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Abstract Shapes describe objects in terms of information invariant to scale,
translation and rotation. Depending of the data source, shapes may be represented by
object contours or representation/transformations that sustain the objects characteris-
tics, such as the signed distance function. Biomedical objects have inherent plasticity
due to movement and changes over time. Elastic registration is a fundamental image
analysis step for tracking anatomical structures, diseases, progress of treatment and in
image-guided interventions. Variational level set methods (LSM) represent objects’
contours through an implicit function that enables tracking the objects’ topologies.
This chapter provides an overviewof variational shapemodeling as applied to the reg-
istration and segmentation problems. The chapter evaluates similarity/dissimilarity
measures and common energy functional representations used in elastic shape regis-
tration. Common numerical methods to solve the optimization involved are studied.
In addition, the chapter discusses clinical applications for which shape-based models
enable robust performance with respect to occlusion and other image degradation.
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1 Introduction

In this chapter, we summarize and expand upon our work on variational shape
modeling for segmentation and registration (e.g., [1–10]). Specifically, we repre-
sent shapes using vector distance functions (VDF). We use the VDF as shape prior
for both shape-based segmentation and elastic shape registration. We derive the
energy formulation for elastic registration and shape-based segmentation. We high-
light the algorithms and the optimization technique used for solving the energy
function. Finally, we apply the methodologies for various biomedical image analysis
problems.

Shapes are represented either explicitly or implicitly [1, 9]. 2D/3D shape bound-
ary points can be used directly/explicitly to deal with shapes (e.g., applications of
alignment and retrieval) where the shape points are used directly to compute shape
geometric properties and features. In the implicit shape representation, the shape
boundary points can be computed by solving the zero level equation of the im-
plicit shape function. This representation can be in either scalar or vector form. In
this chapter, we use the VDF shape representation as a similarity measure in the
shape registration process. More general transformations with inhomogeneous scal-
ing, rotation, and translation parameters will be incorporated. The use of such vector
functions results in a more adequate energy function which is optimized to achieve
the transformation parameters both in the global and local registration schemes.
A variational framework for the registration process is formulated. The gradient de-
scent optimization criterion is used to handle the global registration similar to that
in [11]. The local deformations are covered using the incremental free form defor-
mations. The gradient descent optimization is not used to estimate the positions of
the control points where the number of deformation parameters are large compared
to the global alignment case. We demonstrate the nonrigid registration problem in
vector implicit spaces as well.

Following our latest results (e.g., [9, 10]), we adopt a closed form solution for
computing the elastic registration parameters which provides a large time reduction
in comparison to the large number of iterations required by the gradient descent
approach. We propose a quadratic energy function in terms of the control points
positions (i.e., unknowns). Hence, the objective function is convex which leads to
a single point solution of the minimization problem. Different experimental results
for synthetic and real shapes registration cases will be demonstrated to show the
efficiency of the proposed techniques. Also, comparison with the state of the art
approaches will be discussed in detail.

The treatment below on shape representation and registration is based on our work
[10]. We keep similar notations as well. Later on in the chapter we expand on this
work for simultaneous segmentation and registartion of objects using shape priors.
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2 Shape Representation

A map, C(p) : [0, 1] ⊂ R → R2 defines a planar smooth curve with parameter p.
The cartesian coordinates of the point vector can be defined by C(p) = [x(p)y(p)]T

where 0 ≤ p ≤ 1, 0 ≤ x,≤ X and 0 ≤ y,≤ Y . This is the explicit representation of
the given shape or contour C. Open shapes have the relation C(0) �= C(1). A closed
contour will always haveC(0) = C(1). Parameterizing complicated topology shapes
is a challenge which is considered a disadvantage of the explicit shape representation
method. Thus, a parametrization-free representation is needed. The implicit shape
representation satisfies this condition as shown.

Given a smooth curve Cα (defined above), that represents boundaries of the shape
of interest, the following implicit vector function is defined as�α(X) : �α ⊂ R2 →
R2 where

�α(X) = X0 − X = [φ1φ2]T , X ∈ �α, φ1 and φ2 ∈ R, (1)

whereX0 is the point onCα with theminimumEuclideandistance toXwhereX ∈ �α

(�α is the domain that includes the shape/contour). The surface or boundary points
always satisfy the relation ||�α(Cα)|| = 0. Note, that the implicit representation is
dependent only on the boundary position, not on any parameterizations, and hence,
it is suitable to represent a cloud of points or even scattered edge boundaries.

If a global transformation is applied to the given shape represented by the designed
vector map, one can predict the map of the new shape. We define a shape β that is
obtained by applying a transformation A to a given shape α. Let us assume that the
transformation has a scale matrix S, a rotation matrix R, and a translation vector T.
The transformation can be written for any point X in the space as A = SRX + T.

Applying the transformation to the givenpoints results in the pair of points X̂, X̂0 ∈
�β (Domain of the Target Shape where�β ⊂ R2). It is straightforward to show that:

�β(A) = X̂0 − X̂ = SR(X0 − X) (2)

as such the following relation holds:

�β(A) = SR�α(X) (3)

Which illustrates that this representation can give a vector similarity measure that
includes inhomogeneous scales and rotations. Also, it is invariant to the translation
parameters, while the effect of scales and rotations can be predicted. This measure
overcomes the problem of using the conventional signed distance maps that leads to
the use of homogeneous scales only. Note, that the VDF components are smooth and
differentiable at the boundary points.
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3 Global Registration of Shapes

Finding point-wise correspondences (between the two given source and target shapes
defined respectively by Cα and Cβ ) is the objective of the registration problem. An
energy function is built based on the vector dissimilarity measure. The VDF shape
representation changes the problem from the shape boundary domain to the higher
dimensional vector representation. A transformation, A, that gives pixel-wise vector
correspondences between the two shape representations�α and�β , is required to be
estimated.The problem now can be considered as a global optimization that includes
all points in the image domain. Sum of squared differences will be considered with
energy optimized by the gradient descent approach.

According to the properties of the implicit vector representation shown, the
followingdissimilaritymeasure is used: r = SR�α(X)−�β(A) and theoptimization
energy function is formulated by the sum of squared differences as: E(S, R, T) =
∫�α rT rd�α . The complexity of the problem is reduced by considering only points
around the zero level of the vector function and neglecting mapping of far away
points. The matching space is limited to a small band around the surface that can be
selected by introducing the following energy function:

E(S, R, T) = ∫�α δε(�α,�β)rT rd�α. (4)

where δεis an indicator function defined in [1].
The optimization of the given criterion is handled using the gradient descent method:

d

dt
ϑ = 2 ∫�α δεrT [∇ϑ(SR�α(X)) − ∇�T

β (A)∇ϑA]d�α (5)

where ϑ ∈ {Sx , Sy, θ, Tx , Ty} represents the set of scale, rotation, and translation
parameters respectively.

3.1 Evaluation of Global Registration

In [10] we reported results for an experiment that involved 100 registration cases,
using the corpus callosum (simple shape) and the hippocampus (four separate parts).
Each case considers a source and a target shape. The source is fixed and the target is
generated by applying a transformation on the source. Parameters (Sx , Sy, θ, Tx , Ty)
are created and selected randomly from the ranges [0.8, 1.2], [0.8, 1.2], [−60◦, 60◦],
[−60, 60] respectively. These generated patterns are kept as the ground truth for
each case. The gradient descent optimization is performed to obtain a steady state
estimate for each parameter associated with each registration case. The algorithm
shows successful results for the one hundred cases and the energy decreases smoothly
with the increase of the iteration number until perfect alignment is achieved. The
measurements show that the mean errors and standard deviations (Table1) are very
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Table 1 Mean error (μ) and its standard deviation (δ) for the transformation parameters of the
corpus callosum (CC) and hippocampus (HC) cases (μ ± δ)

Structure Sx Sy θ◦ Tx Ty

CC −0.005 ± 0.009 −0.003 ± 0.007 −0.002 ± 0.018 −0.5 ± 0.4 −0.3 ± 0.5
HC 0.009 ± 0.007 0.005 ± 0.004 0.001 ± 0.09 0.00 ± 0.02 −0.0 ± 0.02

Parameter ranges:[0.8, 1.2], [0.8, 1.2], [−60◦, 60◦], [−60, 60], [−60, 60], are used

appropriate and satisfactorily small. The final registration emphasizes that for each
experiment, the boundaries of the source and target shapes become very close to
one another. The gradient descent successfully estimates the scales, rotations, and
translations with proper initialization.

In addition, we formed three groups of different shapes (Fighter Jet, Fishes, Num-
ber Four). Each group includes 11 instances of its corresponding shape. Different
global registration processes are conducted by randomly taking 11 pairs from each
group. For each pair of shapes, the correlation coefficient is calculated to mea-
sure the similarity between the shape representations: γ = E[(||�α ||−μα)(||�β ||−μβ)]

σασβ

where μ, σ stand for mean and standard deviation of the shape vector representa-
tions magnitudes respectively. The global registration process successfully increases
the coefficient dramatically. Before alignment, the mean correlation coefficients and
their standard deviations for the groups are (0.836 ± 0.047), (0.834 ± 0.087), and
(0.754 ± 0.092), respectively. After alignment, the coefficients become (0.969 ±
0.013), (0.953± 0.03), and (0.911± 0.039). Note, that the last group has the largest
local shape variations and hence, has the smallest average coefficient 0.911, which
is small compared to other groups of coefficients.

For comparison with other techniques, two synthetic shape images have been
created. The second image results by stretching the first with large inhomogeneous
scales (Sx = 2.5, Sy = 3.3). Mutual information is used to register these contours
(images) according to the technique in [15]. Mutual information suffers in such a
situation because the scale range will increase/decrease the energy in one direc-
tion, providing unacceptable results (minimum position does not provide the correct
parameters as shown in Fig. 1 left image). The proposed approach aims to align the
contours of the given images to each other to obtain a global minimum at these
scales exactly as shown, which is considered to be an advantage over the mutual
information.

3.2 Global Registartion for Segmentation of Lung Nodule Regions

We use the global alignment approach with the shape-based segmentation as an
application. In our previous work [2], we formulated the problem as a global reg-
istration between a shape and an intensity model implicit representation. In this
paper, we adopt the above alignment technique to segment lung nodule regions [16].
Nodule size is an important factor in volumetric analysis of lung nodules. It has been
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Fig. 1 Large scales registration case: the negative of mutual information is given to the left. The
proposed energy is given to the right. The mutual information and the proposed energy are shown
as functions of and the proposed energy are shown as functions of Sx and Sy
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shown clinically that size is linked to nodule malignancy, with non-calcified nodules
larger than in diameter having a higher rate of malignancy than smaller nodules.
Size computation is usually performed by applying volumetric methods to a seg-
mentation result. However, lung nodules segmentation in CT imaging is a complex
and challenging process. One of the most important problems arises from possible
attachments of the nodules to other anatomical objects. The lungs are a complex
anatomical structure. Vessels, fissures, bronchi or pleura are structures that can be
located close to lung nodules.

From our experience, we noticed that the main nodule regions considered for
size computation are elliptic. A circle model is represented implicitly by the vector
function �p. A region of interest image (ROI) is taken from the whole lung CT scan
to include the nodule. Intensity segmentation of the ROI is represented implicitly
by the vector function �g . Aligning the two models using the above approach will
result in an ellipse that includes the nodule region. The model is initialized and then
the alignment parameters are estimated using the gradient descent optimization.
Different scales, rotation, and translation parameters are computed in each case to
obtain an ellipse exactly around the nodule (see Fig. 2). The ellipse axis rotates while
its size changes to include the boundaries of the nodule. A thresholding technique
can be used later to remove the non-nodule parts from the elliptic areas.

4 The Elastic Registration Problem

Our objective is to find a function that gives the point correspondences between the
two given domains (source and target). Let us define the 2D shape elastic registration
as follows:A map Cα̂(τs) : [0, 1] ∈ R → R2 defines a planar source curve with
a parameter τs (it is the source shape Cα after applying the global transformation
estimated by themethods above). The target is defined byCβ(τt ) : [0, 1] ∈ R → R2.
Assume that Cα̂(τs) is the corresponding point of Cβ(τt ) (the criteria for finding
the correspondences can be found in the following sections). The output will be
a C0 function f : R2 → R2 with f (Cα̂(τs)) = Cβ(τt ). Different interpolation
functions have been proposed to handle this problem [12]. We choose the free form
deformation FFD model, based on B-splines [13, 14], which is a powerful tool for
modeling deformable objects and has been previously applied to the tracking and
motion analysis problems. The basic idea is to deform the shape by manipulating a
mesh of control points. The resulting deformation controls the shape of the object
and produces a smooth and continuous transformation.

Consider an M × N lattice of control points P = Pm,n; m ∈ {1, . . . , M}; n ∈
{1, . . . , N }, each point on the source shape will have the following form of defor-
mation:

L(τs) =
∑3

k=0

∑3

l=0
Bk(u)Bl(v)δPi+k, j+1 (6)
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Fig. 2 Initial positions are shown in green at the first and third columns while final ellipses are
demonstrated in red at the second and fourth columns
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where δP = δPm,n ∈ {[δPx
1,1δPy

1,1]T , . . . , [δPx
M,N δPy

M,N ]T } is the control point de-
formation vector, i = (x .(M−1)/X)+1, j = (y.(N−1)/Y )+1, u = x .M/X), v =
y.N/Y − (y.N/Y ), and the spline basis functions (B) are defined in [14]. So the
cubic B-spline is used as an approximation function for our interpolation problem.
Below, we propose and discuss the problem solution in implicit and explicit spaces.
In [10], we devised a closed form solution of the interpolation function parameters.

4.1 A Coarse to Fine Strategy with IFFD’s

The control lattice points are required to move to correctly obtain correspondences
over shape boundaries. A very small error can be achieved when using a high resolu-
tion control lattice since the number of degrees of freedom increases. However, this
is not enough. Such sudden movement will result in unnecessary cross overs of the
domain grid lines and the registration process will be meaningless. This will result
in changing and corrupting the object topology. A better way is to move the grid step
by step towards the target.

To avoid this, a coarse to fine strategy is used (equivalent to the incremental free
form deformations used in [15]). We start with a resolution of 4×4 and solve for the
deformation. Iteratively we increase the resolution to 5× 5, 6× 6, and so on and so
forth. In each step, the positions of the control points are computed and the contour
moved to the new position until a satisfactory error distance is obtained. The result
is smooth and the correspondence is achieved accurately. This process handles the
error extremely well and provides an impressive infinitesimal energy function and
smooth grid deformations simultaneously.

4.2 Solution in Vector Implicit Spaces

Following thework in [11], a local deformation vectorL = L(X) = L(δP)(described
above) is applied to the globally transformed shape represented by α̂. The following
dissimilarity measure is considered:

rn − �α̂(X) − �β(X + L) (7)

and hence the non rigid energy function will be defined as:

E�
n (δP) = ∫�α̂

rT
n rnd�α̂ (8)

The local deformations are smoothed by adding another term that includes their
derivatives as follows:
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E�
n (δP) = ∫�α̂

rT
n rnd�α̂ + λ ∫�α̂

(||Lx ||2 + ||Ly ||2
+ ||Lxx ||2 + ||Lyy ||2)d�α̂ (9)

As an interpretation, the energy contains a term for covering the local deformations
and another for penalizing large derivatives. To make the addition homogeneous, we
weight the second term by λ ∈ R+. Again, we take the derivative of the energy with
respect to each of the unknown parameters as follows:

∂ E�
n

∂δP
= −2 ∫�α̂

rT
n (∇�β)T ∂L

∂δP
d�α̂ + 2λ ∫�α̂

((Lx )
T ∂Lx

∂δP

+ (Ly)
T ∂Ly

∂δP
+ (Lxx )

T ∂Lxx

∂δP
+ (Lyy)

T ∂Lyy

∂δP
)d�α̂ (10)

We assume that the amount of pixel deformation is relatively small such that its
vector representation can be approximated using Taylor series expansion as:�β(X+
L) ≈ �β(X)+(∇�β(X)T )L. The control points are required to move and minimize

the above objective function and hence satisfy the following zero condition: ∂ E�
n

∂δP =
[0 0]T. By setting �(X) = �α̂(X) − �β(X), the above formulation will lead to:

∫�α̂
�T (∇�β)T ∂L

∂δP
d�â = ∫�α̂

((∇�β)T L)T (∇�β)T ∂L
∂δP

d�â

+ λ ∫�α̂
((Lx )

T ∂Lx

∂δP
+ (Ly)

T ∂Ly

∂δP
+ (Lxx )

T ∂Lxx

∂δP

+ (
Lyy)

T ∂Lxx

∂δP

)
d�â (11)

Fortunately, the above equation is linear in terms of control points deformations.
We can formulate the following linear system to give a closed form solution for the
unknown deformations:

�̄� = �̄ (12)

where:

�̄r,c = ∫�α̂
((∇�β)T Lr,c)T (∇�β)T ∂L

∂θr
d�α̂

+ λ ∫�α̂
((Lr,c

x )T ∂Lx

∂θr
+ (Lr,c

y )T ∂Ly

∂θr

+ (Lr,c
xx )T ∂Lxx

∂θr
+ (Lr,c

yy )T ∂Lyy

∂θr
)d�α̂, (13)

�̄r = ∫�α̂
�T (∇�β)T ∂L

∂θr
d�α̂. (14)
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Note, that this will lead to computing new positions of the control lattice points
and hence, we can compute the entire domain deformation field. Other approaches
use gradient descent to compute the position of each point in space. Unfortunately,
the use of this form of local deformation does not guarantee proper handling of the
registered shape since it cannot preserve topology. Also, it results in scattered front
points leading to an open surface which is not the case. Another issue is that the
gradient descent does not guarantee the desired solution especially when using a
large number of deformation vectors.

Now we will illustrate the whole algorithm for elastic shape registration in vector
implicit spaces. Assume that N i

x × N i
y is the resolution of the control lattice initially

denoted by i. The resolution at any time will be Nx × Ny . The basic algorithm steps
are shown as follows:

1. Set Nx = N i
x and Ny = N i

y (initial grid size).
2. Compute the vector distance representation of the source and target shapes �α̂

and �β respectively.
3. Construct a control lattice of size Nx × Ny and initialize its point deformation

vectors to zeros.
4. Construct and Solve Eq.12 to obtain the new deformation of each control point

and hence, compute its new position.
5. Based on the new lattice, update the source points and its vector representation,

�α̂ , by computing the new deformation field using Eq.6.
6. Set Nx = Nx + 1 and Ny = Ny + 1.
7. Check the stopping criteria. Either the objective function goes below a certain

threshold or a number of maximum resolution levels is reached, otherwise go to
step #3.

4.3 Evaluation

The point-based algorithm described in [8] looks simple and does not require huge
space to store the shape representation. However, for many registration cases, we
obtain unsatisfactory results. This is due to its use of the closest point criteria to decide
the correspondences. Examples of shapes that show the failure of the algorithm are
shown in Fig. 3. It is clear that these examples fail because the left end of the source
shape arrives at the center line of the target. The decision to go left or right becomes
very difficult since both directions have the same distance.The above algorithmworks
efficiently and handles the cases that the former algorithm fails to register as shown
in last row of Fig. 3 (see also [10]).

The reason for the success is that the approach minimizes the differences between
the two implicit representations and hence, makes the two contours very close to each
other. The neighborhood vectors around the shape boundaries have smallmagnitudes.
This property with the delta function described above helps in moving the contour
smoothly in the proper direction. This creates a force that stretches the source to the
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Fig. 3 Different elastic registration examples: source contour is given in red, target contour is
drawn in green, and deformed contour is shown in blue. Initial contours are shown in the first row.
The second row shows the failure of the ICP [16] algorithm with the IFFD given in [9]. The success
of our approach is demonstrated in the last row

Fig. 4 Different elastic registration examples of shapes containing multiple parts using the implicit
vector representation: source contour is given in red while target contour is drawn in blue. Corre-
spondences for the ventricle is shown to the left while hippocampus results are illustrated to the
right

target while the free form deformation preserves the topology of the shape. In all of
the registration cases, we notice that the grid deformation is smooth and each grid
line is kept in its order without crossovers or folding.

The algorithm works for multiple objects without any problem since it is not
necessary to handle the parameterizations. Elastic registration cases of two-part and
four-part shapes are illustrated in Fig. 4 for the brain ventricles and the hippocampus
shapes.

For more validation of the above algorithm, a deformed shape is generated from a
given tooth model. The target shape is generated by applying random deformations
on the source image such that correspondences are stored as ground truth for vali-
dation. The model is from real data of a Cone-beamed Computed Tomography scan
of resolution 0.2mm per pixel (Fig. 5a).The approach is applied by increasing the
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Fig. 5 A local registration example with displacement field measurements: a initial shape contours
of the source and target models, b displacement field magnitude plot over the shape contour, c
x-component of the displacement field error, and d y-component of the displacement field error

resolution of the control lattice one step in each direction at a time starting from a
grid of 5× 5. The contours come closer to each other iteratively until steady state is
reached. The approach shows very high accuracy. The displacement field is achieved
with an average error of 0.1677mm. As shown in Fig. 5b–d, errors of the displace-
ment fields are plotted versus the curve parameterizations allowing a follow up of
the error distribution over the whole shape boundary.

Compared to the proposed in [15], the above algorithm is more complicated but
the closed form solution for the control points positions possesses a great advantage.
Also, if we do not use the closed form solution, the total execution time will be
doubled. Assume that the registration problem needs N incremental levels of free
form deformations, each level has, Ncp = nx ×ny control points, and hence, 2× Ncp

unknownvariables x and y components for the gradient descent. If the average number
of iterations of the gradient descent needed for eachvariable to reach the steady state is
NI ter with average timeper iteration of�t(with themethod in [15]), the total timewill
be: T ime1 = ∑N

i=1(2×N i
C P ∗NI ter ×�t). For the same IFFDsetupwith the gradient

descent of Eq.10 which does not use the closed form solution, the total time will be
doubled;T ime2 = ∑N

i=1(2×N i
C P×NI ter×(2×�t)), sinceweuse an implicit vector

representationwhich has two components. The gradient descent execution time for an
iteration will be roughly twice that of�t . In the case of applying the proposed closed
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form solution, the gradient descent iterations will be omitted. The new execution
time can be estimated as:OurT ime = ∑N

i=1(2 × N i
C P × (2 × �t)). The time to

construct the linear system of the closed form (Eq.12) is equal to the time of one
gradient descent iteration for all variables. Our time holds the relation:OurT ime =
2 ∗ T ime1/NI ter . A good steady state solution for the gradient descent needs a
number of iterations greater than which guarantees that our execution time is less
than that of the approach in [15].

5 Variational Shape-Based Segmentation

Variational approaches segment shapes through an energy minimization framework
that controls the evolution of an implicit/explicit contour/surface. The active contour
models proposed byKass et al. [20] and level sets proposed byOsher and Sethian [19]
are the most important variational methods in the literature. The active contour mod-
els minimize the energy formulation using the explicit shape representation, which
requires parameterizations of the contour. Explicit shape representations suffer when
applied to shape modeling since they do not allow the shape to undergo topological
changes. The level sets method uses implicit shape representation, which does not
need contour parameterizations, and handles the topological changes of shapes.

Tsai et al. [24] proposed a shape model using a signed distance function of the
training data. The Eigenmodes of implicit shape representations are used to model
the shape variability. They proposed a shape prior using a coefficient of each training
shape. Cremers et al. [26] proposed a simultaneous kernel shape based segmentation
algorithm with a dissimilarity measure and statistical shape priors. This method is
validated using various image sets which objects are tracked successfully. In [15] the
distance function is used to implicitly represent open/closed shapes (structures). The
images of distance functions are registered using the mutual information approach.
In addition to global registration, they used a b-spline based incremental Free Form
Deformation (IFFD) to minimize a dissimilarity measure. Taron et al. [25] proposed
an invariant representation of shapes, and computing uncertainties on the registration
process. They proposed a dimensionality reduction technique to lower the cost of the
density estimate computation of kernel based shapemodel.Mahmoodi [28] proposed
a shape-based active contours for fast video segmentation. Their level sets implement
is based on Mumford-Shah [29] and Chan-Vese [21] methods. They compared their
method with only intensity based segmentation method.

5.1 Methods

The intensity (as the existing information) and shape (as the prior information) are
modeled to obtain the optimum segmentation in this study. The intensity information
is modeled using the histogram of gray levels of the image. This information is mod-
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eled using the Gaussian distribution. The model estimates the marginal density for
each class. Kendall [18], definesshape the geometrical information that remainswhen
location, scale, and rotational effects are filtered out from an object. Hence, the shape
information is modeled after the sample shapes are transformed into the reference
space. The shape variability is modeled using the occurrences of the transformed
shapes. To label the image into meaningful areas, the chosen information is modeled
to fit progressively in each of the regions by an optimization process. Each pixel in the
image will have two probabilities to be an object and a background class based on the
intensity and shape models. These probabilistic values will guide the energy (cost)
functionals in the optimization process. Next sections detail the proposed method

5.1.1 Generation of the Shape Prior

As described in [30], the shape model is required to capture the variations in the
training set. This model is considered to be a weighted sum of the new projected
SDFs’s as follows:

�P =
∑N

a=1
ωa�t

a (15)

Let W = [ω1, . . . , ωN ]t to be the weighting coefficient vector. By varying these
weights, �P can cover all values of the training distance functions and, hence, the
shape model changes according to all of the given images. A new probabilistic
and dynamic shape model is synthesized using the first four principal components.
Two shape probability density functions which represent the probability of i) the
object (inside of a boundary) and ii) background regions (outside of a boundary) are
obtained:

Ps
o (x) =

∑N
j=1 ω j |�t

j (x)|H(−�t
j (x))

∑N
j=1 ω j |�t

j (x)| , Ps
b (x)

∑N
j=1 ωi |�t

j (x)|H(�t
j (x))

∑N
j=1 ω j |�t

j (x)| , (16)

whereH(.) is the Heaviside step function as a smoothed differentiable version of
the unit step function. Also, we should note that Ps

o (x) + Ps
b (x) = 1. This step is

integrated into the registration step which is described in section 5.1.2, hence the
shape model is dynamically reconstructed in the registration process.

Figure6 shows the detailed descriptionof the shapemodelwhere the shapeweight-
ing coefficients are normalized, i.e. w = {ω1, . . . , ωN } = {1/N , . . . , 1/N }. The
green color shows the background region which does not have any intersection with
any training shape. The blue color shows the object region which is the intersection
of all projected training shapes.
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Fig. 6 a The gray color represents the variability region. b The red color shows the contour of the
average shape (�p). c The object (ps

o) and d background (ps
b) shapes are modeled in the variability

region which the pixel values are defined in (0 : 1)

5.1.2 Level Sets Segmentation

The level sets formulation was first introduced by Osher and Sethian [19]. Topology
changes like merging and splitting, are handled naturally without the need of para-
meterization. Given a curve C, it can be embedded into a higher dimension function
� as C = {x : �(x) = 0}. Then the curve is defined as the zero level of the implicit
function. If the time t is added to the function, curve evolution function is changed to
� = �(x, t). The surface function� evolves with the time and the evolution front is
always represented as the zero level. In the literature, the final level sets formulation
is defined as follows:

�(t + �t) = �(t) − F |∇�|�t = 0 (17)

There has been variousmethods tomodel the speed function,F. In this paper, a new
method which is integrating the intensity and prior shape information is proposed.
We use two energy functionals to be minimized. The first functional is to extract
object regions using image intensities only with a statistical level set evolution as
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described in [22]. We need this step to obtain the image feature to be used in the
shape registration process. The second functional, which is slightly different than
the formulation proposed in [26], depends on the dissimilarity measure between our
shape model and the resulting contour which is obtained in the first phase.

The data is assumed to consist of two classes: object and background. Suppose
that the intensity probability density function (pdf) within each of these two regions,
denoted as pI

o and pI
b , can be modeled using a Gaussian distribution whose parame-

ters are adaptively updated during the course of evolution ofthe level set function.
The segmentation process starts by initializing the level set function as the signed
distance function of a circle centered at a seed point(s) that is placed automatically
using the Matched filter [31] or with manual annotation. Then, the statistical pa-
rameters corresponding to the pdf for the object and background are estimated as
follows:

μo = ∫� I (X)H(−�f∗)d�

∫� H(−�f∗)d�
, μb = ∫� I (X)H(�f∗)d�

∫� H(�f∗)d�
,

σ 2
o = ∫�(I (X) − μo)

2H(−�f∗)d�

∫� H(−�f∗)d�
, σ 2

b = ∫�(I (X) − μb)
2H(�f∗)d�

∫� H(�f∗)d�
,

πo = ∫� H(−�f∗)d�

∫� d�
, and πb = ∫� H(�f∗)d�

∫� d�
(18)

whereμ, σ, andπ are themean, standard deviation, and prior probability of the corre-
sponding pdf [22]. Object and background regions are represented by H(−�)H(�),

respectively. The pixel position, (x, y), is represented as (x). The intensity based en-
ergy term is modeled to maximize posterior probability of each region as follows:

Eintensi t y(�f∗) = −∫� P I
o (I (x))H(−�f∗)d� − ∫

�

P I
b (I (x))H(−�f∗)d�+ ∈ L ,

(19)
where L is the front length of the surface area and ∈ is a constant between 0 and 1.
The change of the level set function with time is calculated by the Euler-Lagrange
with the gradient descent given as:

∂�f∗

∂t
= −∂ Eintensi t y

∂�∗
f

= δ(�f∗)[P I
0 (I (x)) − P I

b (I (x))]+ ∈ K (20)

where k is the curvature of the evolving contour (or derivative of L) and δ is the
derivative of the Heaviside step function. By solving this gradient descent formula-
tion, the initial segmented region (�f∗) is obtained. After this step, the shape energy
(Eshape) is optimized using the shape based functions which are defined in Eqs. 15
and 16.

After the object region is initially segmented, the shape model is embedded into
this domain by minimizing the new energy functional. It should be noted that the
method is implemented in 2D dimension in this work. However, the extension of 3D
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dimension is straightforward. A transformation matrix, T, that gives pixel-wise cor-
respondences between the two shape representations�source and�target is required.
The transformation has scaling, rotation, and translation components represented as
follows:

S =
[

sx 0
0 sy

]
, R =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, T r = [tx , ty]t . (21)

The transformation will be in the form of T(x) = X = SRx + T r where X ∈ �f∗
and x ∈ �P The proposed dissimilarity measure is

Eshape(�) = ρEGlobal + ELocal , (22)

where ρ is the normalization constant which controls the relationship between the
first and second terms which can be described as follows:

EGlobal(�P,�f∗ |T ) = ∫
�

(
√

sx sy�P(x) − �f∗(X))2d�, (23)

ELocal(�f∗ , P S,I
o,b |W ) = − ∫

�

P S
o (x)P I

o (x)H(−�f∗ (x))d� − ∫
�

P S
b (x)P I

b (x)H(�f∗ (X))d�.

(24)
The first term of the proposed energy formulation is the (sum-of-squared dis-
tance) SSD of matched distances. It helps to estimate the registration parame-
ters (sx , sy, θ, tx , ty), iteratively. Distance changes anisotropically in x-y directions.
That’s why the geometric mean between sx and sy as an approximation is pro-
posed, since the SDF is not invariant to inhomogeneous scaling. After the registration
parameters are estimated the shape model, �p, and the projected training shapes,
{�t

1, . . . , �
t
N }, are registered to the target domain using the affine transformation.

However, this approximation still may not be enough to perfectly align the shapes.
Hence, it is needed to add the other shape pdf term. A pixel inside the object of
interest needs to have bigger object probability. At the same time, this pixel needs
to have smaller background probability as well. So, the second term maximizes the
probability for object pixels to be correctly classified as internal points. The same
will happen for the background points. This step helps to estimate the shape weight-
ing coefficients (w = ω1, . . . , ωN ) and to refine the result of the first component
more accurately. Our proposed framework including the training step is shown in
Fig. 7. The registration and weighting parameters (sx , sy, θ, tx , ty, ω1, . . . , ωN ) are
computed to minimize Eshape using the Nelder-Mead simplex optimization method
which was first proposed by Nelder and Mead and proved using theoretical results
by Lagarias et al. [32]. The Nedler-Mead method aims to minimize a scalar-valued
nonlinear function of n variables using function values, hence it is one of the direct
search methods.
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5.2 Evaluation

To assess the accuracy and robustness of our proposed framework, we tested it using
clinical data sets as well as synthetic and phantom images. All algorithms are imple-
mented on a PC with a 3GHz AMDAthlon 64× 2 Dual processor, with 3GB RAM.
First, we describe the experimental results on synthetic images. Second, validation
on the European Spine Phantom (ESP) with various noise levels and clinical data sets
will be shown. Effect of initialization will be evaluated.Shape based segmentation is
useful when the target shape has some occlusions and missing information.

5.2.1 Shape-Based Segmentation of Synthetic Objects

Figures8 and 9 show results on synthetic jet airplane and number four images with
some missing information or occlusions. As seen in the results, the first component
(of Eq.22) is useful for an approximate transformation of the shape model. The sec-
ond component enhances the segmentation with updated shape coefficients. Hence,
the proposed dissimilarity measure is able to improve the global registration results.
The results show that occlusions and missing information mislead those methods
based only on intensity model. Using the shape prior information the desired shapes
are recovered. Also, we observe that the proposed method slightly improves segmen-
tation quality of our previous study [27]. As shown in Fig. 8. The proposed method
is more able to capture the fine details and corners of the objects.

In [11, 24], the dissimilarity measures have limitations to capture the object-
of-interest if the source and target shapes have inhomogeneous scale differences.
Figure10 shows the results when the target shapes have (i) homogeneous, and (ii–iv)
inhomogeneous scale differences. Because dissimilarity measures of two alternative
methods discard a possible scale difference in x or y directions, they fail when the
target shapes are scaled inhomogeneities in x-y directions. The results prove that the
proposed method overcomes the problems inhomogeneous scale differences. The
computational costs of the two alternative methods [11, 24] and our method on 40
images (with 128 × 128 size) are approximately 220, 340, and 360s, respectively.
Since the method described in [11] does not estimate the shape coefficients in the
optimization, it executes the experiment in faster time. Also, since the proposed
method estimates two scalingparameters (sx , sy), the execution timemaybe expected
to be slightly higher than other two alternatives.

5.2.2 Shape-Based Segmentation of Vertebral Body from CT

Our approach is also tested on clinical CT images to segment vertebral bodies (VBs)
as well as the European spinal phantom (ESP). The vertebra consists of the VB and
spinal processes. The red color shows the contour of the region of interest in Fig. 11.
The objective is to segment the VB region correctly. Spinal processes and ribs should
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Fig. 7 The general framework is shown. The steps can listed as follows: 1 Obtain shape projections
to define the shape variability. 2 Segmentation

not be included in the bone mineral density (BMD) measurements. The clinical data
sets were scanned at 120KV and 2.5mm slice thickness. In this experiment, 260
testing CT slices (totals to 15 VBs) which are obtained from 13 different patients
and different spine bone regions (i.e. lumbar, thoracic, etc.) are tested. To assess
the proposed method under various challenges, a zero mean Gaussian noise was
added to the CT images with different signal-to-noise ratios (SNR). To compare the
proposed method with other alternatives, VBs are subsequently segmented using
two other methods; (1) the active appearance model (AAM) [23], and (2) our earlier
PCA-based approach which is described in [8].

Segmentation accuracy is measured for each method using the ground truths
(expert segmentation). To evaluate the results, the percentage segmentation accuracy
(A) is calculated as follows:

Dice′s Coe f f icient (A%) = 100 ∗ 2T P

2T P + F P + F N
. (25)

where TP is the number of true positives, FP is the number of false positives, and FN
is the number of false negatives. The segmentation accuracy is shown in Table2. It is
clear that the noise immunity of our method are much higher than other alternatives.
Figure11 shows the segmentation results of the proposed framework with different
scaling, translation, and rotation initializations.
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Fig. 8 Segmentation results of a synthetic jet airplane images with different missing information
and initializations. a The intensity only based segmentation results. b Different shape model initial-
ization. c The results using only the first term of Eq.22. d [27]. e The segmentation of the proposed
method (the redand yellow colors show the contour of the ground truth shape region, and the contour
of the automatically segmented region, respectively)

Table 2 Average segmentation accuracy of the proposed vb segmentation on 272 ct images. The
size of each image is 512 × 512

SN R = 100 d B SN R = 50 d B SN R = 10 d B SN R = 1 d B s/slice

Intensity based, % 79.3 66.2 57.9 51.8 5.6
AAM [23], % 85.2 83.7 79.0 76.1 7.2
PCA-based [8], % 89.3 83.6 81.8 81.3 10.8
Proposed, % 94.3 92.9 89.3 86.8 11.3

Results indicate that the performance of ourmethod is almost constant with differ-
ent initialization parameters. To quantitatively demonstrate the accuracy of our ap-
proach, we calculate the average segmentation accuracy of our segmentation method
on 272 CT images (including 12 ESP images) the under various signal-to-noise ratios
and compare the resultswith the twoothermethods (Intensity-based andPCA-based).
Our 2D-PCA based framework outperforms the conventional PCA described in [8]
as shown in Fig. 12a.
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Fig. 9 Segmentation results on a synthetic number “4” with occlusions and different shape ini-
tializations. a the image with occlusions and noise. b the segmentation results using intensity only
information. c different shapemodel initializations. d the result of the proposedmethod (the red and
yellow colors show the contour of the ground truth shape region, and the contour of the automatically
segmented region, respectively)

Additionally, Fig. 12b studies the effect of choosing the number of the projected
training shapes N (by changing the chosen value of L) on the segmentation accuracy.
From this figure, we can conclude that the performance of 2D-PCA is better than
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Fig. 10 Comparison with two closest works described in [11, 24]. Testing shapes with (i) homo-
geneous and (ii–iv) inhomogeneous scaling factors. (i) sx = 1.0, sy = 1.0, (ii) sx = 0.7 sy = 1.3,
(iii) sx = 1.2, sy = 0.7, (iv) sx = 0.4, sy = 0.7 (the red and yellow colors show the contour of the
ground truth shape region, and the contour of the automatically segmented region, respectively

the conventional PCA under the same number of training shapes. In other words, to
get the same accuracy of PCA framework, the 2D-PCA needs fewer training shapes.
Using the shape model, the spinal processes are eliminated automatically without
any computational cost and execution time. This contribution is very important for
the BMD measurements which are restricted to the VBs.

6 Summary and Possible Extensions

This chapter considered elastic registration of shapes and its applications in the
segmentation problem. Shape representationwas performed using the vector distance
function (VDF). The energy function for global and local registrationswas described.
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Fig. 11 Segmentation results of clinical CT images. a intensity only based segmentation results. b
different initialization of the shape model. c the proposed segmentation results (the red color shows
the contour of the ground truth shape region, the yellow color shows the contour of the automatically
segmented region)
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Fig. 12 a the average segmentation accuracy of different segmentation methods on 272 CT images
under various signal-to-noise ratios. b the effect of choosing the number of the projected training
shapes N on the segmentation accuracy

Creating a shape prior was studied for a number of examples. We have demonstrated
the registration problem bymatching vector implicit spaces representation of shapes.
We formulated the process as an energy minimization problem. Gradient descent is
used for optimizing the global registration energy with proper initialization of the
transformation parameters.
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The use of vector implicit representation helps generalize the global transforma-
tion and hence, results are improved. In local registration, the situation is different
because the number of unknown parameters used to represent deformations is large.
Gradient descent is an awkward step in this situation. We adopt a closed form solu-
tion for the elastic registration problem by formulating a quadratic function, which
leads to a convex optimization system. The proposed approach avoids using large
number of iterations required for the minimization by gradient descent optimization.
We demonstrated several experimental results for synthetic and real shape registra-
tion cases. The proposed approach is competitive when compared to the state of the
art techniques. Qualitative, quantitative, and comparative experimental results have
been demonstrated for both global and local registration cases. An application for
nodular region segmentation has been illustrated to assure that the proposed tech-
nique has a wide range of applications. Regarding future directions, the proposed
approach can be implemented in 3D in a straightforward manner, which will help in
applications like 3D face recognition.
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