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Abstract The quantitative analysis of cardiac motion from echocardiographic
images helps clinicians in the diagnosis and therapy of patients suffering from heart
disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging)
or speckle tracking. These methods are based on two techniques which to a large
degree are independent—the Doppler phenomenon and image sequence processing,
respectively. Herein, to increase the accuracy of the speckle tracking technique and
to cope with the angle dependency of TDI, a combined approach dubbed TDIOF
(Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on
the combination of B-mode and Doppler energy terms minimized using algebraic
equations and is validated on simulated images, a physical heart phantom, and in-vivo
data. It was observed that the additional Doppler term is able to increase the accu-
racy of speckle tracking, compared to two popular motion estimation and speckle
tracking techniques (Horn-Schunck and block matching methods). This observa-
tion was more pronounced when noise was present. . The magnitude and angular
error for TDIOF applied to simulated images when comparing estimated motion
with ground-truth motion were 15% and 9.2degrees/frame, respectively. The mag-
nitude and angular error for images acquired from physical phantoms were 22%
and 15.2degrees/frame, respectively. As an additional validation, echocardiography-
derived strains were compared to taggedMRI-derived myocardial strains in the same
subjects. The correlation coefficient (r) between the TDIOF-derived radial strains
and tagged MRI-derived radial strains value were 0.83 (P < 0.001). The correla-
tion coefficient (r) for the TDIOF-derived circumferential strains compared to the
tagged MRI-derived circumferential strains were 0.86 (P < 0.001). The comparison
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of TDIOF-derived and block matching speckle tracking and Horn-Schunck opti-
cal flow strain values using student t-test demonstrated superiority of TDIOF (95%
confidence interval, P < 0.001).

1 Introduction

Cardiovascular Disease (CVD) is the leading cause of death in the modern world.
The mortality rate associated with CVD was estimated to be 17 million in 2005
and continues to be ranked as the top killer worldwide. CVD is the result of under-
supply of the cardiac tissue and can lead to malfunction of the involved myocardial
territories and manifest as hypokinesia or akinesia. Several imaging methods such
as X-ray CT, MRI, and Ultrasound have been used for visualization of the heart
function. MRI and X-ray CT provide excellent spatial resolution but the cost and
lack of wide-spread availability cause challenges in the clinical settings. Echocar-
diography is a popular technique for cardiac imaging due to its availability, ease of
use, and low cost. Echocardiography shows the motion and anatomy of the heart
in real time, enabling physicians to detect different pathologies. However, analy-
sis of motion of the myocardium in echocardiographic images is based on visual
grading by an observer and suffers from inter and intra-observer variability. To over-
come the inter- and intra-observer variability, computerized image analyses can help
by quantitatively interpreting the data. To that end, cardiac image processing tech-
niques, mainly categorized as segmentation and registration, have been widely used
for assessing the regional function of the heart [1–3]. To perform such analysis, two
independent techniques, have been utilized; these are TDI (Tissue Doppler Imaging)
and speckle tracking. TDI computes the tissuemotion based on the Doppler phenom-
enon and is dependent on the angle of insonification. Speckle tracking, on the other
hand,is an image processing method based on the analysis of the ultrasound B-mode
or RF images. B-mode based algorithms are robust to the variation of the transducer
angle but rely entirely on the properties of echocardiographic images which may
be noisy or inaccurate. The physical principle underlying B-mode and TDI are to
a large degree independent and therefore for myocardial motion estimation carry
complementary information [4, 5].

Many methods such as optical flow [6], feature tracking [7], level sets [8], block
matching [9], and elastic registration [10] have been utilized for quantitative assess-
ment of myocardial motion in B-mode images. Table1 shows a description of some
of the current methods used in motion estimation in echocardiographic images
[6–21]. Suhling et al. [6] integrated rigid registration in an optical flow framework
in order to detect myocardial motion from 2D echocardiographic images. B-spline
moments invariants were applied to echo images to achieve invariance to the transla-
tion and rotation. The motion estimation algorithm was then applied to the B-spline
moments of the image instead of the image intensity in a coarse to fine strategy and
was validated using open chested dogs after ligation of a coronary artery. Additional
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Table 1 Description of some of the current methods used in motion detection in echocardiography
images

Article Output Technique Validation (# of sub-
jects)

Suhling et al. [6] Motion B-spline moments,
optical flow

2D dog (6), simulated
images, phantom

Yu et al. [7] Motion Maximum
likelihood,
spline based
control points

2D Dog (4), Sonomi-
crometry

Paragios [8] Endocardium, motion Level set + learned
shape-motion
prior

2D Human

Hayat et al. [9] Motion Block matching 3D echo, MRI
Elen et al. [10] Motion Elastic registration 3D human (normal: 3,

patient: 1), simulated
images

Esther Leung et al. [11] Motion Optical flow and
shape model

3d echo

Myronenco et al. [12] Motion Motion coherence
by temporal
regularization

3D human, EB

Duchateau et al. [13] Motion Diffeomorphic
registration

2D human (normal:
21, patient: 14),

Bachner et al. [14] Motion fiber direction 2D human, simula-
tion, phantom

Dydenco et al. [15] Epicardium, motion Regional statistics
curve evolution

2D Human, TDI

Yan et al. [16] Epicardium, motion Finite element
model

3D human, implanted
marker

De Craene et al. [17] Epicardium Diffeomorphic
B-spline free
form
deformation

3D human (normal: 9,
patient: 13)

Ashraf et al. [18] Motion 3D Pig Sonomicrometry
Papademetris [19, 20] Motion Finite element

model
3D echo

Kleijn et al. [21] Motion Block Matching 3D echo

validations were performed on simulation and phantom images. Ellen et al. [10] used
elastic registration on 3D B-mode echocardiography images to extract myocardial
motion and strain values. The method was validated using simulated and real ultra-
soundimages. Esther-Leung et al. [11] proposed two different methods (1. model-
driven, 2. edge-driven) for tracking the left-ventricular wall in echocardiographic
images. Their approach was motivated by the fact that in echocardiography images,
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visibility of the myocardium depends on the imaging view; so the myocardium may
be, partly, invisible to the beam. Their technique relied on a local data-driven tracker
using optical flow applied to the visible parts of the myocardium and a global statisti-
cal model applied to the invisible parts. It was concluded that the shape model could
render good results for both the visible and the invisible tissues in ultrasound images.
Myronenco et al. [12] proposed the so-called Coherent Point Drift (CPD) technique
for myocardial motion estimation, constraining the motion of the point set in the
temporal direction for both rigid and nonrigid point set registration. A set of point
distribution was computed based on endocardium and epicardium locations. The
point set was modeled with a Gaussian mixture model (GMM). The GMM centroids
were updated coherently in a global pattern using maximum likelihood to preserve
the topological structure of the point sets. A motion coherence constraint was added
based on regularization of the displacement fields. The purpose of regularization was
to increase the motion smoothness.

Most of the motion estimation techniques developed thus far, are either based
on TDI or B-mode. Recently, Garcia et al. [22] considered the combination of car-
diac B-mode images and intra-cardiac blood flow data for computing the blood flow
motion in the heart using continuity equation and mass conservation in polar coor-
dinates. Their paper focused on the blood flow computation and did not consider the
cardiac tissue displacements. Dalen et al. [23] and Amundsen et al. [24] previously
combined TDI with speckle tracking by integrating TDI in the beam direction and
speckle tracking in the direction lateral to the beam. However, this method discarded
the speckle tracking data in the beam direction. The authors reported that they were
unable to improve the motion estimation performance compared to speckle track-
ing techniques. In this paper, we propose integration of tissue Doppler and speckle
tracking within a novel optical flow framework, we call TDIOF (Tissue Doppler
Optical Flow). Our experimental results indicate that TDIOF outperforms both TDI
and speckle tracking approaches.

The organization of the rest of the paper is as follows: in Sect. 2, we review the
mathematical and algorithmic basis for the proposed method. Section3 is a descrip-
tion of datasets used for validation of the proposed method. These include computa-
tional simulations, US data collected in a cardiac phantom, and in vivo data collected
in patients recruited from the echocardiography laboratory at the Robley Rex VA
Medical Center to our IRB-approved study. In Sect. 4, strain computations are dis-
cussed and, in Sect. 5, results from validation of the proposed method are described.
Finally, in Sect. 6 we discuss observations related to TDIOF and our findings.

2 Methods and Materials

TDI and B-mode speckle tracking are different in both their physical underpinning
and data type. In speckle tracking, tissuemotion is determined frommotion of speck-
les in Ultrasound images–typically, using a block matching approach applied to 2-D
B-mode images [give references]. Although speckle tracking provides both com-
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ponents of the motion in the spatial domain, it is based on noisy B-mode images.
TDI on the other hand only computes the velocity of tissue in one direction as mov-
ing towards (displayed as red) or away (displayed as blue) from the transducer. This
means that the computedmotion is the projection of the realmotion in the direction of
the transducer and therefore TDI is angle dependent. In this section, we first describe
a novel energy minimization framework for estimation of myocardial motion from
B-mode images which incorporates a velocity constraint from TDI.

The proposed method is based on optimization of three energy functions: (1)
intensity constancy assumption, (2) velocity smoothness, and (3) similarity with
Doppler data. The framework is minimized using an incremental algebra in method
[25, 26] as described in Appendix A. In order to show the performance of TDIOF, it
is compared to two popular motion detection techniques Horn-Schunck optical flow
[27] and block matching [28] (Appendix B). Block matching is utilized in several
commercial software platforms [29].

3 Validations

3.1 Simulated Computerized Phantom

Echocardiographic images are the result of the mechanical interaction between the
ultrasound field and the contractile heart tissue. Previously, we reported on develop-
ment and use of an ultrasound cardiac motion simulator [29]. In the current study,
we utilized the COLE convolution based simulation technique reported in [30]. The
significance of an Ultrasound cardiac motion simulator is the availability of both
echocardiographic images as well as the actual ground-truth vector field of deforma-
tions.

A moving 3D heart was modeled based on a pair of prolate-spheroidal represen-
tations and used for the ultrasound simulation. The 3D forward model of cardiac
motion was simulated using 13 time-dependent kinematic parameters of Arts et al.
[30] (see Table2). The evolution of the 13 kinematic parameters was previously
derived by Arts following a temporal fit to actual location of tantalum markers in
a canine heart [31]. In Arts’ model, seven time-dependent parameters are applied
to define the ventricular shape change, torsion, and shear while six parameters are
used to model the rigid-body motions. To simulate the Ultrasound imaging process,
scatterers were randomly distributed in the simulated LV wall and the motion pre-
scribed by Arts’ model was used to move the ultrasound scatterers. To determine
Ultrasonic B-mode intensities, the COLE method was used [30]. COLE is an effi-
cient convolution-based method in the spatial domain, producing US simulations by
convolving the segmental PSF (point spread function) with the projected amplitudes
of the scatterers [29] with the segmental PSF derived using Field II [30, 32]. In order
to model the Doppler Effect, the frequency of the RF signal was shifted in the fre-
quency domain based on the attributed ground truth motion vector and mixed with
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Table 2 The 13 k-parameters
of the Art’s kinematic model
for left-ventricular
deformation used in our
cardiac US motion simulator

Non-rigid body motion

k1 Radially dependent compression
k2 Left ventricular torsion
k3 Ellipticalization in long-axis (LA) planes
k4 Ellipticalization in short-axis (SA) planes
k5 Shear in x direction
k6 Shear in y direction
k7 Shear in z direction
Rigid body motion
k8 Rotation about x-axis
k9 Rotation about y-axis
k10 Rotation about z-axis
k11 Translation along x-axis
k12 Translation along y-axis
k13 Translation along z-axis

additive Gaussian noise. If the velocity of the particle is v, ultrasound velocity is c,
and transducer frequency is f , then the frequency shift is:

� f = 2v f

c
(1)

The resolution of the first simulated sequence was 0.1mm/pixel for both B-mode
and TDI images and included 14 mid-ventricular temporal frames in the axial ori-
entation. In order to analyze the robustness of the method to noise, another set of
simulated images were produced by adding Gaussian noise of 1.12db to the noise-
less data

3.2 Physical Cardiac Phantom

As described in [30], a physical cardiac phantom was built in-house, suitable
for validation of echocardiographic motion estimation algorithms. Here, a brief
description of this phantom is provided. To manufacture the phantom, a cardiac
computerized model was used to build an acrylic based cardiac mold. A 10% solu-
tion of PolyVinyl alcohol (PVA) and1%enamel paintwere used as the basicmaterial.
PVA has the ability to mimic cardiac elasticity, ultrasound and magnetic properties.
The solution was heated up to 90 ◦C. Consequently, it was poured into the cardiac
mold and gradually exposed to the temperature of −20 ◦C until it froze. The mold
and the solution were kept in that temperature for 24h. Finally, the mold and the
frozen gel were gradually exposed to the room temperature. At this point, the normal
heart phantom has passed one freeze-thaw cycle.
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An additionalmodel consisting of the left and right ventricles but with a segmental
thin wall in the LV was used to build an additional mold for a pathologically scarred
heart. The thinner wall was designed to mimic an aneurysmal, dyskinetic wall. Three
PVA-based inclusions were separately made as a circle; slab and cube using nine,
six and three freeze-thaw cycles respectively. Each freeze-thaw cycle decreases the
elasticity of the heart mimicking scarred myocardium. The attenuation of the PVA
and speed of sound increase after each freeze-thaw cycle.The cylindrical, slab like
and cube like objectswere placed in themold in differentAmericanHeartAssociation
cardiac segments [33]. Subsequently, the PVA solution was added to fill the rest of
the space in the mold. After one freeze-thaw cycle, the abnormal heart consisted
of a background of normal texture with one freeze-thaw cycle plus three infarct-
mimicking inclusions having 10, 7 and 4 freeze-thaw cycles. The speed of sound in
PVA is 1527, 1540, 1545, and 1550m/s and ultrasound attenuation is 0.4, 0.52, 0.57,
and 0.59db/cm for 1, 4, 7 and 10 freeze-thaw cycles. The parameters of the synthetic
phantom was adjusted based on the previous phantom studies [34].

A mediastinal phantom that provides the ability to acquire trans-esophageal
images was manufactured using another mold. A solution of 50% water and 50%
glycerol was used to mimic the blood. Finally, a syringe was used to manually force
the fluid inside and outside the phantom for contraction and expansion. The enamel
paint particles are robust scatterers and can generate reliable markers on the B-mode
image. Since each marker is not restricted to just one pixel, the center of the mass
of each manually segmented marker is considered as landmark. The displacements
of the landmarks are compared to the computed motion field for the validation pur-
poses. Figure1 shows the cardiac phantom and the acquired phantom images using
ultrasound and MRI.

3.3 Patient Studies

Two separate sets of data were utilized for in vivo validations (sets A and B). Set A
contained 15 patients and was used for manual tracking validation. Set B was a joint
echo and tagged MRI set and was used for both manual tracking and comparison
with tagged MRI (as will be discussed in Sect. 3.3.2) (Fig. 2).

3.3.1 Set A: Echocardiography Studies

Data from fifteen subjects who had already undergone echocardiographic imaging
as part of their diagnostic evaluation were deidentified and transferred to the labo-
ratory following IRB approval. The data included 13 male, 4 female, average age
52.9± 7.3, consisting of hypertension (8 cases), Coronary Artery Disease (4 cases),
Left Ventricular Hypertrophy (4 cases), Congestive Heart Failure (1 case), Chronic
Obstructive Pulmonary Disease (2 cases), Diabetes Mellitus (2 cases) and smokers
(1 case). 2D echocardiography (short-axis, long-axis, four-chamber, two-chamber
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Fig. 1 Seventeen AHA prescribed segments for the heart. a Basal SAX view, b mid-LV SAX view,
c apical SAX view (AS antero-septal, A anterior, L lateral, P posterior, I inferior, IS infero-septal)
[35, 37, 38]

B-mode with TDI. At the University of Louisville Hospital’s echocardiography labo-
ratory, Echocardiographic images are acquired with a commercially available system
(iE33, Philips Health Care, Best, The Netherlands) using a S5-1 transducer (3MHz
frequency) and the operator is free to change the gain and filter as needed. The full
data set included two-chamber, three-chamber, four-chamber, and long-axis views.

3.3.2 Set B: Echocardiography-MRI Studies

The prospective protocol for patient selection and imaging was approved by the
Institutional Review Board of the Robley Rex Veterans’ Affairs Medical Center,
and a written informed consent was obtained from patients. Eight male subjects
were prospectively recruited to the study with average age 54.6 ± 8.5. The subjects
included hypertension (5 cases), Coronary Artery Disease (2 cases), Congestive
Heart Failure (1 case), Chronic Obstructive Pulmonary Disease (1 case), Diabetes
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Fig. 2 a A picture of the two-chamber model. b TDI image of the moving phantom during balloon
inflation. c A static slice of the phantom using T1 weighted FFE. The arrow points to the aneurysm
(the thin ventricular wall). d A static slice of the phantom using balanced FFE (1 LV, 2 RV, 3
cylindrical inclusion, 4 slab-like inclusion, 5 cube like inclusion, 6 mediastinum and mediastinal
structures)

Mellitus (3 cases) and smokers (4 cases).The imaging protocol included a primary
2D echocardiography including short-axis, long-axis, three-chamber, four-chamber
and two-chamber B-mode and TDI imaging as well as simultaneous B-mode/TDI
imaging (two-chamber, three-chamber, four-chamber, long-axis). At the Robley Rex
Veterans Affair Medical Center’s echocardiography laboratory, Echocardiographic
images are acquired with an iE33 commercial echocardiography system (Philips
Health Care, Best, The Netherlands) using a S5-1 transducer (3 MHz frequency) and
the operator is free to change the gain and filter as needed.

Following Ultrasound imaging, cine and tagged MRI data were collected in
all subjects. Tagged MRI data acquisition was performed using Philips Achieva,
TFE/GR sequence, TE/TR 2/4 ms, Flip Angle 15, spatial resolution 1.25×1.25mm,
slice thickness 8mm, and spatial size 256 × 256 × 8 pixels. In all subjects, both
echocardiography andMR imagingwere performedwithin two hours to decrease any
confounding events that could cause discrepancy between wall motion studies in
echocardiography and MRI. MRI was performed immediately after the echocardio-
graphy. In order to ensure that the B-mode and TDI images were matched, B-mode
and TDI images were simultaneously acquired. Additionally, subjects were asked to
hold their breath during data collection.

3.4 In-Vivo Comparison of TDIOF-Derived Strains with Strains
from Tagged MRI

Tagged MRI [35] is known to provide highly accurate displacement fields in the
systolic portion of the cardiac cycle while the tags last. We analyzed the strain
field in echocardiography and tagged MR images of slices similar in location in the
two modalities in set B. In selecting corresponding slices, qualitative anatomical
landmarks such as the papillary muscles and cardiac contours as well as cine MRI
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images were utilized. Anatomical landmarks such as endocardial shape and papillary
muscle were used to locate the appropriate short axis sections of the heart. The
recently proposed SinMod technique [36] was then used to derive displacements
from tagged MRI data in the first few systolic phases of the cardiac cycle, while
the tags persisted. SinMod is an automated motion estimation technique for tagged
MRI that models the pixels as a moving sine wavefront.Since no pixel to pixel
mapping between echo and MR images was known, the ventricular geometry from
2-D echo and tagged MRI was divided into 17 segments following the American
Heart Association’s recommendations. Subsequently the averaged Lagrangian strain
for each of the 17 heart segments were compared between the two modalities. Since
the frame rate of echo and MRI is not the same and the heart rate may change, it was
necessary to align the images in the temporal dimension. This was done by spline
interpolation of the measured strain data in the time domain.

4 Strain Analysis

Strain is a measure of deformation of the cardiac tissue. With I representing the
identity matrix, the Lagrangian strain tensor at a given myocardial point and for a
specific time point can be expressed as:

E = 1

2
(FT F − I ) (2)

where the elements of the deformation gradient tensor, F, are:

F =
⎛
⎝

∂x
∂ X

∂x
∂Y

∂x
∂ Z

∂y
∂ X

∂y
∂Y

∂y
∂ Z

∂z
∂ X

∂z
∂Y

∂z
∂ Z

⎞
⎠ (3)

while x = X + V (X), X represents the spatial coordinates in the undeformed
coordinates (typically taken to be the end-diastolic frame), and V (X)is the accumu-
lated motion vector at the corresponding spatial location relative to the undeformed
state . For the echocardiography data, the reference frame for the strain computation
was considered to be the end diastolic frame and was selected based on ECG trigger.
The deformation field was then computed between each two frames and was added
to the motion field from the previous frame in order to measure the accumulated
deformation and strain . Since the deformation field of the consecutive frames do not
represent the motion of the same pixels, spline interpolation was used to align the
deformation fields. For the tagged MRI data, the end-diastolic frame was always the
first acquired image which is collected immediately after the R-wave trigger.

The normal strain in the direction of the unit vector n can be calculated from the
Lagrangian strain tensor through the quadratic form nT n, where n is a unit vector and
can point to any direction on the unit sphere. Due to the geometry of the left ventricle,
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the normal strains are usually calculated in radial, circumferential, and longitudinal
directions.

Regional analysis is performed on 17 American Heart Association (AHA) pre-
scribed segments. Figure7 shows the different segments. The acronyms stand for
antero-septal (AS), anterior (A), lateral (L), posterior (P), inferior (I), and infero-
septal (IS). For a review of topics related to determination of strain from cardiac
images, the reader is referred to [35, 37, 38].

5 Results

As noted in Sect. 3, TDIOFwas applied to three different datasets: simulated images,
data collected in a physical phantom, and in vivo data (both set A and set B). To
further elucidate the effect of the Doppler term, results from TDIOF were compared
toHorn-Schunck (HS) optical flow (beta = 0 in Eq. (A.11)) and block-matching (BM)
(see Appendix) with the latter being the basis for most commercial speckle tracking
methods [13]. Since the performance of each technique depends on the parameters of
the method, it was necessary to optimize the parameters. Based on simulated images,
an exhaustive search was performed over the parameters of TDIOF, HS optical flow,
and BM speckle tracking method (a large range was considered for each parameter)
and the best values were selected experimentally. To analyze the performance of the
techniques with different parameter settings, simulated images were compared to the
next simulated frame after being warped using the estimated motion field. Relative
mean absolute error was used for the comparison. Relative mean absolute error was

computed as 1
N

∑
i, j

∥∥∥ Î − I
∥∥∥ /I ; where I and Î are the first and subsequent warped

images, and N is the total number of points. Figure3 shows the performance of
the TDIOF technique using different parameters. The methods were then applied
to all the datasets using the resulting parameters: number of scales for multiscale
implementation: 5, α (smoothness weight): 2000, β (TDI similarity weight): 0.001,
and σ (penalizer parameter): 0.1. The parameters for the HS technique were set as
follows: number of scales 5, and smoothness weight 2000.

5.1 Validations on Simulated Images

The simulated 3D cardiac model built based on Arts’ et al. [31] is shown in Fig. 4a.
The deformation shown in the figure is that of a systolic motion. The 3D B-mode
image deformation was computed based on [29] and was shown in Fig. 4b. Figure4c
shows the computed TDI using the simulated sequence—the red colors represent
motion towards the transducer and the blue colors represents motion away from the
transducer. Figure5 shows application of TDIOF to simulated data and comparison
with ground truth. Angular and magnitude error metrics were used for validation of
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Fig. 3 Performance of TDIOF using different parameters based on relative mean absolute error:
X-axis is shown with a logarithmic scale in order to report a wide range of parameter settings.
The performance of TDIOF is plotted versus smoothness coefficient for different TDI similarity
coefficients (β). Changes of performance is evident when smoothness parameter (α) changes. As
seen from the plots, performance was more dependent on the smoothness and insensitive to the
scale for the TDIOF term

Fig. 4 a Simulated cardiac model in diastole and systole. b A 3D simulated B-mode image based
on COLE. c The computed tissue Doppler image using the simulated sequence

the proposed technique as stated in Eqs. (4) and (5):

Magnitude Error = 1

N

∑
i, j

∣∣∣∣
‖V̂ ‖ − ‖V ‖

‖V ‖
∣∣∣∣ (4)

Angular Error = 1

N

∑
i, j

∣∣∣∣Arc cos

〈
V, V̂

〉

‖V ‖ · ‖V ‖
∣∣∣∣ (5)

whereV and V̂ are the true and estimated displacement vectors and N is the total
number of vectors.

To quantitatively analyze the proposed method, averaged performance of TDIOF,
Horn-Schunck optical flow, and block matching speckle tracking are reported in
Table3. The methods were applied to 14 simulated cardiac frames (one full cardiac
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Fig. 5 a Results of TDIOF from a mid ventricular section of the 3D simulated echo data. b Ground
truth motion field

Table 3 TDIOF versus HS optical flow and BM speckle trackingwhen applied to simulated images

Data Simulation (no noise) Simulation (SNR 1.12 db)
Method TDIOF HS BM TDIOF HS BM

Magnitude error
(pixel/frame)

0.15 ± 0.09 0.20 ± 0.13 0.20 ± 0.14 0.22 ± 0.12 0.34 ± 0.16 0.31 ± 0.15

Angular error
(degrees/frame)

9.2 ± 3.8 11.2 ± 5.2 11.3 ± 5.6 10.0 ± 5.5 12.5 ± 6.8 12.7 ± 6.0

BM block-matching, HS Horn-Schunck

cycle) of size 300 × 300 × 150 pixels with and without noise. The error represents
the angular or magnitude error averaged over all 100 slices and over all 14 temporal
frames (averaged in both space and time). Please note that TDIOF was applied to
100 short-axis cross sections of the simulated heart. Table3 illustrates that TDIOF
has markedly improved performance on noisy images. Figure6 shows the magnitude
and angular error over one cardiac cycle for the 3 techniques—note that for each time
point, the errors have been averagedover all spatial positions and all slices.It is evident
that for all methods the errors are more pronounced in systolic frames compared to
diastolic frames. This, we believe, is due to larger out of plane displacements causing
errors for the 2-D method. From the figure, it can also be observed that, TDIOF
outperforms Horn-Schunck optical flow and BM speckle tracking more significantly
on noisy images.
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Fig. 6 Comparison of (a) magnitude (Eq. (4)) and (b) angular error (Eq. (5)) over one cardiac cycle
for different techniques

5.2 Validation on Data Collected in a Physical Phantom

In order to validate TDIOF on phantom data, the enamel markers on the B-mode
images were manually segmented and the centers of mass of the markers were con-
sidered as landmarks. The error was computed on 128 landmarks over one cardiac
cycle with 54 2D echocardiographic frames. As with simulated images, angular and
magnitude errors were used to analyze the performance. The averaged magnitude
and angular error of the landmarks for TDIOF, HS optical flow, and BMspeckle
tracking are shown in Table4. Figure7 shows application of TDIOF and TDI to the
physical phantom.

5.3 Validation on In Vivo Images

The algorithm was also evaluated in a similar way using in vivo images with 519
landmarks selected by an expert over 106 sets acquired from 23 patients. Landmarks
were prominent regions in in vivo images such as speckles that could easily be
detected. Each landmark was delineated and the center of mass of the landmark was
defined to be the actual location. The average error for each of the three methods
(TDIOF, Horn-Schunck, block matching) applied to in vivo data was classified per
segment and is reported in Table5. Figure8a shows the application of the TDIOF
technique to one four-chamber in-vivo B-mode study in systole. Figure8b shows the
end-systolic longitudinal strain map for the same patient.
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Fig. 7 a TDIOF applied to phantom data in “systole”, b TDI forthe same phase

5.4 Preliminary Comparison of Strains from TDIOF and Tagged
MRI

In this part of the study, radial and circumferential strains derived from TDIOF,
HS optical flow, and BM speckle tracking were computed from B-mode echoand
were compared to tagged MRI strains. Anatomical landmarks such as endocardial
shape and papillary muscle locations were used to locate the corresponding short
axis sections of the heart in tagged MRI and echocardiography. In addition, since the
papillary muscles could not be easily visualized in the tagged studies, non-tagged
cine MR images were used to better define the papillary muscles locations. Despite
these efforts to ensure correspondence of the data, as alignment of the data based
on landmarks could only be approximate (due to differences in slice thickness and
identical view orientation in echo and MRI), and the results reported here should
only be qualitatively interpreted.

The image-derived strain values related to the same cardiac phase and the same
sections of the same patient were compared by averaging the corresponding radial
and circumferential strain values for each of the 17AHAsegments. For alignment, the
short-axis tagged MR images were visually matched to the corresponding short axis
echocardiographic images acquired from basal, mid-ventricular, and apical slices.
Since the tag lines fade after systole, only the first 3–4 systolic tagged frames and the
corresponding temporal extent in echo was considered in this analysis. Furthermore,
since the number of the frames in echocardiography is several times that of tagged
MRI data (roughly 20 tagged MR frames versus 4 echocardiographic frames during
the cardiac cycle), the strain fields in echo images were interpolated using spline
interpolation to match the systolic taggedMRI frames. Finally, 2-D strain maps from
corresponding echocardiography and taggedMRI were computed and averaged over
17 segments.
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Fig. 8 Application of TDIOF to four-chamber B-mode data during diastole. As expected, TDIOF-
derived displacements are larger for the basal segments when compared to the apical segments

Figure9a shows B-mode and TDI images in early systole at the high papillary
muscle level of a subject. The computed motion of the heart between these two
frames is shown in Fig. 9b and c based on HS optical flow and TDIOF, respectively.
The cardiac strain maps for the same cardiac phase and same slice are shown in
Figs. 10 and 11. Figure11 compares the radial strain map with the tagged MRI
radial strain map. As expected and observed from the tagged MRI results, the radial
strains fromTDIOF are positive and gradually increase during systole. The increased
radial strain is more pronounced in AL and IL segments in both SinMod derived and
TDIOF strain maps. The increased radial strain is also prominent in the AS and IS
segments. Figure11 shows the circumferential strain map compared to the tagged
MRI circumferential strain map. As expected and observed from the tagged MRI
results, the circumferential strains from TDIOF are negative and gradually increase
in magnitude during systole. This increase is more pronounced in AL and ANT
segments in both SinMod tagged MRI-derived and TDIOF strain maps.

To compare the performance of TDIOF and HS, statistical analysis of the strain
map results are helpful. Figure12 shows correlation studies of the radial and cir-
cumferential strain values compared to tagged MRI. The correlation coefficient (r)
for the TDIOF radial strain values compared to the tagged MRI radial strain values
was 0.83 (P < 0.001); while the correlation coefficient (r) for the HS and BM radial
strain values compared to the tagged MRI radial strain values were 0.71(P < 0.001)
and 0.75(P < 0.001), respectively. The correlation coefficient (r) for the TDIOF cir-
cumferential strain values compared to the tagged MRI circumferential strain values
was 0.86 (P < 0.001); while the correlation coefficient (r) for the HS and BM cir-
cumferential strain values compared to the tagged MRI circumferential strain values
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Fig. 9 a A short axis B-mode image at the high papillary muscle level of a subject during early
systole compared to TDI image for the same phase. bHorn-Schunckmotion field for the same phase
and in the same subject as a. c Corresponding TDIOF motion field. d Tagged MRI motion field for
the same approximate slice location in systole (AS antero-septal, ANT anterior, IL infero-lateral,
AL antero-lateral, P posterior, INF inferior, IS infero-septal)

were 0.77 (P < 0.001) and 0.79 (P < 0.001). Therefore, it may be concluded that for
both radial and circumferential strains, TDIOF analysis achieves a more significant
correlation with the taggedMRI in comparison to HS and BM analysis. This effect is
believed to be due to the additional Doppler term that is added to the TDIOF frame-
work. The comparison of TDIOF and HS radial strain using student t-test showed
superiority of TDIOF (95% confidence interval, P < 0.001). Similarly, the compar-
ison of TDIOF and HS circumferential strain using student t-test showed superiority
of TDIOF (95% confidence interval, P < 0.001).The comparison of TDIOF and
BM radial strain using student t-test was statistically meaningful (95% confidence
interval, P < 0.001).The comparison of TDIOF and BM circumferential strain using
student t-test was prominent as well (95% confidence interval, P < 0.001).



432 V. Tavakoli et al.

Fig. 10 Top row Lagrangian radial strain maps computed from TDIOF. Lower row Lagrangian
radial strain maps computed with SinMod from tagged MRI during the same cardiac phase at the
high papillary muscle level in one subject (AS antero-septal, ANT anterior, IL infero-lateral, AL
antero-lateral, P posterior, INF inferior, IS infero-septal). The tagged MR images are resized to
match the echo images with respect to the size

Fig. 11 Top row Lagrangian circumferential strain maps computed from TDIOF. Lower row
Lagrangian circumferential strain maps computed with SinMod from tagged MRI during the same
cardiac phase at the high papillary muscle level in one subject (AS antero-septal, ANT anterior, IL
infero-lateral, AL antero-lateral, P posterior, INF inferior, IS infero-septal). The tagged MR images
have been resized to match the echo images with respect to size

6 Discussion

In order to increase the accuracyofmotion estimation and speckle tracking techniques
and to overcome the angle dependency of TDI, fusion of the techniques has been
proposed. TDIOF makes use of the combination of B-mode and Doppler energy
terms, minimized using linear algebraic methods. It was demonstrated that TDIOF
outperforms the Horn-Schunck optical flow technique and block matching speckle
tracking when applied to simulated, physical phantom, and real data. In this paper,
we demonstrated that the additional Doppler term is able to increase the accuracy of
the intensity (B-mode) based methods in tracking left-ventricular wall motion. The
additional Doppler term may very well be added to other cardiac Ultrasound image
registration techniques and we expect a corresponding improvement in performance.
As demonstrated in the simulation study, the improvement in performance is more
pronounced on noisy images.

TDIOF had better performance when compared to HS and Block matching in
simulated, phantom, and in vivo data. Due to increased thickness of the wall, the
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Fig. 12 a TDIOF radial strain value versus tagged MRI radial strain is shown as red; while HS
radial strain value versus tagged MRI radial strain value is shown as blue stars; and BM radial
strain vs tagged MRI radial strain is shown as green dots. b TDIOF circumferential strain value
versus tagged MRI circumferential strain is shown as red; while HS circumferential strain value
versus tagged MRI circumferential strain value is shown as blue stars; and BM circumferential
strain versus tagged MRI circumferential strain is shown as green dots. For both cases, it is evident
that the blue dots (HS strain values) are more scattered compared to the tagged strain values. The
plots include corresponding average strain quantities for 17 segments in 8 patients over 4 tagged
MRI frames

results were better in mid-ventricular slices for all three methods. Nevertheless,
results at the basal and apical slices were still acceptable. Due to poor acquisition
at the apex, results for apical segments,were not as good for all three techniques
compared. Similarly, in comparison to HS and BM, results from TDIOF correlated
more significantly with tagged MRI. It is evident from Figs. 11 and 12, that both
radial and circumferential strains increase over the cardiac systole, while the heart is
contracting and peaks attend systole and then as the heart recoils back to the original
length the cardiac strain decreases to about zero at end diastole. It should be noted
that the strain values for TDIOF and tagged MRI are not exactly the same because
it is not possible to perfectly align the images in space and time due to differences
in image slice thickness, resolution, and precise image orientation.

6.1 Comparison with Previous Work

Acomparison of correlative strain results for TDIOF reported in this paper can further
illustrate the performance of the proposed technique. In [39], a comparison of MRI-
derived strains and speckle tracking-derived strains were reported. The authors col-
lected data in patients using a commercially available system (Vivid 7, GE Vingmed
Ultrasound AS, Horten, Norway) and performed off-line analysis (EchoPac BT04,
GE Vingmed Ultrasound AS). Subsequently, the same group of patients underwent
tagged MRI scan and HARP off-line analysis to determine the regional strains. The
correlation between radial strain based on B-mode speckle tracking and tagged MRI
was reported to be (r = 0.60, p < 0.001) while the correlation between circumfer-
ential and longitudinal strain values based on B-mode speckle tracking and tagged
MRI was reported to be (r = 0.51, p < 0.001) and (r = 0.64, p < 0.001). The



434 V. Tavakoli et al.

authors concluded that there is a modest correlation between echocardiographic and
tagged-MRI-derived strains.

6.2 Limitations

The present study has several limitations that should be stated. At this time it is not
possible to extend TDIOF to three dimensions because TDI is only possible in two
dimensions.

Another limitation is lack of availability of ground truth applicable to in vivo
images which makes the validation more difficult. Tagged MRI is a good surrogate
but it is not perfect. Tagged MRI slices do not exactly overlap on echocardiographic
slices and there is no accurate pixel to pixel mapping from the cardiac tissue in tagged
MRI to the cardiac tissue in echocardiography. Additionally, the orientation of the
Ultrasound transducer is not exactly the same as image orientation in tagged MRI.
Furthermore, Echocardiography and tagged MRI have different resolutions in space
and time.

An additional potential issue is that MRI and echocardiography cannot be per-
formed simultaneously. In our study, since MRI was performed immediately after
echocardiography, the cardiac physicologic changes are felt to be less significant.
However, heart rate variability may cause alignment problems between the images.
We attempted to overcome these issues by careful image acquisition and matching
of the slices in space and time.

7 Conclusion

In order to increase the accuracy of the speckle tracking technique and to cope
with the angle dependency of TDI, a combined approach dubbed TDIOF (Tissue
Doppler Imaging Optical Flow) has been proposed. TDIOF is formulated based
on the combination of B-mode and Doppler energy terms minimized using linear
algebraic methods. TDIOF was validated extensively based on simulated images,
physical cardiac phantom, and in-vivo data. The performance of TDIOF was demon-
strated to be better than popular motion estimation and speckle tracking techniques
in echocardiography.

Appendix A: Mathematical Framework for TDIOF

To determine myocardial motion, we propose a novel optical flow energy function
which combines three energy terms: B-mode intensity constancy, Doppler/B-mode
velocity similarity, and motion smoothness.
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(1) B-mode intensity constancy: If we assume that p = (x, y, t)and the flow field
isw(p) = (u(p), v(p), 1)where u and v are the motion vectors and x, y and t are the
spatial and temporal dimensions, B-mode intensity constancy term assumes that the
pixel intensity is the same along the motion vector. When I (p) is the pixel intensity
at location p and I (p + w) is the pixel intensity in the subsequent frame at location
p + w,

Edata = |I (p + w) − I (p)|2 (A.1)

Although optical flow is usually solved using calculus of variation, we use the
recent incremental flow framework [25] which provides significant computational
savings. The incremental flow assumes that an estimate of flow is already known (iter-
ation 0) and then, the best increment will be found at each iteration,.With inclusion
of an incremental motion vector, the intensity constancy is then revised to be:

Edata = |I (p + w + dw) − I (p)|2 (A.2)

The above equation can be linearized using Taylor series expansion:

It (p + w + dw) − I (p) = It (p) + Ix (p)du(p) + Iy(p)dv(p) (A.3)

with

Ix (p) = ∂ I (p + w)

∂x
(A.4)

Iy(p) = ∂ I (p + w)

∂y
(A.5)

It (p) = I (p + w) − I (p) (A.6)

(2) The smoothness energy term forces the flow field to be continuous:

Es = |∇(u + du)|2 + |∇(v + dv)|2 (A.7)

with

|∇(u + du)|2 =
(

∂(u + du)

∂x

)2

+
(

∂(u + du)

∂y

)2

(A.8)

(3) TDI velocity term. The 2D motion when projected in the direction of the trans-
ducer should be similar to the computed velocity. If �v = (u, v) is theB-mode velocity,
�vt = (ut , vt ) is the transducer orientation andwtdi is the TDI velocity acquired from
the echo machine, then the constraint is formulated as:

Etdi =
(
�vT�vt − wtdi

)2 = (ut u + vt v − wtdi )
2 (A.9)
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Fig. A.1 Geman-Mcclure
penalizer for different σ

parameters (0.1, 0.3, 0.5, 0.7,
0.9)

In order to keep the range of Etdi between 0 and 1, and to reject outliers, we
utilized a Geman-Mcclure penalizer (ψ) [26]:

ψ(s) = s2

s2 + σ2
(A.10)

In (A.10), s is the input data and σ is the scaling parameter. The behavior of
Geman-Mcclure equation is shown in Fig.A.1.

The total energy function to be minimized is:

E(u, v) = Edata + αEs + βψ(Etdi ) (A.11)

=
∫

�

(|I (P + w + dw) − I (p)|2 +α(|∇ (u + du)|2 + |∇ (v + dv)|2)

+ β.ψ((ut (u + du) + vt (v + dv) − wtdi )
2))

where α is the smoothness weight and β is the TDI/velocity correspondence
parameter—we note that setting beta to zero essentially results in the Horn and
Schunck optical flow frame case in the incremental flow framework.

Next, we vectorize u, v, du, dv as U, V, dU, dV .

Ix = diag(Ix )Iy = diag(Iy)

Dx and Dy are denoted as matrices related to the x and y derivative filters such that:
DxU = u ⊗ [0 − 11]. The derivative operator is used to compute the gradient of
the image in each direction. Additionally the column vector δp is defined as a Dirac
function with the only nonzero element at location p such thatδp Ix = Ix (p). Now
the discretized version of the energy function (Eq. (A.11)) becomes:
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E =
∑
p

(δ
T
p(It + IxdU + IydV))2 + δ

T
pDx(U + dU)2 + (δ

T
pDy(U + dU)2)

+ (δ
T
pDx(V + dV)2 + (δ

T
pDy(V + dV)2)] + β((δ

T(ut(U + dU)

+ vt(V + dV) − wtdi))
2) (6)

To minimize (A.12), Iterative Reweighted Least Squares (IRLS) was used with the
stopping criterion that [ ∂ E

∂dU ; ∂ E
∂dV ] = 0. Here, it is noteworthy to state that since for

matrix A and vectors x, b:

d

dx
xT Ax = 2Ax

d

dx
xT b = b

Therefore:

∂E

∂dU
= 2

∑
p

(
Ixδpδ

T
p (IydV + It) + Ixδpδ

T
p IxdU

)
+ α[(DT

x δpδ
T
pDx (A.13)

+ DT
y δpδ

T
pDy)(U + dU)] + βψ′(Etdi)[utδp(δTp ((U + dU)ut

+ (V + dV)vt − wtdi))] = 2((I2x + αL + βψ′u2t )dU
+ (IxIy + β ψ′utvt)dV + (αL + βψ′u2t )U + βψ′utvtV
+ (IxIt − β ψ′utwtdi)

:

∂E

∂dU
= 2((I2x + αL + β ψ′u2t )dU + (IxIy + βψ′utvt)dV (A.14)

+ (αL + β ψ′u2t )U + β ψ ′utvtV + (IxIt − βψ′utwtdi)

where:

L = DT
xψ′Dx + DT

yψ′Dy (A.15)

ψ′ = diag(ψ ′(Etdi)) (A.16)

and
∑
p

δT
p δp is the identity matrix.

Similarly

∂E

∂dV
= 2((IxIy + β ψ′utvt)dU + (I2y + αL + β ψ′v2t )dV + βψ′utvtU+ (A.17)

+ (αL + β ψ′v2t )V(IyIt − β ψ′vtwtdi)
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Finally, the following linear equation is derived as:

(
I2x + αL + β ψ′u2t IxIy + β ψ′utvt
IxIy + β ψ′utvt I2y + αL + β ψ′v2t

) (
dU
dV

)
(A.18)

=
(
IxIt + αLU − β ψ′utwtdi + β ψ′u2t U + βψ′utvtV
IyIt + αLV − β ψ′vtwtdi + + β ψ′utvtU + βψ′v2t V

)

In practice, u, v, dU and dV are initialized as zero with dU and dV iteratively
updated using linear least squares. In order to cover awide range of displacements and
to reduce the computational time, the algorithm is applied in a multi-scale strategy.
The coarse scale is tackled in the first step, while the fine scale is computed in the
last stage.

Appendix B: Block Matching

The main idea in this type of motion estimation is that each block of a frame moves
toward a blockwith similar intensity in the next frame,when the time interval between
the two frames is small. The general strategy is to slide each block of the first
frame over the next frame in order to locate the most similar match. To find the best
matching block, it is necessary to have a similaritymetric that measures the similarity
between two blocks. There are several well-known block matching algorithms based
on different cost functions such as Mean Absolute Difference (MAD), Mean Square
Error (MSE), or correlation. MAD is utilized in this paper because of its accuracy
and computational efficiency [28]. MAD is formulated as:

M AD = 1

N 2

N−1∑
i=0

N−1∑
j=0

∣∣Ci j − Ri j
∣∣ (A.19)

In (A.9), N is the size of macro-block while Ci j and Ri j define the pixel locations
within the blocks. The index i is the shift in x and j is the shift towards y when the
main block is sliding over the image [28].
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