-nodes are embedded as plane cycles. The
embedding for G is obtained via the 2-clique-sums of all skeleton embeddings
(cf. Fig. 2(d)). Consequently, Algorithm 1 has a running time of O(n).

It remains to show that all conditions presented so far are also sufficient for
a graph to be o1p. Every skeleton is, taken by itself, embedded o1p. Consider
the 2-clique-sum of two skeleton embeddings. This operation glues both graphs
together at two virtual edges. After the augmentation of Algorithm 1, every
virtual edge is embedded such that it lies on the outer face. Hence, in the resulting
embedding, every vertex still lies on the outer face and every edge is crossed at
most once. With this, the outer 1-planarity of the whole embedding follows by
structural induction.

Lemma 6. A graph G is o1p if and only if it is a subgraph of a graph H with
SPQR-tree T such that R-nodes and S-nodes are adjacent to P-nodes only, every
skeleton of an R-node is a K4, and every skeleton of a P-node has exactly one
non-virtual and two virtual edges.

This concludes the proof of Theorem 1. Additionally, if a graph is o1p, Algo-
rithm 1 also provides an o1p embedding. With some extra effort, we can augment
G to maximality. Consider the supergraphH constructed from G by Algorithm 1
and its SPQR-tree. It may have S-nodes with four or more vertices. As all re-
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maining S-nodes are embedded plane, we can insert a plane edge between two
non-adjacent vertices, which splits the S-node into two smaller S-nodes with an
intermediate P-node. This procedure can be repeated until all S-nodes are tri-
angles. Next, consider a P-node that is adjacent to exactly two S-nodes, e. g.,
π4 in Fig. 2(c). Then, we can insert a crossing edge ({g, i} in the example) that
augments the subgraph to a K4. As a result, the nodes π4, σ6, and σ7 are re-
placed by a new R-node. We denote by H+ this supergraph of H . Its SPQR-tree
consists of R-nodes, of which each corresponds to a K4 and S-nodes, of which
each corresponds to a triangle. R- and S-nodes are only connected via P-nodes,
which in turn have exactly two virtual edges and one non-virtual. Consider an
embedding of H+. It has a tree-like structure that consists of K4s and triangles
(K3s) that share an edge if and only if their corresponding R- and S-nodes are
connected via a P-node. As no P-node is adjacent to two S-nodes, triangles can
only share an edge with K4s. Suppose H+ was not maximal. If we were able to
insert an inner, plane edge, this would correspond to inserting a P-node into the
SPQR-tree ofH+. However, no two P-nodes may be adjacent. Inserting an inner,
crossed edge is equal to augmenting two triangles to a K4, which is impossible,
too, as no P-node is adjacent to two S-nodes. Finally, consider adding an edge
to the outer face. As every crossing has been augmented to a K4, the boundary
of the outer face consists of a plane Hamiltonian cycle. Hence, every additional
edge would shield at least one vertex from the outer face. Consequently, we can
easily extend Algorithm 1 such that it maximizes the input graph. Additionally,
we receive another characterization:

Lemma 7. A graph G is maximal o1p if and only if the conditions for H in
Lemma 6 hold and in its SPQR-tree, no P-node is adjacent to more than one
S-node and the skeleton of every S-node is a cycle of length three.

The argument above also implies that every embedded maximal o1p graph is
maximal for all o1p embeddings.

Corollary 2. A graph G is maximal o1p if it has a maximal o1p embedding.

Note that the embedding of a maximal o1p graph is fixed if and only if that of
the skeleton of every R-node is. This, in turn, is the case iff it contains at least
two incident virtual edges.

Corollary 3. The embedding of a maximal o1p graph is unique up to inversion
if and only if the skeleton of every R-node of its SPQR-tree contains a vertex
that is incident to exactly two virtual edges.

Another consequence of Lemma 7 is, that every maximal o1p graph is composed
of triangles and K4s. Changing the embedding of the K4s, we obtain:

Corollary 4. Every o1p graph is planar and has treewidth at most three.

Observe that if the step that augments a P-node with two adjacent triangle
S-nodes to a K4 is omitted, we obtain a plane-maximal o1p graph, i. e., every
additional edge either violates outer 1-planarity or introduces a new crossing.
Equivalently, we can also adjust Algorithm 1 to test (plane) o1p maximality.
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W5 K+
4 K2,5 P1 P2 P3

Fig. 3. Set M of minors of non-o1p graphs

Corollary 5. There is a linear-time algorithm to test whether a graph is max-
imal (plane-maximal) o1p or to augment an o1p graph to a maximal (plane-
maximal) o1p graph.

From the recognition algorithm, we can immediately derive minors of non-o1p
graphs: If the algorithm returns ⊥, the graph at hand contains at least one of
the o1p minors M as depicted in Fig. 3.

Theorem 2. If a graph is not o1p, it contains at least one graph in M as a
minor. Further, M is minimal and every graph in M is not o1p while removing
or contracting an edge makes it o1p.

Note that a graph might still be o1p even if it contains a graph in M as a minor,
as outer 1-planar graphs are not closed under taking minors. The first minor W5

is the wheel with five vertices, which is the smallest triconnected graph that is
not o1p (Lemma 1). W5 occurs in ll. 2 and 6 of Algorithm 1. If ⊥ is returned in
l. 2, then the graph contains a K5 or K3,3 as minor and W5 is a minor of both.
In l. 6, the first of the two checks implies W5: If the R-node contains more than
four vertices, ⊥ is returned and the whole graph contains a planar triconnected
component with at least four vertices, which always contains a W5 as a minor.
If the second condition in l. 6 is true, then the R-node at hand is a K4 that
contains a vertex v incident to three virtual edges. As the expansion graph of a
virtual edge has a path with two edges as minor, we obtain K+

4 in Fig. 3, where
vertex v is in the center. If a P-node has at least five virtual edges (l. 11), then
the K2,5 is the minor. The remaining minors P1, P2, and P3 can occur when
fixing the embedding of a P-node with two crossing S-nodes. Consider l. 6 in
Algorithm 2. If {u, d1} and {u, c1} are virtual, then u is incident to virtual edges
in both S-nodes σ1 and σ2. If u is incident to at least one other virtual edge in
π in whose expansion graph, u has at least degree two, then π has no admissible
embedding and we obtain P3 as minor. By a complete case differentiation, P1

and P2 can also be identified as minors.

4 Conclusion

We have designed a linear-time recognition algorithm for o1p that uses the
SPQR-tree and returns a witness in terms of an o1p embedding or detects one
of six minors, respectively.

Are there other classes of 1-planar graphs which can be recognized efficiently?
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Abstract. A straight line triangle representation (SLTR) of a planar
graph is a straight line drawing such that all the faces including the
outer face have triangular shape. Such a drawing can be viewed as a
tiling of a triangle using triangles with the input graph as skeletal struc-
ture. In this paper we present a characterization of graphs that have an
SLTR that is based on flat angle assignments, i.e., selections of angles
of the graph that have size π in the representation. We also provide a
second characterization in terms of contact systems of pseudosegments.
With the aid of discrete harmonic functions we show that contact sys-
tems of pseudosegments that respect certain conditions are stretchable.
The stretching procedure is then used to get straight line triangle repre-
sentations. Since the discrete harmonic function approach is quite flexible
it allows further applications, we mention some of them.

The drawback of the characterization of SLTRs is that we are not able
to effectively check whether a given graph admits a flat angle assignment
that fulfills the conditions. Hence it is still open to decide whether the
recognition of graphs that admit straight line triangle representation is
polynomially tractable.

1 Introduction

In this paper we study a representation of planar graphs in the classical setting,
i.e., vertices are represented by points in the Euclidean plane and edges by non-
crossing continuous curves connecting the points. We aim at classifying the class
of planar graphs that admit a straight line representation in which all faces are
triangles. Haas et al. present a necessary and sufficient condition for a graph to
be a pseudo-triangulation [8], however this condition is not sufficient for a graph
to have a straight line triangle representation (e.g. see Fig. 2 and [1]). There
have been investigations of the problem in the dual setting, i.e., in the setting
of side contact representations of planar graphs with triangles. Gansner, Hu and
Kobourov show that outerplanar graphs, grid graphs and hexagonal grid graphs
are Touching Triangle Graphs (TTGs). They give a linear time algorithm to
find the TTG [7]. Alam, Fowler and Kobourov [2] consider proper TTGs, i.e.,
the union of all triangles of the TTG is a triangle and there are no holes. They
give a necessary and a stronger sufficient condition for biconnected outerplanar
graphs to be TTG, a characterization, however, is missing. Kobourov, Mondal
and Nishat present construction algorithms for proper TTGs of 3-connected

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 119–130, 2013.
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cubic graphs and some grid graphs. They also present a decision algorithm for
testing whether a 3-connected planar graph is proper TTG [10].

Here is the formal introduction of the main character for this paper.

Definition 1. A plane drawing of a graph such that
- all the edges are straight line segments and
- all the faces, including the outer face, bound a non-degenerate triangle
is called a Straight Line Triangle Representation (SLTR).

Fig. 1. A graph and one of its SLTRs Fig. 2. A Flat Angle Assignment (given by
the arrows) that is not an SLTR

Clearly every straight line drawing of a triangulation is an SLTR. So the class
of planar graphs admitting an SLTR is rich. On the other hand, graphs admitting
an SLTR cannot have a cut vertex. Indeed, as shown below (Prop. 1), graphs
admitting an SLTR are well connected. Being well connected, however, is not
sufficient as shown e.g. by the cube graph.

To simplify the discussion we assume that the input graph is given with a plane
embedding and a selection of three vertices of the outer face that are designated
as corner vertices for the outer face. These three vertices are called suspension
vertices. If needed, an algorithm may try all triples of vertices as suspensions.

If a degree two vertex has an angle of size π in one of its incident faces, then
it also has an angle of size π in the face on the other side. Hence, this vertex
and its two incident edges can be replaced by a single edge connecting the two
neighbors of the vertex. Such an operation is called a vertex reduction. The only
angles of an SLTR whose size exceeds π are the outer angles at the outer triangle.
Therefore, we can use vertex reductions to eliminate all the degree two vertices,
except for degree two vertices that are suspensions.

A plane graphG with suspensions s1, s2, s3 is said to be internally 3-connected
when the addition of a new vertex v∞ in the outer face, that is made adjacent
to the three suspension vertices, yields a 3-connected graph.

Proposition 1. If a graph G admits an SLTR with s1, s2, s3 as corners of
the outer triangle and no vertex reduction is possible, then G is internally 3-
connected.

Proof. Consider an SLTR of G. Suppose there is a separating set U of size 2. It
is enough to show that each component of G \ U contains a suspension vertex,
so that G + v∞ is not disconnected by U . Since G admits no vertex reduction
every degree two vertex is a suspension. Hence, if C is a component and C ∪ U
induces a path, then there is a suspension in C. Otherwise consider the convex



Straight Line Triangle Representations 121

hull of C ∪ U in the SLTR. The convex corners of this hull are vertices that
expose an angle of size at least π. Two of these large angles may be at vertices
of U but there is at least one additional large angle. This large angle must be the
outer angle at a vertex that is an outer corner of the SLTR, i.e., a suspension.

From Prop. 1 it follows that any graph that is not internally 3-connected
but does admit an SLTR, is a subdivision of an internally 3-connected graph.
Therefore we may assume that the graphs we consider are internally 3-connected.

In Section 2 we present necessary conditions for the existence of an SLTR
in terms of what we call a flat angle assignment. A flat angle assignment that
fulfills the conditions is shown to induce a partition of the set of edges into a set
of pseudosegments. Finally, with the aid of discrete harmonic functions we show
that in our case the set of pseudosegments is stretchable. Hence, the necessary
conditions are also sufficient. The drawback of the characterization is that we
are not aware of an effective way of checking whether a given graph admits a
flat angle assignment that fulfills the conditions.

In Section 3 we consider further applications of the stretching approach. First
we look at flat angle assignments that yield faces with more than three corners.
Then we proceed to prove a more general result about stretchable systems of
pseudosegments with our technique. The result is not new, de Fraysseix and
Ossona de Mendez have investigated stretchability conditions for systems of
pseudosegments in [3,4,5]. The counterpart to Theorem 2 can be found in [5,
Theorem 38]. The proof there is based on a long and complicated inductive
construction.

2 Necessary and Sufficient Conditions

Consider a plane, internally 3-connected graph G = (V,E) with suspensions
given. Suppose that G admits an SLTR. This representation induces a set of flat
angles, i.e., incident pairs (v, f) such that vertex v has an angle of size π in the
face f .

Since G is internally 3-connected every vertex has at most one flat angle.
Therefore, the flat angles can be viewed as a partial mapping of vertices to
faces. Since the outer angle of suspension vertices exceeds π, suspensions have
no flat angle. Since each face f (including the outer face) is a triangle, each face
has precisely three angles that are not flat. In other words every face f has |f |−3
incident vertices that are assigned to f . This motivates the definition:

Definition 2. A flat angle assignment (FAA) is a mapping from a subset U of
the non-suspension vertices to faces such that
[Cv] Every vertex of U is assigned to at most one face,
[Cf ] For every face f , precisely |f | − 3 vertices are assigned to f .

Not every FAA induces an SLTR. An example is given in Fig. 2. Hence, we
have to identify another condition. To state this we need a definition. Let H
be a connected subgraph of the plane graph G. The outline cycle γ(H) of H is
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the closed walk corresponding to the outer face of H . An outline cycle of G is
a closed walk that can be obtained as outer cycle of some connected subgraph
of G. Outline cycles may have repeated edges and vertices, see Fig. 3. The
interior int(γ) of an outline cycle γ = γ(H) consists of H together with all
vertices, edges and faces of G that are contained in the area enclosed by γ.

Fig. 3. Examples of outline cycles Fig. 4. Combinatorially Convex Corners

Proposition 2. An SLTR obeys the following condition Co:
[Co] Every outline cycle that is not the outline cycle of a path, has at least three

geometrically convex corners.

Proofs of Propositions 2 and 3 have been moved to the appendix.

Condition Co has the disadvantage that it depends on a given SLTR, hence, it
is useless for deciding whether a planar graph G admits an SLTR. The following
definition allows to replace Co by a combinatorial condition on an FAA.

Definition 3. Given an FAA ψ. A vertex v of an outline cycle γ is a combina-
torial convex corner for γ with respect to ψ if

- v is a suspension vertex, or
- v is not assigned and there is an edge e incident to v with e �∈ int(γ), or
- v is assigned to a face f , f �∈ int(γ) and there exists an edge e incident to

v with e �∈ int(γ).

In Fig. 4 an unassigned and an assigned combinatorially convex corner are
shown. The grey area represents the interior of some outline cycle and the arrow
represents the assignment of the vertex to the face in which the arrow is drawn.

Proposition 3. Let G admit an SLTR Γ , that induces the FAA ψ and let H be
a connected subgraph of G. If v is a geometrically convex corner of the outline
cycle γ(H) in Γ , then v is a combinatorially convex corner of γ(H) with respect
to ψ.

The proposition enables us to replace the condition on geometrically convex
corners w.r.t. an SLTR by a condition on combinatorially convex corners w.r.t.
an FAA.
[C∗

o] Every outline cycle that is not the outline cycle of a path, has at least
three combinatorially convex corners.

From Prop. 2 and Prop. 3 it follows that this condition is necessary for an
FAA that induces an SLTR. In Thm. 1 we prove that if an FAA obeys C∗

o then
it induces an SLTR. The proof is constructive. In anticipation of this result we
say that an FAA obeying C∗

o is a good flat angle assignment and abbreviate it
as a GFAA.
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Next we show that a GFAA induces a contact family of pseudosegments. This
family of pseudosegments is later shown to be stretchable, i.e., it is shown to be
homeomorphic to a contact system of straight line segments.

Definition 4. A contact family of pseudosegments is a family {ci}i of simple
curves ci : [0, 1] → R2, with different endpoints, i.e., ci(0) �= ci(1), such that
any two curves cj and ck (j �= k) have at most one point in common. If so, then
this point is an endpoint of (at least) one of them.

A GFAA ψ on a graph G gives rise to a relation ρ on the edges: Two edges,
both incident to v and f are in relation ρ if and only if v is assigned to f . The
transitive closure of ρ is an equivalence relation on the edges of G.

Proposition 4. The equivalence classes of edges of G defined by ρ form a con-
tact family of pseudosegments.

Proof. Let the equivalence classes of ρ be called arcs.
Condition Cv ensures that every vertex is interior to at most one arc. Hence,

the arcs are simple curves and no two arcs cross.
Every arc has two distinct endpoints, otherwise it would be a cycle and its

outline cycle has only one combinatorially convex corner. If an arc touched itself,
the outline cycle of this equivalence class would have at most one combinatorially
convex corner. This again contradicts C∗

o.
If two arcs share two points, the outline cycle has at most two combinatorially

convex corners. This again contradicts C∗
o.

We conclude that the family of arcs satisfies the properties of a contact family
of pseudosegments.

Definition 5. Let Σ be a family of pseudosegments and let S be a subset of Σ.
A point p of a pseudosegment from S is a free point for S if

1. p is an endpoint of a pseudosegment in S, and
2. p is not interior to a pseudosegment in S, and
3. p is incident to the unbounded region of S, and
4. p is incident to the unbounded region of Σ or

p is incident to a pseudosegment that is not in S.

With Lem. 1 we prove that the family of pseudosegments Σ that arises from a
GFAA has the following property
[CP ] Every subset S of Σ with |S| ≥ 2 has at least three free points.

Lemma 1. Let ψ a GFAA on a plane, internally 3-connected graph G. For
every subset S of the family of pseudosegments associated with ψ, it holds that,
if |S| ≥ 2 then S has at least 3 free points.

Proof. Let S be a subset of the contact family of pseudosegments defined by the
GFAA (Prop. 4).

Each pseudosegment of S corresponds to a path in G. Let H be the subgraph
of G obtained as union of the paths of pseudosegments in S. We assume that H
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is connected and leave the discussion of the cases where it is not to the reader. If
H itself is not a path, then by C∗

o the outline cycle γ(H) must have at least three
combinatorially convex corners. Every combinatorially convex corner of γ(H) is
a free point of S.

If S induces a path, then the two endpoints of this path are free points for S.
Moreover, there exists at least one vertex v in this path which is an endpoint
for two pseudosegments and not an interior point for any. Now there must be an
edge e incident to v, such that e �∈ S, therefore v is a free point for S.

Fig. 5. A stretched representation
of a contact family of pseudoseg-
ments that arises from a GFAA in
the graph of Fig 2

Given an internally 3-connected, plane
graph G with a GFAA. To find a correspond-
ing SLTR we aim at representing each of
the pseudosegments induced by the FAA as
a straight line segment. If this can be done,
every assigned vertex will be between its two
neighbors that are part of the same pseudoseg-
ment. This property can be modeled by re-
quiring that the coordinates pv = (xv, yv) of
the vertices of G satisfy a harmonic equation
at each assigned vertex.

Indeed if uv and vw are edges belonging to
a pseudosegment s, then the coordinates satisfy

xv = λvxu + (1 − λv)xw and yv = λvyu + (1− λv)yw (1)

where the parameter λv can be chosen arbitrarily from (0, 1). These are the
harmonic equations for v.

In the SLTR every unassigned vertex v is placed in a weighted barycenter of
its neighbors. In terms of coordinates this can be written as

xv =
∑

u∈N(v)

λvuxu, yv =
∑

u∈N(v)

λvuyu . (2)

These are the harmonic equations for an unassigned vertex v. The λvu can be
chosen arbitrarily in the range set by the convexity conditions:

∑
u∈N(v) λvu = 1

and λvu > 0.
Vertices whose coordinates are not restricted by harmonic equations are called

poles. In our case the suspension vertices are the three poles of the harmonic
functions for the x and y-coordinates. The coordinates for the suspension vertices
are fixed as the corners of some non-degenerate triangle, this adds six equations
to the linear system.

The theory of harmonic functions and applications to (plane) graphs are nicely
explained by Lovász [11]. The following proposition is taken from Chapter 3
of [11].

Proposition 5. For every choice of the parameters λv and λvu complying with
the conditions, the system has a unique solution.
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Now we state our main result, it shows that the necessary conditions are also
sufficient.

Theorem 1. Let G be an internally 3-connected, plane graph and Σ a family of
pseudosegments associated to an FAA, such that each subset S ⊆ Σ has three free
points or cardinality at most one. The unique solution of the system of equations
that arises from Σ is an SLTR.

Proof. The proof consists of 7 arguments, which together yield that the drawing
induced from the GFAA is a non-degenerate, plane drawing. The proof has been
inspired by the proof of Colin de Verdière [6] for convex straight line drawings
of plane graphs via spring embeddings.

1. Pseudosegments become Segments. Let (v1, v2), (v2, v3), . . . , (vk−1, vk) be the
set of edges of a pseudosegment defined by ψ. The harmonic conditions for the
coordinates force that vi is placed between vi−1 and vi+1 for i = 2, .., k−1. Hence
all the vertices of the pseudosegment are placed on the segment with endpoints
v1 and vk.
2. Convex Outer Face. The outer face is bounded by three pseudosegments and
the suspensions are the endpoints for these three pseudosegments. The coordi-
nates of the suspensions (the poles of the harmonic functions) have been chosen
as corners of a non-degenerate triangle and the pseudosegments are straight line
segments, therefore the outer face is a triangle and in particular convex.
3. No Concave Angles. Every vertex, not a pole, is forced either to be on the line
segment between two of its neighbors (if assigned) or in a weighted barycenter
of all its neighbors (otherwise). Therefore every non-pole vertex is in the convex
hull of its neighbors. This implies that there are no concave angles at non-poles.
4. No Degenerate Vertex. A vertex is degenerate if it is placed on a line, together
with at least three of its neighbors. Suppose there exists a vertex v, such that v
and at least three of its neighbors are placed on a line �. Let S be the connected
component of pseudosegments that are aligned with �, such that S contains v.
The set S contains at least two pseudosegments. Therefore S must have at least
three free points, v1, v2, v3.

By property 4 in the definition of free points, each of the free points is incident
to a segment that is not aligned with �. Suppose the free points are not suspension
vertices. If vi is interior to si ∈ S, then si has an endpoint on each side of �. If
vi is not assigned by the GFAA it is in the strict convex hull of its neighbors,
hence, vi is an endpoint of a segment reaching into each of the two half-planes
defined by �.

Now suppose v1 and v2 are suspension vertices1 and consider the third free
point, v3. If v3 is interior to a pseudosegment not on �, then one endpoint of this
pseudosegment lies outside the convex hull of the three suspensions, which is a
contradiction. Hence it is not interior to any pseudosegment and at least one of
its neighbors does not lie on �, but then v3 should be in a weighted barycenter
of its neighbors, hence again we would find a vertex outside the convex hull of

1 Not all three suspension vertices lie on one line, hence at least one of the three free
points is not a suspension.
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the suspension vertices. Therefore at most one of the free points is a suspension
and � is incident to at most one of the suspension vertices.

In any of the above cases each of v1, v2, v3 has a neighbor on either side of �.
Let n+ and n− = −n+ be two normals for line � and let p+ and p− be the

two poles, that maximize the inner product with n+ resp. n−. Starting from
the neighbors of the vi in the positive halfplane of � we can always move to a
neighbor with larger2 inner product with n+ until we reach p+. Hence v1, v2, v3
have paths to p+ in the upper halfplane of � and paths to p− in the lower
halfplane. Since v1, v2, v3 also have a path to v we can contract all vertices of
the upper and lower halfplane of � to p+ resp. p− and all inner vertices of these
paths to v to produce a K3,3 minor of G. This is in contradiction to the planarity
of G. Therefore, there is no degenerate vertex.
5. Preservation of Rotation System. Let θ(v) =

∑
f θ(v, f) denote the sum of

the angles around an interior vertex. Here f is a face incident to v and θ(v, f)
is the (smaller!) angle between the two edges incident to v and f in the draw-
ing obtained by solving the harmonic system. If the incident faces are oriented
consistently around v, then the angles sum up to 2π, otherwise θ(v) > 2π (see
Fig. 6). We do not consider the outer face in the sums so that the b vertices
incident to the outer face contribute a total angle of (b− 2)π to the inner faces.

Fig. 6. Vertices with their surrounding faces not
oriented consistently

Now consider the sum θ(f)
=

∑
v θ(v, f) of the angles of

a face f . At each vertex in-
cident to f the contribution
θ(v, f) is at most of size π. A
closed polygonal chain with k
corners, selfintersecting or not,
has a sum of inner angles equal
to (k − 2)π. Therefore θ(f) ≤
(|f | − 2)π. The sum over all
vertices

∑
v θ(v) and the sum

over all faces
∑

f θ(f) must be
equal since they count the same angles in two different ways.

(|V | − b)2π + (b− 2)π ≤
∑
v

θ(v) =
∑
f

θ(f) ≤ ((2|E| − b)− 2(|F | − 1))π (3)

This yields |V |−|E|+ |F | ≤ 2. Since G is planar Euler’s formula implies equality.
Therefore θ(v) = 2π for every interior vertex v and the faces must be oriented
consistently around every vertex, i.e. the rotation system is preserved. Note that
the rotation system could have been flipped, between clockwise and counter-
clockwise but then it is flipped at every vertex.
6. No Crossings. Suppose two edges cross. On either side of both of the edges
there is a face, therefore there must be a point p in the plane which is covered
by at least two faces. Outside of the drawing there is only the unbounded face.

2 If n+ is perpendicular to another segment this may not be possible. In this case we
can use a slightly perturbed vector n+

ε to break ties.
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Move along a ray, that does not pass through a vertex of the graph, from p to
infinity. A change of the cover number, i.e. the number of faces by which the
point is covered, can only occur when crossing an edge. But if the cover number
changes then the rotation system at a vertex of that edge must be wrong. This
would contradict the previous item. Therefore a crossing cannot exist.
7. No Degeneracy. Suppose there is an edge of length zero. Since every vertex
has a path to each of the three suspensions there has to be a vertex a that is
incident to an edge of length zero and an edge ab of non-zero length. Following the
direction of forces we can even find such a vertex-edge pair with b contributing
to the harmonic equation for the coordinates of a. We now distinguish two cases.

If a is assigned, it is on the segment between b and some b′, together with
the neighbor of the zero length edge this makes three neighbors of a on a line.
Hence, a is a degenerate vertex. A contradiction.

If a is unassigned it is in the convex hull of its neighbors. However, starting
from a and using only zero-length edges we eventually reach some vertex a′ that
is incident to an edge a′b′ of non-zero length, such that b′ is contributing to the
harmonic equation for the coordinates of a′. Vertex a′ has the same position as
a and is also in the convex hull of its neighbors. This makes a crossing of edges
unavoidable. A contradiction. Hence, there are no edges of length zero.

Suppose there is an angle of size zero. Since every vertex is in the convex hull
of its neighbors there are no angles of size larger than π. Moreover there are no
crossings, hence the face with the angle of size zero is stretching along a line
segment with two angles of size zero. Since there are no edges of length zero
and all vertices are in the convex hull of their neighbors, all but two vertices of
the face must be assigned to this face. Therefore, there are two pseudosegments
bounding this face, which have at least two points in common, this contradicts
that Σ is a family of pseudosegments. We conclude that there is no degeneracy.

From items 1–7 we conclude that the drawing is plane and thus an SLTR.

3 Further Applications of the Proof Technique

We have shown that a graph G has an SLTR exactly if it admits an FAA satis-
fying Cv, Cf and C∗

o. Conditions Cv and C∗
o are necessary for the proof that the

system of pseudosegments corresponding to the FAA is stretchable. Condition
Cf , however, is only needed to make all the faces triangles. Modifying condition
Cf allows for further applications of the stretching technique. Of course we still
need at least three corners for every face. Also we have to make sure that all the
non-suspension vertices of the outer face are assigned to the outer face. Together
this makes the modified face condition:
[C∗

f ] For every face f , at most |f | − 3 vertices are assigned to f and all non-
suspension vertices of the outer face fo are assigned to fo.

If we use the empty flat angle assignment, i.e., if the harmonic equations of all
non-suspensions are of type (2), then we obtain a drawing such that all non-
suspension vertices are in the barycenter of their neighbors. This is the Tutte
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drawing [12] with asymmetric elastic forces given by the parameters λuv, see
also [11]. Note that in this case the existence of at least three combinatorially
convex corners at an outline cycle (condition C∗

o) follows from the internally
3-connectedness of the graph.

The construction of Section 2 also applies when

• the assignment has |f |−i vertices assigned to every inner face f , for i = 4, 5
(drawing with only convex 4-gon or only convex 5-gon faces.)

• the assignment has some number cf of corners at inner face f (drawing
with convex faces of prescribed complexity).

The drawback is that again in these cases we do not know how to find an
FAA that fulfills C∗

o.
In [9] Kenyon and Sheffield study T -graphs in the context of dimer configu-

rations (weighted perfect matchings). In our terminology T -graphs correspond
to straight line representations such that each non-suspension is assigned. In [9]
the straight line representations of T -graphs are obtained by analyzing random
walks. Cf. [11] for further connections between discrete harmonic functions and
Markov chains.

Stretchability of Systems of Pseudosegments. A contact system of pseu-
dosegments is stretchable if it is homeomorphic to a contact system of straight
line segments. De Fraysseix and Ossona de Mendez characterized stretchable
systems of pseudosegments [3,4,5]. They use the notion of an extremal point.

Definition 6. Let Σ be a family of pseudosegments and let S be a subset of Σ.
A point p is an extremal point for S if

1. p is an endpoint of a pseudosegment in S, and
2. p is not interior to a pseudosegment in S, and
3. p is incident to the unbounded region of S.

Theorem 2 (De Fraysseix & Ossona de Mendez [5, Theorem 38]).
A contact family Σ of pseudosegments is stretchable if and only if each subset
S ⊆ Σ of pseudosegments with |S| ≥ 2, has at least 3 extremal points.

Our notion of a free point (Def. 5) is more restrictive than the notion of an
extremal point. In the following we show that there is no big difference. First
in Prop. 6 we show that in the case of families of pseudosegments that live
on a plane graph via an FAA, the two notions coincide. Then we continue by
reproving Thm. 2 as a corollary of Thm. 1.

Proposition 6. Let G be an internally 3-connected, plane graph and Σ a family
of pseudosegments associated to an FAA, such that each subset S ⊆ Σ has three
extremal points or cardinality at most one. The unique solution of the system of
equations corresponding to Σ, is an SLTR.

Proof. Note that in the proof of Thm. 1 the notion of free points is only used
to show that there is no degenerate vertex. We show how to modify this part of
the argument for the case of extremal points:
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Consider again the set S of pseudosegments aligned with �. We will show that
all extremal points are also free points. Let p an extremal point of S. Assuming
that p is not free we can negate item 4. from Def. 5, i.e., all the pseudosegments
for which p is an endpoint are in S. By 3-connectivity p is incident to at least
three pseudosegments, all of which lie on the line �. Since all regions are bounded
by three pseudosegments and p is not interior to a segment of S, all the regions
incident to p must lie on �. But then p is not incident to the unbounded region
of S, hence p is not an extremal point. Therefore all extremal points of S are
also free points of S. Prop. 6 now follows from Thm. 1.

Proof (of Thm. 2). Let Σ a contact family of pseudosegments which is stretch-
able. Consider a set S ⊆ Σ of cardinality at least two in the stretching, i.e.,
in the segment representation. Endpoints (of segments) on the boundary of the
convex hull of S are extremal points. There are at least three of them unless S
lies on a line �. In the latter case, there is a point q on � that is the endpoint of
two colinear segments. This is a third extremal point.

Conversely, assume that each subset S ⊆ Σ of pseudosegments, with |S| ≥ 2,
has at least 3 extremal points. We aim at applying Prop 6. To this end we
construct an extended system Σ+ of pseudosegments in which every region is
bounded by precisely three pseudosegments.

First we take a set Δ of three pseudosegments that intersect like the three
sides of a triangle so that Σ is in the interior. The corners of Δ are chosen as
suspensions and the sides of Δ are deformed such that they contain all extremal
points of the family Σ. Let the new family be Σ′.

Fig. 7. Protection
points in red and the
triangulation point in
cyan for two faces of
some Σ′

Next we add new protection points, these points en-
sure that the pseudosegments of Σ′ will be mapped to
straight lines. For each inner region R in Σ′, for each
pseudosegment s in R, we add a protection point for
each visible side of s. The protection point is connected
to the endpoints of s, with respect to R from the visible
side of s.

Now the inner part of R is bounded by an alternating
sequence of endpoints of Σ′ and protection points. We
connect two protection points if they share a neighbor
in this sequence. Last we add a triangulation point in
R and connect it to all protection points of R.

This construction yields a family Σ+ of pseudoseg-
ments such that every region is bounded by precisely
three pseudosegments and every subset S ⊆ Σ+ has at
least 3 extremal points, unless it has cardinality one.

Let V be the set of points of Σ+ and E the set of
edges induced by Σ+. It follows from the construction
that G = (V,E) is internally 3-connected.

By Prop. 6 the graph G = (V,E) together with Σ+ is stretchable to an
SLTR. Removing the protection points, triangulation points and their incident
edges yields a contact system of straight line segments homeomorphic to Σ.
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4 Conclusion and Open Problems

We have given necessary and sufficient conditions for a 3-connected planar graph
to have an SLT Representation. Given an FAA and a set of rational parame-
ters {λi}i, the solution of the harmonic system can be computed in polynomial
time. Checking whether a solution is degenerate can also be done in polynomial
time. Hence, we can decide in polynomial time whether a given FAA corresponds
to an SLTR. In other words, checking whether a given FAA is a GFAA can be
done in polynomial time. However, most graphs admit different FAAs of which
only some are good. We are not aware of an effective way of finding a GFAA.
Therefore we have to leave this problem open: Is the recognition of graphs that
have an SLTR (GFAA) in P?

Given a 3-connected planar graph and a GFAA, interesting optimization prob-
lems arise, e.g. find the set of parameters {λi}i such that the smallest angle in
the graph is maximized, or the set of parameters such that the length of the
shortest edge is maximized.
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6. de Verdière, Y.C.: Comment rendre géodésique une triangulation d’une surface?
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Abstract. The partial representation extension problem is a recently in-
troduced generalization of the recognition problem. A circle graph is an
intersection graph of chords of a circle. We study the partial represen-
tation extension problem for circle graphs, where the input consists of a
graph G and a partial representation R′ giving some pre-drawn chords
that represent an induced subgraph of G. The question is whether one
can extend R′ to a representation R of the entire G, i.e., whether one
can draw the remaining chords into a partially pre-drawn representation.

Our main result is a polynomial-time algorithm for partial represen-
tation extension of circle graphs. To show this, we describe the structure
of all representation a circle graph based on split decomposition. This
can be of an independent interest.

1 Introduction

Graph drawings and visualizations are important topics of graph theory and
computer science. A frequently studied type of representations are so-called in-
tersection representations. An intersection representation of a graph represents
its vertices by some objects and encodes its edges by intersections of these ob-
jects, i.e., two vertices are adjacent if and only if the corresponding objects inter-
sect. Classes of intersection graphs are obtained by restricting these objects; e.g.,
interval graphs are intersection graphs of intervals of the real line, string graphs
are intersection graphs of strings in plane, and so on. These representations are
well-studied; see e.g. [25].

For a fixed class C of intersection-defined graphs, a very natural computational
problem is recognition. It asks whether an input graph G belongs to C. In this
paper, we study a recently introduced generalization of this problem called partial
representation extension [19]. Its input gives with G a part of the representation
and the problem asks whether this partial representation can be extended to a
representation of the entire G; see Fig. 1 for an illustration. We show that this
problem can be solved in polynomial time for the class of circle graphs.
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Fig. 1. On the left, a circle graph G with a representation R is given. A partial rep-
resentation R′ given on the right with the pre-drawn chords s, t, w, and x is not
extendible. The chords are depicted as arcs to make the figure more readable.

Circle Graphs. Circle graphs are intersection graphs of chords of a circle.
They were first considered by Even and Itai [12] in the early 1970s in study of
stack sorting techniques. Other motivations are due to their relations to Gauss
words [11] (see Fig. 2) and matroid representations [10,5]. Circle graphs are also
important regarding rank-width [22].

Letχ(G) denote chromatic number ofG, and letω(G) denote the clique-number
of G. Trivially we have ω(G) ≤ χ(G) and the graphs for which every induced sub-
graph satisfies equality are the well-known perfect graphs [6]. In general, the differ-
ence between these two numbers can be arbitrarily high, e.g, there is a triangle-free
graph with arbitrary high chromatic number. Circle graphs are known to be al-
most perfect which means that χ(G) ≤ f(ω(G)) for some function f . The best
known result for circle graphs [20] states that f(k) is Ω(k log k) and O(2k).

The complexity of recognition of circle graphs was a long standing open prob-
lem; see [25] for an overview. The first results, e.g., [12], gave existential charac-
terizations which did not give polynomial-time algorithms. The mystery whether
circle graphs can be recognized in polynomial time frustrated mathematicians
for some years. It was resolved in the mid-1980s and several polynomial-time
algorithms were discovered [4,13,21] (in time O(n7) and similar). Later, a more
efficient algorithm [24] based on split decomposition was given, and the cur-
rent state-of-the-art recognition algorithm [14] runs in a quasi-linear time in the
number of vertices and the number of edges of the graph.

The Partial Representation Extension Problem. It is quite surprising that
this very natural generalization of the recognition problem was considered only
recently. It is currently an active area of research which is inspiring a deeper
investigation of many classical graph classes. For instance, a recent result of
Angelini et al. [1] states that the problem is decidable in linear time for planar
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Fig. 2. A self-intersecting closed curve with n intersections numbered 1, . . . , n corre-
sponds to a representation of circle graph with the vertices 1, . . . , n where the endpoints
of the chords are placed according to the order of the intersections along the curve.
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graphs. On the other hand, Fáry’s Theorem claims that every planar graph has
a straight-line embedding, but extension of such an embedding is NP-hard [23].

In the context of intersection-defined classes, this problem was first considered
in [19] for interval graphs. Currently, the best known results are linear-time
algorithms for interval graphs [3] and proper interval graphs [17], a quadratic-
time algorithm for unit interval graphs [17], and polynomial-time algorithms for
permutation and function graphs [16]. For chordal graphs (as subtree-in-a-tree
graphs) several versions of the problems were considered [18] and all of them are
NP-complete.

The Structure of Representations. To solve the recognition problem for G,
one just needs to build a single representation. However, to solve the partial rep-
resentation extension problem, the structure of all representations of G must be
well understood. A general approach used in the above papers is the following.
We first derive necessary and sufficient constraints from the partial representa-
tion R′. Then we efficiently test whether some representation R satisfies these
constraints. If none satisfies them, then R′ is not extendible. And if some R
satisfies them, then it extends R′.

It is well-known that the split decomposition [8, Theorem 3] captures the
structure of all representations of circle graphs. The standard recognition algo-
rithms produce a special type of representations using split decomposition as
follows. We find a split in G, construct two smaller graphs, build their repre-
sentation recursively, and then join these two representations to produce R. In
Section 3, we give a simple recursive descriptions of all possible representations
based on splits. Our result can be interpreted as “describing a structure like
PQ-trees for circle graphs.” It is possible that the proof techniques from other
papers on circle graphs such as [7,14] would give a similar description. However,
these techniques are more involved than our approach which turned out to be
quite elementary and simple.

Restricted Representations. The partial representation extension problem
belongs to a larger group of problems dealing with restricted representations of
graphs. These problems ask whether there is some representation of an input
graph G satisfying some additional constraints. We describe two examples of
these problems.

An input of the simultaneous representations problem, shortly Sim, consists of
graphs G1, . . . , Gk with some vertices common for all the graphs. The problem
asks whether there exist representations R1, . . . ,Rk representing the common
vertices the same. This problem is polynomially solvable for permutation and
comparability graphs [15]. They additionally show that for chordal graphs it is
NP-complete when k is part of the input and polynomially solvable for k = 2.
For interval graphs, a linear-time algorithm is known for k = 2 [3] and the com-
plexity is open in general. For some classes, these problems are closely related
to the partial representation extension problems. For example, there is an FPT
algorithm for interval graphs with the number of common vertices as the param-
eter [19], and partial representations of interval graphs can be extended in linear
time by reducing it to a corresponding simultaneous representations problem [3].
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The bounded representation problem [17] prescribes bounds for each vertex of
the input graph and asks whether there is some representation satisfying these
bounds. For circle graphs, the input specifies a pair of arcs (Av, A

′
v) of the circle

for each chord v and a solution is required to have one endpoint of v in Av and the
other one in A′

v. This problem is clearly a generalization of partial representation
extension since one can describe a partial representation using singleton arcs. It
is known to be polynomially solvable for interval and proper interval graphs [2],
and surprisingly it is NP-complete for unit interval graphs [17]. The complexity
for other classes of graphs is not known.

Our Results. We study the following problem (see Section 2 for definitions):

Problem: Partial Representation Extension – RepExt(CIRCLE)
Input: A circle graph G and a partial representation R′.

Output: Is there a representation R of G extending R′?

In Section 3, we describe a simple structure of all representations. This is used
in Section 4 to obtain our main algorithmic result:

Theorem 1. The problem RepExt(CIRCLE) can be solved in polynomial time.

To spice up our results, we show in the full version of the paper the following.

Proposition 2. For k part of the input, the problem Sim(CIRCLE) is NP-complete.

Corollary 3. The problem Sim(CIRCLE) is FPT in the size of the common sub-
graph.

2 Definitions and Preliminaries

Circle Representations. A circle graph representation R is a collection of
chords a circle

{
Cu | u ∈ V (G)

}
such that Cu intersects Cv if and only if

uv ∈ E(G). A graph is a circle graph if it has a circle representation, and we
denote the class of circle graphs by CIRCLE.

Notice that the representation of a circle graph is completely determined by
the circular order of the endpoints of the chords in the representation, and two
chords Cu and Cv cross if and only if their endpoints alternate in this order. For
convenience we label both endpoints of the chord representing a vertex by the
same label as the vertex.

A partial representation R′ is a representation of an induced subgraph G′.
The vertices of G′ are pre-drawn vertices and the chords of R′ are pre-drawn
chords. A representation R extends R′ if Cu = C′

u for every u ∈ V (G′).

Word Representations. A sequence τ over an alphabet of symbolsΣ is a word.
A circular word represents a set of words which are cyclical shifts of one another.
In the sequel, we represent a circular word by a word from its corresponding set
of words. We denote words and circular words by small Greek letters.

For a word τ and a symbol u we write u ∈ τ , if u appears at least once in τ .
Thus, τ is also used to denote the set of symbols occurring in τ . A word τ is a
subword of σ, if τ appears consecutively in σ. A word τ is a subsequence of σ,
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if the word τ can be obtained from σ by deleting some symbols. We say that u
alternates with v in τ , if uvuv or vuvu is a subsequence of τ . The corresponding
definitions also apply to circular words. If σ and τ are two words, we denote
their concatenation by στ .

From now on each representation R of G corresponds to the unique circular
word τ over V . The word τ is obtained by the circular order of the endpoints of
the chords in R as they appear along the circle when traversed clockwise. The
occurrences of u and v alternate in τ if and only if uv ∈ E(G). For example R
in Fig. 1 corresponds to the circular word τ = susxvxtutwvw.

Let G be a circle graph, and letR be its representation with the corresponding
circular word τ . If G′ is an induced subgraph of G, then the subsequence of τ
consisting of the vertices in G′ is a circular word σ. This σ corresponds to a
representation R′ of G′ which is extended by R.

3 Structure of Representations of Splits

Let G be a connected graph. A split of G is a partition of the vertices of G into
four parts A, B, s(A) and s(B), such that:

– For every a ∈ A and b ∈ B, we have ab ∈ E(G).

– There is no edge between s(A) and B∪s(B), and between s(B) and A∪s(A).
– Both sides of the split have at least two vertices: |A ∪ s(A)| ≥ 2 and |B ∪

s(B)| ≥ 2.

Fig. 3 shows two possible representations of a split. Notice that a split is uniquely
determined just by the setsA andB, since s(A) consists of connected components
of G\ (A∪B) attached to A, and similarly for s(B) and B. We refer to this split
as a split between A and B.

In this section, we examine the recursive structure of every possible represen-
tation of G based on splits.

3.1 Split Structure of a Representation

Let R be a representation of a graph G with a split between A and B. The
representation R corresponds to a unique circular word τ and we consider the

s(A) A B s(B)

τA

τ̂B

τ̂A

τB

s(A1)
A1 B1

s(B1)

s(A2)
A2 B2

s(B2)

τA1

τ̂B2

τ̂A2

τ̂B1

τ̂A1

τB2

τA2

τB1

Fig. 3. Two different representations of G with the split between A and B.
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circular subsequence γ induced by A∪B. The maximal subwords of γ consisting
of A alternate with the maximal subwords of γ consisting of B. We denote all
these maximal subwords γ1, . . . , γ2k according to their circular order; so γ =
γ1γ2 · · · γ2k. Without loss of generality, we assume that γ1 consists of symbols
from A. We call γi an A-word when i is odd, and a B-word when i is even.

We first investigate for each γi which symbols it contains.

Lemma 4. For the subwords γ1, . . . , γk the following holds:

(a) Each γi contains each symbol at most once.

(b) The opposite words γi and γi+k contains the same symbols.

(c) Let i �= j. If x ∈ γi and y ∈ γj, then xy ∈ E(G).

Proof (Sketch). These three properties are easily forced by the structure of the
split; see the full version. ��

If A,B ⊂ V (G) give rise to a split in G, we call the vertices of A and B the
long vertices with respect to the split between A and B. Similarly the vertices
s(A) and s(B) are called short vertices with respect to the split between A and
B. In the sequel, if the split is clear from the context, we will just call some
vertices long and some vertices short.

Consider a connected component C of s(A) (for a component of s(B) the
same argument applies) and consider the subsequence of τ induced by A ∪B ∪
C. By Lemma 4(a)-(b) and the fact that no vertex of s(A) is adjacent to B,
this subsequence almost equals γ. The only difference is that one subword γi is
replaced by a subword which additionally contains all occurrences of the vertices
of C. By accordingly adding the vertices of all components of s(A) and s(B) to
γ, we get τ . Thus, τ consists of the circular subwords τ1, . . . , τ2k concatenated
in this order, where τi is obtained from γi by adding the components of s(A) or
s(B) attached to it. In particular, we also have the following:

Lemma 5. If two long vertices x, y ∈ A are connected by a path having the
internal vertices in s(A), then x and y belong to the same pair γi and γi+k in
any representation.

Proof. If x and y belong to different subwords γi and γj , where i < j and
j �= i, i + k, of γ, by Lemma 4(a)-(b) any path connecting x and y has an
internal vertex adjacent to a vertex of B. However, no vertex in s(A) is adjacent
to a vertex of B. ��

3.2 Conditions Forced by a Split

Now, we want to investigate the opposite relation. Namely, what can one say
about a representation from the structure of a split? Suppose that x and y are
two long vertices. We want to know the properties of x and y which force every
representation R to have a subword γi of γ containing both x and y.

We define a relation ∼ on A∪B where x ∼ y means that x, y has to be placed
in the same subword γi of γ. This relation is given by two conditions:

(C1) Lemma 4(c) states that if xy /∈ E(G), then x ∼ y, i.e., if x and y are placed
in different subwords, then Cx intersects Cy.
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(C2) Lemma 5 gives x ∼ y when x and y are connected by a non-trivial path
with all the inner vertices in s(A) ∪ s(B).

Let us take the transitive closure of ∼, which we denote by ∼ thereby slightly
abusing the notation. Thus, we obtain an equivalence relation ∼ on A∪B. Notice
that every equivalence class of ∼ is either fully contained in A or in B. For the
graph in Fig. 3, the relation ∼ has four equivalence classes A1, A2, B1 and B2.

Now, let Φ be an equivalence class of ∼. We denote by s(Φ) the set consisting
of all the vertices in the connected components of G \ (A ∪ B) which have a
vertex adjacent to a vertex of Φ. Since ∼ satisfies (C2), we know that the sets
s(Φ) of the equivalent classes of ∼ define a partition of s(A) ∪ s(B).

Recognition Algorithms Based on Splits. The splits are used in the cur-
rent state-of-the-art algorithms for recognizing circle graphs. If a circle graph
contains no split, it is called a prime graph. The representation of a prime graph
is uniquely determined (up to the orientation of the circle) and can be con-
structed efficiently. There is an algorithm which finds a split between two sets
A and B in linear time [9]. In fact, the entire split decomposition tree (i.e., the
recursive decomposition tree obtained via splits) can be found in linear time.
Usually the representation R is constructed as follows.

We define two graphs GA and GB where GA is a subgraph of G induced by
the vertices corresponding to A ∪ s(A) ∪ {vA} where the vertex vA is adjacent
to all the vertices in A and non-adjacent to all the vertices in s(A), and GB is
defined similarly for B, s(B), and vB. Then we apply the algorithm recursively
on GA and GB and construct their representations RA and RB; see Fig. 4. It
remains to join the representations RA and RB in order to construct R.

To this end we take RA and replace CvA by the representation of B ∪ s(B) in
RB. More precisely, let the circular ordering of the endpoints of chords defined
by RA be vAτAvAτ̂A and let the circular ordering defined by RB be vBτBvB τ̂B .
The constructed R has the corresponding circular ordering τAτB τ̂Aτ̂B. It is easy
to see that R is a correct circle representation of G.

Structure of All Representations. The above algorithm constructs a very
specific representation R of G, and a representation like the one in Fig. 3 on
the right cannot be constructed by the algorithm. In what follows we describe a
structure of all the representations of G, based on different circular orderings of
the classes of ∼. First, we show that every representation obtained in this way
is a correct representation of G. Second, we prove that every representation R
of G can be constructed like this.

s(A) A

vA

GA

vA

τA

τ̂A
RA

vB

τ̂B τB

RB

B s(B)

vB

GB

Fig. 4. The graphs GA and GB together with some constructed representations RA

and RB . By joining these representations, we get the left representation of Fig. 3.
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We choose an arbitrary circular ordering Φ1, . . . , Φ	 of the classes of ∼. Let
Gi be a graph constructed from G by contracting the vertices of V (G) \

(
Φi ∪

s(Φi)
)
into one vertex vi; i.e., Gi is defined similarly to GA and GB above. Let

R1, . . . ,R	 be arbitrary representations of G1, . . . , G	. We join these representa-
tions as follows. Let viτiviτ̂i be the circular ordering of Ri. We construct R as
the circular ordering

τ1τ2 . . . τk−1τk τ̂1τ̂2 . . . τ̂k−1τ̂k. (1)

In Fig. 3, we obtain the representation on the left by the circular ordering
A1A2B1B2 of the classes of ∼ and the representation on the right by A1B1A2B2.

Lemma 6. Every circular ordering (1) constructed as above defines a circle
representation of G.

Proof. Every long vertex u ∈ Φi alternates with vi in Ri and every short vertex
v ∈ s(Φi) has both occurrences either in τi, or in τ̂i, since it is not adjacent to
vi. Thus, we get a correct representation R of G. ��

We now show that this approach can construct every representation of G.

Lemma 7. Let τ be the circular word corresponding to a representation R of
G. Then the symbols of Φi ∪ s(Φi) form exactly two subwords of τ .

Proof (Sketch). The conditions (C1) and (C2) imply consecutivity for some pairs
x and y. The statement is then proved by applying induction on the classes of
∼; see the full version for details. ��

Now, we are ready to prove the main structural proposition, which is inspired
by Section IV.4 of the thesis of Naji [21].

Proposition 8. Let ∼ be the equivalence relation defined by (C1) and (C2)
on A ∪ B. Then every representation R corresponds to some circular ordering
Φ1, . . . , Φ	 and to some representations R1, . . . ,R	 of G1, . . . , G	. More precisely,
R can be constructed by arranging R1, . . . ,R	 as in (1): τ1 . . . τk τ̂1 . . . τ̂k.

Proof. Let R be any representation with the corresponding circular word τ .
According to Lemma 7, we know Φi ∪ s(Φi) forms two subwords τi and τ̂i of
τ . For i �= j, the edges between Φi and Φj form a complete bipartite graph.
The subwords τi, τ̂i, τj and τ̂j alternate, i.e., appear as τiτj τ̂iτ̂j or τjτiτ̂j τ̂i in
τ . Thus, if we start from some point along the circle, the order of τi’s gives a
circular ordering Φ1, . . . , Φ	 of the classes. The representation Ri is given by the
circular ordering viτiviτ̂i. ��

4 Algorithm

In this section, we give a polynomial-time algorithm for the partial representation
extension problem of circle graphs. Our algorithm is based on the structure of all
representations described in Section 3. We assume that the graph is connected
and we deal with disconnected graphs in the full version of this paper.

Overview. Let τ ′ be the circular word corresponding to the given partial rep.
R′. We want to extend τ ′ to a circular word τ corresponding to a rep. R of G.
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Our algorithm proceeds recursively via split decomposition.

1. If G is prime, we have two possible representations (one is reversal of the
other) and we test whether one of them is compatible with R′.

2. Otherwise, we find a split and compute the ∼ relation.

3. We test whether some ordering Φ1, . . . , Φ	 of these classes along the circle
is compatible with the partial representation R′. This order is partially pre-
scribed by short chords and long chords of R′.

4. If no ordering is compatible, we stop and output “no”. If there is an ordering
which is compatible withR′, we recurse on the graphsG1, . . . , G	 constructed
according to the equivalence classes of ∼.

Now we describe everything in detail.

Splits. Now we assume that the graph is not prime, otherwise the problem is
easy to solve (details will be given in the full version). A split between A and B
is called trivial if for one side, let us say A, we have |A| = 1 and |s(A)| = 1. If
G contains only trivial splits, then we call it trivial. For technical purposes, we
assume that the split is non-trivial, again the full version of this paper contains
the details.

So we have a non-trivial split between A and B which can be constructed
in polynomial time [9]. We compute the equivalence relation ∼ and we want
to find an ordering of its equivalence classes. For a class Φ of ∼, we define the
extended class Ψ of ∼ as Φ ∪ s(Φ). We can assume that each extended class has
a vertex pre-drawn in the partial representation, otherwise any representation
of it is good. So ∼ has � equivalence classes, and all of them appear in τ ′.

Now, τ ′ is composed of k maximal subwords, each containing only symbols of
one extended class Ψ . We denote these maximal subwords as τ ′1, . . . , τ

′
k according

to their circular order in τ ′, so τ ′ = τ ′1 · · · τ ′k. According to Proposition 8, each
extended class Ψ corresponds to at most two different maximal subwords. Also,
if two extended classes Ψ and Ψ̂ correspond to two different maximal subwords,
then occurrences of these subwords in τ ′ alternate. Otherwise we reject the input.

Case 1: An extended class corresponds to two maximal subwords.
We denote this class by Ψ1 and put this class as first in the ordering. By renum-
bering, we may assume that Ψ1 corresponds to τ ′1 and τ ′t . Then one circular
order of the classes can be determined as follows. We have Ψ1 < Ψ for any other
class Ψ . Let Ψi and Ψj be two distinct classes. If Ψi corresponds to τ ′a and Ψj

corresponds to τ ′b such that either a < b < t or t < a < b, we put Ψi < Ψj. We
obtain the ordering of the classes as any linear extension of <. One can observe
that < is acyclic, otherwise the maximal subwords would not alternate correctly.

Now, we have ordered the extended classes Ψ1, . . . , Ψ	 and the correspond-
ing classes Φ1, . . . , Φ	. We construct each Gi with the vertices Ψi ∪ {vi} as in
Section 3.2, so vi is adjacent to Φi and non-adjacent to s(Φi). As the partial rep-
resentation R′

i of Gi, we put the word viτ
′
iviτ

′
j where Ψi corresponds to τi and τj

(possibly one of them is empty). We test recursively, whether each representa-
tion R′

i of Gi is extendible to a representation of Ri. If yes, we join R1, . . . ,R	

as in Proposition 8. Otherwise, the algorithm outputs “no”.
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Lemma 9. For Case 1, the representation R′ is extendible if and only if the
representations R′

1, . . . ,R′
	 of the graphs G1, . . . , G	 are extendible.

Proof. Suppose that R extends R′. According to Proposition 8, the represen-
tations of Ψ1, . . . , Ψ	 are somehow ordered along the circle, and so we obtain
representations R1, . . . ,R	 extending R′

1, . . . ,R′
	.

For the other implications, we just take R1, . . . ,R	 and put them in R to-
gether as in (1). The ordering < was constructed exactly in such a way that R
extends R′. ��
Case 2: No extended class corresponds to two maximal subwords
In this case, we have the ordering of the classes according to their appearance
in τ ′, so Ψi corresponds to the subword τ ′i . According to Proposition 8, we know
that in any representation R of G the class Ψi corresponds to two subwords τi
and τ̂i. The difficulty here arises from the potential for τ ′i to be a subsequence
of only one of τi and τ̂i.

We solve this as follows. Instead of constructing just one graph Gi with one
partial representation R′

i, we construct an additional graph G̃i with a partial

representation R̃′
i as follows. The graph G̃i is Gi with an additional leaf wi

attached to vi. The partial representation R′
i corresponds to the word τ ′ivivi

and the partial representation R̃′
i corresponds to τ ′iwiwi. The difference is that

R̃′
i is less restrictive and only one endpoint of vi is prescribed (i.e., the location

of the “other” end of vi is not restricted). We can easily observe that if R′
i is

extendible, then R̃′
i is also extendible.

The following lemma is fundamental for the algorithm, and it states that at
most one class can be forced to use G̃i with R̃′

i, if τ
′ is extendible:

Lemma 10. The representation R′ is extendible if and only if R̃′
i is extendible

for some i and R′
j is extendible for all j �= i.

Proof. Suppose that Rj corresponding to a word vjτjvj τ̂j is an extension of R′
j

for j �= i. And let Ri corresponding to a word wiviwiτiviτ̂i be an extension of R̃′
i.

Then the representationR (after removing wi) constructed as in (1) extends R′.
For the other implication, suppose that R extends R′. For contradiction, sup-

pose that two distinct partial representations R′
i and R′

j are not extendible.
According to Proposition 8, the representation R gives a representation Ri cor-
responding to viτiviτ̂i of Gi and Rj corresponding to vjτjvj τ̂j of Gj . But since
both Ψi and Ψj correspond to single maximal words of τ ′, we have that τ ′i is a
subsequence of τi or τ̂i, or τ ′j is a subsequence of τj or τ̂j , and so R′

i or R′
j is

extendible. Contradiction. ��
For the algorithm, we can efficiently test which of R′

i and R̃′
i are extendible

with the pseudocode of Algorithm 1.

Analysis of the Algorithm. By using the established results, we show that
the partial representation extension problem of circle graphs can be solved in
polynomial time.

Lemma 11. The described algorithm correctly decides whether the partial rep-
resentation R′ of G′ is extendible.
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Algorithm 1. Subroutine for Case 2.

1. Let Ψ1 be the largest class (i.e., |Ψi| ≤ n/2 for i > 1).
2. If R′

2, . . . , R′
� are extendible then

3. If R̃′
1 is extendible then ACCEPT else REJECT.

4. Else if only R′
i is not extendible then

5. If R̃′
i and R′

1 are extendible then ACCEPT else REJECT.
6. Else REJECT.

Proof (Sketch). We just put together the lemmas which are already proved; see
the full version for details. ��

The next lemma states that the algorithm runs in polynomial time. A precise
time analysis depends on algorithm used for split decomposition, and on the
order in which we choose splits for recursion. We avoid this technical analysis
and just note that the degree of the polynomial is reasonable small. Certainly,
it would be easy to show the complexity of order O(nm).

Lemma 12. The running time of the algorithm is polynomial. ��
Proof (Theorem 1). The result is implied by Lemma 11 and Lemma 12. ��

5 Conclusions

The structural results described in Section 3, namely Proposition 8, are the
main new tools developed in this paper. Using it, one can easily work with
the structure of all representations which is a key component of the algorithm
of Section 4 that solves the partial representation extension problem for circle
graphs. The algorithm works with the recursive structure of all representations
and matches the partial representation on it. Proposition 8 also seems to be
useful in attacking the following open problems:

Question 13. What is the complexity of Sim(CIRCLE) for a fixed number k of
graphs? In particular, what is it for k = 2?

Recall that in the bounded representation problem, we give for some chords
two circular arcs and we want to construct a representation which places end-
points into these circular arcs.

Question 14. What is the complexity of the bounded representation problem for
circle graphs?
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19. Klav́ık, P., Kratochv́ıl, J., Vyskočil, T.: Extending partial representations of inter-
val graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
276–285. Springer, Heidelberg (2011)

20. Kostochka, A., Kratochv́ıl, J.: Covering and coloring polygon-circle graphs. Dis-
crete Mathematics 163(1-3), 299–305 (1997)

21. Naji, W.: Graphes de Cordes: Une Caracterisation et ses Applications. PhD thesis,
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On Balanced ✛-Contact Representations
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Abstract. In a ✛-contact representation of a planar graph G, each ver-
tex is represented as an axis-aligned plus shape consisting of two in-
tersecting line segments (or equivalently, four axis-aligned line segments
that share a common endpoint), and two plus shapes touch if and only if
their corresponding vertices are adjacent in G. Let the four line segments
of a plus shape be its arms. In a c-balanced representation, c ≤ 1, every
arm can touch at most �cΔ� other arms, where Δ is the maximum degree
of G. The widely studied T - and L-contact representations are c-balanced
representations, where c could be as large as 1. In contrast, the goal in
a c-balanced representation is to minimize c. Let ck, where k ∈ {2, 3},
be the smallest c such that every planar k-tree has a c-balanced rep-
resentation. In this paper we show that 1/4 ≤ c2 ≤ 1/3(= b2) and
1/3 < c3 ≤ 1/2(= b3). Our result has several consequences. Firstly,
planar k-trees admit 1-bend box-orthogonal drawings with boxes of size
�bkΔ� × �bkΔ�, which generalizes a result of Tayu, Nomura, and Ueno.
Secondly, they admit 1-bend polyline drawings with 2�bkΔ� slopes, which
is significantly smaller than the 2Δ upper bound established by Keszegh,
Pach, and Pálvölgyi for arbitrary planar graphs.

1 Introduction

In a contact representation of a planar graph G, the vertices of G are represented
using different non-overlapping geometric shapes (e.g., lines, triangles, or circles)
and the adjacencies are represented by the contacts of the corresponding objects.
Contact representations arise in many applied fields, such as cartography, VLSI
floor-planning, and data visualization, which has motivated extensive research
over the past several decades. In this paper we examine ✛-contact representations
of planar graphs, i.e., each vertex in such a representation Γ corresponds to an
axis-aligned plus shape, two plus shapes never cross, but touch if and only if
their corresponding vertices are adjacent in the input planar graph. Let the
four orthogonal parts associated with a plus symbol be its left, right, up and
down arms. We call Γ a c-balanced representation, where c ≤ 1, if every arm
in Γ touches at most �cΔ� other arms, where Δ is the maximum degree of the
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Fig. 1. (a) A graph G with Δ = 5. (b) A (1/2)-balanced ✛-contact representation of G.
(c) A box-orthogonal drawing of G. (d)–(e) A transformation into a polyline drawing.

underlying graph. The horizontal (or vertical) segments of two touching plus
shapes in Γ may be collinear, e.g., the shapes representing the vertices e and g
in Figures 1(a)–(b).

In 1994, de Fraysseix et al. [1] gave an algorithm to construct contact repre-
sentations of planar graphs with axis-aligned T shapes. Many studies followed
to characterize classes of planar graphs that admit contact representations with
shapes simpler than T , such as axis-aligned segments [2]and L shapes [3]. L-
and T -contact representations can be viewed as c-balanced ✛-contact represen-
tations, however, c may be required to be as large as 1. On the other hand, in a
c-balanced representation, our goal is to minimize c.

Box-Orthogonal Drawings with Small Boxes of Constant Aspect Ratio.
Balanced ✛-contact representations are useful in the study of box-orthogonal
drawings in R2. A k-bend box-orthogonal drawing of a planar graph G is a planar
drawing of G, where each vertex is represented as an axis-aligned box and each
edge is drawn as an orthogonal polygonal chain with at most k bends. Every
✛-contact representation can be transformed into a box-orthogonal drawing [4],
as shown in Figure 1(c). Some important aesthetics of a box-orthogonal drawing
are the number of bends per edge, and the aspect ratio and size of the boxes.
Biedl and Kaufmann [4] showed that every planar graph admits a 1-bend box-
orthogonal drawing on an integer grid, but the width or height of a box in such
a drawing could be as large as Δ. A c-balanced ✛-contact representation implies
a 1-bend box-orthogonal drawing with boxes of size �cΔ� × �cΔ�.

Orthogonal drawings are box-orthogonal drawings with boxes of degenerate
shapes, i.e., points. The graphs that admit orthogonal drawings are of maximum
degree four. Hence a 0- and 1-bend orthogonal drawing gives a (1/4)-balanced
✛-contact representation. There have been several attempts in the literature to
characterize the graphs that admit 0- and 1-bend orthogonal drawings [5,6]. Re-
cently, Tayu, Nomura, and Ueno [7] showed that every 2-tree with maximum
degree four admits a 1-bend orthogonal drawing. In this paper we show that
2-trees and planar 3-trees admit (1/3)- and (1/2)-balanced ✛-contact represen-
tations, respectively, and thus admit 1-bend box-orthogonal drawings with boxes
of size �Δ/3� × �Δ/3� and �Δ/2� × �Δ/2�, respectively.
Planar Slope Number with One Bend Per Edge.A k-bend polyline drawing
of a planar graph G is a planar drawing Γ of G, where each vertex is represented
as a point and each edge is drawn as a polygonal chain with at most k bends. Γ is
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a t-slope drawing of G if the number of distinct slopes used by the line segments
in Γ is at most t. The planar slope number ofG is the smallest number t such that
G admits a t-slope 0-bend drawing. A rich body of literature examines planar
slope number of different subclasses of planar graphs [8,9,10]. Keszegh et al. [11]
proved a qΔ upper bound on the planar slope number, where q is a constant. They
also showed that every planar graph G admits a 1-bend polyline drawing with at
most 2Δ slopes, by a transformation from T -contact representations into 1-bend
polyline drawings, as follows. Replace each vertical (respectively, horizontal)
arm with Δ closely spaced nearly vertical (respectively, horizontal) slopes, e.g.,
see Figure 1(d). Finally, choose the bend points from the intersection points of
these slopes such that the resulting drawing remains planar, e.g., see Figure 1(e).
In this paper we show that 2-trees and planar 3-trees admit (1/3)- and (1/2)-
balanced ✛-contact representations, respectively, and thus admit 1-bend polyline
drawings with at most 2�Δ/3� slopes, and 2�Δ/2� slopes, respectively.

2 Definitions and Preliminary Approach

In this section we introduce some definitions and construct (1/2)-balanced ✛-
contact representations for 2-trees.

A 2-tree, or series-parallel graph (SP graph) G is a two-terminal directed
simple graph with n ≥ 2 vertices, which is defined recursively as follows.

(a) If n = 2, then G has a single edge (u, v), where either u or v is the source
and the other vertex is the sink.

(b) If n > 2, then G can be constructed from two SP graphs G1 and G2 from
one of the following two operations, e.g., see Figure 2(a).
- Series Composition: Identify the sink of G1 with the source of G2.
- Parallel Composition: Identify the source and sink of G1 with the source
and sink of G2, respectively. Finally, identify any parallel edges.

A c-balanced representation of a given SP graph G can be constructed as
follows. Construct a rectangle R and place the source and sink of G at the top-
left and bottom-right corners, respectively. Initially each edge of R can have
�cΔ� contact points. If G is formed by a series composition of two SP graphs G1

and G2, then we split R into four rectangles, e.g., see Figure 2(b), and draw G1

and G2 into the top-left and bottom-right rectangles, respectively. If G is formed
by a parallel composition of G1 and G2, then we take two copies Ri, i ∈ {1, 2},
of R and draw Gi inside Ri (later on we merge these two drawings inside R). In
both series and parallel cases, we distribute the available contact points among
the subproblems, i.e., we compute the recursive drawings with bounded number
of contact points on the edges of their bounding rectangles. In our algorithms,
we specify the distribution of contact points so that we can merge the recursively
computed drawings maintaining planarity.

Let h be an arm of some vertex while constructing a ✛-contact representation.
By the number of free points of h we refer to the number of other arms that can
touch h, which we denote by f(h). If f(h) = 0, then we say h is saturated,
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otherwise h is unsaturated. The center of a vertex is the point, at which all four
of its arms meet. For a center m, we denote by ml,mr,mu,md the left, right, up
and down arms of m, respectively. Distributing an integer z among the arms of
m in some order σ = (md,mr,mu,ml) is an operation that finds the first arm
h such that z ≤

∑
h′≤σh

f(h′), then sets f(h) = z −
∑

h′<σh
f(h′), and finally,

for all arms h′′ subsequent to h, sets f(h′′) = 0. Such an operation is defined
only when z ≤

∑
h f(h). By di(v,G) and do(v,G) we denote the in-degree and

out-degree of vertex v in G. We omit the term G if it is clear from the context.
We now present a construction of (1/2)-balanced representations of SP graphs.

Lemma 1. Let G be a SP graph with source s and sink t, and let G′ be the
graph obtained from G by deleting the edge (s, t), if such an edge exists. Let
R = abcd be an axis-parallel rectangle such that s and t lie on the opposite corners
a and c, respectively. Assume that f(ad), f(ar), f(cl), f(cu) are prespecified. If
do(s,G

′) ≤ f(ad)+f(ar) and di(t, G
′) ≤ f(cl)+f(cu), then G′ admits a (1/2)-

balanced ✛-contact representation Γ in R satisfying the following property.

(�) The number of contact points at each arm incident to s and t in Γ is at
most the number of free points specified for that arm as input.

Proof. We employ an induction on the number of vertices n of G. If n = 2,
then G′ consists of two vertices of degree zero, i.e., s and t, that lie on the two
opposite corners a and c of R, respectively. It is now straightforward to verify
Property (�). Hence assume that n > 2, and the lemma holds for every G that
has fewer than n vertices. We now consider the case when G has n vertices.

Since G is a SP graph and n > 2, G′ must be a SP graph, i.e., G′ is obtained
either by a series combination or a parallel composition of some SP graphs G1

and G2. Let si and ti be the source and sink of Gi, respectively, where i ∈ {1, 2}.
We now consider two cases depending on the composition of G1 and G2 in G′.

Case 1 (Series Composition): In this case s = s1, t1 = s2 and t2 = t. We
first define two rectangles R1 and R2 inside R, where G1 and G2 will be drawn,
respectively. To construct R1 and R2 we first add a vertex r inside R, which
corresponds to the center of vertex t1(= s2). We then draw four orthogonal line
segments re, rm, rg, rh such that e ∈ ab,m ∈ bc, g ∈ cd, h ∈ ad. Then R1 = aerh
and R2 = rmcg, as in Figure 2(b). We set f(rl) = f(rr) = f(ru) = f(rd) =
�Δ/2�, and then assign the free points of s and t to s1 and t2, respectively.

If the edge (s1, t1) exists, then we draw (s1, t1) either along the polygonal chain
ahr or aer, depending on whether f(ad) = 0 or not. If the edge (s2, t2) exists,
then we draw (s2, t2) either along the polygonal chain rgc or rmc, depending
on whether f(cl) = 0 or not. Here we consider the case when both (s1, t1) and
(s2, t2) exist (the other cases can be treated similarly). Figure 2(c) shows such
an example, where f(ad) �= 0 and f(cl) = 0. Observe that while drawing (s1, t1)
and (s2, t2), we use some free points of s1 and t2. Therefore, we decrease the
free points by one for each arm that helps routing (s1, t1) and (s2, t2), e.g.,
see Figures 2(d)–(e). Since do(s,G

′) ≤ f(ad) + f(ar) in R, we have do(s1, G1 \
(s1, t1)) ≤ f(a′d)+f(a′r), where a

′ represents a in R1. Since di(t1, G1 \ (s1, t1)) ≤
Δ − 1, we have di(t1, G1 \ (s1, t1)) ≤ f(ru) + f(rl) in R1. Therefore, we can
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Fig. 2. (a) A few steps of series-parallel decomposition for some graph G, according to
the definition. (b) Computation of R1 and R2. (c) Drawing (s1, t1) and (s2, t2). (d)–(e)
Illustration for free points.

inductively draw Gi inside Ri, i ∈ {1, 2}. It is straightforward to merge these
drawings by appropriate scaling. Since the drawings inside Ri maintain Property
(�), the merged drawing also satisfies that property.

Case 2 (Parallel Composition): In this case s = s1 = s2 and t = t1 = t2. We
first create two copies R1 and R2 of R, i.e., R1 = a′b′c′d′ and R2 = a′′b′′c′′d′′,
where G1 and G2 will be drawn, respectively. Figure 3 illustrates an example.

We now define the free points of the arms of s1, t1 and s2, t2 that are inside R1

and R2, respectively. We distribute do(s1) among a′d and a′r in this order, i.e., we
set f(a′d) = min{f(ad), do(s1)}, and f(a′r) = max{0, do(s1) − f(a′d)}. Similarly,
distribute di(t1) among c′l and c′u in this order, i.e., set f(c′l) = min{f(cl), di(t1)},
and f(c′u) = max{0, di(t1)− f(c′l)}, e.g., Figure 3(b). The number of free points
of s2 and t2 is the number of free points of s and t that remains after assigning
free points to s1 and t1, as shown in Figure 3(c).

Since do(s) ≤ f(ad) + f(ar) and do(s) = do(s1) + do(s2), according to our
assignment of free points, do(s1) ≤ f(a′d)+f(a′r). Similarly, since di(t) ≤ f(cl)+
f(cu) and di(t) = di(t1) + di(t2), we obtain di(t1) ≤ f(c′l) + f(c′u). It is now
straightforward to observe that do(s2) ≤ f(a′′d)+f(a′′r ) and di(t2) ≤ f(c′′l )+f(c′′u).
Therefore, by induction, can draw G1 and G2 inside R1 and R2, respectively.

The drawing of G1 takes consecutive free points from the arms of s (respec-
tively, t) in anticlockwise (respectively, clockwise) order. The drawing of G2

takes the remaining consecutive free points in the same order. Therefore, one
can merge the two drawings inside R1 and R2 avoiding edge crossings inside R.
The details are omitted due to space constraints. ��
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Fig. 3. (a) R. (b)–(c) Computation of R1 and R2. The numbers exterior to the three
rectangles illustrate a concrete example, where do(s1) = 15 and di(t1) = 3.
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Theorem 1. Every SP graph G has a (1/2)-balanced ✛-contact representation.

Proof. If the source s and sink t of G are not adjacent, then by Lemma 1, G
admits the required representation. Otherwise, let G′ be the graph G \ (s, t). By
Lemma 1,G′ admits a (1/2)-balanced ✛-contact representation inside a rectangle
R = abcd, where s and t lie on the opposite corners a and c, respectively, and
the free points f(ad), f(ar), f(cl), f(cu) are prespecified such that do(s,G

′) ≤
f(ad) + f(ar) and di(t, G

′) ≤ f(cl) + f(cu).
We define f(ad) = �Δ/2� − 1, f(ar) = �Δ/2�, f(cl) = �Δ/2� − 1 and f(cu) =

�Δ/2�. Since do(s,G
′) ≤ Δ− 1 and di(t, G

′) ≤ Δ− 1, the conditions do(s,G
′) ≤

f(ad) + f(ar) and di(t, G
′) ≤ f(cl) + f(cu) hold. Hence by Lemma 1, we can

compute a (1/2)-balanced ✛-contact representation Γ ′ of G′ inside R. Finally,
we draw the edge (s, t) along the polygonal chain abc. ��

3 Balanced Representations for 2-Trees (c = 1/3)

The idea of the algorithm for computing (1/3)-balanced ✛-contact represen-
tations is similar to that of Section 2, however, here the construction is more
involved. Let uv denote the line segment from u to v. We first prove the following
lemma, which is similar to Lemma 1.

Lemma 2. Let G be a SP graph with source s and sink t, and let G′ be the
graph obtained from G by deleting the edge (s, t), if such an edge exists. Let
R = k1k2k3k4 be an axis-parallel rectangle such that s and t are centered at
a ∈ k1k2 and c ∈ k2k3, respectively, but not at k2. Assume that the free points
of the arms of s and t that lie on R are prespecified. Let x (respectively, y) be
the total number of free points of all arms of s (respectively, t) that lie inside
R. If do(s,G

′) ≤ x and di(t, G
′) ≤ y, then G′ admits a (1/3)-balanced ✛-contact

representation Γ in R satisfying the following property.

(✫) The number of contact points at each arm incident to s and t in Γ is at
most the number of free points specified for that arm as input.

Proof. We employ an induction on the number of vertices n of G. The case when
n = 2 is straightforward, hence we now assume that n > 2, and the lemma holds
for every G that has fewer than n vertices. We now consider the case when G has
n vertices. Since G is a SP graph and n > 2, G′ must be a SP graph, i.e., G′ is
obtained either by a series or a parallel composition of some SP graphs G1 and
G2. Let sj and tj be the source and sink of Gj , respectively, where j ∈ {1, 2}.
We consider two cases depending on the composition of G1 and G2 in G′.

Case 1 (Series Composition): We first construct two rectangular regions
R1 and R2 inside R, where G1 and G2 will be drawn, respectively, and then
define the free points. In the following we construct R1 and R2 assuming that
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di(t1) ≥ 2�Δ/3�. Therefore, we ensure that three of the arms of t1 lie in R1 and
one of the arms of s2 lies in R2. The case when di(t1) < �Δ/3� (i.e., do(s2) ≥
2�Δ/3�) is symmetric. By slightly modifying the construction1 we can deal with
the case when �Δ/3� ≤ di(t1) < 2�Δ/3�. We omit the details due to space
constraints.

A. Determine the leftmost arm h in the sequence ad, ar, au that is not saturated.

B. Determine the leftmost arm h′ in the sequence cl, cu, cr that is not saturated.
C. If h and h′ lie on the boundary of R, then we compute R1 and R2 according

to the cases (C1)–(C3). Figure 4 shows that the case analysis is exhaustive
by examining all possible positions of a and c in R. In Figure 4, the point r
corresponds to the center of t1(= s2).

(C1) If h is parallel to h′ and h = ar (i.e., Column 3 of Row 1 in Fig-
ure 4), then we draw a straight line pq such that p, q are two points
on h, h′, respectively. Let r and r′ be two distinct points on pq such
that dist(p, r) <dist(p, r′). We then draw a line segment r′z ⊥ pq, such
that z ∈ cu. R1 and R2 are the rectangles that contain the unsaturated
arms, i.e., in this case R1 (respectively, R2) is the rectangle with diag-
onal r′k4 (respectively, r′c). Sometimes Ri, i ∈ {1, 2}, may not contain
the center of the corresponding source and sink. In such a case, we add
a dummy copy of the source or sink, e.g., see the gray diamond shapes
in Figure 4. Note that while computing the drawing of G1 inside R1

inductively, we rotate R1 by 90◦ anticlockwise such that the precon-
ditions of the induction hold. Furthermore, we define f(s1z) = 0 such
that no unnecessary adjacencies are created in the inductive drawing.
Since the addition of dummy copy of a source or sink is straightforward,
we do not explicitly describe them in the subsequent cases.

(C2) If h is parallel to h′ and h ∈ {ad, au} (i.e., Column 2 of Row 1 and
Columns 1–2 of Row 2 in Figure 4), then we draw a straight line pq
such that p, q are two points on h, h′, respectively. Let r be a point on
pq. We then draw a line segment rz ⊥ pq, such that z ∈ cl.

(C3) Otherwise, h ⊥ h′ (i.e., Columns 1 and 4 of Row 1, Columns 3–4 of
Row 2, and Row 3 in Figure 4). Here we draw a polygonal chain p, r, q
such that p, q are two points on h, h′, respectively, pr ⊥ rq. We then
draw a line segment rz ⊥ rq, such that either z ∈ k2k3 (when rq is
horizontal), or z ∈ k3k4 (when rq is vertical).
An interesting case is shown in Column 2 of Row 3 in Figure 4, where
the dummy vertex is placed in the proper interior of the segment qk3
instead of placing it on q. The reason is to respect the precondition
of the induction that s2 and t2 should not lie on q. Here we set the
free points of the left and up arms of t2 to 0 to avoid any unnecessary
adjacencies in the recursive construction.

1 Here we ensure that at least two arms of t1 (respectively, s2) lie in R1 (respectively,
R2). At most one arm of t1 on the boundary of R1 may coincide with an arm of s2
on the boundary of R2, where we assign the free points depending on di(t1).
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Fig. 4. Computation of R1 and R2 when h and h′ lie on the boundary of R, and
di(t1) ≥ �Δ/3�. (Case a = k1, c = k3): Row 1. (Case a �= k1, c = k3): Row 2. (Case
a = k1, c �= k3): Symmetric to Row 2. (Case a �= k1, c �= k3): Row 3.

D. Otherwise, at least one of h, h′ is in the proper interior of R. In this scenario
we consider the following cases depending on the positions of a and c in R.
(D1) If a �= k1 and c = k3 (i.e., Row 1 of Figure 5), then we follow (C2) or

(C3), depending on whether h||h′ or h ⊥ h′, setting p = r.
(D2) If a = k1 and c �= k3, then the computation is symmetric to (D1).
(D3) Otherwise, both h and h′ may lie in the proper interior of R. In this

case, if h′ lies on the boundary of R, then the computation of R1 and
R2 is shown in Row 2 of Figure 5. Otherwise, h′ lies in the proper
interior of R, and the computation of R1 and R2 depends on whether
f(cr) �= 0 (i.e., see Row 3 of Figure 5) and f(cr) = 0 (i.e., Row 4 in
Figure 5). The details are omitted due to space constraints.

Computation of free points: If R2 contains an arm of r that does not lie on the
boundary of R1, then we set f(rl) = f(rr) = f(ru) = f(rd) = �Δ/3�. Otherwise,
R2 contains only one arm of r and it is shared with R1, i.e., Columns 3–4 of
Row 1 in Figure 4, and Row 4 of Figure 5. In such a case, we assign �Δ/3� free
points to the arms of r that are not shared, and for the shared arm, we assign
do(s2, G2) free points in R2 and �Δ/3� − do(s2, G2) free points in R1.

We now assign the free points of s and t to s1 and t2, respectively, and place
t1(= s2) on r. If the edge (si, ti) exists, i ∈ {1, 2}, then we draw (si, ti) along h
and h′, as shown in bold in Figures 4 and 5. Observe that while drawing (si, ti),
we use some free points of s1 and t2. Therefore, we decrease the free points by one
for each arm that helps routing (si, ti). Since R1 includes all unsaturated arms of
s that lie in R, the number of free points of a in R1 is at least do(s1, G1\(s1, t1)).
According to our assignment of free points, the number of free points of r in R1

is at least di(t1, G1 \ (s1, t1)). Therefore, we can inductively draw G1 inside R1,
and similarly G2 inside R2.



On Balanced ✛-Contact Representations 151

a

h p
r z

t1

s1
k1

p

a

ch′
q

r=p z

t1

s2

t2

zs1

z

a

c

h

h′

a

c

h

h′q

h

r=p
z

t1

s1

z

s2

t2
q

r=p z

q

t1

s1

z

a

c
h′

z

t1

s1

z

q

h
p

r

p

s2

t2

z

k3

c
h′

q

a

h
p
r z

t1

s1
k1

p

a

c

h

h′
z

t1

s1

z

k4
s2

t2

q

a

t1

s1

z

h
p

p

c
h′

qq

c

h′
r zq

Instance R1 R2 Instance R1 R2

a

c

h

h′

r=p

q

z a

c

h

h′

r=p
q

z

s2

t2

qs2

t2

z

t1

s1 = k1

z t1

s1 = k1

q

q

s2

t2 q

s2

t2 q

k4k4

k4 k4 k4

k4k4
s2

t2

q

t2

s2q

Instance R1 R2

r=p

Fig. 5. Computation of R1 and R2 when at least one of h, h′ lie in the proper interior
of R, and di(t1) ≥ �Δ/3�. (Case a �= k1 and c = k3): Row 1. (Case a = k1 and
c �= k3): Symmetric to Row 1. (Case a �= k1 and c �= k3): Rows 2–4.

While computing the drawings of G1 and G2 inductively, sometimes we ro-
tated R1 and R2 anticlockwise. Therefore, before merging such a drawing, we
rotate it clockwise by the same amount. Furthermore, while computing the draw-
ings of G1 and G2, sometimes we added some dummy source and sink. For any
arm h of the dummy vertex, that is not a part of the arm of its real copy (e.g., see
the illustration in Case (C1)), we set f(h) = 0. Therefore, the merged drawing
correctly realizes all adjacencies. Since the drawings inside R1 and R2 maintains
Property (✫), the merged drawing also satisfies that property.

Case 2 (Parallel Composition): In this case s = s1 = s2 and t = t1 = t2. We
first create two copies R1 and R2 of R, i.e., R1 = a′b′c′d′ and R2 = a′′b′′c′′d′′,
where G1 and G2 will be drawn, respectively. We now define the free points.
Recall that in Case 2 of Lemma 1, we distributed do(s1) among f(a′d), f(a

′
r),

and di(t1) among f(c′l), f(c
′
u). Since here we may have at most three arms of

s and t inside R, we distribute do(s1) among a′d, a
′
r and a′u in this order, and

similarly, distribute di(t1) among c′l, c
′
u and c′r in this order. The number of free

points in the arms of s2 and t2 is determined by the free points of s and t that
remains after assigning free points to s1 and t1.

According to our assignment of free points, do(s1) = f(a′d) + f(a′r) + f(a′u).
Since do(s) ≤ f(ad) + f(ar) + f(au) and do(s) = do(s1) + do(s2), the inequality
do(s2) ≤ f(a′′d) + f(a′′r ) + f(a′′u) holds. Similarly, di(t1) = f(c′l) + f(c′u) + f(c′r)
and di(t2) ≤ f(c′′l ) + f(c′′u) + f(c′′r ). Therefore, by induction, we can draw G1

and G2 inside R1 and R2, respectively.
The idea of merging the drawings of G1 and G2 into R is similar to the Case

2 of Lemma 1. Observe that the drawing of G1 takes consecutive free points
from the arms of s (respectively, t) in anticlockwise (respectively, clockwise)
order. On the other hand, the drawing of G2 takes the remaining consecutive
free points from the arms of s (respectively, t) in anticlockwise (respectively,
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clockwise) order. Therefore, one can merge the two drawings inside R1 and R2

avoiding edge crossings inside R. Since the drawings inside R1 and R2 maintains
Property (✫), the combined drawing also satisfy that property. ��

Theorem 2. Every SP graph G has a (1/3)-balanced ✛-contact representation,
but not necessarily a (1/4− ε)-balanced representation, for any ε > 0.

Proof. The proof for the upper bound is analogous to the proof of Theorem 1.
The only difference is that here we use Lemma 2 instead of Lemma 1. The proof
for the lower bound is implied by SP graphs with Δ ≥ 4 and Δ mod 4 = 0. ��

4 Balanced Representations of Planar 3-Trees (c = 1/2)

In this section we show that planar 3-trees admit (1/2)-balanced representations.
A planar 3-tree G with n ≥ 3 vertices is a triangulated planar graph such that if
n > 3, then G contains a vertex whose deletion yields a planar 3-tree with n− 1
vertices. Let x, y, z be a cycle in G. By Gxyz we denote the subgraph induced
by x, y, z and the vertices that lie interior to the cycle. Every planar 3-tree G
with n > 3 vertices contains a vertex that is the common neighbor of all three
outer vertices of G. We call this vertex the representative vertex of G. Let p be
the representative vertex of G and let a, b, c be the three outer vertices of G,
as in Figure 6(a). The subgraphs Gabp, Gbcp and Gcap are planar 3-trees. Let
G′

abp, G
′
bcp and G′

cap be the subgraphs obtained by deleting the outer edges of
Gabp, Gbcp and Gcap, respectively. These subgraphs the three nested components
of G. By d(u,G), we denote the degree of vertex u in G. Given a planar 3-tree G
and a rectangle R, we recursively divide R into three sub-rectangles where the
nested components of G will be drawn. We first prove the following lemma.

Lemma 3. Let G be a planar 3-tree with outer vertices a, b, c and representative
vertex p, and let G′ be the graph obtained from G by deleting the outer edges of G.
Let R = k1k2k3k4 be an axis-parallel rectangle such that a, b, c lie on k1k2, k2k3
and k4, respectively. Assume that the number of free points of each arm of a, b, c is
prespecified. If the inequalities d(a,G′) ≤ f(ad)+f(au), d(b,G

′) ≤ f(bl)+f(br),
and d(c,G′) ≤ f(cl) + f(cd) hold, then G′ admits a (1/2)-balanced ✛-contact
representation Γ in R satisfying the following property.

(✲) The number of contact points at each arm incident to a, b and c in Γ is at
most the number of free points specified for that arm as input.

Proof. We employ an induction on the number of vertices of G. If n = 3, then
G′ consists of only three isolated vertices a, b and c that lie on k1k2, k2k3 and k4,
respectively. It is now straightforward to verify Property (✲). Hence we assume
that n ≥ 4 and the lemma holds for all G with smaller than n vertices. We now
consider the case when G has n vertices.

We first compute three sub-rectangles R1, R2 and R3, where G′
abp, G

′
bcp and

G′
cap will be drawn, respectively. Define h to be either au or ad depending on

whether d(a,G′
abp) ≥ f(ad) or not. Similarly, define h′ to be either br or bl
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Fig. 6. (a) A plane 3-tree. (b) Computation of R1, R2 and R3, where d(a,G′
abp) <

f(ad), d(b,G
′
abp) < f(bl), and d(c,G′

bcp) ≥ f(cd). (c)–(e) Assignment of free points.

depending on whether d(b,G′
abp) ≥ f(bl) or not. Since the inequalities f(ad) +

f(au) ≥ d(a,G′) ≥ 1 and f(bl) + f(br) ≥ d(b,G′) ≥ 1 hold, h and h′ must be
unsaturated. Let x and y be two points on h′ and h, respectively, as shown in
Figure 6(b). Draw two line segments xr ⊥ h′ and yr ⊥ h such that they meet at
point r. Define h′′ to be the arm cl or cd depending on whether d(c,G′

bcp) ≥ f(cd)
or not. Since f(cl) + f(cd) ≥ d(c,G′) ≥ 1, h′′ must be unsaturated. We draw an
orthogonal line segment rz such that z ∈ h′′. Observe that rx, ry and rz divides
R into three sub-rectangles R1, R2 and R3, i.e., the sub-rectangles that contain
corners k2, k3 and k1, respectively.

We place the vertex p on r, draw the edges (a, p), (b, p) and (c, p) along ry, rx
and rz, respectively, and then assign �Δ/2� − 1 free points at each arm of r.
To define the free points of the other arms of Ri, we distribute the free points
of a, b and c as follows. We distribute d(a,G′

abp) among ad and au (in R1), and
d(a,G′

acp) among au and ad (in R3). We then distribute d(b,G′
abp) among bl

and br (in R1), and d(b,G′
bcp) among br and bl (in R2). Finally, we distribute

d(c,G′
bcp) among cd and cl (in R2), and d(c,G′

acp) among cl and cd (in R3).
Let G′

i be the nested component of G that corresponds to Ri, i ∈ {1, 2, 3}.
Observe that some outer vertices of G′

i may not lie on Ri. Hence we cannot
directly apply the induction hypothesis. Hence for each vertex a, b or c that does
not lie on the boundary of Ri but belongs to G′

i, we add a dummy copy of that
vertex at x, y or z, respectively. Furthermore, for each arm h of the dummy copy
that is not a part of any arm of its real copy, we set f(h) = 0, e.g., f(cd) = 0 in
Figure 6(c). Consequently, the recursively computed drawings do not create any
unnecessary adjacencies. Observe that each Ri now meets the preconditions of
the induction, as shown in Figures 6(c)–(e), and hence we inductively draw G′

i

inside Ri. To apply the induction, we need to be careful of the vertex that play
the role of k4, i.e., the corner having exactly two arms inside the rectangle that
are perpendicular to each other, e.g., the position of p in Figures 6(c)–(d), and
the position of c in Figure 6(e). Each Ri contains exactly one of r and c at one
of its four corners, which plays the role of k4 in Ri. Since the smaller drawings
satisfy Property (✲), the final drawing satisfies Property (✲). ��

Theorem 3. Every planar 3-tree G admits a (1/2)-balanced ✛-contact repre-
sentation, but not necessarily a (1/3)-balanced representation.
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Proof. Let a, b, c be the outer vertices of G, and let R = k1k2k3k4 be an axis-
parallel rectangle. Place a, b, c on k1k2, k2k3 and k4, respectively, draw the outer
edges of G along the boundary of R, and finally, assign �Δ/2� − 1 free points
at each arm of a, b and c. Let G′ be the graph obtained by removing the outer
edges of G. By Lemma 3, G′ has a (1/2)-balanced ✛-contact representation in
R. The lower bound that c > 1/3 is implied by the graph K4. ��

5 Conclusion

We have proved that 2-trees (respectively, planar 3-trees) admit c-balanced ✛-
contact representations, where 1/4 ≤ c ≤ 1/3 (respectively, 1/3 < c ≤ 1/2). A
natural open question is to find tight bounds on c. Although our representations
for planar 3-trees preserve input embedding, the representations for 2-trees do
not have this property. Thus it would be interesting to examine whether there
exist algorithms for (1/3)-balanced representations of 2-trees that preserve input
embedding. Another intriguing open question is to characterize planar graphs
that admit c-balanced ✛-contact representations, for small fixed values c.
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Abstract. A proper touching triangle representation R of an n-vertex planar
graph consists of a triangle divided into n non-overlapping triangles. A pair of tri-
angles are considered to be adjacent if they share a partial side of positive length.
Each triangle inR represents a vertex, while each pair of adjacent triangles repre-
sents an edge in the planar graph. We consider the problem of determining when
a proper touching triangle representation exists for a strongly-connected outer-
planar graph, which is biconnected and after the removal of all degree-2 vertices
and outeredges, the resulting connected subgraph only has chord edges (w.r.t. the
original graph). We show that such a graph has a proper representation if and only
if the graph has at most two internal faces (i.e., faces with no outeredges).

1 Introduction

Although the node-link model has been the traditional form of drawing a planar graph
G(V,E), many application areas demand alternate models of representing graphs, such
as polygon edge-contact representations. Here vertices are represented by simple poly-
gons and edges are represented by adjacent polygons that have at least a partial side
in common. As pointed out by de Fraysseix et al. [2], one can easily find such a rep-
resentation of any planar graph with non-convex polygons with complexity as high as
|V |−1, where much area is unused leading to many gaps and holes within the represen-
tation. Recently, convex hexagons have been shown to always be sufficient in producing
hole-free representations [1], although, 6-sided polygons are sometimes necessary. The
problem thus arises in determining which classes of planar graphs can be represented
by polygons with fewer than six sides.

In this context, we focus on the case of minimal polygonal complexity, where all the
representing polygons are triangles. Specifically, an n-vertex touching triangle graph
(TTG) has a representation R where each vertex is represented by one of n non-
overlapping triangles and each edge is represented by a pair of adjacent triangles in R.
Again, triangles are only considered to be adjacent if they share at least a partial side of
positive length. Thus, pairs of triangles having only point contacts are not considered to
be adjacent, and hence, do not represent edges.

The most natural looking edge-contact representations have triangular boundaries
where their interiors contains no gaps or holes. If this is the case, then R is a proper
TTG representation, and the graph is a proper TTG. Visually, R can be thought of as
a triangle that has been subdivided into n non-overlapping triangles, where adjacent

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 155–160, 2013.
c© Springer International Publishing Switzerland 2013
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(b) Side triangles

(c) Internal triangles
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Fig. 1. (a–c) Three types of representing triangles; (d) a strongly-connected outerplanar graph G
with two internal faces: 2 and 7; and (e) a proper TTG representation R of G

triangles do not necessarily share entire sides as they do in a triangulation. Not all
planar graphs are TTGs [3], let alone proper. While it was also shown in [3] that all
biconnected outerplanar graphs have hole-free TTG representations, their boundaries
are not necessarily triangular, and hence, are not necessarily proper. This raises the
question as to which outerplanar graphs have proper TTG representations.

A proper outerplanar TTG has several restrictions. Degree-1 vertices can only be
represented by corner triangles ofR with two edges along the boundary T ofR, while
degree-2 vertices can also be represented by side triangles ofR with one side along T .
All other vertices are represented by internal triangles ofR; cf. Figs. 1(a)–1(c).

A biconnected outerplanar graph G is strongly-connected if after the removal of
all degree-2 vertices and outeredges, the resulting connected subgraph only has chord
edges (w.r.t. G) as in Fig. 1(d). Such graphs are not necessarily maximal. We character-
ize this graph class in terms of internal faces (i.e. faces with no outeredges) as follows:

(1) First, we construct proper TTG representations for strongly-connected outerplanar
graphs, as in Fig. 1(e), using a chord-to-endpoint assignment that pairs each chord
(except for one) with a distinct vertex that is also an endpoint of the chord.

(2) Second, we show that having at most two internal faces is sufficient when the graph
is strongly-connected, since a chord-to-endpoint assignment exists in this case.

(3) Third, we finish our characterization by proving that having at most two internal
faces is also necessary in order for G to have a proper TTG representation.

To the best of our knowledge, the only other results specifically for proper TTGs
are in [4], where a fixed-parameter tractable decision algorithm for 3-connected planar
max-degree-Δ graphs is described, and where it it shown that planar 3-connected cubic
graphs are proper TTGs.
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2 Proper Strongly-Connected Outerplanar TTGs

Let G be a strongly-connected outerplanar graph. A strong reversed peeling order σ is
an ordering of the inner faces F1, . . . , Fq of G such that the subgraph Gi = F1∪· · ·∪Fi

is also strongly-connected for each i ∈ [1 .. q]. We index the chords C = {c2, . . . , cq} of
G by σ such that ci is the chord of face Fi that becomes an outeredge of Gi−1 when Fi

is “peeled” from Gi. Thus, ci is common to Fi′ and Fi for some i′ < i. Finally, a chord-
to-endpoint assignment τ : C′ → V ′ of a strong reversed peeling order σ assigns the
chords C′ = {c3, . . . , cq} = C \ {c2} to a subset of their endpoints V ′ = {v3, . . . , vq}
such that τ(ci) = vi is an endpoint of ci for each i ∈ [3 .. q] where vi �= vj if i �= j.

Claim 1. If G is a strongly-connected outerplanar graph, then G has a strong reversed
peeling order σ.

Proof. Faces F1 andF2 of σ can be any pair of adjacent faces. For i ∈ [2 .. q−1], assume
that subgraph Gi = F1∪· · ·∪Fi, has the connected chord subgraph Hi = c2∪· · ·∪ci,
where ci is the chord of face Fi that was added to Gi−1. At least one outeredge of Gi

is a chord in G. Otherwise, the outerface of Gi, which is a separating cycle C in G,
would have a cut-vertex in G—all the cut edges in G are chords, none of which can be
in C—violating the biconnectivity of G. Since G is strongly-connected, every chord c
in the outerface of Gi must be incident to some chord of Hi. Thus, the next face Fi+1

in σ can be any remaining face whose chord ci+1 is an outeredge of Gi. ��

Lemma 2. If G is a strongly-connected outerplanar graph for which there exists a
chord-to-endpoint assignment τ , then G has a proper touching triangle representation.

Proof. Let σ be the strong reversed peeling order of the faces F1, . . . , Fq of G given by
the order of chords as assigned by τ . We apply induction on k and assume that we have
a proper TTG representationRk for Gk, and show how to modifyRk to obtain Rk+1

for Gk+1 = Gk ∪ Fk+1. When G1 has a single face F1 with the edge (u, v) connected
by the chain of vertices x1, . . . , xi, Fig. 2(a) gives a proper TTG representation R1

for G1. Next, when G2 has two faces with the common chord (u, v) (where y1, . . . , yj
forms a chain in F2), Fig. 2(b) gives a proper TTG representationR2 for G2 where the
triangle�u representing u inR1 was subdivided into a total of j + 1 triangles.

For k ∈ [2 .. q−1], we also assume by induction on k that triangle�vk representing
τ(ck) = vk is a side triangle in Rk. This holds in the base case of k = 2, since R2 in

�1
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�i�2

�v
xi

x2

x1

u v

(a) G1 andR1

�1
�u �2�2

�v�'1

�'j
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u v

y1 yj

(b) G2 andR2

Fig. 2. Proper TTG representations of strongly-connected outerplanar graphs with 1 or 2 faces
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Fig. 3. For chord c3 = (a, d), either triangle �a or �d in R2 in (a) is divided into triangles
�τ (c3),�e,�f to formR3 if τ (c3) = a as in (b) orR′

3 if τ (c3) = d as in (c)

Fig. 2(b) only has side triangles. This allows us to subdivide �vk in Rk a total of jk
times to obtain Rk+1 in which an internal triangle now represents vk and jk new side
triangles represent the jk degree-2 vertices in Fk that were added to Gk to form Gk+1.
Figure 3 illustrates this process. The chord c3 = (a, d) in G3 either has τ(c3) = a or
τ(c3) = d. This results in R3 in Fig. 3(b) (or in R′

3 in Fig. 3(c)) after dividing the side
triangle�a (or�d) inR2 of G2 in Fig. 3(a) into the internal triangle�a (or�d) and
the two side triangles �e and �f . As a consequence, each chord endpoint vk has its
representing triangle�vk subdivided once, at which point�vk is an internal triangle in
Rk′ for k′ > k. However, this is not a problem in maintaining our inductive hypothesis
for k + 1 since τ assigns each chord to a distinct vertex in G. ��

Lemma 3. If G is a strongly-connected outerplanar graph with at most two internal
faces, then G is a proper touching triangle graph.

Proof. We construct a chord-to-endpoint assignment τ , where Lemma 2 then implies
that G is a proper TTG. If G has no internal faces, its connected chord subgraph H is
acyclic, and hence, a tree. Let σ be a strong reversed peeling order of faces F1, . . . , Fq

for G given by Claim 1. Each face Fi was picked so that its chord ci is a leaf edge in
the subtree of chords Hi = c2 ∪ · · · ∪ ci of Gi. Thus, we can assign τ(ci) = ui, where
ui is the endpoint of ci that is a leaf node in Hi, for i ∈ [3 .. q]. Both endpoints of the
first chord c2 are left unassigned by τ .

If G has one internal face F , we apply Claim 1 and assign chords as before with the
following exceptions: We set F1 = F and faces F2, . . . , Fj as the adjacent faces of F1,
where face Fi+1 is incident to face Fi for i ∈ {2 ..j − 1}. Since chord cj forms the
cycle C (edges of F1) when added to Hj , we can set τ(cj) to be the common endpoint
of the chords cj and c2, which leaves one endpoint of c2 unassigned.

Lastly, when G has two internal faces, we apply Claim 1 as follows: We set F1 and
Fk in σ to be the two internal faces in G such that k is minimal. The chords of Gk

contain a path p connecting F1 to Fk. For τ , we assign each chord of p to the endpoint
first encountered along p so that c2 and ck each have exactly one assigned endpoint. To
σ we add each remaining face Fi adjacent first to F1 (and then to Fk) starting from the
endpoints of p in cyclic order along each respective face. For τ , we assign chord ci of
each cycle to its newly added endpoint in Hi—except for the last chord, call it c′, in F1
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Fig. 4. Example of determining σ and τ for strongly-connected outerplanar graph G with two
internal faces F1 and F8. Subgraph G8 (dark gray faces) is the minimal strongly-connected sub-
graph containing both F1 and F8, whose chord subgraph H8 (solid chords) is a caterpillar. Sub-
graph G14 (light/dark gray faces) has faces F9, ..., F11 and F12, ..., F14 added in cyclic order
along F1 and F8, resp., each starting from an endpoint of path p (white vertices). The chords of
path p are assigned the endpoints first encountered along p from F1 to F8. The dashed chords of
F1 and F8 are assigned endpoints next along each cycle (starting from endpoints of p). Chord ci
for i ∈ {4, 6, 15, ..., 22} is assigned its endpoint that was not in the chord subgraph Hi−1.

(or in Fk). Given the greedy assignment of chords along p, c′ has an available endpoint
in common with c2 in F1 (or ck in Fk). Each remaining face can be added to σ and have
its chord assigned by τ as before. Figure 4 illustrates this procedure. ��

For the next lemma, we consider the representing dual graph GR (the graph formed
by the representationR) of a proper TTG G. With respect to the triangular boundary T
of a proper TTG representationR, each vertex or edge of GR (common to one or more
representing triangles) is either external if along the boundary T or internal if inside T .
Likewise, we term the faces of GR as being either external faces if they correspond to
corner or side triangles or internal faces, otherwise. We have the following relationships
between G and GR: (1) each vertex v in G corresponds to a bounded triangular face Fv

in GR and (2) each bounded face f in G corresponds to an internal vertex vF in GR.
Clearly, the angle of a vertex vF in GR along the face Fv in GR can be at most 180◦.

If the angle is less than 180◦, then vF is a corner of the triangular face Fv. Each internal
vertex vF in GR has at most one 180◦ angle since deg(vF ) > 2 in GR. For example,
the angle of vertex v1 inR in Fig. 1(e) is 180◦ for face Fb, but not for faces Fa and Fm.
Face Fv in GR representing v has exactly three vertices (each with an angle less than
180◦) if either (i) Fv is an external face where deg(v) = 2 or (ii) Fv is an internal face
where deg(v) = 3. Otherwise, Fv has at least ch(v) = max{deg(v) − 3, 0} vertices
in GR whose internal angles are 180◦ along the boundary of Fv . These correspond to
ch(v) faces in G that are incident to v.

We denote ch(v) as the charge of v since each incident face F in G can dissipate at
most one charge from v. This is done by having the internal angle for vF be 180◦ along
the face Fv representing v in GR. However, face F can dissipate at most one charge
from an incident vertex, since vF has at most one 180◦ angle. For example, vertex d in
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Fig. 1(d) has charge ch(d) = 2 dissipated by faces F3 and F10, where the corresponding
internal vertices v3 and v10 have 180◦ angles for face Fd in Fig. 1(e).

Thus, in order for G to be a TTG, there must exist a discharge function, π : F ′ → V
that assigns a subset facesF ′ ⊆ F (the faces of G) to incident vertices to fully dissipate
the total charge ch(G) =

∑
v∈V (G) ch(v) of G. Hence, G cannot be a proper TTG

graph if av(G) = q − ch(G) < 0, where q = |F| and av(G) is the availability of G.

Lemma 4. If G is a strongly-connected outerplanar graph with more than two internal
faces, then G cannot be a proper touching triangle graph.

Proof. We apply Claim 1 to get a strong reversed peeling order σ of the faces F1, . . . , Fq

of G, where the subgraph Gi = F1 ∪ · · · ∪ Fi is strongly-connected. If Gi does not
contain any internal faces, then Hi is a tree. When peeling face Fi from Gi to obtain
Gi−1, chord ci cannot have both of its endpoints ui and vi in Hi−1. Otherwise, ci would
form a cycle in Hi. Thus, one endpoint vi /∈ Hi−1 of ci has deg(vi) = 2 in Gi−1. While
both degrees of ui and vi increased by 1 in going from Gi−1 to Gi, only deg(ui) > 3 in
Gi, while deg(vi) = 3 in Gi. Thus, the total charge ch(Gi) = ch(Gi−1) + 1 increases
by one, so that the availability av(Gi) = av(Gi−1) remains constant.

If Gi contains a new internal face C that Gi−1 does not, then both endpoints ui and
vi of ci must be in Hi−1 in order for ci to form the new cycle C in Hi. Hence, both
deg(ui) > 3 and deg(vi) > 3 in Gi, so that ch(Gi) = ch(Gi−1) + 2, and as a result,
av(Gi) = av(Gi−1)− 1 where the availability decreases by one.

Initially the availability is at most 2, where G2 has maximum degree 3 with the two
faces F1 and F2 so that av(G2) = 2. Consequently, G can have at most two internal
faces, before the availability drops below 0, preventing it from being a TTG. ��

We conclude by combining Lemmas 3 and 4 to give the main theorem of the paper.

Theorem 5. A strongly-connected outerplanar graph G has a proper touching triangle
representation if and only if G has at most two internal faces.
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in 3D Arc Diagrams
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Abstract. We study a three-dimensional analogue to the well-known
graph visualization approach known as arc diagrams. We provide several
algorithms that achieve good angular resolution for 3D arc diagrams,
even for cases when the arcs must project to a given 2D straight-line
drawing of the input graph. Our methods make use of various graph
coloring algorithms, including an algorithm for a new coloring problem,
which we call localized edge coloring.

1 Introduction

An arc diagram is a two-dimensional graph drawing where the vertices of a
graph, G, are placed on a one-dimensional curve (typically a straight line) and
the edges of G are drawn as circular arcs that may go outside that curve (e.g.,
see [1,2,6,8,19,20,23]). By way of analogy, we define a three-dimensional arc di-
agram to be a drawing where the vertices of a graph, G, are placed on a two-
dimensional surface (such as a sphere or plane) and the edges of G are drawn
as circular arcs that may go outside that surface. (See Fig. 1.) This 3D drawing
paradigm is used, for example, to draw geographic networks or flight networks
(e.g., see [3]).

In this paper, we are interested in the angular resolution of 3D arc diagrams,
that is, the smallest angle determined by the tangents at a vertex, v, to two

(a) (b)

Fig. 1. A graph rendered (a) as a straight-line drawing and (b) as a 3D arc diagram
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arcs incident to v in such a drawing. Specifically, we provide algorithms for
achieving good angular resolution in 3D arc diagrams where the (base) surface
that contains the vertices for the graph, G, is a sphere or a plane. Moreover, for
the 3D arc diagrams that we consider in this paper, we assume that all the edges
of G are drawn to protrude out of only one side of the base surface.

1.1 Previous Related Results

The term “arc diagram” was defined in 2002 by Wattenberg [23], but the drawing
paradigm actually can be traced back to the 1960’s, including work by Saaty [20]
and Nicholson [19]. Also, earlier work by Brandes [2] explores symmetry in arc
diagrams, earlier work by Cimikowski and Shope [6] explores heuristics for min-
imizing the number of arc crossings, and earlier work by Djidjev and Vrt’o [8]
explores lower bounds for the crossing numbers of such drawings. Most recently,
Angelini et al. [1] show that there is a universal set of O(n) points on a parabola
that allows any planar graph to be drawn as a planar arc diagram.

In terms of previous work on arc diagrams for optimizing the angular reso-
lution of such drawings, Duncan et al. [11] give a complete characterization of
which regular graphs can be drawn as arc diagrams with vertices placed on a
circle and perfect angular resolution, using a drawing style inspired by the artist,
Mark Lombardi, where edges are drawn using circular arcs so as to achieve good
angular resolution. With respect to a lower bound for this drawing style, Cheng
et al. [5] give a planar graph with bounded degree, d, that requires exponential
area if it is drawn as a plane graph with circular-arc edges and angular resolution
Ω(1/d). Even so, it is possible to draw any planar graph as a plane graph with
poly-line or poly-circular edges to achieve polynomial area and Ω(1/d) angular
resolution, based on results by a number of authors (e.g., see Brandes et al. [4],
Cheng et al. [5], Duncan et al. [9,11], Garg and Tamassia [15], Goodrich and
Wagner [17], and Gutwenger and Mutzel [18]).

In addition, several researchers have investigated how to achieve good angular
resolution for various straight-line drawings of graphs. Duncan et al. [10] show
that one can draw an ordered tree of degree d as a straight-line planar drawing
with angular resolution Ω(1/d). Formann et al. [14] show that any graph of
degree d has a straight-line drawing with polynomial area and angular resolution
Ω(1/d2), and this can be improved to be Ω(1/d) for planar graphs, albeit with
a drawing that may not be planar.

We are not familiar with any previous work on achieving good angular res-
olution for 3D arc diagrams, but there is previous related work on other types
of 3D drawings [7]. For instance, Brandes et al. [3] show that one can achieve
Ω(1/d) angular resolution for 3D geometric network drawings, but their edges
are curvilinear splines, rather than simple circular arcs. Garg et al. [16] study
3D straight-line drawings so as to satisfy various resolution criteria, but they do
not constrain vertices to belong to a 2D surface. In addition, Eppstein et al. [12]
provide an algorithm for achieving optimal angular resolution in 3D drawings of
low-degree graphs using poly-line edges.
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1.2 Our Results

In this paper, we give several algorithms for achieving good angular resolution
for 3D arc diagrams. In particular, we show the following for a graph, G, with
maximum degree, d:

– We can draw G as a 3D arc diagram with an angular resolution of Ω(1/d)
(Ω(1/d1/2) if G is planar) using straight-line segments and vertices placed
on a sphere.

– We can draw G as a 3D arc diagram with an angular resolution of Ω(1/d)
using circular arcs that project perpendicularly to a given straight-line draw-
ing for G in a base plane, no matter how poor the angular resolution of that
projected drawing.

– If a straight-line 2D drawing ofG already has an angular resolution of Ω(1/d)
in a base plane, P , then we can draw G as a 3D arc diagram with an angular
resolution of Ω(1/d1/2) using circular arcs that project perpendicularly to
the given drawing of G in P .

– Given any 2D straight-line drawing of G in a base plane, P , we can draw G as
a 3D arc diagram with an angular resolution of Ω(1/d1/2) using circular arcs
that project to the edges of the drawing of G in P , with each arc possibly
using a different projection direction.

Our algorithms make use of various graph coloring methods, including an algo-
rithm for a new coloring problem, which we call localized edge coloring.

Note that O(1/d1/2) is an upper bound on the resolution of a 3D arc drawing
of G, as maximizing the smallest angle between two edges around a vertex, v, is
equivalent to maximizing smallest distance between intersections of a unit sphere
centered at v, and lines tangent to edges incident to v, which is known as the
Tammes problem [21]. The O(1/d1/2) upper bound is due to Fejes Tóth [13].

2 Preliminaries

In this section, we provide formal definitions of two notions of 3D arc diagrams.
We extend the notion of arc diagrams and define 3D arc diagram drawings of

a graph, G, to be 3D drawings that meet the following criteria:

(1) nodes (vertices) are placed on a single (base) sphere or plane
(2) each edge, e, is drawn as a circular arc, i.e., a contiguous subset of a circle
(3) all edges lie entirely on one side of the base sphere or plane.

In addition, if the base surface is a plane, P1, then each circular edge, e, which
belongs to a plane, P2, forms the same angle, αe ≤ π/2, in P2, at its two end-
points. Moreover, in this case, each edge projects (perpendicularly) to a straight
line segment in P1. An example of such an arc is shown in Fig. 2a.
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Fig. 2. Edge e = (a, b) drawn as (a) circular arc with angle αe; (b) slanted circular arc
with angles (αe, βe).

For 3D arc diagrams restricted to use a base plane, P1 (rather than a sphere),
by modifying the second condition, we obtain a definition of slanted 3D arc
diagram drawings.

(2′) each edge e is a circular arc that lies on a plane, P2, that contains both
endpoints of e and forms an angle, βe < π/2, with the base plane, P1; the
edge, e, forms the same angle, αe ≤ π/2, in P2, at its two endpoints.

Note that in this case each circular edge, e, joining vertices a and b, in a slanted
3D arc diagram, projects to a straight line segment, L = ab, in the base plane,
P1, using a direction perpendicular to L in P2. Still, a perpendicular projection
of the drawing onto the base plane, P1, is not necessarily a straight-line drawing
of G and may not even be planar. For an example, see Fig. 2b.

3 Localized Edge Coloring

Recall that a vertex coloring of a graph is an assignment of colors to vertices so
that every vertex is given a color different from those of its adjacent vertices, and
an edge coloring is an assignment of colors to a graph’s edges so that every edge
is given a color different from its incident edges. A well-known greedy algorithm
can color any graph with maximum degree, d, using d + 1 colors, and Vizing’s
theorem [22] states that edges of an undirected graph G can similarly be colored
with d+ 1 colors, as well.

Assuming we are given an undirected graph G together with its combinatorial
embedding on a plane (i.e., the order of edges around each vertex, which is also
known as a rotation system), we introduce a localized notion of an edge coloring,
which will be useful for some of our results regarding 3D arc diagrams. Given an
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even integer parameter, L, we define an L-localized edge coloring to be an edge
coloring that satisfies the following condition:

Suppose an edge e = (u, v) has color c, and let (l1, l2, . . . , li = e, . . . lk)
be a clockwise ordering of edges incident to u. Then none of the edges
li−L/2, li−L/2+1, . . . , li−1, li+1, . . . , li+L/2, that is, the L/2 edges before e
and L/2 edges after e in the ordering, has color c. (Note that, by symmetry,
the same goes for edges around v.)

Thus, a valid d-localized edge coloring is also a valid classical edge coloring.We
call the set, {li−L/2, li−L/2+1, . . . , li−1, li+1, . . . , li+L/2}, the L-neighborhood of
e around u.

As with the greedy approach to vertex coloring, an L-localized edge coloring
can be found by a simple greedy algorithm that incrementally assigns colors to
edges, one at a time. Each edge e = (u, v) is colored with color c that does not
appear in both L-neighborhoods of e (around u and around v). Using reasonable
data structures, this greedy algorithm can be implemented to run in O(mL)
time, for a graph with m edges, and combining it with Vizing’s theorem [22],
allows us to find an edge coloring that uses at most min{d, 2L}+ 1 colors.

4 Improving Resolution via Edge Coloring

As mentioned above, we define the angle between two incident arcs in the 3D
arc diagram to be the angle between lines tangent to the arcs at their common
endpoint. In order to reason about angles in 3D, the following lemma will prove
useful.

Lemma 1. Consider two segments l1, l2 that share a common endpoint that
lies on a plane P (see Fig. 3). If both l1 and l2 form angle β ≤ π/4 with their
projections onto P, and projections of l1 and l2 onto P form angle α, then δ,
the angle between l1 and l2, is at least α/2.

Proof. Assume w.l.o.g. that |l1| = |l2| = 1. The distance d between endpoints
of l1 and l2 is the same as the distance between endpoints of projections of l1
and l2 onto P (because both l1 and l2 form angle β with P). Lengths of the
projections are cosβ, and by the law of cosines,

d2 = cos2 β + cos2 β − 2 cosβ cosβ cosα = 2 cos2 β(1 − cosα).

On the other hand, again by the law of cosines,

d2 = |l1|2 + |l2|2 − 2|l1||l2| cos δ = 2(1− cos δ).

Comparing the two yields

2 cos2 β(1 − cosα) = 2(1− cos δ),

which leads to
cos δ = 1− cos2 β(1 − cosα).
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Fig. 3. Illustration of Lemma 1

For β ≤ π/4,

cos δ ≤ cos
α

2
,

which means that
δ ≥ α

2
.

��

In addition, the following lemma will also be useful in our results.

Lemma 2. Consider two segments, l1 and l2, that share a common endpoint,
with l1 lying on a plane P (see Fig. 4). If l2 forms angle β < π/4 with its
projection onto P, then δ, the angle between l1 and l2, is at least β.

Proof. Assume w.l.o.g. that |l1| = |l2| = 1. Length of a, the projection of l2 onto
P , is cosβ, and h, the distance of l2’s endpoint from P is sinβ. Let α be the
angle between l1 and a, and let b be the segment connecting their endpoints. By
the law of cosines,

|b|2 = |a|2 + |l1|2 − 2|a||l1| cosα = cos2 β + 1− 2 cosβ cosα.

Then,

|d|2 = |h|2 + |b|2 = sin2 β + cos2 β + 1− 2 cosα cosβ = 2(1− cosα cosβ).

Again, by the law of cosines,

|d|2 = |l1|2 + |l2|2 − 2|l1||l2| cos δ = 2(1− cos δ).

Comparing the two yields
cos δ = cosα cosβ.

Since cosα ≤ 1, we get
cos δ ≤ cosβ,

and it follows that δ ≥ β. ��
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Fig. 4. Illustration of Lemma 2

4.1 Vertices on a Sphere

In this subsection, we consider the angular resolution obtained in a 3D arc dia-
gram using straight-line edges drawn between vertices placed on a sphere. The
two algorithms we present here are inspired by a two-dimensional drawing algo-
rithm by Formann et al. [14]. Our main result is the following.

Theorem 1. Let G = (V,E) be a graph of degree d. There is a 3D straight-line
drawing of G with an angular resolution of Ω(1/d), with the vertices of G placed
on the surface on a sphere.

Proof. Let G2 = (V,E2) be the square of G, that is the graph with the same set
of vertices as G, and an edge between vertices (u, v) if there is a path of length
≤ 2 between u and v in G. Since G has degree d, G2 has degree ≤ d(d− 1) < d2.
Therefore, we can color the vertices of G2 with at most d2 colors, with the
requirement that adjacent vertices have different colors.

We place the vertices on a unit sphere S. We define d2 cluster positions as
follows. First, we cut the circle with d+ 1 uniformly spaced parallel planes (see
Fig. 5), such that the maximum distance between the center of S and a plane is h
(thus, the distance between two neighboring planes is 2h/d). Then, we uniformly
place d points on each resulting circle. These are the cluster positions.

Since a coloring C of G2 uses ≤ d2 colors, we can assign distinct cluster
positions to colors in C. To obtain a drawing of G, we place all vertices of the
same color in C on the sphere, S, within a small distance, ε, around this color’s
cluster position, and draw edges in E as straight lines. We can remove any
intersections by perturbing the vertices slightly.

The claim is that the resulting drawing has resolution Ω(1/d). Indeed, by
setting h = π/(

√
1 + π2), we get Ω(1/d) minimal distance between any two

planes, and Ω(1/d) minimal distance between any two cluster positions on the
same plane. So, the distance between any two cluster positions is at least Ω(1/d).

Now let us consider any angle �abc formed by edges (a, b) and (b, c). The
edges forming �abc define a plane, P , whose intersection with S is a circle, C.
Angle �abc is inscribed in C, and based on the arc

�
ac. Therefore, any other angle

inscribed in C and based on
�
ac has the same size, in particular the one formed
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Fig. 5. Sphere cut with equidistant planes. Red points are the cluster positions.

by an isosceles triangle �adc. Since |ad| = |cd| ≤ 2 (S has radius 1), and |ac| is
at least Ω(1/d), then |�abc| = |�adc| and is at least Ω(1/d). ��

In addition, we also have the following.

Corollary 1. Let G = (V,E) be a planar graph of degree d. There is a 3D
straight-line drawing of G with an angular resolution of Ω(1/d1/2), with the
vertices of G placed on the surface of a sphere.

Proof. The proof is a direct consequence of applying the algorithm from the
proof of Theorem 1 and the fact that the degree of G2, the square of a planar
graph, G, has degree O(d) [14]. ��

Thus, we can produce 3D arc diagram drawings of planar graphs that achieve
an angular resolution that is within a constant factor of optimal. Admittedly,
this type of drawing is probably not going to be very pretty when rendered,
say, as a video fly-through on a 2D screen, as this type of drawing is unlikely to
project to a planar drawing in any direction.

4.2 Stationary Vertices

In this subsection, we show how to overcome the drawback of the above method,
in that we show how to start with any existing 2D straight-line drawing and
dramatically improve the angular resolution for that drawing using a 3D arc
diagram rendering that projects perpendicularly to the 2D drawing.

Theorem 2. Let D(G) be a straight-line drawing of a graph, G, with arbitrary,
but distinct, placements for its vertices in the base plane. There is a 3D arc
diagram drawing of G with the same vertex placements as D(G) and with an
angular resolution at least Ω(1/d), where d is the degree of G, regardless of the
angular resolution of D(G).
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Proof. Since we are not allowed to move vertices, and edges have to lie on planes
perpendicular to the base plane, we are restricted to selecting angles αe for edges
e of G. We do it by utilizing classical edge coloring, observing that the “entry”
and “exit” angles for each vertex need to match.

First, we compute an edge coloring C of G with c colors (c ≤ d + 1). Then,
for each edge e, if its color in C is i (i = 0, 1, . . . , c − 1), we set its angle to
be αe = i · π/4(c − 1). For any two edges e1, e2, the difference between their
angles αe1 and αe2 is at least π/4(c− 1) (let αe1 < αe2 ; consider the plane, P ,
determined by both tangent lines having angle αe1 ; the angle between e2 and the
plane P , on which tangent of e1 lies, is αe2 − αe1). Therefore, by Lemma 2, the
angle between e1 and e2 in the arc diagram is also at least π/4(c− 1) = Ω(1/d).

It is unlikely that any pairs of the arcs touch each other in 3D, but if any pair
of them do touch, we can perturb one of them slightly to eliminate the crossing,
while still keeping the angular separation for every pair of incident edges to be
Ω(1/d). ��

In addition, through the use of a slanted 3D arc diagram rendering, we can
produce a drawing with angular resolution that is within a constant factor of
optimal, with each arc projecting to its corresponding straight-line edge in some
direction.

Theorem 3. Let D(G) be a straight-line drawing of a graph, G, with arbitrary,
but distinct, placements for its vertices in the base plane. There is a slanted 3D
arc diagram drawing of G with the same vertex placements as D(G) and with an
angular resolution at least Ω(1/d1/2), where d is the degree of G, regardless of
the angular resolution of D(G).

Proof. Let C be a set of �d1/2�+ 1 uniformly distributed angles from 0 to π/4.
Define a set of d+1 “colors” as distinct pairs, (α, β), where α and β are each in
C. Compute an edge coloring of G using these colors. Now let e be an edge in G,
which is colored with (α, β). Draw the edge, e, using a circular arc that lies in a
plane, P , that makes an angle of α with the base plane and which has a tangent
in P that forms an angle of β at each endpoint of e. (For instance, in Fig. 1b,
we give a slanted 3D arc diagram based on the edge coloring of the graph in
Fig. 1a, corresponding to the following (αe, βe) “colors:” (0◦, 0◦), (22.5◦, 0◦),
(45◦, 0◦), (22.5◦, 22.5◦), (45◦, 45◦).)

The claim is that every pair of incident edges is separated by an angle of
size at least Ω(1/d1/2). So suppose e and f are two edges incident on the same
vertex, v. Let (αe, βe) be the color of e and let (αf , βf) be the color of f . Since e
and f are incident and we computed a valid coloring for G, αe �= αf or βe �= βf .
In either case, this implies that e and f are separated by an angle of size at least
Ω(1/d1/2) (by Lemma 1 if βe = βf , by Lemma 2 otherwise), which establishes
the claim. As previously, we can perturb the arcs to eliminate crossings in 3D.

��

Thus, we can achieve optimal angular resolution in a 3D arc diagram for any
graph,G, to within a constant factor, for any arbitrary placement of vertices ofG
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in the plane. Note, however, that even if D(G) is planar, the 3D arc diagram this
algorithm produces, when projected to the base plane, may create edge crossings
in the projected drawing. It would be nice, therefore, to have 3D arc diagrams
that could have good angular resolution and also have planar perpendicular
projections in the base plane.

4.3 Free Vertices

In this section, we show how to take any 2D straight-line drawing with good
angular resolution and convert it to a 3D arc diagram with angular resolution
that is within a constant factor of optimal. Moreover, this is the result that
makes use of a localized edge coloring.

Theorem 4. Let D(G) be a straight-line drawing of a graph, G, with arbitrary,
but distinct, placement for its vertices in the base plane, and Ω(1/d) angular
resolution. There is a 3D arc diagram drawing of G with the same vertex place-
ments as D(G) and with angular resolution at least Ω(1/d1/2), where d is the
degree of G, such that all arcs project perpendicularly as straight lines onto the
base plane.

Proof. The algorithm is similar to the one from the proof of Theorem 2. This
time, however, we first compute an L-localized edge coloring, C, of G utilizing c
colors (c ≤ 2L + 1). Then, as previously, we assign angle αe = i · π/4(c− 1) to
an edge e of color i in C (i = 0, 1, . . . , c− 1).

Let us consider two arcs, e and f , incident on a vertex, v. If αe �= αf , then
the angle between e and f is at least π/(4c) = Ω(1/L), by Lemma 2. Otherwise,
αe = αf , and e and f have the same color in C. By the definition of L-localized
edge coloring, e and f are separated by at least L/2 edges around v. Because
D(G) has resolution Ω(1/d), the angle between e and f in D(G) is Ω(L/d).
Thus, by Lemma 1, the angle between e and f is also Ω(L/d). Therefore, the
angle between e and f is Ω(min{1/L, L/d}). We achieve the advertised angular
resolution by setting L = d1/2. ��

Theorem 4 shows that we can achieve Ω(1/d1/2) angular resolution in a 3D
arc diagram drawing of a graph, G, with arcs projecting perpendicularly onto
the base plane as straight-line segments, if there is a straight-line drawing of G
on a plane with an angular resolution of Ω(1/d). The following is an immediate
consequence.

Corollary 2. There is a 3D arc diagram drawing of any planar graph, G,
with straight-line projection onto the base plane, and an angular resolution of
Ω(1/d1/2).

Proof. By [14], we can draw G in a straight-line manner on a plane with an
angular resolution of Ω(1/d). ��

Admittedly, the 2D projection of this graph is not necessarily planar. We can
nevertheless also achieve the following.
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Corollary 3. There is a 3D arc diagram drawing of any ordered tree, T , with
straight-line projection onto the base plane, and an angular resolution of Ω(1/d1/2).

Proof. By Duncan et al. [10], we can draw T in a straight-line manner on a plane
with an angular resolution of Ω(1/d). ��

In addition, the area of the projection of the drawings produced by the pre-
vious two corollaries is polynomial.

5 Conclusion

We have given efficient algorithms for drawing 3D arc diagrams that achieve
polynomial area in the base plane or sphere that contains all the vertices while
also achieving good angular resolution. Since our algorithms deal with arc in-
tersections via arc perturbation, the results may not be satisfactory, as the per-
turbed edges will still be very close. Therefore, one direction for future work is
a related resolution question of what volumes are achievable if, in addition to
angular resolution, we also insist that every circular arc always be at least unit
distance from every other non-incident arc edge.

Acknowledgements. We thank Joe Simons, Michael Bannister, Lowell Trott,
Will Devanny, and Roberto Tamassia for helpful discussions regarding angular
resolution in 3D drawings.
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Lombardi drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 195–207. Springer, Heidelberg (2011)
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Abstract. We study the problem of how to obtain an integer realiza-
tion of a 3d polytope when an integer realization of its dual polytope is
given. We focus on grid embeddings with small coordinates and develop
novel techniques based on Colin de Verdière matrices and the Maxwell–
Cremona lifting method.

As our main result we show that every truncated 3d polytope with
n vertices can be realized on a grid of size polynomial in n. Moreover,
for a class C of simplicial 3d polytopes with bounded vertex degree, at
least one vertex of degree 3, and polynomial size grid embedding, the
dual polytopes of C can be realized on a polynomial size grid as well.

1 Introduction

By Steinitz’s theorem the graphs of convex 3d polytopes1 are exactly the pla-
nar 3-connected graphs [16]. Several methods are known for realizing a planar
3-connected graph G as a polytope with graph G on the grid [4,7,11,12,13,15].
It is challenging to find algorithms that produce polytopes with small integer
coordinates. Having a realization with small grid size is a desirable feature, since
then the polytope can be stored and processed efficiently. Moreover, grid embed-
dings imply good vertex and edge resolution. Hence, they produce “readable”
drawings.

In 2d, it is well known that planar 3-connected graphs with n vertices can
be drawn on a O(n) × O(n) grid without crossings [5], and a drawing with
convex faces can be realized on a O(n3/2×n3/2) grid [2]. For the realization as a
polytope the best algorithm guarantees an integer embedding with coordinates
at most O(147.7n) [3,11]. The current best lower bound is Ω(n3/2) [1]. Closing
this large gap is probably one of the most interesting open problems in lower
dimensional polytope theory. Recently, progress has been made for a special class
of 3d polytopes, the so-called stacked polytopes. A stacking operation replaces a
triangular face of a polytope with a tetrahedron, while maintaining the convexity
of the embedding. A polytope that can be constructed from a tetrahedron and a
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sequence of stacking operation is called stacked polytope. The graphs of stacked
polytopes are planar 3-trees. Stacked polytopes can be embedded on a grid that
is polynomial in n [6]. This is, however, the only nontrivial polytope class for
which such an algorithm is known.

In this paper we introduce a duality transform that maintains a polynomial
grid size. In other words, we provide a technique that takes a grid embedding of
a polytope with graph G and generates a grid embedding of a polytope whose
skeleton is G∗, the dual graph of G. We call a 3d polytope with graph G∗ a
dual polytope. If the original polytope has integer coordinates bounded by a
polynomial in n, then the dual polytope obtained with our techniques has also
integer coordinates bounded by a (different) polynomial in n. Our methods can
only be applied to special polytopes. Namely, we require that the graph of the
polytope is a triangulation (the polytope is simplicial), that it contains a K4,
and that the maximum vertex degree is bounded.

For the class of stacked polytopes (although their maximum vertex degree is
not bounded) we can also apply our approach to show that all graphs dual to
planar 3-trees can be embedded as polytopes on a polynomial size grid. These
polytopes are known as truncated polytopes. Truncated polytopes are simple
polytope, that can be generated from a tetrahedron and a sequence of trunca-
tions. A truncation is the dual operation to stacking. This means that a degree-3
vertex of the polytope is cut off by adding a new bounding hyperplane that sep-
arates this vertex from the remaining vertices of the polytope. We show that
all truncated polytopes can be realized with integer coordinates in O(n44). The
approach for this class is more direct, since stronger results for realizations of
stacked polytopes on the grid are known [6].

Duality. There exist several natural approaches how to construct for a given
polytope a dual. The most prominent construction is polarity. Let P be some
polytope that contains the origin. Then P ∗ = {y ∈ Rd : xT y ≤ 1 for all x ∈ P}
is a realization of a polytope dual to P , called its polar. The vertices of P ∗

are intersection points of planes with integral normal vectors, and hence not
necessarily integer points. In order to scale to integrality one has to multiply P ∗

with the product of all denominators of its vertex coordinates, which may cause
an exponential increase of the grid size.

A second approach uses the classic Maxwell–Cremona correspondence tech-
nique (also known as lifting approach) [10], which is applied in many embedding
algorithms for 3d polytope realization. The idea here is to first draw the graph
of the polytope as a convex 2d embedding with an additional equilibrium condi-
tion. The equilibrium condition guarantees that the 2d drawing is a projection
of a convex 3d polytope, furthermore the polytope can be reconstructed from its
projection in a canonical way (called lifting) in linear time. There is a classical
transformation that constructs for a 2d drawing in equilibrium a 2d drawing of
its dual graph, also in equilibrium. This drawing is called the reciprocal diagram.
The induced lifting realizes the dual polytope, but it does not provide small in-
teger coordinates for two reasons. First, the weights that define the equilibrium
of the reciprocal diagram are the reciprocals of the weights in the original graph.
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Second, the lifting realizes the dual polytope in projective space with one point
“over the horizon”. The second property can be “fixed” with a projective trans-
formation. This, however, makes a large scaling factor for an integer embedding
unavoidable. Also the reciprocal weights are difficult to handle without scaling
by a large factor.

Structure and notation. As a novelty we work with Colin de Verdière matrices
to construct small grid embeddings. In order to make these techniques (as intro-
duced by Lovász) applicable we extend this framework slightly; see Sect. 2. In
Sect. 3 we then present the main idea, combining the classical lifting approach
with the methods of Sect. 2, which finds applications in the following sections,
where the results on truncated polytopes and triangulations are presented.

Throughout the paper we denote by G the graph of the original polytope,
and by G∗ its dual graph. For any graph H we write V (H) for its vertex set,
E(H) for its edge set and N(v,H) for the set of neighbors of a vertex v in H .
Since we consider 3-connected planar graphs, the facial structure of the graph
is predetermined up to a global reflection [17]. The set of faces is therefore
predetermined, and we name it F (H). For convenience we denote an edge (vi, vj)
as (i, j). A face spanned by vertices vi, vj , and vk is denoted as (vivjvk). A
graph obtained from H by stacking a vertex v1 on a face (v2v3v4), is denoted as
Stack(H ; v1; v2v3v4). For convenience we use |p| for the Euclidean norm of the
vector p. We denote the maximum vertex degree of a graph G as ΔG. Finally,
we write G[X ] for the induced subgraph of a vertex set X ⊆ V (G).

2 3d Representations with CDV Matrices

In this section we review some of the methods Lovász introduced in his paper
on Steinitz representations [9]. In our constructions throughout the paper every
face of any graph is realized such that all its vertices lie on a common plane.
From this perspective drawings of graphs in R3 and the realizations of their
corresponding polyhedra are the same objects.

Definition 1. We call a straight-line embedding (u1, . . . , un) ∈ (R3)
n
of a pla-

nar 3-connected graph G in R3 a cone-convex embedding iff the cones over its
faces, Cf = {λx | x ∈ f, λ > 0}, f ∈ F (G) are convex and have disjoint interi-
ors.

In other words, an embedding is a cone-convex embedding if its projection to
the sphere S = {|x| = 1} is a convex drawing of G with edges drawn as geodesic
arcs. We remark that the vertices of a cone-convex embedding are not supposed
to form a convex polytope.

Definition 2. Let (u1, . . . , un) be an embedding of a graph G into Rd. We call
a symmetric matrix M = [Mij ]1≤i,j≤n a CDV matrix of the embedding if

1. Mij = 0 for i �= j, (i, j) �∈ E(G), and
2.

∑
1≤j≤n Mijuj = 0 for 1 ≤ i ≤ n.

We call a CDV Matrix positive if Mij > 0 for all (i, j) ∈ E(G).
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We call the second condition in the above definition the CDV equilibrium con-
dition.

The CDV equilibrium condition can also be expressed in a slightly different,
more geometric form as∑

j∈N(i,G)

Mijuj = −Miiui for 1 ≤ i ≤ n. (1)

Hence, a positive CDV Matrix witnesses that every vertex of the embedding can
be written as a convex combination of its neighbors using symmetric weights.
The following lemma appears in [9], we include the proof since it illustrates how
to construct a realization out of a CDV matrix.

Lemma 1 (Lemma 4, [9]). Let (u1, . . . , un) be a cone-convex embedding of
a graph G with a positive CDV matrix [Mij ]. Then every face f in G can be
assigned a vector φf s.t. for each adjacent face g and separating edge (i, j)

φf − φg = Mij(ui × uj), (2)

where f lies to the left and g lies to the right from −−→uiuj. The set of vectors {φf}
is uniquely defined up to translations.

Proof. To construct the family of vectors {φf}, we start by assigning an arbitrary
value to φf0 (for an arbitrary face f0); then we proceed iteratively. To prove the
consistency of the construction, we show that the vectors (φf − φg) sum to zero
over every cycle in G∗. Since G as well as G∗ is planar and 3-connected, it suffices
to check this condition for all elementary cycles of G∗, which are the faces of
G∗. Let τ(i) denote the set of counterclockwise oriented edges of the face in G∗

dual to vi ∈ V (G). Then, combining 1 and 2 yields

∑
(f,g)∈τ(i)

(φf−φg) =
∑

j∈N(i,G)

Mij(ui×uj) = ui×

⎛⎝ ∑
j∈N(i,G)

Mijuj

⎞⎠ = ui×(−Miiui) = 0.

The vectors {φf} are unique up to the initial choice of φf0 . �
Note that there is a canonical way to derive a CDV matrix from a 3d poly-

tope [9]. Every 3d embedding of a graph G as a polytope (ui) possesses a positive
CDV matrix defined by the vertices (φi) of its polar and equation (2). We refer
to this matrix as the canonical CDV matrix.

The following theorem, which is a variation of Lemma 5 in [9], is the main
tool in our construction.

Theorem 1 (based on Lovász [9]). Let (u1, . . . , un) be a cone-convex embed-
ding of a graph G and M a positive CDV matrix for this embedding. Then for
any set of vectors {φf}f∈F (G) fulfilling (2), the convex hull Conv({φf}f∈F (G))
is a convex polytope with graph G∗; and the isomorphism between G∗ and the
skeleton of Conv({φf}f∈F (G)) is given by f → φf .

The proof of the theorem is included in the full version of the paper. It relies on
a projection of the cone-convex embedding onto the sphere and an appropriate
“scaling” of the CDV matrix.



A Duality Transform for Constructing Small Grid Embeddings 177

3 Construction of Cone-Convex Embeddings

In this section we describe how to go from a convex 2d embedding with a positive
equilibrium stress to a cone-convex 3d embedding with a positive CDV matrix.

Definition 3. We call a set of reals {ωij}(i,j)∈E(G) an equilibrium stress for an

embedding (u1, . . . , un) of a graph G into Rd if for each i ∈ V (G)∑
j∈N(i,G)

ωij(uj − ui) = 0.

We call an equilibrium stress of a 2d embedding with a distinguished boundary
face f0 positive if it is positive on every edge that does not belong to f0.

The concept of equilibrium stresses plays a central role in the classicalMaxwell–
Cremona lifting approach and it is also a crucial concept in our embedding al-
gorithm. The equilibrium stress on a realization of a complete graph arises as a
“building block” in later constructions. The complete graph Kn, embedded in
Rn−2, has a unique equilibrium stress up to multiplication with a scalar. This
stress has an easy expression in terms of volumes related to the embedding. We
use the square bracket notation2

[qiqjqkql] := det

⎛⎜⎜⎝
xi xj xk xl

yi yj yk yl
zi zj zk zl
1 1 1 1

⎞⎟⎟⎠ , where q =

⎛⎝x
y
z

⎞⎠ ,

to obtain a formulation for the equilibrium stress on the K5 embedding.

Lemma 2 (Rote, Santos, and Streinu [14]). Let (u0, u1, . . . , u4) be an inte-
ger embedding of the complete graph K5 onto R3. Then the set of real numbers:

ωij := [ui−2ui−1ui+1ui+2][uj−2uj−1uj+1uj+2]

(indices in cyclic notation) defines an integer equilibrium stress on this embed-
ding.

Theorem 2. Let (p2, . . . , pn) be a convex 2d drawing of a planar 3-connected
graph G↑ with positive equilibrium stress {ωij} and designated triangular face
f0 = (p2p3p4) embedded as the boundary face. Then we can define a cone convex
embedding (qi) of the graph G = Stack(G↑; v1; v2v3v4) into R3 equipped with a
positive CDV matrix [Mij ], such that

Mij = ωij for each internal edge (i, j) of the 2d drawing of G↑

and each entry of M is bounded by O(nmaxij |ωij | ·maxi |pi|6).
2 For 2d vectors [pipjpk] is defined similarly.
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Proof. We can assume that (0, 0)T lies inside the embedding of f0. Let (q1, . . . , qn)
be the embedding of the graph G, defined as follows: The embedding of G↑ is re-
alized in the plane {z = 1} and the stacked vertex is placed at (0, 0,−1)T . The
embedding is cone-convex since it describes a tetrahedron containing the origin
with one face that is refined with a plane convex subdivision.

Following the structure of G = Stack(G↑; v1; v2v3v4), we decompose G into
two subgraphs: G↑ = G[{v2, . . . , vn}] and G↓ := G[{v1, v2, v3, v4}].

We first compute a CDV matrix [M ′
ij ]2≤i,j≤n for the embedding (q2, . . . , qn)

of G↑. The plane embedding (pi) of G↑ has the equilibrium stress {ωij}2≤i,j≤n.
Since {q2, . . . , qn} is just a translation of {p2, . . . , pn}, clearly, {ωij}2≤i,j≤n is as
well an equilibrium stress for the embedding (q2, . . . , qn) and we can assign:

M ′
ij :=

⎧⎪⎨⎪⎩
−
∑

k∈N(i,G↑) ωik i = j,

ωij (i, j) ∈ E(G↑),

0 else.

Now we check the CDV equilibrium condition: for every 2 ≤ i ≤ n∑
2≤j≤n

M ′
ijqj =

∑
j∈N(i,G↑)

M ′
ijqj +M ′

iiqi =
∑

j∈N(i,G↑)

M ′
ij(qj − qi) + (M ′

ii +
∑

j∈N(i,G↑)

M ′
ij)qi

=
∑

j∈N(i,G↑)

ωij(qj − qi) + (M ′
ii +

∑
j∈N(i,G↑)

M ′
ij)qi = 0.

The last transition holds since both summands equal 0. Hence, [M ′
ij ] is a valid

CDV matrix for the embedding (qi)2≤i≤n of G↑.
As a second step we compute a CDV matrix [M ′′

ij ]1≤i,j≤4 for the embedding
of the tetrahedron G↓. We apply Lemma 2 for the embedding of the K5 formed
by {q0 = (0, 0, 0)T , q1, q2, q3, q4} and receive an equilibrium stress {ω′′

ij}0≤i,j≤4.
We can now derive a CDV matrix [M ′′

ij ]1≤i,j≤4 for the tetrahedron {q1, q2, q3, q4}
based on the equilibrium stresses {ω′′

ij}0≤i,j≤4 as follows: We set

M ′′
ij :=

{
−
∑

0≤j≤4,j �=i ω
′′
ij , i = j,

ω′′
ij , otherwise,

and see that the CDV equilibrium condition holds, by noting

∀i
∑

1≤j≤4

M ′′
ijqj =

∑
1≤j≤4,j �=i

M ′′
ijqj +M ′′

iiqi =
∑

1≤j≤4,j �=i

ω′′
ijqj +M ′′

iiqi

=
∑

0≤j≤4,j �=i

ω′′
ij(qj − qi)− ω′′

i0q0 + (
∑

0≤j≤4,j �=i

ω′′
ij +M ′′

ii)qi = 0.

The last transition holds since
∑

0≤j≤4,j �=i ω
′′
ij(qj − qi) = 0 by the definition of

{ωij}, q0 = 0, and
∑

0≤j≤4,j �=i ω
′′
ij +M ′′

ii = 0 due to the choice of M ′′
ii. One can

easily check that as soon as the origin lies inside the tetrahedron {q1, q2, q3, q4} all
entries M ′′

ij have the same sign. We can assume that [M ′′
ij ] is positive, otherwise

we reorder the vertices {v2, v3, v4}.
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In the final step we extend the two CDV matrices M ′ and M ′′ to G and
combine them. Clearly, a CDV matrix padded with zeros remains a CDV matrix.
Furthermore, any linear combination of CDV matrices is again a CDV matrix.
Thus, we form a CDV matrix for the whole embedding (q1, . . . , qn) of G by
setting:

M := M ′ + λM ′′,

where λ is a positive integer chosen such that M is a positive CDV matrix. This
can be done as follows.

Recall that {ωij} is a positive stress and [M ′′
ij ] is a positive CDV matrix.

Hence, the only six entries in [Mij ] that may be negative are: M23, M34 and
M42 (and their symmetric entries), for which Mij := M ′

ij + λM ′′
ij with M ′

ij < 0
and M ′′

ij > 0. Thus, we choose λ such that M is positive at these entries. To
satisfy this condition we pick

λ =

⌊
max

(i,j)∈{(2,3),(3,4),(4,2)}
(|M ′

ij |/|M ′′
ij |)

⌋
+ 1.

To bound Mij we notice that the entries of M ′′
ij are strictly positive integers, so

λ = O(max |M ′
ij |), while |M ′

ij | = O(n · max |ωij |) and |M ′′
ij | = O(max |ω′′

ij |) =

O(max |pi|6). The bound |Mij | = O(n ·maxij |ωij | ·maxi |pi|6) follows. �

4 Realizations of Truncated Polytopes

In this section we sum up previous results in Theorem 3 and present an em-
bedding algorithm for truncated 3d polytopes in Theorem 4. We will apply
Theorem 3 also in the more general setup of Sect. 5.

Theorem 3. Let G = Stack(G↑; v1; v2v3v4) and (p2, . . . , pn) be an integer pla-
nar embedding of G↑ with boundary face (v2v3v4) and with positive integer equi-
librium stress {ωij}. Then one can construct a grid embedding (φf ) of a convex
polytope with graph G∗ such that

|φf | = O(n2 ·max |ωij | ·max |pi|8).

Proof. We first apply Theorem 2 to obtain a cone-convex embedding (q1, . . . , qn)
of G with a positive CDV matrix [Mij ]1≤i,j≤n. We then apply Lemma 1 and
obtain a family of vectors {φf}f∈F (G∗) fulfilling

φf − φg = Mij(qi × qj), ∀(f, g) dual to (i, j)− edges of G∗ and G.

Due to Theorem 1 the vectors {φf} form a realization of G∗ as a polytope.
To finish the proof we estimate how large the coordinates of the embedding

(φf ) are. To do so, let us again follow the construction of (φf ) as outlined in the
proof of Lemma 1. We pick one face as f0 ∈ F (G), and assign φf0 = (0, 0, 0)T . Let
us now evaluate φfk for some face fk ∈ F (G). The following algebraic expression
holds for all values {φfi}:

φfk = φf0 + (φf1 − φf0 ) + . . .+ (φfk−1
− φfk−2

) + (φfk − φfk−1
).
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0

Fig. 1. A 2d embedding of G↑ (left), the cone-convex embedding of G (center), and
the resulting embedding of the dual (right).

Let us now consider the shortest path f0, f1, . . . , fk in G∗ connecting the faces
f0 and fk. Clearly, k is less than 2n− 3, and hence

|φfk | ≤ 2n · max
(fa,fb)∈E(G∗)

|φfa − φfb | = 2n · max
vi,vj∈V (G)

|Mij(qi × qj)|

= O(n · (n ·max |ωij | ·max |pi|6) ·max |qi|2) = O(n2 ·max |ωij | ·max |pi|8).

The bound for the entries of M is due to Theorem 2. �
Next we apply Theorem 3 to construct an integer polynomial size grid em-

bedding for truncated polytopes. To construct small integer 2d embeddings with
small integer equilibrium stresses we use a Lemma by Demaine and Schulz [6],
which states that the graph of a stacked polytope with n vertices and any dis-
tinguished face f0 can be embedded on a 10n4 × 10n4 grid with boundary face
f0 and with integral positive equilibrium stress {ωij} such that, for every edge
(i, j), we have |ωij | = O(n10).

Theorem 4. Any truncated 3d polytope with n vertices can be realized with in-
teger coordinates of size O(n44).

Proof. Let G∗ be the graph of the truncated polytope and G := (G∗)∗ its dual.
Clearly, G is the graph of a stacked polytope with (n+4)/2 vertices. We denote
the last stacking operation (for some sequence of stacking operations producing
G) as the stacking of the vertex v1 onto the face (v2v3v4) of the graph G↑ :=
G[V \ {v1}]. The graph G↑ is again a stacked graph, and hence, by the Lemma
of Demaine and Schulz, there exists an embedding (pi)2≤i≤n of G↑ into Z2 with
an equilibrium stress {ωij} satisfying the properties of Theorem 3. We apply
the theorem and obtain a polytope embedding (φf ) of G∗ with bound |φf | =
O(n2 ·max |ωij | ·max |pi|8) = O(n44). �

Figure 1 shows an example of our method. The computations for this example
are included in the full paper.

5 A Dual Transform for Simplicial Polytopes

As we have seen a small grid embedding of a 3d polytope can be computed when
a small integer (though, not necessarily convex) embedding of its dual polytope
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with a small integral positive CDV matrix is known. However, if one wants to
build a dual for an already embedded polytope, one usually does not possess
such a matrix. The canonical CDV matrix associated with any embedding of a
3d polytope is not helpful, since its entries, when scaled to integers, might become
exponentially large. We show in this section how one can tackle this problem for
a special class of polytopes. In particular, we require that the original polytope
is simplicial, it contains a vertex of degree 3, and its maximum vertex degree is
bounded.

Before proceeding, let us review how the canonical stress associated with an
orthogonal projection of a 3d polytope in the {z = 0} plane can be described.
The assignment of heights to the interior vertices of a 2d embedding resulting in a
polyhedral surface is called a (polyhedral) lifting. By the Maxwell-Cremona cor-
respondence the equilibrium stresses of a 2d embedding of a planar 3-connected
graph and its liftings are in 1-1 correspondence. Moreover, the bijection between
liftings and stresses can be defined as follows. Let (pi) be a 2d drawing of a trian-
gulation and let (qi) be the 3d embedding induced by some lifting. We map this
lifting to the equilibrium stress {ωij} by assigning to every edge (i, j) separating
the faces (vivjvk) (on the left) and (vivjvl) (on the right)

ωij :=
[qiqjqkql]

[pipjpk][plpjpi]
. (3)

This mapping is a bijection between the space of liftings and the space of equilib-
rium stresses. The expression (3) is a slight reformulation of the form presented
in Hopcroft and Kahn [8, Equation 11].

We continue by studying the spaces of equilibrium stresses for triangulations.
A graph formed by a cycle v1, . . . , vn with an additional vertex v0, called cen-
ter, that is adjacent to every other vertex, is called a wheel ; we denote it as
W(v0; v1 . . . vn). A wheel that is a subgraph of a triangulation G with vi ∈ V (G)
as center is denoted by Wi. Every triangulation can be “covered” with a set of
wheels {Wi}vi∈V (G), such that every edge is covered four times.

Lemma 3. Let (p0, . . . , pn) be an embedding of a wheel W(v0; v1 . . . vn) in R2.
Then the following expression defines an equilibrium stress:

ωij =

{
−1/[pipi+1p0] j = i+ 1, 1 ≤ i ≤ n,

[pi−1pipi+1]/([pi−1pip0][pipi+1p0]) j = 0, 1 ≤ i ≤ n.

The equilibrium stress for the embedding (pi) is unique up to a renormalization.

Proof. This stress coincides with (3) from the lifting of W with z0 = 1 and
zi = 0 for 1 ≤ i ≤ n and so is an equilibrium stress. The space of the stresses is
1-dimensional, since the space of the polyhedral liftings is 1-dimensional. �

Definition 4. 1. For a wheel W embedded in the plane we refer to the equilib-
rium stress defined in Lemma 3 as its small atomic stress and denote it as
{ωa

ij(W )}.
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2. Wecall the stress {Ωa
ij(W )} that is obtained by the renormalization of {ωa

ij (W )}
by the factor

∏
1≤j≤n[pjpj+1p0], the large atomic stress ofW .

We point out that the large atomic stresses are products of deg(v0)− 1 triangle
areas multiplied by 2, and so, {Ωa

ij(W )} is a set of integers if W is realized with
integer coordinates.

Theorem 5 (Wheel-decomposition). Let G be a triangulation. Every equi-
librium stress {ωij} of an embedding (p1, . . . , pn) of G can be expressed as a
linear combination of the small atomic stresses on the wheels {Wi}:

ω =
∑
i≤n

αiω
a(Wi),

where the coefficients αi are the heights (i.e., z-coordinates) of the corresponding
vertices vi in the Maxwell–Cremona lifting of (p1, . . . , pn) induced by {ωij}.

Proof. Let (q1, . . . , qn) be the Maxwell-Cremona lifting of (pi) by means of the
stress {ωij}. We rewrite this stress (given by Equation 3) using

[q1q2q3q4] =
∑

1≤i≤4

(−1)i+1zi[pi+1pi+2pi+3],

(with cyclic notation for indices) and obtain

ωij = zi
[pjpkpl]

[pipjpk][plpjpi]
+ zj

[plpkpi]

[pipjpk][plpjpi]
− zk

1

[pipjpk]
− zl

1

[plpjpi]
,

which is exactly the decomposition of ωij into small atomic wheel stresses. �

Theorem 6. Let (q1, . . . , qn) be an embedding of a triangulation G into Z3,
whose projection (p1, . . . , pn) to the plane {z = 0} is a noncrossing embedding
of G with boundary face (v1v2v3). Then one can construct a positive integer
equilibrium stress {ωij} for the embedding (p1, . . . , pn) such that

|ωij | < (max
i≤n

|qi|)2ΔG +5.

Proof. We start with the equilibrium stress {ω̃ij} as specified by (3) for the
embedding (pi). Since all the coordinates are integers, all stresses are bounded
by

1

L4 ≤
1

|[pipjpk]||[plpjpi]|
≤ |ω̃ij | ≤ |[qiqjqkql]| ≤ L3,

for L = 2maxi≤n |qi|.
We are left with making these stresses integral while preserving a polynomial

bound. The stress {ω̃ij} can be written as a linear combination of large atomic
stresses of the wheels Wi by means of the Wheel-decomposition Theorem,

ω̃ij = αiΩ
a
ij(Wi) + αjΩ

a
ij(Wj) + αkΩ

a
ij(Wk) + αlΩ

a
ij(Wl).
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Since all points pi have integer coordinates, the large atomic stresses are
integers as well. Moreover, each of them, as a product of deg(vk) − 1 triangle

areas, is bounded by |Ωa
ij(Wk)| ≤ L2(ΔG −1).

To make the ω̃ijs integral we round the coefficients αi down. To guarantee
that the rounding does not alter the signs of the stress, we scale the atomic
stresses (before rounding) with the factor

C = 4max
i,j,k

|Ωa
ij(Wk)|/min

i,j
|ω̃ij |

and define as the new stress:

ωij := �Cαi�Ωa
ij(Wi) + �Cαj�Ωa

ij(Wj) + �Cαk�Ωa
ij(Wk) + �Cαl�Ωa

ij(Wl).

Clearly,

|ωij − Cω̃ij | =

∣∣∣∣∣∣
∑

τ=i,j,k,l

(�Cατ � − Cατ )Ω
a
ij(Wτ )

∣∣∣∣∣∣
≤

∑
τ=i,j,k,l

|Ωa
ij(Wτ )| ≤ 4max

i,j,k
|Ωa

ij(Wk)| = Cmin
i,j
|ω̃ij | ≤ C|ω̃ij |

and so sign(ωij) = sign(Cω̃ij) = sign(ω̃ij).
Therefore, the constructed equilibrium stress {ωij} is integral and positive.

We conclude the proof with an upper bound on its size. Since C < 4 L2(ΔG −1) L4,

|ωij | ≤

∣∣∣∣∣∣
∑

τ=i,j,k,l

(Cατ ± 1)Ωa
ij(Wτ )

∣∣∣∣∣∣ ≤ C|ω̃ij |+
∑

τ=i,j,k,l

|Ωa
ij(Wτ )|

≤ Cmax |ω̃ij |+4max |Ωa
ij(Wk)| ≤ 4 L2ΔG +2 ·L3 +4L2ΔG −2=O(L2ΔG +5).

�
Combining Theorem 6 and Theorem 3 leads to the following result:

Theorem 7. Let (q2, . . . , qn) be an integer embedding of a simplicial 3d polytope
with graph G↑, such that the orthogonal projection into the plane {z = 0} gives
a planar 2d embedding (p2, . . . , pn) with boundary face (v2v3v4). Then we can
construct an embedding (φf )f∈F (G) of a graph dual to G = Stack(G↑; v1; v2v3v4)
with integer coordinates bounded by

|φf | = O(n2 max |qi|2ΔG +13).

We remark that the algorithms following the lifting approach generate em-
beddings that fulfill the conditions of the above theorem. Using a more technical
analysis we can even show that the following stronger version of Theorem 7
holds. The proof of the theorem can be found in the full version of the paper.

Theorem 8. Let G be a triangulation with at least one vertex of degree 3, and
let (qi) be an integer realization of G as a convex polytope. Then there is a
realization (φf )f∈F (G) of the dual graph G∗ as a convex polytope with integer
coordinates bounded by

|φf | < max |qi|O(ΔG).
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Abstract. Westudy embeddings of graphs in surfaces up toZ2-homology.
We introduce a notion of genus mod 2 and show that some basic results,
mostnoteworthyblock additivity, hold forZ2-genus.Thishas consequences
for (potential) Hanani-Tutte theorems on arbitrary surfaces.

1 Introduction

A graph G embeds in a surface S if it can be drawn in S so that no pair of edges
cross. In this paper we want to relax the embedding condition using Z2-homology,
that is, we are only interested in the parity of the number of crossings between
independent edges; in terms of algebraic topology we are studying the “mod 2
homology of the deleted product of the graph” [1]. We say a graph Z2-embeds
in S if it can be drawn in S so that every pair of independent edges crosses
evenly. This approach is inspired by two Hanani-Tutte theorems which, for the
plane [2] and the projective plane [3], show that embeddability is equivalent to
Z2-embeddability. For other surfaces, it is only known that Z2-embeddability is
a necessary condition for embeddability. In this paper we want to lay the foun-
dations for a study of Z2-embeddings of graphs in surfaces which may, at some
point, lead to a proof of the Hanani-Tutte theorem for arbitrary surfaces. Our
main result is that if we define the notion of Z2-genus as a homological invariant
of Z2-embeddings, then block additivity holds for Z2-genus just as it does for the
standard notion of genus (as proved by Battle, Harary, Kodama and Youngs for
the orientable case, and by Stahl and Beineke in the non-orientable case, see [4,
Section 4.4]). This implies that a counterexample to the Hanani-Tutte theorem
on an arbitrary surface can be assumed to be 2-connected (Corollary 1).

2 Z2-Embeddings

2.1 Definition

In the introduction we defined a Z2-embedding in a surface S, as a drawing of a
graph G in which every pair of independent edges crosses evenly. In this section,
we want to develop a more algebraic version of this definition, which separates
the topology of the surface from the drawing. We start with the plane, and then
add crosscaps and handles.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 185–195, 2013.
c© Springer International Publishing Switzerland 2013
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Pick an initial drawing D of G = (V,E) in the plane. For edges e, f ∈ E let
iD(e, f) be the number of crossings of e and f in the drawing D. We want to
extend the drawing to a surface S with c crosscaps. Since we only plan to keep
track of the parity of the number of crossings of independent edges and hence
we use Z2-homology. For each edge we have a vector ye ∈ Zc

2 where (ye)i = 1
if e is pulled through the i-th crosscap an odd number of times (in a drawing,
we can deform e so it passes through the i-th crosscap; this changes the crossing
parity of e with any edge that passes through the i-th crosscap an odd number of
times). We also allow changing the planar part of the drawing—for each edge we
have a vector xe ∈ ZV

2 where (xe)v = 1 indicates that we made an (e, v)-move,
that is, we pull the edge e over v (this changes the crossing parity between e and
any edge incident to v). We say that the initial drawing together with {xe}e∈E

and {ye}e∈E is a Z2-embedding of G in S if for each pair of independent edges
e = {u, v}, f = {s, t} we have

iD(e, f) + (xe)s + (xe)t + (xf )u + (xf )v + yTe yf ≡ 0 (mod 2). (1)

All congruences in this paper are modulo 2, so to simplify notation, we drop
(mod 2) from now on. See Figure 1 for a Z2-embedding of K5 in the projec-
tive plane, illustrating the effect of crosscap- and (e, v)-moves. This definition is
equivalent to the more intuitive definition given in the introduction (see, for ex-
ample, Levow [5, Theorem 3]). We say that the drawing is orientable if yTe ye ≡ 0
for every e ∈ E (that is, every ye has an even number of ones).

Handles can be dealt with in the following way: For each handle we have
three coordinates in ye and the possible settings for these coordinates are 000,
110, 101, and 011. We extend the definitions of Z2-embeddings and orientabil-
ity given earlier to ye containing handles. Note that each of the four vectors
modeling an edge passing through handle has an even number of ones, so if the
surface contains only handles, then any drawing on it is orientable by the earlier
definition.

A handle and a crosscap are equivalent to three crosscaps (Dyck, see [6, Section
1.2.4]): in the Z2-homology this corresponds to the following bijection (we replace
the 3 + 1 coordinates in ye by 3 coordinates in ye):

000 0↔ 000, 000 1↔ 111, 011 0↔ 011, 011 1↔ 100,

110 0↔ 110, 110 1↔ 001, 101 0↔ 101, 101 1↔ 010,
(2)

where the first three coordinates on the left hand sides correspond to the handle.
Note that (2) preserves the parity of the number of ones (and thus the orientabil-
ity of the drawing). Also note that (2) is linear (add vector 111 times the last
coordinate to the vector of the first three coordinates) and hence preserves the
dimension of the space generated by the {ye}e∈E .

Remark 1 (Z2-drawings). Call a drawing D of a graph G in the plane together
with {xe}e∈E and {ye}e∈E a Z2-drawing, and define iD,x,y(e, f) := iD(e, f) +
(xe)s+(xe)t+(xf )u+(xf )v+yTe yf . With this notion of Z2-drawing, we can model
drawings of graphs in a surface up to the Z2-homology we are interested in: IfD is
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Fig. 1. (a) shows the initial drawing of G = K5 in the projective plane. (b) shows a Z2-
embedding of G in the projective plane with (x02)1 = (x24)3 = 1, y03 = y14 = y24 = 1
(dropping the subscript for the single crosscap) and all other values being zero.

a drawing of a graph G in some surface S, then there is a Z2-drawing (D′, x, y)
of G in S so that iD(e, f) ≡ iD′,x,y(e, f) for every pair (e, f) of independent
edges. As mentioned earlier, a result like this (with a slightly different model)
was stated by Levow [5]. In the plane, algebraic topologists would phrase this
as saying that any two drawings differ by a coboundary, or that they define the
same cohomology class in the second symmetric cohomology, see, for example, [7,
Section 4.6].

By the observations in Remark 1, any embedding in a surface S can be con-
sidered a Z2-embedding, so that having a Z2-embedding is a necessary condition
for embeddability in a surface. Hanani-Tutte theorems state that this condition
is also sufficient. As we mentioned earlier, this is only known for the plane [2]
and the projective plane [3].

Remark 2 (Crosscaps versus Handles in Z2-Embeddings). Suppose that a surface
S contains c crosscaps and h handles. By the classification theorem for surfaces,
each handle is equivalent to two crosscaps, as long as c > 0. The same is true
for Z2-embeddability: If c > 0, then Z2-embeddability in S is equivalent to Z2-
embeddability in a surface with c + 2h crosscaps—we apply (2) and convert
each handle into 2 crosscaps; the transformation is possible because c > 0.
If c = 0, then Z2-embeddability in S is equivalent—again using (2)—to Z2-
embeddability in a surface with 2h+ 1 crosscaps where drawings are restricted
to be orientable. The orientability ensures that when applying (2) to convert
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crosscaps into handles, the single crosscap left at the end is not used by any
edge and hence can be discarded.

With this terminology, we can now define Z2-homological variants of the genus
and the Euler genus of a graph. We write g(G) and eg(G) for the traditional
genus and Euler genus of G (following [4]).

Definition 1 (Z2-genus andZ2-Euler genus). If a graphG has aZ2-embedding
in an orientable surface with h handles, but not in any surface with fewer handles,
we write g0(G) = h and call h the Z2-genus of G. If G has a Z2-embedding in a
surface S with c crosscaps and h handles, but not in any surface with a smaller
value of 2h+ c, we write eg0(G) = 2h+ c and call 2h+ c the Z2 Euler genus of G.

By definition, we have g0(G) ≤ g(G) and eg0(G) ≤ eg(G), where g(G) is the
genus of G and eg(G) is the Euler genus of G.

2.2 Basic Properties

We derive some basic properties of Z2-embeddings. We call two graphs G and
H disjoint if V (G) ∩ V (H) = ∅.

Lemma 1. Let G be a graph Z2-embedded in a (possibly non-orientable) surface
S. Let C1 and C2 be two disjoint cycles in G. Then∑

e∈C1,f∈C2

yTe yf ≡ 0. (3)

Let e1 ∈ C1 and e2 ∈ C2. Suppose that all edges e in C1 \ {e1} have ye = 0 and
all edges f ∈ C2 \ {e2} have yf = 0. Then

yTe1ye2 ≡ 0. (4)

Proof. We have∑
e∈C1,f∈C2

(
iD(e, f) + (xe)s + (xe)t + (xf )u + (xf )v + yTe yf

)
≡ 0, (5)

where s, t are endpoints of f and u, v are endpoints of e (note that s,t,u and v
vary over the terms in the sum). The equality in (5) follows from the disjointness
of C1 and C2 (any e ∈ C1 and f ∈ C2 are independent and hence (1) has to be
satisfied).

We have ∑
e∈C1,f∈C2

(iD(e, f) + (xe)s + (xe)t + (xf )u + (xf )v) ≡ 0, (6)

since (6) corresponds to a drawing in the plane (and two transversally intersect-
ing cycles in the plane intersect evenly; the cycles have to intersect transversally
since they are disjoint).

Combining (5) with (6) we obtain (3). Equation (4) is an immediate corollary
(since terms in (3) other than yTe1ye2 are zero). ��
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Lemma 1 suggests that orthogonality plays a role in understanding
Z2-embeddings. We will need the following fact about vector spaces over finite
fields (see [8, Section 2.3]).

Lemma 2. Let A be a subspace of Zt
2. Then for A⊥ := {x ∈ Zt

2 | (∀y ∈ A) xT y ≡
0} we have

dimA+ dimA⊥ = t.

Let A,B be subspaces of Zt
2 with A ⊆ B. Then for A⊥B := {x ∈ B | (∀y ∈

A) xT y ≡ 0} = A⊥ ∩B we have

dimA+ dimA⊥B = dimB + dim radB,

where radB := B⊥B is the radical of B.

The dimension of the Z2-embedding (the dimension of the space spanned by
{ye}e∈E) is closely related to its Z2-genus. In Lemma 3 we extend this result to
Z2-Euler genus.

Lemma 3. Let G be a graph Z2-embedded in a (possibly non-orientable) surface
S. Assume that the drawing is orientable. Let d be the dimension (over Z2) of the
vector space generated by the edge vectors {ye}e∈E. Then G can be Z2-embedded
in an orientable surface of genus �d/2�.

Proof. In the light of Remark 2 we can assume that S has t crosscaps (and no
handles). We are going to remove the crosscaps from S one by one. Let S be
the space generated by the edge vectors {ye}e∈E . Let d = dimS. Let T = S⊥

be the space of vectors that are perpendicular to S. Assume that T contains a
vector z such that z �≡ 0 and zT z ≡ 0 (the computations are in Z2). Rearranging
coordinates, if necessary, we can assume that z1 = 1. To each ye for which
(ye)1 = 1 we add z. This transformation has the following properties:

– it is linear (y $→ y + y1z) and hence the dimension of S cannot increase,
– it preserves orientability (since (y + z)T (y + z) ≡ yT y),
– it preserves the parity of the number of crossings for every independent pair

of edges e, f (since (ye + z)T (yf + z) ≡ yTe yf and (ye + z)T yf ≡ yTe yf ; here
we use the fact that T = S⊥).

After the transformation, the first crosscap is not used by any edge and hence
we can remove it thus decreasing t. We repeat the crosscap removal process as
long as such a z exists. We distinguish three cases depending on whether the
process stops with d ≤ t− 2, d = t− 1 or d = t.

If d ≤ t− 2, then T always contains z �= 0 with zT z ≡ 0 (since by a dimension
argument there are two distinct vectors z1, z2 in T \{0} and then one of z1, z2, z1+
z2 satisfies zT z ≡ 0) and hence we can always remove a crosscap in this case.
Therefore, the process ends up with either d = t or d = t − 1, T = 〈z〉, and
zT z ≡ 1. If d = t, then we convert the crosscaps back into �d/2� handles (if t
is odd we end up with (t − 1)/2 handles, if t is even we add an extra crosscap
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and end up with t/2 handles, in both cases use Remark 2 on being able to drop
a crosscap in an orientable embedding).

The final case to handle is d = t − 1. Let k be the number of ones in z.
W.l.o.g. the first k coordinates of z are 1 and the rest are 0. Note that k is odd
and that zT ye ≡ 0 for each e (that is, if we restrict our attention to the first k
crosscaps, the drawing is orientable). Hence we can convert the first k crosscaps
into (k − 1)/2 handles. Then—as in the d = t case—we convert the remaining
t− k crosscaps into �(t− k)/2� handles. In total, we have

(k − 1)/2 + �(t− k)/2� = �(t− 1)/2� = �d/2�

handles. ��

For non-orientable surfaces we have the following analogue of Lemma 3, re-
placing the notion of genus by Euler genus.

Lemma 4. Let G be a graph Z2-embedded in a (possibly non-orientable) sur-
face S. Let d be the dimension (over Z2) of the vector space generated by the
edge vectors {ye}e∈E. Then G can be Z2-embedded in a (possibly non-orientable)
surface of Euler genus d.

Proof. The proof is almost the same as the proof of Lemma 3. We first convert
handles to crosscaps and work on a surface with crosscaps only. We again remove
crosscaps one by one until we end up with d = t or with d = t− 1, T = 〈z〉, and
zT z ≡ 1. In the case that d = t we are done.

In the case d = t− 1 we assume, as in the proof of Lemma 3, that the first k
coordinates of z are 1 and the rest are 0 and convert the first k crosscaps into
(k−1)/2 handles. We leave the remaining crosscaps as they are. The Euler genus
of the resulting surface is 2((k − 1)/2) + t− k = t− 1 = d. ��

We end this section with a more complex move that allows us to zero out the
labels of all edges in a spanning forest.

Lemma 5. Suppose G is Z2-embedded on a surface S, and F is a spanning
forest of G. Then there is a Z2-embedding of G on S in which all edges of F are
labeled with zero vectors.

Proof. By Remark 2 we can assume that S is a surface with c > 0 crosscaps.
Choose z ∈ Zc

2 and v ∈ V . Consider the following collection of moves: 1) add
z to ye for all e that are adjacent to v, and 2) for every f not adjacent to v
and so that yTf z ≡ 1 perform an (f, v)-move. This collection of moves preserves
the parity of the number of crossings between any pair of independent edges.
Moreover, if z contains an even number of ones, the parity of the number of
ones in no y-label is changed. Pick a root for each component of F , orient the
edges of F away from the root, and process the edges in each component in a
breadth-first traversal; for each edge e in this traversal, we turn its label into
the zero vector, by performing the collection of moves above with z = ye and v
the head of e. Note that this changes the label of e into the zero vector, without
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affecting the labels of any edges that have already been processed (since F is
a forest, and yTf z ≡ 0 for edges f already processed, because yf = 0 for those
edges). If the Z2-embedding was orientable to begin with, it remains so, since z
is chosen from the set of existing labels, all of which contain an even number of
ones originally and throughout the relabeling. ��

3 Block Additivity mod Z2

As a warm-up we show the additivity of genus over connected components (a
result that is nearly obvious for embeddings).

Lemma 6. The Z2-genus of a graph is the sum of the Z2-genera of its connected
components.

Proof. Let G be a graph. Let g := g0(G) be the Z2-genus of G. By Remark 2
we have an orientable drawing of G on the surface with t := 2g + 1 crosscaps.
Assume that G is the disjoint union of G1 and G2. Let F1 be a maximum
spanning forest of G1 and F2 be a maximum spanning forest of G2. We can
assume (see Lemma 5) that the ye-labels for edges e in F1 and F2 are zero.

Let e1 be an edge in G1−F1 and let e2 be an edge in G2−F2. Let C1 be the
unique cycle in F1 + e1 and let C2 be the unique cycle in F2 + e2. Note that C1

and C2 are disjoint (since G1 and G2 are disjoint) and hence by Lemma 1 we
have

yTe1ye2 ≡ 0; (7)

that is, the vectors ye1 and ye2 are perpendicular. Let S1 be the vector space
generated by the ye-labels on the edges in G1 and let S2 be the vector space
generated by the ye-labels on the edges in G2. Then S1 ⊥ S2 and hence

dimS1 + dimS2 ≤ t = 2g + 1. (8)

By Lemma 3, we can Z2-embed Gi in an orientable surface with �(dimSi)/2�
handles. Note

�(dimS1)/2�+ �(dimS2)/2� ≤ g

and hence g0(G1) + g0(G2) ≤ g0(G). ��

Again, one also has the analogue of Lemma 6 for non-orientable surfaces.

Lemma 7. The Z2-Euler genus of a graph is the sum of the Z2-Euler genera of
its connected components.

Proof. The proof is the same as the proof of Lemma 6 except the final part. We
have

dimS1 + dimS2 ≤ t, (9)

where t := eg0(G) is the Z2-Euler genus of G. By Lemma 4 we can draw Gi in
a surface with dimSi crosscaps. Hence eg0(G1) + eg0(G2) ≤ eg0(G). ��
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We are ready now to establish additivity of Z2-genus and Z2-Euler genus over
2-connected components (blocks).

Theorem 1. The Z2-genus of a graph is the sum of the Z2-genera of its blocks.
The Z2-Euler genus of a graph is the sum of the Z2-Euler genera of its blocks.

Proof. There is a large shared part in the arguments for Z2-genus and Z2-Euler
genus (only the initial setup and the final drawing step are different).

The initial setup for the Z2-genus case is the following. Let G = (V,E) be a
connected graph (we can assume this by Lemma 6) and let g := g0(G) be the
Z2-genus of G. Thus we have an orientable Z2-embedding of G on the surface
with t := 2g + 1 crosscaps. Let B be the subspace of Zt

2 consisting of vectors
with an even number of ones (we will keep our drawing orientable, that is, all
the edge labels will be from B). Note that

radB = {0}, (10)

since each vector in B \ {0} has a zero and a one. Let t̂ := dimB = t− 1.
The initial setup for the Z2-Euler genus case is the following. Let G = (V,E)

be a connected graph (Lemma 7), and let g := eg0(G) be the Z2-Euler genus of
G. Thus we have a Z2-embedding of G on the surface with t crosscaps. In this
case we let B := Zt

2. (And we trivially have (10).) Let t̂ := dimB = t.
Let v be a cut vertex of G. Let G1 = (V1, E1) be a block of G containing v

and let G2 = (V2, E2) be the union of the remaining blocks (note that V1 ∩V2 =
{v}). Let T = (V, F ) be a depth-first search (DFS) spanning tree of G with
the exploration starting at v. We can assume ye = 0 for the edges in F (see
Lemma 5). The reason for taking a DFS spanning tree is that we will need the
following property: if e ∈ E \ F is not adjacent to v then the unique cycle in
F + e does not contain v.

Let Si be the vector space generated by the ye-labels of e ∈ Ei that are not
adjacent to v. Let Zi be the vector space generated by the ye-labels of e ∈ Ei

that are adjacent to v. See Figure 2. Our plan is to modify the ye-labels of the
edges adjacent to v (changing Z1, Z2) so that: 1) no new odd crossings between
independent edges are introduced, and 2) after the modification dim(S1 +Z1)+
dim(S2 + Z2) ≤ t.

We can modify the ye of an edge e adjacent to v by adding any vector in
O := (S1 + S2)

⊥B. This does not change the parity of the number of crossings
between independent pairs of edges (for f that are not adjacent to v we have
yTf (ye + z) ≡ yTf ye; and f which are adjacent to v are not independent of e).
Note that the modification in the Z2-genus case also preserves orientability (by
choice of B).

We are going to modify the ye-labels of edges adjacent to v (by adding vectors
in O) as follows. For i ∈ {1, 2} we do the following. Let a := dim(Zi ∩ Si),
b := dim(Zi ∩ (Si + O)), and c := dim(Zi). Let z1, . . . , zc be a basis of Zi such
that 1) z1, . . . , za is a basis of Zi∩Si, 2) z1, . . . , zb is a basis of Zi∩ (Si+O), and
3) za+1, . . . , zb ∈ Zi ∩O. Such a basis can be constructed as follows: first apply
the Steinitz exchange lemma on a basis of Zi ∩ Si and a basis of Zi ∩ O (the
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v

G1

G2
S1

S2

Z1

Z2

Fig. 2. Graph G with cutvertex v, block G1 and union of remaining blocks G2. Vector
space Zi (Si) is generated by labels of edges in Gi (not) incident to v.

basis of Zi ∩ Si will be extended by vectors in the basis of Zi ∩ O to a basis of
Zi∩(O+Si)); then apply the Steinitz exchange lemma on the resulting basis and
a basis of Zi. For each edge in Gi adjacent to v we relabel ye = α1z1+ · · ·+αczc
by setting αa+1 = αa+2 = · · · = αb = 0 (note that this corresponds to adding
an element of O to ye). After the modification (which also changed Zi) we have
that z1, . . . , za is a basis of Zi ∩ (Si + O) and also a basis of Zi ∩ Si. Thus we
have

Zi ∩ (Si +O) = Zi ∩ Si. (11)

Let e1 ∈ E1\F and let e2 ∈ E2\F be such that e2 is not adjacent to v. Let C1

be the unique cycle in F +e1 and let C2 be the unique cycle in F +e2. Note that
C2 does not contain v (since F is a DFS spanning tree and e2 is not adjacent to
v). Thus C1 and C2 are disjoint (C1 is in G1, C2 is in G2 and V1 ∩ V2 = {v})
and hence, by Lemma 1, we have

yTe1ye2 ≡ 0.

Thus (Z1+S1) ⊆ S⊥B
2 and since O ⊆ S⊥B

2 (by the definition of O) we also have
(Z1 + S1 + O) ⊆ S⊥B

2 . By symmetry we also have (Z2 + S2 + O) ⊆ S⊥B
1 and

hence, by Lemma 2 and (10), we obtain

dim(Zi + Si +O) + dim(S3−i) ≤ t̂. (12)

Thus we have (using dim(A+B) = dim(A) + dim(B)− dim(A ∩B))

dim(Zi) + dim(Si +O)− dim(Zi ∩ (Si +O)) + dim(S3−i) ≤ t̂,

and (11) yields

dim(Zi) + dim(Si +O)− dim(Zi ∩ Si) + dim(S3−i) ≤ t̂. (13)

Adding (13) for i = 1, 2 and simplifying (again using dim(A + B) = dim(A) +
dim(B)− dim(A ∩B)) we obtain

dim(Z1 + S1) + dim(Z2 + S2) + dim(S1 +O) + dim(S2 +O) ≤ 2t̂. (14)
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We have

dim(S1 +O) + dim(S2 +O)

= dim(S1) + dim(O) − dim(S1 ∩O) + dim(S2) + dim(O) − dim(S2 ∩O)

= dim(S1 + S2) + dim(S1 ∩ S2) + 2 dim(O) − dim(S1 ∩O)− dim(S2 ∩O)

= t̂+ dim(S1 ∩ S2) + dim(O) − dim(S1 ∩O)− dim(S2 ∩O)

≥ t̂+ dim(S1 ∩ S2 ∩O) + dim(O) − dim(S1 ∩O)− dim(S2 ∩O)

= t̂+ dim(O) − dim((S1 + S2) ∩O) ≥ t̂,

where in the first, second, and fourth equality we used dim(A+B)+dim(A∩B) =
dim(A)+dim(B); in the third equality we used dim(S1+S2)+dim(O) = t̂ (which
follows from the definition of O and Lemma 2); in the first and the last inequality
we used the monotonicity of dimension,

Plugging dim(S1 +O) + dim(S2 +O) ≥ t̂ into (14) we obtain

dim(Z1 + S1) + dim(Z2 + S2) ≤ t̂ ≤ t. (15)

The Z2-genus case of the lemma now follows from Lemma 3, using the argument
from the proof of Lemma 6 (the final part after equation (8)) giving us Z2-
embeddings of G1 and G2 on two surfaces which have g handles total. In the
Z2-Euler genus case we apply Lemma 4, using the argument from the proof of
Lemma 7 (the final part after equation (9)). ��

The Hanani-Tutte theorem for surface S would—if true—state that if a graph
has a Z2-embedding on surface S, then it can be embedded on S. Theorem 1
implies that in a search for counterexamples we can concentrate on 2-connected
graphs. For the projective plane this result was obtained using much simpler
means in [3, Lemma 2.4].

Corollary 1. A minimal counterexample to the Hanani-Tutte theorem on any
surface S is 2-connected.

Proof. Suppose G is a minimal counterexample to Hanani-Tutte on some surface
S. If G is not connected, let G1, . . . , Gk, k ≥ 2 be its connected components.
If S is orientable, let g be the genus of S. Then g ≥ g0(G) =

∑k
i=1 g0(Gi) =∑k

i=1 g(Gi) = g(G), where the first equality is true by Lemma 6, and the second
equality because G is minimal (and the third is a standard property of the genus
of a graph). Therefore, g(G) ≤ g, so G can be embedded in S, meaning it
cannot be a counterexample. If S is non-orientable we can make essentially the
same argument with Lemma 7 replacing Lemma 6, and Euler genus replacing
genus. If G is connected, but not 2-connected, we repeat the same argument
with Theorem 1 replacing the two lemmas, and using block additivity of (Euler)

genus to conclude that
∑k

i=1 g(Gi) = g(G) where the Gi are the blocks of G
having cutvertex v in common. ��
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4 Questions

The (Euler) genus of a graph is an obvious upper bound on the Z2-(Euler) genus
of a graph, but are they always the same?

Conjecture 1. The Z2-(Euler) genus of a graph equals its (Euler) genus.

The truth of this conjecture would imply the Hanani-Tutte theorem for arbi-
trary surfaces, so we have to leave the question open. The block additivity result
from Section 3 implies that a minimal counterexample to the conjecture (if it
exists) and, thereby, to the Hanani-Tutte theorem on an arbitrary surface, can
be assumed to be 2-connected (since it cannot have a cut-vertex).

A much more modest goal than Conjecture 1 would be to bound the standard
(Euler) genus in the Z2-(Euler) genus: Are there functions f and g so that
g(G) ≤ f(g0(G)) and eg(G) ≤ g(eg0(G))?

In the absence of a proof of Conjecture 1, we can ask what other results for
(Euler) genus also hold for Z2-(Euler) genus. For example, is the computation
of the Z2-(Euler) genus NP-hard (as it is for (Euler) genus [9])? And is Z2-
embeddability decidable in polynomial time for a fixed surface S (as it is for
embeddability [10])? One could also try to extend the block additivity result: if
G1 and G2 are two edge-disjoint graphs with |V (G1)∩V (G2)| = 2, is it true that
|g0(G) − (g0(G1) + g0(G2))| ≤ 1? (This inequality is known to be true for the
standard genus, a result by Decker, Glover, Huneke, and Stahl, see [4, Section
4.4]).
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Exploiting Air-Pressure to Map Floorplans on Point Sets

Stefan Felsner�
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Abstract. We prove a conjecture of Ackerman, Barequet and Pinter. Every floor-
plan with n segments can be embedded on every set of n points in generic posi-
tion. The construction makes use of area universal floorplans also known as area
universal rectangular layouts.

The notion of area used in our context depends on a nonuniform density func-
tion. We, therefore, have to generalize the theory of area universal floorplans to this
situation. The method is then used to prove a result about accommodating points
in floorplans that is slightly more general than the conjecture of Ackerman et al.

1 Introduction

In our context a floorplan is a partition of a rectangle into a finite set of interior-disjoint
rectangles. A floorplan is generic if it has no cross, i.e., no point where four rectangles
of the partition meet. A segment of a floorplan is a maximal nondegenerate interval that
belongs to the union of the boundaries of the rectangles. Segments are either horizon-
tal or vertical. The segments of a generic floorplan are internally disjoint. Two floor-
plans F and F ′ are weakly equivalent if there exist bijections φ : SH(F ) → SH(F ′)
and φ : SV (F ) → SV (F

′) between their horizontal and vertical segments such that
segment s has an endpoint on segment t in F iff φ(s) has an endpoint on φ(t). A set P
of points in IR2 is generic if no two points from P have the same x or y coordinate.
Section 2 provides a more comprehensive overview of definitions and notions related
to floorplans.

b)a)

Fig. 1. A generic set of six points and a generic floorplan with six segments

Let P be a set of n points in a rectangle R and let F be a generic floorplan with n
internal segments. A cover map from F to P is a floorplan F ′ weakly equivalent to F
with outer rectangle R such that every internal segment of F ′ contains exactly one point
from P . Figure 2 shows an example.
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Fig. 2. Two cover maps from the floorplan of Fig. 1.b to the point set of Fig. 1.a

In this paper we answer a question of Ackerman et al. [1] by proving Theorem 1. The
proof of the theorem and some variants and generalizations is the subject of Section 4.

Theorem 1. IfP is a generic set of n points andF is a generic floorplan with n internal
segments, then there is a cover map from F to P .

The proof is based on results about area representations of floorplans. The following
theorem is known, it has been proven with quite different methods, see [14], [11], [5].

Theorem 2. Let F be a floorplan with rectangles R1, . . . , Rn+1, let A be a rectangle
and let w : {1, . . . , n+1} → IR+ be a weight function with

∑
i w(i) = area(A). There

exists a unique floorplan F ′ contained in A that is weakly equivalent to F such that the
area of the rectangle R′

i = φ(Ri) is exactly w(i).

In Section 3 we prove the generalization of Theorem 2 that will be needed for the
proof of Theorem 1. In the generalized theorem (Theorem 3) the weight of a rectangle
is measured as integral over some density function instead of the area.

2 Floorplans and Graphs

A floorplan is a dissection of a rectangle into a finite set of interiorly disjoint rectangles.
From a given floorplan F we can obtain several graphs and additional structure. We
introduce two of these and use them to define notions of equivalence for floorplans.

The Rectangular Dual. Let R(F ) be the set of rectangles of a floorplan F . It is conve-
nient to include the enclosing rectangle in the set R(F ). The rectangular dual of F is
the graph G∗(F ) with vertex set R(F ) and edges joining pairs of rectangles that share
a boundary segment. Usually the notion of a rectangular dual is used in the other direc-
tion, i.e., it is assumed that a planar graph G is given and the quest is for a floorplan
F such that G = G∗(F ). It is convenient to extend a floorplan F with four rectangles
that frame F as shown in Figure 3. In the dual of an extended floorplan F+ we omit the
vertex that corresponds to the enclosing rectangle. With this twist in the definition of the
dual we get: The dual G∗

+(F ) of the extended floorplan of a generic F is a 4-connected
inner triangulation of a 4-gon. Indeed this is the characterization of the duals of ex-
tended generic floorplans. Buchsbaum et al. [3] and Felsner [6] provide many pointers
to the literature related to floorplans and rectangular duals.

The Transversal Structure. The transversal structure (also known as regular edge la-
beling) associated to a floorplan F is an orientation and coloring of the edges of the
extended dual G∗

+(F ).
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F G∗(F ) F+

s

bG∗
+(F )

a

t

vout

Fig. 3. A floorplan F , the extended floorplan F+, and the duals G∗(F ) and G∗
+(F )

LetG be an inner triangulation of a 4-gon with outer vertices s, a, t, b in counterclock-
wise order. A transversal structure for G is an orientation and 2-coloring of the inner
edges of G such that two local conditions hold: 1) All edges incident to s, a, t and b are
blue outgoing, red outgoing, blue ingoing, and red ingoing, respectively. 2) The edges
incident to an inner vertex v come in clockwise order in four nonempty blocks consisting
solely of red ingoing, blue ingoing, red outgoing, and blue outgoing edges, respectively.

Transversal structures have been studied in [9], [10], and in [12]. A proof of the
following proposition can e.g. be found in [6].

Proposition 1. Every transversal structure of an inner triangulation G of a 4-gon with
outer vertices s, a, t, b is induced by a floorplanF with G = G∗

+(F ) and each floorplan
F induces a transversal structure on G∗

+(F ).

Figure 4 indicates the correspondence between floorplans and transversal structures.

t

a

s

b

s t

a

b

Fig. 4. The two local conditions and an example of a transversal structure together with a corre-
sponding floorplan

The Segment Contact Graph. Recall that we call a floorplan generic if it has no cross,
i.e., no point where four rectangles meet. A segment of a floorplan is a maximal non-
degenerate interval that belongs to the union of the boundaries of the rectangles. In the
generic case intersections between segments only occur between horizontal and vertical
segments and they involve an endpoint of one of the segments, i.e., they are contacts. If
a floorplan has a cross at point p we can break one of the two segments that contain p
into two to get a system of interiorly disjoint segments.

The segment contact graph Gseg(F ) of a floorplan F is the bipartite planar graph
whose vertices are the segments of F and edges correspond to contacts between seg-
ments. From Figure 5 we see that Gseg(F ) is indeed planar and that the faces of Gseg(F )
are in bijection with the rectangles of F and are uniformly of degree 4. Therefore
Gseg(F ) is a maximal bipartite planar graph, i.e., a quadrangulation.
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R Gseg(R)

Fig. 5. A floorplan F and two drawings of its segment contact graph Gseg(F )

The Separating Decomposition. The separating decomposition associated to a floor-
plan is an orientation and coloring of the edges of the segment contact graph.

Let Q be a quadrangulation, we call the color classes of the bipartition white and
black and name the two black vertices on the outer face s and t. A separating decompo-
sition of Q is an orientation and coloring of the edges of Q with colors red and blue such
that two conditions hold: 1) All edges incident to s are ingoing red and all edges inci-
dent to t are ingoing blue. 2) Every vertex v �= s, t is incident to a nonempty interval of
red edges and a nonempty interval of blue edges. If v is white, then, in clockwise order,
the first edge in the interval of a color is outgoing and all the other edges of the interval
are incoming. If v is black, the outgoing edge is the last one in its color in clockwise
order (see the left part of Figure 6).

Separating decompositions have been studied in [4], [8], and [7]. To us they are of
interest because of the following proposition proved e.g. in [6].

Proposition 2. A floorplan F induces a separating decomposition on its segment con-
tact graph Gseg(F ) and every separating decomposition of a planar quadrangulation
Q corresponds to a floorplan F with Q = Gseg(F ).

The right part of Figure 6 indicates the correspondence between floorplans and
separating-decompositions.

t

s

t

s

Fig. 6. The rule for black and white vertices. A separating decomposition S and a floorplan F
corresponding to S.

2.1 Notions of Equivalence for Floorplans

Definition 1. Two floorplans are weakly equivalent if they induce the same separating
decomposition.

Definition 2. Two floorplans are strongly equivalent if they induce the same transversal
structure.



200 S. Felsner

In the introduction we said that two floorplans F and F ′ are weakly equivalent if
there exist bijections φ : SH(F ) → SH(F ′) and φ : SV (F ) → SV (F

′) between their
horizontal and vertical segments such that segment s has an endpoint on segment t in F
iff φ(s) has an endpoint on φ(t). We claim that this yields the same equivalence classes
as Definition 1. Clearly, if F and F ′ induce the same separating decomposition then
they are weakly equivalent in the above sense. For the converse first observe that the
segment contact graphs of F and F ′ are isomorphic, i.e., Gseg(F ) = Gseg(F

′). Now
define an orientation QF on Q = Gseg(F ) by orienting s to t iff segment s has an
endpoint on segment t. Let QF ′ be the orientation defined on Q using the segments of
F ′. Observe that QF = QF ′ . Since a separating decomposition is uniquely determined
by the underlying 2-orientation (see, [4] or [7]) we conclude that F and F ′ induce the
same separating decomposition, i.e., SDF = SDF ′ . This implies that F and F ′ are
weakly equivalent in the sense of Definition 1.

Eppstein et al. [5] use the term layout instead of floorplan. Their equivalent layouts
correspond to strongly equivalent floorplans and order-equivalent layouts to weakly
equivalent floorplans. Asinowski et al. [2] study independent notions of R-equivalence
and S-equivalence for floorplans.

3 Realizing Weighted Floorplans via Air-Pressure

In this section we prove a generalization of Theorem 2 to situations where the “area” of
a rectangle is replaced by the mass defined through a density distribution.

Let μ : [0, 1]2 → IR+ be a density function on the unit square whose total mass is 1,
i.e.,

∫ 1

0

∫ 1

0 μ(x, y)dxdy = 1. We assume that μ can be integrated over axis aligned rect-
angles and all fibers μx and μy can be integrated over intervals. Moreover, we require
that integrating μ over a nondegenerate rectangle and fibers over nondegenerate inter-
vals always yields nonzero values. The mass of an axis aligned rectangle R ⊆ [0, 1]2 is
defined as m(R) =

∫∫
R μ(x, y)dxdy.

Theorem 3. Let μ : [0, 1]2 → IR+ be a density function of total mass 1. If F is a
floorplan with rectangles R1, . . . , Rn+1 and w : {1, . . . , n + 1} → IR+ a positive
weight function with

∑n+1
1 w(i) = 1 then there exists a unique floorplan F ′ in the unit

square that is weakly equivalent to F such that m(Ri) = w(i) for each rectangle Ri.

Our proof follows the air-pressure paradigm as proposed by Izumi, Takahashi and
Kajitani [11]. We first describe the idea: Consider a realization of F in the unit square
and compare the mass m(Ri) to the intended mass w(i). The quotient of these two
values can be interpreted as the pressure inside the rectangle. Integrating this pressure
along a side of the rectangle yields the force by which Ri is pushing against the segment
that contains the side. The difference of pushing forces from both sides of a segment
yields the effective force acting on the segment. The intuition is that shifting a segment
in direction of the effective force yields a better balance of pressure in the rectangles.
We will show that iterating such improvement steps drives the realization of F towards
a situation with m(Ri) = w(i) for all i, i.e., the procedure converges towards the
floorplan F ′ whose existence we want to show.
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In [11] the air-pressure paradigm was used for situations where the mass of a rect-
angle is its area. The authors observed fast convergence experimentally but they had
no proof of convergence. Here we provide such a proof for the more general case of
weights given by integrals over a density function.

A proof of Theorem 3 can also be given along the lines of the proof of Theorem 2
that has been given by Eppstein et al. in [5]. This approach has been taken by Schren-
zenmaier [13]. The resulting proof is quite compact, however, it has the disadvantage
of being purely existential. Schrenzenmaier also has a java implementation of the air-
pressure approach that solves moderate size instances quickly.

Let Ri = [xl, xr]×[yb, yt] be a rectangle of F . Recall that the mass ofRi is m(Ri) =∫ xr

xl

∫ yt

yb
μ(x, y)dydx. The pressure p(i) in Ri is the fraction of the intended mass w(i)

and the actual mass m(Ri), i.e., p(i) = w(i)
m(Ri)

. Let s be a segment of F and let Ri be
one of the rectangles with a side in s. Let s be vertical with x-coordinate xs and let
s ∩Ri span the interval [yb(i), yt(i)]. The (undirected) force imposed on s by Ri is the
pressure p(i) of Ri times the density dependent length of the intersection.

f(s, i) =
w(i)

m(Ri)

∫ yt(i)

yb(i)

μ(xs, y)dy = p(i)

∫ yt(i)

yb(i)

μxs(y)dy.

The force acting on s is obtained as a sum of the directed forces imposed on s by
incident rectangles.

f(s) =
∑

Ri left of s

f(s, i) −
∑

Ri right of s

f(s, i).

Symmetric definitions apply to horizontal segments.

Balance for Rectangles and Segments

A segment s is in balance if f(s) = 0. A rectangle Ri is in balance if p(i) = 1, i.e., if
w(i) = m(Ri).

Lemma 1. If all rectangles Ri of F are in balance, then all segments are in balance.

Proof. Since all rectangles are in balance we can eliminate the pressures from the defi-
nition of the f(s, i). With this simplification we get for a vertical segment s

f(s) =
∑

Ri left of s

∫ yt(i)

yb(i)

μxs(y)dy −
∑

Rj right of s

∫ yt(j)

yb(j)

μxs(y)dy.

Hence f(s) = Ms−Ms = 0, where Ms is the integral of the fiber density μxs along s.
The symmetric argument applies to horizontal segments.

Interestingly, the converse of the lemma also holds.

Proposition 3. If all segments of F are in balance, then all rectangles are in balance.

Proof. Suppose that F balances all segments but not all rectangles. Choose some τ with
mini p(i) < τ ≤ maxi p(i). Let Tτ be the union of all rectangles Ri whose pressure
exceeds τ and let Γτ be the boundary of Tτ .

Claim.The boundary Γτ of Tτ contains no complete segment.
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Suppose Γτ contains the vertical segment s such that Tτ is left of s. Let I be a
nontrivial interval on s that is defined as intersection of a rectangle Ri that has its right
edge on s and a rectangle Rj that has its left edge on s. The force acting on s along I
is p(i)

∫
I
μxs(y)dy − p(j)

∫
I
μxs(y)dy. Since

∫
I
μxs(y)dy > 0 by our assumption on

μ and p(i) > p(j) by definition of Tτ the force is positive. This holds for every interval
I on s, hence, the overall force f(s) acting on s is also positive. This contradicts the
assumption that s is in balance and completes the proof of the claim. �

Let s0 be any segment which contributes to Γτ . From the lemma we know that at
some interior point of segment s0 the boundary leaves s0 and continues along another
segment s1. Again, the boundary has to leave s1 at some interior point to continue on
s2. Because this procedure always follows the boundary of T which is a region defined
by a union of rectangles in F the sequence of segments has to get back to segment s0,
i.e., there is an k such that sk = s0.

From the definition of the separating decomposition SDF corresponding to F we
find that s0 ← s1 ← s2 ← . . . ← sk−1 ← s0 is a directed cycle in SDF . The four
segments of the enclosing square of F do not contribute to the boundary of Tτ , simply
because they cannot belong to a directed cycle of SDF .

Recall the assumption that F balances all segments but not all rectangles. Let s be the
vertical segment with maximal x-coordinate among all vertical segments that contribute
to a boundary Γτ for some τ . From the choice of s it is clear that Tτ is to the left of s.
Consider the segment s′ = sk−1 following s = s0 in the cycle s0 ← . . .← sk−1 ← s0
in SDF corresponding to Γτ . Left from the contact point p of s and s′ the segment s′

is part of the boundary Γτ of Tτ . From the choice of τ and s it follows that to the right
of p the rectangles on both sides of s′ have the same pressure p(i). Otherwise the right
part of s′ would belong to some boundary Γτ ′ and the vertical segment following s′ on
Γτ ′ is in contradiction to the choice of s.

Now consider f(s′) and split the contributions to this force at p. Left of p the pres-
sure on the side of Tτ exceeds the pressure from the other side. Right of p the rectangles
on both sides of p have the same pressure. This shows that in contradiction to the as-
sumption f(s′) �= 0. This completes the proof of the proposition.

Balancing Segments and Optimizing the Entropy

Proposition 4. If a segment s of F is unbalanced, then we can keep all the other seg-
ments at their position and shift s parallel to a position where it is in balance. The
resulting floorplan F ′ is weakly equivalent to F .

Proof. We consider the case of a vertical segment, the horizontal case is symmetric.
Let xs be the x-coordinate of s. With S− and S+ we denote the sets of rectangles in
F that touch s from the left respectively from the right. Let Rl be the rectangle with a
left boundary of maximal x-coordinate xl in S− and let Rr be the rectangle with a right
boundary of minimal x-coordinate xr in S+. Note that if t satisfies xl < t < xr then
segment s can be shifted parallel to the position xs = t and the resulting floorplan is
weakly equivalent to F .

For t ∈ (xl, xr) we define h(t) as the force acting on s when the segment it is shifted
to xs = t. We observe:
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• The pressure p(i) depends continuously on t for all rectangles Ri ∈ S− ∪ S+.

• The value of
∫
I
μt(y)dy is a continuous function of t for all intervals I .

Hence, h(t) is a continuous function. With t approaching xl from the right the area of
Rl tends to zero. Hence, the mass m(Rl) also tends to zero and the pressure p(l) tends

to infinity. Since
∫ yt(l)

yb(l)
μt(y)dy > 0 we conclude that h(t) → +∞ with t → xl. A

similar reasoning involving Rr shows that h(t) → −∞ with t → xr . It follows that
there is some t0 ∈ (xl, xr) with h(t0) = 0. Hence, if we shift s to the position xs = t0
the force acting on s vanishes and s is in balance.

Definition 3. The entropy of a rectangle Ri of F is defined as −w(i) log p(i). The
entropy of the floorplan F is

E =
∑

−w(i) log p(i)

The proof of Theorem 3 will be completed after showing the following

(1) The entropy E is always nonpositive.

(2) E = 0 if and only if all rectangles Ri of F are in balance.

(3) Shifting an unbalanced segment s into its balance position increases the entropy.

(4) The process of repeatedly shifting unbalanced segments into their balance posi-
tion makes F converge to a floorplan F ′ such that the entropy of F ′ is zero.

(5) The solution is unique.

The first two of these statements are shown in the next lemma.

Lemma 2. The entropy E is always nonpositive and E = 0 if and only if all rectangles
Ri of F are in balance.

Proof. We use that p(i) > 0 and hence log p(i) ≥ (1 − 1
p(i) ) = (1 − m(Ri)

w(i) ). For the

entropy of Ri we get−w(i) log p(i) ≤ −w(i)(1−m(Ri)
w(i) ) = m(Ri)−w(i). This yields

E =
∑
i

−w(i) log p(i) ≤
∑
i

m(Ri)−
∑
i

w(i) = 1− 1 = 0

The equality E = 0 is equivalent to equality for each summand. Hence 0 = log p(i) =

(1− m(Ri)
w(i) ) and m(Ri) = w(i) for all i.

Lemma 3. Shifting an unbalanced segment s into its balance position increases the
entropy.

Proof. We consider a vertical segment s as in the proof of Proposition 4 and assume
f(s) > 0. Let t0 be the first zero of h(t) right of xs. For all t ∈ [xs, t0) the force h(t)
acting on s is positive, i.e., pushing s to the right.

Let E(t) be the entropy of the floorplan when s is shifted towards the position xs =
t0. We consider E(t) as a function of t.

Claim.
d

dt
E(t) = h(t).
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Only rectangles touching s change their contribution to E(t). Let Ri = [xl, t]× [y1, y2]
be a rectangle on the left of s, i.e., Ri ∈ S−, and t is the x-coordinate of the right side
of Ri. Hence

d

dt
(−w(i) log p(i)) = −w(i) 1

p(i)
p′(i) = −w(i)m(Ri)

w(i)

d

dt

w(i)

m(Ri)
=

−w(i)m(Ri)

w(i)
w(i)

−m′(Ri)

m2(Ri)
=

w(i)

m(Ri)
m′(Ri) =

w(i)

m(Ri)

d

dt

∫ t

xl

∫ y2

y1

μ(x, y)dydx =

w(i)

m(Ri)

∫ y2

y1

μt(y)dy = p(i)

∫ y2

y1

μt(y)dy.

When Ri ∈ S+ the mass m(Ri) is decreasing with t so that m′(Ri) is negative and
d
dt(−w(i) log p(i)) = −p(i)

∫ y2

y1
μt(y)dy. Summing this over all rectangles incident

to s we obtain that d
dtE(t) = h(t). This is the claim. �

While shifting s from the initial position xs to t0 we have h(t) > 0. The claim implies
that the derivative of the entropy is positive and, hence, the entropy is increasing.

We continue with item (4) from our program. To prove this, however, we have to add
a condition to the process of balancing segments. The iteration has to be performed such
that no unbalanced segment can be ignored. A rule is called nonignoring if it complies
with this condition. Here are two examples of nonignoring selection rules: 1) Choose
the segment for balancing uniformly at random from the set of unbalanced segments. 2)
Always choose the segment so that the increase of the entropy is as large as possible.

Proposition 5. Let F0, F1, F2, . . . be a sequence of floorplans where Fi+1 is obtained
from Fi by balancing an unbalanced segment from Fi. If the selection of segments
is nonignoring, then there is a subsequence G0, G1, . . . of floorplans that has a limit
G = limGi and the entropy of the floorplan G is zero.

Proof. Let s1, s2, . . . , sn be the inner segments of F . Floorplans that are weakly equiv-
alent to F can be encoded by the coordinate vector of the segments. This vector z in IRn

has the value z(i) = xs if si is a vertical segment and z(i) = ys if si is horizontal. A
sequence of floorplans is converging if the corresponding coordinate vectors converge.

Consider the sequence of coordinate vectors z0, z1, . . . of the given sequence of floor-
plans. Since each of the coordinates of these vectors is from the interval (0, 1), there is
a convergent subsequence. Let G0, G1, . . . be the corresponding convergent sequence
of floorplans and let ei be the entropy of Gi. From Lemma 3 we know that the ei are
an increasing sequence of negative numbers. Assume that the sequence ei converges to
−a �= 0. Consider the limit G = limGi. Since the entropy of G is −a < 0 there is an
unbalanced rectangle Rj in G (Lemma 2) and, hence, there is an unbalanced segment
s in G (Proposition 3). Let Δ be the increase of the entropy that comes from balancing
s in G. Now, for all i greater than a sufficiently large N the floorplan Gi is so close
to G that balancing s in Gi implies an increase of entropy of at least Δ/2. For all i
greater than a sufficiently large M we also have ei > −a − Δ/2. It follows that the
unbalanced segment s was not used for balancing in any Gi with i ≥ max(M,N). This
is in contradiction to the assumption that the process is nonignoring.
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Actually, a stronger statement is true. The full sequence F0, F1, F2, . . . is also con-
verging. To prove this we need the uniqueness from Proposition 6. In fact if G is the
unique floorplan that is weakly equivalent to F and has has m(Ri) = w(i) for all i,
then it follows from the continuity of the entropy that there is an ε > 0 such that all
floorplans whose entropy is larger than −ε have a coordinate vector that is δε close to
the coordinate vector of G. This implies that limFi = G.

Proposition 6. For every floorplan F with n+ 1 rectangles and every positive weight
function w : {1, . . . , n+1} → IR+ with

∑
iw(i) = 1 there is a unique floorplan F ′ in

the unit square that is weakly equivalent to F and has m(Ri) = w(i) for all i.

A proof of the proposition can be found in the paper by Eppstein et al. [5].

4 Accommodating Floorplans on Point Sets

Let P be a generic set of n points in a rectangleR. Let F be a generic floorplan and S be
a subset of the segments of F of size n. A cover map from (F, S) to P is a floorplan F ′

with outer rectangle R that is weakly equivalent to F such that every segment from
S′ = φ(S) contains a point from P . The following is a generalization of Theorem 1.

Theorem 4. If P is a generic set of n points in a rectangle R and F is a generic
floorplan with a prescribed subset S of the segments of size n, then there is a cover map
F ′ from (F, S) to P .

Proof. We use Theorem 3 as a tool for the proof. First we transform the point set P into
a suitable density distribution μ = μP inside R. This density is defined as the sum of
a uniform distribution μ1 with μ1(q) = 1/area(R) for all q ∈ R and a distribution μ2

that represents the points of P . Choose some Δ > 0 such that ||p − p′|| > 3Δ for all
p, p′ ∈ P . Define μ2 =

∑
p∈P μp where μp(q) takes the value (Δ2π)−1 on the disk

DΔ(p) of radius Δ around p and value 0 for q outside of this disk.
For a density ν defined on R and a rectangle R ⊆ R let ν(R) be the integral of the

density ν over R. Since μ1(R) = 1 and μp(R) = 1 for all p ∈ P the total mass ofR is
μ(R) = 1 + n.

Transform the floorplan F into a floorplan FS depending on the set S of segments
that have to cover points of P : inflate every segment in S to form a thin rectangle. This
description is not very formal but with a look at Figure 7 should make clear how to
produce FS from F and S. Let S be the set of new rectangles obtained by inflating
segments from S.

Define weights for the rectangles of FS as follows. If FS has r rectangles we define
w(R) = 1+ 1/r if R ∈ S and w(R) = 1/r for all the rectangles of FS that came from
rectangles of F . The total weight,

∑
R w(R) = 1 + n equals the total mass μ(R).

The dataRwith μ and FS with w constitute, up to scaling ofR and w, a set of inputs
for Theorem 3. From the conclusion of the theorem we obtain a floorplan F ′

S weakly
equivalent to FS such that m(R) =

∫∫
R μ(x, y)dxdy = w(R) for all rectangles.

The definition of the weight function w and the density μ is so that F ′
S should be

close to a cover map from (F, S) to P : Only the rectangles R ∈ S that have been con-
structed by inflating segments may contain a disk DΔ(p) and each of these rectangles
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b)a)

Fig. 7. Floorplans F with as prescribed subset S of segments (bold) and the floorplan FS obtained
by doubling the segments of S

may contain at most one of the disks. This suggests a correspondence S ↔ P . How-
ever, a rectangle R ∈ S may use parts of several discs to accumulate mass. To find a
correspondence between S and P we define a bipartite graph G whose vertices are the
points in P and the rectangles in S:

• A pair (p,R) is an edge of G iff R ∩DΔ(p) �= ∅ in F ′
S .

The proof of the theorem will be completed by proving two claims: 1) G admits a
perfect matching. 2) From F ′

S and a perfect matching M in G we can produce a floor-
plan F ′ that realizes the cover map from (F, S) to P .

For the first of the claims we check Hall’s matching condition: Consider a sub-
set A of S. Since FS is realizing the prescribed weights we have m(A) = μ(A) =∑

R∈A μ(R) =
∑

R∈A w(R) = |A|(1 + 1/r). Since μ1(A) < 1 and μp(A) ≤ 1 for
all p ∈ P there must be at least |A| points p ∈ P with μp(A) > 0, these are the points
that have an edge to a rectangle from A in G. We have thus shown that every set A
of inflated segments is incident to at least |A| points in G, hence, there is an injective
mapping α : S → P such that R ∩DΔ(α(R)) �= ∅ in F ′

S for all R ∈ S.
To prove the second claim we have to construct a floorplan F ′ that realizes the cover

map from (F, S) to P : Let s be a segment in S and let Rs be the rectangle in F ′
S that

corresponds to s. If s is horizontal we define s′ to be the unique maximal horizontal
segment in Rs whose y-coordinate is as close to the y-coordinate of the point α(Rs)
as possible. For vertical segments we focus on the x-coordinate. For segments s of F
that do not belong to S set s′ = s. The collection {s′ : s segment in F} of segments
may fail to be a floorplan, see e.g. Figure 8.b. However, if s1 and s2 are segments of
F such that s1 has one of its endpoints on s2 and s2 ∈ S then we can extend s′1 into
Rs2 to recover the contact with s′2. By doing this for all qualifying pairs s′1, s′2 we get a
floorplan, see Figure 8.c. This floorplan is weakly equivalent to F but there may still be
segments of S that do not quite cover the assigned point. By construction the distance
from a segment to its assigned point is at most Δ. Since Δ is small compared to the
distances of points in P we can shift all segments orthogonally to make them cover
their assigned points. Again this may spoil the floorplan property, see e.g. Figure 8.d.
However, enlarging or shortening of segments by an amount of at most Δ at the ends
finally yields the floorplan F ′ that realizes the cover from (F, S) to P .

The topic of [1] was the study of the number Z(P ) of rectangulations of a generic
point set P . In our terminology this is the total number of cover maps from floorplans
with n inner segments to a generic point set P with n points. Theorem 4 implies that
this number is at least as large as the number of weak equivalence classes of floorplans.
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b)a) c) d)

Fig. 8. a) A solution F ′
S for the instance from Fig. 1. The arrows indicate a matching α. b) Seg-

ments s ∈ S shifted to their optimal position in Rs. c) Enlarged segments recover the contacts.
d) Some segments s are moved outside Rs to cover the corresponding points α(Rs). Small final
adjustments (clipping and enlarging) yield F ′.

This is the Baxter number Bn+1 which is known to be of order Θ(8n+1/(n + 1)4).
In [1] an upper bound for Z(P ) of order O(20n/n4) is shown. To improve this bound
remains an intriguing problem.
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Superpatterns and Universal Point Sets

Michael J. Bannister, Zhanpeng Cheng,
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Abstract. An old open problem in graph drawing asks for the size of a universal
point set, a set of points that can be used as vertices for straight-line drawings of
all n-vertex planar graphs. We connect this problem to the theory of permutation
patterns, where another open problem concerns the size of superpatterns, permu-
tations that contain all patterns of a given size. We generalize superpatterns to
classes of permutations determined by forbidden patterns, and we construct su-
perpatterns of size n2/4+Θ(n) for the 213-avoiding permutations, half the size
of known superpatterns for unconstrained permutations. We use our superpatterns
to construct universal point sets of size n2/4−Θ(n), smaller than the previous
bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding
permutations has superpatterns of size O(n logO(1) n), which we use to prove that
the planar graphs of bounded pathwidth have near-linear universal point sets.

1 Introduction

Fary’s theorem tells us that every planar graph can be drawn with its edges as non-
crossing straight line segments. As usually stated, this theorem allows the vertex coor-
dinates of the drawing to be drawn from an uncountable and unbounded set, the set of
all points in the plane. It is natural to ask how tightly we can constrain the set of possible
vertices. In this direction, the universal point set problem asks for a sequence of point
sets Un ⊆ R2 such that every graph with n vertices can be straight-line embedded with
vertices in Un and such that the size of Un is as small as possible.

So far the best known upper bounds for this problem have considered sets Un of
a special form: the intersection of the integer lattice with a convex polygon. In 1988
de Fraysseix, Pach and Pollack showed that a triangular set of lattice points within a
rectangular grid of (2n−3)×(n−1)points forms a universal set of size n2−O(n) [1,2],
and in 1990 Schnyder found more compact grid drawings within the lower left triangle
of an (n− 1)× (n− 1) grid [3], a set of size n2/2−O(n). Using the method of de
Fraysseix et al., Brandenburg found that a triangular subset of a of a 4

3 n× 2
3 n grid, of

size 4
9 n2 +O(n), is universal [4]. Until now his bound has remained the best known.

On the other side, Dolev, Leighton, and Trickey [5] used the nested triangles graph to
show that rectangular grids that are universal must have size at least n/3×n/3, or with
a fixed choice of planar embedding and outer face 2n/3×2n/3. Thus, if we wish to find
subquadratic universal point sets we must consider sets not forming a grid. However,
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the known lower bounds that do not make this grid assumption are considerably weaker.
In 1988 de Fraysseix, Pach and Pollack proved the first nontrivial lower bounds of n+
Ω(
√

n) for a general universal point set [1]. This was later improved to 1.098n− o(n)
by Chrobak and Payne [2]. Finally, Kurowski improved the lower bound to 1.235n [6],
which is still the best known lower bound.1

With such a large gap between these lower bounds and Brandenburg’s upper bound,
obtaining tighter bounds remains an important open problem in graph drawing [8].

Universal point sets have also been considered for subclasses of planar graphs. For
instance, every set of n points in general position (no three collinear) is universal for the
n-vertex outerplanar graphs [9]. Universal point sets of size O

(
n(logn/ loglogn)2

)
ex-

ist for simply-nested planar graphs (graphs that can be decomposed into nested induced
cycles) [10], and planar 3-trees have universal point sets of size O(n5/3) [11]. Based in
part on the results in this paper, the graphs of line and pseudoline arrangements have
been shown to have universal point sets of size O(n logn) [12].

In this paper we provide a new upper bound on universal point sets for general pla-
nar graphs, and improved bounds for certain restricted classes of planar graphs. We
approach these problems via a novel connection to a different field of study than graph
drawing, the study of patterns in permutations.2 A permutation σ is said to contain
the pattern π (also a permutation) if σ has a (not necessarily contiguous) subsequence
whose elements are in the same relative order with respect to each other as the elements
of π. The permutations that do not contain any pattern in a given set F of forbidden
patterns are said to be F-avoiding; we define Sn(F) to be the length-n permutations
avoiding F . Researchers in permutation patterns have defined a superpattern to be a
permutation that contains all length-n permutations among its patterns, and have stud-
ied bounds on the lengths of these patterns [14, 15], culminating in a proof by Miller
that there exist superpatterns of length n2/2+Θ(n) [16]. We generalize this concept to
an Sn(F)-superpattern, a permutation that contains all possible patterns in Sn(F); we
prove that for certain sets F , the Sn(F)-superpatterns are much shorter than Miller’s
bound.

As we show, the existence of small Sn(213)-superpatterns leads directly to small
universal point sets for arbitrary planar graphs, and the existence of small Sn(F)-super-
patterns for F containing 213 leads to small universal point sets for subclasses of the
planar graphs. Our method constructs a universal set U that has one point for each each
element of the superpattern σ. It uses two different traversals of a depth-first-search tree
of a canonically oriented planar graph G to derive a permutation cperm(G) from G, and
it uses the universality of σ to find cperm(G) as a pattern in σ. Then, the positions of
the elements of this pattern in σ determine the assignment of the corresponding vertices
of G to points in U , and we prove that this assignment gives a planar embedding of G.
A similar but simpler reduction uses Sn-superpatterns to construct universal point sets
for dominance drawings of transitively reduced st-planar graphs.

1 The validity of this result was originally questioned by Mondal [7], but later confirmed.
2 A different connection between permutation patterns and graph drawing is being pursued inde-

pendently by Bereg, Holroyd, Nachmanson, and Pupyrev, in connection with bend minimiza-
tion in bundles of edges that realize specified permutations [13].
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Specifically our contributions include proving the existence of:

– superpatterns for 213-avoiding permutations of size n2/4+Θ(n);
– universal point sets for planar graphs of size n2/4−Θ(n);
– universal point sets for dominance drawings of size n2/2+Θ(n);
– superpatterns for every proper subclass of the 213-avoiding permutations of size

O(n logO(1) n);
– universal point sets for graphs of bounded pathwidth of size O(n logO(1) n); and
– universal point sets for simply-nested planar graphs of size O(n logn).

In addition, we prove that every superpattern for {213,132}-avoiding permutations has
length Ω(n logn), which in turn implies that every superpattern for 213-avoiding per-
mutations has length Ω(n logn). It was known that Sn-superpatterns must have quadratic
length—otherwise they would not have enough length-n subsequences to cover all n!
permutations [14]—but such counting arguments cannot provide nonlinear bounds for
Sn(F)-superpatterns due to the now-proven Stanley–Wilf conjecture that Sn(F) grows
singly exponentially [17]. Instead, our proof finds an explicit set of {213,132}-avoiding
permutations whose copies within a superpattern cannot share many elements.

2 Preliminaries

Let Sn denote the set of all permutations of the numbers from 1 to n. We will normally
specify a permutation as a sequence of numbers: for instance, the six permutations in
S3 are 123, 132, 213, 231, 312, and 321. If π is a permutation, then we write πi for the
element in the ith position of π, and |π| for the number of elements in π.

We say that a permutation π is a subpattern of a permutation σ of length n if there
exists a sequence of integers 1 ≤ �1 < �2 < · · · < �|π| ≤ n such that πi < π j if and
only if σ�i < σ� j . In other words, π is a subpattern of σ if π is order-isomorphic to
a subsequence of σ. We say that a permutation σ avoids a permutation φ if σ does not
contain φ as a subpattern. A permutation class is a set of permutations with the property
that all patterns of a permutation in the class also belong to the class; every permutation
class may be defined by a (not necessarily finite) set of forbidden permutations, the
minimal patterns that do not belong to the class. Define Sn(φ1, . . . ,φk) to be the set of
all length-n permutations that avoid all of the (forbidden) patterns φ1, . . . ,φk. Given a
set of permutations P⊆ Sn, we define a P-superpattern to be a permutation σ with the
property that every π ∈ P is a subpattern of σ.

One of the most important permutation classes in the study of permutation patterns
is the class of stack-sortable permutations [18], the permutations that avoid the pattern
231. Knuth’s discovery that these are exactly the permutations that can be sorted us-
ing a single stack [19] kicked off the study of permutation patterns. The 213-avoiding
permutations that form the focus of our research are related to the 231-avoiding permu-
tations by a simple transformation, the replacement of each value i in a permutation by
the value n+ 1− i, that does not affect the existence or size of superpatterns.

Given a permutation π we define a column of π to be a maximal ascending run of
π, and we define a row of π to be a maximal ascending run in π−1, where a run is a
contiguous monotone subsequence of the permutation. We define a block of π to be a
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set of consecutive integers that appear contiguously (but not necessarily in order) in π.
For instance, {3,4,5} forms a block in 14352. (Our definition of rows and columns
differs from that of Miller [16]: for our definition, the intersection of a row and column
is a block that could contain more than one element, whereas in Miller’s definition a
row and column intersect in at most one element.)

We define the chessboard representation of a permutation π to be an r× c matrix
M = chessboard(π), where r is number of rows in π and c is the number of columns
in π, such that M(i, j) is the number of points in the intersection of the ith column and
the jth row of π. An example of a chessboard representation can be seen in Figure 1. To
recover a permutation from its chessboard representation, start with the lowest row and
work upwards assigning an ascending subsequence of values to the squares of each row
in left to right order within each row. If a square has label i, allocate i values for it. Then,
after this assignment has been made, traverse each column in left-to-right order, within
each column listing in ascending order the values assigned to each square of the column.
The sequence of values listed by this column traversal is the desired permutation.

1

2

1

0

0

0

0

1

0

0

0

1

0

1

1

1

0

0

0

0

0

0

1

0

2

0

1

0

0

0

Fig. 1. The permutation π = 1 4 5 8 6 13 12 7 9 11 2 3 10 represented by its scatterplot (the points
(i,πi)) with lines separating its rows and columns (left), and by chessboard(π) (right)

3 From Superpatterns to Universal Point Sets

In this section, we show how 213-avoiding superpatterns can be turned into universal
point sets for planar graphs. Let G be a planar graph. We assume G is maximal planar,
meaning that no additional edges can be added to G without breaking its planarity; this
is without loss of generality, because a point set that is universal for maximal planar
graphs is universal for all planar graphs. Additionally, we assume that G has a fixed
plane embedding; for maximal planar graphs, such an embedding is determined by the
choice of which of the triangles of G is to be the outer face.

3.1 Canonical Representation

As in the grid drawing method of de Fraysseix, Pach and Pollack [1], we use canonical
representations of planar graphs; these are sequences v1,v2, . . .vn of the vertices of the
given maximal plane graph G with the following properties:
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– v1v2vn is the outer triangle of the embedding, in clockwise order v1, vn, v2.
– Each vertex vi with i ≥ 3 has two or more earlier neighbors in the sequence, and

these neighbors form a contiguous subset of the cyclic ordering of neighbors around
vi in the embedding of G.

Given a canonical representation, let Gk be the induced subgraph of G with vertex
set {v1,v2, . . .vk}. Then Gk is necessarily 2-connected; its induced embedding has as its
exterior face a simple cycle Ck containing vk and the edge v1v2, and the neighbors of vk

in Gk form an induced path in Ck−1.
As de Fraysseix, Pach and Pollack proved, every embedded maximal planar graph

has at least one canonical representation. For the rest of this section, we will assume that
the vertices vi of the given maximal planar graph G are numbered according to such a
representation. The definition of a canonical representation implies that the outer face
of G is the triangle v1v2vn; we will assume that this triangle is oriented so that v1,vn,v2

are in clockwise order.
For each vertex vi with i > 2, let parent(vi) be the most clockwise smaller-numbered

neighbor of vi. By following a path of edges from vertices to their parents, each vertex
can reach v1, so these edges form a tree ctree(G) having v1 as its root; this same tree
may also be obtained by orienting each edge of G from lower to higher numbered
vertices, and then performing a depth-first search of the resulting oriented graph that
visits the children of each vertex in clockwise order, starting from v1.3 For each vertex
vi of G, let pre(vi) be the position of vi in a pre-order traversal of ctree(G) that visits
the children of each node in clockwise order, and let post(vi) be the position of v in a
sequence of the nodes of ctree(G) formed by reversing a post-order clockwise traversal.
These two numbers may be used to determine the ancestor-descendant relationships in
ctree(G): a node vi is an ancestor of a node v j if and only if both pre(vi)< pre(v j) and
post(vi)< post(v j) [20].

Lemma 1. Let G be a canonically-represented maximal plane graph, and renumber the
vertices of G in order by their values of post(vi). Then the result is again a canonical
representation of the same embedding of G, and for each induced subgraph Gk of this
new canonical representation, the clockwise ordering of the vertices along the exterior
cycle Ck is in sorted order by the values of pre(vi).

Proof. The fact that post(vi) gives a canonical representation comes from the fact that
it is a reverse postorder traversal of a depth-first search tree. Reverse postorder traversal
gives a topological ordering of every directed acyclic graph, from which it follows that
every vertex in G has the same set of earlier neighbors when ordered by post(vi) as it
did in the original ordering.

The statement on the ordering of the vertices of Ck follows by induction, from the
fact that vk has a larger value of pre(vi) than its earliest incoming neighbor (its parent
in ctree(G)) and a smaller value than all of its other incoming neighbors. ��

3 Although we do not use this fact, ctree(G) is also part of a Schnyder decomposition of G,
together with a second tree rooted at v2 connecting each vertex to its most counterclockwise
earlier neighbor and a third tree rooted at vn connecting each vertex to the later vertex whose
addition removes it from Ck.
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Let cperm(G) be the permutation in which, for each vertex vi, the permutation value
in position pre(vi) is post(vi). That is, cperm(G) is the permutation given by traversing
ctree(G) in preorder and listing for each vertex of the traversal the number post(vi).

Lemma 2. For every canonically-represented maximal planar graph G, the permuta-
tion π = cperm(G) is 213-avoiding.

Proof. Let i < j < k be an arbitrary triple of indexes in the range from 1 to n, corre-
sponding to the vertices ui, u j and uk. If π j is not the smallest of these three values,
then πi, π j, and πk certainly do not form a 213 permutation pattern. If π j is the smallest
of these three values, then, since pre(ui) < pre(u j) but post(ui)> post(u j), ui is not an
ancestor or descendant of u j, and u j is an ancestor of uk. Therefore ui is also not an
ancestor or descendant of uk, from which it follows that πi > πk and the pattern formed
by πi, π j, and πk is 312 rather than 213. Since the choice of indices was arbitrary, no
three indices can form a 213 pattern and π is 213-avoiding. ��

We observe that cperm(G) has some additional structure, as well: its first element is
1, its second element is n, and its last element is 2.

3.2 Stretching a Permutation

It is natural to represent a permutation σ by the points with Cartesian coordinates (i,σi),
but for our purposes we need to stretch this representation in the vertical direction; we
use a transformation closely related to one used by Bukh, Matoušek, and Nivasch [21]
for weak epsilon-nets, and by Fulek and Tóth [11] for universal point sets for plane
3-trees. Letting q = |σ|, we define

stretch(σ) =
{
(i,qσi) | 1≤ i≤ q

}
.

Lemma 3. Let σ be an arbitrary permutation with |σ| = q, let pi denote the point in
stretch(σ) corresponding to position i in σ, let i and j be two indices with σi < σ j , and
let m be the absolute value of the slope of line segment pi p j. Then qσ j−1 ≤ m < qσ j .

Proof. The minimum value of m is obtained when |i− j| = q− 1 and σi = σ j− 1, for
which qσ j−1 = m. The maximum value of m is obtained when |i− j| = 1 and σi = 1,
for which m = qσ j − q < qσ j . ��

Lemma 4. Let σ be an arbitrary permutation with |σ| = q, let pi denote the point in
stretch(σ) corresponding to position i in σ, and let i, j, and k be three indices with
max{σi,σ j}< σk and i < j. Then the clockwise ordering of the three points pi, p j, and
pk is pi, pk, p j.

Proof. The result follows by using Lemma 3 to compare the slopes of the two line
segments pi p j and pi pk. ��

Lemma 5. Let σ be an arbitrary permutation with |σ| = q, let pi denote the point in
stretch(σ) corresponding to position i in σ, and let h, i, j, and k be four indices with
max{σh,σi,σ j} < σk and h < j. Then line segments ph p j and pi pk cross if and only if
both h < i < j and max{σh,σ j}> σi.
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Proof. A crossing occurs between two line segments if and only if the endpoints of
each segment are on opposite sides of the line through the other segment. The endpoints
of pi pk are on opposite sides of line ph p j if and only if the two triangles ph pi p j and
ph pk p j have opposite orientations; with the assumption that σk is the largest of the three
values, this is equivalent by Lemma 4 to the condition that σi is not the second-largest.
The endpoints of ph p j are on opposite sides of line pi pk if and only if the two triangles
pi ph pk and pi p j pk have opposite orientations; this is equivalent by Lemma 4 to the
condition that h < i < j. ��

3.3 Universal Point Sets

If σ is any permutation, we define augment(σ) to be a permutation of length |σ|+ 3,
in which the first element is 1, the second element is |σ|+ 3, the last element is 2, and
the remaining elements form a pattern of type σ. It follows from Lemma 2 that, if σ is
an Sn−3(213)-superpattern and if G is an arbitrary n-vertex maximal plane graph, then
cperm(G) is a pattern in augment(σ).

Theorem 1. Let σ be an Sn−3(213)-superpattern, and let Un = stretch(augment(σ)).
Then Un is a universal point set for planar graphs on n vertices.

Proof. Let G be an arbitrary maximal plane graph, let v1,v2, . . .vn be a canonical repre-
sentation of G, and let xi denote a sequence of positions in augment(σ) that form a pat-
tern of type cperm(G), with position xi in augment(σ) corresponding to position pre(vi)
in cperm(G). Let q = |augment(σ)|, and for each i, let yi = q j where j is the value of
augment(σ) at position xi. Embed G by placing vertex vi at the point (xi,yi) ∈Un.

Let vh, vi, v j, and vk be four vertices in G such that vhv j and vivk are edges in G. We
may choose these indices in such a way that post(vk) is larger than the post values of
the other three vertices. If these two edges crossed in the given embedding of G, then
by Lemma 5 we would necessarily have pre(vh) < pre(vi) < pre(v j), and post(vi) <
max{post(vh),post(v j)}. By Lemma 1, vi would not be on the outside face of the graph
induced by the vertices with post values at most max{post(vh),post(v j)}, and could
not be a neighbor of vk in the canonical representation given by the post values. This
contradiction shows that no crossing is possible, so the embedding is planar. ��

4 Sn(213)-Superpatterns

In this section we construct a Sn(213)-superpattern of size n2/4+ n+((−1)n− 1)/8.
An exhaustive computer search has shown that this size is minimal for n ≤ 6. We start
with a lemma about Sn(213)-superpatterns with n rows and n columns (the minimal
amount of each), demonstrating their recursive structure.

Lemma 6. If σ is a Sn(213)-superpattern and has n rows and n columns, then the
permutation described by the intersection of columns n− j+ 1 to n− i+ 1 and rows i
to j of σ is a S j−i+1(213)-superpattern.
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1
1

1
1

. . .

. . .
1

1

π + i− 1

n− j

i− 1

Fig. 2. The permutation τ constructed from
π in the proof of Lemma 6

1
2

0

0

1

μ1 = 1 μ2 = 2 3 1

M1 = M2 =

Fig. 3. The base case permutations for con-
structing µn for n > 2 and their chessboard
representations

Mn−2
Mn =

1 1 1 1 21 11 1

M10 =

1

1 1 1 1 21 1
1

1 1 1 1 2
1

1 1 2
1

2
1

1 1 21 1
1

Fig. 4. The inductive construction of chessboard(µn) from chessboard(µn−2). Cells of the matrix
containing zero are shown as blank

Proof. Let π be an arbitrary 213-avoiding permutation of length j− i+ 1 and consider
the n-element 213-avoiding permutation

τ = n(n− 1) . . .( j+ 1)(π1 + i− 1)(π2+ i− 1) . . .(π j−i+1 + i− 1)(i− 1)(i− 2) . . .321.

(See Fig. 2.) By the assumption that σ is a superpattern, τ has an embedding into σ.
Because there are n− j descents in τ before the first element of the form πi + i− 1,
this embedding cannot place any element πi + i− 1 into the first n− j columns of σ.
Similarly because there are i descents in τ after the last element of the form πi + i− 1,
this embedding cannot place any element πi + i− 1 into the last i− 1 columns of σ. By
a symmetric argument, the elements of the form πi+ i−1 cannot be embedded into the
i−1 lowest rows nor the n− j highest rows of σ. Therefore these elements, which form
a pattern of type π, must be embeddable into σ inclusively between column n− j+ 1,
column n− i+1, row i, and row j. Since π was arbitrary, this part of σ must be universal
for permutations of length j− i+ 1, as claimed. ��

We define a permutation µn, which will be shown to be a Sn(213)-superpattern, by
describing chessboard(µn) = Mn. In our construction Mn and µn have n columns and
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1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

S6(213)

Si(213)

S2(213)

· · ·

i elements

1
1

μn−2

μn

Fig. 5. A partial embedding of the red elements, showing where the remaining blocks can be fit
into the columns of µn−2

n rows. The bottom two rows of Mn contain the values Mn(n,1) = Mn(i,2) = 1 for
1≤ i≤ n−2, and Mn(n−1,2) = 2, with all other values in these rows zero. The values
in the top n−2 rows are given recursively by Mn(1 : n− 2,3 : n) = Mn−2, again with all
values outside this submatrix zero. The base cases of µ1 and µ2 are shown in Figure 3
and the inductive definition and an example are shown in Figure 4.

Theorem 2. The permutation µn is a Sn(213)-superpattern. Thus there exists a Sn(213)-
superpattern whose size is n2/4+ n+((−1)n− 1)/8.

Proof. It can be easily verified that µi is a Si(213)-superpattern when 1 ≤ i ≤ 2. Let
π be an arbitrary 213-avoiding permutation of length n. We will show that π can be
embedded into µn.

Case 1: πn = 1
Let πi1 . . .πik be the second lowest row of π. Because π is 213-avoiding, ik = n− 1
and for all j, πi j = j+ 1. We embed this bottom row by mapping πn to the bottom
right element of µn and πi j to the i j-th position of the second lowest row of µn.

Case 2: πn �= 1
Let πi1 . . .πik be the lowest row of π. Similarly to Case 1, because π is 213-avoiding,
ik = n and for all j, πi j = j. We embed this bottom row by mapping πi j to the i j-th
position of the second lowest row of µn.

These partial embeddings maintain the ordering of the lowest and possibly second
lowest row of π. To finish the embedding, the remaining elements need to be fit into
the copy of µn−2. Recall that a block of a permutation is a contiguous subsequence
of consecutive values. Because π is 213-avoiding, the remaining elements of π form
disjoint blocks that fit between the elements embedded so far. If one block is to the
right of another in π, it has smaller values. Let πi1 be the leftmost element that has
been embedded on the second row of µn. Then there are i1− 1 elements before it in π
and i1− 1 columns before where it was embedded in µn. By Lemma 6, these elements
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can fit into the last i1− 1 rows of these columns. Let πi j and πi j+1 be two adjacent
elements embedded in the second lowest row of µn. Between these two there are at least
i j+1− i j−1 columns of µn−2 available: the column above πis to the column before πi j+1 .
So again by Lemma 6, the i j+1− i j− 1 elements between πi j and πi j+1 can be fit into
the last i j+1− i j− 1 rows of those columns. (See Fig. 5) Because ik = n− 1 in Case 1
and n in Case 2, there is no block after πik . Therefore π can be embedded into µn and µn

is a Sn(213)-superpattern. ��

Combining Theorem 2 with Theorem 1, the following is immediate:

Theorem 3. The n-vertex planar graphs have universal point sets of size n2/4−Θ(n).

5 Dominance Drawing

A dominance drawing of a directed acyclic graph [22] is a drawing of the graph in
the plane such that each edge is directed upwards and to the right, such that the axis-
aligned bounding box of every edge contains no vertices other than its endpoints, and
such that no edge can be added to the drawing preserving these properties. The graphs
with planar dominance drawings are exactly the transitively reduced st-planar graphs,
i.e. the planar directed acyclic graphs in which there is one source and one sink, both
on the outer face, and in which each edge forms the only directed path connecting its
two endpoints.

If a graph has a dominance drawing D, then it has a drawing in which the points are
in general position, and the points in this case can be thought of as representing a per-
mutation πD, where the positions of the elements in the permutation are the positions of
the points in the sorted order by their x coordinates and the values of these elements are
the positions in the sorted order by the y coordinates. Any two point sets with the same
two sorted orders may be used as the basis for a dominance drawing combinatorially
equivalent to D. In particular, if πD appears as a pattern in another permutation σ, then
the subset of the points (i,σi) corresponding to elements of πD may be used to draw the
same graph. This gives us the following result:

Theorem 4. If σ is a superpattern for the length-n permutations, then the set of points
(i,σi) is universal for dominance drawings of n-vertex transitively reduced st-planar
graphs.

Combining this result with Miller’s bound on superpatterns [16] shows that domi-
nance drawings have universal point sets of size n2/2+Θ(n), half the size of the point
sets given by previous methods based on n× n grids.

Not every permutation is of the form πD for a planar dominance drawing D; for in-
stance the permutation 2143 corresponds to a drawing that has a crossing. However,
every permutation π forms a pattern in a larger permutation σ that does define a pla-
nar dominance drawing, constructed from the Dedekind–MacNeille completion of a
partially ordered set associated to π [23]. For this reason, the permutations that define
planar dominance drawings have no forbidden patterns. However, in later research, we
have shown that the dominance drawings of some other classes of graphs have forbid-
den patterns, leading to smaller universal sets for these drawings [24].
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6 Additional Results

In the full version of the paper, we provide the following results.

– We prove that, for every 213-avoiding permutation φ, the {213,φ}-avoiding permu-
tations have superpatterns of near-linear size. In particular, the {213,312}-avoiding
permutations and the {213,3412}-avoiding permutations have superpatterns of lin-
ear size, and the minimum size of a superpattern for the {213,132}-avoiding per-
mutations is Θ(n logn) (despite these permutations being equinumerous with the
{213,312}-avoiding permutations). We define the Strahler number of any 213-
avoiding permutation from a forest derived from its chessboard representation, and
we show that if a permutation φ has Strahler number s then the {213,φ}-avoiding
permutations have superpatterns of size O(n logs−1 n).

– We prove that, for every integer w, there exists a pattern φ such that the planar
graphs of pathwidth at most w correspond to a {213,φ}-avoiding permutation (us-
ing the same correspondence between graphs and permutations as in Section 3). As
a consequence, the planar graphs of bounded pathwidth have universal point sets of
size O(n logO(1) n).

– We improve the bound of Angelini et al. [10] on universal point sets for simply-
nested planar graphs from O

(
n(logn/ loglogn)2

)
to O(n logn).

For space reasons we defer the proofs of these results to the full version of the paper.

7 Conclusion

In this paper we have constructed universal point sets for planar graphs of size n2/4−
Θ(n), and of subquadratic size for graphs of bounded pathwidth. In the process of build-
ing these constructions we have provided a new connection between universal point sets
and permutation superpatterns. We have also, for the the first time, provided nontrivial
upper bounds and lower bounds on the size of superpatterns for restricted classes of
permutations. We leave the following problems open for future research:

– Which natural subclasses of planar graphs (beyond the bounded-pathwdith graphs)
can be represented by permutations in a proper subclass of Sn(213)?

– Can we reduce the gap between our O(n2) upper bound and Ω(n logn) lower bound
for Sn(213)-superpatterns?

– Our construction uses area exponential in n2; how does constraining the area to a
smaller bound affect the number of points in a universal point set?
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Abstract. A simultaneous embedding of two graphs G 1 and G 2 with common
graph G = G 1 ∩ G 2 is a pair of planar drawings of G 1 and G 2 that coincide
on G. It is an open question whether there is a polynomial-time algorithm that
decides whether two graphs admit a simultaneous embedding (problem SEFE).

In this paper, we present two results. First, a set of three linear-time prepro-
cessing algorithms that remove certain substructures from a given SEFE instance,
producing a set of equivalent SEFE instances without such substructures. The
structures we can remove are (1) cutvertices of the union graph G 1 ∪ G 2 , (2)
cutvertices that are simultaneously a cutvertex in G 1 and G 2 and that have de-
gree at most 3 in G, and (3) connected components of G that are biconnected but
not a cycle.

Second, we give an O(n2)-time algorithm for SEFE where, for each pole u
of a P-node μ (of a block) of the input graphs, at most three virtual edges of μ
contain common edges incident to u. All algorithms extend to the sunflower case.

1 Introduction

A simultaneous embedding of two graphs G 1 and G 2 with common graph G = G 1 ∩
G 2 is a pair of planar drawings of G 1 and G 2 , that coincide on G. The problem to de-
cide whether a simultaneous embedding exists is called SEFE (simultaneous embedding
with fixed edges). This definition extends to more than two graphs. For three graphs
SEFE is NP-complete [7]. In the sunflower case it is required that every pair of input
graphs has the same intersection. See [2] for a survey on SEFE and related problems.

There are two fundamental approaches to solving SEFE in the literature. The first
approach is based on the characterization of Jünger and Schulz [10] stating that finding a
simultaneous embedding of two graphsG 1 and G 2 with common graph G is equivalent
to finding planar embeddings of G 1 and G 2 that induce the same embedding on G. The
second very recent approach by Schaefer [11] is based on Hanani-Tutte-style redrawing
results. One tries to characterize the existence of a SEFE via the existence of drawings
where no two independent edges of the same graph cross an odd number of times. The
existence of such drawings can be expressed using a linear system of boolean equations.

When following the first approach, we need two things to describe the planar embed-
ding of the common graph G. First, for each vertex v, a cyclic order of incident edges
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around v. Second, for every pair of connected components H and H ′ of G, the face f
of H containing H ′. We call this relationship the relative position of H ′ with respect
to H . To find a simultaneous embedding, one needs to find a pair of planar embeddings
that induce the same cyclic edge orderings (consistent edge orderings) and the same
relative positions (consistent relative positions) on the common graph G.

Most previous results use the first approach but none of them considers both con-
sistent edge orderings and relative positions. Most of them assume the common graph
to be connected or to contain no cycles. The strongest results of this type are the two
linear-time algorithms for the case that G is biconnected by Haeupler et al. [9] and by
Angelini et al. [1] and a quadratic-time algorithm for the case where G 1 and G 2 are bi-
connected and G is connected [4]. In the latter result, SEFE is modeled as an instance of
the problem SIMULTANEOUS PQ-ORDERING. On the other hand, there is a linear-time
algorithm for SEFE if the common graph consists of disjoint cycles [3], which requires
to ensure consistent relative positions but makes edge orderings trivially consistent.

The advantage of the second approach is that it implicitly handles both, consistent
edge orderings and consistent relative positions, at the same time. Thus, the results by
Schaefer [11] are the first that handle SEFE instances where the common graph consists
of several, non-trivial connected components. He gives a polynomial-time algorithm
for the cases where each connected component of the common graph is biconnected
or has maximum degree 3. Although this approach is conceptionally simple, very ele-
gant, and combines several notions of planarity within a common framework, it has two
disadvantages. The running time of the algorithms are quite high and the high level of
abstraction makes it difficult to generalize the results, e.g., to the sunflower case.

Contribution & Outline. In this paper, we follow the first approach and show how to
enforce consistent edge orderings and consistent relative positions at the same time,
by combining different recent approaches, namely the algorithm by Angelini et al. [1]
and result on SIMULTANEOUS PQ-ORDERING [4] for consistent edge orderings and the
result on disjoint cycles [3] for consistent relative positions. To handle relative positions
of connected components to each other without knowing their embedding, we show that
these relative positions can be expressed in terms of relative positions with respect to a
cycle basis. In addition to that, we are able to handle certain cutvertices of G 1 and G 2 .

More precisely, we classify a vertex v to be a union cutvertex, a simultaneous cutver-
tex, and an exclusive cutvertex if v is a cutvertex of G 1 ∪ G 2 , of G 1 and G 2 but not
of G 1 ∪ G 2 , and of G 1 but not G 2 or the other way around, respectively. We say that
v has common-degree k if it is a common vertex with degree k in G. We present three
preprocessing algorithms that simplify given instances of SEFE; see Section 3. They re-
move union cutvertices and simultaneous cutvertices with common-degree 3 (note that
simultaneous cutvertices with common degree less than 3 cannot exist), and replace
connected components of G that are biconnected by cycles. They run in linear time and
can be applied independently. The latter algorithm together with the linear-time algo-
rithm for disjoint cycles [3] improves the result by Schaefer [11] for instances where
every connected component of G is biconnected to linear time and the sunflower case.

In Section 4 we show how to solve instances that have common P-node degree 3 and
contain neither union nor simultaneous cutvertices in quadratic time. An instance has
common P-node degree k if, for each pole u of a P-node μ (of a block) of the input
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graphs, at most k virtual edges of μ contain common edges incident to u. Together
with the preprocessing steps, this includes the case where every connected component
of G is biconnected, has maximum degree 3, or is outerplanar with maximum degree 3
cutvertices. As before, this approach also applies to the sunflower case.

2 Preliminaries

Connectivity & SPQR-trees. A graph is connected if there exists a path between any
pair of vertices. A separating k-set is a set of k vertices whose removal disconnects the
graph. Separating 1-sets and 2-sets are cutvertices and separation pairs, respectively.
A connected graph is biconnected if it has no cut vertex and triconnected if it has no
separation pair. The maximal biconnected components of a graph are called blocks. The
split components with respect to a separating k-set are the maximal subgraphs that are
not disconnected by removing the separating k-set.

The SPQR-tree T of a biconnected graph G represents the decomposition of G along
its split pairs, where a split pair is either a separating pair or a pair of adjacent ver-
tices [6]. We consider the SPQR-tree to be unrooted, representing embeddings on the
sphere, i.e., planar embeddings without a designated outer face.

Let {s, t} be a split pair and let H1 and H2 be two subgraphs of G such that H1 ∪
H2 = G and H1 ∩ H2 = {s, t}. Consider the tree consisting of two nodes μ1 and
μ2 associated with the graphs H1 + {s, t} and H2 + {s, t}, respectively. These graphs
are called skeletons of the nodes μi, denoted by skel(μi), and the special edge {s, t} is
a virtual edge. The edge connecting the nodes μ1 and μ2 associates the virtual edges
in skel(μ1) and skel(μ2) with each other. The expansion graph of a virtual edge {s, t}
is the subgraph of G it represents, that is in skel(μ1) the expansion graph of {s, t} is H2

and the expansion graph of {s, t} in skel(μ2) is H1. A combinatorial embedding of G
uniquely induces a combinatorial embedding of skel(μ1) and skel(μ2) and vice versa.

Applying this kind of decomposition systematically yields the SPQR-tree T . The
skeletons of the internal nodes of T are either a cycle (S-node), a bunch of parallel
edges (P-node) or a triconnected planar graph (R-node). The leaves are Q-nodes, and
their skeleton consists of two vertices connected by a virtual and a normal edge. Thus,
the only possible embedding choices are flipping skeletons of R-nodes and ordering the
edges in skeletons of P-nodes. The SPQR-tree can be computed in linear time [8].

Let T 1 by the SPQR-tree of a block of G 1 in an instance of SEFE and let G be the
common graph. Let further μ be a P-node of T 1 . We say that μ has common P-node
degree k if both vertices in skel(μ) are incident to common edges in the expansion
graphs of at most k virtual edges (note that these can be different edges for the two
vertices). We say that G 1 has common P-node degree k if each P-node in the SPQR-
tree of each block of G 1 has common P-node degree k. If this is the case for G 1 and
G 2 , we say that the instance of SEFE has common P-node degree k.

PQ-trees. A PQ-tree, originally introduced by Booth and Lueker [5], is a tree, whose
inner nodes are either P-nodes or Q-nodes (note that these P-nodes have nothing to do
with the P-nodes of the SPQR-tree). The order of edges around a P-node can be ordered
arbitrarily, the edges around a Q-node are fixed up to a flip. In this way, a PQ-tree repre-
sents a set of orders on its leaves. A rooted PQ-tree represents linear orders, an unrooted
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PQ-tree represents cyclic orders (in most cases we consider unrooted PQ-trees). Given
a PQ-tree T and a subset S of its leaves, there exists another PQ-tree T ′ representing
exactly the orders represented by T where the elements in S are consecutive. The tree
T ′ is the reduction of T with respect to S. The projection of T to S is a PQ-tree with
leaves S representing exactly the orders on S that are represented by T .

The problem SIMULTANEOUS PQ-ORDERING has several PQ-trees sharing some
leaves as input, that are related by identifying some of their leaves [4]. More precisely,
every instance is a directed acyclic graph, where each node is a PQ-tree, and each arc
(T, T ′) has the property that there is an injective map from the leaves of the child T ′

to the leaves of the parent T . For each PQ-tree in such an instance, one wants to find
an order of its leaves such that for every arc (T, T ′) the order chosen for the parent T
is an extension of the order chosen for the child T ′ (with respect to the injective map).
We will later use instances of SIMULTANEOUS PQ-ORDERING to express relations
between orderings of edges around vertices.

3 Preprocessing Algorithms

In this section, we present several algorithms that can be used as a preprocessing of a
given SEFE instance. The result is usually a set of SEFE instances that admit a solution
if and only if the original instance admits one. The running time of the preprocessing
algorithms is linear, and so is the total size of the equivalent set of SEFE instances. Each
of the preprocessing algorithms removes certain types of structures form the instance,
in particular from the common graph. Namely, we show that we can eliminate union
cutvertices, simultaneous cutvertices with common-degree 3, and connected compo-
nents ofG that are biconnected but not a cycle. None of these algorithms introduces new
cutvertices in G or increases the degree of a vertex. Thus, the preprocessing algorithms
can be successively applied to a given instance, removing all the claimed structures.

Let (G 1 , G 2 ) be a SEFE instance with common graph G = G 1 ∩ G 2 . We can
equivalently encode such an instance in terms of its union graph G∪ = G 1 ∪ G 2 ,
whose edges are labeled {1}, {2}, or {1, 2}, depending on whether they are contained
exclusively in G 1 , exclusively in G 2 , or in G, respectively. Any graph with such an edge
coloring can be considered as a SEFE instance. Since sometimes the coloring version is
more convenient, we use these notions interchangeably throughout this section.

3.1 Union Cutvertices and Simultaneous Cutvertices

Fig. 1. A simultaneous cutvertex with
common-degree 3. The gray regions
are the split components of G 1 , the
new dashed edge belongs to G 2 .

It is not hard to see that union cutvertices of a SEFE

instance can be used to split it into independent in-
stances. A simultaneous cutvertex with common-
degree 3 can be modified as in Fig. 1, yielding an
equivalent instance. Exhaustively applying these
ideas, yields the following results; proofs are omit-
ted due to space constraints.

Theorem 1. There is a linear-time algorithm that
decomposes a SEFE instance into an equivalent set
of SEFE instances that do not contain union cutvertices.
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Theorem 2. Let (G 1 , G 2 ) be an instance of SEFE such that every simultaneous cutver-
tex has common-degree 3. An equivalent instance without simultaneous cutvertices can
be computed in linear time.

3.2 Connected Components that are Biconnected

Let (G 1 , G 2 ) be a SEFE instance. Throughout this section, we assume without loss of
generality that G 1 andG 2 are connected [3] and that the common graphG is an induced
subgraph of G 1 and G 2 . The latter can be achieved by subdividing each exclusive edge
once, which clearly does not alter the existence of a SEFE.

Let C be a connected component of G that is a cycle. A union bridge of G 1 and G 2

with respect to C is a connected component of G∪ − C together with all its attach-
ment vertices on C. Similarly, there are 1 -bridges and 2 -bridges, which are connected
components of G 1 − C and G 2 − C together with their attachment vertices on C, re-
spectively. We say that two bridges B1 and B2 alternate if there are attachments a1, b1
of B1 and attachments a2, b2 of B2, such that the order along C is a1a2b1b2. We have
the following lemma.

Lemma 1. Let G 1 and G 2 be two planar graphs and let C be a connected component
of the common graph that is a cycle. Then the graphsG 1 andG 2 admit a SEFE where C
is the boundary of the outer face if and only if (i) each union bridge admits a SEFE

together with C and (ii) no two i -bridges of C alternate for i = 1, 2.

Proof. Clearly the conditions are necessary; we prove sufficiency. Let B1, . . . , Bk be
the union bridges with respect to C, and let (E 1

1 , E 2
1 ), . . . , (E 1

k , E
2

k ) be the correspond-
ing simultaneous embeddings of Bi together with C, which exist by condition (i). Note
that each union bridge is connected, and hence all its edges and vertices are embedded
on the same side of C. After possibly flipping some of the embeddings, we may assume
that each of them has C with the same clockwise orientation as the outer face.

We now glue E 1
1 , . . . , E 1

k to an embedding E 1 of G 1 , which is possible by con-
dition (ii). In the same way, we find an embedding E 2 of G 2 from E 2

1 , . . . , E 2

k . We
claim that (E1, E2) is a SEFE of G 1 and G 2 . For the consistent edge orderings, observe
that any common vertex v with common-degree at least 3 is contained, together with
all neighbors, in some union bridge Bi. The compatibility of the edge ordering fol-
lows since (E 1

i , E 2

i ) is a SEFE. Concerning the relative position of a vertex v and some
common cycle C′, we note that the relative positions clearly coincide in E 1 and E 2

for C = C′. Otherwise C′ is contained in some union bridge. If v is embedded in the
interior of C′ in one of the two embeddings, then it is contained in the same union
bridge as C′, and the compatibility follows. If this case does not apply, it is embedded
outside of C′ in both embeddings, which is compatible as well. ��

Now consider a connected component C of the common graph G of a SEFE instance
such that C is biconnected. Such a component is called 2-component. If C is a cycle,
it is a trivial 2-component. We define the union bridges, and the 1 - and 2 - bridges
of G 1 and G 2 with respect to C as above. We call an embedding E of C together with
an assignment of the union bridges to its faces admissible if and only if, (i) for each
union bridge, all attachments are incident to the face to which it is assigned, and (ii) no
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two 1 - or 2 -bridges that are assigned to the same face alternate. For a union bridge B,
let CB denote the cycle consisting of the attachments of B in the ordering of an arbitrary
cycle of G containing all the attachments. It can be shown that this cycle is uniquely
determined. Let GB denote the graph consisting of B and CB . We call these graphs the
union bridge graphs.

Lemma 2. Let G 1 and G 2 be two connected planar graphs and let C be 2-component
of the common graph G. Then the graphs G 1 and G 2 admit a SEFE if and only if (i) C
admits an admissible embedding, and (ii) each union bridge graph admits a SEFE. If a
SEFE exists, the embedding of C can be chosen as an arbitrary admissible embedding.

Proof. Clearly, a SEFE of G 1 and G 2 defines an embedding of C and a bridge assign-
ment that is admissible. Moreover, it induces a SEFE of each union bridge graph.

Conversely, assume that C admits an admissible embedding and each union bridge
graph admits a SEFE. We obtain a SEFE of G 1 and G 2 as follows. Embed C with
the admissible embedding and consider a face f of this embedding with facial cy-
cle Cf . Let B1, . . . , Bk denote the union bridges that are assigned to this face, and
let (E 1

1 , E 2
1 ), . . . , (E 1

k , E
2

k ) be simultaneous embeddings of the bridge graphs GB . By
subdividing the cycle CB , in each of the embeddings, we may assume that the outer
face of each Bi in the embedding (E 1

i , E 2

i ) is the facial cycle Cf with the same orien-
tation in each of them. By Lemma 1, we can hence combine them to a single SEFE of
all union bridges whose outer face is the cycle Cf . We embed this SEFE into the face f
of C. Since we can treat the different faces of C independently, applying this step for
each face yields a SEFE of G 1 and G 2 with the claimed embedding of C. ��

Lemma 2 suggests a simple strategy for reducing SEFE instances containing non-
trivial 2-components. Namely, take such a component, construct the corresponding
union bridge graphs, where C occurs only as a cycle, and find an admissible embed-
ding of C. Finding an admissible embedding for C can be done as follows. To enforce
the non-overlapping attachment property, replace each 1 -bridge of C by a dummy 1 -
bridge that consists of a single vertex that is connected to the attachments of that bridge
via edges in E 1 . Similarly, we replace 2 -bridges, which are connected to attachments
via exclusive edges in E 2 . We seek a SEFE of the resulting instance (where the com-
mon graph is biconnected), additionally requiring that dummy bridges belonging to the
same union bridge are embedded in the same face. We also refer to such an instance as
SEFE with union bridge constraints. A slight modification of the algorithm by Angelini
et al. [1] can decide the existence of such an embedding in polynomial time. It then
remains to treat the bridge graphs. Exhaustively applying Lemma 2 results in a set of
SEFE instances where each 2-component is trivial.

Linear-Time Decomposition. We now show that the set of instances resulting from
exhaustively applying Lemma 2 can be computed in linear time.

Theorem 3. Given a SEFE instance, an equivalent set of instances of total linear size
such that each 2-component of these instances is trivial can be computed in linear time.

Let G be a planar graph and let C1, . . . , Ck be connected components of G. We are
interested in simultaneously determining for each component Ci the number of inci-
dent bridges, and for each such bridge its attachment vertices. For this, we introduce



226 T. Bläsius, A. Karrer, and I. Rutter

the notion of subbridges. A subbridge of G with respect to C1, . . . , Ck is a maximal
connected subgraph of G that does not become disconnected by removing all vertices
of one component Ci. It is readily seen that each Ci-bridge B contains a unique sub-
bridge S incident to Ci and that the attachments of S at Ci are exactly the attachments
of B at Ci. We will thus rather work with the subbridges than the actual bridges as they
represent the same information but in a more compact way. Our reduction now works
in three phases.

1. Compute for each 2-component of G the number of 1 -, 2 -bridges, for each such
bridge its attachments, and the grouping of these bridges into union bridges.

2. Find for each 2-component an admissible embedding with respect to its bridges.
3. Compute for each subbridge of G with respect to its 2-components a corresponding

instance where each 2-component has been replaced by a suitable cycle.

The correctness of this approach descends from Lemma 2, since the set of instances
computed by the procedure is exactly the one that can be obtained by exhaustively ap-
plying this lemma. The details of the implementation of this procedure are deferred to
the full version of this paper. Here we only sketch the main ideas. For step 1, we exploit
the fact that, after contracting each connected component of G that is biconnected to a
single vertex, (almost) every such component is a cutvertex, and the union subbridges
are essentially the blocks of the resulting graph. We can then traverse for each cutver-
tex its incident edges and label them by the block (subbridge) containing them. This
allows us to construct the dummy-bridges and union bridges that are solved in step 2.
For step 2, we modify the algorithm due to Angelini et al.[1]. Augmenting it such that
it computes admissible embedding in polynomial time is straightforward. Achieving
linear running time is quite technical and, like the linear version of the original algo-
rithm, requires some intricate data structures. Step 3 is finally implemented by taking
the admissible embeddings from step 2. We then traverse each such face exactly one,
and construct, during this traversal, the corresponding cycles in all incident subbridges
that are embedded in this face.

4 Instances with Common P-Node Degree 3

We consider instances of SEFE that have common P-node degree 3. Recall that a si-
multaneous embedding must induce consistent edge orderings and consistent relative
positions on the common graph. We show how to address both requirements separately,
by formulating necessary and sufficient constraints using linear equations over F2. Both
resulting systems of equations share all variables representing embedding choices. Sat-
isfying both sets of linear equations at the same time then solves SEFE.

Before we can follow this strategy, we need to address one problem. The relative
position of a component H ′ of G with respect to another connected component H ,
denoted by posH(H ′), is the face of H containing H ′. However, the set of faces of H
depends on the embedding of H . To be able to handle relative positions independently
from edge orderings, we need to express the relative positions independently from faces.
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4.1 Relative Positions with Respect to a Cycle Basis

A generalized cycle C in a graph H is a subset of its edges such that every vertex of H
has an even number of incident edges in C. The sum C + C′ of two generalized cycles
is the symmetric difference between the edge sets, i.e., an edge e is contained in C+C′

if and only if it is contained in C or in C′ but not in both. The resulting edge set C+C′

is again a generalized cycle. The set of all generalized cycles in H is a vector space
over F2. A basis of this vector space is called cycle basis of H .

Instead of considering the relative position posH(H ′) of a connected component H ′

with respect to another component H , we choose a cycle basis C of H and show that
the relative positions of H ′ with respect to the cycles in C suffice to uniquely define
posH(H ′), independent from the embedding of H . We assume H to be biconnected.
All results can be extended to connected graphs by using a cycle basis for each block.

Let C0, . . . , Ck be the set of facial cycles with respect to an arbitrary planar embed-
ding of H . The set C = {C1, . . . , Ck} obtained by removing one of the facial cycles is
a cycle basis of G. A cycle basis that can be obtained in this way is called planar cycle
basis. In the following we assume all cycle bases to be planar cycle bases. Moreover,
we consider all cycles to have an arbitrary but fixed orientation, which has the effect,
that posC(p) for any cycle C and any point p can have either the value LEFT or RIGHT.

Theorem 4. Let H be a planar graph embedded on the sphere, let p be a point on the
sphere, and let C = {C1, . . . , Ck} be an arbitrary planar cycle basis of H . Then the
face containing p is determined by the relative positions posCi

(p) for 1 ≤ i ≤ k.

Proof (sketch). Clearly, the point p and the face f containing p have to lie on the same
side of each of the cycles in C. It remains to show that the face with this property
is unique. Let C be the facial cycle of f and let C = C1 + · · · + C� be the linear
combination of basis cycles of C. The position vector of a point p with respect to the
facial cycle C is pos(p) = (posC1

(p), . . . , posC�
(p)). It can be seen that inside f , the

vector pos(p) has a different parity of values LEFT than outside, which shows, that no
other face can have the same relative positions with respect to all cycles in C. ��

4.2 Consistent Edge Orderings

We first assume that the graphs G 1 and G 2 are biconnected. There exists an instance of
SIMULTANEOUS PQ-ORDERING that has a solution if and only ifG 1 andG 2 admit em-
beddings with consistent edge ordering [4]. This solution is based on the PQ-embedding
representation, an instance of SIMULTANEOUS PQ-ORDERING representing all embed-
dings of a biconnected planar graph. We describe this embedding representation and
show how to simplify it for instances that have common P-node degree 3.

For each vertex v 1 of G 1 , the PQ-embedding representation, denoted by D(G 1 ),
contains the embedding tree T (v 1 ) having a leaf for each edge incident to v 1 , repre-
senting all possible orders of edges around v 1 . For every P-node μ 1 in the SPQR-tree
T 1 of G 1 that contains v 1 in skel(μ 1 ) there is a P-node in T (v 1 ) representing the
choice to reorder the virtual edges in skel(μ 1 ). Similarly, for every R-node μ 1 in T 1

containing v 1 there is a Q-node in T (v 1 ) whose flip corresponds to the flip of skel(μ 1 ).
As the orders of edges around different vertices of G 1 cannot be chosen independently
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T (v 1 )embedding trees

consistency trees

. . .

. . .

. . .

. . .

common embedding tree T (v)

T (v 2 )

Fig. 2. The Q-embedding representations of G 1 and G 2 and one common embedding tree

from each other, so called consistency trees are added as common children to enforce
Q-nodes stemming from the same R-node in T 1 to have the same flip and P-nodes stem-
ming from the same P-node to have consistent (i.e., opposite) orders. Every solution of
the resulting instance corresponds to a planar embedding of G 1 and vice versa [4].

As we are only interested in the order of common edges, we modify D(G 1 ) by pro-
jecting each PQ-tree to the leaves representing common edges. As G 1 and G 2 have
common P-node degree 3, all P-nodes of the resulting PQ-trees have degree 3 and can
be assumed to be Q-nodes representing a binary decision. We call the resulting in-
stance Q-embedding representation and denote it by D(G 1 ). Let μ 1 be an R-node of
the SPQR-tree T 1 whose embedding has influence on the ordering of common edges
around a vertex. It is not hard to see that the Q-embedding representation contains a
consistency tree consisting of a single Q-node representing the flip of skel(μ 1 ). We
associate the binary variable ord(μ 1 ) with this decision. For a P-node μ 1 we get a sim-
ilar result. Let u 1 and v 1 be the nodes in skel(μ 1 ). If the consistency tree enforcing a
consistent decision in the embedding trees T (u 1 ) and T (v 1 ) has degree 3, its flip repre-
sents the embedding decision for skel(μ 1 ) and we again get a binary variable ord(μ 1 ).
Otherwise, this consistency tree contains two or less leaves and can be ignored. Then
the choices for the Q-nodes corresponding to μ 1 in T (u 1 ) and T (v 1 ) are independent
and we get one binary variable for each of these Q-nodes. We denote these variables by
ord(μ 1

u) and ord(μ 1
v ). We call these variables PR-ordering variables.

For a common vertex v occurring as v 1 and v 2 in G 1 and G 2 , respectively, we can
ensure a consistent edge ordering by adding a so called common embedding tree T (v)
as child of the embedding trees T (v 1 ) and T (v 2 ) in the Q-embedding representations
of G 1 and G 2 ; see Fig. 2. We get the following lemma.

Lemma 3. Let G 1 and G 2 be two biconnected graphs with common P-node degree 3.
Requiring the common edges to be ordered consistently is equivalent to satisfying a
system of linear equations Mord over F2 with the following properties.

(i) All equations in Mord are of the type x+ y = c for c ∈ F2.
(ii) Mord contains all PR-ordering variables.

(iii) Mord has linear size and can be computed in linear time.

In the following, we extend this result to the case where we allow exclusive cutver-
tices. Let B 1

1 , . . . , B
1

k be the blocks of G 1 and let B 2
1 , . . . , B

2

� be the blocks of G 2 .
We say that embeddings of these blocks have blockwise consistent edge orderings if for
every pair of blocks B 1

i and B 2

j sharing a vertex v the edges incident to v they share
are ordered consistently. To have consistent edge orderings, it is obviously necessary to
have blockwise consistent edge orderings.
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When composing the embeddings of two blocks that share a cutvertex, the edges of
each of the two blocks have to appear consecutively (note that this is no longer true for
three or more blocks), which leads to another necessary condition. Let v be an exclusive
cutvertex of G 1 . Then v is contained in a single block of G 2 whose embedding induces
an order O 2 on all common edges incident to v. For every pair of blocks B 1

i and B 2

j

containing v, the edges in B 1

i must appear consecutively in the order of the edges
incident to v in B 1

i and B 2

j that is induced by O 2 . If this is true for every exclusive
cutvertex, we say that the embeddings have pairwise consecutive blocks.

Lemma 4. Two graphs without simultaneous cutvertices admit embeddings with con-
sistent edge orderings if and only if their blocks admit embeddings that have blockwise
consistent edge orderings and pairwise consecutive blocks.

To extend Lemma 3 to the case where we allow exclusive cutvertices, we enforce
blockwise consistent edge orderings and pairwise consecutive blocks by adding addi-
tional PQ-trees to the above instance of SIMULTANEOUS PQ-ORDERING. As before,
we get direct access to the embedding chosen for each block, via the PR-ordering vari-
ables. We want to get access to the ordering of common edges around a cutvertex v of
G 1 in a similar way. Let B 1 be a block that contains the common edge e incident to v
and let e1 and e2 be two common edges incident to v that are contained in a different
block. We use the cutvertex-ordering variable ord(e1, e2, B

1 ) to denote the order of
e1, e2, and e. Note that this is independent from the choice of the edge e of B 1 . To
decrease the number of variables, we only consider those variables that are required by
a cycle basis C, where ord(e1, e2, B 1 ) is required by C if e1 and e2 share a cycle in C.

Lemma 5. Given two graphs without union or simultaneous cutvertices with common
P-node degree 3, requiring the common edges to be ordered consistently is equivalent
to satisfying a system of linear equations Mord with the following properties.

(i) All equations in Mord are of the type x+ y = 0 or x+ y = 1.
(ii) Mord contains all PR-ordering variables and all cutvertex-ordering variables re-

quired by a cycle basis of the common graph.
(iii) Mord has size O(min{n2, nΔ2}) (where Δ is the maximum degree in the common

graph) and can be computed in linear time in its size.

4.3 Consistent Relative Positions

In this section, we present a system of linear equationsMpos containing the PR-ordering
and cutvertex-ordering variables such that satisfying Mpos is equivalent to requiring
consistent relative positions for an instance of SEFE. Let H and H ′ be two connected
components of the common graph G. To represent the relative position posH′ (H) of H
with respect to H ′, we use the relative positions posC(H) of H with respect to cycles
C in the cycle basis of H ′ (Theorem 4). To get binary variables, we use posC(H) = 0 if
H lies to the right of C and posC(H) = 1 if H lies to the left of C. When we consider
the graph G 1 containing G, it is known that the value of posC(H) is determined by a
single, very local embedding decision of G 1 [3]. In the following we consider the three
possible cases that posC(H) is determined by an R-node, by a P-node or by a cutvertex.
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R-Node. If posC(H) is determined by an R-node μ, then C induces a cycle κ in skel(μ)
and parts of H are contained in a virtual edge ε not contained in κ. The relative position
of H with respect to C is the same as the position of ε with respect to κ [3]. As the
value of posκ(ε) changes, when the embedding of skel(μ) changes, we can simply set
posC(H) + ord(μ) = c (where c ∈ F2 depends on the reference embedding of skel(μ)
and the orientation of C). Note that this implicitly ensures the consistency of all relative
positions that are determined by thee embedding of skel(μ).

P-Node. If posC(H) is determined by the embedding of skel(μ) of a P-node μ, then
C induces a cycle κ (of length 2) in skel(μ) and H is completely contained in a single
edge ε of skel(μ) not belonging to κ. Again posC(H) in G is the same as posκ(ε) in
skel(μ). However, this time the embedding choices of skel(μ) are more complicated
than to flip or not to flip. Thus, we have to consider all relative positions decided by the
embedding of skel(μ) at once, to get the dependencies between them.

We only consider the case where the common graph induces paths between the ver-
tices of skel(μ) in the expansion graphs of three edges ε1, ε2, and ε3 (all other cases are
simpler as μ has common P-node degree 3). Cycles in the cycle basis C can induce three

ε1 ε2 ε3

000101 011

κ1,2 κ2,3 κ1,3

Fig. 3. A P-node with the
three cycles κ1,2, κ1,2,
and κ1,2 (dashed)

different cycles, namely κ1,2, κ2,3, and κ1,3 consisting of
the virtual edges (ε1, ε2), (ε2, ε3), and (ε1, ε3), respectively.
For every virtual edge ε �= εi, we get the three variables
posκ1,2

(ε), posκ2,3
(ε), and posκ1,3

(ε) determining the posi-
tion of ε with respect to these three cycles. Recall that the
variable ord(μ) determines the ordering of the three edges ε1,
ε2, and ε3. Consider the case that ord(μ) = 0 and assume that
the reference order of ε1, ε2, and ε3 as well as the orientation
of the cycles κ1,2, κ2,3, and κ1,3 is as shown in Fig. 3. Then
either all three relative positions have the value 0 (which corre-
sponds to RIGHT), or exactly two relative position has the value 1. Thus, a combination
of values for the positions posκ1,2

(ε), posκ2,3
(ε), and posκ1,3

(ε) is possible if and only
if there is an even number of 1s. When setting ord(μ) = 1, there need to be an odd num-
ber of 1s. This yields the constraint ord(μ)+posκ1,2

(ε)+posκ2,3
(ε)+posκ1,3

(ε) = 0 (a
different reference embedding or different orientations of the cycles may lead to a 1 on
the right-hand side of the equation). As for R-nodes we set posC(H) + posκi,j

(ε) = c
(c ∈ F2), if C induces κi,j in skel(μ) and H is contained in the expansion graph of ε.

Cutvertex. The relative position posC(H) is determined by a cutvertex v of G 1 if C
contains v and H lies in a split component S (with respect to v) different from the
split component containing C. We can either embed the whole split component S to the
left or to the right of C. For this decision, we introduce the variable posC(S). Clearly,
we get posC(H) = posC(S) for every connected component H of G in S. Moreover,
there are no further constraints on the relative positions determined by the embedding
at the cutvertex v [4]. In case the split component S contains a common edge incident
to v, fixing posC(S) is equivalent fixing the cutvertex-ordering variable ord(e1, e2, B),
where e1 and e2 are the edges in C incident to v and B is the block in S containing v.
Thus, we get ord(e1, e2, B) + posC(S) = c (c ∈ F2). Together with the constraints for
the relative positions determined by the P- and R-nodes, we get the following lemma.
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Lemma 6. Let G 1 and G 2 be two graphs without union or simultaneous cutvertices
with common P-node degree 3. Requiring the relative positions to be consistent is equiv-
alent to satisfying a system of linear equations Mpos with the following properties.

(i) All equations in Mpos are of the type x + y = c (with c ∈ F2) except for a linear
number of equations of size 4.

(ii) Mpos contains all PR-ordering variables and all cutvertex-ordering variables re-
quired by a cycle basis of G.

(iii) Mpos has quadratic size and can be computed in quadratic time.

Lemma 5 and Lemma 6 yield the following theorem. We obtain the quadratic running
time by first eliminating all equations of size 1, and then solving the remaining system
of O(n) linear equations of size 4 with the algorithm by Wiedemann [12].

Theorem 5. SEFE can be solved in quadratic time for two graphs without union or
simultaneous cutvertex with common P-node degree 3.
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Sketched Graph Drawing:
A Lesson in Empirical Studies

Helen C. Purchase

School of Computing Science, University of Glasgow, UK

Abstract. This paper reports on a series of three similar graph drawing empir-
ical studies, and describes the results of investigating subtle variations on the
experimental method. Its purpose is two-fold: to report the results of the exper-
iments, as well as to illustrate how easy it is to inadvertently make conclusions
that may not stand up to scrutiny. While the results of the initial experiment were
validated, instances of speculative conclusions and inherent bias were identified.
This research highlights the importance of stating the limitations of any experi-
ment, being clear about conclusions that are speculative, and not assuming that
(even minor) experimental decisions will not affect the results.

Keywords: graph sketching, empirical studies, replication, limitations.

1 Introduction

This paper reports on a series of three similar experiments with a common aim: to deter-
mine the graph drawing layout principles favored when participants draw graphs. The
first experiment of the series was peer-reviewed and published in a reputable journal [1].

Typically in information visualization or HCI research, researchers run an experi-
ment, form conclusions, publish, and then move on to the next interesting question. The
second and third experiments reported here arose from a reflective critique of the first
experiment. In this case, the experimenter (the author of this paper) did not “publish
and move on”, but explored subtle aspects of the experimental design, attempting to
replicate and confirm the initial results.

The focus of this paper is therefore two-fold: to present the experiments and their
results, but also to describe a process whereby revisiting empirical work has highlighted
interesting facts about the process of conducting empirical studies.

This motivation for this paper relates to the idea of reflective critique, an idea bor-
rowed from the practice of action learning projects. Action learning projects [2] do not
aim to address specified research questions, and their approach is formative rather than
summative, resulting in a cycle of continuous improvement. This approach is unlike the
typical experimental research project, where a research question is clearly defined, a
methodology is designed to address it, data is collected, and final conclusions made and
published. In contrast, an action learning methodology encourages honest reflection on
outcomes, and these reflections are fed into another cycle of the process.

This paper, therefore, reports on the results of two experiments conducted ‘after the
fact’, i.e. after conclusions from the first experiment had been disseminated, with the
latter two experiments being designed as a result of reflection and critique.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 232–243, 2013.
c© Springer International Publishing Switzerland 2013
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2 Background

The design of automatic graph layout algorithms tend to be based on common ‘aes-
thetic principles’, for example, the elimination of edge crossings or the minimisation of
adjacent edge angles. Early experimental research investigating how graphs may best
be laid out tended to use a task-based performance approach (e.g. [3,4,5]), and estab-
lished key findings such as the fact that a high occurrence of crossed edges reduced
performance and prominent depiction of symmetry increased performance.

More recent empirical research has instead focussed on the manner in which par-
ticipants create their own visual layout of relational information as a graph drawing.
Van Ham and Rogowitz [6] (HR08) asked participants to adjust manually the layout
of existing graph drawings. They used four graphs of 16 nodes, each with two clusters
separated by one, two, three and four edges respectively. The graphs were presented
in a circular and a spring layout [7], giving a total of eight starting diagrams, shown
in random order. They collected 73 unique drawings, and found that most participants
separated the two clusters, that the human drawings contained 60% fewer edge cross-
ings than the automatically produced drawings, and that humans did not value uniform
edge length as much as the spring algorithm did.

Dwyer et. al [8] (D+09) performed a similar hands-on experiment, asking partici-
pants to lay out two social networks, each with a circular initial arrangement.
Participants were encouraged to lay the graphs out in a way that would best support
the identification of cliques, chains, cut nodes and leaf nodes. With a focus on the pro-
cess of layout rather than on the product, the only observation that they make about the
graphs produced is that users removed edge crossings.

The first experiment in the series reported here (Experiment 1, [1]) was designed
to address a similar research goal as HR08 and D+09, using a different methodology.
The research question is Which graph drawing layout principles do people favour when
creating their own drawings of graphs?

There are five main design features of Experiment 1 that differentiate it from HR08
and D+09, the differentiating design features (DDFs):

DDF-1. The participants had to both draw the graph, as well as lay it out, a more
complex task than both HR08 and D+09;

DDF-2. The participants drew the graphs from scratch, so were not biased by any initial
layout (both HR08 and D+09 used an initial configuration);

DDF-3. A sketching tool was used, so the physical drawing process was unhindered
by an intermediate editing interface;

DDF-4. Video data was collected, so both the process and product of creation were
able to be analysed (this was done by D+09, but not HR08);

DDF-5. Layout preferences were discussed with the participants in a post-experiment
interview (this was done by D+09, but not HR08).

Four graphs were used, two practise graphs and two experimental graphs. Data on prod-
uct, process and preferences were collected1.

1 Note that the publication arising from Experiment 1 also included graphs drawn in a point-
and-click mode, but only the sketched graph experiment is considered here.
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The several conclusions of Experiment 1 as published [1] included:

CONC-1 The layout principles that participants favoured during the process of laying
out their drawings were often not evident in the final product.

CONC-2 The principle of fixing nodes and edges to an underlying unit grid was promi-
nent.

2.1 Reflective Critique: Issues Arising

After peer-review, publication, presentation, and independent citation of this first exper-
iment and its results, audience members at two seminars suggested some subtle vari-
ations on the experimental method: not new research questions, simply small amend-
ments. As is typical in such situations, this author responded that such variations could
be addressed as part of ‘future work’.

It was not necessary to investigate these issues (the paper had already been published
after all), but they led the experimenter to reflect on the research, and to question to what
extent results might be biased by a method.

Three issues arose as a result of this reflection:

– If participants compromise their layout design during creation of the drawing
(CONC-1), does this mean that they are not happy with their final product? Ex-
periment 2 addressed the issue of whether participants were satisfied with their
final drawing, or whether they expressed disappointment that they were unable to
conform to their desired layout.

– If participants favour a grid-based layout (CONC-2), would they prefer a drawing
laid out using an algorithm that aligns nodes and edges to an underlying grid to
their own? Experiment 2 investigated whether the participants preferred their own
sketched graph drawing to a similar one that conformed to a grid layout.

– Was the tendency to favour a grid layout and straight lines (CONC-2) a conse-
quence of the way in which the graph information stimuli were presented as a list
of edges? Experiment 3 investigated whether representing the graph structure in
an alternative text format also produces results that favour grid layout.

3 The Experiments

3.1 Experimental Process for all Three Experiments

The primary research question in all three of these graph sketching experiments is:
Which graph drawing layout principles do people favour when creating their own draw-
ings of graphs? Participants were asked to draw graphs and their drawings were anal-
ysed for evidence of common graph drawing layout principles.

Equipment: A graph-drawing sketch tool, SketchNode [9] was used, allowing nodes,
edges and node labels to be sketched, edited and moved with a stylus on a tablet screen,
laid flat.
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Task: Participants were given a textual description of a
graph and asked to draw it in SketchNode, with the in-
struction to Please draw this graph as best as you can so
to make it “easy to understand”. They were deliberately
not given any further instruction as to what “easy to un-
derstand” means, nor primed with any information about
common graph layout principles (e.g. minimising edge
crossings, use of straight edges, etc,). They had as long
as they liked to draw and adjust the layout of the graphs.

Graphs: Two experimental graphs were used in all three experiments: graph A (10
nodes, 14 edges) and graph B (10 nodes, 18 edges).

Experimental method: Participants completed required ethical procedures and provided
demographic information. All the relevant features of SketchNode were demonstrated,
and participants were given the opportunity to practice and ask questions. Two practice
graphs ensured participants were comfortable with the task and system.

The two experimental graphs A and B, were then presented to the participants, with
the graph edges presented in different random order for each participant, and coun-
terbalanced between participants. At the end of the experiment, the participants were
asked “Why did you arrange the graphs in the way you did?” in a recorded interview.

The participants: Participants in all three experiments were of a similar profile: a mix-
ture of students and non-students, of both sexes, with around half the student partici-
pants in each experiment studying some form of computer science.

3.2 Differences between the Experiments

In Experiment 1, the most important differentiating feature in comparison with prior
research was the way the graphs were presented (DDF-2). HR08 and D+09 presented
their graphs as graph drawings which already had some layout properties (circular and
spring in HR08 and circular in D+09). So as not to bias the participants towards any
layout principles, the graphs in Experiment 1 were presented in textual form, as a list
of edges (Table 1, column 1).

Experiments 2 and 3 addressed four issues arising from Experiment 1.

Compromised layout: CONC-1 suggests participants may not have been entirely happy
with their final drawing, as they had been obliged to compromise their favoured layout
as the graph became more complex. Experiment 2 investigated the extent of this com-
promise, and whether participants acknowledged it.

The first research question for this experiment was “Do participants like the layout of
their final product?” We speculated they would express dissatisfaction with their final
product. Once they had drawn their graph, we asked them to indicate on a scale of 1–5
how “happy” they were with their drawing.
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Preference for a grid: CONC-2: Experiment 1 suggested a grid layout was favoured;
we anticipated participants would prefer a grid layout to their own.

The second research question was “Do participants prefer their sketched drawing to
be laid out in a grid format to their own layout?”

Experiment 2 used the two automatic graph layout algorithms in SketchNode: spring
(based on Fruchterman and Reingold [10]) and grid (placing nodes and edges on the
lines and vertices of an underlying unit grid). After layout, the visual sketched appear-
ance of the nodes and labels remains the same, so the resultant diagram can be directly
compared with original sketched drawing.

At the end of the sketching stage of Experiment 2, the participant’s own drawing was
laid out using these two algorithms. Participants were asked to rank the three drawings
according to their preference.

In an attempt to eliminate any personal bias or recency effects, a willing subset of
the participants chose between hand-drawn and the two automatically laid out drawings
two weeks after the experiment.

Validation: As both changes to the experimental method for Experiment 2 were post-
experiment activities, Experiment 2 also served as a means to validate the results of
Experiment 1.

Effect of graph format: One of the main differentiating features between Experiment 1
and prior research was that the graph information was presented in abstract form, rather
than as a graph drawing (DDF-2), and the participants drew the graphs from scratch.
Here we investigated whether even this abstract form had produced a bias.

The research question for this experiment was “Does the format in which the graph
structure is represented affect the layout of the sketched graph drawings produced?” For
Experiment 3, we presented the graphs as an adjacency list (Table 1, column 3), and
followed exactly the same process as Experiment 1. This format is visually quite differ-
ent from the simple list of edges, as each edge is not clearly specified as an individual
pair, and it is more obvious which nodes have a higher degree. We wished to investigate
whether a format that does not focus on the individual node pairs (as in Experiment 1)
would still result in user-sketched drawings that conform to a grid structure.

Table 1 shows the differences between the experiments, as well as those factors that
remained the same. Figure 1 shows example sketches from all three experiments.

4 Data Analysis

Compromised layout (Experiment 2): The participants in Experiment 2 indicated how
happy they were with their own sketches (five-point scale, 5=perfectly happy). Graph
A’s mean: 4.14, graph Bs’ mean: 3.5; both graphs together: 3.91.

Participants were asked what they didn’t like about their drawings, and how they
would improve them. None mentioned that they would have liked to conform to a grid
layout; most comments related to local issues like the size and shape of the nodes, and
connections between the nodes and edges. The few comments that referred to overall
layout of the drawing were concerned with spreading the nodes out, symmetry and
circular layout. There were also several comments about the need to plan in advance.
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Table 1. Summary of the differences between the three experiments

Experiment 1 Experiment 2 Experiment 3

experimental graphs
A (n = 10, e = 14)
B (n = 10, e = 18)

as Experiment 1 as Experiment 1

experimental task

After introduction and
training activities,
participants sketched
the two graphs

as Experiment 1 as Experiment 1

equipment SketchNode as Experiment 1 as Experiment 1

number of participants 17 22 26

form of graph presented
to participants

(A,D) (A,C) (B,D)
(C,D) (B,C) (B,E)
(C,E) (E, J) (F,G)
(J, F ) (F, I) (G, I)
(J,H) (I,H)

as Experiment 1

S U R
Q S
V W Z
Y X V
R U
W Y
U Z
T R Q S
X Z

post-experiment
discussion

none
participants indicated
how happy they were
with their drawing

as Experiment 1

post-experiment
ranking

none

participants ranked
sketched drawings
against associated
spring and grid
drawings

as Experiment 1

Preference for a grid (Experiment 2): Once participants had sketched their graph, the
two graph layout algorithms (Section 3.2 above) were applied to their drawing.

A three-way-set (TWS) is a set of three drawings: a participant’s sketched drawing,
and two versions of this sketch produced by the algorithms. Each participant has a
TWS-GA and TWS-GB. Figure 2 shows a TWS for one of the participant’s graphs.

Participants ranked the drawings in their own TWS-GA and TWS-GB at the end of
Experiment 2. After two weeks, we contacted all participants for a follow-up ranking
experiment; fourteen took part. They ranked their own TWS-GA and TWS-GB (as be-
fore), as well as the TWS-GA and TWS-GB for two other participants. They were not
told their own drawings were included in these sets (Table 2).

The data were analysed with Friedman tests with adjusted pairwise comparisons.
The only significant results related to graph B (highlighted in Table 2):

2 The notational convention is: graph A drawn by participant 3 is 3A; graph B drawn by partic-
ipant number 8 is 8B. The suffix -1, -2 or -3 indicates experiment 1, 2 or 3.
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Experiment 1 Experiment 2 Experiment 3

4A-1 9A-2 1A-3

7A-1 15A-2 3A-3

16A-1 26A-2 26A-3

9B-1 7B-2 4B-3

14B-1 12B-2 7B-3

18B-1 27B-2 20B-3

Fig. 1. Example drawings from all three experiments2

Original Spring Grid

Fig. 2. The TWS-GA for participant 17. Note that the hand-drawn nature and form of the nodes
and their labels is retained.
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Table 2. Mean ranking of TWSs (3=most preferred). Significant results in italics.

number of
participants :
TWSs

mean
rank:
sketch

mean
rank:
spring

mean
rank:
grid

% times
sketch
preferred

% times
grid
preferred

After drawing the graph
(own TWS) 22:22

GA 2.45 1.77 1.77 50% 23%

GB 2.54 1.41 2.05 68% 23%

Two weeks later (own TWS)
14:14

GA 2.07 1.86 2.07 36% 29%
GB 1.79 1.79 2.43 29% 43%

Two weeks later (own + two
other TWSs) 14:42

GA 2.00 1.79 2.21 36% 36%

GB 1.90 1.60 2.50 26% 55%

– immediately after the experiment, the participants’ ranking for their own sketched
graph was higher than that for the spring layout (p < 0.001);

– two weeks after the experiment, the participants’ ranking for the grid layout was
higher than the spring layout (p ¡ 0.001), and higher than their own drawing (p =
0.019) in the set of three sketched graphs that included their own.

Validation (Experiment 2): Experiment 1 found that participants appeared to favour
a grid layout and horizontal and vertical edges in their sketched graph drawings. We
analysed the 44 graph drawings from Experiment 2 for the following key layout features
(Table 3):

– Number of edge crossings: points outside of the node boundaries where one or more
edges cross.

– Number of straight lines. A visual assessment as to whether an edge was intended
to be straight was agreed by two independent coders.

– Number of vertical or horizontal edges, and grid structure. A visual assessment
was agreed by two independent coders as to whether edges were intended to be
horizontal or vertical, and whether drawings had been drawn with a grid in mind.

Independent samples two-tailed t-tests were conducted using the 34 drawings from
Experiment 1 and the 44 drawings from Experiment 2 (Table 3).

Effect of graph format (Experiment 3): We analysed the 52 graph drawings from Ex-
periment 3 using the same layout features as for Experiments 1 and 2.

Independent samples two-tailed t-tests were conducted using the 34 drawings from
Experiment 1 and the 52 drawings from Experiment 3 were used (Table 3).

In the interviews, as before, no participants spoke directly of a grid layout; there were
comments about local features (size of the nodes, the need for straight lines), and layout
(crossings, symmetry, distance between nodes). When asked why they drew the graph
as they did, many said the adjacency list itself suggested the structure of the drawing:
they ‘worked from top to bottom.’
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Table 3. Comparing key layout features in the graphs produced in the experiments.

E1 E2 E3 validation: effect of format:
n = 34 n = 44 n = 52 E1 v. E2 E1 vs E3

t p t p

Number of crosses/drawing 2.21 4.05 2.38 1.410 0.163 0.216 0.829
Number of crosses/drawing (excl.
outliers)

1.24 2.05 1.62 1.400 0.166 0.776 0.440

% HV edges 33.6% 28.0% 23.3% 1.232 0.222 2.842 0.006a

% straight edges 88.1% 85.8% 90.3% 0.472 0.638 0.541 0.590
Drawn with grid in mind 10(29%) 7(16%) 4(8%) 1.433 0.156 2.478 0.007b

a More HV edges in Experiment 1. bMore grids in Experiment 1

5 Results

Compromised layout: We wished to see whether participants expressed any dissatisfac-
tion with their drawings as a result of having to compromise the layout while creating
the drawing: a stated conclusion of Experiment 1.

In general, the participants were satisfied with the layout of their own drawings: their
satisfaction ratings were high; they expressed little dissatisfaction, and did not mention
that they would have liked to have been able to conform to a grid.

This is an instance of stating a conclusion based on insufficient data. In Experi-
ment 1, observation of the videos (by two independent coders) suggested that partici-
pants conformed to a grid in the initial stages of drawing, but that this layout feature
was abandoned later in the drawing process. This conclusion was, however, simply sug-
gestive, and there was no qualitative interview data to back it up. It appears that, even if
layout compromises had been made, participants were not aware of having done so.

Preference for a grid: We wished to see whether participants would prefer a grid-based
layout to their own layout.

While initially they preferred their own drawings in Experiment 2, when the recency
effect of having just drawn the graph was eliminated, the grid layout was ranked as
substantially better than the sketches for the more complex graph. However, none of
the participants mentioned a grid formation or horizontal or vertical edges in their com-
ments.

It appears that participants know what they like when they see it (and when it is not
in competition with a drawing that they know is their own), but cannot independently
articulate the layout features that contribute to what they like.

This is an instance of stating an incorrect conclusion based on qualitative data.
Despite the Experiment 1 drawings being analyzed by two independent coders who
formed the same conclusion (that participants preferred a grid), this inferred conclusion
does not hold when more direct data is collected.

Validation: The fact that there are no significant differences in the values for the key
metrics for Experiment 2 suggests validation of the results of Experiment 1: when the
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graph is presented as a list of edges, participants tend to favour a grid layout and straight
lines.

This is an instance of validating data. Using identical methodologies for experi-
ments 1 and 2, we would expect similar values for the dependent data variables.

Effect of graph format: We wished to see whether the form in which the graph stimuli
are presented would affect the results.

The drawings produced in Experiment 3 from adjacency list stimuli did not favour a
grid layout; there is a significant difference on the key metrics of horizontal and vertical
edges, and grid formation, between Experiments 1 and 3.

The format in which the relational graph information is presented to the participants
thus affects the final layout of their drawing, a result echoing experimental results on vi-
sual metaphors [11]. The participants spoke of ‘following the table from top to bottom’
in Experiment 3; it is likely that the participants in Experiment 1 followed the edge list
from left to right.

There is an irony here: Experiment 1 presented the graph as a list of edges so to
address possible layout biases in HR08 and D+09, who presented graphs as drawings.
It seems even using a simple list of edges can introduce a bias.

This is an instance of unintended bias. Even a simple (and seemingly innocuous)
decision in Experiment 1 introduced a factor that biased the results.

Table 4. Summary and comparison of the findings for the three experiments

Experiment 1 Experiment 2 Experiment 3

compromised layout assumed, from video
data

not proven not investigated

preferring a grid
over own drawing

assumed, from sketch
graph drawing data

some support after
elimination of recency
effects

not investigated

validation not applicable
validation of key graph
drawing metrics

not appropriate

effect of graph
format

not considered not investigated effect found

6 Discussion

6.1 Implications for this Research

Our speculation that participants prefer the result of a grid-based algorithm over their
own drawing was partially confirmed, but only when the ‘personal pride’ factor had
diminished over time, and for the more complex graph. It is still clear, however, that
while participants might prefer a grid layout in both creation and recognition, they are
less able to articulate this preference.

The most surprising result is that how the graph is presented to the participants has a
significant effect on the form of their drawing — this was something that had not been
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considered originally. It suggests that the only way bias may be eliminated entirely
would be by asking the participant to draw a graph based on their internal cognitive
structure, and not on an externally visible form. This may mean describing a scenario to
the participant while attempting to avoid verbal bias (for example, a social network) and
then asking the participant to draw the graph representing the relational information.

Of course, this story could not simply end here, as there are several outstanding issues
to address about all three of these experiments. Do these results extend to larger graphs?
What would happen if the participants were all novice computer users? Or if a digital
whiteboard were used? Of if participants were told that the graphs related to a domain
(e.g. a transport network or a circuit diagram)? Or if they were explicitly advised to
plan in advance? Further experiments would no doubt shed more light on these initial
studies (and would probably reveal some unexpected results).

6.2 Implications for Experimental Research

The results of our investigation of subtle experimental variations suggest that:

– There will always be a bias relating to the manner in which information is presented
to an experimental participant;

– Even if the results of an experiment are validated by repeating it, these results may
still be compromised by bias;

– Firm experimental conclusions need validation through replication and multiple
sources of data.

We did not set out to investigate the effect of experimental subtleties: our original
aim was not to run a series of comparative experiments. If it had been, then we might
have conducted a broader experiments-within-an-experiment study, preferably using
the same participants throughout, and followed a systematic process of enquiry. No: we
initially set out to investigate what happens when participants draw graphs from scratch
— and we published a peer-reviewed paper in a reputable journal presenting the results
of this study, as is common practice: researchers run an experiment, collect data, form
conclusions, and publish. And then typically move on to their next experiment.

The contribution of this paper is therefore broader than the simple ‘run an experiment
and report’ model: by reflecting on and critiquing our own experimental work, and
investigating issues arising from the critique, we have demonstrated the limitations of
this common practice.

It is rare that researchers repeat an experiment with subtle variations — doing so has
revealed that there is still much to learn about the nature of user-sketched graphs, that
even a carefully-conducted experiment may have flaws, that there is value in not simply
moving on to the next ‘big’ question, and that repeating an experiment so as to investi-
gate subtleties may produce surprising results. All experiments have limitations — no
experiment can ever be perfect. This paper demonstrates the importance of acknowl-
edging these limitations, of validating results where possible, and of reading published
experimental results with healthy critical attitude.
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Abstract. In this paper we study many-to-one boundary labeling with
backbone leaders. In this model, a horizontal backbone reaches out of
each label into the feature-enclosing rectangle. Feature points associated
with this label are linked via vertical line segments to the backbone. We
present algorithms for label number and leader-length minimization. If
crossings are allowed, we aim to minimize their number. This can be
achieved efficiently in the case of fixed label order. We show that the
corresponding problem in the case of flexible label order is NP-hard.

1 Introduction

Boundary labeling was developed by Bekos et al. [2] as a framework and an algo-
rithmic response to the poor quality (feature occlusion, label overlap) of specific
labeling applications. In boundary labeling, labels are placed at the boundary
of a rectangle and are connected to their associated features via arcs referred
to as leaders. Leaders attach to labels at label ports. A survey by Kaufmann [4]
presents different boundary labeling models that have been studied so far.

In many-to-one boundary labeling each label is associated to more than one
feature point. This model was formally introduced by Lin et al. [7], who assumed
that each label has one port for each connecting feature point (see Fig. 1a)
and showed that several crossing minimization problems are NP-complete and,
subsequently, developed approximation and heuristic algorithms. In a variant of
this model, referred to as boundary labeling with hyperleaders, Lin [6] resolved
the multiple port issue by joining together all leaders attached to a common
label with a vertical line segment in the track-routing area (see Fig. 1b). At the
cost of label duplications, leader crossings could be eliminated.
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R
Track Routing Area

(a) Individual leaders [7]

R
Track Routing Area

(b) Hyperleaders [6]

R

(c) Backbones

Fig. 1. Different types of many-to-one labelings

We study many-to-one boundary labeling with backbone leaders (for short,
backbone labeling). In this model, a horizontal backbone reaches out of each label
into the feature-enclosing rectangle. Feature points that need to be connected
to a label are linked via vertical line segments to the label’s backbone (backbone
leaders ; see Fig. 1c). Formally, we are given a set P = {p1, . . . , pn} of n points in
an axis-aligned rectangle R, where each point p ∈ P is assigned a color c(p) from
a color set C. We also assume that the points are in general position and sorted
in decreasing order of y-coordinates, with p1 being the topmost. Our goal is to
place colored labels to the left or right side of R and assign each point p ∈ P to
a label l(p) of color c(p). A backbone labeling for a set of colored points P is a
set L of colored labels and a mapping of each point p ∈ P to some c(p)-colored
label in L, so that (i) each point is connected to a label of the same color, and
(ii) there are no backbone leader overlaps. A crossing-free backbone labeling is
one without leader crossings.

The number of labels of a specific color may be unlimited or bounded by
K ≥ |C|. If K = |C|, all points of the same color are associated with a common
label. One may restrict the maximum number of allowed labels for each color in
C separately by specifying a color vector k = (k1, . . . , k|C|). A backbone labeling
that satisfies all of the restrictions on the number of labels is called feasible.

Our goal is to find feasible backbone labelings that optimize different qual-
ity criteria. We study three different quality criteria, label number minimization
(Section 2), total leader length minimization (Section 3), and crossing minimiza-
tion (Section 4). The first two require crossing-free leaders. We consider both
finite backbones and infinite backbones. Finite backbones extend horizontally
from the label to the furthest point connected to the backbone, whereas infinite
backbones span the whole width of the rectangle (thus one could use duplicate
labels on both sides). Our algorithms also vary depending on whether the order
of the labels is fixed or flexible and whether more than one label per color class
can be used. Note that, due to space constraints some of our proofs are only
sketched. Detailed proofs can be found in the technical report [1].

2 Minimizing the Total Number of Labels

In this section we minimize the total number of labels in a crossing-free solution,
i.e., we set K = n so that there is effectively no upper bound on the number of
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labels. We first consider the case of infinite backbones and present an important
observation on the structure of crossing-free labelings.

Lemma 1. Let pi, pi+1 be two vertically consecutive points. Let pj (j < i) be
the first point above pi with c(pj) �= c(pi), and let pj′ (j′ > i + 1) be the first
point below pi+1 with c(pj′ ) �= c(pi+1), if such points exist. In any crossing-free
backbone labeling with infinite backbones, pi and pi+1 are vertically separated by
at most 2 backbones and any separating backbone has color c(pi), c(pi+1), c(pj),
or c(pj′).

Sketch of Proof. In a crossing-free solution any infinite backbone splits the draw-
ing into two independent subinstances above and below the backbone. Clearly, a
backbone traversing a point has to be of the same color. On the other hand, we
can check that a backbone lying between two points pi and pi+1 can only have
color c(pi), c(pi+1), or the color of the next point of distinct color above pi or of
the one below pi+1. ��
Clearly, if all points have the same color, one label always suffices. Even in
an instance with two colors, one label per color is enough. However, if a third
color is involved, then many labels may be required. We sketch how to find an
optimum solution in O(n) time. First, we replace any maximal set of identically
colored consecutive points by the topmost point in the set. One can show that
an optimum solution of the original instance can be easily obtained from an
optimum solution of the reduced instance, in which no two consecutive points
have the same color. We solve the reduced instance using dynamic programming.

Theorem 1. Let P = {p1, p2, . . . , pn} be an input point set consisting of n
points sorted from top to bottom. Then, a crossing-free labeling of P with the
minimum number of infinite backbones can be computed in O(n) time.

Sketch of Proof. We store a table nl of values nl(i, cur, cbak, cfree) representing
the minimum number of backbones needed above or at point pi such that the
lowest backbone is cbak-colored, the lowest backbone goes through pi if the flag
cur = true and lies above pi otherwise, and the (single) point between pi and
the lowest backbone (if cur = false) has color cfree. By careful case analysis, we
can see that any entry of the table can be computed in constant time. ��
We now consider finite backbones. First, note that we can slightly shift the
backbones in a given solution so that backbones are placed only in gaps between
points. We number the gaps from 0 to n where gap 0 is above and gap n is
below all points. Suppose a point pl lies between a backbone of color c in gap
g and a backbone of color c′ in gap g′ with 0 ≤ g < l ≤ g′ ≤ n such that both
backbones horizontally extend to at least the x-coordinate of pl. Let R(g, g′, l) be
the rectangle bounded by these two backbones, the vertical line through pl and
the right side of R. Suppose all points except the ones in R(g, g′, l) are already
labeled. An optimum solution for connecting the points in R cannot reuse any
backbone except for the two backbones in gaps g and g′; hence, it is independent
of the rest of the solution. We use this observation for solving the problem by
dynamic programming.
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Theorem 2. Given a set P of n colored points and a color set C, we can com-
pute a feasible labeling of P with the minimum number of finite backbones in
O(n4|C|2) time.

Sketch of Proof. For 0 ≤ g ≤ g′ ≤ n, l ∈ {g, . . . , g′} ∪ {∅}, and two colors c and
c′ let T [g, c, g′, c′, l] be the minimum number of additional labels that are needed
for labeling all points in the rectangle R(g, g′, l) under the assumption that there
is a backbone of color c in gap g, a backbone of color c′ in gap g′, between these
two backbones there is no backbone placed yet, and they both extend to the left
of pl. Note that for l = ∅ the rectangle is empty and T [g, c, g′, c′, ∅] = 0. Finally,
let c̄ /∈ C be a dummy color, and let pl̄ be the leftmost point. Then, the value
T [0, c̄, n, c̄, l̄] is the minimum number of labels needed for labeling all points. By
careful case analysis, we can compute each of the (n+1)×|C|×(n+1)×|C|×(n+1)
entries of table T in O(n) time. ��

3 Length Minimization

In this section we minimize the total length of all leaders in a crossing-free
solution, either including or excluding the horizontal lengths of the backbones.
We distinguish between a global bound K on the number of labels or a color
vector k of individual bounds per color. We first consider the case of infinite
backbones and use a parameter λ to distinguish the two minimization goals, i.e.,
we set λ = 0, if we want to minimize only the sum of the length of all vertical
segments and we set λ to be the width of the rectangle R if we also take the
length of the backbones into account. We further assume that p1 > · · · > pn are
the y-coordinates of the input points.

Single Color. If all points have the same color, we seek for a set of at most K y-
coordinates where we draw the backbones and connect each point to its nearest
one, i.e., we must solve the following problem: Given n points with y-coordinates
p1 > . . . > pn, find a set S of at most K y-coordinates that minimizes

λ · |S|+
n∑

i=1

min
y∈S

|y − pi|. (1)

Note that we can optimize the value in Eq. (1) by choosing S ⊆ {p1, . . . , pn}.
Hence, the problem can be solved in O(Kn) time if the points are sorted ac-
cording to their y-coordinates using the algorithm of Hassin and Tamir [3]. Note
that the problem corresponds to the K-median problem if λ = 0.

Multiple Colors. If the input points have different colors, we can no longer
assume that all backbones go through one of the given n points. However, by
Lemma 1, it suffices to add between any pair of vertically consecutive points
two additional candidates for backbone positions, plus one additional candidate
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above all points and one below all points. Hence, we have a set of 3n candidate
lines at y-coordinates

p−1 > p1 > p+1 > p−2 > p2 > p+2 > · · · > p−n > pn > p+n (2)

where for each i the values p−i and p+i are as close to pi as the label heights allow.
Clearly, a backbone through pi can only be connected to points with color c(pi).
If we use a backbone through p−i (or p+i , respectively), it will have the same color
as the first point below pi (or above pi, respectively) that has a different color
than pi. Hence, the colors of all candidates are fixed or the candidate will never
be used as a backbone. For an easier notation, we denote the ith point in Eq. (2)
by yi and its color by c(yi). We solve the problem using dynamic programming.

Theorem 3. A minimum length backbone labeling with infinite backbones for n

points with |C| colors can be computed in O(n2 ·
∏|C|

i=1 ki) time if at most ki labels
are allowed for color i, i = 1, . . . , |C| and in O(n2 ·K) time if in total at most
K labels are allowed.

Sketch of Proof. For each i = 1, . . . , 3n, and for each vector k′ = (k′1, . . . , k
′
|C|)

with k′1 ≤ k1, . . . , k
′
|C| ≤ k|C|, let L(i,k

′) denote the minimum length of a feasible

backbone labeling of p1, . . . , p� i+1
3 � using k′c infinite backbones of color c for

c = 1, . . . , |C| such that the bottommost backbone is at position yi, if such a
labeling exists. Otherwise L(i,k′) = ∞. One can show that the values L(i,k′)

can be computed recursively in O(n2
∏|C|

i=1 ki) time in total. Let S be the set of
candidates yi such that all points below yi have the same color as yi. Then, we
can compute the minimum total length of a backbone labeling of p1, . . . , pn with
at most kc, c = 1, . . . , |C| labels per color c by the following formula:

min
yi∈S∪{p+

n},k′
1≤k1,...,k′

|C|≤k|C|

⎛⎝L(i, k′1, . . . , k
′
|C|) +

∑
i+2
3 ≤x≤n

(yi − px)

⎞⎠ .

If we bound the total number of labels by K, we obtain a similar dynamic
program with the corresponding values L(i, k), i = 1, . . . , 3n, k < K. ��

We now turn our attention to the case of finite backbones and sketch how
to modify the dynamic program for minimizing the total number of labels (see
Theorem 1) to minimize the total leader length.

Theorem 4. Given a set P of n colored points, a color set C, and a label
bound K (or color vector k), we can compute a feasible labeling of P with fi-
nite backbones that minimizes the total leader length in time O(n7|C|2K2) (or
O(n7|C|2(

∏
c∈C kc)

2)).

Sketch of Proof. We change the meaning of an entry in the table T to denote the
additional length of segments and backbones needed for labeling the points of
the subinstance. Moreover, the precise positions of backbones matter for length
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Fig. 2. (a) Longest backbone b� splitting the backbones between pi and pi+1. (b) Back-
bones placed with the minimum leader length. (c) Candidate positions for backbones
inside the gap

minimization. A clear candidate set is the set of the y-coordinates of input points
which may be used by a backbone of the same color. We can also identify can-
didates for backbones inside a gap between points pi and pi+1. We observe that
the longest backbone b� inside the gap splits all other backbones lying between
pi and pi+1; see Fig. 2a. The backbones above b� connect only to points above
and, hence, must be placed as close to pi as possible for length minimization.
Symmetrically, the backbones below b� connect only to the bottom and must be
placed as close to pi+1 as possible.

For avoiding overlaps and to accommodate labels with fixed heights, we en-
force a minimum distance Δ > 0 between pairs of backbones, as well as back-
bones and differently colored points. Then, for the labels close to pi, we get a
sequence of consecutive candidate positions with distance Δ below pi; see Fig. 2b
and 2c. Symmetrically, there is such a sequence above pi+1. Any such sequence
contains up to n points (less if the gap is too small). Note that the two sequences
might overlap; we can, however, easily ensure that no two backbones with dis-
tance less than Δ are used in the dynamic program. To address entries in T we
use the O(n2) candidate positions (input points and positions in gaps) instead
of the gaps; no position can be used twice.

As a final step, we integrate the global valueK or the color vector k as a bound
on the allowed numbers of labels. To this end, we add additional dimensions for
K or for kc, c ∈ C to the table that specify the remaining available numbers of
labels in the subinstance. ��

4 Crossing Minimization

In this section we allow crossings between backbone leaders, which generally
allows us to use fewer labels. We concentrate on minimizing the number of
crossings for the case K = |C|, i.e., one label per color, and distinguish fixed
and flexible label orders.
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4.1 Fixed y-Order of Labels

In this part, we assume that the color set C is ordered and we require that for
each pair of colors i < j, the i-colored label is above the j-colored label.

Infinite Backbones. Observe that it is possible to slightly shift the backbones
of a solution without increasing the number of crossings so that no backbone
contains a point. So, the backbones can be assumed to be in the gaps between
vertically consecutive points; we number the gaps from 0 to n, as in Section 2.

Theorem 5. Given a set P of n colored points and an ordered color set C, a
backbone labeling with one label per color, labels in the given color order, infinite
backbones, and minimum number of crossings can be computed in O(n|C|) time.

Proof. Suppose that we fix the position of the i-th backbone to gap g. For 1 ≤
i ≤ |C| and 0 ≤ g ≤ n, let cross(i, g) be the number of crossings of the vertical
segments of the non-i-colored points when the color-i backbone is placed at gap
g. Note that this number depends only on the y-ordering of the backbones, which
is fixed, and not on their actual positions. So, we can precompute the table cross,
using dynamic programming, as follows. All table entries of the form cross(·, 0)
can be clearly computed in O(n) time. Then, cross(i, g) = cross(i, g−1)+1, if the
point between gaps g−1 and g has color j and j > i. In the case where the point
between gaps g − 1 and g has color j and j < i, cross(i, g) = cross(i, g − 1)− 1.
If it has color i, then cross(i, g) = cross(i, g− 1). From the above, it follows that
the computation of table cross takes O(n|C|) time.

Now, we use another dynamic program to compute the minimum number of
crossings. Let T [i, g] denote the minimum number of crossings on the backbones
1, . . . , i in any solution subject to the condition that the backbones are placed
in the given ordering and backbone i is positioned in gap g. Clearly T [0, g] = 0
for g = 0, . . . , n. Moreover, we have T [i, g] = ming′≤g T [i − 1, g′] + cross(i, g).
Having pre-computed table cross and assuming that for each entry T [i, g], we also
store the smallest entry of row T [i, ·] to the left of g, each entry of table T can by
computed in constant time. Hence, table T can be filled in time O(n|C|). Then,
the minimum crossing number is ming T [|C|, g]. A corresponding solution can be
found by backtracking in the dynamic program. ��

Finite Backbones. We can easily modify the approach used for infinite back-
bones to minimize the number of crossings for finite backbones, if the y-order of
labels is fixed, as the following theorem shows.

Theorem 6. Given a set P of n colored points and an ordered color set C, a
backbone labeling with one label per color, labels in the given order, finite back-
bones, and minimum number of crossings can be computed in O(n|C|) time.
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Proof. We present a dynamic program similar to the one presented in the proof
of Theorem 5. Recall that all points of the same color are routed to the same
label and the order of the labels is fixed, i.e., the label of the i-colored points
is above the label of the j-colored points, when i < j. Here, the computation
of the number of crossings when fixing a backbone at a certain position should
take into consideration that the backbones are not of infinite length. Recall
that the dynamic program could precompute these crossings, by maintaining an
n× |C| table cross, in which each entry cross(i, g) corresponds to the number of
crossings of the non-i-colored points when the color-i-backbone is placed at gap
g, for 1 ≤ i ≤ |C| and 0 ≤ g ≤ n. In our case, cross(i, g) = cross(i, g − 1) + 1,
if the point between gaps g − 1 and g is right of the leftmost of the i-colored
points and has color j s.t. j > i. In the case, where the point between gaps g− 1
and g is right of the leftmost of the i-colored points and has color j and j < i,
cross(i, g) = cross(i, g− 1)− 1. Otherwise, cross(i, g) = cross(i, g− 1). Again, all
table entries of the form cross(·, 0) can be clearly computed in O(n) time. ��

4.2 Flexible y-Order of Labels

In this part the order of labels is no longer given and we need to minimize the
number of crossings over all label orders. While there is an efficient algorithm
for infinite backbones, the problem is NP-complete for finite backbones.

Infinite Backbones. We give an efficient algorithm for the case that there
are K = |C| fixed label positions y1, . . . , yK on the right boundary of R, e.g.,
uniformly distributed.

Theorem 7. Given a set P of n colored points, a color set C, and a set of |C|
fixed label positions, we can compute in O(n + |C|3) time a feasible backbone
labeling with infinite backbones that minimizes the number of crossings.

Proof. First observe that if the backbone of color k, 1 ≤ k ≤ |C| is placed at
position yi, 1 ≤ i ≤ |C|, then the number of crossings created by the vertical
segments leading to this backbone is fixed, since all label positions will be occu-
pied by an infinite backbone. This crossing number cr(k, i) can be determined
in O(nk + |C|) time, where nk is the number of points of color k. In fact, by a
sweep from top to bottom, we can even determine all crossing numbers cr(k, ·)
for backbone k, 1 ≤ k ≤ |C| in time O(nk + |C|). Now, we construct an instance
of a weighted bipartite matching problem, where for each position yi, 1 ≤ k ≤ |C|
and each backbone k, 1 ≤ k ≤ |C|, we establish an edge (k, i) of weight cr(k, i). In

total, this takes O(n+ |C|2) time. The minimum-cost weighted bipartite match-

ing problem can be solved in time O(|C|3) with the Hungarian method [5] and
yields a backbone labeling with the minimal number of crossings. ��

Finite Backbones. Next, we consider the variant with finite backbones and
prove that it is NP-hard to minimize the number of crossings. For simplicity, we
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Fig. 3. (a) The range restrictor gadget, (b) a blocker gadget, (c) crossings caused by a
pair of an upper and a lower guard that are positioned on the same side outside range R.

allow points that share the same x- or y-coordinates. This can be remedied by a
slight perturbation. Our arguments do not make use of this special situation, and
hence carry over to the perturbed constructions. We first introduce a number of
gadgets that are required for our proof and sketch their properties.

The first one is the range restrictor gadget. Its construction consists of the
middle backbone, whose position will be restricted to a given range R, and an
upper and a lower guard gadget that ensure that positioning the middle backbone
outside range R creates many crossings. We assume that the middle backbone
is connected to at least one point further to the left such that it extends beyond
all points of the guard gadgets. The middle backbone is connected to two range
points whose y-coordinates are the upper and lower boundary of the range R.
Their x-coordinates are such that they are on the right of the points of the
guard gadgets. A guard consists of a backbone that connects to a set of M
points, where M > 1 is an arbitrary number. The M points of a guard lie left of
the range points. The upper guard points are horizontally aligned and lie slightly
below the upper bound of range R. The lower guard points are placed such that
they are slightly above the lower bound of range R. We place M upper and M
lower guards such that the guards form pairs for which the guard points overlap
horizontally. The upper (resp. lower) guard gadget is formed by the set of upper
(resp. lower) guards. We call M the size of the guard gadgets. The next lemma
shows properties of the range restrictor.

Lemma 2. The backbones of the range restrictor can be positioned such that
there are no crossings. If the middle backbone is positioned outside the range R,
there are at least M − 1 crossings.

Proof. The first statement is illustrated in Fig. 3a. To prove the second state-
ment, assume to the contrary that the middle backbone is positioned outside
range R, say w.l.o.g. below range R, and that there are fewer than M − 1 cross-
ings. Observe that all guards must be positioned above the middle backbone, as
a guard below the middle backbone would create M crossings, namely between
the middle backbone and the segments connecting the points of the guard to its
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backbone. So, the middle backbone is the lowest. Now observe that any guard
that is positioned below the upper range point crosses the segment that connects
this range point to the middle backbone. To avoid having M − 1 crossings, at
least M + 1 guards (both upper and lower) must be positioned above range R.
Hence, there is at least one pair consisting of an upper and a lower guard that
are both positioned above range R. This, independent of their ordering, creates
at least M − 1 crossings, a contradiction; see Fig. 3c, where the two alternatives
for the lower guard are drawn in black and bold gray, respectively. ��

Let B be an axis-aligned rectangular box and R a small interval that is contained
in the range of y-coordinates spanned by B. A blocker gadget of width m consists
of a backbone that connects to 2m points, half of which are on the top and
bottom side of B, respectively. A range restrictor gadget is used to restrict the
backbone of the blocker to the range R; see Fig. 3b. Note that, due to the range
restrictor, this drawing is essentially fixed. We say that a backbone crosses the
blocker gadget if its backbone crosses box B. It is easy to see that any backbone
that crosses a blocker gadget creates m crossings, where m is the width of the
blocker. We are now ready to present the NP-hardness reduction.

Theorem 8. Given a set of n input points in k different colors and an integer
Y it is NP-complete to decide whether a backbone labeling with one label per
color and flexible y-order of the labels that has at most Y leader crossings exists.

Proof. The proof is by reduction from the NP-complete Fixed Linear Crossing
Number problem [8]: Given a graph G = (V,E), a bijective function f : V →
{1, . . . , |V |}, and an integer Z, is there a drawing of G with the vertices placed on
a horizontal line (spine) in the order specified by f and the edges drawn as semi-
circles above or below the spine so that there are at most Z crossings? Masuda
et al. [8] showed that the problem is NP-complete, even if G is a matching.

Let G be a matching. Then, the number of vertices is even and we can assume
that the vertices V = {v1, . . . , v2n} are indexed in the order specified by f , i.e.,
f(vi) = i for all i. We also direct each edge {vi, vj} with i < j from vi to
vj . Let {u1, . . . , un} be the ordered source vertices and let {w1, . . . , wn} be the
ordered sink vertices; see Fig. 4a. In our reduction we will create an edge gadget
for every edge of G. The gadget consists of five blocker gadgets and one side
selector gadget. Each of the six sub-gadgets uses its own color and thus defines
one backbone. The edge gadgets are ordered from left to right according to the
sequence of source vertices (u1, . . . , un); see Fig. 4b.

The edge gadgets are placed symmetrically with respect to the x-axis. We
create 2n + 1 special rows above the x-axis and 2n + 1 special rows below,
indexed by −(2n+1),−2n, . . . , 0, . . . , 2n, 2n+1. The gadget for an edge (vi, vj)
uses five blocker gadgets (denoted as central, upper, lower, upper gap, and lower
gap blockers) in two different columns to create two small gaps in rows j and
−j, see the hatched blocks in the same color in Fig. 4b. The upper and lower
blockers extend vertically to rows 2n + 1 and −2n − 1. The gaps are intended
to create two alternatives for routing the backbone of the side selector. Every
backbone that starts left of the two gap blockers is forced to cross at least one of
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Fig. 4. (a) An input instance with four edges, (b) Sketch of the reduction for the graph
of Fig. 4a. Hatched rectangles correspond to blockers, thick segments to side selectors,
and filled shapes to guard gadgets or range restrictor gadgets.

these five blocker gadgets as long as it is vertically placed between rows 2n+ 1
and −2n− 1. The blockers have width m = 8n2. Their backbones are fixed to
lie between rows 0 and −1 for the central blocker, between rows 2n and 2n+ 1
(−2n and −2n− 1) for the upper (resp. lower) blocker, and between rows j and
j + 1 (−j and −j − 1) for the upper (resp. lower) gap blocker.

The side selector consists of two horizontally spaced selector points s
(i)
1 and

s
(i)
2 in rows i and −i located between the left and right blocker columns. They
have the same color and thus define one joint backbone that is supposed to pass
through one of the two gaps in an optimal solution. The n edge gadgets are placed
from left to right in the order of their source vertices; see Fig. 4b. The backbone
of every selector gadget is vertically restricted to the range between rows 2n+1
and −2n− 1 in any optimal solution by augmenting each selector gadget with
a range restrictor gadget. So, we add two more points for each selector to the
right of all edge gadgets, one in row 2n + 1 and one in row −2n− 1. They are
connected to the selector backbone. In combination with a corresponding upper

and lower guard gadget of size M = Ω(n4) between the two selector points s
(i)
1

and s
(i)
2 this achieves the range restriction according to Lemma 2.

We now claim that in a crossing-minimal labeling the backbone of the selector
gadget for every edge (vi, vj) passes through one of its two gaps in rows j or −j.
The proof of this claim is based on three different options for placing a selector
backbone: (a) outside its range restriction, i.e., above row 2n+ 1 or below row
−2n − 1, (b) between rows 2n + 1 and −2n − 1, but outside one of the two
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gaps, and (c) in rows j or −j, i.e., inside one of the gaps. By this claim and the
fact that violating any range restriction immediately causes M crossings, we can
assume that every backbone adheres to the rules, i.e., stays within its range as
defined by the range restriction gadgets or passes through one of its two gaps.

One can show that an optimal solution of the backbone labeling instance
IG created for a matching G with n edges has X + 2Z crossings, where X is a
constant depending on G, and Z is the minimum number of crossings of G in the
Fixed Linear Crossing Number problem. The detailed proof is based on carefully
counting crossings in four different cases, depending on which types of backbones
and vertical segments intersect. It turns out that almost all crossings are fixed
(yielding the number X), except for those of selector backbones with vertical
selector segments for which the two underlying edges (vi, vj) and (vk, vl) with
i < k are interlaced, i.e., i < k < j < l holds (yielding the number 2Z). Note
that we can guess an order of the backbones and apply Theorem 6 to compute
the minimum crossing number, which concludes the NP-completeness proof. ��
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Streamed Graph Drawing

and the File Maintenance Problem
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Abstract. In streamed graph drawing, a planar graph, G, is given in-
crementally as a data stream and a straight-line drawing of G must
be updated after each new edge is released. To preserve the mental
map, changes to the drawing should be minimized after each update,
and Binucci et al. show that exponential area is necessary for a number
of streamed graph drawings for trees if edges are not allowed to move at
all. We show that a number of streamed graph drawings can, in fact, be
done with polynomial area, including planar streamed graph drawings of
trees, tree-maps, and outerplanar graphs, if we allow for a small number
of coordinate movements after each update. Our algorithms involve an
interesting connection to a classic algorithmic problem—the file mainte-
nance problem—and we also give new algorithms for this problem in a
framework where bulk memory moves are allowed.

1 Introduction

In the streamed graph drawing framework, which was introduced by Binucci et
al. [4,3], a graph,G, is incrementally presented as a data stream of its vertices and
edges, and a drawing of G must be updated after each new edge is released. So
as to preserve the mental map [6,9] of the drawing, this framework also requires
that changes to the drawing of G should be minimized after each update. Indeed,
to achieve this goal, Binucci et al. took the extreme position of requiring that
once an edge is drawn no changes can be made to that edge. They showed that,
under this restriction, exponential area is necessary and sufficient for planar
drawings of trees under various orderings for how the vertices and edges of the
trees are presented.

In light of recent results regarding the mental map [1], however, we now know
that moving a small number of vertices or edges in a drawing of a graph does
not significantly affect readability in a negative way. Therefore, in this paper,
we choose to relax the requirement that there are no changes to the drawing
of the graph after an update and instead allow a small number of coordinate
movements after each such update. In this paper, we study planar streamed
graph drawing schemes for trees, tree-maps, and outerplanar graphs, showing
that polynomial area is achievable for such streamed graph drawings if small
changes to the drawings are allowed after each update. Our results are based
primarily on an interesting connection between streamed graph drawing and a
classic algorithmic problem, the file maintenance problem.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 256–267, 2013.
c© Springer International Publishing Switzerland 2013
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In the file maintenance problem [12], we wish to maintain an ordered set, S,
of n elements, such that each element, x in S, is assigned a unique integer label,
L(x), in the range [0, N ], where x comes before y if and only if L(x) < L(y). In
the classic version of this problem,N is restricted to be O(n), with the motivation
that the integer labels are addresses or pseudo-addresses for memory locations
where the elements of S are stored1. If N is only restricted to be polynomial in
n, then this is known as the online list labeling problem [2,5]. In either case, the
set, S, can be updated by issuing a command, insertAfter(x, y), where y is to
be inserted to be immediately after x ∈ S in the ordering, or insertBefore(x, y),
where y is to be inserted to be immediately before x ∈ S in the ordering. The
goal is to minimize the number of elements in S needing to be relabeled as a
result of such an update.

Previous Related Results. For the file maintenance problem, Willard [12]
gave a rather complicated solution that achieves O(log2 n) relabelings in the
worst case after each insertion, and this result was later simplified by Bender et
al. [2]. For the online list labeling problem, Dietz and Sleator [5] give an algo-
rithm that achieves O(log n) amortized relabelings per insertion, and O(log2 n)
in the worst-case, using an O(n2) tag range. Their solution was simplified by
Bender et al. [2] with the same bounds. Recently, Kopelowitz [8] has given an al-
gorithm that achieves O(log n) worst-case relabelings after each insertion, using
a polynomial bound for N .

For streamed tree drawings, as we mentioned above, Binucci et al. [4,3] show
that exponential area is required for planar drawings of trees, depending on the
order in which vertices and edges are introduced (e.g, BFS, DFS, etc.).

Our Results. For the context of this paper, we focus on planar drawings of
graphs, so we consider a drawing to consist essentially of a set of non-crossing line
segments. For traditional drawings of trees and outerplanar graphs, the endpoints
of the segments correspond to vertices and the segments represent edges. In tree-
map drawings, each vertex v of a tree T is represented by a rectangle,R, such that
the children of v are represented by rectangles inside R that share portions of at
least two sides of R. Thus, in a tree-map drawing, the line segments correspond
to the sides of rectangles.

We present new streamed graph drawing algorithms for general trees, tree-
maps, and outerplanar graphs that keep the area of the drawing to be of poly-
nomial size and allow new edges to arrive in any order, provided the graph is
connected at all times. After each update to a graph is given, we allow a small
number of, say, a polylogarithmic number of the endpoints of the segments in
the drawing to move to accommodate the representation of the new edge. We
alternatively consider these to be movements of either individual endpoints or
sets of at most B endpoints, for a parameter B, provided that each set of such

1 For instance, in the EDT text editor developed for the DEC PDP-11 series of mini-
computers, each line was assigned a pseudo line number, 1.0000, 2.0000, and so on,
and if a new line was to be introduced between two existing lines, x and y, it was
given as a default label the average of the labels of x and y as its label.
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endpoints is contained in a given convex region, R, and all the endpoints in this
region are translated by the same vector. We call such operations the bulk moves.

All of our methods are based on our showing interesting connections between
the streamed graph drawing problems we study and the file maintenance prob-
lem. In addition to utilizing existing algorithms for the file maintenance problem
in our graph drawing schemes, we also give a new algorithm for this classic prob-
lem in a framework where bulk memory moves are allowed, and we show how
this solution can also be applied to streamed graph drawing.

2 Building Blocks

The Ordered Streaming Model. We start with the description of the model
under which we operate. At each time t ≥ 1, a new edge, e, of a graph, G, arrives
and has to be incorporated immediately into a drawing of G, using line segments
whose endpoints are placed at grid points with integer coordinates. Since we are
focused on planar drawings in this paper, together with the edge, e, we also get
the information of its relative position among the neighbors of e’s endpoints (i.e.,
for every vertex we know the clockwise order of its neighbors and e’s placement
in this order). At all times, the current graph, G, is connected, and the edges
never disappear (infinite persistence).

Incidentally, the streaming model of Binucci et al. [4] is slightly different,
in that edges arrive without the order information in their model. Under that
model, they have given an Ω(2

n
8 ) area lower bound for binary tree drawing and

an Ω(n(d − 1)n) lower bound for drawing trees with maximum degree d > 2.
These bounds stand when the algorithm is not allowed to move any vertex. How-
ever, they only apply to a very restricted class of algorithms, namely predefined-
location algorithms, which are non-adaptive algorithms whose behavior does not
depend on the order in which the edges arrive or the previously drawn edges.
Also, as noted above, Binucci et al. do not allow for vertices to move once they
are placed. As we show in the following theorem, even with the added informa-
tion regarding the relative placement of an edge among its neighbors incident on
the same vertex, if we don’t allow for vertex moves, we must allow for exponential
area. In the full version of this paper [7] we prove the following.

Theorem 1. Under the ordered streaming model without vertex moves, any tree
drawing algorithm requires Ω(2n/2) area in the worst case.

File Maintenance with Bulk Moves. Here we consider the file maintenance
problem and the online list labeling problem variants where we allow for bulk
moves2 of an interval of B labels, for some parameter B. We have already men-
tioned the known results for the file maintenance problem, where the only type
of relabelings that are allowed are for individual elements, in which O(log2 n)

2 Note that bulk moves are also motivated for the original file maintenance problem
if we define the complexity of a solution in terms of the number of commands that
are sent to a DMA controller for bulk memory-to-memory moves.
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worst-case relabelings suffice for each update when N is O(n) [2,12] and O(log n)
suffice in the worst-case when N is a polynomial in n [8].

Bulk moves allow us to improve on these bounds. We have achieved several
tradeoffs between the operation count and the size of B. Of course, if B is n,
then achieving constant number of operations is easy, since we can maintain the
n elements to have the indices 1 to n, and with each insertion, at some rank i,
we simply move the elements currently from i to n up by one, as a single bulk
move. Theorem 2 summarizes the rest of our results.

Theorem 2. We can achieve the following bounds:

1. O(1) worst-case relabeling bulk moves suffice for the file maintenance problem
if B = n1/2.

2. O(1) worst-case relabeling bulk moves suffice for the online list maintenance
problem if B = logn.

3. O(log n) worst-case relabeling bulk moves suffice for the file maintenance
problem if B = logn.

Proof.

1. This is accomplished in an amortized way by partitioning the array into n1/2

chunks of size at most 2n1/2. Whenever a chunk, i, grows to have size n1/2,
we move all the chunks to the right of i by one chunk (using O(n1/2) bulk
moves). Then we split the chunk i in two, keeping half the items in chunk
i and moving half to chunk i + 1. These moves are charged to the previous
n1/2/2 insertions in chunk i. Turning this bound into a worst-case bound is
then done using standard de-amortization techniques.

2. This is accomplished by modifying a two-level structure of Kopelowitz [8].
Kopelowitz used the top level of this structure to maintain order of sublists of
size O(log n) each. Order within each sublist was maintained using standard
file maintenance problem solutions. Our modification is that each sublist is
now represented as a small subarray of size O(log n) and operations on the
top level of Kopelowitz’s structure are simulated using bulk moves on a big
array containing all concatenated subarrays.

3. This is accomplished by using the method of Bender et al. [2] and not-
ing that each insertion in their scheme uses a process where each substep
involves moving a contiguous subarray of size O(log n) using O(log n) indi-
vidual moves. Each such move can alternatively be done using O(1) bulk
moves of subarrays of size logn. ��

3 Streamed Graph Drawing of Trees

In this section, we present several algorithms for upward grid drawings of trees
in the ordered streaming model. The algorithms are designed to accommodate
different types of vertex moves allowed. For example, by a bulk move, we mean a
move that translates all segment endpoints that belong to a given convex region,
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(a) (b)

Fig. 1. Illustrating an insertion for our tree-drawing scheme: (a) determining relative
position for the new (dashed, red) edge; (b) tree after edge insert and related vertex
moves

R, by the same vector. This corresponds to the observation [13] that moving a
small number of elements in the same direction is easy to follow and does not
interfere with the ability to understand the structure of the drawing (as long as
there are no intersections).

Let G be a tree that is revealed one edge at a time, keeping the graph con-
nected. Algorithm 1 selects one endpoint of the first edge, r, puts it at position
(0, 0), and produces an upward straight-line grid drawing of G, level-by-level,
with each edge from parent to child pointed downwards. (If a new edge is ever
revealed for the current root, we simply recalibrate what we are calling position
(0, 0) without changing the position of the vertices already drawn.) For the kth
level, Lk, with nk nodes, we place nodes in positions (0,−k) through (N ,−k)
in the order of their parents (to avoid intersections), where N ≥ nk. When a
new edge is added, we locate the position (row and position in the row) of the
new node and insert the new node after its predecessor (or before its successor),
shifting other nodes on this level as needed to make room for the new node. (See
Fig. 1.) The details are as shown in Algorithm 1.

Input: e = (a, b), the edge to be added; b is the new vertex
1: k← b’s distance from r
2: determine c, b’s predecessor (or successor) in level Lk

3: perform Lk.insertAfter(c, b) (or Lk.insertBefore(c, b)), giving b integer label L(b)
4: move vertices whose labels have changed in the previous step
5: place b at (L(b),−k) and draw e

Algorithm 1. Generic insertion algorithm for upward straight-line grid streamed
tree drawing
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Drawing the tree in this fashion ensures there are no intersections (edges
connect only vertices in two neighboring levels), even as the vertices are shifted
(relative order of vertices stays the same). In addition, there are at most O(n)
levels, and at most O(n) nodes per level.

Theorem 3. Depending on the implementation for the insertBefore and in-
sertAfter methods, Algorithm 1 maintains a straight-line upward grid drawing
of a tree in the ordered streaming model to have the following possible perfor-
mance bounds:

1. O(n2) area and O(1) vertex moves per insertion if bulk moves of size n1/2

are allowed.
2. O(n2) area and O(log n) vertex moves per insertion if bulk moves of size

logn are allowed.
3. O(n2) area and O(log2 n) vertex moves per insertion if bulk moves are not

allowed.
4. polynomial area and O(1) vertex moves per insertion if bulk moves of size

logn are allowed.
5. polynomial area and O(log n) vertex moves per insertion if bulk moves are

not allowed.

Proof. The claimed bounds follow immediately from Theorem 2. ��

Note that Ω(n2) area is necessary in the worst case for an upward straight-line
grid drawing of a tree if siblings are always placed on the same level.

4 Streamed Graph Drawing of Tree-Maps

A tree-map, M , is a visualization technique introduced by Shneiderman [10],
which draws a rooted tree, T , as a collection of nested rectangles. The root, r, of
T is associated with a rectangle, R, and if r has k children, then R is partitioned
into k sub-rectangles using line segments parallel to one of the coordinate axes
(say, the x-axis), with each such rectangle associated with one of the children
of r. Then, each child rectangle is recursively partitioned using line segments
parallel to the other coordinate axis (say, the y-axis). (See Fig. 2.)
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Fig. 2. A tree-map and its associated tree
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We assume in this case that a tree, G, is released one edge at a time, as in the
previous section. We assume inductively that we have a tree-map drawn for G,
with a global set, X , of all x-coordinates maintained for the rectangle boundaries
and a global set, Y , of all y-coordinates maintained for the rectangle boundaries.
When an edge, e, of a rectangle has to be moved, the largest segment containing e
is moved accordingly. Our insertion method is shown in Algorithm 2 (for brevity,
the case when a vertex has no predecessors among its siblings is omitted).

Input: e = (a, b), the edge to be added; b is a new child vertex
1: Let R be the rectangle for a, and let z be the primary axis for R (w.l.o.g., z = x)
2: if b has no siblings then
3: Rb ← R (and give it primary axis orthogonal to z)
4: else if then
5: else
6: determine c, b’s predecessor sibling (w.l.o.g.), and let Rc be c’s rectangle
7: perform X.insertAfter(Rc.xmax, b), giving b integer label L(b)
8: move segment endpoints whose labels have changed in the previous step
9: Rb ← the rectangle in R with left boundary Rc.xmax and right boundary L(b)
10: end if

Algorithm 2. Generic insertion algorithm for streamed tree-map drawing

Theorem 4. Depending on the implementation for the insertBefore and in-
sertAfter methods, Algorithm 2 maintains a tree-map drawing of a tree in the
ordered streaming model to have the following possible performance bounds:

1. O(n2) area and O(1) x- and y-coordinate moves per insertion if bulk moves
of size n1/2 are allowed.

2. O(n2) area and O(log n) x- and y-coordinate moves per insertion if bulk
moves of size logn are allowed.

3. O(n2) area and O(log2 n) x- and y-coordinate moves per insertion if bulk
moves are not allowed.

4. polynomial area and O(1) x- and y-coordinate moves per insertion if bulk
moves of size logn are allowed.

5. polynomial area and O(log n) x- and y-coordinate moves per insertion if bulk
moves are not allowed.

Proof. The claimed bounds follow immediately from Theorem 2. ��

5 Streamed Graph Drawing of Outerplanar Graphs

Our algorithm for drawing outerplanar graphs in the streaming model is based
on a well-known fact about outerplanar graphs, namely that any outerplanar
graph may be drawn with straight-line edges and without intersections in such
a way that the vertices are placed on a circle [11].
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a

b

c

d

Fig. 3. Situation where information about order of edges around vertex is insufficient.
Initially, there are vertices a, b, c and edges (a, b), (b, c). When a new edge (a, c) is
added, it can be drawn in two ways (solid green or dashed red) – ordering of edges
does not specify which one to choose. When edge (b, d) arrives (with edge order (a, d, c)
around b), if the dashed red edge location was selected, there is no way to move the
vertices without intersections to produce an outerplanar drawing.

As previously, we assume that each new edge comes with the information
about its relative placement among its endpoints’ incident edges. In other words,
for each vertex, we know the clockwise order of its incident edges. Fig. 3 shows
a situation when this information alone is not enough, however.

Nevertheless, this type of problem can only happen when the new edge con-
nects two vertices of degree 1 as shown below.

Lemma 1. If at least one of the newly connected vertices has degree > 1, the
information about relative order of incident edges suffice.

Proof. Consider the situation shown in Fig. 4. (p, q) is the new edge. The graph
is connected, and the path between p and q is shown. The initial direction of the
edge (bold part) is determined by the ordering of edges around p. Then the edge
can either go around r (shown in dashed red) or not (solid green). Obviously, the
dashed red edge location is invalid, as it would surround r with a face, violating
the requirement that each vertex belongs to the outer plane. Therefore, there is
only one possibility for correctly drawing the edge. ��

· · ·

r

p

s

q

Fig. 4. Of the two possibilities of drawing new edge (p, q), only solid green is valid
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Invariant: vertices are placed on the circle in the same order as they appear on the
outer face of the drawing

Input: outerplanar drawing of graph G on a circle; e = (p, q) – edge to be added
1: if q is a new vertex then
2: place q on the circle according to ordering that includes e
3: else
4: add a virtual arc e′ connecting p and q according to the specification of e s.t.

e′ does not intersect any existing edge
5: calculate order O of vertices on the outer plane (taking e′ into account)
6: move vertices into place on the circle according to O
7: end if
8: draw e

Algorithm 3. Adding new edge to outerplanar drawing of graph G

It follows that when the new edge connects two vertices of degree 1, additional
information (such as relative order of the vertices on the outer face) is necessary.

We present our streamed drawing algorithm for an outerplanar graph, G, in
terms of placing vertices of G on a circle. We will later derive an algorithm for
drawing G using grid points. We show in Algorithm 3 how to handle adding a
new edge to the graph.

As mentioned previously, maintaining the invariant guarantees planarity of
the drawing. We now show that vertices can move into place without causing
any intersections in the process.

Lemma 2. Moving a vertex v inside the circle along a trajectory that does not
intersect any edge non-incident to v does not introduce any intersections and
maintains the order of edges around v.

Proof. Consider the drawing with edges incident to v removed (marked with
dashed lines in Fig. 5). The face to which v belongs (limited by edges and circle
boundary) is the area where v can move. Because it is convex, as v moves, its
incident edges never intersect the boundaries of the area (other than at their
incident vertices), and the relative order of the edges stays the same. ��

v

Fig. 5. Vertex v can move in the (convex) white area without causing intersections or
edge order changes
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Lemma 3. A vertex, v, that moves into its new position can do so without
crossing any edges.

Proof. Consider the face (in the sense of Lemma 2 and Fig. 5) of the drawing
that v belongs to. The drawing is still outerplanar after adding the virtual arc
(which is not necessarily straight-line), and therefore at least part of the circle,
C′, that forms this face’s border still belongs to the outer face of the drawing
(see vertex c in Fig. 6). By Lemma 2, v can move to C′ without crossing any
edges. When there are more vertices whose destination is the same part of the
circle, C′′, (vertices d, e and f in Fig. 6), they must form a path with inner
vertices all having degree 2. After adding the new edge, their order on the circle
(and hence on C′′) is the reverse of their current order, so their (straight-line)
trajectories do not cross. Since they form a path, edges between them will not
intersect as they move into place. ��

a

b

c

d

5|66|5

g

h

i

1|1

2|2

3|9

4|7

ef

7|3

8|4

9|8

Fig. 6. Adding edge (a, g). Virtual arc is drawn in green dots. Part of the circle that
lies in the outer plane and is reachable from c is shown in bold red. Numbers above
vertices denote the order of vertex before and after the edge is added. Dashed lines are
the trajectories of the vertices that need to move to maintain the invariant.

Corollary 1. Algorithm 3 maintains an outerplanar drawing of a graph G as
new edges are added to it.

Extending Algorithm 3 to placing nodes on a grid is straightforward. Instead
of a circle, we operate on a set of grid points in convex position that are ap-
proximately circular. We apply one of the algorithms for the file maintenance
problem or the online list labeling problem for maintaining order of vertices in
this set. When such an algorithm would move vertex v, we first check if there is
an unused grid point between new neighbors of v on the circle. If so, we simply
move the vertex to that point. Otherwise, we “reserve” the destination for v by
inserting a stub vertex in the correct place (between new neighbors of v) on the
circle. The list labeling algorithm will move vertices around the circle (without
changing order on the circle, so it will not cause any intersections) to make room
for this stub. Afterwards, we move v into its reserved position.
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Lemma 4. Vertex v is moved in line 6 of Algorithm 3 at most deg(v)−1 times.

Proof. A vertex v is moved when the new edge forms a shortcut that bypasses v
on the outer face. v can appear at most deg(v) times on the outer face, so after
deg(v) − 1 moves, there will be only one valid position for v on the outer face,
so it cannot be bypassed anymore. (See Fig. 7.) ��

v

Fig. 7. Vertex v has degree 3. After two shortcuts (solid green lines) around v have
been added, adding a third (dashed red line) would completely surround v, violating
outerplanarity. Arrows show direction of edges on the outer plane.

Theorem 5. The grid-based version of Algorithm 3 maintains an outerplanar
drawing of a graph G and has the following update performances: uses O(log n)
amortized moves per vertex, and

1. O(n3) area and O(log2 n) vertex moves per edge insertion.
2. polynomial area and O(log n) vertex moves per edge insertion.

In addition, each of the above complexity bounds applies in an amortized sense
per vertex in the drawing.

Proof. By Corollary 1, we know that the algorithm maintains an outerplanar
drawing of G. For the area bounds, the file maintenance algorithms requires
O(n) available integer tags (in this case, points in convex position) to handle n
elements. Since m grid points in (strict) convex position require O(m3) area, the
streamed drawing algorithm therefore uses O(n3) area in such cases. Likewise, it
uses polynomial area when using a solution to the online list labeling problem.

By Lemma 4, each vertex v is moved by Algorithm 3 at most deg(v)−1 times.
Each such move requires at most one insertion into the list for the file mainte-
nance or list maintenance algorithm, so there are at most O(1) such insertions
per vertex in the amortized sense (sum of degrees of all vertices in an outerplanar
graph is O(n)). ��

Note that we cannot immediately apply our results for bulk moves, unless we
restrict our attention to possible vertex points that are uniformly distributed on
a circle and moves that involve rotations of intervals of points around this circle.

6 Conclusion

We provided a revised approach to streamed graph drawing, utilizing solutions to
the file maintenance problem, either on a level-by-level basis (for level drawings of
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trees), a cross-product basis (for tree-maps), or a circular/convex-position basis
(for outerplanar graphs). For future work, it would be interesting to find other
applications of this problem in streamed or dynamic graph drawing applications.

Acknowledgements. We would like to thank Alex Nicolau and Alex Veiden-
baum for helpful discussions regarding the file maintenance problem. This work
was supported in part by the NSF, under grants 1011840 and 1228639.
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COAST: A Convex Optimization Approach
to Stress-Based Embedding

Emden R. Gansner, Yifan Hu, and Shankar Krishnan

AT&T Labs - Research, Florham Park, NJ

Abstract. Visualizing graphs using virtual physical models is probably the most
heavily used technique for drawing graphs in practice. There are many algorithms
that are efficient and produce high-quality layouts. If one requires that the layout
also respect a given set of non-uniform edge lengths, however, force-based ap-
proaches become problematic while energy-based layouts become intractable. In
this paper, we propose a reformulation of the stress function into a two-part con-
vex objective function to which we can apply semi-definite programming (SDP).
We avoid the high computational cost associated with SDP by a novel, compact
re-parameterization of the objective function using the eigenvectors of the graph
Laplacian. This sparse representation makes our approach scalable. We provide
experimental results to show that this method scales well and produces reasonable
layouts while dealing with the edge length constraints.

1 Introduction

For visualizing general undirected graphs, algorithms based on virtual physical mod-
els are some of the most frequently used drawing methods. Among these, the spring-
electrical model [7,8] treats edges as springs that pull nodes together, and nodes as
electrically-charged entities that repel each other. Efficient and effective implementa-
tions [13,14,26] usually utilize a multilevel approach and fast force approximation with
a suitable spatial data structure, and can scale to millions of vertices and edges while
still producing high-quality layouts.

In certain instances, the graph may assign non-uniform lengths to its edges, and the
layout problem will have the additional constraint of trying to match these lengths. A
suitable formulation of the spring-electrical model that works well when edges have
predefined target lengths is still an open problem.

In contrast, the (full) stress model assumes that there are springs connecting all vertex
pairs of the graph. Assuming we have a graph G = (V,E), with V the set of vertices and
E the set of edges, the energy of this spring system is

∑
i, j∈V

wi j
(∥∥xi− x j

∥∥− di j
)2, (1)

where di j is the ideal distance between vertices i and j, and wi j is a weight factor.
The weight factor can modify the impact of an error. Weights can be arbitrary but are
frequently taken as a negative power of di j, thus lessening the error for larger ideal
distances. A layout that minimizes this stress energy is taken as an optimal layout of the

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 268–279, 2013.
c© Springer International Publishing Switzerland 2013
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graph. The justification for this is clear: in most cases, it is not possible to find a drawing
that respects all of the edge lengths, while expression (1) is basically the weighted mean
square error of a drawing. (See also the work of Brandes and Pich [2].)

The stress model has its roots in multidimensional scaling (MDS) [19] which was
eventually applied to graph drawing [16,20]. Note that typically we are given only the
ideal distance between vertices that share an edge, which is taken to be unit length for
graphs without predefined edge lengths. For other vertex pairs, a common practice is
to define di j as the length of a shortest path between vertex i and j. Such a treatment,
however, means that an all-pairs shortest path problem must be solved. Johnson’s algo-
rithm [15] takes O(|V |2 log |V |+ |V ||E|) time, and O(|V |2) memory. (A slightly faster,
but still quadratic, algorithm is also known [23].) For large graphs, such complexities
make solving the full stress model infeasible.

A number of techniques have been proposed for circumventing this problem,
typically focused on approximate solutions, using only a few computed distances, or
approximating the shortest path calculations. Gansner et al. [12] proposed another ap-
proach for solving the “stress model” efficiently, by redefining the problem. The key
idea was to note that only the edge distances are given, while using shortest path lengths
for the remainder is somewhat arbitrary, and could be replaced with some other con-
straint that is faster to compute but still works in terms of layout quality. This led them
to propose a two-part modified stress function

∑
{i, j}∈E

wi j
(∥∥xi− x j

∥∥− di j
)2−αH(x), (2)

where the first term encodes the stress associated with the given distances, and the
second handles the remaining pairs.

In this paper, we also consider minimizing a two-part modified stress function. How-
ever, our formulation is such that the objective function is convex. More specifically,
it is quartic in the positions of the nodes, and can be expressed as a quadratic func-
tion of auxiliary variables, where each of the auxiliary variables is a product of po-
sitions. We solve the problem by projecting the positions into a subspace spanned by
the eigenvectors of the Laplacian, and transform the minimization problem into one of
convex programming. We call our technique COAST (Convex Optimization Approach
to STress-based emdedding).

The rest of the paper is organized as follows. In Section 2, we discuss related work.
Section 3 gives the COAST model, and discusses a way to solve the model by semi-
definite programming. Section 4 evaluates our algorithm experimentally by comparing
it with some of the existing fast approximate stress models. Section 5 presents a sum-
mary and topics for further study.

2 Related Work

Most of the earlier approaches [24,10,1,17,12] for efficiently handling graph drawings
with edge lengths relied on approximately minimizing the stress model, typically using
some sparse model [10]. One notable effort is that of PivotMDS of Brandes and Pich
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[1]. This is an approximation algorithm which only requires distance calculations from
all nodes to a few chosen nodes.

While PivotMDS is very efficient and works well for some graphs, for graphs such
as trees, multiple nodes can share the same position. Khoury et al. [17] approximate the
solution of the linear system in a stress majorization procedure [10] by a low-rank sin-
gular value decomposition (SVD). They used a result of Drineas et al. [6] which states
that for a matrix with well-distributed SVD values, the SVD values and left SVD vec-
tors of the submatrix consisting of randomly sampled columns of the original matrix
are a good approximation to the corresponding SVD values and vectors of the origi-
nal matrix. With this result, they were able to calculate only the shortest paths from
a selected number of nodes, as in PivotMDS. The method avoided having nodes in a
tree-like graph being embedded into the same position by using the exact (instead of ap-
proximate) right-hand-side of the stress majorization procedure, using an observation
that this right-hand-side can be calculated efficiently for the special case of wi j = 1/di j.

The work most akin to that presented here is the maxent-stress model [12]. That
approach borrows from the principle of maximal entropy, which says that items should
be placed uniformly in the absence of constraints. The model tries to minimize the
local stresses, while selecting a layout that maximizes the dispersion of nodes. This
leads to the function shown in expression (2), where typically H(x) = ln{i, j}/∈E‖xi−
x j‖. The authors introduce an algorithm, called force-augmented stress majorization, to
minimize this objective function.

Although it essentially ignores edge lengths, the binary stress model of Koren and
Çivril [18] is stylistically related, in that the first term attempts to specify edge lengths
(as uniformly 0) and the second term has the effect of uniformly spacing the nodes.
Specifically, there is a distance of 0 between nodes sharing an edge, and a distance of 1
otherwise, giving the model

∑
{i, j}∈E

‖xi− x j‖2 +α ∑
{i, j}/∈E

(‖xi− x j‖− 1)2 .

Similarly, Noack [21,22] has proposed the LinLog model and, more generally, the
r-PolyLog model,

∑
{i, j}∈E

‖xi− x j‖r− ∑
i, j∈V

ln‖xi− x j‖,

where, in particular, the second term is suggestive of the use of entropy in the maxent-
stress model.

The most significant attempt to use a force-directed approach for encoding edge
distances was the GRIP algorithm [9]. The multilevel coarsening uses maximal in-
dependent set based filtration, with the length of an edge at a coarse level computed
from lengths of its composite edges. On coarse levels, the algorithm uses a version
of the Kamada-Kawai algorithm [16] applied to each node within a local neighbor-
hood of the original graph, thus handling the relevant edge lengths. On the finest level,
however, a localized Fruchterman-Reingold algorithm [8] is used, with no modeling of
edge lengths.
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In the area of data clustering, Chen and Buja [3] present LMDS, a model based on
localized versions of MDS. Algebraically, this reduces to

∑
{i, j}∈S

(∥∥xi− x j‖− di j
)2− t ∑

(i, j)/∈S

‖xi− x j‖,

where S contains {i, j} if node j is among the k nearest neighbors if i. It is difficult to
determine how scalable this approach is but some tests indicate it is not appropriate for
graph drawing.

3 The COAST Algorithm

Let G = (V,E) denote an undirected graph, with the node set (vertices) V and edge set
E . We use n = |V | for the number of vertices in G. We assume that each edge (i, j) has
a desired length di j with weight wi j. Typically, one sets wi j = 1/di j

2, but our analysis
does not require that assumption. We wish to embed G into d-dimensional Euclidean
space. Let xi represent the coordinates of vertex i in Rd , and let P be the n× d matrix
whose rows are the xi. We define the Gram matrix X = (xi j) where xi j = xi · x j, the
matrix of inner products. It is well known that X is a positive semi-definite matrix.

We consider minimizing a two-part modified stress function:

T (P) = ∑
{i, j}∈E

(wi j‖xi− x j‖2−wi jd
2
i j)

2− tλ ∑
(i, j)/∈E

‖xi− x j‖2, (3)

where the first term attempts to assign edges their ideal edge lengths, and the second
term separates unrelated nodes as much as possible. The parameter t can be used to
balance the two terms, emphasizing either conformity to the specified edge lengths
(small t) or uniform placement (large t). Without loss of generality, we can assume a

zero mean for the xi, i.e., ∑i xi = 0. We set λ = |E|/
((

n
2

)
−|E|+ 1

)
to balance the

relative size of the two terms, as suggested by Chen and Buja [3]. To minimize T (P),
let T1 and T2 be the first and second terms of T , respectively, so that T = T1−T2, and
consider the first term. We have the following derivation:

T1 = ∑
{i, j}∈E

{wi j(xii− xi j− x ji+ x j j)−wi jdi j
2}2

= ∑
{i, j}∈E

{wi jTr(Ei jX)−wi jdi j
2}2

. (4)

where Tr() is the trace function and Ei j = (ekl) is the n× n matrix with

ekl =

⎧⎪⎪⎨⎪⎪⎩
1, if k = l = i or k = l = j
−1, if k = i and l = j
−1, if k = j and l = i
0, otherwise
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Using standard properties of the trace, the expression (4) can be rewritten as

∑
{i, j}∈E

wi j
2{vec(Ei j)

T X − di j
2}2

, (5)

where X = vec(X) and vec() is the matrix vectorization operator.
Functions defined on nodes of a graph can be well approximated by the eigenvectors

of the graph Laplacian [4], and the smoother the function is, fewer eigenvectors are re-
quired to approximate it well. It is reasonable to assume that the function that embeds
the vertices in Rd is smooth over the graph. Therefore, the bottom k eigenvectors of the
graph’s Laplacian provide a good sparse basis for the position vectors. Typical values
of k range from 10-30 depending on the size of the graph. Let Q ∈ Rn×k be the matrix
composed of the eigenvectors of the Laplacian corresponding to the k smallest eigen-
values, ignoring the eigenvalue 0. It is well known that the eigenvector corresponding to
eigenvalue 0 accounts for the center of mass of the function. Removing it from consid-
eration automatically places the embedding at the origin. We can then find k vectors yl

in Rk so that we can write each xi as ∑l qilyl where qi = (qi1,qi2, . . . ,qik) is the ith row of
Q. If we then define the k× k positive semi-definite matrix Y = (yi j) where yi j = yi ·y j,
we have

X = PPT = QY QT .

Using X = vec(X) and letting Y = vec(Y ), we can rewrite the above as

X = (Q⊗Q)Y ,

where⊗ is the Kronecker product. Using this in expression (5), we have

T1 = ∑
{i, j}∈E

wi j
2{vec(Ei j)

T (Q⊗Q)Y − di j
2}2

. (6)

Since xi− x j = ∑l(qil − q jl)yl , it is fairly straightforward to see that the following
holds:

vec(Ei j)
T (Q⊗Q) = (qi− q j)⊗ (qi− q j).

Applying this to equation (6), we have

T1 = ∑
{i, j}∈E

wi j
2{(qi− q j)⊗ (qi− q j)Y − di j

2}2

= ∑
{i, j}∈E

wi j
2Y T [((qi− q j)⊗ (qi− q j))

T ((qi− q j)⊗ (q j− qi))]Y −

2 ∑
{i, j}∈E

wi j
2di j

2((qi− q j)⊗ (qi− q j))Y + ∑
{i, j}∈E

wi j
2di j

4.

Now, turning to the second term of T (P), we have

T2 = tλ ∑
(i, j)/∈E

‖xi− x j‖2

= tλ

{
∑
i> j
‖xi− x j‖2− ∑

{i, j}∈E

‖xi− x j‖2

}
. (7)
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Lemma 1. ∑i> j ‖xi−x j‖2 = nTr(Y ) and ∑{i, j}∈E ‖xi−x j‖2 =((qi−q j)⊗(qi−q j))Y .

Proof. Because the xi have zero mean, the first summation is equal to n∑i ‖xi‖2 =
nTr(X) = nTr(Y ). ��

Using lemma 1, we can rewrite equation (7) as

T2 = tλ{nTr(Y )− ((qi− q j)⊗ (qi− q j))Y }
= tλ{nvec(I)T − ∑

{i, j}∈E

((qi− q j)⊗ (qi− q j))}Y .

Combining our recastings of the two terms of equation (3), we have:

T (P) = T1−T2

= Y T

[
∑

{i, j}∈E

wi j
2{((qi− q j)⊗ (qi− q j))

T ((qi− q j)⊗ (qi− q j))}
]

Y −[
∑

{i, j}∈E

(2wi j
2di j

2− tλ )((qi− q j)⊗ (qi− q j))− ntλ vec(I)T
]

Y +

∑
{i, j}∈E

wi j
2di j

4.

To simplify the exposition, we can write T (P) as Y T AY +bT Y +constant. Since A
and Y are symmetric positive semi-definite matrices, this is a convex function inside the
semi-definite cone. It can be solved easily by any off-the-shelf semi-definite program
(SDP). SDP is usually inefficient, taking cubic time in the size of the variables and
constraints. A key novelty in our approach is the use of the approximation using the
graph Laplacian. Instead of minimizing with n2 variables, our re-parameterization with
Y reduces the number of variables to k2. This is usually constant for most graphs and
hence makes our approach scalable. Because of the special structure of our problem, we
can further improve the running time by converting our quadratically-constrained SDP
to a Semidefinite Quadratic Linear Program (SQLP) and use a specialized solver like
SDPT3 [25]. Details of this conversion are given in the report [11].

4 Experimental Results

We implemented the COAST algorithm in a combination of Python, Matlab and C
code. The main parts consist of forming the matrix A and vector b, calculating the
eigenvectors of the Laplacian, and solving the optimization problem. Time for the last
part is dependent only on the number of eigenvectors k, hence is constant for a fixed
number of eigenvectors. For graphs of size up to 100,000, the minimization using SQLP
takes less than 10 seconds inside Matlab.

We tested the COAST algorithm for solving the quartic stress model on a range of
graphs. For comparison, we also tested PivotMDS; PivotMDS(1), which uses Pivot-
MDS, followed by a sparse stress majorization; the maxent-stress model Maxent; and
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Table 1. Algorithms tested

Algorithm Model Fits distances?
COAST quartic stress model Yes. Edges only

PivotMDS approx. strain model Yes/No
PivotMDS(1) PivotMDS + sparse stress Yes.

Maxent PivotMDS + maxent-stress Yes.
FSM full stress model Yes. All-pairs

the full stress model, using stress majorization. We summarize all the tested algorithms
in Table 1.

With the exception of graph gd, which is an author collaboration graph of the In-
ternational Symposium on Graph Drawing between 1994-2007, the graphs used are
from the University of Florida Sparse Matrix Collection [5]. Our selection is exactly
the same as that used by Gansner et al. [12]. Two of the graphs (commanche and
luxembourg) have associated pre-defined non-unit edge lengths. In our study, a rect-
angular matrix, or one with an asymmetric pattern, is treated as a bipartite graph. Test
graph sizes are given in Table 2.

Table 2. Test graphs. Graphs marked ∗ have pre-specified non-unit edge lengths. Otherwise, unit
edge length is assumed.

Graph |V | |E| description
gd 464 1311 Collaboration graph

btree 1023 1022 Binary tree
1138 bus 1138 1358 Power system
qh882 1764 3354 Quebec hydro power

lp ship04l 2526 6380 Linear programming
USpowerGrid 4941 6594 US power grid
commanche∗ 7920 11880 Helicopter
bcsstk31 35586 572913 Automobile component

luxembourg∗ 114599 119666 Luxembourg street map

Tables 3 and 4 present the outcomes for two graphs. (The drawings for all of the
graphs tested, with additional color detail, can be found in the companion report [11].)
Following Brandes and Pich [2], each drawing has an associated error chart. In an error
chart, the x-axis gives the graph distance bins, the y-axis is the difference between the
actual geometric distance in the layout and the graph distance. The chart shows the
median (black line), the 25 and 75 percentiles (gray band) and the min/max errors (gray
lines) that fall within each bin. For ease of understanding, we plot graph distance against
distance error, instead of graph distance vs. actual distance as suggested by Brandes
and Pich [2]. Because generating the error chart requires an all-pairs shortest paths
calculation, we provide this chart only for graphs with less than 10,000 nodes.
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Table 3. Drawings and error charts of the tested algorithms for btree

PivotMDS PivotMDS(1) Maxent COAST FSM

With the error chart, we also include a graph distance distribution curve (line with
dots), representing the number of vertex pairs in each graph distance bin. This distri-
bution depends on the graph, and is independent of the drawing. In making the error
charts, the layout is scaled to minimize the full stress model (1), with wi j = 1/d2

i j.
As an example, the error chart for PivotMDS on btree (Table 3, column 1,

bottom) shows that, on average, the median line is under the x-axis for small graph
distances. This means that the PivotMDS layout under-represents the graph distance
between vertex pairs that are a few hops away. This is because it collapses branches of
tree-like structures. The leaves of such structures tend to be a few hops away, but are
now positioned very near to each other. To some extent the same under-representation
of graph distance for vertex pairs that are a few hops away is seen for PivotMDS and
PivotMDS(1) on other non-rigid graphs, including 1138 bus, btree, lp ship041
and USpowerGrid. Compared with PivotMDS and PivotMDS(1), the median line for
Maxent (column 3) does not undershoot the x-axes as much.

Comparing the COAST layouts with the others, we note that it appears to track the
x-axis more tightly and uniformly than the others, except for large lengths where, in
certain cases, it dives significantly. In general, COAST has a more consistent bias for
under-representation than the other layouts. The others tend to under-represent short
lengths and over-represent long lengths. Visually, most of the COAST layouts are satis-
factory, certainly avoiding the limitations of PivotMDS. For example, although it does
not capture the symmetry of btree as well as Maxent, it does a better job of handling
the details.

While visually comparing drawings made by different algorithms is informative, and
may give an overall impression of the characteristics of each algorithm, such inspection
is subjective. Ideally we would prefer to rely on a quantitative measure of performance.
However such a measure is not easy to devise. For example, if we use sparse stress
as our measure, PivotMDS, which minimizes sparse stress, is likely to come out best,
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Table 4. Drawings and error charts of the tested algorithms for lp ship041

PivotMDS PivotMDS(1) Maxent COAST FSM

despite its shortcomings. As a compromise, we propose to measure full stress, as de-
fined by (1), with wi j = 1/d2

i j. Bear in mind that this measure naturally favors the full
stress model.

Table 5 gives the full stress measure achieved by each algorithm, as well as the
corresponding timings. Because it is expensive to calculate all-pairs shortest paths, we
restrict experimental measurement to graphs with less than 10,000 nodes. From the
table we can see that, as expected, FSM is the best, because it tries to optimize this
measure. We note that COAST is mostly competitive with the other non-FSM layouts.

As for timings, COAST, although a hybrid implementation, is comparable with Max-
ent, and appears to work well on large graphs.

4.1 Measuring Precision of Neighborhood Preservation

Sometimes, in embedding high dimensional data into a lower dimension, one is inter-
ested in preserving the neighborhood structure. In such a situation, exact replication of
distances between objects becomes a secondary concern.

For example, imagine a graph where each node is a movie. Based on some recom-
mender algorithm, an edge is added between two movies if the algorithm predicts that a
user who likes one movie would also like the other, with the length of the edge defined
as the distance (dissimilarity) between the two movies. The graph is sparse because
only movies that are strongly similar are connected by an edge. For a visualization of
this data to be helpful, we need to embed this graph in 2D in such a way that, for each
node (movie), nodes in its neighborhood in the layout are very likely to be similar to
this node. This would allow the user to explore movies that are more likely of interest
to her by examining, in the visualization, the neighborhoods of the movies she knew
and liked.
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Table 5. Full stress measure (×1000) and CPU time (in seconds) for PivotMDS, PivotMDS(1),
Maxent, COAST and FSM. Smaller is better. We limit the measurements to graphs with less than
10,000 nodes and 10 hours of CPU time. A “-” is used to denote these missing data points.

Graph PivotMDS PivotMDS(1) Maxent COAST FSM
gd 19 0.3 15 0.3 12 0.8 13 4.6 10 2.3

btree 130 1.1 110 1.1 64 2.7 89 0.4 60 10.0
1138 bus 78 0.1 67 0.2 45 2.1 58 3.4 40 16.0
qh882 147 0.1 120 0.3 103 2.2 184 2.7 84 39.0

lp ship04l 667 0.1 769 0.1 363 2.2 368 5.0 251 58.0
USpowerGrid 1124 0.1 932 0.9 1018 6.5 1073 5.3 702 272.0
commanche 2305 0.2 1547 0.9 1545 9.0 2853 8.8 654 1025.0
bcsstk31 - 2.4 - 21.6 - 102.0 - 226.7 - -

luxembourg - 2.4 - 630.0 - 209.0 - 128.9 - -
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Fig. 1. Precision of neighborhood preservation of the algorithms, as a function of K. The higher
the precision, the better.

Following Gansner et al. [12], we look at the precision of neighborhood preservation.
We are interested in answering the question: if we see vertices nearby in the embedding,
how many of these are actually also neighbors in the graph space? We define the preci-
sion of neighborhood preservation as follows. For each vertex i, K neighboring vertices
of i in the layout are chosen. These K vertices are then checked to see if their graph dis-
tance is less than a threshold d(K), where d(K) is the distance of the K-th closest vertex
to i in the graph space. The percentage of the K vertices that are within the threshold,
averaged over all vertices i, is taken as the precision. Note that precision (the fraction of
retrieved instances that are relevant) is a well-known concept in information retrieval.
Chen and Buja [3] use a similar concept called LC meta-criteria.

Figure 1 gives the precision as a function of K for two representative graphs. (Figures
for the remaining are available in the report [11].) From the figure, it is seen that, in
general, COAST has the highest, or nearly the highest, precision. PivotMDS(1) tends
to have low precision. The precision of other algorithms, including Maxent, tends to be
between these two extremes.
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Overall, precision of neighborhood preservation is a way to look at one aspect of
embedding not well-captured by the full stress objective function, but is important to
applications such as recommendations. COAST performs well in this respect.

5 Conclusion and Future Work

In this paper, we described a new technique for graph layout that attempts to satisfy
edge length constraints. This technique uses a modified two-part stress function, one
part for the edge lengths, the other to guide the relative placement of other node pairs.
The stress is quartic in the positions of the nodes, and can be transformed to a form that
is suitable for solution using convex programming. The results produced are good and
the algorithm is scalable to large graphs.

Although the performance of the COAST algorithm is already competitive, we rely
on an ad hoc implementation using a combination of Python, Matlab and C code. It
would be very desirable to re-implement the algorithm entirely in C.

Our technique follows the general strategy of doing length-sensitive drawings for
large graphs by reformulating the energy function, keeping the core length constraints,
and then applying some appropriate mathematical machinery. Variations of this tech-
nique have been successfully used by others [17,12]. It would be interesting to explore
additional adaptations of this approach.

Acknowledgements. We would like to thank the reviewers for their helpful comments.
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4 Dept. de Matemática, Universidade de Aveiro, Portugal
rodrigo.silveira@ua.pt

Abstract. We study an algorithmic problem that is motivated by ink minimiza-
tion for sparse set visualizations. Our input is a set of points in the plane which
are either blue, red, or purple. Blue points belong exclusively to the blue set, red
points belong exclusively to the red set, and purple points belong to both sets.
A red-blue-purple spanning graph (RBP spanning graph) is a set of edges con-
necting the points such that the subgraph induced by the red and purple points is
connected, and the subgraph induced by the blue and purple points is connected.

We study the geometric properties of minimum RBP spanning graphs and the
algorithmic problems associated with computing them. Specifically, we show that
the general problem is NP-hard. Hence we give an ( 1

2
ρ+1)-approximation, where

ρ is the Steiner ratio. We also present efficient exact solutions if the points are
located on a line or a circle. Finally we consider extensions to more than two sets.

1 Introduction

Visualizing sets and their elements is a recurring theme in information visualization.
Sets arise in many application areas, as varied as social network analysis (grouping in-
dividuals into communities), linguistics (related words), or geography (related places).
Among the oldest representations for sets are Venn diagrams [11] and their generaliza-
tion, Euler diagrams. These representations are natural and effective for a small number
of elements and sets. However, for larger numbers of sets and more complicated inter-
section patterns more intricate solutions are necessary. The last years have seen a steady

� M.L. was supported by the Netherlands Organisation for Scientific Research (NWO) under
grant 639.021.123. F. H., M. K., V. S. and R.I. S. were partially supported by ESF EURO-
CORES programme EuroGIGA, CRP ComPoSe: grant EUI-EURC-2011-4306, and by project
MINECO MTM2012-30951. F. H., V. S. and R.I. S. were supported by project Gen. Cat. DGR
2009SGR1040. M. K. was supported by the Secretary for Universities and Research of the Min-
istry of Economy and Knowledge of the Government of Catalonia and the European Union.
R. I. S. was funded by the FP7 Marie Curie Actions Individual Fellowship PIEF-GA-2009-
251235 and by FCT through grant SFRH/BPD/88455/2012.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 280–291, 2013.
c© Springer International Publishing Switzerland 2013



Colored Spanning Graphs for Set Visualization 281

stream of developments in this direction, both for the situation where the location of set
elements can be freely chosen and for the important special case that elements have to
be drawn at particular fixed positions (for example, restaurant locations on a city map).

Our paper is motivated by some recent approaches that use very sparse enclosing
shapes when depicting sets. LineSets [3] are the most minimal of all, reducing the
geometry to a single continuous line per set which connects all elements. Both Kelp
Diagrams [10] and its successor KelpFusion [15] are based on sparse spanning graphs,
essentially variations of minimal spanning trees for different distance measures. These
methods attempt to reduce visual clutter by reducing the amount of “ink” (see Tufte’s
rule [23]) necessary to connect all elements of a set. However, although the results are
visually pleasing, neither method does use the optimal amount of ink. In this paper we
explore the algorithmic questions that arise when computing spanning graphs for set
visualization which are optimal with respect to ink usage.

Problem Statement. Our input is a set of n points in the plane. Each point is a member
of one or more sets. We mostly consider the case where there are exactly two sets, namely
a red and a blue set. A point is red if it is part only of the red set and it is blue if it is part
only of the blue set. A point that is part of both the red and the blue set is purple.

Fig. 1. A minimum RBP spanning graph

A red-blue-purple spanning graph
(RBP spanning graph) for a set of points
that are red, blue and purple is a set
of edges connecting the points such that
the subgraph induced by the red and pur-
ple points is connected, and the subgraph
induced by the blue and purple points
is connected. A minimum RBP spanning
graph for a set of points that are red, blue
and purple is a red-blue-purple spanning
graph that has minimum weight (total edge length) (see Figure 1). In this paper we
consider the algorithmic problems associated with computing minimum RBP spanning
graphs.

Results and Organization. We first review related work. In Section 2 we describe and
prove various useful properties of (minimum) RBP spanning graphs. Then, in Section 3,
we consider the two special cases where the points are located on a line or on a circle.
This setting is meaningful if the elements of the sets are not associated with a specific lo-
cation (for example, social networks or software systems). Here visualizations frequently
choose to arrange elements in simple configurations such as lines or circles. We give an
O(n) time algorithm for points on a line, assuming that the input is already sorted. For
points on a circle we exploit a structural result which allows us to use dynamic program-
ming in O(k3 +n) time, where k is the number of purple points. In Section 4 we prove
that computing a minimum RBP spanning graph is NP-hard in general. Hence, in Sec-
tion 5 we turn to approximations. We describe an O(n log n) algorithm that computes
a (12ρ+1)-approximation of the minimum RBP spanning graph, where ρ is the Steiner
ratio. Finally, in Section 6 we discuss various extensions for situations with more than
two sets. Due to space constraints some proofs have been deferred to the full version.



282 F. Hurtado et al.

Related Work. In recent years a number of papers explored the problem of automatically
drawing Euler diagrams, for example, Simonetto and Auber [20], Stapleton et al. [21],
and Henry Riche and Dwyer [13]. These methods assume that the locations of the set
elements can be freely chosen. An important variation is the case that elements have
to be drawn at fixed positions. Collins et al. [9] presented Bubble Sets, a method based
on isocontours. A similar approach was suggested by Byelas and Telea [7]. LineSets by
Alper et al. [3] attempt to improve the overall readability by the minimalist approach
of drawing a single line per set. Dinkla et al. [10] introduced Kelp Diagrams which
use a sparse spanning graph, essentially a minimum spanning tree with some additional
edges. Kelp Diagrams were extended by Meulemans et al. [15] to a hybrid technique
named KelpFusion which uses a mix of hulls and lines to generate fitted boundaries.

Sets defined over points in the plane can be interpreted as an embedding of a hyper-
graph where the points are vertices and each set is a hyperedge connecting an arbitrary
number of vertices. Drawings of hypergraphs have been discussed in several papers
(e.g., see Brandes et al. [5] and references therein).

Also in the area of discrete and computational geometry many problems on colored
point sets have been studied. Possibly the most famous example is the Ham-Sandwich
Theorem: given a set of 2n red points and 2m blue points in general position in the plane,
there is always a line � such that each open halfplane bounded by � contains exactly n
red points and m blue points. There have been many variations on this theorem and
also many other results on finding configurations or geometric graphs with constraints
depending on colors. We refer the interested reader to the survey [14] and to Chapter 8
in the collection of research problems [6].

From an algorithmic point of view, many problems have been considered, here we
mention only a few of them. The bichromatic closest pair (e.g., see Preparata and
Shamos [19] Section 5.7 ), the chromatic nearest neighbor search (see Mount et al.
[18]), the problems on finding smallest color-spanning objects (see Abellanas et al. [1]),
the colored range searching problems (see Agarwal et al. [2]), and the group Steiner
tree problem where, for a graph with colored vertices, the objective is to find a min-
imum weight subtree that covers all colors (see Mitchell [16], Section 7.1). Finally,
Tokunaga [22] considers a set of red or blue points in the plane and computes two ge-
ometric spanning trees of the blue and the red points such that they intersect in as few
points as possible.

2 Properties of RBP Spanning Graphs

We call an edge of a RBP spanning graph red if it connects two red points or a red and
a purple point. We call an edge blue if it connects two blue points or a blue and a purple
point. We call an edge purple if it connects two purple points. A minimum RBP spanning
graph does not contain edges between a red and a blue point. The subgraph induced by
the red and purple points in a minimum RBP spanning graph is a spanning tree (and the
analogous statement holds for the blue and purple points). Figure 2 (a) illustrates the
trade-off between red, blue, and purple edges in a minimum RBP spanning graph.

Every red edge in a minimum RBP spanning graph also occurs in a minimum span-
ning tree of only the red and purple points. The corresponding statement is true also
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(a) (b)

Fig. 2. (a) Two examples of minimum RBP spanning graphs of similar configurations of points.
(b) A minimum RBP spanning graph with a purple edge crossing.

for the blue edges, but not for the purple edges. That is, there can be purple edges in a
minimum RBP spanning graph which do not occur in a minimum spanning tree of only
the purple points.

It is easy to see that a minimum RBP spanning graph is not necessarily planar. Red
and blue edges are mostly independent and they can easily cross. Moreover, a red and
a purple edge can cross, a blue and a purple edge can cross, and even two purple edges
can cross in a minimum RBP spanning graph, as shown in Figure 2 (b). In fact, a single
purple edge can cross arbitrarily many purple edges. The intricate construction and the
additional observations necessary to prove this are relegated to the full version.

Lemma 1. A purple edge in an optimal RBP spanning graph can cross Θ(n) other
purple edges.

Just as with standard minimum spanning trees the degree of the points in a minimum
RBP spanning graph is bounded.

Lemma 2. The maximum degree of a point in a minimum RBP spanning graph is at
most 18.

This bound can be attained by a purple point p: Let p be the center of a regular hexagon
with radius 3 and two more regular hexagons with radius 1, one slightly rotated. Place a
purple point on each corner of the large hexagon, place red points on the corners of one
of the smaller hexagons, and blue points on the corners of the other one. Then the star
graph with p at the center is a minimum RBP spanning graph. A similar construction
shows that there is a point set such that the unique minimum RBP spanning graph
requires a point of degree 15; a higher degree is never necessary. A red or blue point
can have degree at most 6, degree 5 is the highest degree that can be enforced.

3 Points on a Line or on a Circle

Here we describe efficient algorithms to find a minimum RBP spanning graph if the
points lie on a line or on a circle. In the circle case, we first present additional geometric
observations which allow us to use dynamic programming.

3.1 Points on a Line

Given a problem instance S, we number the purple points p1, . . . , pk from left to right.
For any 1 ≤ i ≤ k − 1, let Si be the set of points between pi and pi+1 (including both
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S0 S1 Sk. . .

p1 pk

Fig. 3. A minimum RBP spanning graph of points on a line, and its partition into sets Si (some
edges are depicted by curved arcs for clarity).

pi and pi+1). We also define S0 to contain p1 and all red/blue points to its left, and Sk

to contain pk and all red/blue points to its right (see Figure 3). First, we show that each
subset can be treated independently.

Lemma 3. Let S be a set of red, blue and purple points located on a line, and let G∗

be a minimum RBP spanning graph of S. Then for any edge qq′ ∈ G∗, the points q and
q′ are contained in Sj , for some j.

Using this lemma it is straightforward to obtain an efficient algorithm.

Theorem 1. Let S be a set of n red, blue and purple points located on a line. We can
compute a minimum RBP spanning graph of S in O(n) time, provided that the points
are sorted along the line.

3.2 Points on a Circle

We proved in Lemma 1 that for points in general position a purple edge can cross many
other purple edges. Even if the points lie in convex position, purple edges can cross each
other (see Figure 2 (right)). But below we prove that for points on a circle the situation
is structurally different and purple edges cannot cross any other edges.

Lemma 4. Let S be a set of red, blue and purple points located on a circle. A minimum
RBP spanning graph of S cannot have a purple edge crossing any other edge.

Proof. Let G be a minimum RBP spanning graph in which two edges e1 = vv′ and
e2 = ww′ cross. We will perform a local transformation that will reduce the weight of
G, contradicting the minimality of G.

First assume that both e1 and e2 are purple, and consider the four red paths in G that
start at either v or v′ and end at w or w′. Without loss of generality, we can assume that
the minimum-link path among the four (i.e., the path with smallest number of edges)
connects v and w. Let πR be such path; note that πR cannot use edge vv′ nor edge ww′.
Likewise, let πB be the minimum-link blue path among those that connect v or v′ with
w or w′. We now distinguish three cases depending on the number of shared endpoints
between πR and πB (see Figure 4):

πR and πB share both endpoints. We replace edges vv′ and ww′ with edges vw′ and
v′w. The resulting graph G′ clearly has smaller weight than G. We now prove
that G′ is indeed spanning. First consider the red tree in G′: the removal of edge
ww′ created two components. Moreover, points v and w′ must belong to different
components (otherwise, the edge ww′ would create a cycle in G). Thus, by adding
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w

v

v′w′

v

v′

w

w′

v

v′

w

w′

Fig. 4. The three cases in the proof of Lemma 4, local transformations are shown by dashed purple
edges. No assumptions are made on the number of crossings between πR, πB , vv′, and ww′.

the edge vw′ we reconnect the two components again. Likewise, the removal of
edge vv′ creates two red components that are reconnected with the edge wv′. That
is, graph G′ also spans red. We repeat the same reasoning for blue and obtain that
G′ is a RBP spanning graph with smaller weight than G, a contradiction.

πR and πB share no endpoints. We proceed as in the previous case, replacing edges
vv′ and ww′ by vw′ and v′w. The argumentation is identical to the previous case.

πR and πB share one endpoint. We can assume that v is the shared endpoint, and that
the other endpoint of πB is w′ (see Figure 4, right). In this case, both red and blue
paths from v′ to both w and w′ in G use the edge vv′. Then we can replace this
edge by either v′w or v′w′ and maintain the spanning property. Using the fact
that the four vertices are on the boundary of a circle, it is easy to see that either
||v′w|| < ||v′v|| or ||v′w′|| < ||v′v|| must hold, thus one of the two resulting
graphs will have smaller weight.

If one of the edges is not purple the situation is easier, since we need to consider only
one color. We assume that the edge e2 is red, and that the path from v to w does not use
e1 nor e2. Then we can replace the edge ww′ by either vw′ or v′w′ to obtain a graph of
smaller weight. Note that, since we are changing a red edge, the spanning property of
blue cannot be altered, and the lemma is shown. �

Next we present another crossing property that will be useful for our algorithm.

Corollary 1. Let S be a set of red, blue and purple points located on the boundary of
a circle. In a minimum RBP spanning graph G of S, no red or blue edge of G can cross
a segment between two purple points.

Proof. Let p, p′ be two purple points, and assume that a red edge rr′ ∈ G crosses the
segment pp′. As in the proof of Lemma 4, we can assume that the red path from p to r
does not pass through neither p′ nor r′. Then, we replace the edge rr′ by either r′p or
r′p′ to obtain a RBP spanning graph of smaller weight. �

Using these geometric observations and a few others proved in the full version we
can now compute a minimum RBP spanning graph with dynamic programming.
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¬x3 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x4 ∨ ¬x5

x1 ∨ x3 ∨ ¬x5

¬x1 ∨ ¬x2 ∨ x4

x1 ∨ x2 ∨ ¬x3

x1 x2 x3 x4 x5

(a) (b)

Fig. 5. (a) A planar 3-SAT formula. (b) The corresponding set of red, blue, and purple points.

Theorem 2. Let S be a set of n red, blue and purple points located on a circle. We
can compute a minimum RBP spanning graph of S in O(k3 + n) time, where k is the
number of purple points.

4 NP-hardness

Computing a minimum RBP spanning graph is NP-hard. We prove this by a reduction
from planar 3-SAT. Figure 5 illustrates the global construction: an embedded 3-SAT
formula, and the corresponding set of red, blue, and purple points that we construct.
There is a value W such that a solution of weight less than W exists if and only if the
3-SAT formula is satisfiable.

The construction consists of two parts. First, we have a variable gadget for each
variable xi in the 3-SAT formula. Such a gadget consists of a purple skeleton and a
red/blue loop around the skeleton. The loop consists of alternating densly-sampled blue
and red chains, separated by a pair of purple points at distance

√
2 from each other. For

each such pair of purple points there is also another purple point at distance 1 from both
points, which is connected to the skeleton. We call such a group of 3 purple points a
switch. Figure 6 (a) shows an example.

First, we observe that if the red, blue and purple chains are sampled sufficiently
densly, then they will be connected in any optimal solution; hence, we ignore the costs
of these connections from now on. There are exactly two ways to optimally connect the

(a) (b) (c)

Fig. 6. (a) The input for a variable gadget. (b) One possible optimal solution of this construction,
which represents the value true. (c) The other optimal solution represents the value false.
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(a) (b)

Fig. 7. (a) The input for a clause gadget. (b) One possible solution where the clause is satisfied.
The left and top literals are in their true states; the right literal is in its false state.

remaining components: we alternatingly connect the purple points on opposite sides of
a switch to each other, or both to the skeleton. Figures 6(b) and 6(c) illustrate the two
solutions. These will correspond to the values true and false of the variable.

Next, we have clause gadgets for all clauses of the 3-SAT formula. These occur at
places where the variable loops of the three involved variables get close to each other,
and we make sure that there is a switch in each of them (from red to blue if the variable
occurs positively in the clause, from blue to red otherwise). For these switches, we place
a fourth point, also at distance 1 from both ends of the switch, and we connect these
three extra points by a clause skeleton. Figure 7(a) shows an example.

Lemma 5. There is a value W such that an RBP spanning graph of length less than
W exists if and only if the 3-SAT formula is satisfiable.

Proof. Suppose the planar 3-SAT formula has n variables and m clauses, and let ki be
the number of clauses that variable xi appears in. There are 2ki switches per variable.
The total number of switches is 2

∑n
i=1 ki = 6m. We ignore the red, blue and purple

chains; we only argue about the total length of purple edges within the switches.
Within variable xi, there is one skeleton, ki blue pieces, and ki red pieces, which

means that there are 3ki + 1 components in either the red or the blue tree that need
to be connected. For this, we need to add 3ki edges. Within each switch, the purple
points that are connected to the red or blue paths must certainly get a purple edge. Since
we add only 3ki edges, half of the switches get only one edge; these edges must then
connect the blue-path purple point to the red-path purple point and have length

√
2. The

other half of the switches are connected via the skeleton with two edges of length 1. So,
the total length within a variable is at least ki

√
2+ 2ki. This is also possible to achieve,

as seen in Figure 6(b) and 6(c).
Now, the clause skeletons have to be connected to at least one of the variables. For

each of them, we need one more edge in one of the switches. The cheapest possible way
of doing this is by using the groups that had expensive edges (of length

√
2) and using

two normal edges (total length 2) instead. So, globally, of the 6m switches, at least 4m
need two edges and the ones with a single edge must have length at least

√
2. Thus, the

total length must be at least W = (8 +
√
2)m. We claim that a solution of this length

exists if and only if the formula is satisfiable. �
Theorem 3. Computing a minimum RBP spanning graph is NP-hard.
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5 Approximation

A simple approximation algorithm determines the red-purple minimum spanning tree
and the blue-purple minimum spanning tree, and takes the union of their edges. It is
easy to see that this is a 2-approximation algorithm that requires O(n log n) time.

Another approximation algorithm, A, starts by computing the minimum spanning
tree of the purple edges, and then adds the red and blue points in an optimal manner in
the style of Kruskal’s algorithm for minimum spanning trees. Algorithm A can also be
implemented to run in O(n log n) time by computing the Delaunay triangulation of the
red and purple points and of the blue and purple points. It is easy to argue that A also is a
2-approximation algorithm but interestingly, we can prove a better bound (close to 1.6)
by expressing the approximation factor in the Steiner ratio ρ. Gilbert and Pollak [12]
conjectured that ρ = 2√

3
≈ 1.15, but this conjecture has not been proved yet.1 Chung

and Graham [8] showed a bound of≈ 1.21, which is the best-known upper bound on ρ.

Theorem 4. Approximation algorithm A is a (12ρ + 1)-approximation of the mini-
mum RBP spanning graph, where ρ is the Steiner ratio. The approximation is not a
c-approximation for any constant c < 1 + 1√

3
.

Proof. Algorithm A is not a c-approximation for any c < 1+ 1√
3

(see Figure 8). Hence
our approximation analysis is tight if the Gilbert-Pollak conjecture is true.

Next we prove our claim on the approximation factor. Let R, B, and P be sets of red,
blue, and purple points. Let G∗ be their minimum RBP spanning graph. Let R∗ be the
red edges,B∗ the blue edges, andP ∗ the purple edges in G∗. Let A be the algorithm that
computes a spanning graph by taking the minimum spanning tree of the purple points,
and then adding the red and blue points optimally. We denote the resulting graph on
R ∪B ∪ P by G′, and its red, blue and purple edges by R′, B′, and P ′.

Suppose first that G∗ has no purple edges. Then algorithm A gives extra length in
terms of purple edges equal to the MST of the purple points, denoted ||P ′||. The optimal

Fig. 8. A minimum RBP spanning graph and the RBP spanning graph on the same points obtained
by approximation algorithm A

1 A proof of the conjecture by Du and Hwang, “A proof of Gilbert-Pollak Conjecture on the
Steiner ratio”, Algorithmica 7:121–135 (1992), turned out to be incorrect.
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graph G∗ must connect all purple points simultaneously through a red spanning tree
and through a blue spanning tree whose lengths are ||R∗|| and ||B∗||. Algorithm A
has a total length of red edges of ||R′|| ≤ ||R∗|| and a total length of blue edges of
||B′|| ≤ ||B∗||. Hence the approximation ratio of A in case of absence of purple edges
in the optimal solution is

||P ′||+ ||R′||+ ||B′||
||R∗||+ ||B∗|| ≤ ||P ′||+ ||R∗||+ ||B∗||

||R∗||+ ||B∗|| .

This ratio is maximized when R lies very densely on the Steiner Minimum Tree of P ,
and the same is true for B. Due to the density, algorithm A will choose nearly the full
length of the Steiner Minimum Tree of P as well, once for red and once for blue. The
approximation ratio is then smaller than but arbitrarily close to

MST (P ) + 2 · SMT (P )

2 · SMT (P )
≤ ρ · SMT (P ) + 2 · SMT (P )

2 · SMT (P )
=

ρ+ 2

2
=

1

2
ρ+ 1 ,

where SMT (P ) is the Steiner Minimum Tree of P (or its length) and MST (P ) is the
Minimum Spanning tree of P (or its length).

Next, suppose that G∗ has a set P ∗ of purple edges, and assume them fixed. We will
reason about sets of red, blue and purple points for which the algorithm A performs as
poorly as possible in terms of approximation ratio.

If G∗ has any red point r that has a single red edge incident to it in R∗, then this edge
will connect r to the closest red or purple point, otherwise G∗ is not optimal. Algorithm
A will choose exactly the same edge in its solution. Hence, the approximation ratio of
A for the points R \ {r}, B, and P is higher than for the points R, B, and P . The same
is true for a blue or purple point that has a single incident edge in G∗. So we can restrict
ourselves to analyzing point sets whose optimal solution does not have any leafs in G∗.

Let B@R be a set of blue points infinitesimally close to the locations of the red
points, and let R@B be a set of red points infinitesimally close to the locations of the
blue points. Now we can compare the approximation ratio of A (i) on P , R, and B, (ii)
on P , R, and B@R, and (iii) on P , R@B, and B, and notice that at least one of (ii)
and (iii) gives an approximation ratio at least as high as for (i). Hence, we can restrict
ourselves to analyzing point sets where the red and blue points lie at basically the same
positions (but they are not purple points).

The edges of P ∗ partition the purple points of P into a number of purple components
which are connected by a red spanning forest and a blue spanning forest. We have

||P ′|| ≤ ||P ∗||+ ρ||R∗|| ,

because in G∗ the red (blue) connections between the purple components cannot be
shorter than the Steiner Minimum Forest of the purple components. By the observations
above we can assume that all red and blue points are used in the red and blue spanning
forests that connect the purple components. Hence the approximation ratio is

||P ′||+ ||R′||+ ||B′||
||P ∗||+ ||R∗||+ ||B∗|| ≤

||P ′||+ 2||R′||
||P ∗||+ 2||R∗|| ≤

||P ∗||+ ρ||R∗||+ 2||R∗||
||P ∗||+ 2||R∗|| .

This ratio is maximized when ||P ∗|| = 0, in which case we get exactly the same ratio
as above, when no purple edges are present. �
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It is possible that a PTAS exists for our problem, but it is not clear whether the
techniques of Arora [4] or Mitchell [17] for the Euclidean traveling salesperson problem
can be applied since RBP spanning graphs are not planar, and the number of crossings
of a single edge can be large.

6 Extensions and Future Work

Beyond Purple. So far we considered the case where there are exactly two sets, the red
set and the blue set, leading to an input with red, blue, and purple points. In general
we might have k different sets, all denoted by primary colors. For instance, for k = 3
we could have red, blue and yellow sets, which leads to three secondary colors (purple,
orange, green) and one tertiary color (black). The objective is again to minimize the
total length of a multi-colored spanning graph which has the property that the subgraphs
induced by the red, blue, and yellow sets are connected (see Figure 9 (a)).

This problem is clearly still NP-hard. The 2-approximation immediately generalizes
to a 3-approximation (or a k-approximation for k primary colors). We can improve
on this by incorporating our (1 + 1

2ρ)-approximation algorithm to obtain a (2 + 1
2ρ)-

approximation for three sets, or more generally a (� 12k�+ �
1
2k�

1
2ρ)-approximation for

k sets. Interestingly, our algorithms for points on a line or on a circle are not straightfor-
ward to generalize; these problems remain open.

Line Drawings. Another extension is motivated by LineSets [3]. Returning for the
moment to the setting with two sets (and red, blue, and purple points), we now wish to
compute a minimum RBP spanning graph such that the subgraphs induced by the red
and blue sets are paths. That is, the red and purple edges form a path connecting all red
and purple points, and the blue and purple edges form a path connecting all blue and
purple points (see Figure 9 (b)).

This problem is NP-hard since TSP is hard. Nonetheless, we can obtain a (2 + ε)-
approximation by independently computing an approximate TSP for the blue and purple
points and for the red and purple points, and simply taking the union. An approach
similar to the spanning tree case seems to fail and hence a better solution remains an
open problem. The question also remains open for points on a line or on a circle.

(a) (b)

Fig. 9. (a) A set of multicolored points representing red, blue, and yellow sets and a corresponding
spanning graph. (b) A set of red, blue and purple points, and a graph that connects all red points
in a path and all blue points in a path.
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Abstract. We initiate the study of the following problem: Given a non-planar
graph G and a planar subgraph S of G, does there exist a straight-line drawing
Γ of G in the plane such that the edges of S are not crossed in Γ? We give
positive and negative results for different kinds of spanning subgraphs S of G.
Moreover, in order to enlarge the subset of instances that admit a solution, we
consider the possibility of bending the edges of G \ S; in this setting different
trade-offs between number of bends and drawing area are given.

1 Introduction

Lots of papers in graph drawing address the problem of computing drawings of non-
planar graphs with the goal of mitigating the negative effect that edge crossings have on
the drawing readability. Many of these papers describe crossing minimization methods,
which are effective and computationally feasible for relatively small and sparse graphs
(see [8] for a survey). Other papers study which non-planar graphs can be drawn such
that the “crossing complexity” of the drawing is somewhat controlled, either in the num-
ber or in the type of crossings. They include the study of k-planar drawings, in which
each edge is crossed at most k times (see, e.g., [7,11,12,15,16,20,24]), of k-quasi planar
drawings, in which no k pairwise crossing edges exist (see, e.g., [1,2,10,23,26,28]), and
of large angle crossing drawings, in which any two crossing edges form a sufficiently
large angle (see [14] for a survey). Most of these drawings exist only for sparse graphs.

In this paper we initiate the study of a new graph drawing problem concerned with
the drawing of non-planar graphs. Namely: Given a non-planar graph G and a planar
subgraph S of G, decide whether G admits a drawing Γ such that the edges of S are
not crossed in Γ , and compute Γ if it exists.

Besides its intrinsic theoretical interest, this problem is also of practical relevance in
many application domains. Indeed, distinct groups of edges in a graph may have differ-
ent semantics, and a group can be more important than another for some applications;
� Work on these results began at the 8th Bertinoro Workshop on Graph drawing. Discussion with

other participants is gratefully acknowledged. Part of the research was conducted in the frame-
work of ESF project 10-EuroGIGA-OP-003 GraDR “Graph Drawings and Representations”.
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in this case a visual interface might attempt to display more important edges in a planar
way. Again, the user could benefit from a layout in which a spanning connected sub-
graph is drawn crossing free, since it would support the user to quickly recognize paths
between any two vertices, while keeping the other edges of the graph visible.

We remark that the problem of recognizing specific types of subgraphs that are not
self-crossing (or that have few crossings) in a given drawing Γ , has been previously
studied (see, e.g., [17,19,22,25]). This problem, which turns out to be NP-hard for most
different kinds of instances, is also very different from our problem. Indeed, in our
setting the drawing is not the input, but the output of the problem. Also, we require that
the given subgraph S is not crossed by any edge of the graph, not only by its own edges.

In this paper we concentrate on the case in which S is a spanning subgraph of G and
consider both straight-line and polyline drawings of G. Namely:

(i) In the straight-line drawing setting we prove that if S is any given spanning spider or
caterpillar, then a drawing of G where S is crossing free always exists; such a drawing
can be computed in linear time and requires polynomial area (Section 3.1). We also
show that this positive result cannot be extended to any spanning tree, but we describe
a large family of spanning trees that always admit a solution, and we show that any
graph G contains such a spanning tree; unfortunately, our drawing technique for trees
may require exponential area. Finally, we characterize the instances 〈G,S〉 that admit
a solution when S is a spanning triconnected subgraph, and we provide a polynomial-
time testing and drawing algorithm, whose layouts have polynomial area (Section 3.2).

(ii) We investigate polyline drawings where only the edges of G \ S are allowed to
bend. In this setting, we show that all spanning trees can be realized without crossings
in a drawing of G of polynomial area, and we describe efficient algorithms that provide
different trade-offs between number of bends per edge and drawing area (Section 4).
Also, in Section 5 we briefly discuss a characterization of the instances 〈G,S〉 that
admit a drawing when S is any given biconnected spanning subgraph.

Due to space restrictions, some proofs are omitted or only sketched in the text; full
proofs for all results can be found in the [4].

2 Preliminaries and Definitions

We assume familiarity with basic concepts of graph drawing and planarity (see, e.g.,
[9]). Let G(V,E) be a graph and let Γ be a drawing of G in the plane. If all vertices and
edge bends of Γ have integer coordinates, then Γ is an integer grid drawing of G, and
the area of Γ is the area of the minimum bounding box of Γ . Otherwise, suppose that
Γ is not an integer grid drawing and let dmin be the minimum distance between two
points of Γ on which either vertices or bends are drawn. In this case, the area of Γ is
defined as the area of the minimum bounding box of a drawing obtained by scaling Γ by
a constant c such that c × dmin = 1; this corresponds to establish a certain resolution
rule between vertices and bends of Γ , which is comparable to that of an integer grid
drawing.

Let G(V,E) be a graph and let S(V,W ), W ⊆ E, be a spanning subgraph of G. A
straight-line drawing Γ of G such that S is crossing-free in Γ (i.e., such that crossings
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occur only between edges of E \W ) is called a straight-line compatible drawing of
〈G,S〉. If each edge of E \W has at most k bends in Γ (but still the subdrawing of S
is straight-line and crossing-free), Γ is called a k-bend compatible drawing of 〈G,S〉.

If S is a rooted spanning tree of G such that every edge of G \ S connects either
vertices at the same level of S or vertices that are on consecutive levels, then we say
that S is a BFS-tree of G.

A star is a tree T (V,E) such that all its vertices but one have degree one, that is,
V = {u, v1, v2, . . . , vk} and E = {(u, v1), (u, v2), . . . , (u, vk)}; any subdivision of T
(including T ), is a spider: vertex u is the center of the spider and each path from u to
vi is a leg of the spider. A caterpillar is a tree such that removing all its leaves (and
their incident edges) results in a path, which is called the spine of the caterpillar. The
one-degree vertices attached to a spine vertex v are called the leaves of v.

In the remainder of the paper we implicitly assume that G is always a connected
graph (if the graph is not connected, our results apply for any connected component).

3 Straight-Line Drawings

We start studying straight-line compatible drawings of pairs 〈G,S〉: Section 3.1 con-
centrates on the case in which S is a spanning tree, while Section 3.2 investigates the
case in which S is a spanning triconnected graph.

3.1 Spanning Trees

The simplest case is when S is a given Hamiltonian path of G; in this case Γ can be eas-
ily computed by drawing all vertices of S in convex position, according to the ordering
they occur in the path. In the following we prove that in fact a straight-line compatible
drawing Γ of 〈G,S〉 can be always constructed in the more general cases in which S
is a spanning spider (Theorem 1), or a spanning caterpillar (Theorem 2), or a BFS-tree
(Theorem 3); our construction techniques guarantee polynomial-area drawings for spi-
ders and caterpillars, while require exponential area for BFS-trees. On the negative side,
we show that if S is an arbitrary spanning tree, a straight-line compatible drawing of
〈G,S〉 may not exist (Lemmas 1 and 2).

Theorem 1. Let G be a graph with n vertices and m edges, and let S be a spanning
spider of G. There exists an integer grid straight-line compatible drawing Γ of 〈G,S〉.
Drawing Γ can be computed in O(n+m) time and has O(n3) area.

Proof. Let u be the center of S and let π1, π2, . . . , πk be the legs of S. Also, denote
by vi the vertex of degree one of leg πi (1 ≤ i ≤ k). Order the vertices of S distinct
from u such that: (i) the vertices of each πi are ordered in the same way they appear
in the simple path of S from u to vi; (ii) the vertices of πi precede those of πi+1

(1 ≤ i ≤ k− 1). If v is the vertex at position j (0 ≤ j ≤ n− 2) in the ordering defined
above, draw v at coordinates (j2, j). Finally, draw u at coordinates (0, n− 2). With this
strategy, all vertices of S are in convex position, and they are all visible from u in such
a way that no edge incident to u can cross other edges of Γ . Hence, the edges of S do
not cross other edges in Γ . The area of Γ is (n − 2)2 × (n − 2) = O(n3) and Γ is
constructed in linear time. ��
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The next algorithm computes a straight-line compatible drawing of 〈G,S〉 when S is
a spanning caterpillar. Theorem 2 proves its correctness, time and area requirements.
Although the drawing area is still polynomial, the layout is not an integer grid drawing.

Algorithm. STRAIGHT-LINE-CATERPILLAR. Denote by u1, u2, . . . , uk the vertices of
the spine of S. Also, for each spine vertex ui (1 ≤ i ≤ k), let vi1, . . . , vini be its leaves
in S (refer to the bottom image in Fig. 1(a)). The algorithm temporarily adds to S and
G some dummy vertices, which will be removed in the final drawing. Namely, for each
ui, it attaches to ui two dummy leaves, si and ti. Also, it adds a dummy spine vertex
uk+1 attached to uk and a dummy leaf sk+1 of uk+1 (see the top image in Fig. 1(a)).
Call G′ and S′ the new graph and the new caterpillar obtained by augmenting G and S
with these dummy vertices.
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Fig. 1. Illustration of Algorithm STRAIGHT-LINE-CATERPILLAR: (a) a caterpillar S and its aug-
mented version S′; (b) a drawing of S′; edges of the graph connecting leaves of S are drawn in
the gray (convex) region; (c) enlarged detail of the picture (b)

The construction of a drawing Γ ′ of G′ is illustrated in Fig. 1(b). Consider a quarter
of circumference C with center o and radius r. Let N be the total number of vertices of
G′. Let {p1, p2, . . . , pN} be N equally spaced points along C in clockwise order, where
op1 and opN are a horizontal and a vertical segment, respectively. For each 1 ≤ i ≤ k,
consider the ordered list of vertices Li = {ui, si, vi1, . . . vini , ti}, and let L be the
concatenation of all Li. Also, append to L the vertices uk+1 and sk+1, in this order.
Clearly the number of vertices in L equals N . For a vertex v ∈ L, denote by j(v)
the position of v in L. Vertex ui is drawn at point pj(ui) (1 ≤ i ≤ k); also, vertices
uk+1 and sk+1 are drawn at points pN−1 and pN , respectively. Each leaf v of S′ will
be suitably drawn along radius opj(v) of C. More precisely, for any i ∈ {1, . . . , k},
let ai be the intersection point between segments pj(ui)pj(si+1) and opj(si), and let bi
be the intersection point between segments pj(ui)pj(ui+1) and opj(ti). Vertices si and
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ti are drawn at points ai and bi, respectively. Also, let Ai be the circular arc that is
tangent to pj(ui)pj(ui+1) at point bi, and that passes through ai; vertex vih is drawn at
the intersection point between Ai and opj(vih) (1 ≤ h ≤ ni).

Once all vertices of G′ are drawn, each edge of G′ is drawn in Γ ′ as a straight-
line segment between its end-vertices. Drawing Γ is obtained from Γ ′ by deleting all
dummy vertices and their incident edges.

Theorem 2. Let G be graph with n vertices and m edges, and let S be a spanning
caterpillar of G. There exists a straight-line compatible drawing Γ of 〈G,S〉. Drawing
Γ can be computed in O(n+m) time in the real RAM model1 and has O(n2) area.

Proof sketch: Let Γ be the output of Algorithm STRAIGHT-LINE-CATERPILLAR. We
first prove that Γ is a straight-line compatible drawing of 〈G,S〉, and then we analyze
time complexity and area requirement. We adopt the same notation used in the descrip-
tion of the algorithm.

CORRECTNESS. We have to prove that in Γ the edges of S are never crossed. Our
construction places all spine vertices of S′ (and hence of S) in convex position. It is
also possible to see that the leaves of S′ are all in convex position and form a convex
polygon P . Since by construction the edges of S are all outside P in Γ , these edges
cannot be crossed by edges of G connecting two leaves of S. Also, it is immediate to
see that an edge of S cannot be crossed by another edge of S and it is not difficult to
see that an edge of S cannot be crossed by an edge of G connecting either two non-
consecutive spine vertices or a leaf of S to a spine vertex of S.

TIME AND AREA REQUIREMENT. Clearly, the construction of Γ ′ (and then of Γ ) can
be executed in linear time, in the real RAM model. About the area, let dmin be the
minimum distance between any two vertices of Γ . It can be proved that if we require
dmin ≥ 1 then r <

√
2

β , for β = θ( 1
N ). Thus, the area of Γ is O(N2) = O(n2). �

The next lemmas show that, unfortunately, Theorem 1 and Theorem 2 cannot be ex-
tended to any spanning tree S, that is, there are pairs 〈G,S〉 that do not admit a straight-
line compatible drawing, even if S is a ternary or a binary tree.

Lemma 1. Let G be the complete graph on 13 vertices and let S be a complete rooted
ternary tree that spans G. There is no straight-line compatible drawing of 〈G,S〉.

Proof sketch: Suppose, for a contradiction, that a straight-line compatible drawing Γ of
〈G,S〉 exists. Let r be the root of S (see Fig. 2(a)). Note that r is the only vertex of S
with degree 3. Let u, v, w be the three neighbors of r in S. Two are the cases: either one
of u, v, w (say u) lies inside triangle�(r, v, w) (Case 1, see Fig. 2(b)); or r lies inside
triangle�(u, v, w) (Case 2).

In Case 1, consider a child u1 of u. Vertex u1 is placed in Γ in such a way that u
lies inside either triangle �(u1, r, w) or triangle �(u1, r, v); assume the former (see
Fig. 2(c)). Then, consider another child u2 of u; in order for edge (u, u2) not to cross
any edge, also u2 has to lie inside �(u1, r, w), in such a way that both u and u1 lie
inside triangle �(u2, r, v). This implies that u lies inside �(u1, r, u2) (see Fig. 2(d)),

1 We also assume that basic trigonometric functions are executed in constant time.



Drawing Non-Planar Graphs with Crossing-Free Subgraphs 297

r

u v w

(a)

r

u

v w

(b)

r

u

v w
u1

(c)

r

u

v wu1

u2

(d)

Fig. 2. Illustration for Lemma 1: (a) A complete rooted ternary tree with 13 vertices. (b) Case 1
in the proof; u lies inside�(r, v, w). (c) Placement of u1. (d) Placement of u2.

together with its last child u3. However,u3 cannot be placed in any of the three triangles
in which�(u1, r, u2) is partitioned by the edges (of S) connecting u to u1, to r, and to
u2, respectively, without introducing any crossing involving edges of S, a contradiction.
Case 2 can be analyzed with analogous considerations. �

The proof strategy of Lemma 2 is similar to that of Lemma 1.

Lemma 2. Let G be the complete graph on 22 vertices and let S be a complete un-
rooted binary tree that spans G. There is no straight-line compatible drawing of 〈G,S〉.

In the light of Lemmas 1 and 2, it is natural to ask whether there are specific subfamilies
of spanning trees S (other than paths, spiders, and caterpillars) such that a straight-line
compatible drawing of 〈G,S〉 always exists. The next algorithm gives a positive answer
to this question: it computes a straight-line compatible drawing when S is a BFS-tree
of G. Theorem 3 proves the algorithm correctness, its time complexity, and its area
requirement.

Algorithm. STRAIGHT-LINE-BFS-TREE. Let u be the root of S (which is at level 0)
and let ul1, . . . , ulkl

be the vertices at level l ∈ {1, . . . , d}, where d is the depth of
S. The algorithm temporarily adds to S and G some dummy vertices, which will be
removed in the final drawing. Namely, for each uli, 1 ≤ l ≤ d − 1 and 1 ≤ i ≤ kl,
it attaches to uli one more (leftmost) child sli. Also, it attaches to root u a dummy
(rightmost) child t. Denote by G′ and S′ the new graph and the new tree, respectively.
Notice that S′ is still a BFS-tree of G′. The algorithm iteratively computes a drawing Γ ′

of G′. For l = 1, . . . , d, the algorithm defines a circumferenceCl with center o = (0, 0)
and radius rl < rl−1 (C1, . . . , Cd are concentric). The vertices of level l are drawn on
the quarter of Cl going from point (−rl, 0) to point (0, rl) clockwise.

Let {u11, . . . , u1k1 , t} be the ordered list of the children of root u and let {p11,. . . ,
p1k1 , pt} be k1 + 1 equally spaced points along C1 in clockwise order, where op11 and
opt are a horizontal and a vertical segment, respectively. Vertex u1j is drawn on p1j
(1 ≤ j ≤ k1) and vertex t is drawn on pt. Also, u is drawn on point (−r1, r1).

Assume now that all vertices ul1, . . . , ulkl
of level l have been drawn (1 ≤ l ≤ d−1)

in this order on the sequence of points {q1, . . . , qkl
}, along Cl. The algorithm draws the

vertices of level l+1 as follows. Let qiqi+1 be the chords of Cl, for 1 ≤ i ≤ kl−1, and
let cl be the shortest of these chords. The radius rl+1 of Cl+1 is chosen arbitrarily in
such a way that Cl+1 intersects cl in two points and rl+1 < rl. This implies that Cl+1

also intersects every chord qiqi+1 in two points. For 1 ≤ i ≤ kl, denote by L(uli) =
{v1, . . . , vnli

} the ordered list of children of uli in G′. Also, let ai be the intersection
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point between qiqi+1 and Cl+1 that is closest to qi, and let �i be the line through qi
tangent to Cl+1; denote by bi the tangent point between �i and Cl+1. Let Al+1 be the
arc of Cl+1 between ai and bi, and let {p0, p1, . . . , pnli

} be nli + 1 equally spaced
points along Al+1 in clockwise order. For v ∈ L(uli), denote by j(v) the position of v
in L(uli). Vertex vj is drawn on pj(vj) (1 ≤ j ≤ nli) and vertex sli is drawn on p0.

Once all vertices of G′ are drawn each edge of G′ is drawn in Γ ′ as a straight-
line segment between its end-vertices. Drawing Γ is obtained from Γ ′ by deleting all
dummy vertices and their incident edges.

Theorem 3. Let G be a graph with n vertices and m edges, and let S be a BFS-tree
of G. There exists a straight-line compatible drawing Γ of 〈G,S〉. Drawing Γ can be
computed in O(n+m) time in the real RAM model.

It is worth observing that any graph G admits a BFS-tree rooted at an arbitrarily cho-
sen vertex r of G. Thus, each graph admits a straight-line drawing Γ such that one
of its spanning trees S is never crossed in Γ . Unfortunately, the compatible drawing
computed by Algorithm STRAIGHT-LINE-BFS-TREE may require area Ω(2n).

3.2 Spanning Triconnected Subgraphs

Here we focus on triconnected spanning subgraph S of G. Clearly, since every tree can
be augmented with edges to become a triconnected graph, Lemmas 1 and 2 imply that,
if S is a triconnected graph, a straight-line compatible drawing of 〈G,S〉 may not exist.
The next theorem characterizes those instances for which such a drawing exists.

Theorem 4. Let G(V,E) be a graph, S(V,W ) be a spanning planar triconnected sub-
graph of G, and E be the unique planar (combinatorial) embedding of S (up to a flip).
A straight-line compatible drawing Γ of 〈G,S〉 exists if and only if: (1) Each edge
e ∈ E \W connects two vertices belonging to the same face of E . (2) There exists a
face f of E containing three vertices such that any pair u, v of them does not separate
in the circular order of f the end-vertices x, y ∈ f of any other edge in E \W .

Proof sketch: Since E is unique the necessity of Condition 1 is trivial. Its sufficiency
would be also trivial if S admitted a convex drawing where the external face is a tri-
angle. Otherwise, suppose that v1, v2, and v3 are three vertices of a face f satisfying
Condition 2. Dummy vertices can be added to S among v1, v2, and v3 in order to have
a triangular face to be used as external face when computing the convex drawing (for
example, using the algorithm in [27]). The necessity of Condition 2 follows from con-
sidering any three vertices on the convex hull of a compatible drawing of 〈G,S〉. �

The next algorithm exploits Theorem 4 in order to decide in polynomial time whether
〈G,S〉 admits a straight-line compatible drawing.

Algorithm. STRAIGHT-LINE-TRICONNECTED. Let E be the unique planar embedding
of S (up to a flip). The algorithm verifies that each edge of E \W satisfies Condition 1
of Theorem 4 and that there exists a face f of E containing three vertices v1, v2, and v3,
that satisfy Condition 2 of Theorem 4. If both conditions hold, then v1, v2, and v3 can
be used to find a straight-line compatible drawing Γ of 〈G,S〉 as described in the proof
of Theorem 4.
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e

(a) (b)

Fig. 3. Two consecutive steps of Algorithm STRAIGHT-LINE-TRICONNECTED. (a) The outer-
plane graph Gf ; the shaded face is full (the others are empty); the dash-dot edge e is the next
edge of Ef to be considered; edges in Eχ are drawn as dashed lines; white squares are vertices
of Vχ. (b) Graph Gf after the update due to edge e.

Condition 1 is verified as follows. Construct an auxiliary graph S′ from S by subdi-
viding each edge e of W with a dummy vertex ve. Also, for each face f of E add to S′

a vertex vf and connect vf to all non-dummy vertices of f . We have that two vertices
of V belong to the same face of E if and only if their distance in S′ is two.

To test Condition 2 of Theorem 4 we perform the following procedure on each face f
of E , restricting our attention to the set Ef of edges in E\W whose end-vertices belong
to f . We maintain an auxiliary outerplane graph Gf whose vertices are the vertices Vf

of f . Each internal face of Gf is either marked as full or as empty. Faces marked
full are not adjacent to each other. Intuitively, we have that any three vertices of an
empty face satisfy Condition 2, while all triples of vertices of a full face do not.
We initialize Gf with the cycle composed of the vertices and the edges of f and mark
its unique internal face as empty. At each step an edge e of Ef is considered and Gf

is updated. If adding e to Gf splits a single face marked empty, we update Gf by
splitting such a face into two empty faces. If the end-vertices of e belong to a single
face marked full, we ignore e. Otherwise, adding e to Gf would cross several edges
and faces (see Fig. 3(a)). Consider the set Eχ of internal edges of Gf crossed by e.
Define a set of vertices Vχ of Gf with the end-vertices of e, the end-vertices of edges
of Eχ that are incident to two empty faces, the vertices of the full faces traversed
by e. Remove all edges in Eχ from Gf . Mark the face f ′ obtained by such a removal
as empty. Form a new face fχ inside f ′ with all vertices in Vχ by connecting them as
they appear in the circular order of f , and mark fχ as full (see Fig. 3(b)).

When all the edges of Ef have been considered, if Gf has an internal face marked as
empty, any three vertices of this face satisfy Condition 2. Else, Gf has a single internal
face marked full and all triples of vertices of f do not satisfy Condition 2.

Theorem 5. Let G(V,E) be a graph and let S(V,W ) be a spanning triconnected pla-
nar subgraph of G. There exists an O(|V | × |E \ W |)-time algorithm that decides
whether 〈G,S〉 admits a straight-line compatible drawing Γ and, in the positive case,
computes it on an O(|V |2)×O(|V |2) grid.

Proof sketch: Algorithm STRAIGHT-LINE-TRICONNECTED constructs Γ . Its cor-
rectness trivially descends from Theorem 4. Regarding the time complexity, the unique
planar embedding E of S can be computed in O(|V |) time. The auxiliary graph S′ for
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Fig. 4. Illustration of: (a) Algorithm ONE-BEND TREE and (b) Algorithm THREE-BEND TREE;
a graph G with a given spanning tree S (black edges)

testing Condition 1 can be constructed in time linear in the size of S. Since S′ is a pla-
nar graph, deciding if two vertices have distance two can be done in constant time [21].
Thus, testing Condition 1 for all edges in E \W can be done in O(|V | + |E \W |)
time. While verifying Condition 1, Ef can be computed, for each face f of E , in
O(|V | + |E \W |) time. Since for each face f of E , the size of Gf is O(|Vf |), adding
edges in Ef has time complexity O(|Ef | × |Vf |). Overall, we have that the time com-
plexity of testing Condition 2 is O(|E \W | × |V |), which gives the time complexity of
the whole algorithm. Regarding the area, the algorithm in [5] can be used to obtain in
linear time a straight-line grid drawing of S on an O(|V |2)×O(|V |2) grid; this drawing
is strictly convex. �

4 Polyline Drawings

We now prove that, using bends along the edges of G \ S allows us to compute com-
patible drawings of pairs 〈G,S〉 for every spanning tree S of G; such drawings are on
a polynomial-area grid. In particular, since edge bends are negatively correlated to the
drawing readability, we want to compute k-bend compatible drawings for small val-
ues of k. We provide algorithms that offer different trade-offs between number of bends
and drawing area. In Section 5 we briefly discuss some preliminary results about 1-bend
compatible drawings of 〈G,S〉 when S is a biconnected spanning subgraph.

Let G(V,E) be a graph with n vertices and m edges, and let S(V,W ) be any span-
ning tree of G. We denote by x(v) and y(v) the x- and the y-coordinate of a vertex v,
respectively. The next algorithm computes a 1-bend compatible drawing of 〈G,S〉.
Algorithm. ONE-BEND TREE. The algorithm works in two steps (refer to Fig. 4(a)).

STEP 1: Consider a point set of size n such that for each point pi, the x- and y-
coordinates of pi are i2 and i, respectively. Construct a straight-line drawing of S by
placing the vertices on points pi, 1 ≤ i ≤ n, according to a DFS traversal.

STEP 2: Let vi be the vertex placed on point pi. For each i ∈ {1, . . . , n}, draw each
edge (vi, vj) ∈ E \W such that j > i as a polyline connecting pi and pj , and bending
at point (i2 + 1, n+ c) where c is a progressive counter, initially set to one.

Theorem 6. Let G(V,E) be a graph with n vertices and m edges, and let S(V,W )
be any spanning tree of G. There exists a 1-bend compatible drawing Γ of 〈G,S〉.
Drawing Γ can be computed in O(n+m) time and has O(n2(n+m)) area.
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Proof sketch: The algorithm that computes Γ is Algorithm ONE-BEND TREE. Note that
the drawing of S contained in Γ is planar, and that the edges in E\W are drawn outside
the convex region containing the drawing of S. About area requirements, the width of
Γ is O(n2), by construction, while the height of Γ is given by the y-coordinate of the
topmost bend point, that is n+m. �

Next, we describe an algorithm that constructs 3-bend compatible drawings of pairs
〈G,S〉 with better area bounds than Algorithm ONE-BEND TREE for sparse graphs.

Algorithm. THREE-BEND TREE. The algorithm works in four steps (see Fig. 4(b)).

STEP 1: Let G′ be the graph obtained fromG by subdividing each edge (vi, vj) ∈ E\W
with two dummy vertices di,j and dj,i. Let S′ be the spanning tree of G′, rooted at any
non-dummy vertex r, obtained by deleting all edges connecting two dummy vertices.
Clearly, every dummy vertex is a leaf of S′.

STEP 2: For each vertex of S′, order its children arbitrarily, thus inducing a left-to-right
order of the leaves of S′. Rename the leaves of S′ as u1, . . . , uk following this order.
For each i ∈ {1, . . . , k − 1}, add an edge (ui, ui+1) to S′. Also, add to S′ two dummy
vertices vL and vR, and edges (vL, r),(vR, r),(vL, u1),(uk, vR), (vL, vR).

STEP 3: Construct a straight-line grid drawing Γ ′ of S′, as described in [18], in which
edge (vL, vR) is drawn as a horizontal segment on the outer face, vertices u1, . . . , uk

all lie on points having the same y-coordinate Y , and the rest of S′ is drawn above such
points. Remove from Γ ′ the vertices and edges added in STEP 2.

STEP 4: Compute a drawing Γ of G such that each edge in W is drawn as in Γ ′, while
each edge (vi, vj) ∈ E \W is drawn as a polyline connecting vi and vj , bending at di,j ,
at dj,i, and at a point (c, Y − 1) where c is a progressive counter, initially set to x(u1).

Theorem 7. Let G(V,E) be a graph with n vertices and m edges, and let S(V,W )
be any spanning tree of G. There exists a 3-bend compatible drawing Γ of 〈G,S〉.
Drawing Γ can be computed in O(n+m) time and has O((n+m)2) area.

Proof sketch: The algorithm that computes Γ is Algorithm THREE-BEND TREE. The
drawing of S contained in Γ is planar ([18]) and lies above the horizontal line y = Y .
The area bounds descend from the construction and from the area bounds of [18]. �

We finally remark that there exists a drawing algorithm that computes 4-bend compati-
ble drawings that are more readable than those computed by Algorithm THREE-BEND

TREE. Although the area of these drawings is still O((n + m)2), they have optimal
crossing angular resolution, i.e., edges cross only at right angles. Drawings of this type
are called RAC drawings and are widely studied in the literature [13,14].

5 Discussion

We initiated the study of a new problem in graph drawing, i.e., computing a drawing
Γ of a non-planar graph G such that a desired subgraph S ⊆ G is crossing-free in Γ .
In the setting where edges are straight-line segments and S is a spanning tree of G,
we showed that Γ does not always exist; also, we provided existential and algorithmic
results for meaningful subfamilies of spanning trees and we described a linear-time
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testing and drawing algorithm when S is a spanning triconnected subgraph. One of
the main problems still open in this setting is the following: Given a graph G and
a spanning tree S of G, what is the complexity of deciding whether 〈G,S〉 admits
a straight-line compatible drawing? This problem can be also studied when S is a
biconnected spanning subgraph, trying to extend the characterization of Theorem 4.
Another interesting problem is to extend the results of Lemmas 1 and 2 in order to give
a characterization of what spanning trees S of a complete graph can be always realized.

Allowing bends on the edges of G\S, a drawing Γ exists for any given spanning tree
S; we described several efficient algorithms that offer different compromises between
drawing area and number of bends. Also, in this setting we have a characterization
of which pairs 〈G,S〉 admit a 1-bend compatible drawing when S is a biconnected
spanning subgraph. Namely, a necessary and sufficient condition is that S has a planar
embedding such that for each edge e of G \ S the end-vertices of e belong to the same
face of S (as for Condition 1 of Theorem 4). Given such an embedding one can: (i)
add a dummy vertex inside each face of S and connect it to all the vertices of the face;
(ii) construct a planar straight-line drawing of the resulting graph, and (iii) construct a
1-bend compatible drawing where each edge (u, v) of G\S has a bend-point coinciding
with the dummy vertex of the face containing u and v. A small perturbation of the bend-
points will avoid that two of them coincide. An algorithm that tests the condition above
can be derived as a simplification of the algorithm in [3], used to test the existence of
a Simultaneous Embedding with Fixed Edges (SEFE) of two graphs [6]. Finally, we
remark that Algorithm ONE-BEND TREE can be adapted to find a 1-bend compatible
drawing when S is an outerplanar graph with the same bounds stated by Theorem 6.
Many problems for k-compatible drawings are still open. Among them: trying to reduce
the area bounds when S is a tree and devising algorithms for computing grid 1-bend
compatible drawings of feasible 〈G,S〉 when S is biconnected.

References

1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise
crossing edges. Discrete & Computational Geometry 41(3), 365–375 (2009)

2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. Journal
of Combinatorial Theory, Ser. A 114(3), 563–571 (2007)

3. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous em-
beddability of two graphs whose intersection is a biconnected or a connected graph. Journal
of Discrete Algorithms 14, 150–172 (2012)

4. Angelini, P., Binucci, C., Da Lozzo, G., Didimo, W., Grilli, L., Montecchiani, F., Patrignani,
M., Tollis, I.G.: Drawings of non-planar graphs with crossing-free subgraphs. ArXiv e-prints
1308.6706 (September 2013)
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mundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346.
Springer, Heidelberg (2012)

17. Jansen, K., Woeginger, G.J.: The complexity of detecting crossingfree configurations in the
plane. BIT Numerical Mathematics 33(4), 580–595 (1993)

18. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32
(1996)
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Abstract. We propose an approach that allows a user to explore a layout pro-
duced by any graph drawing algorithm, in order to reduce the visual complexity
and clarify its presentation. Our approach is based on stratifying the drawing into
layers with desired properties; layers can be explored and combined by the user
to gradually acquire details. We present stratification heuristics, a user study, and
an experimental analysis that evaluates how our stratification heuristics behave
on the drawings computed by a variety of popular force-directed algorithms.

1 Introduction

Graph drawing algorithms are used in many applications to visualize networked infor-
mation. Among them, force-directed algorithms are the most popular and are widely
adopted to compute drawings in which vertices are represented as small circles and
edges are drawn as straight-line segments. Of course, the chosen algorithm is of great
importance in creating a readable visualization. However, when the graph is complex
(large or locally dense) a high number of edge crossings is typically unavoidable; this is
the case, for example, of most small world and scale-free graphs (see, e.g., [13,30]). It
is well known that a high number of edge crossings seriously affects the drawing read-
ability [26,27], and makes it hard to perform detailed tasks based on visual inspection.
These tasks include finding the shortest path between two given vertices, finding the
vertices that are adjacent to both, or even determining the degree of a vertex.

In this paper we propose a new approach to support the user in the visual inspec-
tion of complex drawings. Namely, given a drawing Γ of a graph G(V,E), we aim at
partitioning the set of edges E into subsets E1, E2, . . . , Eh, such that the subdrawing
Γi ⊆ Γ of each subgraph Gi(V,Ei) guarantees some desired readability property (in
each subdrawing, the vertices remain fixed in their original positions as determined in
Γ ). For example, a user could prefer to see Γi without any edge crossing, i.e., as planar,
or that any two crossing edges form a sufficiently large angle. We say that Γ is stratified
into a set of layers Γi, each containing all the vertices of Γ (in their original positions)
but only a portion of the edge set. The user can then interact with this edge stratifica-
tion, by exploring one layer at a time, or by arbitrarily combining multiple layers into
a single view. The edges of each layer are assigned the same color and different colors
are used for the edges of different layers. The main advantage of this approach is that
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users can get multiple readable views of different portions of the drawing, with the pos-
sibility of simplifying the total amount of information, thus allowing them to gradually
acquire details by exploring or combining layers. On the negative side, from the cog-
nitive point of view, the user has to face the difficulty of making sense of a distributed
information. To deal with this difficulty in practical terms, it is crucial to minimize the
number of layers required to stratify the drawing so that the desired readability property
is guaranteed for each layer. The main contribution of this paper is as follows:
(i) We define an edge stratification model and the related optimization problems. Then,
we give a general framework to solve these problems for several desired readability
properties of the layers, and we describe heuristics within this framework (Section 3).
(ii) We present the results of a user study aimed at understanding the effectiveness of
the proposed approach for executing tasks based on visual inspection (Section 4). These
results highlight the usefulness of edge stratification, especially for some of these tasks
and for some specific readability properties of the layers.
(iii) We present an experimental analysis that compares the number of layers required
to stratify drawings computed by a variety of popular force-directed algorithms, using
our heuristics (Section 5). On one side, these experiments suggest that for some of the
computed drawings the number of layers required by some edge stratification is a more
reliable measure of the drawing visual complexity with respect to the number of edge
crossings. On the other side, the results show that most of the force-directed algorithms
that we have considered guarantee a strong correlation between number of crossings and
number of layers in the stratifications of their drawings. We interpret this behavior as a
positive feature of the drawing algorithms, which witnesses a quite uniform distribution
of the crossings in the drawing.

In Fig. 1 we give an example of how the number of layers produced by the stratifica-
tion heuristics in this paper can be used to measure the readability of different drawings
of a same graph. Fig. 1(a) shows a drawingΓ1 of a graph with 50 vertices and 150 edges,
computed by Fruchterman-Reingold’s algorithm [17] and containing 1, 395 edge cross-
ings; Fig. 1(b) shows a drawing Γ2 of the same graph, computed by Kamada-Kawai’s
algorithm [21] and having 1, 437 edge crossings. Applying our stratification heuristic
to compute planar layers, Γ1 requires 8 layers while drawing Γ2 requires 7 layers; even
if we require crossing angles of at least π

4 in each layer, our stratification heuristic gen-
erates 4 layers for Γ1 (Fig. 1(c)) and only 3 layers for Γ2 (Fig. 1(d)). Indeed, despite its
higher number of crossings, drawing Γ2 appears more readable, due to a more uniform
distribution of the crossings and a better area. Namely, in the figure the two drawings
are scaled to fit in the same bounding box; if we scale the drawings such that they satisfy
the same resolution rule, drawing Γ1 has twice the area of drawing Γ2.

2 Related Work

To reduce the negative impact of edge crossings, different constraints on the type of
crossings have been studied. Some of them require that edges cross only at large angles,
or that each edge is crossed at most a limited number of times, or even that only few
pairwise crossing edges are allowed. A very limited list of papers includes [10,11,12].
Unfortunately, only restricted sub-families of sparse graphs admit drawings that respect
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(a) (b)

(c) (d)

Fig. 1. (a-b) Drawings of the same graph computed by two different force-directed algorithms.
(c-d) The same drawings in (a-b) stratified with layers having crossing angles of at least π

4
; layers

are conveyed with different edge colors.

these constraints. Also, an impressive set of crossing minimization methods are pro-
posed in graph drawing (see [8] for a survey). However, these methods become compu-
tationally expensive (or even unfeasible) for large and dense graphs.

Many visualization techniques that compute a hierarchical clustering of the vertices
and that allow users to interactively explore it are also known (see , e.g., [1,3,30]).
The levels of a cluster hierarchy are a sort of vertex stratification, which allows users
to control the amount of information displayed in the same view. Other well-studied
approaches that facilitate in the visual exploration of networked data are based on node
or edge filtering, grouping, and motif simplification (see, e.g., [1,29]).

Our edge stratification approach does not aim at computing drawings of graphs with
controlled visual complexity, but rather it starts from a drawing of a graph and aims at
supporting its exploration and analysis by distributing the whole drawing information
into a set of logical layers with desired edge crossings properties. This idea is somewhat
related to the notion of geometric thickness of a graph G [14,15], which is the minimum
number of colors that can be assigned to the edges of G, such that there exists a straight-
line drawing of G where no two edges of the same color cross. Similar to thickness, our
stratification defines an edge coloring; the difference is that stratification is executed
on a specific drawing, which cannot be changed. Hence, if the geometric thickness can
be used as a measure of the graph complexity, the minimum size of a stratification
of a straight-line drawing can be used as a measure of the drawing visual complexity
in terms of number, types, and distribution of its edge crossings. Clearly, the size of a
stratification into planar layers of a drawingΓ ofG cannot be smaller than the geometric
thickness of G.
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(a) (b) (c) (d)

Fig. 2. (a) A straight-line drawing Γ of K3,3. (b) A stratification S(Γ, PLANARITY). (c) A strati-
fication S(Γ, LAC( π

3
)) . (d) A stratification S(Γ, 1-PLANARITY). In each stratification different

dash styles for the edges represent different layers.

Other approaches have been proposed for supporting the analysis of a given a draw-
ing. One of the most popular is edge bundling, which deforms and groups together
edges that are similar according to some metric (see [32] for a survey). Another ap-
proach, called geometric graph generalization, reduces vertex and/or edge clutter by
collapsing groups of vertices that are geometrically close to one another into a single
point [7]. Differently from our stratification, edge bundling and geometric graph gen-
eralization modify the input drawing, emphasizing its skeletal structure at the expenses
of loss of details. We finally mention another recent technique, which aims to visually
simplify or remove edge crossings in a given drawing by displaying only portions of
the crossing edges; the modified drawings are called partial edge drawings [6].

3 Stratification: Model and Algorithms

Here we formally describe our edge stratification model and related algorithms.

Model. Let G(V,E) be a graph and let Γ be a straight-line drawing of G. Given a subset
E′ ⊆ E, G[E′] denotes the subgraph G′(V,E′) of G, and Γ [E′] is the subdrawing of
G[E′] in Γ . Also, let P denote a desired geometric property of a drawing of a graph.
An edge stratification (or simply a stratification) of Γ with respect to P , also denoted
as S(Γ,P), is a partition of the edges of G into h subsets E1, E2, . . . , Eh such that, for
every i ∈ {1, . . . , h}, property P holds for Γ [Ei]. Each subdrawing Γ [Ei] is called a
layer of S(Γ,P), and the size of S(Γ,P) is the number h of its layers. We study the
following general optimization problem.

Problem 1. – MINGENERALSTRATIFICATION: Given a straight-line drawing Γ and a
geometric property P , find a stratification S(Γ,P) of minimum size.

In particular, we focus on the following geometric propertiesP : (i) PLANARITY: the
drawing is crossing free; (ii) LAC(α): any two crossing edges of the drawing form an
angle of at least α radians (LAC stands for large angle crossing); (iii) k-PLANARITY:
each edge of the drawing is crossed at most by k edges (k ≥ 1). Each property gives
rise to a specialized version of Problem 1 (see Fig. 2 for an example of the different
types of stratification):

Problem 2. – MINPLANARSTRATIFICATION: Given a straight-line drawing Γ , find a
stratification S(Γ, PLANARITY) of minimum size.
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Problem 3. – MINLACSTRATIFICATION: Given a straight-line drawing Γ and a con-
stant α ∈ (0, π

2 ], find a stratification S(Γ, LAC(α)) of minimum size.

Problem 4. – MINk-PLANARSTRATIFICATION: Given a straight-line drawing Γ and a
constant k > 0, find a stratification S(Γ, k-PLANARITY) of minimum size.

It is natural to ask what is the complexity of the stratification problems defined above.
We prove that they are difficult at least as the well-known problem called classification,
restricted to planar graphs with maximum vertex degree 4 or 5; this problem is conjec-
tured to be NP-hard [9]. Namely, an edge coloring of a graph G(V,E) is an assignment
of edge colors such that adjacent edges have different colors. The minimum number
of colors of an edge coloring of G is called the chromatic index of G. It is known that
the chromatic index of a graph is either Δ(G) or Δ(G) + 1, where Δ(G) is the max-
imum vertex degree of G [31]. The classification problem is the problem of deciding
whether a graph G has chromatic index Δ(G) or Δ(G) + 1, and it is NP-complete in
general [20]. Restricting the input graph to be planar, the classification problem can be
reduced to our stratification problems (we omit details due to space limitations).

Algorithms. Let Γ be a drawing of G(V,E). To solve our different stratification prob-
lems on Γ we provide heuristics based on a common unified framework. It exploits an
enhanced version of the crossing graph of Γ , which is a graph χΓ (Vχ, Eχ) having a
vertex for each edge of Γ , i.e., Vχ = E, and an edge for each pair of crossing edges of
Γ , i.e., Eχ = {(e1, e2)|e1, e2 ∈ E and e1 and e2 cross in Γ}. In our enhanced version
of χΓ , we add a weight to each edge (e1, e2) ∈ Eχ, equal to the minimum angle formed
by e1 and e2 at their crossing point in Γ . Given the one-to-one correspondence between
the edges of Γ and the vertices of χΓ , an edge stratification S(Γ,P) = {E1, . . . , Eh}
corresponds to coloring the vertices of χΓ such that the subgraph induced by all ver-
tices with the same color satisfies a property P ′ that is the “translation” of P to the
crossing graph. Namely, if V i

χ ⊆ Vχ is the color class associated with Ei (1 ≤ i ≤ h),
we have that: (i) P =PLANARITY translates into P ′ =INDEPENDENTSET: the ver-
tices of V i

χ form an independent set in χΓ ; (ii) P =k-PLANARITY translates into
P ′ =MAXDEGREE-k: the subgraph of χΓ induced by V i

χ has vertex degree at most k;
(iii) P =LAC(α) translates into P ′ =EDGEWEIGHT(α): the subgraph of χΓ induced
by V i

χ has no edge weight less than α.
Hence, computing a stratification S(Γ,P) = {E1 . . . , Eh} is equivalent to comput-

ing a coloring C(χΓ ,P ′) = {V 1
χ , . . . , V

h
χ } of the vertices of χ, such that the subgraph

induced by each V i
χ satisfies property P ′. In particular, Problem MINPLANARSTRATI-

FICATION equals to the classical minimum vertex coloring problem on χΓ , which con-
sists of coloring the vertices of χΓ with the minimum number of colors, such that no
vertices with the same color are adjacent. Problems MINLACSTRATIFICATION can be
reduced to a minimum vertex coloring problem on χΓ by applying a pre-processing
step that removes from χΓ all the edges whose weight is at least α. Problem MINk-
PLANARSTRATIFICATION corresponds to a generalization of the minimum vertex col-
oring on χΓ , which allows each vertex to have at most k adjacent vertices of its same
color. Given this strong correlation among all problems, we solve them with a unified
framework that is an adaptation of a heuristic for the minimum vertex coloring problem,
called sequential coloring [5]. It has been shown to be more effective with respect to
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other heuristics for the minimum vertex coloring, and can be easily adapted to all our
variants of this problem. Our unified heuristic framework works as follows.

Let P ′ be the desired property for the subgraph induced by each color class. The
vertices {v1, . . . , v|E|} of χΓ are processed one per time; the first vertex is assigned
to color class V 1

χ . If vertices v1, v2, . . . , vi−1 have been assigned to the color classes
V 1
χ , V

2
χ , . . . , V

k
χ , the next vertex vi is assigned to the color class V j

χ , where j is the
minimum value for which V j

χ ∪ {vi} satisfies property P ′; if no such j exists, vi is
assigned to a new color class V k+1

χ . Several different criteria can be used to choose
the next vertex vi to be processed. We choose vertex vi with the highest degree of sat-
uration, which is the number of different colors assigned to the neighbors of vi. This
strategy has been experimentally proven to give good performance in terms of number
of colors used [5]. The time complexity of our heuristic can be evaluated as follows. By
using a brute-force approach the crossing graph can be computed in O(m2), where m
is the number of edges of Γ . Using the degree of saturation as the criterium for the ver-
tex selection, the time complexity of the sequential coloring heuristic is O(N2 logN),
where N is the number of vertices of the graph to be colored. Since in our case N = m,
the overall time complexity of our heuristic is O(m2 logn).

4 User Study

To evaluate the usefulness of our approach, we performed a user study where different
interfaces based on edge stratification are compared with an interface where drawings
are not stratified. The stratifications were computed with the heuristic framework de-
scribed in Section 3 and the geometric properties considered were PLANARITY and
LAC( π4 ). In particular, we chose π

4 as minimum crossing angular resolution, because
we observed that this value gives rise to limited number of layers without affecting too
much the readability of each layer (see also [12]). Also, in the experiment we decided
not to evaluate stratifications obtained for k-PLANARITY for two reasons: (i) compar-
ing too many interfaces would have taken to the users a very long time to complete
their test; (ii) there were not significant differences between the sizes of the stratifi-
cations S(Γ, PLANARITY) and S(Γ, k-PLANARITY) (considering small values of k)
for the drawings Γ of our benchmark, thus there was no clear advantage in using k-
PLANARITY with respect to PLANARITY from the practical point of view. Clearly, this
last observation motivates the study of more effective heuristics to compute a stratifica-
tion S(G, k-PLANARITY), when k > 0. Alternatively, we could consider large values
of k, however, this would strongly reduce the readability of the layers.

The goal of our study was to address the following two research questions: (Q1).
Given a straight-line drawing of a graph, does stratification assist in the reading of the
relational information represented by the graph? (Q2). If the first question is settled
in the affirmative, is one of the two considered geometric properties (PLANARITY and
LAC( π4 )) more effective in assisting the reading of such relational information?

We performed a within-subjects experiment involving 40 participants. We used 5
different drawings; for each drawing, the participants had to solve 3 different tasks,
using 3 different user interfaces. Thus, a trial was represented by the triple 〈drawing,
task, interface〉 and the number of trials for each participant was 5× 3× 3 = 45.
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Table 1. The graphs of the user study

stratification layers
graph vertices edges density PLANARITY LAC( π

4
)

lesmis 77 2,148 27.9 4 3
football 115 613 5.33 7 4
gd01 249 635 2.55 6 4
organization 165 726 4.4 7 4
scalefree 204 803 3.94 9 7

Drawings. We chose 5 different complex graphs modeling both real and artificial net-
works of different type, and we drew them using the OGDF 1 implementation of the
multi-level force-directed algorithm FMMM [19]. The chosen graphs are: lesmis, a
coappearance graph of characters in the novel “Les Miserables” [22]; football, a
graph of American football games [18]; gd01, a graph drawing self-reference network
used in the GD 2001 contest [25]; organization, a social network modeling the
relationships among employees in a private company [24]; scalefree, a scale-free
network generated using the Barabási-Albert model [2]. For each graph, Table 1 re-
ports the number of vertices, the number of edges, the density (ratio between number
of edges and number of vertices), and the number of stratification layers for properties
PLANARITY and LAC( π4 ).

Tasks. We chose 3 tasks as representative of the possible tasks involving graph read-
ing. We aimed at having tasks significantly different one to another, easy to understand
by non-expert users, and requiring both local and global explorations of the drawing.
We considered: the Shortest Path (SP) task, which asks “How long is the shortest path
between the two highlighted vertices?”; the Common Adjacent (CO) task, which asks
“What is the number of adjacent vertices shared by the two highlighted vertices?”; and
the Degree (DE) task, which asks “What is the degree of the highlighted vertex?”. Sim-
ilar tasks are used in other experiments on graph reading (see, e.g., [28]). The vertices
highlighted for each task were chosen without looking at the stratification layers.

User interfaces. The three user interfaces differ from one another only by the geometric
property used to compute a stratification. The Planar Stratification (PS) interface uses
PLANARITY; the LAC Stratification (LS) interface uses LAC( π4 ); the Overview (OV)
interface does not use any stratification (there is only one layer). To limit the number
of layers in PS and LS, we halted the edge partitioning process when 80% of the edges
of the drawing were placed in some layer. The remaining edges were all put in an
additional layer, for which no geometric property is guaranteed. In every interface the
edges of each layer were displayed with the same color and we used a different color for
the edges of each layer. We chose the colors so to maximize the readability over a black
background and so that different colors can be easily distinguished. Every interface
allowed the user to select any combination of the available layers, so that only the
edges in the selected layers were displayed on the screen; the edges in the non-selected

1 http://www.ogdf.net

http://www.ogdf.net
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layers were sketched as transparent light gray segments (alpha=0.2). In this way, the
user could focus on the selected layers only, still keeping in mind that the remaining
edges were part of the drawing and should possibly be considered to properly solve the
task. Thus, the user’s strategy to explore the drawing varied from looking at one single
layer per time to looking at the drawing as a whole. Also, the vertices were always
drawn as white circles except the highlighted vertices of each trial, which were drawn
red and slightly larger. Such a consistent environment did not require to the user any
cognitive shift to move from one interface to another. Finally, the participants were not
aware of the criteria used to stratify the drawings.

Experimental Procedure. Before starting the experiments, the participants received
a brief tutorial introducing the basic concepts on graphs. Also, an explanation of the
tasks and of the user interfaces was given with practical examples. The 45 trials were
preceded by 4 training trials whose results were not taken into account, although the par-
ticipants were not aware of it. Regardless of the task, participants had to answer each
question by entering a number in a text box, with no time limit. However, they were
asked to spend at most 3 minutes for each question. In order to counter the learning
effect, in each experiment the 45 stimuli appeared in a randomized order, and the sys-
tem randomly flipped and rotated each drawing. Between a question and the next one,
participants could take a short break, without the possibility of exchanging information.

Results. 40 volunteering students (with age from 19 to 25) in Computer Engineering
took part in the experiments. We recorded their answers and the time spent for each
question. We compared the performance of OV, PS, and LS in terms of absolute er-
ror rate (the absolute value of the difference between the user answer and the correct
answer) and response time. First of all, we performed a Shapiro-Wilk test (α=0.05) to
determine whether the data was normally distributed or not. We found that none of the
considered populations was normally distributed. Thus, we performed a non-parametric
analysis exploiting repeated measures Friedman tests (α=0.05), with post-hoc pairwise
comparisons. We applied Bonferroni corrections on the pairwise comparisons setting
α < 0.017. We obtained these results (see Table 2). (i) Considering all the tasks, both
PS and LS significantly outperformed OV in terms of absolute error rate. This improve-
ment in the accuracy comes together with a slower response time: PS and LS show
slower performance than OV, and LS is faster than PS. (ii) For task SP, the mean abso-
lute error rate of LS is smaller than the one of OV and PS, although such a difference
turns out to be not statistically significant. In terms of response time, again, OV is faster
than PS and LS, while LS is faster than PS. (iii) For task CA, the three interfaces led to
comparable performance in terms of absolute error rate. In terms of response time, the
situation is similar to the previous cases, OV is faster than PS and LS, while LS is faster
than PS. (iv) For task DE, both PS and LS outperformed OV in terms of absolute error
rate, and the difference turns out to be statistically significant. Also, PS led to more
accurate results than LS, still with statistical significance. About the response time, OV
and LS behave similarly and slightly faster than PS.

Discussion. The results of the user study show an improvement in terms of accuracy in
the reading of the displayed graphs when using stratification. The PS interface outper-
formed both LS and OV for most of the considered tasks. We conclude that stratifying
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Table 2. Results of the user study. The mean values and the pairwise significance between each
user interface are shown for absolute error rate and time

Overall SP CA DE Overall SP CA DE

A
bs

.E
rr

or
R

at
e mean OV 2.74 1.84 1.93 4.43

T
im

e
(s

ec
.)

mean OV 54.36 60.47 61.23 41.36
mean PS 1.87 1.79 1.96 1.86 mean PS 80.01 91.78 98.26 50.01
mean LS 1.92 1.57 1.98 2.22 mean LS 68.73 77.46 85.71 43.00
OV vs PS < .001 n.s. n.s. < .001 OV vs PS < .001 < .001 < .001 .001
OV vs LS < .001 n.s. n.s. < .001 OV vs LS < .001 < .001 < .001 n.s.
PS vs LS n.s. n.s. n.s. .010 PS vs LS < .001 .002 .001 < .001

the drawing into planar layers gave a significant help to the participants. The task that
received more significant advantage from both PS and LS is task DE. Indeed, count-
ing the degree of a vertex can be quite hard when the drawing is cluttered around the
highlighted vertex; on the other hand, by selecting a layer per time, one can effectively
cope with such clutter and the partial degree of the vertex can be easily counted, at
the expenses of a negligible increase of the response time (less than 10 seconds in the
average). Moreover, according to this strategy, having planar layers guarantees that the
region of the drawing around the highlighted vertex is crossing free, and hence clearer.

5 Comparison of Graph Drawing Algorithms

We describe a second experiment, which compares several force-directed algorithms
to answer the following research questions: (Q3). What is the force-directed drawing
algorithm for which the computed layouts require the smallest number of layers with
properties PLANARITY and LAC( π4 ), when stratified with our heuristics? (Q4). How
are the number of crossings and the number of layers correlated?

We tested 5 different force-directed algorithms on a benchmark of 105 graphs, thus
collecting 525 drawings; for each drawing Γ , we measured its number of crossings, the
size of a stratification S(Γ, PLANARITY), and the size of a stratification S(Γ, LAC( π4 ))
computed by our heuristics. Observe that, since the size of the crossing graph can be
Ω(n4), coloring this graph exactly is often prohibitive even for small graphs.

Algorithms. We tested the whole set of force-directed algorithms available in the OGDF
library: Kamada-Kawai (KK) [21], Fruchterman-Reingold(FR) [17], GEM (GEM) [16],
FM3 (FMMM) [19], and Stress majorization (SM) [4]. Since tuning is a critical issue for
force-directed techniques, it is worth remarking that we initialized the algorithms by
using the default parameters set by their implementations in the library.

Benchmark. We ran the drawing algorithms on a benchmark of 105 complex graphs,
organized in three groups:UniformRandGraphs, containing 40 random graphs gen-
erated with a uniform probability distribution; for each n ∈ {100, 200, . . . , 400} we
generated 10 graphs with density in the interval [2, 6]. ScaleFreeRandGraphs,
containing 60 small-world and scale-free graphs generated with the LFR algorithm [23],
already used to generate graphs in previous extensive experimental works [13]; for each
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(a) (b)

(c) (d)

Fig. 3. Mean number of planar and LAC( π
4

) layers on UniformRandGraphs (a-b) and
ScaleFreeRandGraphs (c-d). The x-axis reports the number of vertices.

n ∈ {500, 600, . . . , 1000} we generated 10 graphs with density in the interval [4, 8].
UserStudyGraphs, which contains the 5 graphs used in the user study.

Results. (i) On UniformRandGraphs, the layouts of FR, GEM, and FMMM require
a comparable number of layers regardless the geometric property. KK outperforms the
other algorithms for LAC(π4 ) layers, while SM always led to the highest number of
layers. See Figs. 3(a) and 3(b). (ii) On ScaleFreeRandGraphs, the layouts of FR
and KK most frequently require the smallest number of layers, regardless the geometric
property;FMMM led to slightly bigger numbers, while again SM led to the largest number
of layers. Finally, GEM behaves similarly to FMMM for small values of n, and approaches
SM as n grows. See Figs. 3(c) and 3(d). (iii) On UserStudyGraphs, the layouts
computed by FR are those that more often require the smallest number of layers. KK
and FMMM behave similarly, GEM is slightly worse, and SM most frequently led to the
largest number of layers. We omit the charts due to space limitations.

To evaluate the correlation between layers and crossings, we executed a Kendall’s τ
test (α < 0.01). The test showed a strong correlation (0.9 < r < 0.96) between number
of crossings and number of layers (both planar and LAC(π4 )), for all the algorithms.

Discussion. Concerning question Q3, the results show that FR and KK have the best
performance in terms of number of layers required to stratify their layouts (both planar
and LAC( π4 )), while SM is always the worst for the graphs in our benchmark. About
question Q4, we interpret the strong correlation between the number of crossings and
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the number of layers as a positive feature of the drawing algorithms, which witnesses
a quite uniform distribution of the crossings in the drawing. We also observe that, for
some instances, there are pairs of drawings 〈Γ1, Γ2〉 computed by different algorithms
such that Γ1 has more crossings but less layers than Γ2. By visually inspecting these
instances, the crossings in the drawings with fewer layers appear to be more evenly dis-
tributed, resulting in a more readable drawing in spite of the greater number of cross-
ings. This seems to confirm our intuition that the number of layers is also related to
the distribution of the crossings in the drawing area, and suggests that the number of
layers could be a more reliable measure of the drawing visual complexity with respect
to the number of crossings. Note that just measuring the crossing spatial distribution in
a drawing does not necessarily yield to similar conclusions; indeed, a drawing with low
average crossing spatial distribution may still contain very cluttered spots surrounded
by crossing-free regions, which might cause a high number of layers.

6 Conclusions and Future Research Directions

Our framework, based on the use of the crossing graph, is not suited for very large
graphs. The number of crossings can be Ω(n4) and hence, even for relatively small
complex drawings, the crossing graph can be so large that the performance of our
heuristic degrades both in terms of space and time. It would be useful to devise more ef-
ficient heuristics that do not make use of crossing graphs. Also, in our user interface we
presented the different layers using colors and allowing users to select any subset of lay-
ers. It would be interesting to design new visualization paradigms to effectively present
stratified drawings. A 2.5D visualization could be an interesting option to explore.
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Drawing Planar Graphs with a Prescribed Inner Face
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Abstract. Given a plane graph G (i.e., a planar graph with a fixed planar em-
bedding) and a simple cycle C in G whose vertices are mapped to a convex
polygon, we consider the question whether this drawing can be extended to a pla-
nar straight-line drawing of G. We characterize when this is possible in terms of
simple necessary conditions, which we prove to be sufficient. This also leads to
a linear-time testing algorithm. If a drawing extension exists, it can be computed
in the same running time.

1 Introduction

The problem of extending a partial drawing of a graph to a complete one is a funda-
mental problem in graph drawing that has many applications, e.g., in dynamic graph
drawing and graph interaction. This problem has been studied most in the planar setting
and often occurs as a subproblem in the construction of planar drawings.

The earliest example of such a drawing extension result are so-called Tutte embed-
dings. In his seminal paper “How to Draw a Graph” [10], Tutte showed that any tricon-
nected planar graph admits a convex drawing with its outer vertices fixed to an arbitrary
convex polygon. The strong impact of this fundamental result is illustrated by its, to
date, more than 850 citations and the fact that it received the “Best Fundamental Paper
Award” from GD’12. The work of Tutte has been extended in several ways. In particu-
lar, it has been strengthened to only require polynomial area [4], even in the presence of
collinear points [3]. Hong and Nagamochi extended the result to show that triconnected
graphs admit convex drawings when their outer vertices are fixed to a star-shaped poly-
gon [5]. For general subdrawings, the decision problem of whether a planar straight-line
drawing extension exists is NP-hard [9]. Pach and Wenger [8] showed that every sub-
drawing of a planar graph that fixes only the vertex positions can be extended to a planar
drawing with O(n) bends per edge and that this bound is tight. The drawing extension
problem has also been studied in a topological setting, where edges are represented by
non-crossing curves. In contrast to the straight-line variant, it can be tested in linear
time whether a drawing extension of a given subdrawing exists [1]. Moreover, there is
a characterization via forbidden substructures [6].

In this paper, we study the problem of finding a planar straight-line drawing exten-
sion of a plane graph for which an arbitrary cycle has been fixed to a convex polygon. It
is easy to see that a drawing extension does not always exist in this case; see Fig. 1(a).
Let G be a plane graph and let C be a simple cycle of G represented by a convex poly-
gon ΓC in the plane. The following two simple conditions are clearly necessary for the
existence of a drawing extension: (i) C has no chords that must be embedded outside
of C and (ii) for every vertex v with neighbors on C that must be embedded outside of
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C there exists a placement of v outside ΓC such that the drawing of the graph induced
by C and v is plane and bounded by the same cycle as in G. We show in this paper that
these two conditions are in fact sufficient. Both conditions can be tested in linear time,
and if they are satisfied, a corresponding drawing extension can be constructed within
the same time bound.

Our paper starts with some necessary definitions (Section 2) and useful combinato-
rial properties (Section 3). The idea of our main result has two steps. We first show in
Section 4 that the conditions are sufficient if ΓC is one-sided (i.e., it has an edge whose
incident inner angles are both less than 90◦). Afterward, we show in Section 5 that, for
an arbitrary convex polygon ΓC , we can place the neighborhood of C in such a way
that the drawing is planar, and such that the boundary C′ of its outer face is a one-sided
polygon ΓC′ . Moreover, our construction ensures that the remaining graph satisfies the
conditions for extendability of ΓC′ . The general result then follows directly from the
one-sided case.

2 Definitions and a Necessary Condition

Plane Graphs and Subgraphs. A graph G = (V,E) is planar if it has a drawing Γ
in the plane R2 without edge crossings. Drawing Γ subdivides the plane into connected
regions called faces; the unbounded region is the outer and the other regions are the
inner faces. The boundary of a face is called facial cycle, and outer cycle for the outer
face. The cyclic ordering of edges around each vertex of Γ together with the description
of the external face of G is called an embedding of G. A graph G with a planar embed-
ding is called plane graph. A plane subgraph H of G is a subgraph of G together with
a planar embedding that is the restriction of the embedding of G to H .

Let G be a plane graph and let C be a simple cycle of G. Cycle C is called strictly
internal, if it does not contain any vertex of the outer face of G. A chord of C is called
outer if it lies outside C in G. A cycle without outer chords is called outerchordless.
The subgraph of G inside C is the plane subgraph of G that is constituted by vertices
and edges of C and all vertices and edges of G that lie inside C.

Connectivity. A graph G is k-connected if removal of any set of k − 1 vertices of
G does not disconnect the graph. For k = 2, 3 a k-connected graph is also called
biconnected and triconnected, respectively. An internally triangulated plane graph is
triconnected if and only if there is no edge connecting two non-consecutive vertices of
its outer cycle (see, for example, [2]).

Star-shaped and One-sided Polygons. Let Π be a polygon in the plane. Two points
inside or on the boundary of Π are mutually visible, if the straight-line segment con-
necting them belongs to the interior of Π . The kernel K(Π) of polygon Π is the set
of all the points inside Π from which all vertices of Π are visible. We say that Π is
star-shaped if K(Π) �= ∅. We observe that the given definition of a star-shape ensures
that its kernel has a positive area.

A convex polygon Π with k vertices is called one-sided, if there exists an edge e
(i.e., a line segment) of Π such that the orthogonal projection to the line supporting e
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Fig. 1. Convex polygon of cycle C is denoted by black. Vertex wi,j cannot be placed on the plane
without changing the embedding or intersecting C. Vertices wi,j and wl,k are petals of C, where
wl,k ≺ wi,j . Petal wl,k is realizable, while petal wi,j is not. (b) Illustration of Fact 1.

maps all polygon vertices actually onto segment e. Then e is called the base edge of
Π . Without loss of generality let e = (v1, vk) and v1, . . . , vk be the clockwise ordered
sequence of vertices of Π .

Extension of a Drawing. Let G be a plane graph and let H be a plane subgraph of G.
Let ΓH be a planar straight-line drawing of H . We say that ΓH is extendable if drawing
ΓH can be completed to a planar straight-line drawing ΓG of the plane graph G. Then
ΓG is called an extension of ΓH . A planar straight-line drawing of G is called convex,
if every face of G (including the outer face) is represented as a convex polygon.

The following theorem by Hong and Nagamochi [5] shows the extendability of a
prescribed star-shaped outer face of a plane graph.

Theorem 1 (Hong, Nagamochi [5]). Every drawing of the outer facef of a 3-connected
graphG as a star-shaped polygon can be extended to a planar drawing ofG, where each
internal face is represented by a convex polygon. Such a drawing can be computed in
linear time.

Petals and Stamens. Let G be a plane graph, and let Puv be a path in G between
vertices u and v. Its subpath from vertex a to vertex b is denoted by Puv[a, b]. Let C be a
simple cycle of G, and let v1, . . . , vk be the vertices of C in clockwise order. Given two
vertices vi and vj of C, we denote by C[vi, vj ] the subpath of C encountered when we
traverse C clockwise from vi to vj . Assume that C is represented by a convex polygon
ΓC in the plane. We say that a vertex vi, 1 ≤ i ≤ k of ΓC is flat, if ∠vi−1vivi+1 = π.
Throughout this paper, we assume that convex polygons do not have flat vertices.

A vertex w ∈ V (G) \ V (C) adjacent to at least two vertices of C and lying outside
C in G, is called a petal of C (see Figure 1(a)). Consider the plane subgraph G′ of G
induced by the vertices V (C) ∪ {w}. Vertex w appears on the boundary of G′ between
two vertices of C, i.e. after some vi ∈ V (C) and before some vj ∈ V (C) in clock-
wise order. To indicate this fact, we will denote petal w by wi,j . Edges (wi,j , vi) and
(wi,j , vj) are called the outer edges of petal wi,j . The subpath C[vi, vj ] of C is called
base of the petal wi,j . A vertex vf is called internal, if it appears on C after vi and
before vj in clockwise order. A petal wi,i+1 is called trivial. A vertex of V (G) \ V (C)
adjacent to exactly one vertex of C is called a stamen of C.

Let v be a petal of C and let u be either a petal or a stamen of C, we say that u is
nested in v, and denote this fact by u ≺ v, if u lies in the cycle delimited by the base
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and the outer edges of petal v. For two stamens u and v, neither u ≺ v nor v ≺ u. So
for each pair of stamens or petals u and v we have either u ≺ v, or v ≺ u, or none of
these. This relation ≺ is a partial order. A petal or a stamen u of C is called outermost
if it is maximal with respect to ≺.

Necessary Petal Condition. Let again G be a plane graph and let C be an outerchord-
less cycle of G represented by a convex polygon ΓC in the plane. Let wi,j be a petal
of C. Let G′ be the plane subgraph of G, induced by the vertices V (C) ∪ {wi,j}. We
say that wi,j is realizable if there exists a planar drawing of G′ which is an extension
of ΓC . This gives us the necessary condition that ΓC is extendable only if each petal of
C is realizable. In the rest of the paper we prove that this condition is sufficient.

3 Combinatorial Properties of Graphs and Petals

In this section, we derive several properties of petals in graphs, which we use through-
out the construction of the drawing extension in the remaining parts of this paper. Due
to space constraints the proofs can be found in the full version of this paper [7]. Propo-
sition 1 allows us to restrict our attention to maximal plane graphs for which the given
cycle C is strictly internal. The remaining lemmas are concerned with the structure of
the (outermost) petals of C in such a graph.

Proposition 1. Let G be a plane graph on n vertices and let C be a simple outerchord-
less cycle of G. There exists a plane supergraph G′ of G with O(n) vertices such that
(i) G′ is maximal, (ii) there are no outer chords of C in G′, (iii) each petal of G′ with
respect to C is either trivial or has the same neighbors on C as in G, and (iv) C is
strictly internal to G.

In the following we assume that our given plane graph is maximal, and the given cycle
is strictly internal, otherwise Proposition 1 is applied.

Lemma 1. Let G be a triangulated planar graph with a strictly internal outerchordless
cycle C. Then the following statements hold. (i) Each vertex of C that is not internal to
an outermost petal is adjacent to two outermost petals. (ii) There is a simple cycle C′

whose interior contains C and that contains exactly the outermost stamens and petals
of C.

Lemma 2. Let G be a maximal planar graph with a strictly internal outerchordless
cycle C. Let u and v be two adjacent vertices on C that are not internal to the same
petal. Then there exists a third vertex w of C such that there exist three chordless disjoint
paths from u, v and w to the vertices of the outer face of G such that none of them
contains other vertices of C.

4 Extension of a One-sided Polygon

Let G be a plane graph, and let C be a simple outerchordless cycle, represented by a
one-sided polygon ΓC . In this section, we show that if each petal of C is realizable,
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then ΓC is extendable to a straight-line drawing of G. This result serves as a tool for the
general case, which is shown in Section 5.

The drawing extension we produce preserves the outer face, i.e., if the extension
exists, then it has the same outer face as G. It is worth mentioning that, if we are allowed
to change the outer face, the proof becomes rather simple, as the following claim shows.

Claim 1. Let G be a maximal plane graph and let C be an outerchordless cycle of G,
represented in the plane by a one-sided polygon ΓC . Then drawing ΓC is extendable.

Proof. Let (v1, vk) be the base edge of ΓC . Edge (v1, vk) is incident to two faces of G,
to a face fin inside C and to a face fout outside C. We select fout as the outer face of G.
With this choice, edge (v1, vk) is on the outer face of G. Let v be the third vertex of this
face. We place the vertex v far enough from ΓC , so that all vertices of ΓC are visible
from v. Thus, we obtain a planar straight-line drawing of the subgraph Gv induced by
the vertices V (C) ∪ {v}, such that each face is represented by a star-shaped polygon.
Each subgraph of G inside a face of Gv is triconnected, and therefore, we can complete
the existing drawing to a straight-line planar drawing of G, by Theorem 1. ��

In the rest of the section we show that extendability of ΓC can be efficiently tested, even
if the outer face of G has to be preserved. The following simple geometric fact will be
used in the proof of the result of this section (see Figure 1(b) for the illustration).

Fact 1. Let pqrt be a convex quadrilateral and let o be the intersection of its diagonals.
Let Spt be a one-sided convex polygon with base pt, that lies inside triangle�opt. Let
ab and cd be such that b, d ∈ Spt, ordered clockwise as t, d, b, p and a, c ∈ qr, ordered
as q, a, c, r. Then, neither ab and cd intersect each other, nor do they intersect a segment
between two consecutive points of Spt.

We are now ready to prove the main result of this section.

Theorem 2. Let G be a maximal plane graph and C be a strictly internal simple out-
erchordless cycle of G, represented in the plane by a one-sided polygon ΓC . If every
petal of C is realizable, then ΓC is extendable.

Proof. Let v1, . . . , vk be the clockwise ordering of the vertices of C, so that (v1, vk) is
the base of ΓC . We rotate ΓC so that (v1, vk) is horizontal. Let a, b, c be the vertices of
the external face of G, in clockwise order, see Fig. 2. By Lemma 2, there exists a vertex
vj , 1 < j < k, such that there exist chordless disjoint paths between v1, vj , vk, and the
vertices a, b, c, respectively. Without loss of generality assume they are Pv1a, Pvjb and
Pvkc. Some vertices of Pv1a and Pvkc are possibly adjacent to each other, as well as to
the boundary of C. Depending on these adjacencies, we show how to draw the paths
Pv1a, Pvkc and how to place vertex b, so that the graph induced by these vertices and
cycle C is drawn with star-shaped faces. Then, the drawing of G can be completed by
applying Theorem 1. Let vi be the topmost vertex ofΓC . It can happen that there are two
adjacent topmost vertices vi and vi+1. However, vi−1 and vi+2 are lower, since ΓC does
not contain flat vertices. In the following, we assume that vi and vi+1 have the same
y-coordinate. The case when vi is unique can be seen as a special case where vi = vi+1.
Without loss of generality assume that i + 1 ≤ j ≤ k − 1, the case where 2 ≤ j ≤ i
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Fig. 2. Illustration for the proof of Theorem 2. Edges between C[v1, vi] and Pv1a[v1, w
′]∪ {vk}

are gray. Edges between C[vi+1, vj ] and Pv1a[w, a] are dashed.

is treated symmetrically. Notice that the presence of the path Pvjb ensures that edges
between vertices of Pv1a and Pvkc can only lie in the interior of the cycle delimited by
these paths and edges (v1, vk) and (a, c) (refer to Figure 2). Consider a vertex of Pv1a

which is a petal of C. The base of such a petal cannot contain edge (vk−1, vk), since
this would cause a crossing with Pvkc. Moreover, if the base of this petal contains edge
(v1, vk), then it cannot contain any edge (vf , vf+1) for i ≤ f < j, since otherwise
this petal would not be realizable. Thus a vertex of Pv1a is either adjacent to vk or to a
vertex vf , where i + 1 ≤ f ≤ j, but not both. It is worth mentioning that a vertex of
Pv1a cannot be adjacent to any vf , j + 1 ≤ f ≤ k − 1, since such an adjacency would
cause a crossing either with Pvjb or with Pvkc.

Let �a, � and �c be three distinct lines through vj that lie clockwise between the
slopes of edges (vj−1, vj) and (vj , vj+1) (see Figure 3). Such lines exist since ΓC does
not contain flat vertices. Let �i be the line through vi with the slope of (vi−1, vi). Let �1a
be the half-line originating at an internal point of (v1, vk) towards−∞, slightly rotated
counterclockwise from the horizontal position, so that it crosses �i. Let q denote the
intersection point of �1a and �i. Let p be any point on �1a further away from v1 than q.
Let �2a be the line through p with the slope of �. By construction of lines �a, � and �c,
line �2a crosses �a above the polygon ΓC at point pa and line �c below this polygon at
point pc.

Let G′ be the plane subgraph of G induced by the vertices of C, Pv1a, and Pvkc. The
outer cycle of G′ consists of edge (a, c) and a path Pac between vertices a and c.

Claim 2. The vertices of Pv1a and Pvkc can be placed on lines �1a, �2a and �c such that
in the resulting straight-line drawing of G′, path Pac is represented by an x-monotone
polygonal chain, and the inner faces of G′ are star-shaped polygons.

The vertices of Pv1a will be placed on line �1a between points p and q and on line �2a
above point pa. The vertices of Pvkc will be placed on �c below pc. In order to place
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vi vi+1
vj−1

vj

vj+1

vkv1
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�
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�2a

�i

pa

qp

pc

Fig. 3. Illustration for the proof of Theorem 2. For space reasons lines were shown by curves.

the vertices, we need to understand how the vertices of Pv1a are adjacent to vertices of
C. As we travel on Pv1a from v1 to a, we first meet all vertices adjacent to v1, . . . , vi
and then all vertices adjacent to vi+1, . . . , vj , since G is a planar graph. Let w be the
first vertex of Pv1a adjacent to vf , i+ 1 ≤ f ≤ j, and let w′ be the vertex preceding w
on Pv1a. We place vertices of Pv1a[v1, w

′], in the order they appear in the path, on line
�1a, between q and p, in increasing distance from v1. We place all vertices of Pv1a[w, a]
on �2a above pa in increasing distance from p. We draw the edges between the vertices
of C and Pv1a. Notice that vertex w might not exist, since it might happen that none of
the vertices of Pv1a is adjacent to vf , i + 1 ≤ f ≤ k. In this case all vertices of Pv1a

are placed on line �1a, between q and p. In the following, we show that the constructed
drawing is planar. Notice that the quadrilateral formed by the points w, a, vj , vi+1 is
convex, by the choice of line �2a and the positions of vertices w and a on it. Also, notice
that the points of vertices vi+1, . . . , vj form a one-sided polygon with base segment
vi+1vj , which lies in the triangle �ovjvi+1, where o is the intersection of vi+1a and
vjw. Thus, by Fact 1, the edges connectingC[vi+1, vj ] and Pv1a[w, a] do not cross each
other. By applying Fact 1, we can also prove that edges connecting Pv1a[v1, w

′] with
C[v1, vi], cross neither each other, nor ΓC . Recalling that vertices of Pv1a[v1, w

′] can be
also adjacent to vk, we notice that these edges also do not cross ΓC , by the choice of line
�1a. Finally, path Pv1a is chordless, and therefore the current drawing is planar. Notice
that the subpath of Pa,c that has already been drawn is represented by an x-monotone
chain. We next draw the vertices of Pvkc. We observe that in the already constructed
drawing path Pv1a taken together with edge (v1, vk) is represented by an x-monotone
chain, each point of which is visible from any point below the line �2a. This means that
any point below line �2a, can be connected by a straight-line segment to the vertices
V (Pv1a) ∪ {vk} without creating any crossing either with Pv1a or with (v1, vk). We
also notice that any of the vertices vj , . . . , vk can be connected to a point of �c, without
intersecting ΓC . Recall that pc denotes the intersection point of �c and �2a. Thus we
place the vertices of Pvkc on the line �c, below �2a, in increasing distance from point pc.
Applying Fact 1 we can prove that the edges induced by {vj , . . . , vk} ∪ V (Pvkc) are
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�i

�j

apex(wij)

cone(wij)
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vj

vj−1

(a)

w

w′

shell(u)
u

faces of C

faces of Cshell

no vertex of G is

contained here

petal faces

(b)

Fig. 4. (a) Vertex wi,j is the petal of C with base C[vi, vj ]. Point apex(wi,j) is red, region
cone(wi,j) is gray. (b) Graph Gshell. Polygon ΓC is black. Cycle Cshell is bold gray. Cycle
C′

shell is blue. Graph G′
shell is comprised by blue, red and black edges. Vertices of B are squares.

drawn without crossings. Edges between Pvkc and Pv1a cross neither Pv1a, nor (v1, vk)
by the choice of lines �c and �2a.

We have constructed a planar straight-line drawing of G′. We notice that path Pac

is drawn as an x-monotone polygonal chain. We also notice that the faces of G′, cre-
ated when placing vertices of Pv1a (resp. Pvkc) are star-shaped and have their kernels
arbitrarily close to the vertices of Pv1a (resp. Pvkc).

Notice that vertex b is possibly adjacent to some of the vertices of Pac. Thus, plac-
ing b at an appropriate distance above Pac, the edges between b and Pac can be drawn
straight-line without intersecting Pac and therefore no other edge of G′. The faces cre-
ated when placing b are star-shaped and have their kernels arbitrarily close to b. We
finally apply Theorem 1. ��

5 Main Theorem

Let G be a maximal plane graph and C be a strictly internal simple outerchordless
cycle of G, represented by an arbitrary convex polygon ΓC in the plane. In Theorem 3
we prove that it is still true that if each petal of C is realizable, then ΓC is extendable.
Before stating and proving Theorem 3, we introduce notation that will be used through
this section.

Recall that v1, . . . , vk denote the vertices of C. Let wi,j be an outermost petal of C
in G. Let �i (resp. �j) be a half-line with the slope of edge (vi, vi+1) (resp. (vj−1, vj))
originating at vi (resp. vj) (see Figure 4(a)). Since wi,j is realizable, lines �i and �j
intersect. Denote by apex(wi,j) their intersection point and by cone(wi,j) the subset
of R2 that is obtained by the intersection of the half-planes defined by �i and �j , not
containing ΓC . It is clear that any internal point of cone(wi,j) is appropriate to draw
wi,j so that the plane subgraph of G induced by V (C) ∪ {wi,j} is crossing-free. For
consistency, we also define cone(w) and apex(w) of an outer stamen w of C as follows.
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apex(w′)

apex(w)

(a)

apex(w′)

apex(w)

(b)

Fig. 5. Construction of drawing of graph Gshell shown in Figure 4(b). (a) Apex points are gray,
points of B are black squares. (b) Polygon Π is gray, lines {�(w) | w ∈ S ∩C′

shell} are dashed.

Assume that w is adjacent to vi ∈ C. Then cone(w) ⊂ R2 is the union of the half-
planes defined by lines of edges (vi−1, vi) and (vi, vi+1), that do not contain ΓC . We
set apex(w) = vi.

Let P (resp. S) denote the set of outermost petals (resp. stamens) of C in G. By
Lemma 1, there exists a cycle Cshell in G that contains exactly P ∪S. Let Gshell denote
the plane subgraph of G induced by the vertices of C and Cshell. (Figure 4(b)). Let
C′

shell denote the outer cycle of Gshell. We denote the graph consisting of C, C′
shell

and edges between them by G′
shell. Each petal or stamen of C, say w, that belongs to

Cshell but not to C′
shell, belongs to a face of G′

shell. We denote this face by shell(w).
We categorize the faces of Gshell as follows. The faces that lie inside cycle C are called
faces of C. The faces that are bounded only by Cshell and its chords, are called faces
of Cshell. Notice that each face of Cshell is a triangle. Notice that a face of Gshell that
is comprised by two consecutive edges adjacent to the same vertex of C (not belonging
to C), is a triangle, and contains no vertex of G \Gshell, since both facts would imply
that the taken edges are not consecutive. Finally, faces bounded by a subpath of C and
two edges adjacent to the same petal, are called petal faces. The plane subgraph of G
inside a petal face is triangulated and does not have a chord connecting two vertices of
its outer face, and therefore is triconnected. Thus we have the following

Observation 1. Each vertex of G \Gshell either lies in a face of C, or in a face that is
a triangle, or in a petal face, or outside C′

shell. Each subgraph of G inside a petal face
is triconnected.

Theorem 3. Let G be a maximal plane graph and let C be a strictly internal simple
outerchordless cycle of G, represented by a convex polygon ΓC in the plane. ΓC is
extendable to a straight-line drawing of G if and only if each petal of C is realizable.

Proof. The condition that each petal of C is realizable is clearly necessary. Next we
show that it is also sufficient.

We first show how to draw the graph G′
shell. Afterward we complete it to a drawing

of Gshell. Our target is to represent C′
shell as a one-sided polygon, so that Theorem 2

can be applied for the rest of G that lies outside C′
shell. We first decide which edge of

C′
shell to “stretch”, i.e., which edge will serve as base edge of the one-sided polygon
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Fig. 6. Construction of Case 1. Corresponding Gshell is shown in Figure 4(b).

for representing C′
shell. In order to be able to apply Theorem 2, this one-sided polygon

should be such that each petal of C′
shell is realizable. Thus we choose the base edge e

of C′
shell as follows. If C′

shell contains an edge on the outer face of G, we choose e to be
this edge. Otherwise, we choose an edge e, such that at least one of the end vertices of
e is adjacent to an outermost petal of C′

shell in G. Such a choice of e ensures that each
petal of C′

shell is realizable.

Claim 3. Polygon ΓC can be extended to a straight-line drawing of graph G′
shell, such

that its outer face C′
shell is represented by a one-sided polygon with base edge e. More-

over, C′
shell contains in its interior all points of {apex(w) | w ∈ Cshell}.

Recall that P (resp. S) denotes the set of outermost petals (resp. stamens) of C in
G. Let B denote the set of vertices of C, to which stamens S ∩ C′

shell are adjacent
(refer to Figure 4(b)). By construction of the apex points, the set {apex(w) | w ∈
P ∩ C′

shell} ∪ B is in convex position, and we denote by Π its convex hull. Polygon
Π may be degenerate, and may contain only a single vertex or a single edge. We treat
these cases separately to complete the construction of the drawing of the graph G′

shell.
Next, we explain the construction in the non-degenerate case; the degenerate cases are
covered in the full version of this paper [7].

Let p be a point inside Π . Let �(w) denote a half-line from p through w, where w
is a vertex of Π . If we order the constructed half-lines around p, any two consecutive
lines have between them an angle less than π. If w ∈ B, we substitute �(w) by the
same number of slightly rotated lines as the number of stamens of C′

shell adjacent to w,
without destroying the order (refer to Figure 5(b)). Thus, for each w ∈ C′

shell, a line
�(w) is defined. Notice that, for any w ∈ P ∩C′

shell, line �(w) passes through apex(w),
and the infinite part of �(w) lies in cone(w). Thus, for any position of w on a point of
�(w)∩cone(w), edges between C and w do not cross ΓC . For a stamen w ∈ S∩C′

shell,
line �(w) crosses cone(w) very close to apex(w), and its infinite part lies in cone(w).
Thus, similarly, for any position of w on a point of �(w) ∩ cone(w), edges between C
and w do not cross ΓC .

Recall that e = (u, v) is the edge of C′
shell that we have decided to “stretch”.

Recall also that �(u) and �(v) are consecutive in the sequence of half-lines we have
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constructed. Let κ be a circle around ΓC that contains in the interior the polygon Π and
the set of points {apex(w)|w ∈ Cshell}. Let � be a half-line bisecting the angle between
�(u) and �(v) (refer to Figure 6). Let λ be a parabola with � as axis of symmetry and the
center of κ as focus. We position and parametrize λ such that it does not cross � and κ.

With this placement of λ, each half-line �(w), w ∈ Π , crosses λ, moreover, intersec-
tions with �(u) and �(v) are on different branches of λ and appear last on them as we
walk on λ from its origin to infinity. Let Π ′ be the convex polygon comprised by the
intersection points of lines {�(w) : w ∈ V (C′

shell)} with λ. We make λ large enough,
so that the polygon Π ′ still contains the circle κ in the interior. As a results, for each
w ∈ C, cone(w) ∩Π ′

in �= ∅, where Π ′
in denotes the interior of Π ′. This concludes the

proof of the claim in the non-degenerate case.
Let Γ ′

shell be the constructed drawing of G′
shell. Recall that each petal or stamen

w of C, that does not belong to C′
shell, lies in a face of G′

shell, denoted by shell(w).
Let Γshell(w) denote the polygon representing face shell(w) in Γ ′

shell. By construction,
cone(w) ∩ Γshell(w) �= ∅. We next explain how to extend the drawing of G′

shell to
the drawing of Gshell. For each edge (u, v) of C′

shell, we add a convex curve, lying
close enough to this edge inside Γ ′

shell. Let μ be the union of these curves for all edges
of C′

shell. We notice that we can place them so close to C′
shell that all the points of

{apex(w) | w ∈ C} are still in the interior of μ. Thus μ is intersected by all the sets
cone(w), for each w ∈ C. We place each vertex w of Cshell \C′

shell on μ ∩ cone(w) in
the order they appear in Cshell. Since all edges induced by Cshell lie outside of Cshell,
and both end points of such an edge are placed on a single convex curve, they can be
drawn straight without intersecting each other, or other edges of Gshell. Thus, we have
constructed a planar extension of ΓC to a drawing of Gshell, call it Γshell.

Recall the definitions of faces of C, faces of Cshell and petal faces from the beginning
of this section. The faces of C appear in Γshell as convex polygons. The faces of Cshell

are triangles, and the petal faces of Gshell are star-shapes whose kernel is close to the
corresponding petal. By Observation 1, each vertex of G \Gshell either lies in a face of
C, or in a face that is a triangle, or in a petal face, or outsideC′

shell. Moreover a subgraph
of G inside a petal face is triconnected. Thus, by multiple applications of Theorem 1,
we can extend the drawing of Gshell to a straight-line planar drawing of the subgraph of
G inside C′

shell.
Finally, notice that in the constructed drawing of Gshell each petal of its outer cycle,

i.e. C′
shell, is realizable. This is by the choice of edge e. Moreover, by construction

of Gshell, C′
shell has no outer chords. In case C′

shell is not strictly internal, we apply
Proposition 1, to construct a maximal plane graph G′, such that G is a plane subgraph
of G′, C′

shell is a strictly internal outerchordless cycle of G′ and each petal of C′
shell

is realizable. Then, we apply Theorem 2, to complete the drawing of G′, lying outside
C′

shell. Finally, we remove the edges of G′ that do not belong to G. ��

We conclude with the following general statement, that follows from Proposition 1,
Theorem 3 and one of the known algorithms that constructs drawing of a planar graph
with a prescribed outer face (e.g. [4,10] or Theorem 1).

Corollary 1. Let G be a plane graph and H be a biconnected plane subgraph of G. Let
ΓH be a straight-line convex drawing of ΓH . ΓH is extendable to a planar straight-line
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drawing of G if and only if the outer cycle of H is outerchordless and each petal of the
outer cycle of H is realizable.

6 Conclusions

In this paper, we have studied the problem of extending a given convex drawing of
a cycle of a plane graph G to a planar straight-line drawing of G. We characterized
the cases when this is possible in terms of two simple necessary conditions, which
we proved to also be sufficient. We note that it is easy to test whether the necessary
conditions are satisfied in linear time. It is readily seen that our proof of existence of
the extension is constructive and can be carried out in linear time. As an extension of
our research it would be interesting to investigate whether more envolved necessary
conditions are sufficient for more general shape of a cycle, for instance a star-shaped
polygon.
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Metro-Line Crossing Minimization:
Hardness, Approximations, and Tractable Cases
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Abstract. Crossing minimization is one of the central problems in graph draw-
ing. Recently, there has been an increased interest in the problem of minimizing
crossings between paths in drawings of graphs. This is the metro-line crossing
minimization problem (MLCM): Given an embedded graph and a set L of simple
paths, called lines, order the lines on each edge so that the total number of cross-
ings is minimized. So far, the complexity of MLCM has been an open problem.
In contrast, the problem variant in which line ends must be placed in outermost
position on their edges (MLCM-P) is known to be NP-hard.

Our main results answer two open questions: (i) We show that MLCM is
NP-hard. (ii) We give an O(

√
log |L|)-approximation algorithm for MLCM-P.

1 Introduction

In metro maps and transportation networks, some edges, that is, railway tracks or road
segments, are used by several lines. Usually, lines that share an edge are drawn indi-
vidually along the edge in distinct colors; see Fig. 1. Often, some lines must cross, and
one normally wants to have as few crossings of metro lines as possible. In the metro-
line crossing minimization problem (MLCM), the goal is to order different metro-lines
along each edge of the underlying network so that the total number of crossings is min-
imized. Although the problem has been studied, many questions remain open.

Fig. 1. A part of the official metro map of Paris
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Fig. 2. Nine lines on a portion of an underlying network with 6 vertices and 8 edges. (a)
πv3v4 = (l3, l2) and πv3v1 = (l1, l8, l4, l3). The lines l3 and l4 have an unavoidable edge
crossing on {v1, v3}. In contrast, the crossing of l2 and l3 on {v3, v4} is avoidable. In v3 there is
an unavoidable vertex crossing of the lines l2 and l8. As the vertex crossing of l2 and l5 in v3 is
avoidable the solution is not feasible. (b) A feasible solution satisfying the periphery condition.

Apart from the visualization of metro maps, the problem has various applications
including the visual representation of biochemical pathways. In very-large-scale inte-
gration (VLSI) design, there is the closely related problem of minimizing intersections
between nets (physical wires) [8,10]. Net patterns with fewer crossings have better elec-
trical characteristics and require less area. In graph drawing, the number of edge cross-
ings is one of the most important aesthetic criteria. In edge bundling, groups of edges
are drawn close together—like metro lines—emphasizing the structure of the graph;
minimizing crossings between parallel edges arises as a subproblem [14].

Problem Definitions. The input is a planarly embedded graph G = (V,E) and a set
L of simple paths in G. We call G the underlying network, the vertices stations, and
the paths lines. The endpoints v0, vk of a line (v0, . . . , vk) ∈ L are terminals, and
the vertices v1, . . . , vk−1 are intermediate stations. For each edge e = (u, v) ∈ E, let
Le = Luv be the set of lines passing through e.

Following previous work [2,12], we use the k-side model; each station v is repre-
sented by a polygon with k sides, where k is the degree of v in G; see Fig. 2. For k ≤ 2
a rectangle is used. Each side of the polygon is called a port of v and corresponds to
an incident edge (v, u) ∈ E. A line (v0, . . . , vk) is represented by a polyline starting
at a port of v0 (on the boundary of the polygon), passing through two ports of vi for
1 ≤ i < k, and ending at a port of vk. For each port of u ∈ V corresponding to
(u, v) ∈ E, we define the line order πuv = (l1 . . . l|Luv|) as an ordered sequence of the
lines in Luv, which specifies the clockwise order at which the lines Luv are connected
to the port of u with respect to the center of the polygon. Note that there are two dif-
ferent line orders πuv and πvu on any edge (u, v) of the network. A solution, or a line
layout, specifies line orders πuv and πvu for each edge (u, v) ∈ E.

A line crossing is a crossing between polylines corresponding to a pair of lines.
We distinguish two types of crossings; see Fig. 2(a). An edge crossing between lines
l and l′ occurs whenever πuv = (. . . l . . . l′ . . . ) and πvu = (. . . l . . . l′ . . . ) for some
edge (u, v) ∈ E. We now consider the concatenated cyclic sequence πu of the orders
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πuv1 , . . . , πuvk , where (u, v1), . . . , (u, vk) are the edges incident to u in clockwise or-
der. A vertex crossing between l and l′ occurs in u if πu = (. . . l . . . l′ . . . l . . . l′ . . . ). In-
tuitively, the lines change their relative order inside u. A crossing is called unavoidable
if the lines cross in each line layout; otherwise it is avoidable. A crossing is unavoidable
if neither l nor l′ have a terminal on their common subpath and the lines split on both
ends of this subpath in such a way that their relative order has to change; see Fig. 2. By
checking all pairs of lines, we can determine all unavoidable crossings in O(|L|2|E|)
time. Following previous work, we insist that (i) avoidable vertex crossings are not al-
lowed in a solution, that is, these crossings are not hidden below a station symbol, and
(ii) unavoidable vertex crossings are not counted since they occur in any solution.

A pair of lines may share several common subpaths, and the lines may cross multiple
times on the subpaths. For simplicity of presentation, we assume that there is at most
one common subpath of two lines. Our results do, however, also hold for the general
case as every common subpath can be considered individually.

Problem variants. Several variants of the problem have been considered in the litera-
ture. The original metro-line crossing minimization problem is formulated as follows.

Problem 1 (MLCM). For a given instance (G,L), find a line layout with the minimum
number of crossings.

In practice, it is desirable to avoid gaps between adjacent lines; to this end, every
line is drawn so that it starts and terminates at the topmost or bottommost end of a port;
see Fig. 2(b). In fact, many manually created maps follow this periphery condition
introduced by Bekos et al. [4]. Formally, we say that a line order πuv at the port of
u satisfies the periphery condition if πuv = (l1 . . . lp . . . lq . . . l|Luv|), where u is a
terminal for the lines l1, . . . , lp, lq, . . . , l|Luv| and u is an intermediate station for the
lines lp+1, . . . , lq−1. The problem is known as MLCM with periphery condition.

Problem 2 (MLCM-P). For a given instance (G,L), find a line layout, subject to the
periphery condition on every port, with the minimum number of crossings.

In the special case of MLCM-P with side assignment (MLCM-PA), the input addi-
tionally specifies for each line end on which side of its port it terminates; Nöllenburg [12]
showed that MLCM-PA is computationally equivalent to the version of MLCM in
which all lines terminate at vertices of degree one.

As MLCM and MLCM-P are NP-hard even for very simple networks, we introduce
the additional constraint that no line is a subpath of another line. Indeed, this is often
the case for bus and metro transportation networks; if, however, there is a line that is a
subpath of a longer line then one can also visualize it as a part of the longer line. We
call the problems with this new restriction PROPER-MLCM and PROPER-MLCM-P.

Previous Work. Benkert et al. [5] described a quadratic-time algorithm for MLCM
when the underlying network consists of a single edge with attached leaves, leaving
open the complexity status of MLCM.

Bekos et al. [4] studied MLCM-P and proved that the variant is NP-hard on paths.
Motivated by the hardness, they introduced the variant MLCM-PA and studied the
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Table 1. Overview of results for the metro-line crossing minimization problem

problem graph class result reference

MLCM caterpillar NP-hard Thm. 1
MLCM single edge O(|L|2)-time algorithm [5]
MLCM general graph crossing-free test Thm. 2
MLCM-P path NP-hard [2]
MLCM-P general graph ILP [3]
MLCM-P general graph O(

√
log |L|)-approximation Thm. 5

MLCM-P general graph crossing-free test Thm. 3
PROPER-MLCM-P general graph with consistent lines O(|L|3)-time algorithm Thm. 7
MLCM-PA general graph O(|V |+ |E|+ |V ||L|)-time [14]
MLCM-PA general graph crossing-free test [12]

problem on simple networks. Later, polynomial-time algorithms for MLCM-PA were
found with gradually improving running time by Asquith et al. [3], Argyriou et al. [2],
and Nöllenburg [12], until Pupyrev et al. [14] presented a linear-time algorithm. Asquith
et al. [3] formulated MLCM-P as an integer linear program that finds an optimal solu-
tion for the problem on general graphs. Note that in the worst case this approach requires
exponential time. Fink and Pupyrev studied a variant of MLCM in which a crossing
between two blocks of lines is counted as a single crossing [7]. Okamoto et al. [13]
presented exact and fixed-parameter tractable algorithms for MLCM-P on paths.

In the circuit design community (VLSI), Groeneveld [8] considered the problem
of adjusting the routing so as to minimize crossings between the pairs of nets, which
is equivalent to MLCM-PA, and suggested an algorithm for general graphs. Marek-
Sadowska et al. [10] considered a related problem of distributing the line crossings
among edges of the underlying graph in order to simplify the net routing.

Our Results. Table 1 summarizes our contributions and previous results. We first prove
that the unconstrained variant MLCM is NP-hard even on caterpillars (paths with at-
tached leaves), thus, answering an open question of Benkert et al. [5] and Nöllen-
burg [11]. As crossing minimization is hard, it is natural to ask whether there exists
a crossing-free solution. We show that there is a crossing-free solution if and only if
there is no pair of lines forming an unavoidable crossing.

We then study MLCM-P. Argyriou et al. [2] and Nöllenburg [11] asked for an ap-
proximation algorithm. To this end, we develop a 2SAT model for the problem. Using
the model, we get an O(

√
log |L|)-approximation algorithm for MLCM-P. This is the

first approximation algorithm in the context of metro-line crossing minimization. We
also show how to find a crossing-free solution (if it exists) in polynomial time. More-
over, we prove that MLCM-P is fixed-parameter tractable with respect to the maximum
number of allowed crossings by using the fixed-parameter tractability of 2SAT.

We then study the new variant PROPER-MLCM-P and show how to solve it on
caterpillars, left-to-right trees (considered in [4,2]), and other instances described in
Section 4. An optimal solution can be found by applying a maximum flow algorithm
on a certain graph. This is the first polynomial-time exact algorithm for the variant in
which avoidable crossings may be present in an optimal solution.
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2 The MLCM Problem

We begin with MLCM, the most general formulation of the problem, and show that it
is hard to decide whether there is a solution with at most k > 0 crossings, even if the
underlying network is a caterpillar. In contrast, we give a polynomial-time algorithm
for deciding whether there exists a crossing-free solution.

Theorem 1. MLCM is NP-hard on caterpillars.

Proof. We prove hardness by reduction from MLCM-P which is known to be NP-hard
on paths [2]. Suppose we have an instance of MLCM-P consisting of a path G =
(V,E) and lines L on the path. We want to decide whether it is possible to order the
lines with periphery condition and at most k crossings.

u v(a)

u v

u1

u2

v1

v2
(b)

Fig. 3. (a) MLCM-P-solution on
(u, v). (b) Insertion of a red cross

We create a new underlying network G′ =
(V ′, E′) by adding vertices and edges to G. We as-
sume that G is embedded along a horizontal line and
specify positions relative to this line. For each edge
e = (u, v) ∈ E, we add vertices u1, u2, v1, and v2
and edges (u, u1), (u, u2), (v, v1), and (v, v2) such
that v1 and u1 are above the path and v2 and u2 are
below. Next, we add � = |L|2 lines from u1 to v2, and
� lines from u2 to v1 to L′ ⊇ L; see Fig. 3. We call
the added structure the red cross of e and the added
lines red lines.We claim that there is a numberK such
that there is a solution of MLCM-P on (G,L) with
at most k crossings if and only if there is solution of
MLCM on (G′, L′) with at most k +K crossings.

Let e = (u, v) ∈ E be an edge of the path, and
let l ∈ Le. If l has its terminals on u and v, that is,
completely lies on e, it never has to cross in G or G′; hence, we assume such lines do
not exist. Assume l has none of its terminals on u or v. It has to cross all 2� lines of the
red cross of e. Finally, suppose l has just one terminal at a vertex of e, say on u. If the
line end of l at u is above the edge (u, u1) in the order πuv , then it has to cross all red
lines from u2 to v1 but can avoid the red lines from u1 to v2, that is, � crossings with
red lines are necessary. Symmetrically, if the line end is below (u, u2) then only the �
crossings with the red lines from u1 to v2 are necessary. If the terminal is between the
edges (u, u1) and (u, u2) then all 2� red edges must be crossed. There are, of course,
always �2 unavoidable internal crossings of the red cross of e.

Let �e = �te + �me be the number of lines on e, where �te and �me are the numbers of
lines on e that do or do not have a terminal at u or v, respectively. In any solution there
are at least �te·�+2·�me ·�+�2 crossings on e in which at least one red line is involved. It is
easy to see that placing a terminal between red lines leaving towards a leaf never brings
an advantage. On the other hand, if just a single line has an avoidable crossing with a
block of red lines, the number of crossings increases by � = |L|2, which is more than
the number of crossings in any solution for (G,L) without double crossings. Hence,
any optimal solution of the lines in G′ has no avoidable crossings with red blocks and,
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l
l1

l2
uv

Fig. 4. A separator l of lines l1 and l2

uv

l2
l1 l3

l4

Fig. 5. Unavoidable crossing of 2 separators of l1 and l3

therefore, satisfies the periphery condition; thus, after deleting the added edges and red
lines, we get a feasible solution for MLCM-P on G.

Let K := |E| · �2 +
∑

e∈E (�te + 2�me ) · � be the minimum number of crossings with
red lines involved onG′. Suppose we have an MLCM-solution onG′ with at mostK+k
crossings. Then, after deleting the red lines, we get a feasible solution for MLCM-P on
G with at most k crossings. On the other hand, if we have an MLCM-P-solution on G
with k crossings, then we can insert the red lines with just K new crossings: Suppose
we want to insert the block of red lines from u1 to v2 on an edge e = (u, v) ∈ E. We
start by putting them immediately below the lines with a terminal on the top of u. Then
we cross all lines below until we see the first line that ends on the bottom of v and,
hence, must not be crossed by this red block. We go to the right and just keep always
directly above the block of lines that end at the bottom side of v; see Fig. 3. Finally, we
reach v and have not created any avoidable crossing. Once we have inserted all blocks
of red lines, we get a solution for the lines on G with exactly K + k crossings. ��

Crossing-Free Instances. Given an instance of MLCM, we want to check whether there
exists a solution without any crossings. If there exists such a crossing-free solution then
there cannot be a pair of lines with an unavoidable crossing. We show that this condition
is already sufficient. We sketch the proofs; see full version for the complete proof [6].

We assume that no line is a subpath of another line as a subpath can be reinserted
parallel to the longer line in a crossing-free solution. Consider a pair of lines l1, l2 whose
common subpath P starts in u and ends in v. If u (similarly, v) is not a terminal for both
l1 and l2 then there is a unique relative order of the lines along P in any crossing-free
solution. Hence, we assume u is a terminal for l1, v is a terminal for l2, and we call
such a pair overlapping. Suppose there is a separator for l1 and l2, that is, a line l on
the subpath of l1 and l2 that has to be below l1 and above l2 (or the other way round)
as shown in Fig. 4. Then, l1 has to be above l2 in a crossing-free solution. The only
remaining case is a pair of lines l1, l2 without a separator. Suppose l1, l2 is chosen such
that the number of edges of the common subpath is minimum. If there exists a crossing-
free solution then there is also a crossing-free solution in which l1 and l2 are immediate
neighbors in the orders on their common subpath; see full version [6].

Theorem 2. Any instance of MLCM without unavoidable crossings has a crossing-
free solution.

Proof (sketch). We can merge a pair of overlapping lines without a separator into a
new line. This merging step does not introduce an unavoidable crossing. We iteratively
perform merging steps until any overlapping pair has a separator. There might be mul-
tiple separators for a pair, but all of them separate the pair in the same relative order;
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otherwise, there would be a pair of separators with an unavoidable crossing; see Fig. 5.
After the merging steps, we get a relative order for every pair of lines sharing an edge.
One can show that the relative orders are acyclic. We build a crossing-free solution by
putting all lines in the (only) right order on the edge. As the relative order of any pair
of lines is the same on any edge, there cannot be a crossing. ��

The proof yields an O(|L|2|E|)-time algorithm for finding crossing-free solutions.

3 The MLCM-P Problem

Let (G = (V,E), L) be an instance of MLCM-P. Our goal is to decide for each line
end on which side of its terminal port it should lie. We arbitrarily choose one side of
each port and call it “top”, the opposite side is called “bottom”. For each line l starting
at vertex u and ending at vertex v, we create binary variables lu and lv , which are
true if and only if l terminates at the top side of the respective port. We formulate the
problem of finding a truth assignment that minimizes the number of crossings as a 2SAT
instance. Note that Asquith et al. [3] already used 2SAT clauses as a tool for developing
their ILP for MLCM, where the variables represent above/below relations between line
ends. In contrast, in our model a variable directly represents the position of a line on the
top or bottom side of a port. We first prove a simple property of lines.

Lemma 1. Let l, l′ be a pair of lines sharing a terminal. We can transform any solution
in which l and l′ cross to a solution with fewer crossings in which the lines do not cross.

Proof. Assume l and l′ cross in a solution. We switch the positions of line ends at the
common terminal v between l and l′ and reroute the two lines between the crossing’s
position and v. By reusing the route of l for l′ and vice versa, the number of crossings
does not increase. On the other hand, the crossing between l and l′ is eliminated. ��

Let l, l′ be two lines whose common subpath P starts at vertex u and ends at v. Termi-
nals of l and l′ that lie on P can only be at u or v. If neither l nor l′ has a terminal on
P , then a crossing of the lines does not depend on the positions of the terminals; hence,
we assume that there is a terminal at u or v. A possible crossing between l and l′ is
modeled by a 2SAT formula, the crossing formula, consisting of at most two clauses.
This formula evaluates to true if and only if l and l′ do not cross. For simplicity, we
assume that the top sides of the terminal ports of u and v are located on the same side
of P ; see Fig. 6. If it is not the case, a variable lu should be substituted with its inverse
¬lu in the formula. Note that generating all crossing formulas needs O(|E||L|2) time.
We consider several cases; see also the illustrations in the full version [6].

(f1) Suppose u and v are terminals for l and intermediate stations for l′, that is, l is a
subpath of l′. Then, l does not cross l′ if and only if both terminals of l lie on the
same side of P . This is expressed by the crossing formula (lu∧lv)∨(¬lu∧¬lv) ≡
(¬lu ∨ lv)∧ (lu ∨¬lv), which may occur multiple times, caused by a different l′.



Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases 335

l1

v1 v2 v3 v4 v5

l2
l3

l4

l5

(a) An instance (G,L) of PROPER-MLCM-P

l5v3 l2v4 l3v3

t

b

l4v4

l2v1

(b) Graph Gab for the instance (G,L)

Fig. 6. A small instance of MLCM-P. The generated 2SAT formulas are: (l2v1) for the crossing
of l1 and l2; (¬l4v4) for the crossing of l5 and l4; (l2v4 ∨ l3v3) ∧ (¬l2v4 ∨ ¬l

3
v3) for the crossing of

l2 and l3; (l2v4 ∨ l5v3) ∧ (¬l2v4 ∨ ¬l
5
v3) for the crossing of l2 and l5.

(f2) Suppose u is a terminal for l and intermediate for l′, and v is a terminal for l′ and
intermediate for l. Then there is no crossing if and only if both terminals lie on
opposite sides of P . This is described by the formula (lu ∧ ¬l′v) ∨ (¬lu ∧ l′v) ≡
(lu ∨ l′v) ∧ (¬lu ∨ ¬l′v).

(f3) Suppose both l and l′ terminate at the same vertex u or v. By Lemma 1, a solution
of MLCM-P with a crossing of l and l′ can be transformed into a solution in
which l and l′ do not cross. Hence, we do not introduce formulas in this case.

(f4) In the remaining case, there is only one terminal of l and l′ on P . Without loss of
generality, let l terminate at u. A crossing is triggered by a single variable. Depend-
ing on the fixed terminals or leaving edges at v and u, we get the single clause (lu)
or (¬lu). The same clause can occur multiple times, caused by different lines l′.

Crossing-free solutions. Note that the 2SAT formulation of the problem yields an
algorithm for deciding whether there exists a crossing-free solution of an MLCM-P
instance. First, we check for unavoidable crossings by analyzing every pair of lines in-
dividually. Second, the 2SAT model is satisfiable if and only if there is a solution of
the MLCM-P instance without avoidable crossing. Since 2SAT can be solved in linear
time and there are at most |L|2 crossing formulas, we conclude as follows.

Theorem 3. Deciding whether there exists a crossing-free solution for MLCM-P can
be accomplished in O(|E||L|2) time.

For MLCM the existence of a crossing-free solution is equivalent to the absence of
unavoidable crossings. In contrast, there is no such simple criterion for MLCM-P.

Fixed-parameter tractability. We can use the 2SAT model for obtaining a fixed-
parameter tractable algorithm on the number k of allowed crossings. We must show
that we can check in f(k) · poly(I) time whether there is a solution with at most k
avoidable crossings, where f must be a computable function and I is the input size.

First, note that minimizing the number of crossings is the same as maximizing the
number of satisfied clauses in the corresponding 2SAT instance. Maximizing the num-
ber of satisfied clauses, or solving the MAX-2SAT problem, is NP-hard.

However, the problem of deciding whether it is possible to remove a given number k
of m 2SAT clauses so that the formula becomes satisfiable is fixed-parameter tractable
with respect to the parameter k [15]. This yields the following theorem.
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Theorem 4. MLCM-P is fixed-parameter tractable with respect to the maximum al-
lowed number of avoidable crossings.

Proof. We show that the SAT formula can be made satisfiable by removing at most k
clauses if and only if there is a solution with at most k crossings.

First, suppose it is possible to remove at most k clauses from the 2SAT model so that
there is a truth assignment satisfying all remaining clauses. Fix such a truth assignment,
and consider the corresponding assignment of sides to the terminals. Any crossing leads
to an unsatisfied clause in the SAT formula, and no two crossings share an unsatisfied
clause. Hence, we have a side assignment that causes at most k crossings.

Now, we assume that there is an assignment of sides for all terminals that causes at
most k crossings. We know that in the corresponding truth assignment for all pairs of
clauses of types (f1)–(f2) of the SAT model at most one is unsatisfied. Hence, there are
at most k unsatisfied clauses since any crossing just leads to a single unsatisfied clause.
The removal of these clauses creates a new, satisfiable formula. ��

Using the O(15kkm3)-time algorithm for 2SAT [15] our algorithm has a running time
of O(15k · k · |L|6 + |L|2|E|).

Approximating MLCM-P. The proof of Theorem 4 yields that the number of crossings
in a crossing-minimal solution of MLCM-P equals the minimum number of clauses
that we need to remove from the 2SAT formula in order to make it satisfiable. Fur-
thermore, a set of k clauses, whose removal makes the 2SAT formula satisfiable, cor-
responds to an MLCM-P solution with at most k crossings. Hence, an approximation
algorithm for the problem of making a 2SAT formula satisfiable by removing the min-
imum number of clauses (also called MIN 2CNF DELETION) yields an approximation
for MLCM-P of the same quality. As there is an O(

√
logm)-approximation algorithm

for MIN 2CNF DELETION [1], we have the following result.

Theorem 5. There is an O(
√

log |L|)-approximation algorithm for MLCM-P.

4 The PROPER-MLCM-P Problem

In this section we consider the PROPER-MLCM-P problem, where no line in L is
a subpath of another line. First we focus on graphs whose underlying network is a
caterpillar. There, the top and bottom sides of ports are given naturally; see Fig. 6.

Based on the 2SAT model described in the previous section, we construct a graph
Gab, which has a vertex lu for each variable of the model and two additional vertices b
and t. Since no line is a subpath of another line, our 2SAT model has only the two types
of crossing formulas (f2) and (f4); compare Section 3. For case (f2), we create an edge
(lu, l

′
v). The edge models a possible crossing between lines l and l′; that is, the lines

cross if and only if l terminates on top (bottom) of u and l′ terminates on top (bottom)
of v. For a crossing formula of type (lu) (case (f4)), we add an edge (b, lu) to Gab;
similarly, we add an edge (t, lu) for a formula (¬lu); see Fig. 6(b) for an example.

Any truth assignment to the variables is equivalent to a b-t cut in Gab, that is, a cut
separating b and t. Indeed, any edge in the graph models the fact that two lines should
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Fig. 7. Solving MIN-UNCUT on an almost bipartite graph. The maximum flow (minimum cut)
with value 3 results in vertex partitions V 1

b = {b1, 4, 5, 6}, V 1
t = {t2, 1, 2, 3}, V 2

b = {b2}, and
V 2
t = {t1}. The optimal partition Sb = {b, 4, 5, 6}, St = {t, 1, 2, 3} induces 3 uncut edges

(b, 6), (b, 6), (t, 2).

not be assigned to the same side as they would cause a crossing otherwise. Hence,
any line crossing corresponds to an uncut edge. Therefore, for minimizing the number
of crossings, we need to solve the known MIN-UNCUT problem, which asks for a
partitioning of the vertices of a graph into sets St, Sb so that the number of uncut edges
((v, u) with v, u ∈ St or v, u ∈ Sb) is minimized. Although MIN-UNCUT is NP-hard,
it turns out that the graph Gab has a special structure, which we call almost bipartite.

Definition 1. A graphG = (V,E) is called almost bipartite if it is a union of a bipartite
graph H = (VH , EH) and two additional vertices b, t whose edges may be incident to
vertices of both partitions of H , that is, V = VH ∪ {b}∪ {t} and E = EH ∪E′, where
E′ ⊆ {(b, v) | v ∈ V } ∪ {(t, v) | v ∈ V }.

The bipartition is given by the fact that “left” (similarly, “right”) terminals of two lines
can never be connected by an edge in Gab. We show that MIN-UNCUT can be solved
optimally for almost bipartite graphs.

Theorem 6. MIN-UNCUT can be solved in O(|V |3) on almost bipartite graphs.

Proof. Almost bipartite graphs are a subclass of weakly bipartite graphs. It is known
that MIN-UNCUT can be solved in polynomial time on weakly bipartite graphs using
the ellipsoid method [9]. We present a simple and efficient combinatorial algorithm.

The special vertices b and t have to belong to different partitions of Gab. We create a
new graph G′ from Gab. We split vertex b into b1, b2 and t into t1, t2 such that b1 and t1
are connected to the vertices of the first partition H1 of H , and b2 and t2 are connected
to the second partition H2. Formally, for each edge (b, v) ∈ E, v ∈ H1, we create an
edge (b1, v); for each edge (b, v) ∈ E, v ∈ H2, we create an edge (v, b2). Similarly,
edges (v, t1) are created for all (t, v) ∈ E, v ∈ H1, and edges (t2, v) are created for all
(t, v) ∈ E, v ∈ H2. The construction is illustrated in Fig. 7.

Now, for each edge (u, v) of G′ we assign capacity 1, and compute a maximum flow
between the pair of sources b1, t2 to the pair of sinks b2, t1. This can be done in O(|V |3)
time using a maximum flow algorithm with a supersource (connected to b1 and t2) and
a supersink (connected to b2 and t1). Indeed, there is an integral maximum flow in G′.
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A maximum flow corresponds to a maximum set of edge-disjoint paths starting at b1
or t2 and ending at b2 or t1. Such a path corresponds to one of the following structures
in the original graphG: (i) an odd cycle containing vertex b (a cycle with an odd number
of edges); (ii) an odd cycle containing vertex t; (iii) an even path between b and t.

Note that if a graph has an odd cycle then at least one of the edges of the cycle
belongs to the same partition in any solution of MIN-UNCUT. The same holds for an
even path connecting b and t in G since b and t have to belong to different partitions.
Since the maximum flow corresponds to the edge-disjoint odd cycles and even paths in
G, the value of the flow is a lower bound for a solution of MIN-UNCUT.

Let us prove that the value of the maximum flow in G′ is also an upper bound.
By Menger’s theorem, this value is the cardinality of a minimum edge cut separating
sources and sinks. Let E∗ be the minimum edge cut and let G1 andG2 be the correspon-
dent disconnected subgraphs of G′; see Fig. 7. Note that G1 is bipartite since H ∩G1 is
bipartite; vertex b1 is only connected to vertices of H1 and vertex t2 is only connected
to vertices of H2. Therefore, there is a 2-partition of vertices of G1 such that b1 and t2
belong to different partitions; let us denote the partitions V 1

b and V 1
t . Similarly, there

is a 2-partition of G2 into V 2
b and V 2

t with b2 ∈ V 2
b and t1 ∈ V 2

t . We combine these
partitions so that Sb = {b}∪

(
V 1
b ∪ V 2

b

)
\ {b1, b2} and St = {t}∪

(
V 1
t ∪ V 2

t

)
\{t1, t2},

which yield the required partition of vertices of G for MIN-UNCUT. The set of uncut
edges is E∗, which completes the proof of the theorem. ��

As a direct corollary, we get a O(|L|3)-time algorithm for PROPER-MLCM-P on cater-
pillars. I can be applied for some other underlying networks. Let (G = (V,E), L) be
an instance of PROPER-MLCM-P. The lines L have consistent directions on G if the
lines can be directed so that for each edge e ∈ E all lines Le have the same direction.
If the underlying graph is a path then we can consistently direct the lines from left to
right. Similarly, consistent line directions exist for “left-to-right” [4,2] and “upward” [7]
trees, that is, trees for which there is an embedding with all lines being monotone in
some direction. It is easy to test whether there are consistent line directions by giving
an arbitrary direction to some first line, and then applying the same direction on all
lines sharing edges with the first line until all lines have directions or an inconsistency
is found. Hence, we get the following result; see full version for the proof [6].

Theorem 7. PROPER-MLCM-P can be solved in O(|L|3) time for instances (G,L)
admitting consistent line directions.

5 Conclusion and Open Problems

We proved that MLCM is NP-hard and presented an O(
√

log |L|)-approximation algo-
rithm for MLCM-P, as well as an exactO(|L|3)-time algorithm for PROPER-MLCM-P
on instances with consistent line directions. We also suggested polynomial-time algo-
rithms for crossing-free solutions for MLCM and MLCM-P. From a theoretical point of
view, there are still interesting open problems: 1. Is there an approximation algorithm for
MLCM? 2. Is there a constant-factor approximation algorithm for MLCM-P? 3. What
is the complexity status of PROPER-MLCM/PROPER-MLCM-P in general?



Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases 339

On the practical side, the visualization of the computed line crossings is a possible
future direction. So far, the focus has been on the number of crossings, although two
line orders with the same crossing number may look quite differently [7]. For example,
a metro line is easy to follow if it has few bends. Hence, an interesting question is how
to visualize metro lines using the minimum total number of bends.
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5. Benkert, M., Nöllenburg, M., Uno, T., Wolff, A.: Minimizing intra-edge crossings in wiring
diagrams and public transportation maps. In: Kaufmann, M., Wagner, D. (eds.) GD 2006.
LNCS, vol. 4372, pp. 270–281. Springer, Heidelberg (2007)

6. Fink, M., Pupyrev, S.: Metro-line crossing minimization: Hardness, ap-
proximations, and tractable cases. ArXiv e-print abs/1306.2079 (2013),
http://arxiv.org/abs/1306.2079

7. Fink, M., Pupyrev, S.: Ordering metro lines by block crossings. In: Chatterjee, K., Sgall, J.
(eds.) MFCS 2013. LNCS, vol. 8087, pp. 397–408. Springer, Heidelberg (2013)

8. Groeneveld, P.: Wire ordering for detailed routing. IEEE Des. Test 6(6), 6–17 (1989)
9. Grötschel, M., Pulleyblank, W.: Weakly bipartite graphs and the Max-Cut problem. Opera-

tions Research Letters 1(1), 23–27 (1981)
10. Marek-Sadowska, M., Sarrafzadeh, M.: The crossing distribution problem. IEEE Transac-

tions on CAD of Integrated Circuits and Systems 14(4), 423–433 (1995)
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Abstract. We investigate exact crossing minimization for graphs that
differ from trees by a small number of additional edges, for several vari-
ants of the crossing minimization problem. In particular, we provide fixed
parameter tractable algorithms for the 1-page book crossing number, the
2-page book crossing number, and the minimum number of crossed edges
in 1-page and 2-page book drawings.

1 Introduction

Graphs that differ from a tree by the inclusion of a small number of edges
arise in many applications; such graphs are called almost-trees. Almost-trees
can be found in the areas of biology, medicine, operations research, sociology,
genealogy, distributed systems, and telecommunications, and in each of these
applications it is important to find effective visualizations1. One of the most
important criteria for the aesthetics and readability of a graph drawing is its
number of its crossings. Although crossing minimization problems tend to be
NP-complete, we may hope that the graphs arising in applications are not hard
instances for these problems, allowing us to find optimal drawings for them
efficiently. In this paper we prove that almost-trees are indeed not hard instances
by designing algorithms for crossing minimization of almost-trees that are fixed-
parameter tractable when parameterized by the number of extra non-tree edges
in these graphs.

Many different variants of the crossing number have been studied, depending
on what types of drawing are allowed and what we count as a crossing [1]. The
most frequently studied is the topological crossing number, cr(G), which counts
the number of crossings in a unrestricted placement of vertices and edges in the
plane. In this paper we consider also the 1-page and 2-page crossing numbers,
denoted cr1(G) and cr2(G) respectively. The 1-page crossing number counts the
minimal number of crossings in a drawing where all the vertices of G are placed
on a straight line, and all edges must be placed to one side of the line. The 2-page
crossing number is defined similarly: all vertices of G are placed on a straight line
and edges may be assigned to either side of the line, but are not allowed to cross
the line. In both 1-page and 2-page drawings it is not uncommon to place the
vertices on a circle instead of a straight line; this does not change the crossing
structure of the drawing. In addition to the number of crossings we consider the
number of crossed edges for these drawing styles, denoted cre1(G) and cre2(G).

1 We provide more details about these applications in Section 2.
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Fig. 1. Left: 1-page circular embedding with two crossings and three crossed edges.
Right: 2-page linear embedding of K4,4 with four crossings and eight crossed edges.

Following Gurevich, Stockmeyer and Vishkin [2] we define a k-almost-tree to
be a graph such that every biconnected component of the graph has cyclomatic
number at most k, where the cyclomatic number is the difference between the
number of edges in a graph and in one of its maximal spanning forests. The
k-almost-tree parameter has been used in past fixed-parameter algorithms [3–9],
and will play the same role in our algorithms for crossing minimization.

Grohe and later Kawarabayashi and Reed showed the topological crossing
number to be fixed parameter tractable for its natural parameter [10, 11]; the
same is true for odd crossing number [12]. Because the topological crossing num-
ber is at most quadratic in the k-almost-tree parameter, cr(G) is also fixed
parameter tractable for k-almost-trees. However, to our knowledge no fixed pa-
rameter tractable algorithms were known for computing 1-page or 2-page cross-
ing numbers. Indeed, for the 2-page problem, determining whether a graph can
be drawn with zero crossings is already NP-complete [13], so to achieve fixed pa-
rameter tractability we must use some other parameter such as the k-almost-tree
parameter rather than using the crossing number itself as a parameter.

Our main results are that cr1(G), cr2(G), cre1(G), and cre2(G) are all fixed-
parameter tractable for almost-trees. As with previous work on parameterized
algorithms for crossing numbers [10–12], our algorithms have a high dependence
on their parameters. Making our algorithms more practical by reducing this
dependence remains an open problem.

2 Application Domains

Examples of k-almost-trees can be found in biological gene expression networks,
where vertices represent genes and edges represent correlations between pairs of
genes. The k-almost-tree structure of such graphs has been exploited in param-
eterized algorithms for finding sequences of valid labelings of genes as active or
inactive [5]. The parameter k has also been used in algorithms for continuous
facility location where weighted edges represent a road network on which to effi-
ciently place facilities serving clients [2]. Intraprogram communication networks
whose vertices represent modules of a distributed system and whose edges rep-
resent communicating pairs of modules also have an almost-tree structure that
has been exploited for parameterized algorithms [3].
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A typical example of almost-trees arises when studying the spread of sexually
transmitted infections, where sexual networks are constructed by voluntary sur-
vey. In these graphs vertices represent people who have received treatment, and
edges represent their reported sexual parters. Analysis of these networks allows
researchers to identify the growth and decline phases of an outbreak, and the
general spread of the disease [14–16].

Another type of social network represents the business dealings of individuals
and business entities. Examples of these networks can be found in the art of
Mark Lombardi, an artist famous for his drawings of networks connecting the
key players of conspiracy theories [17]. Many of Lombardi’s networks show an
almost-tree structure; the Lippo Group Shipping network listed below is one.

The directed acyclic graphs originating from genealogical data where edges
represent parental relationships on the vertices are another example of k-almost-
trees, when viewed as undirected graphs, since in modern societies marriage
between close relatives is rare. Similar types of graphs also come from animal
pedigrees, academic family trees, and organizational lineages [18].

Utility networks such as telecommunication networks and power grids also
form an almost-tree structure, where additional edges beyond those of a spanning
tree provide load balancing and redundancy. Since such links are expensive they
are placed in the network sparingly.

In order to visually distinguish the tree-like parts of these graphs from the
parts with nontrivial connectivity, we may use a sunburst style (Figure 2) in
which the 2-core of the graph (the part of a graph which is left after repeatedly
removing all degree one vertices [19]) is drawn with a one-page circular layout and
the rest of the graph extends outwards using a radial layout on concentric circles.
In this style, crossings occur only within the inner one-page layout, motivating
our interest in crossing minimization for one-page drawings of almost-trees.

We collect statistics for several real world graphs in Table 1. The table shows
vertex and edge counts (n and m), the cyclomatic number a = m − n + 1, the

Fig. 2. Two sunburst drawings. Left: An HIV infection graph. Right: Lombardi’s World
Finance Miami graph.
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k-almost-tree parameter k, and the vertex and edge counts for the 2-core (n2

and m2). For most of these graphs the parameters a and k are low.

Table 1. Statistics for real-world almost-trees

Name n m a k n2 m2

Gonorrhoea sexual network 1 [15] 38 39 2 2 9 10
Gonorrhoea sexual network 2 [15] 84 90 7 4 22 28
Lippo Group Shipping [17] 96 112 17 16 45 61
Global International Airways
and Indian Springs State Bank [17]

82 99 18 15 33 50

Gondola Genealogy [20] 242 255 14 14 50 63
HIV [14] 243 257 15 12 39 53
Power Grid [21] 4941 6594 1654 1516 3353 5006

3 The Kernel

Our fixed-parameter algorithms use the kernelization method. In this method
we find a polynomial time transformation from an arbitrary input instance to
a kernel, an instance whose size is bounded by a fixed function f(k) of the pa-
rameter value, and then apply a non-polynomial algorithm to the kernel. In this
section we outline the general method for kernelization that we use in our fixed
parameter algorithms, based on a similar kernelization by Bannister, Cabello
and Eppstein [22] for a different problem, 1-planarity testing.

We first describe our kernelization for cyclomatic number, which starts by
reducing the graph to its 2-core. The 2-core of a graph can be found in linear
time by initializing a queue of degree one vertices, repeatedly finding and re-
moving vertices from the queue and the graph, and updating the degree and
queue membership of the neighbor of each removed vertex.The 2-core consists
of vertices of degree at least three connected to each other by paths of degree
two vertices. The following lemma bounds the numbers of high degree vertices
and maximal paths of degree two vertices.

Lemma 1. If G is a graph with cyclomatic number k and minimum degree three
then G has at most 2k − 2 vertices and at most 3k − 3 edges. Furthermore, this
bound is tight. As a consequence, the 2-core of a graph with cyclomatic number
k has at most 2k−2 vertices of degree at least three, and at most 3k−3 maximal
paths of degree two vertices.

Proof. Double counting yields 2(n − 1 + k) ≥ 3n, simplifying to n ≤ 2k − 2. A
spanning tree of G has at most 2k − 3 edges, and there are k edges outside the
tree, from which the bound on edges follows. For a graph realizing the upper
bound consider any cubic graph with 2k − 2 vertices. ��
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The final step in this kernelization is to reduce the length of the maximal degree
two paths. Depending on the specific problem, we will determine a maximal
allowed path length �(k), and if any paths exceed this length we will shorten
them to length exactly �(k). After this step the kernel will have O(k�(k)) edges
and vertices, bounded by a function of k.

To change the parameter of our algorithms from the cyclomatic number to
the k-almost-tree parameter, we first decompose the graph into its biconnected
components. These components have a tree structure and in most drawing styles
they can be embedded separately without introducing crossings. We then ker-
nelize and optimally embed each biconnected component individually.

4 1-page Crossing Minimization

Minimizing crossings in 1-page drawings is important for several drawing styles,
but is NP-hard [23], leading Baur and Brandes to develop fast practical heuris-
tics for reducing but not optimizing the number of crossings [24]. As we now
show, crossing minimization and crossed edge minimization in 1-page drawings
of k-almost-trees is fixed-parameter tractable in the parameter k. We use the
kernelization of Section 3, keeping one vertex per maximal degree two path.

Lemma 2. Let G have cyclomatic number k and let K be the kernel constructed
from G with �(k) = 2. Then

1. K has at most 5k vertices and 6k edges;
2. cr1(G) = cr1(K);
3. cre1(G) = cre1(K).

Proof. (1) After reducing a graph with cyclomatic number k to its 2-core and
reducing all maximal degree two paths to single edges we have a graph with
2k − 2 vertices and 3k − 3 edges, by Lemma 1. Since we are then adding one
vertex back to every path that was not a single edge in the original graph, K
has at most 5k − 5 ≤ 5k vertices and 6k − 6 ≤ 6k edges.

(2) First we show that cr1(G) ≤ cr1(K). Suppose that K has been embedded
in one page with the minimum number of crossings. Every degree two vertex
v in K corresponds to a path of degree two vertices in G. We can expand this
path in a small neighborhood of v without introducing any new crossings. After
expanding all degree two paths we have an embedding of the 2-core of G. Now
each of the remaining vertices corresponds to a tree in G. Since trees can be
embedded in one page without crossings, we can expand each tree in a small
neighborhood of its corresponding vertex without introducing further crossings.

Now we show that cr1(K) ≤ cr1(G). Suppose that G is embedded on one page
with minimum crossings. Reduce G to its 2-core; this does not increase crossings.
Let u and v be two adjacent degree-two vertices of G, let e be the edge between
u and v and let f be the edge from v not equal to e. Now, change the embedding
of G by keeping u fixed and moving v next to u, rerouting f along the former
path used by both e and f . This change moves all crossings from e to f but does
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not create new crossings, so it produces another minimum-crossing embedding.
After this change, edge emay be contracted, again without changing the crossing
number. Repeatedly moving one of two adjacent degree-two vertices and then
contracting their connecting edge eventually produces an embedding of K whose
crossing number equals that of G.

(3) Follows from the proof of (2) with minor modification. ��

Lemma 3. If G is a graph with n vertices and m edges, then cr1(G) and cre1(G)
can be computed in O(n!) time.

Proof. We place the vertices in an arbitrary order on a circle, and compute the
number of crossings or crossed edges for this layout. Then we use the Steinhaus–
Johnson–Trotter algorithm [25] to list the (n − 1)! permutations of all but one
vertex efficiently, with consecutive permutations differing by a transposition.
When a transposition swaps u and v, the number of crossings (or crossed edges)
in the new layout can be updated from its previous value in O(deg(u)+deg(v)) =
O(n) time, as in [24]. This yields a total run time of O(n!). ��

Combining the above lemmas, we apply the non-polynomial time algorithm only
on the kernel of the graph to achieve the following fixed parameter result.

Theorem 1. If G is a graph with cyclomatic number k, then cr1(G) and cre1(G)
can be computed in O((5k)! + n) time. If G is a k-almost-tree, then cr1(G) and
cre1(G) can be computed in O((5k)!n) time.

In Section 6 we show how to improve the base of the factorial in this bound by
applying fast matrix multiplication algorithms.

5 2-page Crossing Minimization

In this section we consider the problem of 2-page crossing minimization. I.e.,
we seek a circular arrangement of the vertices of a graph G, and an assignment
of the edges to either the interior or exterior of the circle, such that the total
number of crossings is minimized. As in the 1-page case, we consider minimizing
both the number of crossings cr2(G) and the number of crossed edges cre2(G).

There are two sources of combinatorial complexity for this problem, the ver-
tex ordering and the edge assignment. However, even when the vertex ordering
is fixed, choosing an edge assignment to minimize crossings is NP-hard [26]. The
hard instances of this problem can be chosen to be perfect matchings (with k-
almost-tree parameter zero), so unless P = NP there can be no FPT algorithm
for the version of the problem with a fixed vertex ordering. Paradoxically, we
show that requiring the algorithm to choose the ordering as well as the edge as-
signment makes the problem easier. A straightforward exact algorithm considers
all 2m(n− 1)! possible configurations and chooses the one minimizing the total
number of crossings, running in O(2mn!) time. We will combine this fact with
our kernelization to produce an FPT algorithm.

We will give a sequence of reduction rules that transforms any drawing of G
into a drawing with the same number of crossings and crossed edges, in which
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the lengths of all paths are bounded by a function f(k) of the parameter k.
These reductions will justify the correctness of our kernelization using the same
function. Our reductions are based on the observation that, if uv is an uncrossed
edge, and u and v are consecutive vertices on the spine, then edge uv can be
contracted without changing the crossing number or number of uncrossed edges.
A given layout may not have any uncrossed edges connecting consecutive ver-
tices, but we will show that, for a graph with a long degree two path, the layout
can be modified to produce edges of this type without changing its crossings.

Lemma 4. Let G be a graph with cyclomatic number k. Then there exists a
2-page drawing with at most k crossed edges, and at most

(
k
2

)
crossings.

Proof. Remove k edges from G to produce a forest, F . Draw F without crossings
on one page, and draw the remaining k edges on the other page. Only the k edges
in the second page may participate in a crossing. ��

We classify the possible configurations of pairs of consecutive edges of a degree
two path, up to horizontal and vertical symmetries, into four possible types: m,
s, rainbow, and spiral, as depicted in Figure 3.

a cb a cb a bca bc

m s rainbow spiral

Fig. 3. Up to horizontal and vertical symmetry, the only possible arrangements of two
consecutive edges are m, s, rainbow, and spiral

Lemma 5. If a layout contains a pair of edges ab and bc of m or rainbow type
with edge bc uncrossed and with b and c both having degree two, then it can be
reduced without changing its crossings by a rearrangement followed by a contrac-
tion of the edge bc.

Proof. In either configuration we move vertex b adjacent to vertex c, on the
opposite side of c from its other neighbor, as demonstrated in Figure 4. Since the
edge bc is uncrossed this transformation does not change the crossing structure
of the drawing. Now that b and c are placed next to each other the edge bc may
be contracted. ��

Lemma 6. If a layout contains a pair of uncrossed edges ab and bc of s or spiral
type, with a, b, and c all having degree two, then the layout can be reduced without
changing its crossings by a rearrangement and contraction.

Proof. We assume by symmetry that a is the leftmost of the three vertices, edge
ab is in the upper page, and edge bc is in the lower page. Let x be the neighbor of
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a b c a c b a c b a cb

Fig. 4. The m reduction (left) and the rainbow reduction (right) shown with an edge
into the β region

a b cα β a b cαβ a c bα β a c bαβ

Fig. 5. The s reduction (left) shown with an edge into β and the spiral reduction (right)
shown with edges into α and β

a that is not b and let y be the neighbor of c that is not b. We may assume that
edge xa is in the lower page, for if it were in the upper page then edge ab would
be part of an m or rainbow configuration and could be reduced by Lemma 5. By
the same reasoning we may assume that cy is in the upper page.

First we consider s configurations. Let α be the set of vertices between a
and b, and let β be the set of vertices between b and c. Then β can have no
incoming edges in the lower page, because cy is upper and bc blocks all other
edges. Therefore, we may move β directly to the left of a, as in Figure 5. Since
edges ab and bc are uncrossed this transformation does not change the crossing
structure of the drawing. We can then contract edge ab.

For the spiral, assume by symmetry that c is between a and b. Let α be the
set of vertices between a and c, and let β be the set of vertices between c and
b. Because cy is assumed to be in the upper page, and bc blocks all other lower
edges, β can have no incoming lower edges; however, it might have edges in the
upper page connecting it to α, so we must be careful to avoid twisting those
connections and introducing new crossings. In this case, we move β between a
and α and contract edge bc. ��

As shown above, if any degree two path has at least four edges and two consec-
utive uncrossed edges, then we can apply one of the reduction rules and reduce
the number of edges. For this reason we define the kernelK for computing cr2(G)
using the method in Section 3, with the bound �(k) = 2k2 on the length of the
maximal degree two paths. Similarly, we define the the kernel L for computing
cre2(G) by setting �(k) = 2k.

Lemma 7. Let G be a graph with cyclomatic number k. Then,

1. K has at most 6k3 vertices and 6k3 edges;
2. cr2(G) = cr2(K);
3. L has at most 6k2 vertices and 6k2 edges;
4. cre2(G) = cre2(L)
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Proof. (1) Since we have at most 2k2 vertices per maximal degree two path, the
total number of vertices is at most 2k2(3k − 3) + 2k − 2 ≤ 6k3. The number of
edges is at most 2k2(3k − 3) + (2k − 2) + (k − 1) ≤ 6k3.

(2) The proof that cr2(G) ≤ cr2(K) is that same as in Lemma 2. To see that
cr2(K) ≤ cr2(G) we suppose that G has been given an embedding that minimizes
cr2(G). The total number of crossings in such an embedding is bounded above
by

(
k
2

)
< k2/2, and in turn the number of crossed edges is less than k2. Thus any

maximal degree two path in G with length greater than 2k2 can be shortened.
(3) and (4) The proof follows by the same argument as in (1) and (2), noting

that there always exists a drawing with at most k crossed edges. ��

We apply the straightforward exact algorithm to the kernel of the graph to
achieve the following result:

Theorem 2. If G is a graph with cyclomatic number k, then cr2(G) can be com-

puted in O(26k
3

(6k3)!+n) time, and cre2(G) can be computed in O(26k
2

(6k2)!+n)
time. If G is a k-almost-tree, then cr2(G) and cre2(G) can be computed in

O(26k
3

(6k3)!n) time and O(26k
2

(6k2)!n) time respectively.

6 Matrix Multiplication Improvement

α

β

γ

δδ

A

B

CC

Fig. 6. Types of crossings

The asymptotic run time for processing each bicon-
nected component in both the one page and two
page cases can be further improved using matrix
multiplication to find the minimum weight triangle
in a graph [27].

We begin with the 1-page case, in which we
improve the run time to O(kO(1)(5k)!ω/3) where
ω < 2.3727 is the exponent for matrix multiplica-
tion [28]. Let N ≤ 5k be the number of vertices in
the kernel K, and for simplicity of exposition, as-
sume that N is a multiple of 3. We construct a new
graph G′ as follows. For each subset S ⊂ K of N/3
vertices in the original kernel K, and for each ordering of S, we create one vertex
in G′. Thus, the number of vertices in G′ is (N/3)! ·

(
N

N/3

)
= O

(
(N !)1/3

)
. We

add edges in G′ between pairs of vertices that represent disjoint subsets. G′ has
a triangle for every triple of subsets that form a proper partition of V in G.
Thus, each triangle corresponds to an assignment of the vertices to three uni-
formly sized regions and a distinct ordering of the vertices in each region, which
together form a complete layout of G.

We assign a weight to each edge in G′ based on the number of edge crossings
in G between the vertices in the corresponding regions. There are four possible
types of crossing, represented by α, β, γ and δ in Figure 6. For a crossing of type
α, in which all endpoints of a pair of crossing edges in G are contained in the same
region B, we add 1/2 to the weights of edges AB and BC in G′. For β, in which
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a pair of crossing edges in G both start in a region A and end in another region
B, we add 1 to the weight of edge AB in G′. For γ, in which three endpoints of
a pair of edges lie in the same region C, and the fourth lies in a different region
B, we add 1 to the weight of edge BC in G′. Finally, for δ, in which a pair of
crossed edges both have an endpoint in one region A, but their other endpoint in
two different regions B and C, we add 1/2 to the weight of edge AC and 1/2 to
the weight of edge AB in G′. With these weights, the total weight of a triangle
in G′ equals the number of edge crossings in the corresponding layout. The edge
weights for G′ can be computed in O(kO(1)(5k)!2/3) time.

To find the minimum weight triangle we construct the weighted adjacency
matrix A, where Ai,j is given the weight of the edge from i to j or infinity if
no such edge exists. We then compute the min-plus matrix product of A with
itself, which is defined by [A�A]i,j = mink Ai,k+Ak,j . The weight of a minimum
weight triangle in A then corresponds to the minimum entry in A+A�A. From
the minimum weight and corresponding i and j the triangle can be found in
linear time. Thus, the runtime is dominated by computing A � A, which can be
done in O(kO(1)(5k)!ω/3) time using fast matrix multiplication [29, 30].

For the 2-page case we consider each of the 2M edge page assignments sep-
arately, computing the minimum crossing drawing for this assignment using
matrix multiplication. As before we construct a graph G′ with weighted edges
between compatible vertices, such that a minimum weight triangle in G′ corre-
sponds to a minimum weight drawing. Matrix multiplication is then used to find
this minimal weight triangle for each page assignment, yielding a running time
of O(2M (N !)ω/3), where N is the number of vertices and M is the number of
edges in the kernel. Thus, we have the following result:

Theorem 3. If G is a graph with cyclomatic number k, then we can compute:

– cr1(G) and cre1(G) in O(kO(1)(5k)!ω/3 + n) time;

– cr2(G) in O(26k
3

(6k3)!ω/3 + n) time;

– cre2(G) in O(26k
2

(6k2)!ω/3 + n) time.

7 Conclusion

We have given new fixed parameter algorithms for computing the minimum
number of edge crossings and minimum number of crossed edges in 1-page and
2-page embeddings of k-almost trees. To our knowledge, these are the only pa-
rameterized exact algorithms for these drawing styles.

We leave the following questions open to future research:

– For 2-page embeddings, the hardness of finding uncrossed drawings [13]
shows that crossing minimization cannot be FPT in its natural parameter,
the number of crossings. What about 1-page embeddings?

– Can the dependence on k be reduced to singly exponential?
– What other NP-hard problems in graph drawing are FPT with respect to k?
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[1] Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser.
B 80(2), 225–246 (2000)

[2] Gurevich, Y., Stockmeyer, L., Vishkin, U.: Solving NP-hard problems on graphs
that are almost trees and an application to facility location problems. J.
ACM 31(3), 459–473 (1984)

[3] Fernández-Baca, D.: Allocating modules to processors in a distributed system.
IEEE Transactions on Software Engineering 15(11), 1427–1436 (1989)

[4] Kloks, T., Bodlaender, H., Müller, H., Kratsch, D.: Computing treewidth and
minimum fill-in: All you need are the minimal separators. In: Lengauer, T. (ed.)
ESA 1993. LNCS, vol. 726, pp. 260–271. Springer, Heidelberg (1993)

[5] Akutsu, T., Hayashida, M., Ching, W.K., Ng, M.K.: Control of Boolean net-
works: Hardness results and algorithms for tree structured networks. J. Theor.
Bio. 244(4), 670–679 (2007)

[6] Fiala, J., Kloks, T., Kratochv́ıl, J.: Fixed-parameter complexity of λ-labelings.
Discrete Appl. Math. 113(1), 59–72 (2001)

[7] Coppersmith, D., Vishkin, U.: Solving NP-hard problems in ‘almost trees’: Vertex
cover. Discrete Appl. Math. 10(1), 27–45 (1985)

[8] Bodlaender, H.: Dynamic algorithms for graphs with treewidth 2. In: van Leeuwen,
J. (ed.) WG 1993. LNCS, vol. 790, pp. 112–124. Springer, Heidelberg (1994)
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Abstract. We define strict confluent drawing, a form of confluent drawing in
which the existence of an edge is indicated by the presence of a smooth path
through a system of arcs and junctions (without crossings), and in which such
a path, if it exists, must be unique. We prove that it is NP-complete to determine
whether a given graph has a strict confluent drawing but polynomial to determine
whether it has an outerplanar strict confluent drawing with a fixed vertex ordering
(a drawing within a disk, with the vertices placed in a given order on the boundary).

1 Introduction

Confluent drawing is a style of graph drawing in which edges are not drawn explicitly;
instead vertex adjacency is indicated by the existence of a smooth path through a sys-
tem of arcs and junctions that resemble train tracks. These types of drawings allow even
very dense graphs, such as complete graphs and complete bipartite graphs, to be drawn
in a planar way [4]. Since its introduction, there has been much subsequent work on con-
fluent drawing [7,6,9,10,13,17], but the complexity of confluent drawing has remained
unclear: how difficult is it to determine whether a given graph has a confluent drawing?
Confluent drawings have a certain visual similarity to a graph drawing technique called
edge bundling [3,5,11,12,14], in which “similar” edges are routed together in “bundles”,
but we note that these drawings should be interpreted differently. In particular, sets of
edges bundled together form visual junctions, however, interpreting them as confluent
junctions can create false adjacencies.

Formally, a confluent drawing may be defined as a collection of vertices, junctions
and arcs in the plane, such that all arcs are smooth and start and end at either a junction
or a vertex, such that arcs intersect only at their endpoints, and such that all arcs that
meet at a junction share the same tangent line there. A confluent drawing D represents
a graph G defined as follows: the vertices of G are the vertices of D, and there is an
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edge between two vertices u and v if and only if there exists a smooth path in D from
u to v that does not pass any other vertex. (In some variants of confluent drawing an
additional restriction is made that the smooth path may not intersect itself [13]; however,
this constraint is not relevant for our work.)

(a) (b)

Fig. 1. (a) A drawing with a
duplicate path. (b) A draw-
ing with a self-loop.

Contribution. In this paper we introduce a subclass of
confluent drawings, which we call strict confluent draw-
ings. Strict confluent drawings are confluent drawings with
the additional restrictions that between any pair of vertices
there can be at most one smooth path, and there cannot be
any paths from a vertex to itself. Figure 1 illustrates the for-
bidden configurations. To avoid irrelevant components in
the drawing, we also require all arcs of the drawing to be
part of at least one smooth path representing an edge. We
believe that these restrictions may make strict drawings easier to read, by reducing the
ambiguity caused by the existence of multiple paths between vertices. In addition, as we
show, the assumption of strictness allows us to completely characterize their complex-
ity, the first such characterization for any form of confluence on arbitrary undirected
graphs.

We prove the following:

– It is NP-complete to determine whether a given graph has a strict confluent drawing.
– For a given graph, with a given cyclic ordering of its vertices, there is a polynomial

time algorithm to find an outerplanar strict confluent drawing, if it exists: this is a
drawing in a disk, with the vertices in the given order on the boundary of the disk

– When a graph has an outerplanar strict confluent drawing, an algorithm based on
circle packing can construct a layout of the drawing in which every arc is drawn
using at most two circular arcs.

See Fig. 2(a) for an example of an outerplanar strict confluent drawing. Previous work
on tree-confluent [13] and delta-confluent drawings [6] characterized special cases of
outerplanar strict confluent drawings as being the chordal bipartite graphs and distance-
hereditary graphs respectively, so these graphs as well as the outerplanar graphs are all
outerplanar strict confluent. The six-vertex wheel graph in Fig. 2(b) provides an example

(a)

u

a

b

cd

e

ua

b

cd

e

(b)

Fig. 2. (a) Outerplanar strict confluent drawing of the GD2011 contest graph. (b) A graph with
no outerplanar strict confluent drawing.
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of a graph that does not have an outerplanar strict confluent drawing. (The central vertex
u needs to be placed between two of the outer vertices, say, a and b. The smooth path
from u to the opposite vertex d separates a and b, so there must be a junction shared by
the u–d and a–b paths, creating a wrong adjacency with d.)

2 Preliminaries

Let G = (V,E) be a graph. We call an edge e in a drawing D direct if it consists only
of a single arc (that does not pass through junctions). We call the angle between two
consecutive arcs at a junction or vertex sharp if the two arcs do not form a smooth path;
each junction has exactly two angles that are not sharp, and every angle at a vertex is
sharp (so the number of sharp angles equals the degree of the vertex).

Lemma 1. Let G be a graph, and let E′ ⊆ E be the edges of E that are incident to at
least one vertex of degree 2. If G has a strict confluent drawing D, then it also has a
strict confluent drawing D′ in which all edges in E′ are direct.

Proof. Let v be a degree-2 vertex in G with two incident edges e and f . We consider
the representation of e and f in D and modify D so that e and f are single arcs. There
are two cases. If e and f leave v on two disjoint paths, then these paths have only merge
junctions from v’s perspective. We can simply separate these junctions from e and f as
shown in Fig. 3(a). If, on the other hand, e and f share the same path leaving v, then their
paths split at some point. We need to reroute the merge junctions prior to the split and
separate the merge junctions after the split as shown in Fig. 3(b). This is always possible
since v has no other incident edges. BecauseD was strict and these changes do not affect
strictness, D′ is still a strict confluent drawing and edges e and f are direct. �

v v

(a)

v v

(b)

Fig. 3. The two cases of creating single arcs for edges incident to a degree-2 vertex

Lemma 2. Let G be a graph. If G has no K2,2 as a subgraph, whose vertices have
degrees≥ 3 in G, then G has a strict confluent drawing if and only if G is planar.

Proof. Since every planar drawing is also a strict confluent drawing, that implication is
obvious. So let D be a strict confluent drawing for a graph G without a K2,2 subgraph,
whose vertices have degrees ≥ 3 in G. Since larger junctions, where more than three
arcs meet, can easily be transformed into an equivalent sequence of binary junctions,
we can assume that every junction in D is binary, i.e., two arcs merge into one (or, from
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a different perspective, one arc splits into two). By Lemma 1 we can further transform
D so that all edges incident to degree-2 vertices are direct. Now for any vertex u in D
none of its outgoing paths to some neighbor v can visit a merge junction before visiting
a split junction as this would imply either a non-strict drawing or a K2,2 subgraph with
vertex degrees ≥ 3. So the sequence of junctions on any u-v path consists of a number
of split junctions followed by a number of merge junctions. But any such path can be
unbundled from its junctions to the left and right and turned into a direct edge without
creating arc intersections as illustrated in Fig. 4. This shows that D can be transformed
into a standard planar drawing of G. �

v

u

v

u

Fig. 4. Any strict confluent drawing of a graph without a K2,2 subgraph can be transformed into
a standard planar drawing

Lemma 3 characterizes the combinatorial complexity of strict confluent drawings. Its
proof is found in the full paper [8] and uses Euler’s formula and double counting.

Lemma 3. The combinatorial complexity of any strict confluent drawing D of a graph
G, i.e., the number of arcs, junctions, and faces in D, is linear in the number of
vertices of G.

Lemma 3 is in contrast to previous methods for confluently drawing interval graphs [4]
and for drawing confluent Hasse diagrams [9], both of which may produce (non-strict)
drawings with quadratically many features.

3 Computational Complexity

We will show by a reduction from planar 3-SAT [15] that it is NP-complete to decide
whether a graph G has a strict confluent drawing in which all edges incident to degree-2
vertices are direct. By Lemma 1, this is enough to show that it is also NP-complete to
decide if G has any strict confluent drawing.

Consider the subdivided grid graph (a grid with one extra vertex on each edge). In
this graph, all edges are adjacent to a degree 2 vertex. Since a grid graph more than one
square wide has only one fixed planar embedding (up to choice of the outer face), the
subdivided grid graph has only one confluent embedding in which all edges are direct.
We will base our construction on a number of such grids.

Let S be a planar 3-SAT formula. Globally speaking, we will create a grid graph
for each variable of S, of size depending on the number of clauses that the variable
appears in. The external edges of this grid graph are alternatingly colored green and
red. We connect the variable graphs by identifying certain vertices: for each of the three
variables that appear in a clause, we select one subdivided edge (that is, three vertices
connected by two edges) on the outer face, and identify the endpoints of these edges
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¬x3 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x4 ∨ ¬x5

x1 ∨ x3 ∨ ¬x5

¬x1 ∨ ¬x2 ∨ x4

x1 ∨ x2 ∨ ¬x3

x1 x2 x3 x4 x5

(a)

x1 x2 x3 x4 x5

(b)

Fig. 5. (a) A planar 3-SAT formula. (b) The corresponding global frame of the construction:
one grid graph per variable, with some vertices identified at each clause. Green boundary edges
correspond to positive literals, red edges to negated literals. For easier readability the grids in this
figure are larger than strictly necessary.

Fig. 6. K4 and its two strict confluent drawings, without moving the vertices and keeping all arcs
inside the convex hull of the vertices

into a triangle of subdivided edges (that is, a 6-cycle). We choose a green edge for a
positive occurrence of the variable and a red edge for a negated occurrence. This will
become clear below. We call the resulting graph F the frame of the construction; all
edges of F are adjacent to a degree-2 vertex and F has only one planar embedding (up
to choice of the outer face). Figure 5 shows an example.

(a) (b) (c)

Fig. 7. (a) A variable gadget consists of a grid of K4’s. Green (light) edges of the frame high-
light normal literals, red (dark) edges negated ones. (b) One of the two possible strict confluent
drawings, corresponding to the value true. (c) The other strict confluent drawing, corresponding
to false.
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Fig. 8. Three variables attached to a
clause gadget. The top left variable
occurs in the clause as a positive lit-
eral, the others as negative literals. The
clause can be satisfied because the top
right variable is set to false.

The main idea of the construction is based on
the fact that K4, when drawn with all four ver-
tices on the outer face, has exactly two strict con-
fluent drawings: we need to create a junction that
merges the diagonal edges with one pair of oppo-
site edges, and we can choose the pair. Figure 6
illustrates this. We will add a copy of K4 to ev-
ery cell of the frame graph F . Recall that every
cell, except for the triangular clause faces, is a sub-
divided square (that is, an 8-cycle). We add K4

on the four grid vertices (not the subdivision ver-
tices). The edges that connect external grid ver-
tices are called literal edges. Figure 7(a) shows
this for a small grid. Since neighboring grid cells
share a (subdivided) edge, the K4’s are not edge-
independent. This implies that in a strict confluent
drawing, we cannot “use” such a common edge in
both cells. Therefore, we need to orient the K4-
junctions alternatingly, as illustrated in Figures 7(b) and 7(c). If the grid is sufficiently
large (every cell is part of a larger at least size-(2×2) grid) these choices are completely
propagated through the entire grid, so there are two structurally different possible em-
beddings, which we use to represent the values true and false of the corresponding
variable. For every green edge of the frame in the true state and every red edge in
the false state there is one remaining literal edge in the outer face, which can still be
drawn either inside or outside their grid cells. In the opposite states these literal edges
are needed inside the grid cells to create the K4 junctions. The availability of at least
one literal edge (corresponding to a true literal) is important for satisfying the clause
gadgets, which we describe next.

Inside each triangular clause face, we add the graph depicted in Figure 9(a). This
graph has several strict confluent drawings; however, in every drawing at least one of
the three outer edges needs to be drawn inside the subdivided triangle.

Lemma 4. There is no strict confluent drawing of the clause graph in which all three
long edges are drawn outside. Moreover, there is a strict confluent drawing of the clause
graph with two of these edges outside, for every pair.

(a) (b) (c) (d)

Fig. 9. (a) The input graph of the clause. (b, c, d) Three different strict confluent drawings
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Proof. Recall that by Lemma 1 the subdivided triangle must be embedded as a 6-cycle
of direct arcs. To prove the first part of the lemma, assume that the triangle edges are all
drawn outside this cycle. The remainder of the graph has no 4-cycles without subdivi-
sion vertices (that is, no K2,2 with higher-degree vertices), so by Lemma 2 it can only
have a strict confluent drawing if it is planar. However, it is a subdivided K5, which
is not planar. To prove the second part of the lemma, we refer to Figures 9(b), 9(c)
and 9(d). �

This describes the reduction from a planar 3-SAT instance to a graph consisting of
variable and clause gadgets. Next we show that this graph has a strict confluent drawing
if and only if the planar 3-SAT formula is satisfiable. For a given satisfying assignment
we choose the corresponding embeddings of all variable gadgets. The assignment has
at least one true literal per clause, and correspondingly in each clause gadget one of the
three literal edges can be drawn inside the clause triangle, allowing a strict confluent
drawing by Lemma 4. Conversely, in any strict confluent drawing, each clause must be
drawn with at least one literal edge inside the clause triangle by Lemma 4, so translating
the state of each variable gadget into its truth value yields a satisfying assignment.

To show that testing strict confluence is in NP, recall that by Lemma 3 the combina-
torial complexity of the drawing is linear in the number of vertices. Thus the existence
of a drawing can be verified by guessing its combinatorial structure and verifying that
it is planar and a drawing of the correct graph.

Theorem 1. Deciding whether a graph has a strict confluent drawing is NP-complete.

4 Outerplanar Strict Confluent Drawings

For a graph G with a fixed cyclic ordering of its vertices, we can test in polynomial time
whether an outerplanar strict confluent drawing with this vertex ordering exists, and, if
so, construct one. This algorithm uses the closely related notion of a canonical diagram
of G, which is unique and exists if and only if an outerplanar strict confluent drawing
exists. From the canonical diagram a confluent drawing can be constructed. We further
show that the drawing can be constructed such that every arc consists of at most two
circular arcs.

4.1 Canonical Diagrams

We define a canonical diagram to be a collection of junctions and arcs connecting the
vertices in the given order on the outer face (as in a confluent drawing), but with some
of the faces of the diagram marked, satisfying additional constraints enumerated below.
Figure 10 shows a canonical diagram and an outerplanar strict confluent drawing of the
same graph. In such a diagram, a trail is a smooth curve from one vertex to another
that follows the arcs (as in a confluent drawing) but is allowed to cross the interior of
marked faces from one of its sharp corners to another. The constraints are:

– Every arc is part of at least one trail.
– No two trails between the same two vertices can follow different sequences of arcs

and faces.
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Fig. 10. Three views of the same graph as a node-link diagram (left), canonical diagram (center),
and outerplanar strict confluent drawing (right)

– Each marked face must have at least four angles, all of which are sharp.
– Each arc must have either sharp angles or vertices at both of its ends.
– For each junction j with exactly two arcs in each direction, let f and f ′ be the two

faces with sharp angles at j. Then it is not allowed for f and f ′ to both be either
marked or to be a triangle (a face with three angles, all sharp).

Let j be a junction of a canonical diagram D. Then define the funnel of j to be the
4-tuple of vertices a, b, c, d where a is the vertex reached by a path that leaves j in one
direction and continues as far clockwise as possible, b is the most counterclockwise
vertex reachable in the same direction from j, c is the most clockwise vertex reachable
in the other direction, and d is the most counterclockwise vertex reachable in the other
direction. Note that none of the paths from j to a, b, c, and d can intersect each other
without contradicting the uniqueness of trails. We call the circular intervals of vertices
[a, b] and [c, d] (in the counterclockwise direction) the funnel intervals of the respective
funnel. We say a circular interval [a, b] is separated if either a and b are not adjacent
in G, or there exists a junction in the canonical diagram with funnel intervals [a, e] and
[f, b], where e, f ∈ [a, b].

A canonical diagram represents a graph G in which the edges in G correspond to
trails in the diagram. As we show in the full paper [8], a graph G has a canonical
diagram if and only if it has an outerplanar strict confluent drawing, and if a canonical
diagram exists then it is unique.

4.2 Algorithm

By using the properties of canonical diagrams (see the full paper [8]), we may obtain
an algorithm that constructs a canonical diagram and strict confluent drawing of a given
cyclically-ordered graph G, or reports that no drawing exists, in time and space O(n2).
This bound is optimal in the worst case, as it matches the input size of a graph that may
have quadratically many edges.

Steps 1–3 of the algorithm, detailed below, build some simple data structures that
speed up the subsequent computations. Step 4 discovers all of the funnels in the input,
from which it constructs a list of all of the junctions of the canonical diagram. Step 5
connects these junctions into a planar drawing, a subset of the canonical diagram. Step 6
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builds a graph for each face of this drawing that will be used to complete it into the
entire canonical diagram, and step 7 uses these graphs to find the remaining arcs of the
diagram and to determine which faces of the diagram are marked. Step 8 checks that
the diagram constructed by the previous steps correctly represents the input graph, and
step 9 splits the marked faces, converting the diagram into a strict confluent drawing.

1. Number the vertices clockwise around the boundary cycle from 0 to n− 1.
2. Build a table, containing for each pair i, j, the number of ordered pairs (i′, j′) with

i′ ≤ i, j′ ≤ j, and vertices i′ and j′ adjacent inG. By performing a constant number
of lookups in this table we may determine in constant time how many edges exist
between any two disjoint intervals of the boundary cycle.

3. Build a table that lists, for each ordered pair u, v of vertices, the neighbor w of u
that is closest in clockwise order to v. That is, w is adjacent to u, and the interval
from v clockwise to w contains no other neighbors of u. The table entries for u
can be found in linear time by a single counterclockwise scan. Repeat the same
construction in the opposite orientation.

4. For each separated interval [a, b], let c be the next neighbor of a that is counter-
clockwise of b, and let d be the next neighbor of b that is clockwise of a. If (i) c
is a neighbor of b, (ii) d is a neighbor of a, (iii) a is the next neighbor of c that
is counterclockwise of d, and (iv) b is the next neighbor of d that is clockwise of
c, then (if a confluent diagram exists) a, b, c, d must form the funnel of a junction,
and all funnels have this form. We check all circular intervals in increasing order of
their cardinalities. For each discovered funnel, we mark the intervals that are sepa-
rated by the corresponding junction. This way we can check in O(1) time whether
a circular interval is separated. If the number of funnels exceeds the linear bound of
Lemma 3 on the number of junctions in a confluent drawing, abort the algorithm.

5. Create a junction for each of the funnels found in step 4. For each vertex v, make
a set Jv of the junctions whose funnel includes that vertex; if they are to be drawn
as part of a canonical diagram, the junctions of Jv need to be connected to v by a
confluent tree. For any two junctions in Jv , it is possible to determine in constant
time whether one is an ancestor of another in this tree, or if not whether one is
clockwise of the other, by examining the cyclic ordering of vertices in their funnels.
Construct the trees of junctions and their planar embedding in this way. The result
of this stage of the algorithm should be a planar embedding of part of the canonical
diagram consisting of all vertices and junctions, and the subset of the arcs that are
part of a path from a junction to one of its funnel vertices. Check that the embedding
is planar by computing its Euler characteristic, and abort the algorithm if it is not.

6. For each face f of the drawing created in step 5, and each pair j, j′ of junctions
belonging to f , use the data structure from step 2 to test whether there is an edge
whose trail passes through both j and j′. This results in a graph Hf in which the
vertices represent the vertices or junctions on the boundary of f and the edges
represent pairs of vertices or junctions that must be connected, either by an arc or
by shared membership in a marked face. The remaining arcs to be drawn in f will
be exactly the edges of Hf that are not crossed by other edges of Hf ; the marked
faces in f will be exactly the faces that contain pairs of crossing edges of Hf .

7. Within each face f of the drawing so far, build a table using the same construction
as in step 2 that can be used to determine the existence of a crossing edge for an
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edge in Hf in constant time. Use this data structure to identify the crossed edges,
and draw an arc in f for each uncrossed edge. For each face g of the resulting
subdivision of f , if g has four or more vertices or junctions, find two pairs that
would cross and test whether both pairs correspond to edges in Hf ; if so, mark g.

8. Construct a directed graph that has a vertex for each vertex of G, two vertices for
each junction of the diagram (one in each direction), two directed edges for each arc,
and a directed edge for each ordered pair of sharp angles that are non-consecutive in
a marked face. By performing a depth-first search in this graph, determine whether
there exist multiple smooth paths in the resulting drawing from any vertex of G to
any other point in the drawing, and abort the algorithm if any such pair of paths
is found. Determine the set of vertices of G reachable from v and verify that it is
the same set of vertices that are reachable in the original graph. Additionally, verify
that the diagram satisfies the requirements in the definition of a canonical diagram.
Abort the algorithm if any inconsistency is found in this step.

9. Convert the canonical diagram into a confluent drawing and return it.

Theorem 2. For a given n-vertex graph G, and a given circular ordering of its vertices,
it is possible to determine whether G has an outerplanar strict confluent drawing with
the given vertex ordering, and if so to construct one, in time O(n2).

4.3 Drawings with Low Curve Complexity

Suppose that we are given a topological description of an outerplanar strict confluent
drawing D of a connected graph G, describing the tangency pattern and ordering of
the arcs at each junction. It still remains to draw D (or possibly an equivalent but com-
binatorially different outerplanar strict confluent drawing) in the plane using concrete
curves for its arcs. If we ignore the tangency requirements at its junctions, the arcs and
junctions of D form a planar graph, but applying standard planar graph drawing meth-
ods will generate arcs that may not be smooth and that are not tangent to each other at
the junctions. So how are we to draw D? Here we use a circle packing method to draw
D with a small number of circular arcs for each arc of D. Thus, these drawings have
low curve complexity in the sense of Bekos et al. [1], but with this complexity measured
along arcs of the confluent diagram rather than edges of another type of graph drawing.

Given such a drawing D, let D′ be a modified version of D in which every junc-
tion is incident to exactly three arcs, formed from D by suppressing two-arc junctions
and splitting junctions with more than three arcs. Assume also (again by adding more
junctions if necessary) that each vertex in D′ has only a single arc incident to it.

Given the topological diagram D′, we form a planar graph H that has a vertex for
each vertex or junction of D′, and an edge for each arc of D′. Additionally, we create
an edge in H for each two vertices that are consecutive in the cyclic ordering of the
vertices around the disk containing the drawing.

Lemma 5. H is planar, 3-regular, and 3-vertex-connected.

Proof. Planarity and 3-regularity follow immediately from the construction ofH . Every
two vertices ofG are connected by three vertex-disjoint paths in H : at least one (not nec-
essarily a smooth path) through D, using the assumption that G is connected, and two
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more around the boundary of the disk. Therefore, if H were not 3-vertex-connected,
only one of its 3-connected components could contain vertices of G. The other com-
ponents would either contain components of D that are not part of any smooth path
between vertices of G (forbidden in a strict confluent drawing) or would contain more
than one smooth path between the same sets of vertices (also forbidden). �

Theorem 3. Let D be an outerplanar strict confluent drawing of a graphG, given topo-
logically but not geometrically. Then we can construct an outerplanar strict confluent
drawing of G in which each arc of the drawing is represented by a smooth curve that is
either a circular arc or the union of two circular arcs.

Proof. By the Koebe–Thurston–Andreev circle packing theorem, there exists a system
C of circles representing the faces of H , such that two circles are adjacent exactly
when the corresponding faces share an edge. We may assume (by performing a Möbius
transformation if necessary) that the outer circle of this circle packing corresponds to
the outer face of H . C may be found efficiently (although not in strongly polynomial
time) by a numerical iteration that quickly converges to the system of radii of the circles,
from which their centers can also be computed easily [2,16].

Fig. 11. Constructing an outerplanar strict
confluent drawing from a circle packing.
The vertices of the drawing correspond to
triangular gaps adjacent to the outer circle,
and the junctions to the remaining triangu-
lar gaps.

Each vertex of G corresponds in C to one
of the triangular gaps between the outer circle
and two other circles, and may be placed at
the point of tangency of the two non-outer cir-
cles (one of the vertices of this triangle); see
Fig. 11. The junctions in D′ lie at the meeting
point of three faces of H , and correspond in
C to the remaining triangular gaps between
three circles. A confluent drawing of G may
be formed by removing the outer circle, re-
moving all circular arcs bounding the trian-
gular gaps incident to the outer circle, and in
each remaining triangular gap removing the
arc that is on the other side of the sharp angle.
The resulting drawing contracts some edges
of D′ to form junctions with four incident
arcs, but this does not affect the correctness
of the drawing. In the resulting drawing, arcs
of the diagram that have merge points or ver-
tices at both of their endpoints are drawn as
two circular arcs (possibly both from the same circle); other arcs of the diagram are
drawn as a single circular arc. ��

5 Conclusions

We have shown that, in confluent drawing, restricting attention to the strict drawings
allows us to completely characterize their complexity, and we have also shown that
outerplanar strict confluent drawings with a fixed vertex ordering may be constructed in
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polynomial time. The most pressing problem left open by this research is to recognize
the graphs that have outerplanar strict confluent drawings, without imposing a fixed
vertex order. Can we recognize these graphs in polynomial time?
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Abstract. Let n ≥ � ≥ 2 and q ≥ 2. We consider the minimum N such that
whenever we have N points in the plane in general position and the �-subsets of
these points are colored with q colors, there is a subset S of n points all of whose
�-subsets have the same color and furthermore S is in convex position. This com-
bines two classical areas of intense study over the last 75 years: the Ramsey
problem for hypergraphs and the Erdős-Szekeres theorem on convex configura-
tions in the plane. For the special case � = 2, we establish a single exponential
bound on the minimum N such that every complete N -vertex geometric graph
whose edges are colored with q colors, yields a monochromatic convex geometric
graph on n vertices.

For fixed � ≥ 2 and q ≥ 4, our results determine the correct exponential tower
growth rate for N as a function of n, similar to the usual hypergraph Ramsey
problem, even though we require our monochromatic set to be in convex position.
Our results also apply to the case of � = 3 and q = 2 by using a geometric
variation of the Stepping-up lemma of Erdős and Hajnal. This is in contrast to the
fact that the upper and lower bounds for the usual 3-uniform hypergraph Ramsey
problem for two colors differ by one exponential in the tower.

1 Introduction

The classic 1935 paper of Erdős and Szekeres [12] entitled A Combinatorial Problem in
Geometry was the starting point of a very rich discipline within combinatorics: Ramsey
theory (see, e.g., [15]). The term Ramsey theory refers to a large body of deep results in
mathematics which have a common theme: “Every large system contains a large well-
organized subsystem." Motivated by the observation that any five points in the plane in
general position1 must contain four members in convex position, Esther Klein asked the
following.

Problem 1. For every integer n ≥ 2, determine the minimum f(n) such that any set of
f(n) points in the plane in general position contains n members in convex position.

� Research partially supported by NSF grant DMS-0969092 and DMS-1300138.
�� Supported by an NSF Postdoctoral Fellowship and by Swiss National Science Foundation

Grant 200021-125287/1.
1 A planar point set P is in general position if no three members are collinear.
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Celebrated results of Erdős and Szekeres [12,13] imply that

2n−1 + 1 ≤ f(n) ≤
(
2n− 4

n− 2

)
= 22n(1+o(1)). (1)

They conjectured that f(n) = 2n−1 + 1, and Erdős offered a $500 reward for a proof.
Despite much attention over the last 75 years, the constant factors in the exponents have
not been improved.

In the same paper, Erdős and Szekeres [12] gave another proof of a classic result due
to Ramsey [23] on hypergraphs. An �-uniform hypergraphH is a pair (V,E), where V
is the vertex set and E ⊂

(
V
�

)
is the set of edges. We denote K�

n = (V,E) to be the
complete �-uniform hypergraph on an n-element set V , where E =

(
V
�

)
. When � = 2,

we write K2
n = Kn. Motivated by obtaining good quantitative bounds on f(n), Erdős

and Szekeres looked at the following problem.

Problem 2. For every integer n ≥ 2, determine the minimum integer r(Kn,Kn) such
that any two-coloring on the edges of a complete graph G on r(Kn,Kn) vertices yields
a monochromatic copy of Kn.

Erdős and Szekeres [12] showed that r(Kn,Kn) ≤ 22n. Later, Erdős [9] gave a con-
struction showing that r(Kn,Kn) > 2n/2. Despite much attention over the last 65
years, the constant factors in the exponents have not been improved.

Generalizing Problem 2 to q-color and �-uniform hypergraphs has also be studied
extensively. Let r(K�

n; q) be the least integer N such that any q-coloring on the edges
of a complete N -vertex �-uniform hypergraph H yields a monochromatic copy of K�

n.
We will also write

r(K�
n; q) = r(K�

n,K
�
n, . . . ,K

�
n︸ ︷︷ ︸

q times

).

Erdős et al. [10,11] showed that there are positive constants c and c′ such that

2cn
2

< r(K3
n,K

3
n) < 22

c′n
. (2)

They also conjectured that r(K3
n,K

3
n) > 22

cn

for some constant c > 0, and Erdős
offered a $500 reward for a proof. For � ≥ 4, there is also a difference of one exponential
between the known upper and lower bounds for r(K�

n,K
�
n), namely,

twr�−1(cn
2) ≤ r(K�

n,K
�
n) ≤ twr�(c′n), (3)

where c and c′ depend only on �, and the tower function twr�(x) is defined by twr1(x) =
x and twri+1 = 2twri(x). As Erdős and Rado [11] have shown, the upper bound
in equation (3) easily generalizes to q colors, implying that r(K�

n; q) ≤ twr�(c′n),
where c′ = c′(�, q). On the other hand, for q ≥ 4 colors, Erdős and Hajnal (see [15])
showed that r(K�

n; q) does indeed grow as a �-fold exponential tower in n, proving that
r(K�

n; q) = twr�(Θ(n)). For q = 3 colors, Conlon et al. [6] modified the construction
of Erdős and Hajnal to show that r(K�

n,K
�
n,K

�
n, ) > twr�(c log

2 n).
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Interestingly, both Problems 1 and 2 can be asked simultaneously for geometric
graphs, and a similar-type problem can be asked for geometric �-hypergraphs. A ge-
ometric �-hypergraph H in the plane is a pair (V,E), where V is a set of points in
the plane in general position, and E ⊂

(
V
�

)
is a collection of �-tuples from V . When

� = 2 (� = 3), edges are represented by straight line segments (triangles) induced by the
corresponding vertices. The sets V and E are called the vertex set and edge set of H ,
respectively. A geometric hypergraphH is convex, if its vertices are in convex position.

Geometric graphs (� = 2) have been studied extensively, due to their wide range
of applications in combinatorial and computational geometry (see [17,18,22]). Com-
plete convex geometric graphs are very well understood, and are some of the most
well-organized geometric graphs (if not the most). Many long-standing problems on
complete geometric graphs, such as its crossing number [2], number of halving-edges
[26], and size of crossing families [3], become trivial when its vertices are in convex
position. There has also been a lot of research on geometric 3-hypergraphs in the plane,
due to its connection to the k-set problem in R3 (see [7,21,24]). In this paper, we study
the following problem which combines Problems 1 and 2.

Problem 3. Determine the minimum integer g(K�
n; q) such that any q-coloring of the

edges of a complete geometric �-hypergraph H on g(K�
n; q) vertices yields a complete

monochromatic convex �-hypergraph on n vertices.

We will also write

g(K�
n; q) = g(K�

n, . . . ,K
�
n︸ ︷︷ ︸

q times

).

Clearly we have g(K�
n; q) ≥ max{r(K�

n; q), f(n)}. An easy observation shows that by
combining equations (1) and (3), we also have

g(K�
n; q) ≤ f(r(K�

n; q)) ≤ twr�+1(cn),

where c = c(�, q). Our main results are the following two exponential improvements
on the upper bound of g(K�

n; q).

Theorem 1. For geometric graphs, we have

2q(n−1) < g(Kn; q) ≤ 28qn
2 log(qn).

The argument used in the proof of Theorem 1 above extends easily to hypergraphs, and
for each fixed � ≥ 3 it gives the bound g(K�

n; q) < twr�(O(n2)). David Conlon pointed
out to us that one can improve this slightly as follows.

Theorem 2. For geometric �-hypergraphs, when � ≥ 3 and fixed, we have

g(K�
n; q) ≤ twr�(cn),

where c = O(q log q).

By combining Theorems 1, 2, and the fact that g(K�
n; q) ≥ r(K�

n; q), we have the
following corollary.
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Corollary 1. For fixed � and q ≥ 4, we have g(K�
n; q) = twr�(Θ(n)).

As mentioned above, there is an exponential difference between the known upper and
lower bounds for r(K3

n,K
3
n). Hence, for two-colorings on geometric 3-hypergraphs in

the plane, equation (2) implies

g(K3
n,K

3
n) ≥ r(K3

n,K
3
n) ≥ 2cn

2

.

Our next result establishes an exponential improvement in the lower bound ofg(K3
n,K

3
n),

showing that g(K3
n,K

3
n) does indeed grow as a 3-fold exponential tower in a power of

n. One noteworthy aspect of this lower bound is that the construction is a geometric ver-
sion of the famous Stepping-up lemma of Erdős and Hajnal [10] for sets. While it is a
major open problem to apply this method to r(K3

n,K
3
n) and improve the lower bound in

equation (2), we are able to achieve this in the geometric setting as shown below.

Theorem 3. For geometric 3-hypergraphs in the plane, we have

g(K3
n,K

3
n) ≥ 22

cn

,

where c is an absolute constant. In particular, g(K3
n,K

3
n) = twr3(Θ(n)).

2 Proof of Theorems 1 and 2

Before proving Theorems 1 and 2, we will first define some notation. We let V =
{p1, . . . , pN} be a set of N points in the plane in general position ordered from left to
right according to x-coordinate, that is, for pi = (xi, yi) ∈ R2, we have xi < xi+1 for
all i. For i1 < · · · < it, we say that X = (pi1 , . . . , pit) forms an t-cup (t-cap) if X is
in convex position and its convex hull is bounded above (below) by a single edge. See
Figure 1. When t = 3, we will just say X is a cup or a cap.

�
�
�
�

�
�
�
�

����

����

�
�
�
�

��

�
�
�
�

��

��

Fig. 1. A 4-cup and a 5-cap

Proof of Theorem 1. We first prove the upper bound. Let G = (V,E) be a complete ge-
ometric graph on N = 28qn

2	log(qn)
 vertices such that the vertices V = {v1, . . . , vN}
are ordered from left to right according to x-coordinate. Let χ be a q-coloring on the
edge set E. We will recursively construct a sequence of vertices p1, . . . , pt from V and
a subset St ⊂ V , where t = 0, 1, . . . , qn2 (when t = 0 the sequence is empty), such
that the following holds.
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1. for any vertex pi, i = 1, . . . , qn2, all pairs (pi, p) where p ∈ {pj : j > i}∪St have
the same color, which we denote by χ′(pi),

2. for every pair of vertices pi and pj , where i < j, either (pi, pj, p) is a cap for all
p ∈ {pk : k > j} ∪ St, or (pi, pj , p) is a cup for all p ∈ {pk : k > j} ∪ St,

3. the set of points St lies to the right of the point pt, and
4. |St| ≥ N

qtt! − t.

We start with no vertices in the sequence (t = 0), and set S0 = V . After obtain-
ing vertices {p1, . . . , pt} and St, we define pt+1 and St+1 as follows. Let pt+1 =
(xt+1, yt+1) ∈ R2 be the smallest indexed element in St (the left-most point), and let
H be the right half-plane x > xt+1. We define t lines l1, . . . , lt such that li is the line
going through points pi, pt+1. Note that the arrangement

⋃t
i=1 li partitions the right

half-plane H into t + 1 cells. See Figure 2. Since V is in general position, by the pi-
geonhole principle, there exists a cell Δ ⊂ H that contains at least (|St| − 1)/(t + 1)
points of St.

��

�
�
�
�

����

��

����

��
��
��
��

�
�
�
�

�
�
�
�

��

p
t+1

H

St

Fig. 2. Lines l1, . . . , lt partitioning the half-plane H

Let us call two elements v′1, v
′
2 ∈ Δ ∩ St equivalent if χ(pt+1, v

′
1) = χ(pt+1, v

′
2).

Hence, there are at most q equivalence classes. By setting St+1 to be the largest of those
classes, we have the recursive formula

|St+1| ≥
|St| − 1

(t+ 1)q
.

Substituting in the lower bound on |St|, we obtain the desired bound

|St+1| ≥
N

(t+ 1)!qt+1
− (t+ 1).

This shows that we can construct the sequence p1, . . . , pt+1 and the set St+1 with the
desired properties. For N = 28qn

2	log(qn)
, we have

|Sqn2 | ≥ 28qn
2 log(qn)

(qn2)!qqn2 − qn2 ≥ 1. (4)
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Hence, P1 = {p1, . . . , pqn2} is well defined. Since χ′ is a q-coloring on P1, by the
pigeonhole principle, there exists a subset P2 ⊂ P1 such that |P2| = n2, and every
vertex has the same color. By construction of P2, every pair in P2 has the same color.
Hence these vertices induce a monochromatic geometric graph.

Now let P2 = {p′1, . . . , p′n2}. We define partial orders≺1,≺2 on P2, where p′i ≺1 p′j
(p′i ≺2 p′j) if and only if i < j and the set of points P2 \ {p′1, . . . , p′j} lies above (be-
low) the line going through points p′i and p′j . See Figure 3. By construction of P2,
≺1,≺2 are indeed partial orders and every two elements in P2 are comparable by ei-
ther ≺1 or ≺2. By Dilworth’s theorem [8] (see also Theorem 1.1 in [14]), there ex-
ists a chain p∗1, . . . , p

∗
n of length n with respect to one of the partial orders. Hence

(p∗1, . . . , p
∗
n) forms either an n-cap or an n-cup. Therefore, these vertices induce a com-

plete monochromatic convex geometric graph.
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(a) Example of p′i ≺1 p′j .
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(b) Example of p′i ≺2 p′j .

Fig. 3. Partial orders ≺1,≺2

For the lower bound, we proceed by induction on q. The base case q = 1 follows
by taking the complete geometric graph on 2n−1 vertices, whose vertex set does not
have n members in convex position. This is possible by the construction of Erdős and
Szekeres [13]. Let G0 denote this geometric graph. For q > 1, we inductively construct
a complete geometric graph G = (V,E) on 2(q−1)(n−1) vertices, and a coloring χ :
E → {1, 2, . . . , q−1} on the edges of G such that G does not contain a monochromatic
convex geometric graph on n vertices. Now we replace each vertex vi ∈ G with a very
small copy2 of G0, which we will denote as Gi, where all edges in Gi are colored
with the color q, and all edges between Gi and Gj have color χ(vivj). Then we have a
complete geometric graph G′ on

2(q−1)(n−1)2n−1 = 2q(n−1)

vertices, such that G′ does not contain a monochromatic convex graph on n vertices.�
By following the proof above, one can show that g(K�

n; q) ≤ twr�(O(n2)). However,
the following short argument due to David Conlon gives a better bound. The proof uses
an old idea of Tarsi (see [21] Chapter 3) that yields an upper bound on f(n).

Lemma 1. For geometric 3-hypergraphs, we have g(K3
n; q) ≤ r(K3

n; 2q) ≤ 22
cn

,
where c = O(q log q).

2 Obtained by an affine transformation.
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Proof. Let H = (V,E) be a complete geometric 3-hypergraph on N = r(K3
n; 2q) ver-

tices, and let χ be a q coloring on the edges of H . By fixing an ordering on the vertices
V = {v1, . . . , vN}, we say that a triple (vi1 , vi2 , vi3), i1 < i2 < i3, has a clockwise
(counterclockwise) orientation, if vi1 , vi2 , vi3 appear in clockwise (counterclockwise)
order along the boundary of conv(vi1 ∪ vi2 ∪ vi3 ). Hence by Ramsey’s theorem, there
are n points from V for which every triple has the same color and the same orienta-
tion. As observed by Tarsi (see Theorem 3.8 in [25]), these vertices must be in convex
position. �

Lemma 2. For � ≥ 4 and n ≥ 4�, we have g(K�
n; q) ≤ r(K�

n; q + 1) ≤ twr�(cn),
where c = O(q log q).

Proof. Let H = (V,E) be a complete geometric �-hypergraph on N = r(K�
n; q + 1)

vertices, and let χ be a q coloring on the �-tuples of V with colors 1, 2, . . . , q. Now if
an �-tuple from V is not in convex position, we change its color to the new color q+ 1.
By Ramsey’s theorem, there is a set S ⊂ V of n points for which every �-tuple has
the same color. Since n ≥ 4�, by the Erdős-Szekeres Theorem, S contains � members
in convex position. Hence, every �-tuple in S is in convex position, and has the same
color which is not the new color q + 1. Therefore S induces a monochromatic convex
geometric �-hypergraph. �
Theorem 2 now follows by combining Lemmas 1 and 2.

3 A Lower Bound Construction for Geometric 3-hypergraphs

In this section, we will prove Theorem 3, which follows immediately from the following
lemma.

Lemma 3. For sufficiently large n, there exists a complete geometric 3-hypergraph
H = (V,E) in the plane with 22

n/2

vertices, and a two-coloring χ′ on the edge set E,
such that H does not contain a monochromatic convex 3-hypergraph on 2n vertices.

Proof. Let G be the complete graph on 2n/2 vertices, where V (G) = {1, . . . , 2n/2},
and let χ be a red-blue coloring on the edges of G such that G does not contain a
monochromatic complete subgraph on n vertices. Such a graph does indeed exist by
a result of Erdős [9], who showed that r(Kn,Kn) > 2n/2. We will use G and χ to
construct a complete geometric 3-hypergraphH on 22

n/2

vertices, and a coloring χ′ on
the edges of H , with the desired properties.

Set M = 2n/2. We will recursively construct a point set Pt of 2t points in the plane
as follows. Let P1 be a set of two points in the plane with distinct x-coordinates. After
obtaining the point set Pt, we define Pt+1 as follows. We inductively construct two
copies of Pt, L = Pt and R = Pt, and place L to the left of R such that all lines
determined by pairs of points in L go below R and all lines determined by pairs of
points of R go above L. Then we set Pt+1 = L ∪R. See Figure 4.

Let PM = {p1, . . . , p2M } be the set of 2M points in the plane, ordered by increasing
x-coordinate, from our construction. Note that PM contains 2M−t disjoint copies of Pt.
For i < j, we define

δ(pi, pj) = max{t : pi, pj lies inside a copy of Pt = L ∪R, and pi ∈ L, pj ∈ R}.
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L=Pt

R=Pt

Fig. 4. Constructing Pt+1 from Pt

Note that

Property A: δ(pi, pj) �= δ(pj , pk) for every triple i < j < k,
Property B: for i1 < · · · < in, δ(pi1 , pin) = max1≤j≤n−1 δ(pij , pij+1).

Now we define a red-blue coloring χ′ on the triples of PM as follows. For i < j < k,

χ′(pi, pj, pk) = χ(δ(pi, pj), δ(pj , pk)).

Now we claim that the geometric 3-hypergraph H = (PM , E) does not contain a
monochromatic convex 3-hypergraph on 2n vertices. For sake of contradiction, let
S = {q1, . . . , q2n} be a set of 2n points from PM , ordered by increasing x-coordinate,
that induces a red convex 3-hypergraph. Set δi = δ(qi, qi+1).

Case 1. Suppose that there exists a j such that δj , δj+1, . . . , δj+n−1 forms a monotone
sequence. First assume that

δj > δj+1 > · · · > δj+n−1.

Since G does not contain a red complete subgraph on n vertices, there exists a pair
j ≤ i1 < i2 ≤ j + n− 1 such that (δi1 , δi2) is blue. But then the triple (qi1 , qi2 , qi2+1)
is blue. Indeed, by Property B,

δ(qi1 , qi2) = δ(qi1 , qi1+1) = δi1 .

Therefore, since δi1 > δi2 and (δi1 , δi2) is blue, the triple (qi1 , qi2 , qi2+1) must also be
blue which is a contradiction. A similar argument holds if δj < δj+1 < · · · < δj+n−1.

Case 2. Suppose we are not in Case 1. For 2 ≤ i ≤ 2n, we say that i is a local minimum
if δi−1 > δi < δi+1, a local maximum if δi−1 < δi > δi+1, and a local extremum if it
is either a local minimum or a local maximum. This is well defined by Property A.

Observation 4. For 2 ≤ i ≤ 2n, i is never a local minimum.

Proof. Suppose δi−1 > δi < δi+1 for some i, and suppose that δi−1 ≥ δi+1. We
claim that qi+1 ∈ conv(qi−1, qi, qi+2). Indeed, since δi−1 ≥ δi+1 > δi, this implies
that qi−1, qi, qi+1, qi+2 lies inside a copy of Pδi−1 = L ∪ R, where qi−1 ∈ L and
qi, qi+1, qi+2 ∈ R. Since δi+1 > δi, this implies that qi, qi+1, qi+2 lie inside a copy
Pδi+1 = L′ ∪R′ ⊂ R, where qi, qi+1 ∈ L′ and qi+2 ∈ R′.
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Fig. 5. Point qi+1 ∈ conv(qi−1, qi, qi+2)

Notice that all lines determined by qi, qi+1, qi+2 go above the point qi−1. There-
fore qi+1 must lie above the line that goes through the points qi−1, qi+2, and fur-
thermore, qi+1 must lie below the line that goes through the points qi−1, qi. Since
δi+1 > δi, the line through qi, qi+1 must go below the point qi+2, and therefore qi+1 ∈
conv(qi−1, qi, qi+2). See Figure 5. If δi−1 < δi+1, then a similar argument shows that
qi ∈ conv(qi−1, qi+1, qi+2).

�
Since δ1, . . . , δ2n does not have a monotone subsequence of length n, it must have at

least two local extrema. Since between any two local maximums there must be a local
minimum, we have a contradiction by Observation 4. This completes the proof.

�

4 Concluding Remarks

For q ≥ 4 colors and � ≥ 2, we showed that g(K�
n; q) = twr�(Θ(n)). Our bounds on

g(K�
n; q) for q ≤ 3 can be summarized in the following table.

q = 2 q = 3

� = 2 2Ω(n) < g(Kn,Kn) ≤ 2O(n2 logn) 2Ω(n) < g(Kn; 3) ≤ 2O(n2 log n)

� = 3 g(K3
n,K

3
n) = 22

Θ(n)

g(K3
n; 3) = 22

Θ(n)

� ≥ 4
g(K�

n,K
�
n) ≥ twr�−1(Ω(n2))

g(K�
n,K

�
n) ≤ twr�(O(n))

g(K�
n; 3) ≥ twr�(Ω(log2 n))

g(K�
n; 3) ≤ twr�(O(n))

Off-diagonal. The Ramsey number r(Ks,Kn) is the minimum integer N such that
every red-blue coloring on the edges of a complete N -vertex graph G, contains either
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a red clique of size s, or a blue clique of size n. The off-diagonal Ramsey numbers,
r(Ks,Kn) with s fixed and n tending to infinity, have been intensively studied. For
example, it is known [1,4,5,20] that R2(3, n) = Θ(n2/ logn) and, for fixed s > 3,

c1(log n)
1/(s−2)

(
n

logn

)(s+1)/2

≤ r(Ks,Kn) ≤ c2
ns−1

logs−2 n
. (5)

Another interesting variant of Problem 3 is the following off-diagonal version.

Problem 4. Determine the minimum integer g(Ks,Kn), such that any red-blue color-
ing on the edges of a complete geometric graph G on g(Ks,Kn) vertices, yields either
a red convex geometric graph on s vertices, or a blue convex geometric graph on n
vertices.

For fixed s, one can show that g(Ks,Kn) grows single exponentially in n. In
particular

2n−1 + 1 ≤ g(Ks,Kn) ≤ 44
sn.

The lower bound follows from the fact that g(Ks,Kn) ≥ f(n). The upper bound fol-
lows from the inequalities

g(Ks,Kn) ≤ r(K4s ,K4n) ≤ (4n)4
s

.

Indeed if G contains a red-clique of size 4s, then by the Erdos-Szkeres Theorem
there must be a red convex geometric graph on s vertices. Likewise, If G contains a
blue clique of size 4n, then there must be a blue convex geometric graph on n vertices.

Higher Dimensions. Generalizing Problem 1 to higher dimensions has also been stud-
ied. Let fd(n) be the smallest integer such that any set of at least fd(n) points in Rd

in general position3 contains n members in convex position. The following upper and
lower bounds were obtained by Károlyi [16] and Károlyi and Valtr [19] respectively,

2cn
1/(d−1)

≤ fd(n) ≤
(
2n− 2d− 1

n− d

)
+ d = 22n(1+o(1)).

A geometric �-hypergraphH in d-space is a pair (V,E), where V is a set of points in
general position in Rd, and E ⊂

(
V
�

)
is a collection of �-tuples from V . When � ≤ d+1,

�-tuples are represented by (�−1)-dimensional simplices induced by the corresponding
vertices.

Problem 5. Determine the minimum integer gd(K�
n; q), such that any q-coloring on the

edges of a complete geometric �-hypergraphH in d-space on gd(K
�
n; q) vertices, yields

a monochromatic complete convex �-hypergraph on n vertices.

When d = 2, we write g2(K�
n; q) = g(K�

n; q). Clearly

gd(K
�
n; q) ≥ max{fd(n), R(K�

n; q)}.
3 A point set P in Rd is in general position, if no d+ 1 members lie on a common hyperplane.
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One can also show that gd(K�
n; q) ≤ g(K�

n; q). Indeed, for any complete geometric
�-hypergraph H = (V,E) in d-space with a q-coloring χ on E(H), one can obtain a
complete geometric �-hypergraph in the plane H ′ = (V ′, E′), by projecting H onto a
2-dimensional subspace L ⊂ Rd such that V ′ is in general position in L. Thus we have

gd(Kn; q) ≤ g(Kn; q) ≤ 2cn
2 log n,

where c = O(q log q), and for � ≥ 3

gd(K
�
n; q) ≤ g(K�

n; q) ≤ twr�(c′n2),

where c′ = c′(q, �).

Acknowledgment. We thank David Conlon for showing us an improved version of
Theorem 2, shown in Section 2.
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Abstract. We consider the problem of finding a planar embedding of a
graph at fixed vertex locations that minimizes the total edge length. The
problem is known to be NP-hard. We give polynomial time algorithms
achieving an O(

√
n log n) approximation for paths and matchings, and

an O(n) approximation for general graphs.

1 Introduction

Suppose we want to draw a planar graph and the vertex locations are specified.
Such a planar drawing always exists, although not necessarily with straight line
edges. Pach and Wenger [1] showed how to construct a drawing using O(n) bends
on each edge, where n is the number of vertices. We consider an equally natural
optimization criterion—to minimize the total edge length.

Fig. 1. A puzzle from Loyd [2]—connect each house to the opposite gate with non-
crossing paths. On the left is the minimum length solution to an asymmetric version.

For example, Figure 1 shows a puzzle disseminated by Sam Loyd [2, p. 27].
The goal is to connect each house with the gate opposite its door via non-crossing
paths. There are two distinct solutions but if the points are shifted as shown on
the right in Figure 1, there is a unique shortest solution.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 376–387, 2013.
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In this example the fixed outer wall plays a significant role, so the example
demonstrates a more general problem—to extend a planar drawing of a subgraph
to a planar drawing of the whole graph minimizing the total length. Fixed edges
in the drawing act as obstacles. We call this Minimum Length Planar Drawing
of Partially Embedded Graphs.

Angelini et al. [3] gave a linear time algorithm to decide if a planar drawing
of a subgraph can be extended to a planar drawing of the whole graph. Our
problem is the optimization version, to minimize the total edge length.

We will restrict attention to the case where all vertex positions are fixed.
Furthermore, most of our results are for the case when none of the edges are
fixed. We call this Minimum Length Planar Drawing [or Embedding] at Fixed
Vertex Locations. This problem is very interesting even for special graphs such
as matchings and paths.

When the edges to be added form a matching, the problem is to join spec-
ified pairs of points via non-crossing paths of minimum total length. The case
when there are no obstacles was considered by Liebling et al. [4] in 1995. They
gave some heuristics based on finding a short non-crossing tour of the points
and then “wrapping” the matching edges around the tour. We use this same
technique for our approximation results. They also proved that for points in the
unit square a shortest non-crossing matching has length O(n

√
n) and there are

examples realizing this bound. The lower bound (due to Peter Shor) relies on the
existence of expander graphs with large crossing number. In 1996 Bastert and
Fekete [5] proved that the problem is NP-hard, even with no obstacles. There is
also substantial work on the case where there are obstacles (i.e. when some edges
are fixed)—specifically when the points lie on the boundary of a polygon [6], or
multiple polygons [7] (in which case the run time is exponential in the number
of polygons). We give more details below in Section 1.1, and also discuss related
work on finding “thick” paths that are separated from each other.

The problem of Minimum Length Planar Embedding at Fixed Vertex Loca-
tions is also interesting when the graph we want to embed is a path. This version
of the problem was formulated by Polishchuk and Mitchell [8]. Their main goal
was to find a minimum length tour that visits a given sequence of convex bodies
in Rd (see [9] for the planar case), without regard to whether the path is self-
intersecting, but in their conclusion section they ask about finding a minimum
length non-crossing tour for a sequence of points.

Our Contributions. We give polynomial time approximation algorithms for
Minimum Length Planar Embedding at Fixed Vertex Locations. In the case of
general planar graphs we achieve an approximation ratio of O(n). In the case
of a matching or a path we achieve an approximation ratio of O(

√
n logn). Our

main technique is to route graph edges around a carefully chosen path or tree
defined on the input points in the plane.

1.1 Related Work

Bastert and Fekete [5] prove that Minimum Length Planar Drawing at Fixed
Vertex Locations is NP-hard when the graph is a matching.
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Patrignani [10] proved that it is NP-hard to decide if a planar drawing of a
subgraph can be extended to a planar straight-line drawing of the whole graph.

Papadopoulou [6] gave an efficient algorithm for finding minimum length non-
crossing paths joining pairs of points on the boundary of a polygon. In this case
each path is a shortest path, but Papadopoulou finds them more efficiently than
the obvious approach. Erickson and Nayyeri [7] extended this to points on the
boundaries of h polygonal obstacles. Their algorithm has a running time that is
linear for fixed h, but grows exponentially in h.

The difficulty with multiple polygons is deciding which homotopy of the paths
gives minimum length. If the homotopy is specified the problem is easy [11,12].

In the aforementioned results on shortest non-crossing paths, one issue is that
paths will overlap in general even though crossings are forbidden (see Figure 1 for
an example). In practical applications we often need paths that are disjoint and
maintain some minimum separation from each other. This issue is addressed
in papers about drawing graphs with “thick” edges. Duncan et al. [13] show
how to find thick shortest homotopic paths. Polishcuk and Mitchell [14] show
how to find shortest thick disjoint paths joining endpoints on the boundaries of
polygonal obstacles (with exponential dependence on the number of obstacles).
They also show hardness results, including hardness of approximation.

In our problem the correspondence between the vertices and the fixed points in
the plane is given. There is a substantial body of work where the correspondence
of vertices to points is not fixed. Cabello [15] showed that it is NP-hard to decide
if there is a correspondence that allows a straight-line planar drawing. Many
special cases have been classified as polynomial time or NP-complete. A related
problem is to find small universal point sets on which all planar graphs can be
straight-line embedded (see [16]).

A problem related to minimum length planar embedding at fixed vertex lo-
cations is to draw planar graphs so that each edge is a monotone path of axis-
parallel line segments. Any such path is a shortest path in the L1 or Manhattan
metric, and these drawings are called Manhattan-geodesic embeddings. This
concept was introduced by Katz et al. [17]. They considered the case where the
graph is a matching and showed that the problem is NP-hard when the drawing
is restricted to a grid, but solvable in polynomial time otherwise.

We restricted the general problem of extending a partial planar embedding to
the case where all vertex positions are fixed. The case where some vertices are
free to move is also very interesting and is related to work on Steiner trees with
fixed tree topology [18] and Steiner trees with obstacles [19]. Finally, one may
consider drawing graphs at fixed vertex locations but allowing edges to cross.
This is interesting and non-trivial when crossings must have large angles [20].

For other geometric graph augmentation problems see the survey by Hurtado
and Tóth [21].

1.2 Definitions and Basic Observations

We consider the following problem called Minimum Length Planar Embedding
at Fixed Vertex Locations: Given a planar graph G = ({v1, . . . , vn}, E) and a
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set of points P = {p1, . . . , pn}, find a planar embedding of G in the plane that
places vertex vi at point pi and minimizes the total edge length.

Edges of the embedding are allowed to overlap, but they must be non-crossing
(i.e. infinitesimally deformable into disjoint paths). In the following we will refer
to the vertices and their respective fixed locations interchangeably. The Eu-
clidean distance between two points p, q ∈ R2 is denoted d(p, q).

Observation 1. L =
∑

(vi,vj)∈E d(pi, pj) is a trivial lower bound for the total
length of any planar embedding of graph G at fixed vertex locations P .

One approach for finding short embeddings at fixed vertex locations is to draw
each edge (vi, vj) as a curve whose length is within a constant factor of distance
d(pi, pj). Unfortunately such a planar drawing does not always exist; see Fig. 2.

k

k
1

1

Fig. 2. Example for which any solu-
tion contains at least one edge of length
greater than k = n/2− 1

Fig. 3. Example for which any optimal
solution contains no straight line edges

The example in Fig. 3 shows an instance where no straight line edge is included
in any optimal solution, which means that obvious greedy algorithms for the
problem fail. This was first observed by Liebling et al. [4].

Note that any edge of an optimal embedding bends only at vertex locations.
Thus any optimal embedding lives in some underlying triangulation of the point
set. Given the triangulation, the problem becomes that of finding short non-
crossing paths in a planar graph. This problem was first proposed by Takahashi
et al. [22] who considered the case of terminal points on two faces. Erickson
and Nayyeri [7] say that the general problem is NP-hard, citing Bastert and
Fekete [5]. Unfortunately, we cannot find this result in the version of the report
that we have.

Instead of fixing the underlying triangulation, we use a carefully chosen path
or tree as the layout for our embeddings.

2 Embedding a Path or Matching

In this section we give polynomial time approximation algorithms for the case
where G is a path or a matching. Our starting point is a 1-dimensional version
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of the problem that will be the basis for all further results. We give a polynomial
time (exact) algorithm for the case where G is a path, and the points lie on a
line. We note that Liebling et al. [4] apparently knew the analogous result for
the case when G is a matching, since they say that the edges of a matching can
be “wrapped around” any non-self-intersecting tour of the points. They give no
details of how to do the wrapping, and we consider the details worth explaining.

v1 v2 v3

v4 v6 v5

Fig. 4. A minimum length embedding of a path on fixed points that lie on a line. Edges
are drawn with gaps between them for clarity only.

Lemma 1. There is a polynomial time algorithm to find a minimum length
embedding of a path on fixed vertex positions that lie on a line.

Proof. Without loss of generality, assume that all the points lie on a horizontal
line. See Fig. 4. This allows us to speak of “above” and “below”. We draw the
edges in order along the path. Draw edge (vi, vi+1) as a curve from point pi
to point pi+1 that stays below all edges drawn so far, but stays above all later
points pj , j > i + 1. This ensures that later edges of the path can reach their
endpoints without crossing earlier edges. ��

As noted by Liebling et al., this idea of “weaving” the edges through the points
can be extended to the the case where the points lie on a simple (i.e. non-self-
intersecting) curve in the plane. (In fact, the idea even extends to a tree, as we
shall see in Section 3.) If one can find a simple curve C passing through every
point in P , then “weaving” the edges of the path along the curve creates a path
of length at most

n−1∑
i=1

dC(pi, pi+1), (1)

where dC(pi, pi+1) denotes the length of the subcurve of C from pi to pi+1. This
sum is trivially upper-bounded by n times the length of C.

We can choose the curve C to be an O(1)-approximation to the minimum-
length Hamiltonian path (i.e., the traveling salesman path) for P (e.g., the
simplest option would be the standard 2-approximate solution obtained from
the minimum spanning tree). Since the length of the traveling salesman path
is a lower bound for the problem in the path case, this would give an O(n)-
approximate solution overall.

In Section 3 we will extend this idea to obtain an O(n) approximation for
general planar graphs. In the remainder of the current section we show how to
improve the approximation factor for a path or matching by choosing a better
curve C. The property we need is that points that are close in the plane are
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Fig. 5. The curve that is used as routing layout for embedding paths and matchings

close on the curve. The idea is to use a construction based on shifted quadtrees,
similar to certain well known families of space-filling curves such as the Z-order
curve or the Hilbert curve.

Let D0 be the diameter of P . Without loss of generality, assume that P ⊂
[0, D0]

2. We initially shift all the points in P by a random vector v ∈ [0, D0]
2.

Now, P ⊂ [0, 2D0]
2.

Given a square S, the following procedure returns a simple polygonal curve,
with the property that the curve starts at one corner of S, ends at another
corner, and stays inside S while visiting all points of P ∩ S.

Curve(S):

1. if |P ∩ S| ≤ 1 then
2. return a curve with the stated property, using at most 2 line segments
3. divide S into 4 subsquares S1, . . . , S4

4. for i = 1, . . . , 4, compute Ci = Curve(Si)
5. return a curve with the stated property by joining C1, . . . , C4,

using O(1) connecting line segments

Slight perturbation may be needed in line 5 to ensure that we obtain a simple
curve. There is flexibility as to which corner we choose to start or end. (If we
always start at the upper left corner and end at the lower right corner, the
construction is similar to the Z-order curve. If we choose starting and ending
corners to be adjacent in a manner similar to the Hilbert curve instead, the
connecting line segments in line 5 may even be avoided; see Fig. 5. The main
difference with standard space-filling curves is that we terminate the recursion
as soon as we reach a square containing zero or one point.)

Lemma 2. The length of the curve returned by Curve(S) is at most O(DS
√
nS),

where nS = |P ∩ S| and DS is the side length of S.

Proof. Let Li be the sum of the lengths of all line segments generated in line
2 or 5 at the i-th level of the recursion. The squares at the i-th level have side
length DS/2

i, and the number of squares at the i-th level is upper-bounded by
both 4i and nS . Thus,

Li ≤ O(DS/2
i) ·min{4i, nS} = O(min{DS2

i, DSnS/2
i}).
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The total length of the curve is then at most

∞∑
i=0

Li ≤
	(1/2) log nS
−1∑

i=0

DS2
i +

∞∑
i=	(1/2) lognS


DSnS/2
i = O(DS

√
nS). ��

We now let C be the curve returned by Curve(S0) with S0 = [0, 2D0]
2. All the

squares generated by the recursive calls are quadtree squares.
Define D(p, q) to be the side length of the smallest quadtree square enclosing

p and q. Note that D(p, q) ≥ d(p, q)/
√
2. It is known that after random shifting,

D(p, q) approximates d(p, q) to within a logarithmic factor in expectation (e.g.,
see [23, Lemma 5.1]). We include a quick proof for the sake of completeness.

Lemma 3. For a fixed pair of points p, q ∈ P ,

E[D(p, q)] ≤ O(log(D0/d(p, q))) · d(p, q).

Proof. D(p, q) > D0/2
i if and only if pq crosses a horizontal or vertical grid line

in the grid formed by the quadtree squares of side length D0/2
i. The probability

that this happens is O
(

d(p,q)
D0/2i

)
. Thus,

E[D(p, q)] ≤ O

⎛⎝	log(D0/d(p,q))
∑
i=0

d(p, q)

D0/2i
·D0/2

i

⎞⎠ ≤ O(log(D0/d(p, q))) · d(p, q).

��

Lemma 4. For a fixed pair of points p, q ∈ P ,

E[dC(p, q)] ≤ O(
√
n log(D0/d(p, q))) · d(p, q).

Proof. The portion of the curve C from p to q lies inside a quadtree square with
side length D(p, q). Thus, by Lemma 2, dC(p, q) is at most O(D(p, q)

√
n). The

conclusion then follows from Lemma 3. ��

Theorem 2. For a path G with fixed vertex locations, there is a polynomial-time
randomized algorithm which computes a planar embedding of expected length at
most O(

√
n logn) · L where L =

∑
(p,q)∈E d(p, q).

Proof. By (1) and linearity of expectation, we obtain an embedding of expected
length at most (1+ε)

∑
(p,q)∈E E[dC(p, q)]. By Lemma 4, this quantity is at most∑

(p,q)∈E

O(
√
n log(D0/d(p, q))) · d(p, q) ≤ O(

√
n log(nD0/L)) · L

because the logarithm function is concave. The theorem follows since L ≥ Ω(D0)
for the case of a path G. ��
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Since L is a lower bound on the optimal cost, we obtain an O(
√
n logn)-

approximation algorithm for the case of a path G. For the case of a matching,
we obtain the same result with just slightly more effort:

Theorem 3. For a matching G with fixed vertex locations, there is a polynomial-
time randomized algorithm which computes a planar embedding of expected length
at most O(

√
n logn) · L where L =

∑
(p,q)∈E d(p, q).

Proof. We can use essentially the same algorithm. The cost of the solution is still
bounded by (1) and the same analysis goes through, except that L ≥ Ω(D0) may
no longer be true.

Observe that if there is a vertical line that separates the line segments {pq :
(p, q) ∈ E} into two nonempty parts, then we can just recursively compute a
planar embedding on both sides, since each embedding can be shrunk to lie
within the minimum (axis-aligned) bounding box of its points. We may thus
assume that no such vertical separating line exists, which implies that L is at
least the width of the bounding box of P . Similarly, we may assume that no
horizontal separating line exists, which implies that L is at least the height of
the bounding box of P . These two assumptions imply L ≥ Ω(D0) and we may
proceed as before. ��

Remarks. To obtain a time bound not sensitive to the bit complexity of the
input, we can adopt a variant of the method where we compress long chains of
degree-1 nodes in the tree (called the compressed quadtree), to ensure that the
number of recursive calls is O(n).

On the other hand, if input coordinate values are O(log n) bits long, we can
derandomize the algorithm in polynomial time by trying all possible shifts.

The upper bound relative to L in Theorems 2 and 3 is tight up to a logarithmic
factor: Liebling et al. [4] provide examples (due to Peter Shor) with points in the
unit square for which any shortest non-crossing matching has length Ω(n

√
n),

proving a lower bound of Ω(
√
n) · L.

3 Embedding General Planar Graphs

In this section we give an O(n)-approximation algorithm for constructing a pla-
nar embedding of a planar graph G at fixed vertex locations P .

The construction is based on the algorithm by Pach and Wenger [1] for finding
a planar polygonal embedding of a graph with fixed vertex locations and with
O(n) bends per edge. Pach and Wenger draw the edges of the graph by tracing
around a tree of n edges drawn in the plane. Each edge of the graph is drawn as
a curve that walks around the tree a constant number of times, which gives the
bound of O(n) bends per edge. For their tree Pach and Wenger use a star with
a leaf at each vertex.

In our case we want to bound the length of each edge, which can be done by
bounding the length of the tree. We cannot use a star; instead, we will use a
tree that is a subset of the (non-planar) drawing of G where each edge is drawn



384 T.M. Chan et al.

as a straight line segment. This ensures that the tree has total length at most
L =

∑
(p,q)∈E d(p, q). Because of connectivity issues, we will actually use a set

of disjoint trees:

Lemma 5. Given a graph G, and fixed vertex locations P , we can construct in
O(n2) time an embedded forest F with O(n) vertices and total length at most L,
such that for every edge (p, q) in G, p and q are in the same tree of F .

Proof. We construct the forest F iteratively by adding edges of the graph one
by one. For each edge (p, q) ∈ E we will add some subsegments of the line
segment pq to F . The forest will be a subset of an arrangement of O(n) lines.
The arrangement can be constructed in O(n2) time [24]. Consider edge (p, q). If
p and q are already in the same tree of F , we are done. Otherwise consider the
line segment pq. It crosses at most n segments of F , and these crossing points
subdivide it into p = p1, p2, . . . , pk = q with k ≤ n. We treat these segments one
by one in order. Consider segment pipi+1. If pi and pi+1 are already in the same
tree of F , we are done. Otherwise we add segment pipi+1 to F . Fig. 6 illustrates
this idea. We use a union-find data structure to test if points are in the same
tree of F . By construction, the length of F is bounded by L. Furthermore, we
only add a segment when we join two trees of F , and this can happen at most n
times. Thus F has O(n) vertices and is a subset of an arrangement of n lines. ��

p qp2 p3 p5 p7p6p4

Fig. 6. Constructing the forest F in
Lemma 5. Segment pq crosses multiple
components of F . Segments p3p4, p4p5,
and p6p7 are not added to F .

v1

v2

v3

v1

v3

v2

Fig. 7. Perturbing the tree to change
v2 from an internal vertex to a leaf.

Theorem 4. Given a planar graph G with n vertices and fixed vertex locations
P , there is an O(n2)-time approximation algorithm to construct a planar em-
bedding of G on P with total length O(n) · L where L =

∑
(p,q)∈E d(p, q).

Proof. Use Lemma 5 to construct a forest F , that will serve as the basis for
our edge routing. Because we do not want paths to travel through intermediate
vertices, we perturb the trees in F slightly so that each vertex of G is a leaf of
the tree that contains it. See Fig. 7. This can be done while keeping the trees
disjoint and of total length O(L).
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Consider a single tree T of the forest F , together with the induced graph
GT on the vertices of G that lie in T . We will follow the approach of Pach and
Wenger and draw the edges of GT as paths hugging the tree T . Because every
edge of G lies in some GT , and the trees are disjoint (as objects in the plane), it
suffices to describe the solution for a single tree T . To simplify notation, we will
assume for the remainder of the proof that we have a single tree T and G = GT .

We now follow Pach and Wenger’s solution, the main difference being that we
have a more general tree than their star. We outline their solution and remark
on the modifications required for our situation.

Pach and Wenger’s solution is based on a Hamiltonian cycle that they con-
struct by adding vertices and edges to the graph. Specifically, they subdivide
each edge of the graph by at most two new vertices and add some edges between
vertices to obtain a planar graph with a Hamiltonian cycle [1, Lemma 5]. (Note
that the new edges do not appear in the final drawing.) The Hamiltonian cycle
C partitions edges of the planar graph relative to some (arbitrary) planar em-
bedding into the edges inside C and the edges outside C. They first draw the
edges of the Hamiltonian cycle C and then draw the inside and outside edges.

v

v

v

v

v

Fig. 8. Drawing the graph G around the tree T (drawn in gray) whose leaves are the
graph vertices. The portion of the Hamiltonian cycle C from v1 to v4 is drawn as a solid
curve. The dashed curve Λ4 surrounds T4 and is split by C into two paths between v4
and v1, one inside C and one outside C.

To draw the edges of C they use an approach similar to the weaving tech-
nique described in Lemma 1. Renumber vertices so they appear in the order
v1, v2, . . . , vn along the Hamiltonian cycle. Some of these are new vertices that
were added to create the Hamiltonian cycle. Pach and Wenger assign arbitrary
locations to the new vertices, but we locate them very close to the tree T , adding
them as leaves of T and keeping the length of T in O(L). We will use vi to refer
to the vertex of G, the corresponding point in the plane, and the corresponding
leaf of T . Edge (vi−1, vi) of C will be drawn around a subtree Ti of T . We define
Ti more carefully for our situation: Ti is the connected subtree of T induced
on leaves v1, v2, . . . , vi. With these modifications, the rest of Pach and Wenger’s
solution applies unaltered.
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As they draw C they add (multiple copies of) auxiliary paths Λi from vi to
v1, one inside and one outside C. See Fig. 8. Then each edge (vi, vj) of G inside
[outside] C is routed using the paths inside [outside] C from vi to v1 and from
v1 to vj . For further details please refer to their paper [1]. The end result is a
planar drawing of G on vertex locations P . Every original edge e of G has been
subdivided by at most two new vertices, and each of the resulting three edges
has been drawn as two paths in the tree. The total length of the drawing of e is
therefore bounded by 6 times the length of T , and thus in O(L).

Pach and Wenger’s algorithm takes O(n2) time so our overall running time is
O(n2) as well. ��

4 Conclusion and Open Problems

The problem of drawing a planar graph at fixed vertex locations while minimizing
the total edge length seems to be very difficult although we are not aware of any
hardness of approximation results. In fact, for the case of a path, even an NP-
hardness result is lacking. Our algorithms achieve approximation factors of O(n)
for general graphs and O(

√
n logn) for paths and matchings. Besides the obvious

question of improving these approximation factors (or proving hardness), we
suggest looking at: (1) the problem of drawing a graph at fixed vertex locations
with thick edges; and (2) looking at the case where some vertex locations are
not fixed, which is related to drawing Steiner trees with fixed topology [18].

Acknowledgments. This work was done in the Algorithms Problem Session at
Waterloo and we thank the other participants for good discussions. We learned
about Sam Loyd’s disjoint paths puzzle (which is not original to him) from
Marcus Schaefer who has studied the history of such planarity puzzles.
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Stub Bundling and Confluent Spirals
for Geographic Networks�
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Abstract. Edge bundling is a technique to reduce clutter by routing parts of sev-
eral edges along a shared path. In particular, it is used for visualization of geo-
graphic networks where vertices have fixed coordinates. Two main drawbacks of
the common approach of bundling the interior of edges are that (i) tangents at end-
points deviate from the line connecting the two endpoints in an uncontrolled way
and (ii) there is ambiguity as to which pairs of vertices are actually connected.
Both severely reduce the interpretability of geographic network visualizations.

We therefore propose methods that bundle edges at their ends rather than their
interior. This way, tangents at vertices point in the general direction of all neigh-
bors of edges in the bundle, and ambiguity is avoided altogether. For undirected
graphs our approach yields curves with no more than one turning point. For di-
rected graphs we introduce a new drawing style, confluent spiral drawings, in
which the direction of edges can be inferred from monotonically increasing cur-
vature along each spiral segment.

1 Introduction

We are interested in visualizing geographic networks given as a graph with fixed vertex
coordinates and possibly other attributes. Although, for substantive reasons, there is
often a relationship between the graph’s adjacency structure and the spatial arrangement
of its vertices, straight-line drawings are generally cluttered with areas of high edge-
density and small-angle crossings.

A technique to reduce such clutter is edge bundling. Generalizing the idea of edge
concentrators [17], edge bundles have been introduced in the context of hierarchically
clustered graphs [11]. Sets of related edges are routed so that they meet, run concur-
rently, and then separate again, where edges are considered related if their projections
on the cluster tree share a subpath. Note that the nodes of the cluster tree directly
yield shared edge control points. Different bundling strategies have been introduced
in force-directed layout of general graphs [12,24,19] and layered layout of directed
acyclic graphs [23].

For graphs with given vertex coordinates, relatedness of edges is usually defined
in terms of similarity of their straight-line realizations. Examples include similarities
obtained from grid approximations [6,16,15], visibility graphs [22], or clusters in the
four-dimensional space of pairs of vertex coordinates [9]. In the extreme, bundling tech-
niques operate on the pixel level [25,8,14,27,13].
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Because of the shared inner segments, it cannot be inferred from the drawing which
subgraph of a bipartite clique a bundle actually represents, i.e., we cannot know whether
the drawing is faithful [18]. Moreover, having edges meet requires that they deviate
from the line through their vertices in a way that has no substantive meaning.

Both these problems can be avoided by bundling edges at their ends rather than
in their interior. This idea has indeed been introduced in the context of geographic
networks [4,20] and also forms the basis of flow maps [21,5,26] which can be seen as
drawings of in- or out-stars.

We present novel such methods for drawing geographic networks with edges bundled
at their ends. For undirected graphs, we refine the approach of Peng et al. [20]. Our main
contribution is an approach for directed graphs based on a new drawing style for in-/out-
stars called confluent spiral drawings. Confluent spirals consist of smooth drawings of
each bundle in which edge directions are represented by increasing curvature so that no
ambiguity is created in a combined drawing of all, say, in-stars of a directed graph.

The remainder of this paper is divided into three sections. In Sect. 2, we outline how
edges are assigned to bundles. Our approaches for undirected and directed graphs are
then described in Sects. 3 and 4 with a short discussion in Sect. 5.

2 Stub Bundling

We consider geographic networks consisting of a graph G = (V,E) with fixed ver-
tex coordinates p = (pv)v∈V where pv =

(
xv

yv

)
∈ R2. Coordinates might be defined

extrinsically by, say, geographic locations, or derived from, say, a precomputed layout.
Our goal is to route the edges in such a way that readability of the network is im-

proved over the corresponding straight-line drawing. The means in this work are bun-
dled edges, curved routing, and color gradients.

A common objective of edge bundling is to reduce the total length of edges drawn.
Since multiplicity along shared paths is ignored, bundling of interior segments of edges
is attempted. For geographic networks, however, a more substantively relevant criterion
is to be able to read off the general direction in which adjacent vertices are located.
To represent this more accurately, and in addition to provide a faithful representation
of adjacency, we bundle edges only at their ends, i.e., only with edges that share an
endpoint. This type of bundling is referred to here as stub bundling to distinguish it
from the bundling of edge interiors, or interior bundling.

The first step is to find a partition of the edges around each vertex into bundles
(see fig. 1). To preserve their general direction, we use the angles between consecutive
straight-line edges as our partition criterion. Each bundle is a set of half-edges incident
on the same vertex and with similar direction.

For given angles α, γ, an (α, γ)-bundling is a coarsest partition such that

– the angle between any two half-edges in a bundle is at most α, and
– the angle between two consecutive edges in a bundle is at most γ.

Such bundlings are obtained easily by iteratively splitting adjacency lists at maximum
angles (between consecutive edges). For each vertex v ∈ V , we start with a bundle
containing all incident half-edges. The bundle is split at all occurrences of the maxi-
mum angle between consecutive edges in this bundle; in case of equiangular half-edges,
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(a) sorting (b) partitioning (c) routing

Fig. 1. Stub bundling: a cyclic sequence of edges is (a) split at maximum angles (α3, α6, α9) until
(b) the angle range of each bundle is below a given threshold; then, (c) the first segment of each
half-edge in a bundle is routed with the same tangent

where the consecutive angles are equal inside a bundle we split symmetrically into two
(for bundles with even cardinality) or three (odd cardinality) smaller bundles. In the lat-
ter case the resulting bundles may have different (but symmetrical) cardinalities. This
process is iterated until we obtain an (α, γ)-bundling. Note that, in contrast to the coun-
terclockwise greedy splitting of [20], we do not accidentally split at small angles and
we maintain a higher degree of symmetry.

The entire bundling step is thus carried out in time O(m logΔ), where m is the
number of edges and Δ the maximum degree of a vertex, by sorting adjacency lists
and splitting them hierarchically. Clearly, other bundling strategies, e.g. also based on
distances rather than just directions, may be more appropriate for specific applications.
It remains to show how to route the edges beyond the constraint that half-edges in the
same bundle share an initial path.

3 Undirected Graphs

After bundling as described in the previous section, we need to decide on two things:
in which direction to route the stub of a bundle, and how to connect the two extremal
segments of each edge.

To ensure that edges can be followed easily, we allow only one turning point in the
routing of an edge. More precisely, we draw each half-edge as a cubic Bézier curve
(without turning point) to gain more control over the curve shape. Bézier curves are es-
pecially convenient because their tangents at endpoints can be prescribed so that edges
in a bundle start in parallel and the two half edges of an edge can be linked smoothly.

Stub directions are determined from the straight-line segment connecting a vertex
with the centroid of all neighbors in a bundle. This incorporates not only their directions
but also their distances. For the present purpose this is considered a good approximation
to the general direction of all edges in a bundle, but more general nodal templates for
outgoing edges could be used [3].

We now describe in detail how to choose the control points of the Bézier curves. See
fig. 2 for illustration. Let e = {v, w} ∈ E be an edge and let Γ (e, v) and Γ (e, w) be
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Fig. 2. Control points for routing undirected edge e

the two Bézier curves representing the half-edges of e. Further, let Bv(e) and Bw(e) be
the bundles around v and w containing e. Let

pm =
1

2
(pv + pw) +

(
|Bv(e)|

|Bv(e)|+ |Bw(e)|
− 1

2

)
· tshift · (pw − pv)

be the weighted midpoint on the segment between pv and pw and tshift ∈ [0, 1]. More
intuitively pm is closer to pv if Bw(e) contains more edges then Bv(e). This has the
effect that larger bundles have longer parallel parts. Let c be the centroid of the end
vertices of the edges bundled in Bv(e) (excluding v). In order to define the control
points of Γ (e, v) we consider the baseline going through pv and the centroid c. We first
compute temporary control points, which lie on the baseline. Later these points will be
shifted left and right to obtain a parallel routing.

We choose a branching angle β which is the same for every edge. This angle de-
termines how long the edge will stay with the bundle until it branches off to enter the
other bundle, and thus the smoothness of edges. Denote by pv2 the point on the base-
line such that the angle �(pv, pv2, pm) is β. Another intermediate control point pv1 is
chosen on the segment between pv and pv2 with a smoothing parameter t ∈ (0, 1), i.e.,
pv1 = pv + t · (pv2 − pv).

So far we have determined temporary control points pv, p
v
1, p

v
2, and 1

2 (p
v
2 + pw2 )

for Γ (e, v) and symmetrically for Γ (e, w). These are refined to avoid overlap without
introducing many crossings. Ordering edges around each vertex is a special case of
the more general metro-line crossing minimization problem [2] but we find the simple
heuristic of ordering stubs in a bundle Bv(e) according to the opposite control point
pw2 to work sufficiently well. Control points are shifted left and right according to this
ordering. Determining control points and ordering stubs in the same bundle does not
increase the asymptotic running time of O(m logΔ) already caused by bundling.

Stub bundling is motivated by faithfulness and the substantive interest in directions
at the ends of edges. Therefore, non-uniform rendering of edges can be used to highlight
bundles and reduce the visual dominance of the less important interior of an edge by
fading out colors toward the middle of an edge. Note the emphasis this creates in fig. 3
without eliminating the possibility to trace individual edges. In addition to the alternate
bundling strategy, non-overlapping stub routing distinguishes our approach from that
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(a) MINGLE [9] (b) Sideknot [20]

(c) our approach (d) detailed view

Fig. 3. US airlines graph: In our approach main edge directions and their strengths are visible
from an overview perspective (c) but single edges can still be traced in a detailed view (d). Unlike
the approach of (b), ours uses parallel routing of edges to facilitate the display of additional data
attributes by varying width or color.

of [20] and facilitates the use of different widths and colors for edges in the same bundle
to convey additional attribute information such as volume, frequency, time, and so on.

The total bundling process, edge partitioning and control point computation, of the
US airlines graph took 0.07 seconds on an Intel Core i7-2600K CPU@3.40GHz with a
single core (impl. in Java 6).

4 Directed Graphs: Confluent Spiral Drawings

To visualize directed geographic networks we break the symmetry of the previous ap-
proach as arrows and color gradients do not seem to work well for displaying orientation
of stub-bundled edges. Depending on the meaning of edge orientations, we bundle only
incoming or outgoing stubs. The problem of drawing a directed graph is thus reduced
to the problem of drawing one in- or out-star per vertex.

We introduce a new drawing convention for such star-configurations. It is a variation
of spiral trees [26] which have been introduced for flow maps [21], but based on con-
fluent logarithmic spirals for smoother appearance and easier inference of orientation.
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Fig. 4. (a) Logarithmic spiral with angle θ = π/3, centered at origin, going through a point p. (b)
Spiral used to represent a directed edge (v, w). The constantly increasing curvature on the path
from pv towards pw unambiguously indicates the orientation.

4.1 Logarithmic Spirals

A logarithmic (or equiangular) spiral is a curve which winds around a center, or vortex,
and approaches it with an exponentially increasing curvature. The increase in curvature
is determined by a constant θ. In effect, all rays out of the vortex are at angle θ to the
tangents of intersection points with the spiral.

Formally, a logarithmic spiral in Euclidean space can be defined in polar coordinates
(r, ϕ) relative to its vortex by r(ϕ) = a · eb·ϕ, where b = cot θ and a ∈ R \ {0} are
fixed, and ϕ ∈ R. Figure 4(a) shows an example.

We use a sequence of spiral segments to represent an edge between two vertices, and
the vortex of each spiral corresponds to a target vertex. We define a spiral segment S
from a start point pv ∈ R2 to an end point pw ∈ R2 with tangent angle θ ∈ (−π

2 , 0) ∪
(0, π

2 ) as

S(t) =
(
x(t)
y(t)

)
= pw + |pv − pw| e−|b|·t

⎛⎝cos
(

b
|b| (ϕ0 + t)

)
sin

(
b
|b| (ϕ0 + t)

)⎞⎠ , t ∈ [0,∞),

where b = cot θ and ϕ0 = �
(−−−→pwpv,

(
1
0

))
is counterclockwise around pw.

Note that S(0) = pv . Although the curve has finite length, it never reaches pw.
Practically this is not a problem, since vertex w is represented by a graphical element
with non-zero dimensions such as a disc. The spiral S goes clockwise around pw if
θ < 0 and counterclockwise if θ > 0. Figure 4(b) shows how a logarithmic spiral can
be used to represent a directed edge from v to w.

v w1

w2w3

v w1

w2w3

Fig. 5. Two drawings of the same graph. The absence of edge (w1, w2) is apparent because the
curve from pw1 to pw2 is not smooth.
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Confluent Spirals. The term confluent was introduced in Dickerson et al. [7] for a
drawing style that allows to draw larger classes of graphs in a planar way. We here use
it more loosely, not requiring planarity. We say a drawing is a confluent spiral drawing,
if each edge e = (v, w) ∈ E is represented as follows:

– There is a continuously differentiable curve from pv to pw consisting of logarithmic-
spiral segments.

– The logarithmic spiral of the last segment has vortex
(
xw

yw

)
and the segment starts at

p where
• either p =

(
xv

yv

)
or

• p lies in the interior of another edge (v, w′) ∈ E with w′ �= w.

Furthermore, we do require that the curves representing outgoing edges of the same
vertex do not intersect but in a shared prefix. Figure 5 shows a small graph and a corre-
sponding drawing with confluent spirals.

4.2 Determining Confluent Spiral Trees

In this section, we introduce an algorithm to compute a confluent spiral drawing by
computing a confluent spiral tree for each vertex. Later, we extend this algorithm to
handle obstacles by adding further constraints to it.

The main difference compared to the spiral trees suggested by Buchin et al. [5] is that
we want to have confluent drawings, which means that the intersection angle between
two spirals is zero. This means that following a path from the root to some other vertex
one never has to make a sharp turn. Due to this property it is not possible to apply the
method of Buchin et al. [5]. Later the same authors [26] use a spiral tree as a basis to
generate flow maps by minimizing a complex cost function to smooth the curves.

In contrast to the previous approach, we require the vortex of spirals not to be on the
source but on the target vertex of an edge, which directly results in smooth curves, see
fig. 6 for an example.

As a first step we apply the edge partitioning, as described in section 2. The result
is for each vertex v ∈ V a set of bundles containing outgoing edges of v. Each bundle
is handled separately. Let B be a bundle with outgoing edges of v. For every edge e =
(v, w) ∈ B we determine a logarithmic spiral S that is centered at pw and either starts
at pv or branches out of another spiral in a confluent way such that

∑
e∈B length(Se) is

minimal. Note that although a spiral never reaches the vortex its length is finite:

length(S) =
∫ ∞

0

|S ′(t)| dt = ||pv − pw||
√
1 + b2

|b| .

(b) (c)(a)

Fig. 6. (a) directed graph, (b) spiral tree approach of Buchin et al. [5]: spiral vortices at source,
postprocessing required for smoothness, (c) our confluent spiral tree approach: spiral vortices at
targets, smoothness inherent in confluent design
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Fig. 7. (a) Construction of a confluent spiral segment with vortex w2 branching off the parent
spiral for (v, w1) at p. The branching spiral is defined by p, pw2 and the angle θ2 which is
determined by the parent spiral and the angle ϕ at p. (b) When a parent spiral is changed due
to vertex movement, local adaptation by the other spirals is immediate. (NB: in the electronic
version, this figure can be animated)

If a spiral S branches off another spiral T we refer to the latter as the parent spiral.
The following heuristic is used to decide on the tree structure. Intuitively, we want edges
leading to local targets to branch out earlier in the tree. Thus, consider the edges of a
bundle B ordered by the distance of their targets from pv. Other meaningful orderings,
e.g., from data attributes, could be used too here, resulting in different trees.

We start with the first edge (v, w) ∈ B as the trunk. This edge is represented by a
logarithmic spiral with a predefined trunk angle 0 < θ0 < ±π/6. The upper bound π/6
ensures that the spiral approaches its vortex more directly, without orbitting around it.

Spiral segments for the other edges are allowed to branch off any already existing
spiral segment T subject to two constraints on the new spiral S:

– S must have an angle θ ∈ [θmin, θmax] (typically θ ∈ (0,±π/6]).
– The tangent of S at p must have the same slope and direction as that of T .

The branching point p on the parent spiral T is determined by trying k candidate points
(pi = T (i π

k ), i ∈ 0, ..., k− 1) on T and choosing the point that satisfies all constraints
and results in the shortest spiral length. Note that T and p completely determine S
as illustrated in Figure 7(a). If we cannot find a spiral satisfying the constraints, we
postpone the current edge temporarily. Our experience so far is that edges need to be
postponed rarely so that the overall runtime is in O(

∑
B∈B k · |B|2) ⊂ O(k nΔ2),

where B is the set of all stub bundles and n = |V |.

4.3 Avoiding Obstacles and Crossings

Avoiding edge crossings is very important to reduce visual complexity and improve
readability. Furthermore, it is very important that edges not connected to a vertex have
a certain distance to that vertex. This can be modelled by placing obstacles on the ver-
tex positions. We extend our framework to deal with obstacles and crossings by adding
them as constraints during the search of a parent spiral. We use an R-tree [10] as spa-
tial index and add the vertices with their shape as obstacles into it. The spirals of the
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already finished edges are approximated by s line segments and stored in the index
too. For a possible branching point p we query the spatial index with s segments of
the corresponding spiral to check whether they intersect with obstacles or other edges
in the index. The creation of the R-tree index needs O(n log n) time on average while
maintaining and querying it takesO(s log(n+ s Δ)).

The intuitive interpretation of this method is that, if there is an obstacle for a desired
branching point we will branch out in an earlier or later phase of the parent spiral to
miss that obstacle. Although the resulting spirals will be longer, the readability will be
improved. See fig. 8 for an illustration.

4.4 Edge Ordering and Parallel Routing

At this stage we have a confluent spiral tree for each bundle B. To reflect the data, in
this case the different number of edges in the bundle, we route them in parallel until
they branch to their targets.

Intuitively, walking along the outer contour of our tree gives us the required edge
ordering. We determine this ordering by sorting the edges according to the branching
point and branching side when traversing the underlying tree from the root vertex. With
this ordering we then compute an offset curve to the approximated spiral, which is very
similar to polygon offsetting. The offset will determine the thickness of the edge, which
in turn can be used to represent, e.g., an edge attribute. See fig. 10 and fig. 9 for an
example. Note that after applying an offset the result is not a true logarithmic spiral
anymore. In practice this is not a problem as logarithmic spirals are eventually only
approximated with cubic splines anyway [1].

Fig. 8. Avoiding obstacles: Approach of Verbeek et al. [26] (top) and ours (bottom); spirals branch
out smoothely from trunk at appropriate point to miss the obstacles. Parallel edge routing allows
to map an edge attribute to the color; here node distance to the root is mapped (bottom-right).



Stub Bundling and Confluent Spirals 397

(a) spiral tree [26] (b) confluent spiral tree

(c) zoom (d) migration volume (e) zoom

Fig. 9. Flow map of migration from Texas (1995-2000). The smooth linkage of confluent spi-
rals (b) eliminates turns and thus not only yields more pleasing drawings but also facilitates the
display of edge attributes (d). Note that edge direction can be inferred locally from every seg-
ment (e).

5 Discussion

We have presented drawing styles for the routing of undirected and directed edges in
geographic networks using edge bundling at ends rather than interiors, and logarithmic-
spiral trees that yield confluent drawings. Their main benefits are

– faithfulness (unambiguous representation of edges)
– stubs point in general direction of destinations
– edge widths and colors are still available for data attributes
– confluent flow maps of in- or out-stars

While initial feedback indicates that confluent spiral drawings are visually appealing,
controlled user studies will have to show that they are effective.

As future work we plan to explore other, more data-driven, approaches to partition
stubs into bundles, and we would like to prove guarantees on the tree structure of spiral
segments and on avoidance of obstacles. For now, our application-oriented implemen-
tation is based largely on heuristics, but does layout networks with several thousands of
edges essentially at interactive speed.
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(a) approach of Phan et al. [21] (b) approach of Verbeek et al. [26]

(c) our approach

Fig. 10. Flow map of migration to California and New York (1995-2000, top 10 states of origin).
Line widths indicate migration volume and are to scale across figures.
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On Orthogonally Convex Drawings

of Plane Graphs
(Extended Abstract)
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Abstract. We investigate the bend minimization problem with respect
to a new drawing style called orthogonally convex drawing, which is or-
thogonal drawing with an additional requirement that each inner face is
drawn as an orthogonally convex polygon. For the class of bi-connected
plane graphs of maximum degree 3, we give a necessary and sufficient
condition for the existence of a no-bend orthogonally convex drawing,
which in turn, enables a linear time algorithm to check and construct
such a drawing if one exists. We also develop a flow network formula-
tion for bend-minimization in orthogonally convex drawings, yielding a
polynomial time solution for the problem. An interesting application of
our orthogonally convex drawing is to characterize internally triangu-
lated plane graphs that admit floorplans using only orthogonally convex
modules subject to certain boundary constraints.

Keywords: Bendminimization, floorplan, orthogonally convex drawing.

1. Introduction

An orthogonal drawing of a plane graph is a planar drawing such that each edge is
composed of a sequence of horizontal and vertical line segments with no crossings.
A classic optimization problem in orthogonal drawing is to minimize the number
of bends, namely, the bend-minimization problem. The problem is NP-complete
in the most general setting, i.e., for planar graphs of maximum degree 4 [5].
Subclasses of graphs with bend-minimization of orthogonal drawing tractable
include planar graphs of maximum degree 3, series-parallel graphs, and graphs
with fixed embeddings [3,12], etc.

Most of the orthogonal drawing algorithms reported in the literature can
be roughly divided into two categories, one uses flow or matching to model
the problem (e.g., [2,3,12]), whereas the other tackles the problem in a more
graph-theoretic way by taking advantage of structure properties of graphs (e.g.,
[9,10,8]). The former usually solves a more general problem, but requires higher
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time complexity. On the contrary, algorithms in the latter focus on specific kinds
of graphs, resulting in linear time complexity in many cases.

In this paper, we introduce a new type of orthogonal drawing called orthog-
onally convex drawing, which requires that each inner face be an orthogonally
convex polygon. A polygon is orthogonally convex if for any horizontal or vertical
line, if two points on the line are inside a polygonal region, then the entire line
segment between these two points is also inside the polygonal region. The study
of this new drawing style is motivated by an attempt to learn more about the geo-
metric aspect of orthogonal drawing, which, in the dual setting, is closely related
to rectangular dual and rectilinear dual which are well-studied in floor-planning
and contact graph representations [6,11,14]. Note that if we consider standard
convexity instead of orthogonal convexity in the setting of no-bend orthogonal
drawing, the problem becomes the ”inner rectangular drawing” studied in [7].
There are several recent results on rectilinear duals in cartographic applications,
see, e.g., [1]. For other perspectives of orthogonal drawing, the reader is referred
to [4] for a survey chapter.

Our contributions include the following:

1. A new drawing style called orthogonally convex drawing is introduced, and a
necessary and sufficient condition, along with a linear time testing algorithm,
is given for a bi-connected plane 3-graph (i.e., of maximum degree 3) to admit
a no-bend orthogonally convex drawing.

2. A flow network formulation is devised for the bend-minimization problem of
orthogonally convex drawing.

3. By combining the above no-bend orthogonally convex drawing algorithm and
the flow network formulation, a polynomial time algorithm (in O(n1.5 log3 n)
time) for constructing a bend-optimal orthogonally convex drawing is pre-
sented.

4. We apply our analysis of no-bend orthogonally convex drawing to charac-
terizing internally triangulated graphs that admit floorplans using only or-
thogonally convex modules that can be embedded into a rectilinear region
with its boundary order-equivalent to a given orthogonally convex polygon.

2. Preliminaries

Given a graph G = (V,E), we write Δ(G) to denote the maximum degree of G.
Graph G is called a d-graph if Δ(G) ≤ d. A path P of G is a sequence of vertices
(v1, v2, ..., vn) such that ∀1 ≤ i ≤ n, vi ∈ V and ∀1 ≤ i ≤ n − 1, (vi, vi+1) ∈ E.
We write V (P ) to denote the set of vertices {v1, ..., vn}, and E(P ) to denote the
edge set {(vi, vi+1)|1 ≤ i < n} of P . Given two paths P ′ and P , we write P ′ ⊆ P
if P ′ is a subsequence of P , and P ′ ⊂ P if P ′ ⊆ P and P ′ �= P . P is called a
cycle if v1 = vn. Unless stated otherwise, paths and cycles are assumed to be
simple throughout this paper, in the sense that there are no repeated vertices
other than the starting and ending vertices. A drawing of a planar graph divides
the plane into a set of connected regions, called faces. A contour of a face F is
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the cycle formed by vertices and edges along the boundary of F . A cycle that is
the boundary, ie., contour, of a face is called a facial cycle. The contour of the
outer face is denoted as CO. If G is bi-connected, contours of all the faces are
simple cycles.

In our subsequent discussion, we adopt some of the notations and definitions
used in [9,10]. A cycle C divides a plane graph G into two regions. The one that
is inside (resp., outside) cycle C is called the interior region (resp., outer region)
of C. We use G(C) to denote the subgraph of G that contains exactly C and
vertices and edges residing in its interior region. An edge e = (u, v) in the outer
region of C is called a leg of C if at least one of the two vertices u and v belongs
to C. C is k-legged if C contains exactly k vertices that are incident to some
legs of C. These k vertices are called legged-vertices of C. If Δ(G) ≤ 3, every
legged-vertex v of C is incident to exactly one leg e of C. Note that 3-legged
cycles coincide with the so-called complex triangles in the dual setting, which
play a crucial role in the study of rectilinear duals [11,14].
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Fig. 1. Illustration of some terms
about cycles and paths

We call a face or a cycle inner if it is not
the outer one. If an inner face or inner cycle
intersects with the outer one, then we call it
boundary face or boundary cycle. A contour
path P of a cycle C is a path on C such that
P includes exactly two legged-vertices x and
y of C, and x and y are the two endpoints of
P . Therefore, each k-legged cycle has exactly
k contour paths. If a contour path intersects
with (i.e., shares some edges with) the outer
cycle, we call it boundary contour path. In fact,
each boundary contour path is a subpath of
CO. Each contour path P of C is incident to
exactly one face, denoted as FC,P , in the outer
region of C. As an illustrating example, con-
sider Figure 1. F0 is the outer face of G. Con-
sider two cycles C1 = (s, t, u, v, s) and C2 = (x, b, i, a, z, y, c, x) (both drawn in
bold line). C1 is a non-boundary 2-legged cycle, of which two legged-vertices are
t and v, and two legs are (t, q) and (v, r). C1 is also a facial cycle, which is the
contour of F1. C2 is a boundary 3-legged cycle, of which three legged-vertices
are x, y, and z. P1 = (t, u, v) is a contour path of C1. P2 = (z, a, i, b, x) is the
boundary contour path of C2. We have FC1,P1 = F2 and FC2,P2 = F0.

Let D(G) be an orthogonal drawing of plane graph G with outer cycle CO.
Given a cycle C, we use D(C) (or equivalently D(F ) if C is the contour of a face
F ) to denote the drawing of C in D(G). D(C) is always a simple polygon as long
as C is simple. We call D(G) an orthogonally convex drawing of G if D(F ) is an
orthogonally convex polygon for every face F other than the outer one. We use
bc(D(G)) to denote the bend count, i.e., the total number of bends, of D(G).

In an orthogonal drawing D(G), angC(v) denotes the interior angle of v in
polygon D(C). We called v a convex corner, non-corner, and concave corner of
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C if angC(v) is 90
◦, 180◦, and 270◦, respectively. A corner in the drawing D(G)

is either a bend on some edge, or a vertex v of G such that angC(v) �= 180◦ for
some C. If v is a non-corner of C, v is on a side of polygon D(C).

From Section 3 to Section 5, graphs under the name G are assumed to be
bi-connected with �(G) ≤ 3, and may have multi-edges.

3. No-Bend Orthogonally Convex Drawing

Among existing results concerning orthogonal drawings, Rahman et al. [10] gave
a necessary and sufficient condition for a bi-connected plane 3-graph to admit a
no-bend orthogonal drawing, and they devised an algorithm to test the condition,
and subsequently construct the drawing if one exists.

Theorem 1 ([10]). A bi-connected plane 3-graph G has a no-bend orthogonal
drawing iff G satisfies the following three conditions:

1. There are four or more 2-vertices (i.e., vertices of degree 2) of G on CO(G).
2. Every 2-legged cycle contains at least two 2-vertices.
3. Every 3-legged cycle contains at least one 2-vertex.

Theorem 1 clearly holds even when G has multi-edges, as such graphs do not
have no-bend orthogonal drawings. The no-bend orthogonal drawing algorithm
in [10] performs the following steps recursively: (1) reducing the original graph
G into a structurally simpler graph G∗ by collapsing the so-called ”maximal
bad cycles”, (2) drawing G∗ in a rectangular fashion, and (3) plugging in the
orthogonal drawings of those maximal bad cycles to the rectangular drawing1 of
G∗ to yield a no-bend orthogonal drawing of G.

Bad cycles in Step (1) are cycles that are 2-legged or 3-legged if the four
designated corner vertices in CO are considered as legged-vertices. Intuitively,
bad cycles are cycles that violate the conditions under which a graph admits a
rectangular drawing. For instance, consider the graph in Figure 1. If {h, i, j, k}
are the 4 designated vertices, then (w, z, a, i, b, x, c, y, w) (a 3-legged cycle as i
is considered a legged-vertex) is a bad cycle, whereas (r, v, u, t, q, j, g, h, r) (a 4-
legged cycle including legged-vertices h and j) is not a bad cycle. Maximal bad
cycles are bad cycles that are not contained in G(C) for another bad cycle C.
Step (2) involves computing the rectangular drawing of an input graph with four
designated corner vertices on CO(G). It is known that such a graph with four
designated vertices admits a rectangular drawing if and only if every 2-legged
cycle contains at least two designated vertices, and every 3-legged cycle contains
at least one designated vertex [13]. As shown in [10], the G∗ (with each of the
maximal bad cycles contracted to a single vertex) always meets the condition for
the existence of a rectangular drawing. The reader is referred to [10] for more.

Our goal in this section is to give a similar necessary and sufficient condition
for graphs to have no-bend orthogonally convex drawings.

1 A rectangular drawing of a graph is a no-bend orthogonal drawing such that each
interior face is a rectangle and the boundary of the outer face also forms a rectangle.
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Lemma 1. Consider a no-bend orthogonally convex drawing D(G) of a graph
G. For every 2-legged cycle C with legged-vertices x and y and a contour path
P of C, the number of convex corners of D(C) in V (P ) \ {x, y} (i.e., the set
of vertices along path P excluding x and y) must be at least 1 more than that
of concave corners, if either (1) C is a boundary cycle and P is its boundary
contour path, or (2) C is non-boundary and P is any of its contour paths.

We are now in a position to give one of our main results.

Theorem 2. A bi-connected plane 3-graph G admits a no-bend orthogonally
convex drawing if and only if the three conditions in Theorem 1 and the following
two additional conditions hold: (1) every non-boundary 2-legged cycle contains at
least one 2-vertex on each of its contour paths, and (2) every boundary 2-legged
cycle contains at least one 2-vertex on its boundary contour path.

The necessity of Theorem 2 follows from Lemma 1. A modification to the no-
bend orthogonal drawing algorithm described above yields a constructive proof
of the sufficiency of Theorem 2. Based on an implementation described in [10],
we have the following result.

Theorem 3. There is a linear time algorithm to construct a no-bend orthogo-
nally convex drawing D(G) if G admits one.

4. An Alternative Condition

An alternative necessary and sufficient condition is given in this section to charac-
terize bi-connected 3-plane graphs admitting no-bend orthogonally convex draw-
ings, facilitating a min-cost flow formulation for the bend-minimization problem.
As Theorem 2 indicates, contour paths along (boundary or non-boundary) 2-
legged cycles play a vital role in orthogonally convex drawing. Due to possible
overlaps of 2-legged cycles and complex intersections between contour paths, it
becomes difficult to capture the amount of convex/concave corners along con-
tour paths in a min-cost flow formulation. To ease this problem, we identify
two types of cycles, namely, proper and improper cycles, which are later used to
characterize the presence of orthogonally convex drawings.

Let Gc denote the graph resulting from contracting every 2-vertex of G. Since
we require G to be of maximum degree 3, Gc must be 3-regular. A 2-legged
cycle of G is called improper if its two legs correspond to the same edge in Gc;
otherwise, it is called proper. See Figure 2 for instance. Due to 3-regularness of
Gc and the fact that the two legs of an improper cycle C are the same edge e in
Gc, there remains nothing outside G(C) except the leg e. Therefore, improper
cycles must be boundary cycles, or conversely, all non-boundary 2-legged cycles
are proper. It is also easy to observe that a 2-legged cycle C of G with two leg-
vertices x and y is improper iff for the non-boundary contour path P of C, the
boundary of FC,P intersects CO of G in exactly 1 path. Again consider Figure 2.
Note that F1 and F2 correspond to the FC,P of the 2-legged cycles drawn as bold
lines in the left and right figures, respectively. The boundary of F1 intersects CO
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in exactly one path (x, y), whereas the boundary of F2 intersects CO in two
paths (z, a) and (y, b, c).

Definition 1. A path P of G is called critical if there is a proper 2-legged cycle
C such that: (1) P is a contour path of C, (2) if C is a boundary 2-legged cycle,
P is the boundary contour path of C, and (3) P does not edge-intersect with any
proper 2-legged cycle other than C that is contained in G(C).

x
y

z

y

F1
F2

x

a

b

c

Fig. 2. Proper and improper 2-legged
cycles. Left: An improper 2-legged cy-
cle (drawn as a bold line) with leg-
vertices x, y. Right: A proper 2-legged
cycle (drawn as a bold line) with leg-
vertices y, z.

z 

y x 

u 

v 
w 

Fig. 3. Critical paths and SG in a plane
graph. Left: Paths in SG. Right: Critical
Paths

To proceed further, we require the following two lemmas.

Lemma 2. For any bi-connected plane 3-graph G, the critical paths of G are
edge-disjoint.

Lemma 3. Let P be a path satisfying (1) and (2) in Definition 1. If P is not
critical, there must be a critical path P ′ such that P ′⊂P .

Note that the requirement of properness of 2-legged cycles in Definition 1 is
essential in the sense that Lemma 2, which is crucial in the subsequent context,
is not true if we remove that requirement. Given a path P with endpoints x and
y, we write P(x�y) to denote the ”open” version of P , i.e., excluding x and y.
That is, P(x�y) consists of V (P ) \ {x, y} and E(P ).

Instead of basing on contour paths as in Theorem 2, our new characteriza-
tion for no-bend orthogonally convex drawing is based upon two kinds of paths
defined over proper and improper 2-legged cycles, namely, critical paths defined
above for proper 2-legged cycles and a set of paths called SG associated with
improper 2-legged cycles in graph G. SG is defined to be the set of all paths CO\
P(x�y) for every boundary contour path P of an improper 2-legged cycle with
two legged-vertices x, y. Note that internal vertices in paths of SG must have
degree 2, and paths in SG must be in CO, and hence P∈SG iff P is a boundary
contour path of a facial cycle C that has only one boundary contour path. The
following fact summarize the observation.
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Fact 1. Let P be a path of G with two end-vertices x and y. The following
three statements are equivalent: (1) P is in SG; (2) P is the boundary contour
path of a facial cycle C that intersects CO of G in exactly one path; (3) P is
CO\P ′

(x�y), for some boundary contour path P ′ of an improper 2-legged cycle
with two legged-vertices x and y.

To have better grasp of critical paths and SG, consider Figure 3 in which a
no-bend orthogonally convex drawing of a plane graph G is shown. In the left
figure, the four dotted paths are those in SG, which are edge-disjoint. Let C be
the 2-legged cycle drawn as a bold line, and P be its boundary contour path.
We have CO\P(x�z) = (x, y, z). In the right figure, the five dotted paths are
critical paths, which are edge-disjoint. Let C be the 2-legged cycle drawn as a
bold line. We have (1) the path (u, v, w) is one of its contour paths, (2) C is a
non-boundary 2-legged cycle, and (3) P does not edge-intersect with any proper
2-legged cycle other than C that is contained in G(C). A path in SG is either
contained in exactly one critical path or intersects with no critical path. The
reader is encouraged to verify that the graph satisfies the conditions stated in
Theorem 2 and Theorem 4, and the orthogonally convex drawing satisfies the
conditions in Lemma 4.

The following theorem enables us to characterize no-bend orthogonally convex
drawings in terms of critical paths and SG.

Theorem 4. Suppose a bi-connected plane 3-graph G has a no-bend orthogonal
drawing. G has a no-bend orthogonally convex drawing iff the following condi-
tions are satisfied:

1. Every critical path of G contains at least one 2-vertex.
2. CO\P contains at least one 2-vertex for every P∈SG.

We note that both SG and the set of all critical paths can be found in linear
time. The algorithm is basically a contour edge-traversal of each face with a
mechanism of detecting repeated adjacent faces.

5. Flow Formulation for Bend-Minimization

In this section, we tailor the planar min-cost flow formulation originally de-
signed for orthogonal drawing [12] to coping with orthogonal convexity. To make
our subsequent discussion clear, we use arc and node instead of edge and ver-
tex, respectively, in describing a flow network. A min-cost flow network is a
directed multi-graph N = (W,A) associated with four functions: lower bounds
λ : A→Z≥0, capacities μ : A→Z≥0 ∪ {∞}, costs c : A→Z≥0, demands b : W→Z.
A map f : A→Z≥0 is a flow if the following constraints are met for each node v
and arc a:

b(v) +
∑

(u,v)∈A

f(u, v)−
∑

(v,u)∈A

f(v, u) = 0, λ(a) ≤ f(a) ≤ μ(a)

The cost of a flow f is c(f) =
∑

a∈A f(a) × c(a). The flow network NG =
(WG, AG) associated with a bi-connected plane 3-graph G is
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– WG = WV ∪WF , where WV and WF are the vertex set and face set (includ-
ing the outer face) of G, respectively, Furthermore, ∀uv ∈ WV , b(uv) = 2 if
degG(v) = 3; b(uv) = 0 if degG(v) = 2. ∀uF ∈ WF , b(uF ) = −4 if F is an
inner face; b(uF ) = 4 if F is the outer face.

– AG = AV ∪ AF , where
• AV = {(uv, uF ), (uF , uv)|deg(v) = 2} ∪ {(uv, uF )|deg(v) = 3}, where
v ∈ V (G), F ∈ face(G), v incident to F . ∀a ∈ AV , λ(a) = 0, μ(a) = 1,
and c(a) = 0.

• AF = {(uF , uH)|F,H ∈ face(G), and F adjacent to H} is a multi-set
of arcs between faces, and the number of (uF , uH) in AF equals the
number of shared edges e in contours of F and H . We use (uF , uH)e to
indicate the specific arc that corresponds to the shared edges e. ∀a ∈ AF ,
λ(a) = 0, μ(a) =∞, and c(a) = 1.

Although our definition of NG is slightly different from the original one given
in [12], the validity of NG is apparent as the following explains. Every flow f in
NG corresponds to an orthogonal drawing D(G), and vice versa, such that

– f(uv, uF ) − f(uF , uv) = −1, 0, 1 means v is a concave corner, non-corner,
convex corner in D(F ), respectively,

– f(uF , uH)e is the number of bends on e that are concave corners in D(F )
and convex corners in D(H), and

– the total number of bends in D(G) equals c(f).

Fact 2. Let S1 (resp., S2) be any subset of edges (resp., vertices) along the
contour of a face F . For any e ∈ S1, we write Fe to denote the face incident to e
other than F . For a flow f in NG and its corresponding orthogonal drawing D,
we must have

∑
e∈S1

[f(uFe , uF )e− f(uF , uFe)e] +
∑

v∈S2
[f(uv, uF )− f(uF , uv)]

equals the difference between the numbers of convex corners and concave corners
in S1 and S2 of D(F ).

Lemma 4. A bi-connected plane 3-graph G admits a no-bend orthogonally con-
vex drawing iff there is a no-bend orthogonal drawing (not necessarily orthog-
onally convex) such that (1) for every critical path P along a contour path of
2-legged cycle C, #cc(P(x�y)) > #cv(P(x�y)) in FC,P , and (2) for every P in
SG, #cc(P(x�y)) ≤ 3+ #cv(P(x�y)) in the outer face, where P has endpoints x
and y, and #cv(P(x�y)) and #cc(P(x�y)) represent the numbers of convex and
concave corners, respectively, of P(x�y) .

In what follows, we show how to construct a flow network N ′
G from NG in such

a way that a flow of N ′
G corresponds to an orthogonal drawing meeting the

conditions stated in Lemma 4. Initially we set N ′
G = NG.

– ∀P ∈ SG with endpoints x, y and outer face F ′, add a new node uP

to W (N ′
G), and two arcs (uF ′ , uP ), (uP , uF ′) to A(N ′

G). We set b(uP ) =
0, λ(uF ′ , uP ) = λ(uP , uF ′) = 0, μ(uF ′ , uP ) = 3, μ(uP , uF ′) = ∞, and
c(uF ′ , uP ) = c(uP , uF ′) = 0. We redirect all the arcs in the current A(N ′

G)
of the following forms: (uF ′ , uv), (uv, uF ′), (uF ′ , uF )e, (uF , uF ′)e for all
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v ∈ V (P ) \ {x, y}, F ∈ SP,F ′ , e ∈ E(P ) by replacing uF ′ with uP . Due
to Fact 2, Statement 2 of Lemma 4 holds.

– ∀ critical path P with endpoints x, y, C the 2-legged cycle for which P
is its contour path, and S the set of faces in G(C) that border P , add
a new node uP to W (N ′

G), and a new arc (uFC,P , uP ) to A(N ′
G). We set

b(uP ) = 0, λ(uFC,P , uP ) = 1, μ(uFC,P , uP ) = ∞, and c(uFC,P , uP ) = 0. We
redirect all the arcs in the current A(N ′

G) of the following forms: (uFC,P , uP ′),
(uP ′ , uFC,P ), (uFC,P , uv), (uv, uFC,P ), (uFC,P , uF )e, (uF , uFC,P )e for all P ′ ∈
SG such that P ′ ⊆ P , v ∈ V (P ) \ {x, y}, F ∈ S, e ∈ E(P ) by replacing
uFC,P with uP . Due to Fact 2, Statement 1 of Lemma 4 holds.
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z w
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y y
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w
P1 P1

P2 P2
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Fig. 4. Illustration of the construction of N ′
G: F0 is the outer face, P1 = (x, y, z) and

P2 = (z, w) are two paths in SG, P3 = (x, y, z, w) is a critical path

For an illustrating example, consider Figure 4 in which the up-left picture is
a portion of a graph G with NG depicted in the up-right. The down-left one
illustrates the result of adding two additional nodes representing P1 and P2 (the
newly added arcs are drawn in dotted line). The down-right one illustrates the
result of adding an additional node representing critical path P3 (the newly
added arc is drawn in dashed line).

The validity of the above construction follows from critical paths being mu-
tually edge-disjoint (Lemma 2), and every path in SG is either a subpath of a
critical path or intersects with no critical paths. Note that the number of newly
added arcs and nodes is linear in n = V (G), and the maximum possible value
of the minimum cost is also O(n). Following an O(n1.5 log3 n) time algorithm in
[2], we have

Theorem 5. For any bi-connected plane 3-graph G, we can construct a bend-
minimized orthogonally convex drawing in O(n1.5 log3 n) time.
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6. An Application to Floor Planning

In this section, we show an application of orthogonally convex drawing to floor
planning. A plane graph is internally triangulated if all the inner faces are trian-
gles. For any internally triangulated plane graph G = (V,E), a rectilinear dual
is a partition of a simple orthogonal polygon (denoted as R) into |V (G)| simple
orthogonal regions, one for each vertex, such that two region have a side-contact
iff their corresponding vertices adjacent to each other.

Two polygons are said to be order-equivalent if they admit the same circular
order (in counter-clockwise orientation) of angles. For instance, the following

two figures
x

x

are order-equivalent. Let Q be an orthogonal polygon, we use
Q-floorplan to denote a rectilinear dual whose boundary (the R in the definition
of rectilinear dual) is order-equivalent to Q. A floorplan is called orthogonally
convex if all the boundaries of |V (G)| simple orthogonal regions are orthogonally
convex polygons. In this section, graphs under the name Gdual are assumed to
be simple, connected, internally triangulated plane graph.

Lemma 5. For any simple, connected, internally triangulated plane graph Gdual,
there is a unique bi-connected 3-regular planemulti-graphGprimal such thatGdual is
the weak dual2 ofGprimal, and the following properties are hold: (1)Gprimal does not
have any non-boundary 2-legged cycle, and (2) internal faces (which are orthogonal
polygons) of an orthogonal drawing of Gprimal form a rectilinear dual of Gdual.

We remark that although Gdual is required to be simple, Gprimal may still have
multi-edges. Since Gprimal is bi-connected and �(Gprimal) ≤ 3, the results in
the previous sections can be applied.

Let CO = (v1, v2, . . . , vs, v1) be the boundary cycle of Gdual, which need not
be a simple cycle. Then, a triangulated plane multi-graph G′ is constructed by
adding a new vertex t in the outer face of Gdual, and then triangulate the outer
face by adding edge (vi, t) for 1 ≤ i ≤ s. Take the dual of G′ yields Gprimal. See
Figure 5 for an illustration.

Given an orthogonally convex polygon Q, our goal is to characterize graphs
that admit orthogonally convexQ-floorplans, and subsequently realize such floor-
plans. We use numSide(P ) to denote the number of sides of polygon P with
non-corner vertices neglected.

Lemma 6. Let G be a bi-connected plane 3-graph (may have multi-edges) with
k boundary critical paths. We have min{numSide(D(CO)) | D is an orthogonally
convex drawing of G} = max{4, 2k − 4}. Further, for any orthogonally convex
polygon Q of numSide(Q) ≥ max{4, 2k − 4}, there is an orthogonally convex
drawing D(G) such that D(CO) is order-equivalent to Q.

The concept of critical paths turns out to be pretty clean in the dual setting.
We use TG to denote the block-cutvertex tree of G. We will see in Lemma 7

2 The weak dual of a plane graph is the subgraph of the dual graph excluding the vertex
(and edges) corresponding to the unbounded (i.e., outer) face.
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Fig. 5. The construction of Gprimal

that leaves in TGdual
actually have one-to-one correspondence to critical paths

in Gprimal. Let (v, u) be an edge in E(TGdual
) such that v is a cut-vertex. Now u

must be a block. Let Vv,u be the vertex set of the component in Gdual \ {v} that
contains some vertices in block u, and Fv,u denote the corresponding face set in
Gprimal. Since Gdual is internally triangulated, the edges in E(Gdual) that link
v to vertices in Vv,u must be located consecutively in the circular list of edges
incident to v that describes the combinatorial embedding of Gdual. We denote
the edge set as Ev,u. According to the definition of duality of plane graphs and
the algorithm for constructing Gprimal from Gdual, these edges form a path in
Gprimal. We write Cv,u to denote the cycle that is the boundary of union of
faces in Fv,u. For instance, in Figure 5 the set Ev,u is {e1, e2, e3}, which forms
the non-boundary contour path with respect to Cv,u=(e1, e2, e3, e4, e5).

Lemma 7. {Boundary contour path of Cv,u | u is a leaf of TGdual
, (v, u) ∈

E(TGdual
)} is the set of boundary critical paths in Gprimal.

In Figure 5, the boundary contour paths of Cv,u and Cx,y are the paths drawn in
dashed and dotted lines, respectively. These two paths are the boundary critical
paths of Gprimal. Following Lemmas 5, 6, 7 and Theorem 3, we have

Theorem 6. For any internally triangulated graph Gdual and orthogonally con-
vex polygon Q, let k be the number of leaves in the block-cutvertex tree of Gdual.
Gdual admits an orthogonally convex Q-floorplan iff numSide(Q) ≥ max{4, 2k−
4}. The floorplan can be constructed in linear time.

7. Conclusion

We studied a new drawing style called orthogonally convex drawing from both
combinatorial and algorithmic viewpoints. It would be interesting to see whether
results/techniques developed in our work could be extended to other types of
convex versions of contact graph representations or floorplans.
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Abstract. We prove tight bounds (up to a small multiplicative or additive con-
stant) for the plane and the planar slope numbers of partial 2-trees of bounded
degree. As a byproduct of our techniques, we answer a long standing question by
Garg and Tamassia about the angular resolution of the planar straight-line draw-
ings of series-parallel graphs of bounded degree.

1 Introduction

A drawing of a graph G in R2 maps each vertex of G to a point and each edge of G to a
Jordan arc such that an edge does not contain a vertex other than its endpoints, no edge
crosses itself, edges do not meet tangentially, and edges sharing a common end-vertex
do not cross each other. A planar graph is a graph that admits a planar drawing, i.e. a
drawing such that no two edges intersect except at their common end-points. A plane
graph is a planar graph together with a combinatorial embedding, i.e. a prescribed set
of faces including a prescribed outer face. A plane drawing of a plane graph G is a
planar drawing that realizes the combinatorial embedding of G.

The slope number of a straight-line drawing Γ of a planar graph G is the number
of distinct slopes of the edges of Γ . Every plane (planar) graph admits a plane (planar)
straight-line drawing [1], i.e. a drawing where the edges are mapped to straight line
segments. The planar slope number of G is the smallest slope number over all planar
straight-line drawings of G. If G is a plane graph, the plane slope number of G is the
smallest slope number over all plane straight-line drawings of G.

The problem of computing drawings of planar graphs with maximum degree four, us-
ing only horizontal and vertical slopes, has long been studied in graph drawing through
the research on orthogonal and rectilinear graph drawing (see, e.g., [1]). In a seminal
paper, Dujmović et al. [2] extend this study to non-orthogonal slopes, and give tight up-
per and lower bounds (expressed as functions of the number n of vertices) on the plane
slope numbers of several graph families including plane 3-trees and plane 3-connected
graphs. They also ask whether the plane slope number of a plane graph of maximum
degree Δ can be bounded by a function f(Δ). Keszegh et al. [7] answer the question
affirmatively proving that, for a suitable constant c, the plane slope number of a plane
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graph of bounded degree Δ is at most O(cΔ). In the same paper, Keszegh et al. estab-
lish a 3Δ− 6 lower bound for the plane slope number of the plane graphs of maximum
degree at most Δ, which motivates additional research on reducing the gap between
upper and lower bound. The question is studied by Jelı́nek et al. [5] who prove that the
plane slope number of plane partial 3-trees is O(Δ5). Also Kant, Dujmović et al., Mon-
dal et al. independently show that the plane slope number of cubic 3-connected plane
graphs is six [2,6,9], whereas the slope number (i.e., when the drawings may contain
edge crossings) of cubic graphs is four [10].

In this paper we prove tight bounds (up to a small multiplicative or additive constant)
for the plane and the planar slope numbers of planar 2-trees of bounded degree. Our
results extend previous papers concerning the planar and plane slope numbers of proper
subfamilies of the partial 2-trees. Namely, Jelı́nek et al. [5] prove that the planar slope
number of series-parallel graphs with maximum degree three is at most three. Knauer
et al. [8] show that the plane slope number of outerplane graphs with maximum degree
Δ ≥ 4 is at most Δ− 1 and that Δ− 1 slopes are sometimes necessary. As a byproduct
of our techniques, we answer a long standing open problem by Garg and Tamassia [3],
who ask whether Ω( 1

Δ2 ) is a tight lower bound on the angular resolution of series-
parallel graphs of degree Δ (i.e. they ask whether these graphs admit planar straight-
line drawings where minimum angle between any two consecutive edges is Ω( 1

Δ2 )).
More precisely, our results can be listed as follows.

– We prove that the planar slope number of a partial 2-tree of maximum degree Δ is
at most 2Δ and there exist partial 2-trees whose planar slope number is at least Δ
if Δ is odd and at least Δ+ 1 if Δ is even (Section 3).

– We prove that the plane slope number of a plane partial 2-tree of maximum degree
Δ is at most 3Δ and there exist plane 2-trees whose plane slope number is at least
3Δ− 3 if Δ is even and at least 3Δ− 4 if Δ is odd (Section 4).

– We show that a partial 2-tree G of maximum degree Δ admits a planar straight-line
drawing with angular resolution π

2Δ . If G is a plane graph, a plane straight-line
drawing of G exists whose angular resolution is π

3Δ (Section 5). The previously
best known bound was 1

48πΔ2 , established by varying the input embedding [3].

2 Decomposition Trees and Universal Slope Sets

In this section we recall some known concepts. Throughout the paper “drawing” means
“planar straight-line drawing”; “plane drawing” means “plane straight-line drawing”.

SPQ Trees and Block-cut Vertex Trees. Let G be a 2-connected graph. A separation
pair is a pair of vertices whose removal disconnects G. A split pair of G is either a
separation pair or a pair of adjacent vertices. A split component of a split pair {u, v}
is either an edge (u, v) or a maximal subgraph Guv of G such that {u, v} is not a split
pair of Guv . We call vertices u and v the poles of Guv . Note that a split component of
G need no t be 2-connected.

A 2-connected series-parallel graph is recursively defined as follows. A simple cycle
with three edges is a 2-connected series-parallel graph. The graph obtained by
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replacing an edge of a 2-connected series-parallel graph with a path is a 2-connected
series-parallel graph. The graph obtained by adding an edge between the vertices of a non-
adjacent separation pair {u, v} of a 2-connected series-parallel graph is a 2-connected
series-parallel graph. LetG be a 2-connected series-parallel graph. An SPQ-treeT ofG
is a rooted tree describing a recursive decomposition of G into its split components. The
nodes of T are of three types: S, P , or Q. Each node μ has an associated graph called
the skeleton of μ and denoted by skeleton(μ). Starting from a split pair {s, t} of G, T
recursively describes the split components of G as follows. The root of T is a P -node
corresponding to G; its skeleton is defined as in the ”Parallel case” below.

- Base case: The split component H is an edge. Then H corresponds to a Q-node of T
whose skeleton is this edge. The Q-nodes are the leaves of T .

- Series case: The split component H is a 1-connected graph with split components
H1, . . . Hk (k ≥ 2) and cut vertices ci = Hi ∩ Hi+1. Then H corresponds to an
S-node μ of T . The graph skeleton(μ) is a chain e1, . . . , ek of edges such that
ei=(ci−1, ci), where c0 = s and ck = t. The children of μ are the roots of the
SPQ-trees of H1, . . . , Hk.

- Parallel case: Otherwise, the split component H is 2-connected and its split compo-
nents are H1, . . . , Hk(k ≥ 2). Then H has skeleton(μ) consisting of a set of parallel
edges e1, . . . , ek between s and t, one for each Hi. The children of μ are the roots of
the SPQ-trees of H1, . . . , Hk.

Figure 1(a) and (b) show a 2-connected series-parallel graph and its SPQ-tree, which is
uniquely determined by the choice of the initial split pair. Note that no P -node (S-node)
has a P -node (S-node) as a child. Let T be an SPQ-tree of a 2-connected series-parallel
graph G and let μ be a node of T . The pertinent graph of μ is the subgraph of G whose
SPQ-tree is the subtree of T rooted at μ, as shown in Figure 1(c). The virtual edge
of μ is an edge in the skeleton of the parent of μ that represents the pertinent graph of
μ. Hence for every internal (i.e., non-Q) node μ in T , each edge in skeleton(μ) is a
virtual edge of some child of μ.

If μ is P -node, then we associate with μ another graph frame(μ), called the frame
of μ, which is formed by replacing each edge e in skeleton(μ) with the skeleton of the
child node whose virtual edge is e, as shown in Figure 1(d). Every vertex in a frame
corresponds to a unique vertex of G. Given a vertex v of G, the first frame of v is
the frame that is closest to the root of T and contains v. For any split pair {u, v} in
a 2-connected series-parallel graph G with n vertices, an SPQ-tree having {u, v} as
reference pair can be computed in O(n) time [4].

A graph G is a partial 2-tree (or, has tree-width at most 2) if and only if each 2-
connected component of G is either series-parallel or consists of a single edge. Let G
be a 1-connected graph. The block-cut vertex tree of G, denoted by BC-tree, is a graph
with vertex set B ∪ C such that B consists of one vertex for each block (maximal 2-
connected subgraph) of G and C consists of one vertex for each cut vertex of G. There
is an edge from b ∈ B to c ∈ C in the BC-tree if and only if the vertex of G represented
by c belongs to the block represented by b.

Universal Slope Sets and Free Wedges. Let G be a graph with vertex set V . For a
vertex v ∈ V , we denote the degree of v by δ(v). Hence the maximum degree of G is
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Fig. 1. (a) A 2-connected series-parallel graph G. (b) A SPQ-tree of G, where the internal nodes
are labeled with μ1, . . . , μ10. The skeleton of μi, 1 ≤ i ≤ 10, is drawn in the box associated
with μi. (c) The pertinent graph of μ7. (d) The frame graph of μ1.

Δ = maxv∈V δ(v). The excess of v is ε(v) = Δ−δ(v). If H is a subgraph of G, δH(v)
and εH(v) are the restrictions of δ(v) and ε(v) to H .

A set S of slopes is universal for a family of planar graphs G if every graph G ∈ G
admits a planar straight-line drawing such that the slope of every edge in the drawing
belongs to S. We consider universal slope sets defined as follows.

Definition 1. Given a positive integer k ≥ 2, let α = π
2k . Define Sk to be the set of

slopes i · α, for 0 ≤ i ≤ 2k − 1.

We prove the upper bounds on plane and planar slope numbers showing that there
is a value of k depending on Δ such that Sk is universal for the partial 2-trees. In our
constructions, we guarantee that some wedge shaped regions of the plane can be used
for recursive drawing. In particular, for any r > 0, point p ∈ R2, and angle φ, a φ-
wedge at p of radius r is a sector of angular measure φ in the disk of radius r centered
at p. For convenience, we will often omit reference to r, since any suitably small value
of r suffices for our purposes. Let v be a vertex in some planar straight-line drawing Γ .
A wedge with its apex at v in Γ is a free wedge at v if the wedge intersects the drawing
Γ only at v. The angular measure of our free wedges will depend on the degree and
excess of the corresponding vertices.

3 Slope Number of Partial 2-trees

In this section we present upper and lower bounds on the planar slope number of partial
2-trees of maximum degree Δ. We start by studying 2-connected series-parallel graphs
(Section 3.1) and then we extend the study to all partial 2-trees (Section 3.2).

3.1 2-connected Series-parallel Graphs

In this section we show that SΔ is a universal slope set for the family of 2-connected
series-parallel graphs with maximum degree Δ.
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Lemma 1. Let G be the family of 2-connected series-parallel graphs having maximum
degree at most Δ. Then SΔ is universal for G.

Proof. The argument is based on a construction that recursively computes a drawing of
G; the proof is by induction on the number of P -nodes in an SPQ-tree of G. Let T be
an SPQ-tree of G having split pair {s, t} associated with its root and let m ∈ SΔ. Since
G is 2-connected, T must have at least one P -node, e.g., the root of T . We show that G
admits a drawing Γ using only slopes from SΔ that satisfies the following properties.

(1) GraphG is drawn within a triangle�abc having∠bac = (δ(s)−0.5)α and ∠abc =
(δ(t)− 0.5)α (i.e. every edge is either in the interior or on the boundary of�abc).

(2) Vertices s and t are located at a and b, respectively.
(3) Segment ab has slope m.
(4) The edges incident to s are drawn using consecutive slopes of SΔ, as are the edges

incident to t.
(5) At each vertex v �∈ {s, t} in the drawing of G, there is a free ε(v)α-wedge at v

contained in�abc.

Let a and b be two distinct points on a line of slope m ∈ SΔ, and let c be the
point of intersection of the lines through a and b having slopes m+ (δ(s) − 0.5)α and
m− (δ(t) − 0.5)α, respectively.

Base Case: Assume that T has a single P -node, which must be the root of T since
G is 2-connected. The frame of the P -node consists of a set of paths of length at least 1
(and at most one path of length 1). We draw s and t on a and b, respectively. We draw
one of these paths between s and t along the segment ab with slope m (if there is a path
of length one, then we draw that path along ab; otherwise, any of the paths can be used).
The remaining paths are drawn inside�abc using slopes m + iα, i = 1, . . . , δ(s) − 1
at a and slopes m − iα, i = 1, . . . , δ(t) − 1 at b for the edges incident to s and t,
respectively; we use slope m for all other edges. See Figure 2 (a) for an example.

Let Γ be the computed drawing; by construction, Γ is crossing-free and it only
uses slopes from SΔ. Also, the paths from s to t lie within �abc and for each ver-
tex v �∈ {s, t} there is an empty wedge of angle at least ε(v)α with its apex at v that is
completely contained within �abc; this wedge is in the “c side” of the path containing
v, i.e., in the half-plane defined by the line through a, b and containing c. Hence, Γ
satisfies all invariant Properties (1)-(5).

Induction Step: Suppose now that any 2-connected series-parallel graph having at
most j P -nodes in some SPQ-tree admits a drawing that only uses slopes from SΔ

and that satisfies Properties (1)-(5). Let G be a 2-connected series-parallel graph having
j + 1 P -nodes in some SPQ-tree T . As above, the root of T is a P -node and its frame
consists of a set of paths Π1, . . . , Πk of length at least 1. We will draw them in a fashion
similar to the base case but with one important difference: we do not use consecutive
slopes for the edges of the paths incident to s and t, but we leave room for the (recursive)
drawings of the pertinent graphs associated with each virtual edge incident to s or t.

To do this, for each i = 1, . . . , k, let ei be the virtual edge incident to s in Πi

and let μei be the node of T corresponding to the virtual edge ei (note that μei is
either a P - or Q-node of T ). Further, let δei(s) be the degree of s in the pertinent
graph of μei . Then e1 is drawn using slope m, and for each i > 1, ei is drawn using
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Fig. 2. (a) An example drawing for Base case, where δ(s) = δ(t) = 3 and Δ = 4. (b) Illustration
for Inductive step, where δe1(s) = 3, δe2(s) = 1, δe1(t) = 2, and δe2(t) = 3. (c) Illustration
for uiviwi in dashed line, and (d) recursive construction.

slope slope(ei−1) + δei−1 (s)α. The edges of Πi incident to t are positioned similarly,
beginning with slope m but decreasing the slopes as we move from one path to the next.
See Figure 2 (b) for an example.

For every subpath Πi \ {s, t} with at least two vertices (1 ≤ i ≤ k), we draw the
subpath using a sufficiently small line segment as follows. Let ui, vi be the endvertices
of that subpath Πi \ {s, t}. Let wi be the point of intersection of the half-lines from
ui and vi having slopes slope(uivi) + (Δ − 0.5)α and slope(uivi) − (Δ − 0.5)α,
respectively. We draw the paths such that �uiviwi lies in the region bounded by Πi

and Πi+1. If i + 1 < k, then uiviwi lies within �abc. An example is illustrated in
Figure 2(c) in dashed line.

Now that the frame of the root of T has been drawn, let e = uv be a (drawn) virtual
edge of a path Πi of the frame and let μe be its corresponding P - or Q-node in T .
Let w be the point of intersection of the lines from u and v having slopes slope(e) +
(δe(u) − 0.5)α and slope(e) − (δe(v) − 0.5)α, respectively. We recursively draw the
pertinent graph of μe within �uvw. If {u, v} ∩ {s, t} = φ, then �uvw is contained
in �uiviwi, which by construction does not intersect any part of the already drawn
edges. If e is incident to s or t (i.e. either u = s or v = t), then �uvw does not
intersect the edge e′ of Πi+1 incident to s or t, because by construction, the slope of e′

is slope(e) + δe(s)α. Finally, observe that �uvw does not intersect any other triangle
that contains the drawing of a pertinent graph associated with a node of T which is not
in the subtree rooted at μe. See Figure 2(d) for an illustration.

The observations above, together with the fact that the drawing of the frame graph
of the root is crossing-free and that it satisfies Properties (1)-(4), imply that G admits a
drawing that only uses slopes from SΔ satisfying Properties (1)-(4). To see that Prop-
erty (5) is also satisfied, note that each path Πi is drawn as a convex (or linear, for
i = 1) chain. Thus at each vertex v �∈ {s, t} has an angle of at least π between its two
consecutive (virtual) edges in its first frame. The drawing of G uses two consecutive
sets of slopes at v, since the pertinent graph for the two nodes corresponding to each of
those two virtual edges is drawn using consecutive slopes. This leaves a free wedge of
angular measure π− δ(v)α = 2Δα− δ(v)α = Δα+ ε(v)α > ε(v)α at v, establishing
Property (5). ��
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3.2 Partial 2-trees

In this section we extend the result of Lemma 1 to partial 2-trees of maximum degree
Δ by proving that SΔ is universal for these graphs. We shall focus on connected partial
2-trees, since every connected components can be drawn independently of the others.

Lemma 2. Let G be the family of partial 2-trees having maximum degree at most Δ.
Then SΔ is universal for G.

Proof. We assume that G is connected and has at least one edge. Let T be the block-
cutvertex tree of G (see Figures 3(a)–(b)). We build the desired drawing of G by draw-
ing subgraphs of G corresponding to subtrees of T , starting with the leaves of T . The
drawing of G produced will have the following properties:

(a) For some split pair {s, t} of G, G is drawn inside a δ(s)α-wedge with apex s.
(b) s and t are located on a line of slope m ∈ SΔ.
(c) The edges incident to s are drawn using consecutive slopes of SΔ, as are the edges

incident to t.
(d) The wedge of Property (a) is bounded by rays from s in directions m − 0.5α and

m+ (δ(s)− 0.5)α.

If G is 2-connected, then Lemma 1 establishes the existence of a drawing with the
desired properties: Property (b) follows obviously from Property (1) of Lemma 1, Prop-
erty (c) from Property (3) of Lemma 1, and properties (a) and (d) from properties
(1), (2) and (4) of Lemma 1.

Otherwise, let s be a cut vertex of G and choose s as the root of T . The parent of
each block vertex B of T is a cut vertex sB of G. For each such block B, choose a
vertex tB in B such that {sB, tB} is a split pair for B. Each leaf of T is a block vertex
B and by Lemma 1, it can be drawn with split pair {sB, tB} inside a wedge with apex
sB and angular measure δB(sB)α so that properties (a)–(d) hold.

Assume now that x is a vertex of T for which all subgraphs of T have been drawn
respecting properties (a)–(d). Then x represents either a block of G or a cut vertex of
G. If x represents a cut vertex v of G, then let T1, . . . , Tk represent the subtrees of
x. Let Gv be the subgraph of G corresponding to the subtree of T with root v. For
each of the trees Ti, v is at the apex of the δTi(v)α-wedge in which the subgraph Gi

of G corresponding to Ti has been drawn. These wedges can all be rotated about v so
that they use consecutive slopes in SΔ, as shown in Figure 3(c). Thus the subgraph
of G corresponding to the union of T1, . . . , Tk has been drawn in a wedge of angle
δG1(v)α + . . . + δGk

(v)α = δGv (v)α with apex v such that properties (a)–(d) are
satisfied. Note that by Property (a), the drawing of Gv can be made small enough to
lie completely inside the free wedge and so does not intersect any other portion of the
drawing.

Suppose now that x represents a block B of G. The children of B in T represent the
cut vertices of G that belong to B; let v be one of the child cut vertices of B. Draw B
in the manner described by Lemma 1. We consider two cases: v �= tB and v = tB (note
that sB is the parent cut vertex of B, which is handled by the previous case).



Planar and Plane Slope Number of Partial 2-Trees 419

G3

v

G1

v3

B5

B4

(c)(b)

v2

v1v4

B1

B2
B3

B6

(d)

G2

v

B6

v1 B5

B4

B3
B2

v4

(a)

B1

v3

εB(v)α
v2

Fig. 3. (a) A 1-connected graph, and (b) corresponding block-cut vertex tree. (c)–(d) Illustration
for the proof of Lemma 2.

Assume first that v �= tB . Then by Lemma 1, there is a free εB(v)α-wedge with apex
v. Now εB(v)α = (Δ − δB(v))α > (δG(v) − δB(v))α = δGv(v)α and so Gv can be
drawn completely inside the free εB(v)α-wedge with apex v as shown in Figure 3(d).

If v = tB , then the drawing of Gv already produced can be rotated so that all of the
edges in B and ofGv adjacent to tB use consecutive (clockwise from the line containing
sB and tB) directions in SΔ as shown in Figure 3(d). It is an easy observation that the
addition of the subgraphs Gv for each cut vertex of B into the free wedge preserves
properties (a)–(d) of the drawing of B (and of the drawing of G). ��

Lemma 3. For any Δ > 3, there exists a 2-connected series-parallel graph G of max-
imum degree Δ whose planar slope number is at least Δ + 1 if Δ is even and at least
Δ if Δ is odd.

Proof. Consider the graph G obtained from K2,Δ−1 by adding the edge (u, v) connect-
ing the two vertices u and v of degree Δ − 1. Thus G has maximum degree Δ. Now
consider any drawing of G. At least half of the remaining Δ−1 vertices are on one side
of the line determined by the segment representing uv in the drawing. Each of these
�Δ/2� vertices forms a triangle with uv and these triangles are nested. Thus no two of
the 2�Δ/2�+ 1 edges in this portion of the drawing of G have the same slope. ��

The following theorem is an immediate consequence of Lemmas 2, and 3.

Theorem 1. Let G be a partial 2-tree having maximum degreeΔ and let psl(G) denote
the planar slope number of G. Then psl(G) ≤ 2Δ. Also, for every even Δ > 3 there
exists a partial 2-tree G such that psl(G) ≥ Δ+1 and for every odd Δ ≥ 3 there exists
a partial 2-tree G such that psl(G) ≥ Δ.

4 Plane Slope Number of Partial 2-trees

In this section we show that the plane slope number of 2-connected series-parallel
graphs, i.e., when the output drawings respect the input embeddings, is at least 3Δ− 4
and at most 3Δ. In fact, we show that S1.5Δ is universal for the family of 2-connected
series-parallel graphs with fixed embeddings.
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We introduce some additional notation. For an embedded planar 2-connected series-
parallel graph G with poles s and t, we call the edge (s, t) (if exists) the central edge
of G. Since G is 2-connected, the root of its SPQ-tree is a P -node μ. Observe that
each of the edges in skeleton(μ) corresponds to either the edge (s, t) or a 2-connected
series-parallel subgraph of G. If the edge (s, t) exists, then we categorize each of those
subgraphs as a left or right series-parallel subgraph of G depending on whether it lies to
the left or right of the edge (s, t), while walking from s to t. By G−

1 , . . . , G
−
l , (respec-

tively, G+
1 , . . . , G

+
r ) we denote the left (respectively, right) series-parallel subgraphs

of G. If (s, t) does not exist, then we assume that all the series-parallel subgraphs are
right series-parallel, i.e., G+

1 , . . . , G
+
r . Furthermore, we assume that the subgraphs are

ordered as follows: G−
l , . . . , G

−
1 , (s, t), G

+
1 , . . . , G

+
r , reflecting their left to right order-

ing in the embedding.

Lemma 4. Let G be the family of plane 2-connected series-parallel graphs of maximum
degree at most Δ. Then S1.5Δ is universal for G.

Sketch of Proof: Similar to Lemma 1 we employ an induction on the number of P -
nodes in an SPQ-tree T of G. Since the proof follows a similar argument, for reasons
of space we sketch here the main idea of the proof. Let {s, t} be the split pair associated
with the root of T , and let ab be a straight line segment with slope m, where m ∈
S1.5Δ. We show that G admits a drawing Γ using only slopes from S1.5Δ such that the
following properties hold.

(1) Graph G is drawn within a convex quadrilateral �adbc having ∠dac = δ(s)α and
∠dbc = δ(t)α (i.e. every edge is in the interior of �adbc).

(2) Vertices s and t are located at a and b, respectively.
(3) Segment ab has slope m.
(4) The edges incident to s are drawn using consecutive slopes of S1.5Δ, as are the

edges incident to t.
(5) At each vertex v �∈ {s, t} in the drawing of G, there are two free ε(v)α-wedges

at v contained in �adbc, one in the region between the subgraph G+
i (or G−

i )
containing v and the previous series-parallel subgraph of G in the ordering, and
one in the region between G+

i (or G−
i ) and the next series-parallel subgraph of G

in the ordering.

Base Case: Assume that T has a single P -node, which must be the root of T since
G is 2-connected. We draw s and t on a and b, respectively. The frame of the P -node
consists of a set of paths of length at least one (and at most one path of length one). If the
central edge exists, then we draw that edge along ab (otherwise, we draw the leftmost
path along ab ). We then draw the paths Π+

i , i = 1, . . . , r corresponding to each G+
i

between a and b using consecutive slopes at s and t, as in the proof of Lemma 1. All the
remaining paths Π−

i , i = 1, . . . , l corresponding to G−
i are drawn symmetrically to the

left of segment ab , as shown in Figure 4(a). While drawing the paths, we maintain the
input embedding. To construct the quadrilateral �adbc, let d be the intersection of the
line through a having slope 0.5α plus the slope of the edge of Π+

r incident to s with
the line through b having slope −0.5α plus the slope of the edge of Π+

r incident to t.
Similarly, let c be the intersection of the line through a having slope −0.5α plus the
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(a) (b)

s = a

t = b

c

s = a

t = b

c

(c)

s = a

d

Fig. 4. (a) Base case. (b) Drawing frame, where the light-gray (respectively, dark-gray) regions
correspond to the right (respectively, left) series-parallel subgraphs of the corresponding pertinent
graph. (c) Recursive construction.

slope of the edge of Π−
l incident to s with the line through b having slope 0.5α plus

the slope of the edge of Π−
l incident to t. This convex quadrilateral has angle δ(s)α at

a and δ(t)α at b. See Figure 4 (a) for an example.
It is now straightforward to observe that the resulting drawing is planar and satisfies

properties (1)-(4). As for Property (5), consider v �∈ {s, t} in one of the frame paths and
its neighbors u and w on that path. Each of the two angles ∠uvw is either non-acute or
at least π − (δ(u) − 1)α − (δ(w) − 1)α ≥ (Δ + 2)α ≥ ε(v)α, and so the required
empty wedges exist at v.

Induction Step: In a way similar to the proof of Lemma 1, we first draw the frame
of the root of the SPQ-tree and then define disjoint convex quadrilaterals for each of
the virtual edges. Finally, we recursively compute the drawings of the pertinent graphs
inside the corresponding quadrilaterals. The idea is illustrated in Figures 4(b)-(c). ��
By Property (5) of Lemma 4, for every vertex v �∈ {s, t} in G, there is a free wedge on
each side of the drawing of the pertinent subgraphG+

i (G−
i ) of G containing v. Thus the

arguments used in the proof of Lemma 2 can be directly applied in the fixed embedding
case to establish the following lemma.

Lemma 5. Let G be the family of plane partial 2-trees of maximum degree at most Δ.
Then S1.5Δ is universal for G.

We observe that the Δ − 1 lower bound proved by Knauer et al. [8] for the outerplane
slope number implies a lower bound for plane slope number of plane partial 2-trees,
because outerplane graphs are plane partial 2-trees. The next lemma shows a better
lower bound for partial 2-trees.

Lemma 6. For every Δ ≥ 2, there exists a plane 2-connected series-parallel graph G
of maximum degree Δ whose plane slope number is at least 3Δ− 3 if Δ is even and at
least 3Δ− 4 if Δ is odd.

Proof. Suppose first that Δ ≥ 2 is an even number and consider a plane partial 2-
tree G defined as follows. The external face of G is a 3-cycle with vertices a, b, c. In
its interior there are Δ/2 − 1 paths of length two connecting each pair from {a, b, c}.
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The external face of every plane drawing Γ of G is a triangle �abc that contains the
paths of length two in its interior. From elementary geometry, no two edges of Γ can
have common slope, and hence the graph, which has 3Δ − 3 edges, has plane slope
number at least 3Δ − 3. Suppose now that Δ is odd and let Δ′ = Δ + 1. Construct a
graph G′ of maximum degree Δ′ as described above. Now remove one of those paths
of length 2 connecting a and b and one connecting c and b from G′. This new graph, G,
has maximum degree Δ = Δ′ − 1 and it requires a different slope for each edge. Since
we deleted four edges from G′, G has (3Δ′ − 3) − 4 = 3Δ − 4 edges. Thus 3Δ − 4
slopes are required, and the result is established. ��

Lemmas 4 and 6 imply the following.

Theorem 2. Let G be a plane partial 2-tree having maximum degreeΔ and let epsl(G)
denote the plane slope number of G. Then epsl(G) ≤ 3Δ. Also, for every even Δ > 3
there exists a plane partial 2-tree G such that epsl(G) ≥ 3Δ − 3 and for every odd
Δ ≥ 3 there exists a plane partial 2-trees G such that epsl(G) ≥ 3Δ− 4.

5 Angular Resolution

The angular resolution of a planar straight-line drawing is the minimum angle between
any two edges incident to a common vertex. The angular resolution of a planar graph G
is the maximum angular resolution over all possible drawings of G.

Malitz and Papakostas [11] show that the angular resolution of a planar graph of
maximum degree Δ is Ω( 1

7Δ
). Garg and Tamassia [3] show that there exist planar 3-

trees of maximum degreeΔ that require angular resolutionO(
√

logΔ
Δ3 ). They also show

that for a subfamily of the partial 2-trees of bounded degree, namely the series-parallel
graphs of maximum degree at most Δ, the angular resolution is at least 1

48πΔ2 . Their
drawing technique does not apply to plane graphs since it may vary a given combinato-
rial embedding. Garg and Tamassia leave as open the problem about whether Ω( 1

Δ2 ) is
a tight lower bound for the angular resolution of the series-parallel graphs.

An implication of the drawing techniques of the previous sections of this paper is
that the angular resolution of partial 2-trees (and thus also of series-parallel graphs) is
in fact Ω( 1

Δ ). Namely, the constructions of Lemmas 2 and 4 either use the universal
set SΔ or the universal set S1.5Δ which consist of equally spaced slopes; therefore, the
minimum angle between any two edges sharing a common end-vertex is either π

2Δ in
the variable embedding setting or it is π

3Δ in the fixed embedding setting. Therefore:

Theorem 3. A partial 2-tree of maximum degree Δ admits a planar straight-line draw-
ing with angular resolution π

2Δ . A plane partial 2-tree of maximum degree Δ admits a
planar straight-line drawing with angular resolution π

2Δ .

6 Open Problems

An interesting research direction is to study the trade-off between the slope number
and the area requirement of planar graphs. Similar studies have been carried out for the
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angular resolution and the area requirements of planar graphs having maximum degree
at most Δ (see, e.g., [3]).

Another fascinating open problem is to close the gap between upper and lower
bounds on the planar/plane slope number of planar/plane graphs of bounded degree
(see [7]). This would be interesting even restricted to partial 3-trees (see [5]).
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Abstract. We introduce a new model that we call slanted orthogonal
graph drawing. While in traditional orthogonal drawings each edge is
made of axis-aligned line-segments, in slanted orthogonal drawings inter-
mediate diagonal segments on the edges are also permitted, which allows
for: (a) smoothening the bends of the produced drawing (as they are
replaced by pairs of “half-bends”), and, (b) emphasizing the crossings of
the drawing (as they always appear at the intersection of two diagonal
segments). We present an approach to compute bend-optimal slanted
orthogonal representations, an efficient heuristic to compute close-to-
optimal drawings in terms of the total number of bends using quadratic
area, and a corresponding LP formulation, when insisting on bend opti-
mality. On the negative side, we show that bend-optimal slanted orthog-
onal drawings may require exponential area.

1 Introduction

In this paper, we introduce and study a new model in the context of non-planar
orthogonal graph drawing: Given a graph G of max-degree 4, determine a draw-
ing Γ of G in which (a) each vertex occupies a point on the integer grid and
has four available ports, as in the ordinary orthogonal model, (b) each edge is
drawn as a sequence of horizontal, vertical and diagonal segments, (c) a diag-
onal segment is never incident to a vertex (due to port constraints mentioned
above), (d) crossings always involve diagonal segments, and, (e) the minimum
of the angles formed by two consecutive segments of any edge always is 135o.
We refer to Γ as the slanted orthogonal drawing of G, or, shortly, slog drawing.
Figs.1(a) and 1(b) indicate what we might expect from the new model: crossings
on the diagonals are more visible than in the traditional model and the use of
area seems to be more effective.
� Part of the research was conducted in the framework of ESF project 10-EuroGIGA-
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(a) (b) (c) (d)

Fig. 1. (a)-(b) Traditional orthogonal and slanted orthogonal drawings of the same
graph, assuming fixed ports. (c)-(d) Replacing a 90◦ bend by two half-bends of 135◦.

Orthogonal graph drawing dates back to VLSI layouts and floor-planning
applications [6,9,10]. In an orthogonal drawing of a graph of max-degree 4, each
edge is drawn as a sequence of alternating horizontal and vertical line segments.
Typical optimization functions include minimizing the used area [9], the total
number of bends [4,8] or the maximum number of bends per edge [1].

Slog drawings are of improved readability and more aesthetic appeal than or-
thogonal drawings, since bends, which negatively affect the quality of orthogonal
drawings are replaced by half-bends that have a smoother shape (see Figs.1(c)
and 1(d)). In addition, slog drawings reveal crossings and help distinguishing
them from vertices, since crossings are defined by diagonal segments, while ver-
tices are incident to rectilinear segments. Our model resembles an octilinear
model as it is heavily used for example in the drawing of Metro Maps [7] but it
is closer to the traditional orthogonal style. In particular angles of 45◦ do not
occur at all. So, the complexity results for the octilinear models do not apply.

For minimizing the total number of bends in orthogonal graph drawing Tamas-
sia laid important foundations by the topology-shape-metrics (TSM ) approach
in [8], that works in three phases. In the first planarization phase a “planar” em-
bedding is computed for a given (non)planar graph by replacing edge crossings
by dummy vertices (referred to as crossing or c-vertices). The output is called
planar representation. In the next orthogonalization phase, angles and bends of
the drawing are computed, producing an orthogonal representation. In the third
compaction phase the coordinates for vertices and edges are computed. The core
is a min-cost flow algorithm to minimize the number of bends in the second
phase [2]. We will adopt the TSM approach for our model. Note that the general
problem of determining a planar embedding with the minimum number of bends
is NP-hard [5], which is also the case for slog drawings. Therefore we assume in
the following that a planar representation of the input graph is given.

While constructing the slog drawing we observe the following requirements:
(a) all non-dummy vertices (referred to as real or r-vertices) use orthogonal ports
and, (b) all c-vertices use diagonal ports. This ensures that the computed drawing
will be a valid slog drawing that corresponds to the initial planar representation.
Edges connecting real (crossing) vertices are referred to as rr-edges (cc-edges),
and edges between r- and c-vertices as rc-edges.
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This paper is structured as follows: In Section 2 we present an approach to
compute bend-optimal slog representations. Afterwards, we present a heuristic to
compute close-to-optimal slog drawings, that require polynomial drawing area,
based on a given slog representation. To compute the optimal drawing, we give
a formulation as a linear program in Section 4. In Section 5 we show that the
optimal drawing may require exponential area. We conclude in Section 6.

2 A Flow-Based Approach

In this section, we present a modification of an algorithm by Tamassia [8], which
we briefly describe in Section 2.1. Section 2.2 explains our modification and in
Section 2.3, we present properties of a bend-minimal slog representation.

2.1 Preliminaries

A central notion to the algorithm of Tamassia [8] is the orthogonal represen-
tation, that captures the “shape” of the drawing without the exact geometry.
An orthogonal representation of a plane graph G = (V,E) is an assignment of
four labels to each edge (u, v) ∈ E; two for each direction. Label α(u, v) · 90◦
corresponds to the angle at vertex u formed by (u, v) and its counterclockwise
next incident edge. Label β(u, v) corresponds to the number of left turns along
(u, v), when traversing it from u to v. Clearly, 1 ≤ α(u, v) ≤ 4 and β(u, v) ≥ 0.
The sum of angles around a vertex equals to 360◦, so for each vertex u ∈ V ,∑

(u,v)∈N(u) α(u, v) = 4, where N(u) denotes the neighbors of u. Similarly, since
the sum of the angles formed at the vertices and at the bends of a bounded
face f equals to 180◦(p(f)− 2), where p(f) denotes the number of such angles,
it follows that

∑
(u,v)∈E(f) α(u, v) + β(v, u) − β(u, v) = 2a(f) − 4, where a(f)

denotes the number of vertex angles in f , and, E(f) the directed arcs of f in its
counterclockwise traversal. If f is unbounded, the sum is increased by 8.

In the flow network one can think of each unit of flow as a 90◦ angle. The
vertices (vertex-nodes; sources) supply 4 units of flow, and each face (face-nodes;
sinks) f demands 2a(f)−4 units of flow (plus 8 if f is unbounded). To maintain
the properties described above each edge from a vertex-node to a face-node in
the flow network has a capacity of 4 and a minimum flow of 1, while an edge
between adjacent faces has infinite capacity, no lower bound but each unit of
flow through it costs one unit. The total cost is actually the number of bends
along the corresponding edge. Hence, the min-cost flow solution corresponds to
a representation with the minimum number of bends.

2.2 Modifying the Flow Network

We now modify the algorithm of Tamassia, to obtain a slog representation of a
planarized graph G with minimum number of half-bends. Recall that G contains
two types of vertices, namely real and crossing vertices. Real (crossing) vertices
use orthogonal (diagonal) ports. Observe that a pair of half-bends on an rr- or
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Fig. 2. (a) Two configurations corresponding to zero or one unit of flow over an rc-edge
(with f and g being the two adjacent faces) (b) The right rotation of a c-vertex vc can
save a half-bend.

cc-edge of a slog drawing corresponds to a bend of an orthogonal drawing. But a
rc-edge changes from an orthogonal port (incident to the r-vertex) to a diagonal
port (incident to the c-vertex), requiring at least one half-bend. Consider an
rc-edge (vr , vc) incident to faces f and g (see Fig.2(a)) and assume that the port
of the real vertex vr is fixed. Depending on the rotation of the crossing vertex
vc (clockwise or counterclockwise) we obtain two different representations with
the same number of bends. To model this “free-of-cost” choice, we introduce an
edge into the flow network connecting f and g with unit capacity and zero cost.
For consistency we assume that, if in the solution of the min-cost flow problem
there is no flow over (f, g), then there exists a left turn from the real to the
crossing vertex; otherwise a right turn, as illustrated in Fig.2(a).

2.3 Properties of Optimal Slanted Orthogonal Representations

In this section we give properties of optimal slog representations. We prove that,
for a planarized graphG, the computation of a slog representation with minimum
number of half-bends respecting the embedding of G is always feasible. Then, we
give an upper bound on the number of half-bends in optimal slog representations.

Theorem 1. For a planarized graph G with max-degree 4, we can efficiently
compute a slog representation with minimum number of half-bends respecting
the embedding of G.

Proof. We use a reduction to Tamassia’s network flow algorithm. In particular,
since the original flow network computes a (bend-minimal) orthogonal represen-
tation for the input plane graph, we will also obtain a slog representation with
our modification. We now prove that this representation is also bend-minimal.

Assume that we are given an orthogonal representation F . We can uniquely
convert F into a slog representation S(F ) by turning all crossing vertices coun-
terclockwise by 45◦. More precisely, the last segment of every rc-edge before the
crossing vertex will become a left half-bend. Furthermore, every orthogonal bend
is converted into two half-bends, bending in the same direction as the orthogonal
bend (see Fig.1(c) and 1(d)). Note that the left half-bends at the crossings might
neutralize with one of the half-bends originating from an orthogonal bend, if the
orthogonal bend is turning to the right (see Fig.2(b)). In this case, only the
second one of the right half-bends remains. Note that this is the only possible
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saving operation. Therefore, since the number of rc-edges is fixed from the given
embedding, a slog representation with minimum number of half-bends should
minimize the difference between the number of orthogonal bends of F and the
number of first right-bends on rc-edges. However, this is exactly what is done
by our min-cost flow network formulation, as the objective is the minimization
of the total number of bends in F without the first right-bends on rc-edges. ��

This constructive approach can be reversed so that for each slog representation
S, we can get a unique orthogonal representation F (S). Clearly, F (S(F )) = F
and S(F (S)) = S. Note that this is true only for bend-minimal representations;
otherwise we might have staircases of bends which is impossible by min-cost flow
computations. From the construction, we can also derive the following.

Corollary 1. Let S(F ) be a slog representation, and F a corresponding orthog-
onal representation. Let bS, rbS and rcS be the number of half-bends, the number
of first right-bends on rc-edges and the number of rc-edges in S(F ). Let also bF
be the number of orthogonal bends in F . Then, bS = 2 · (bF − rbS) + rcS .

The following theorem gives an upper bound for the number of half-bends in
optimal slog representations.

Theorem 2. The number of half-bends of a bend-minimal slog representation is
at least twice the number of bends of its related bend-minimal orthogonal repre-
sentation.

Proof. Bends of a bend-minimal orthogonal representation correspond to pairs
of half-bends on cc and rr edges of a bend-minimal slog representation. In this
case, the claim holds with equality. For rc-edges we need a different argument.
Let C be a maximal component spanned by cc-edges. Then, all edges with exactly
one endpoint in C are rc-edges, which can be split into independent cycles around
components of crossings. Let C be such a cycle of length k. Clearly, there should
be k first half-bends on the rc-edges in the slanted representation. In the corre-
sponding orthogonal representation, the second and third bend of each rc-edge
correspond to pairs of half-bends on the same edge in the slog representation.
Similarly, in the orthogonal representation the first orthogonal left-bend of each
rc-edge corresponds to the second and third left half-bend of the same edge in
the slog representation. The only bends that have not been paired (i.e., have
no correspondence) are the first right-bends on rc-edges. We claim that in any
bend-minimal orthogonal representation, there exist at most k

2 first right bends
on the edges of C. Assume to the contrary, that in a bend-minimal orthogonal
representation, there exist r > k

2 first right-bends on the edges of C. If we send
the flow along C in reverse direction, we decrease the number of right-bends
by r and increase the number of left bends by k − r. So, the total number of
bends decreases, which shows that the input orthogonal representation was not
minimal. From the claim, it follows that the number of first right-bends in the
orthogonal representation is at most half of the number of first half-bends of C
(in the corresponding slog representation), which concludes the proof since all
other half-bends come in pairs and have their correspondences. ��
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Fig. 3. (a) Spoon gadget for rc-edges. (b) Moving everything above the dotted cut up
transforms the orthogonal input to a slanted drawing (c) containing 4 half-bends.

3 A Heuristic to Compute a Close to Optimal Drawing

In this section we present a heuristic which, given an optimal slog representation,
computes an actual drawing, which is close to optimal, with respect to the total
number of bends, and requires quadratic area. This is quite reasonable, since
as we will see in Section 5, insisting in optimal slog drawing may result in
exponential area. The basic steps of our approach are given in Algorithm 1.
In the following, we describe them in detail.

Algorithm 1. Spoon Based Algorithm

Input: A slanted orthogonal representation F of a given planarized graph G
Output: A slanted orthogonal drawing Γs(G)

S1: Compute an orthogonal drawing Γo(G) based on F
S2: Replace each orthogonal bend by 2 half-bends {see Figs.1(c) and 1(d)}
S3: Fix ports on rc-edges by inserting the spoon gadget {see Fig.3(a)}
S4: Apply cuts to fix ports on cc-edges {see Figs.3(b) and 3(c)}
S5: Optimize number of rc half-bends {see Fig.4(a)}
S6: Optimize number of cc half-bends {see Fig.4(b)}
S7: Compact drawing

In step 1 of Algorithm 1 we compute a bend-minimal orthogonal drawing
Γo(G) from the slog representation. We use the original algorithm of Tamassia
[8], ignoring the flow on the additional edges and the rotation of the crossing
vertices. In step 2 of Algorithm 1, we replace all orthogonal bends with pairs
of half-bends. In step 3 of Algorithm 1, we connect r-vertices with c-vertices by
replacing the segment incident to the c-vertex by a gadget called spoon, due to
its shape (see Fig.3(a)). It allows switching between orthogonal and diagonal
ports on an edge. Note that the slog representation specifies how each c-vertex
is rotated, thereby defining the configuration it uses.

In step 4 of Algorithm 1, we employ cuts (i.e., is a standard technique to
perform layout stretching in orthogonal graph drawing; see [3]) to fix the ports
of cc-edges, which still use orthogonal ports. To apply a horizontal (vertical) cut,
we have to ensure that each edge crossed by the cut has at least one horizontal



430 M.A. Bekos et al.

b1
b2

b3

(a) (b)

Fig. 4. (a) There is always a cut like the dashed line enabling us to move everything
on its left side to the left to save half-bends b1 and b2. (b) Saving bends on cc-edges.

(vertical) segment. This trivially holds before the introduction of the spoons, as
Γo(G) is an orthogonal drawing. It also holds afterwards since a spoon replacing
a horizontal (vertical) segment has two horizontal (vertical) segments. To fix a
horizontal cc-edge (u, v) with u being to the left of v in the drawing, we use
a “horizontal cut” which from left to right and up to vertex u either (a) lies
exactly above u, then crosses edge (u, v) and stays exactly below v, or, (b) lies
exactly below u, then crosses edge (u, v) and stays exactly above v (see Fig.3(b)).
Our choice depends on the slog representation that specifies the rotation of each
c-vertex. The result is depicted in Fig.3(c). Observe that the edge has now a
horizontal and a vertical segment. Hence, we can fix all remaining cc-edges. To
cope with cc-edges with bends we apply the same technique only to the first and
last segments of the edge.

The resulting drawing has 2 additional half-bends on rc-edges (the spoon
gadget adds 3 half-bends; one is required) and 4 additional half-bends on cc-edges
(none is required), with respect to the ones suggested by the representation. By
applying cuts again, we can save 2 half-bends for each rc-edge (see Fig.4(a)), by
eliminating the diagonal segment of the spoon gadget (step 5 of Algorithm 1).
The rectilinear segments of the edge are not affected, to be able to apply future
cuts.

It is always possible to remove two of the half-bends on cc-edges (step 6 of
Algorithm 1) by a local modification as depicted in Fig.4(b). If the horizontal
part of a cc-edge is longer than the vertical one, a shortcut as in the left part
of Fig.4(b) can be applied. If the horizontal and the vertical segments of the
cc-edge have the same length all four half-bends can be saved.

After applying this operations, the drawing will contain zero additional half-
bends on rr-edges and at most two additional half-bends on cc-edges, with respect
to the input representation. Note that to apply our technique we need to scale
up the initial drawing by a factor of 4 at the beginning, to provide enough space
for additional half-bends. In subsequent steps, we increase the drawing area by
cuts. However, we can reduce it by contracting along horizontal and vertical cuts
at the end (step 7 of Algorithm 1). After the compaction, each horizontal and
vertical grid line will be occupied by at least a half-bend, an edge or a vertex,
and since all of those are linear in number, the required area of the final slanted
drawing is O(n2). The following theorem summarizes our approach.
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Theorem 3. Given a slog representation of a planarized graph G with max-
degree 4, we can efficiently compute a slog drawing requiring O(n2) area with
(i) optimal number of half-bends on rr edges and rc edges without bends and
(ii) at most two additional half-bends on cc edges and rc edges with bends.

4 A Linear Program to Compute Optimal Drawings

This section describes how to model a given slog representation S of a plane
graph G as a Linear Program (LP). Based on S, we modify G and obtain a
graph G′, that is a subdivision of G and has at most one half-bend on each edge.

Let 〈b1, . . . , bk〉, k ≥ 2, be the half-bends of edge (u,w) of G in S, appearing
in this order along (u,w) from u to w. Say that u is an r-vertex. We add a new
c-vertex v and replace (u,w) by edges (u, v) and (v, w). The first half-bend b1
is assigned to (u, v) and 〈b2, . . . , bk〉 to (v, w). If u is a c-vertex, then v would
have been an r-vertex. Observe that the type of v and its ports are defined by
the slope of the segments incident to b1 in S. By repeating this procedure, we
obtain G′, that is a subdivision of G having at most one half-bend on each edge.

Each face f of G has a corresponding face f ′ in G′ such that: (i) the vertices
of G′ incident to f ′ are the same as those incident to f in G, plus the ones
from the subdivision; and (ii) the sequence of slopes assigned to the segments
bounding f ′ is the same as that of the segments bounding f . So a drawing Γ ′ of
G′ realizing the slog representation is also a drawing of G realizing S.

For each vertex v of G′ we define two variables xv and yv, representing its
coordinates on the plane. For each edge (a, b) of G′, we define a pair of constraints
similar to those in Table 1, depending on the type of vertices of a and b. The
table provides an example for each type, the other configurations are analogous.

Table 1. Examples of constraints of the linear program for (a) rr-edges, (b) cc-edges
and (c) rc-edges, assuming the y-axis points downwards.

a b

{
ya = yb

xb − xa ≥ 1
a b

{
ya − yb = xb − xa

ya − yb ≥ 1 a
b

{
xb − xa ≥ ya − yb + 1

ya ≥ yb + 1

(a) (b) (c)

We indirectly minimize the area of the produced drawing by minimizing the
total edge length in the objective function. The slopes of the segments allow us
to express the Euclidean length of each edge.

Despite the fact that every experiment we made on random and crafted graphs
led to a feasible solution, we could not prove the feasibility of the LP. Nevertheless
we believe that our LP always admits a feasible solution.

4.1 Addressing Planarity Issues in the LP

The LP models the shape of the edges and the relative positions of all nodes
connected by an edge. Since there are no constraints for non-connected nodes
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the resulting drawing could be non-planar. An example is given in Fig.5 where
the relative position of nodes r3 and c2 is not defined by the LP. To solve this
problem, we cannot apply the approach used in the original Tamassia algorithm
(cutting all faces into rectangles), since our faces are, in general, not rectilinear.

r1

r2 r3

r4 c1

c2

r2
r1

c2

r3

r4
c1

Fig. 5. A configuration that could result in a non-planar solution

In slog drawings we distinguish different corner types. There are vertex-corners
(or simply vertices) and bend-corners (or simply bends). A corner is either convex
with respect to a face, if the inner angle is ≤ 135◦, or non-convex otherwise. An
angle of 180◦ at a vertex is not a corner, since it will be aligned with its neighbors
by construction. This gives four possible corners: (non-)/convex vertex(or bend).
To ensure planarity, we use split-edges and the notion of almost-convex faces.

Definition 1. A split-edge is an edge that connects either (a) a non-convex
vertex-corner v with a new vertex that subdivides a side parallel to one of the
edges incident to v, or, (b) two new vertices that subdivide two parallel edges,
when one of them is incident to a non-convex bend-corner (see Figs.6(a) and
6(b)).

Definition 2. A face f is almost-convex if it does not contain any non-convex
vertex-corners and no split-edge exists that separates f into two non-convex faces.

First we make all faces almost-convex. To remove non-convex vertex-corners we
introduce a new split-edge; see Fig.6(a). If there is no parallel side to one of the
segments of a vertex-corner we use a special structure, which we call nose-gadget
(due to its shape); see Fig.6(c). The dashed line in the figure represents the split-
edge we can apply once the gadget (dotted line) is added. The two vertices that
are added on the diagonals are c-vertices, while the third one is an r-vertex. By
applying the split edge the non-convex vertex corner is removed.

After the previous step no face contains non-convex vertex-corners. If a face
contains non-convex bends and is not almost-convex, we search for a split-edge
that creates two non-convex faces (as in Fig.6(b)). We apply such split-edges until
all faces are almost-convex. Observe that all additional edges can be expressed
by using the original set of constraints from the LP. To prove that we can always
make all faces almost-convex, we give the following lemmas.

Lemma 1. If a face contains two segments s1 and s2 defining a non-convex
bend-corner, then it contains a segment s3 parallel to either s1 or s2.

Sketch of Proof. Assume to the contrary that there is no segment parallel to
s1 and s2. Let b be the non-convex bend, and, r and c its adjacent corners;
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(a) (b) (c)

br

c

(d)

Fig. 6. Split-edges are dashed lines on (a) a vertex and (b) a bend. (c) If no split-edge
is possible the nose gadget (dotted line) is used. Circles are additional nodes.(d) This
face can not be completed without using at least one segment parallel to (r, b) or (b, c).

see Fig.6(d). Then, r and c cannot be connected by a polygonal chain of edges
without using one of the two slopes defined by (r, b) and (b, c).

Lemma 2. An almost-convex face f has at most two consecutive non-convex
bend-corners.

Proof. Assume that f has three consecutive non-convex corners c1, c2, c3. By
Lemma 1, there exists a parallel segment to one of those defining c2. Then, there
exists a split-edge separating f into two non-convex faces, one containing c1 and
one containing c3, which is a contradiction. ��

Lemma 3. An almost-convex face f has at most two non-convex bend-corners.

Sketch of Proof. Assuming that f contains at least three non-convex corners,
one can lead to a contradiction the fact that f is almost-convex.

Lemma 4. An almost-convex face f is always drawn planar.

Sketch of Proof. From Lemma 3, it follows that f has at most two non-convex
bend-corners. If f contains no or a single non-convex bend-corner, then it is easy
to see that f is always drawn planar. If f contains exactly two non-convex bend-
corners, then by Lemma 2 f cannot have more than two consecutive non-convex
bend-corners. Hence, there exist in total four cases that one has to consider with
respect to the shape of f . In all of them f is drawn planar.

With these lemmas we have shown how to subdivide all faces of a graph
G = (V,E) to obtain a graph G′ = (V ′, E′) that only contains almost-convex
faces. ForG′ we can compute a planar drawing using our linear program, giving a
planar drawing for G. We ensured the planarity of the drawing by adding N new
vertices and edges, where N is O(|E|), since there is at most one split-edge for
each vertex and for each non-convex bend. All additional edges can be modeled
by the original set of constraints. Experiments on random and crafted graphs
seem to confirm that our linear program always has a feasible solution.
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5 Area Bounds

Slog drawings have aesthetic appeal and improve the readability of non-planar
graphs, when compared to traditional orthogonal drawings. However, in this
section we show that such drawings might require increased drawing area. Note
that most of the orthogonal drawing algorithms require O(n) ×O(n) area. The
situation is different if we want to generate slog drawings of optimal number of
bends. In particular, we show that the area penalty can be exponential.

Theorem 4. There exists a graph G whose slanted orthogonal drawing Γ (G) of
minimum number of bends requires exponential area, assuming that a planarized
version σ(G) of the resulting drawing is given.

Proof. The planarized version σ(G) of G is given in Fig.7(a) and consists of n+1
layers L0, L1, . . . , Ln. Layer L0 is the square grid graph on 9 vertices. Each layer
Li, i = 1, 2, . . . , n, is a cycle on 20 vertices. Consecutive layers Li−1 and Li,
i = 1, 2, . . . , n, are connected by 12 edges which define 12 crossings. Hence, G
consists of 20n+ 9 vertices and 32n+ 13 edges that define 12n crossings.

A slog drawing Γ (G) of G with minimum number of bends derived from σ(G)
ideally introduces (a) no bends on crossing-free edges of σ(G), and, (b) two
half-bends in total for each rc-edge. Now observe that at each layer there exist
four vertices, that have two ports pointing to the next layer (gray-colored in
Fig.7(a)). This together with requirements (a) and (b) suggests that the vertices
of each layer Li should reside along the edges of a rectangle, say Ri, such that
the vertices of Li whose ports point to the next layer coincide with the corners
of Ri, i = 0, 1, 2, . . . , n (with the only exception of the “innermost” vertex of
L0; in Fig.7(b), Ri is identified with cycle Li). Hence, the routing of the edges
that connect consecutive layers should be done as illustrated in Fig.7(b). Since
L0 is always drawable in a 3× 3 box meeting all requirements mentioned above,
and, σ(G) is highly symmetric, we can assume that each Ri is a square of side
length wi, i = 0, 1, 2, . . . , n. Then, it is not difficult to see that w0 = 3 and
wi+1 = 2wi+8, i = 1, 2, . . . , n. This implies that the area of Γ (G) is exponential
in the number of layers of G and therefore exponential in the number of vertices
of G (recall that G has n+ 1 layers and 20n+ 9 vertices). ��

L0

L1 Ln−1 Ln

(a)

Li−1

Li

(b)

Fig. 7. (a) A planarized version σ(G) of a graph G. (b) Edges involved in crossings in
σ(G) contribute two half-bends.
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6 Conclusion and Open Problems

We introduced a new model for drawing graphs of max-degree four, in which
orthogonal bends are replaced by pairs of “slanted” bends and crossings occur
on diagonal segments only. The main advantage of this model is that, even
in drawings of large graphs (where vertices might not be clearly visible), it is
immediately clear which pair of edges induce a crossing and where such a crossing
is located in the drawing. We presented an algorithm to construct slog drawings
with almost-optimal number of bends and quadratic area, for general max-degree
four graphs. By a modification of Tamassia’s min-cost flow approach, we showed
that a bend-optimal representation of the graph can efficiently be computed in
polynomial time and we presented an LP-approach to compute a corresponding
drawing. A natural problem is whether every max-degree four graph admits such
a drawing. Our experiments on randomly generated and crafted inputs led us to
believe that it is possible, although we could not prove it.
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Drawing Arrangement Graphs in Small Grids,

or How to Play Planarity

David Eppstein�

Department of Computer Science, University of California, Irvine, USA

Abstract. We describe a linear-time algorithm that finds a planar draw-
ing of every graph of a simple line or pseudoline arrangement within a
grid of area O(n7/6). No known input causes our algorithm to use area
Ω(n1+ε) for any ε > 0; finding such an input would represent significant
progress on the famous k-set problem from discrete geometry. Drawing
line arrangement graphs is the main task in the Planarity puzzle.

1 Introduction

Fig. 1. Initial state of Planarity

Planarity (http://planarity.net/) is a
puzzle developed by John Tantalo and
Mary Radcliffe in which the user moves
the vertices of a planar graph, starting
from a tangled circular layout (Figure 1),
into a position where its edges (drawn as
line segments) do not cross. The game is
played in a sequence of levels of increasing
difficulty. To construct the graph for the
ith level, the game applet chooses � = i+3
random lines in general position in the
plane. It creates a vertex for each of the
�(� − 1)/2 crossings of two lines, and an
edge for each of the �(�− 2) consecutive pairs of crossings on the same line.

One strategy for solving Planarity would be to reconstruct a set of lines form-
ing the given graph (Figure 2, left). However, this is tedious to do by hand, and
has high computational complexity: testing whether an arrangement of curves
is combinatorially equivalent to a line arrangement is NP-hard [1], from which
it follows that recognizing line arrangement graphs is also NP-hard [2]. More
precisely, both problems are complete for the existential theory of the reals [3].
And although drawings constructed in this way accurately convey the underly-
ing construction of the graph, they have low angular resolution (at most π/�)
and close vertex spacing, making them hard to read and hard to place by hand.
In practice these puzzles may be solved more easily by an incremental strategy

� This research was supported in part by NSF grants 0830403 and 1217322 and by the
Office of Naval Research under grant N00014-08-1-1015.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 436–447, 2013.
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Fig. 2. Two manually constructed solutions to the puzzle from Figure 1. Left: a set of
lines with this graph as its arrangement. Right: an (approximate) grid layout.

that maintains a planar embedding of a subgraph of the input, starting from
a single short cycle (such as a triangle or quadrilateral), and that at each step
extends the embedding by a single face, bounded by a short path connecting two
vertices on the boundary of the previous embedding. When using this strategy
to solve a Planarity puzzle, the embedding may be kept tidy by placing each
vertex into an approximate grid (Figure 2, right). Curiously, the grid drawings
found by this incremental grid-placement heuristic appear to have near-linear
area; in contrast, there exist planar graphs such as the nested triangles graph
that cannot be drawn planarly in a grid of less than Θ(n2) area [4, 5].

In this paper we explain this empirical finding of small grid area by developing
an efficient algorithm for constructing compact grid drawings of the arrange-
ment graphs arising in Planarity. Because recognizing line arrangement graphs
is NP-hard, we identify a larger family of planar graphs (the graphs of simple
pseudoline arrangements) that may be recognized and decomposed into pseudo-
lines in linear time. We show that every n-vertex simple pseudoline arrangement
graph may be drawn in linear time in a grid of size κmax(O(

√
n))×O(

√
n); here

κmax(�) is the maximum complexity of a k-level of a pseudoline arrangement
with � pseudolines [6–8], a topological variant of the famous k-set problem from
discrete geometry (see Section 3 for a formal definition). The best proven up-
per bounds of O(� 4/3) on the complexity of k-levels [7–9] imply that the grid
in which our algorithm draws these graphs has size O(n2/3) × O(

√
n) and area

O(n7/6). However, all known lower bounds on k-level complexity are of the form
Ω(�1+o(1)) [6,10], suggesting that our algorithm is likely to perform even better
in practice than our worst-case bound. If we could find a constant ε > 0 and
a family of inputs that would cause our algorithm to use area Ω(�1+ε), such a
result would represent significant progress on the k-set problem.

We also investigate the construction of universal point sets for arrangement
graphs, sets of points that can be used as the vertices for a straight-line planar
drawing of every n-vertex arrangement graph. Our construction directly provides
a universal point set consisting of O(n7/6) grid points; we show how to sparsify
this structure, leading to the construction of a universal set of O(n log n) points
within a grid whose dimensions are again O(n2/3)×O(

√
n).



438 D. Eppstein

Finally, we formalize and justify an algorithm for manual solution of these
puzzles that greedily finds short cycles and adds them as faces to a partial
planar embedding. Although this algorithm may fail for general planar graphs,
we show that for arrangement graphs it always finds a planar embedding that is
combinatorially equivalent to the original arrangement.

2 Preliminaries

Fig. 3. A simple pseudoline arrange-
ment that cannot be transformed into
a line arrangement. Redrawn from
Figure 5.3.2 of [11], who attribute this
arrangement to Ringel.

Following Shor [1], we define a pseudoline
to be the image of a line under a homeo-
morphism of the Euclidean plane. Pseudo-
lines include lines, non-self-crossing polygo-
nal chains starting and ending in infinite
rays, and the graphs of continuous real
functions. Two pseudolines cross at a point
x if a neighborhood of x is homeomorphic to
a neighborhood of the crossing point of two
lines, with the homeomorphism taking the
pseudolines to the lines. An arrangement of
pseudolines is a finite set of pseudolines, the
intersection of every two of which is a single
crossing point. An arrangement is simple if
all pairs of pseudolines have distinct crossing points. A pseudoline arrangement
graph is a planar graph whose vertices are the crossings in a simple pseudoline
arrangement, and whose edges connect consecutive crossings on a pseudoline.

Most of the ideas in the following result are from Bose et al. [2], but we
elaborate on that paper to show that linear time recognition of arrangement
graphs is possible. (See [12] for a more complicated linear time algorithm that
recognizes the dual graphs of a wider class of arrangement graphs, the graphs of
weak pseudoline arrangements in which pairs of pseudolines need not cross)

Lemma 1. If we are given as input a graph G, then in linear time we can deter-
mine whether it is a pseudoline arrangement graph, determine its (unique) em-
bedding as an arrangement graph, and find a pseudoline arrangement for which
it is the arrangement graph.

Proof. Let G∗ be formed from a pseudoline arrangement graph G by adding a
new vertex v∞ adjacent to all vertices in G of degree less than four. As Bose et
al. [2] show, G∗ is 3-connected and planar, and its unique planar embedding is
compatible with the embedding of G as an arrangement graph. For convenience
we include two edges inG∗ from v∞ to each degree two vertex inG, so that, inG∗,
all vertices except v∞ have degree four. With this modification, the pseudolines
of the arrangement for G are represented in G∗ by paths starting and ending at
v∞ that, at each other vertex, connect two opposite edges in the embedding.

For any given graph G of maximum degree four we may, in linear time, add
a new vertex v∞, test planarity of the augmented graph G∗, and embed G∗
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in the plane. The edge partition of G∗ into paths through opposite edges at
each degree four vertex may be found in linear time by connected component
analysis. By labeling each edge with the identity of its path, we may verify that
this partition does not include cycles disjoint from v∞ and that no path crosses
itself. We additionally check that G has �(�−1)/2 vertices, where � is the number
of paths. Finally, by listing the pairs of paths passing through each vertex and
bucket sorting this list, we may verify in linear time that no two paths cross
more than once. If G passes all of these checks, its decomposition into paths
gives a valid pseudoline arrangement, which may be constructed by viewing the
embedding of G∗ as being on a sphere, puncturing the sphere at point v∞, and
homeomorphically mapping the punctured sphere to the plane. ��

3 Small Grids

To describe our grid drawing algorithm for pseudoline arrangement graphs, we
need to introduce the concept of a wiring diagram. A wiring diagram is a par-
ticular kind of pseudoline arrangement, in which the � pseudolines largely lie on
� horizontal lines (with coordinates y = 1, y = 2, . . . , y = �). The pseudolines
on two adjacent tracks may cross each other, swapping which track they lie on,
near points with coordinates x = 1, x = 2, . . . , x = �(� − 1)/2; each crossing
is formed by removing two short segments of track and replacing them by two
crossing line segments between the tracks. It is convenient to require different
crossings to have different x coordinates, following Goodman [13], although some
later sources omit this requirement. Figure 4 depicts an example. Wiring dia-
grams already provide reasonably nice grid drawings of arrangement graphs [14],
but are unsuitable for our purposes, for two reasons: they draw the edges con-
necting pairs of adjacent crossings as polygonal chains with two bends, and for
some arrangements, even allowing crossings to share x-coordinates, drawing the
wiring diagram of � lines in a grid may require width Ω(�2) (Figure 5), much
larger than our bounds. Instead, we will use these diagrams as a tool for con-
structing a different and more compact straight-line drawing.

For an arrangement of non-vertical lines in general position, an equivalent
wiring diagram may be constructed by a plane sweep algorithm [15], which sim-
ulates the left-to-right motion of a vertical line across the arrangement. At most

Fig. 4. A wiring diagram formed by a plane sweep of the arrangement from Figure 2
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Fig. 5. Cocktail shaker sort corresponds to an arrangement of � pseudolines for which
drawing the wiring diagram in a grid requires width Ω(�2)

points in the sweep, the intersection points of the arrangement lines with the
sweep line maintain a fixed top-to-bottom order with each other, with their posi-
tions in this order reflected in the assignment of the corresponding pseudolines to
tracks. When the sweep line crosses a vertex of the arrangement, two intersection
points swap positions in the top-to-bottom order, corresponding to a crossing in
the wiring diagram. The left-to-right order of crossings in the wiring diagram is
thus exactly the sorted order of the crossing points of the arrangement, as sorted
by their x coordinates. The wiring diagram in Figure 4 was constructed in this
way from the approximate line arrangement depicted in Figure 1.

Every simple pseudoline arrangement, also, has an equivalent wiring diagram,
that may be constructed in time linear in its number of crossings. The proof of
this fact uses topological sweeping, a variant of plane sweeping originally devel-
oped to speed up sweeping of straight line arrangements by relaxing the strict
left-to-right ordering of the crossing points [16], that can also be extended to
apply to pseudoline arrangements [17]. The steps of the topological sweeping al-
gorithm require only determining the relative ordering of crossings along each of
the input pseudolines, something that may easily be determined from our path
decomposition of a pseudoline arrangement graph by precomputing the position
of each crossing on each of the two pseudolines it belongs to.

We define the ith level LD(i) in a wiring diagram D to be the set of crossings
that occur between tracks i and i + 1. A crossing belongs to LD(i) if and only
if i − 1 lines pass between it and the bottom face of the arrangement (the face
below all of the tracks in the wiring diagram); therefore, once this bottom face is
determined, the levels are fixed by this choice regardless of how the crossings are
ordered to form a wiring diagram. If we define the size |D| of a diagram to be its
number of pseudolines, and the level complexity κ(D) to be maxi |LD(i)|, then
it is a longstanding open problem in discrete geometry (a variant of the k-set
problem) to determine the maximum level complexity of an arrangement of �
pseudolines, κmax(�) = max|D|=� κ(D). (Often this problem is stated in terms of
the middle level of an arrangement, rather than the maximum-complexity level,
but this variation makes no difference to the asymptotic behavior of the level
complexity.) The known bounds on this quantity are κmax(�) = O(�4/3) [7–9],

and κmax(�) = Ω(� c
√
log �) for some constant c > 1 [6, 10], where the last bound

is O(n1+ε) for all constants ε > 0.
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Theorem 1. Let G be a pseudoline arrangement graph with n vertices, deter-
mined by � = Θ(

√
n) pseudolines. Then in time O(n) we may construct a planar

straight-line drawing of G, in a grid of size (�−1)×κmax(�) = O(n1/2)×O(n2/3).

Proof. We find a decomposition of G into pseudoline paths, by the algorithm
of Lemma 1, and use topological sweeping to convert this decomposition into a
wiring diagram. We place each vertex v of G at the coordinates (i, j), where i is
the position of v within its level of the wiring diagram and j is the number of
tracks below its level of the wiring diagram.

With this layout, every edge of G either connects consecutive vertices within
the same level as each other, or it connects vertices on two consecutive levels.
In the latter case, each edge between two consecutive levels corresponds to a
horizontal segment of the wiring diagram that lies on the track between the
two levels; the left-to-right ordering of these horizontal segments is the same as
the left-to-right ordering of both the lower endpoints and the upper endpoints
of these edges. Because of this consistent ordering of endpoints, no two edges
between the same two consecutive levels can cross. There can also not be any
crossings between edges that do not both lie in the same level or connect the same
two consecutive levels. Therefore, the drawing we have constructed is planar. By
construction, it has the dimensions given in the theorem. ��

Fig. 6. Output of the draw-
ing algorithm of Theorem 1,
based on the wiring diagram
of Figure 4

Figure 6 depicts the output of our algorithm, us-
ing the wiring diagram of Figure 4, for the graph of
Figure 1. The arrangement has six levels, with at
most five vertices per level, giving a 6× 5 grid. Al-
though not as compact as the manually-found 5× 5
grid of Figure 2, it is much smaller than standard
grid drawings that do not take advantage of the ar-
rangement structure of this graph. A more careful
placement of vertices within each row would im-
prove the angular resolution and edge length of the
drawing but we have omitted this step in order to
make the construction more clear.

4 Universal Point Sets

A universal point set for the n-vertex graphs in a class C of graphs is a set
Un of points in the plane such that every n-vertex graph in C can be drawn
with its vertices in Un and with its edges drawn as non-crossing straight line
segments [18]. Grids of O(n)×O(n) points form universal sets of quadratic size
for the planar graphs [19, 20], and despite very recent improvements the best
upper bound known remains quadratic [21]. A rectangular grid that is universal
must have Ω(n2) points [4, 5]; the best known lower bounds for universal point
sets that are not required to be grids are only linear [18].

Subquadratic bounds are known on the size of universal point sets for sub-
classes of the planar graphs including the outerplanar graphs [22], simply-nested
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planar graphs [21,23], planar 3-trees [24], and graphs of bounded pathwidth [21];
however, these results do not apply to arrangement graphs. The grid drawing
technique of Theorem 1 immediately provides a universal point set for arrange-
ment graphs of size O(n7/6); in this section we significantly improve this bound,
while only increasing the area of our drawings by a constant factor.

Following Bannister et al. [21], define a sequence of positive integers ξi for
i = 1, 2, 3, . . . by the equation ξi = i ⊕ (i − 1) where ⊕ denotes the bitwise
binary exclusive or operation. The sequence of these values begins

1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, . . . .

Lemma 2 (Bannister et al. [21]). Let the finite sequence α1, α2, . . . αk have
sum s. Then there is a subsequence β1, β2, . . . βk of the first s terms of ξ such
that, for all i, αi ≤ βi. The sum of the first s terms of ξ is between s log2 s− 2s
and s log2 s+ s.

Recall that the grid drawing technique of Theorem 1 produces a drawing in
which the vertices are organized into � − 1 rows of at most κmax(�) = O(�4/3)
vertices per row, where � = O(

√
n) is the number of lines in the underlying

n-vertex arrangement. In this drawing, suppose that there are ni vertices on the
ith row of the drawing, and define a sequence αi = �ni/��.
Lemma 3.

∑
αi ≤ 3(�− 1)/2.

Proof. We may partition the ni vertices in the ith row ni into �ni/�� groups
of exactly � vertices, together with at most one smaller group; then αi is the
number of groups. The contribution to

∑
αi from the groups of exactly � vertices

is at most n/� = (� − 1)/2. There is at most one smaller group per row so the
contribution from the smaller groups is at most � − 1. Thus the total value of
the sum is at most 3(�− 1)/2. ��
Theorem 2. There is a universal point set of O(n logn) points for the n-vertex
arrangement graphs, forming a subset of a grid of dimensions O(�)× κmax(�).

Proof. Let s = 3(� − 1)/2. We form our universal point set as a subset of an
s× κmax(�) grid; the area of the grid from which the points are drawn is exactly
3/2 times the area of the (� − 1)-row grid drawing technique of Theorem 1. In
the ith row of this grid, we include in our universal point set min(�ξi, κmax(�))
of the grid vertices in that row. It does not matter for our construction exactly
which points of the row are chosen to make this number of points.

By Lemma 2, there is a subsequence βi of the first s rows of sequence ξ, such
that the β is termwise greater than or equal to α. This subsequence corresponds
to a subsequence (r1, r2, . . . r�−1) of the rows of our universal point set, such
that row ri has at least min(�βi, κmax(ell)) ≥ ni points in it. Mapping the ith
row of the drawing of Theorem 1 to row ri of this point set will not create any
crossings, because the mapping is monotonic within each row and because all
edges of the drawing connect pairs of vertices that are either in the same row or
in rows that are consecutive in the selected subsequence.

The number of points in the point set is O(�s log s) where s = O(�). Therefore,
this number of points is O(�2 log �) = O(n log n). ��
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5 Greedy Embedding Algorithm

The algorithm of Lemma 1 uses as a subroutine a linear-time planarity testing
algorithm. Although such algorithms may be efficiently implemented on comput-
ers, they are not really suitable for hand solution of Planarity puzzles. Instead,
it is more effective in practice to build up a planar embedding one face at a time,
by repeatedly finding a short cycle in the input graph and attaching it to the
previously constructed partial embedding. Here “short” means as short as can
be found; it is not possible to limit attention to cycles of length three, four, or
any fixed bound. For instance in Figure 3 the central triangle is separated from
the rest of the graph by faces with five sides, and by modifying this example it
is possible to separate part of an arrangement graph from the rest of the graph
by faces with arbitrarily many sides. Thus, this hand-solution heuristic may be
formalized by the following steps.

1. Choose an arbitrary starting vertex v.
2. Find a cycle C1 of minimum possible length containing v.
3. Embed C1 as a simple cycle in the plane.
4. While some of the edges of the input graph have not yet been embedded:

(a) Let Ci be the cycle bounding the current partial embedding. Define an
attachment vertex of Ci to be a vertex that is incident with edges not
already part of the current embedding.

(b) Choose two attachment vertices u and v, and a path Pi in Ci from u to
v, such that there are no attachment vertices interior to Pi.

(c) Find a shortest path Si from u to v, using only edges that are not already
part of the current partial embedding.

(d) If necessary, adjust the positions of the embedded vertices (without
changing the combinatorial structure of the embedding) so that Si may
be drawn with straight line edges.

(e) Add Si to the embedding, outside Ci, so that the new face between Pi

and Si does not contain Ci. After this change, the new bounding cycle
Ci+1 of the partial embedding is formed from Ci by replacing Pi by Si.

When it is successful, this algorithm decomposes the input graph into the
cycle C1 and a sequence of edge-disjoint paths S1, S2, etc. Such a decomposition
is known as an open ear decomposition [25].

This greedy ear decomposition algorithm does not always work for arbitrary
planar graphs: even the initial cycle that is found by the algorithm may not
be a face of an embedding of the given graph, causing the algorithm to make
incorrect assumptions about the structure of the embedding. However (ignoring
the possible difficulty of performing step d) the algorithm does always correctly
embed the arrangement graphs used by Planarity. These graphs may have mul-
tiple embeddings; to distinguish among them, define the canonical embedding of
an arrangement graph to be the one given by the arrangement from which it
was constructed. By Lemma 1, the canonical embedding is unique. As we prove
below, the cycles of an arrangement graph that the algorithm assumes to be
faces really are faces of the canonical embedding.
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Fig. 7. Illustration for the proof of Lemma 4. Every non-facial cycle C through vertex
v (blue and green edges) is crossed by at least one line � = uw (red edges), forming
a theta-graph. All the vertices on the red path of the theta are matched by an equal
number of vertices on each of the other two paths, caused by crossings with the same
lines, and the other two paths have additional vertices at their bends, so the red-blue
cycle is shorter than the blue-green cycle.

Lemma 4. Let v be an arbitrary vertex of arrangement graph G, and C be a
shortest cycle containing v. Then C is a face of the canonical embedding of G.

Proof. Let C be an arbitrary simple cycle through v. Then if C is not a face of
the arrangement forming G, there is a line � that crosses it; let u and w be two
vertices on the boundary of C connected through the interior ofC by � (Figure 7).
Then C together with the path along � from u to w form a theta-graph, a graph
with two degree three vertices (u and w) connected by three paths. Every vertex
of � between u and w is caused by a crossing of � with another line that also
must cross the other two paths of the theta-graph; in addition, each of these two
paths must bend at least once at a vertex that does not correspond to a line
that crosses �. Therefore, the path through � is strictly shorter than the other
two paths in the theta-graph. Replacing one of the two paths of C from u to w
by the path through � produces a shorter cycle that still contains v. Since an
arbitrary cycle C that is not a face can be replaced by a shorter cycle through
v, it follows that every shortest cycle through v is a face. ��

Lemma 5. Let D be a drawing of a subset of the faces of the canonical embed-
ding of an arrangement graph G whose union is a topological disk, let u and v
be two attachment vertices on the boundary of D with no attachment vertices
interior to the boundary path P from u to v, and let S be a shortest path from u
to v using only edges not already part of D. Then the cycle formed by the union
of P and S is a face of the canonical embedding of G.

Proof. Assume for a contradiction that P ∪ S is not a face; then as in the proof
of Lemma 4, this cycle must be crossed by a line �, a path L of which forms a
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Fig. 8. Two stacked arrangements of �/2 pseudolines, each with high level complexity,
cause our algorithm to create wide drawings no matter how it chooses a wiring diagram

theta-graph together with P ∪S. Additionally, because P is assumed to be part
of a drawing of a subset of the faces of G, it cannot be crossed by �, for any
crossing would cause it to have an attachment vertex between u and v. Therefore,
the two degree-three vertices of the theta-graph both belong to S. By the same
reasoning as in the proof of Lemma 4, L must be shorter than the other two
paths of the theta-graph, so replacing the path that is entirely within S by L
would produce a shorter path from u to v, contradicting the construction of S
as a shortest path. This contradiction shows that P ∪ S must be a face. ��

Theorem 3. When the greedy ear decomposition embedding algorithm described
above is applied to an arrangement graph G, it correctly constructs the canonical
embedding of G.

Proof. We prove by induction on the number of steps of the algorithm that after
each step the partial embedding consists of faces of the canonical embedding
whose union is a disk. Lemma 4 shows as a base case that the induction hypoth-
esis is true after the first step. In each subsequent step, the ability to find two
attachment vertices follows from the fact that arrangement graphs are 2-vertex-
connected, which in turn follows from the fact that they can be augmented by a
single vertex to be 3-vertex-connected [2]. Lemma 5 shows that, if the induction
hypothesis is true after i steps then it remains true after i+ 1 steps. ��

6 Conclusions

We have found a grid drawing algorithm for pseudoline arrangement graphs that
uses area within a small factor of linear, much smaller than the known quadratic
grid area lower bounds for arbitrary planar graphs. We have also shown that
these graphs have near-linear universal point sets within a constant factor of
the same area, and that a simple greedy embedding heuristic suitable for hand
solution of Planarity puzzles is guaranteed to find a correct embedding.
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The precise area used by our grid drawing algorithm depends on the worst-
case behavior of the function κ(D) counting the number of crossings in a k-level
of an arrangement; closing the gap between the upper and lower bounds for
this function remains an important and difficult open problem in combinatorial
geometry. However, closing this gap is not the only possible method for improving
our drawing algorithm.

A tempting avenue for improvement is to observe that a single pseudoline ar-
rangement may be represented by many different wiring diagrams; therefore, we
can select the wiring diagram D that represent the same pseudoline arrangement
and that minimizes κ(D). However, this would not improve our worst case width
by more than a constant factor. For, if the input forms a pseudoline arrange-
ment constructed by stacking two arrangements of �/2 lines with maximal k-level
complexity, one above the other (Figure 8), then one of these two instances will
survive intact in any wiring diagram for the arrangement, forcing our algorithm
to produce a drawing with width at least κmax(�/2). Further improvements in
our algorithm will likely come by finding an alternative layout that avoids the
complexity of k-levels, by proving that k-levels are small in the average case if
not the worst case, or by reducing the known combinatorial bounds on k-levels.

It is also tempting to consider other drawing styles for arrangement graphs,
such as orthogonal drawing (in which each edge is an axis-aligned polyline).
Because arrangement graphs contain triangles, such a drawing may be forced to
have at least one bend per edge. However, the need either to align neighboring
vertices on adjacent rows of the drawing, or to provide space between rows for
parallel edge tracks, may cause these drawings to be significantly larger than
the straight-line drawings we study, so we have not found an area bound for
orthogonal drawing that is as tight as our bound for straight-line drawing.
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planar graphs. In: Proc. 20th ACM Symp. Theory of Computing (STOC 1988),
pp. 426–433 (1988)

[20] Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM/SIAM
Symp. Discrete Algorithms (SODA 1990), pp. 138–148 (1990)

[21] Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and uni-
versal point sets. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp.
208–219. Springer, Heidelberg (2013)

[22] Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified positions. Amer. Math. Monthly 98(2), 165–166 (1991)

[23] Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squar-
cella, C.: Small point sets for simply-nested planar graphs. In: van Kreveld, M.,
Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg
(2011)
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Abstract. We explore various techniques to incorporate grid-like layout
conventions intoa force-directed, constraint-basedgraph layout framework.
In doing sowe are able to provide high-quality layout—with predominantly
axis-aligned edges—that ismoreflexible thanpreviousgrid-like layoutmeth-
ods and which can capture layout conventions in notations such as SBGN
(Systems Biology Graphical Notation). Furthermore, the layout is easily
able to respect user-defined constraints and adapt to interaction in online
systems and diagram editors such as Dunnart.

Keywords: constraint-based layout, grid layout, interaction, diagram
editors.

1 Introduction

Force-directed layout remains the most popular approach to automatic layout
of undirected graphs. By and large these metheds untangle the graph to show
underlying structure and symmetries with a layout style that is organic in ap-
pearance [4]. Constrained graph layout methods extend force-directed layout to
take into account user-specified constraints on node positions such as alignment,
hierarchical containment and non-overlap [5]. These methods have proven a good
basis for semi-automated graph layout in tools such as Dunnart [7] that allow
the user to interactively guide the layout by moving nodes or adding constraints.

However, when undirected graphs (and other kinds of diagrams) are drawn
by hand it is common for a more grid-like layout style to be used. Grid-based
layout is widely used by graphic designers and it is common in hand-drawn
biological networks and metro-map layouts. Previous research has shown that
grid-based layouts are more memorable than unaligned placements [14]. Virtually
all diagram creation tools provide some kind of snap-to-grid feature.

In this paper we investigate how to modify constrained force-directed graph
layout methods [5] to create more orthogonal and grid-like layouts with a par-
ticular focus on interactive applications such as Dunnart. In Figure 1 we show
undirected graphs arranged with our various layout approaches compared with
traditional force-directed layout.
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(a) Force-Directed (b) Grid-Snap (c) Node-Snap

(d) Node-Snap+Grid-Snap (e) ACA (f) ACA + Grid-Snap

Fig. 1. Different combinations of our automatic layout techniques for grid-like layout
compared with standard force-directed layout. The layout is for an SBGN (Systems
Biology Graphical Notation) diagram of the Glycolysis-Gluconeogenesis pathway ob-
tained from MetaCrop [15]. In SBGN diagrams, process nodes represent individual
chemical reactions which typically form links in long metabolic pathways, and are of-
ten connected to several degree-1 nodes representing “currency molecules” like ATP
and ADP, while precisely two of their neighbours are degree-2 nodes representing prin-
cipal metabolites. It is conventional that the edges connecting main chemicals and
process nodes be axis-aligned in long chains, but not the leaf edges. We achieve this
by tailoring the cost functions discussed in Sect. 4.
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Before proceeding, it is worth defining what we mean by a grid-like layout. It
is commonly used to mean some combination of the following properties:

1. nodes are positioned at points on a fairly coarse grid;

2. edges are simple horizontal or vertical lines or in some cases 45◦ diagonals;

3. nodes of the same kind are horizontally or vertically aligned;

4. edges are orthogonal, i.e., any bends are 90◦.

and thus is different from the notion of a grid layout, which is simply property
(1). In this paper we are primarily interested in producing layouts with properties
(1) and (2), though our methods could also achieve (3). We do not consider edges
with orthogonal bends, though this could be an extension or achieved through
a routing post-process (a simple example of this is provided in [10]).

The standard approach to extending force-directed methods to handle new
aesthetic criteria is to add extra “forces” which push nodes in order to satisfy
particular aesthetics. One of the most commonly used functions is stress [9].
Our first contribution (Sect. 3) is to develop penalty terms that can be added
to the stress function to reward placement on points in a grid (Property 1) and
to reward horizontal or vertical node alignment and/or horizontal or vertical
edges (Property 2 or 3). We call these the Grid-Snap and Node-Snap methods
respectively.

However, additional terms can make the goal function rich in local minima
that impede convergence to a more aesthetically pleasing global minimum. Also,
such “soft” constraints cannot guarantee satisfaction and so layouts in which
nodes are nearly-but-not-quite aligned can occur. For this reason we investigate
a second approach based on constrained graph layout in which hard alignment
constraints are automatically added to the layout so as to ensure horizontal or
vertical node alignment and thus horizontal or vertical edges (Property 2 or
3). This adaptive constrained alignment (ACA) method (Sect. 4) is the most
innovative contribution of our paper.

In Sect. 6 we provide an empirical investigation of the speed of these ap-
proaches and the quality of layout with respect to various features encoding
what we feel are the aesthetic criteria important in grid-like network layout.

While the above approaches can be used in once-off network layout, our orig-
inal motivation was for interactive-layout applications. In Sect. 5 we discuss an
interaction model based on the above for the use of grid-like layout in interactive
semi-automatic layout tools such as Dunnart.
Related Work: Our research is related to proposals for automatic grid-like
layout of biological networks [1,13,11]. These arrange biological networks with
grid coordinates for nodes in addition to various layout constraints. In particu-
lar Barsky et al. [1] consider alignment constraints between biologically similar
nodes and Kojima et al. [11] perform layout subject to rectangular containers
around functionally significant groups of nodes (e.g., metabolites inside the nu-
cleus of a cell). In general they use fairly straight-forward simulated annealing or
simple incremental local-search strategies. Such methods work to a degree but
are slow and may never reach a particularly aesthetically appealing minimum.
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Another application where grid-like layout is an important aesthetic is au-
tomatic metro-map layout. Stott et al. [18] use a simple local-search (“hill-
climbing”) technique to obtain layout on grid points subject to a number of
constraints, such as octilinear edge orientation. Wang and Chi [20] seek sim-
ilar layout aesthetics but using continuous non-linear optimization subject to
octilinearity and planarity constraints. This work, like ours, is based on a quasi-
Newton optimization method, but it is very specific to metro-map layout and
it is not at all clear how these techniques could be adapted to general-purpose
interactive diagramming applications. Metro-map layout algorithms such as [16]
are designed to run for many hours before finding a solution.

Another family of algorithms that compute grid-like layout are so-called or-
thogonal graph drawing methods. There have been some efforts to make these
incremental, for example Brandes et al. [2] can produce an orthogonal drawing
of a graph that respects the topology for a given set of initial node positions.
Being based on the “Kandinski” orthogonal layout pipeline, extending such a
method with user-defined constraints such as alignment or hierarchical contain-
ment would require non-trivial engineering of each stage in the pipeline. There
is also a body of theoretical work considering the computability and geometric
properties of layout with grid-constraints for various classes of graphs, e.g. [3].
Though interesting in its own right, such work is usually not intended for prac-
tical application, which is the primary concern of this paper.

There are several examples of the application of soft-constraints to layout.
Sugiyama and Misue [19] augment the standard force-model with “magnetic”
edge-alignment forces. Ryall et al. [17] explored the use of various force-based
constraints in the context of an interactive diagramming editor. It is the limita-
tions of such soft constraints (discussed below) which prompt the development
of the techniques described in Sect. 4.

2 Aesthetic Criteria

Throughout this paper we assume that we have a graph G = (V,E,w, h) con-
sisting of a set of nodes V , a set of edges E ⊆ V × V and wv, hv are the width
and height of node v ∈ V . We wish to find a straight-line 2D drawing for G.
This is specified by a pair (x, y) where (xv, yv) is the centre point of each v ∈ V .

We quantify grid-like layout quality through the following metrics. In subse-
quent sections we use these to develop soft and hard constraints that directly or
indirectly aim to optimise them. We use these metrics in our evaluation Sect. 6.
Embedding quality We measure this using the P-stress function [8], a variant
of stress [9] that does not penalise unconnected nodes being more than their
desired distance apart. It measures the separation between each pair of nodes
u, v ∈ V in the drawing and their ideal distance duv proportional to the graph
theoretic path between them:∑

u<v∈V

wuv

(
(duv − d(u, v))+

)2
+

∑
(u,v)∈E

wp
(
(d(u, v)− dL)

+)2
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where d(u, v) is the Euclidean distance between u and v, (z)+ = z if z ≥ 0
otherwise 0, dL is an ideal edge length, wp = 1

dL
, and wuv = 1

d2
uv
.

Edge crossings The number of edge crossings in the drawing.
Edge/node overlap The number of edges intersecting a node box. With
straight-line edges this also penalises coincident edges.1

Angular resolution Edges incident on the same node have a uniform angular
separation. Stott et al. [18] give a useful formulation:∑

v∈V

∑
{e1,e2}∈E

|2π/degree(v)− θ(e1, e2)|

Edge obliquenessWe prefer horizontal or vertical edges and then—with weaker

preference—edges at a 45◦ orientation. Our precise metric is M
∣∣∣tan−1 yu−yv

xu−xv

∣∣∣
where M(θ) is an “M-shaped function” over [0, π/2] that highly penalizes edges
which are almost but not quite axis-aligned and gives a lower penalty for edges
midway between horizontal and vertical.2 Other functions like those of [18,11]
could be used instead.
Grid placement Average of distances of nodes from their closest grid point.

3 Soft-Constraint Approaches

In this section we describe two new terms that can be combined with the P-
stress function to achieve more grid-like layout: NS-stress for “node-snap stress”
and GS-stress for “grid-snap stress.” An additional term EN-sep gives good
separation between nodes and edges. Layout is then achieved by minimizing

P-stress + kns · NS-stress + kgs ·GS-stress + ken · EN-sep

where kns,gs,en control the “strength” of the various components. These extra
terms, as defined below, tend to make nodes lie on top of one another. It is
essential to avoid this by solving subject to node-overlap prevention constraints,
as described in [6]. To obtain an initial “untangled” layout we run with kns =
kgs = ken = 0 and without non-overlap constraints (Fig. 1(a)), and then run
again with the extra terms and constraints to perform “grid beautification”.

Minimization of the NS-stress term favours horizontal or vertical alignment of
pairs of connected nodes (Figs. 1(c) and 5). Specifically, taking σ as the distance
at which nodes should snap into alignment with one another, we define:

NS-stress =
∑

(u,v)∈E

qσ(xu − xv) + qσ(yu − yv) where qσ(z) =

{
z2/σ2 |z| ≤ σ

0 otherwise.

1 Node/node overlaps are also undesirable. We avoid them completely by using hard
non-overlap constraints [6] in all our tests and examples.

2 Note that [0, π/2] is the range of |tan−1|. The “M” function is zero at 0 and π/2, a
small value p ≥ 0 at π/4, a large value P > 0 at δ and π/2− δ for some small δ > 0,
and linear in-between.
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We originally tried several other penalty functions which turned out not to
have good convergence. In particular any smooth function with local maxima
at ±σ must be concave-down somewhere over the interval [−σ, σ], and while
differentiability may seem intuitively desirable for quadratic optimization it is in
fact trumped by downward concavity, which plays havoc with standard step-size
calculations on which our gradient-projection algorithm is based. Thus, obvious
choices like an inverted quartic (1+(z2−σ2)2)−1 or a sum of inverted quadratics
(1+(z+σ)2)−1+(1+(z−σ)2)−1 proved unsuitable in place of qσ(z). We review
the step size, gradient, and Hessian formulae for our snap-stress functions in [10].

We designed our GS-stress function likewise to make the lines of a virtual
grid exert a similar attractive force on nodes once within the snap distance σ:

GS-stress =
∑
u∈V

qσ(xu − au) + qσ(yu − bu)

where (au, bu) is the closest grid point to (xu, yu) (with ties broken by favouring
the point closer to the origin), see Fig. 1(b). The grid is defined to be the set of
all points (nτ,mτ), where n and m are integers, and τ is the “grid size”. With
GS-stress active it is important to set some other parameters proportional to τ .
First, we take σ = τ/2. Next, we modify the non-overlap constraints to allow
no more than one node centre to be in the vicinity of any one grid point by
increasing the minimum separation distance allowed between adjacent nodes to
τ . Finally, we found that setting the ideal edge length equal to τ for initial force-
directed layout, before activating GS-stress, helped to put nodes in positions
compatible with the grid.

Our third term EN-sep is also a quadratic function based on qσ(z) that sep-
arates nodes and nearby axis-aligned edges to avoid node/edge overlaps and
coincident edges:

EN-sep =
∑

e∈EV ∪EH

∑
u∈V

qσ
(
(σ − d(u, e))+

)
,

where EV and EH are the sets of vertically and horizontally aligned edges,
respectively, and the distance d(u, e) between a node u and an edge e is defined
as the length of the normal from u to e if that exists, or +∞ if it does not. Here
again we took σ = τ/2.

In our experiments we refer to various combinations of these terms and constraints:
Node-Snap: NS-stress, EN-sep, non-overlap constraints, kgs = 0
Grid-Snap: GS-stress, EN-sep, ideal edge lengths equal to grid size, non-overlap,
constraints with separations tailored to grid size, kns = 0.
Node-Snap+Grid-Snap: achieves extra alignment by adding NS-stress to the
above Grid-Snap recipe (i.e. kns �= 0)

4 Adaptive Constrained Alignment

Another way to customize constrained force-directed layout is by adding hard
constraints, and in this section we describe how to make force-directed layouts
more grid-like simply by adding alignment and separation constraints (Fig. 1(e)).
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The algorithm, which we call Adaptive Constrained Alignment or ACA, is a
greedy algorithmwhich repeatedly chooses an edge in G and aligns it horizontally
or vertically (see adapt const align procedure of Figure 2). It adapts to user
specified constraints by not adding alignments that violate these. The algorithm
halts when the heuristic can no longer apply alignments without creating edge
overlaps. Since each edge is aligned at most once, there are at most |E| iterations.

We tried the algorithm with three different heuristics for choosing potential
alignments, which we discuss below.

Node overlaps and edge/node overlaps can be prevented with hard non-overlap
constraints and the EN-sep soft constraint discussed in Section 3, applied either
before or after the ACA process. However, coincident edges can be acciden-
tally created and then enforced as we apply alignments if we do not take care
to maintain the orthogonal ordering of nodes. If for example two edges (u, v)
and (v, w) sharing a common endpoint v are both horizontally aligned, then
we must maintain either the ordering xu < xv < xw or the opposite ordering
xw < xv < xu.

Therefore we define the notion of a separated alignment, written SA(u, v,D)
where u, v ∈ V and D ∈ {N, S,W,E} is a compass direction. Applying a sepa-
rated alignment means applying two constraints to the force-directed layout—
one alignment and one separation—as follows:

SA(u, v,N) ≡ xu = xv and yv + β(u, v) ≤ yu, SA(u, v, S) ≡ SA(v, u,N),
SA(u, v,W) ≡ yu = yv and xv + α(u, v) ≤ xu, SA(u, v,E) ≡ SA(v, u,W),

where α(u, v) = (wu + wv)/2 and β(u, v) = (hu + hv)/2. (Thus for example
SA(u, v,N) can be read as, “the ray from u through v points north,” where we
think of v as lying north of u when its y-coordinate is smaller.)

proc adapt const align(G,C,H)
(x, y) ← cfdl(G,C)
SA ← H(G,C, x, y)
while SA ! = NULL

C.append(SA)
(x, y) ← cfdl(G,C)
SA ← H(G,C, x, y)

return (x, y, C)

proc chooseSA(G,C, x, y,K)
S ← NULL
cost ← ∞
for each (u, v) ∈ E and dir. D

if not creates coincidence(C, x, y, u, v, D)
if K(u, v, D) < cost

S ← SA(u, v,D)
cost ← K(u, v,D)

return S

Fig. 2. Adaptive constrained alignment algorithm. G is the given graph, C the set of
user-defined constraints, H the alignment choice heuristic, and cfdl the constrained
force-directed layout procedure.

Alignment Choice Heuristics. We describe two kinds of alignment choice
heuristics: generic, which can be applied to any graph, and convention-based,
which are intended for use with layouts that conform to special conventions, e.g.
SBGN diagrams [12]. Our heuristics are designed according to two principles:
(1) try to retain the overall shape of the initial force-directed layout;
(2) do not obscure the graph structure by creating undesirable overlaps



Incremental Grid-Like Layout Using Soft and Hard Constraints 455

and differ only in the choice of a cost function K which is plugged into the
procedure chooseSA in Figure 2. This relies on procedure creates coincidence

which implements the edge coincidence test described by Theorem 1. Among
separated alignments which would not lead to an edge coincidence, chooseSA
selects one of lowest cost. Cost functions may return a special value of ∞ to
mark an alignment as never to be chosen.

The creates coincidence procedure works by maintaining a |V |-by-|V | ar-
ray of flags which indicate for each pair of nodes u, v whether they are aligned in
either dimension and whether there is an edge between them. The cost of initial-
izing the array is O(|V |2 + |E|+ |C|), but this is done only once in ACA. Each
time a new alignment constraint is added the flags are updated in O(|V |) time,
due to transitivity of the alignment relation. Checking whether a proposed sep-
arated alignment would create an edge coincidence also takes O(|V |) time, and
works according to Theorem 1. (Proof is provided in [10].) Note that the validity
of Theorem 1 relies on the fact that we apply separated alignments SA(u, v,D)
only when (u, v) is an edge in the graph.

Theorem 1. Let G be a graph with separated alignments. Let u, v be nodes in
G which are not yet constrained to one another. Then the separated alignment
SA(u, v,E) creates an edge coincidence in G if and only if there is a node w which
is horizontally aligned with either u or v and satisfies either of the following two
conditions: (i) (u,w) ∈ E while xu < xw or xv < xw; or (ii) (w, v) ∈ E while
xw < xv or xw < xu. The case of vertical alignments is similar.

We tried various cost functions, which addressed the aesthetic criteria of
Section 2 in different ways. We began with a basic cost, which was either an
estimate KdS(u, v,D) of the change in the stress function after applying the
proposed alignment SA(u, v,D), or else the negation of the obliqueness of the
edge, Kob(u, v,D) = −obliqueness((u, v)), as measured by the function of Sec-
tion 2. In this way we could choose to address the aesthetic criteria of embedding
quality or edge obliqueness, and we found that the results were similar. Both
rules favour placing the first alignments on edges which are almost axis-aligned,
and this satisfies our first principle of being guided as much as possible by the
shape of the initial force-directed layout. See for example Figure 1.

On top of this basic cost we considered angular resolution of degree-2 nodes by
adding a large but finite cost that would postpone certain alignments until after
others had been attempted; namely, we added a fixed cost of 1000 (ten times
larger than average values of KdS and Kob) for any alignment that would make a
degree-2 node into a “bend point,” i.e., would make one of its edges horizontally
aligned while the other was vertically aligned. This allows long chains of degree-
2 nodes to form straight lines, and cycles of degree-2 nodes to form perfect
rectangles. For SBGN diagrams we used a modified rule based on non-leaf degree,
or number of neighbouring nodes which are not leaves (Figs. 1(e) and (f)).

Respecting User-Defined Constraints. Layout constraints can easily wind
up in conflict with one another if not chosen carefully. In Dunnart such con-
flicts are detected during the projection operation described in [5], an active set
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Fig. 3. Interacting with Node-Snap. The user is dragging node a steadily to the right.
When the horizontal distance between a and b is less than the average width of these
two nodes, the NS-stress function causes b to align with a. As the user continues
dragging, the now aligned node b will follow until either a quick jerk of node a breaks
the alignment, or else edges attached to b pull it back to the left, overcoming its
attraction to a. To the user, the impression is that the alignment persisted until it was
“torn” by the underlying forces in the system.

method which iteratively determines the most violated constraint c and satisfies
it by minimal disturbance of the node positions. When it is impossible to satisfy
c without violating one of the constraints that is already in the active set, c is
simply marked unsatisfiable, and the operation carries on without it.

For ACA it is important that user-defined constraints are never marked un-
satisfiable in deference to an alignment imposed by the process; therefore we
term the former definite constraints and the latter tentative constraints. We em-
ploy a modified projection operation which always chooses to mark one or more
tentative constraint as unsatisfiable if they are involved in a conflict.

For conflicts involving more than one tentative constraint, we use Lagrange
multipliers to choose which one to reject. These are computed as a part of the
projection process. Since alignment constraints are equalities (not inequalities)
the sign of their Lagrange multiplier does not matter, and a constraint whose
Lagrange multiplier is maximal in absolute value is one whose rejection should
permit the greatest decrease in the stress function. Therefore we choose this one.

ACA does not snap nodes to grid-points: if desired this can be achieved once
ACA has added the alignment constraints by activating Grid-Snap.

5 Interaction

One benefit of the approaches described above is that they are immediately ap-
plicable for use in interactive tools where the underlying graph, the prerequisite
constraint system, or ideal positions for nodes can all change dynamically. We
implemented Node-Snap, Grid-Snap and Adaptive Constrained Alignment for
interactive use in the Dunnart diagram editor.3 In Dunnart, automatic layout

3 A video demonstrating interactive use of the approaches described in this paper is
available at http://www.dunnart.org.

http://www.dunnart.org
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runs continuously in a background worker thread, allowing the layout to adapt
immediately to user-specified changes to positions or constraints.

For example, Figure 3 illustrates user interaction with Node-Snap. As the user
drags a node around the canvas, it may snap into alignment with an adjacent
node. Slowly dragging a node aligned with other nodes will move them together
and keep them in alignment, while quickly dragging a node will instead cause it
to be torn from any alignments.

When we tried Node-Snap interactively in Dunnart we found that nodes
tended to stick together in clumps if the σ parameter of NS-stress was larger
than their average size in either dimension. We solved this problem by replacing
the snap-stress term by∑

(u,v)∈E

qα(u,v)(xu − xv) + qβ(u,v)(yu − yv)

where α, β are as defined in Sect. 4.
In Dunnart, a dragged object is always pinned to the mouse cursor. In the

case of Grid-Snap, the dragged node is unpinned and will immediately snap
to a grid point on mouse-up. Other nodes, however, will snap-to or tear-away
from grid points in response to changing dynamics in the layout system. During
dragging we also turn off non-overlap constraints and reapply them on mouse-up.
This prevents nodes being unexpectedly pushed out of place as a result of the
expanded non-overlap region (Sect. 3). Additionally, since GS-stress holds nodes
in place, we allow the user to quickly drag a node to temporarily overcome the
grid forces and allow the layout to untangle with standard force-directed layout.
Once it converges we automatically reapply GS-stress.

6 Evaluation

To evaluate the various techniques we applied each to 252 graphs from the “AT&T
Graphs” corpus (ftp://ftp.research.att.com/dist/drawdag/ug.gz) with
between 10 and 244 nodes. We excluded graphs with fewer than 10 nodes and two
outlier graphs: one with 1103 nodes and one with 0 edges. We recorded running
times of each stage in the automated batch process and the various aesthetic met-
rics described in Sect. 2, using a MacBook Pro with a 2.3GHz Intel Core I7 CPU.
Details of collected data etc. are given in [10].

We found that ACA was the slowest, often taking up to 10 times as long as the
other methods, on average around 5 seconds for graphs with around 100 nodes,
while the other approaches took around a second. ACA was also sensitive to the
density of edges. Of the soft constraint approaches, Grid-Snap (being very local)
added very little time over the unconstrained force-directed approach.

The Edge Obliqueness results are shown in Fig. 4 as this is arguably the metric
that is most indicative of grid-like layout. Another desirable property of grid-like
layout, as noted in Sect. 4 is that longer paths in the graph also be aligned. ACA
does a good job of aligning such paths, as is visible in Fig. 1 and 5.

ftp://ftp.research.att.com/dist/drawdag/ug.gz
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Fig. 4. Edge obliqueness (see Sect. 2)
results. The hard-constraint approach
ACA is better than either of the soft
constraint approaches Grid-Snap (GS)
and Node-Snap (NS). The combination
of ACA and GS gives the best result.

Fig. 5. Layout of a SBGN diagram of
Calvin Cycle pathway shows how ACA
(right) gives a more pleasing rectangular
layout than Node-Snap (left).

7 Conclusion

We explored incorporating grid-like layout conventions into constraint-based
graph layout. We give two soft approaches (Node-Snap, Grid-Snap) based on
adding terms to the goal function, and an adaptive constraint based approach
(ACA) in which hard alignment constraints are added greedily. ACA is slower
but gives more grid-like layout and so is preferred for medium sized graphs.

We have also discussed how the approaches can be integrated into interactive
diagramming tools like Dunnart. Here ACA and Grid-Snap provide good initial
layouts, while Node-Snap helps the user create further alignments by hand.

Future work is to improve the speed of ACA by adding more than one align-
ment constraint at a time and also to use Lagrange multipliers (LM) to improve
the adaptivity of ACA. One idea is to reject any alignment whose LM exceeds
a threshold on each iteration of ACA. Then, running ACA continuously dur-
ing interaction would allow us to achieve the behaviour illustrated in Fig. 3
through hard rather than soft constraints. Another issue with all the techniques
described is the many fiddly parameters, weights and thresholds. We intend to
further investigate principled ways to automatically set these.
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Abstract. We present a simple and versatile formulation of grid-based graph rep-
resentation problems as an integer linear program (ILP) and a corresponding SAT
instance. In a grid-based representation vertices and edges correspond to axis-
parallel boxes on an underlying integer grid; boxes can be further constrained
in their shapes and interactions by additional problem-specific constraints. We
describe a general d-dimensional model for grid representation problems. This
model can be used to solve a variety of NP-hard graph problems, including path-
width, bandwidth, optimum st-orientation, area-minimal (bar-k) visibility repre-
sentation, boxicity-k graphs and others. We implemented SAT-models for all of
the above problems and evaluated them on the Rome graphs collection. The ex-
periments show that our model successfully solves NP-hard problems within few
minutes on small to medium-size Rome graphs.

1 Introduction

Integer linear programming (ILP) and Boolean satisfiability testing (SAT) are indis-
pensable and widely used tools in solving many hard combinatorial optimization and
decision problems in practical applications [3,9]. In graph drawing, especially for planar
graphs, these methods are not frequently applied. A few notable exceptions are crossing
minimization [8, 10, 19, 22], orthogonal graph drawing with vertex and edge labels [4]
and metro-map layout [26]. Recent work by Chimani et al. [11] uses SAT formulations
for testing upward planarity. All these approaches have in common that they exploit
problem-specific properties to derive small and efficiently solvable models, but they do
not generalize to larger classes of problems.

In this paper we propose a generic ILP model that is flexible enough to capture a
large variety of different grid-based graph layout problems, both polynomially-solvable
and NP-complete. We demonstrate this broad applicability by adapting the base model
to six different NP-complete example problems: pathwidth, bandwidth, optimum st-
orientation, minimum area bar- and bar k-visibility representation, and boxicity-k test-
ing. For minimum-area visibility representations and boxicity this is, to the best of our
knowledge, the first implementation of an exact solution method. Of course this flex-
ibility comes at the cost of losing some of the efficiency of more specific approaches.
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Our goal, however, is not to achieve maximal performance for a specific problem, but
to provide an easy-to-adapt solution method for a larger class of problems, which al-
lows quick and simple prototyping for instances that are not too large. Our ILP models
can be translated into equivalent SAT formulations, which exhibit better performance
in the implementation than the ILP models themselves. We illustrate the usefulness of
our approach by an experimental evaluation that applies our generic model to the above
six NP-complete problems using the well-known Rome graphs [1] as a benchmark set.
Our evaluation shows that, depending on the problem, our model can solve small to
medium-size instances (sizes varying from about 25 vertices and edges for bar-1 visi-
bility testing up to more than 250 vertices and edges, i.e., all Rome graphs, for optimum
st-orientation) to optimality within a few minutes. In Section 2, we introduce generic
grid-based graph representations and formulate an ILP model for d-dimensional in-
teger grids. We show how this model can be adapted to six concrete one-, two- and
d-dimensional grid-based layout problems in Sections 3 and 4. In Section 5 we evaluate
our implementations and report experimental results. The implementation is available
from i11www.iti.kit.edu/gdsat. Omitted proofs are in the full version [2].

2 Generic Model for Grid-Based Graph Representations

In this section we explain how to express d-dimensional boxes in a d-dimensional inte-
ger grid as constraints of an ILP or a SAT instance. In the subsequent sections we use
these boxes as basic elements for representing vertices and edges in problem-specific
ILP and SAT models. Observe that we can restrict ourselves to boxes in integer grids.

Lemma 1. Any set I of n boxes in Rd can be transformed into another set I ′ of n
closed boxes on the integer grid {1, . . . , n}d such that two boxes intersect in I if and
only if they intersect in I ′.

2.1 Integer Linear Programming Model

We will describe our model in the general case for a d-dimensional integer grid, where
d ≥ 1. LetRd = [1, U1]× . . .× [1, Ud] be a bounded d-dimensional integer grid, where
[A,B] denotes the set of integers {A,A + 1, . . . , B − 1, B}. In a grid-based graph
representation vertices and/or edges are represented as d-dimensional boxes in Rd. A
grid box R in Rd is a subset [s1, t1] × . . . × [sd, td] of Rd, where 1 ≤ sk ≤ tk ≤ Uk

for all 1 ≤ k ≤ d. In the following we describe a set of ILP constraints that together
create a non-empty box for some object v. We denote this ILP as B(d).

We first extendRd by a margin of dummy points to R̄d = [0, U1+1]× . . .× [0, Ud+
1]. We use three sets of binary variables:

xi(v) ∈ {0, 1} ∀i ∈ R̄d (1)

bki (v) ∈ {0, 1} ∀1 ≤ k ≤ d and 1 ≤ i ≤ Uk (2)

eki (v) ∈ {0, 1} ∀1 ≤ k ≤ d and 1 ≤ i ≤ Uk (3)

Variables xi(v) indicate whether grid point i belongs to the box representing v (xi(v) =
1) or not (xi(v) = 0). Variables bki (v) and eki (v) indicate whether the box of v may start

i11www.iti.kit.edu/gdsat
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Fig. 1. Example of a 2-dimensional 8× 13 grid R̄d with a 4× 6 grid box and the corresponding
variable assignments

or end at position i in dimension k. We use i[k] to denote the k-th coordinate of grid
point i ∈ Rd and 1k = (0, . . . , 0, 1, 0, . . . , 0) to denote the k-th d-dimensional unit
vector. If d = 1 we will drop the dimension index of the variables to simplify the
notation. The following constraints model a box inRd (see Fig. 1 for an example):

xi(v) = 0 ∀i ∈ R̄d \ Rd (4)∑
i∈R̄d

xi(v) ≥ 1 (5)

∑
i∈[1,Uk]

bki (v) = 1 ∀1 ≤ k ≤ d (6)

∑
i∈[1,Uk]

eki (v) = 1 ∀1 ≤ k ≤ d (7)

xi−1k
(v) + bki[k](v) ≥ xi(v) ∀i ∈ Rd and 1 ≤ k ≤ d (8)

xi(v) ≤ xi+1k
(v) + eki[k](v) ∀i ∈ Rd and 1 ≤ k ≤ d (9)

Constraint (4) creates a margin of zeroes aroundRd. Constraint (5) ensures that the
shape representing v is non-empty, and constraints (6) and (7) provide exactly one start
and end position in each dimension. Finally, due to constraints (8) and (9) each grid
point inside the specified bounds belongs to v and all other points don’t.

Lemma 2. The ILP B(d) defined by constraints (1)–(9) correctly models all non-empty
grid boxes inRd.

Our example ILP models in Sections 3 and 4 extend ILP B(d) by constraints control-
ling additional properties of vertex and edge boxes. For instance, boxes can be easily
constrained to be single points, to be horizontal or vertical line segments, to intersect if
and only if they are incident or adjacent in G, to meet in endpoints etc. The definition
of an objective function for the ILP depends on the specific problem at hand and will
be discussed in the problem sections. In the full version [2] we explain how to translate
the ILP B(d) into an equivalent SAT formulation with better practical performance.
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3 One-Dimensional Problems

In the following, let G = (V,E) be an undirected graph with |V | = n and |E| = m.
One-dimensional grid-based graph representations can be used to model vertices as
intersecting intervals (one-dimensional boxes) or as disjoint points that induce a certain
vertex order. We present ILP models for three such problems.

3.1 Pathwidth

The pathwidth of a graph G is a well-known graph parameter with many equivalent
definitions. We use the definition via the smallest clique size of an interval supergraph.
More precisely, a graph is an interval graph if it can be represented as intersection
graph of 1-dimensional intervals. A graph G has pathwidth pw(G) ≤ p if there exists
an interval graph H that contains G as a subgraph and for which all cliques have size at
most p+1. It is NP-hard to compute the pathwidth of an arbitrary graph and even hard to
approximate it [5]. There are fixed-parameter algorithms for computing the pathwidth,
e.g. [6], however, we are not aware of any implementations of these algorithms. The
only available implementations are exponential-time algorithms, e.g., in sage1.

Problem 1 (Pathwidth). Given a graph G = (V,E), determine the pathwidth of G, i.e.,
the smallest integer p so that pw(G) ≤ p.

There is an interesting connection between pathwidth and planar graph drawings of
small height. Any planar graph that has a planar drawing of height h has pathwidth
at most h [18]. Also, pathwidth is a crucial ingredient in testing in polynomial time
whether a graph has a planar drawing of height h [15].

We create a one-dimensional grid representation of G, in which every vertex is an
interval and every edge forces the two vertex intervals to intersect. The objective is to
minimize the maximum number of intervals that intersect in any given point. We use
the ILP B(1) for a gridR = [1, n], which already assigns a non-empty interval to each
vertex v ∈ V . We add binary variables for the edges of G, a variable p ∈ N representing
the pathwidth of G, and a set of additional constraints as follows.

xi(e) ∈ {0, 1} ∀i ∈ R and e ∈ E (10)∑
i∈R

xi(e) ≥ 1 ∀e ∈ E (11)

xi(uv) ≤ xi(u) xi(uv) ≤ xi(v) ∀uv ∈ E (12)∑
v∈V

xi(v) ≤ p+ 1 ∀i ∈ R (13)

Our objective function is to minimize the value of p subject to the above constraints.
It is easy to see that every edge must be represented by some grid point (con-

straint (11)), and can only use those grid points, where the two end vertices intersect
(constraint (12)). Hence the intervals of vertices define some interval graph H that is

1 www.sagemath.org
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a supergraph of G. Constraint (13) enforces that at most p + 1 intervals meet in any
point, which by Helly’s property means that H has clique-size at most p+ 1. So G has
pathwidth at most p. By minimizing p we obtain the desired result. In our implementa-
tion we translate the ILP into a SAT instance. We test satisfiability for fixed values of p,
starting with p = 1 and increasing it incrementally until a solution is found.

Theorem 1. There exists an ILP/SAT formulation with O(n(n + m)) variables and
O(n(n + m)) constraints / O(n3 + n

(
n

p+2

)
) clauses of maximum size n that has a

solution of value≤ p if and only if G has pathwidth ≤ p.

With some easy modifications, the above ILP can be used for testing whether a graph
is a (proper) interval graph. Section 4.2 shows that boxicity-d graphs, the d-dimensional
generalization of interval graphs, can also be recognized by our ILP.

3.2 Bandwidth

The bandwidth of a graph G with n vertices is another classic graph parameter, which
is NP-hard to compute [12]; due to the practical importance of the problem there are
also a few approaches to find exact solutions to the bandwidth minimization problem.
For example, [14] and [25] use the branch-and-bound technique combined with var-
ious heuristics. We present a solution that can be easily described using our general
framework. However, regarding the running time, it cannot be expected to compete
with techniques specially tuned for solving the bandwidth minimization problem.

Let f : V → {1, . . . , n} be a bijection that defines a linear vertex order. The band-
width ofG is defined as bw(G) = minf max{f(v)−f(u) | uv ∈ E and f(u) < f(v)},
i.e., the minimum length of the longest edge in G over all possible vertex orders.

In the full version [2] we describe an ILP that assigns the vertices of G to disjoint
grid points and requires for an integer k that any pair of adjacent vertices is at most k
grid points apart, i.e., we can test if bw(G) ≤ k.

Theorem 2. There exists an ILP/SAT formulation with O(n2) variables and O(n ·m)
constraints / O(n3) clauses of maximum size n that has a solution if and only if G has
bandwidth≤ k.

3.3 Optimum st-Orientation

Let G be an undirected graph and let s and t be two vertices of G with st ∈ E. An
st-orientation of G is an orientation of the edges such that s is the unique source and t
is the unique sink [17]. Such an orientation can exist only if G ∪ (s, t) is biconnected.
Computing an st-orientation can be done in linear time [7,17], but it is NP-complete to
find an st-orientation that minimizes the length of the longest path from s to t, even for
planar graphs [28]. It has many applications in graph drawing [27] and beyond.

Problem 2 (Optimum st-orientation). Given a graph G = (V,E) and two vertices
s, t ∈ V with st ∈ E, find an orientation of E such that s is the only source, t is
the only sink, and the length of the longest directed path from s to t is minimum.
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In the full version [2] we formulate an ILP using points for vertices and non-degenerate
intervals for edges that computes a height-k st-orientation of G, i.e., an st-orientation
such that the longest path has length at most k (if one exists).

Theorem 3. There exists an ILP with O(n(n + m)) variables and constraints that
computes an optimum st-orientation. Alternatively, there exists an ILP/SAT formulation
with O(k(n+m)) variables and O(k(n+m)) constraints / O(k2(n+m)) clauses of
maximum size n that has a solution if and only if a height-k st-orientation of G exists.

4 Higher-Dimensional Problems

In this section we give examples of two-dimensional visibility graph representations
and a d-dimensional grid-based graph representation problem. Let again G = (V,E)
be an undirected graph with |V | = n and |E| = m.

4.1 Visibility Representations

A visibility representation (also: bar visibility representation or weak visibility repre-
sentation) of a graph G = (V,E) maps all vertices to disjoint horizontal line segments,
called bars, and all edges to disjoint vertical bars, such that for each edge uv ∈ E the
bar of uv has its endpoints on the bars for u and v and does not intersect any other vertex
bar. Visibility representations are an important visualization concept in graph drawing,
e.g., it is well known that a graph is planar if and only if it has a visibility representa-
tion [29, 30]. An interesting recent extension are bar k-visibility representations [13],
which additionally allow edges to intersect at most k non-incident vertex bars. We use
our ILP to compute compact visibility and bar k-visibility representations. Minimizing
the area of a visibility representation is NP-hard [24] and we are not aware of any im-
plemented exact algorithms to solve the problem for any k ≥ 0. By Lemma 1 we know
that all bars can be described with integer coordinates of size O(m+ n).

Problem 3 (Bar k-Visibility Representation). Given a graph G and an integer k ≥ 0,
find a bar k-visibility representation on an integer grid of size H ×W (if one exists).

Bar visibility representations. Our goal is to test whether G has a visibility represen-
tation in a grid with H columns and W rows (and thus minimize H or W ). We set
R2 = [1, H ] × [1,W ] and use ILP B(2) to create grid boxes for all edges and ver-
tices in G. We add one more set of binary variables for vertex-edge incidences and the
following constraints.

xi(e, v) ∈ {0, 1} ∀i ∈ R2 ∀e ∈ E ∀v ∈ e (14)

b1i (v) = e1i (v) ∀i ∈ [1, U1] ∀v ∈ V (15)

b2i (e) = e2i (e) ∀i ∈ [1, U2] ∀e ∈ E (16)∑
v∈V

xi(v) ≤ 1 ∀i ∈ R2 (17)∑
v∈V \e

xi(v) ≤ (1− xi(e)) ∀i ∈ R2 ∀e ∈ E (18)
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xi(e, v) ≤ xi(e) xi(e, v) ≤ xi(v) ∀i ∈ R2 ∀e ∈ E ∀v ∈ e (19)∑
i∈R2

xi(e, v) ≥ 1 ∀e ∈ E ∀v ∈ e (20)

xi(e, v) ≤ b1i[1](e) + e1i[1](e) ∀i ∈ R2 ∀e ∈ E ∀v ∈ e (21)

Constraints (15) and (16) ensure that all vertex boxes are horizontal bars of height 1 and
all edge boxes are vertical bars of width 1. Constraint (17) forces the vertex boxes to be
disjoint; edge boxes will be implicitly disjoint (for a simple graph) due to the remaining
constraints. No edge is allowed to intersect a non-incident vertex due to constraint (18).
Finally, we need to set the new incidence variables xi(e, v) for an edge e and an incident
vertex v so that xi(e, v) = 1 if and only if e and v share the grid point i. Constraints (19)
and (20) ensure that each incidence in G is realized in at least one grid point, but it must
be one that is used by the boxes of e and v. Finally, constraint (21) requires edge e to
start and end at its two intersection points with the incident vertex boxes. This constraint
is optional, but yields a tighter formulation.

Since every graph with a visibility representation is planar (and vice versa) we have
m ∈ O(n). Moreover, our ILP and SAT models can also be used to test planarity of a
given graph by setting H = n and W = 2n − 4, which is sufficient due to Tamassia
and Tollis [29]. This might not look interesting at first sight since planarity testing can
be done in linear time [21]. However, we think that this is still useful as one can add
other constraints to the ILP model, e.g., to create simultaneous planar embeddings, and
use it as a subroutine for ILP formulations of applied graph drawing problems such as
metro maps [26] and cartograms.

Theorem 4. There is an ILP/SAT formulation with O(HWn) variables and O(HWn)
constraints / O(HWn2) clauses of maximum size HW that solves Problem 3 for k = 0.

Bar k-visibility representations. It is easy to extend our previous model for k = 0 to
test bar k-visibility representations for k ≥ 1. See [2] for a detailed description.

Theorem 5. There exists an ILP/SAT formulation with O(HW (n+m)) variables and
O(HW (m2 + n)) constraints / O(

(
HW
k+1

)
m+HWm2) clauses of maximum size HW

that solves Problem 3 for k ≥ 1.

4.2 Boxicity-d Graphs

A graph is said to have boxicity d if it can be represented as intersection graph of d-
dimensional axis-aligned boxes. Testing whether a graph has boxicity d is NP-hard,
even for d = 2 [23]. We are not aware of any implemented algorithms to determine the
boxicity of a graph. By Lemma 1 we can restrict ourselves to a grid of side length n. In
the full version [2], we give an ILP model for testing whether a graph has boxicity d.

Theorem 6. There exists an ILP with O(nd(n + m)) variables and O(nd+2) con-
straints as well as a SAT instance with O(nd(n +m)) variables and O(nd+2) clauses
of maximum size O(nd) to test whether a graph G has boxicity d.



ILP/SAT Formulation for Grid-Based Graph Representations 467

5 Experiments

We implemented and tested our formulation for minimizing pathwidth, bandwidth,
length of longest path in an st-orientation, and width of bar-visibility and bar 1-visibility
representations, as well as deciding whether a graph has boxicity 2.

We performed the experiments on a single core of an AMD Opteron 6172 processor
running Linux 3.4.11. The machine is clocked at 2.1 Ghz, and has 256 GiB RAM.
Our implementation (available from http://i11www.iti.kit.edu/gdsat) is
written in C++ and was compiled with GCC 4.7.1 using optimization -O3. As test
sample we used the Rome graphs dataset [1] which consists of 11533 graphs with vertex
number between 10 and 100. 18% of the Rome graphs are planar. The size distribution
of the Rome graphs can be found in the full version [2].

We initially used the Gurobi solver [20] to test the implementation of the ILP formu-
lations, however it turned out that even for very small graphs (n < 10) solving a single
instance can take minutes. We therefore focused on the equivalent SAT formulations
gaining a significant speed-up. As SAT solver we used MiniSat [16] in version 2.2.0.
For each of the five minimization problems we determined obvious lower and upper
bounds in O(n) for the respective graph parameter. Starting with the lower bound we
iteratively increased the parameter to the next integer until a solution was found (or
a predefined timeout was exceeded). Each iteration consists of constructing the SAT
formulation and executing the SAT solver. We measured the total time spent in all it-
erations. For boxicity 2 we decided to consider square grids and minimize their side
lengths. Thus the same iterative procedure applies to boxicity 2.

Note that for all considered problems a binary search-like procedure for the param-
eter value did not prove to be efficient, since the solver usually takes more time with
increasing parameter value, which is mainly due to the increasing number of variables
and clauses. For the one-dimensional problems we used a timeout of 300 seconds, for
the two-dimensional problems of 600 seconds.

We ran the instances sorted by size n+m starting with the smallest graphs. If more
than 400 consecutive graphs in this order produced timeouts, we ended the experiment
prematurely and evaluated only the so far obtained results. Figures 2 and 3 summarize
our experimental results and show the percentage of Rome graphs solved within the
given time limit, as well as scatter plots with each solved instance represented as a
point depending on its graph size and the required computation time.

Pathwidth. As Fig. 2a shows, we were able to compute the pathwidth for 17.0% of all
Rome graphs, from which 82% were solved within the first minute and only 3% within
the last. Therefore, we expect that a significant increase of the timeout value would
be necessary for a noticeable increase of the percentage of solved instances. We note
that almost all small graphs (n + m < 45) could be solved within the given timeout,
however, for larger graphs, the percentage of solved instances rapidly drops, as the red
curve in Fig. 2b shows. Almost no graphs with n+m > 70 were solved.

Bandwidth. We were able to compute the bandwidth for 22.3% of all Rome graphs (see
Fig. 2a), from which 90% were solved within the first minute and only 1.3% within the
last. Similarly to the previous case, the procedure terminated successfully within 300
seconds for almost all small graphs (n+m < 55 in this case), while almost none of the
larger graphs (n+m > 80) were solved; see the red curve in Fig. 2c.

http://i11www.iti.kit.edu/gdsat
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Fig. 2. Experimental results for the one-dimensional problems. (a) Percentage of solved instances.
(b)–(d): Time in seconds for solving an instance (dots) and percentage of instances not solved
within 300 seconds (red curves), both in relation to n+m

Optimum st-Orientation. Note that very few of the Rome graphs are biconnected.
Therefore, to test our SAT implementation for computing the minimum number of lev-
els in an st-orientation, we subdivided each graph into biconnected blocks and removed
those with n ≤ 2, which produced 13606 blocks in total (3 ≤ n + m ≤ 230). Then,
for each such block, we randomly selected one pair of vertices s, t, s �= t, connected
them by an edge if it did not already exist and ran the iterative procedure. In this way,
for the respective choice of s, t we were able to compute the minimum number of levels
in an st-orientation for all biconnected blocks; see Fig. 2a. Moreover, no graph took
longer than 57 seconds, for 97% of the graphs it took less than 10 seconds and for 68%
less than 3 seconds. Even for the biggest blocks with m + n > 200, the procedure
successfully terminated within 15 seconds in 93% of the cases; see Fig. 2d.

Bar Visibility. To compute bar-visibility representations of minimum width, we itera-
tively tested for each graph all widths W between 1 and 2n − 4. We used the trivial
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Fig. 3. Experimental results for the two-dimensional problems. (a) Percentage of solved instances.
The red horizontal line shows the percentage of planar graphs over all Rome graphs. (b)–(d):
Time in seconds for solving an instance (dots) and percentage of instances not solved within 600
seconds (red curves), both in relation to n+m.

upper bound H = n for the height. We were able to compute solutions for 28.5% of
all 3281 planar Rome graphs (see Fig. 3a), 69% of which were solved within the first
minute and less than 0.1% within the last. We were able to solve all small instances
with n+m ≤ 23 and almost none for n+m > 55; see the red curve in Fig. 3b.

Bar 1-Visibility. We also ran width minimization for bar 1-visibility representations
on all Rome graphs. The procedure terminated successfully within the given time for
833 graphs (7.2% of all Rome graphs), which is close to the corresponding number
for bar-visibility; see Fig. 3a. For bar 1-visibility, eight graphs were solved which were
not solved for bar-visibility. Interestingly, they were all planar. All but 113 graphs suc-
cessfully processed in the previous experiment were also successfully processed in this
one. A possible explanation for those 113 graphs is that the SAT formulation for bar
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1-visibility requires more clauses. All small graphs with n +m ≤ 23 were processed
successfully. Interestingly, for none of the processed graphs the minimum width actu-
ally decreased in comparison to their minimum-width bar-visibility representation.

Boxicity-2. For testing boxicity 2, we started with a 3× 3 grid for each graph and then
increased height and width simultaneously after each iteration. Within the specified
timeout of 600 seconds, we were able to decide whether a graph has boxicity 2 for
18.7% of all Rome graphs (see Fig. 3b), 82% of which were processed within the first
minute and 0.3% within the last. All of the successfully processed graphs actually had
boxicity 2. Small graphs with n + m ≤ 50 were processed almost completely, while
almost none of the graphs with n+m > 70 finished; see Fig. 3d.

6 Conclusion

We presented a versatile ILP formulation for determining placement of grid boxes ac-
cording to problem-specific constraints. We gave six examples of how to extend this
formulation for solving numerous NP-hard graph drawing and representation problems.
Our experimental evaluation showed that while solving the original ILP is rather slow,
the derived SAT formulations perform well for smaller graphs. While our approach is
not suitable to replace faster specialized exact or heuristic algorithms, it does provide
a simple-to-use tool for solving problems that can be modeled by grid-based graph
representations with little implementation effort. This can be useful, e.g., for verifying
counterexamples, NP-hardness gadgets, or for solving certain instances in practice.

Many other problems can easily be formulated as ILPs by assigning grid-boxes to
vertices or edges. Among those are, e.g., testing whether a planar graph has a straight-
line drawing of height h, whether a planar graph has a rectangular dual with integer co-
ordinates and prescribed integral areas, whether a graph is a t-interval graph, or whether
a bipartite graph can be represented as a planar bus graph. Important open problems are
to reduce the complexity of our formulations and whether approximation algorithms for
graph drawing can be derived from our model via fractional relaxation.
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P., Weiskircher, R.: A branch-and-cut approach to the crossing number problem. Discrete
Optimization 5(2), 373–388 (2008)

9. Chen, D.S., Batson, R.G., Dang, Y.: Applied Integer Programming. Wiley (2010)
10. Chimani, M., Mutzel, P., Bomze, I.: A new approach to exact crossing minimization. In:

Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 284–296. Springer, Hei-
delberg (2008)

11. Chimani, M., Zeranski, R.: Upward planarity testing via SAT. In: Didimo, W., Patrignani, M.
(eds.) GD 2012. LNCS, vol. 7704, pp. 248–259. Springer, Heidelberg (2013)
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Abstract. We consider two systems (α1, . . . , αm) and (β1, . . . , βn) of
curves drawn on a compact two-dimensional surface M with boundary.
Each αi and each βj is either an arc meeting the boundary of M at
its two endpoints, or a closed curve. The αi are pairwise disjoint except
for possibly sharing endpoints, and similarly for the βj . We want to
“untangle” the βj from the αi by a self-homeomorphism of M; more
precisely, we seek an homeomorphism ϕ :M→M fixing the boundary
ofM pointwise such that the total number of crossings of the αi with the
ϕ(βj) is as small as possible. This problem is motivated by an application
in the algorithmic theory of embeddings and 3-manifolds.

We prove that ifM is planar, i.e., a sphere with h ≥ 0 boundary com-
ponents (“holes”), then O(mn) crossings can be achieved (independently
of h), which is asymptotically tight, as an easy lower bound shows. In
general, for an arbitrary (orientable or nonorientable) surface M with
h holes and of (orientable or nonorientable) genus g ≥ 0, we obtain an
O((m+ n)4) upper bound, again independent of h and g.

Keywords: Curves on 2-manifolds, simultaneous planar drawings, Lick-
orish’s theorem.

1 Introduction

Let M be a surface, by which we mean a two-dimensional compact manifold
with (possibly empty) boundary ∂M.

By the classification theorem for surfaces, ifM is orientable, thenM is home-
omorphic to a sphere with h ≥ 0 holes and g ≥ 0 attached handles; the number g
is also called the orientable genus ofM. IfM is nonorientable, then it is home-
omorphic to a sphere with h ≥ 0 holes and with g ≥ 0 cross-caps ; in this case,
the integer g is known as the nonorientable genus ofM. In the sequel, the word
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α1 α2

α3

β1

β2

β3

(a)

α1 α2

α3

ϕ(β1)

ϕ(β2)

ϕ(β3)

(b)

x

Fig. 1. Systems A and B of curves on a surface M, with g = 0 and h = 3 (a), and a
re-drawing of B via a ∂-automorphism ϕ reducing the number of intersections (b).

“genus” will mean orientable genus for orientable surfaces and nonorientable
genus for nonorientable surfaces.

We will consider curves in M that are properly embedded, i.e., every curve is
either a simple arc meeting the boundary ∂M exactly at its two endpoints, or
a simple closed curve avoiding ∂M. An almost-disjoint system of curves in M
is a collection A = (α1, . . . , αm) of curves that are pairwise disjoint except for
possibly sharing endpoints.

In this paper we consider the following problem: We are given two almost-
disjoint systems A = (α1, . . . , αm) and B = (β1, . . . , βn) of curves in M, where
the curves of B intersect those of A possibly very many times, as in Fig. 1(a).
We would like to “redraw” the curves of B in such a way that they intersect
those of A as little as possible.

We consider re-drawings only in a restricted sense, namely, induced by ∂-
automorphisms ofM, where a ∂-automorphism is an homeomorphism ϕ : M→
M that fixes the boundary ∂M pointwise. Thus, given the αi and the βj , we are
looking for a ∂-automorphism ϕ such that the number of intersections (crossings)
between α1, . . . , αm and ϕ(β1), . . . , ϕ(βn) is as small as possible (where sharing
endpoints does not count). We call this minimum number of crossings achievable
through any choice of ϕ the entanglement number of the two systems A and B.

In the orientable case, let fg,h(m,n) denote the maximum entanglement num-
ber of any two systems A = (α1, . . . , αm) and B = (β1, . . . , βn) of almost-disjoint
curves on an orientable surface of genus g with h holes. Analogously, we define
f̂g,h(m,n) as the maximum entanglement number of any two systems A and B
of m and n curves, respectively, on a nonorientable surface of genus g with h
holes. It is easy to see that f and f̂ are nondecreasing in m and n, which we will
often use in the sequel.

To give the reader some intuition about the problem, let us illustrate which re-
drawings are possible with a ∂-automorphism and which are not. In the example
of Fig. 1, it is clear that the two crossings of β3 with α3 can be avoided by
sliding β3 aside.1 It is perhaps less obvious that the crossings of β2 can also be

1 This corresponds to an isotopy of the surface that fixes the boundary pointwise.
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eliminated: To picture a suitable ∂-automorphism, one can think of an annular
region in the interior of M, shaded darkly in Fig. 1 (a), that surrounds the
left hole and β1 and contains most of the spiral formed by β2. Then we cut M
along the outer boundary of that annular region, twist the region two times (so
that the spiral is unwound), and then we glue the outer boundary back. Here is
an example of a single twist of an annulus; straight-line curves on the left are
transformed to spirals on the right .

On the other hand, it is impossible to eliminate the crossings of β1 or β3 with
α2 by a ∂-automorphism. For example, we cannot re-route β1 to go around the
right hole and thus avoid α2, since this re-drawing is not induced by any ∂-
automorphism ϕ: indeed, β1 separates the point x on the boundary of left hole
from the right hole, whereas α2 does not separate them; therefore, the curve
α2 has to intersect ϕ(β1) at least twice, once when it leaves the component
containing x and once when it returns to this component.

A rather special case of our problem, with m = n = 1 and only closed curves,
was already considered by Lickorish [Lic62], who showed that the intersection
of a pair of simple closed curves can be simplified via Dehn twists (and thus a
∂-automorphism) so that they meet at most twice (also see Stillwell [Sti80]). The
case with m = 1, n arbitrary, only closed curves, and M possibly nonorientable
was proposed in 2010 as a Mathoverflow question [Huy10] by T. Huynh. In
an answer A. Putman proposes an approach via the “change of coordinates
principle” (see, e.g., [FM11, Sec. 1.3]), which relies on the classification of 2-
dimensional surfaces—we will also use it at some points in our argument.

The results. A natural idea for bounding fg,h(m,n) and f̂g,h(m,n) is to pro-
ceed by induction, employing the change of coordinates principle mentioned
above. This does indeed lead to finite bounds, but the various induction schemes
we have tried always led to bounds at least exponential in one of m,n. Indepen-
dently of our work, Geelen, Huynh, and Richter [GHR13] also recently proved
bounds of this kind; see the discussion below. Partially influenced by the results
on exponentially many intersections in representations of string graphs and sim-
ilar objects (see [KM91,SSŠ03]), we first suspected that an exponential behavior
might be unavoidable. Then, however, we found, using a very different approach,
that polynomial bounds actually do hold.

For planar M, i.e., g = 0, we obtain an asymptotically tight bound:

Theorem 1. For planar M, we have f0,h(m,n) = O(mn), independent of h.
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Here and in the sequel, the constants implicit in the O-notation are absolute,
independent of g and h.

A simple example providing a lower bound of 2mn is obtained, e.g., by repli-
cating α2 in Fig. 1 m times and β1 n times.

In general, we obtain the following bounds:

Theorem 2. (i) For the orientable case, fg,h(m,n) = O((m+ n)4).

(ii) For the nonorientable case, f̂g,h(m,n) = O((m + n)4).

Both parts of Theorems 2 are derived from the planar case, Theorem 1. In
the orientable case, we use the following results on genus reduction. For a more
convenient notation, let us set L = max(m,n).

Proposition 1 (Orientable genus reductions).
(i) For g > L, we have fg,h(m,n) ≤ fL,g+h−L(m,n).
(ii) fg,h(m,n) ≤ f0,h+1(cg(m+ g), cg(n+ g)) for a suitable constant c > 0.

Theorem 2 (i), the orientable case, follows immediately from Proposition 1
and the planar bound.

In the nonorientable case, Theorem 2 (ii) is derived in two steps. First, anal-
ogous to Proposition 1 (i), we have the following reduction:

Proposition 2 (Nonorientable genus reduction). For g > 4L+2, we have

f̂g,h(m,n) ≤ f̂g′,h′(m,n),where g′ = 4L+2−(gmod 2) and h′ = h+�g/2�−2L−1.
The second step is a reduction to the orientable case.

Proposition 3 (Orientability reduction). There is a constant c such that

f̂g,h(m,n) ≤ f�(g−1)/2�,h+1+(gmod2)(c(g +m), c(g + n)).

Table 1 summarizes the proof of Theorem 2.

Motivation. We were led to the question concerning untangling curves on sur-
faces while working on a project on 3-manifolds and embeddings. Specifically, we
are interested in an algorithm for the following problem: given a 3-manifold M
with boundary, does M embed in the 3-sphere? A special case of this problem,
with the boundary of M a torus, was solved in [JS03]. The problem is moti-
vated, in turn, by the question of algorithmically testing the embeddability of a
2-dimensional simplicial complex in R3; see [MTW11].

In our current approach, which has not yet been completely worked out, we
need just a finite bound on fg,h(m,n). However, we consider the problem in-
vestigated in this paper interesting in itself and contributing to a better under-
standing of combinatorial properties of curves on surfaces.

As mentioned above, the question studied in the present paper has also been
investigated independently by Geelen, Huynh, and Richter [GHR13], with a
rather different and very strong motivation stemming from the theory of graph
minors, namely the question of obtaining explicit upper bounds for the graph
minor algorithms of Robertson and Seymour. Phrased in the language of the
present paper, Geelen et al. [GHR13, Theorem 2.1] show that fg,h(m,n) and

f̂g,h(m,n) are both bounded by n3m.
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Table 1. A summary of the proof

1. For a planar surface, temporarily remove the holes not incident to any αi or
βj , and contract the remaining “active” holes, augment the resulting planar
graphs to make them 3-connected. Make a simultaneous plane drawing of
the resulting planar graphs G1 and G2 with every edge of G1 intersecting
every edge of G2 at most O(1) times. Decontract the active holes and put the
remaining holes back into appropriate faces (Theorem 1; Section 2).

2. If the genus is larger than c(m+n), find handles or cross-caps avoided by the
αi and βj , temporarily remove them, untangle the αi and βj , and put the
handles or cross-caps back (Propositions 1 (i) and 2; the proofs are omitted
from this extended abstract).

3. If the surface is nonorientable, make it orientable by cutting along a suitable
curve that intersects the αi and βj at most O(m + n) times, untangle the
resulting pieces of the αi and βj , and glue back (Proposition 3).

4. Make the surface planar by cutting along a suitable system of curves (canon-
ical system of loops), untangle the resulting pieces of the αi and βj , and glue
back (Proposition 1 (ii)).

2 Planar Surfaces

In this section we prove Theorem 1. In the proof we use the following basic fact
(see, e.g., [MT01]).

Lemma 1. If G is a maximal planar simple graph (a triangulation), then for
every two planar drawings of G in S2 there is an automorphism ψ of S2 con-
verting one of the drawings into the other (and preserving the labeling of the
vertices and edges). Moreover, if an edge e is drawn by the same arc in both of
the drawings, w.l.o.g. we may assume that ψ fixes it pointwise.

Let us introduce the following piece of terminology. Let G be as in the lemma,
and let DG, D

′
G be two planar drawings of G. We say that DG, D

′
G are directly

equivalent if there is an orientation-preserving automorphism of S2 mapping DG

to D′
G, and we call DG, D

′
G mirror-equivalent if there is an orientation-reversing

automorphism of S2 converting DG into D′
G.

We will also rely on a result concerning simultaneous planar embeddings; see
[BKR12]. Let V be a vertex set and let G1 = (V,E1) and G2 = (V,E2) be two
planar graphs on V . A planar drawing DG1 of G1 and a planar drawing DG2 of
G2 are said to form a simultaneous embedding of G1 and G2 if each vertex v ∈ V
is represented by the same point in the plane in both DG1 and DG2 .

We note that G1 and G2 may have common edges, but they are not required
to be drawn in the same way inDG1 and inDG2 . If this requirement is added, one
speaks of a simultaneous embedding with fixed edges. There are pairs of planar
graphs known that do not admit any simultaneous embedding with fixed edges
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(and consequently, no simultaneous straight-line embedding). An important step
in our approach is very similar to the proof of the following result.

Theorem 3 (Erten and Kobourov [EK05]). Every two planar graphs G1 =
(V,E1) and G2 = (V,E2) admit a simultaneous embedding in which every edge
is drawn as a polygonal line with at most 3 bends.

We will need the following result, which follows easily from the proof given
in [EK05]. For the reader’s convenience, instead of just pointing out the necessary
modifications, we present a full proof.

Theorem 4. Every two planar graphs G1 = (V,E1) and G2 = (V,E2) admit a
simultaneous, piecewise linear embedding in which every two edges e1 of G1 and
e2 of G2 intersect at least once and at most C times, for a suitable constant C.2

In addition, if both G1 and G2 are maximal planar graphs, let us fix a planar
drawing D′

G1
of G1 and a planar drawing D′

G2
of G2. The planar drawing of G1

in the simultaneous embedding can be required to be either directly equivalent to
D′

G1
, or mirror-equivalent to it, and similarly for the drawing of G2 (each of the

four combinations can be prescribed).

Proof. For the beginning, we assume that both graphs are Hamiltonian. Later
on, we will drop this assumption.

Let v1, v2, . . . , vn be the order of the vertices as they appear on (some) Hamil-
tonian cycle H1 of G1. Since the vertex set V is common for G1 and G2, there
is a permutation π ∈ S(n) such that vπ(1), . . . , vπ(n) is the order of the vertices
as they appear on some Hamiltonian cycle H2 of G2.

We draw the vertex vi in the grid point pi = (i, π(i)), i = 1, 2, . . . , n. Let S
be the square [1, n]× [1, n]. A bispiked curve is an x-monotone polygonal curve
with two bends such that it starts inside S; the first bend is above S, the second
bend is below S and it finishes in S again.

The n − 1 edges vivi+1, of H1, i = 1, 2, . . . , n − 1, are drawn as bispiked
curves starting in pi and finishing in pi+1. In order to distinguish edges and
their drawings, we denote these bispiked curves by c(i, i+ 1).

Similarly, we draw the edges vπ(i)vπ(i+1) of H2, i = 1, 2, . . . , n − 1, as y-
monotone analogs of bispiked curves, where the first bend is on the left of S and
the second is on the right of S; here is an example:

v1

v2

v3v4

v5

v1

v2

v3

v4

v5

H1 H2

2 An obvious bound from the proof is C ≤ 36, since every edge in this embedding
is drawn using at most 5 bends. By a more careful inspection, one can easily get
C ≤ 25, and a further improvement is probably possible.
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We continue only with description of how to drawG1; G2 is drawn analogously
with the grid rotated by 90 degrees.

Let D′
G1

be a planar drawing of G1. Every edge from E1 that is not contained
in H1 is drawn either inside D′

H1
or outside. Thus, we split E1 \E(H1) into two

sets E′
1 and E′′

1 .
Let P0 be the polygonal path obtained by concatenation of the curves c(1, 2),

c(2, 3), . . . , c(n − 1, n). Now our task is to draw the edges of E′
1 ∪ {v1vn} as

bispiked curves, all above P0, and then the edges of E′′
1 below P0.

We start with E′
1 and we draw edges from it one by one, in a suitably chosen

order, while keeping the following properties.

(P1) Every edge vivj , where i < j, is drawn as a bispiked curve c(i, j) starting
in pi and ending in pj.

(P2) The x-coordinate of the second bend of c(i, j) belongs to the interval [j −
1, j].

(P3) The polygonal curve Pk that we see from above after drawing the kth edge
is obtained as a concatenation of some curves c(1, i1), c(i1, i2), . . . , c(i�, n).

Here is an illustration; the square S is deformed for the purposes of the drawing:

S
Pk−1

c(i, j)

pi
pj

pαs

b∗

Initially, before drawing the first edge, the properties are obviously satisfied.
Let us assume that we have already drawn k− 1 edges of E′

1, and let us focus
on drawing the kth edge. Let e = vivj ∈ E′

1 be an edge that is not yet drawn
and such that all edges below e are already drawn, where “below e” means all
edges vi′vj′ ∈ E′

1 with i ≤ i′ < j′ ≤ j, (i, j) �= (i′, j′). (This choice ensures that
we will draw all edges of E′

1.)
Since D′

G1
is a planar drawing, we know that there is no edge vi′vj′ ∈ E′

1 with
i < i′ < j < j′ or i′ < i < j′ < j, and so the points pi and pj have to belong to
Pk−1. The subpath P ′ of Pk−1 between pi and pj is the concatenation of curves
c(i, α1), c(α1, α2), . . . , c(αs, j) as in the inductive assumptions. In particular, the
x-coordinate of the second bend b∗ of c(αs, j) belongs to the interval [j − 1, j].
We draw c(i, j) as follows: The second bend of c(i, j) is slightly above b∗ but
still below the square S. The first bend of S is sufficiently high above S (with
the x-coordinate somewhere between i and j − 1) so that the resulting bispiked
curve c(i, j) does not intersect Pk−1. The properties (P1) and (P2) are obviously
satisfied by the construction. For (P3), the path Pk is obtained from Pk−1 by
replacing P ′ with c(i, j).

After drawing the edges of E′
1, we draw v1vn in the same way. Then we draw

the edges of E′′
1 in a similar manner as those of E′

1, this time as bispiked curves
below P0. This finishes the construction for Hamiltonian graphs.
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Now we describe how to adjust this construction for non-Hamiltonian graphs,
in the spirit of [EK05].

First we add edges to G1 and G2 so that they become planar triangulations.
This step does not affect the construction at all, except that we remove these
edges in the final drawing.

Next, we subdivide some of the edges of Gi with dummy vertices. Moreover, we
attach two new extra edges to each dummy vertex, as in the following illustration:

By choosing the subdivided edges suitably, one can obtain a 4-connected, and
thus Hamiltonian, graph; see [EK05, Proof of Theorem 2] for details (this idea
previously comes from [KW02]). An important property of this construction is
that each edge of Gi is subdivided at most once.

In this way, we obtain new Hamiltonian graphs G′
1 and G′

2, for which we want
to construct a simultaneous drawing as in the first part of the proof. A little catch
is that G′

1 and G′
2 do not have same vertex sets, but this is easy to fix. Let di be

the number of dummy vertices of G′
i, i = 1, 2, and say that d1 ≥ d2. We pair

the d2 dummy vertices of G′
2 with some of the dummy vertices of G′

1. Then we
iteratively add d1 − d2 new triangles to G′

2, attaching each of them to an edge of
a Hamiltonian cycle. This operation keeps Hamiltonicity and introduces d1 − d2
new vertices, which can be matched with the remaining d1 − d2 dummy vertices
in G′

1.
After drawing resulting graphs, we remove all extra dummy vertices and extra

edges added while introducing dummy vertices. An original edge e that was
subdivided by a dummy vertex is now drawn as a concatenation of two bispiked
curves. Therefore, each edge is drawn with at most 5 bends.

Two edges with 5 bends each may in general have at most 36 intersections,
but in our case, there can be at most 25 intersections, since the union of the two
segments before and after a dummy vertex is both x-monotone and y-monotone.

Because of the bispiked drawing of all edges, it is also clear that every edge
of G1 crosses every edge of G2 at least once.

Finally, the requirements on directly equivalent or mirror-equivalent drawings
can easily be fulfilled by interchanging the role of top and bottom in the drawing
of G1 or left and right in the drawing of G2. Theorem 4 is proved. ��

Proof of Theorem 1. Let a planar surfaceM and the curves α1, . . . , αm, β1, . . . , βn

be given; we assume thatM is a subset of S2. From this we construct a set V of
O(m+n) vertices in S2 and planar drawings DG1 and DG2 of two simple graphs
G1 = (V,E1) and G2 = (V,E2) in S2, as follows.

1. We put all endpoints of the αi and of the βj into V .
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2. We choose a new vertex in the interior of each αi and each βj , or two distinct
vertices if αi or βj is a loop with a single endpoint, or three vertices of αi

or βj is a closed curve, and we add all of these vertices to V . These new
vertices are all distinct and do not lie on any curves other than where they
were placed.

3. If the boundary of a hole in M already contains a vertex introduced so far,
we add more vertices so that it contains at least 3 vertices of V . This finishes
the construction of V .

4. To define the edge set E1 = E(G1) and the planar drawing DG1 , we take
the portions of the curves α1, . . . , αm between consecutive vertices of V as
edges of E1. Similarly, we make the arcs of the boundaries of the holes into
edges in E1; these will be called the hole edges. By the choice of the vertex
set V above, this yields a simple plane graph.

5. Then we add new edges to E1 so that we obtain a drawing DG1 in S2 of a
maximal planar simple graph G1 (i.e., a triangulation) on the vertex set V .
While choosing these edges, we make sure that all holes containing no vertices
of G lie in faces of DG1 adjacent to some of the αi. New edges drawn in the
interior of a hole are also called hole edges.

6. We constructG2 = (V,E2) andDG2 analogously, using the curves β1, . . . , βm.
We make sure that all hole edges are common to G1 and G2.

After this construction, each hole of M contains either no vertex of V on its
boundary or at least three vertices. In the former case, we speak of an inner
hole, and in the latter case, of a subdivided hole. A face f of DG1 or DG2 is a
non-hole face if it is not contained in a subdivided hole. An inner hole H has its
signature, which is a pair (f1, f2), where f1 is the unique non-hole face of DG1

containing H , and f2 is the unique non-hole face of DG2 containing H .3 By the
construction, each f1 appearing in a signature is adjacent to some αi, and each
f2 is adjacent to some βj .

In the following claim, we will consider different drawings D′
G1

and D′
G2

for
G1 and G2. By Lemma 1, the faces of DG1 are in one-to-one correspondence
with the faces of D′

G1
. For a face f1 of DG1 , we denote the corresponding face

by f ′
1, and similarly for a face f2 of DG2 and f ′

2.

Claim 5. The graphs G1 and G2 as above have planar drawings D′
G1

and D′
G2

,
respectively, that form a simultaneous embedding in which each edge of G1 crosses
each edge of G2 at most C times, for a suitable constant C; moreover, D′

G1
is

directly equivalent to DG1 ; D
′
G2

is directly equivalent to DG2 ; all hole edges are
drawn in the same way in D′

G1
and D′

G2
; and whenever (f1, f2) is a signature

of an inner hole, the interior of the intersection f ′
1 ∩ f ′

2 is nonempty.

We postpone the proof of Claim 5, and we first finish the proof of Theorem 1
assuming this claim.

3 Classifying inner holes according to the signature helps us to obtain a bound inde-
pendent on the number of holes. Inner holes with same signature are all treated in
the same way, independent of their number.
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For each inner hole H with signature (f1, f2), we introduce a closed disk BH in
the interior of f ′

1∩f ′
2. We require that these disks are pairwise disjoint. In sequel,

we consider holes as subsets of S2 homeomorphic to closed disks (in particular,
a hole H intersects M in ∂H).

Claim 6. There is an orientation-preserving automorphism ϕ1 of S2 transform-
ing every inner hole H to BH and DG1 to D′

G1
.

Proof. Using Lemma 1 again, there is an orientation-preserving automorphism
ψ1 transforming DG1 into D′

G1
(since DG1 and D′

G1
are directly equivalent).

Let f1 be a face of DG1 . The interior of f ′
1 contains images ψ1(H) of all

holes H with signature (f1, ·), and it also contains the disks BH for these holes.
Therefore, there is a boundary- and orientation-preserving automorphism of f ′

1

that maps each ψ1(H) to BH .
By composing these automorphisms on every f ′

1 separately, we have an
orientation-preserving automorphism ψ2 fixingD

′
G1

and transforming each ψ1(H)
to BH . The required automorphism is ϕ1 = ψ2ψ1. ��

Claim 7. There is an orientation-preserving automorphism ϕ2 of S2 that fixes
hole edges (of subdivided holes), fixes BH for every inner hole H, and transforms
ϕ1(DG2) to D′

G2
.

Proof. By Lemma 1 there is an orientation-preserving automorphism ψ3 of S2

that fixes hole edges and transforms ϕ1(DG2) to D′
G2

.
If an inner hole H has a signature (·, f2), then both ψ3(BH) and BH belong

to the interior of f ′
2. Therefore, as in the proof of the previous claim, there

is an orientation-preserving homeomorphism ψ4 that fixes D′
G2

and transforms
ψ3(BH) to BH . We can even require that ψ4ψ3 is identical on BH . We set
ϕ2 := ψ4ψ3. ��

To finish the proof of Theorem 1, we set ϕ = ϕ−1
1 ϕ2ϕ1. We need that ϕ fixes

the holes (inner or subdivided) and that α1, . . . , αm and ϕ(β1), . . . , ϕ1(βm) have
O(mn) intersections. It is routine to check all the properties:

If H is a hole (inner or subdivided), then ϕ2 fixes ∂ϕ1(H). Therefore, ϕ also
restricts to a ∂-automorphism of M.

The collections of curves α1, . . . , αm and ϕ(β1), . . . , (βm) have same inter-
section properties as the collections ϕ1(α1), . . . , ϕ1(αm) and ϕ2(ϕ1(β1)), . . . ,
ϕ2(ϕ1(βm)). Since each αi and each βj was subdivided at most three times in
the construction, by Claims 5, 6, and 7, these collections have at most O(mn)
intersections. The proof of the theorem is finished, except for Claim 5.

Proof of Claim 5. Given G1 and G2, we form auxiliary planar graphs G̃1 and G̃2

on a vertex set Ṽ by contracting all hole edges and removing the resulting loops
and multiple edges. We note that a loop cannot arise from an edge that was a
part of some αi or βj .

Then we consider planar drawings DG̃1
and DG̃2

forming a simultaneous em-

bedding as in Theorem 4, with each edge of G̃1 crossing each edge of G̃2 at least
once and most a constant number of times.
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Let vH ∈ Ṽ be the vertex obtained by contracting the hole edges on the
boundary of a hole H . Since the drawings DG̃1

and DG̃2
are piecewise linear, in

a sufficiently small neighborhood of vH the edges are drawn as radial segments.
We would like to replace vH by a small circle and thus turn the drawings DG̃1

,
DG̃2

into the required drawings D′
G1

, D′
G2

. But a potential problem is that the
edges in DG̃1

, DG̃2
may enter vH in a wrong cyclic order.

We claim that the edges in DG̃1
entering vH have the same cyclic ordering

around vH as the corresponding edges around the hole H in the drawing DG1 .
Indeed, by contracting the hole edges in the drawing DG1 , we obtain a planar
drawing D∗

G̃1
of G̃1 in which the cyclic order around vH is the same as the cyclic

order around H in DG1 Since G̃1 was obtained by edge contractions from a
maximal planar graph, it is maximal as well (since an edge contraction cannot
create a non-triangular face), and its drawing is unique up to an automorphism
of S2 (Lemma 1). Hence the cyclic ordering of edges around vH in DG̃1

and in
D∗

G̃1
is either the same (if DG̃1

and D∗
G̃1

are directly equivalent), or reverse (if

DG̃1
and D∗

G̃1
are mirror-equivalent). However, Theorem 4 allows us to choose

the drawing DG̃1
so that it is directly equivalent to D∗

G̃1
, and then the cyclic

orderings coincide. A similar consideration applies for the other graph G2.
The edges of DG̃1

may still be placed to wrong positions among the edges
in DG̃2

, but this can be rectified at the price of at most one extra crossing for
every pair of edges entering vH , as the following picture indicates (the numbering
specifies the cyclic order of the edges around H in DG1 ∪DG2):

vH

1 2

3

4

5

6

7 8

9

1 2

3

4

5

6

7 8

9

It remains to draw the edges of G1 and G2 that became loops or multiple edges
after the contraction of the hole edges. Loops can be drawn along the circumfer-
ence of the hole, and multiple edges are drawn very close to the corresponding
single edge.

In this way, every edge of G1 still has at most a constant number of inter-
sections with every edge of G2, and every two such edges intersect at least once
unless at least one of them became a loop after the contraction. Consequently,
whenever (f1, f2) is a signature of an inner hole, the corresponding faces f ′

1 and
f ′
2 intersect. This finishes the proof. ��
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Drawing Permutations with Few Corners
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Abstract. A permutation may be represented by a collection of paths in the
plane. We consider a natural class of such representations, which we call tan-
gles, in which the paths consist of straight segments at 45 degree angles, and the
permutation is decomposed into nearest-neighbour transpositions. We address the
problem of minimizing the number of crossings together with the number of cor-
ners of the paths, focusing on classes of permutations in which both can be mini-
mized simultaneously. We give algorithms for computing such tangles for several
classes of permutations.

1 Introduction

What is a good way to visualize a permutation? In this paper we study drawings in
which a permutation of interest is connected to the identity permutation via a sequence
of intermediate permutations, with consecutive elements of the sequence differing by
one or more non-overlapping nearest-neighbour swaps. The position of each permuta-
tion element through the sequence may then traced by a piecewise-linear path compris-
ing segments that are vertical and 45◦ to the vertical. Our goal is to keep these paths as
simple as possible and to avoid unnecessary crossings.

Such drawings have applications in various fields; for example, in channel routing
for integrated circuit design [12]. Another application is the visualization of metro maps
and transportation networks, where some lines (railway tracks or roads) might partially
overlap [4]. A natural goal is to draw the lines along their common subpaths so that
an individual line is easy to follow; minimizing the number of bends of a line and
avoiding unnecessary crossings between lines are natural criteria for map readability;
see Fig. 3(b) of [3]. Much recent research in the graph drawing community is devoted to
edge bundling. In this setting, drawing the edges of a bundle with the minimum number
of crossings and bends occurs as a subproblem [10].

Let Sn be the symmetric group of permutations π = [π(1), . . . , π(n)] on {1, . . . , n}.
The identity permutation is [1, . . . , n], and the swap σ(i) transforms a permutation π
into π · σ(i) by exchanging its ith and (i + 1)th elements. Equivalently, σ(i) is the
transposition (i, i + 1) ∈ Sn, and · denotes composition. Two permutations a and b of
Sn are adjacent if b can be obtained from a by swaps σ(p1), σ(p2), . . . , σ(pk) that are
not overlapping, that is, such that |pi − pj | ≥ 2 for i �= j. A tangle is a finite sequence
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(a) (b) (c)

Fig. 1. (a) A tangle solving the permutation [3, 6, 1, 4, 7, 2, 5]. (b) A drawing of the tangle. (c) An
example of a perfect tangle drawing.

of permutations in which each two consecutive permutations are adjacent. An example
of a tangle is given in Fig. 1. The associated drawing is composed of polylines with
vertices in Z2, whose segments can be vertical, or have slopes of ±45◦ to the vertical.
The polyline traced by element i ∈ {1, . . . , n} is called path i. Note that by definition
all path crossings occur at right angles. We say that a tangle T solves the permutation
π (or simply T is a tangle for π) if the tangle starts from π and ends at the identity
permutation.

We are interested in tangles with informative and aesthetically pleasing drawings.
Our main criterion is to keep the paths straight by using only a few turns. A corner
of path i is a point at which it changes its direction from one of the allowed directions
(vertical, +45◦, or −45◦) to another. A change between +45◦ and −45◦ is called a
double corner. We are interested in the total number of corners of a tangle, where
corners are always counted with multiplicity (so a double corner contributes 2 to the
total). By convention we require that paths start and end with vertical segments. In terms
of the sequence of permutations this means repeating the first and the last permutations
at least once each as in Fig. 1(a).

Another natural objective is to minimize path crossings. We call a tangle for π simple
if it has the minimum number of crossings among all tangles for π. This is equivalent to
the condition that no pair of paths cross each other more than once, and this minimum
number equals the inversion number of π. A simple tangle has no double corner since
that would entail an immediate double crossing of a pair of paths.

In general, minimizing corners and minimizing crossings are conflicting goals. For
example, let n = 4k and k ≥ 4 and consider the permutation

π = [2k, 3, 2, 5, 4, . . . , 2k−1, 2k−2, 1, 4k, 2k+3, 2k+2, . . . , 4k−1, 4k−2, 2k+1].

It is not difficult to check that the minimum number of corners in a tangle for π is 4n−8,
while the minimum among simple tangles is 5n−20, which is strictly greater; see Fig. 2
for the case k = 4. Our focus in this article is on two special classes of permutations
for which corners and crossings can be minimized simultaneously. The first is relatively
straightforward, while the second turns out to be much more subtle.

One may ask the following interesting question. Is there an efficient algorithm for find-
ing a (simple) tangle with the minimum number of corners solving a given permutation?
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(a) (b)

Fig. 2. (a) A tangle with 56 corners. (b) Every simple tangle for the same permutation has at least
60 corners.

We do not know whether there is a polynomial-time algorithm, either with or without the
requirement of simplicity. Here we present polynomial-time exact algorithms for special
classes of permutations.

Even the task of determining whether a given tangle has the minimum possible num-
ber of corners among tangles for its permutation does not appear to be straightforward
in general (and likewise if we restrict to simple tangles). However, in certain cases, such
minimality is indeed evident, and we focus on two such cases. Firstly, we call a tangle
direct if each of its paths has at most 2 corners (equivalently, at most one non-vertical
segment). Note that a direct tangle is simple. Furthermore, it clearly has the minimum
number of corners among all tangles (simple or otherwise) for its permutation.

We can completely characterize permutations admitting direct tangles. We say that
a permutation π ∈ Sn contains a pattern μ ∈ Sk if there are integers 1 ≤ i1 < i2 <
· · · < ik ≤ n such that for all 1 ≤ r < s ≤ k we have π(ir) < π(is) if and only if
μ(r) < μ(s); otherwise, π avoids the pattern (or π is μ-avoiding).

Theorem 1. A permutation has a direct tangle if and only if it is 321-avoiding.

Our proof yields a straightforward algorithm that constructs a direct tangle for a given
321-avoiding permutation.

Our second special class of tangles naturally extends the notion of a direct tangle, but
turns out to have a much richer theory. A segment is a straight line segment of a path
between two of its corners; it is an L-segment if it is oriented from north-east to south-
west, and an R-segment if it is oriented from north-west to south-east. We call a tangle
perfect if it is simple and each of its paths has at most one L-segment and at most one
R-segment. Any perfect tangle has the minimum possible number of corners among all
tangles solving its permutation, and indeed it has the minimum possible corners on path
i for each i = 1, . . . , n. To see this, note that if i has an L-segment in a perfect tangle
for π then there must be an element j > i with π(i) > π(j), whose path crosses this L-
segment. Hence, an L-segment must be present in any tangle for π. The same argument
applies to R-segments. We call a permutation perfect if it has a perfect tangle.
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Theorem 2. There exists a polynomial-time algorithm that determines whether a given
permutation is perfect and, if so, outputs a perfect tangle.

A straightforward implementation of our algorithm takes O(n5) time, but we believe
this can be reduced to O(n3), and possibly further. Our proof of Theorem 2 involves
an explicit characterization of perfect permutations, but it is considerably more compli-
cated than in the case of direct tangles. We introduce the notion of a marking, which is
an assignment of symbols to the elements 1, . . . , n indicating the directions in which
their paths should be routed. We prove that a permutation is perfect if and only if it
admits a marking satisfying a balance condition that equates numbers of elements in
various categories. Finally, we show that the existence of such a marking can be de-
cided by finding a maximum vertex-weighted matching in a certain graph with vertex
set 1, . . . , n constructed from the permutation.

The number of perfect permutations in Sn grows only exponentially with n (see Sec-
tion 4), and is therefore o(|Sn|). Nonetheless, perfect permutations are very common
for small n: all permutations in S6 are perfect, as are all but 16 in S7, and over half in
S13.

Related Work. We are not aware of any other study on the number of corners in a
tangle. To the best of our knowledge, the problem formulated here is new. Wang in [12]
considered the same model of drawings in the field of VLSI design. However, [12]
targets, in our terminology, the tangle height and the total length of the tangle paths.
The heuristic suggested by Wang produces paths with many unnecessary corners.

The perfect tangle problem is related to the problem of drawing graphs in which
every edge is represented by a polyline with few bends. In our setting, all the crossings
occur at right angles, as in so-called RAC-drawings [6].

Decomposition of permutations into nearest-neighbour transpositions was consid-
ered in the context of permuting machines and pattern-restricted classes of permuta-
tions [1]. In our terminology, Albert et. al. [1] proved that it is possible to check in
polynomial time whether for a given permutation there exists a tangle of length k (that
is, consisting of k permutations), for a given k. Tangle diagrams appear in the draw-
ings of sorting networks [8,2]. We also mention an interesting connection with change
ringing (English-style church bell ringing), where similar visualizations are used [13].

2 Preliminaries

We always draw tangles oriented downwards with the sequence of permutations read
from top to bottom as in Fig. 1(b). The following notation will be convenient. We write
π = [. . . a . . . b . . . c . . . ] to mean that π−1(a) < π−1(b) < π−1(c), and π = [. . . ab . . . ]
to mean that π−1(a) + 1 = π−1(b). A pair of elements (a, b) is an inversion in a
permutation π ∈ Sn if a > b and π = [. . . a . . . b . . . ]. The inversion number inv(π) ∈
[0,

(
n
2

)
] is the number of inversions of π. The following useful lemma is straightforward

to prove.

Lemma 1. In a simple tangle for permutation π, a pair (i, j) is an inversion in π if and
only if some R-segment of path i intersects some L-segment of path j.
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3 Direct Tangles

Here we prove Theorem 1. We need two properties of 321-avoiding permutations.

Lemma 2. Suppose π, π′ are permutations with inv(π′) = inv(π)−1 and π′ = π ·σ(i)
for some swap σ(i). If π is 321-avoiding then so is π′.

Proof. Let us suppose that elements i, j, k form a 321-pattern in π′. Then (i, j) and
(j, k) are inversions in π′. Inversions of π′ are inversions of π, hence, elements i, j, k
form a 321-pattern in π. ��

Lemma 3. In a simple tangle solving a 321-avoiding permutation, no path has both an
L-segment and an R-segment.

Proof. Consider a simple tangle solving a 321-avoiding permutation π. Suppose path
j crosses path i during j’s R-segment and crosses path k during j’s L-segment. By
Lemma 1 we have π = [. . . k . . . j . . . i . . . ] while i < j < k, giving a 321-pattern,
which is a contradiction. ��

We say that a permutation π ∈ Sn has a split at location k if π(1), . . . , π(k) ∈
{1, . . . , k}, or equivalently if π(k + 1), . . . , π(n) ∈ {k + 1, . . . , n}.
Theorem 1. A permutation has a direct tangle if and only if it is 321-avoiding.

Proof. To prove the “only if” part, suppose that tangle T solves a permutation π con-
taining a 321-pattern. Then there are i < j < k with π = [. . . k . . . j . . . i . . . ]. Hence
by Lemma 1, j has an L-segment and an R-segment, so T is not direct.

We prove the “if” part by induction on the inversion number of the permutation. If
inv(π) = 0 then π is the identity permutation, which clearly has a direct tangle. This
gives us the basis of induction.

Now suppose that π is 321-avoiding and not the identity permutation, and that every
321-avoiding permutation (of every size) with inversion number less than inv(π) has
a direct tangle. There exists s such that π(s) > π(s + 1); fix one such. Note that
(π(s), π(s+1)) is an inversion of π; hence, the permutation π′ := π·σ(s) has inv(π′) =
inv(π) − 1, and is also 321-avoiding by Lemma 2. By the induction hypothesis, let T ′

be a direct tangle solving π′.
Perform a swap x in position s exchanging elements π(s) and π(s+ 1), and draw it

as a cross on the plane with coordinates (s, h), where h ∈ Z is the height (y-coordinate)
of the cross (chosen arbitrarily). We assume that the position axis increases from left to
right and the height axis increases from bottom to top. Then draw the tangle T ′ below
the cross. This gives a tangle solving π, which is certainly simple. We show that the
heights of swaps may be adjusted to make the new tangle direct. To achieve this, the
L-segment and R-segment comprising the swap x must either extend existing segments
in T ′, or must connect to vertical paths having no corners in T ′. Consider two cases.

Case 1: Suppose that π′ has a split at s. Then T ′ consists of a tangle T1 for the per-
mutation [π′(1), . . . , π′(s)] together with another tangle T2 for [π′(s + 1), . . . , π′(n)];
see Fig. 3. Starting with T1 drawn below x, simultaneously shift all the swaps of T1

upward until one of them touches x; in other words, until T1’s first swap in position
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1 2 3 4 5 6 7 8 9

2 1 4 6 3 9 5 78

(a)
1 2 3 4 5 6 7 8 9

2 1 4 6 3 9 5 78

(b)

Fig. 3. Shifting two sub-tangles (T1 is red, T2 is blue) upward to touch the initial swap x (green)
in position s = 4.

(a) (b) (c) (d) (e)

Fig. 4. (a) The tangle T ′ (blue) touches the swap x (green) on both sides. (b)–(e) Various impos-
sible configurations for the proof.

s − 1 occurs at height h − 1. Or, if T1 has no swap in position s − 1, no shifting is
necessary. Similarly shift T2 upward until it touches x from the right side. This results
in a direct tangle.

Case 2: Suppose that π′ has no split at s. Let T ′ be any direct tangle for π′, and again
shift it upward until it touches x, resulting in a tangle T for π. Write hj for the height
of the topmost swap in position j in T ′, or let hj = −∞ if there is none. We claim that
hs−1 = hs+1 = hs + 1 > −∞, which implies in particular that 1 < s < s + 1 < n.
Thus T ′ has swaps in the positions immediately left and right of x, both of which
touch x simultaneously in the shifting procedure as in Fig. 4(a), giving that T is direct
as required. To prove the claim, first note that hs > −∞ since π′ has no split at s.
Therefore max{hs−1, hs+1} > hs, otherwise T would not be simple, as in Fig. 4(b).
Thus, without loss of generality suppose that hs−1 > hs and hs−1 ≥ hs+1. Then
hs = hs−1−1, otherwise some path would have more than 2 corners in T ′, specifically,
the path of the element that is in position s after hs−1; see Fig. 4(c) or (d). Now suppose
for a contradiction that hs+1 < hs−1, which includes the possibility that hs+1 = −∞,
perhaps because s + 1 = n. Then in the new tangle T , path π(s) contains both an L-
segment and an R-segment as in Fig. 4(e), which contradicts Lemma 3. ��
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The proof of Theorem 1 yields an algorithm that returns a direct tangle for π ∈ Sn

if one exists, and otherwise stops. The algorithm can be implemented so as to run in
O(n2) time. With a suitable choice of output format, this can be improved to O(n).

4 Perfect Tangles

In this section we give our characterization of perfect permutations. Given a permu-
tation π ∈ Sn, we introduce the following classification scheme of elements i ∈
{1, . . . , n}. The scheme reflects the possible forms of paths in a perfect tangle, although
the definitions themselves are purely in terms of the permutation. We call i a right el-
ement if it appears in some inversion of the form (i, j), and a left element if it appears
in some inversion (j, i). We call i left-straight if it is left but not right, right-straight
if it is right but not left, and a switchback if it is both left and right.

In order to build a perfect tangle we use a notion of marking. A marking M is
a function from the set {1, . . . , n} to strings of letters L and R. For any tangle T ,
we associate a corresponding marking M as follows. We trace the path i from top to
bottom; as we meet an L-segment (resp. R-segment), we append an L (resp. R) to M(i).
Vertical segments are ignored for this purpose; hence, a vertical path with no corners is
marked by an empty sequence ∅. For example, M(3) = R and M(13) = LR in Fig.
1(c). A marking corresponding to a perfect tangle takes only values ∅, L, R, LR, and
RL. We write M(i) = R . . . to indicate that the string M(i) starts with R.

Given a permutation π and a marking M , there does not necessarily exist a corre-
sponding tangle. However, we will obtain a necessary and sufficient condition on π
and M for the existence of a corresponding perfect tangle. Our strategy for proving
Theorem 2 will be to find a marking satisfying this condition, and then to find a cor-
responding perfect tangle. We say that a marking M is a marking for a permutation
π ∈ Sn if (i) M(i) = L (respectively M(i) = R) for all left-straight (right-straight)
elements i, (ii) M(i) ∈ {LR,RL} for all switchbacks, and (iii) M(i) = ∅ otherwise.

To state the necessary and sufficient condition mentioned above, we need some defi-
nitions. A quadruple (a, b, c, d) is a rec in permutationπ if π = [. . . a . . . b . . . c . . . d . . . ]
and min{a, b} > max{c, d}. In a perfect tangle, the paths comprising a rec form a rect-
angle; see Fig. 5 (“rec” is an abbreviation for rectangle). Let M be a marking for π ∈
Sn, and let ρ be a rec (a, b, c, d) in π. We call e a left switchback of ρ if (i) M(e) = RL,
(ii) π = [. . . a . . . e . . . b . . . ], and (iii) c < e < d or d < e < c. Symmetrically, we call
e a right switchback of ρ if M(e) = LR, and π = [. . . c . . . e . . . d . . . ], and a < e < b
or b < e < a. A rec (a, b, c, d) is regular if a < b and c < d, otherwise it is irregular.
A rec is called balanced under M if the number of its left switchbacks is equal to the
number of its right switchbacks; a rec is empty if it has no switchbacks.

Here is our key definition. A marking M for a permutation π is called balanced if
every regular rec of π is balanced and every irregular rec is empty under M .

Theorem 3. A permutation is perfect if and only if it admits a balanced marking.

The proof of Theorem 3 is technical, see full version for the complete proof [5].
Any permutation containing the pattern [7324651] (for example) is not perfect since

4must be a switchback of one of the irregular recs (7321) and (7651). It follows by [9,7]
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12 3 45 679 8 1011 12 1314

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 5. A permutation with a balanced marking. Some of the recs of the permutation are: ρ1 =
(5, 11, 1, 4), ρ2 = (9, 7, 4, 6), ρ3 = (11, 14, 6, 10); ρ1 and ρ3 are regular, while ρ2 is irregular.
Left switchbacks of rec ρ3 are 8 and 9, right switchbacks are 12 and 13. The empty irregular rec
ρ2 has neither left nor right switchbacks.

that the number of perfect permutations in Sn is at most Cn for some constant C > 1.
Since direct tangles are perfect, it also follows from Theorem 1 that the number is at
least cn for some constant c > 1.

We note that Theorem 3 already yields an algorithm for determining whether a per-
mutation is perfect in Õ(2n) time1 by checking all markings. In Section 5 we improve
this to polynomial time.

5 Recognizing Perfect Permutations

We provide an algorithm for recognizing perfect permutations. The algorithm finds a
balanced marking for a permutation, or reports that such a marking does not exist. We
start with a useful lemma.

Lemma 4. Fix a permutation. For each right (resp., left) element a there is a left-
straight (right-straight) b such that the pair (a, b) (resp., (b, a)) is an inversion.

Proof. We prove the case when a is right, the other case being symmetrical. Consider
the minimal b such that (a, b) is an inversion. By definition, b is left. Suppose that it is
also a right element, that is, (b, c) is an inversion for some c < b. It is easy to see that
(a, c) is an inversion too, which contradicts to the minimality of b. ��

Recall that a marking is balanced only if (in particular) every regular rec of the per-
mutation is balanced under the marking. We show that this is guaranteed even by bal-
ancing of recs of a restricted kind. We call a rec (a, b, c, d) of a permutation π straight if
a, b, c, and d are straight elements of π. A marking is called s-balanced if every straight
rec is balanced and every irregular rec is empty under the marking.

Lemma 5. Let M be a marking of a permutation π. Then M is balanced if and only if
it is s-balanced.

1 Õ hides a polynomial factor.
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Proof. The “if” direction is immediate, so we turn to the converse. Let M be an s-
balanced marking and ρ = (a, b, c, d) be a regular rec of π. We need to prove that ρ is
balanced under M . If ρ is straight then ρ is balanced by definition. Let us suppose that ρ
is not straight. Then some u ∈ {a, b, c, d} is not a straight element. Our goal is to show
that it is possible to find a new rec ρ′ in which u is replaced with a straight element so
that the sets of left and right switchbacks of ρ and ρ′ coincide. By symmetry, we need
only consider the cases u = a and u = b.

Case u = a: Let us suppose that a is not straight. By Lemma 4, there exists a right
straight e such that (e, a) is an inversion. Let us denote ρ′ = (e, b, c, d) and show
that ρ′ has the same switchbacks as ρ. Let k be a left switchback of ρ; then M(k) =
RL, and π = [. . . e . . . a . . . k . . . b . . . ], and c < k < d. By definition k is a left
switchback of ρ′. Let k be a left switchback of ρ′. If π = [. . . e . . . k . . . a . . . b . . . ]
then the irregular rec (e, a, c, d) has a left switchback, which is impossible. Therefore,
π = [. . . e . . . a . . . k . . . b . . . ] and k is a left-switchback of ρ.

Let us suppose that k is a right switchback of ρ, so a < k < b. If k < e then
k is a right switchback of the irregular (e, a, c, d); hence, e < k < b and k is a right
switchback of ρ′. On the other hand, if k is a right switchback of ρ′ then a < e < k < b,
which means that k is a right switchback of ρ.

Case u = b: Let us suppose that b is not straight. By Lemma 4, there exists a right
straight e such that (e, b) is an inversion. Let us denote ρ′ = (a, e, c, d) and show
that ρ′ has the same switchbacks as ρ. Let k be a left switchback of ρ. We have π =
[. . . a . . . k . . . b . . . ]. Since k is not a left switchback of the irregular rec (e, b, c, d), we
have π = [. . . a . . . k . . . e . . . ]. Therefore, k is a left switchback of ρ′.

Let k be a right switchback of ρ. Then a < k < b < e, proving that k is a right
switchback of ρ′. Let k be a right switchback of ρ′. If b < k then k is a right switchback
of (e, b, c, d), which is impossible. Then k < b and k is a right switchback of ρ. ��

We can restrict the set of recs guaranteeing the balancing of a permutation even
further. We call a pair a, b of elements right (resp. left) minimal if a and b are right
(left) straight elements of π, and a < b, and there is no right (left) straight element c
such that π = [. . . a . . . c . . . b . . . ]. We call rec ρ = (a, b, c, d) minimal in π if a, b is a
right minimal pair and c, d is a left minimal pair; see Fig. 6(a). We call a marking for a
permutation ms-balanced if every minimal regular rec is balanced and every irregular
rec is empty under the marking.

Lemma 6. Let M be a marking of a permutation π. Then M is s-balanced if and only
if it is ms-balanced.

Before giving the proof, we introduce some further notation. Let ρ = (a, b, c, d)
be an arbitrary, possibly irregular, rec in π. Let us denote by ρ� (resp. ρr) the set of
switchbacks i that can under some marking be left (resp., right) switchbacks of ρ. For-
mally, i ∈ ρ� if and only if π = [. . . a . . . i . . . b . . . c . . . d . . . ] and either c < i < d or
d < i < c. (And ρr is defined symmetrically.) For a rec ρ and marking M let ρM� (ρMr )
be the set of left (respectively, right) switchbacks of ρ under M . Of course, ρM� ⊆ ρ�
and ρMr ⊆ ρr. It is easy to see from the definition that for two different minimal recs ρ
and ρ′ we have ρ� ∩ ρ′� = ∅ and ρr ∩ ρ′r = ∅.
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Fig. 6. (a) A perfect tangle for a permutation with 7 minimal straight recs (shown red). (b) The
graph constructed in Step 3 of our algorithm. Here, I� = ∅, Ir = {6}, R� = {6, 7, 8, 12, 13, 15},
and Rr = {2, 7, 8}. The vertices of the set F = {6, 7, 8} are shown blue. The red edges are the
computed maximum matching.

Proof (Lemma 6). It suffices to prove that if M is ms-balanced then it is s-balanced.
Consider a straight rec ρ = (a, b, c, d). Let a = r1, . . . , rp = b be a sequence of right
straights in which each consecutive pair ri, ri+1 is right minimal. Define left straights
c = �1, . . . , �q = d similarly. Let D be the set of all recs of the form (ri, ri+1, �j , �j+1)
for 1 ≤ i < p and 1 ≤ j < q. Notice that all recs of D are minimal. By definition of rec
switchbacks, we have ρM� =

⋃
u∈D uM

� and ρMr =
⋃

u∈D uM
r . Since every rec u ∈ D

is balanced and for every pair u, v ∈ D of different recs uM
� ∩ vM� = uM

r ∩ vMr = ∅,
we have |ρM� | = |ρMr |; that is, ρ is balanced under M . ��

Let us show how to construct an ms-balanced marking. For a permutation π, let
I� =

⋃
{ρ� : ρ is an irregular rec in π} and R� =

⋃
{ρ� : ρ is a regular rec in π}, and

define Ir,Rr similarly. Our algorithm is based on finding a maximum vertex-weighted
matching, which can be done in polynomial time [11].

The algorithm inputs a permutation π and computes an ms-balanced marking M for
π or determines that such a marking does not exist. Initially,M(i) is undefined for every
i ∈ {1, . . . , n}. The algorithm has the following steps.

Step 1: For every element 1 ≤ i ≤ n that is neither left nor right, set M(i) = ∅. For
every left straight i set M(i) = L. For every right straight i set M(i) = R.

Step 2: If I� ∩ Ir �= ∅ then report that π is not perfect and stop. Otherwise, for every
switchback i ∈ I� set M(i) = LR; for every switchback i ∈ Ir set M(i) = RL.

Step 3.1: Build a directed graph G = (V,E) with V = R� ∪ Rr and E =
⋃
{(ρ� \

I�)× (ρr \ Ir) : ρ is a minimal rec in π}.

Step 3.2: Create a set F ← (R� ∩Rr) ∪ (I� ∩Rr) ∪ (Ir ∩R�). Create weights w for
vertices of G: if i ∈ F then set w(i) = 1, otherwise set w(i) = 0.

Step 4: Compute a maximum vertex-weighted matching U on G (viewed as an unori-
ented graph, ignoring the directions of edges) using weights w. If the total weight of U
is less than |F | then report that π is not perfect and stop.



494 S. Bereg et al.

Step 5.1: Assign marking based on the matching: for every edge (i, j) ∈ U set M(i) =
RL provided M(i) has not already been assigned, and M(j) = LR provided M(j) has
not already been assigned.

Step 5.2: For every switchback 1 ≤ i ≤ n with still undefined marking, if i ∈ R� then
set M(i) = LR, if i ∈ Rr then M(i) = RL, otherwise choose M(i) to be LR or RL
arbitrarily. Note that any i ∈ R� ∩Rr was already assigned because of Steps 3.2 and 4.

Let us prove the correctness of the algorithm.

Lemma 7. If the algorithm produces a marking then the marking is ms-balanced.

Proof. Let M be a marking produced by the algorithm for a permutation π. It is easy
to see that M(i) is defined for all 1 ≤ i ≤ n (in Step 1 for straights and in Step 2 and
Step 5 for switchbacks). By construction, M is a marking for π.

Let us show that M is ms-balanced. Consider an irregular rec ρ of π, and suppose
that i ∈ ρ�. Since ρ� ⊆ I�, in Step 2 we assign M(i) = LR, that is, i �∈ ρM� . Therefore,
ρ does not have left switchbacks under M . Similarly, ρ does not have right switchbacks
under M . Therefore, ρ is empty.

Consider a regular minimal straight rec ρ in π. Suppose that i ∈ ρM� . Then M(i) =
RL and i ∈ ρ� ⊆ R�. If i ∈ Ir then i ∈ R� ∩ Ir ⊆ F ; hence i is incident to an edge
in U . Since no directed edge of the form (k, i) is included in G in Step 3.1, there exists
(i, k) ∈ U for some k. On the other hand, if i �∈ Ir then string RL was not assigned to
M(i) in Step 5.2, nor in Step 2. Thus, it was assigned in Step 5.1, and again (i, k) ∈ U
for some k. By definition of E we have k ∈ ρr, because k cannot appear in ρ′r for any
other minimal ρ′ �= ρ. The algorithm sets M(k) = LR at Step 5.1; it could not have
previously set M(k) = LR at Step 2 because k /∈ Ir by the definition of E. Thus
k ∈ ρMr .

By symmetry, an identical argument to the above shows that if k ∈ ρMr then i ∈ ρM�
for some i satisfying (i, k) ∈ U . Since U is a matching, we thus have a bijection
between elements of ρM� and ρMr . Therefore, ρ is balanced under M . ��

Lemma 8. Let π be a perfect permutation. The algorithm produces a marking for π.

Proof. Since π is perfect, there is a balanced marking M for π. Since M is balanced,
all irregular recs are empty under M ; hence, the algorithm does not stop in Step 2. To
prove the claim, we will create a matching in the graph G with total weight |F |.

Let ρ be a minimal rec in π. Since ρ is balanced under M , we have |ρM� | = |ρMr |.
Hence, let Wρ be an arbitrary matching connecting vertices of |ρM� | with vertices of
|ρMr |. Of course, |Wρ| = |ρM� |. Let W =

⋃
{Wρ : ρ is a minimal rec in π}. We show

that every element of set F is incident to an edge of W .
Suppose i ∈ R� ∩ Rr. Since i is a switchback in π, we have M(i) = RL or

M(i) = LR. In the first case i ∈ ρM� and in the second case i ∈ ρMr for some minimal
rec ρ. Then i is incident to an edge from Wρ.

Suppose i ∈ F \ {R� ∩Rr}. Without loss of generality, let i ∈ I� ∩Rr. Since M is
balanced, every irregular rec has no switchbacks and hence M(i) = LR. Thus, i ∈ ρMr
for some minimal rec ρ, and i is incident to an edge of Wρ.

Therefore, every vertex of F is incident to an edge of the matching W , which means
that the total weight of W is |F |. ��
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Theorem 2 follows directly from Lemmas 7 and 8 and Theorem 3. A straightforward
implementation of the algorithm finding a perfect tangle takes O(n5) time.

6 Conclusion

In this paper we gave algorithms for producing optimal tangles in the special cases
of direct and perfect tangles, and for recognizing permutations for which this is pos-
sible. Many questions remain open. What is the complexity of determining the tangle
with minimum corners for a given permutation? What is the complexity if the tangle is
required to be simple? What is the asymptotic behavior of the maximum over permuta-
tions π ∈ Sn of the minimum number of corners among simple tangles solving π?

Acknowledgments: We thank Omer Angel, Franz Brandenburg, David Eppstein, Mar-
tin Fink, Michael Kaufmann, Peter Winkler, and Alexander Wolff for fruitful discus-
sions about variants of the problem.
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Abstract. We present a system, called TPLAY, for the visualization of the tracer-
outes performed by the Internet probes deployed by active measurement projects.
These traceroutes are continuously executed towards selected Internet targets.
TPLAY allows to look at traceroutes at different abstraction levels and to animate
the evolution of traceroutes during a selected time interval. The system has been
extensively tested on traceroutes performed by RIPE Atlas [22] Internet probes.

1 Introduction

The traceroute command is one of the most popular computer network diagnostic tools.
It can be used on computers connected to the Internet to compute the path (route) to-
wards a given IP address, also called traceroute path. It is probably the simplest tool to
gain some knowledge on the Internet topology. Because of its simplicity and effective-
ness, it attracted the interest of several researchers that developed services for visualiz-
ing the Internet paths discovered by executing one or more traceroute commands.

Broadly speaking, there are two groups of traceroute visualization systems: tools de-
veloped for local technical debugging purposes and tools that aim at reconstructing and
displaying large portions of the Internet topology. Several tools of the first group visu-
alize a single traceroute on a map, showing the geo-location of the traversed routers.
A few examples follow. Xtraceroute [10] is a graphical version of the traceroute pro-
gram. It displays individual routes on an interactive rotating globe as a series of yellow
lines between sites, shown as small spheres of different colors. GTrace [20] and Visual-
Route [30] are traceroute and network diagnostic tools that provide a 2D geographical
visualization of paths. The latter also features more abstract representations taking into
account other information, e.g. the round-trip time between intermediate hops. In the
second group there are several tools (see e.g. [18,5]) that merge the paths generated by
multiple traceroutes into directed graphs and show them in some type of drawing.

In recent years the visualization of Internet measurements has seen a growing in-
terest. This is mainly due to the existence of several projects that deploy probes in the
Internet. Probes are systems that perform traceroutes and other measurements (e.g. ping,

� Partially supported by the ESF project 10-EuroGIGA-OP-003 GraDR ”Graph Drawings
and Representations” and by the European Community’s Seventh Framework Programme
(FP7/2007-2013) grant no. 317647 (Leone). We thank RIPE NCC for collaborating to the
development of the graph animation framework used in this work.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 496–507, 2013.
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Fig. 1. The main interface of TPLAY

HTTP queries) towards selected targets. They produce a huge amount of data that is dif-
ficult to explore, especially when dealing with the network topology. Some examples
follow. SamKnows [7] is a broadband measurement service for consumers. MisuraInter-
net [4] is an Italian project that measures the quality of broadband access. BISmark [28]
is a platform for measuring the performance of ISPs. RIPE Atlas [22], CAIDA Ark [2],
and M-Lab [3] continuously perform large scale measurements towards several targets.

In this paper we present a system for traceroute visualization called TPLAY, de-
signed for supporting Internet Service Providers (ISPs) and Internet Authorities in the
management and maintenance of the network. The requirements were gathered inter-
acting with several ISPs, within the Leone FP7 EC Project, and with the RIPE Network
Coordination Center (RIPE NCC). The system works as follows. The user selects a set
S of probes of a certain Internet measurement project (all the experiments in this paper
have been conducted using RIPE Atlas [22] probes), a target IP address τ , and a time
interval T , and obtains a visualization of how the traceroutes issued by the probes in S
reach τ during T . TPLAY can be used to study several properties of traceroute paths.
These include assessing the reachability of τ over time, discovering the ISPs that pro-
vide connectivity to reach it, monitoring the length of traceroute paths as a performance
indicator, and inferring how routing policies affect the paths of different probes in S.

A snapshot of TPLAY is in Fig. 1. The routing graph is presented with a radial draw-
ing. The geometric distance between τ and any object reflects the topological distance
of that object in the network. Also, since traceroutes tend to give too many details, the
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system allows to look at the network at different abstraction levels. Finally, the evolution
of traceroute paths over time is presented by means of geometric animation.

The paper is organized as follows. In Section 2 we detail the use cases, describe the
adopted visualization metaphor, and introduce some formal terminology. In Section 3
we detail the algorithms used to compute the visualization and compare them to the
state-of-the-art. In Section 4 we describe the prototype implementation of our tool and
the technical challenges we faced. Section 5 contains conclusions and future directions.

2 Use Cases and Visualization Metaphor

The main tasks associated with our system are detailed below. Two of them deal with
Autonomous Systems (ASes), i.e. entities representing Internet administrative authori-
ties. Once the input is specified as detailed in Section 1, the user is interested in the
following. Security: knowing what ASes provide connectivity to reach the target over
time. That is interesting from the perspective of security, because some ASes may be
less trusted than others. Policy: seeing how traffic is routed inside a specific AS over
time. That helps discover load balancing issues or differences in the routing applied to
different probes. Distance: knowing the number of hops traversed by each probe over
time. Longer paths are indeed potentially responsible for instability and inefficiency.
Dynamics: seeing how the routing changes at a specific time instant, based on external
key indicators. For example, the user may want to check if the routing has changed after
a noticeable drop in the round-trip delay experienced when reaching the target.

We discarded solutions based on geographic representations for many reasons. First
of all, the fact that a router belongs to a certain ISP or AS is the main piece of infor-
mation for our purposes, whereas geography is only a secondary feature that further
characterizes the nodes in the network. Also, the geo-location data associated with IP
addresses is often wrong or missing, and anycast addresses (i.e., those assigned to more
than one physical device) can not be mapped to a single location. Finally, the use of
landmarks on geographical maps would require special care to avoid geometric clutter-
ing. Motivated by the above, we focused on a topological representation of the data.

The visualization metaphor we adopted is presented below together with supporting
motivations. Graphs are represented with radial layered drawings, where vertices are
placed on concentric circles and targets are in the center. This style of drawing is notably
effective for visualizing sparse hierarchical graphs (see, e.g., [31]); in Section 3 we
show that our application domain meets such requirement. The probes originating the
traceroutes are in the periphery of the drawing. This approach is effective in displaying
topological distances. Moreover, radial drawings have their center as the only focus
point, which avoids giving probes additional importance due to a privileged geometric
position. Finally, the drawing looks like an abstract geography and hence borrows the
typical user experience deriving from cartography and geographical visualization.

The need of visualizing the network at different abstraction levels is met by partition-
ing the set of routers into clusters. In our setting, clusters are in correspondence with
ASes. The user can modify the representation by interacting with any cluster to either
contract or expand it. A contraction causes all the routers in the cluster to be merged
into a single object representing the cluster, while an expansion does the opposite. Col-
lapsing all clusters leads to a high-level, uncluttered view of the graph. On the other
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hand, the user can expand all the clusters to see all the traversed routers. In general, the
user can arbitrarily expand any subset of clusters to examine them in detail.

Paths for reaching the target from the probes change over time. A natural way to
show the evolution of traceroutes at different time instants is to present an animation of
the drawing. More precisely, for each instant in a given time interval we show a different
drawing, corresponding to the traceroutes that are available at that instant. We animate
the change from a drawing to a successive one by means of a geometric morph.

Since the visualization is highly interactive and the graph changes over time, pre-
serving the mental map is of paramount importance. Indeed, the user can both ani-
mate the drawing in a specific time interval and expand/contract individual clusters.
We require that the same drawing is visualized for any two sequences of cluster ex-
pansions/contractions that produce the same graph. Also, the graph should be animated
smoothly, even at the expense of traversing drawings that are not aesthetically optimal.

Traceroute paths cannot simply be merged and displayed in an aggregate fashion,
since each of them has its own informative value and can change over time. For this
reason, we represent paths adopting a metro-line metaphor [24] and draw them using
different colors. Further, paths that never change in the selected time interval should
be easily distinguished. In this context we adopt the method described in [14]. Paths
that do not change are partitioned into sets such that each of them determines a tree
on the graph. Each tree is depicted with dashed lines and a distinctive color. This has
the effect of reducing the number of lines in the drawing, while preserving the routing
information for each probe. Paths that change are instead represented by solid lines.

The objects to be visualized are formally defined as follows. Consider a time interval
T and a set of probes S. During T each probe periodically issues a traceroute towards a
target IP address τ . A traceroute from probe σ ∈ S produces a simple directed path on
the Internet from σ to τ . If such a path is available in Internet at time t ∈ T , then it is
valid at time t. Each vertex of a traceroute originated from σ ∈ S is either a router or a
computer. Vertices are identified as follows: (1) σ has a unique identifier selected by the
RIPE NCC; (2) vertices with a public IP address are identified by it; (3) vertices with a
private IP address are identified by a pair composed of their address and the identifier
of σ; (4) the remaining vertices are labeled with a “*” (i.e. an unknown IP address).
For the sake of simplicity, consecutive vertices labeled with “*” are merged into one. A
vertex labeled with “*” is identified by the identifiers of its neighbors in the traceroute.

A digraph Gt is defined at each instant t ∈ T as the union of all the paths valid at t
produced by the traceroutes issued by the probes of S. A digraph GT is defined as the
union of all graphs Gt. Each vertex of GT is assigned to a cluster as follows. (1) Each
probe is assigned to the cluster that corresponds to the AS where it is hosted. (2) Each
vertex identified by a public IP address [6] is assigned to a cluster that corresponds to
the AS announcing that address on the Internet. This information is extracted from the
RIPEstat [23] database and may occasionally be missing. (3) Each vertex v that is not
assigned to a cluster after the previous steps is managed as follows. Consider all tracer-
oute paths containing v. For traceroute p let μ (ν) be the cluster assigned to the nearest
predecessor (successor) of v with an assigned cluster. If μ = ν then μ is added to the set
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of candidate clusters for v. If such set has exactly one cluster, v is assigned to it. If there
is more than one candidate, an inconsistency is detected and the procedure terminates
prematurely. (4) Each remaining vertex is assigned to a corresponding fictitious cluster.
We define Vμ as the set of vertices assigned to cluster μ.

For any t ∈ T Gt can be visualized at different abstraction levels. Namely, the user
can select a set E of clusters that are fully visualized and each cluster that is in the
complement Ē of E is contracted into one vertex. More formally, given the pair Gt, E
the visualized graph Gt,E(V,E) is defined as follows. V is the union of the Vμ for all
clusters μ ∈ E , plus one vertex for each cluster in Ē . E contains the following edges.
Consider edge (u, v) of Gt and clusters μ and ν, with u ∈ μ and v ∈ ν. If μ �= ν,
μ ∈ E , and ν ∈ E , then add edge (u, v). If both μ and ν are in Ē then add edge (μ, ν). If
μ ∈ E (μ ∈ Ē) and ν ∈ Ē (ν ∈ E) then add edge (u, ν) ((μ, v)). We define Gμ,t as the
subgraph of Gt induced by Vμ. Analogously, we define Gμ,T as the subgraph of GT
induced by Vμ. We define GT ,E as the union of the Gt,E for each t ∈ T .

Fig. 1 shows an overview of our prototype implementation. Let t ∈ T be the time
instant selected by the user. Graph Gt,E is represented by a radial drawing centered
in τ . All vertices and clusters that appear in at least one traceroute in T are in the
drawing, including those that are not traversed by any traceroute at time t. Probes in S
are represented as blue circles and labeled with their identifier. Vertices are represented
as white rounded rectangles and labeled with the last byte of their IP address, or with a
“*”. Clusters are represented as annular sectors and labeled with their AS number. Note
that vertices assigned to expanded clusters are enclosed in their sectors, while sectors
of contracted clusters are empty. The light red cluster contains τ . Clusters containing
probes in S are light blue. The remaining clusters are light yellow. Fictitious clusters
are not displayed. Each path from a probe σ ∈ S to τ is represented by a colored curve
from σ to τ passing through all intermediate vertices. Paths are either solid or dashed,
depending on whether they change or not during the time interval T . Concentric circles
in the background represent the increasing topological distance of vertices.

Fig. 2 contains various details on how the interaction with the visualization works.
A graph with static paths and no expanded clusters is presented in Fig. 2(a). It is related
to a target τ , a set of probes S, and a small time interval T ′. Note that some vertices are
not enclosed in any cluster: they belong to fictitious clusters. A graph for τ , S and T ′′

(|T ′′| > |T ′|) is presented in Fig. 2(b). Some dynamic paths are visible. The same graph
is presented in Fig. 2(c) with one expanded cluster. Note how the ordering of clusters
and vertices on the radial layers is preserved. Fig. 2(d) shows the same expanded graph
at a different time instant. The intermediate vertices of two paths are different.

Fig. 2 also helps us explain how the tasks detailed at the beginning of the section can
be accomplished. The Security task is satisfied in Fig. 2(a): we can see how ASes 1200
and 20965 provide connectivity to reach the target. The Policy and Distance tasks are
addressed in Fig. 2(c), where the length and structure of the paths from each of the three
probes 619, 602, 265 is clearly visible. The Dynamics task is solved in Figg. 2(c)-(d),
where we can see how the paths change for probes 619 and 602 after a routing event.

The user interaction plays a major role in our metaphor. The reader can visit [8] for
an example video of the interaction with TPLAY.
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(a) (b)

(c) (d)

Fig. 2. Details of the interactive features of our visualization. (a) A graph GT ′ relative to a target
τ , a set of probes S , and a time interval T ′. All paths in GT ′ are static and all clusters contracted.
(b) A graph GT ′′ relative to τ , S , and T ′′ (|T ′′| > |T ′|). Some paths are dynamic and all clusters
are contracted. (c) GT ′′ with an expanded cluster. (d) GT ′′ at a different time instant.

3 The Algorithms

We started our analysis by computing several statistics on the RIPE Atlas data set that
we used to test the system. It consists of traceroutes executed in one month (July 2012)
by 200 probes. Fig. 3 presents the main results of our analysis. In Fig. 3(a) we plot a
cumulative distribution function of the length of traceroute paths. That gives us a rough
indication on the maximum distance between a probe in S and τ . The plot shows that
traceroutes with more than 15 vertices are rare, confirming the suitability of the radial
metaphor. In Fig. 3(b) we plot the number of vertices and the density (|E|/|V |) of GT as
a function of T . It turns out that GT is quite sparse for time intervals that are compatible
with the application domain. In particular, the density ranges between 1.2 and 1.5 for
time intervals within 24 hours. The number of vertices is in the range of 2000.

As a second step, we performed experiments using spring embedders and hierar-
chical drawing algorithms. Layouts produced by spring embedders [29] are unsuitable
for our metaphor, because the topological distance between vertices is not always rep-
resented and because they produce drawings with not enough regularity. Also, they
tend to introduce crossings that are avoidable, for the expected density of the data set.
For hierarchical drawing, we experimented both basic algorithms [29] and variations
that allow to represent clustered graphs [25,26]. The experiments put in evidence that
crossing-reduction heuristics like those in [25,26] are quite effective. However, in our
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Fig. 3. Statistics on the data set. (a) Cumulative distribution function (CDF) of the length of
traceroute paths at July, 1st 2012 at 00:00. CDFs at different instants exhibit similar features. (b)
Plot showing the number of vertices and the density of GT as a function of T . For each day in
the month we set an initial time at 00:00 and grow T from 1 to 24 hours. For each value of T we
plot the average density and number of vertices. We report the standard deviation with error bars.

case most graphs are planar or quasi-planar and hence planarity-based methods are
more attractive. Finally, we discarded upward planar drawings [29]. The main reason
is that they tend to use vertical space to resolve crossings, which may result in large
geometric distances between vertices that are topologically close.

A very high level and informal description of our algorithmic framework is the fol-
lowing. We pre-compute a hierarchical drawing Γ0 of GT that integrates all the tracer-
outes in T . In that drawing all clusters are expanded. The layout is computed in such a
way to have few crossings involving connections between clusters. The quality of the
layout inside the clusters is considered with lower priority. Moreover, the quality of the
drawing of edges that are part of many traceroutes in T is privileged among the edges of
GT . The drawing computed for each cluster is stored and reused in any drawing where
that cluster is expanded. The hierarchical drawing is mapped to a radial drawing with
a suitable coordinate transformation. Changes in the drawing due to an expansion or
contraction of a cluster or a change in traceroutes are visualized with an animation. At
any instant t ∈ T only the traceroutes that are valid in t are displayed.

For our purposes an interesting reference is [11] that constructs radial drawings adapt-
ing techniques of the Sugiyama Framework, but, unfortunately, it does not deal with clus-
ters. The algorithm in [16], which extends the one described in [15], inspired part of our
work. However, it proposes a clustered planarity testing algorithm, while we rather need
an algorithm for clustered graph planarization, and [16] is not easily extensible for this
purpose (neither is the algorithm in [12] that is not suitable for hierarchical drawings).
For these reasons we devised a new algorithm to produce clustered hierarchical draw-
ings, as a planarization-oriented variation of [16]. In [21] an algorithm is proposed for
the expansion/contraction of clusters of hierarchical drawings, building on [27]. Unfor-
tunately it uses local layering for vertices, while global layering [25,26] is more suitable
for our needs because it produces more compact drawings. Indeed a very common use
case of TPLAY is to expand all clusters along one or more traceroutes. Local layering
would visualize far from τ also vertices in unrelated paths because of the increased
need for vertical space of their layers. For this reason we devised a new algorithm for



Dynamic Traceroute Visualization at Multiple Abstraction Levels 503

expanding/contracting clusters that is based on global layering. Differently from [21]
it is not a local update scheme, i.e. it computes a new drawing for the whole graph
at each interaction. The lower time efficiency is negligible because the graphs com-
monly handled by TPLAY are small. Finally, mental map preservation during expan-
sion/contraction of clusters is addressed by a geometric morph, implemented as an
animation of objects from their initial position to their final position (see, e.g., [14]).

What follows gives more details on our the algorithmic framework. In a preprocess-
ing step several information are computed on GT that will be used for actual drawings.
Given any Gμ,T , a vertex is a source (sink) of Gμ,T if it is the last (first) vertex of
Gμ,T encountered in some traceroute path. Each graph Gμ,T is augmented with extra
vertices and edges so that all the longest paths from a source to a sink have the same
length. The added vertices are called fictitious vertices of μ and ensure that, given an
edge (u, v) ∈ GT , u ∈ μ, v ∈ ν, μ �= ν, clusters μ and ν do not share a layer in any
drawing of Gt,E . Moreover, they force edges that leave a cluster by spanning several
layers to be routed inside that cluster. A μ-drawing is pre-computed for each Gμ,T .
It consists of 1. assigning vertices to layers so that all edges are between consecutive
layers and 2. computing a total order for the vertices of each layer. A partial order ≺ is
computed for clusters, such that for any two clusters μ and ν with μ ≺ ν, the vertices
of μ appear to the left of the vertices of ν for any drawing Γ where μ and ν share one or
more layers. This helps preserve the mental map during expansions/contractions. The
preprocessing step requires to compute a drawing Γ0 of GT with all clusters expanded.
Γ0 gives the information needed to compute a μ-drawing for each cluster and a par-
tial order≺ for clusters. The algorithm to compute Γ0 is similar to that in [16], where a
PQ-tree [13] is used to order vertices along the layers of the drawing. Our PQ-tree is ini-
tialized with a spanning tree of GT and incrementally updated with the remaining edges
that induce ordering constraints. An edge is added only if it does not produce a crossing
(i.e. the PQ-tree does not return the null tree). A rejected edge will produce crossings in
Γ0. Edges are added with priority given by their aesthetic importance: namely, they are
weighted by the number of traceroutes that traverse them in T . As an implementation
detail, we actually compute a total order for clusters to represent a partial order≺. Such
an order is produced by a DFS visit of the spanning tree of GT . The tree has an embed-
ding induced by the layer orders produced by the PQ-tree algorithm, and children of a
vertex are visited in clockwise order. Intuitively, we preserve the geometric left-to-right
order for clusters from Γ0, and reuse it to produce a drawing of any Gt,E .

The computation of the drawing ΓT ,E of GT ,E is detailed below. Before that, note
that once ΓT ,E is computed, we display, for any t ∈ T all the vertices of GT ,E but
only the edges of Gt,E . This is done to preserve the mental map of the user, using
ΓT ,E as a “framework” that “hosts” the drawings of each instant. First, a layering of
GT ,E is computed such that for each vertex the distance from τ is minimized. Also,
dummy vertices, called fictitious vertices of GT ,E , are added so that each edge spans
two consecutive layers. Vertices are horizontally ordered on each layer such that: 1. ≺
is enforced; 2. for each cluster μ of E , the orders on the layers of its μ-drawing are
enforced; 3. the fictitious vertices of GT ,E are placed in such a way to have few cross-
ings. In particular, they must not be interleaved with the vertices of any cluster, that is,
the vertices of each cluster must be consecutive on every layer. For this reason, each
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fictitious vertex is assigned to a new fictitious cluster, which is inserted in the partial
order≺ in an intermediate position between the endpoints of the edge it belongs to. Fi-
nally, the ordered layers are used to assign geometric coordinates to vertices. The width
of each cluster μ is computed as follows. Consider the layer containing the largest num-
ber of vertices assigned to μ. The cluster is assigned a width proportional to this number.
Vertices of μ are assigned horizontal coordinates such that they can be enclosed by a
rectangle with height proportional to the number of layers assigned to the vertices of μ
and width equal to the width of μ. We avoid intersection between enclosing rectangles
by means of an auxiliary directed acyclic graph where vertices are clusters of GT ,E and
edges are selected from ≺ depending on which pairs of clusters share a layer in the
current layering of GT ,E . Edges are weighted based on the widths of the clusters they
are incident to. The total width of the drawing is given by the longest path in this graph.
The above is applied recursively to compute the horizontal spacing among all clusters.
The vertical coordinate of a vertex is equal to the one assigned to its layer, which is
proportional to the index of that layer in the total order of layers.

Going back to the state-of-the-art, concerning restrictions R1, R2 and R3, described
in [16], that a planar clustered hierarchical drawing must obey, drawings produced by
our algorithm satisfy R1 and R2, while we consider R3 too restrictive for our applica-
tion. R1 is satisfied in the preprocessing step by merging, for each cluster, all sources
into one vertex. The PQ-tree is initialized with a spanning tree that contains all these
new vertices, which has the effect to keep the vertices of each cluster consecutive on
any layer. R2, as shown in [16], is automatically satisfied for the initial drawing Γ0, and
is satisfied for any drawing of Gt,E by exploiting the partial order≺.

To obtain a radial drawing, the geometric coordinates of vertices so computed are
transformed as follows. Each vertex is placed on the perimeter of a circle centered in
an arbitrary fixed point and having radius equal to the vertical coordinate of the vertex.
Then the horizontal coordinate of the vertex is mapped to a circular coordinate on the
perimeter of that circle. The perimeters of clusters are mapped with a similar radial
transformation. An edge (u, v) is drawn either as a straight segment or a curved arc,
depending on the angle it must sweep to connect vertices u and v. Note that in our
setting each edge connects only vertices in two consecutive layers, hence a curved edge
can be drawn only in the space between these layers.

4 Implementation and Technical Challenges

The implementation of TPLAY is split into three main blocks: 1. a visualization front-
end; 2. a layout engine; and 3. a data back-end.

The visualization front-end is a Web application. It allows the user to specify input
parameters and to visualize and animate interactive graphs. The main interface is pre-
sented in Fig. 1 and additional images are provided at [8]. It is composed of four main
elements: the controller, the graph panel, the info panel, and the timeline panel. We
detail their functionalities below.

The controller is a sliding panel located in the upper right corner. It allows the user to
input queries composed of a target τ , a time interval T , and a set of probes S. Once the
visualization is ready, the controller can be used to animate the graph with the traceroute
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paths available during T . The play/pause/stop, repeat-last, step-back, and step-forward
buttons allow for a fine-grained management of the graph animation.

The graph panel displays the interactive graph, initially centered and fitted to the
window. The user can pan and zoom it with the mouse. The animation of the graph
consists of a sequence of morphing steps. Each step transform the graph by applying
the effects of an event involving one or more traceroute paths. Given a probe σ ∈ S,
an event can consist of: (a) the availability of a new traceroute path from σ to τ ; (b) a
change in the sequence of vertices in the traceroute path from σ to τ ; (c) a disconnection
resulting in an empty traceroute path. Events of type (a) are rendered with a gradual
introduction of new paths in the graph. Events of type (b) are rendered with a geometric
morph of curves representing the involved paths. Events of type (c) are rendered with a
blinking effect after which paths disappear. We introduce a delay between each pair of
consecutive animation steps. The delay is proportional to the logarithm of the elapsed
time between the corresponding routing events. This gives an approximate perception
of elapsed time, while limiting the overhead on the total animation time. The elements
of the graph are interactive and show additional information on request. Hovering a
vertex with the mouse for a few seconds highlights all the paths passing through it.
Hovering a path for a few seconds highlights the path and all its vertices.

The info panel is in the upper part of the window. It shows all the available informa-
tion about any selected network component represented in the graph. It also displays a
textual description for the latest event that caused an update of the visualized graph.

The timeline panel is in the lower part of the window and contains two timelines
that allow to accurately navigate the traceroute information in T . The first, called con-
trol timeline, provides a fast overview of the trend in the number of events over time.
The second, called selection timeline, shows individual events ordered in time and is
designed for fine-grained analysis. Each block in the selection timeline contains a se-
quence of events happening at the same time, represented with colored rectangles. Dif-
ferent colors are used for different types of events. The elapsed time between any two
consecutive blocks is reported in the area between them. Both timelines feature a red
cursor that points at the current time instant and is continuously updated during the an-
imation. The user can drag the cursors, changing the current instant and updating the
graph accordingly. The selection timeline can only show a limited number of events
due to its constrained area. In case there are more events, the animation causes involved
events to be smoothly translated into the visible part of selection timeline. The user can
scroll horizontally to reveal hidden events. Further, the user can limit the animation to a
particularly interesting period within T by dragging the two green sliders at the top of
the control timeline. The sliders on the selection timeline are updated accordingly.

The implementation of the front-end required to focus on some algorithmic details.
The arrangement of paths in a metro-line fashion is implemented as follows. First of
all, an arbitrary total ordering is computed on the set of visualized paths. For each edge
without bends in the graph, the paths that traverse it are drawn as parallel segments
connecting the two endpoints of the edge. The ordering of such segments reflects the
total ordering of paths to promote consistency between edges. In case the edge con-
tains bends, the drawing is computed in two steps. First, we split the bended edge in a
sequence of intermediate edges e1, . . . , en and compute the path segments for each of
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them. Second, for each pair of consecutive intermediate edges (ei, ei+1) and for each
path that traverses it, we call (u, v) and (w, z) the two segments computed respectively
for ei and ei+1. If there is an intersection point p between (u, v) and (w, z), we rewrite
the two segments as (u, p) and (p, z). Otherwise, we add a connection (v, w) between
(u, v) and (w, z). Path colors are computed with the algorithm described in [19] to
ensure that they are distinguishable from each other.

The front-end is written in JavaScript and HTML. It is based on the BGPlay.js frame-
work [1] that we developed in collaboration with the RIPE NCC. The objective of the
framework is to simplify the implementation of web-based tools for the representation
of evolving data described in terms of graph components. The framework consists of a
solid implementation of graph domain objects and a set of modules. Modules provide
functionalities and representation of data and can be used to compose ad-hoc tools. We
use Scalable Vector Graphics for the representation and animation of the graph.

The visualization always starts with an overview of the traceroutes. Hence, the layout
engine is invoked to produce a drawing of GT ,∅. When the user expands/contracts a
cluster (a cluster is added/removed from E) the layout engine is invoked again on GT ,E .
In the implementation of the radial drawing we artificially increase the radius of each
layer by an additional offset, such that vertices on dense layers are not overlapped. For
the sake of simplicity, curved segments are uniformly sampled and drawn as polylines.

The layout engine is implemented in Java. We initially designed it to be implemented
as part of the visualization front-end, but later moved to a back-end implementation
in order to make use of already existing libraries. In particular we adopted a PQ-tree
implementation [17] and Apache Commons Graph [9] for general graph models and
algorithms. We optimized the output of the layout engine after the initial layout, so that
only graph elements with new drawing coordinates are included.

The data back-end is mainly responsible of retrieving and preprocessing traceroute
data. The result is then used by the front-end to animate traceroute events and by the
layout engine to compute the drawings.

5 Conclusions and Open Problems

We presented a metaphor for the visualization of traceroute measurements towards spe-
cific targets on the Internet. It consists of a radial drawing of a clustered graph where
vertices are routers or computers and clusters are administrative authorities that control
them. Our metaphor allows the user to interact with the visualization, both exploring
the content of individual clusters and animating the graph to see how traceroute paths
change over a time interval of interest.

In the future we will take into account the DNS resolution of selected targets in the
visualization. That means that some targets may be represented by more than one vertex,
giving rise to an anycast behavior of the target, depending on the policies implemented
at the DNS level. We will also explore the possibility to process streams of incoming
data, adding or removing elements in the visualization incrementally.
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Abstract. This report describes the 20th Annual Graph Drawing Contest, held
in conjunction with the 2013 Graph Drawing Symposium in Bordeaux (Talence),
France. The purpose of the contest is to monitor and challenge the current state
of graph-drawing technology.

1 Introduction

This year, the Graph Drawing Contest was divided into an offline contest and an online
challenge. The offline contest had three categories: two dealt with creating and visual-
izing a graph from a given data set and one was a review network. The data sets for the
offline contest were published months in advance, and contestants could solve and sub-
mit their results before the conference started. The submitted drawings were evaluated
according to aesthetic appearance and how well the data was visually represented. For
the visualization itself, typical drawings, interactive tools, animations, or other innova-
tive ideas were allowed.

The online challenge took place during the conference in a format similar to a typical
programming contest. Teams were presented with a collection of challenge graphs and
had approximately one hour to submit their highest scoring drawings. This year’s topic
was to minimize the area for orthogonal grid layouts, where we allowed crossings (the
number of crossings was not judged, only the area counted).

Overall, we received 12 submissions: 3 submissions for the offline contest and 9
submissions for the online challenge.

2 Creative

For the two categories in this topic, the task was to create a meaningful graph from data
found on a specific website and visualize it in a suitable way. Any kind of visualiza-
tion was allowed. We proposed pictures, map-like drawings, animations, and interactive
tools, but any other innovative idea was also welcome. Submissions were to include the
graph itself as well as the visualization.
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(a) de Jong, Pazienza

(b) Zelina et al.

Fig. 1. Creative, Category A (Bordeaux Wines)
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2.1 Category A: Bordeaux Wines

The first data set could be found on the Bordeaux Wines website1.
We received two submissions in this category, both included links to an interactive

web site for visualizing the data. Fig. 1(a) shows the submission by Jos de Jong and
Giovanni Pazienza; their interactive web page provides filtering and shows a dynamic
layout, which is smoothly adjusted when nodes appear or disappear due to changes in
the filter. The submission by Remus Zelina et al. (see Fig. 1(b)) is also an interactive
web page providing filtering, but here the graph is visualized in a map-like fashion
obtained by a preceding clustering of the data.

The winner in this category was the team of Jos de Jong and Giovanni Pazienza for
their clear and easy-to-use visualization of Bordeaux wines.

2.2 Category B: Bordeaux City

The second data set could be found on the official website of the city of Bordeaux2.
Unfortunately, we did not receive any submissions in this category.

3 Review Network

In this category the task was to visualize a review network that had been obtained from
Amazon reviews on fine foods. The data set for the review network could be obtained
from the SNAP website3 of Stanford University. The network included 568,454 reviews,
collected over a period of more than 10 years, including 74,258 products and 256,059
reviewers. Each review contained the product ID of the food, allowing access to the
product at Amazon, the user ID of the reviewer, and further interesting information
like the score and the date of the review. Although any kind of visualization was again
allowed, a good submission should nevertheless highlight the quality of the products
and the importance of the reviewers.

We only received a single submission in this category, which was again an interactive
web page; see Fig. 2. The network was drawn in a map-like fashion clustering the
nodes into islands like Chocolate, Tea, or Coffee. When zooming in, more details are
revealed and important nodes are highlighted. Hence, the winner in this category was
the team Remus Zelina, Sebastian Bota, Siebren Houtman, and Radu Balaban from
Meurs, Romania.

4 Online Challenge

The online challenge, which took place during the conference, dealt with minimizing
the area in an orthogonal grid drawing. The challenge graphs were not necessarily pla-
nar and had at most four incident edges per node. Edge crossings were allowed and

1 http://www.bordeaux.com/us/vineyard/bordeaux-wine-vintages
2 http://www.bordeaux.fr/
3 http://snap.stanford.edu/data/web-FineFoods.html

http://www.bordeaux.com/us/vineyard/bordeaux-wine-vintages
http://www.bordeaux.fr/
http://snap.stanford.edu/data/web-FineFoods.html
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Fig. 2. Review Network

their number did not affect the score of a layout. Since typical drawing systems first try
to minimize the number of crossings, which might result in long edges increasing the
required area, we were in particular interested in the effect of allowing crossings on the
quality of layouts when trying to reduce the area.

The task was to place nodes, edge bends, and crossings on integer coordinates so
that the edge routing is orthogonal and the layout contains no overlaps. At the start of
the one-hour on-site competition, the contestants were given six graphs with an initial
legal layout with a large area. The goal was to rearrange the layout to reduce the area,
defined as the number of grid points in the smallest rectangle enclosing the layout. Only
the area was judged; other aesthetic criteria, such as the number of crossings or edge
bends, were ignored.

The contestants could choose to participate in one of two categories: automatic and
manual. To determine the winner in each category, the scores of each graph, determined
by dividing the area of the best submission in this category by the area of the current
submission and then taking the square root, were summed up. If no legal drawing of
a graph was submitted (or a drawing worse than the initial solution), the score of the
initial solution was used.

In the automatic category, contestants received six graphs ranging in size from 59
nodes / 87 edges to 3393 nodes / 4080 edges and were allowed to use their own sophis-
ticated software tools with specialized algorithms. Manually fine-tuning the automati-
cally obtained solutions was allowed. However, no team participated in this category,
hence we had no winner in the automatic category this year.
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(a) initial

(b) best manual (c) best known

Fig. 3. Challenge graph with 35 nodes and 44 edges: (a) initial layout (area: 768), (b) best manual
result obtained by the team of Spisla and Gronemann (area: 70), and (c) best known solution
(area 49)

(a) initial (b) best manual

Fig. 4. Challenge graph with 59 nodes and 87 edges: (a) initial layout (area: 600) and (b) best
manual result by the team of Bläsius and Rutter (area: 315)
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The 9 manual teams solved the problems by hand using IBM’s Simple Graph Editing
Tool provided by the committee. They received six graphs ranging in size from 19 nodes
/ 26 edges to 150 nodes / 188 edges. Three of the larger input graphs were also in
the automatic category; unfortunately we could not compare automatic solutions with
manual solutions this time. With a score of 5.485, the winner in the manual category was
the team of Thomas Bläsius and Ignaz Rutter from Karlsruhe Institute of Technology,
who found the best results for two of the six contest graphs.

Fig. 3 shows a challenge graph with 35 nodes and 44 edges and a very bad initial
layout; the best manually obtained result improved the area from 768 to 70, and the best
solution we know for this graph has an area of 49. Fig. 4 shows a larger challenge graph
with 59 nodes and 87 edges and a better initial layout; here the best submitted solution
improved the area from 600 to 315.

Acknowledgments. The contest committee would like to thank the generous sponsors
of the symposium and all the contestants for their participation. Further details including
winning drawings and challenge graphs can be found at the contest website:

http://www.graphdrawing.de/contest2013/results.html

http://www.graphdrawing.de/contest2013/results.html
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Abstract. The GLuskap software package for creating and editing graphs
in 3D has been extended to include 3D printing of graphs by exporting the
graph to a common file format capable of being printed on most commer-
cially available 3D printers.

The GLuskap software package [1] allows for the creation and editing of graphs in
three dimensions (3D). A new plugin for GLuskap allows graphs to be exported
as an STL (stereolithography) file. The STL file can then be sent to a 3D printer
to create a physical representation of the graph; for example, the graph K7

drawn orthogonally with bends is shown in Fig. 1. Printed physical models of
2D layouts can also be constructed.

Fig. 1. A graph in GLuskap and a physical 3D print of that graph

The Export to STL Plugin
Most graph drawing software, including GLuskap, rely on OpenGL, Qt, or Di-
rectX to ultimately display a graph on some device. Although such graphics-
based models are very effective for interactive use, they do not produce 3D mod-
els appropriate for printing. The only option for 3D graph printing previously,
was to completely start from scratch using non-trivial 3D modeling software
tools such as Blender, 3DStudioMax, AutoCAD, etc.

� Research supported by N.S.E.R.C.
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GLuskap’s Graph to STL plugin generates a set of geometries that expresses
the currently loaded graph. Vertices are represented by tesselated icosahedrons
and edges are represented by 12-sided cylinders. The plugin parses the graph,
creates the geometry, and saves it out to the specified directory as a 3D model
in STL format. Options are available for overriding the vertex and edge sizes of
the graph to assist in creating a printable model. The model in STL format may
be directly input into printer software or imported into modeling software for
post-processing. Since this conversion feature is written in python as a plugin
[2] for GLuskap, users with different needs can easily tailor the code as required
without recompiling the source code.

Printing Considerations
Considerations must be taken when attempting to print graphs. Depending on
the size of the desired 3D print, vertex and edge sizes may need to be scaled
to ensure that the graph is sufficiently rigid to be held together during printing
and handling.

Printers that use an additive process and build the model up layer by layer
without having a supporting substrate may require the use of supports to ensure
a rigid print. Supports can later be removed or left in place to reduce the chance
that later handling will break the physical print. The ideal orientation when
printing a graph depends on the nature of the graph and the type of 3D printer
being used. For most graphs, the printer software is used to rotate the model of
the graph so that an appropriate side of the graph is aligned with the printing
platform.

Graph Drawing
Although there are many theoretical results on 3D graph drawing, the visual-
ization effectiveness of such drawings has certainly been questioned. Previously,
the display of 3D drawings was hindered by its reliance on projection onto a
2D display device, at best with active or passive shutter glasses for stereoscopic
viewing. The advent of inexpensive, commercial 3D printers removes a major
constraint – physical models of graphs can now be produced.
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In [1] we proposed Optical Graph Recognition (OGR) as the reversal of graph
drawing. A drawing transforms the topological structure of a graph into a graph-
ical representation. Primarily, it maps vertices to points and displays them by
icons, and it maps edges to Jordan curves connecting the endpoints. In reverse,
OGR transforms the digital image of a drawn graph into its topological structure.
The recognition process is divided into the four phases preprocessing, segmenta-
tion, topology recognition, and postprocessing. In the preprocessing phase OGR
detects which pixels of an image are part of the graph (graph pixels) and which
pixels are not. The segmentation phase recognizes the vertices of the graph and
classifies the graph pixels as vertex and edge pixels. The topology recognition
phase first recognizes edge sections. Edge crossings divide edges into edge sec-
tions, i. e., the regions between crossings and vertices. The edge sections are
merged into edges in the most probable way based on direction vectors. The
postprocessing phase concludes OGR with tasks like converting the recognized
graph into different file formats, like GraphML or adding coordinates to the
vertices and edges, such that the recognized graph resembles the input graph.

Our OGR Java implementation OGRup is able to recognize drawings of undi-
rected graphs with the following properties: Vertices are drawn as filled objects
such as circles, edges are drawn as contiguous curves of a width significantly
smaller than the diameter of the vertices, and they should exactly end at the
vertices. Our desktop version of OGRup is of limited use, because it needs a
camera as a second device to take a picture of the graph.

In contrast, the new Android version of OGRup needs only a single device.
The picture of the graph, e. g., drawn on a whiteboard, is directly taken with the
camera of the mobile device at hand. The part of the image that contains the
graph can be selected via touch gestures, as seen in Fig. 1. Finally, the graph
is recognized and used for further processing. It can be shared, visualized and
edited on the mobile device, e. g., as proposed by Da Lozzo et al. [2].

For the Android version, we had to re-implement parts of the graph recog-
nition algorithm and we developed a GUI that fits the capabilities of a mobile
device. Whereas the computation time is acceptable in the desktop version of
OGRup (≈ 10 seconds for high resolution images), the computation time be-
comes unaccetably long in the Android version due to hardware limitations. The
established digital image processing library OpenCV [3] helped to improve the
computation time of OGRup. To circumvent further performance issues, and to
make OGRup available for different mobile operating system, like iOS or Win-
dows Phone, we plan a web service implementation of OGRup.
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Fig. 1. Two screenshots of OGRup on an Android tablet
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Abstract. VisGraph is an open-source JavaScript library for the real-
time graph visualization of dynamic data in a browser. Its characteristics
– such as the high portability and the compatibility with multiple data
formats – make it suitable for a broad range of research applications.

1 Overview of VisGraph

VisGraph has been created to fill a niche in the graph visualization market
for research purposes: the need of a software for graph visualization that is
comprehensive enough for a standard non-professional user and does not require
any complex installation. Also, VisGraph has two key features: high portability
(because it is browser independent) and possibility to work with dynamic data
(for instance, coming from a sensor network or from a server). Their combination
results in a key feature of VisGraph: a real-time graph representing dynamic data
can be shared with a multitude of other users who work on different platforms,
including smartphones and tablets. This unique characteristic of VisGraph make
it particularly useful in a number of research applications ranging from real-time
social network analysis to logistics.

It is crucial to emphasise that VisGraph is a lightweight browser-based library
and hence it is not competing with desktop/server-based graph visualization
softwares, such as Graphviz [1], Gephi [2], or WiGis [3], just to name a few.
Other web-based tools (like D3.js [4], Springy [5], Dracula Graph Library [6], or
Arbor [7]) have served as inspiration for VisGraph which, as a result, is more
customizible and easier to use than its predecessors. Figure 1 shows a qualitative
comparison of VisGraph with the aforementioned graph visualization softwares.

VisGraph supports multiple data formats which are all eventually translated
into the native JSON format, which consists of two arrays (one for the nodes and
the other for the edges) containing information regarding the topology and style
of the graph; in the current version, Google DataTable and the DOT language
are fully supported. As for the graph layout, VisGraph uses a force-directed
algorithm where nodes try to keep a minimum distance from each other. The
user can interact with the graphs by dragging the nodes and customise them by
changing the colour and size of the elements etc; graphs of up to a few hundreds
of nodes can be smoothly rendered by using HTML5 Canvas elements. VisGraph
is part of a JavaScript library called vis.js [8], which includes other visualization
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Fig. 1. Qualitative comparison of VisGraph with other graph visualization softwares

tools as well as some components to manipulate dynamic data, which VisGraph
uses. The whole vis.js library (including VisGraph) requires no installation and
it can be easily included in a web page by adding a single line of code.

Several additional features of VisGraph are under development, such as: i) the
option to export the graphs to the formats supported by VisGraph; ii) the ad-
dition of clustering functionalities and further layout mechanisms (which will
be particularly useful when graphs are visualized on portable devices); iii) the
possibility for the user to edit the graph on the fly by creating and removing
attributes without modifying the data set.
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The metro-line crossing minimization problem (MLCM), proposed by Benkert et al.
[3], is to draw multiple lines on a fixed drawing of an underlying graph that models
stations and rail tracks, so that the number of crossings of lines is minimum. The input
of MLCM is defined by an underlying graph G and a line setL on G. This paper studies
a variation of MLCM, called MLCM-P, with the restriction that line terminals have to
be drawn at a verge of a station (periphery condition), which is known to be NP-hard
even when its underlying graphs are paths [1]. In this paper we focus on such cases of
MLCM-P, which we call MLCM-P PATH, and present the following three results.

I. Planarity in MLCM-P PATH. Our first result is a linear-time algorithm for deciding
whether a given instance of MLCM-P PATH has a layout without crossings. This is
in a contrast with the NP-hardness of MLCM-P PATH. Recently, Fink and Pupyrev
[4] independently gave an algorithm for the same problem when a given graph is not
necessarily a path but any planar graph. However, its running time is O(|E(G)||L|2).
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Fig. 1. (a) A layout of MLCM-P without crossings, (b)
a circular drawing, (c) a transformation into a half-circle
drawing, (d) a drawing inside a circle

We now describe the outline
of our algorithm. First, we re-
duce our problem to the fol-
lowing PLANARITY INSIDE
CIRCLE (PIC) problem in lin-
ear time. As the second step,
we reduce PIC to the usual pla-
narity testing. In the PIC prob-
lem, we are given a graph H =
(V, E) and a bijection δ : V →
{1, 2, . . . , |V |}. Then, we want to
place the vertices of V on a sin-
gle line in the order defined by
δ and draw the edges in E and
a circle passing through δ−1(1)
and containing all the other ver-
tices, so that all the edges in E
are drawn within the circle without crossings. If such a drawing exists, the output is yes;
otherwise, the output is no. The reduction at the first step is illustrated in Fig. 1. At the

� For more details, refer to the full version [6].
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second step, to force the drawing to reside in a circle, we use K4, which is a minimal
non-outerplanar graph.

II. An Exact Exponential Algorithm for MLCM-P PATH. The second result is an
O∗(2|L|)-time exact algorithm for MLCM-P PATH.1 A naive approach is to compute
the number of crossings for all possible layouts of lines in L by using an algorithm
of Bekos et al. [2], and then to output an optimal one among them. Since the number
of different assignments of two ends (to top or bottom) of a line is four, this approach
yields an algorithm running in O∗(4|L|) time. To improve the running time, we look at
all possible assignments of left ends of lines and greedily determine the assignments of
right ends for each assignment of left ends so that the number of crossings is minimum.
A lemma guarantees the correctness.

III. Fixed-Parameter Tractability for MLCM-P PATH. The third result is an O∗(2k)-
time exact algorithm for MLCM-P PATH, where k is the multiplicity of lines, that is,
the maximum number of lines on an edge of an underlying graph. Our result partially
answers a question by Nöllenburg [5]. A recent paper by Fink and Pupyrev [4] indepen-
dently gave an O∗((k!)2)-time algorithm for the same problem with the same parameter.
Thus, our algorithm is superior in its running time.

A naive approach performs dynamic programming along the path, and at each vertex
of the path we look at all possible pairs of permutations of lines. Since the multiplicity
is k, this leads to an O∗((k!)2)-time algorithm. To improve the running time, we exploit
several non-trivial properties of optimal solutions. For example, the algorithm by Bekos
et al. [2] implies that among the optimal layouts there exists one that satisfies the fol-
lowing condition: If two lines l = [i, j] and l′ = [i′, j′] ( j < j′) cross, then the crossing
occurs on edge ( j−1, j) of the path. Such properties reduce the number of permutations
we should look at, and yield an O∗(2k)-time algorithm.
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Introduction. A pseudoline is formed from a line by stretching the plane without tear-
ing: it is the image of a line under a homeomorphism of the plane [13]. In arrangements
of pseudolines, pairs of pseudolines intersect at most once and cross at their intersec-
tions. Pseudoline arrangements can be used to model sorting networks [1], tilings of
convex polygons by rhombi [4], and graphs that have distance-preserving embeddings
into hypercubes [6]. They are also closely related to oriented matroids [11]. We consider
here the visualization of arrangements using well-shaped curves.

Primarily, we study weak outerplanar pseudoline arrangements. An arrangement is
weak if it does not necessarily have a crossing for every pair of pseudolines [12], and
outerplanar if every crossing is part of an unbounded face of the arrangement. We
show that these arrangements can be drawn with all curves convex, either as polygonal
chains with at most two bends per pseudoline or as semicircles above a line. Arbitrary
pseudolines can also be drawn as convex curves, but may require linearly many bends.

Related Work. Several results related to the visualization of pseudoline arrangements
are known. In wiring diagrams, pseudolines are drawn on parallel horizontal lines, with
crossings on short line segments that connect pairs of horizontal lines [10]. The graphs
of arrangements have drawings in small grids [8] and the dual graphs of weak arrange-
ments have drawings in which each bounded face is centrally symmetric [5]. The pseu-
doline arrangements in which each pseudoline is a translated quadrant can be used to
visualize learning spaces representing the states of a human learner [7]. Researchers
in graph drawing have also studied force-directed methods for schematizing systems of
curves representing metro maps by replacing each curve by a spline; these curves are
not necessarily pseudolines, but they typically have few crossings [9].

Results. Below we state our results for outerplanar and arbitrary arrangements.

Theorem 1. Every weak outerplanar pseudoline arrangement may be represented by
a set of chords of a circle.

Corollary 1. Every weak outerplanar pseudoline arrangement may be represented by
lines in the hyperbolic plane, or by semicircles with endpoints on a common line.

� Parts of this work originated at Dagstuhl seminar 13151, Drawing Graphs and Maps with
Curves. D.E. was supported in part by the National Science Foundation under grants 0830403
and 1217322, and by the Office of Naval Research under MURI grant N00014-08-1-1015.
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This result complements the fact that a weak arrangement with no 3-clique can always
be represented by hyperbolic lines, regardless of outerplanarity [2].

Corollary 2. Every weak outerplanar pseudoline arrangement may be represented by
convex polygonal chains with only two bends.

Theorem 2. Every n-element pseudoline arrangement can be drawn with convex poly-
lines, each of complexity at most n.

For smooth curves composed of multiple circular arcs and straight line segments, Bekos
et al. [3] defined the curve complexity to be the maximum number of arcs and segments
in a single curve. By replacing each bend of the above result by a small circular arc,
one obtains a smooth convex representation of the arrangement with curve complexity
O(n). We can show that these bounds are optimal.

Theorem 3. There exist simple arrangements of n pseudolines that, when represented
by polygonal chains require some pseudolines to have Ω(n) bends.

Theorem 4. There exist simple arrangements of n pseudolines that, when represented
by smooth piecewise-circular curves require some curves to have Ω(n) arcs.
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The density of a graph G = (V,E) is the number of edges |E| as a function
of the number of vertices n = |V |. It is an important graph parameter, and is
often used to exclude a graph from a particular class. We survey the density
of relevant subclasses of 1-planar graphs and establish some new and improved
bounds. A graph is 1-planar if it can be drawn in the plane such that each edge
is crossed at most once.

We consider simple and connected graphs. A graph G ∈ G is maximal for a
particular class of graphs G if the addition of any edge e implies G+ e �∈ G. Let
M(G, n) and m(G, n) denote the maximum and minimum numbers of edges of a
maximal n-vertex graph in G. Graphs G ∈ G with density M(G, |G|) (m(G, |G|))
are the densest (sparsest maximal) graphs of G. Thus M(G, n) is an upper and
m(G, n) a lower bound. It is well-known that M(G, n) and m(G, n) coincide for
planar, bipartite planar, and outerplanar graphs with 3n−6, 2n−4, and 2n−3,
respectively. For 1-planar graphs the upper and lower bounds diverge.M(G, n) =
4n − 8 was proved first of all by Bodendiek et al. [3] and was rediscovered
several times. Surprisingly, there are much sparser maximal 1-planar graphs
that are even sparser than maximum planar graphs. In [4] it was proved that
28
13n−O(1) ≤ m(G, n) ≤ 45

17n−O(1).
We consider the density of maximal graphs of subclasses of 1-planar graphs,

with emphasis on sparse graphs. Our focus is on 3-connected [1], bipartite [7,8],
and outer 1-planar [2] graphs. An outer 1-planar graph is drawn with all vertices
in the outer face. Moreover, we restrict the drawings by fixed rotation systems,
which specify the cyclic ordering of the edges at each vertex, and then may allow
crossings of incident edges, which are generally excluded for 1-planarity.

Theorem 1. For the classes of graphs G from Table 1, the stated upper bound
on M(G, n) on the density is tight. The minimum density m(G, n) ranges between
the functions in column “lower example” and “lower bound m”.

3-connected. For 3-connected 1-planar graphs G the upper bound is obvious.
The lower boundm(G, n) = 10

3 n+
20
3 is tight. It improves the example of 3.625n+

O(1) from [6] and disproves their conjecture of 3.6n+O(1).
A graph G ∈ G consists of non-planar K4s and a planar remainder, which

is triangulated such that two adjacent triangles imply a K4. The removal of all
pairs of crossing edges from G leaves a planar graph with t triangles and q quad-
rangles and the relation t ≤ q, which together with Euler’s formula yields the

� Research partially supported by the German Science Foundation, DFG,
Grant Br-835/18-1
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Table 1. Upper and lower bounds on the number of edges in maximal graphs

upper bound M lower example lower bound m

2-connected 4n− 8 [3] 45
17
n− 84

17
[4] 28

13
n− 10

3
[4]

3-connected 4n− 8 [3] 10
3
n− 20

3
10
3
n− 20

3

straight-line 4n− 9 [5] 8
3
n− 11

3
28
13
n− 10

3
[4]

fixed rotation, 2-connected 4n− 8 [3] 7
3
n− 3 [4] 21

10
n− 10

3
[4]

fixed rotation, intersect incident 4n− 8 [3] 3
2
n+ 1 5

4
n

bipartite 3n− 8 [7] n− 1 n− 1

bipartite, 2-connected 3n− 8 [7] 2n− 4 n

outer 1-planar 5
2
n− 4 11

5
n− 18

5
11
5
n− 18

5

bound for m(G, n). The bound is achieved by a recursive construction of planar
K4s surrounded by non-planar K4s surrounded by planar K4s.

Outer 1-planar. A maximal outer 1-planar graph G is composed of planar K3s
and non-planar K4s [2], such that two K3s are not adjacent. Removing the pairs
of crossing edges from the K4s results in an outerplanar graph whose dual is a
tree with vertices of degree 3 and 4. Each vertex of degree 3 adds one vertex
and two edges, and each vertex of degree 4 adds two vertices and five edges to
the density of G. Maximizing the degree-4 vertices yields M(G, n) = 5

2n− 4 and
minimizing yields m(G, n) = 11

5 n− 18
5 . Both bounds are tight.
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Fig. 1. A ribbon representa-
tion of a flow in a small net-
work

Representing flows in networks is a challenging task:
different flows usually traverse the same edges; flows may
split and join again along their routes; and some flows may
go so far as to traverse the same nodes and edges several
times. Traditional 2D visualizations exploit drawing tech-
niques like parallel multicolor curves to address these chal-
lenges and tell apart the different flows, but they tend to ex-
hibit readability problems, for example when lots of flows
traverse a single edge.

We investigate a novel 2.5D visualization metaphor,
conceived to clearly distinguish flows in networks. Instead
of drawing flows as parallel curves on the plane, we use the third dimension to stack
the flows one above the other. Namely, in a ribbon representation each node of the net-
work is represented by a pin, and each flow is represented by a ribbon (a long stripe)
winding around the pins corresponding to the nodes traversed by the flow [1]. Pins are
distributed on a flat surface, yielding a 2.5D representation rather than a pure 3D one.

Fig. 2. A ribbon representa-
tion of a cycling flow

The potentialities of the ribbon representation with re-
spect to a traditional 2D visualization are manifold: the or-
der in which ribbons are stacked, as well as their thick-
ness, may correspond to extra information associated with
the ribbons themselves. Even self-intersecting flows are
clearly representable (see Fig. 2). Furthermore, colors or
shades of grey are not strictly needed anymore to tell the
flows apart and can be therefore used with different seman-

tics. Finally, when the thickness of the ribbon allows it, labels may be accommodated
in the ribbons themselves.

On the other hand, we expect the ribbon representation to have some intrinsic lim-
itations: navigation in a 3D scene may be less intuitive for the user than panning and
zooming a 2D representation. Also, when the network is big, occlusions among pins
and ribbons tend to hamper a clear perception of the 3D environment.

In order to explore both the potentialities and the limitations of using the ribbon
representation to depict flows in a network, compared with a traditional 2D drawing
and interface, we realized a tool, called BGPlay3D [7], which extends with a 3D inter-
face the functionalities of the well-known BGPlay tool [6]. We took strong advantage
of the modularity of the BGPlay.js JavaScript open-source framework, which offers
the basis for several network visualization tools [4,3,5], including the latest release of
BGPlay: starting from the latter, we replaced the existing GraphView module, responsi-
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ble of managing events in the canvas area of the interface, with a GraphView3D module
that exploits the three.js lightweight cross-browser JavaScript API [8] to create and dis-
play animated 3D computer graphics on a Web browser (three.js, in turn, relies on the
WebGL JavaScript API for rendering interactive 3D graphics [9]).

Fig. 3. The interface of BGPlay3D

The interface of BGPlay3D, like that of
BGPlay, is vertically split into three panels: an in-
formation panel on the top, the main visualization
window in the middle, and a control timeline at
the bottom (see Fig. 3). In the visualization win-
dow the activity graph evolves based on the cur-
rent event. Namely, new flows appear, old flows
disappear, and some flow changes its route. Like
in the 2D interface, appearances are handled by
flashing the new ribbons. Flows that disappear are
represented by flashing the corresponding ribbons
and then letting them drop on the floor. Changes
in the route of a flow have a special representation
in 3D: rather than morphing the old route into the
new one as it happened in the 2D interface, we let
the old ribbon disappear towards the destination
just as if it was a cut film, while the new ribbon
originates from the source and moves towards the
destination along the new route. A prototype of
BGPlay3D, offering a promising alternative to BGPlay, is available online [2].

Several further directions of research remain open. For example, BGPlay3D uses
the same algorithm as BGPlay for laying out the pins on the plane and no specialized
algorithm has been developed to take into account the 3D nature of the interface. Also,
the position of the camera is chosen by the user, and no attempt has been made to offer
a point of view which is more convenient for understanding the current events.
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Abstract. Ravenbrook Chart is a newly-available library which imple-
ments layout and interactive display of large, complex graphs. It provides
spring-embedded, layered and circular layouts. It has been deployed in
mature applications and a free web service uses it to visualise graphs. It
is now available free of charge as a permissively licensed library.

Between 2001 and 2013, the authors developed two desktop applications whose
requirements included interactive graph layout and display. We assessed several
commercial graphing products, and indeed used two such libraries in production
versions at different times. This approach was abandoned for commercial and
technical reasons: no third-party tool met all our requirements for reliability,
performance, and flexible interactivity. In 2009 work began on a new layout
and display library, Ravenbrook Chart. Its implementation was led by customer
requirements and it is now used for visualisation in both applications. More
recent uses of this library include Chart Server and Chart Desktop both of
which, as described here, are now available for use free of charge.

Chart implements three layout types: spring-embedded (see Fig. 1), hierarchi-
cal, and circular. The time complexities of the algorithms are O(v log v+ e log e)
for the circular layout, O((v + e)1.5) for hierarchical, and O(v2 log v) for spring-
embedded, where v and e are the numbers of nodes and edges respectively.

Chart’s visualisation system supports multiple graphs each of which can be
shown on any number of displays. Displays can be “aligned” with each other,
so that they automatically pan and zoom in tandem. The library supports stan-
dard controls over node and edge appearance, UTF-8 strings throughout, a wide
range of callbacks, dynamic context-sensitive menus, incremental changes to the
graph, retrieval and setting of node and edge-bend locations (per display), and
object hiding. It is designed for high data thoughput, full thread-safety, and
sophisticated exception handling with logging, restarts, and detailed backtraces.

Chart was originally created for two custom desktop tools. The Critical Net-
work Analysis Tool is a U.S. Government off-the-shelf application for processing,
visualising and analysing large social networks. It includes a large suite of an-
alytical tools based on social network theory, including many numerical and
visualisation tools independent of graph drawing. WorldView is used to con-
struct, analyse, and compare “cognitive maps”, identifying and contrasting core
beliefs of individuals and groups based on texts such as interviews and speeches.
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Fig. 1. Spring-embedded layout of sample social network: 1513 nodes, 3359 edges. The
component on the left has 1149 nodes and 2959 edges. The two most-connected nodes
have degrees d of 342 and 131; 37 nodes have d > 10.

Chart server (http://chart.ravenbrook.com) is a free web service for con-
verting graph specifications into images in either PNG or PDF format. Its
straightforward API supports GET and POST requests, all three layouts, and a
rich control over node and edge appearance.

Chart Desktop is a freely-available version of the Chart library, distributed as
a Windows DLL. Much of the Chart functionality is not exposed through the
API in the initial Chart Desktop release; the focus has been on careful, compre-
hensive documentation and testing. The library is accompanied by a C header
file, a high-level Python interface, and examples. It is available free of charge
under the very permissive “BSD 2-Clause” license which in particular allows
deployment in closed-source commercial applications, and it can be downloaded
from: http://chart.ravenbrook.com/downloads.

The development of Chart has always been driven by end-user requirements,
using a highly responsive evolutionary delivery process. We now seek new ap-
plications, users and directions for the library. Potential improvements include
planar and 3D spring-embedded layouts, improved graphic quality, and further
work on performance. The Chart Desktop API will gradually be enriched to
support more of Chart’s functionality, possibly supported by crowd-funding.
Priorities for all this work will be set by users.

We are very pleased to offer up our work for public use. Chart Desktop differs
from other available components in being a library rather than an application,
in being flexibly licensed, and in being developed by a small company which can
be highly responsive to users’ needs.
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1 Embedding Prismatoids on the Grid

The question if every polyhedral graph can be embedded as a convex polyhedron
on a polynomially sized 3d grid is one of the main open problems in lower
dimensional polytope theory. Currently, the best known algorithm requires a
grid of size O(27.21n), for n being the number of the vertices [2]. We show that
prismatoids (polytopes, whose graphs are coming from triangulated polygonal
annuli) can be embedded as convex polyhedra on a grid of size O(n4)×O(n3)×1.

α

β

−−→
PQ/(200n2)

−→
RQ/(200n2)

P

R

Q

Fig. 1 Fig. 2

We call the triangles sharing an edge with the “bottom face” red and all other
triangles blue. As a first step we merge consecutive red (blue) triangles to obtain
a “reduced” graph of the prismatoid with 2k vertices, for some k ≤ n/2. We then
embed the reduced graph as a polyhedron by drawing the bottom face as a convex
k-gon in the xy-plane. The top face is realized as a k-gon inscribed in the bottom
face, lifted to the z = 1 plane. This needs a grid of size O(n2)×O(n) × 1 [1].

We continue by reverting the initial contractions geometrically. To do so, we
have to substitute edges by polygonal (convex) chains (Fig. 1). To carry out this
construction we scale the whole embedding by a factor of 200n2. This implies that

for every triangle PQR the vectors
−−→
PQ/(200n2) and

−−→
RQ/(200n2) are integral

(Fig. 2). Thus, they define a basis for a grid contained in Z2 that is just large
enough to add the missing chains back.

Note that we have to guarantee (for convexity) as additional constraint that
for every edge separating a red and a blue triangle, the incident angle in the red

� This work was funded by the German Research Foundation (DFG) under grant
SCHU 2458/2-1.
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triangle is smaller than the incident angle in the blue triangle (β < α, Fig. 2).
This can be achieved by carefully choosing the slope of the first segment that
defines the angle inside the blue triangle.

2 Grid Embeddings of the Platonic Solids

We want to realize the Platonic solids as (combinatorially equivalent) convex
polyhedra on a small grid. The tetrahedron, the cube and the octahedron have
all a natural realization on the 1 × 1 × 1, resp., on the 1 × 1 × 2 grid. A first
nontrivial case is the icosahedron. Its graph can be embedded as a polyhedron
using the coordinates {(0,±2,±1), ((±2,±1, 0), (±1, 0,±2)}. It is possible to
reduce the grid size a bit further on one axis. Embedding the dodecahedron is
more challenging. The best known realization so far requires a 8 × 6 × 4 grid
and is due to Francisco Santos [2]. We did a computer search to find smaller
realizations. We had to make some assumptions to search efficiently. First, we
fixed the grid size. Then we assumed that one of the faces lies in the xy-plane.

The coordinates of the vertices are:

±{(2, 2, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2),
(2,−1, 0), (2, 0,−1), (−1, 2, 0),
(0, 2,−1), (0,−1, 2), (−1, 0, 2)}

Fig. 3. The smallest embedding of the dodecahedral graph as a convex polyhedron

We tried next to locate the remaining vertices face by face. The combina-
torial structure of the dodecahedral graph helped us to limit the search space.
In particular, most vertices are restricted to lie on a plane determined by pre-
vious choices. We were able to compute a realization on the 4 × 4 × 4 grid as
shown in Fig. 3. This result was found within seconds. We scanned through 4.367
choices for the first face. Our experiments have proven that this is the smallest
realization in terms of minimizing the largest axis of the grid. Francisco Santos
found another solution that reduces one of the axis at the expanse of the others,
yielding a 3× 11× 11 grid embedding.
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Motivation

In Graph Drawing and related fields, a large number of graph sets has been
collected over years, comprising both real world graphs from application areas
as well as generated graphs with specific properties. Each experimental paper
makes use of some of those sets or adds a new set of graphs to the existing
ones. Recently, a project was started to collect those graphs in a comprehensive
database [1] to make them publicly available over a common and easy to use
interface for further benchmark experiments and for analysis.

For evaluations of experimental data it is of interest to know the characteristics
of the benchmark set, e.g. described in terms of a set of graph properties. Such
characterics show that the set covers a specific range of properties, how the
graphs are distributed over this range, and how the set differs from or overlaps
with other sets. While the graph archive provides graphs plus several graph
properties, it does not allow to analyze the distribution of properties within
benchmark sets, or to compare those properties among different sets. We propose
a web-based service that provides a visualization of graph properties, the Graph
Landscape, and thus allows a visual analysis of benchmark sets.

Use-cases involve analyzing the properties of a local graph set in the context
of one or more well-established benchmark sets. This can in particular be helpful
for new sets to describe the difference and overlap in the graph characteristics
compared to existing sets. As there is a variety of graph properties, but graph
sets are usually generated by specifying a range for only a few of those properties,
a feedback on the characteristics for the generated set and the distribution of
property values will often be helpful. It might also help to improve interpretation
of experimental results and to detect the shortcomings of graph sets.

Implementation

The project implementation consists of two main parts, the computational anal-
ysis of graphs and the visualization of the results for interactive analysis. The
Graph Landscape visualization is implemented as a web-based service. The web-
interface allows the user to select visualization views, and graphs as well as graph
properties to populate the views for analysis, see Fig.1.

� K. Klein was partly supported by ARC grant H2814 A4421, Tom Sawyer Software,
and NewtonGreen Software.
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Fig. 1. User interface of the system during graph set comparison. Basic properties of
the graph sets are presented in a side-by-side comparison, while user-selected properties
are shown in the current main view.

Properties for graph sets available from the graph archive are precomputed,
and can be extended by further analysis of other graph sources, and by uploading
graphs to our server. Computation of the graph properties on the server is done
by an extensible analysis engine, currently implemented as a stand-alone software
using the OGDF library [2]. The handling of properties in the system is kept
flexible to allow easy addition of new properties, only a few basic properties as
e.g. size or connectivity are always mapped to small standard views to allow a
quick overview on the graph set characteristics.

We aim at transparently connecting to the graph archive to provide up-to-date
information and to allow users to retrieve or store graphs using our interface.

Remarks. We see our project as an extension to the graph archive project, with
the goal to provide an easily accessible visualization that can be used as a first
step in the design or analysis of benchmark sets. Our web service is still under
development, but we think it should be presented to the community at this stage
to allow valuable feedback and suggestions. We will have a prototype available
at the Graph Drawing conference to demonstrate the system and have users try
it. The feedback will then be used to guide further development decisions.
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The visualization and analysis of biological systems and data as networks has
become a hallmark of modern biology. Relationships between biological entities;
individuals, proteins, genes, RNAs etc., can all be better understood at one level
or another when modelled as networks. As the size of these data has grown, so
has the need for better tools and algorithms to deal with the complex issue of
network visualization and analysis. We describe application and evaluation of a
state-of-the-art graph layout method for use within biological workflows.

BioLayout Express3D is a powerful tool specifically designed for visualization,
clustering, exploration, and analysis of very large networks in 2D and 3D space
derived primarily from biological data [1]. In particular, its development has been
driven by the need to analyse gene expression data, which typically consists of
10’s of thousands of rows of quantitative gene expression measurements. First,
the tool calculates a correlation matrix and then builds relationship networks,
where nodes represent genes and edges expression similarities above a given r
threshold. The resulting graphs can be very large e.g. 20-30,000 nodes, 5 million
edges and possess a high degree of local structure with modules of co-expressed
genes forming distinct cliques of high connectivity within the networks. BioLay-
out has for a long time used a modified CPU/GPU parallelised version of the
Fruchterman-Reingold (FR) algorithm for graph layout, and visualization of the
graphs in 3D offers distinct advantages when viewing such complex graph struc-
tures. MCL clustering is used to divide the graph into coexpression clusters for
further analysis. Whilst the existing FR implementation is capable and in many
ways adequate at laying out these types of graph, the results for other graphs
derived from biological data are less satisfactory, in particular DNA assembly
graphs, which are inherently different in structure. The overlapping nature of
DNA fragments when joined based on read-similarity form ’chain graphs’. Lay-
out using the FR algorithm places nodes efficiently on a local scale, but a lack
of global awareness results in a knot-like graph structure (Figure 1A) inhibiting
the efficient visualisation of the overall assembly.

The development of scalable approaches for high-quality layout computa-
tion is ongoing research in the graph drawing community. While successful re-
sults like multilevel methods are already established methods in graph drawing,
they have as yet been little applied in the field of biology. In order to investi-
gate their potential to improve the visual analysis of biological networks as de-
scribed above, we integrated the fast multipole multilevel method (FMMM) in
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Fig. 1. Graph-based visualization of RNA-seq data for the gene BUB1. Nodes (2,886)
represent individual 100 bp DNA reads and edges (132,764) the overlap between them.
Graphs have appearance of a linear ’chain’ reflecting the overlapping DNA sequences.
(A) layout using our standard FR algorithm (B) layout using our 3D implementation
of the FMMM algorithm (C) a close up of the graph shows the ’corkscrew’ layout of
the individual nodes.

BioLayout Express3D such that the method can be used as part of the usual
biological workflow. FMMM is available in OGDF [2], but this implementation
cannot directly be used by Java tools and is also restricted to 2D drawings. We
converted this implementation to Java, and extended the approach to compute
3D layouts.

We first tested this implementation of FMMM on a variety of graph types,
like classic example graphs used by the graph drawing community, and were very
pleased with the 3D layouts; the structure of wrapped networks being immedi-
ately obvious when visualised in 3D. After this testing, we applied it to graphs
derived from biological data. In the case of graphs derived from correlation ma-
trices the FMMM layout is quite different with major topological structures
being teased apart, but the advantages of this visualisation are at this stage
uncertain. The real gain comes with the DNA assembly graphs where when laid
out by FR twist and turn to become knotted structures (Fig. 1A). However,
when the FMMM algorithm is used the graphs are relatively linear (Fig. 1B),
showing an interesting ’corkscrew’ appearance at the node level (Fig. 1C). In
this way the structure of the overall assembly is far more apparent and useful in
cases of splice variation or other graphs structures of interest.

In summary, we are delighted in the results of this implementation, which
will be available soon in the next version of BioLayout (www.biolayout.org). We
would like to further improve the qualitative performance for particular graphs,
and investigate and discuss the potential of other methods for use with large
biological networks in 3D. We believe that our tool will also prove useful for
graph drawing researchers to visualise outputs of other scalable layout methods,
in particular in a 3D setting.
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Abstract. Thomassen [1] proved that plane cubic graphs are area-universal, i.e.,
for a plane cubic graph G with prescribed face areas there exists a straight-line
(re-)drawing G′ that realizes these areas. Thomassen uses induction and proves
the existence of a degenerate drawing where distinct vertices may be placed at
the same position. We show that plane cubic graphs are area-universal using the
air-pressure method. In [2,3], a similar method has been applied in the context
of area-universality of rectangular layouts. With the poster, we give the idea of
how the method can be adapted for other classes of plane graphs, in particular for
plane cubic graphs.

The Air-Pressure Method

Let G be a plane graph and a : F ′ → R+ a function that prescribes an area for each
bounded face. Assume that the outer face of G is a k-gon and fix a convex k-gon Ω
whose area is equal to the sum of the prescribed areas. We consider drawings of G such
that the outer vertices of G are represented by the corners of Ω.

Let D be a drawing of G. For a face fi let m(i) be the area of fi in D and let a(i) be
the prescribed area. The quotient p(i) := a(i)

m(i) of these two values will be interpreted
as the pressure in the face. Face fi is pushing against an incident vertex v with a force
f(v, i) that depends on the pressure, this force is defined as f(v, i) := p(i) · ns||s||,
where s is the segment connecting the two neighbors of v incident to fi and ns is
the normal vector of s pointing out of fi at v. The effective force acting on vertex v
is f(v) :=

∑
i:v∈fi

f(v, i). The intuition is that shifting vertices in the direction of
the effective force yields a better balance of pressure in the faces and hence a better
approximation of the prescribed areas.

• A face fi is in balance if p(i) = 1, i.e., the prescribed area is realized in the
drawing.

• A vertex v is in balance if f(v) = 0, i.e., the effective force acting on v is neutral.

• A drawing is a deadlock if all vertices are in balance although there are faces fi
with p(i) �= 1, (Fig. 1 shows an example).

• The entropy of a drawing is E :=
∑

i−a(i) log p(i).
Fact: For all drawings E ≥ 0, and E = 0 if and only if all faces are in balance.

An improving shift is a shift of an unbalanced vertex v into a new position v + d such
that (a) the new drawing is planar and nondegenerate, and (b) the entropy increases with
the shift.
� Partially supported by ESF EuroGIGA project GraDR.
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Suppose that whenever there is an unbalanced vertex v there exists a d such that
v → v+d is an improving shift. Then, given any initial drawing D0, there is a sequence
of improving shifts that yields a converging sequence of drawings (Di)i such that in
the limit D all vertices are in balance. The drawing D is either a deadlock or a drawing
realizing the prescribed areas.

Plane Cubic Graphs

In the case of plane cubic graphs we can show that iterated shifting yields a limit draw-
ing D realizing the prescribed areas. The result is proved with the following two claims:

1. All faces are in balance if and only if all vertices are in balance, i.e., there is no
deadlock.

2. If there is an unbalanced vertex v, then there is a d such that v → v + d is an
improving shift.

p1 p1

p1

p2 p2

p2

p3

Fig. 1. Let x and 1 be the side length of the
inner and outer regular triangle. If pressures
satisfy p1 = (1− x) p2 + x p3, then this is a
deadlock.

Fig. 2. This cubic graph is area-universal, it
admits no deadlock.

Conclusion

We reprove area-universality for plane cubic graphs by using the air-pressure paradigm.
The air-pressure method seems promising for showing area-universality for further
classes of plane graphs. Time will tell how far this method can takes us.
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