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Abstract For establishing accurate spatial correspondence of brain structures among
different subjects, many groupwise image registration methods have been proposed to
register brain images taken from different subjects onto a common space. Except the
congealing method, most groupwise image registration methods achieve the image
registration by registering images to a template image using pairwise image registra-
tion algorithms. For these groupwise image registration methods built upon pairwise
image registration, the key points are template determination, registration path iden-
tification, and pairwise image registration. Focusing on the graph-based groupwise
image registration methods due to their high computation efficiency and accuracy,
this chapter introduces briefly the congealing method and groupwise image regis-
tration methods with different strategies for template determination and registration
path identification. To demonstrate the strength of state-of-the-art groupwise image
registration methods, a quantitative comparison study has also been presented for rep-
resentative graph-based groupwise image registration methods based on two publicly
available 3D MR brain image datasets.

1 Introduction

Following the rapid advancement of medical imaging techniques, medical image
analysis plays an increasingly important role in the field of medical science. In
neuroimaging studies, since brain structures of different subjects have variant shapes,
brain images of different subjects are often transformed into a common space to
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facilitate statistical image analysis. Such a common space is typically defined by a
brain image atlas, e.g., the MNI brain and the Talairach atlas [1].

Recently, groupwise image registration methods for registering multiple images
have attracted interests due to their efficacy [2–11]. Instead of registering each indi-
vidual image to a specific atlas image, the groupwise image registration methods
register images to a common space identified automatically from the images to be
registered. Such an image registration strategy can effectively reduce registration
bias introduced by a specific image atlas, and therefore might be able to improve
the subsequent image analysis. In this chapter, different kinds of groupwise image
registration methods are introduced, and their performance in the registration of 3D
MR brain images is evaluated.

Many methods for the groupwise image registration have been proposed in the
last decade [2–10]. Except the congealing method that registers images by optimiz-
ing a groupwise image similarity, i.e., sum of entropies of pixel stacks [10, 12],
most of the existing groupwise image registration methods are built upon pairwise
image registration algorithms and achieve the final registration in two different ways:
(1) registering all images directly to a template image that can be a representative
image selected from the images to be registered (typically a group center image) or
iteratively to their evolving average image [2, 5, 6], referred to as direct pairwise
image registration based groupwise image registration methods; and (2) registering
images to their similar images and then composing the resulting deformation fields to
achieve the registration of all images to the representative image [3, 4, 7–9, 13, 14],
referred to as intermediate template based groupwise image registration methods.

This chapter is organized as follows. Pairwise image registration methods are
firstly briefly introduced, followed by introductions of groupwise image registration
methods, including the congealing method, the direct pairwise image registration
based, and the intermediate templates based groupwise image registration methods.
Finally, the chapter is concluded with a brief discussion.

2 Pairwise Image Registration

The pairwise image registration methods find a spatial transformation for registering
one image, often referred to as floating image, to another image, referred to as tar-
get image. A survey of image registration methods has classified image registration
methods into feature based and area based methods [15]. To register two images
(target and floating images), a feature based image registration method typically fol-
lows three steps. First, each image’s feature points are identified and characterized
by simple image features such as line intersections [16] and corners [17] or more
sophisticated image features, e.g., histogram of local image patch and SIFT features
[18]. Second, matched feature points of the images to be registered are obtained
by matching their image features. Finally, parameters of a transformation model,
e.g., rigid transformation or projection mapping, are estimated to establish the cor-
respondence between the matched feature points. The resulting parameters of the
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Fig. 1 Images contain an arrow shape with different orientations. By finding the matched feature
points (marked as red points), one is able to estimate the rotation angle and translation of a rigid
transformation for registering the images

transformation model can be used to spatially transform the floating image to the
target image’s space. Figure 1 shows two 2D images, each of them containing an
arrow with different orientations. Once one gets at least two pairs of matched feature
points, parameters of a rigid transformation (the rotation angle and translation) can be
estimated to establish their spatial correspondence for achieving image registration.

In the area based image registration methods, instead of feature points, image
regions are considered. In other words, all image pixels within a region of interest
are regarded as one feature “point”. Typically, parameters of certain transformation
model in the area based image registration are determined based on a predefined
cost function. The most commonly adopted cost functions include Pearson correla-
tion coefficient for modeling linear relationship between intensities of images to be
registered and mutual information for modeling their non-linear relationship [15].

The image registration methods can also be classified as either parametric image
registration or non-parametric image registration based on the transformation model
used in the registration. The advantage of parametric image registration methods is
their high computational efficiency. In particular, linear parametric transformation
models used in image registration include rigid transformation, affine transformation,
and projection mapping, while Thin Plate Spline (TPS) and Free-Form Deformations
(FFD) are typically adopted as non-linear parametric transformation models in image
registration [19, 20].

Since the deformation modeled by a parametric model typically has low degrees
of freedom, non-parametric image registration methods are often used for registering
images with diffuse, local differences, e.g., brain images [21]. Among the non-
parametric image registration methods, Thirion’s Demons algorithm [22] is one well-
known method. The Demons algorithm is derived from the optical flow equation [23],
and the deformation vector for each pixel is formulated as

ν(x) =
{

(I f (x)−It (x))·∇ It (x)

‖∇ It (x)‖2+(I f (x)−It (x))2 , if ‖ ∇ It (x) ‖2 +(I f (x) − It (x))2 > ε,

0, otherwise
(1)

where ν is the deformation vector at each pixel x , I f and It are floating and target
images, and ε is a small tolerance to improve the solution’s numerical stability. The
Demons algorithm achieves image registration in an iterative way. In particular, at
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Fig. 2 Illustration of the Demons. Left images with a ramp structure of gray values. Right top
intensity profile and the deformation vectors of pixels at each column for registering image A to
image B. Right bottom intensity profile and the deformation vectors of pixels at each column for
registering image A to image C

each iteration step, deformation vectors for all pixels are calculated and regularized
by a Gaussian filter, and then the resulting deformation vectors are added to an
accumulated deformation field. At the end, the accumulated deformation field is
used to warp I f to It .

Figure 2 illustrates how the deformation vector is calculated by Eq. (1) for regis-
tering one image (denoted by A) to two different images (denoted by B and C). Each
image contains a different ramp structure of gray values. For registering image A to
image B, since the gray value of each column of A is smaller than the correspond-
ing column in B, I f (x) − It (x) is negative according to the Eq. (1). Therefore, the
directions of deformation vectors for each column of A is opposite to the directions
of image gradient of B as shown in the right top of Fig. 2. On the contrary, for reg-
istering image A to image C, the deformation vectors and the image gradient of C
have the same direction since the gray value of each column of A is bigger than the
corresponding column in C, as shown in the right bottom of Fig. 2.

The Demons algorithm has been improved for achieving better accuracy and
higher efficiency in different ways and validated in different applications [22, 24–70].
Among its improved versions, the Diffeomorphic Demons algorithm has been widely
adopted in the registration of brain images [65]. Since deformation vectors are
projected onto the Lie groups by exponential maps, the Diffeomorphic Demons
algorithm is able to obtain a diffeomorphic deformation field, i.e., no folding and
invertible. This algorithm has also been used in groupwise image registration meth-
ods that are built upon pairwise image registration [8, 11, 71].

The pairwise image registration has been extended for registering multiple images
using different strategies, referred to as groupwise image registration. The remain-
der of this chapter reviews representative groupwise image registration methods,
including the congealing method, the direct pairwise image registration based and
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Fig. 3 Image stack used in the congealing method. The rectangles stand for input images and the
red circles constitute a pixel stack at one pixel location x

the intermediate templates based groupwise image registration. In particular, graph
based groupwise image registration methods are introduced as special cases of the
intermediate template based groupwise image registration.

3 Groupwise Image Registration Using Congealing

The congealing method was first proposed by Miller [72] for the task of image
classification, and then was adopted for groupwise image registration [73]. Paramet-
ric deformation models are typically used in the congealing based groupwise image
registration, including affine transformation and B-spline deformation [12, 73]. The
congealing method in conjunction with the Diffeomorphic Demons algorithm has
also been adopted in fMRI data registration [74].

In the congealing method, no template is required. The similarity among images
to be registered is measured by the sum of pixel wise (voxelwise) entropies across
the whole image space

E =
n∑

x=1

H(s(x)), (2)

where x is the spatial location of a pixel, n is the number of pixels in the image space,
s(x) is a variable defined by the intensities of a pixel x across all of the images to be
registered, and H(·) is the entropy function. The variable defined by the intensities of
a pixel x across all of the images is often referred to as an image stack, as illustrated by
Fig. 3. The congealing method achieves groupwise image registration by iteratively
deforming images one by one for minimizing the cost function defined by Eq. (2)
until convergence. Its computational cost is very high since it requires one evaluation
of the cost function defined by Eq. (2) for every update of the deformation parameters
for each image.
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Fig. 4 Illustration of groupwise registration using direct pairwise image registration. Left input
images; Right one input image is selected as a template and other images are registered to the
template for achieving the final groupwise registration

To achieve efficient groupwise image registration, many groupwise image regis-
tration methods are built upon pairwise image registration. Basically, pairwise image
registration is adopted to achieve groupwise image registration in two ways: (1) reg-
istering all images directly to a template image that can be a representative image
selected from the images to be registered (typically a group center image) or itera-
tively to their evolving average image [2, 5, 6]; and (2) registering images to their
similar images, known as intermediate templates, and then composing the resulting
deformation fields to achieve the registration of all images to the representative image
[3, 4, 7–9, 13, 14].

4 Groupwise Image Registration Using Direct Pairwise
Image Registration

It is an intuitive way to achieving the groupwise image registration by directly reg-
istering all images to a template image [2, 5, 6]. The basic idea is to choose or to
produce an image serving as a template from a given group of images. Then all the
images in the given image group are registered to the template to achieve the final
alignment (Fig. 4). The key of this kind of methods is how to determine an optimal
template.

The template image can be defined as the geometric mean of the input images
based on their pairwise registration results [5]. In particular, each image is first
registered to all the other images, then the geometric mean is estimated using the
Multi-Dimensional Scaling (MDS) based on the registration result of all image pairs,
and finally the closest image to the geometric mean is chosen as the template. In [75],
the template image was defined as the average image of deformed input images, and
each deformed input image was produced by warping the input image with the aver-
age deformation field resulted from averaging all deformation fields determined from
pairwise image registrations between this image and all the other images. However,
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Fig. 5 Illustration of the iterative process of the groupwise registration method using the group
average image as the template

the template selection methods have relatively high computational cost since the
pairwise image registration is required for every possible pair of images. As men-
tioned in [75], it would take 4096 h, i.e., 170 days, to get the template for an image
group containing 64 images using one processor.

Another efficient way to obtain the template is to generate the average image from
the input images iteratively [6]. Particularly, an average image of registered input
images using affine transformation is first generated as the template image and then
all images are registered to the template image using a nonlinear registration method.
The registered images can be averaged again to generate a new template image so
that the groupwise image registration is improved iteratively. The iteration process
stops when all images have been well aligned or the maximum number of iterations
exceeded. The flowchart of such a groupwise image registration algorithm is shown
in Fig. 5.

At the very beginning of the iterative groupwise image registration, images are
typically not well aligned and the resulting average image is blurred. Such a blurred
template image could hamper the groupwise image registration. To overcome this
problem, a sharp average image can be generated using an adaptive weighting strat-
egy at each iteration step [7]. The weight for each image’s pixel/voxel at each iteration
step is inverse proportional to the squared intensity difference between image patches
centered at the pixel/voxel in the image considered and the group mean image pro-
duced in the previous iteration step, so that the pixel/voxel in an image more similar
(i.e., similar image intensity) to that in the group mean image contributes more to
the pixel/voxel intensity in the new group mean image. The resulting group mean
image is often with sharp contrast.
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Fig. 6 Illustration of groupwise registration using intermediate templates. Red points indicate
images. A is the image to be registered, B is the intermediate template, and R is the final template

5 Groupwise Image Registration Using Intermediate Templates

Since the registration of similar images is typically easier than the registration of
images that are much different from each other, several groupwise image registration
algorithms have been proposed to register images to their similar images, referred
to as intermediate templates, and then composing the resulting deformation fields
for achieving the registration of all images to a representative image of input images
[3, 4, 7–9, 13, 14]. The basic idea of this kind of registration methods for registering
image A to final template R via intermediate template B is illustrated by Fig. 6. To
determine the optimal intermediate template for each image, different strategies have
been proposed [14, 71].

A statistical deformation model has been used to generate the intermediate tem-
plates in a brain image registration method called RABBIT [14]. In particular, the
method first gets a set of deformation fields that register a template brain image
to individual brain images, and then applies Principal Component Analysis (PCA)
to the deformation fields for generating a statistical deformation model that is able to
characterize a brain image deformation field with a small number of parameters. To
register the template brain image to a brain image, the statistical deformation model
is used to generate a deformation field that warp the template image to produce an
intermediate template close to the brain image considered, then a deformation field
that registers the intermediate template and the brain image considered is estimated
by a pairwise image registration algorithm, and finally the obtained deformation field
is composed with that generated by the statistical deformation model to register the
template brain image to the brain image considered. Since the difference between the
intermediate template image and the image considered is relatively small, a better
registration result can be obtained.

In most of groupwise image registration methods, the intermediate templates for
each input image are its neighboring images chosen from the rest of input images.
For example, in a method called ABSORB [71], each image’s neighboring images
serve as its intermediate templates if the neighboring images are closer than itself
to a group center image. The center image is determined by choosing the image
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Fig. 7 Illustration of the registration strategy proposed in ABSORB. Given a group of image,
represented by red points, to be registered, each image (e.g., A) is warped toward the group center
with a deformation field obtained by averaging deformation fields warping A to its neighboring
images (N1, N2 and N3) that are closer to the group center than A itself. The procedure is iterated
to warp all images to the group center image that is updated after each iteration step

near the group geodesic mean on an estimated manifold of input images using graph
theoretic techniques (discussed in the Sect. 6). The groupwise image registration is
then achieved by iteratively warping each input image with a mean deformation field
obtained by averaging deformation fields that map the input image to its intermediate
templates, as illustrated by Fig. 7.

Recently, graph theoretic techniques have been adopted in the groupwise image
registration for learning a manifold of input images so that a large deformation
between images can be decomposed into a series of small and anatomically mean-
ingful deformations between similar images [3, 4, 8, 9]. The graph based groupwise
image registration methods are intermediate template based registration methods
too since some input images are used as intermediate templates of other images
for achieving the final groupwise image registration. The representative groupwise
image registration methods using graph theoretic techniques are introduced in Sect. 6.

6 Groupwise Image Registration Using Graphs

In the graph based methods, a graph of input images is constructed. In such a graph,
each node corresponds to an input image and similar nodes are connected with edges.
The weight of each edge connecting two images is determined by their similarity
measure. The graph of images helps estimate the manifold of input images and the
geodesic distance between two images can be approximated by the their shortest
path in the graph identified using graphical algorithms, such as Dijkstra method
[76]. Images on the shortest path between a pair of images can serve as interme-
diate templates and the registration between the pair of images can be achieved by
subsequently composing deformations between all adjacent image pairs along their
shortest path. Typically, a root image, which serves as the template, is first deter-
mined in the graph based methods, and then all images are registered to the root
image along their corresponding shortest paths to the root. The template (or root)
in the graph based methods is usually identified as a pseudo-geodesic mean of the
images [8] by
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Fig. 8 Illustration of the graph based groupwise image registration. Each circle denotes one
image, and Dxy, x, y = a, b, c, d, e, r , x �= y, denotes a deformation field that registers image
x to image y

Iroot = argmin
Ii

n∑
j=1

g(Ii , I j ), i = 1, · · · , n, (3)

where g(Ii , I j ) is the length of the shortest path between images Ii and I j . Once
the root image is determined and the shortest paths from non-root images to the root
are fixed, a tree of images is obtained and the root of the tree is the group center of
images. An example of such a tree with 6 images is illustrated in Fig. 8.

As shown in Fig. 8, there are 5 non-root images (denoted as a, b, c, d, e) and each
of them has a corresponding shortest path, following which the non-root image can
be registered to the root image by subsequently composing pairwise deformation
fields along the shortest path, i.e.,

Dxr = Dxk1 ◦ Dk1k2 ◦ · · · ◦ Dknr , x, k1, k2, · · · , kn, r ∈ Pxr , (4)

where Pxr = (x, k1, k2, · · · , kn, r) is the shortest path from image x to the root image
r, and Dxr denotes the deformation field mapping x to r. For instance, in Fig. 8 the
shortest path of image c to the root image r is Pcr = (c, a, r) and the registration of
image c to the root image can be achieved by subsequently composing deformation
fields Dca and Dar , i.e., Dcr = Dca ◦ Dar . The graph based registration methods
help decompose a large deformation into small ones, and it is relatively easier to
achieve accurate results for the registration of similar images than the registration of
images with larger differences.

In the rest of this section, typical graph based methods are discussed in detail, and
their performance in the registration of MR brain images is evaluated.

6.1 kNN Graph Based Groupwise Image Registration

Most of the graph based groupwise image registration methods adopt kNN graph
to build the graph of images [4, 8]. In a kNN graph, each node is connected to
its k nearest neighboring nodes that are determined based on an image similarity
measurement. The typically used image similarity is the Euclidean distance between
image intensities defined as
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Fig. 9 An example of the graph construction using kNN algorithm. Each node is connected to its k
nearest neighbors (k = 3). For instance, node A is connected to B, C and D

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Fig. 10 A set of synthetic images that have two peaks of different heights

dEuclidean(Ii , I j ) =
(

n∑
x=1

(Ii (x) − I j (x))2

)1/2

, (5)

where n is the total number of pixels/voxels in each image, Ii (x) and I j (x) are the
image intensities at location x in images Ii and I j and respectively. An example kNN
graph is shown in Fig. 9.

The kNN graph has been demonstrated to be able to estimate the manifold of high-
dimensional data such as images [77]. However, the performance of kNN graph
based method is sensitive to the selection of k. Therefore, the resulting shortest
paths identified in a kNN graph, i.e., geodesic distances measured in the estimated
manifold, are unstable. The sensitivity of kNN graph based method is illustrated by
the estimation of the manifold of synthetic images shown in Fig. 10. These images lie
on a one dimensional manifold. The kNN graph based estimation result varies very
much with the parameter k, as indicated by the identified shortest paths of images
to a group center image shown in Fig. 11. In particular, kNN graphs with different
settings of k are constructed based on similarity measures defined by Eq. (5), and
then Dijkstra method is used to identify the shortest path from each image to the
group center determined using Eq. (3). It is clear that the shortest paths for some
images are changed dramatically with different settings of k. It is worth noting that
the number in each circle shown in Fig. 11 corresponds to the image with the same
number in Fig. 10.
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k=4 k=6 k=8 

Fig. 11 The shortest paths derived from kNN graphs with different values of k. The root image
is marked as a gray circle and the ID in each circle corresponds to the image with the same ID in
Fig. 10

The graph of images can also be constructed using a so-called ε-ball method in
a similar way to the kNN graph method. Different from the kNN graph method, the
ε-ball method determines the neighboring images with connections to a given image
in the graph using a distance threshold. In particular, given a group of images, each
image’s neighboring images are those within a ball centered at the image considered
with radius ε. Unfortunately, the ε-ball method has the same problem as the kNN
graph method.

6.2 kNN+MST Based Groupwise Image Registration

Built upon the kNN graph method, the Minimum Spanning Tree (MST) method has
also been adopted to identify the shortest paths for images in groupwise image regis-
tration [4, 7]. The MST is a tree with minimal sum of edge weights. Two commonly
used algorithms for constructing a MST are Prim’s algorithm [78] and Kruskal’s
algorithm [79], and the latter can also be used to construct a minimum spanning
forest if the graph is not connected, i.e., a MST for each connected component.
The pseudo-code of Kruskal’s algorithm for connected graphs is summarized in
Algorithm 9.1.
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Fig. 12 Illustration of the construction of MST in a graph where each edge has a distance measure
as indicated by the number next to itself. Kruskal’s algorithm is applied to find the MST by adding
one edge (in black) with the minimal distance step by step as illustrated by the figures shown from
top left to top right, then bottom left to bottom right. The resulting MST is shown in the bottom
right

Figure 12 shows an example how to find the MST in a graph where each edge
is weighted by a distance measure as indicted by the number next to itself. Starting
from a void set, the Kruskal’s algorithm finds the MST in the graph by adding one
edge with the minimal distance step by step.

It is worth noting that the MST is usually generated from a graph obtained by the
kNN graph method in the groupwise image registration methods [4]. Therefore, it
suffers from the same problem as the kNN graph based groupwise image registration
methods.

6.3 Sparse Graph Based Groupwise Image Registration

A sparse coding based algorithm was proposed recently for constructing a sparse
graph of images, referred to as �1-graph [80]. Particularly, given a group of images
Ii , i = 1, · · · , m, each with n voxels, the algorithm measures similarities among
images using sparse coding [81]. Mathematically, the similarity measures for one
image, e.g., Ii , to all the other images can be derived from the solution of the sparse
coding problem

min
α

‖ Ii − Dα ‖ +λ ‖ α ‖1, (6)

where Ii is an n dimensional column vector of image intensities, D = [I1, . . . , Ii−1,

. . . , Ii+1, . . . , Im] ∈ R
n×m−1 is a matrix containing all the other images, α is a

(m-1)-dimensional vector containing the coefficients corresponding to images in D.
Since each element of α is proportional to the similarity measure between Ii and its
corresponding image in D, its inverse or a monotonically increasing function of its
inverse can be used to measure the image distance. According to the sparse coding
based image distance measures, one can build a directed graph of images in which
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=0.3 =0.1 =0.01

Fig. 13 The shortest paths derived from �1-graph with different values of λ. The root image is
marked as a gray circle and the number in each circle correspond to the image with the same
number in Fig. 10

each node’s outgoing edges to other images are weighted by its distance measures to
other images calculated based on the sparse coding. The advantage of the �1-graph
method over the kNN graph is that each image’s neighbors are determined adaptively
to the image itself and the resulting graph is sparse due to the L1 norm constraint.
Furthermore, this method is more robust to its parameter λ . As shown in Fig. 13, the
shortest paths (using Dijkstra method) and the geodesic group center derive from the
�1-graph with different settings of λ for the images shown in Fig. 10 are stable and
the shortest paths are consistent with the underlying manifold of the images.

A groupwise image registration method built upon the sparse graph of images,
referred to as dynamic sparse graph based method in this chapter, has been proposed
in [11]. In particular, a sparse graph of images is constructed based on an adaptively
weighted sparse coding method for estimating image similarity measures among
different images. Different from the sparse coding problem formulated by Eq. (6), a
weight vector is introduced in the adaptively weighted sparse coding

min
α

‖Ii − Dα‖ + λ ‖diag(w)α‖1 . (7)

where Ii is an n-dimensional column vector of image intensities, D = [I1, . . . , Ii ,

. . . , Im] ∈ R
n×m is a matrix containing all the input images, α is an m-dimensional

vector containing the coefficients corresponding to images in D, and w = (w1, . . . ,

wm) ∈ R
m is a weight vector for defining the participation of images in D. To avoid

a trivial similarity measurement of Ii , its corresponding weight wi in w is set large
enough to prevent Ii from representing itself.

Different from the existing graph based groupwise image registration methods
[4, 8], this method then achieves the groupwise image registration in an iterative
fashion. Once a graph of images is obtained, each image is registered to its direct
parent image, and the graph of images is updated based on the registration results.
Then, according to the updated graph of images, each image is again registered
to its direct parent image in the current graph. This procedure is repeated until all
images are registered to the root image. At every iteration step, images with the
same directed parent image become close to each other and form a cluster after they
are registered to the same parent image. If the sparse coding as formulated in the
Eq. (7) with the same setting, i.e., fixed weight w, is used to estimate image similarity
measures for the registered images, the images in the same cluster might represent
one another, resulting in larger values of similarity measures among themselves and
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Fig. 14 Illustration of the shortest path of each image to the root identified in the updated graph
of images with the image similarity measures estimated using the sparse coding with fixed and
adaptive weight w. Red dots numbered 1–8 and R denote different images, and R is the root image
identified in the graph of images. a The shortest paths in the directed graph at one of the iteration
steps. Images 1–4 have the same parent image 5, and form a cluster. Images 5–8 have the same
parent image R and form another cluster. b The shortest path for image 4 derived from updated
graph using the sparse coding with fixed weight w. c The updated graph becomes disconnected if
the image similarity measures are estimated using the sparse coding with fixed weight w. d The
shortest paths of images derived from the updated graph with image similarity measures estimated
using the sparse coding with adaptive weight w

small values of similarity measures (mostly 0) with the other images outside of the
cluster. Therefore, some of images in the same cluster may have the shortest paths
traversing others in the same cluster as illustrated by Fig. 14b, or all the images in
one cluster are isolated from images in other different clusters, thus generating a
disconnected graph as illustrated by Fig. 14c. The registration of one image with
the shortest path traversing multiple images highly similar to it requires multiple
pairwise image registration between similar images, which increases the computation
cost with little improvement of the overall registration accuracy. In a graph with
disconnected components, one is not able to find a root image that is reachable
from all the other images. To solve the problems illustrated in Fig. 14, the weight w
is adaptively updated along with the image registration. Particularly, for calculating
image similarity of image , large values are set to weight elements in w corresponding
to the images that have the same direct parent image as Ii in the previous iteration
step. Due to the constraint of the L1 norm in Eq. (7), images having the large weights
will not participate in the representing of Ii . Therefore, images in the same cluster
are isolated from each other and the problems illustrated in Fig. 14b and c can be
solved, as illustrated by Fig. 14d.

7 Groupwise Registration of Brain Images

In this section, applications of groupwise image registration methods to neuroimaging
studies are presented. In particular, three graph based groupwise image registration
methods, including kNN, kNN+MST and sparse graph, are evaluated based on two
public 3D MR brain image datasets, including LPBA40 [82] and NIREP-NA0 [83].
The same pairwise image registration, namely Diffeomorphic Demons [65], is used
in all of the three methods.
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Fig. 15 2D slices of 8 randomly selected 3D MR brain images from LPBA40 and their correspond-
ing label images

Fig. 16 2D slices of 8 randomly selected 3D MR brain images from NIREP-NA0 and their corre-
sponding label images

The LPBA40 dataset consists of 3D MR brain images obtained from 40 normal
subjects and each of them has a manually labeled image with 54 brain regions.
The NIREP-NA0 dataset contains 3D MR brain images obtained from 16 normal
subjects and corresponding manually labeled images with 32 regions. The overlap for
the labeled regions across different images can be used to evaluate the performance
of image registration algorithms. Some images and their corresponding label images
from both datasets are shown in Figs. 15 and 16, respectively.

All the T1-weighted images are affine-registered to MNI152 space using FLIRT
after preprocessed using histogram matching, and the transforms are then applied to
their corresponding individual label images [84]. For each dataset, an average image
is obtained and its 3D surface rendering is shown in Fig. 17. As the 3D surface render-
ing results shown, the average images are blurred, especially in gyri, indicating that
the images cannot be well aligned using an affine image registration algorithm due
to large inter-subject differences. The registered images using affine transformation
are used as input images in the graph based groupwise image registration methods.

7.1 kNN Graph Based Groupwise Image Registration

Images in the datasets of LPBA40 and NIREP-NA0 are registered separately using
the kNN graph based groupwise image registration method [8]. In particular, the kNN
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Average image of LPBA40  Average image of NIREP-NA0 

Fig. 17 3D surface rendering results of average images of LPBA40 (left) and NIREP-NA0 (right)

graph was adopted to estimate the underlying manifold of input images and Dijkstra
method was used to find the shortest path between each pair of images. After the
determination of the root image using Eq. (3), deformation fields mapping images to
their direct parent images along the corresponding shortest paths were calculated. The
deformation field mapping each image to the root image was produced by composing
deformation fields along its shortest path as formulated in Eq. (4). It is worth noting
that the image distance in the construction of kNN is the Euclidean distance defined
in Eq. (5).

Figure 18 left shows the tree of images formed by the shortest paths derived from
the kNN graph of LPBA40 dataset with k set to 3. These 2D Points in Fig. 18 are
projection results of 3D MR brain images in LPBA40 dataset by applying Principal
Component Analysis (PCA) to reduce the high dimensional original images to 2D
points. The surface rendering results of average of the registered images and the
root image are shown in Fig. 18 right. Compared with the surface rendering result of
the average image shown in Fig. 17, the one shown in Fig. 18 has sharper contrast,
indicating better registration results have been achieved by the kNN graph based
groupwise image registration algorithm. Registration results of NIREP-NA0 dataset
are shown in Fig. 19 with the same layout as Fig. 18.

7.2 kNN+MST Based Groupwise Image Registration

Images in the datasets of LPBA40 and NIREP-NA0 are registered separately using the
kNN+MST based groupwise image registration method [4]. Figure 20 left shows the
resulting kNN+MST of LPBA40 dataset and surface rendering results of the average
image of registered images and the root image. The results of NIREP-NA0 dataset
are shown in Fig. 21 with the same layout as Fig. 20. Visually, these results are similar
to those obtained by thekNN graph based groupwise image registration method.
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Fig. 18 Left Tree of images formed by the shortest paths from each image (red point) to the root
image (blue point) derived from the kNN graph of LPBA40 dataset. Right Surface rendering results
of average image of registered images and the root image (within the red rectangle on the right
bottom)

Fig. 19 Left Tree of images formed by the shortest paths from each image (red point) to the root
image (blue point) derived from the kNN graph of NIREP-NA0 dataset. Right Surface rendering
results of average image of registered images and the root image (within the red rectangle on the
right bottom)

7.3 Sparse Graph Based Groupwise Image Registration

Images in the datasets of LPBA40 and NIREP-NA0 are registered separately using
the dynamic sparse graph based groupwise image registration method [11]. Figure 22
shows the tree formed by the shortest paths derived from the graph at each iteration
step for the registration of images in LPBA40 dataset.

Registration results of NIREP-NA0 dataset can be found in Fig. 23 with the same
layout as Fig. 22. These results are not visually different from those obtained by the
kNN graph based groupwise image registration method and kNN+MST graph based
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Fig. 20 Left kNN+MST of LPBA40 dataset. Right Surface rendering results of average image of
registered images and the root image (within the red rectangle on the right bottom)

Fig. 21 Left kNN+MST of NIREP-NA0 dataset. Right Surface rendering results of average image
of registered images and the root image (within the red rectangle on the right bottom)

groupwise image registration method. However, it seems that the group average
images obtained by the sparse graph based groupwise image registration method
are closer to their corresponding root images for both LPBA40 and NIREP-NA0
datasets. Such the observation is supported by the quantitative evaluation results,
presented in the following section.

7.4 Evaluation of Graph Based Groupwise Image Registration

The registration performance of different graph based groupwise image registration
methods has been evaluated quantitatively using overlap measures among different
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Iteration 1 Iteration 2 

Iteration 3 Iteration 4

Fig. 22 Left Trees formed by the shortest paths derived from corresponding graphs of LPBA40
dataset at four different iteration steps. Right Surface rendering results of average image of registered
images and the root image (within the red rectangle on the right bottom)

Iteration 1

Iteration 2

Fig. 23 Left Trees formed by shortest paths derived from corresponding graphs of NIREP-NA0
dataset at two different iteration steps. Right Surface rendering results of average image of registered
images and the root image (within the red rectangle on the right bottom)

labeled regions of registered images. Particularly, the overlap between corresponding
regions of registered images is evaluated using Dice index [85]. Given two regions X
and Y, their overlap can be measured by DI = 2|X∩Y |

|X |+|Y | . To eavluate the registation
performance of a given method, we obtain the overlap measure for each labeled
region between every pair of images. So, given registration results obtained by one

registration method, we obtain Dice index values for

(
40
2

)
= 780 image pairs and(

16
2

)
= 120 image pairs for the LPBA40 and NIREP-NA0 datasets, respectively.
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Besides the overlap measures for different regions, we also calculated the weighted
average Dice index value across of all the labeled regions for each pair of registered
images for the LPBA40 and NIREP-NA0 datasets, which is formulated as

DIw =
n∑

i=1

V oli
V olw

DIi , (8)

where V olw is the volume of all labeled regions, V oli is the volume of the i-th region,
n is the total number of labeled regions, and DIi is Dice index value of the i-th region.

Figure 24 shows the evaluation results based on the LPBA40 dataset for kNN,
kNN+MST, and dynamic sparse graph based groupwise image registration methods.
The evaluation results include Dice index values for 54 brain regions (ID: 1–54) and
the weighted average Dice index value of all the brain regions (ID: 55).

Figure 25 shows the evaluation results based on the NIREP-NA0 dataset for meth-
ods including kNN, kNN+MST, and dynamic sparse graph based groupwise image
registration methods, including Dice index values for all 32 brain regions (ID: 1–32)
and the weighted average Dice index value of all the brain regions (ID: 33).

In summary, the average value of the weighted average Dice index values of
all the brain regions of LPBA40 dataset are 0.692 (kNN), 0.691 (kNN+MST), and
0.709 (dynamic sparse graph). The paired t-tests revealed that the dynamic sparse
graph performed better than kNN and kNN+MST with p values < 1.0 × 10−20.
For the NIREP-NA0 dataset the values are 0.628 (kNN), 0.622 (kNN+MST), and
0.639 (dynamic sparse graph). Again, the paired t-tests revealed that the dynamic
sparse graph performed better than kNN and kNN+MST with p values < 1.0 ×
10−20. It is evident that the registration accuracy of the dynamic sparse graph based
method is higher than the kNN and kNN+MST based methods. Since Diffeomorphic
Demons [65] is used in all of the three methods, the applied image similarity measures
and graph construction strategies contribute to the performance difference of these
methods.

8 Discussion and Conclusion

In this chapter, several groupwise image registration methods have been discussed.
These groupwise image registration methods are typically used to generate a common
template or to model the shape variation of objects of interest. Except the congealing
method, most groupwise image registration methods achieve the image registration
by registering images to a template image using pairwise image registration algo-
rithms. The key points in the groupwise image registrations methods are template
determination, registration path identification, and pairwise image registration. For
the template determination, the ultimate objective is to choose an unbiased image as
the template to which all images can be registered with almost equal effort. Several
strategies for the template determination have been reviewed in this chapter, includ-
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Fig. 24 Dice indexes of registered brain regions of LPBA40 dataset using kNN, kNN+MST and
dynamic sparse graph based groupwise image registration methods. The region ID’s corresponding
brain region name is following. 1/2: L/R superior frontal gyrus; 3/4: L/R middle frontal gyrus; 5/6:
L/R inferior frontal gyrus; 7/8: L/R precentral gyrus; 9/10: L/R middle orbitofrontal gyrus; 11/12:
L/R lateral orbitofrontal gyrus; 13/14: L/R gyrus rectus; 15/16: L/R postcentral gyrus; 17/18: L/R
superior parietal gyrus; 19/20: L/R supramarginal gyrus; 21/22: L/R angular gyrus; 23/24: L/R
precuneus; 25/26: L/R superior occipital gyrus; 27/28: L/R middle occipital gyrus; 29/30: L/R
inferior occipital gyrus; 31/32: L/R cuneus; 33/34: L/R superior temporal gyrus; 35/36: L/R middle
temporal gyrus; 37/38: L/R inferior temporal gyrus; 39/40: L/R parahippocampal gyrus; 41/42: L/R
lingual gyrus; 43/44: L/R fusiform gyrus; 45/46: L/R insular cortex; 47/48: L/R cingulate gyrus;
49/50: L/R caudate; 51/52: L/R putamen; 53/54: L/R hippocampus; and 55: weighted average Dice
index of all the brain regions

ing the geometric mean, the geodesic mean, and the iterative average group image.
For the registration path identification, the simplest way is to directly register image
to the template. However, it is difficult to achieve accurate image registration when
images to be registered have large difference. It typically leads to better performance
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Fig. 25 Dice indexes of registered brain regions of NIREP-NA0 dataset using kNN, kNN+MST and
dynamic sparse graph based groupwise image registration methods. The region ID’s corresponding
brain region name is following. 1/2: L/R occipital lobe; 3/4: L/R cingulate gyrus; 5/6: L/R insular
gyrus; 7/8: L/R temporal pole; 9/10: L/R superior temporal gyrus; 11/12: L/R inferior temporal
gyrus; 13/14: L/R parahippocampal gyrus; 15/16: L/R frontal pole; 17/18: L/R superior frontal
gyrus; 19/20: L/R middle frontal gyrus; 21/22: L/R inferior gyrus; 23/24: L/R orbital frontal gyrus;
25/26: L/R precentral gyrus; 27/28: L/R superior parietal gyrus; 29/30: L/R inferior parietal lobule;
31/32: L/R postcentral gyrus; and 33: weighted average Dice index of all the brain regions

if intermediate template images are adopted to reach to the final template since large
difference can be decomposed into many small ones. For the pairwise image reg-
istration, which is used to register images to the intermediate template or the final
template in the groupwise registration methods, many algorithms could be adopted,
not limited to Diffeomorphic Demons adopted in this study.

We have been focusing on the graph based groupwise image registration methods
in this chapter, including kNN, MST and sparse graph (including dynamic sparse
graph), due to their high computation efficiency and accuracy. The basic idea of
these methods is to estimate the underlying manifold of input images so that the
shortest paths that approximate the geodesic distance between each pair of images
can be derived. Based on all of the geodesic distances between images, the geodesic
center of image can be chosen as a template image. Final deformation field mapping
each image to the template can be obtained by composing deformation fields along its
corresponding shortest paths. For such methods, image similarity measurement plays
an important role. Therefore, in this chapter, the pairwise (e.g., Euclidean distance)
and groupwise (e.g., sparse coding and adaptively weighted sparse coding) image
similarity measurements have been reviewed. Evaluation of both kinds of similarity
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measurements using the LPBA40 and NIREP-NA0 datasets has demonstrated that
the groupwise image similarity measurement can lead to better groupwise image
registration performance than the pairwise image similarity measurements due to
that the groupwise image similarity measures are estimated from a global point of
view, while the pairwise image similarity measures considers only two images to be
measured and no information of the other images is utilized.

Graph based manifold learning techniques have been increasingly adopted in
the groupwise image registration methods to capture the distribution of images to
be registered so that a group center image can be identified and the deformation
between the group center and other images can be decomposed into small ones that
register similar images pairwisely. For the graph based manifold learning techniques,
a critical parameter is the neighborhood size for constructing a graph of images. Since
the distribution of images to be registered is not necessarily uniform, especially
in applications of medical image analysis with a limited number of images, the
manifold of images estimated using kNN graph might be sensitive to its parameter,
which inevitably renders the groupwise image registration unstable. Although the
sparse coding based graph construction could be robust for estimating manifold of
images with a non-uniform distribution, it merits further investigation how the image
registration performance is hinged on its sparsity parameter.

Groupwise image registration algorithms have been successful in many applica-
tions of brain image analysis [4, 7, 10–12, 74]. However, all these algorithms have
been focusing on imaging data of single image modality, either structural imaging
data or functional imaging data. Groupwise registration of both structural and func-
tional data might be helpful to better align the brain structure and function units
across subjects [74, 86]. How to effectively integrate both structural and functional
information of multimodality images for groupwise image registration merits inves-
tigation.
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