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The research related to the analysis of living structures (Biomechanics) has been a source of
recent research in several distinct areas of science, for example, Mathematics, Mechanical
Engineering, Physics, Informatics, Medicine and Sport. However, for its successful achievement,
numerous research topics should be considered, such as image processing and analysis, geometric
and numerical modelling, biomechanics, experimental analysis, mechanobiology and enhanced
visualization, and their application to real cases must be developed and more investigation is
needed. Additionally, enhanced hardware solutions and less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of high
level information from static images or dynamic image sequences. Examples of applications
involving image analysis can be the study of motion of structures from image sequences, shape
reconstruction from images and medical diagnosis. As a multidisciplinary area, Computational
Vision considers techniques and methods from other disciplines, such as Artificial Intelligence,
Signal Processing, Mathematics, Physics and Informatics. Despite the many research projects in
this area, more robust and efficient methods of Computational Imaging are still demanded in
many application domains in Medicine, and their validation in real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered to be
strongly connected and related. Hence, the main goal of the LNCV&B book series consists of the
provision of a comprehensive forum for discussion on the current state-of-the-art in these fields
by emphasizing their connection. The book series covers (but is not limited to):

• Applications of Computational Vision and
Biomechanics

• Biometrics and Biomedical Pattern Analysis

• Cellular Imaging and Cellular Mechanics

• Clinical Biomechanics

• Computational Bioimaging
and Visualization

• Computational Biology in Biomedical
Imaging

• Development of Biomechanical Devices

• Device and Technique Development for
Biomedical Imaging

• Digital Geometry Algorithms for Compu-
tational Vision and Visualization

• Experimental Biomechanics

• Gait & Posture Mechanics

• Multiscale Analysis in Biomechanics

• Neuromuscular Biomechanics

• Numerical Methods for Living Tissues

• Numerical Simulation

• Software Development on Computational
Vision and Biomechanics

• Grid and High Performance Computing for
Computational Vision and Biomechanics

• Image-based Geometric Modeling and
Mesh Generation

• Image Processing and Analysis

• Image Processing and Visualization in
Biofluids

• Image Understanding

• Material Models

• Mechanobiology

• Medical Image Analysis

• Molecular Mechanics

• Multi-Modal Image Systems

• Multiscale Biosensors in Biomedical
Imaging

• Multiscale Devices and Biomems for
Biomedical Imaging

• Musculoskeletal Biomechanics

• Sport Biomechanics

• Virtual Reality in Biomechanics

• Vision Systems
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Preface

This book presents novel and cutting-edge topics in Advances of Shape Analysis
in Medical Image Analysis in order to solidify knowledge in the related fields and
define their key stakeholders.

The 13 chapters included in this book were written by invited experts of
international recognition and address important issues in shape analysis in medical
image analysis, including: techniques for image segmentation, registration, mod-
elling and classification and applications in biology, cardiac, brain, spine, chest,
lung, and clinical practice.

The book covers the most recent advances in this area. Therefore, this book is
of crucial effectiveness for researchers, students, end-users, and manufacturers
from several multidisciplinary fields, as the ones related with artificial intelligence,
bioengineering, biomechanics, computational mechanics, computational vision,
computer sciences, human motion, mathematics, medical imaging, imaging-based
intervention, medicine, pattern recognition, and physics.

The editors would like to take this opportunity to thank all invited authors for
sharing their works, experiences, and knowledge, making possible their dissemi-
nation through this book.

Shuo Li
João Manuel R. S. Tavares
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Part I
Methods and Models



Shape Analysis for Brain Structures

Bernard Ng, Matthew Toews, Stanley Durrleman and Yonggang Shi

Abstract Advances in magnetic resonance imaging (MRI) have enabled
non-invasive examination of brain structures in unprecedented details. With increas-
ing amount of high resolution MRI data becoming available, we are at a position
to make significant clinical contributions. In this chapter, we review the main
approaches to shape analysis for brain structures. The purpose of this review is
to provide methodological insights for pushing forward shape analysis research, so
that we can better benefit from the available high resolution data. We describe in
this review point-based, mesh-based, function-based, and medial representations as
well as deformetrics. Their respective advantages and disadvantages as well as the
implications of increasing resolution and greater sample sizes on these shape analysis
approaches are discussed.
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1 Background

The advent of neuroimaging has opened a new era for brain research. With imaging
technology, such as magnetic resonance imaging (MRI), brain structures can now
be examined non-invasively in great detail. Besides being a powerful visualization
tool, neuroimaging facilitates quantitative characterization of neuropathology and
neurodevelopment. For instance, by statistically comparing data collected from dis-
eased populations and matched healthy controls, one can localize specific brain areas
that are affected by neurological diseases. Also, by tracking longitudinal changes,
one can assess disease progression, effectiveness of treatments, and effects of aging.
In this chapter, we focus on shape analysis of brain structures segmented from MRI
data.

Broadly speaking, the shape of an object is the geometric information that
remains after removal of positional, rotational, and scaling effects [1]. In the present
context, the object of interest is a given brain structure, which needs to be segmented
from the MRI brain volumes either manually or through automated means. Given
segmented brain structures, one of the main goals of shape analysis is to study the
variability within and across populations. For instance, to understand the effects of
neurological diseases, we need to first know the normal variability within healthy
population. Shape analysis has a long and rich history, and the number of methods is
rapidly growing. We thus focus on the main approaches and highlight some recent
advancement, as opposed to being comprehensive. Using a representation-based cat-
egorization, we divide existing methods into five types of approaches. The first type
operates on landmarks or a dense set of points sampled from the boundary of a
segmented brain structure. For this type of approach, shape variability is typically
quantified in terms of landmark geometry, i.e. point positions or local features derived
from the intensity pattern within a small neighborhood around each point. This point-
based approach is discussed in Sect. 2. The second type represents the boundary of
a brain structure with meshes, which naturally permits the use of intrinsic geometry
for surface analysis and mapping. In particular, we will concentrate on the recent
developments in spectral analysis for surface analysis. This mesh-based approach
is the topic of Sect. 3. The third type is to decompose the boundary using basis
functions, such as spherical harmonics and wavelets. The choice of basis governs
whether global or local variability is to be captured. We discuss this function-based
approach in Sect. 4. The fourth type derives a skeleton of the brain structure, which
enables physically-intuitive features, such as thickness and bending, to be extracted.
This medial representation approach is discussed in Sect. 5. The fifth type is defor-
metrics based on statistics of currents, which does not require a one-to-one point
correspondence between the segmented brain structures. This approach is discussed
in Sect. 6.

Central to shape analysis is the issue of correspondence. The degree to which
correspondence affects results varies with the shape representation employed. For
instance, traditional point-based representations generally require an accurate one-
to-one point correspondence across subjects. A key methodological pursue is thus
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the mitigation of this requirement. For example, a local feature-based approach has
been proposed to robustly cope with missing or deformed brain areas, e.g. due to
abnormality or pathology, and the deformetrics approach bypasses the need for a
one-to-one point correspondence altogether. Another major complication to shape
analysis is boundary noise arising from image discretization and segmentation errors.
The accuracy of the segmented boundary has a major impact on correspondence cre-
ation. For instance, the branching topology of a medial representation can change
dramatically with tiny boundary perturbation. Furthermore, for shape analysis to be
clinically relevant, result interpretability is paramount. Point-based approaches and
local function-based approaches that use wavelet basis permit quantification of local
shape variation, whereas global function-based approaches that use Fourier or spheri-
cal harmonic bases capture only global variability. The advantages and disadvantages
of each shape analysis approach with respect to correspondence, boundary pertur-
bation, and result interpretation are discussed in their respective sections. Recent
advances in MRI acquisition have made available increasing amount of high reso-
lution data. The impact of higher resolution and greater sample sizes in relation to
each shape representation is discussed at the end of this chapter. We hope this review
on shape analysis for brain structures will provide insights into the next steps for
methodological advances, so that greater clinical contributions can be made with the
available high resolution data.

2 Point-Based Representation

Point-based approaches represent a brain structure as a set of points and characterize
its shape based on features associated with each point. A point set may be dense
(e.g. all points along a boundary or within a region) or sparse (e.g. a discrete subset
of all points or manually-identified landmarks). The features may be derived based
on information at a specific anatomical location or within a local neighborhood. In
this section, we first provide a summary of the traditional point distribution model
(PDM), which assumes the presence of a one-to-one point correspondence across
subjects, possibly defined through manual means. We then describe an automated
probabilistic method for extracting corresponding points across subjects, which is
robust to cases where homologous brain features cannot be identified in all subjects.

2.1 Point Distribution Models

2.1.1 Formulation

Assuming we are given point sets from a group of subjects that are pre-aligned using
e.g. iterative closest point [2], the traditional way for localizing significant shape
variability is to apply Hotelling’s T2 test to the subjects’ (xi , yi , zi ) coordinates for
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each point i [3]. Alternatively, a PDM can be built to examine the principal modes
of point covariance [4]. Let X = {x1, y1, z1, . . ., xN , yN , zN } denote a vector com-
prising 3D Euclidean coordinates of N points sampled from the boundary of a brain
structure. Assuming X follows a multivariate normal distribution, parameterized by
a mean point vector X̄ and a covariance matrix Σ , X can be decomposed as a linear
combination of eigenvectors Φi of Σ aboutX̄ :

X = X̄ +
∑

i
aiΦi , (1)

where Φi corresponds to the principle modes of variability and shape is represented
by the set of scalar coefficients {ai }. One can thus examine the main shape variability
by retaining a subset of ai ’s. We highlight that PDM is often used as constraints for
segmentation. This approach is commonly referred to as the active shape model
(ASM) [4] and can be augmented with appearance information [5].

The key challenge to point-based representations is that certain brain features
may not be identifiable or may not even exist in all subjects. Manual means for
correspondence creation by finding distinctive matching features, such as corners, are
very time consuming. Automated methods, such as landmark detectors [6], provide a
more repeatable means, but defining general features that are robust to inter-subject
variability is non-trivial. In healthy, normal brains, the same brain structure may
exhibit varying morphologies across subjects, e.g. due to different folding patterns
associated with the same sulcus [7], and homologous features do not necessarily
exist over the course of normal brain development, e.g. between gestational and
infant stages. In the case of abnormality, pathology may be present or healthy tissue
may be deformed or missing due to surgical resection.

2.1.2 Applications and Insights

The PDM has been used for aligning and segmenting subcortical structures such as
the globus-pallildus, thalamus, caudate nucleus [8] and cortical structures such as
sulci and gyri [9]. When using the traditional ASM, MR images must be aligned via
similarity or affine transform to a common reference frame, since the model does
not account for global variation in orientation. Further, homologous points along the
boundary of structures to be segmented must be specified in a set of training images.
A fundamental challenge is to define and identify homologous points on shapes
with no distinct landmarks. This challenge may be potentially alleviated by using
automatic tools for shape segmentation [10], landmark matching [11], and optimal
point-based shape parameterizations, e.g. minimum description length [12]. How-
ever, inter-subject variability of the cortical surface render segmentation of cortical
structures via PDM approaches non-trivial.
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2.2 Local Feature-Based Approach

The idea behind local feature-based approach is to use intensity information to
identify corresponding points across subjects, which can be viewed as a gener-
alization of the traditional position-based models. A summary of commonly-used
generic features is first provided, with a focus on the scale-invariant feature trans-
form (SIFT), which has shown to be robust for many applications. Techniques for
modeling brain shapes probabilistically with features extracted from training images
are then described.

2.2.1 Feature Extraction

Feature-based shape modeling requires a means for robustly localizing distinctive
image features reflective of the underlying brain anatomy. One approach is to con-
struct specialized detectors to identify specific brain features, e.g. the longitudinal
fissure [13], posterior tips of ventricles, etc. However, building specialized detectors
for each brain structure can be quite labor demanding if whole-brain analysis is of
interest. Towards this end, a number of generic feature detection methods has been
proposed, which provides an automatic means for identifying distinctive features.
Early methods in 2D image processing focused on finding salient patterns that can
be reliably localized in the presence of arbitrary image translations and rotations, for
instance, corner-like patterns that can be robustly extracted using spatial derivative
operators [14]. This work was later extended to 3D volumetric brain images, which
facilitates identification of a high number of generic brain landmarks [6].

A complication with spatial derivative operators is the choice of optimal spatial
scale, which is typically unknown. Scale-space theory [15] formalizes the notion that
landmark distinctiveness is intimately linked to the size or scale at which the image is
observed. This led to the development of feature detectors designed to identify both
the location and scale of distinctive image features, so-called scale-invariant feature
detectors [16]. The field of image processing witnessed a number of scale-invariant
feature detectors, primarily based on Gaussian derivatives in scale and in space, e.g.
the SIFT method that identifies maxima in the difference-of-Gaussian (DoG) scale
space [17]. SIFT has shown to provide robust matching features for brain analysis
[18] in addition to various computer vision applications, and will be the focus for
the remainder of this subsection.

A scale-invariant feature in 3D is a local coordinate reference frame consisting of a
3D point location x̄ , a scale parameter σ , and an orientation matrix Θ = (θ̂1, θ̂2, θ̂3)

parameterized by orthonormal axis vectors θ̂1, θ̂2, θ̂3. The local feature-based ap-
proach described here adopts the DoG operator in identifying feature points defined
as (x̄, σ ) of the DoG extrema: {(x̄i , σi )} = local argmax

x̄,σ

|g(x̄, κσ ) − g(x̄, σ )|,
where g(x̄, σ ) represents the convolution of an image with a Gaussian kernel
of variance σ 2, κ is the constant multiplicative sampling increment of scale, and
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local argmax
x

g(x) denotes the set of all local maxima of g(x). Although a variety

of different saliency criteria could be adopted, the DoG criterion is attractive as it
can be computed efficiently in O(N · logN ) time and memory complexity in the
number of voxels N using scale-space pyramids [19].

To represent brain image features in a manner invariant to global image rotation,
translation, and scaling, an important step is to assign a local orientation to the feature
points. Local orientation information is particularly useful for alignment, which can
be estimated via highly efficient algorithms, such as the Hough transform (O(N ·
logN ) time in the number of features N), to recover global similarity transforms
and locally linear deformations [20]. The 3D orientation of a local feature point
comprises three intrinsic parameters. These may be difficult to estimate unbiasedly
due to the non-uniform joint density functions of common angular parameterizations,
e.g. Euler angles, quaterions, etc. Instead, using feature-based alignment (FBA) [20]
can be advantageous as it estimates direction cosine vectors of a 3 × 3 rotation
matrix θ from spherical gradient orientation histograms, which reduces the effect of
parameterization bias.

Once local orientation has been estimated, appearance features can be extracted
from the image content within a local neighborhood of volume proportional to σ 3

around the point x̄ for establishing correspondence. Local appearance may sim-
ply be represented by raw image intensities [18], but the computer vision literature
has demonstrated that alternative representations, such as the gradient orientation
histogram (GoH), to be superior in terms of matching distinctiveness. The local
feature-based approach adopts a variant of GoH by quantizing space and gradient
orientation uniformly into an 8 × 8 = 64 element histogram. GoH elements are
rank-ordered, where each element is assigned its rank in an array sorted according
to bin counts, rather than the raw histogram bin count [21]. An example comparing
PDM and local feature-based approach is shown in Fig. 1, in which PDM breaks
down due to missing homologous brain features in the subjects [22].

2.2.2 Probabilistic Modeling

Once scale-invariant features have been extracted from image data, they can be used
as the basis for describing brain geometry and appearance probabilistically across a
population. It is important to characterize variability within a normalized geometric
frame of reference with variation in scale, rotation, and translation across different
images removed. Let Ī = {Ii } represents a set of features extracted from an image,
and let T represent a global similarity transform that maps the image to a normalized
reference frame. T can be estimated using FBA [20], which employs a generative
probabilistic model to learn the posterior probability of the unknown global similarity
transform T conditional on the feature data Ī :
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Fig. 1 PDM versus local feature-based approach. Corresponding points extracted by PDM
(upper pair) and local feature-based approach (lower pair) shown. PDM fails (upper right) due
to unexpected inter-subject variability. The local feature-based model is stable, identifying robust
scale-invariant feature correspondences (white circles) in cortical and sub-cortical regions

p(T | Ī ) ∝ p(T )p( Ī |T ) = p(T )
∏
i

p(Ii |T )

= p(T )
∏
i

∑
j

p(Ii , f j |T ) = p(T )
∏
i

∑
j

p( f j )p(Ii | f j , T ).
(2)

In this formulation, f = { f0, . . ., fK } is a latent random variable taking on dis-
crete values f0, . . ., fK with probability p( fi ). Each value f j indicates a distinctive
anatomical pattern, whose shape and appearance are encoded locally in normalized
space by the density p(Ii | f j , T ) and by the occurrence probability p( fi ). Note that
the extracted features Ī are conditionally independent given transform T, and that
latent random variable f is independent of the transform T. The optimal alignment
solution T* is taken as the one that maximizes the posterior probability (2). For the
purpose of group analysis and classification, referred to as feature-based morphome-
try (FBM) [18], a random variable indicating subject group label C = {C1, . . ., CK }
is incorporated into the model. Subject group can be identified by maximizing the
posterior probability of C conditional on the extracted features Ī and T:

p(C | Ī , T ) ∝ p(C)
∏

i

p(Ii |C, T ) = p(C)
∏

i

∑

j

p(I j | f j , C, T )p( f j |C). (3)
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C is assumed to be independent of T and, as in the case of FBA, the extracted
features Ī are assumed to be conditionally independent. Unlike FBA, latent feature
shape and appearance densities p(Ii | f j , C, T ) and occurrence probability p( f j |C)

are conditioned on the group label in FBM, and can thus be used to identify group-
informative structure and to quantify group differences. Classification and analysis
can both be considered as identifying the group label C* that maximizes the Bayes
decision ratio:

C∗ = argmax
C

⎧
⎨

⎩
p(C)

p(C ∅)
∏

i

∑

j

p(Ii | f j , C, T )p( f j |C)

p(Ii | f j , C ∅, T )p( f j |C ∅)

⎫
⎬

⎭ . (4)

The decision ratio can be used to identify the optimal group label of a new subject.
Note that the classification is heavily influenced by the product of likelihood ratios
p( f j |C)/p( f j |C ∅) associated with latent model feature fi . This likelihood ratio can
be used to quantify the informativeness of the features with regard to group label,
and can be used for identifying group-related anatomical structure.

The estimation of T* and C* require learning: the latent feature set f =
{ f0, . . ., fK }, probabilities p( f j ) and p( f j |C), and likelihoods p(Ii | f j , T ) and
p(Ii | f j , C, T ). Here, p(Ii | f j , T ) and p(Ii | f j , C, T ) are assumed to be conditional
Gaussian densities over the individual features Ii parameterized by mean and variance
vectors. Probabilities p( f j ) and p( f j |C) are parameterized by normalized feature
occurrence counts. Computation of maximum likelihood estimates of the density and
probability parameters can be posed as a clustering problem with cluster centers of
the features extracted from training data that are similar in geometry and appearance
being the estimates.

With probability and density parameters estimated, T* and C* can be determined
by computing their respective posterior probabilities based on nearest neighbor cor-
respondences between extracted image and latent model feature appearance vectors.
T* can thus be estimated in a manner similar to the Hough transform, and C* is
estimated in a manner similar to a Naïve Bayes classifier. An example illustrating
the application of the feature-based model for alignment and group analysis is shown
in Fig. 2.

2.2.3 Applications and Insights

The local feature-based approach has a variety of possible applications. The first is as
a means for achieving efficient, robust alignment of difficult brain image data even in
the face of missing one-to-one homology. This task is a precursor to analyzing chal-
lenging data [20, 23]. The result of alignment is not only a global similarity transform
T but also a set of probable image-to-model feature correspondences that quantify
local residual geometrical variation. These correspondences have been shown to be
effective in initializing deformable alignment of difficult data, e.g. enlarged ventricles
in infant Krabbe disease [24]. Second, latent features from the trained model can be
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Fig. 2 Scale-invariant feature-based model for alignment and group analysis. Above Latent feature
probability p( f j ) can be used to identify stable neuroanatomical patterns across a population and
quantify their occurrence frequency [20]. Below latent features can be related to subject group,
such as normal control (NC) and Alzheimer’s disease (AD), by the likelihood ratio p( f j |C) for
identifying group-related neuroanatomical structure [18]

used to identify anatomical structure most representative of a population, or image
structure most characteristic of specific groups. Further, this information permits
prediction of group labels for new image data, e.g. in a computer-assisted diagno-
sis scenario [18] or to predict continuous variables, such as the age and possibly the
developmental stage of the infant brain [25]. Lastly, the local feature-based approach
is applicable for a variety of image modalities and can be adapted for inter-modality
correspondence [23]. This approach lends itself to alignment and analysis algorithms
that are highly efficient in terms of computation time and memory footprint, and is
thus effective in modeling and analyzing brain structure in large image databases or
across bandwidth-limited networks.

3 Mesh-Based Representation: A Spectral Analysis Approach

The boundary between tissue types contains important information for characteriz-
ing brain shape. By representing this boundary as a surface, we can exploit powerful
tools from intrinsic geometry. In this section, we review works that use the spectrum
of surfaces for the intrinsic surface analysis, which has led to novel ways of sur-
face reconstruction, classification, feature extraction, and computation of conformal
maps.
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3.1 Laplace-Beltrami Eigen-System

Let M denote a surface in R3. Its Laplace-Beltrami (LB) eigen-system is defined as:

γM f = −λ f, (5)

where γM is the LB operator on M and f is a smooth function defined over M.
Since the LB operator is self-adjoint, its spectrum is discrete and can be ordered
by the magnitude of the eigen-values as 0 ≤ λ0 < λ1 < λ2 < . . . If M is a
surface with boundary, we can solve the eigen-system with the Neumann boundary
condition. Some special examples of the LB eigen-system are widely used in signal
processing. In the Euclidean domain, the LB eign-functions are the Fourier basis. On
the unit sphere, the LB eigen-functions are spherical harmonics. Due to symmetry,
the spherical harmonics have multiple eigen-functions for a single eigenvalue. For
the lth order spherical harmonics, there are 2l +1 eigen-functions. This multiplicity,
however, is not general. For arbitrary surfaces without such symmetry, it was proved
that this is not an issue [26].

For numerical computation, a surface is often represented as triangular meshes
created using the finite element method. Let M = (V, T ) denote the triangular mesh
representation of the surface, where V is the set of vertices and T is the set of triangles.
Using the weak form of (5), we can compute the eigen-system by solving:

Q f = λU f, (6)

where the two matrices can be derived using the finite element method:

Qi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

∑
Vj ∈N (Vi )

∑
Tl∈N (Vi ,Vj )

cot θ i, j
l , if i th diagonal

− 1
2

∑
Tl∈N (Vi ,Vj )

cot θ i, j
l , if Vj ∈ N (Vi )

0, otherwise

, (7)

Ui j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
12

∑
Vj ∈N (Vi )

∑
Tl∈N (Vi ,Vj )

Area(Tl), if i th diagonal

1
12

∑
Tl∈N (Vi ,Vj )

Area(Tl), if Vj ∈ N (Vi )

0, otherwise

, (8)

where N (Vi ) is the set of vertices in the 1-ring neighborhood of Vi , N (Vi, Vj) is the

set of triangles sharing the edge (Vi , Vj ), θ
i, j
l is the angle in the triangle Tl opposite

to the edge (Vi , Vj ), and Area (Tl) is the area of the l th triangle Tl .
As an illustration, the spectrum of a hippocampus is plotted in Fig. 3. We can see

that the eigen-function becomes more oscillatory with increasing order. Thus, higher
order LB eigen-functions can be considered as higher frequency basis, where fre-
quency is intuitively the number of sign changes over the surface. This is reminiscent
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Fig. 3 LB eigen-functions on a hippocampal mesh model. i denotes the order of the eigen-function.
a Mesh. b i = 1. c i = 25. d i = 50. e i = 100. With increasing order, the eigen-function becomes
more oscillatory

of the Fourier basis functions on Euclidean domain. This intuition is useful for signal
processing applications on the surface. In [27], the LB eigen-functions were used
for denoising signal defined on surface patches. For shape analysis, the LB basis
functions were used to form a subspace for outlier detection and the generation of
smooth mesh representation of anatomical boundaries [28]. For different surfaces,
the number of nodal domains is also different and can be used as a signature for
surface classification [29], which is similar to the shape DNA concept [30]. Next we
present two different ways of using the LB eigen-functions to study brain surfaces.

3.2 Reeb Graph of LB Eigen-Functions

Many brain surfaces have obvious characteristics that are invariant to the orientation
of the brain. For example, the hippocampus has the tail-to-head elongated trend.
The cortical surface has the superior-to-inferior, frontal-to-posterior, and medial-
to-later trend. The LB eigen-functions are very effective in capturing these global
characteristics of brain surfaces. One powerful tool for this purpose is the Reeb
graph of the LB eigen-functions, which can transform functions into explicit graph
representations.

Given a function defined on a manifold, its Reeb graph [31] describes the neigh-
boring relation between the level sets of the function. For a Morse function f on the
mesh M, its Reeb graph is mathematically given by the following definition [31]:

Definition 1: Let f : M → R. The Reeb graph R( f ) of f is the quotient space
with its topology defined through the equivalent relation x � y if f (x) = f (y) for
∀x, y ∈ M .
As a quotient topological space derived from M, the connectivity of the elements in
R( f ), which are the level sets of f, change topology only at critical points of f. Reeb
graph is essentially a graph of critical points. If f is a Morse function [32], which
means the critical points of f are non-degenerative, the Reeb graph R( f ) encodes the
topology of M and it has g loops for a manifold of genus g. For a Morse function on
a surface of genus-zero topology, its Reeb graph has a tree structure.
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Fig. 4 Reeb graph computation via sampling level contours. a Left eigen-functions. Right Reeb
graph as skeleton. b Left eigen-functions. Right Reeb graph as medial cores

For the Reeb graph to be useful in medical shape analysis, it is critical to build
it from a function reflective of the underlying geometry. The height function was a
popular choice in previous work, such as surface reconstruction from contour lines
[33] and the analysis of terrain imaging data [34, 35], but it suffers from the drawback
of being pose dependent and thus not intrinsic to surface geometry. Functions derived
from geodesic distances [36–39] were proposed to construct pose invariant Reeb
graphs in computer graphics. However, geodesic distances are known for their non-
robustness when topological changes are involved [40, 41].

For the numerical construction of the Reeb graph, there are various approaches.
Based on the intuition that Reeb graph encodes the relation of level sets on surfaces,
we could simply sample a set of level contours on the surface and connect them
using their neighboring relations. This approach is especially useful as a novel way of
constructing skeleton or medial core of surfaces. Examples of level contours and the
constructed Reeb graphs for the cingulate gyrus and hippocampus are shown in Fig. 4.
For more complicated surfaces with large numbers of holes and handles, the sampling
approach becomes computationally expensive because extremely dense sampling is
needed to capture all the topological changes of level contours. To overcome this
challenge, a novel algorithm is proposed in [42] that analyzes the topology of level
contours in the neighborhood of critical points. As an illustration, the level contours
in the neighborhood of a saddle point on a double torus are shown in Fig. 5b.

With increasing LB eigen-function, the level contour split into two contours. The
mesh is then augmented such that the level contours become edges of the mesh. This
makes it possible to use region growing on the augmented mesh to find branches
of the Reeb graph. By scanning through all critical points (Fig. 5c), we can capture
the topology of the level contours and build the Reeb graph (Fig. 5d). The surface
partition generated by the Reeb graph ensures each surface patch is a manifold, so
that further analysis of geometry and topology, such as the computation of geodesics,
can be performed. For more details, see [42]. Since this method only needs to analyze
the neighborhood of critical points, it can easily handle large meshes with hundreds
of handles and holes. The Reeb graph provides a unified approach for topological
and geometric analysis of surfaces. It has been successfully applied to develop a new
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Fig. 5 Reeb graph computation as graph of critical points. a Eigen-function on a surface. b Level
contours in the neighborhood of a saddle point. c Reeb graph construction. d Surface partition with
its Reeb graph

Fig. 6 Reeb analysis for unified corection of geometric and topological outliers in cortical sur-
face reconstruction. a and c FreeSurfer reconstruction result before and after correction. b and d
Reconstruction before and after Reeb-analysis based correction

way of topology and geometry correction in cortical surface reconstruction from MR
images [42]. As an illustration, we show a cortical reconstruction example in Fig. 6a
and c show the surface before and after correction from FreeSurfer [43]. Fig. 6b and d
show the surface before and after correction generated by the Reeb analysis method.
As highlighted in the circled region, clearly the latter generated better reconstruction.

3.3 LB Embedding Space

Using the LB eigen-system, we can build an embedding of the surface in the infinite
dimensional l2 space that has the advantage of being isometry invariant. This allows
intrinsic comparison of surfaces and leads to novel algorithms for surface maps.
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Let 
 = { f1, f2, . . . , } a set of eigen-functions. The embedding I 

M : M → l2 is

defined as [40]:

I 

M (x) =

(
f1(x)√

λ1
,

f2(x)√
λ2

, . . . ,
fn(x)√

λn
, · · ·

)
∀x ∈ M. (9)

For any two surfaces, (M1,g1) and (M2,g2), rigorous distance measures between
them can be defined in the embedding space, e.g. the spectral l2 distance, d(M1,M2)
[44]:

d(M1, M2) = inf

1 ∈ B(M1),


2 ∈ B(M2)

max

(⎡

M1

d
2

1

(x, M2)dM1(x),

⎡

M2

d
2

1

(M1, y)dM2 (y)

)
,

(10)

d
2

1

(x, M2) = inf
y∈M2

⎢⎢⎢I
1
M1

(x) − I
2
M2

(y)

⎢⎢⎢
2

∀x ∈ M1
, (11)

d
2

1

(M1, y) = inf
x∈M1

⎢⎢⎢I
1
M1

(x) − I
2
M2

(y)

⎢⎢⎢
2

∀y ∈ M2 , (12)

where 
1 and 
2 are any given LB orthonormal basis of M1 and M2, B(M1) and
B(M2) denote the set of all possible LB basis on M1 and M2, dM1(x) and dM2(y)

are normalized area elements, i.e.,
⎣

M1
dM1(x) = 1 and

⎣
M2

dM2(x) = 1. Using this
distance, intrinsic matching of surfaces can be performed. For example, it has been
successfully applied to surface classification and sulcal landmark detection [44]. One
critical result of the spectral l2-distance is that it equals zero if and only if the two
surfaces are isometric. This provides a new way of computing conformal surface
maps, which are important tool for studying anatomical surfaces.

Given two surfaces (M1, g1) and (M2, g2), there exists a conformal metric wg1,
where w : M1 → R+ is a positive function defined on M1, such that the LB embed-

ding I

∗

1
M1

of (M1, wg1) under this new metric will be the same as the LB embedding

I

∗

2
M2

of M2 because the LB embedding is completely determined by the metric, where


∗
1 and 
∗

2 are the optimal basis that minimize the spectral l2 distance. Since (M1, g1)

and (M1, wg1) are conformal, and the two manifolds (M1, wg1) and (M2, g2) are
isometric when the metric w is chosen so that the spectral l2 distance is zero [44], we
have a conformal map from (M1, g1) to (M2, g2) when we combine these maps [45].

Let Id denote the identity map from I

∗

1
M1

to I

∗

2
M2

, the conformal map μ : M1 → M2
is defined as:

μ(x) =
⎤

I

∗

2
M2

⎥−1 ◦ I d ◦ I

∗

1
M1

(x) ∀x ∈ M1 , (13)

To numerically compute the conformal map that minimizes the spectral -distance, a
metric optimization approach was developed [45] that iteratively updates the weight
function w to deform the embedding such that it matches that of the target surface.
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Fig. 7 A comparison of conformal maps. a Source surface M1. b Conformal map to the unit sphere.
c Metric distortion from M1 to the sphere. d Conformal map from M1 to a target cortical surface
M2. e Metric distortion from M1 to M2

As an illustration, we show in Fig. 7 the conformal maps from a cortical surface to
the unit sphere or a target cortical surface.

The source surface shown in Fig. 7a is colored with its mean curvature. The
conformal map to the unit sphere, shown in Fig. 7b, is computed with the approach
in [46] that minimizes the harmonic energy. The conformal map to the target cortical
surface, shown in Fig. 7d, is computed with the metric optimization approach that
minimizes the spectral l2-distance in the embedding space. The mean curvature on
the source surface is projected onto the sphere and target surface using the maps. We
can see large distortions of triangles in the spherical map. On the other hand, the gyral
folding pattern is very well matched in the map to the target cortical surface. From
the histogram plotted in Fig. 7c and e, we can see metric is much better preserved in
the conformal map computed with the metric optimization approach.

Since the metric optimization approach can produce maps that align major gyral
folding patterns of different cortical surfaces, a multi-atlas fusion approach has been
developed to automatically parcellate the cortical surface into a set of gyral regions
[45]. With metric optimization, a group-wise atlas is first computed in the embedding
space. The conformal map from each atlas to the group-wise atlas is then computed.
Using the property that the composition of conformal maps is still conformal, only
one map to the group-wise atlas needs to be computed for an unlabeled surface. With
maps to all the labeled atlases, a fusion approach can be developed to derive the
labels on new surfaces. As a demonstration, we plotted in Fig. 8 the labeling results
on the left and right hemispherical surfaces of two subjects. We can clearly see that
excellent labeling performances have been achieved.
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Fig. 8 Automatic labeling of cortical gyral regions

3.4 Application and Insights

The spectral analysis approach provides a general and intrinsic way of studying
anatomical shapes. The LB embeddings and features derived from the spectral analy-
sis have the advantage of being isometry invariant, which makes them robust to
deformations due to variability across populations, normal development, and pathol-
ogy. The mathematical foundation of the spectral analysis is applicable to shapes of
arbitrary dimension and topology. With little adaptation, the spectral analysis tech-
niques can be easily applied to many different anatomical shapes. It has been applied
for mapping subcortical structures in brain mapping studies [47] and automated la-
beling of complicated cortical surfaces [45]. The Reeb graphs constructed from the
eigen-functions could also be a general tool for topology analysis in medical imaging.

4 Function Representation

Brain shape can be described implicitly using various classes of functions, computed
over the normalized image domain, i.e. images normalized with respect to similarity
transform. This section discusses several methods by which this can be done: moment
invariants, the distance transform, and linear projections: global and local frequency
decompositions over Euclidean and spherical coordinates.

4.1 Moment Invariants

Let I (x, y, z) be an image indexed by coordinates (x, y, z). Geometrical moments
are defined as expectations computed across the image:

mi jk =
∑

x,y,z

xi y j zk I (x, y, z). (14)
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Moments can be referred to by their order n = i + j + k, and are useful in shape
description as they have intuitive geometrical interpretations. For instance, the 0th
order raw moment m000 represents the sum of image intensities or shape volume.
The 1st order raw moments {m100, m010, m001} normalized by m000 are the centers
of mass of a shape: μ = {μx , μy, μz} = {m100/m000, m010/m000, m001/m000}. A
key aspect of moments is that they can describe shape in a manner invariant to classes
of image transforms that are irrelevant to shape description, e.g. similarity transform.
Invariance to translation can be achieved by computing central moments about the
center of mass:

ui jk =
∑

x,y,z

(x − ux )
i (y − uy)

j (z − uz)
k I (x, y, z). (15)

Invariance to scale changes is achieved by normalizing central moments by a suitable
power of the 0th order moment:

ni jk = ui jk

m000
n/3+1 . (16)

The 2nd order central moments correspond to spatial variance of an intensity pattern
in 3D space, and 3rd order central moments provide a measure of skew. Moments are
not generally invariant to rotation, but such invariance can be achieved by combining
the moments in certain ways [48, 49]. A number of additional aspects of moments
bear mentioning. Moments can generally be used to reconstruct the original image.
Moments are related to global shape characteristics, and thus not be suitable for iden-
tifying local variations. A variety of moments exist other than geometrical moments,
including Zernike moments, Legendre moments, and rotational moments.

4.2 Distance Transform

Let S be the set of all point locations along the boundary of a segmented brain
structure. The distance transform of a shape S is an image D(x̄), where the value at
location x̄ reflects the distance d(x̄, ȳ) between x̄ and the closest location ȳ ∈ S:

D(x̄) = inf{d(x̄, ȳ) : ȳ ∈ S}. (17)

There are a number of commonly-used distance functions, such as Euclidean distance
and Manhattan distance. Figure 9 shows the Euclidean distance transform for a cross
section of the corpus callosum. The distance transform can be considered as a local
shape description, as the value of D(x̄) is determined by the nearest boundary point
in S. The value D(x̄) can be interpreted as the radius of the largest sphere about point
x̄ lying within the boundary S. The set of ridges in D(x̄) can be used for extracting
medial axes as to be discussed in Sect. 5.
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Fig. 9 Distance transform of corpus callosum

4.3 Frequency Decomposition

Shape in an image I (x) can be represented implicitly by projection onto an orthogonal
basis with the Fourier basis being arguably the most widely-used. Let I (x, y, z)
be a discrete image of size (Nx , Ny, Nz). The discrete Fourier transform (DFT)
Î ( fx , fy, fz) of an image is obtained by projection onto an orthonormal complex
exponential basis:

Î ( fx , fy, fz) =
Nx −1∑

x = 0

Ny−1∑

y = 0

Nz−1∑

z = 0

I (x, y, z)e−i2π(x fx /Nx +y fy/Ny+z fz/Nz). (18)

The DFT has several properties that are of interest for shape representation. In partic-
ular, the magnitude of the power spectrum is invariant to translation and a significant
portion of shape related information is embedded in the phase portion of the signal.
Further, the DFT can be inverted to reconstruct the original image:

I (x, y, z) = 1

Nx Ny Nz

Nx −1∑

fx = 0

Ny−1∑

fy = 0

Nz−1∑

fz = 0

Î ( fx , fy, fz)e
i2π(x fx /Nx +y fy/Ny+z fz/Nz)

(19)
The DFT can be computed efficiently in O(N · logN ) in the number of samples
N using the fast Fourier transform (FFT) algorithm. The convolution theorem can
be used to implement linear filtering operations efficiently in O(N · logN ) time
complexity in the Fourier domain. For natural objects, such as the brain, the power
of the Fourier spectrum is concentrated in low frequency components, i.e. small
values of ( fx , fy, fz), which arise from large-scale spatial structure.

The classical DFT operating on Cartesian image data is rarely used to characterize
shape in the brain directly, as neuroanatomical structures are often represented in
terms of a spherical topology. For example, the cortex is often inflated or flattened
onto a sphere index by [50], and structures, such as the putamen, can be represented as
a simply connected 3D surfaces [51]. Spherical harmonics (SH) generalize frequency
decompositions to functions on the sphere. Let I (θ, ϕ) represent a function on the
unit sphere parameterized in angular coordinates θ ∈ [0, π), ϕ ∈ [0, 2π). The
spherical harmonic representation is expressed as:
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I (θ, ϕ) =
∞∑

l = 0

l∑

m =−l

Î (l, m)Yl,m(θ, ϕ), (20)

where shape is represented by harmonic coefficients Î (l, m) in a manner analogous
to Fourier coefficients. The basis Yl,m(θ, ϕ) is given by:

Yl,m(θ, ϕ) = kl,m Pl,m(cos θ)eimϕ, (21)

where Pl,m is the Legendre polynomial of degree l and order m, and kl,m is a nor-
malization factor. Although rotation dependent, coefficients Î (l, m) can be used to
compute rotation invariant shape descriptors [46]. Efficient computation of spherical
harmonic coefficients is possible via fast discrete Legendre transform [52].

4.4 Local Frequency Decomposition

The aforementioned frequency decompositions are useful as global descriptors of
brain structures. However, they are not suited for localizing specific areas of vari-
ability, e.g. a small fold on a surface. A collection of function-based techniques have
been developed to characterize image shape locally. For encoding and reconstruc-
tion, an image may be projected onto a wavelet basis [53], consisting of translated
and scaled versions of a mother wavelet function ψt̄,σ (x, y, z):

at̄,σ =
Nx −1∑

x = 0

Ny−1∑

y = 0

Nz−1∑

z = 0

I (x, y, z)ψt̄,σ (x, y, z), (22)

where (t̄, σ ) are 3D translation and scaling parameters. Shape is captured by wavelet
coefficients at̄,σ , where a significantly non-zero coefficient at̄,σ indicates the pres-
ence of a local feature within a region of size σ about the image location t̄ . An
important aspect of wavelet analysis is the design or choice of the mother wavelet
function. The choice typically depends on the requirements of the image analysis
task at hand, e.g. for compression and reconstruction, complete orthonormal basis
is often used. However, complete wavelet basis may be overly sensitive, i.e. mi-
nor translations or scaling could result in dramatic changes in wavelet coefficients.
Scale-space theory [54] shows that the Gaussian kernel is optimal for multi-scale
image representation with respect to an intuitive set of axioms including translation
and shift invariance, rotational symmetry, and non-creation or enhancement of local
extrema. The Gaussian scale space can be considered as an overcomplete wavelet
representation.

As in the case of global frequency representation, a significant research focus
has been to translate local frequency decompositions from Euclidean space to the
spherical topology as commonly used in brain shape analysis. Yu et al. proposed
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an approach whereby wavelet coefficients are computed from the cortical surface
mapped to the unit sphere by successively subdividing an icosahedron tilling [55].
Bernal-Rusiel et al. [56] compared smoothing using Gaussian and spherical wavelet
techniques, finding that spherical wavelet smoothing may be better suited for preserv-
ing cortical structure in the case of spherical cortex data. Kim et al. [57] demonstrated
that the wavelet transform can be generalized to an arbitrary graph over the cortical
surface, which avoids sampling issues when mapping the cortical surface to a sphere.

4.5 Applications and Insights

In the seminal work of Hu [48], moment invariants were used to describe the shape
of 2D image patterns. This was subsequently generalized to 3D volumetric data
[49, 58]. In brain shape analysis, moment invariants have been used to describe the
shape of cortical gyri [59] and regional activation patterns in functional MRI studies
[60]. Principal component analysis of 2nd order moments has also been explored
for describing and assigning an orientation axis to shapes, such as gyri [61]. Further,
moment invariants have been employed in the context of abnormal shape variations,
for instance, as a basis for image registration [62] or to identify aneurisms [63].

The distance transform has been used in segmenting brain structures, such as
the corpus callosum and abnormal structure, such as tumors [64]. Also, distance
transform is often used for initialization and evolution of contour-type segmentation
algorithms, such as level sets. The distance transform can also be used as the basis
for registration, as it remains unchanged under image translation and rotation [65].

Spherical harmonics are useful for characterizing the shape of 3D surfaces, such
as ventricles [66]. It has also been applied to study shape changes of subcortical struc-
tures in patient population. In particular, global shape changes in the right caudate
were observed in Schizophrenia patients [67] and shape changes in hippocampus
were found to be implicated in major depression [68].

The local frequency representation finds extensive use in shape analysis of brain
structures. The feature-based morphometry method characterizes shape in terms
of extrema in the DoG scale-space, which correspond to distinctive, generic neu-
roanatomical patterns [18]. Several authors propose analyzing neuroanatomical pat-
terns via wavelet coefficients computed across image scales, in a manner similar to
voxel-based morphometry methods [69, 70]. Wavelets have been used for identi-
fying morphological differences in the brain of healthy and diseased subjects [71].
Spherical wavelets have been used to generate a multiscale shape representation of
the caudate nucleus and the hippocampus for the purpose of segmentation [72].



Shape Analysis for Brain Structures 23

Fig. 10 Shape features associated with medial representation

5 Medial Representation

The heart of medial representation is to characterize a brain structure by generating
its skeleton and describing its shape with respect to the skeleton. The skeleton is
interchangeably referred to as medial axis and medial locus. We will use the term,
“medial axis” from here onwards. A distinct advantage of medial representation is
that it provides an intrinsic coordinate system that enables extraction of physically
intuitive features, as illustrated in Fig. 10 [73].

For instance, assuming the medial axis has been discretized into a set of landmarks,
xi , which are commonly referred to as medial atoms, one can describe the local
thickness of a brain structure T (i), by measuring the distance from a medial atom
to the boundary. Also, one can estimate the amount of local bending by examining
the change in angles R(i), between segments connecting consecutive pairs of medial
atoms. Furthermore, one can describe local elongation based on the distance L(i),
between the medial atoms. The formal mathematical definitions of medial axis and
medial atoms are presented in Sect. 5.1.

For studying the variability of a brain structure, a subject correspondence needs to
be established. This implies all subjects’ medial axes must have the same branching
topology. However, medial axis extraction is extremely sensitivity to boundary noise,
as illustrated in Fig. 11 [74]. Any small perturbations of the boundary can result in
considerable changes in the branching topology. Hence, the extracted medial axes
often do not have a clear correspondence across subjects. One common strategy is to
deal with boundary noise is to prune the medial axis. Methods for extracting medial
axis as well as their respective pruning strategies are discussed in Sect. 5.2.

Another strategy for establishing a subject correspondence is to predefine a
branching topology that well captures the shape of a brain structure for all sub-
jects and deform a common medial axis to each subject’s data. This strategy is
widely referred to as “M-Reps” [78, 79]. The key advantage of M-Reps is that it pro-
vides a one-to-one correspondence between medial atoms across subjects while only
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Fig. 11 Medial axes of the corpus callosum. First column Segmented corpus callosum. Second
column Conventional method based on Blum’s definition of medial axis [75]. Third column A
leading curve evolution-based method [76]. Last column Group-wise pruning strategy [77]

affecting the fit to the boundary mildly in practice [80]. Since medial axis lives on a
Riemannian symmetric manifold, its deformation and analysis requires a special set
of statistics. We describe M-Reps and its associated statistics in Sect. 5.3.

5.1 Medial Axis and Its Building Blocks

The notion of medial locus of an object was first proposed by Blum [75]. In the present
context, an object would be a brain structure in either 2D or 3D space. Mathematically,
if we let A be a set in Rn (n-dimensional Euclidean space) representing a brain
structure (n = 2 or 3) and let Br (x) be a maximal inscribed ball of A defined as:

Br (x) = {y ∈ Rn : ||x − y|| < r}, s.t. Br (x) ⊂ A, (23)

and Br (x) ∩⊂ B ∅ ⊂ A for any other ball B’, then the medial locus of A is the set
of all pairs (x, r) ∈ Rn × R+, where R+ is the space of positive real numbers.
The medial axis (by Blum’s definition) is the set of positions {x}. The intuition
behind this definition of medial axis is that a maximal inscribed ball is tangent to an
object at two or more locations with the centroid being equidistant from the tangent
points (Fig. 12a). Thus, the union of centroids of all maximal inscribed balls would
constitute the medial axis. In 2D, the medial axis corresponds to a smooth curve,
with the longest curve considered as the trunk and the remaining segments referred
to as branches. In 3D, the medial axis corresponds a smooth surface (Fig. 12b).

In practice, a medial axis is often represented by a discrete set of medial atoms
(Fig. 13). Each atom is a tuple (x, r, n0, n1) ∈ Rn × R+ × Sn−1 × Sn−1, where x is
the position of the atom, r is the radius of the maximal inscribed ball with x being
the centroid, n0 and n1 are unit-norm vectors pointing towards the tangent points,
and Sn−1 is a n − 1 dimensional unit sphere. The corresponding boundary points y0
and y1 of a medial atom can be reconstructed by: y j = x + rn j , where j = 0 or 1.
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Fig. 12 Examples of medial axis in 2D and 3D. a 2D. b 3D

Fig. 13 Medial atom and discrete medial axis [83]. a Medial atom. b Discrete medial axis

Note that there is a continuous counterpart of discrete medial representation, see e.g.
[81] and [82].

Given the medial axis of a brain structure, intuitive physical features can be easily
extracted. For instance, local thickness is given by ri of medial atom i, local elongation
is given by |xi − xi−1|, and local bending is given by the angle between the vectors
xi − xi−1 and xi+1 − xi . For comparing across subjects, the features need to be
normalized with respect to the intrinsic coordinate system, e.g. dividing r by |xi −
xi−1|. If medial atoms can be correctly placed within all subjects’ segmented brain
structures, classical statistics can be applied to isolate the location of variability. The
key is establishing a correspondence through generating medial axes that have the
same branching topology across subjects. This crucial issue is discussed in the next
two sections.
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5.2 Medial Axis Extraction

As was shown in Fig. 11, medial axis extraction is extremely sensitive to boundary
perturbations. We describe in this section three widely-used approaches for medial
axis extraction and their associated strategies against boundary noise, namely Voronoi
skeleton, boundary evolution, and core tracking. Group-wise strategies that ensure
the extracted medial axes have the same topology across subjects are also discussed.
In computer vision, morphological operators, such as erosion, are often used. The
drawbacks of erosion are that it is very sensitive to the rasterization of the objects
and has difficulties discerning local geometry near points of branching [79]. Detail
on morphological methods for medial axis extraction can be found in e.g. [84].

5.2.1 Voronoi Skeleton

Given a set of points sampled from the boundary of a brain structure, a Voronoi
skeleton is generated by first computing the Voronoi diagram of the boundary points.
In 2D, a Voronoi diagram divides the space on which the boundary points live into
regions such that the set of points within each region is closest to a particular boundary
point than to any other boundary points. A simple example with 6 points is shown
in Fig. 14a. The line segments in the Voronoi diagram correspond to loci equidistant
from two boundary points and the locations at which the line segments meet are
equidistant to three or more boundary points. As apparent from Fig. 14b, the line
segments of the Voronoi diagram that fall completely within the boundary of a given
brain structure constitute the medial axis. Medial axis generated in this manner is
very sensitive to boundary perturbation, which could result in many spurious branches
[83]. To obtain more robust Voronoi-based medial axis, a number of measures that
captures the significance of a line segment has been introduced for pruning the medial
axis [85–87]. For instance, one may remove a line segment and assess the impact on
the overall match between the implied boundary and the actual boundary of a given
brain structure. The choice of threshold for removing a line segment, however, is
nontrivial. The procedure for generating Voronoi skeleton in 3D is similar, but more
difficult to visualize and much harder to implement [85, 86].

5.2.2 Boundary Evolution

This approach is based on the grassfire analogy. Specifically, imagine a brain structure
is a patch of grass. If we simultaneously light up the boundary, the fire fronts would
propagate towards the inner part of the brain structure and eventually meet at some
points, referred to as shocks. The set of all shocks is the medial axis. Mathematically,
if we let C(p) be a parameterization of the boundary of a brain structure, the evolution
of C(p) into a medial axis can be formulated as the following partial differential
equation [88]:
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Fig. 14 Voronoi diagrams [83]. a Simple 6 points example. b Corpus callosum

∂C(t, p)

∂t
= (α − βκ)N , C(0, p) = C(p), (24)

where t is time, κ is the curvature of C(p) at p, and N is the unit normal of C(p) at
p. α and β can be functions or simply constants. If β = 0, (24) models exactly the
grassfire phenomenon with fire fronts propagating at speed α. βκ N is a regularization
term.

Standard numerical simulations of (24) run into problems when propagation fronts
form shocks, points at which normal and curvature are not defined [89]. Level set
approaches facilitate continuation of front propagation in the presence of shocks,
but do not inherently provide a mechanism to detect shocks, which is crucial for
extracting medial axis. A workaround to these problems is to model front propagation
using a Hamilton-Jacobi formalism [89]:

∂p = −∂ H

∂q
= (0, 0, 0), ∂q = −∂ H

∂p
= −(Dx , Dy, Dz), (25)

where D is the distance transform of a given brain structure’s boundary, ||∇D||
is the magnitude of its gradient, H = 1 − ||∇ D|| is the Hamiltonian function,
q = (x, y, z), and p = (Dx , Dy, Dz). Under this formalism, the average outward
flux of the vector field ∂q about a point can be used to determine whether that point
is medial or not. Specifically, non-medial points have close to zero outward flux,
whereas medial points have large negative outward flux. Pruning is accomplished by
removing each point one by one starting from the point with an outward flux close
to zero and stopping if the removal of subsequent points alters the topology of the
brain structure.

5.2.3 Core Tracking

In contrast to Voronoi skeleton and boundary evolution, core tracking can operate
directly on gray scale volumes. This approach thus mitigates the need for explicitly
specifying the boundary of a brain structure. But to keep the method discussion
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consistent, we will describe core tracking for the case in which segmented brain
structures are given. Central to core tracking is the definition of medialness that
measures how well the position and orientation of the implied boundary points of a
candidate medial atom match edge-like structures in a volume. The most widely-used
medialness measure of a candidate atom m = {x, r, n0, n1} is based on the intensity
gradient of a volume I at boundary points y0 and y1:

M(m) = ∇σ I (y0) · n0 + ∇σ I (y1) · n1, (26)

where ∇σ I (y j ) is the intensity gradient of I at y j , j = 0 or 1, convolved with an
isotropic Gaussian kernel of width σ that governs the sensitivity of the extracted
core to boundary noise. Core tracking proceeds by first placing an atom on a user-
defined starting position and optimizing the parameters of this atom with respect to
(26). A core is then tracked by placing the next atom a certain distance away from
the previous one, optimizing its parameters, and repeating the process until some
termination criteria are met. This algorithm provides the trunk of the medial axis, but
not its branches. To find branches, one way is to use corner detectors for identifying
potential branching locations and initialize new core at those locations [90].

5.2.4 Group-wise Medial Axis Extraction

Although the pruning strategies associated with the above medial axis extraction
approaches help provide more robust medial axes, there is no guarantee that the
extracted axes would have the same branching topology across subjects. The most
widely-used strategy to deal with this problem is to enforce a strict correspondence
by deforming a common predefined medial axis onto all subjects’ segmented brain
structures, which we will discuss in the next section. Another strategy is to jointly
prune the medial axes of all subjects using group information [77]. Given the raw
medial axes of all subjects, the idea is to compute a set of features that characterizes
the branches and identify branches that are commonly present across subjects based
on these branch features. For example, one may use the number of medial atoms
within a branch, the centroid location of the branch, and the angle of the branch with
respect to the trunk to characterize a branch. Correspondence can then be drawn by
applying e.g. bipartite graph matching between all pairs of medial axes. Additional
refinements to increase robustness are described in [77].

5.3 M-Reps

The key idea behind M-Reps is to deform a common medial axis to all subjects’
brain structures, so that a subject correspondence between medial atoms is inher-
ently established. For the 2D case, a method based on a snake-like algorithm has
been proposed [91]. Specifically, if a distance transform is applied to a segmented
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brain structure, the ridges of the distance map would correspond to the medial axis.
Assuming a fixed representative medial axis can be defined, this method first approx-
imates the locations of the endpoints of the medial axis based on maximum positive
curvature of the boundary. Fixing the endpoint locations, a snake-like algorithm is
then used to move the remaining medial atoms along the gradient of the distance
map. Once the positions of these medial atoms are found, the endpoint locations are
adjusted based on how well the implied boundary segments fit the original boundary.

In the general 3D case, methods based on Riemannian statistics have been pro-
posed [78, 80, 92]. Let M(n) be the space of M-reps with n medial atoms. Recall that
a medial atom, m, is defined as a tuple (x, r, n0, n1) ∈ R3 × R+ × S2 × S2 = M(1).
Thus, a M-rep model with n atoms is a point in M(n) = M(1)n = (R3 × R+ × S2 ×
S2)n . Since R3, R+, and S2 are symmetric spaces and products of symmetric spaces
are also symmetric spaces, M(n) is a symmetric space [80]. In M(n), deforming a
common medial axis to each subject’s segmented brain structure is done by applying
a separate similarity transform, S, on each medial atom, m:

S · m = S.(x, r, n0, n1) = (s Rx + w, sr, Rn0, Rn1), (27)

where R is a 3 × 3 rotation matrix, w is a 3 × 1 vector for translation, and s is a
scaling factor. S is optimized for each atom based on the match between the implied
boundary and the segmented boundary with some tolerance to account for boundary
noise [78].

Similar to point-based analysis in which the point clouds need to be rigidly aligned
to account for global scale and orientation variability, the medial axes of the subjects
also need to be rigidly aligned prior to analyzing their shape variability. For this, the
notion of distance in M(n) is required, which is based on the concept Riemannian
log map. If we let p = (0, 1, p0, p1) be the base point, where p j = (0, 0, 1), j = 0
or 1, the log map of a medial atom, m = (x, r, n0, n1), is given by:

Logp(m) = ⎦
x, log r, Logp0(n0), Logp1(n1)

)
, (28)

Logp j (n j ) =
(

n j1
θ

sin θ
, n j2

θ

sin θ

)
, j = 0 or 1, (29)

where n j = (n j1, n j2, n j3) and θ = arccos(n j3) is the spherical distance from the
base point p to n j , j = 0 or 1. If we further let u = (x, ρ, v0, v1) ∈ Tp M(1) be the
tangent vector at point p, where x is the positional tangent, ρ is the radius tangent,
and v0 and v1 are spherical tangents, the geodesic distance between p and m is given
by [80]:

d(p, m) = ⎢⎢Logp(m)
⎢⎢ = ‖u‖ , (30)

where ‖u‖ = ⎦‖x‖2 + r̄2(ρ2 + ||v1|| + ||v2||)) 1
2 . The scaling by the average radius

of all atoms r̄2 is to account for differences in units between x, r, n0, and n1 [80].
Given (28) to (30), the geodesic distance between two atoms m1 and m2 is defined as:
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d(m1, m2) = ⎢⎢Logm1(m2)
⎢⎢

m1
. (31)

With this notion of distance in M(1), N medial axes M1, . . ., MN , can be rigidly
aligned by minimizing the cost below with respect to similarity transforms S1, . . ., SN
[80]:

d(S1, . . . , SN , M1, . . . , MN ) =
N∑

i = 1

i∑

j = 1

d(Si · Mi , S j · M j )
2, (32)

d(Mi , M j ) =
n∑

k=1

d(mki , mkj )
2, (33)

where mki is the kth medial atom of subject i’s medial axis. Once the medial axes of the
subjects are aligned, one can build a statistical model to capture the shape variability
analogous to the active shape approach [4]. In M(n), the mean μ is defined as:

μ = min
M∈M(n)

N∑

i = 1

d(M, Mi )
2. (34)

An elegant algorithm for solving (34) can be found in [80]. Given μ, The covariance
Σ in M(n) is defined as:

Σ =
N∑

i = 1

ui ui T , ui = Logμ(Mi ). (35)

Eigenvalue decomposition can then be applied to Σ to identify principle modes
of variability and the amount of variance. This generalization of PCA is known as
principle geodesic analysis (PGA), and is often used to impose shape constraints for
segmentation of new samples of previously analyzed brain structure [78]. For more
details on the mathematics of medial representation, see [79].

5.4 Applications and Insights

Medial representation is widely employed in computer vision. For neuroimaging,
it has mainly been used for studying subcortical structures with relatively clearer
regional boundaries than cortical structures. For instance, medial representation has
been applied to study shape changes in hippocampus of Schizophrenia patients
[93, 94]. It has also been applied to study differences in ventricles of twins [78]
as well as corpus callosum of Multiple Sclerosis patients [95]. Due to the difficulties
in drawing subject correspondence between cortical structures, which tend to have
unclear boundaries, medial representation is much less explored for cortical structure
analysis.
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6 Deformetrics: Shape Statistics with Space Deformations

Fundamentally, a one-to-one point correspondence might not exist between instances
of a brain structure across subjects. For example, homologous fiber bundles extracted
from diffusion MRI data of two individuals typically have different number of fibers
and each fiber has a different number of points (Fig. 15). Enforcing a point corre-
spondence across each fiber is not only nearly impossible in practice, but also not
sensible from an anatomical point of view since the estimated fibers are not true
neuronal fibers. The overall problem of point correspondence can be mitigated using
deformetrics, which is the topic of this section. Specifically, correspondence cre-
ation can be formulated as learning a one-to-one 3D space deformation that aligns
the brain structures of interest. The alignment is meant in a loose way in that the
geometry of the objects should be matched, but without enforcing one point of a
given object to match with another point of the same object in another individual.
Instead, point correspondence is learned on the whole 3D space as an output of the
deformetics approach, such that the local organization of homologous brain features
is preserved across individuals. There are two key ingredients to deformetrics. The
first ingredient is the metric on currents for measuring alignment accuracy without
point correspondence, as described in Sect. 6.1. The second ingredient is a model
for generating one-to-one smooth deformations, as described in Sect. 6.2. Combin-
ing these ingredients provides a flexible framework for aligning two instances of
a structure or a structure complex of various topologies, as discussed in Sect. 6.3.
Further, the framework can be extended for group analysis by drawing on concepts
from Riemannian statistics, as discussed in Sect. 6.4.

6.1 Metric on Currents

The first pillar of deformetrics is the definition of similarity between instances of
a brain structure or a structure complex. This measure is used for quantifying the
accuracy of the alignment between homologous structures in driving the estimation
of 3D space deformations between shape instances. The choice of measure should be
adapted to the kind of data. If there exists homologous points across individuals, the
sum of squared differences between point positions can be used as similarity measure.
However, if such correspondence is absent, the metric on currents or varifolds would
be more suitable [96, 97].

The idea behind metric on currents is to treat curves or surfaces in 3D as a physical
object that can be excited by vector fields. The response of a surface mesh to an
“excitation”, namely a 3D vector field, is the flux of the vector field through the
surface. For a curve, it is the path integral of the vector field. If two surfaces (or
two curves) have the same response to any excitation, then they are superimposed.
The maximum difference gives a quantification of the dissimilarity between the
given entities. This definition requires very few assumptions about the surfaces and
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(a) (b) (c)

Points Points Points

Single curve Single mesh Single curve

Set of 72 curves Set of 10 meshes Single fiber bundle

Set of 5 fiber bundles

Fig. 15 Segmented brain structures exhibiting a natural hierarchy from single points to more
complex objects. Homology is usually defined at a given level: a individual sulcal curves (central
sulcus, Sylvian fissure, etc.), b meshes of basal ganglia (hippocampus in red, caudate in blue, etc.)
or c fiber bundles (cortico-spinal tract in blue, corpus callosum in red, etc.). The currents metric is
applicable to all different levels of homology, not just points

curves. The surfaces and curves only need to be rectifiable, i.e. integrals defined, but
no requirement is made about their topology. The surfaces and curves may comprise
multiple parts, may have holes, or may even be generated from different meshing or
sampling.

In mathematical terms, surfaces (or curves) are seen as linear operators on a test
space of vector fields W. Given a norm on the test space W, we can define the spectral
norm of the operator as: minω=1|S(ω)|, where S(ω) denotes the flux of the vector
field ω through S and the minimization is over the unit ball in the test space. The key
is to assume the test space of vector fields W has the structure of a reproducible kernel
Hilbert space (RKHS), which comprises the convolutions between squared integrable
vector fields and a smoothing kernel K W . The kernel controls for the frequency band
of the test vector fields. Specifically, the lower the band is, the slower the variations
of the vector field. Also, with fast varying vector fields, the metric is more sensitive
to small differences between meshes. Conversely, with slow varying vector fields,
the metric is more loose and smoothes out small variations. Based on the RKHS
structure, the spectral norm has a closed-form:

‖S‖2
W =

⎡

S

⎡

S
K W (x, y)n(x)T n(y)dσ(x)dσ(y), (36)

where n(x) represents the normal to the surface S and dσ(x) is the Lebesgue measure.
K W is e.g. a Gaussian kernel: K W (x, y) = exp(−||x−y||2/σ 2

W ) with σ 2
W controlling

the regularity of the test vector fields, namely their frequency bands. The norm (36)
comes from an inner-product: ||S||2W =< S, S >W , where the inner-product between
two generic surfaces S and S’ is given by:
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< S, S∅ >W =
⎡

S

⎡

S∅
K W (x, y)n(x)T n∅(y)dσ(x)dσ ∅(y). (37)

where n(x) and n∅(x) denote the normal to the surface S and S∅. For curves, a similar
formula applies except normals are replaced by tangents and flux integrals replaced
by path integrals. For unstructured point sets, normals are replaced by scalar weights
and integrals replaced by sums. As evident from (36) and (37), no one-to-one point
correspondence between geometric primitives nor similar sampling are required.

Currents form a vector space. Given two surfaces S and T, the sum of the flux
through S and through T equals the flux through the union of both surfaces, i.e.
(S+T )(ω) = S(ω)+T (ω). Also, flipping the orientation of the surface is equivalent
to changing the current S into –S (flux is opposite). Therefore, the current S−T could
be seen as the union of the two surfaces, where the normals of T have been flipped.
This can be treated as a new surface (made of two parts), and the norm ||S − T ||2
could be computed using (36). Equivalently, one could decompose the norm into
||S − T ||2 = ||S||2 + ||T ||2 − 2 < S, T >, and apply (36) and (37).

Currents norm is sensitive to translation. If S and T are two shifted versions of the
same contour, the resulting norm would be large. A matching that tries to minimize
the currents norm will first push one contour in the direction of the other. The norm
will be further minimized by adjusting the shape of the contours. The kernel size
σW plays an important role in this respect. Variations in shape that are much smaller
than this parameter are smoothed out by the kernel, and therefore, are not taken into
account for aligning shapes. If contours are shifted by a distance that is much greater
than the kernel size, then the inner-product between them vanishes. In this case, the
two contours are orthogonal in the space of currents. There is nearly no attraction
force between them, and the optimization of the currents norm using deformation
will be difficult. The value of the parameter should be selected based on the problem.
Note that a sum of kernel with decreasing size is still a kernel and could be use in a
multi-scale setting.

The algebraic operations permitted in the space of currents provide great flexibility
in the way that similarity metric can be defined, while taking into account the “right”
level of homology. Fig. 15 shows three typical examples. In Fig. 15a, sulcal curves
on the cortex are labeled consistently across individuals. Denoting L1, . . ., L N and
L ∅

1, . . .L
∅
N as the set of curves for two individuals, we can define a similarity measure

as: Σi ||Li − L ∅
i ||2 based on (36). Note that we can also add a weighting factor in

the sum for balancing the contributions of different sulcal curves. This measure does
not assume points on curves have a one-to-one correspondence, but does assume
that the input are corresponding curves, i.e. not matching sylvian fissure with central
sulcus for example. Similarly, a similarity measure between sets of sub-cortical
structures is given by: Σi ||Si −Si

∅||2, where the currents metric is the one for surfaces
instead of for curves. For fiber bundles, the homology is at the level of the different
bundles that are labeled consistently across individuals, e.g. cortico-spinal tract and
arcuate fasciculi. Let Bi and B ∅

i be the i th bundle in two individuals, such that Bi

is made of n fibers Fi,k , i.e. Bi = Σk Fi,k (representing the union of the fibers in
currents), and B ∅

i is made on m fibers F ∅
i,k , i.e. B ∅

i = Σp F ∅
i,p, where m may be
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different from n. The similarity measure between homologous fiber bundles is given
by: Σi ||Bi −B ∅

i ||2 = Σi ||Σk Fi,k−Σp F ∅
i,p||2. Using this measure permits differences

in the geometry of fiber bundles to be captured without requiring the same number of
fibers within each bundle. If the union of sulcal curves, fiber bundles, and sub-cortical
structures is of interest, one could combine all the previous similarity measures in a
weighted sum in defining a global similarity measure on structure complexes.

In practice, surfaces are represented by meshes, and curves by polygonal lines. In
this case, normals (resp. tangents) are constant over faces of the mesh (resp. segments
of the line). Therefore, integrals in (36) and (37) can be efficiently approximated by
a finite sum over mesh cells. Computing the norm of a mesh with N cells has a
complexity of O(N 2). Since the above equations are essentially convolutions, one
could project normals or tangents at the nodes of a regular lattice and compute the
norm using FFT, which drastically reduce computational complexity. The numerical
error is in the order of O(Δ2/σ 2

W ), where Δ is the grid’s step and σW is the kernel
parameter [98]. Computing addition and scalar multiplication is nothing more than
concatenating normal vectors or tangents and scaling them.

6.2 A Generic Model for 3D Diffeomorphisms

The second pillar of deformetrics is a model to build smooth one-to-one 3D space
deformations. The deformation needs to be smooth to preserve the topology of the
tissue (no shearing or tearing) and the local organization of the structures. Smooth
deformations with smooth inverse are called, “diffeomorphisms,” which appear nat-
urally from integration of dynamical systems [99–103]. Inspired by mechanics and
following [100, 104], a flow of diffeomorphisms, i.e. a time-indexed family of dif-
feomorphisms, can be defined by the integration of a time-varying velocity field.
Mathematically, the flow of diffeomorphisms x → φ(t, x) at time t (for all x ∈ R3)

is the solution of the differential equation:

∂φ(t, x)

∂t
= v(t, φ(t, x)), φ(0, x) = x, (38)

where v(t, x) is a time-varying velocity field. The trajectory of a point x0 under (38) is
given by x(t) = φ(t, x0), which is the integral curve of the ODE: ẋ(t) = v(t, x(t))
starting at point x(0) = x0. The trajectories of several points could be written in
matrix form as:

Ẋ(t) = v(t, X (t)), X (0) = X0, (39)

where X0 is the concatenation of point coordinates and v(t, X (t)) acts coordinate-
wise. The flow of diffeomorphisms is entirely parameterized by the time-varying
velocity field v(t, x). In particular, the smoothness of v determines the smoothness
of the diffeomorphisms. To control the regularity of the velocity field, if it is often
assumed that the velocity field belongs to a RKHS with kernel K V and has the form:
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v(t, x) =
N∑

p = 1

K V (x, cp(t))αp(t), (40)

where cp(t) are the positions of the N control points at time t and αp(t) are momentum
vectors attached to the control points. K V is typically set as a Gaussian function with
parameter σV . The key motivation for the RKHS assumption is that it provides a norm
for the velocity at every time t:

‖v(t, .)‖2
V =

N∑

p = 1

N∑

q = 1

K V (cq(t), cp(t))αp(t)
T αq(t). (41)

Note that (40) is like applying spline interpolation on the vectors αp(t) at control
points cp(t). In the general case, a velocity field in the RKHS is parameterized by
a continuum of control points [104]. In this approach, a finite-dimensional approx-
imation is enforced, and this parameterization (i.e. the control point positions) will
be optimized for each data set. With these assumptions, the flow of diffeomorphisms
is determined by the time-varying vectors cp(t) and αp(t). Assuming the control
points move in space with the deformation, their positions would satisfy the ODE:

ċp(t) = v(t, cp(t)) =
N∑

q = 1

K (cp(t), cq(t))αq(t). (42)

Given a fixed initial condition cp(0), there is an infinite number of choices for the
time-varying momentum vectors αp(t) that reach the same final positions cp(1) in
unit time. Following mechanical principles, one logical choice would be to select the
momentum trajectories that minimize the kinetic energy needed to reach the final
configuration

⎣ 1
0 ||v(t, ·)||2V dt . Such momentum trajectories satisfy the ODE:

α̇p(t) = −
N∑

q = 1

αq(t)T αp(t)∇cp(t)K (cp(t), cq(t)). (43)

With (43), the flow of diffeomorphisms can now be entirely parameterized by ini-
tial conditions, i.e. initial position of control points and initial momentum vectors.
Given these initial conditions concatenated into a single vector S0, control points and
momentum vectors at later time t can be determined from the two sets of coupled
ODEs (42) and (43). These two ODEs in a matrix form are given by: Ṡ(t) = F(S(t))
with S(0) = S0, where top rows of F are (42) and bottom rows are (43). Once
this ODE is integrated, the trajectory X (t) of any set of points X0 is given by the
integration of (39). Since the velocity field is fully parameterized by S0, (39) can
be re-written in matrix form as: Ẋ(t) = G(X (t), S(t)) with X (0) = X0. This con-
struction of diffeomorphisms holds a number of important properties. First, under
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the minimum energy principle, one can show that the norm of the velocity is con-
stant in time: ||v(t, ·)||V = ||v(0, ·)||V , such that the integration of the equations
of motion describe a geodesic path in the group of diffeomorphisms [105], and the
value of ||v(0, ·)||V is the length of this geodesic path. The logarithm (or tangent-
space representation) of the path to the identity map (φ(0, x) = x) is given by
the initial momentum vectors at initial control point positions. These momentum
vectors live in a finite-dimensional sub-space of the RKHS. Their norm (and hence
inner-product) is given by the kernel K V , which is key to performing statistics on de-
formations. Second, the use of control points allows the dimension of the sub-group
of diffeomorphisms to be controlled, which is important for statistical purposes when
the number of available data is limited. Estimating a space deformation amounts to
learning a finite-dimensional vector S0, namely position of initial control points and
their momentum vectors. Furthermore, the parameter of the kernel σV determines
the frequency band of the velocity field. The larger σV is, the more regular and rigid
the deformation. The intuition is that a deformation results from the combination of
local deformations of patches of diameter σV . Motions of points at distance much
smaller than σV are highly correlated, whereas points at larger distance may have
independent trajectories.

6.3 Matching Anatomical Configurations

Let O1, . . ., ON be a set of N labeled structures of an individual, and O1
∅, . . ., ON

∅
the homologous structures in another individual. The goal is to find a diffeomorphism
φ that best aligns the two sets of structures based on the metric on currents. Assuming
the diffeomorphism φ = φ(1, ·), which is the end point (at unit time t = 1) of a flow
of diffeomorphisms φ(t, ·), the flow (and hence the deformation of interest φ(1, ·))
is entirely parameterized by the initial positions of control points and momentum
vectors, S0. O1, . . ., ON can be unstructured point sets, polygonal lines or surface
meshes, and they move in space to φ(O1), . . ., φ(ON ). Let X0 be the concatenation
of all the vertices of all structures {Oi }, then X (1) gives the vertices of all structures
φ(Oi ), which results from the integration of the set of two coupled ODEs at time
t = 1:

Ẋ(t) = G(X (t), S(t)), X (0) = X0 (44)

Ṡ(t) = F(S(t)), S (0) = S0. (45)

The position X (1) depends only on S0, since X0 is fixed. The goal is thus to find the
best S0, so that the structures φ(Oi ) are the most aligned with their homologous O ∅

i .
Defining a currents metric as the weighted sum Σiwi ||φ(Oi )− Oi

∅||2W and denoting
it as A(X (1)), this metric essentially just depends on the positions of the vertices of
the deformed shapes φ(Oi ) and their meshing. Note that the deformation takes only
the vertices of the shapes into account, while neglecting their label and structure.
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Mesh information and labels are accounted for in the current metrics, which require
the computation of the normals and tangents of the meshes. Normals and tangents
depend on the vertex positions X (1), and we denote the gradient of the currents
metric with respect to such positions by ∇X (1) A. This gives the direction for moving
the final point positions X (1) so that the distribution of normals and tangents in the
φ(Oi )’s becomes more similar to that of Oi

∅. The task now is to find an update for
the initial conditions S0, so that at time t = 1, the final positions X (1) move in the
desired direction. To this end, E(S0) = A(X (1))+ L(S0) can be used as a matching
criterion, where L(S0) = ||v0||2V is the kinetic energy of the deformation (and also
the length of the geodesic path connecting φ(1, ·) to the identity map), which is used
as a regularizer. It is not tractable to use the chain rule to compute the gradient of
E with respect to S0 from the gradient of A with respect to X (1). Instead, as proven
in [103], the gradient ∇X (1) A, at time t = 1, can be transported back to time t = 0
using linear versions of the ODEs (44) and (45) to compute ∇S0 E at time t = 0:

∇S0 E= ξ(0) + ∇S0 L , (46)

where ξ(0) is computed by integration of the following ODEs (integrated backward
from time t = 1 to t = 0) :

.

θ(t) = −(∂X (t)G(X (t), S(t)))T θ(t), θ(1) = ∇X (1) A, (47)

.

ξ (t) = −(∂S(t)G(X (t), S(t))T θ(t) − dS(t)FT ξ(t), ξ(1) = 0. (48)

The gradient ∇X (1) A is a set vectors attached to the vertices of the deformed shape
φ(Oi ) at time t = 1, which is transported back to time t = 0 through a linear ODE
(47). Integrated backward from time t = 1 to time t = 0, the value ξ(0) interpo-
lates this information at control point positions. It is the gradient of the data term
with respect to the initial conditions. For optimizing the matching criterion, gradient
descent with adaptive step size can be used. To initialize the optimization, one can set
the control points at the nodes of a regular lattice whose step equals the deformation
parameter σV and momentum vectors are set to zero, i.e. no deformation. The output
of the algorithm is the optimal position of the control points and the optimal values
of the momentum vectors. These values enable computation of the deformed shapes
φ(Oi ). Parameters that need to be set are the deformation parameter σV , which con-
trols for the “rigidity” of the deformation, the currents parameters σW , which controls
for the sensitivity of the currents metric, and the weights wi that balance the contri-
butions of the different structures against the regularity term and against themselves.
Note that control points are not specific to particular structures. Instead, they affect a
neighborhood in 3D space and drive the deformation of every part of any structures
in this neighborhood. They give a unique descriptor of anatomical differences, which
integrates various kinds of data such as cortical areas, fiber bundles, and sub-cortical
structures. Examples illustrating structure matching by deformetrics are shown in
Figs. 16 and 17. Details can be found in [106, 107].
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Fig. 16 Matching of a structure complex made of the surface of the caudate nucleus and the fiber
bundle connecting the nucleus to the cortex. Deformation parameters are control points and momenta
attached to them (arrows in a). They define a unique 3D space deformation that warps fibers and
surfaces altogether. They are estimated so that they minimize, up to a regularity constraint, the sum
of two currents norms, one between fiber bundles and the other between surfaces. σV = 10 mm,
σW = 3mm, w = 0.2mm−2 (surface) and σW = 2mm, w = 0.02 (bundles). a Source. b Source
and target. c Deformed source

Fig. 17 Matching between 72 pairs of homologous sulcal curves. Left A single 3D space de-
formation is estimated, so that source curves (in blue) best match their homologous curves (in
red). Deformed curves are in green. Right: Deformation is applied to the underlying cortical sur-
face. Red corresponds to the maximum displacement and blue corresponds to zero displacement.
σV = 25mm, σW = 5mm and w = 100 for all curves

6.4 Statistical Shape Models Based on Deformations

Deformations between pairs of anatomical configurations can be extended for group-
wise analysis. Given homologous anatomical configurations in N individuals, one can
build an atlas, namely a template, and N deformations matching this template to each
individual’s anatomy for studying subject variability. The template should have the
same number of structures as in each individual. Also, the topology of each template
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structure, namely the number of points and the connectivity between them, needs
to be set a priori. For closed surfaces, an ellipsoidal surface with a pre-determined
number of vertices is set. For fiber bundles, one randomly picks fibers from every
individual to form an initial fiber bundle. With the vertices concatenated into a vector
X0, atlas construction can be viewed as finding the optimal position of the vertices,
so that the template averages out the shape features.

One way to derive a template is to use Fréchet mean, which defines the template
as the anatomical configuration that minimizes the sum of squared differences
between template and each individual. As a measure of distance, a good candi-
date is the length of the geodesic path of the diffeomorphisms that matches the
template to each anatomical configuration. This amounts to minimizing Σi ||vi

0||2,
subject to the diffeomorphism φi parameterized by vi

0 such that φi (X0) equals the
i th individual anatomical configuration. Diffeomorphisms that perfectly match two
anatomical configurations do not necessarily exist and are often not desirable due
to the presence of noise as well as segmentation and sampling artifacts in the data.
From a statistical point of view, exact matching would lead to a statistical model that
does not generalize well. Thus, a relaxed version of the Fréchet criterion is typically
preferred:

E =
∑

i

∑

k

wk ||φi (Ok) − Oi
k ||2W + ||vi

0||2V , (49)

where Ōk is the kth component of the template anatomical configuration (the con-
catenation of the vertices of all Ōk being X0), Oi

k is the homologous component
in the i th individual, and φi is the i th template-to-individual deformation, which is
parameterized by the velocity field vi

0. The velocity fields are assumed to be parame-
terized by a set of control points c0,p and momentum vectors αi

0,p associated with
them. These control points and momentum vectors are defined in the template space.
Control points are assumed to be the same for every subject, so that all deformations
are decomposed into the same basis. Momentum vectors are specific to each subject
and parameterize a different deformation of the template to each individual anatomy.
Introducing Si

0 = {c0,p, α
i
0,p}p as the initial parameters for each deformation that

become Si
0(t) at a later time t and Xi (t) as the position of the template points X0

at time t of the i th template-to-individual deformation, the criterion in (49) can be
rewritten as:

E(Si
0, X0) =

∑

i

Ai (Xi (1)) + L(Si
0), (50)

Ẋ i (t) = G(Xi (t), Si (t)), Xi (0) = X0, (51)

Ṡi (t) = F(Si (t)), Si (0) = Si
0. (52)

The minimization of the deformation parameters Si
0 is essentially the minimization

of N independent matching criteria, with the exception that the initial control point
positions are shared among individuals. The minimization over the template point
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positions X0 seems more challenging, but in actual, the estimation of the gradient
does not require extra computations. The gradient of the criterion is given by:

∇cp E=
∑

i

ξ i
cp

(0) + ∇cp L , ∇αi
p
E= ξ i

αp
(0) + ∇αi

p
L , (53)

∇X0 E =
∑

i

θ i (0), (54)

where ξ(0) = {ξ i
c(0), ξ i

α(0)} and θ i (0) are computed by integration of the following
two ODEs (integrated backward from time t = 1 to t = 0):

.

θ i (t) = −(∂Xi (t)G(Xi (t), Si (t)))T θ i (t), θ i (1) = ∇Xi (1) Ai , (55)

.

ξ i (t) = −(∂Si (t)G(Xi (t), Si (t))T θ i (t) − dSi (t)FT ξ i (t), ξ i (1) = 0. (56)

Gradient with respect to the deformation parameters can be computed in an analo-
gous manner as in the case of matching two anatomical configurations. The gradient
with respect to template point is given “for free” in the θ auxiliary variable at time
t = 0, which is also averaged over individuals. The output of the above procedure
is a template anatomical configuration encoded by the vertices X0, a set of initial
control points optimally placed in the regions of largest variability, and momentum
vectors parameterizing template-to-subject deformations. Control points provide a
common basis for the parameterization of template-to-individuals matching, and the
momentum vectors indicate the decomposition of the deformations on this basis. See
example in Fig. 18 and [103] for details. We highlight that the momentum vectors
generated by the above algorithm are the tangent-space representations of the de-
formations. Hence, no additional computation is required to perform statistics, since
the descriptors are finite-dimensional and lives in the usual Euclidean space pro-
vided by the inner-product K = {K (c0,i , c0,k)}i, j . In particular, any statistical tools,
such as classification, clustering, and regression, can be directly applied. In Fig. 19, a
Fisher’s discriminant analysis is performed in which the direction orthogonal to the
separating hyperplane is a momentum vector. This momentum vector parameterizes
a deformation that can be integrated over time using (45). The deformation of the
template, given by integration of (44), provides an interpretable representation of the
shape features that have been detected as most discriminative.

6.5 Applications and Insights

The technique of currents and diffeomorphisms has been used so far to characterize
the variability in cortical configurations [106, 108], to highlight differences in con-
nectivity patterns between patients with Gilles de la Tourette syndrome and controls
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Fig. 18 Atlas construction from 16 anatomical configurations made of 3 deep brain nuclei: hip-
pocampus (green), amygdala (blue) and putamen (orange) of 8 controls and 8 subjects with Down
syndrome. Left Initial configuration given. Ellipsoidal surfaces are template shapes. Red dots are
the initial position of control points. Momenta are set to zero. Right Output of deformetrics ap-
proach. Vertices of the template shapes have been updated to capture the shape invariants across the
16 individuals. Control points have moved towards the most variable parts of the shape complex.
Momenta parameterize the deformation of the template to each control (blue arrow) and each Down
syndrome subjects (red arrows). σV = 10mm, σW = 5mm (using the varifold representation of
currents [97]), w = 0.005mm−2 for the three structures

Fig. 19 Linear Discriminative Analysis (LDA) in shape space. LDA is performed on the momentum
vectors from the atlas in Fig. 18. The most discriminative axis is a momenta set that parameterizes
a deformation towards controls, and a deformation towards Down syndrome subjects (opposite
momenta). The deformation of the template along these two directions is shown, exhibiting the
most discriminative shape features captured by the atlas
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[107], to measure cortical thinning of the cingluate gyrus in schizophrenia [109], to
detect atypical growth patterns in longitudinal shape studies [110], and to predict
cardiac remodeling in patients with Tetralogy of Fallot [111] for instance. The main
assets of deformetrics are that it does not require establishing a one-to-one point
correspondence between segmented structures. Also, it can handle a large variety of
shapes. Moreover, it enables the analysis of anatomical shape complexes reflecting
the variability in anatomical configuration in populations. The method requires only a
minimal amount of preprocessing and user intervention, and opens up the possibility
to use such morphometric tools routinely for large cohort studies.

Deformetrics permits analysis of complex anatomical configurations and provides
a single descriptor for quantifying anatomical differences among individuals. The
descriptor integrates how shape components within the structure complex co-vary,
while preserving the complex organization (no collision between components). De-
formetrics can therefore be used for full brain morphometry that combines cortical
and sub-cortical structures with white matter fiber bundles. The control point aspect
of deformetrics restrains the dimensionality of the descriptor, and hence reduces the
effects of multiple comparisons. This property is particularly relevant for settings
with high dimension and low sample size, which is typical for neuroimaging studies.
Also, results could be displayed as deformation, which eases the result interpretation.

The main limitation of deformetrics is that it relies on segmented structures.
Although the intrinsic noise parameter in the currents metric makes deformetrics
robust to mesh imperfection and random local shift of boundaries, deformetrics
would be affected by consistent segmentation errors occurring at the same place, or
by systematic over/under estimation of structure boundaries. Further, deformetrics
will not work properly if the hypothesis of homology is violated. This could arise from
problems in structure identification. Presence or absence of particular structures as
well as important changes in topology across individuals may be also problematic.
Lastly, more attention should be paid on the numerical aspects of deformetrics.
Specifically, convergence problems may arise from the simultaneous optimization of
several variables with different orders of magnitude. Cautions should also be paid on
the effects of parameters, such as the deformation scale, currents scale, and weights of
shape components in the criterion. Multi-scale strategy and automatic estimation of
such parameters in a Bayesian framework would be promising directions to explore
[107, 112].

7 Future Outlooks

Advances in MRI technology have enabled acquisition down to submillimeter
resolution [113]. With more high resolution MRI data becoming available, we fore-
see much greater clinical impact from deployment of shape analysis. However,
associated with the increase in resolution and sample sizes are some caveats. For
instance, approaches for brain structure segmentation need to be reconsidered.
Manual segmentation is very time consuming and relies solely on expert knowledge.
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Besides the problem of intra-expert and inter-expert variability [114], the increasing
number of samples, coupled with the increasing number of slices, renders manual seg-
mentation impractical. A technological push on efficient automated means is thus cru-
cial.
A popular automated approach is to register a whole-brain atlas to new brain vol-
umes and use the brain region labels associated with the atlas to delineate structures
of interest [115, 116]. The segmentation accuracy of this approach is contingent on
the registration accuracy. Another widely-used automated approach is to segment
based on features, such as intensity and gradients, and constrain the segmentation
with shape priors [79]. There is thus a strong interplay between shape analysis and
segmentation. However, building generalizable shape priors requires a large number
of segmented brain structures. Hence, there is a slight circularity problem. A po-
tentially promising direction is to combine automated methods with semi-automated
corrections [117]. This strategy would enable exploitation of expert knowledge with-
out completely relying on it, while substantially reducing the time cost compared to
pure manual segmentation.

In addition to the impact on segmentation, which is a fundamental step prior to
most shape analysis approaches, higher resolution and increasing sample sizes have
major implications on each of the shape analysis approaches described. For point-
based representation with landmarks, the time cost would substantially increase. For
dense point-based representation, errors introduced by the one-to-one point corre-
spondence assumption as well as the problem of multiple comparisons would worsen
with higher resolution. A potential workaround is to assume a one-to-one patch cor-
respondence without enforcing the corresponding patches to have the same number
of voxels/points. A useful definition of a patch is unclear, but extending ideas from
the computer vision literature might be a good starting point. For mesh-based ap-
proaches, intrinsic geometry will continue to play a critical role, especially due to
its robustness to natural variations in large samples. To overcome challenges arising
from increased resolution and sample sizes, we can apply these methods with a multi-
scale strategy to strike a balance between computational feasibility and anatomical
details. For function-based representation, boundary point correspondence is not
an issue, since correspondence is implicitly established at the function coefficient
level. The critical factor to correspondence with function-based representation is
subject alignment, which likely improves with higher resolution. Also, increasing
the number of voxels provides more robust estimates of the function coefficients.
Thus, function-based representation can greatly benefit from higher resolution. For
medial representation, pruning to establish topology correspondence would become
impractical with increasing number of samples. Also, whether a single medial axis
can truly represent all samples within a population is in question due to the increased
variability with greater sample sizes. Deformetrics would adapt well to increasing
sample sizes, since it requires little preprocessing and is robust to small segmenta-
tion errors and mesh imperfections. However, it has high computational cost, which
may be a limitation in its application to larger datasets without high performance
computing resources.
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The increasing resolution and sample sizes is definitely beneficial, but some
work is required to extend current shape analysis techniques for data in this regime.
We end this chapter with a few questions for thoughts. First, increased resolution
and sample sizes would greatly complicate creation of a one-to-one point correspon-
dence, but localization is critical for clinical applications, e.g. applying medication to
specific disease-affected areas within a brain structure. Thus, how should a balance
be drawn? Second, essential to clinical translation is validation. Basing validation
solely on prior neuroscience knowledge is likely insufficient. Thus, what would be a
good quantitative way to validate new methods on real data? Lastly, can information
from other modalities, e.g. functional and diffusion MRI, be used to improve shape
analysis? Investigating the relationships between brain structure and function and
integrating this information into shape analysis might be a promising direction to
explore.
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Shape Analysis in Molecular Imaging

Fei Gao and Pengcheng Shi

Abstract Molecular imaging is a new research discipline enabling the visualization,
characterization and quantification of biologic processes taking place at the cellu-
lar and subcellular levels within intact living subjects. Applications of molecular
imaging techniques will benefit various clinical practices including classification
and tracking of chemotherapy and treatment planning of radiotherapy, as well as
drug discovery and development. Molecular imaging typically includes two or three
dimensional imaging with quantification over time, and is often applied on mole-
cular imaging modalities, such as Positron Emission Tomography (PET), Single
Photon Emission Computed Tomography (SPECT) etc. Image series acquired with
spatiotemporal distribution of molecular biomarkers must be carefully analyzed to
estimate the underlying physiology-related metabolic parameters. Shape analysis is
one of the most powerful tools to analyze the geometrical properties from similar
shapes or different groups, and can be applied to estimate both the concentration of
biomarkers and interaction between biomarkers and tissue/organs. However, some
limitations from molecular imaging modalities and clinical practices still hinder the
quantitative accuracy of shape analysis, e.g. the low spatial and temporal resolution
in PET scan, the inaccuracy of blood samplings from patients, the low Signal-to-
Noise (SNR) ratio of measurement data in dynamic PET/CT scan. In this chapter,
firstly, we will introduce the definition of molecular imaging, the clinical advantages
and limitations of various molecular imaging modalities, secondly, we will review
the challenges in data analysis based on the data processing procedure, and explain
how data corrections affect the accuracy of static and dynamic PET imaging, thirdly,
the general frameworks of image processing in PET and SPECT are reviewed with
focus on image reconstruction, at last, we will show some recent advancements and
give examples of clinical applications.
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1 Introduction to Molecular Imaging and Molecular Imaging
Modalities

Molecular imaging provides the images of molecular and cellular level activi-
ties inside the body. Molecular imaging enables doctors to measure the biological
processes quantitatively and reflects the functionality of organs and tissues inside
patients. According to the definition from the Society of Nuclear Medicine and
Molecular Imaging (SNMMI), molecular imaging is the visualization, characteriza-
tion, and measurement of biological processes at the molecular and cellular levels in
humans and other living systems [58]. Molecular imaging usually involves two- or
three- dimensional images and conducts quantitative analysis over the time.

Molecular imaging is a noninvasive procedure and can be used to study and diag-
nosis of cancer, brain diseases and disorders, cardiology, and various disorders in
different organs and tissues. Molecular imaging modalities include Positron Emis-
sion Tomography (PET), Single Photon Emission Computed Tomography (SPECT),
Optical imaging, Magnetic Resonance Imaging (MRI), Computed Tomography (CT),
and Ultrasound (US). Of all modalities, PET and SPECT are the full functional imag-
ing modalities while others are only with limited abilities. Based on these imaging
modalities, hybrid PET/CT [90], PET/MRI [74], PET/SPECT/CT [56] further enrich
the ability of molecular imaging. Different imaging modalities require different con-
siderations of data processing methods. The following sections will introduce the
major molecular imaging modalities and their data processing methods.

1.1 Positron Emission Tomography

PET as a biomedical research technique and clinical diagnostic procedure is one
of the most important applications in nuclear medical imaging devices. In the past
three decades, there have been significant advancements in PET scanners and image
processing methods [1, 92, 94]. PET scan is a unique type of imaging test that helps
doctors see how the organs and tissues inside your body are actually functioning.
PET scan reveals the cellular level metabolic changes occurring in an organ or tissue.
This is important and unique because disease processes often begin with functional
changes at the cellular level. Currently, PET scans are most commonly used to detect
cancer, heart problems, brain disorders and other central nervous system disorders.
PET scan can be used to track the spread of disease inside body and patient response
to drugs and therapies, which help to determine the more effective treatment plans
for individual patient. PET scans can also be used to follow-up and manage ongoing
cares. Quantitative dynamic PET imaging also offers good promise for personalized
drug treatment by accurate pharmacokinetic analysis and will enable medicine to be
tailored to each person’s needs, and improve the safety, quality and effectiveness of
healthcare for every patient.



Shape Analysis in Molecular Imaging 53

(a)

(c) (d)

(b)

Fig. 1 PET images in different views: a Coronal view; b Sagittal view; c Horizontal view; d 3D
view

PET scans rely on the injected radiotracers which circulate inside the body. PET
scanner detects the pairs of gamma photons emitted from the radiotracer, which are
known as positron annihilation, and creates a projection data of radiotracer distrib-
ution. The reconstructed images from projection data are used for diagnosis. PET
images of different views from a volunteer are shown in Fig. 1. One currently used
PET radiotracer for daily clinical routines is 18F-FDG (Fluoro-2-deoxy-d-glucose),
which is a compound consist of glucose and radioactive fluorine-18. When disease
occurs, the activities of cells begin to change, for example, the cancer cells need more
glucose and more active than normal cells, so there will be more radiolabeled 18F-
FDG accumulated in the cancer cells. With the PET images, it appears higher intense
than surrounding tissues, which is called as a ‘hot spot’ indicating a high level of
activity or metabolism is occurring there. Correspondingly, a ‘cold spot’ refers to the
area of low metabolic activities indicated by lower intense in the PET images. With
these PET images, doctors will be able to evaluate the working situation of organs
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(a) (b) (c)

Fig. 2 PET/CT images: a CT image; b PET image; c Fused PET/CT image

and tissues and determine the abnormals by analyzing the hot spots and cold spots.
The ability of detecting cellular level change that occurs early in the disease makes
PET imaging superior to the CT and MR images which show the structural change
after accumulations in cellular level. Hybrid PET/CT or PET/MRI is the combination
of PET and CT or MRI, the combination of multiple imaging modalities allows both
anatomical and functional images in one image set. One example of PET/CT images
is shown in Fig. 2.

Different radiotracers will reveal different diseases. Besides 18F-FDG mentioned
before, which is widely used for cancer diagnosis, cardiology, neurology, there are
many other radiotracers used in research and clinical applications. 18F-FLT (3∝-
fluoro-3∝-deoxy-l-thymidine) is developed as a PET tracer to image tumor cell prolif-
eration [12], 11C-Acetate is developed to localize prostate cancer [62], 13N-ammonia
is developed to quantify the myocardial blood flow [48], 11C-dihydrotetrabenazine
(DTBZ) is developed for brain imaging, which can be used for differentiating
Alzheimer’s disease from dementia and Parkinson’s disease [47], 11C-WIN35,428 is
a cocaine analogue and sensitive to the dopamine transporters [93]. Researchers are
working on labeling different drugs with radioactive 11F, 11C, 13N etc. for PET scan,
and pharmaceutical companies are especially interested in applying quantitative PET
analysis on radio-labeled new drugs, this has the potential to shorten the Phase I to
Phase II studies from more than 5 years to be 2 years.

Clinical PET studies include activity image reconstruction of radiotracer concen-
trations and parametric image reconstruction from dynamic PET scans. The quan-
titative accuracy of reconstructed images depends on the whole procedure: data
corrections of measurement data, statistical modeling of acquisition process, and
proper reconstruction methods. The data correction is the very first step, and directly
determines the accuracy of following steps. The data correction consists of many
specific corrections, including random correction, scatter correction, deadtime cor-
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Fig. 3 One patient SPECT scan

rection, attenuation correction etc. Among all the corrections, scatter correction is
the most complicated and still a very active research topic. The percentage of scatter
coincidence events in measurement data is around 30 % for PET scanners from major
manufactures. And their distributions are more complicated and will vary with the
dosage of injected radiotracer and the status of detector system, furthermore, the scat-
ter coincidence events can either be corrected or modeled in the system probability
matrix. Additionally, the development of new full 3D PET scanner with new scintilla-
tors and Photomultiplier Tubes (PMT) [3, 6, 28, 40, 52, 87], requires corresponding
new correction methods.

1.2 Single Photon Emission Computed Tomography

SPECT scan uses a gamma camera that rotates around the patient to detect the radio-
tracer inside body. SPECT will also produce a set of 3D images but generally have
a lower resolution. The radiotracers commonly used for SPECT scan include 99m T c
[59], 188 Re [39], 68Ga [104], 82 Rb [23] etc. Electrocardiography (ECG)-Gated 82 Rb
can also be used for myocardial perfusion PET [5]. One example image from SPECT
scan is shown in Fig. 3. Hybrid SPECT/CT is also designed to provide more accurate
anatomical and functional information [88]. SPECT scan differs from PET scan in
that the tracer stays in your blood stream rather than being absorbed by surrounding
tissues, therefore, SPECT scan can show how blood flows to the heart and brain
are effective or not. SPECT scan is cheaper and more readily available than higher
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Fig. 4 One patient brain MRI scan

resolution PET scan. Tests have shown that SPECT scan might be more sensitive to
brain injury than either MRI or CT scanning because it can detect reduced blood flow
to injured sites. SPECT scan is also useful for presurgical evaluation of medically
uncontrolled seizures and diagnosing stress fractures in the spine (spondylolysis),
blood deprived (ischemic) areas of brain following a stroke, and tumors [4, 9].

1.3 Other Molecular Imaging Modalities

Other molecular imaging modalities include MRI, CT, Optical imaging, Ultrasound,
which have only limited molecular imaging abilities.

1.3.1 MRI

MRI scanners produce strong magnetic fields where body tissue that contains hydro-
gen atoms is made to emit a radio signal which is detected by the scanner. MRI scan-
ners produce detailed 3D images of the inside of the body. MRI scan is best for brain
imaging, breast, heart and blood vessel, organs and soft tissues [13]. Contrast mate-
rials are often used to enhance MRI images. MRI has the highest spatial resolution
and possibility to extract both physiological and anatomical information. However,
MRI generally has low sensitivity and requires longer scan and data processing time.
Samples of MRI images are shown in Fig. 4.

Functional magnetic resonance imaging or functional MRI (fMRI) is a MRI pro-
cedure that measures brain activity by detecting associated changes in blood flow.
The primary form of fMRI uses the blood-oxygen-level-dependent (BOLD) contrast,
and measures the change in magnetization between oxygen-rich and oxygen-poor
blood, which is mostly used in brain mapping research [37].



Shape Analysis in Molecular Imaging 57

Another MRI scan used in research is Dynamic Contrast Enhanced- MRI (DCE-
MRI), which is a quantitative method that allows for tumor vascular analysis, includ-
ing blood volume, perfusion, vascular leakage space. DCE-MRI uses gadolinum-
based contrast agents and standard MRI scanners to provide quantitative results
[34].

1.3.2 Optical Imaging

Optical imaging has the highest sensitivity, but relatively low spatial resolution. Opti-
cal imaging only provides images in limited Field of View (FOV). Optical imaging
reduces patient radiation exposed significantly by using non-ionizing radiation. Opti-
cal imaging can be used to differentiate between native soft tissues and tissues labeled
with either endogenous or exogenous contrast media, using their different photon
absorption or scattering profiles at different wavelengths. Optical imaging is also easy
to be combined with other imaging modalities. In optical imaging, Diffusive Opti-
cal Imaging (DOI) is also known as Diffuse Optical Tomography (DOT) or Optical
Diffusion Tomography (ODT). DOI is used to study the functions of brains, and can
provide neural activities with its time courses [51]. Optical Coherence Tomography
(OCT) produces 3D images from optical scattering media and penetrates biological
tissues by using long wavelength light. OCT can provide higher SNR, faster signal
acquisition [78].

1.3.3 Ultrasound

Ultrasound scanners emit high frequency sound and measure the reflected sound from
the patients, which varies with the organs and tissues. Ultrasound imaging can be used
to detect heart problems, examine liver, kidneys, abdomens, and guide a surgeon.
Ultrasound can provide a real time imaging, but with limited spatial resolution. Most
scans need targeted micro-bubbles to enhance the images [21].

2 The Challenges in Molecular Imaging Data Analysis

2.1 Data Processing for PET Imaging

The previous sections explain the advantages and limitations of molecular imaging
modalities. Of all molecular imaging modalities, PET and SPECT are the full func-
tional ones. Since PET and SPECT all belong to Emission Computed Tomography
(ECT), many data correction and data analysis methods can be shared. In this section,
we will focus on PET to demonstrate the challenges in data analysis. As shown in
Fig. 5, the measurement data of PET is first stored in listmode. The listmode data
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Fig. 5 The whole procedure of PET data processing

can be corrected and reconstructed directly [66, 72], or rebinned by Fourier Rebin-
ning to sinogram, which is corrected and reconstructed to be images [18]. The data
correction process generally includes random correction, normalization, deadtime
correction, attenuation correction and scatter correction. The corrected data will be
reconstructed by either analytical or statistical algorithms to generate both activity
images which are the concentrations of radiotracers in body and parametric images
which are the dynamic changes of radiotracers represented by kinetic parameters.

The challenges in PET data analysis come from the change of statistical properties
of measurement data after various data corrections. The quality of results from all
image reconstruction algorithms depends on the accuracy of statistical models in
each data correction and image reconstruction. However, due to the complexity of
PET scan, it is nearly impossible to propose a perfect model. From next subsection,
we will explain how the data corrections are applied and how they affect the data
analysis.

2.1.1 Data Corrections

1. Random Correction. Random coincidence events are two gamma photons from
different positron annihilations are recorded as a Line of Response (LOR). The
rate of random coincidences on a particular LOR is defined as Ri j = 2τrir j ,
where Ri j is the random coincident rate on the LOR connecting detector i and
j , τ is the coincidence timing window, ri and r j are the singles rate on detector
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i and j . The random coincidence rate depends on the detector circuit response,
the most common method for estimating the random coincidence events is the
delayed timing window method.

2. Normalization. All the image processing methods assume the detector response
are uniform and identical, however, in real clinical data acquisition, the per-
formance of each detector will be different, the PMT gains are not exactly the
same, and angle of incident of each gamma photon will also affect the detector
sensitivity. The process of correcting these effects is normalization. One com-
mon clinical solution is to perform a scan using a uniform cylindrical phantom
and a line source. In this scan, every possible LOR is illuminated by the same
coincidence source.

3. Deadtime Correction. The detector deadtime will cause the loss of coincidence
events. Especially in the high count rate cases, the detector response will be
significantly delayed due to the pile-up of incident gamma photons. A common
solution is to model both paralyzable and non-paralyzable components from
measurements of sources of different radioactivities.

4. Attenuation Correction. Some gamma photons will be absorbed when interacting
with the patients. The widely-adopted method for PET only scanner calculates
the attenuation correction factors by using a rotating rod source with the object in
the FOV. For hybrid PET/CT and PET/MRI scanners, the attenuation factors can
be obtained by assigning predefined attenuation coefficients to the anatomical
information generated by CT and MRI, which generally have a better spatial
resolution.

5. Scatter Correction. The coincidence events include those that the annihilation
photons have an interaction of Compton scattering and change their directional
and energy information before they arrive at the detector system. They are called
scatter coincidences. Scatter coincidences will decrease the contrast, resolution
and SNR of reconstructed images and need to be corrected properly. Scatter
correction is the most complicated correction, we will use the scatter correction
as an example to show how corrections affect the quantitative accuracy in PET
scan.

2.1.2 Scatter Correction

Scatter Fraction. The scatter fraction is an important parameter included in both
National Electrical Manufacturers Association (NEMA) and International Elec-
trotechnical Commission (IEC) standards, and measured in every performance eval-
uation report of PET scanners. The scatter fractions of PET scanners from 3 major
manufactures are listed in Table 1 [28, 40, 87].

Multiple Scatter Coincidence Events. The gamma photons can be scattered
multiple times before recorded. Monte Carlo simulation is the best tool to study the
Compton scattering during PET acquisition. We have done similar studies with our
new PET scanner, HAMAMATSU SHR74000, we retrieve all the data, and ana-
lyze the composition of simulated measurement data according to the number of
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Table 1 Scatter fractions of PET scanners from three main manufactures in 3D mode

Manufacture and model Scatter fraction (%)

Siemens TruePoint PET/CT 32
GE discovery PET/CT 33.9
Philips Gemini PET/CT 27

Table 2 The percentage of coincidence events assorted by the number of scattering of each photon

Photon2 \Photon1 0× (%) 1× (%) 2× (%) 3× (%) 4× (%)

0× 55.36 16.58 1.92 0.11 0
1× 16.56 5.81 0.68 0.04 0
2× 1.92 0.7 0.08 0 0
3× 0.11 0.04 0.005 0 0
4× 0.005 0.001 0 0 0

The data is from the simulation of a line source fixed in the transaxial center of standard phantom

Table 3 The percentage of coincidence events assorted by the number of scattering of each photon

Photon2 \Photon1 0× (%) 1× (%) 2× (%) 3× (%) 4× (%)

0× 37.66 18.87 3.7 0.39 0.03
1× 18.82 10.98 2.18 0.23 0.01
2× 3.75 2.18 0.44 0.05 0
3× 0.38 0.23 0.05 0.01 0
4× 0.02 0.02 0 0 0

The data is from the simulation of a line source fixed in the transaxial center of over-sized phantom

scattering of each photon in the coincidence photon pairs. The first data set is ana-
lyzed with the standard NEMA phantom, a 70 cm long, 20 cm diameter cylinder, the
composition of scatter coincidences is summarized in Table 2. Furthermore, we have
a lot of over-sized and over-weighted patients, especially in the western countries,
and these patients usually take higher risk of many diseases than other patients. For
these patients, their size makes more photons scattered inside their body, we cor-
respondingly analyze the composition of scatter coincidence photons with a 70 cm
long, 35 cm diameter cylinder, the results are summarized in Table 3. The number of
total scatter coincidence events increase by about 20 %. If the tumor is near the body
surface, the scatter fractions shown in Table 4 turn to be similar as in Table 2.

Scatter Coincidence from Activity Concentrations outside of FOV. A whole
body PET scan generally needs 4–5 bed positions to complete, then gamma photons
from outside of FOV will also have the possibility to be misrecorded by the detector
system. Sossi et al. show the scatter coincidence events need to be accounted for
when the amount of radioactivity outside of FOV is comparable to the radioactivity
inside the FOV in [81]. In the case of line sources, the scatter fraction increases by
about 15 % when the source is extended 4 cm outside of the FOV and 20 % when
it is extended 8 cm outside of the FOV. Spinks et al. also show for a full 3D PET,
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Table 4 The percentage of coincidence events assorted by the number of scattering of each photon

Photon2 \Photon1 0× (%) 1× (%) 2× (%) 3× (%) 4× (%)

0× 59.23 16.28 2.94 0.38 0.03
1× 16.29 1.18 0.1 0.01 0
2× 2.94 0.1 0 0 0
3× 0.38 0.01 0 0 0
4× 0.04 0 0 0 0

The data is from the simulation of a line source fixed in the transaxial 169 mm offset of over-sized
phantom

the scatter fraction increased from 40 to 45 % with the scatter photons from outside
of FOV, after introducing a fitted brain shielding, the scatter fraction decreases to
be 41 % [82]. A recent paper by Ibaraki et al. show the use of the neck-shield to
suppress scatters from outside FOV can improve the SNR by 8 and 19 % for H2

15 O
and 15 O2, respectively [38].

Scatter Correction Methods. Bailey et al. [2] and Bentourkia et al. [7] present
a Convolution-Subtraction (CS) scatter correction technique for 3D PET data. The
scatter distribution is estimated by iteratively convolving the photo-peak projections
with a mono-exponential kernel. The method is based on measuring the scatter frac-
tion and the scatter function at different positions in a cylinder. The method performs
well on 2D measurement data and also accounts for the 3D acquisition geometry and
nature of scatter by performing the scatter estimation on 2D projections.

The method is easy to set up and still applies to a lot of animal studies, where the
scatter correction are usually considered not necessary. Lubberink et al. propose a
non-stationary CS scatter correction with a dual-exponential scatter kernel for scatter
correction in both emission and transmission data of studies of conscious monkeys
using Hamamatsu SHR7700 PET scanner [54] . Kitamura et al. implement a hybrid
scatter correction method, which estimates scatter components with a dual energy
acquisition using a CS to estimate the true coincidence events in the upper energy
window for their four layer Depth of Interaction (DOI)—PET scanner [45]. Naidoo-
Variawa et al. suggest that scatter correction methods based on spatially invariant
scatter functions, such as CS, may be suitable for non-human primate brain imaging
in [65].

Single Scatter Simulation (SSS) is one of the most important methods for PET
scatter correction, and commercial PET scanners from Siemens are using SSS derived
scatter correction methods. Ollinger [67] and Watson [98] first introduced the concept
of model based scatter coincidence estimation. The single scatter approximation is
defined with the well accepted formulation based on Klein-Nishina equation as

S AB =
∫

v

(
σASσBS

4π R2
AS R2

BS

)
μ

σc

dσc

dΩ
[IA + IB], (1)
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Fig. 6 The procedure of a SSS based scatter correction for clinical PET scanner

where

IA = εAS(E)εBS(E ∝)e− ∫ A
S μ(E,x)dse− ∫ B

S μ(E ∝,x)ds ×
∫ A

S
λds

IB = εAS(E ∝)εBS(E)e− ∫ A
S μ(E ∝,x)dse− ∫ B

S μ(E,x)ds ×
∫ B

S
λds

v is the sampled scatter volume, S is the scatter point, A and B are sampled detec-
tors, so S AB is the coincidence scatter rate in detectors A and B, σAS and σBS are
the detector cross sections presented to the rays AS and BS, RAS and RBS are the
distances from S to A and B. σc and dσc are the total and differential Compton
scattering cross sections, Ω is the solid angle, E is the energy of the non-scattered
photon, E ∝ is the energy of the scattered photon, εAS(E) and εBS(E) are the approx-
imated detector efficiencies for gamma rays which are incident along AS and BS,
μ(E, x) is the linear attenuation coefficient at the energy E and position x , and λ is
the estimated activity distribution from reconstructed images.

The calculation is repeated through all the sampled scatter points from activity
distribution and sampled detector blocks. The final result is the distribution of single
scatter coincidence events, and will be scaled and then subtracted from the measure-
ment data to perform scatter correction. Figure 6 demonstrates the procedure of SSS
based scatter correction for clinical PET scanner.

2.1.3 Dynamic PET Imaging

Dynamic PET imaging is a combination of short interval PET scans and reflects the
dynamic metabolism of injected radiotracers. For example, a dynamic acquisition can
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Fig. 7 a Standard zubal phantom; b TAC curves of three ROIs indicated in (a); c sample TAC
curves of true lesion and false lesion

consist of 85 frames in all: 15×0.2 min, 20×0.5 min, 40×1 min, and 10×3 min.
The series of acquisitions can be used to estimate the kinetic parameters which
represent the metabolism of radiotracers in vivo. The difficulties in estimating kinetic
parameters arise from the low count rates in the first several time frames and the low
SNR. To obtain the kinetic parameters, a typical approach is first to reconstruct
the activity distributions from the dynamic PET data, and then to fit the calculated
time activity curve (TAC) to a predefined kinetic model. Samples of TAC curves
in different organs are shown in Fig. 7. The accuracy of this kind of approaches
relies on the reconstructed activity distributions. The complicated statistical noise
properties, especially in the low-count dynamic PET imaging, and the uncertainties
introduced by various PET data corrections will affect the activity reconstruction
and lead to a suboptimal estimation of kinetic parameters [29]. There are also many
efforts that try to estimate the kinetic parameters from PET projection data directly
and achieve better bias and variance including both linear and nonlinear models [83,
91, 103]. One problem is that the optimization algorithms are very complicated.
Kamasak et al. apply the coordinate descent algorithm for optimization but it is still
limited to specific kinetic models [61]. Wang et al. apply a generalized algorithm
for reconstruction of parametric images [96], however, it still lacks of estimation
and analysis of individual kinetic parameter. Exactly, every kinetic parameter has
its own physical meaning like radiotracer transport rate, phosphorylation rate and
dephosphorylation rate (it is very sensitive to the system [35]) in FDG study, which
will be critical to clinical research, drug discovery and drug development [15, 92].
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3 General Framework of Shape Analysis in Molecular Imaging

3.1 Image Segmentation

In computer vision, image segmentation is the process of partitioning an image into
multiple different segments (group of pixels). Especially in molecular imaging, the
image segmentation is used to simplify the representation of an image and extract
Region of Interest (ROI) that is more meaningful and followed by image analysis.
Image segmentation is also important to find the boundaries of different regions and
organs by applying different labels. Image segmentation can also be applied to 3D
image stacks to help 3D image reconstruction [17, 106].

The aforementioned limitations of PET and SPECT also bring new challenges
to image segmentation. Here we will introduce several basic image segmentation
methods.

1. The simplest method of image segmentation is the thresholding method. Because
of the simplicity and fast implementation, the thresholding method is still used
in some clinical routines to identify ROI with high contrast, e.g. the lesions in
lung [19, 20, 42].

2. Cluster based method is a multivariate data analysis method that uses predefined
criteria to partition a large number of objects into a smaller number of clusters,
in which the objects are similar to each other. Cluster based method has been
applied to fMRI imaging and then dynamic PET imaging, with limited spatial
resolution and SNR [101].

3. Gradient based method is to find the boundary of an object of interest with the
gradient intensity observed in the image. This kind of method is fast and easy to
apply, but generally works together with other method to achieve better results
in molecular imaging [26].

4. Level set based method derives from snake method (active contour model), which
delineates an object outline from a noisy image by attempting to minimize an
energy associated to the contour as a sum of internal and external energies [57,
68]. Many methods are derived from basic level set method including deformable
level set models, which have the ability to automatically handle topology [33],
3D level set methods to compute 3D contours [105] etc.

5. Kinetic model guided segmentation assumes different ROIs have different tracer
kinetic properties to seprate different functional regions [11]. This method can
also be used to estimate the input functions for quantitative dynamic PET data
analysis [71].
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3.2 Image Registration

Image registration is the process to transform different sets of data into one coordinate
system. Image registration is widely used in molecular imaging, e.g. patient radio-
therapy follow-up by transforming PET images from a series of studies, diagnosis
by images from multiple imaging modalities [16, 32, 36, 75]. With the development
of hybrid PET/CT, PET/MRI, the image registration with multiple images in one
study is made easier because the motions of patients are minimized by the simulta-
neous data acquisition. However, images from multiple studies still need good image
registrations. Mainstream image registration methods for molecular imaging include

1. Intense-base image registration. Since PET and SPECT imaging reflects the
concentrations of radiotracer, intense based methods compare intensity patterns
in multiple images and register the reference image and target image by defining
correlation metrics [46].

2. Feature-based image registration. In a series of studies/images, common features
can be extracted from the anatomical information of organs and tissues which
do not change a lot and can be used as references [73]. This method can also be
used for multiple imaging modalities [55].

3. Multiple modality image registration. The hybrid PET/CT and PET/MRI make
the image registration focus on the deformations from patients’ respirations and
motions [27, 60]. The image registration can be improved by different patient
preparation and pre-positioning [8], respiratory gating [10], various tracking
devices etc. [76].

3.3 Image Fusion

Image fusion is the combination of relevant information from two or more images
into one single image. The fused image will provide more information than any
single input image. Accurate image fusion from combined PET, CT, MRI scans can
significantly improve the diagnosis and provide better understandings of diseases.
Image fusion generally works together and shares similar technologies with image
registration [69, 89, 95].

3.4 Image Reconstruction

Image reconstruction is the process to reconstruct 2D and 3D images from acquisi-
tion data of molecular imaging modalities. Reconstruction algorithms include both
analytical ones, e.g. Filtered Back Projection (FBP) and iterative ones, e.g. Maximum
Likelihood (ML). Analytical algorithms are computationally fast, especially when
applied to full 3D image reconstruction using 3D-FBP. FBP is also used in dynamic
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PET image reconstruction, where it is believed to provide better quantitative accu-
racy with the extremely low count data sets. Iterative algorithms are currently the
mainstream reconstruction algorithms, which use statistical assumptions and provide
images of overall better qualities. Image reconstruction is one of the most important
processes in data processing, other image-based processes and clinical diagnosis all
depend on the accuracy of reconstructed images.

3.5 Dynamic PET Analysis

3.5.1 Clinical Requirements

The accuracy of quantitative dynamic PET studies depends on various factors includ-
ing kinetic models, quantitative methods and the approximation of arterial input func-
tion from blood sampling. The most general kinetic models used are compartment
model with assumptions that physiological process and molecular interactions are not
influenced by injected radioligand. Current clinical adopted quantitative methods are
actually semi-quantitative methods, which include methods using reference regions
or calculating Standard Uptake Value (SUV). Methods using reference regions are
easy to implement but have several drawbacks, e.g. the reference tissue is hard to
define and has low SNR due to the low resolution of PET and SPECT scans, and
the uptake of the reference tissue may change after the radiotherapy. SUV now is
included in every clinical study, which is calculated as a ratio of tissue radioactivity
concentration and injected dose divided by body weight, the advantage of SUV in
clinical study is that the blood sampling is not required. However, the full quantita-
tive analysis requires both dynamic PET scans and tracer concentration in the arterial
blood plasma. The gold standard of blood sampling is serial arterial sampling of a
superficial artery, and clinical alternative methods include venous blood sampling,
image derived input function and population based input function. The drawback of
the full quantitative method is only one FOV/bed position can be taken into consid-
eration. For metastasized disease, not all lesions can be quantified simultaneously.

3.5.2 Compartment Models

Compartment models are used in many fields including pharmacokinetics, biol-
ogy, engineering etc. Compartment models are the type of mathematical models
to describe the way materials (radiotracers and their metabolite in PET and SPECT
scan) are transmitted among the compartments (different organs and tissues). Inside
each compartment, the concentration of radiotracers is assumed to be uniformly
equal. Due to their simplicity and plausibility, compartment models are widely used
in the dynamic PET scans to describe the tracer/drug kinetics.

Drug kinetic models include simple drug transport model, which generally con-
tains equal or less than three compartments and can be solved directly, and compli-
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Fig. 8 Illustration of six basic compartment models

cated biological models, which can contain up to twenty compartments and generally
require prior knowledge to solve [30, 31]. Most of the complicated models with many
compartments can usually be decomposed into a combination of simple models with
less than four compartments. The most basic compartment models used in kinetic
analysis shown in Fig. 8 include two compartment blood flow model (Model 1),
standard two tissue three compartment Phelps 4K model with reversible target tissue
(Model 2) and Sokoloff 3K model with irreversible target tissue (Model 3), three tis-
sue five parameter bertoldo model (Model 4), standard three tissue four compartment
model (Model 5 and Model 6). More complicated models with more compartments
and parallel model with multiple injection can be extended from aforementioned
standard models [24, 44].

All six models can be represented by a set of differential equations with corre-
sponding kinetic parameters K = {k1, k2 · · · kn}, where n is the number of kinetic
parameters. Here we utilize Model 2 as an example for demonstration. Model 2 can
be represented by first-order differential equations

dCF (t)

dt
= k1(t)CP(t) + k4(t)CB(t) − (k2(t) + k3(t))CF (t) (2)

dCB(t)

dt
= k3(t)CF (t) − k4(t)CB(t) (3)

The measurement of dPET is the combination of radiotracer in plasma CP , non-
specific binded radiotracer CF and specific binded radiotracer CB through

CP ET = (1 − Vb) · (CF + CB) + Vb · CP (4)

Y = DCP ET + e (5)

where Vb is the blood volume fraction, Y is measured projection data , D is the
system probability matrix, and e is the noises during acquisition. Equation (5) can be
represented by a more general time-dependent form for all models as



68 F. Gao and P. Shi

Y (t) = DX (K , t) + e(t) (6)

Simple models with less than three compartments generally can be solved directly,
while more complicated models need simplifications and various numerical approx-
imations.

4 Review of Recent Advancements of Shape Analysis

4.1 Mathematical Modeling and Statistical Formulation of PET
Image Reconstruction

4.1.1 Statistical Image Reconstruction Criterion

The goal of mathematical modeling of data acquisition is to describe the transforms
from spatial distribution of imaging objects to projection distributions on detector
pairs in PET system. Denoting the spatial distribution of imaging object by a set of
spatial variables x = {xi |i = 1 · · · n} ∗ R

n , where n is the total number of voxels,
and the expected values (means) of projection bins by ȳ = {ȳ j | j = 1 · · · m} ∗ R

m ,
where m is the total number of bins, a mathematical expression of the transform can
be obtained

ȳ = Dx + ē (7)

where D is the system response model giving the probability matrix of mapping the
transform from x to ȳ, and ē is the means of background noises. A block diagram of
the above procedure is shown in Fig. 9a.

With the mathematical model specified above, the problem of PET image recon-
struction is to find an estimation of the imaging object x̂ from the measurement data
(projection bins) y. The image reconstruction is an ill-posed inverse problem, so an
intuitive solution is to apply statistical assumptions of measurement data as regular-
izations. The statistical formulation tries to find an optimized relationship between
measurement data y and imaging object x (or expected values of projection bins ȳ )
by defining different objective functions. If denoting yrndsa is the measurement data
y after all data corrections and assuming all the data correction are perfectly applied,
ȳ is equal to the yrndsa after all data corrections, however, in real clinical data acqui-
sition, there will be some difference between ȳ and y, which is accumulated from
residuals of each data correction.

A block diagram of statistical image reconstruction framework is shown in Fig. 9b:
the statistical properties of system noises or measurement data are first modeled
based on certain statistical distributions (Gaussian, Poisson, their combination or
other derivations) in block M , then inputted into system block D; the system output
is generated and compared with corrected measurement data yrndsa based on the
predefined criteria, when the system goes convergent, estimations of the imaging
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Fig. 9 Block diagrams. a PET
data acquisition; b Statistical
model based iterative PET
reconstruction; c Designed
system for PET image recon-
struction; d Simplified block
diagram (black box) of (c)

object x̂ will be obtained. Three major criteria can be used are Least Square based
(LS), Maximum Likelihood based (ML), Maximum A Posterior based (MAP).

LS based methods try to obtain the estimation x̂ by minimizing the difference of
fit between the predicted data by means of the modeling of the acquisition process
and the measured data yrndsa , the general objective function is

x̂ = arg min
x

||yrndsa − Dx ||22 (8)

Extended algorithms are all based on the above equation and try to improve the
performance by introducing different weights or penalization items.

ML based methods try to obtain the estimation x̂ by maximizing the likelihood
functions which represent the goodness of fitting statistical assumptions to measure-
ment data. The general objective function is based on the conditional probability
density of the image object with known measurement data yrndsa as

x̂ = arg max
x

p(x |yrndsa) (9)

where p represents the probability density, and the above equation is a function
of x . When a statistical model of measurement data or noises is defined, either
Gaussian/Poisson or their combination, the objective likelihood function can be
solved correspondingly. An improved method based on poisson assumption widely
used is EM-SP (Shifted Possion) algorithm, which introduces two times the mean of
randoms coincidences to the random precorrected data and models this sum as a Pois-
son random variable, and the objective function is still based on the above one [63].
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Furthermore, a priori information can also be introduced in the form of statistical
properties of the imaging object as constraints into the ML objective function.

Bayesian formulation is such a probabilistic approach, statistical information of
the unknown imaging object x is introduced by adopting the probability density of
x , which is the prior p(x). Equation (9) can then be solved as follow:

p(x |yrndsa) = p(x, yrndsa)

p(yrndsa)
=

⎧
p(yrndsa |x)
p(yrndsa)

without prior
p(yrndsa |x)p(x)

p(yrndsa)
with prior

(10)

where, p(x, yrndsa) is the joint probability density of x and yrndsa . The expression
with prior is just the objective function of MAP based algorithms, and different priors
(e.g. image priors, independent priors) will lead to different implementations based on
the above objective function. All above objective functions demonstrate the implied
statistical knowledge assumptions on measurement data or noises in mathematical
modelings, however, as discussed in the section of data corrections, the statistical
distribution of corrected measurement data yrndsa is neither single Gaussian/Poisson
distribution nor their combination after various data corrections, and there will be
further uncertainties during modelings. Due to the individual differences of patients
during real PET scanning, the uncertainties during modeling will be more serious
for over-weighted patients. With the development of new scintillators, PMTs and
full 3D PET scanner, various system uncertainties and procedures of photo counting
become more complicated. Additionally, there will be more scatter coincidences in
measurement data. All above effects make the accurate modeling of PET measure-
ment data an challenging issue, and it is almost impossible to establish a statistical
model which can accommodate all the data errors.

4.1.2 Minimax Criterion

To deal with the differences between ȳ and y, another solution is to adopt minimax
criterion to reconstruct the measurement data yrndsa from the point view of system
energy. As shown in Fig. 9c, a new block F is designed to reconstruct measurement
data yrndsa , the output of the new system is designed to be the difference between
expected values of imaging object x and estimation values x̂ , a block P contains
system response D and the input is all residuals and uncertainties e. Measurement
data yrndsa is constant during image reconstruction, so the system can be simplified
with inner loop of block F and yrndsa incorporated into block P and convert to a
black box J as shown in Fig. 9d. When the output (difference between current value
and estimated value) goes steady, the system J reaches convergent.

With this system, the minimax criterion can be adopted intuitively, the PET image
reconstruction procedure becomes to minimize the output (estimation errors x − x̂)
with maximized input (disturbance e) through system J :

x̂ = min
x−x̂

max
e

J (11)
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Fig. 10 Illustration of system
gains and predefined upper
bound

From the point view of transition system in engineering, system J can be treated
as a transformation from all residuals and uncertainties e to estimation errors x − x̂ .
In order to obtain a desired output, a proper upper bound for system gain of system
J must be defined first, which means the transfer function of J shall also be required
to comfort to the same predefined upper bound. Denoting the upper bound be γ 2,
the previous description is equal to

max ||J ||2 < γ 2 (12)

The ∅-norm of the system can be further interpreted as the peak system gain, so
if the ∅-norm of the system satisfies ||J ||2∅ < γ 2, then all the system gains will be
less than γ 2 as illustrated in Fig. 10. Here J is an element of the Hardy space, whose
members consist of all stable, causal, transfer functions [49]. The continuous form
of the ∅-norm ||J ||∅ will be

||J ||2∅ = sup
||e||2 ≤=0

||x − x̂ ||22
||e||22

= sup
ω

σ̄ 2(J ) (13)

where sup stands for supremum, and σ̄ (J ) is the maximum singular value of J . From
Eq. (13), it is easy to obtain

max ||J || ∈ ||J ||2∅ = sup
||e||2 ≤=0

||x − x̂ ||22
||e||22

< γ 2 (14)

This criterion represents a family of solutions where the peak system gain of J is
less than the predefined upper bound γ 2. The problem is transformed from seeking
the maximum system gain of J to calculating the ∅-norm of system gain with upper
bound γ 2.

With both Eqs. (11) and (14), in order to calculate the supremum, intuitively we
can minimize the numerator (estimation errors x − x̂) while maximizing denominator
(system uncertainties e). Then the objective function for the problem will be

min
x−x̂

max
e

||x − x̂ ||22 − γ 2||e||22 < 0 (15)
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Seeking solutions under disturbances is a difficult problem. By introducing the
∅-norm of system gain, solutions with peak system gain will perform well under
any circumstance and make the problem globally optimized. Furthermore, the min-
imax criterion allows one to identify a robust solution that has the best worstcase
performance. The robustness of the estimator arises from the fact that it yields an
energy gain less than γ 2 for all bounded energy disturbances no matter what they
are.

4.1.3 Static PET Image Reconstruction Under Minimax Criterion

PET images reflect the concentration and metabolism of radiotracers in vivo, and the
metabolic rates of radiotracers in organs or tissues may vary with time, which can
be represented by differential equations with different constraint models as ẋ(t) =
C(x, t), where C(x, t) models the concentrations of radiotracers with time.

In this section, we focus on the static PET image reconstruction and analysis,
which assumes that the distribution of the radiotracers in the body is temporally
stationary corresponding to the autoradiographic (ARG) model. The ARG assumes
the equilibrium of the metabolic ratio, which can be represented by the first-order
differential equation of x as:

ẋ(t) = 0 (16)

Corresponding discrete-time form will be

x ∝(m) = H(m)x(m) + v(m) (17)

where m represents the iterations in one discretized time frame, H is the transition
matrix representing the update of estimations, and v is the possible uncertainties in
measurement.

Similarly, the discrete-time form of PET measurement equation will be

yrndsa = Dx(m) + e(m) (18)

Then the transition system J is extended to include uncertainties v as input
together with e. The initialization of x can also affect the reconstruct accuracy and
speed, so it is also included in the input as a source of uncertainties. Finally, the
minimax criterion can be derived from Eq. (14) as

||J ||2∅ = sup

⎨
m →x(m) − x̂(m)→2

Z(m)

→x(0) − x̂(0)→2
p−1

0
+ ⎨

m(→v(m)→2
V (m)−1 + →e(m)→2

E(m)−1)
(19)

Z(m), p−1
0 , V (m)−1 and E(m)−1 are the weighting matrices at iteration m to make

the criterion more extensible. After setting the upper bound γ 2, the final objective
function of minimax criterion for PET image reconstruction can be derived based
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on Eqs. (15) and (19), which minimizes the estimation errors z − ẑ with maximized
initial disturbance x(0) − x̂(0), measurement disturbance e and v:

min
z(m)−ẑ(m)

max
v,e,x(0)−x̂(0)

||J ||2 =
⎩

m

→x(m) − x̂(m)→2
Z(m) − γ 2→x(0) − x̂(0)→2

p−1
o

−γ 2
⎩

m

(→v(m)→2
V (m)−1 + →e(m)→2

E(m)−1)(20)

4.1.4 Solutions and Optimization

The final objective function Eq. (20) of minimax criterion for static PET image recon-
struction is established from the point view of transition system in engineering. The
objective function calculates the system energy instead of building sophisticated sta-
tistical assumption of measurement data, and this makes the minimax criterion more
robust.

Of many methods that can be adopted to solve the above objective function, the
well-validated H∅ filter is the best to optimize this ∅-norm problem [49, 79]. A
specific H∅ filter has been modified based on Eq. (20). The H∅ filter represents a
typical minimax problem where the worst situation is first induced by the disturbances
and then the estimator is introduced for improvement, in other words, the H∅ filter
is in fact a two-person game between the external disturbances and the estimator.
This solution is just like optimization by using a game theoretic algorithm which
can be implemented through recursive updating of the filter gain K (m), the Riccati
difference equation solution P(m), and the state estimates x̂(m) as follow :

K (m) = H(m)P(m)S(m)DT E(m)−1 (21)

P(m + 1) = H(m)P(m)S(m)H(m)T + V (m) (22)

x̂(m + 1) = H(m)x̂(m) + K (m)(yrndsa − Dx̂(m)) (23)

S(m) = (I − γ −2 Z(m)P(m) + DT E(m)−1 D P(m))−1

P(0) = p0

where H∅ gain K (m) indicates the system gain (correspondingly shows convergence
of the state estimation). Convergent estimations of the imaging object will be obtained
when the gain K (m) goes steadily. m still represents the number of iterations. From
the solution procedure, it can be noticed that the H2 norm filter for this objective
function is just the Kalman filter widely used. Detailed proofs of above solution can
be found in [79].



74 F. Gao and P. Shi

4.1.5 Computation Issues

Design of H∅ filter consists of choosing the weighting matrices Z , E , V , po and the
performance bound γ 2. When there are accurate modelings of some effects of PET
acquisition, corresponding E , V , po can be initialized by the covariance matrices of
measurement disturbance e, state transition disturbance v and initial condition x̂(0).
If there is no modeling or one does not want to use current models, E , V , po can be
simply initialized by identity matrix. Since we generally assume the estimation results
after convergence are just what we desired, so Z is initialized by identity matrix, when
scanning over-weighted patient and suffering obvious underestimation, weighting
matrix Z can be scaled by a scaler less than 1. γ 2 is the predefined upper bound of
performance, theoretically, the smaller the γ 2 value, the smaller the estimation error,
however, the selection of γ 2 must make the Riccati equation have a positive definite
solution. So firstly, we define and iteratively update a residual matrix R(m + 1)−1

through

R(0) = (P(0)−1 − γ −2 Q(0))−1 (24)

R(m + 1)−1 = [H(m)(R(m)−1 + DT E(m)−1 D)
−1

H(m)T

+ V (m)]−1 − γ −2 Z(m)

(25)

As a result, the optimal γ value can be determined as:

[H(m)(R(m)−1 + DT E(m)−1 D)
−1

H(m)T + V (m)]−1 − γ −2 Z(m) > 0

→ [H(m)(R(m)−1 + DT E(m)−1 D)
−1

H(m)T + V (m)]−1 > γ −2 I

→ γ 2 I > H(m)(R(m)−1 + DT E(m)−1 D)
−1

H(m)T + V (m)

→ γ 2 > max{eig[H(m)(R(m)−1 + DT E(m)−1 D)
−1

H(m)T + V (m)]}
→ γ = ξmax

⎫
eig[H(m)(R(m)−1 + DT E(m)−1 D)−1 H(m)T + V (m)]

⎬0.5
(26)

where max{eig(A)} denotes the maximum eigenvalue of the matrix A, and ξ is
a constant larger than 1 to ensure that γ is always greater than certain optimal
performance level. If the γ value is too close to the optimal performance level, i.e.
ξ ∀ 1, it might lead to numerical errors because the matrix R(m) is now close to a
singular matrix. The matrix inverse is required in every time step in the conventional
H∅ filter in order to calculate the H∅ gain. Generally, inversion of small matrices
is fairly easy, but the inversion of a large matrix will require more computational
costs in a practical implementation. The steady state H∅ filter is much easier to be
implemented in a system in which real-time computational effort or code size is a
serious consideration [80].

The minimax objective function is given as Eq. (20), where the parameter matrices
N , V and Q are symmetric positive definite matrices chosen by the designer based
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on the specific problem. Since the designed parameters of the underlying system can
be treated as fixed values for input, then the steady state solution to the minimax
problem can be obtained. Referring to H∅ filter, the steady state solution will be

K = P SDT N−1 (27)

P = H P SH T + V (28)

x̂(m + 1) = H x̂(m) + H K (m)(y(m) − Dx̂(m)) (29)

S = (I − γ −2 Q̄ P + DT N−1 D P)−1

Q̄ = F T QF

In order to have a solution to the problem, the following condition must be hold:

P−1 − γ −2 Q̄ + DT N−1 D > 0 (30)

If γ −2,F , N or Q is too large, or D is too small, the H∅ estimator will have no
solution. After the conditions above satisfied, Eq. (28) can be written as

P = H [P−1 − γ −2 Q̄ + DT N−1 D]−1 H T + V (31)

Applying the matrix inversion lemma to the inverse of the above expression, we can
get

P = H P − P[P + (−γ −2 Q̄ + DT N−1 D)−1]−1 P H T + V

= H P H T − H P[P + (−γ −2 Q̄ + DT N−1 D)−1]−1 P H T + V (32)

Equation (32) is a discrete-time algebraic Riccati equation that can be solved by
control system software or numerically iterating Eq. (28) until it converges to a steady
state value.

The disadvantage of the steady state H∅ filter is that theoretically it does not
perform as well as the time-varying filter. However, the reduced performance that
is seen in the steady state H∅ solution is often a small fraction of the optimal
performance, whereas the computational saving can be significant [80].

4.2 Dynamic PET Image Reconstruction

4.2.1 Radioisotope Decay Constrained Dynamic PET Imaging

Both PET and SPECT use radiotracers, which decay with time. The natural decay
property of the radioisotope, can be introduced into the objective function as the
temporal guidance for multi-frame image sequence reconstruction, and can also be
used to separate multiple radiotracers in dynamic imaging. The projection equation
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of dynamic PET imaging can be formulated through an affine transform between the
projection data and emission object as:

y(t) = Dx(t) + r(t) + s(t) (33)

where the emission sinogram data is represented by a vector y, and the activity of
emission object is represented by x . D is system probability matrix, which gives the
probability of a photon emitted from i th voxel being detected in projection j th bin.
t is the time frame. r and s are the contribution of random coincidence events and
scatter coincidence events. After the conventional online delayed-window random
correction, the Eq. (33) can be rewritten as:

y(t) = Dx(t) + e(t) (34)

here e is an error vector, which represents unknown measurement uncertainties
including scatter coincidence events.

In the section of static PET imaging reconstruction, the distribution of the radioiso-
topes in the body is assumed to be temporally stationary corresponding to the autora-
diographic model, however, in the real situation, the radioisotope will decay with
time, and its activity at time t should be

x = X0e
ln(0.5)

T t (35)

here X0 is the initial activity distribution, and T is the half life of the radioisotope.
So the real-time change of radioisotope can be represented as

dx

dt
= X0

ln(0.5)

T
e

ln(0.5)
T t (36)

then the dynamic change of radioisotope from one frame to the next can be obtained
from the integral of Eq. (36). A general representation of state transition will be

x(t + 1) = H(t)x(t) + v(t) (37)

where x(t) is the radioactivity concentration at time frame t , and H(t) is a coefficient
matrix for state transition at time frame t . v(t) represents the uncertainties during
state transition. With the introduction of decay model shown as Eq. (37), we are able
to make use of the radioisotope’s own temporal properties as constraints to guide our
reconstruction.

4.2.2 Dynamic PET Image Reconstruction with Minimax Criterion

Minimax criterion, which allows one to identify a robust solution as one that has the
best worstcase performance can also be applied to dynamic PET reconstruction. In
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general, a robust discrete optimization problem can be formulated as follows. Let
X be the set of all solutions, E be the set of uncertainties of measurement in single
time frame, and M be the set of uncertainties for state transition among time frames,
performance of a solution x ∗ X under uncertainties e ∗ E and v ∗ M is F(x, e, v).
The problem is to find the solution that has the best worst-case performance, which
is the same as minimizing (over all solutions) the maximum (over all uncertainties)
performance:

min
x∗X

max
e∗E,v∗M

F(x, e, v) (38)

from the description of Eqs. (34) and (37), the estimation of activity distribution x(t)
at time t is not only computed based on measurement y(t), but also affected by
previous estimations, so we define a linear combination of x(t) as

z(t) = F x(t) = g(x(k), H(k), v(k)) k = 1, 2...t (39)

so the measure of performance F(x, e, v) is given by

J =
⎨ →z(t) − ẑ(t)→2

Q(t)

→x(0) − x̂(0)→2
p−1

o
+ ⎨

(→v(t)→2
V (t)−1 + →e(t)→2

N (t)−1)
(40)

where the notation →x→2
G is defined as the square of the weighted (by G) L2 norm of

x (i.e. →x→2
G = xT Gx). N (t), V (t), Q(t) and po are the weighting matrices for the

uncertainties of measurement in single time frame, the uncertainties of state transition
among time frames, the estimation error, and the initial conditions respectively. x̂(0)

is the initial estimate of the state. The optimal estimate z(t) among all possible ẑ(t)
should satisfy:

→J→∅ = sup J < γ 2 (41)

where γ 2 > 0 is a prescribed level of disturbances. It is assumed that the L2 norms
of e(t) and v(t) exist. Then the minimax performance criterion of Eq. (40) where the
estimator strategy z(t) playing against the exogenous inputs e(t), v(t) and the initial
state x(0) becomes

min
z(t)−ẑ(t)

max
v,e,x(0)

J =
⎩

→z(t) − ẑ(t)→2
Q(t) − γ 2→x(0) − x̂(0)→2

p−1
o

−γ 2
⎩

(→v(t)→2
V (t)−1 + →e(t)→2

N (t)−1) (42)

Now the problem becomes to solve the above objective function, and the kinect
model (e.g. the decay model in this section) is successfully incorporated in it. Same
solution framework as static PET image reconstruction can be used here.
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4.3 Kinetic Parameter Estimation

From the section of compartment models, a two-tissue three-compartment model
(Model2) is general enough to describe regional tracer kinetics as shown in Fig. 8,
where CP (pmol/ml) is arterial concentration of radiotracer, CF and CB (pmol/ml)
are the concentrations of non–specific binding and specific binding tracers in tis-
sues. Parameters k1, k2, k3 and k4(min−1) specify radiotracer transport rates. The
time variation of kinetic model in voxel i can be denoted by first-order differential
equations as:

dCFi (t)

dt
= k1i (t)CPi (t) + k4i (t)CBi (t) − (k2i (t) + k3i (t))CFi (t) (43)

dCBi (t)

dt
= k3i (t)CFi (t) − k4i (t)CBi (t) (44)

Here this model will be used to derive the solutions framework of kinetic parameter
estimation.

4.3.1 Modeling of Dynamic PET Measurement with Tracer Kinetics

Dynamic PET imaging involves a sequence of contiguous acquisition with different
temporal resolutions, which can be formulated as a projection transform:

y(t) = Dx(t) + e(t) (45)

Here, y(t) is the projection data and x(t) = {xi (t)|i = 1, · · · , n}T is the activity
concentration at time frame t . n is the total number of voxels. D is the system prob-
ability matrix. e(t) is the overall measurement uncertainties. Here we will transform
Eq. (45) to accommodate kinetic models. Firstly, activity concentration x will be the
combination of CF and CB , then Eq. (45) will be

y(t) = ⎭
D D

⎪ [
CF (t)
CB(t)

]
+ e(t) (46)

where CF (t) = {CFi (t)|i = 1, · · · , n}T and CB(t) = [CBi (t)|i = 1, · · · , n}T .
After the dynamic change of measurement dyi (t)

dt being deduced, we substitute the
differential equations Eqs. (2) and (3) and do a simple transformation to arrange four
kinetic parameters (k1, k2, k3, k4) in a column vector will yield
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dyi (t)

dt
= ⎭

D D
⎪

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

...
dCFi (t)

dt
...

dCBi (t)
dt
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ e
∝
i (t)

= ⎭
D D

⎪

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

...

CPi (t) −CFi (t) −CFi (t) CBi (t)
...

0 0 CFi (t) −CBi (t)
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

k1i (t)
k2i (t)
k3i (t)
k4i (t)

⎤

⎥⎥⎦ +e
∝
i (t)(47)

By denoting Ri (t)=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

...

CPi (t) −CFi (t) −CFi (t) CBi (t)
...

0 0 CFi (t) −CBi (t)
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and Si (t)=

⎡

⎢⎢⎣

k1i (t)
k2i (t)
k3i (t)
k4i (t)

⎤

⎥⎥⎦,

we can get the dynamic change of total measurement data from all voxels as

dy(t)

dt
=

n⎩

i=1

dyi (t)

dt
= ⎭

D D
⎪ ⎭

R1(t) · · · Ri (t) · · · Rn(t)
⎪

⎡

⎢⎢⎢⎢⎢⎢⎣

S1(t)
...

Si (t)
...

Sn(t)

⎤

⎥⎥⎥⎥⎥⎥⎦
+ e

∝
(t)

(48)

= ⎭
D D

⎪
R(t)S(t) + e

∝
(t)

Now we have set up the relationship between the change of measurement data and
kinetic parameters directly by Eq. (48).

4.3.2 Solution Under Minimax Criterion

The minimax solution framework can also be transform to estimate kinetic para-
meter. No statistical assumptions needed makes the minimax criterion robust to the
poor statistical properties in low count acquisition and system noises. Since kinetic
parameters are generally assumed to be constant, we can set:
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S(t + 1) = S(t) + v(t) (49)

Here, v is possible disturbances. With Eqs. (48) and (49), the corresponding minimax
performance equation will be “minS∗L maxe∗E,v∗V F(S, e, v)”, where L , E and V
are the sets of solutions, uncertainties of measurement and state transition. As an iter-
ative solution, we also define a linear combination of S(t) as “z(t) = g(S(m), v(m))

where m = 1, 2...t”, then objective function J will be

J =
⎨ →z(t) − ẑ(t)→2

Q(t)

→S(0) − Ŝ(0)→2
p−1

o
+ ⎨

(→v(t)→2
V (t)−1 + →e(t)→2

E(t)−1)
(50)

where the notation →x→2
G is defined as the square of the weighted (by G) L2 norm

of x . po, E(t), V (t) and Q(t) are weighting matrices. Ŝ(0) is the initialization of x .
More detailed settings and initialization of parameters can be found in [80].

5 Clinical Practices and Future Directions

5.1 Personalized Drug Metabolism Analysis

Dynamic PET is a molecular imaging technique that is used to monitor the spa-
tiotemporal distribution of a radiotracer in vivo and enables cellular level metabolism
analysis in clinical routine. dPET provides a good promise for quantitative lesion
metabolism analysis to help identify lesions. However, due to poor statistical proper-
ties of the measurement data in low count dynamic PET acquisition and disturbances
from surrounding tissues, identifying small lesions inside the human body is still a
challenging issue. Furthermore, the mismatch between general purpose models and
patient size/motions makes the situation even worse. Quantitative kinetic analysis of
radiotracer uptakes requires the reconstruction of kinetic parameters [25, 77, 96].
The mainstream is statistical reconstruction algorithms, however, whose quality is
determined by the accuracy of sophisticated system probability matrix (SM). Many
efforts have been devoted to improve the accuracy of SM [64, 70, 85, 107]. However,
the ideal SM is almost impossible to obtain under practical conditions. The general
purpose SM also could not compensate different sizes of patients and the motions
during acquisition, which will decrease the accuracy of reconstructions. Further-
more, the reconstruction of dynamic PET image sequences, whose poor temporal
resolution, insufficient photon counts, more complicated data corrections and poor
statistical properties of measurement data also requires a more accurate SM.

To improve the personalized lesion metabolism analysis, we can generate a patient
adaptive SM using machine learning techniques. Both patient size information and
potential small lesion information are incorporated by simulations of phantoms of
different sizes and individual point source responses [50, 53, 102]. Training data
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set from simulations of 90 studies is conducted using 15 phantoms of different sizes
based on Zubal thorax phantom. Each simulation has randomly generated motions
and lesions in lung. The personalized SM should be able to differentiate true lesion
and false lesion, and further deal with input functions of different accuracies.

5.1.1 System Matrix Derived from Supervised Learning

Statistical reconstruction requires a well modeled SM, which directly determines
the accuracy of reconstruction results. The SM D is extended to include 2 parts,
D1 is a SM generated from geometry information and physical phenomena, and
will account for sizes and motions of different patients, D2 is an additional SM
generated from point source responses. D1 and D2 are full size SM, and combined
together by weighting matrices w1 and w2 according to the anatomical information of
patients. This effort makes the SM more patient adaptive. The measurement equation
is extended to be

Y (t) = ⎭
w1 w2

⎪ [
D1
D2

]
X (κ, t) + e(t) (51)

w1, w2, D1, D2 are updated by supervised learning. Training sets are provided by
Monte Carlo simulations using GATE toolbox [41]. Correspondingly, two series of
simulations are performed, one is performed with human thorax phantom of differ-
ent sizes, and the other is done by point source response inside a thorax phantom of
normal size. Denoting the activity concentrations as X = {x1, x2, · · · xn} and mea-
surement datasets as Y = {y1, y2, · · · xn}. n is the number of training sets, and every
dataset is a dynamic data sequence related to time t . For simplification of expres-
sion, the PET measurement equation is written as Y (t) = D∝ X (k, t) + e(t). Since
ADALINE has been proved to be simple yet successful for updating SM in [85],
we also adopt ADALINE for our SM training here. The initialization of D1 and D2
are the SMs generated with uniform cylindrical phantom. The update procedure by
ADALINE using back-propagation and least mean square error is:

ŷm(t) = D∝
m X (k, t) + em(t) δk(t) = Y (t) − ŷm(t) (52)

D∝
m+1(t) = D∝

m(t) + 2Lδm X T (t) em+1(t) = em(t) + 2Lδm(t) (53)

where m is the iteration step of training, and L is the learning rate. After defining a
precision level of learning ε,

D∝ subject to

⎧
Y (t) − ŷm(t) < ε

ŷm(t) − Y (t) < ε
(54)

the weighting matrices w1 and w2 will be obtained when convergence is achieved
(Fig. 11).
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Fig. 11 Demonstration of five phantoms from the phantom library used to generate personalized
SM

5.1.2 Parameter Reconstruction of Dynamic PET

The kinetic model and image reconstruction are combined in one equation, the log
likelihood function can be derived with measurement data y(t) as

L (y|κ) =
⎩

t

y(t) log ȳ(κ, t) − ȳ(κ, t) (55)

where ȳ(κ, t) = D∝x(κ, t) + e(t) (56)

κ̂ = arg max Φ(κ) (57)

Φ(κ) = L (y|k) − βU (k) (58)

where U is the penalty regularization term with parameter β controlling resolu-
tion/noise tradeoff. Equation (57) can be solved by a paraboloidal surrogates algo-
rithm in [22]. The above solution is global convergent, however, the kinetic parameter
reconstruction has a higher data dimensionality/freedom, so we also define the evalua-
tion of kinetic parameters through images by using student’s t-distribution hypothesis
test to determine their statistical differences among iterations. By selecting Region
of Interest (ROI), calculate

t = |x̄m − x̄m+1|
σ

(59)

where

σ =
(

varm + varm+1 − 2covm,m+1

N

)0.5

(60)

and

covm,m+1 = 1

N − 1

N⎩

i=1

(xm,i − x̄m)(xm+1,i − x̄m+1) (61)

x̄m and x̄m+1 are the means in ROI at iteration m and m +1, var is the corresponding
variances across the image elements. cov is the covariance across the two iterations.
t is calculated until less than t0.05 in the t-table to show a confidence level of 95 %
that the difference between images is small enough.
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(a) (b)

Fig. 12 a Lesion in 40th slice; b 32nd slice as reference

Table 5 Summary of experiments

Group1 Group2 Group3 Group4 Group5 Group6

Lesion type True True True False False False
Input function 1 2 3 1 2 3
Successful estimation/Total studies
Generic SM 13/15 7/15 5/15 11/15 7/15 6/15
Personalized SM 14/15 13/15 7/15 12/15 12/15 7/15

5.1.3 Clinical Results

The clinical patient data in this study was a dynamic PET scan acquired from a
28-year-old, 75 kg male volunteer. 10 mCi 18F-FDG was injected and a dynamic
acquisition of the thoracic cavity started just after injection. The acquisition consists
of 40 time frames: 20×0.5 min, 15×1 min, and 5×2 min. All corrections are per-
formed properly with the software provided by the scanner. The input function is
estimated by the image-derived method. Figure 12a shows a lesion region by a red
arrow in the 40th slice. We calculate the influx rates of the lesion and compare them
with the heart muscles in the 32nd slice. The lesion metabolism calculated by the
new personalized SM is closer to the muscles than that by generic SM, and the lesion
is confirmed by the doctor as a false lesion with temporarily increased metabolism
than muscles. Results from the new personalized SM show potential improvements
in diagnosis. Table 5 shows the statistical results from all 90 studies, which shows
the ratio of successful identification of lesions using different input functions. Input
Function 1 is perfect input function (equivalent to perfect blood sampling with less
than 5 % error), Input Function 2 is good input function (equivalent to a disturbed
blood sampling with about 20 % error), Input Function 3 is an Image Derived Input
Function (IDIF). Both methods performs well by using Input Function 1. However,
with Input Function 2 (with disturbances), the accuracy of generic SM decreases, but
the personalized SM still provides good results. The results show the improvement in
identifying lesions by personalized SM, and the reduction of requirement of accurate
input function.
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Table 6 Influx rate of patient
study

Muscles Generic SM Personalized SM

0.0054 0.0085 0.0071

5.2 Model Selection

In drug discovery and development, the procedure of drug selection is full of chal-
lenging issues. Kelloff et al. show that more than 90 % of all new oncology drugs fail
in the late stages of development because of inadequate activity and difficulties in
determining their efficacy [43]. Quantitative pharmacokinetic analysis with dynamic
PET imaging now plays a promising role as determinants of in vivo drug action to
help select drug candidate. Fast and accurate pharmacokinetic analysis with rapid
information feedback in the early stage of drug discovery and development is critical
to obtain the in vitro and in vivo drug properties [14, 100].

A typical procedure of pharmacokinetic analysis by dPET imaging includes,
firstly, setting up a working hypothesis of the target enzyme or receptor for a particular
disease, secondly, establishing suitable models (or surrogate markers) to test biologi-
cal activities, and at last, screening the new drug molecules for biological activities. In
this procedure, model selection by dPET has seldom been studied because of various
scientific challenges, for example, (1) the kinetic models for drugs are generally very
complicated, when facing a new biomarker (new drug), it is hard to determine which
model will work best, (2) accurately solving these complicated models always needs
special mathematical considerations, (3) although we can always use more compli-
cated models to represent certain biological activity, the computational cost increase
significantly due to the complex of the model, which cause a burden for the early drug
discovery. (4) measurement data from dPET suffers from poor spatial and temporal
resolutions, especially the first several time frames, (5) blood sampling is required
in pharmacokinetic analysis but it is very hard to generate an accurate one [31].

5.2.1 Temporal-Difference Reinforcement Learning

Machine learning in image processing and analysis is growing rapidly [97]. Of var-
ious machine learning methods, reinforcement learning is meant to be a general
approach to learn from interactions [86]. It is a control method which presents a
robust mechanism for goal directed decision making. Unlike supervised learning
methods, no examples of desired behaviors are provided during training, instead,
behavior is guided through positive or negative reinforcements [99]. So this method
do not require a large training dataset, and is especially suitable for preclinical drug
selection and pharmacokinetic analysis with only limited data sets [84]. Additionally,
as a control mechanism, the method can help solve the complicated kinetic models
with noisy dPET acquisition data. At the same time, the method can inherently deal
with disturbances during blood sampling. Therefore, in this section we will intro-
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duce a reinforcement learning based method which combines model selection and
parameter estimation for pharmacokinetic analysis by dPET.

Temporal Difference reinforcement learning (TD Learning) is a combination of
Monte Carlo ideas and dynamic programing [86, 99]. Therefore, like Monte Carlo
methods, TD Learning can learn from raw experiences without pre-defined mod-
els, and like dynamic programing, TD learning can update its estimations based
on a part of learning outcomes rather than the final outcome. These features are
especially suitable for model selection and noisy dPET data. Regardless of model,
when we have an initial K, we define an action set a, which contains 2n compo-
nents, {a+

1 , a−
1 , a+

2 , a−
2 , · · · a+

n , a−
n , }, with the subscript corresponds to the index

of kinetic parameters, and the superscript represents increasing (+) or decreasing
(−) that kinetic parameter by certain amount during estimation. We derive the TD
Learning algorithm for model selection and parameter estimation from the classic
one as shown in Algori thm 1. Details will be shown in next subsection.

5.2.2 Model Selection

As shown in the algorithm, reinforcement learning acts according to the rewards,
we define three rewards based on physical constraints for model selection. The com-
bination of three rewards is able to exclude non-matching models fast, which can
improve the computational efficiency, and reduce the disturbances from the noises
in low count dPET data. By denoting K ∝ as the estimated kinetic parameters after
selecting an action from a,

1. Reward 1: We compare the measured total counts in each time frame of mea-
surement data Y and estimated total counts with K ∝.

M SE(T otalCounts(Y (t)), T otalCounts(DX (K ∝, t))) < T hreshold1
(62)

2. Reward 2: We compare the first order difference of Time Activity Curve (TAC)
from measurement data Y and TAC curve estimated with K ∝.

M SE(Di f f erence(T AC(Y )), Di f f erence(T AC(DX (K ∝, t)))

< T hreshold2 (63)

3. Reward 3: This is an optional reward, if there is priori knowledge from clinical
data available, they are learned together through a 2-hidden layer neural network
(NN) as shown in Sect. 5.1.1, and then used as a reference for estimated K ∝.

M SE(N N (Y ), K ∝) < T hreshold3 (64)
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Where M SE is the operation to calculate the mean squared error. When each
reward criterion is met, we have a reward (rew = +1), otherwise, (rew = −1).
Then we accumulate all rewards by eligible trace Q-Learning [86] as shown in the
Algori thm1

Q(K , a) √ Q(K , a) + α[rewm+1 + γ Q(Km+1, am+1) − Q(K , a)] (65)

Where α, γ are learning parameters, which control the width and depth of learning.
Proofs in [86] show that α and γ mostly affect the convergence speed, and have only
limited effect on learning accuracy after convergency. Q is the value function in the
Q-Learning, which stores all the rewards, and m represents iteration steps.

Then the algorithm is applied to every model in the model bank, with each
estimated K ∝ from the maximum in Q, we calculate the Bias between estimated
TAC (T ACe) and true TAC (T ACm) from measurement data for each model by
Bias = 1

T

⎨ →T ACm−T ACe→
T ACm

, where T is number of time frames. The model with the
lowest Bias in the model bank with be the selected model by the proposed method.

5.2.3 Parameter Estimation

When using Algorithm 1 to choose model, simultaneously calculated K ∝ will be
the initial parameter for that model. And the kinetic parameter can also be further
calculated with a refined action set are f containing smaller increasing or decreasing
amount using Algori thm 1.

Algorithm 1 Model Selection and Parameter Estimation by TD Learning
Initialize Q(K,a) arbitrarily
Initialize K
Repeat until convergency

Randomly choose one action from a
Repeat for all steps

Take action a, generate K∝, observe reward rew using defined criteria
Choose a∝ from K∝ derived from Q
Accumulate all rewards using Eq. 65
K √ K∝

End
End
Select the Maximum in Q, Corresponding K is the estimated K

5.2.4 Clinical Results

We study three cases of real patient dPET scans. Figure 13 shows the three cases, the
first case is the scan of patient thorax, a ROI is defined in the normal muscle region,



Shape Analysis in Molecular Imaging 87

(a) (b) (c)

Fig. 13 a Case 1; b Case 2; c Case 3

Table 7 Model selection results

Model1 Model2 Model3 Model4 Model5 Model6

Case 1 1.5901 1.4248 1.1735 1.6549 1.5558 NA
Case 2 0.7963 NA NA 0.9482 NA NA
Case 3 1.3809 1.0721 1.6025 1.2169 NA NA

NA is “Not Applicable”

Table 8 Estimated kinetic parameters for three cases

K1 K2 K3 K4 K5 K6

Case 1 0.0960 0.1540 0.0375 NA NA NA
Case 2 0.1080 0.0838 NA NA NA NA
Case 3 0.0400 0.0620 0.0145 0.0015 NA NA

NA is “Not Applicable”

the second case studies a ROI in the heart region, and the third case is with a ROI in
the liver. The dynamic PET scans are performed on our PET scanner, the dynamic
data set consists of 40 time frames: 20×0.5 min, 15×1 min and 5×2 min. The input
function is estimated by fitting the reconstructed dynamic images. This input function
is equal to a disturbed one affected by noises in reconstructed images. The model
bank used is the compartment models shown in Fig. 8. The model selection results is
shown Table 7. The results of model selections are consistent with suggestions from
clinical studies. ROI 1 is normal tissue and Model3 is mostly used. ROI 2 is near
the left ventricular and highly affected by the blood flow, so the blood flow model
(Model 1) is most suitable. For ROI 3, clinical results had shown the necessity and
importance of estimation of K4 in liver cancer, and the proposed method correctly
choose the right Model2 (Phelps 4K model). And the non-applicable models are
excluded successfully. The estimated kinetic parameters are shown in Table 8.

5.3 Future Directions

In this chapter, we review the shape analysis and application in molecular imaging.
Molecular imaging is a relatively new but fast-developing area for both research and
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clinical applications. Although with some limitations, molecular imaging modali-
ties especially PET show the superior ability to quantitatively measure the biologic
processes in a functional way at the cellular and subcellular level within living sub-
jects. All the data processing and analysis of molecular imaging depend on the
physical natures of the molecular imaging modalities. The emerging new scanner
systems with new detectors will further enhance their abilities, and bring new chal-
lenges in data correction and image analysis at the same time. The data corrections
algorithms need to be adjusted with the properties of new system design, and new
features in detector system correspondingly. Monte Carlo simulation is always a
good way to study the new design and provide references for validation of new
data correction methods. And image reconstruction with disease specified statistical
model instead of the generic models can improve the image qualities of certain dis-
ease. With the advancement of data correction and image reconstruction methods,
the image post-processing including image registration and image fusion must adopt
related changes. Researchers are also actively using machine learning methods to
extract applicable pathological models from a series of patient studies and apply the
strategy to personalized treatment. Pharmaceutical companies are also interested in
the accurate quantitative pharmacokinetic parameter estimation using PET to study
the metabolism of new drugs, which has the potential to shorten the drug develop-
ment cycle and save tons of money for the industry and patients. With the evolution
of both image pre-processing and post-processing methods, molecular imaging is
believed to be able to study more complicated diseases currently in the unknown
area, for example, the origins of Alzheimer’s disease and dementia.
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Variational Shape Representation for Modeling,
Elastic Registration and Segmentation
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Abstract Shapes describe objects in terms of information invariant to scale,
translation and rotation. Depending of the data source, shapes may be represented by
object contours or representation/transformations that sustain the objects characteris-
tics, such as the signed distance function. Biomedical objects have inherent plasticity
due to movement and changes over time. Elastic registration is a fundamental image
analysis step for tracking anatomical structures, diseases, progress of treatment and in
image-guided interventions. Variational level set methods (LSM) represent objects’
contours through an implicit function that enables tracking the objects’ topologies.
This chapter provides an overview of variational shape modeling as applied to the reg-
istration and segmentation problems. The chapter evaluates similarity/dissimilarity
measures and common energy functional representations used in elastic shape regis-
tration. Common numerical methods to solve the optimization involved are studied.
In addition, the chapter discusses clinical applications for which shape-based models
enable robust performance with respect to occlusion and other image degradation.
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1 Introduction

In this chapter, we summarize and expand upon our work on variational shape
modeling for segmentation and registration (e.g., [1–10]). Specifically, we repre-
sent shapes using vector distance functions (VDF). We use the VDF as shape prior
for both shape-based segmentation and elastic shape registration. We derive the
energy formulation for elastic registration and shape-based segmentation. We high-
light the algorithms and the optimization technique used for solving the energy
function. Finally, we apply the methodologies for various biomedical image analysis
problems.

Shapes are represented either explicitly or implicitly [1, 9]. 2D/3D shape bound-
ary points can be used directly/explicitly to deal with shapes (e.g., applications of
alignment and retrieval) where the shape points are used directly to compute shape
geometric properties and features. In the implicit shape representation, the shape
boundary points can be computed by solving the zero level equation of the im-
plicit shape function. This representation can be in either scalar or vector form. In
this chapter, we use the VDF shape representation as a similarity measure in the
shape registration process. More general transformations with inhomogeneous scal-
ing, rotation, and translation parameters will be incorporated. The use of such vector
functions results in a more adequate energy function which is optimized to achieve
the transformation parameters both in the global and local registration schemes.
A variational framework for the registration process is formulated. The gradient de-
scent optimization criterion is used to handle the global registration similar to that
in [11]. The local deformations are covered using the incremental free form defor-
mations. The gradient descent optimization is not used to estimate the positions of
the control points where the number of deformation parameters are large compared
to the global alignment case. We demonstrate the nonrigid registration problem in
vector implicit spaces as well.

Following our latest results (e.g., [9, 10]), we adopt a closed form solution for
computing the elastic registration parameters which provides a large time reduction
in comparison to the large number of iterations required by the gradient descent
approach. We propose a quadratic energy function in terms of the control points
positions (i.e., unknowns). Hence, the objective function is convex which leads to
a single point solution of the minimization problem. Different experimental results
for synthetic and real shapes registration cases will be demonstrated to show the
efficiency of the proposed techniques. Also, comparison with the state of the art
approaches will be discussed in detail.

The treatment below on shape representation and registration is based on our work
[10]. We keep similar notations as well. Later on in the chapter we expand on this
work for simultaneous segmentation and registartion of objects using shape priors.
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2 Shape Representation

A map, C(p) : [0, 1] ∝ R ∗ R2 defines a planar smooth curve with parameter p.
The cartesian coordinates of the point vector can be defined by C(p) = [x(p)y(p)]T

where 0 ∅ p ∅ 1, 0 ∅ x,∅ X and 0 ∅ y,∅ Y . This is the explicit representation of
the given shape or contour C. Open shapes have the relation C(0) ≤= C(1). A closed
contour will always have C(0) = C(1). Parameterizing complicated topology shapes
is a challenge which is considered a disadvantage of the explicit shape representation
method. Thus, a parametrization-free representation is needed. The implicit shape
representation satisfies this condition as shown.

Given a smooth curve CΣ (defined above), that represents boundaries of the shape
of interest, the following implicit vector function is defined as ΦΣ(X) : σΣ ∝ R2 ∗
R2 where

ΦΣ(X) = X0 − X = [Θ1Θ2]T , X ∈ σΣ, Θ1 and Θ2 ∈ R, (1)

where X0 is the point on CΣ with the minimum Euclidean distance to X where X ∈ σΣ

(σΣ is the domain that includes the shape/contour). The surface or boundary points
always satisfy the relation ||ΦΣ(CΣ)|| = 0. Note, that the implicit representation is
dependent only on the boundary position, not on any parameterizations, and hence,
it is suitable to represent a cloud of points or even scattered edge boundaries.

If a global transformation is applied to the given shape represented by the designed
vector map, one can predict the map of the new shape. We define a shape θ that is
obtained by applying a transformation A to a given shape Σ. Let us assume that the
transformation has a scale matrix S, a rotation matrix R, and a translation vector T.
The transformation can be written for any point X in the space as A = SRX + T.

Applying the transformation to the given points results in the pair of points X̂, X̂0 ∈
σθ (Domain of the Target Shape where σθ ∝ R2). It is straightforward to show that:

Φθ(A) = X̂0 − X̂ = SR(X0 − X) (2)

as such the following relation holds:

Φθ(A) = SRΦΣ(X) (3)

Which illustrates that this representation can give a vector similarity measure that
includes inhomogeneous scales and rotations. Also, it is invariant to the translation
parameters, while the effect of scales and rotations can be predicted. This measure
overcomes the problem of using the conventional signed distance maps that leads to
the use of homogeneous scales only. Note, that the VDF components are smooth and
differentiable at the boundary points.
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3 Global Registration of Shapes

Finding point-wise correspondences (between the two given source and target shapes
defined respectively by CΣ and Cθ ) is the objective of the registration problem. An
energy function is built based on the vector dissimilarity measure. The VDF shape
representation changes the problem from the shape boundary domain to the higher
dimensional vector representation. A transformation, A, that gives pixel-wise vector
correspondences between the two shape representations ΦΣ and Φθ , is required to be
estimated.The problem now can be considered as a global optimization that includes
all points in the image domain. Sum of squared differences will be considered with
energy optimized by the gradient descent approach.

According to the properties of the implicit vector representation shown, the
following dissimilarity measure is used: r = SRΦΣ(X)−Φθ(A) and the optimization
energy function is formulated by the sum of squared differences as: E(S, R, T) =
→σΣ rT rdσΣ . The complexity of the problem is reduced by considering only points
around the zero level of the vector function and neglecting mapping of far away
points. The matching space is limited to a small band around the surface that can be
selected by introducing the following energy function:

E(S, R, T) = →σΣ κγ(ΦΣ,Φθ)rT rdσΣ. (4)

where κγis an indicator function defined in [1].
The optimization of the given criterion is handled using the gradient descent method:

d

dt
λ = 2 →σΣ κγrT [∇λ(SRΦΣ(X)) − ∇ΦT

θ (A)∇λA]dσΣ (5)

where λ ∈ {Sx , Sy, θ, Tx , Ty} represents the set of scale, rotation, and translation
parameters respectively.

3.1 Evaluation of Global Registration

In [10] we reported results for an experiment that involved 100 registration cases,
using the corpus callosum (simple shape) and the hippocampus (four separate parts).
Each case considers a source and a target shape. The source is fixed and the target is
generated by applying a transformation on the source. Parameters (Sx , Sy, θ, Tx , Ty)
are created and selected randomly from the ranges [0.8, 1.2], [0.8, 1.2], [−60∀, 60∀],
[−60, 60] respectively. These generated patterns are kept as the ground truth for
each case. The gradient descent optimization is performed to obtain a steady state
estimate for each parameter associated with each registration case. The algorithm
shows successful results for the one hundred cases and the energy decreases smoothly
with the increase of the iteration number until perfect alignment is achieved. The
measurements show that the mean errors and standard deviations (Table 1) are very
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Table 1 Mean error (μ) and its standard deviation (κ) for the transformation parameters of the
corpus callosum (CC) and hippocampus (HC) cases (μ ± κ)

Structure Sx Sy θ∀ Tx Ty

CC −0.005 ± 0.009 −0.003 ± 0.007 −0.002 ± 0.018 −0.5 ± 0.4 −0.3 ± 0.5
HC 0.009 ± 0.007 0.005 ± 0.004 0.001 ± 0.09 0.00 ± 0.02 −0.0 ± 0.02

Parameter ranges:[0.8, 1.2], [0.8, 1.2], [−60∀, 60∀], [−60, 60], [−60, 60], are used

appropriate and satisfactorily small. The final registration emphasizes that for each
experiment, the boundaries of the source and target shapes become very close to
one another. The gradient descent successfully estimates the scales, rotations, and
translations with proper initialization.

In addition, we formed three groups of different shapes (Fighter Jet, Fishes, Num-
ber Four). Each group includes 11 instances of its corresponding shape. Different
global registration processes are conducted by randomly taking 11 pairs from each
group. For each pair of shapes, the correlation coefficient is calculated to mea-
sure the similarity between the shape representations: π = E[(||ΦΣ ||−μΣ)(||Φθ ||−μθ)]

ϕΣϕθ

where μ, ϕ stand for mean and standard deviation of the shape vector representa-
tions magnitudes respectively. The global registration process successfully increases
the coefficient dramatically. Before alignment, the mean correlation coefficients and
their standard deviations for the groups are (0.836 ± 0.047), (0.834 ± 0.087), and
(0.754 ± 0.092), respectively. After alignment, the coefficients become (0.969 ±
0.013), (0.953 ± 0.03), and (0.911 ± 0.039). Note, that the last group has the largest
local shape variations and hence, has the smallest average coefficient 0.911, which
is small compared to other groups of coefficients.

For comparison with other techniques, two synthetic shape images have been
created. The second image results by stretching the first with large inhomogeneous
scales (Sx = 2.5, Sy = 3.3). Mutual information is used to register these contours
(images) according to the technique in [15]. Mutual information suffers in such a
situation because the scale range will increase/decrease the energy in one direc-
tion, providing unacceptable results (minimum position does not provide the correct
parameters as shown in Fig. 1 left image). The proposed approach aims to align the
contours of the given images to each other to obtain a global minimum at these
scales exactly as shown, which is considered to be an advantage over the mutual
information.

3.2 Global Registartion for Segmentation of Lung Nodule Regions

We use the global alignment approach with the shape-based segmentation as an
application. In our previous work [2], we formulated the problem as a global reg-
istration between a shape and an intensity model implicit representation. In this
paper, we adopt the above alignment technique to segment lung nodule regions [16].
Nodule size is an important factor in volumetric analysis of lung nodules. It has been
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Fig. 1 Large scales registration case: the negative of mutual information is given to the left. The
proposed energy is given to the right. The mutual information and the proposed energy are shown
as functions of and the proposed energy are shown as functions of Sx and Sy



Variational Shape Representation for Modeling, Elastic Registration and Segmentation 101

shown clinically that size is linked to nodule malignancy, with non-calcified nodules
larger than in diameter having a higher rate of malignancy than smaller nodules.
Size computation is usually performed by applying volumetric methods to a seg-
mentation result. However, lung nodules segmentation in CT imaging is a complex
and challenging process. One of the most important problems arises from possible
attachments of the nodules to other anatomical objects. The lungs are a complex
anatomical structure. Vessels, fissures, bronchi or pleura are structures that can be
located close to lung nodules.

From our experience, we noticed that the main nodule regions considered for
size computation are elliptic. A circle model is represented implicitly by the vector
function Φp. A region of interest image (ROI) is taken from the whole lung CT scan
to include the nodule. Intensity segmentation of the ROI is represented implicitly
by the vector function Φg . Aligning the two models using the above approach will
result in an ellipse that includes the nodule region. The model is initialized and then
the alignment parameters are estimated using the gradient descent optimization.
Different scales, rotation, and translation parameters are computed in each case to
obtain an ellipse exactly around the nodule (see Fig. 2). The ellipse axis rotates while
its size changes to include the boundaries of the nodule. A thresholding technique
can be used later to remove the non-nodule parts from the elliptic areas.

4 The Elastic Registration Problem

Our objective is to find a function that gives the point correspondences between the
two given domains (source and target). Let us define the 2D shape elastic registration
as follows:A map CΣ̂(ψs) : [0, 1] ∈ R ∗ R2 defines a planar source curve with
a parameter ψs (it is the source shape CΣ after applying the global transformation
estimated by the methods above). The target is defined by Cθ(ψt ) : [0, 1] ∈ R ∗ R2.
Assume that CΣ̂(ψs) is the corresponding point of Cθ(ψt ) (the criteria for finding
the correspondences can be found in the following sections). The output will be
a C0 function f : R2 ∗ R2 with f (CΣ̂(ψs)) = Cθ(ψt ). Different interpolation
functions have been proposed to handle this problem [12]. We choose the free form
deformation FFD model, based on B-splines [13, 14], which is a powerful tool for
modeling deformable objects and has been previously applied to the tracking and
motion analysis problems. The basic idea is to deform the shape by manipulating a
mesh of control points. The resulting deformation controls the shape of the object
and produces a smooth and continuous transformation.

Consider an M × N lattice of control points P = Pm,n; m ∈ {1, . . . , M}; n ∈
{1, . . . , N }, each point on the source shape will have the following form of defor-
mation:

L(ψs) =
∑3

k=0

∑3

l=0
Bk(u)Bl(v)κPi+k, j+1 (6)
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Fig. 2 Initial positions are shown in green at the first and third columns while final ellipses are
demonstrated in red at the second and fourth columns
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where κP = κPm,n ∈ {[κPx
1,1κPy

1,1]T , . . . , [κPx
M,N κPy

M,N ]T } is the control point de-
formation vector, i = (x .(M−1)/X)+1, j = (y.(N−1)/Y )+1, u = x .M/X), v =
y.N/Y − (y.N/Y ), and the spline basis functions (B) are defined in [14]. So the
cubic B-spline is used as an approximation function for our interpolation problem.
Below, we propose and discuss the problem solution in implicit and explicit spaces.
In [10], we devised a closed form solution of the interpolation function parameters.

4.1 A Coarse to Fine Strategy with IFFD’s

The control lattice points are required to move to correctly obtain correspondences
over shape boundaries. A very small error can be achieved when using a high resolu-
tion control lattice since the number of degrees of freedom increases. However, this
is not enough. Such sudden movement will result in unnecessary cross overs of the
domain grid lines and the registration process will be meaningless. This will result
in changing and corrupting the object topology. A better way is to move the grid step
by step towards the target.

To avoid this, a coarse to fine strategy is used (equivalent to the incremental free
form deformations used in [15]). We start with a resolution of 4×4 and solve for the
deformation. Iteratively we increase the resolution to 5 × 5, 6 × 6, and so on and so
forth. In each step, the positions of the control points are computed and the contour
moved to the new position until a satisfactory error distance is obtained. The result
is smooth and the correspondence is achieved accurately. This process handles the
error extremely well and provides an impressive infinitesimal energy function and
smooth grid deformations simultaneously.

4.2 Solution in Vector Implicit Spaces

Following the work in [11], a local deformation vector L = L(X) = L(κP)(described
above) is applied to the globally transformed shape represented by Σ̂. The following
dissimilarity measure is considered:

rn − ΦΣ̂(X) − Φθ(X + L) (7)

and hence the non rigid energy function will be defined as:

EΦ
n (κP) = →σΣ̂

rT
n rndσΣ̂ (8)

The local deformations are smoothed by adding another term that includes their
derivatives as follows:
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EΦ
n (κP) = →σΣ̂

rT
n rndσΣ̂ + ∂ →σΣ̂

(||Lx ||2 + ||Ly ||2
+ ||Lxx ||2 + ||Lyy ||2)dσΣ̂ (9)

As an interpretation, the energy contains a term for covering the local deformations
and another for penalizing large derivatives. To make the addition homogeneous, we
weight the second term by ∂ ∈ R+. Again, we take the derivative of the energy with
respect to each of the unknown parameters as follows:

α EΦ
n

ακP
= −2 →σΣ̂

rT
n (∇Φθ)T αL

ακP
dσΣ̂ + 2∂ →σΣ̂

((Lx )
T αLx

ακP

+ (Ly)
T αLy

ακP
+ (Lxx )

T αLxx

ακP
+ (Lyy)

T αLyy

ακP
)dσΣ̂ (10)

We assume that the amount of pixel deformation is relatively small such that its
vector representation can be approximated using Taylor series expansion as: Φθ(X+
L) √ Φθ(X)+(∇Φθ(X)T )L. The control points are required to move and minimize

the above objective function and hence satisfy the following zero condition: α EΦ
n

ακP =
[0 0]T. By setting Φ(X) = ΦΣ̂(X) − Φθ(X), the above formulation will lead to:

→σΣ̂
ΦT (∇Φθ)T αL

ακP
dσâ = →σΣ̂

((∇Φθ)T L)T (∇Φθ)T αL
ακP

dσâ

+ ∂ →σΣ̂
((Lx )

T αLx

ακP
+ (Ly)

T αLy

ακP
+ (Lxx )

T αLxx

ακP

+ (
Lyy)

T αLxx

ακP

)
dσâ (11)

Fortunately, the above equation is linear in terms of control points deformations.
We can formulate the following linear system to give a closed form solution for the
unknown deformations:

�̄� = �̄ (12)

where:

β̄r,c = →σΣ̂
((∇Φθ)T Lr,c)T (∇Φθ)T αL

αθr
dσΣ̂

+ ∂ →σΣ̂
((Lr,c

x )T αLx

αθr
+ (Lr,c

y )T αLy

αθr

+ (Lr,c
xx )T αLxx

αθr
+ (Lr,c

yy )T αLyy

αθr
)dσΣ̂, (13)

ρ̄r = →σΣ̂
ΦT (∇Φθ)T αL

αθr
dσΣ̂. (14)
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Note, that this will lead to computing new positions of the control lattice points
and hence, we can compute the entire domain deformation field. Other approaches
use gradient descent to compute the position of each point in space. Unfortunately,
the use of this form of local deformation does not guarantee proper handling of the
registered shape since it cannot preserve topology. Also, it results in scattered front
points leading to an open surface which is not the case. Another issue is that the
gradient descent does not guarantee the desired solution especially when using a
large number of deformation vectors.

Now we will illustrate the whole algorithm for elastic shape registration in vector
implicit spaces. Assume that N i

x × N i
y is the resolution of the control lattice initially

denoted by i. The resolution at any time will be Nx × Ny . The basic algorithm steps
are shown as follows:

1. Set Nx = N i
x and Ny = N i

y (initial grid size).
2. Compute the vector distance representation of the source and target shapes ΦΣ̂

and Φθ respectively.
3. Construct a control lattice of size Nx × Ny and initialize its point deformation

vectors to zeros.
4. Construct and Solve Eq. 12 to obtain the new deformation of each control point

and hence, compute its new position.
5. Based on the new lattice, update the source points and its vector representation,

ΦΣ̂ , by computing the new deformation field using Eq. 6.
6. Set Nx = Nx + 1 and Ny = Ny + 1.
7. Check the stopping criteria. Either the objective function goes below a certain

threshold or a number of maximum resolution levels is reached, otherwise go to
step #3.

4.3 Evaluation

The point-based algorithm described in [8] looks simple and does not require huge
space to store the shape representation. However, for many registration cases, we
obtain unsatisfactory results. This is due to its use of the closest point criteria to decide
the correspondences. Examples of shapes that show the failure of the algorithm are
shown in Fig. 3. It is clear that these examples fail because the left end of the source
shape arrives at the center line of the target. The decision to go left or right becomes
very difficult since both directions have the same distance.The above algorithm works
efficiently and handles the cases that the former algorithm fails to register as shown
in last row of Fig. 3 (see also [10]).

The reason for the success is that the approach minimizes the differences between
the two implicit representations and hence, makes the two contours very close to each
other. The neighborhood vectors around the shape boundaries have small magnitudes.
This property with the delta function described above helps in moving the contour
smoothly in the proper direction. This creates a force that stretches the source to the
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Fig. 3 Different elastic registration examples: source contour is given in red, target contour is
drawn in green, and deformed contour is shown in blue. Initial contours are shown in the first row.
The second row shows the failure of the ICP [16] algorithm with the IFFD given in [9]. The success
of our approach is demonstrated in the last row

Fig. 4 Different elastic registration examples of shapes containing multiple parts using the implicit
vector representation: source contour is given in red while target contour is drawn in blue. Corre-
spondences for the ventricle is shown to the left while hippocampus results are illustrated to the
right

target while the free form deformation preserves the topology of the shape. In all of
the registration cases, we notice that the grid deformation is smooth and each grid
line is kept in its order without crossovers or folding.

The algorithm works for multiple objects without any problem since it is not
necessary to handle the parameterizations. Elastic registration cases of two-part and
four-part shapes are illustrated in Fig. 4 for the brain ventricles and the hippocampus
shapes.

For more validation of the above algorithm, a deformed shape is generated from a
given tooth model. The target shape is generated by applying random deformations
on the source image such that correspondences are stored as ground truth for vali-
dation. The model is from real data of a Cone-beamed Computed Tomography scan
of resolution 0.2 mm per pixel (Fig. 5a).The approach is applied by increasing the
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Fig. 5 A local registration example with displacement field measurements: a initial shape contours
of the source and target models, b displacement field magnitude plot over the shape contour, c
x-component of the displacement field error, and d y-component of the displacement field error

resolution of the control lattice one step in each direction at a time starting from a
grid of 5 × 5. The contours come closer to each other iteratively until steady state is
reached. The approach shows very high accuracy. The displacement field is achieved
with an average error of 0.1677 mm. As shown in Fig. 5b–d, errors of the displace-
ment fields are plotted versus the curve parameterizations allowing a follow up of
the error distribution over the whole shape boundary.

Compared to the proposed in [15], the above algorithm is more complicated but
the closed form solution for the control points positions possesses a great advantage.
Also, if we do not use the closed form solution, the total execution time will be
doubled. Assume that the registration problem needs N incremental levels of free
form deformations, each level has, Ncp = nx ×ny control points, and hence, 2× Ncp

unknown variables x and y components for the gradient descent. If the average number
of iterations of the gradient descent needed for each variable to reach the steady state is
NI ter with average time per iteration of ωt(with the method in [15]), the total time will
be: T ime1 = ∑N

i=1(2×N i
C P ◦NI ter ×ωt). For the same IFFD setup with the gradient

descent of Eq. 10 which does not use the closed form solution, the total time will be
doubled; T ime2 = ∑N

i=1(2×N i
C P×NI ter×(2×ωt)), since we use an implicit vector

representation which has two components. The gradient descent execution time for an
iteration will be roughly twice that of ωt . In the case of applying the proposed closed
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form solution, the gradient descent iterations will be omitted. The new execution
time can be estimated as:OurT ime = ∑N

i=1(2 × N i
C P × (2 × ωt)). The time to

construct the linear system of the closed form (Eq. 12) is equal to the time of one
gradient descent iteration for all variables. Our time holds the relation:OurT ime =
2 ◦ T ime1/NI ter . A good steady state solution for the gradient descent needs a
number of iterations greater than which guarantees that our execution time is less
than that of the approach in [15].

5 Variational Shape-Based Segmentation

Variational approaches segment shapes through an energy minimization framework
that controls the evolution of an implicit/explicit contour/surface. The active contour
models proposed by Kass et al. [20] and level sets proposed by Osher and Sethian [19]
are the most important variational methods in the literature. The active contour mod-
els minimize the energy formulation using the explicit shape representation, which
requires parameterizations of the contour. Explicit shape representations suffer when
applied to shape modeling since they do not allow the shape to undergo topological
changes. The level sets method uses implicit shape representation, which does not
need contour parameterizations, and handles the topological changes of shapes.

Tsai et al. [24] proposed a shape model using a signed distance function of the
training data. The Eigenmodes of implicit shape representations are used to model
the shape variability. They proposed a shape prior using a coefficient of each training
shape. Cremers et al. [26] proposed a simultaneous kernel shape based segmentation
algorithm with a dissimilarity measure and statistical shape priors. This method is
validated using various image sets which objects are tracked successfully. In [15] the
distance function is used to implicitly represent open/closed shapes (structures). The
images of distance functions are registered using the mutual information approach.
In addition to global registration, they used a b-spline based incremental Free Form
Deformation (IFFD) to minimize a dissimilarity measure. Taron et al. [25] proposed
an invariant representation of shapes, and computing uncertainties on the registration
process. They proposed a dimensionality reduction technique to lower the cost of the
density estimate computation of kernel based shape model. Mahmoodi [28] proposed
a shape-based active contours for fast video segmentation. Their level sets implement
is based on Mumford-Shah [29] and Chan-Vese [21] methods. They compared their
method with only intensity based segmentation method.

5.1 Methods

The intensity (as the existing information) and shape (as the prior information) are
modeled to obtain the optimum segmentation in this study. The intensity information
is modeled using the histogram of gray levels of the image. This information is mod-
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eled using the Gaussian distribution. The model estimates the marginal density for
each class. Kendall [18], definesshape the geometrical information that remains when
location, scale, and rotational effects are filtered out from an object. Hence, the shape
information is modeled after the sample shapes are transformed into the reference
space. The shape variability is modeled using the occurrences of the transformed
shapes. To label the image into meaningful areas, the chosen information is modeled
to fit progressively in each of the regions by an optimization process. Each pixel in the
image will have two probabilities to be an object and a background class based on the
intensity and shape models. These probabilistic values will guide the energy (cost)
functionals in the optimization process. Next sections detail the proposed method

5.1.1 Generation of the Shape Prior

As described in [30], the shape model is required to capture the variations in the
training set. This model is considered to be a weighted sum of the new projected
SDFs’s as follows:

ΦP =
∑N

a=1
ΔaΦt

a (15)

Let W = [Δ1, . . . , ΔN ]t to be the weighting coefficient vector. By varying these
weights, ΦP can cover all values of the training distance functions and, hence, the
shape model changes according to all of the given images. A new probabilistic
and dynamic shape model is synthesized using the first four principal components.
Two shape probability density functions which represent the probability of i) the
object (inside of a boundary) and ii) background regions (outside of a boundary) are
obtained:

Ps
o (x) =

∑N
j=1 Δ j |Φt

j (x)|H(−Φt
j (x))

∑N
j=1 Δ j |Φt

j (x)| , Ps
b (x)

∑N
j=1 Δi |Φt

j (x)|H(Φt
j (x))

∑N
j=1 Δ j |Φt

j (x)| , (16)

whereH(.) is the Heaviside step function as a smoothed differentiable version of
the unit step function. Also, we should note that Ps

o (x) + Ps
b (x) = 1. This step is

integrated into the registration step which is described in section 5.1.2, hence the
shape model is dynamically reconstructed in the registration process.

Figure 6 shows the detailed description of the shape model where the shape weight-
ing coefficients are normalized, i.e. w = {Δ1, . . . , ΔN } = {1/N , . . . , 1/N }. The
green color shows the background region which does not have any intersection with
any training shape. The blue color shows the object region which is the intersection
of all projected training shapes.



110 A. A. Farag et al.

Fig. 6 a The gray color represents the variability region. b The red color shows the contour of the
average shape (Φp). c The object (ps

o) and d background (ps
b) shapes are modeled in the variability

region which the pixel values are defined in (0 : 1)

5.1.2 Level Sets Segmentation

The level sets formulation was first introduced by Osher and Sethian [19]. Topology
changes like merging and splitting, are handled naturally without the need of para-
meterization. Given a curve C, it can be embedded into a higher dimension function
Φ as C = {x : Φ(x) = 0}. Then the curve is defined as the zero level of the implicit
function. If the time t is added to the function, curve evolution function is changed to
Φ = Φ(x, t). The surface function Φ evolves with the time and the evolution front is
always represented as the zero level. In the literature, the final level sets formulation
is defined as follows:

Φ(t + ωt) = Φ(t) − F |∇Φ|ωt = 0 (17)

There has been various methods to model the speed function, F. In this paper, a new
method which is integrating the intensity and prior shape information is proposed.
We use two energy functionals to be minimized. The first functional is to extract
object regions using image intensities only with a statistical level set evolution as
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described in [22]. We need this step to obtain the image feature to be used in the
shape registration process. The second functional, which is slightly different than
the formulation proposed in [26], depends on the dissimilarity measure between our
shape model and the resulting contour which is obtained in the first phase.

The data is assumed to consist of two classes: object and background. Suppose
that the intensity probability density function (pdf) within each of these two regions,
denoted as pI

o and pI
b , can be modeled using a Gaussian distribution whose parame-

ters are adaptively updated during the course of evolution ofthe level set function.
The segmentation process starts by initializing the level set function as the signed
distance function of a circle centered at a seed point(s) that is placed automatically
using the Matched filter [31] or with manual annotation. Then, the statistical pa-
rameters corresponding to the pdf for the object and background are estimated as
follows:

μo = →σ I (X)H(−Φf◦)dσ

→σ H(−Φf◦)dσ
, μb = →σ I (X)H(Φf◦)dσ

→σ H(Φf◦)dσ
,

ϕ 2
o = →σ(I (X) − μo)

2 H(−Φf◦)dσ

→σ H(−Φf◦)dσ
, ϕ 2

b = →σ(I (X) − μb)
2 H(Φf◦)dσ

→σ H(Φf◦)dσ
,

φo = →σ H(−Φf◦)dσ

→σ dσ
, and φb = →σ H(Φf◦)dσ

→σ dσ
(18)

where μ, ϕ, and φ are the mean, standard deviation, and prior probability of the corre-
sponding pdf [22]. Object and background regions are represented by H(−Φ)H(Φ),

respectively. The pixel position, (x, y), is represented as (x). The intensity based en-
ergy term is modeled to maximize posterior probability of each region as follows:

Eintensi t y(Φf◦) = −→σ P I
o (I (x))H(−Φf◦)dσ − →

σ

P I
b (I (x))H(−Φf◦)dσ+ ∈ L ,

(19)
where L is the front length of the surface area and ∈ is a constant between 0 and 1.
The change of the level set function with time is calculated by the Euler-Lagrange
with the gradient descent given as:

αΦf◦

αt
= −α Eintensi t y

αΦ◦
f

= κ(Φf◦)[P I
0 (I (x)) − P I

b (I (x))]+ ∈ K (20)

where k is the curvature of the evolving contour (or derivative of L) and κ is the
derivative of the Heaviside step function. By solving this gradient descent formula-
tion, the initial segmented region (Φf◦) is obtained. After this step, the shape energy
(Eshape) is optimized using the shape based functions which are defined in Eqs. 15
and 16.

After the object region is initially segmented, the shape model is embedded into
this domain by minimizing the new energy functional. It should be noted that the
method is implemented in 2D dimension in this work. However, the extension of 3D
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dimension is straightforward. A transformation matrix, T, that gives pixel-wise cor-
respondences between the two shape representations Φsource and Φtarget is required.
The transformation has scaling, rotation, and translation components represented as
follows:

S =
[

sx 0
0 sy

]
, R =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, T r = [tx , ty]t . (21)

The transformation will be in the form of T(x) = X = SRx + T r where X ∈ Φf◦
and x ∈ ΦP The proposed dissimilarity measure is

Eshape(Φ) = ξEGlobal + ELocal , (22)

where ξ is the normalization constant which controls the relationship between the
first and second terms which can be described as follows:

EGlobal(ΦP,Φf◦ |T ) = →
σ

(
∞

sx syΦP(x) − Φf◦(X))2dσ, (23)

ELocal(Φf◦ , P S,I
o,b |W ) = − →

σ

P S
o (x)P I

o (x)H(−Φf◦ (x))dσ − →
σ

P S
b (x)P I

b (x)H(Φf◦ (X))dσ.

(24)
The first term of the proposed energy formulation is the (sum-of-squared dis-

tance) SSD of matched distances. It helps to estimate the registration parame-
ters (sx , sy, θ, tx , ty), iteratively. Distance changes anisotropically in x-y directions.
That’s why the geometric mean between sx and sy as an approximation is pro-
posed, since the SDF is not invariant to inhomogeneous scaling. After the registration
parameters are estimated the shape model, Φp, and the projected training shapes,
{Φt

1, . . . , Φ
t
N }, are registered to the target domain using the affine transformation.

However, this approximation still may not be enough to perfectly align the shapes.
Hence, it is needed to add the other shape pdf term. A pixel inside the object of
interest needs to have bigger object probability. At the same time, this pixel needs
to have smaller background probability as well. So, the second term maximizes the
probability for object pixels to be correctly classified as internal points. The same
will happen for the background points. This step helps to estimate the shape weight-
ing coefficients (w = Δ1, . . . , ΔN ) and to refine the result of the first component
more accurately. Our proposed framework including the training step is shown in
Fig. 7. The registration and weighting parameters (sx , sy, θ, tx , ty, Δ1, . . . , ΔN ) are
computed to minimize Eshape using the Nelder-Mead simplex optimization method
which was first proposed by Nelder and Mead and proved using theoretical results
by Lagarias et al. [32]. The Nedler-Mead method aims to minimize a scalar-valued
nonlinear function of n variables using function values, hence it is one of the direct
search methods.
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5.2 Evaluation

To assess the accuracy and robustness of our proposed framework, we tested it using
clinical data sets as well as synthetic and phantom images. All algorithms are imple-
mented on a PC with a 3 GHz AMD Athlon 64 × 2 Dual processor, with 3 GB RAM.
First, we describe the experimental results on synthetic images. Second, validation
on the European Spine Phantom (ESP) with various noise levels and clinical data sets
will be shown. Effect of initialization will be evaluated.Shape based segmentation is
useful when the target shape has some occlusions and missing information.

5.2.1 Shape-Based Segmentation of Synthetic Objects

Figures 8 and 9 show results on synthetic jet airplane and number four images with
some missing information or occlusions. As seen in the results, the first component
(of Eq. 22) is useful for an approximate transformation of the shape model. The sec-
ond component enhances the segmentation with updated shape coefficients. Hence,
the proposed dissimilarity measure is able to improve the global registration results.
The results show that occlusions and missing information mislead those methods
based only on intensity model. Using the shape prior information the desired shapes
are recovered. Also, we observe that the proposed method slightly improves segmen-
tation quality of our previous study [27]. As shown in Fig. 8. The proposed method
is more able to capture the fine details and corners of the objects.

In [11, 24], the dissimilarity measures have limitations to capture the object-
of-interest if the source and target shapes have inhomogeneous scale differences.
Figure 10 shows the results when the target shapes have (i) homogeneous, and (ii–iv)
inhomogeneous scale differences. Because dissimilarity measures of two alternative
methods discard a possible scale difference in x or y directions, they fail when the
target shapes are scaled inhomogeneities in x-y directions. The results prove that the
proposed method overcomes the problems inhomogeneous scale differences. The
computational costs of the two alternative methods [11, 24] and our method on 40
images (with 128 × 128 size) are approximately 220, 340, and 360 s, respectively.
Since the method described in [11] does not estimate the shape coefficients in the
optimization, it executes the experiment in faster time. Also, since the proposed
method estimates two scaling parameters (sx , sy), the execution time may be expected
to be slightly higher than other two alternatives.

5.2.2 Shape-Based Segmentation of Vertebral Body from CT

Our approach is also tested on clinical CT images to segment vertebral bodies (VBs)
as well as the European spinal phantom (ESP). The vertebra consists of the VB and
spinal processes. The red color shows the contour of the region of interest in Fig. 11.
The objective is to segment the VB region correctly. Spinal processes and ribs should



114 A. A. Farag et al.

Fig. 7 The general framework is shown. The steps can listed as follows: 1 Obtain shape projections
to define the shape variability. 2 Segmentation

not be included in the bone mineral density (BMD) measurements. The clinical data
sets were scanned at 120 KV and 2.5 mm slice thickness. In this experiment, 260
testing CT slices (totals to 15 VBs) which are obtained from 13 different patients
and different spine bone regions (i.e. lumbar, thoracic, etc.) are tested. To assess
the proposed method under various challenges, a zero mean Gaussian noise was
added to the CT images with different signal-to-noise ratios (SNR). To compare the
proposed method with other alternatives, VBs are subsequently segmented using
two other methods; (1) the active appearance model (AAM) [23], and (2) our earlier
PCA-based approach which is described in [8].

Segmentation accuracy is measured for each method using the ground truths
(expert segmentation). To evaluate the results, the percentage segmentation accuracy
(A) is calculated as follows:

Dice⊂s Coe f f icient (A%) = 100 ◦ 2T P

2T P + F P + F N
. (25)

where TP is the number of true positives, FP is the number of false positives, and FN
is the number of false negatives. The segmentation accuracy is shown in Table 2. It is
clear that the noise immunity of our method are much higher than other alternatives.
Figure 11 shows the segmentation results of the proposed framework with different
scaling, translation, and rotation initializations.
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Fig. 8 Segmentation results of a synthetic jet airplane images with different missing information
and initializations. a The intensity only based segmentation results. b Different shape model initial-
ization. c The results using only the first term of Eq. 22. d [27]. e The segmentation of the proposed
method (the redand yellow colors show the contour of the ground truth shape region, and the contour
of the automatically segmented region, respectively)

Table 2 Average segmentation accuracy of the proposed vb segmentation on 272 ct images. The
size of each image is 512 × 512

SN R = 100 d B SN R = 50 d B SN R = 10 d B SN R = 1 d B s/slice

Intensity based, % 79.3 66.2 57.9 51.8 5.6
AAM [23], % 85.2 83.7 79.0 76.1 7.2
PCA-based [8], % 89.3 83.6 81.8 81.3 10.8
Proposed, % 94.3 92.9 89.3 86.8 11.3

Results indicate that the performance of our method is almost constant with differ-
ent initialization parameters. To quantitatively demonstrate the accuracy of our ap-
proach, we calculate the average segmentation accuracy of our segmentation method
on 272 CT images (including 12 ESP images) the under various signal-to-noise ratios
and compare the results with the two other methods (Intensity-based and PCA-based).
Our 2D-PCA based framework outperforms the conventional PCA described in [8]
as shown in Fig. 12a.
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Fig. 9 Segmentation results on a synthetic number “4” with occlusions and different shape ini-
tializations. a the image with occlusions and noise. b the segmentation results using intensity only
information. c different shape model initializations. d the result of the proposed method (the red and
yellow colors show the contour of the ground truth shape region, and the contour of the automatically
segmented region, respectively)

Additionally, Fig. 12b studies the effect of choosing the number of the projected
training shapes N (by changing the chosen value of L) on the segmentation accuracy.
From this figure, we can conclude that the performance of 2D-PCA is better than
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Fig. 10 Comparison with two closest works described in [11, 24]. Testing shapes with (i) homo-
geneous and (ii–iv) inhomogeneous scaling factors. (i) sx = 1.0, sy = 1.0, (ii) sx = 0.7 sy = 1.3,
(iii) sx = 1.2, sy = 0.7, (iv) sx = 0.4, sy = 0.7 (the red and yellow colors show the contour of the
ground truth shape region, and the contour of the automatically segmented region, respectively

the conventional PCA under the same number of training shapes. In other words, to
get the same accuracy of PCA framework, the 2D-PCA needs fewer training shapes.
Using the shape model, the spinal processes are eliminated automatically without
any computational cost and execution time. This contribution is very important for
the BMD measurements which are restricted to the VBs.

6 Summary and Possible Extensions

This chapter considered elastic registration of shapes and its applications in the
segmentation problem. Shape representation was performed using the vector distance
function (VDF). The energy function for global and local registrations was described.
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Fig. 11 Segmentation results of clinical CT images. a intensity only based segmentation results. b
different initialization of the shape model. c the proposed segmentation results (the red color shows
the contour of the ground truth shape region, the yellow color shows the contour of the automatically
segmented region)
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Fig. 12 a the average segmentation accuracy of different segmentation methods on 272 CT images
under various signal-to-noise ratios. b the effect of choosing the number of the projected training
shapes N on the segmentation accuracy

Creating a shape prior was studied for a number of examples. We have demonstrated
the registration problem by matching vector implicit spaces representation of shapes.
We formulated the process as an energy minimization problem. Gradient descent is
used for optimizing the global registration energy with proper initialization of the
transformation parameters.
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The use of vector implicit representation helps generalize the global transforma-
tion and hence, results are improved. In local registration, the situation is different
because the number of unknown parameters used to represent deformations is large.
Gradient descent is an awkward step in this situation. We adopt a closed form solu-
tion for the elastic registration problem by formulating a quadratic function, which
leads to a convex optimization system. The proposed approach avoids using large
number of iterations required for the minimization by gradient descent optimization.
We demonstrated several experimental results for synthetic and real shape registra-
tion cases. The proposed approach is competitive when compared to the state of the
art techniques. Qualitative, quantitative, and comparative experimental results have
been demonstrated for both global and local registration cases. An application for
nodular region segmentation has been illustrated to assure that the proposed tech-
nique has a wide range of applications. Regarding future directions, the proposed
approach can be implemented in 3D in a straightforward manner, which will help in
applications like 3D face recognition.
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Image Computing Based on Bayesian Models
(BM)

Zhong Xue and Stephen Wong

Abstract Many medical image computing tasks apply the prior knowledge about the
variability of shapes or deformations to improve the performance of shape analysis,
segmentation, registration, as well as group comparison or computer-aided diag-
nosis. Statistical model-based algorithms play important roles in capturing such
prior information and applying them for robust image segmentation and registra-
tion. Given the prior distribution of a high-dimensional data, which can be a shape
description, a deformation field, or other feature vectors from the training images,
the objectiveis to come up with the best estimation of the shape, the deforma-
tion, or feature vectors from an observed data/image. The traditional maximum a
posteriori (MAP) framework is the most commonly used methodology to incor-
porate the prior information in the estimation. One example of MAP estimation
is the active shape model (ASM), which encodes the prior information of object
shapes using principal component analysis (PCA) and then extracts the shape of
an object from the PCA model that matches the image the best. Such statistical
model-based method is constrained by the prior distribution from sample data for
improved robustness. However, ASM takes directly the reconstructed object shape
as the matching result, and it may not be able to match a new image accurately
if the variations of the shape are not presented in the sample data, or if the num-
ber of model modes has been truncated too severely. This chapter introducesa new
Bayesian model (BM) for accurate and robust medical image computing. BM over-
comes the limitation of MAP by incorporating an intermediate variable and jointly
estimating the result and the intermediate variable simultaneously. In this way the BM
framework allows for convenient incorporation of additional constraints, reduces the
constraints of the prior distributions, and increases the flexibility of shape matching.
In this chapter, after a brief literature review of the statistical model-based image
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analysis methods, we first introduce the BM framework in both segmentation and
registration and then present our two works that apply the BM methodology. From
the techniques presented we can see that image segmentation and registration can
be uniformly formulated in the same BM framework, and such formulation can also
easily facilitate other image computing tasks.

Abbreviations

ASM Active shape model
BM Bayesian model
BSM Bayesian shape model
GM Gray matter
MAP Maximum a posteriori
MR Magnetic resonance
PDE Partial differential equation
PVA Principal component analysis
ROI Region of interest
SMD Statistical models of deformations
SPM Statistical parametric mapping
SVM Support vector machine
TS Temporal smoothness
WM White matter
WPT Wavelet packet transform

1 Introduction

Image segmentation, registration, group comparison, and classification are the most
commonly used medical image computing tasks. In image segmentation, a group
of voxels from the input image are highlighted (using curves or surfaces or region of
interest (ROI)) to represent specific anatomical structures, e.g., shapes or volumes of
tumors. Sometimes all the images voxels are partitioned into different tissue types
such as MR brain image segmentation. In image registration, one image is aligned
onto another globally and locally (using elastic deformations) in order to define
correspondences between images. After defining the correspondences, automatic
measurements or image normalization can be performed for either group comparison
or automatic classification for computer-aided diagnosis. The template-based image
segmentation deforms shape templates of organs or structures to match the shapes
in the input images, and atlas-based image registration solves the deformation fields
that match the atlas onto subject images. Therefore, they are essentially solving a
similar image computing problem: deform a template (shape or image) onto input
subject images, and the only difference is that they are dealing with different sizes of
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voxels or feature points. ROI extraction normally involves in less number of points,
while image registration considers each voxel in the image.

In the literature, many segmentation and registration algorithms had been pro-
posed. In this chapter, we first give a brief review of them. As our goal is to introduce
the uniform methodology by applying the BM in image computing, we will focus on
summarizing the common methodologies used in medical image segmentation and
registration, and discussing how the BM framework can be applied to them.

In image segmentation, for more than 25 years deformable models have been
attracting much attention in the areas of object detection and matching because of
their flexibility of adapting themselves to fit objects more closely than fixed template
matching. Generally, deformable models can be classified into two classes [1]: the
free-form models and the parametric or deformable template models. The free-form
models, e.g., active contours or snakes [2] and later level set methods [3–5], can be
used to match any arbitrary shape provided some general regularization constraints,
such as continuity and smoothness, are satisfied. On the other hand, the parametric
models are more constrained because some prior information of the geometrical
shape is incorporated [1, 6, 7]. Compared with the free-form deformable models,
it has been demonstrated that the parametric models are more robust to irrelevant
structures and occlusions when being applied to detect specific shapes of interest. The
parametric models, such as deformable templates/models [1, 6, 8, 9], G-Snake [10]
and Active Shape Model (ASM) [11, 12], encode specific characteristics of a shape
and its variations using global shape model, which is formed by a set of feature
parameters or well defined landmark/boundary points of that shape. A successful
and versatile scheme in this field is statistics-based shape models in the maximum a
posteriori (MAP) framework. In these models, the prior knowledge of the object as
well as the observation statistics is utilized to define the optimal estimate. However,
most of these existing parametric models encode the shape information in a “hard”
manner in that the prototype contour is fixed during the matching process. As a
result, only a small amount of local deformations can be tolerated.Statistical model-
based segmentation such as ASM represents a typical MAP algorithm in applying
prior distribution constrained methods. It encodes the prior information of object
shapes using PCA and matches object by directly using the geometrical transformed
version of the ASM model. Many other training algorithms had been proposed such
as kernel-PCA and support vector machine (SVM) to capture nonlinear distributions.

Medical image registration is the process of finding a transformation that maps
one individual image to another. It is used frequently for anatomical segmentation
and labeling, for morphological analysis using shape transformations, and for spatial
normalization of structural and functional data.In the literature, many registration
methods have been proposed [13–22], and they aim at finding the deformation field
between two images by not only maximizing the similarity between two images but
also by using proper constraints on the deformation field. Therefore, the registration
performance of an algorithm may be affected by the way it defines the image simi-
larity measure and the form or the constraints it uses for the deformation field. As a
result, even for the same set of data, the registration results of different algorithms are
different, and they are biased toward different image similarity measures and differ-
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ent deformation definitions and constraints. While the ground truth is not available,
it is often difficult to evaluate which registration result is better or to provide more
robust registration results.

In fact, deformable template-based segmentation and image registration found the
same ground in terms of image processing. In image segmentation, the object shape is
defined as a group of voxels, a shape, or a region, and the objective is to deform such
a shape model so that it matches the object in the input image. Image registration can
also be regarded as a special segmentation procedure, and the difference is that now
the object shape is the target image or a shape that include all the image voxels. The
goal is the same: deforming the shape (the template image) and find the best match
between the deformed template image and the input subject image to define the voxel-
wide image correspondences. Therefore, it is natural to formulate the segmentation
and registration procedure using similar methodologies.

How to constrain the deformation of a shape model or a template image is one
of the major tasks to define an appropriate method. Generally, there are two groups
of methods. One is to use the general constraints such as smoothness constraints or
topological constraints to make sure that the matching procedure is valid. Another is
to apply prior knowledge in the matching procedure. Such prior knowledge about the
possible variability of shapes or image deformations can be learned from a number
of training samples and captured using statistical models, and the statistical model
can then be used to constrain the matching procedure. Typical examples are the ASM
and statistical model-based registration mentioned above.

Statistical models play important role in capturing such prior information [23].
Given the prior distribution of a high-dimensional data, which can be shape descrip-
tion, deformation fields, and other feature vectors from the training images, the
objective of knowledge-based estimation is to come up with the best estimation of
the shape, deformation, or feature vectors from an observed data/image. The MAP
framework is the most commonly used methodology to incorporate the prior infor-
mation. However, ASM takes the reconstructed object model as the matching results,
and it may not be able to match a new image accurately if the variations of the shape
are not presented in the sample data, or if the number of model modes has been
truncated too severely.In addition, representing prior statistical knowledge of high-
dimensional scalar or vector fields is of fundamental importance in a variety of scien-
tific areas including computational anatomy, shape analysis, pattern recognition, and
hypothesis testing applied to images or their deformations [8, 12, 24]. For instance,
statistical study of deformations can be used to provide voxel-based morphological
(VBM) characterization of different groups [25]; to incorporate prior knowledge of
deformations from training samples into image segmentation and registration algo-
rithms [17]; to provide an efficient way of synthesizing new deformation fields for
validation of registration and segmentation methods [26]; to regularize deformations
according to prior knowledge of sample deformations; and to estimate the missing
parts of a deformation from parts that are observed. In fact, all these applications
and the plethora of automated methods for deformable registration of brain images
have necessitated the construction of a statistical model that effectively captures the
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prior distribution of high-dimensional deformation fields, in order to represent the
true and full range of anatomical variability.

We have proposed a new Bayesian shape model (BSM) for accurate object match-
ing that overcomes the shortcoming of the ASM model that over-constrains the shapes
using the shape prior distribution [27]. We refer the framework as the Bayesian model
(BM) because in this chapter the segmentation and registration will be presented in a
uniform way and we are not only dealing with shapes. BM overcomes the limitation
of MAP by incorporating an intermediate variable and jointly estimating the results
and the intermediate variable. The BM framework allows for convenient incorpo-
ration of additional constraints to the medical image computing tasks and can be
applied to image segmentation, registration, and group comparison.

The organization of this chapter is as follows. First, we introduce the traditional
MAP framework and then present the BM method that incorporates an intermediate
parameter for estimation. Then, we introduce the recent works on how BM framework
can be applied for medical image segmentation and registration.

2 The Maximum A Posteriori (MAP) Framework

In many image segmentation and registration works, given the input data D, which
can be the input image or input template and subject images, the objective is to find a
shape that matches the objects in the input image or a deformation field that matches
the two images. Based on the MAP framework, such a problem can be described as
maximizing the following posterior distribution [28]:

P(S|D) = P(D, S)

P(D)
= P(D|S)P(S)

P(D)
(1)

The optimal shape can be estimated by:

S∗ = argmax{P(S|D)} = argmax{P(D|S)P(S)} (2)

where P(D) = 1 because the input data D is known already. P(D|S) is the con-
ditional probability of obtaining data D given the shape S, and P(S)is the prior
distribution of shape S. So the solution of Eq. (2) is to find the best shape S∗ so that it
not only gives higher probability of the observed data D but also subject to a higher
probability according to the prior distribution of the shape.

When the probabilities are described by the Gibbs distribution [29, 30], the MAP
problem is equivalent to minimizing the energy function:

EMAP = Eext(D|S) + Eint(S), (3)

where Eext(D|S) stands for the external energy term that reflects the matching
degree between shape S and the input image D. One example in deformable shape
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matching is that the external energy term is defined as the matching degree between
the shape (curve) and the object boundary features (such as boundaries) extracted
from the image. Eint(S) is the internal energy term that regularizes the shape itself.
If the shapes from different subjects vary largely, normally the constraints are defined
as the smoothness or topological regularizations. If the shapes from different subjects
are similar but are subject to local elastic changes, a statistical shape model can be
used to capture the variability of the shapes from a number of training samples, and
then such a shape distribution can be used as the regularization term (internal energy)
in Eq. (3). In many medical image computing tasks, because the shapes of organs
are similar cross different subjects unless there exist some pathological conditions,
statistical model-based methods play an important role in regularizing such shape
variability. Therefore, many deformable model methods and statistical atlas based
deformable registration algorithms fall in this MAP formulation. In deformable mod-
els, different internal and external energy/force terms are defined for automatic object
matching.

In image registration, we can use different notes to describe the MAP method, but
the formulation remains the same. Given two images, the template IT and the subject
IS , the goal is to find the deformation field that aligns the two images. According to
MAP, the goal is to find that f maximizes the following posterior distribution:

P(f|IT , IS) = P(f, IT , IS)

P(IT , IS)
= P(IT , IS|f)P(f)

P(IT , IS)
(4)

Similarly, using the Gibbs distribution, the MAP problem is equivalent to minimizing
the energy function:

EMAP = Esim(IT , IS|f) + Ereg(f), (5)

where Esim(IT , IS|f) stands for the image distance measure (the reverse of image
similarity measure) between the two images under the current deformation field f.
Eregf is the regularization term of the deformation field.

Comparing Eqs. (3) and (5), we can see that they are actually the same kind of
formulation, and we use different names for the sake of different conventions in
segmentation and registration. The difference is that now in image registration, the
image similarity energy term calculates the differences between the two images, such
as the sum of voxel-wise intensity differences or mutual information of the subject
image and the deformed template image using f. Similar to the internal energy, the
deformation field regularization term here can use either smoothness and topological
regularization or can be derived from a statistical model if the template image is fixed,
and multiple images need to be registered onto the same template.

3 The Bayesian Model (BM) Framework

One drawback of the MAP is that it might over regularize the shapes during the
matching procedure. The reason is that from the formulation we can see that the final
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result must be exactly subject to the prior distribution. In another word, the MAP
method requires that the resultant shape is subject to the prior distribution. This
renders that it may not be able to match a new image accurately if the variations of
the shape are not presented in the sample data. For example, if a PCA model is used,
because of the limited numbers of principal components used, the shape reconstructed
from PCA model cannot reflect the detailed variability of the high-dimensional data.

It is in this context that we proposed a Bayesian shape model (BSM), which is also
referred to as Bayesian model (BM) in this chapter. In BM, an intermediate shape is
introduced in the matching procedure. In this section, the BM is first presented in the
context of shape-based segmentation, and then, its application to image registration
is introduced.

Given the input image or data D, our goal is to jointly estimate the resultant shape
S and an intermediate shape S̄ by maximizing the following posterior probability
[27, 31]:

P(S, S̄|D) = P(D, S, S̄)

P(D)
= P(D|S, S̄)P(S|S̄)P(S̄)

P(D)
= P(D|S)P(S|S̄)P(S̄)

P(D)
(6)

It can be seen that by using an intermediate shape S̄ , we can decouple the two
requirements in the matching procedure. Namely, we require that the resultant shape
S̄ match the image data and the intermediate shape match the requirement of prior
distribution. So these two shapes do not need to be the same as in the ASM model.
The middle term requires that the two shapes are close with each other. This is the
advantage of BM, and on one hand, the prior shape constraint is applied and on the
other hand, the formulation allows for flexibility to better match the object.

The final derivation in Eq. (6) is based on the assumption that the data D and the
intermediate shape S̄ are independent each other. This may not be exactly true but
in practice if we are not requiring a match between the intermediate shape S̄ and the
input data D, it is a valid assumption in the formulation. Using the Gibbs distribution,
the problem is equivalent to minimizing the energy function:

EBSM = Eext(D|S) + Eint(S|S̄) + Econ(S̄), (7)

where Eext(D|S) stands for the external energy that matches the shape S with the
image Eint(S|S̄), represents the distance between the two shapes, and Econ(S̄) is
the constraint energy term that regularizes the intermediate shape S̄. We can use the
smoothness constraints or statistical model constraints to define Econ(S̄).

The key feature for BM is that now we are solving a shape S that on one hand
matches the image data D, and on the other hand, to be as close as the intermediate
shape S̄, which is regularized by the constraint energy term. In this way, the resultant
shape S is not necessarily the exact regularized shape according to the shape priors.
Such a formulation allows for accurate matching of the object shape, while still be
regularized by the prior information.

We now translate the BM into image registration applications. According to the
BM framework, the goal of image registration is to solve jointly the deformation
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field f and an intermediate deformation f̄ field by maximizing the following posterior
distribution [27]:

P(f, f̄ |IT , IS) = P(f, f̄ IT , IS)

P(IT , IS)
= P(IT , IS|f, f̄)P( f, f̄)P(f̄)

P(IT , IS)

= P(IT , IS| f )P(f, |f̄)P(f̄)
P(IT , IS)

, (8)

Similarly, using the Gibbs distribution, the BM problem is equivalent to minimizing
the energy function:

EBM = Esim(IT , IS|f) + Ereg(f|f̄) + Econ(f̄) (9)

where Esim(IT , IS|f) stands for the image similarity measure, Ereg(f|f̄) is the regu-
larization of f, and Econ(f̄)is the constraint energy of the deformation field. Econ(f̄)
can be modeled using statistical models of the training deformations defined on the
same template image space.

In fact, by comparing Eq. (5) with (9), we can see that the use of intermediate
deformation f̄ in the BM method relaxes the direct regularization of the deformation
field and increases its flexibility. This formulation allows for more accurate registra-
tion of medical images. If no statistical models are used, e.g., only using smoothness
constraints, such an intermediate matching procedure may not be necessary and
the MAP method may perform similar to the BM. Because for high dimensional
shape and deformation data, the generalization and specificity of statistical models
may be limited, requiring the result to be exactly subject to the prior distribution
could be loosed by using the BM method.

In the next two sections, we introduce the applications of the BM framework
in medical image segmentation and registration. First, in Sect. 4, we introduce an
atlas-based level-set segmentation for MR brain images, where the BM framework
has been applied to use the statistical models of level-set functions in the atlas space
for constraining the segmentation of anatomical structures in subject images. This
comes up with a new joint parametric and nonparametric segmentation [32, 33].
Then, in Sect. 5, we introduce a statistical model of deformation (SMD) constrained
image registration algorithm [19, 34]. Although with different applications, both
algorithms apply the same basic methodology presented in this Section.

4 BM for Medical Image Segmentation

4.1 Introduction

In this chapter we introduce how to apply BM in level-set-based MR brain image
segmentation. Image segmentation or automatic extraction of anatomical struc-
tures plays an important role in medical image analysis. In the literature, various
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deformable models or partial differential equation (PDE)-based methods have been
proposed to extract the anatomical structures of interest in medical images. These
model scan also be regarded as model fitting problems in a probabilistic framework
[7] based on the Bayes’ theorem, where the input image is divided into different
regions by matching the external and internal hidden features so that the posteriori
probability of the segmentation is maximized.

The internal features reflect the geometric properties of the evolving curve such
as curvature, curve-length, and smoothness measures. They are represented by either
explicit or implicit curved descriptors. An unjustified property of explicit descriptors
is that geometrical evolution of a curve is not intrinsic since it is dependent on the
way the curve is parameterized. Implicit curve descriptors are generally parameter-
ized by arc-length [33, 35, 36]. One of the typical methods using implicit curve
descriptor, known as the level set method [37], has become very important in image
segmentation due to its advantages such as parameter-free representation of curves
and easy handling of topology changes.

The external features are traditionally represented by image specific information
such as image gradient [2, 33, 35, 36, 38], or regional information [3, 39]. Partic-
ularly, in boundary-based approaches with an implicit curve representation [33, 36]
curve evolution is achieved by defining a geodesic curve of minimal weighted length
and a boundary-based metric from image data. However, these methods are sensitive
to noise or images with poor contrast, and they often stuck in local minima since the
objective functions rely on boundary-based external features and there is no global
shape constraints about the object shape to be matched.

On the other hand, region-based external features are defined as regional image
statistics inside and outside the contours and are more stable than boundary-based
features. Mumford and Shah [40] proposed a new energy function in the variation
framework. The aim is to find smooth regions as optimal piecewise approximation of
input image and with sharp boundaries by minimizing the energy function. In order
to simplify the optimization process, Mumford and Shah’s energy function is used
in greedy algorithm based on the region growing and merging [41] or in statistical
framework [39].

Another solution was proposed by Chan and Vese [3] to provide an efficient
variation formulation in level set representation for minimizing the Mumford–Shah
energy function [42–44]. In curve evolution-based methods, regional image statistics
are obtained based on the parametric statistics [39, 43, 44]. However,the performance
of parametric methods can be depended on the assumed parametric models and the
class of input images. Therefore,nonparametric methods such as Parzen windowing
are used to estimate the underlying distribution of the pixel intensities within each
region [23, 41, 45]. Another way to improve region-based methods is to integrate
prior knowledge into image-based segmentation function to process globally high-
level information of object shapes. This knowledge is trained as the object-oriented
model based on using learning procedures, for example on space of implicit function
[4, 46–48], Fourier-driven curve representation [8, 33], and parametric space of curve
representation [11, 12, 15].
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One important property of the model-based approach is that the variability of
object shapes is captured from training samples and acts as the shape priors. Accord-
ing to level set representation,the shape prior information can be used on both linear
subspace of parametric level set function spanned by principal components and non-
linear space of nonparametric level set function. In parametric curve evolution on
linear subspace, Tsai et al. [5] proposed to parameterize the level set energy function
with respect to shape and pose parameters. Curve evolution is performed paramet-
rically via updating the shape and poses parameters constrained by the statistical
parametric model obtained using Principal Component Analysis (PCA). In nonlin-
ear space of evolving curve, Leventon et al. [49] used PCA directly on the space of
implicit functions to estimate principal modes of shape variation of training sam-
ples. This prior information constraints and regularizes the evolving curve derived
separately by image specific energy term in [36]. In order to couple segmentation
and prior model, Rousson [48] proposed a statistical prior model in variational form
and included an average shape and mode of variation defined from training samples.
This statistical model is integrated with an existing data-driven variational method to
extract the objects. One can instead estimate and impose the shape prior information
on the zero-crossing rather than on the level set function using variational framework.
For promising extensions, based on the level set representation in statistical shape
prior models, Charpiat et al. [50] proposed nonlinear shape metrics and estimated
the principal shape variations.

Cremers et al. [51] proposed nonlinear statistical shape model by performing
kernel PCA along level set-based Mumford–Shah segmentation [40]. In [52] and
[4], nonparametric density estimation forshape priors is assimilated in the level set
framework to extract object. In summary, the parametric statistical model-based
curve evolution enforces the constraints about the underlying shapes by the shape
prior and therefore the algorithm is robust and less affected by noise or low image
contrast. On the other hand, the nonparametric evolution energy term can handle
infinite degree of curve variations and helps us to achieve better accuracy than the
method that only uses the parametric statistical models.

Recent works by [53] and [46] also use similar statistical model in level set
method. These approaches directly apply a PCA model to constrain the level set
function while matching it with the image features. Thus, the level set function is
more constrained by the prior distribution. The optimization procedure of the curve
is achieved using the calculus of variation on the nonlinear space of nonparametric
level set function.

As described in the previous section, BM facilitates a joint estimation of the
resultant shape and an intermediate shape simultaneously. Thus, we can integrate
the advantageous of both parametric and nonparametric curve evolution using in the
BM framework. The core of such joint curve evolution is a unified energy function
that drives the active contour toward the desired boundaries through two steps. In
the first step, the curve is driven by the nonparametric level set function toward a
homogeneous intensity regions and constraint by the parametric shape-based model.
Therefore, minimization process of this step is achieved on nonlinear space of level
set function. In the second step, the curve is optimized by parametric level set func-
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tion and is driven toward the global shape prior and image regions parametrically
and constraint by nonparametric model from previous step. Optimization of the sec-
ond step is achieved on linear subspace spanned by principal components obtained
in statistical shape-based model. Therefore,in the joint curve evolution, both local
features such as statistical region properties of the image, curvature and length of
the curve and global features of the object such as shape and position parameters are
updating respectively through these two steps. In this way, two curves are used to
match the object shape in an iterative manner. They are jointly constrained via a sim-
ilarity measure between them in each iterative evolution. Finally, the nonparametric
level set curve is regarded as the final matching result since it is more accurate as
compared to the parametric curve.

In experiments, the proposed algorithm has been applied to segment the frontal
horns of ventricles and putamen of MR brain images. The reason that we choose these
two structures is that the boundaries of the ventricle frontal horn are very clear, while
the white matter/gray matter contrast of putamen boundaries is lower compared to
other anatomical structures of the brain. Thus we can fully evaluate the performance
of the algorithm under different conditions. The comparative results have shown
that the proposed joint curve evolution is as robust as Tsai et al. method and yields
more accurate results as compared with the parametric only statistical model [5] and
nonparametric model [3] by using manually marked curves as the gold standard.

4.2 Previous Methods

Before introducing the joint BM segmentation method, we briefly introduce the non-
parametric and parametric curve evolution algorithms that the joint curve evolution
algorithm is built on.

Nonparametric Curve Evolution

Chan and Vese proposed a nonparametric curve evolution method by solving the
Mumford Shah problem, called minimum partition [3]. From the variational analysis
point of view, the basic idea of the algorithm is to find the level set function Σ a given
image I by minimizing the energy function,

E =
∫

W
(I (X) − CW )dx +

∫

Φ\W
(I (x) − c\W )dx + σ

∫

Φ

|∇H(Σ)|dx, (10)

where Θ is a constant. The shape Σ divides the image domain Φ into two homo-
geneous regions W and Φ\W . W represents object region and Φ\W is the region
outside the object. CW is the average intensity of image within region W , and C\W
is the average intensity within region Φ\W . H(Σ) is the level set function and Σ is
the shape represented by the zero level set. It can be seen that this nonparametric
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curve evolution algorithm uses region-based image features and infinite degree of
curve variation for image segmentation.

Parametric Model-Based Curve Evolution

In order to improve robustness, many statistical model-based methods have been
proposed to constrain the evolution of level set functions. Tsai et al. [5] integrated
parametric statistical shape modeling with the region-based curve evolution to drive
the curve by using the statistical shape model as constraints. The shape variability
is estimated by performing PCA on the globally aligned level set functions, and the
major shape variation is then statistically reflected by the changes along the principal
components. Subsequently, a parametric level set function θ can be described as a
function of the feature vector in the PCA space, w, and the pose parameter p, reflecting
a global transformation from the shape space onto the image space (see Eq. (12) for
details). Then, the associated energy functions (similar to Eq. (10)) can be defined
as follows,

E = S2
W /AW + S2

Φ\W /AΦ\W (11)

Notice that the parametric level set function Σ is determined by w and p, and it
divides the image domain into two regions: inside W = {VκΣ(V) < 0} and outside
Φ\W = {VκΣ(V) > 0} the zero level set curve Σ, the areas of these two regions are
AW and AΦ\W , and SW and SΦ\W are the total intensities of these regions.

Notice that the energy functions in Eqs. (10) and (11) are similar, but the difference
is that the zero level set curve in nonparametric curve evolution means the shape Σ

is defined by a free-form level set, while in parametric-model based curve evolution,
the shape is defined by a parametric model θ[W, P] , and will be detailed in the
following section.

Statistical Models of Level Set Functions

The PCA-based statistical model of the level set functions can be trained as follows.
First, all the N sample images are globally aligned onto the standard shape space,
and according to PCA, a parametric level set function can be represented by,

θ[W, P] = θ̄ + γK
k=1Wkλk(p) (12)

where θ̄ is the mean level set function, and λk is the kth eigenvector of the covariance
matrix of the N samples. The corresponding K largest eigenvalues are denoted as
ψk, k = 1, . . . N .

It is worth noting that other statistical modeling methods can also be used to model
the distributions of level set functions, shapes, or deformations. In this chapter, we use
PCA as an example. In general, it has been proved that nonlinear modeling such as
kernel-PCA or SVM performed better in capturing the detailed variability of shapes.
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These statistical models are not introduced in this chapter, because our focus is to
present a uniform BM framework for both segmentation and registration.

4.3 Joint Curve Evolution Algorithm

As stated in the introduction, nonparametric level set curve evolution can match
image boundaries accurately but often suffer from local minima, and parametric
level set curve evolution is more robust by using statistical shape models but might
be less accurate in matching object boundaries. Using the proposed BM framework,
we can estimate both the parametric and nonparametric shapes simultaneously, so
that the level set evolution results can be not only accurate but also robust.

Joint Curve Evolution Using the BM Framework

If we denote the parametric shape parameter as w and the nonparametric shape as
the level set function Σ, according to Eq. (6), is S replaced by the nonparametric
shape Σ, and S̄ is replaced by the shape parameter w. Then, the joint estimation can
be formulated by following Eq. (7), as follows:

(Σ̂, ŵ) = argmax{P(I |Σ)P(Σ|w)P(w)/P(I)}. (13)

Using the Gibbs distribution, the energy function can be defined as:

E(Σ, w) = Eext(I|Σ) + πint Eint(Σ, w) + πcon Econ(w) (14)

where πint and πcon are the weighting coefficients for the energy internal and the
constraint energy terms. The first energy term reflects the matching degree between
Σ and the image data. , and it drives the nonparametric curve toward the object in
the image. Therefore, we use Eq. (10) for calculating Eext(I, Σ).

The second energy term of Eq. (14) Eint, reflects the difference between the
parametric and nonparametric curves. And it can be defined as

Eint(Σ|w) =
∫

Φ

(H(Σ(x)) − H(θ(w)))2dx, (15)

where H() is the signed distance map for a given shape. The reason to use the
differences of the signed distance map to define the shape differences is because that
the prior of the parametric shape θ is defined on the signed distance maps,and the
nonparametric θ shapes are represented by level set functions. The third energy term
of Eq. (14), Econ, constrains the variations of the parametric shape according to the
prior distribution trained from sample shapes using PCA according to Eq. (12).
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Curve Evolution with Pose Invariance

The above formulation does not consider the global transformations among the train-
ing samples. In fact all the training samples can be globally aligned into a standard
shape domain before training the statistical model so that no variations of the position
of images have been included in the statistical model. Therefore, in this subsection,
by considering the pose parameter p between the standard shape domain and the
image domain, a parametric curve can be represented by (w, p) and thus we augment
the proposed Bayesian formulation in Eq. (14) as,

E(Σ, w, p) = Eext(I |Σ) + πint Eint(Σ|w, p) + πcon Econ(w, p). (16)

Minimization of the Energy Function

The energy function of Eq.(15) can be minimized by iteratively updating (w, p)
and θ using gradient descent method:

• Step 1: Calculating w. First the parametric vector w can be updated by assuming
that p and Σ are known. Since nonparametric contour Σ is not related to w, the
partial derivatives involve in optimization of Eqs. (12) and (15).

• Step 2: Updating p. The pose information p is updated by assuming that w and Σ

are known and fixed, and the gradient of E with respect to p can be calculated as
from Eqs. (12) and (15).

• Step 3: Updating Σ. The nonparametric shape Σ can be updated by fixing w and
p, and the gradient of E can be calculated from Eqs. (10) and (15).

4.4 Results

In order to evaluate the performance of the proposed joint curve evolution algo-
rithm, in this section, we applied the algorithm to extract the ventricle frontal horns
and putamen from MR brain images. The reason that we choose these two struc-
tures is that the boundaries of the ventricle frontal horn are very clear, while the
white matter/gray matter contrast of putamen boundaries is lower compared to other
anatomical structures of the brain. Thus we can fully evaluate the performance of
the algorithm under different conditions. Prior to the experiments, corresponding
slices from different images are selected and the ventricle frontal horn and putamen
shapes are manually marked to act as both ground truth and training samples of the
statistical models.

Altogether, we used 14 ventricle images and 13 putamen slices in the experiments,
and the pixel spacing of the images is 0.9375 mm × 0.9375 mm. These 2D images
were selected by first globally registering all the 3D images to one randomly selected
image and then choosing the same slice position for all the images. Leave-one-out
strategy is used for training and testing the algorithms. In each iteration of the cross-
validation, the MR brain image of one subject is left out from the training data that are
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Fig. 1 Shapes by varying the weights for the first principal component. The values shown are the
corresponding weights [32]

Fig. 2 Sample segmentation results for the putamen and the ventricle frontal horns of MR images
by using the joint curve evolution algorithm with leave-one-out training strategy [32]

used for training the statistical model, and is tested by using the joint curve evolution
algorithm trained on them. The validation iterates until all the images are left out
once and only once for testing. The average distance between the resultant curve
and the ground truth is then recorded, reflecting the accuracy of the segmentation
algorithm with respected to that testing image.

Figure 1 shows the shape changes by varying the weights of the first principal com-
ponent, trained using PCA model. Figure 2 illustrates the sample results for matching
the putamen and the ventricle frontal horns using our methods. The initialization is
done as follows. We manually indicate the location of the objects (i.e., the visual
estimate of the object center), and then rigidly shift the mean shape to that location,
acting as the initial curve. We performed more than 3 initializations for each image,
and the errors for manual estimation of the object center are within the range of
[−7, 7 mm], and the proposed algorithm obtained satisfactory results for all the tests
with different initializations. The results also indicate that the proposed algorithm is
not only effective for shapes with highly distinct boundaries such as the ventricles,
but also satisfactory with low contrast shapes such as the putamen.

We also evaluated the object matching performance by quantitatively comparing
the results of the proposed joint curve evolution and the parametric-only curve evolu-
tion with the manual ground truth. For comparison purposes, the same leave-one-out
strategy was also used for Tsai method.
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Fig. 3 Comparison results for extracting the shapes of the ventricle frontal horn and putamen [32]

Figure 3 plots the segmentation errors for matching both putamen and ventri-
cles in all the testing images. It can be seen that the matching errors of the pro-
posed joint evolution algorithm are much lower than those of Tsai method. For
putamen, the average and standard deviation of our algorithm and Tsai method are
0.95 mm/0.24 mm and 3.06 mm/0.81 mm, respectively; for ventricle segmentation,
they are 0.89 mm/0.37 mm and 1.59 mm/0.76 mm, respectively.

Obviously we obtained better segmentation accuracy for ventricles than putamen,
which is because that the boundaries of ventricles are much clearer. In summary, both
visual and quantitative results indicate that the proposed joint curve evolution algo-
rithm is not only robust but also more accurate than the parametric curve evolution
method for medical image segmentation.

4.5 Concluding Remarks

We have proposed a joint curve evolution algorithm for medical image segmentation.
In this algorithm, both parametric and nonparametric curve evolution methods are
employed based on the Bayesian framework to extract object shapes using level set
functions. As a result, the algorithm has the advantages of both parametric and non-
parametric curve evolution. It is as robust as the statistical model-based parametric
curve evolution algorithm and at the same time, yields more accurate segmentation
results. In the future work, we will extend our algorithm to match various anatomical
structures in 3D medical images and improve the algorithm so that it can be used to
segment multiple objects simultaneously.



Image Computing Based on Bayesian Models (BM) 139

5 BM for Group-Wise Registration

5.1 Introduction

As introduced in Sects. 2 and 3, atlas-based image registration uses one fixed tem-
plate image for normalizing a large number of subject images for group analysis
or labeling. In order to improve the robustness of the registration statistical models
of deformations (SMD) that captures the variability of deformations from sample
images can be used to constrain deformable registration. Although low-dimensional
statistical models, such as active shape and appearance models have been suc-
cessfully used in statistically-constrained deformable models, constraining of high-
dimensional warping is a more challenging task, since conventional PCA-based sta-
tistics are limited to capture the full range of anatomical variability.

In this Section, we first introduce an SMD that is built upon the wavelet-PCA
model and then uses it to constrain the deformable registration, wherein the template
image is adaptively warped based on SMD during the registration procedure. Com-
pared to the original template image, the adaptively deformed template image acts
as an intermediate image that is formulated in the BM framework, and it is more
similar to the subject image, e.g., the deformation is relatively small and local, and
it is less likely to be stuck in undesired local minima.

Conventional deformable registration methods [14–16, 54] aim to find a defor-
mation field between two images by maximizing the image-similarity measure and
simultaneously constraining/regularizing the deformation field according to various
deformable models. When training samples are available, statistical models that cap-
ture the variability of these deformations can be utilized to constrain the registration
procedure in order to obtain more robust registration results [17]. Nevertheless, a
good statistical model must effectively limit the searching space of deformations
and, at the same time, accurately capture complex nature of deformation fields.

The popular principal component analysis (PCA)-based algorithms [12, 24, 55]
can be used to capture the variability of deformations using the principal modes of
shape variation. However, they fail when applied to deformation gelds, due to under-
training in practical settings, e.g., high dimensionality and small training samples.
Different statistical algorithms have been proposed to deal with these problems,
among which the wavelet-PCA model [32], applying PCA model in each wavelet
band of deformation fields, has been approved to be more accurate and effective
for estimating probability distribution functions (pdfs) of deformations. To alleviate
possible discontinuity or some negative Jacobian values that could be generated by the
wavelet-PCA model, we proposed the SMD [23], which uses additional constraints to
regularize deformation fields, including wavelet-PCA models of both deformations
and their Jacobian determinants coupled with a Markov random field (MRF).

We show that the proposed statistically-constrained deformable registration is
more robust and accurate than the conventional registration. Because the HAMMER
[15] registration program is used in this Section, we referred to the new registration
method under the BM framework as SMD+HAMMER [19, 34].
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This Section proposes a statistically-constrained deformable registration, using
the Bayesian framework formulation. The basic idea is to adaptively deform the
template image according to the statistics of deformations (i.e., SMD) and register
the input subject image and the deformed template image by using a conventional
algorithm. Since the intermediate deformed template image is more similar to the
input subject image than the original template image, the registration between them
is much easier, due to relatively small and local deformations between these two
images.

5.2 Statistical Model of Deformations (SMD)

Denoting f as the deformation field defined over the template image domain, the goal
of SMD is to estimate its pdf, i.e., p(f), from a set of training samples. Generally,
compared to the number of dimensions the number of samples is way smaller. In
order to capture finer and more localized variations of f, SMD follows and extends the
wavelet-based PCA model. The wavelet-PCA model decomposes using the wavelet
packet transform (WPT) and subsequently captures within-scale statistics via PCA in
each wavelet band. The fundamental assumption in wavelet-PCA is that the wavelet
based rotation renders the covariance matrix of deformation close to block-diagonal,
thereby enabling a more accurate estimation of the statistical distribution in each
block (wavelet band) from a limited set of examples, compared to the usual sample
covariance estimation, due to both of lower dimensionality and relatively strong
correlations among variables.

Ideally, if the wavelet-PCA model captures the statistics of deformation accurately,
we can just use it as the statistical model; however, the assumption that the covari-
ance matrix of is block-diagonal in the wavelet packet basis does not hold exactly.
Although it is well-known that for broad classes of signals, correlations across scales
diminish rapidly, they are nonetheless non-negligible for adjacent scales. In order to
alleviate this problem, we observe that additional constraints imposed on the defor-
mation fields can be used to define subspaces in which the deformation must belong
to.

Therefore, SMD requires that a valid deformation field belongs to the intersection
of the following three subspaces:

• The first subspace: The Wavelet-PCA model applied to the sample deformation
fields.

• The second subspace: The wavelet-PCA model of the Jacobian determinants of
the sample deformation fields. The reason to use Jacobian is that they reflect local
volume changes of anatomical structures, which are important from the perspective
of spatial distribution of the amount of brain tissue. It also makes sure that the
deformation fields have valid Jacobian determinants and are topologically correct.

• The third subspace: A nested MRF regularization applied to eliminating the poten-
tial discontinuities of deformations.
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Fig. 4 The space of valid deformations is represented as the intersection of different subspaces
reflecting different aspects of a warping field [23]

Figure 4 illustrates that the intersection of the three spaces represents the under-
lying region of deformation fields, and the details of the method was presented in
[23].

Given an input deformation field, we can iteratively project it onto each of the
three subspaces, and generate the SMD regularized deformation field according to
these priors. This procedure is referred to as the SMD regularization algorithm, and
it consists of the following five steps:

• Step 1. Project the deformation field onto the wavelet-PCA model of valid defor-
mation fields;

• Step 2. Project the Jacobian of the deformation field onto the wavelet-PCA model
of valid Jacobian determinants;

• Step 3. Find new deformation field with Jacobian matching the one generated in
Step 2;

• Step 4. Apply the nested MRF regularization to imposing spatial smoothness on
the deformation at all scales;

• Step 5. Go to step 1 and iterate until convergence, i.e., Until the MRF-regularized
deformation field belongs to the subspaces of valid Jacobian and deformations.

SMD has been approved to be more accurate in capturing the statistics of defor-
mation fields than the conventional PCA-based method and been used for simulating
realistic images for evaluation of atlas-based registration and segmentation algo-
rithms.

5.3 Statistically-Constrained Deformable Registration Using BM

After estimating the statistical model of deformation fields, we can use it to constrain
a deformable registration. Let IT and IS be the template and the subject images
respectively, according to the Bayesian model (BM) framework, we can estimate two
deformation fields. One is denoted as f, and it is constrained by the prior distribution,
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Fig. 5 Instead of directly registering the template image with the subject image (illustrated by the
dotted line), in this work, the template image is first warped toward the subject image in the space
of SMD (by deformation f), and a conventional registration is then performed for the deformed
template and the subject images (using deformation h) [34]

and the other is denoted as f̄ , and it is the final result. Then, similar to Eq. (8), the
statistically-constrained deformable registration can be formulated as maximizing,

P(f̄, f |IT , IS) = P(IT , IS|f̄)P(f̄ |f)P(f)/P(IT , IS), (17)

where P(f) is the prior distribution of deformation fields. Once the template image is
fixed and this prior can be trained from a large number of images, and herein the prior
can be defined by the SMD as described previously. P(IT , IS|f̄) is the likelihood of
the images for a given deformation f̄ , meaning we need to find a deformation field f̄
to match the two images. P(f̄ |f) indicates that these two deformation fields should
be similar to each other.

Notice that once f is known, we can deform the template image IT using f, and
generate a new deformed template image that is more similar with the subject image.
Figure 5 shows such a case. The domain of the prior distribution of the deformation
field f is represented by the ellipse, and the deformation field f̄ can be calculated by
combining the deformations f and h, f̄ = h ◦ f .

If we substitute f̄ = h ◦ f in Eq. (17), the first term tells us to find a deformation
field h to match the deformed template and the subject image, and the second term
means the deformation field h should be small so f and f̄ are similar. The third term
means that the deformation field f should be constrained by the prior distribution.

To solve the optimization problem, we can use the iterative two steps. The first
step will fix the field f , and try to find the best registration result h ; and the second
step will fix the f̄ = h ◦ f , and try to constrain it to get a new deformation f.

These two tasks are accomplished by the following two steps and also illustrated
in Fig. 6:

• Step 1. Use the SMD regularization algorithm to regularize the combined defor-
mation f̄ = h ◦ f and generate a new deformation f and a new deformed template
image;

• Step 2. Apply a conventional registration algorithm to register the deformed tem-
plate image with the subject image and generate a new deformation h. In this work,
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the HAMMER [15] registration program was used, and therefore, the proposed
framework is referred to as SMD+HAMMER.

Figure 7 gives an example of the statistically-constrained deformable registration.
It can be seen that compared to the original template image in Fig. 7a, the intermediate
deformed template image in Fig. 7c is more similar to the subject image in Fig. 7b,
which renders the registration between Fig. 7b and c relatively easy than that between
Fig. 7a and b, e.g., the deformation between them is relatively small and local.

Other registration algorithms could also be used instead. Notice that the deforma-
tion in this Section consists of two parts, one is a deformation of the template image
defined according to SMD, and the other is a nonlinear deformation by registering the
warped template with the subject image using a conventional registration; whereas in
our previous work [23], only the former, i.e., the deformation regularized by SMD,
is regarded as the registration result.

5.4 Results

Simulated deformations and images were used to compare the registration accuracy
of HAMMER and the proposed SMD+HAMMER. First, we used two groups of T1-
weighted MR brain images (79 for each group) as the training samples for two SMDs,
respectively. Then, one SMD was used for simulating new deformations and images,
and another was used for constraining the registration. We have simulated 9 such
images and registered them onto the template image space, and then calculated the
deformation errors between the registration results and the simulated ground truth.
The histogram of these voxel-wise deformation errors of all the 9 images are shown
in Fig. 8. It can be seen that SMD+HAMMER yields more accurate registration than
HAMMER, with respective population means as 0.59 and 0.86 mm.

In order to test the robustness of registration, from a group of normal MR brain
images (10 images), we simulated atrophy on the superior temporal gyrus and the
precentral gyrus [20], and then registered all these images onto the template image.
Using the tissue density maps, i.e., the RAVENS maps [56] of gray matter (GM),
white matter (WM), and ventricular CSF (VN) calculated from the resultant defor-
mation fields, we performed a paired t-test for group analysis using the statistical
parametric mapping (SPM) software package. A smaller p-value or a larger t-value
of this t-test indicates better separation. Table 1 shows the statistical measures for the
two clusters detected in the locations of the precentral gyrus and the superior tem-
poral gyrus, respectively. It can be seen that smaller p-values (both of pFWE−corr and
pFDR−corr) and larger t-values are obtained by SMD+HAMMER. Thus, according to
these experiments, SMD+HAMMER generated more robust and stable deformation
fields and is more powerful in detecting group differences.

In another test on simulated images, we simulated atrophy on corpus callosum on
the T1-weighted images of 150 different subjects. All the original 300 original and
simulated images were then registered on a randomly selected subject. The SMD
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Fig. 6 The structure of the statistically-constrained deformable registration [34]

Fig. 7 An example of the registration results. a the template image; b the subject image; c the
intermediate deformed template image; d final registration result: the warped template image
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Fig. 8 Comparison of accuracy of registrations [34]

Table 1 Paired t-test for the two image groups

HAMMER SMD+HAMMER

Cluster 1 (in the pFWE-corr = 0.342 pFWE-corr = 0.032
superior temporal pFDR-corr = 0.057 pFDR-corr = 0.003
gyrus) T = 12.91 T = 16.70

Cluster 2 (in the pFWE-corr = 0.272 pFWE-corr = 0.003
precentral gyrus) pFDR-corr = 0.057 pFDR-corr = 0.003

T = 13.26 T = 21.12

was also trained on the deformation fields obtained from the 150 original images.
We than performed a paired t-test for group analysis. Figure 9 shows some examples
of the original images and the atrophy images in a flowchart. After registering all
the images with the template, we calculated the Jacobian determinant map of all the
deformation fields, and then performed t-test. The reverse of the p-value map (1−p)
is also shown in Fig. 9. It can be seen that the corpus callosum had been extracted
indicating the group differences.

Robustness of registration can also be observed by warping serial images of the
same subject. For the serial images captured from normal subjects, the longitudinal
changes are relatively small, thus a registration algorithm should be able to accurately
measure these subtle longitudinal changes or provide temporally consistent/smooth
results, even without using any temporal smoothness constraints. Therefore, we tested
the registration algorithm by registering the serial images of six subjects onto the
template image then calculated the voxel-wise temporal smoothness (TS) of the serial
deformation fields. TS is defined as the average of the absolute values of temporal
gradients of deformations along longitudinally corresponding points, can be used to
reflect such kind of longitudinal consistency.

A smaller TS value means the longitudinal deformation is temporally smooth,
and viceversa. To illustrate the TS values of SMD+HAMMER relative to those of
HAMMER, we calculated the histograms of the differences of TS maps between
SMD+HAMMER and HAMMER, for the six series of images tested. Figure 10
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Fig. 9 Test of group comparison using simulated corpus callosum images

Fig. 10 Histograms of the difference of TS values between SMD+HAMMER and HAMMER [34]

shows the results of the six subjects. Notice the histogram now shows the distribution
of the differences of TS, i.e., TS of SMD+HAMMER minus that of HAMMER.
From the figure, we can see that most of the TS values of SMD+HAMMER are
smaller than those of HAMMER, indicating that the new SMD+HAMMER method
generates more longitudinally-consistent registration.

5.5 Concluding Remarks

This Section proposed a statistical model of deformation (SMD) and uses it to con-
strain deformable registration. The template image can be adaptively warped accord-
ing to SMD during the registration procedure, and the conventional registration is
performed by aligning the input subject image with the intermediate deformed tem-
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plate image. More robust and accuracy registration is achieved compared to the
conventional registration. The proposed framework can be easily applied to other
conventional deformable registration methods.

6 Conclusion

We introduced the Bayesian Model (BM) that overcomes the limitation of MAP
by incorporating an intermediate variable and jointly estimating the results and the
intermediate variable. The BM framework allows for convenient incorporation of
additional constraints to the medical image computing tasks and can be applied to
image segmentation and registration. After a brief literature review of the statistical
model-based image analysis methods, we first introduce the BM framework in terms
of object matching. Then, we introduce how BM framework can be applied for
medical image segmentation, registration, and group analysis. Using two examples
for segmentation and registration, we showed that the BM framework can be used for
formulation of image segmentation and registration in the same framework, and the
results showed improved accuracy and robustness as compared with the traditional
MAP framework.
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Abstract The recognition and segmentation of organs and anatomical structures in
medical images is the basis for an efficient workflow and quantitative measurements
in diagnostic and interventional applications. Numerous methods have been devel-
oped in the past for specific applications, and many of them are based on variants
and extensions of active contours or active shape methods. We present an overview
over shape-constrained deformable models that have specifically been developed for
organ segmentation in 3D medical images. They rely on a pre-defined shape space
like active shape models, but preserve some flexibility of active contour approaches
as they allow deviations from the shape space. In particular, we describe our approach
to shape parametrization and the concept of “Simulated Search” that we use to train
boundary detection. Fully automatic segmentation is achieved by a segmentation
chain comprising a localization step based on the Generalized Hough Transforma-
tion and subsequent model adaptation with increasing degrees of freedom. Finally,
we show how shape-constrained deformable models allow to address clinical appli-
cations in cardiology and neurology.
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1 Introduction

Today, medical imaging systems like CT and MR scanners produce detailed high
quality patient images that contain a huge amount of information. This information
is, however, not readily available and recognition and segmentation techniques are
key to extract and visualize the desired information efficiently in clinical practice.
For that reason, numerous methods have been developed in the past to segment
vessels, tumors and anatomical structures. In many cases, these techniques have
been designed to address specific questions or clinical applications.

We present an overview of shape-constrained deformable models (SCDM) as
introduced in [1] that have specifically been developed for organ segmentation in 3D
medical images. A specific goal was to develop a framework that works for images
of different modalities such as CT or MR as well as for different organs or anatomical
structures. SCDMs rely on a pre-defined shape space like active shape models [2], but
preserve some flexibility of active contour approaches [3] as they allow deviations
from the shape space. Compared to atlas-based segmentation methods that are often
used for brain segmentation [4], SCDMs share the concept of deforming a reference
anatomy in order to segment the organ of interest. Adaptation relies, however, on
triangle meshes and on boundary detection rather than on voxel-based non-rigid
registration.

Starting with a brief description of active contours and active shape models, we
introduce the basic concept of SCDMs in the following section. In Sect. 3, we discuss
their application for establishing corresponding points on 3D organ surfaces in the
context of 3D statistical shape model construction. As an alternative approach to
parameterize shape variability, we introduce multi-linear models that are based on
a subdivision of an anatomical structure into several parts. Next to a parameteriza-
tion of the shape variability, robust and accurate model adaptation requires suitable
techniques for boundary detection. Our boundary detection approach is presented in
Sect. 4. Training is based on the definition of a large number of boundary detection
function candidates and a mechanism that we call “Simulated Search” which selects
the optimal boundary detection function for each triangle from the candidates.

The approaches described in Sects. 2, 3 and 4 have been integrated in a segmenta-
tion framework that is described in Sect. 5. Next to model building, fully automatic
segmentation by localization using the Generalized Hough Transformation (GHT)
and subsequent model adaptation with increasing degrees of freedom is described.
In addition, segmentation results for different organs in CT and MR images are pre-
sented. Section 6 describes four clinical applications of the segmentation framework.
Clinical applications comprise left ventricle (LV) segmentation for functional analy-
sis in CT, CT-based measurements for planning transcatheter aortic valve implanta-
tions (TAVI), the generation of models of the left atrium and pulmonary veins for
guiding atrial fibrillation (AF) ablation procedures and volumetry of brain structures
using MR images for evaluating traumatic brain injury (TBI) patients.
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2 Approaches

SCDMs combine properties of deformable models or active contour models and
active shape models. We briefly describe therefore both approaches, before intro-
ducing the concept of SCDMs. For illustration, we also present results for vertebra
segmentation in CT images.

2.1 Deformable Models and Active Shape Models

Active contour models have been proposed by Kass et al. [3] for the segmentation
of objects in 2D images. The basic idea consists in the determination of the contour

x(s) s ∝ [0, 1] (1)

of an object by minimization of an energy functional that consists of an external
energy Eext attracting the contour to image features and an internal energy Eint that
enforces smoothness of the contour. The energy functional may, for instance, be
given by

E[x] = −
∫ 1

s=0
∗ ∇ I (x(s)) ∗2 ds + Σ

∫ 1

s=0
∗ Φ2/Φs2x(s) ∗2 ds. (2)

After proper initialization, the contour would be attracted towards borders in the
image I with high gradients and the weight Σ controls smoothness of the contour.
This approach has been extremely successful and a huge number of papers were
published proposing variations of energy terms and applying it to numerous prob-
lems. The approach was also applied in medical image analysis and extended for the
segmentation of surfaces in 3D images [5, 6].

Active shape models [2] are another very successful approach. The approach relies
on establishing a number V of corresponding points Xi = (xi,1, . . . , xi,V )∅ on a set
of N reference objects (i = 1, . . . , N ) of the same kind. After aligning the objects,
a point-distribution model (PDM)

XPDM = M̄ +
P∑

k=1

pk Mk (3)

is constructed via principal component analysis (PCA), i.e. the mean shape

M̄ = 1

N

N∑

i=1

Xi (4)
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is computed and modes Mk = (mk,1, . . . , mk,V )∅ describing shape variations are
derived from the P largest eigenvectors of the matrix

C = 1

N

N∑

i=1

(Xi − M̄)(Xi − M̄)∅. (5)

Assuming that an initial model position and shape is given, adaptation of the PDM is
done by detecting borders along normals of the object boundary and modifying the
parameters pk of the PDM to minimize the distance to the detected border points. Also
for this approach numerous variants have been introduced and the basic approach
was applied to a large number of problems. In particular, the approach was extended
for 3D medical image segmentation [7].

When segmenting an anatomical object like a bone or the heart with a stable
topology between different individuals, active shape models differ in two impor-
tant aspects from active contour models. First, the segmentation accuracy of active
shape models is limited by the number of eigenvectors and the training samples
used to construct them while active contour models can in principle approximate any
(smooth) shape. Of course, the flexibility of active shape models may be increased
by adding more eigenvectors and artificially generating additional reference shapes,
but the advantage of a compact model with a few parameters will be lost. Second, by
establishing corresponding points, the points of an active shape model can, at least
approximately, be associated with an anatomical location, while active contour mod-
els do not allow this. This property is very important as it allows to attach individual
boundary detectors to each point and enables segmentation of organs with different
boundary properties for different parts.

2.2 Shape Constrained Deformable Models

SCDMs [1] have been introduced to combine the advantages of active contour models
with those of active shape models. In particular, they have been designed to allow
for an accurate approximation of anatomical objects, while each point of the model
can be associated with an anatomical region.

In the following we consider the segmentation of anatomical objects in 3D medical
images. The deformable model is represented by a mesh with V vertices xi and T
triangles with centers ci . Adaptation of the mesh to an image is done by iterating a
boundary detection step and a mesh deformation step. Boundary detection is done by
detecting points xtarget

i with high gradient along profiles parallel to the mesh normal
(see also Sect. 4). Mesh deformation is done by minimizing an energy

E = Eext + ΣEint. (6)

The external energy Eext drives the mesh towards the detected borders
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E p
ext =

T∑

i=1

w̃i (xtarget
i − ci )

2 (7)

or the associated surfaces

Es
ext =

T∑

i=1

w̃i

(
∇∅ I (xtarget

i )

∗ ∇ I (xtarget
i ) ∗ (xtarget

i − ci )

)2

(8)

with weights w̃i derived from the boundary detection step. The internal energy

Eint =
V∑

i=1

∑

j∝N (i)

(
xi − x j − s R

(
m̄i − m̄ j +

P∑

k=1

pk(mk,i − mk, j )

))2

(9)

compares the difference vectors between two neighboring mesh vertices of the
deforming model and the shape model. N (i) denotes the neighbors of vertex i . The
scaling parameter s and the rotation matrix R allow to properly align both models.
Finally, it should be mentioned that in addition to the mesh vertices, the modes pk

of the shape model, the scaling parameter s, and the rotation matrix R are optimized
in the mesh deformation step.

The internal energy of a SCDM does essentially embed a shape model into a
deformable model and introduces regularization by penalizing deviations from the
shape model instead of imposing a smoothness constraint. In addition, the approach
approximately maintains the distribution of mesh vertices as given by the shape
model. This mechanism preserves the property of shape models that each point can
be associated with an anatomical location.

2.3 Example Results for Vertebra Segmentation

For illustration, segmentation results for 18 vertebra in 6 CT images generated with
a SCDM with P = 10 modes are briefly discussed [1]. For initialization, the mean
vertebra model has been placed with an Euclidean surface-to-surface error of 2.5–
3.5 mm compared to the reference segmentation. Model adaptation resulted in an
average error of 1.3 mm when attracting the model directly to the detected boundaries
(Eq. 7), and in 0.9 mm when attracting the model to the associated surfaces (Eq. 8).
Fig. 1 shows an exemplary result.

The example shows that the basic idea of SCDMs works. In addition, it demon-
strates the importance of the external energy and whether the model is directly
attracted towards the detected boundary points or to the associated surfaces. Though
the difference between the corresponding average segmentation errors of 1.3 and
0.9 mm is only 0.4 mm, the segmentation result looks unacceptable in the former
case, while a good segmentation result is obtained in the latter case. This impression
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(a) (b)

(c) (d)

Fig. 1 Sample segmentation results starting from the identical initialization, when using the external
energy of Eq. (7) (a, b) and of Eq. (8) (c, d) [1]

can potentially be explained by large segmentation errors in some regions while an
accurate segmentation is obtained in other regions, and shows that comparatively
small differences in surface-to-surface metrics can make a relevant difference.

3 Shape Variability

Robust and accurate model adaptation relies on a suitable shape parameterization. We
first summarize results related to PCA-based shape models where SCDMs have been
used to establish corresponding points. Afterwards we introduce multi-linear models
as an alternative approach to parameterize shape variability. The latter approach is
exploited in the SCDM framework as it offers an intuitive way to parameterize shape
variability that leads to good shape approximations and can easily be generalized to
complex models.

3.1 PCA-Based Shape Models

Construction of an active shape model requires to establish V corresponding points
Xi = (xi,1, . . . , xi,V )∅ on a set of N reference objects of the same kind. Looking
at the surface of a 3D organ, this is a non-trivial task, because there is usually no
dense set of anatomical landmarks that can unambiguously be identified. A number
of methods has been proposed to address this task. They can be classified into mesh-
to-mesh, mesh-to-volume and volume-to-volume registration [7].
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SCDMs have been designed in a way that each point can be associated with
an anatomical location. They can therefore be used for establishing corresponding
points. Starting with a set of N binary images representing the different instances
of the anatomical structure-of-interest, an arbitrarily selected instance can be used
as reference to derive a mesh model by triangulation. This mesh model is then
subsequently adapted to the remaining N − 1 binary images. This approach belongs
to the mesh-to-volume category and has been used to construct shape models of
vertebrae and femurs [8].

The results for 32 vertebrae (L1–L4) derived from CT scans with an in-plane
resolution of 0.2 × 0.2 mm2 to 0.7 × 0.7 mm2 and a slice thickness between 2 and
3 mm show that the reference mesh can be adapted to the binary images representing
the other vertebrae with an average surface-to-surface error of 0.8 mm. The accu-
racy of corresponding anatomical positions has been assessed using the tips of the
processes as landmarks. They have been encoded in the reference mesh by marking
the corresponding triangle. After adapting the reference mesh to the binary image
of another instance, these triangle positions have been compared with the manually
defined landmarks resulting in an average Euclidean distance of 2.1 mm. This result
provides evidence for the statement that points of a SCDM can approximately be
associated with an anatomical location, especially when keeping in mind that the
result is also affected by the accuracy of manual landmark definition.

Generalizability of the PCA-based shape models has been addressed by leave-
one-out experiments where a PDM was built from all vertebrae but one and adapted
to the left out vertebra. Figure 2 shows the resulting surface-to-surface error in depen-
dence of the number of modes P . The results show that the approximation accuracy
increases with the number of modes P . The benefit of additional modes decreases,
however, and the approximation accuracy is only marginally improved when using
more modes than P = 13. The resulting approximation accuracy of 1.4 mm is clearly
worse than the 0.9 mm obtained with SCDM segmentation [1]. Although care must
be taken in the comparison since metric and test set are not identical, the results show

Fig. 2 Approximation of an unseen vertebra with a PCA-based shape model [8]. The dashed line
indicates the segmentation accuracy of SCDMs [1]



158 J. Weese et al.

Fig. 3 Approximation of an unseen heart with a PCA-based shape model [9]. The dashed line
corresponds to shape approximation with a multi-linear model

that SCDMs relax shape constraints and can, therefore, lead to more accurate results
than active shape models.

A similar experiment was performed for a 4-chamber heart model [9]. In this work,
28 cardiac CTA images from 13 patients corresponding to different heart phases with
an in-plane resolution of 0.48 × 0.48 mm2 and a slice thickness between 0.67 and
3 mm were used. Corresponding meshes and ground truth annotations have been
generated simultaneously in a bootstrap approach using SCDMs, and the resulting
meshes have been used to build PCA-based shape models. Generalizability has been
addressed by leave-one-patient-out experiments to avoid that results are biased by
the shape of a patient’s heart. Figure 3 shows the mean constrained surface-to-surface
error, which is close to a surface-to-surface error but avoids meaningless comparisons
of non-corresponding mesh parts. The approximation accuracy increases with the
number of modes, but the curve becomes flat and usage of more than P = 8 modes
leads only to marginal improvements.

Both examples illustrate that shape models with a few modes derived by princi-
pal component analysis allow to approximate anatomical structures with a surpris-
ingly high accuracy. Though other approaches for establishing correspondences than
SCDMs may lead to better results, approaches that further increase the flexibility of
shape models and allow for a more accurate approximation are desired.

3.2 Multi-Linear Models

One class of approaches to increase model flexibility is to subdivide an anatomical
structure into several parts and model their shape variability independently [7, 10–
12]. One particular approach [9, 13] consists in partitioning an anatomical object in
K parts and modeling the variability of part k by a linear transformation Tk(qk)[.]
where qk describes the transformation parameters. With this approach, the mean
model can be transformed according to
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Tmulti-linear(q)[m̄i ] =
K∑

k=1

wi,k · Tk(qk)[m̄i ] (10)

If all parts would be independent, the subdivision can be described by weights

wi,k =
{

1 if vertex i belongs to part k
0 otherwise

. (11)

To avoid discontinuities between the individual parts, the transformations are inter-
polated in transition regions that depend on the geodesic distance to the border
between the parts. Practically, this is done by assigning weights 0 < wi,k < 1 with∑K

k=1 wi,k = 1 in transition regions.
This approach has been used to parameterize the shape of a 4-chamber heart model

[9]. In particular, affine transformations (K = 5) have been assigned to the left atrium,
the right atrium, the left ventricular epicardium, the left ventricular endocardium
(together with the aortic trunk) and the right ventricle (together with the pulmonary
artery). The capability to approximate an unknown shape has been assessed in the
same way and using the same data as it has been done for the PCA-based shape
model of Fig. 3. Therein, the resulting mean constrained surface-to-surface error is
shown by the dashed red line.

The result shows that this intuitive way of parameterizing shape leads to a better
approximation. Though the multi-linear model has more parameters (60 resulting
from 5 affine transformations with 12 parameters) than the PCA-based shape model
(37 corresponding to 25 modes and an affine transformation describing pose), there
is no indication that global PCA-analysis would lead to a more compact model that
approximates unknown shapes with similar or better accuracy. In addition, local
modeling of shape variability via partitioning allows to describe shape variability
of complex anatomical structures and organs within a single framework. A multi-
linear model has, for instance, been used to construct a shape parameterization of
the heart with the major vessels [14]. Shape variability of the vessels was modeled
by assigning similarity transformations to vessel segments (Fig. 4).

Modeling of shape variability by multi-linear transformations can easily be
included in the SCDM framework. For that purpose, the internal energy of Eq. (9) is
replaced by

Eint =
V∑

i=1

∑

j∝N (i)

K∑

k=1

wi,k
(
xi − x j − (

Tk(qk)[m̄i ] − Tk(qk)[m̄ j ]
))2 . (12)

The parameters q of the multi-linear transformation are optimized in addition to the
vertex positions x1, . . . , xV during mesh deformation by energy minimization.
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(a) (b)

Fig. 4 Heart model [14] with large vessels (a). For multi-linear shape modeling, the vessels are
subdivided into segments (b)

4 Boundary Detection Framework

A key problem when adapting a surface model to medical images is the abundance of
misleading structures that need to be distinguished from the wanted organ surfaces.
In addition, boundary characteristics may vary over the organ surface. The boundary
detection framework is therefore of key importance for robust and accurate adaptation
of a SCDM to images. We first describe how boundaries are detected and the type
of features that we use. Specific boundary detection functions are generated via the
analysis of training images. “Simulated Search” is used to select the best boundary
detection function per triangle. Finally, we summarize some results that have been
generated in the context of heart segmentation.

4.1 Boundary Detection

As explained in Sect. 2.2, adaptation of the mesh to an image is done by iterating
a boundary detection step and a mesh deformation step that minimizes the energy
E = Es

ext + ΣEint (see Eqs. (6)–(9)). Similar as for active shape models [2, 7],
boundary detection is done by searching for each mesh triangle a characteristic point
along profiles parallel to the mesh normals.

Formally, for triangle i , we establish a search profile {x−σ
i , . . . , x+σ

i } centered at
the triangle center ci . The profile is oriented along the triangle normal with equidis-
tantly spaced points xk

i . Among these profile points, a target point is detected:
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xtarget
i = argmax

{xk
i | k=−σ,...,+σ}

(
Fi (xk

i ) − D · (xk
i − ci )

2
)

. (13)

Here, Fi (x) is a triangle-specific function with a large positive response for sur-
face points (e.g., the local gradient magnitude ∗∇ I (x)∗). The distance penalty with
weighting factor D allows to bias the search to nearby target points. The feature
response together with the distance penalty is also used to define the weight

w̃i = max
{

0, Fi (xtarget
i ) − D · (xtarget

i − ci )
2
}

. (14)

of the detected boundary point in the external energy of Eqs. (7) and (8).

4.2 Features

Organ boundaries in medical images are often associated with intensity transitions.
The image gradient ∇ I (x) builds, therefore, the basis of the features Fi (x) that we
use. The image gradient is projected onto the triangle normal ni to suppress edges
that deviate strongly from the local surface orientation. To control the maximum
feature response for structures like metal implants in CT images, we use a heuristic
damping of gradients exceeding a threshold gmax [1]:

G limit
proj (x) =

(
ni · ∇ I (x)

)
· gmax · (gmax + ∗∇ I (x)∗)

g2
max + ∗∇ I (x)∗2 . (15)

This quantity builds together with the sign si = ±1 the basis of our features

Fi (x) = si · G limit
proj (x). (16)

The sign indicates per triangle i whether the boundary is expected to show a bright-
to-dark transition or vice versa.

Such a simple feature leads to many positive responses, and a large number of
unwanted boundary points are typically detected. Local gray values and gradient
sizes [15–19] have been used to design more specific features and to improve dis-
crimination from false boundaries. We use a general formulation and constrain the
admissible edges by a set S of local image criteria Q j (x)

Fi (x) =
{

si · G limit
proj (x) if Q j (x)∝[Mini, j , Maxi, j ] ≤ j ∝ S,

0 otherwise.
(17)

If any of the criteria’s value is not within its triangle-specific acceptance interval
[Mini, j , Maxi, j ], the associated boundary is rejected by setting its response to 0.
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Typically, we use criteria Q j (x) such as local gray values on either side of the
surface, averaged over several points perpendicular or parallel to the surface, and
changes of gray values across the surface. The latter can be characterized by first or
second order Taylor coefficients of a local gray value profile or simply by the differ-
ence of inside versus outside gray values. If needed, these criteria can be extended to
better capture local characteristics and to improve discrimination. If, for instance, the
gray-value transition (bright-to-dark or vice versa) is less predictable, the signed gra-

dient si · G limit
proj (x) may be replaced by its absolute value

∥∥∥G limit
proj (x)

∥∥∥. Furthermore,

gray-value normalization may be introduced to allow application of the features for
imaging modalities without calibrated gray-scale (see Sect. 5.3).

4.3 Feature Parameterization

The feature functions of Eq. (17) depend on several parameters such as the sign si

of the expected gradient orientation and the acceptance intervals [Mini, j , Maxi, j ]
per triangle. In the simplest case, the same feature function may be used for all
triangles. Its parameters can be derived from a statistical analysis of the parameter
values on a collection of training images with reference meshes. This analysis takes
the positions ci of the triangles of a reference mesh per image and evaluates Q j (ci ).
Based on these values, we can define acceptance intervals [Min j , Max j ] that extend,
for instance, from a lower to an upper percentile value of the observed values of the
criteria Q j (x).

To account for variations of the image appearance across the organ surface, the
global statistical analysis can be preceded by a clustering procedure that groups the
mesh triangles into clusters of similar appearance (see, e.g., [18, 20–22]). This can be
done using K -means clustering based on the vector of criteria Q j (ci ). The statistical
analysis is then performed per cluster of mesh triangles, resulting in acceptance
intervals [Mink, j , Maxk, j ] for each cluster k. The sign sk can also be adjusted per
triangle cluster. With this clustering-based approach, all triangles of a cluster share
the same parameterized feature function.

Definition of the feature functions depends on various parameters and decisions.
E.g., we can include or discard the gradient sign in Eq. (17). We can also use dif-
ferent sets of criteria Q j (x) to constrain boundary detection and change the width
of the acceptance intervals. These modifications will improve boundary detection
for some triangles and deteriorate boundary detection for other triangles. For that
reason, adaptation of a SCDM to images can be further improved by an approach
that selects the optimal feature function for a triangle from a large number of feature
function candidates, while the feature functions of Eq. (17) together with the clus-
tering approach are very suited for generating a large number of good parametrized
feature function candidates.
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Fig. 5 Sketch illustrating
the basic idea of “Simulated
Search”. Along the simulated
search profile (red points),
the green target point is
detected and its distance to the
reference plane is determined

4.4 “Simulated Search”

“Simulated Search” [23, 24] is an approach to rate the boundary detection perfor-
mance of a feature function for a given triangle on the basis of training images and
corresponding reference meshes. Starting with a set of feature function candidates, it
is therefore possible to select the best performing feature function per mesh triangle
and assign an optimal feature function Fi (x) to each triangle i .

The key idea of “Simulated Search” is to simulate boundary detection for an
individual triangle as illustrated in Fig. 5. By shifting the position ci of a triangle as
given by the reference mesh in a pre-defined neighborhood, we construct a pool of
simulated search profiles. Also, the orientations of the search profiles may be varied
to cover a certain range around the reference triangle’s normal direction. We then
perform boundary detection according to Eq. (13) for a feature function out of the
set of candidates and record for each simulated search profile the geometric distance
between the detected target point xtarget

i and the reference plane as defined by the
normal of the reference triangle. This procedure is performed for all reference meshes.
Finally, we compute the root-mean-square (RMS) error from all geometric distances
that have been recorded for a specific triangle and a specific feature function, and
assign the feature function candidate with the smallest average RMS error as feature
function Fi (x) to triangle i .

“Simulated Search” reflects the goal to put the mesh triangles as close as possible
to the desired boundary as defined by the reference meshes in the training images.
It addresses the question to what extend a feature function will accurately detect
the desired boundary during model adaptation, and is therefore complementary to
other approaches that construct highly characteristic feature functions by statistical
analysis of gray-value profiles [20, 25] or constraining gradient-based boundary
detectors [15–19, 26].

It is important to mention that the concept of “Simulated Search” relies only on
the boundary detection mechanism described in Sect. 4.1, but not on the specific
type of feature functions described in Sect. 4.2. Essentially, any approach leading
to some plausible form and parametrization of the candidate functions F(x) can
be tested and compared. As example, “Simulated Search” was used to demonstrate
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improved boundary detection for prostate segmentation in MR images with modified
scale-invariant feature transformation (SIFT) features [27].

4.5 Boundary Detection Training

For boundary detection training, we typically use the feature functions of Sect. 4.2 and
feature parametrization of Sect. 4.3 to generate a set of feature function candidates.
In particular, we start with a set of feature templates in form of predefined sets S of
criteria Q j (x) and perform a statistical analysis of all training images in the vicinity
of the reference surfaces. Per set S, the values of the criteria Q j are used to subdivide
the mesh into appearance regions using K -means clustering. Per cluster k, we create
acceptance intervals [Mink, j , Maxk, j ] reflecting the observed boundary appearance.
The results lead to a list of feature function candidates with a form as defined by
Eq. (17). In the final step, we assign to each triangle the feature function candidate
that minimizes the boundary detection error resulting from “Simulated Search”.

Boundary detection training using “Simulated Search” has been compared to the
clustering-based approach for defining feature functions [24]. In particular, experi-
ments have been performed using the 4-chamber heart model and the CT data that
were also used for the experiments with the PCA-based shape model (see Fig. 3).
Between 80 and 120 different initializations have been generated and either adapta-
tion of global pose and scaling (similarity transformation), adaptation of multi-affine
model parameters or SCDM adaptation has been performed. Similar to SCDM adap-
tation, model adaptation is done in the former two cases by iterating boundary detec-
tion and minimization of the external energy of Eq. (8) with respect to the parameters
used to transform the mean shape model. The results were used to define a capture
range, i.e., the maximum of the constrained surface-to-surface distance between the
initially placed model and the reference model up to which an accurate segmentation
is obtained. In addition, the segmentation accuracy has been defined as the mean of the
constrained surface-to-surface distance between the adapted model and the reference
model for cases with initial model placement within the capture range. Results are
summarized in Table 1. The results show that “Simulated Search” increases the cap-
ture range and improves adaptation accuracy compared to a cluster-based definition

Table 1 Capture range and segmentation accuracy for 4-chamber heart segmentation in CT data
when using a clustering-based approach for defining feature functions and boundary detection
training using “Simulated Search” [24]

Capture range (mm) Segmentation accuracy (mm)
Clustering Sim. search Clustering Sim. search

Similarity transformation 18.3 19.7 3.27 3.16
Multi-affine transformation 4.3 7.6 1.63 1.33
SCDM adaptation 4.0 6.4 1.02 0.76
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of feature functions. This effect is more pronounced for adaptation of multi-linear
model parameters or SCDM adaptation than for adaptation of global pose.

5 Segmentation Framework

Within the previous sections, the basic concepts of SCDMs, an approach to model
shape variability and a method for boundary detection training have been presented.
Using these concepts, we now describe how to generate and train a model. Model
adaptation is done in several steps comprising localization and adaptation with
increasing degrees of freedom. Finally, we show that the segmentation framework
can be applied to different modalities and different anatomical structures.

5.1 Model Generation

The generation of a SCDM consists of several steps (Table 2). Initially, a suitable
mesh model is generated. The starting point can be a single binary or multi-label
image from which the mesh model may be generated by triangulation. More complex
models like the 4-chamber heart model may be generated by fusing different mesh
parts [26]. There is a multitude of different options and many tools developed in
the field of computer graphics can be used in this context. In a second step, the
mesh model can be subdivided in order to define the multi-linear transformation for
parameterizing shape variations.

The next steps cover model training. Robust, reliable and accurate adaptation of a
model to new images requires training on a representative set of images. As manual
annotation from scratch is very time consuming—especially for complex models like
a 4-chamber heart model with great vessels or a brain model—we follow a bootstrap
approach that starts with manual annotation of only a few reference images. The
mesh model is adapted to the resulting binary or multi-label images as it has been
described in the context of constructing PDMs [8]. These images and the resulting
corresponding meshes are used to train preliminary boundary detectors and to define
an initial shape model. This results in a first model that can be adapted to images.

To augment our training database, we adapt this initially trained model to further
training images, select those for which reasonable segmentation results are obtained,
manually correct the results, and train a next model. This procedure is iterated until
the desired set of training images has been annotated. In addition to reducing manual
interaction time for annotations, this bootstrapping approach has the advantage of
enforcing consistent annotations as defined in the first fully manual annotations.

Next to model training, we also use the reference annotations to evaluate the seg-
mentation performance of a model in cross-validation experiments and to optimize
the overall configuration of the adaptation chain. The bootstrap approach for generat-
ing annotations may lead to a bias and the segmentation error may be underestimated
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Table 2 Different steps within the construction of a SCDM

Input Processing Output

Single label image Triangulation/meshing Mesh model
New label images Adaptation of mesh model Coarse segmentations
Corresp. gray-value images Manual corrections Reference segmentations
Gray-value images Boundary detection training Initial boundary detectors
+ reference segmentations PCA analysis Initial shape model
New gray-value images Model adaptation Coarse segmentations
+ manual model initialization Selection and manual corrections Reference segmentations
Augmented training set Repeated training Updated model

in such experiments, especially if manual corrections were not done thoroughly. It
is, however, very difficult and extremely time-consuming to generate a sufficient
number of consistent 3D annotations for complex models independently, and we
consider the bootstrap approach as a useful and practical approach.

5.2 Adaption Chain

There are two challenges related to model adaptation. First, the organ to be segmented
must be localized in the image. The result can be used for initial model placement.
Especially for complex models, the initialization may be good for some parts, but
less good for other parts. Robust adaptation of complex models after initial model
placement is therefore the second challenge. Addressing both challenges in the con-
text of SCDMs will be explained at the example of heart segmentation in CT images
[9, 14].

The Generalized Hough Transformation (GHT) [28] is one approach to localize
a shape in an image. A limitation of this approach is that the GHT requires a so-
called accumulator array with a dimension given by the degrees of freedom of the
pose of the shape to be localized. If, for instance, the shape may be at different
positions and different orientation in a 2D image, the Hough accumulator has 3
dimensions (2 for translation and 1 for rotation). In the case of a 3D image, the
Hough accumulator would need 6 dimensions (3 for translation and 3 for rotation),
making its application unfeasible. Application of the GHT for localizing anatomical
structures in 3D images is essentially enabled by the fact that patients are scanned
in standardized poses and that the orientation of organs shows little variability. In
many cases, it is therefore sufficient to consider translations and possibly scaling
(see [29] for examples). In particular, the GHT has been used to detect the heart and
initialize subsequent model adaptation [9]. Next to the GHT, Hough forests [30, 31]
and classification approaches [32] have recently been used for the localization of
anatomical structures in 3D images.
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Table 3 Segmentation error after different adaptation steps [9]

Stage of the chain Mean constrained surface-to-surface error (mm)

Localization (GHT) 8.14 8.14 8.14
Similarity transformation 3.46 3.46 –
Multi-affine transformation 1.30 – 3.12
SCDM adaptation 0.82 0.96 2.27

Initial model placement is only a starting point. Typically, the final pose and
shape of the complete model or some of its parts need considerable changes, and
an immediate SCDM adaptation is not robust enough. E.g., some parts of complex
models may be quite distant from their final destination, no matter how we place the
mean model in the image. As a result, they would adapt to wrong image structures.
To overcome these problems, we adapt the model in several steps, starting with very
few degrees of freedom and adding more and more degrees of freedom later. For the
first steps, a (low-)parametric model is defined by transforming the mean shape

m̄i (q) = T (q)[m̄i ] (18)

with a transformationT that depends on the parameters q. Parametric model adapta-
tion is done by iterating boundary detection and minimization of the external energy
(8) with respect to the parameters q. Several parametric adaptation steps that suc-
cessively increase the degrees of freedom may be done before the result is finally
refined using SCDM adaptation.

For heart segmentation in CT images [9], parametric model adaptation with one
global similarity transformation was used to refine pose and size of the 4-chamber
heart model after GHT-based heart localization. Then, parametric model adaptation
using a multi-affine transformation with K = 5 (see Sect. 3.2) was used. For final
refinement, SCDM adaptation was used. Table 3 shows the segmentation error after
each step of the adaptation chain for 28 cardiac CTA images with different heart phase
from 13 different patients. The table also shows that errors of subsequent adaptation
steps become larger if one of the parametric adaptation steps is omitted.

Additional adaptation mechanisms have been introduced in [14] to allow for
the efficient adaptation of even more complex models such as the heart model with
the great vessels of Fig. 4. Most importantly, model parts can be inactive during initial
phases of model adaptation and are activated after a pre-defined number of iterations
has been performed. In that way, a model part that has already been adapted to the
image can be used to initialize the pose of another model part. This mechanism has
been used to segment the aorta, pulmonary veins, superior vena cava, inferior vena
cava, and coronary sinus by successively activating and initializing vessel segments
after adapting the heart chambers to an image. To make model adaptation efficient,
mechanisms have been introduced to initialize a high resolution mesh model by
first adapting a corresponding model with a lower resolution, and to freeze already
well adapted model parts while model adaptation continues for other parts.
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With these mechanisms, segmentation of the heart with the great vessels in CT
images can be accomplished in 12s (PC with two 2.33 GHz Dual-Core Intel Xeon
Processors and 4 GB RAM).

5.3 Application to Multiple Modalities

All previous examples refer to the segmentation of anatomical structures in CT
images. The entire segmentation framework is, however, not tailored for a specific
modality and can easily be adapted or extended to other modalities if suitable bound-
ary detection functions can be defined and trained.

One particular property of the boundary detection functions of Eq. (17) is the use of
characteristic acceptance intervals [Min j , Max j ]. Using such intervals presumes the
existence of a calibrated gray-scale such as the Hounsfield scale in CT that is well-
suited to characterize several tissues. To enable use of these features for imaging
modalities such as MRI that do have uncalibrated gray values, we use a simple
histogram-based calibration scheme (see also [33]). In particular, we determine the
gray-value histogram of the image and map the gray-value interval between the
L- and (100 − L)-percentile linearly to a standardized interval. This calibration
makes the appearance of images acquired with the same protocol from different
individuals more similar. We do, however, not transform the entire image, but include
this calibration step in the boundary detection functions.

The 4-chamber heart segmentation has been adjusted for a steady-state free-
precision MR protocol used to inspect the coronary arteries for ischemic disease.
The 42 images have been acquired on Philips Intera and Achieva 1.5 T scanners and
have an in-plane resolution of 0.5 × 0.5 mm2 to 0.7 × 0.7 mm2 and a slice distance
between 0.7 and 0.9 mm. Compared to the 4-chamber CT segmentation, several
parameter settings have been modified (see [34] for more details). For instance, the
damped gradient in direction of the mesh normal in Eq. (16) was replaced by its
absolute value. Furthermore, an additional parametric model adaptation step with a
global affine transformation was added in between the parametric adaptations with
the global similarity and the multi-affine transformation. Table 4 shows the results
for segmentation without gray-scale calibration and with gray-scale calibration. The
table also includes the fraction of triangles with a mean error below 1.0 mm, between
1.0 and 2.0 mm, and larger than 2.0 mm. For comparison, respective values for 4-
chamber CT segmentation are also included.

Table 4 shows that gray-scale calibration reduces the overall segmentation error
by 0.57 mm. Even more important is that the percentage of triangles with a large error
>2.0 mm is reduced from 19.9 to 0.7 %. This represents a really huge improvement
from an application point-of-view, because the regions with a large segmentation
error usually need manual corrections. Overall, the resulting segmentations are as
good or even slightly more accurate than the results for CT heart segmentation.
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Table 4 Mean constrained surface-to-surface error for 4-chamber heart segmentation in CT and
MR images [9, 34]. In addition, the percentage of triangles with mean error in distinct ranges is
given

Mean error Triangles within error range (mm)
(mm) <1.0 1.0–2.0 >2.0

CT 0.82 73.7 % 25.9 % 0.4 %
MR (without calibration) 1.33 42.7 % 37.4 % 19.9 %
MR (with calibration) 0.76 76.6 % 22.7 % 0.7 %

(a)

(d) (e) (f)

(b) (c)

Fig. 6 Sample models (a–c) and segmentation results (d–f) obtained with the SCDM framework
(see [14, 35])

5.4 Application to Different Organs

Implementation of the entire segmentation framework has been done in a way that
model information (shape model, boundary detectors, adaptation parameters) is sep-
arated from the algorithms used for model initialization and adaptation [14]. The
segmentation framework can, therefore, not only be used for different modalities,
but also for a variety of anatomical structures. For illustration, Fig. 6 shows exem-
plarily models of the heart chambers, of male pelvic structures (bladder, prostate,
rectum), and several brain structures together with sample segmentation results.



170 J. Weese et al.

Since the mesh model preserves its topology during adaptation, the framework is
particularly well suited for anatomical structures showing limited variability between
individuals such as, but not limited to bones, the heart, and deep brain structures.
Without extensions, the framework cannot handle anatomical changes or pathologies
that imply topological changes of the shape. For instance, the heart model of Fig. 6
cannot be used to segment hearts with a complex defect such as the tetralogy of
Fallot.

6 Applications

The SCDM framework has been applied to segment different organs (e.g. heart, brain,
vertebrae, abdominal organs) in different imaging modalities (e.g. CT and MR). In
this section, we describe four sample applications of the SCDM framework: accurate
left ventricle segmentation for functional analysis in CT, aortic valve segmentation
to support TAVI planning, left atrium segmentation to guide AF ablation procedures,
and volumetry of brain structures using MR images for evaluating TBI patients. In the
context of the sample applications, we outline extensions of the SCDM framework
aiming at a further improvement of the segmentation accuracy, the derivation of
measurements from the segmentation result and the handling of anatomical variants.

6.1 Left Ventricular Function from CT Images

6.1.1 Motivation

Left ventricular (LV) ejection fraction is a widespread biomarker to characterize heart
function [36, 37] and has been used in numerous studies to select or characterize
patient populations. In addition, numerous methods have been developed for the
efficient segmentation of the LV in images of different modalities [38, 39] that are
the basis for computing the ejection fraction. Still, accurate determination of the
ejection fraction from clinical images requires often considerable user interaction
and its accurate automatic determination remains a challenging task.

SCDMs have been used to segment the LV in cine MR images [18] and the
four heart chambers in CT and MR images [9, 14, 34]. Results of the segmentation
accuracy suggest that SCDMs as described in the previous sections are suited for the
automatic determination of chamber volumes and related quantities from CT images.
Indeed, several related studies have been carried out for specific patient groups. They
suggest that this approach allows to obtain accurate, clinically relevant results for
LV volumes and LV ejection fraction [40], that it results in better accuracy and time
savings when compared to specific manual and semi-automatic methods [41], and
that it enables reproducible global heart function to be obtained rapidly [42].
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(a)

(d) (e) (f)

(b) (c)

Fig. 7 LV segmentations using the algorithm of Ecabert et al. [9] (a–c). Papillary muscles are
not consistently cut off and occasionally the pericardium is segmented instead of the epicardium.
With penalized “Simulated Search” and the improved adaptation chain (d–f), more accurate and
consistent LV segmentation results are obtained [43]

It is also desirable to use SCDMs for a more detailed analysis of the LV function
and to determine quantities like regional wall motion or wall thickening that are
very relevant in the context of myocardial ischemia. A closer inspection of some
segmentation results (see Fig. 7) shows, however, that occasionally the pericardium
is segmented instead of the epicardium and that papillary muscles and trabeculations
may be cut off arbitrarily. For the assessment of regional LV function, a more accu-
rate and highly consistent segmentation of the LV epi- and endocarium is therefore
needed.

6.1.2 Accurate LV Segmentation and Penalized “Simulated Search”

As explained in Sect. 4.4, “Simulated Search” selects the feature function that detects
a boundary close to the reference annotation with the smallest average boundary
detection error. If there are two boundaries close to each other as in the case of the
epi- and pericardium, “Simulated Search” may select a feature function that detects
either of both boundaries reliably, but that does not reliably discriminate between
them. Similarly, “Simulated Search” will select a feature function that detects the
closest nearby boundary, even if the reference annotation does not mark a visible
boundary as in the case of the papillary muscles. To obtain a segmentation that



172 J. Weese et al.

Fig. 8 Masks defining the regions where boundary detection is penalized [43]

(1) consistently segments the epicardium and rejects nearby competing boundaries
and (2) avoids attraction towards the bloodpool in regions of papillary muscles and
trabeculation, the concept of “Simulated Search” must be extended.

To take the requirements (1) and (2) into account, regions containing unwanted
boundaries were explicitly annotated (see Fig. 8). With penalized “Simulated Search”,
it is counted for a given feature function, how often a boundary is detected in these
regions, and for feature selection the average RMS error is penalized by adding a
term proportional to the frequency of unwanted boundary detection. A weighting
factor balances the tradeoff between avoiding unwanted boundaries and detecting
boundaries geometrically accurate [43].

For accurate LV segmentation penalized “Simulated Search” is combined with a
modified adaptation chain. After GHT-based model placement and parametric model
adaptation, deformable adaptation is applied twice. In the first pass, a large search
range (±10 mm) is used for boundary detection according to Eq. (13) and detection
of unwanted boundaries is strongly penalized. This will minimize the detection of
boundaries inside the penalized regions. If no suitable boundaries can be detected
for some model parts, adaptation is guided by the shape constraints. In the second
pass, a small search range (±2 mm) is used and detection of unwanted boundaries is
weakly penalized. As many unwanted boundaries are outside the search range, the
second pass improves local segmentation accuracy.

6.1.3 Results

To demonstrate the improvements resulting from penalized “Simulated Search” with
the modified adaptation chain, reference segmentations and masks were defined for
67 CT images from 33 patients. Quantitative results from 3-fold-cross validation
show that the surface-to-surface error decreased from 1.26 to 0.76 mm for the endo-
cardium and from 0.96 to 0.68 mm for the epicardium [43]. The examples in Fig. 7d–f
illustrate qualitatively that LV segmentation becomes more consistent and accurate.

In addition, the local wall thickness has been computed. For that purpose, the nor-
mal of the endocardial wall was estimated for endocardial triangles from a regression
plane fitted through the triangle vertices and their neighbors. A ray was then cast
from the triangle center outwards along the normal, and the distance to the epicardial
wall was taken as wall thickness. Figure 9 shows the result for the sample segmen-
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(a) (b)

Fig. 9 Wall thickness encoded in color of the LV models shown in Fig. 7b (a) and e (b). The
example illustrates the reduction of LV wall thickness variations by an accurate and consistent LV
segmentation [43]

tation of Fig. 7b and e. Variations of the wall thickness resulting from inconsistent
LV segmentation are reduced by penalized “Simulated Search” with the modified
adaptation chain.

6.2 TAVI Measurements from CT Images

6.2.1 Motivation

Aortic valve stenosis is an abnormal narrowing of the aortic valve that impedes
blood flow. In patients with age over 65, aortic valve stenosis is most often caused by
calcification that restricts valve leaflet mobility and prevents proper valve opening
and closing. Untreated, aortic valve stenosis can cause heart failure. Since a few
years, minimally invasive percutaneous valve implantation is feasible [44, 45]. The
artificial valve is mounted on a stent which is delivered through a catheter, the so-
called transcatheter aortic valve implantation (TAVI).

Accurate pre-interventional assessment of the valve anatomy is essential for TAVI
[46]: the proper stent size must be selected in dependence of the aortic annulus diam-
eter, the risk of occluding the coronary ostia by the valve leaflets or the stent must be
evaluated, and a projection direction for interventional X-ray imaging must be deter-
mined that allows to image the aortic bulbus without foreshortening during the TAVI
procedure. While SCDMs allow to segment the aortic valve anatomy given a suitable
model, functional extensions are needed to support the desired measurements.

6.2.2 Aortic Valve Segmentation and Information Encoding

As discussed in Sect. 2.2 and illustrated at the example of PCA models of vertebrae in
Sect. 3.1, SCDMs approximately maintain the distribution of mesh vertices as given
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(a) (b) (c)

Fig. 10 Information encoded into the aortic valve model for aortic valve plane estimation (a), for
construction of planes in the LV outflow tract and aortic bulbus (b), and for coronary ostia detection
(c) [47]

by the shape model. A model point can, therefore, be associated with an anatomical
location. This property of SCDMs allows to encode information about anatomical
structures or landmarks in the shape model and to use this information after model
adaptation for subsequent processing steps or measurements.

To support TAVI measurements, a detailed model of the aortic valve, aortic bulbus,
and LV outflow tract was created, trained on CT data, and integrated into the heart
model of Fig. 6a [47]. Three patches were encoded on the basal ring of the aortic
annulus (see Fig. 10a) that allow to determine the aortic valve plane after model
adaptation. In addition, rings were encoded in the model from which planes can
be derived via regression analysis in the left-ventricular outflow tract and the aortic
bulbus (see Fig. 10b). For diameter measurements, the adapted model is cut by the
desired plane, and an ellipse or an inner and outer circle is fitted to the resulting
contour.

While the planes for diameter measurements can be constructed directly from
information encoded into the model, the precise position of the coronary ostia varies
between patients. Marking of the vertex closest to a manually determined coronary
ostium location in the training images leads to patches with diameters of 10–15 mm
(see Fig. 10c). The basic idea of coronary ostia detection is to restrict detection to
the well-defined area on the surface of the aortic bulbus defined by these patches. In
particular, the candidate patch is determined after adapting the model to the actual
image and a complete search is performed on the patch to find a structure defined by a
bright half-sphere surrounded by a darker ring. The orientation of the half-sphere and
the ring are given by the mesh normal at the patch center and the search is performed
for varying radius. The location with the best match of the structure provides the
estimated ostia position.

6.2.3 Results

CT data sets from 20 patients were annotated and used to build and train a detailed
model of the aortic valve, aortic bulbus, and LV outflow tract [47]. Figure 11 shows
exemplary segmentation results of patients with calcified aortic valve. The same
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Fig. 11 Examples of aortic valve segmentation [47]

data sets have been used within leave-one-out experiments to assess the accuracy
of SCDM-based segmentation and the accuracy of TAVI measurements. The mean
surface-to-surface error was 0.5 mm for left-ventricular outflow tract, aortic valve and
aortic bulbus. Diameter measurements had a RMS error of 0.8–1.0 mm (aortic valve
annulus), 1.0–1.2 mm (LV outflow tract) and 0.6–0.7 mm (mid of aortic bulbus). The
RMS error of the distance of the coronary ostia to the aortic valve plane was 0.9 mm
for the left side and 0.6 mm for the right side.

SCDM-supported TAVI measurements on CT images have also been assessed
in a clinical study [48]. In particular, manual measurements of two users, SCDM-
supported measurements of two users, and automatic SCDM-based measurements
were compared for 49 patients considered for TAVI and 17 patients without aortic
stenosis. The study demonstrates “that a model-based segmentation of the aortic
root can be used to objectively and consistently quantify the diameter of the aortic
annulus and its distance to the coronary ostia on ECG-gated cardiac CT images”
[48]. The study also showed that SCDM-based assessment of the aortic annulus
instead of manual measurements on 2D-coronal CT slices would have modified the
implantation strategy for 25 % of the patients with aortic stenosis.

6.3 AF Ablation Guidance Using LAPV Models

6.3.1 Motivation

Atrial fibrillation (AF) is a common cardiac arrhythmia characterized by a chaotic
contraction of the atrium that is commonly treated in many major hospitals through-
out the world by catheter ablation [49]. Within this procedure, tissue around the
pulmonary veins (PVs) of the left atrium (LA) is ablated to achieve electrical isola-
tion. X-ray fluoroscopy is commonly used to visualize the catheters during mapping
of electrical potentials and ablation. The LA and the PVs are, however, only clearly
visible in x-ray fluoroscopy images, if contrast agent is applied. To improve inter-
ventional guidance it has been proposed to overlay the anatomy of the LA and PVs
onto the fluoroscopy images [50–52]. The anatomy of the LA and PVs can be deter-
mined from pre-interventional 3D CT or MR images or from interventional rotational
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(a) (b) (c)

Fig. 12 Exemplary results for LAPV segmentation in a CT (a), MR (b) and RXA (c) image (see
[54, 55])

(a) (b) (c)

Fig. 13 Models of the left atrium with different pulmonary vein variants: a normal, b CLT, c RMPV
[57]

X-ray angiography (RXA) acquisitions [53]. SCDMs allow to construct models of
the standard LAPV anatomy from all three modalities [54]. Exemplary segmentation
results are shown in Fig. 12.

The pulmonary veins can, however, have different configurations [56] and the
actual configuration may have procedural implications. In the majority of patients,
the LA is joined by two PVs on each side through individual ostia. The most frequent
variation on the left side of the LA is a common trunk (CLT). The most frequent
variation on the right side of the LA is the right middle pulmonary vein (RMPV),
which is characterized by an accessory PV joining the LA body with a separate
ostium and can be observed in 13–24 % of the patients. Figure 13 shows models of the
normal LAPV anatomy and the two variants. Especially, the RMPV variant represents
a topological change of the shape that SCDMs cannot automatically recognize and
segment.
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Fig. 14 Average feature vectors evaluated in the pre-encoded region (red) for data sets with normal
LAPV anatomy and with RMPV anatomy when the normal or the RMPV model is adapted [57]

6.3.2 LAPV Variant Recognition and Segmentation Quality Assessment

SCDMs allow to make individual models for the variants of Fig. 13 and to segment
the LA and PVs after selecting the proper model. To recognize the LAPV variant for
a given patient image, all different model variants can be adapted, the segmentation
quality can be assessed and the best fitting model can be selected [57].

The key element required for this approach is a feature that characterizes the seg-
mentation quality after model adaptation. In particular, a histogram of the unsigned
distances between the detected target points and corresponding triangle centers in
the pre-encoded regions where the models differ was proposed. This feature vector
exploits the fact that the model is only approximately adapted to the detected target
points because of the internal energy of Eq. (9) or (12). Figure 14 shows the average
feature vectors for data sets with normal LAPV anatomy and with RMPV anatomy
when the normal or the RMPV model is adapted [57]. Respective feature was used
as input for a support vector machine (SVM) selecting the anatomical variant on the
right side of the left atrium. Recognition of the anatomical variant (normal vs. CLT)
on the left side of the atrium was done accordingly.

6.3.3 Results

LAPV variant recognition was tested using 59 whole heart MR scans [57]. The
anatomy was classified by a clinical expert (31 normal, 8 CLT, 15 RMPV, 5 other),
and the images were used to build, train and assess the segmentation accuracy of
the models shown in Fig. 13. The overall surface-to-surface error was 1.1 mm. The
errors at the PVs were between 0.8 and 1.8 mm. The LAPV variant was correctly
recognized in 45 out of the 59 cases. In 3 out of the 14 misclassified cases, a CLT was
detected while the LAPV anatomy on the left side was normal, but the segmentation
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result was (at least) equivalent. The results are not only of interest for generating
personalized LAPV models to guide AF ablation procedures. The overall approach is
also a promising extension of SCDMs for anatomical structures showing topological
shape variants.

6.4 Brain Structure Volumentry of TBI Patients

6.4.1 Motivation

Traumatic brain injury (TBI) is a significant public health problem worldwide with
an average of 1.4 million cases occurring each year in the United States [58]. TBI
is caused, for instance, by falls, motor vehicle crashes, struck by or against events,
and assaults. CT is used in the emergency department to identify skull fractures,
hemorrhages, contusions or edemas. Mild TBI can cause long-term cognitive prob-
lems, but often appears normal in conventional CT and MR scans. Advanced MR
neuroimaging techniques have, therefore, been applied to investigate the more subtle
changes of the brain in mild TBI. Several studies indicate that TBI goes along with
morphometric brain abnormalities or brain volume reduction (atrophy) [59]. SCDMs
present in this context a unique opportunity for accurate and efficient segmentation
of sub-cortical brain structures and atrophy assessment.

6.4.2 Model Generation Using Independent Reference Annotations

As described in Sect. 5.1, we generate reference annotations in the SCDM framework
often via manually refining segmentation results obtained with a preliminarily trained
model. This is an efficient way for generating consistent reference annotations, but
the approach potentially introduces a bias. In the context of the presented TBI results,
the reference annotations were generated independently with a different set of tools
to avoid a potential bias when investigating subtle volume changes.

Using a software prototype for the interactive manipulation of parametric spline
contours [60], the brainstem, caudate, cerebellum, corpus callosum, hippocampus,
putamen, and thalamus were traced by experts in 42 high resolution MR volumes
(Philips 3T, T1-weighted, sagittal TFE, TR = 6.77 ms, TE = 3.15 ms, flip angle 8∈,
1 × 1 × 1.2 mm3 voxel size, spacing between slices 1.2 mm, rows 256, columns 256,
slices 140). Triangular meshes were constructed from the contour stack, the mean
mesh geometry was obtained for each structure and all mean meshes were combined
together, to define the geometry of the brain model shown in Fig. 6c. In addition, the
model was trained and the adaptation chain configured.
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Fig. 15 Mean surface-to-surface error for the different brain structures [35]

(a) (b)

Fig. 16 Exemplary segmentation result are for SCDMs (a) and FSL (b) [35]

6.4.3 Results

The segmentation accuracy has been assessed quantitatively using 8 expert-traced
ground truth data sets in a leave-one-out approach [35]. The mean surface-to-surface
error was 0.61 mm. Errors differed between anatomical structures with 0.32 mm for
the brainstem and 0.77 mm for the right amygdala. The results for the individual
structures are displayed in Fig. 15. Figures 6f and 16a show exemplary segmentation
results.

In addition, consistency of the SCDM-based brain structure segmentation has
been assessed by segmenting images of 9 healthy control subjects acquired at two
different time points. No changes of the volume of the brain structures are expected
in this case, and SCDM-based segmentation resulted indeed in little variability (see
Fig. 17a). For comparison, the same experiment was performed with FSL/FIRST
4.1.0 [61] showing that SCDM-based volume measurements are more consistent.
Figure 16 shows a comparison of a segmentation result obtained with SCDMs and
FSL.
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(a) (b)

Fig. 17 Box-Whisker plot of the relative volume difference between the two time points for all
segmented brain structures for SCDMs (a) and FSL (b) [35]

Finally, SCDM-based brain segmentation was applied to the retrospective eval-
uation of a cohort of age-matched male subjects: healthy controls and individuals
diagnosed with moderate TBI. Statistical analysis of the resulting volumes detected
a significant bilateral volumetric difference in the putamen, thalamus, caudate, and
brainstem [35]. These results suggest that the SCDM-based brain segmentation has
the necessary sensitivity to detect volumetric changes in individuals affected by
(mild) TBI. This could allow for the development of novel imaging biomarkers for
diagnosing and monitoring of TBI.

7 Summary

We presented an overview of the SCDM segmentation framework. The framework
relies on GHT-based detection of the anatomical structure-of-interest, parametric
model adaptation with increasing degrees of freedom and SCDM adaptation. A para-
metric description of the shape variability is generated by subdividing the structure-
of-interest into different parts and assigning a parameterized linear transformation
to each part. Optimal boundary detection functions are selected for each model tri-
angle from a large set of boundary detection function candidates using “Simulated
Search”. Next to describing the basic mechanisms underlying SCDMs, we also pre-
sented results for four clinical applications.

Compared to other variants of deformable models, points of a SCDM can
approximately be associated with an anatomical location. This property has impor-
tant implications. SCDMs can be used to establish corresponding points as required
for PCA-based shape models. Furthermore, individual boundary detection functions
can be assigned to the triangles of the model mesh allowing to segment complex
anatomical structures with varying boundary characteristics. This property can also
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be used to encode information into the models that can be used for landmark detection
or measurements after SCDM segmentation.

The SCDM framework can be adapted to different segmentation tasks and allows
to adapt complex anatomical models fast, robustly and accurately to images. This has
been shown for a heart model comprising the four chambers and the attached great
vessels, and a brain model with amygdala, brainstem, caudate, cerebellum, corpus
callosum, hippocampus, putamen, and thalamus. The framework is also suited for
images of different modalities. While many specific approaches have been proposed
for specific segmentation tasks, we believe that a consistent framework suitable
for various anatomical structures and various modalities will contribute to a more
consistent interpretation of images in the future.

In the context of the four sample applications, we described extensions of the
SCDM framework aiming at a further improvement of the segmentation accuracy,
the derivation of measurements from the segmentation result, and the handling of
anatomical variants. These extensions facilitate left ventricle segmentation for func-
tional analysis in CT, CT-based measurements for TAVI planning, the generation of
models of the left atrium and pulmonary veins for guiding atrial fibrillation ablation
procedures, and volumetry of brain structures using MR images for evaluating TBI
patients. First related clinical studies have been published and give an indication of
the clinical value of the SCDM framework.
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Accurate Pathology Segmentation in FLAIR
MRI for Robust Shape Characterization

April Khademi, Alan R. Moody and Anastasios Venetsanopoulos

Abstract Shape analysis of pathology requires an accurate initial segmentation.
However, in magnetic resonance images (MRI) of the brain, an artifact known as
partial volume averaging (PVA) pathology severely impedes segmentation accuracy.
Traditional MRI brain segmentation techniques rely on Gaussianmixture models to
handle noise and PVA, or high-dimensional feature sets that exploit redundancy in
multispectral datasets. Unfortunately, model-based techniques have limited perfor-
mance on images with non-Gaussian noise distributions and pathology, and multi-
spectral techniques do not make efficient use of imaging resources. For robust seg-
mentation, a generalized PVA modeling approach is developed for FLAIR MRI with
white matter lesion (WML) pathology that does not depend on predetermined inten-
sity distribution models or multispectral scans. Instead, PVA is estimated directly
from each image using an adaptively defined global edge map constructed by exploit-
ing a mathematical relationship between edge content and PVA. The final PVA map
is used to segment WML with sub-voxel accuracy. Using the highly accurately seg-
mented WML, shape analysis experiments were conducted to characterize the types
of lesions in the brain. Currently, WML are divided into periventricular white matter
lesions (PVWML) and deep white matter lesions (DWML) and radiologists differen-
tiate between them manually. It is important classify these two types of WML since
the pathogenic mechanisms between them provide clues regarding the pathophysiol-
ogy of many diseases (such as MS, stroke, etc.). In this work, we used boundary-based
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and Fourier descriptors to automatically classify the WML into PVWML and DWML
classes. A supervised, linear discriminant classifier was used, where a leave-one-out
training and testing strategy was employed. It was found that circularity features
alone provided the highest classification rate (90%).

A cerebral vascular accident (CVA), or stroke, is an acute neurological injury caused
by an interruption of the vascular supply of blood to the brain. Since blood is a
carrier of nutrients and oxygen, the affected neurons begin to die within minutes
due to oxygen and/or nutrient starvation (ischemic stroke) [1]. Stroke can result in
significant neurological deficits, leading to various physical impairments such as
sensory motor paralysis, loss of sensation and motor control, as well as difficulties
in interpreting spatial relationships [1]; stroke can also be fatal. According to the
Canadian Heart and Stroke Society, about 50,000 Canadians suffer new or recurrent
strokes each year, which on the average means a stroke occurs every 10 min. It is
the third cause of death behind heart disease and cancer, and costs the Canadian
economy roughly $3.6 billion a year in physician services, hospital costs, lost wages
and decreased productivity [2].

To reduce the mortality rates and long-term disabilities associated with stroke,
physicians are investigating Magnetic Resonance Images (MRI) of the brain to deter-
mine whether precursors to stroke exist. Identifying the early stages or features of
the disease through MRI can lead to the development of intervention protocols and
therapeutic strategies which ultimately may reduce the incidence of stroke.

Using Fluid Attenuation Inversion Recovery (FLAIR) MRI, researchers found
that abnormal changes in the white matter, known as White Matter Lesions (WML),
are a surrogate for future stroke [3]. In FLAIR images, WML appear as hyperintense
objects scattered throughout the white matter and have enhanced discrimination of
ischemic pathology [4]. The volumes of the lesions (lesion loads) were important
markers used to correlate WML and stroke.

However, since the volumes of these lesions were obtained using manual methods,
the volumetric measurements are observer-dependent (subjective), error-prone, and
are time consuming and labourious to obtain, especially for large patient cohorts.
Image analysis techniques offer a great alternative since they can automatically
segment WML and compute the volume in a quantitative, efficient, reproducible
and reliable manner. Any number of images can be included in the study and lesion
loads can be obtained within minutes.

Current manual methods have mainly focused on finding the total volume of the
lesions and so the value of automated WML segmentation schemes for volume com-
putation is known. However, other features, that are not readily defined and measured
using visual cues and human perception, may hold even more valuable information
about the disease. For example, the shape characteristics of the lesions, which cannot
be easily defined nor measured by a human observer, could be measured using image
analysis techniques. For disease characterization, shape descriptors could possibly
describe disease in a unique and novel manner. For example, robust shapes features
could possibly differentiate between types of WML as well as neurological diseases



Accurate Pathology Segmentation in FLAIR MRI 189

such as Alzheimers and Multiple Sclerosis (MS). These features could also be used
to monitor disease progression or response to therapy.

Currently, white matter lesions are divided into periventricular white matter
lesions (PVWML) and deep white matter lesions (DWML). DWML are identified as
being close to the periphery of the brain (“deep” in the WM), and PVWML as being
alongside the ventricles. The pathogenic mechanisms between PVWML and DWML
are providing some clues for understanding pathophysiology of many diseases asso-
ciated with white matter lesions [5]. Since the visual appearance of the lesions in
these regions differ, this chapter investigates whether shape analysis techniques can
be used to differentiate between DWML and PVWML.

To ensure that the extracted shape features are reliable, a major focus of this
chapter is on the design and implementation of robust image processing algorithms
for WML segmentation in FLAIR MRI. This is a challenging problem since MRI are
degraded by many types of imaging artifacts, such as partial volume averaging (PVA)
and acquisition noise. Modern acquisition systems generate even more interesting
noise properties, such as spatial correlation, non-Gaussian intensity distributions and
nonstationarity [6]. Traditional segmentation techniques that rely on model-based
approaches are inaccurate in such modern acquisition systems since predetermining
a model for the noise is challenging if not impossible. Moreover, WML, or any
pathology cannot be modeled using a “nice” distribution such as those used in model-
based approaches.

To combat these challenges, a model-free, efficient approach to segment WML
accurately in the presence of noise and PVA is presented. Because the technique is
PVA-based, the WML are segmented with subvoxel precision and produce accurate
WML boundaries ideal for shape analysis. Both boundary-based and global shape
metrics are used to classify the lesions.

1 Background

This section focuses on the background material, such as the motivation for the
current work, the principle of magnetic resonance for imaging purposes as well as
the FLAIR MRI modality, which is used for WML segmentation and characterization.

1.1 Magnetic Resonance Imaging (MRI): The Fundamentals

Unlike Computed Tomography (CT) and X-Ray imaging, MRI relies on nonionizing
radiation to obtain anatomical images of the human body, and has the ability to
localize soft-tissue structures. Consequently, MRI has become the leading imaging
modality for the examination of brain disease and disorders [4].

Magnetic resonance imaging is based on the principle of nuclear magnetic res-
onance (NMR), which is the behaviour of nuclei under the influence of externally
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applied RF (radiofrequency) and magnetic fields. A nucleus is NMR-Active if it has
a nonzero magnetic dipole moment (MDM), created by an odd number of protons
and neutrons, such as hydrogen (one proton and one neutron). The human body is
comprised of approximately 63 % hydrogen [7] (fat and water) and MR imaging
exploits the magnetic behaviour of these hydrogen atoms to generate anatomical
images.

In the presence of an externally applied magnetic field, hydrogen protons begin
to precess (like tops) around the axis parallel to the external magnetic field. The net
effect of these MDMs (the bulk magnetization

−∝
M ) is a vector that lines up with the

external field
−∝
B0 (the transverse components cancel each other out). Once the bulk

magnetization has lined up with the external field, an RF field B1 is applied to excite
the nuclei. The frequency of the RF field is the same as the rate of precession of
the nuclei (Larmor rate) so that energy from the excitation may be absorbed. Only
the atoms that are precessing at the Larmor rate will be excited and reach a higher
energy state. Once the RF field is removed, the nuclei begin to return to their original
state, releasing energy in the process. The energy released in the transverse plane is
known as the T1-signal and the energy released in the longitudinal plane is known
as the T2-signal. Different tissues and pathologies have different T1-T2 relaxation
times (which translates into different contrast in the output image). Because regions
of the brain are composed of more or less water/fat, soft-tissue structures of the brain
are imaged with good results.

The 3D position from which photons were released is learned by applying addi-
tional gradient fields during the scan. These strong magnetic field gradients cause the
nuclei at different locations to rotate at different speeds and makes the magnetic field
strength vary depending on the position within the patient. This in turn makes the
frequency of released photons dependant on their original position in a predictable
manner, and the original locations can be mathematically recovered from the result-
ing signal by the inverse Fourier transform. In other words, gradient fields selectively
excite regions in the patient that are used to decode the corresponding pixels in the
image.

The result is a volumetric data set which offers a 3D representation of anatomy and
pathology. Each image (slice) is acquired in a specific direction, which is parallel to an
imaging plane. There are three perpendicular imaging planes that are most commonly
used: axial (horizontal), sagittal and coronal. An example sagittal T1-weighted MR
dataset, acquired from a single-coil scanner, is shown in Fig. 1.

The area the gradient field excites determines the resolution of the pixels (voxels)
in the image, i.e., if a smaller area is excited, the resolution of the pixel in the final
image increases. Slice thickness works the same way, i.e., if a large region in the
z-direction (thick slice) is excited, the resolution in this dimension is low. It is possible
to generate images of very high resolution, by exciting smaller and smaller volumes,
except that this would require many more excitations and gradients to be applied,
which significantly increases scan time.

Long acquisition times are a natural side effect of MR imaging. Each slice needs to
be spatially encoded, which requires a series of excitations and during each excitation,
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Fig. 1 MR volume of the cerebral region acquired in the sagittal plane (slice thickness is 5 mm,
spacing between slices is 6 mm, pixel resolution is 0.4297 mm × 0.4297 mm)

a line in the Fourier domain (k-space) is acquired. Between excitations it is necessary
to wait for the excited spins to return to equilibrium again (relaxation). Therefore,
relaxation time and the number excitations have direct impact on the acquisition
time.

In single-coil technologies, to speed up scanning, moderate values for the pixel
height, width and slice thickness are usually chosen. Moreover, there is usually a
gap left between adjacent slices, to facilitate even more efficient scanning times.
Using larger volume elements creates faster scanning times at the expense of reso-
lution. Resultantly, there have been many research efforts dedicated to overcoming
the balance between resolution and scan time. For example, single-shot techniques
such as Fast Low Angle SHot (FLASH) [8] or Echo Planar Imaging (EPI) [9]. The
acquisition times of these techniques are significantly shorter, but the images are in
general of lesser quality. They suffer from low signal-to-noise ratios (SNRs) and are
very sensitive to the inhomogeneities of the main magnetic field [10]. Details on
single-coil technologies and the way they affect noise are discussed in the following
section.

The latest and most innovative methods for speeding up acquisition times are
achieved by sparsely sampling the k-space data (which reduces the number of
required excitations). However, reduction of the sampling rate in the frequency
domain (k-space) violates the Nyquist theorem of perfect reconstruction, and conse-
quently there is aliasing in the spatial domain images. To compensate for the data loss
in the spatial domain, multiple receiver coils and Parallel MRI (pMRI) reconstruction
techniques can be used to recover the missing data.

The principle of pMRI is focused around the use of multiple receiver coils (phased-
array coils or multicoil) to capture the image data [11]. Each coil has a spatially
varying sensitivity map that dictates the image reception profile of the coil. Moreover,
each coil is positioned so that each has a different sensitivity over the the Field of
View (FOV) [12]. The distinct sensitivity profile of each coil is modulated with the
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pixel value of the image and since there are multiple sources capturing the same
information, the missing k-space information can be calculated [12]. Since these
coils are working simultaneously, the introduction of redundancy gives way to a
significant reduction in acquisition times. Details on pMRI and the way it affects
noise in MRI are discussed in the next section.

1.2 Fluid Attenuation Inversion Recovery (FLAIR) MRI

To automatically analyze WML, Fluid Attenuation Inversion Recovery (FLAIR)-
weighted MRI are used because of their ability to localize ischemic brain pathology.
FLAIR images have very similar properties to T2-weighted images, in terms of tissue
contrast characteristics. In T2-weighted images, water-filled tissues are imaged as
bright or high-signal regions, whereas fatty tissues are represented with low inten-
sities. This translates to dark gray and light gray intensities for white matter (WM)
and gray matter (GM), high-intensity values for cerebrospinal fluid (CSF).

Most pathology is associated with increased water content [4], so T2-weighted
images highlight ischemic pathology such as WML. However, CSF also shows up
as high-intensity signal in T2 images which reduces the discrimination of peri-
ventricular WML (lesions close to the ventricles). FLAIR MRI overcomes these
challenges by removing the T2 mobility so that the CSF signal is nulled (i.e., the
intensity of CSF is set to zero).1 This produces better discrimination of pathology [4]
since the CSF signal does not interfere with the signal of the hyperintense pathology
(WML). Figure 2 contains the corresponding T2- and FLAIR weighted images for
a patient with WML. The ventricular high signal material shown in the T2 images
impede delineation of WML, whereas the CSF is dark in FLAIR MRI, providing
much better visualization of white matter pathology.

The FLAIR modality has been used in many studies to detect the presence of white
matter lesions and other neurodegenerative disorders [4, 13, 14] due to its ability
to localize pathology (as shown in Fig. 2). Therefore, this modality is an excellent
candidate for the automatic detection and characterization of WML.

Some additional sample FLAIR MRI with varying lesion loads (total WML vol-
ume) are shown in Fig. 3. In each image, there are three major tissue classes in the
cerebral region (excluding outer head structures):

• CSF: darkest class in the image,
• Brain (both GM and WM): comprised of medium intensity values,
• WML: most intense objects (after brain extraction).

Normally, in MRI, WM and GM are clearly differentiable and compose two separate
tissue classes. However, imaging parameters in FLAIR MRI cause GM and WM
classes to have similar intensity values and thus are treated as a single class [15].

1 Mobility refers to how mobile the protons are. Large mobility produces large T2 times (intense
regions) and small mobility results in short T2 times (dark regions).
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Fig. 2 a T2-weighted. b FLAIR MRI. c T2-weighted MRI. d FLAIR MRI. Two T2 images (a, c)
and the two corresponding FLAIR images (b, d)

Therefore, a tissue segmentation scheme for FLAIR MRI would search for estimates
of the CSF, brain and WML classes, individually.

2 Challenges of Segmenting FLAIR MRI

Images with inherent artifacts may cause slight difficulty for human interpretation,
but they can cause significant challenges for algorithms. A computer can easily
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Fig. 3 Three examples of FLAIR MRI with WML. a Example 1. b Example 2. c Example 3

tell the difference between two pixels’ intensity values, even if they only differ
from one another by a few graylevel values. As a result, imaging artifacts can cause
erroneous results in intensity-based segmentation schemes [15], misclassified pixels
in automated tissue classification algorithms [16], inaccurate 3D reconstructions, etc.
There are many noise sources in MRI that are produced by the imaging acquisition
system.

Much research has gone into mathematically modeling the images’ noise fields in
MRI and there are three main issues: acquisition noise [17], the tissue nonuniformity
issue [18] and the PVA effect [17]. Consider an undistorted, “clean” image f (x1, x2)

distorted by a multiplicative and additive noise source:

y(x1, x2) = f (x1, x2) × Σ(x1, x2) + n(x1, x2), (1)

where y(x1, x2) is the distorted image. In MR images Σ(x1, x2) is known as the
bias field or tissue nonuniformity artifact, and n(x1, x2) is the additive (acquisition)
noise field. The bias field is a smoothly varying field caused by inhomogeneity
of the magnetic field [19]. The bias field is not discussed in this work2 so we set
Σ(x1, x2) = 1. The additive noise source, n(x1, x2), is generated by acquisition noise
from the system [20] and must be considered in any automated MRI segmentation
technique.

A third type of artifact is known as partial volume averaging (PVA) and it cannot
be modeled with Eq. 1 as it has its own degradation model. In concerns the imaging
of finite volume elements that have more than one tissue type/structure within the
imaging section, pixel or voxel. The consequence is that the signals of the structure
are averaged. As will be shown, PVA and acquisition noise are inherently related with
one another, as well as the imaging system that is used to acquire the images. Handling
these two artifacts is challenging but is required for accurate WML segmentations.
These artifacts are discussed in this section to provide motivation for the proposed
segmentation methodology.

2 Experimental images do not possess significant bias field.
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2.1 Acquisition Noise

In MR images, the signal-to-noise ratio (SNR) is intrinsically related to the resolution
of the images [21]. As a result, the SNR of the output images may be modest or even
low, making acquisition noise more apparent in the output image. Additive noise
poses significant challenges for automated WML segmentation since it changes the
intensity profile each tissue class; image classes are no longer clearly discernible in
the intensity histogram and contrast between tissue classes is significantly reduced.

To combat the downfalls associated with acquisition noise, many researchers have
investigated MRI noise characteristics and have tuned their processing technologies
to these properties. This requires good knowledge of the acquisition process since
noise in the output image is inherently related to the way the image is acquired.
There are two dominant technologies used for MRI acquisition that depend on either
single-coil technologies, or multicoil phased array systems. These two families create
substantially different noise properties in the final image.

2.1.1 Single-Coil Technologies

Single-coil technologies use a single coil to transmit and receive NMR signals, which
has direct bearing on the way noise is rendered in the image. It is well known that
during acquisition the distribution of the noise within the single coil is Gaussian with
zero mean and Φ standard deviation [20–23]. Each MR image (slice) is collected from
the coil in the Fourier domain (k-space), which is inverted through the inverse Fourier
transform to get the spatial representation of the image. The spatial domain image
retains the same noise distribution as k-space since the inverse Fourier transform is a
linear and orthogonal transformation and does not change the characteristics of the
noise.

The spatial domain representation y(x1, x2) is formed by summing the imaginary
and a real components found by the inverse Fourier transform as in

y(x1, x2) = yR(x1, x2) + j · yI(x1, x2), (2)

where x1 and x2 are the spatial coordinates x1, x2 ∗ Z2 and j = ∅−1. Both yR(x1, x2)

and yI(x1, x2) are individually corrupted by Gaussian noise, N(0, Φ ). Because this
expression contains complex values, it must be transformed in order to gain a visual
representation of the data. Typically, the magnitude of Eq. 2 is taken for visualization
purposes [22]:

|y(x1, x2)| =
√

y2
R(x1, x2) + y2

I (x1, x2). (3)

The modulus operator |y| is nonlinear and transforms noise into a Rician distribution
[20, 22, 23]. For high SNR images, the Rician distribution closely approximates
a Gaussian. Background regions in MR images contain no signal (SNR of 0) and
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consequently, the Rician distribution simplifies to a Rayleigh distribution in non-
signal regions.

The underlying noise characteristics for single-coil technologies have been
exploited in the design of image processing methodologies. Model-based approaches
classify tissues in presence of noise by using predetermined intensity distributions
for the tissues (which is known because of knowledge of the image acquisition
process). Probability density functions (PDF) of the graylevel values, p(y|σ), are
used to model the image intensity formation process, which is the probability of
observing intensity y for some class σ. For normal brain tissues (i.e., no pathology)
and single-coil systems, the tissue classes are typically modelled using Gaussian
distributions [24–26]

p(y|σ) = 1

Φσ

∅
2Θ

· e
− (y−μσ)2

2Φ2
σ , (4)

where μσ is the mean intensity of class σ, Φ 2
σ is the variance of the distribution and

θσ = {μσ, Φ 2
σ} are the model parameters which need to be estimated. Each tissue

class can have its own unique parameter set θσ = {μσ, Φ 2
σ}.

Parameter estimation can be completed by the Expectation Maximization (EM)
algorithm [17, 27], which uses an iterative approach to update posterior and parameter
estimates such that the log-likelihood is maximized. The joint representation, or
normalized histogram, may be reconstructed from these class distributions by

p(y) =
∑

σ∗κ

P(σ) · p(y|σ), (5)

where y is the vector representation of all intensity levels in MRI, P(σ) is the prior
probability of the class σ and κ is the set of all possible classes. This joint distrib-
ution is known as a Gaussian Mixture Model (GMM) [17]. Tissue classification is
performed using the parameters and distributions of each tissue class. Understanding
the characteristics of the data is of utmost importance in achieving good results, espe-
cially with model-based approaches. Newer multicoil phased array systems generate
noise that is not as easily handled.

2.1.2 Multicoil Technology

Multicoil MR systems are fast becoming the norm for brain imaging studies. The
image statistics in multicoil images depend strongly on the pMRI method used to
combine the images from different receiver coils. In this section, we examine the
effect that multicoil reconstruction algorithms have on noise.

Following the inverse fast Fourier transform (FFT) operation, each voxel in the
image is represented by column vector, p (one complex value for each of the n coils).
The elements of p are the product of the signal we are trying to measure, A, and the
sensitivity profiles of the coils, represented by column vector b
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p = Ab. (6)

Coil images are corrupted by additive Gaussian noise with covariance matrix, γ.
Diagonal elements represent the noise variance for each coil, while the off-diagonal
elements describe the degree of correlation between coils. Noise correlation between
coils is caused by inductive coupling combined with the tendency for coils with
overlapping sensitivity profiles to be similarly contaminated by thermal radiation. It
is possible to estimate the noise covariance matrix from a simple pre-scan that can
be acquired in a few seconds [28].

There are many ways to reconstruct the image from the redundant information
collected from each coil. Two of the most common spatial reconstruction algorithms
are known as root sum-of-squares [29] and SENSE [30]. Root sum-of-squares is the
simplest algorithm for combining images from multiple coils because it does not
require any knowledge of the coil sensitivities. If all coils have equivalent noise and
are uncorrelated (i.e., γ = IΦ , where I is the identity matrix), the average noise is
equal to Φ/

∅
2 for all voxels in the image. However, if the coils are correlated or

have variable noise (which is often the case), the noise in the resulting image will be
nonstationary, and the signal will deviate from the noncentral chi distribution.

SENSE is a method for accelerating image acquisition by undersampling k-space
data [30]. In its simplest form, regularly spaced lines are skipped along a single
dimension. This allows scan time to be reduced in proportion to the number of
lines skipped, referred to as the acceleration factor, R. The resulting images have a
characteristic aliasing pattern, with voxels from outside of the reduced field of view
wrapped around onto other parts of the image.

The SENSE algorithm utilizes coil sensitivity information to unfold these aliased
images. SENSE reconstruction produces complex valued images but it is common
practice to take the magnitude for display purposes. The SNR and noise resulting
from SENSE reconstruction are

SNRSENSE =
∅

2 · ∣∣uT a
∣∣

∅
R · uT γu≤ , (7)

and

ΦSENSE =
√

1

2
· uT γu≤, (8)

respectively. Although these techniques speed up the acquisition process, there are
direct consequences on the noise in the image. In particular, the noise level in a
SENSE image varies from pixel to pixel (nonstationary), there is noise correla-
tion between pixels [30] and the noise varies dependent on the coil geometry [31].
As shown in [31], the histogram or distribution of the noise changes substantially
depending on the reconstruction method used, the speed up factor, etc. Confounding
issues further, there are several variations of the SENSE algorithm, including mod-
ified SENSE (mSENSE) and regularized SENSE [31], which all modify the noise
statistics in different ways.
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There are many other reconstruction techniques, such as those completed in
the frequency (k-space) domain. Alternate lines in the k-space are collected and
the missing intermediary k-space lines are calculated from the signals recorded by
the different coil elements. Usually, this is completed by combining weighted sig-
nals from each coil, using methods such as SiMultaneous Acquisition of Spatial
Harmonics (SMASH) [32] or Generalized Autocalibrating Partially Parallel Acqui-
sitions (GRAPPA) [33]. As shown in [31], the way the missing k-space lines are
estimated not only affects reconstruction, but also significantly changes the distrib-
ution and characteristics of the noise.

There are non-Cartesian k-space acquisitions such as PROPELLER or variable-
density spirals that result in coloured noise properties [34], and application of a
Fermi filter prior to reconstruction, which introduces spatial correlations across the
reconstructed image as well [35].

As can be seen, many types of noise characteristics can be generated by mulit-
coil MRI acquisitions. Resultantly, traditional noise modeling approaches cannot be
applied to pMRI-based techniques, since the intensity distributions of the tissues
are non-Guassian, nonstationary and could possess correlation as well. Authors are
attempting to exploit some of these characteristics in their algorithms. For example,
the authors in [36] propose a nonlinear anisotropic diffusion filter which adapts to
the nonstationarity of the noise in SENSE images to reduce noise more robustly than
traditional approaches [36].

Today, many pMRI methods available and the choice of an optimal method is
not straightforward since each method has its own advantages and disadvantages.
Moreover, imaging technology is rapidly changing and many of the reconstruction
algorithms in MR scanners are proprietary. This impedes the performance of tra-
ditional model-based approaches, since they depend on the noise satisfying several
“nice” properties.

2.2 Partial Volume Averaging (PVA) Effect

Imaging elements that contain a single tissue are known as “pure” tissue voxels,
whereas volumes that contain more than one tissue within the extent of the voxel are
called mixture tissues and they constitute the partial volume averaging (PVA) artifact
[17]. The final intensity of a PVA voxel is proportional to the intensities of the tissues
that exist within the 3D volume that is being imaged. These mixture voxels or mixels,
create fuzzy boundaries around image objects and can lead to 30–60 % error in the
volume measurement of complex brain structures [37, 38].

Partial volume averaging is most noticeable in regions where different tissues
meet. It causes the graylevel transition between two pure tissues to be ill-defined, non-
crisp and fuzzy [17, 39], in contrast to an ideal step-like edge, or crisp margin. This is
visually demonstrated in Fig. 4a, by the fuzzy halo surrounding several WML. This
ill-defined border makes it difficult to determine the location of the lesions’ borders
automatically. The corresponding one-dimensional scanlines taken from the center of
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Fig. 4 Nine regions of interest extracted from FLAIR MRI containing WML. a WML. b 1D profile
of (a)

each lesion are included in Fig. 4b, which demonstrate the gradual increase/decrease
of graylevel values in regions surrounding the lesion (PVA).

According to MR physics, PVA generates an image intensity which is linearly
dependant on the proportion of each tissue in the voxel [38, 40]. In neurological
imaging studies, two tissue types are commonly present in mixture (PVA) voxels
[38]. Therefore, a PVA voxel’s intensity at a spatial coordinate x = (x1, x2) ∗ Z2, is
determined by the proportion of tissue 1 present at x, as in

Y12(x) = λ(x) · Y1(x) + (1 − λ(x)) · Y2(x), (9)

where Y12(x) is the resultant intensity of the PVA voxel, Y1(x) is the intensity of
the first tissue where Y1 ∈ p1(y), Y2(x) is the intensity of the second tissue where
Y2 ∈ p2(y) and λ is the proportion of the first tissue present in the PVA voxel where
λ ∗ [0, 1]. This parameter λ is commonly referred to as the tissue fraction.

This equation strictly governs the transition of the graylevel values between two
pure tissue classes. Consider Fig. 5, which is the 1D profile of a WML taken from
Fig. 4a. This image shows the approximate regions of pure (non-PVA regions) and
mixed tissues (PVA regions). The intensity values of PVA voxels are governed by
Eq. 9 and pure tissues are drawn from some distribution that is related to the acqui-
sition noise profile.

As stated, the intensity of PVA voxels is proportional to the intensities of the tissues
present in the voxel. The “amount of PVA” is dependant on the slice thickness, i.e.,
thick slices will have a more noticeable PVA effect creating large, blended regions
between pure tissues. Consequently, the histograms for each tissue class cannot be
described by a single intensity value, but will be defined over a range of values that
overlap neighbouring classes as a result of noise and PVA. Obviously this creates
challenges for intensity-based segmentation techniques.
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Fig. 5 1D scanline of WML

As shown in Sect. 2.1, model-based approaches use Gaussian distributions to
model the intensity distributions of each tissue class. Together, these class distribu-
tions form a Gaussian Mixture Model, which describes the joint PDF of the image’s
intensity values. Some of the more recent model-based techniques account for PVA
in the presence of Gaussian noise.

The classes which are most likely to mix are white matter (WM) and gray matter
(GM) (denoted by GW) and cerebrospinal fluid (CSF) with GM (denoted by CG)
[17]. Therefore, in addition to modeling the intensity distribution of the three pure
tissue classes, i.e., κpure = {WM, GM, CSF}, a new set of classes are included to
account for the PVA effect: κpure−mix = {WM, GM, CSF, CG, GW}.

Although several variations exist, two types of methods are most popular. In the
first method, each class κpure−mix = {WM, GM, CSF, CG, GW} is independently
modeled by a single Gaussian distribution (as in Eq. 4), each with their own parameter
set θσ = {μσ, Φ 2

σ}, which may be estimated by the EM algorithm.
In the second method, the pure tissue classes, κpure = {WM, GM, CSF}, are

modeled by Gaussians, as in Eq. 4 and the mixture tissues, κmix = {CG, GW}, are
approximated by estimating the mixing process [41]. The mixing process is modeled
by mixture densities with the following PDF

P(y|σmix, λ) = 1

Φσ(λ)
∅

2Θ
· e

− (y−μσ(λ))2

2Φ2
σ(λ) , (10)

where y ∗ κmix is a mixture of two pure tissues σ1, σ2 ∗ κpure and λ is the fraction
of σ1 present in the mixture voxel y. In this work, the authors assume that the
distribution of λ is uniform [17] and therefore the likelihood density may be found
by numerical computation of
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P(y|σ) =
∫ 1

0
P(y|σ, λ)dλ. (11)

The final intensity distribution of all tissue classes can be found by substituting
Eq. 11 into the GMM computation of Eq. 5. Again, knowledge of the acquisition
process is needed to accurately represent pure and PVA voxels in the presence of
noise using these methods. As PVA and acquisition noise are inherently related to
one another, they should be handled together for robust segmentation.

3 PVA Quantification and WML Segmentation

To segment neurological structures in MRI in the presence of PVA and noise in the
past, most works focused on intensity-based tissue classification using the Expec-
tation Maximization (EM) framework [17, 42, 43]. As previously discussed, with
EM-based approaches, mixture models are constructed to represent the graylevel his-
togram using assumed apriori distributions [17, 24, 38]. Usually, Gaussian intensity
models with equal variances are used to represent the intensity distributions of the
pure tissue classes, and the PVA voxels are modeled by a separate Gaussian [40], as
a combination of the neighbouring tissue classes’ Gaussians [17] or as a uniform dis-
tribution [38]. Other extensions to this parametric method include Markov Random
Fields (MRF), which impose spatial constraints [24, 37].

Although results from these techniques are promising, they are based on assump-
tions regarding the underlying distributions and require estimates for distributional
parameters. This causes inaccurate segmentations for images acquired from multi-
coil MR machines, since the intensity distributions of tissues are often non-Gaussian
and in many cases may not even be known [6]. Additionally, pathology, such as
white matter lesions, do not follow known distributions and thus cannot be handled
easily by a model-based approach. Model-selection issues of such techniques are
compounded by the challenges of the EM algorithm: it is computationally complex,
requiring hours of processing to find optimal parameters [17], and it is local, often
requiring a “proper” initialization [17]. Some algorithms employ computationally
intensive Monte carlo [38] or Metropolis methods [37] for parametric tuning, but
this can take an entire day [44].

There are nonparametric classification techniques in the literature that attempt to
overcome these issues by processing coregistered, multicomponent datasets (i.e. T1,
T2, PD) [45–47] to segment WML robustly. The introduction of redundancy removes
the dependency on distributional parameters, but increases image acquisition cost
(several modalities per patient), computational complexity, memory requirements
and registration error, ultimately reducing the appeal of such approaches.

Unfortunately, previous model-based methods are not directly applicable since
pathology modifies the intensity distribution in a manner that is difficult to model.
Moreover, neurological MRI often have non-Gaussian or unknown noise properties,
causing techniques that rely on normality to be inaccurate [6]. To combat these chal-
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lenges, the current work focuses on a model-free, adaptive PVA modeling approach
for robust segmentation of WML in FLAIR. It is computationally efficient and oper-
ates on a single modality by exploiting a mathematical relationship between edge
content and PVA for robust PVA quantification and tissue segmentation. The follow-
ing subsection details this method, which was initially introduced in [48].

3.1 PVA Model

Recal that in neurological MRI, there are usually two tissue types mixing per PVA
voxel [38]. The intensities of these mixels, Yjk(x), are determined by the proportion
of the first tissue j, in comparison to that of the second tissue k, as in:

Yjk(x) = λ(x) · Yj(x) + (1 − λ(x)) · Yk(x), (12)

where Yj(x) is the intensity of the first tissue ∈pj(y) at spatial location x = (x1, x2) ∗
Z2, Yk(x) is the intensity of the second tissue ∈pk(y), and λ ∗ [0, 1] is the tissue
fraction which describes the proportion of tissue j present at x (the remainder of the
voxel is a fraction of tissue k, i.e. 1 − λ). Using this mathematical relationship we
will quantify PVA in a new way based on the edge content of the image.

To show the motivation for an edge-based approach, an ideal signal model is used
where no other artifact aside from PVA is present. Tissue intensities are simulated as
constant quantities Yj = Ij and the tissue fraction λ is deterministic. An ideal tissue
model is useful as it highlights image features that are solely associated with PVA. In
the context of WML segmentation in FLAIR MRI, there are three pure tissue classes
in the ideal signal model:

1. Cerebrospinal fluid (CSF), Y3 = I3
2. Gray matter (GM) AND white matter (WM), Y2 = I2
3. White matter lesions (WML), Y1 = I1.

Applying these variables to Eq. 12 results in an idealized multiclass PVA model

Y12(x) = λ12(x) · I1 + (1 − λ12(x)) · I2, (13)

Y23(x) = λ23(x) · I2 + (1 − λ23(x)) · I3, (14)

where Y12(x) and Y23(x) are the intensities of PVA voxels in the WML-brain and
brain-CSF boundaries, respectively, and the brightest tissue (WML) is denoted by I1
where I1 > I2 > I3 → 0. The parameter λ12 describes the percentage of the voxel
that is made up of WML and its quantification is required for robust WML volume
computation. Finding an image-based estimate for λ would be of great value, since
it would not rely on distributional assumptions nor require multiparametric image
sets.

The ideal tissue model is simulated and shown in Fig. 6 to highlight unique char-
acteristics of MRI. Firstly, there are three pure classes (CSF, brain, WML) that
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1D Intensity Profile
I 1

I 2

I 3

Y12

Y23

(a) (b)

Fig. 6 Simulated mixels for ideal signal model. Left image representation (2D). Right 1D profile
or scanline taken from a cross section of the 2D image. a Ideal y(x). b y(10, x2)

correspond to three unique intensity values I1, I2, I3. These intensities occur in the
flat regions of the image. Secondly, there are two mixel (PVA) classes—Y12 and Y23,
which occur over specific intensity ranges that are bounded, i.e. Ik ≤ Yjk(x) ≤ Ij.
These graylevels occur in edgy regions. This ideal signal model shows that inten-
sity and edge strength features can discriminate between pure and PVA regions and
therefore, we examine how edge information can be used to model PVA (estimate
λ(y)).

3.2 Edge-Based PVA Modeling

To examine the edge content in the PVA regions, the gradient of the ideal signal
model is taken resulting in

Y ∀
12 = λ∀

12 · (I1 − I2) , Y ∀
23 = λ∀

23 · (I2 − I3) , (15)

where λ∀ is the change in the tissue fraction which dictates how the proportion of one
tissue changes as a function of space. Solving for the change in the tissue fraction λ∀
results in two PVA quantifiers

λ∀
12 = Y ∀

12

I1 − I2
, λ∀

23 = Y ∀
23

I2 − I3
. (16)

Because edge content is quantified by the gradient, each PVA measure λ∀
jk is a class

specific representation of the edge information in PVA voxels. It is a normalized
representation because the largest possible value of Y ∀

jk is Ij − Ik (maximum intensity
change in one pixel step) and the minimum is 0 in a constant region, resulting in
0 ≤ λ∀

jk ≤ 1. Since these class specific variables describe PVA in terms of the
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gradient, the current work focuses on an edge-based estimate for λ∀ and uses it to
decode the proportion of tissues parameter λ. This is a great innovation that holds the
potential to change the way PVA is handled in MR image analysis techniques. It does
not depend on the intensity distribution models or multi-modalities, like traditional
approaches, but is based on a mathematical relation that describes the PVA voxels in
terms of the their respective edge content.

3.3 Fuzzy Edge Model

To estimate λ∀(x), a fuzzy technique based on the cumulative distribution function
(CDF) of the gradient [39, 49], is employed. First, the traditional magnitude of the
gradient, g = √◦y√ is estimated by

g = √◦y√ =
√∣∣∣∣

∂y

∂x1

∣∣∣∣
2

+
∣∣∣∣
∂y

∂x2

∣∣∣∣
2

, (17)

where the Sobel operator is used. Based on the probability distribution function
(PDF) of the gradient pG(g), the CDF of the gradient magnitude is found and used
as an estimate for the edge information in the image

λ∀(g) = Prob(G ≤ g) =
g∑

i=0

pG(i), (18)

where λ∀(g) ∗ [0, 1]. This nonlinear, fuzzyfication of the edge information quantifies
the “certainty of edge presence”. Note that this parameter is expressed as a function
of the gradient and to be used to approximate λ∀(x), λ∀(g) is mapped back to the
spatial domain: λ∀(g) ∝ λ∀(x).

As shown in the works [39, 50], this fuzzy edge measure assigns large and similar
values to significant edges, despite them occurring over a wide range of g and with
few occurrences. It groups significant edges, while suppressing the irrelevant ones.
As this edge measure is normalized, i.e. 0 ≤ λ∀(x) ≤ 1, and representative of the
edge information in the image, it is used to represent PVA.

Although such a nonlinear mapping function localizes PVA in ideal images and
demonstrates the motivation for an edge-based approach, because of the local nature
of the gradient operator, noise severely degrades its performance in noisy images.
Since MRI are inherently noisy, a new estimate based on the global edge content is
utilized instead to combat noise.
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3.4 Global Edge Description

PVA occurs over specific intensity ranges, and moreover, with high edge values.
These two features, intensity and edge strength, are coupled together in the following
section to arrive at a new and denoised version of the fuzzy edge metric.

To arrive at the global PVA metric, first, edge and intensity information are coupled
through the conditional PDF of λ∀(x), for a particular intensity y by

pλ∀(x)|Y (λ∀(x) = a|Y = y) = # voxels with λ∀(x) = a|Y = y

# voxels with Y = y
, (19)

where 0 ≤ a ≤ 1, 0 ≤ y ≤ ymax , a is the realization of λ∀(x) and ymax is the
maximum graylevel in the image. This PDF quantifies the distribution of the edge
information λ∀(x) for a specific graylevel y. Because it was computed on the entire
image (or volume for 3D approaches), it describes the global clustering trend of edge
information as a function of intensity. Generally, in flat regions - pure tissues, there
is clustering in the PDF for low edge values at corresponding intensities. Across
anatomical boundaries (PVA), high edge values dominate the PDF for the respective
intensity ranges.

To robustly approximate pλ∀(x)|Y (a|y), a kernel density estimator is used since it
creates a smooth construction of the frequency distribution [51]. Given a sample of
fuzzy edge values λ∀(x1), λ

∀(x2), · · · λ∀(xn), for a specific intensity y, the result is
the summation of a series of kernels for all sample data

pλ∀(x)|Y (a|y) = 1

nhn

n∑

i=1

K

(
a − λ∀(xi)|y

hn

)
, (20)

where K(·) is a Gaussian kernel function and hn is the standard deviation of the
Gaussian. This technique can be applied in either 2D or 3D, where n would be the
number of pixels or voxels with intensity y from the image or volume, respectively.
Because the 3D representation offers an even richer description of the edge informa-
tion (the distribution is generated from more samples and thus is more accurate), the
final results will be obtained using a 3D approach.

To discriminate between pure tissue voxels and PVA voxels, two bin locations
at a = 0 and a = 1 are used to solve Eq. 20. The result is a conditional PDF that
describes edge presence for each graylevel y for the non-edge class (pure) and edge
class (PVA), respectively. The probability distribution for the non-edgy regions (pure
tissue class) is described by:
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pλ∀(x)|Y (a = 0|y) = 1

nhn

n∑

i=1

K ∀ (0 − λ∀(xi)|y
)
, (21)

= 1

nhn

n∑

i=1

K ∀ (λ∀(xi)|y
)
,

where the last line is valid for symmetric kernels, since K ∀(x) = K ∀(−x) and K ∀(x) =
K( x

hn
). The probability a voxel lies in a PVA region (significant edge) is found by

pλ∀(x)|Y (a = 1|y) = 1

nhn

n∑

i=1

K ∀ (1 − λ∀(xi)|y
)
. (22)

Estimation of the PDF this way automatically classifies the voxel y as belonging to
either the pure tissue or PVA class. Pure regions correspond to maxima in p (a = 0|y)
and minima in p (a = 1|y), whereas minima in p (a = 0|y) and maxima in p (a = 1|y)
indicate with high likelihood that these voxels belong to a PVA region.

To determine the global estimate of λ∀(y), the conditional expectation operator
is used. It offers the best prediction of λ∀ given that the intensity is y in the mean
square error (MSE) sense. The result is an enhanced edge map λ∀(y), which provides
a global representation of the edge information in the image:

λ∀(y) =
∑

∞a

a · pλ∀(x)|Y (a|y), (23)

= 0 · pλ∀(x)|Y (a = 0|y) + 1 · pλ∀(x)|Y (a = 1|y),
= pλ∀(x)|Y (a = 1|y).

The last line of the equation above indicates that quantification of PVA content is
directly proportional to the probability that a voxel is located on an edge.

3.5 Estimating α

To decode λ(y), regions of λ∀(y) are retained, while others discarded. Recall that the
maxima of p(a = 1|y) dictate which voxels y are most likely PVA (maximally edgy),
while the minima are correlated to voxels y from pure tissue classes (minimally edgy
or flat). Ideally, in pure tissues regions, there should be no edge information, but
noise generates “artificial” edginess creating the minima of λ∀(y) to be non-zero in
these regions. To account for the relative nature of λ∀(y), an adaptive threshold is
applied.

An adaptive threshold that retains voxels most likely (in a probabilistic sense) to
contain mixture components are computed for the left and right side of each PVA
pulse:
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tL
jk = mink + maxjk − mink

2
, (24)

tR
jk = minj + maxjk − minj

2
,

where tL and tR are the left and right thresholds, respectively, and mink is the minimum
of λ∀(y) corresponding to tissue k, minj is the minimum of λ∀(y) corresponding to
pure tissue j and maxjk is the maximum of the PVA pulse that describes the mixture
of tissue j and k. The minima and maxima values are easily found with a peakfinder
algorithm based on the derivative to locate optima automatically.

For two mixel classes, an array of thresholds are defined

T = [tL
23, tR

23, tL
12, tR

12], (25)

where tL
23, tR

23 are applied to the first PVA pulse (CSF-brain PVA), tL
12, tR

12 to the
second pulse (brain-WML PVA)

λ∀
T (y) ∝ λ∀(y) > T , (26)

λ∀
T (y) ∝ p (a = 1|y) > T . (27)

The nonzero regions correspond to the adaptively found, class specific estimates for
λ∀

jk(y), where λ∀
T (y) = λ∀

23(y) ⊂ λ∀
12(y).

To decode the tissue fraction λjk(y), each refined PVA pulse λ∀
jk(y) is integrated

over the corresponding intensity values

λjk(y) =
∫ y

yk
λ∀

jk(t)dt
∫ yj

yk
λ∀

jk(t)dt
, yk < y ≤ yj, (28)

where the denominator is a normalizing constant. The final estimate for the proportion
of tissues parameter is the union of these two PVA regions: λ(y) = λ23(y) ⊂ λ12(y).
This technique automatically detects which graylevels correspond to PVA, and also
how much of each tissue is present within these voxels.

3.6 WML Segmentation

As the PVA map λ(y) dictates how tissue classes are mixing, it can be easily modified
to get class membership function for the WML. Since a value of λ12(y) > 0.5
indicates that tissue 1 (WML) is dominating at this graylevel y, this point is used to
define where the class membership becomes more in favour of WML (tissue 1).

If y2 and y1 denote the starting and ending graylevel values for λ12(y) > 0,
respectively, the class membership πWML(y) for the WML class may be found by
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πWML(y) =
{

λjk(y), y2 ≤ y < y1,

1 y → y1.
(29)

A value of ‘1’ is assigned to voxels that are pure WML, a ‘0’ for voxels that are not
part of the lesion class, and 0 < π < 1 for PVA voxels (mixture of brain and WML
tissues). This class membership function leads to automatic segmentation of WML
(πWML(y) is mapped to the spatial domain πWML(x), where the value represents the
fraction of WML that is present at voxel (x)). Other class membership functions for
the brain and CSF tissue classes are similarly defined.

4 Shape Analysis

Shape analysis techniques are a set of image processing tools that are focused on
characterizing segmented objects based on their shape. Typically, shape analysis has
been used for object recognition and matching, boundary filtering as well as general
shape characterization and there are many literature reviews on the subject [52]. In
this chapter we are focused on characterizing the shape of lesions to explore shape
signatures of different types of WML.

Currently, white matter lesions are divided into periventricular white matter
lesions (PVWML) and deep white matter lesions (DWML). DWML are identified
as being close to the periphery of the brain (“deep” in the WM), and PVWML as
being alongside the ventricles. Although the meaning of these two terms vary by
study and this dichotomization itself is still in debate, a possible dissimilarity in
pathogenic mechanisms between PVWML and DWML are providing some clues
for understanding pathophysiology of many diseases associated with white matter
lesions [5]. This work investigates whether WML shape signatures can differentiate
between DWML and PVWML.

Shape descriptors are computed using the segmented WML and therefore, the
shape and boundary of these objects must accurately represent the underlying pathol-
ogy. Since the proposed method is PVA-based, WML are segmented with subvoxel
precision and produce WML objects with accurate boundaries that are ideal for shape
analysis.

Very broadly, two families of shape analysis techniques are examined in this
work: (1) external (boundary-based) and (2) global methods. External techniques
focus on analyzing the boundary of the segmented object and global methods ana-
lyze the geometric shape of the object. Since the proposed WML segmentation tech-
nique segments WML boundaries robustly, both methods are employed. This section
will discuss the shape analysis methods that will be used to describe the difference
between DWML and PVWML.
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4.1 Boundary-Based Techniques

In boundary-based methods, the contour of the object is usually represented by its
spatial coordinates xk, yk , where k = 0, 1, . . . , N − 1 for a boundary with N pixels.
The kth pixel along the contour is described with two parametric equations:

x(k) = xk, (30)

y(k) = yk, (31)

which can be described jointly using complex notation: s(k) = x(k) + iy(k).
A series of features are extracted from the boundary representation known as

Fourier Descriptors (FD), and they are computed by taking the Fourier transform of
s(k)

S(f ) = F (s(k)) , (32)

= 1

n

N∑

k=1

s(i)e−2Θ j kf
N , (33)

where the length of the sequence is determined by the number of points used to
computed the FFT. Since the Fourier transform is linear

S(f ) = F (x(k) + iy(k)) , (34)

= Sx(f ) + iSy(f ), (35)

where Sx(f ) and Sy(f ) are the spectral coefficients of the x and y coordinates. Usually,
the magnitude spectrum is used to analyze the overall shape and defines the final set
of FD as

z(f ) = ||S(f )|| =
√

Sx(f ).2 + Sy(f )2. (36)

Fourier descriptors z(f ), are a series of spectral components that describe the way
a contour changes as the boundary is traversed. For example, a bumpy contour,
or one that has rapid changes in the x or y coordinate generate a spectrum that is
dominated by high frequency content. Conversely, a smooth boundary, or one that
has little change in the x or y coordinates of the object boundary would have little
high-frequency content in the spectrum.

The descriptors z(f ) for values of f close to zero will describe an approxima-
tive shape (global shape characteristics) and the higher frequencies will describe the
details. For f = 0, z(f ) represents the center of gravity of the shape and does not
describe anything about the shape of the object. The first frequency component, z(f )
for f = 1, describes the overall size of the segmented shape. If all the other compo-
nents are set to zero, the shape becomes a circle. The other frequency components
will make alterations on the circle described by z(1).
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If only the low frequency descriptors are kept, the reconstructed curve is an approx-
imation to the outline of a shape. By increasing the number of components in the
description, high frequencies define sharp curves and details of the shape.

The (in)variance properties of the Fourier descriptors are related to the properties
of the Fourier transform, in terms of translation, rotation, scale, and start point.
To ensure that the shape descriptors of the WML are robust, these properties are
examined and invariant Fourier descriptors are defined.

Translation Translation of an object is the same as adding a single constant to all of
the values of x(k) and y(k), which effects the DC term of the boundary descriptor
s(k). This zero-frequency component describes its mean position (location) in the
image and therefore, is the only coefficient that is translation variant. Without this
term the FD are translation invariant and thus this term is usually dropped.

Rotation Rotation in the complex plane by some angle is the same as multiplica-
tion with eiθ . Therefore, rotation of an object about the origin of the coordinate
system, results in FD that are scaled by eiθ . Computing the magnitude normalizes
the scaling constant eiθ which removes variance to rotation.

Start Point Changing the starting point of the contour (the first point in the bound-
ary descriptor s(k)) is the same as translation in the spatial domain (in this case,
k) which causes a phase-shift in the Fourier domain. Therefore, the magnitude of
S(f ), z(f ) are invariant to the choice of the starting point.

Scaling Resizing the object is equivalent to multiplying x(k) and y(k)by a constant,
which is the same as multiplying the corresponding FD by the same constant
(ignoring first value). Since the first coefficient (z(1)) describes the shape, we can
normalize the FD by this coefficient to render a scale invariant representation.

Invariant Descriptors The following operations are performed to make the FD
invariant to translation, scale, rotation and start-point:

• z(0) = 0 ∝ Translation Invariance,
• z(f ) = ||S(f )|| ∝ Rotation and Start Point Invariance,
• z(f ) = z(f )

z(1)
∝ Scale Invariance,

• Different sized lesions ∝ Boundaries are extended and resampled so that there is
fair comparison between boundaries of different lengths.

4.2 Global Shape Metrics

Global shape metrics quantify the global shape description, or the geometric shape
of the WML. These metrics are attractive because they are not sensitive to boundary
definitions and they also have a more intuitive meaning. For example, how “circular”
an object is can be easily understood by a user, or clinician.

Each metric is computed based on the binary segmentation mask for each WML,
called B(x1, x2), where
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B(x1, x2) =
{

1, (x1, x2) ∗ WML,

0, (x1, x2) ∗ Background.
(37)

Using the binary masks, several global shape metrics are considered for WML shape
analysis and are briefly described below:

Circularity The simplest formula to quantify the circularity of an object (also
called compactness or shape factor) is found by

Circ = P2

A
, (38)

where P is the perimeter and A is the area of the WML in B(x1, x2).

Haralick’s Circularity Another roundness measure is known as Haralick’s mea-
sure of circularity and it is computed as

CircH = μR

ΦR
, (39)

where R is the Euclidean distance computed between every boundary point and
the centroid, μ is the mean of these distances, and Φ is the standard deviation.
This metric is sometimes preferred over the traditional circularity metric since it
is less sensitive to noise and digitization artifacts.

Elongatedness In addition to describing the roundness, or degree of circularity
of the WML, another set of features that describe how elongated the WML are
also explored. A convenient measure is dependant on central moments μpq of
the segmented WML and is calculated as the ratio of the lengths of the axes
that describe the best fit ellipse. The best fit ellipse is derived by performing
eigenanalysis on the covariance matrix of the image constructed using the second
order central moments. The two eigenvalues of the covariance matrix are

ϕ1 =
μ20 + μ02 +

√
(μ20 − μ02)2 + 4μ2

11

2
, (40)

ϕ2 =
μ20 + μ02 −

√
(μ20 − μ02)2 + 4μ2

11

2
, (41)

which correspond to the major and minor axes of the image intensity, respectively.
The ratio of the eigenvalues define the elongatedness metric

elon = ϕ1

ϕ2
, (42)

which may be simplified and reformulated as
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elon =
√

(μ20 − μ02)2 + 4μ2
11

μ20 + μ02
, (43)

in order to ensure elon ∗ (0, 1).

Solidity A last global shape measure used is known as solidity, which describes
the proportion of WML pixels that are contained in the corresponding convex hull
(CH)

sol = n(WML ∩ CH)

n(CH)
(44)

where n(WML ∩ CH) is the number of WML pixels inside the convex hull and
n(CH) is the total number of pixels that make up the convex hull. This may
be useful in detecting PVWML since they would comprise a low number of
n(WML ∩ CH).

5 Results

This section describes the experimental results of the proposed WML segmentation
and shape characterization approaches. Both simulated and real images are used, and
the performance is quantitatively measured using several metrics.

5.1 Databases

5.1.1 Simulated FLAIR with WML

To validate performance of the proposed PVA quantification scheme robustly, a
series of brain images are simulated from the discrete templates provided by McGill’s
BrainWeb Simulated Database [53, 54]. The noise-free, inhomogeneity-free, 1.0mm
slice thickness Brainweb templates were downloaded and the ground truth masks
for three most commonly present tissues (GM, WM and CSF) as well as masks
for pathology are retained for image simulation. Simulated images are particularly
useful to quantify PVA estimation performance, since the underlying λ(x1, x2) used
to generate the images is known. This information is not available in real images and
thus simulated images are the only real way to accurately judge the performance of
a PVA quantifier.3 The images are re-simulated so that we have strict control over
the way artifacts are simulated, giving way to a flexible approach where noise and
PVA can be freely modified according to a variety of parameters.

Each one of the discrete masks from BSD are denoted as Cj(x1, x2) and each
describes the membership of the voxel located at the spatial position (x1, x2), to the

3 As noted in [55], there is a discrepancy with the partial volume model used in BrainWeb. Since we
are particularly interested in validating the performance of the partial volume model, we simulate
our own images.
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j-th pure tissue type. These maps are binary and nonoverlapping. To generate partial
volume averaging, we simulate the image formation process using these discrete
tissue masks.

Image formation in the presence of partial volume can be considered as a convo-
lution of the pure tissue class memberships, with a point spread function (PSF) [56].
Considering a single-class membership class Cj(x1, x2), the partial volumed class
membership function π true

j (x1, x2) is found by convolving the binary membership
map with a PSF h(x1, x2) as in

π true
j (x1, x2) = Cj(x1, x2) ≤ h(x1, x2), (45)

where a rectangular PSF is used since it satisfies the requirements of a “nice” PSF, i.e.,∫
h(x1, x2)dx = 1 and h(x1, x2) → 0,∞(x1, x2) [56]. Using a symmetric, M = m×m

rectangular kernel, if the mask lies entirely inside a pure tissue region, all M pixels
are of the same class j

π true
j (x1, x2) = 1

M

M∑

i=1

Cj(xi) = 1. (46)

A value of ‘1’ indicates a pure voxel from tissue j. If there are s number of pixels inside
the object, and t outside, this is a PVA voxel, and the membership is computed by

xitrue
j (x1, x2) = 1

M

M∑

i=1

Cj(xi) = s

M
≤ 1 + t

M
≤ 0 = s

M
, (47)

which models PVA since λtrue(x1, x2) = s
M and 1 − λtrue(x1, x2) = t

M . The size M
of the blurring function h(x1, x2) determines the severity of the partial voluming.

Noise is added to each pure class: Yj ∈ N(μj, Φj), where j = {CSF, brain, WML}
for FLAIR with WML. The values of μj were found by manually selecting voxels
from real MRI and the noise variance Φ = Φj is the same for all classes but is varied
to determine algorithmic performance as a function of noise. In PVA regions, noise
is added according to Eq. 12, using the ground truth PVA maps λtrue(x1, x2).

The noise level in the images is measured by considering the contrast to noise ratio
(CNR). Since the proposed technique is based on the gradient, and the quality of the
gradient depends on the contrast between classes as well as the noise in each class,
the CNR will be more descriptive for highlighting the advantages and limitations of
the proposed methods. The CNR is defined as

CNR = μj − μk

Φ
, (48)

where μj and μk are the class means of the two most similar (in intensity) classes,
and Φ is the standard deviation of the noise.
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Fig. 7 Simulated FLAIR with WML (first row) using the corresponding class membership masks
below. Left ST = 1, Φ = 15. Middle ST = 2, Φ = 20. Right ST = 3, Φ = 30. a Slice 85. b Slice 90.
c Slice 95. d π true(x1, x2). e π true(x1, x2). f π true(x1, x2)

To test the effect of slice thickness on algorithm performance, the width of the
PSF is varied. If the width/height of the PSF is denoted by m pixels, then the slice
thickness (ST) is related by m = 2 ≤ ST + 1 (the PSF is symmetric and thus must
have an odd width/height). Several example images, along with the class membership
maps used to generate the images are shown in Fig. 7.

5.1.2 Real FLAIR with WML

To verify the performance of the algorithm thoroughly, validation studies are also
conducted on real images since the natural variability of patient data is not represented
in simulated images. To use real FLAIR images with WML, a Research Ethics
Protocol was submitted and received Institutional Ethics Approval in January 2008.
A database of 24 patients were used to examine the WML segmentation performance
and lesion load characteristics.

Images were acquired in the axial plane on a 1.5T GE Signa Excite, which uses a
multi-phased coil array to reconstruct each image. As a result, the images are inflicted
with non-Gaussian noise. The imaging parameters are as follows: pixel bandwidth
of 97.65, 90 degree flip angle, 16bit, 0.5×0.5×5 mm3 voxel dimensions, TR/TE/TI
= 8000/128/2000 ms, FOV 180×240 mm. These images will highlight the benefits of
the current approach over traditional model-based approaches since images have non-
Gaussian noise characteristics and pathology which cannot be accurately accounted
for with Gaussian intensity distribution models.
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Fig. 8 Examples of manual segmentation outlines drawn in sedeen viewer

Validation of algorithms on real images requires manual segmentation of the
objects that are being detected. To generate ground truth data, a Radiologist with
many years experience in the interpretation of neurological MRI used a specialized
software program called Sedeen4 to outline WML objects on each image. An example
of an image loaded into Sedeen is shown in Fig. 8. It is a user-friendly program that
allows the user to load multiple images, zoom, pan, draw ROI (saved as an overlay),
as well as manual editing of the drawn ROI. The ROIs are saved as a series of x-y
coordinates.

An example image with the radiologist’s outlines, the corresponding binary mask
and the estimated (discrete) class membership map is shown in Fig. 9. The estimated
and ground truth WML masks will be compared in the results section using various
metrics.

5.2 PVA Quantification and WML Segmentation Performance

This section will detail the results of the PVA quantification and WML segmentation
using real and simulated images. To objectively validate the performance of the
proposed work on the experimental databases, the amount of overlap (“agreement”)
between a segmented object and the ground truth is measured by the Dice Similarity
Coefficient (DSC)

DSC(A, B) = 2|A(x) ∩ B(x)|
|A(x)| + |B(x)| , (49)

4 http://www.pathcore.ca/sedeen/

http://www.pathcore.ca/sedeen/
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Fig. 9 Examples of manual segmentation (outline), corresponding binary map and automatic seg-
mentation results. a Outline. b Manual (binary). c Automated (binary)

where A(x) and B(x) are binary masks for the segmentation and ground truth.
To further quantify the performance of the proposed method, specificity and sen-

sitivity are also used. The sensitivity sens is defined as the true positive rate

sens = TP

TP + FN
, (50)

where TP and FN are the number of true positives and false negatives, respectively.
Conversely, the specificity spec describes the true negative rate

spec = TN

TN + FP
, (51)

where TN and FP are the number of true negatives and false positives, respectively.
The TP, FP, TN, FN are all defined on a voxel-by-voxel basis, using binary masks
of the ground truth and segmentation result [57, 58]. These metrics describe the
classification rate of our system.

Since there is usually a trade-off between these measures, sensitivity and speci-
ficity are often represented graphically by a Receiver Operating Characteristic (ROC)
curve, which has 1-specificity on the x-axis and sensitivity on the y-axis. Perfect clas-
sification would yield a point in the upper left corner of the ROC curve (i.e. (0,1)),
which represents 100 % sensitivity (no false negatives) and 100 % specificity (no
false positives). A completely random guess would result in a value along the diag-
onal line from the bottom left to the top right corner. This is called the line of no
discrimination and divides the ROC space; points above this line represent good
classification, whereas points below indicate poor performance.

The results for one slice of the partial volumed noisy image Y(x) is shown in
Fig. 10a. The spatial domain images for the original local edge estimate (λ∀(g) ∝
λ∀(x)) and the new and improved global estimate (λ∀(y) = p(a = 1|y)) are shown in
Fig. 10b, c. The localized measure is extremely noisy in flat regions while noise is



Accurate Pathology Segmentation in FLAIR MRI 217

0 100 200 300 400 500 600
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Conditional PDF

Intensity y

P
ro

b
ab

ili
ty

p(ρ
k
=0|y)

p(ρ
k
=1|y)

0 100 200 300 400 500 6000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Global Change in Proportion 
          of Tissues α’(y)

Intensity y

M
ag

n
it

u
d

e

α’(y)
p(y)

0 100 200 300 400 500 600
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

α’
T
(y) and α(y)

Intensity y

M
ag

n
it

u
d

e

α’
T
(y)

α(y)

α
23

(y) α
12

(y)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Simulated images and algorithm inner workings (Φ = 30). Top row (from left to right)
simulated FLAIR MRI with WML Y(x), localized edge metric mapped to spatial domain (λ∀(g) ∝
λ∀(x)), global edge measure mapped to spatial domain λ∀(y) ∝ λ∀(x). Middle row (from left to
right) conditional probability estimates p(0|y), p(1|y), estimated global edge function λ∀(y) and
thresholded PVA map λ∀

T (y) with corresponding tissue fraction λ(y). Bottom row (left to right)
segmented PVA voxels, segmented pure voxels, and WML class membership mask. a Y(x). b
λ∀(g) ∝ λ∀(x). c λ∀(y) ∝ λ∀(x). d p(0|y), p(1|y). e λ∀(y), p(y). f λ∀

T (y), λ(y). g PVA voxels. h
Pure voxels. i πWML(x)

suppressed in the globalized version. Moreover, PVA is localized with high values
and classes are clearly discernible in the new measure.

Figure 10d displays the initial estimate for p(a|y) and Fig. 10e contains the esti-
mated change in tissue fraction parameter λ∀(y) (Eq. 23), plotted on top of the
graylevel PDF p(y). The local minimums of λ∀(y) line up with peaks in p(y) (purest
voxels) and the value is nonzero in these flattest regions caused by noise. The refined
estimate, λ∀

T is shown in Fig. 10f along with the decoded proportion of tissues λ(y)
found with Eq. 28.

Usingλ(y), the estimated intensities of PVA voxels are segmented (all y, λ(y) > 0)
alongside the pure voxels (all y, λ(y) = 0) in Fig. 10g–h, showing good localization
of both PVA and pure tissues. The class membership πWML is shown in Fig. 10i,
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Fig. 11 Dice similarity coefficient, sensitivity and specificity of the tissue classification perfor-
mance of the proposed method on synthetic data. a DSC. b Sensitivity. c Specificity

demonstrating that the center of the lesion (purest) receives the highest value, while
the boundaries (PVA) receive proportionally less values.

The DSC between the true and estimated class membership masks,5 averaged over
all slices is shown in Fig. 11a. The DSC is very high indicating excellent detection
and quantification performance. The CSF and brain tissue classes were detected with
almost perfect results (average DSC of 0.9855 and 0.9992) and so were the WML
(0.9890 on average). The sensitivity and specificity also confirm these results and
are shown in Fig. 11.

For the validation studies on real FLAIR MRI with WML, a total of 195 FLAIR
MR images were used to verify performance. These images were collected from 24
patients and they possess varying lesion load characteristics. To prepare the images,
brain extraction [39] and bilateral filtering are employed. Manual segmentation was
performed on 25 randomly chosen images. The manual segmentation result and
corresponding PVA quantification and binary segmentation for the WML class are
shown in Fig. 12 for several images. The interior of WML (pure) are classified with
high values and the boundaries (PVA) receive a decreasing value. Note that although
only the WML segmentation performance is shown, the other tissue classes are also
robustly detected.

The estimated class membership πWML(x) were converted to binary by threshold-
ing at various values ψ ∗ (0, 1) and were compared to the ground truth masks via
the DSC (segmentation “overlap”) and ROC analysis (classification performance).
Each point on the ROC corresponds to a sensitivity and specificity for a particular
threshold value ψ .

The DSC over all thresholds, and the average DSC, for all images, are shown
in Fig. 13a, b, respectively. The DSC is high for lower thresholds as the graphs are
skewed to the left. The optimal threshold ψ ≤ (best performance over all images) is
found to be 0.15, suggesting that expert WML detection includes majority of the
PVA voxels in WML.

Similar results are found for the corresponding ROC curves shown in Fig. 13c, d.
The ROC has a steep increase for low thresholds indicating that for high sensitivities,

5 πWML → 0.5.
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Fig. 12 Segmentation of WML in FLAIR MRI. Top original images with manual segmentations.
Middle WML class membership. Top: Bottom Thresholded (ψ ≤ = 0.15) and binarized class mem-
bership of WML. a Im2. b Im4. c Im22. d πWML . e πWML . f πWML . g πWML > ψ ≤. h πWML > ψ ≤. i
πWML > ψ ≤

high specificities are achieved. The average DSC, sensitivity, and specificity at the
optimal threshold value ψ ≤ = 0.15 for all images is DSC = 0.83, Sens = 0.82 and Spec
= 0.99 and the individual results are tabulated in Table 1. These results demonstrate
good segmentation performance over a wide variety of patients and lesion loads.
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Fig. 13 a DSC as a function of threshold ψ for all patients, b Average DSC curve, which shows
optimal performance is achieved with ψ = 0.15. c ROC plots for all patients, d Average ROC graph

The simulated and real FLAIR MRI are corrupted by PVA and Gaussian as well as
non-Gaussian noise sources, and regardless, algorithm performance is high in both
scenarios. The algorithms use information calculated directly from a single modality
so in addition to accuracy, the proposed work is also efficient. These characteristics
are advantageous over traditional model- or multimodality-based approaches, since it
does not depend on pretermitted intensity distribution models that inaccurately model
noise in modern MRI systems and pathology, nor does it use multiple modalities to
segment the lesions.

Results on simulated and real FLAIR MRI with WML show the algorithm is seg-
menting WML robustly. Due to the fractional nature of the class membership maps,
WML segmentation is completed with subvoxel accuracy. Therefore, this algorithm
presents a great opportunity for automatic shape analysis of WML (discussed next)
since accurate segmentation is absolutely crucial for shape analysis.
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Table 1 Results for real FLAIR MRI with WML using ψ≤ = 0.15

IM1 IM2 IM3 IM4 IM5 IM6 IM7 IM8 IM9

DSC 0.84 0.90 0.82 0.92 0.83 0.81 0.74 0.74 0.79
Sensitivity 0.82 0.89 0.84 0.95 0.89 0.88 0.84 0.74 0.77
Specificity 0.98 0.99 0.99 0.99 0.98 0.99 1.00 1.00 0.99
Volume (mL) 8.89 8.76 2.51 6.14 4.87 2.24 0.38 0.28 2.34

IM10 IM11 IM12 IM13 IM14 IM15 IM16 IM17 IM18
DSC 0.78 0.84 0.84 0.81 0.85 0.86 0.87 0.87 0.88
Sensitivity 0.73 0.80 0.81 0.76 0.89 0.86 0.87 0.85 0.83
Specificity 1.00 1.00 1.00 0.99 1.00 0.98 0.99 0.99 0.99
Volume (mL) 1.55 0.21 1.81 3.41 1.35 11.29 4.62 5.20 7.42

IM19 IM20 IM21 IM22 IM23 IM24 IM25
DSC 0.84 0.77 0.89 0.92 0.87 0.83 0.50
Sensitivity 0.75 0.68 0.83 0.89 0.83 0.77 0.78
Specificity 1.00 1.00 0.99 0.99 0.98 1.00 0.99
Volume (mL) 3.89 2.71 6.84 18.78 20.33 2.02 0.37

5.3 Shape Characterization

The previous subsections validated the PVA quantification and WML segmenta-
tion methodology on simulated and real FLAIR MRI. As was shown, WML are
extracted with sub-voxel accuracy, making them great candidates for shape analysis
techniques. The binary masks B(x1, x2) and the corresponding detected boundaries
(xk, yk) for several WML are shown in Fig. 14. These WML masks and boundaries
are individually fed into the shape analysis engine.

From the real FLAIR MRI database, five images that had the WML segmentation
performance validated were selected for shape analysis, resulting in a total of 48
lesions for experimentation. Segmentation postprocessing was performed to tidy up
the binary masks to analyze only relevant lesions. Operations included removing false
positives from the periphery of the brain (left over from brain extraction) as well as
removing lesions with the largest diameter <3 mm and lesions comprised of 9 pixels
or less. This removed irrelevant and spurious noise from the WML segmentation
results.

The lesions were labeled as PVWML if they are touching the ventricles, and
DWML if they are located away from the ventricles. These class labels, in conjunction
with the shape analysis features extracted from each lesion, are used for automatic
classification of lesion type.

Boundary-based and global shape metrics described in Sect. 4 were extracted from
the lesions. For the lesions in Fig. 14, boundary-based features (Fourier Descriptors),
as well the global shape features are shown in Figs. 15, 16.

The eight most relevant Fourier descriptors z(2), z(3), . . . , z(10), which are the
most commonly used for shape analysis and description are shown for each lesion
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Fig. 14 WML segmentation masks and detected boundaries for a single patient. Lesions are num-
bered 1 through 15, starting at the top left corner traversing each row

(a single line corresponds to the spectrum for a single lesion). As can be seen, it is
hard to differentiate between the DWML and PVWML spectra, and moreover, the
meaning of these features are hard to interpret.

The global shape metrics are shown per lesion and are coded differently to high-
light the discriminatory behaviour of each feature in classifying between DWML
and PVWML. The circularity metric has the most separation between PVWML and
DWML, whereas Haralick’s Circularity measure does not differentiate between these
lesion types. However, it is noted that two lesions have high Haralick’s Circularity
measures - these lesions correspond to the round lesions in Fig. 14 (lesion 1 and lesion
15). The solidity also discriminates between the lesion types with good results. That
is due to the fact that the shape of the lesions take up less pixels inside the convex
hull. The elongation metric does not appear to differentiate between the DWML and
PVWML classes, but some discrimination is noted. A classification scheme will be
used on these features to determine their ability to classify between lesion classes.

A supervised, linear discriminant classifier was used, where a leave-one-out train-
ing and testing strategy was employed. This allows us to determine which features
robustly discriminate between PVWML and DWML. The performance of the classi-
fication system is judged by the misclassification rate (MCR), which is the percentage
of WML labeled incorrectly. Several experiments were conducted to test the individ-
ual discrimination power of the different shape features. First, the performance of
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Fig. 17 WML segmentation masks and detected boundaries

each global shape feature, and each Fourier descriptor were analyzed individually.
Next, the global and boundary-based features are grouped creating a global shape
feature superset and boundary-based feature superset. The performance of the system
to these two feature sets were tested as well. The last experiments uses all proposed
shape analysis features together for classification between DWML and PVWML.
These results are displayed in Fig. 17.

As can be seen, the circular and elongation metrics clearly outperform all the
other features with MCR = 10 %, MCR = 27 %, respectively, including the FD
as well. Using all global features and all features also results in good classification
performance, with MCR = 10 %, MCR = 27 %, respectively. Interestingly, using
a single feature (circularity) results in the best performance showing that very few
lesions were misclassified. This shows the great utility and promise that shape analy-
sis techniques hold for neurological disease quantification and classification. We plan
to apply these methods on a larger database of lesions to examine the performance
further and for other applications.
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Groupwise Registration of Brain Images
for Establishing Accurate Spatial
Correspondence of Brain Structures

Zhenyu Tang and Yong Fan

Abstract For establishing accurate spatial correspondence of brain structures among
different subjects, many groupwise image registration methods have been proposed to
register brain images taken from different subjects onto a common space. Except the
congealing method, most groupwise image registration methods achieve the image
registration by registering images to a template image using pairwise image registra-
tion algorithms. For these groupwise image registration methods built upon pairwise
image registration, the key points are template determination, registration path iden-
tification, and pairwise image registration. Focusing on the graph-based groupwise
image registration methods due to their high computation efficiency and accuracy,
this chapter introduces briefly the congealing method and groupwise image regis-
tration methods with different strategies for template determination and registration
path identification. To demonstrate the strength of state-of-the-art groupwise image
registration methods, a quantitative comparison study has also been presented for rep-
resentative graph-based groupwise image registration methods based on two publicly
available 3D MR brain image datasets.

1 Introduction

Following the rapid advancement of medical imaging techniques, medical image
analysis plays an increasingly important role in the field of medical science. In
neuroimaging studies, since brain structures of different subjects have variant shapes,
brain images of different subjects are often transformed into a common space to
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facilitate statistical image analysis. Such a common space is typically defined by a
brain image atlas, e.g., the MNI brain and the Talairach atlas [1].

Recently, groupwise image registration methods for registering multiple images
have attracted interests due to their efficacy [2–11]. Instead of registering each indi-
vidual image to a specific atlas image, the groupwise image registration methods
register images to a common space identified automatically from the images to be
registered. Such an image registration strategy can effectively reduce registration
bias introduced by a specific image atlas, and therefore might be able to improve
the subsequent image analysis. In this chapter, different kinds of groupwise image
registration methods are introduced, and their performance in the registration of 3D
MR brain images is evaluated.

Many methods for the groupwise image registration have been proposed in the
last decade [2–10]. Except the congealing method that registers images by optimiz-
ing a groupwise image similarity, i.e., sum of entropies of pixel stacks [10, 12],
most of the existing groupwise image registration methods are built upon pairwise
image registration algorithms and achieve the final registration in two different ways:
(1) registering all images directly to a template image that can be a representative
image selected from the images to be registered (typically a group center image) or
iteratively to their evolving average image [2, 5, 6], referred to as direct pairwise
image registration based groupwise image registration methods; and (2) registering
images to their similar images and then composing the resulting deformation fields to
achieve the registration of all images to the representative image [3, 4, 7–9, 13, 14],
referred to as intermediate template based groupwise image registration methods.

This chapter is organized as follows. Pairwise image registration methods are
firstly briefly introduced, followed by introductions of groupwise image registration
methods, including the congealing method, the direct pairwise image registration
based, and the intermediate templates based groupwise image registration methods.
Finally, the chapter is concluded with a brief discussion.

2 Pairwise Image Registration

The pairwise image registration methods find a spatial transformation for registering
one image, often referred to as floating image, to another image, referred to as tar-
get image. A survey of image registration methods has classified image registration
methods into feature based and area based methods [15]. To register two images
(target and floating images), a feature based image registration method typically fol-
lows three steps. First, each image’s feature points are identified and characterized
by simple image features such as line intersections [16] and corners [17] or more
sophisticated image features, e.g., histogram of local image patch and SIFT features
[18]. Second, matched feature points of the images to be registered are obtained
by matching their image features. Finally, parameters of a transformation model,
e.g., rigid transformation or projection mapping, are estimated to establish the cor-
respondence between the matched feature points. The resulting parameters of the
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Fig. 1 Images contain an arrow shape with different orientations. By finding the matched feature
points (marked as red points), one is able to estimate the rotation angle and translation of a rigid
transformation for registering the images

transformation model can be used to spatially transform the floating image to the
target image’s space. Figure 1 shows two 2D images, each of them containing an
arrow with different orientations. Once one gets at least two pairs of matched feature
points, parameters of a rigid transformation (the rotation angle and translation) can be
estimated to establish their spatial correspondence for achieving image registration.

In the area based image registration methods, instead of feature points, image
regions are considered. In other words, all image pixels within a region of interest
are regarded as one feature “point”. Typically, parameters of certain transformation
model in the area based image registration are determined based on a predefined
cost function. The most commonly adopted cost functions include Pearson correla-
tion coefficient for modeling linear relationship between intensities of images to be
registered and mutual information for modeling their non-linear relationship [15].

The image registration methods can also be classified as either parametric image
registration or non-parametric image registration based on the transformation model
used in the registration. The advantage of parametric image registration methods is
their high computational efficiency. In particular, linear parametric transformation
models used in image registration include rigid transformation, affine transformation,
and projection mapping, while Thin Plate Spline (TPS) and Free-Form Deformations
(FFD) are typically adopted as non-linear parametric transformation models in image
registration [19, 20].

Since the deformation modeled by a parametric model typically has low degrees
of freedom, non-parametric image registration methods are often used for registering
images with diffuse, local differences, e.g., brain images [21]. Among the non-
parametric image registration methods, Thirion’s Demons algorithm [22] is one well-
known method. The Demons algorithm is derived from the optical flow equation [23],
and the deformation vector for each pixel is formulated as

ν(x) =
{

(I f (x)−It (x))·∝ It (x)

∗∝ It (x)∗2+(I f (x)−It (x))2 , if ∗ ∝ It (x) ∗2 +(I f (x) − It (x))2 > Σ,

0, otherwise
(1)

where ν is the deformation vector at each pixel x , I f and It are floating and target
images, and Σ is a small tolerance to improve the solution’s numerical stability. The
Demons algorithm achieves image registration in an iterative way. In particular, at
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Fig. 2 Illustration of the Demons. Left images with a ramp structure of gray values. Right top
intensity profile and the deformation vectors of pixels at each column for registering image A to
image B. Right bottom intensity profile and the deformation vectors of pixels at each column for
registering image A to image C

each iteration step, deformation vectors for all pixels are calculated and regularized
by a Gaussian filter, and then the resulting deformation vectors are added to an
accumulated deformation field. At the end, the accumulated deformation field is
used to warp I f to It .

Figure 2 illustrates how the deformation vector is calculated by Eq. (1) for regis-
tering one image (denoted by A) to two different images (denoted by B and C). Each
image contains a different ramp structure of gray values. For registering image A to
image B, since the gray value of each column of A is smaller than the correspond-
ing column in B, I f (x) − It (x) is negative according to the Eq. (1). Therefore, the
directions of deformation vectors for each column of A is opposite to the directions
of image gradient of B as shown in the right top of Fig. 2. On the contrary, for reg-
istering image A to image C, the deformation vectors and the image gradient of C
have the same direction since the gray value of each column of A is bigger than the
corresponding column in C, as shown in the right bottom of Fig. 2.

The Demons algorithm has been improved for achieving better accuracy and
higher efficiency in different ways and validated in different applications [22, 24–70].
Among its improved versions, the Diffeomorphic Demons algorithm has been widely
adopted in the registration of brain images [65]. Since deformation vectors are
projected onto the Lie groups by exponential maps, the Diffeomorphic Demons
algorithm is able to obtain a diffeomorphic deformation field, i.e., no folding and
invertible. This algorithm has also been used in groupwise image registration meth-
ods that are built upon pairwise image registration [8, 11, 71].

The pairwise image registration has been extended for registering multiple images
using different strategies, referred to as groupwise image registration. The remain-
der of this chapter reviews representative groupwise image registration methods,
including the congealing method, the direct pairwise image registration based and



Groupwise Registration of Brain Images 233

Fig. 3 Image stack used in the congealing method. The rectangles stand for input images and the
red circles constitute a pixel stack at one pixel location x

the intermediate templates based groupwise image registration. In particular, graph
based groupwise image registration methods are introduced as special cases of the
intermediate template based groupwise image registration.

3 Groupwise Image Registration Using Congealing

The congealing method was first proposed by Miller [72] for the task of image
classification, and then was adopted for groupwise image registration [73]. Paramet-
ric deformation models are typically used in the congealing based groupwise image
registration, including affine transformation and B-spline deformation [12, 73]. The
congealing method in conjunction with the Diffeomorphic Demons algorithm has
also been adopted in fMRI data registration [74].

In the congealing method, no template is required. The similarity among images
to be registered is measured by the sum of pixel wise (voxelwise) entropies across
the whole image space

E =
n∑

x=1

H(s(x)), (2)

where x is the spatial location of a pixel, n is the number of pixels in the image space,
s(x) is a variable defined by the intensities of a pixel x across all of the images to be
registered, and H(·) is the entropy function. The variable defined by the intensities of
a pixel x across all of the images is often referred to as an image stack, as illustrated by
Fig. 3. The congealing method achieves groupwise image registration by iteratively
deforming images one by one for minimizing the cost function defined by Eq. (2)
until convergence. Its computational cost is very high since it requires one evaluation
of the cost function defined by Eq. (2) for every update of the deformation parameters
for each image.
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Fig. 4 Illustration of groupwise registration using direct pairwise image registration. Left input
images; Right one input image is selected as a template and other images are registered to the
template for achieving the final groupwise registration

To achieve efficient groupwise image registration, many groupwise image regis-
tration methods are built upon pairwise image registration. Basically, pairwise image
registration is adopted to achieve groupwise image registration in two ways: (1) reg-
istering all images directly to a template image that can be a representative image
selected from the images to be registered (typically a group center image) or itera-
tively to their evolving average image [2, 5, 6]; and (2) registering images to their
similar images, known as intermediate templates, and then composing the resulting
deformation fields to achieve the registration of all images to the representative image
[3, 4, 7–9, 13, 14].

4 Groupwise Image Registration Using Direct Pairwise
Image Registration

It is an intuitive way to achieving the groupwise image registration by directly reg-
istering all images to a template image [2, 5, 6]. The basic idea is to choose or to
produce an image serving as a template from a given group of images. Then all the
images in the given image group are registered to the template to achieve the final
alignment (Fig. 4). The key of this kind of methods is how to determine an optimal
template.

The template image can be defined as the geometric mean of the input images
based on their pairwise registration results [5]. In particular, each image is first
registered to all the other images, then the geometric mean is estimated using the
Multi-Dimensional Scaling (MDS) based on the registration result of all image pairs,
and finally the closest image to the geometric mean is chosen as the template. In [75],
the template image was defined as the average image of deformed input images, and
each deformed input image was produced by warping the input image with the aver-
age deformation field resulted from averaging all deformation fields determined from
pairwise image registrations between this image and all the other images. However,
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Fig. 5 Illustration of the iterative process of the groupwise registration method using the group
average image as the template

the template selection methods have relatively high computational cost since the
pairwise image registration is required for every possible pair of images. As men-
tioned in [75], it would take 4096 h, i.e., 170 days, to get the template for an image
group containing 64 images using one processor.

Another efficient way to obtain the template is to generate the average image from
the input images iteratively [6]. Particularly, an average image of registered input
images using affine transformation is first generated as the template image and then
all images are registered to the template image using a nonlinear registration method.
The registered images can be averaged again to generate a new template image so
that the groupwise image registration is improved iteratively. The iteration process
stops when all images have been well aligned or the maximum number of iterations
exceeded. The flowchart of such a groupwise image registration algorithm is shown
in Fig. 5.

At the very beginning of the iterative groupwise image registration, images are
typically not well aligned and the resulting average image is blurred. Such a blurred
template image could hamper the groupwise image registration. To overcome this
problem, a sharp average image can be generated using an adaptive weighting strat-
egy at each iteration step [7]. The weight for each image’s pixel/voxel at each iteration
step is inverse proportional to the squared intensity difference between image patches
centered at the pixel/voxel in the image considered and the group mean image pro-
duced in the previous iteration step, so that the pixel/voxel in an image more similar
(i.e., similar image intensity) to that in the group mean image contributes more to
the pixel/voxel intensity in the new group mean image. The resulting group mean
image is often with sharp contrast.
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Fig. 6 Illustration of groupwise registration using intermediate templates. Red points indicate
images. A is the image to be registered, B is the intermediate template, and R is the final template

5 Groupwise Image Registration Using Intermediate Templates

Since the registration of similar images is typically easier than the registration of
images that are much different from each other, several groupwise image registration
algorithms have been proposed to register images to their similar images, referred
to as intermediate templates, and then composing the resulting deformation fields
for achieving the registration of all images to a representative image of input images
[3, 4, 7–9, 13, 14]. The basic idea of this kind of registration methods for registering
image A to final template R via intermediate template B is illustrated by Fig. 6. To
determine the optimal intermediate template for each image, different strategies have
been proposed [14, 71].

A statistical deformation model has been used to generate the intermediate tem-
plates in a brain image registration method called RABBIT [14]. In particular, the
method first gets a set of deformation fields that register a template brain image
to individual brain images, and then applies Principal Component Analysis (PCA)
to the deformation fields for generating a statistical deformation model that is able to
characterize a brain image deformation field with a small number of parameters. To
register the template brain image to a brain image, the statistical deformation model
is used to generate a deformation field that warp the template image to produce an
intermediate template close to the brain image considered, then a deformation field
that registers the intermediate template and the brain image considered is estimated
by a pairwise image registration algorithm, and finally the obtained deformation field
is composed with that generated by the statistical deformation model to register the
template brain image to the brain image considered. Since the difference between the
intermediate template image and the image considered is relatively small, a better
registration result can be obtained.

In most of groupwise image registration methods, the intermediate templates for
each input image are its neighboring images chosen from the rest of input images.
For example, in a method called ABSORB [71], each image’s neighboring images
serve as its intermediate templates if the neighboring images are closer than itself
to a group center image. The center image is determined by choosing the image
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Fig. 7 Illustration of the registration strategy proposed in ABSORB. Given a group of image,
represented by red points, to be registered, each image (e.g., A) is warped toward the group center
with a deformation field obtained by averaging deformation fields warping A to its neighboring
images (N1, N2 and N3) that are closer to the group center than A itself. The procedure is iterated
to warp all images to the group center image that is updated after each iteration step

near the group geodesic mean on an estimated manifold of input images using graph
theoretic techniques (discussed in the Sect. 6). The groupwise image registration is
then achieved by iteratively warping each input image with a mean deformation field
obtained by averaging deformation fields that map the input image to its intermediate
templates, as illustrated by Fig. 7.

Recently, graph theoretic techniques have been adopted in the groupwise image
registration for learning a manifold of input images so that a large deformation
between images can be decomposed into a series of small and anatomically mean-
ingful deformations between similar images [3, 4, 8, 9]. The graph based groupwise
image registration methods are intermediate template based registration methods
too since some input images are used as intermediate templates of other images
for achieving the final groupwise image registration. The representative groupwise
image registration methods using graph theoretic techniques are introduced in Sect. 6.

6 Groupwise Image Registration Using Graphs

In the graph based methods, a graph of input images is constructed. In such a graph,
each node corresponds to an input image and similar nodes are connected with edges.
The weight of each edge connecting two images is determined by their similarity
measure. The graph of images helps estimate the manifold of input images and the
geodesic distance between two images can be approximated by the their shortest
path in the graph identified using graphical algorithms, such as Dijkstra method
[76]. Images on the shortest path between a pair of images can serve as interme-
diate templates and the registration between the pair of images can be achieved by
subsequently composing deformations between all adjacent image pairs along their
shortest path. Typically, a root image, which serves as the template, is first deter-
mined in the graph based methods, and then all images are registered to the root
image along their corresponding shortest paths to the root. The template (or root)
in the graph based methods is usually identified as a pseudo-geodesic mean of the
images [8] by
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Fig. 8 Illustration of the graph based groupwise image registration. Each circle denotes one
image, and Dxy, x, y = a, b, c, d, e, r , x ∅= y, denotes a deformation field that registers image
x to image y

Iroot = argmin
Ii

n∑

j=1

g(Ii , I j ), i = 1, · · · , n, (3)

where g(Ii , I j ) is the length of the shortest path between images Ii and I j . Once
the root image is determined and the shortest paths from non-root images to the root
are fixed, a tree of images is obtained and the root of the tree is the group center of
images. An example of such a tree with 6 images is illustrated in Fig. 8.

As shown in Fig. 8, there are 5 non-root images (denoted as a, b, c, d, e) and each
of them has a corresponding shortest path, following which the non-root image can
be registered to the root image by subsequently composing pairwise deformation
fields along the shortest path, i.e.,

Dxr = Dxk1 ≤ Dk1k2 ≤ · · · ≤ Dknr , x, k1, k2, · · · , kn, r ∈ Pxr , (4)

where Pxr = (x, k1, k2, · · · , kn, r) is the shortest path from image x to the root image
r, and Dxr denotes the deformation field mapping x to r. For instance, in Fig. 8 the
shortest path of image c to the root image r is Pcr = (c, a, r) and the registration of
image c to the root image can be achieved by subsequently composing deformation
fields Dca and Dar , i.e., Dcr = Dca ≤ Dar . The graph based registration methods
help decompose a large deformation into small ones, and it is relatively easier to
achieve accurate results for the registration of similar images than the registration of
images with larger differences.

In the rest of this section, typical graph based methods are discussed in detail, and
their performance in the registration of MR brain images is evaluated.

6.1 kNN Graph Based Groupwise Image Registration

Most of the graph based groupwise image registration methods adopt kNN graph
to build the graph of images [4, 8]. In a kNN graph, each node is connected to
its k nearest neighboring nodes that are determined based on an image similarity
measurement. The typically used image similarity is the Euclidean distance between
image intensities defined as
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Fig. 9 An example of the graph construction using kNN algorithm. Each node is connected to its k
nearest neighbors (k = 3). For instance, node A is connected to B, C and D

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Fig. 10 A set of synthetic images that have two peaks of different heights

dEuclidean(Ii , I j ) =
(

n∑

x=1

(Ii (x) − I j (x))2

)1/2

, (5)

where n is the total number of pixels/voxels in each image, Ii (x) and I j (x) are the
image intensities at location x in images Ii and I j and respectively. An example kNN
graph is shown in Fig. 9.

The kNN graph has been demonstrated to be able to estimate the manifold of high-
dimensional data such as images [77]. However, the performance of kNN graph
based method is sensitive to the selection of k. Therefore, the resulting shortest
paths identified in a kNN graph, i.e., geodesic distances measured in the estimated
manifold, are unstable. The sensitivity of kNN graph based method is illustrated by
the estimation of the manifold of synthetic images shown in Fig. 10. These images lie
on a one dimensional manifold. The kNN graph based estimation result varies very
much with the parameter k, as indicated by the identified shortest paths of images
to a group center image shown in Fig. 11. In particular, kNN graphs with different
settings of k are constructed based on similarity measures defined by Eq. (5), and
then Dijkstra method is used to identify the shortest path from each image to the
group center determined using Eq. (3). It is clear that the shortest paths for some
images are changed dramatically with different settings of k. It is worth noting that
the number in each circle shown in Fig. 11 corresponds to the image with the same
number in Fig. 10.
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k=4 k=6 k=8 

Fig. 11 The shortest paths derived from kNN graphs with different values of k. The root image
is marked as a gray circle and the ID in each circle corresponds to the image with the same ID in
Fig. 10

The graph of images can also be constructed using a so-called Φ-ball method in
a similar way to the kNN graph method. Different from the kNN graph method, the
Φ-ball method determines the neighboring images with connections to a given image
in the graph using a distance threshold. In particular, given a group of images, each
image’s neighboring images are those within a ball centered at the image considered
with radius Φ. Unfortunately, the Φ-ball method has the same problem as the kNN
graph method.

6.2 kNN+MST Based Groupwise Image Registration

Built upon the kNN graph method, the Minimum Spanning Tree (MST) method has
also been adopted to identify the shortest paths for images in groupwise image regis-
tration [4, 7]. The MST is a tree with minimal sum of edge weights. Two commonly
used algorithms for constructing a MST are Prim’s algorithm [78] and Kruskal’s
algorithm [79], and the latter can also be used to construct a minimum spanning
forest if the graph is not connected, i.e., a MST for each connected component.
The pseudo-code of Kruskal’s algorithm for connected graphs is summarized in
Algorithm 9.1.
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Fig. 12 Illustration of the construction of MST in a graph where each edge has a distance measure
as indicated by the number next to itself. Kruskal’s algorithm is applied to find the MST by adding
one edge (in black) with the minimal distance step by step as illustrated by the figures shown from
top left to top right, then bottom left to bottom right. The resulting MST is shown in the bottom
right

Figure 12 shows an example how to find the MST in a graph where each edge
is weighted by a distance measure as indicted by the number next to itself. Starting
from a void set, the Kruskal’s algorithm finds the MST in the graph by adding one
edge with the minimal distance step by step.

It is worth noting that the MST is usually generated from a graph obtained by the
kNN graph method in the groupwise image registration methods [4]. Therefore, it
suffers from the same problem as the kNN graph based groupwise image registration
methods.

6.3 Sparse Graph Based Groupwise Image Registration

A sparse coding based algorithm was proposed recently for constructing a sparse
graph of images, referred to as σ1-graph [80]. Particularly, given a group of images
Ii , i = 1, · · · , m, each with n voxels, the algorithm measures similarities among
images using sparse coding [81]. Mathematically, the similarity measures for one
image, e.g., Ii , to all the other images can be derived from the solution of the sparse
coding problem

min
Θ

∗ Ii − DΘ ∗ +θ ∗ Θ ∗1, (6)

where Ii is an n dimensional column vector of image intensities, D = [I1, . . . , Ii−1,

. . . , Ii+1, . . . , Im] ∈ R
n×m−1 is a matrix containing all the other images, Θ is a

(m-1)-dimensional vector containing the coefficients corresponding to images in D.
Since each element of Θ is proportional to the similarity measure between Ii and its
corresponding image in D, its inverse or a monotonically increasing function of its
inverse can be used to measure the image distance. According to the sparse coding
based image distance measures, one can build a directed graph of images in which
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Fig. 13 The shortest paths derived from σ1-graph with different values of θ. The root image is
marked as a gray circle and the number in each circle correspond to the image with the same
number in Fig. 10

each node’s outgoing edges to other images are weighted by its distance measures to
other images calculated based on the sparse coding. The advantage of the σ1-graph
method over the kNN graph is that each image’s neighbors are determined adaptively
to the image itself and the resulting graph is sparse due to the L1 norm constraint.
Furthermore, this method is more robust to its parameter θ . As shown in Fig. 13, the
shortest paths (using Dijkstra method) and the geodesic group center derive from the
σ1-graph with different settings of θ for the images shown in Fig. 10 are stable and
the shortest paths are consistent with the underlying manifold of the images.

A groupwise image registration method built upon the sparse graph of images,
referred to as dynamic sparse graph based method in this chapter, has been proposed
in [11]. In particular, a sparse graph of images is constructed based on an adaptively
weighted sparse coding method for estimating image similarity measures among
different images. Different from the sparse coding problem formulated by Eq. (6), a
weight vector is introduced in the adaptively weighted sparse coding

min
α

∗Ii − Dα∗ + θ ∗diag(w)α∗1 . (7)

where Ii is an n-dimensional column vector of image intensities, D = [I1, . . . , Ii ,

. . . , Im] ∈ R
n×m is a matrix containing all the input images, Θ is an m-dimensional

vector containing the coefficients corresponding to images in D, and w = (w1, . . . ,

wm) ∈ R
m is a weight vector for defining the participation of images in D. To avoid

a trivial similarity measurement of Ii , its corresponding weight wi in w is set large
enough to prevent Ii from representing itself.

Different from the existing graph based groupwise image registration methods
[4, 8], this method then achieves the groupwise image registration in an iterative
fashion. Once a graph of images is obtained, each image is registered to its direct
parent image, and the graph of images is updated based on the registration results.
Then, according to the updated graph of images, each image is again registered
to its direct parent image in the current graph. This procedure is repeated until all
images are registered to the root image. At every iteration step, images with the
same directed parent image become close to each other and form a cluster after they
are registered to the same parent image. If the sparse coding as formulated in the
Eq. (7) with the same setting, i.e., fixed weight w, is used to estimate image similarity
measures for the registered images, the images in the same cluster might represent
one another, resulting in larger values of similarity measures among themselves and
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Fig. 14 Illustration of the shortest path of each image to the root identified in the updated graph
of images with the image similarity measures estimated using the sparse coding with fixed and
adaptive weight w. Red dots numbered 1–8 and R denote different images, and R is the root image
identified in the graph of images. a The shortest paths in the directed graph at one of the iteration
steps. Images 1–4 have the same parent image 5, and form a cluster. Images 5–8 have the same
parent image R and form another cluster. b The shortest path for image 4 derived from updated
graph using the sparse coding with fixed weight w. c The updated graph becomes disconnected if
the image similarity measures are estimated using the sparse coding with fixed weight w. d The
shortest paths of images derived from the updated graph with image similarity measures estimated
using the sparse coding with adaptive weight w

small values of similarity measures (mostly 0) with the other images outside of the
cluster. Therefore, some of images in the same cluster may have the shortest paths
traversing others in the same cluster as illustrated by Fig. 14b, or all the images in
one cluster are isolated from images in other different clusters, thus generating a
disconnected graph as illustrated by Fig. 14c. The registration of one image with
the shortest path traversing multiple images highly similar to it requires multiple
pairwise image registration between similar images, which increases the computation
cost with little improvement of the overall registration accuracy. In a graph with
disconnected components, one is not able to find a root image that is reachable
from all the other images. To solve the problems illustrated in Fig. 14, the weight w
is adaptively updated along with the image registration. Particularly, for calculating
image similarity of image , large values are set to weight elements in w corresponding
to the images that have the same direct parent image as Ii in the previous iteration
step. Due to the constraint of the L1 norm in Eq. (7), images having the large weights
will not participate in the representing of Ii . Therefore, images in the same cluster
are isolated from each other and the problems illustrated in Fig. 14b and c can be
solved, as illustrated by Fig. 14d.

7 Groupwise Registration of Brain Images

In this section, applications of groupwise image registration methods to neuroimaging
studies are presented. In particular, three graph based groupwise image registration
methods, including kNN, kNN+MST and sparse graph, are evaluated based on two
public 3D MR brain image datasets, including LPBA40 [82] and NIREP-NA0 [83].
The same pairwise image registration, namely Diffeomorphic Demons [65], is used
in all of the three methods.
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Fig. 15 2D slices of 8 randomly selected 3D MR brain images from LPBA40 and their correspond-
ing label images

Fig. 16 2D slices of 8 randomly selected 3D MR brain images from NIREP-NA0 and their corre-
sponding label images

The LPBA40 dataset consists of 3D MR brain images obtained from 40 normal
subjects and each of them has a manually labeled image with 54 brain regions.
The NIREP-NA0 dataset contains 3D MR brain images obtained from 16 normal
subjects and corresponding manually labeled images with 32 regions. The overlap for
the labeled regions across different images can be used to evaluate the performance
of image registration algorithms. Some images and their corresponding label images
from both datasets are shown in Figs. 15 and 16, respectively.

All the T1-weighted images are affine-registered to MNI152 space using FLIRT
after preprocessed using histogram matching, and the transforms are then applied to
their corresponding individual label images [84]. For each dataset, an average image
is obtained and its 3D surface rendering is shown in Fig. 17. As the 3D surface render-
ing results shown, the average images are blurred, especially in gyri, indicating that
the images cannot be well aligned using an affine image registration algorithm due
to large inter-subject differences. The registered images using affine transformation
are used as input images in the graph based groupwise image registration methods.

7.1 kNN Graph Based Groupwise Image Registration

Images in the datasets of LPBA40 and NIREP-NA0 are registered separately using
the kNN graph based groupwise image registration method [8]. In particular, the kNN
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Average image of LPBA40  Average image of NIREP-NA0 

Fig. 17 3D surface rendering results of average images of LPBA40 (left) and NIREP-NA0 (right)

graph was adopted to estimate the underlying manifold of input images and Dijkstra
method was used to find the shortest path between each pair of images. After the
determination of the root image using Eq. (3), deformation fields mapping images to
their direct parent images along the corresponding shortest paths were calculated. The
deformation field mapping each image to the root image was produced by composing
deformation fields along its shortest path as formulated in Eq. (4). It is worth noting
that the image distance in the construction of kNN is the Euclidean distance defined
in Eq. (5).

Figure 18 left shows the tree of images formed by the shortest paths derived from
the kNN graph of LPBA40 dataset with k set to 3. These 2D Points in Fig. 18 are
projection results of 3D MR brain images in LPBA40 dataset by applying Principal
Component Analysis (PCA) to reduce the high dimensional original images to 2D
points. The surface rendering results of average of the registered images and the
root image are shown in Fig. 18 right. Compared with the surface rendering result of
the average image shown in Fig. 17, the one shown in Fig. 18 has sharper contrast,
indicating better registration results have been achieved by the kNN graph based
groupwise image registration algorithm. Registration results of NIREP-NA0 dataset
are shown in Fig. 19 with the same layout as Fig. 18.

7.2 kNN+MST Based Groupwise Image Registration

Images in the datasets of LPBA40 and NIREP-NA0 are registered separately using the
kNN+MST based groupwise image registration method [4]. Figure 20 left shows the
resulting kNN+MST of LPBA40 dataset and surface rendering results of the average
image of registered images and the root image. The results of NIREP-NA0 dataset
are shown in Fig. 21 with the same layout as Fig. 20. Visually, these results are similar
to those obtained by thekNN graph based groupwise image registration method.
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Fig. 18 Left Tree of images formed by the shortest paths from each image (red point) to the root
image (blue point) derived from the kNN graph of LPBA40 dataset. Right Surface rendering results
of average image of registered images and the root image (within the red rectangle on the right
bottom)

Fig. 19 Left Tree of images formed by the shortest paths from each image (red point) to the root
image (blue point) derived from the kNN graph of NIREP-NA0 dataset. Right Surface rendering
results of average image of registered images and the root image (within the red rectangle on the
right bottom)

7.3 Sparse Graph Based Groupwise Image Registration

Images in the datasets of LPBA40 and NIREP-NA0 are registered separately using
the dynamic sparse graph based groupwise image registration method [11]. Figure 22
shows the tree formed by the shortest paths derived from the graph at each iteration
step for the registration of images in LPBA40 dataset.

Registration results of NIREP-NA0 dataset can be found in Fig. 23 with the same
layout as Fig. 22. These results are not visually different from those obtained by the
kNN graph based groupwise image registration method and kNN+MST graph based
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Fig. 20 Left kNN+MST of LPBA40 dataset. Right Surface rendering results of average image of
registered images and the root image (within the red rectangle on the right bottom)

Fig. 21 Left kNN+MST of NIREP-NA0 dataset. Right Surface rendering results of average image
of registered images and the root image (within the red rectangle on the right bottom)

groupwise image registration method. However, it seems that the group average
images obtained by the sparse graph based groupwise image registration method
are closer to their corresponding root images for both LPBA40 and NIREP-NA0
datasets. Such the observation is supported by the quantitative evaluation results,
presented in the following section.

7.4 Evaluation of Graph Based Groupwise Image Registration

The registration performance of different graph based groupwise image registration
methods has been evaluated quantitatively using overlap measures among different



248 Z. Tang and Y. Fan

Iteration 1 Iteration 2 

Iteration 3 Iteration 4

Fig. 22 Left Trees formed by the shortest paths derived from corresponding graphs of LPBA40
dataset at four different iteration steps. Right Surface rendering results of average image of registered
images and the root image (within the red rectangle on the right bottom)

Iteration 1

Iteration 2

Fig. 23 Left Trees formed by shortest paths derived from corresponding graphs of NIREP-NA0
dataset at two different iteration steps. Right Surface rendering results of average image of registered
images and the root image (within the red rectangle on the right bottom)

labeled regions of registered images. Particularly, the overlap between corresponding
regions of registered images is evaluated using Dice index [85]. Given two regions X
and Y, their overlap can be measured by DI = 2|X→Y |

|X |+|Y | . To eavluate the registation
performance of a given method, we obtain the overlap measure for each labeled
region between every pair of images. So, given registration results obtained by one

registration method, we obtain Dice index values for

(
40
2

)
= 780 image pairs and

(
16
2

)
= 120 image pairs for the LPBA40 and NIREP-NA0 datasets, respectively.
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Besides the overlap measures for different regions, we also calculated the weighted
average Dice index value across of all the labeled regions for each pair of registered
images for the LPBA40 and NIREP-NA0 datasets, which is formulated as

DIw =
n∑

i=1

V oli
V olw

DIi , (8)

where V olw is the volume of all labeled regions, V oli is the volume of the i-th region,
n is the total number of labeled regions, and DIi is Dice index value of the i-th region.

Figure 24 shows the evaluation results based on the LPBA40 dataset for kNN,
kNN+MST, and dynamic sparse graph based groupwise image registration methods.
The evaluation results include Dice index values for 54 brain regions (ID: 1–54) and
the weighted average Dice index value of all the brain regions (ID: 55).

Figure 25 shows the evaluation results based on the NIREP-NA0 dataset for meth-
ods including kNN, kNN+MST, and dynamic sparse graph based groupwise image
registration methods, including Dice index values for all 32 brain regions (ID: 1–32)
and the weighted average Dice index value of all the brain regions (ID: 33).

In summary, the average value of the weighted average Dice index values of
all the brain regions of LPBA40 dataset are 0.692 (kNN), 0.691 (kNN+MST), and
0.709 (dynamic sparse graph). The paired t-tests revealed that the dynamic sparse
graph performed better than kNN and kNN+MST with p values < 1.0 × 10−20.
For the NIREP-NA0 dataset the values are 0.628 (kNN), 0.622 (kNN+MST), and
0.639 (dynamic sparse graph). Again, the paired t-tests revealed that the dynamic
sparse graph performed better than kNN and kNN+MST with p values < 1.0 ×
10−20. It is evident that the registration accuracy of the dynamic sparse graph based
method is higher than the kNN and kNN+MST based methods. Since Diffeomorphic
Demons [65] is used in all of the three methods, the applied image similarity measures
and graph construction strategies contribute to the performance difference of these
methods.

8 Discussion and Conclusion

In this chapter, several groupwise image registration methods have been discussed.
These groupwise image registration methods are typically used to generate a common
template or to model the shape variation of objects of interest. Except the congealing
method, most groupwise image registration methods achieve the image registration
by registering images to a template image using pairwise image registration algo-
rithms. The key points in the groupwise image registrations methods are template
determination, registration path identification, and pairwise image registration. For
the template determination, the ultimate objective is to choose an unbiased image as
the template to which all images can be registered with almost equal effort. Several
strategies for the template determination have been reviewed in this chapter, includ-
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Fig. 24 Dice indexes of registered brain regions of LPBA40 dataset using kNN, kNN+MST and
dynamic sparse graph based groupwise image registration methods. The region ID’s corresponding
brain region name is following. 1/2: L/R superior frontal gyrus; 3/4: L/R middle frontal gyrus; 5/6:
L/R inferior frontal gyrus; 7/8: L/R precentral gyrus; 9/10: L/R middle orbitofrontal gyrus; 11/12:
L/R lateral orbitofrontal gyrus; 13/14: L/R gyrus rectus; 15/16: L/R postcentral gyrus; 17/18: L/R
superior parietal gyrus; 19/20: L/R supramarginal gyrus; 21/22: L/R angular gyrus; 23/24: L/R
precuneus; 25/26: L/R superior occipital gyrus; 27/28: L/R middle occipital gyrus; 29/30: L/R
inferior occipital gyrus; 31/32: L/R cuneus; 33/34: L/R superior temporal gyrus; 35/36: L/R middle
temporal gyrus; 37/38: L/R inferior temporal gyrus; 39/40: L/R parahippocampal gyrus; 41/42: L/R
lingual gyrus; 43/44: L/R fusiform gyrus; 45/46: L/R insular cortex; 47/48: L/R cingulate gyrus;
49/50: L/R caudate; 51/52: L/R putamen; 53/54: L/R hippocampus; and 55: weighted average Dice
index of all the brain regions

ing the geometric mean, the geodesic mean, and the iterative average group image.
For the registration path identification, the simplest way is to directly register image
to the template. However, it is difficult to achieve accurate image registration when
images to be registered have large difference. It typically leads to better performance
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Fig. 25 Dice indexes of registered brain regions of NIREP-NA0 dataset using kNN, kNN+MST and
dynamic sparse graph based groupwise image registration methods. The region ID’s corresponding
brain region name is following. 1/2: L/R occipital lobe; 3/4: L/R cingulate gyrus; 5/6: L/R insular
gyrus; 7/8: L/R temporal pole; 9/10: L/R superior temporal gyrus; 11/12: L/R inferior temporal
gyrus; 13/14: L/R parahippocampal gyrus; 15/16: L/R frontal pole; 17/18: L/R superior frontal
gyrus; 19/20: L/R middle frontal gyrus; 21/22: L/R inferior gyrus; 23/24: L/R orbital frontal gyrus;
25/26: L/R precentral gyrus; 27/28: L/R superior parietal gyrus; 29/30: L/R inferior parietal lobule;
31/32: L/R postcentral gyrus; and 33: weighted average Dice index of all the brain regions

if intermediate template images are adopted to reach to the final template since large
difference can be decomposed into many small ones. For the pairwise image reg-
istration, which is used to register images to the intermediate template or the final
template in the groupwise registration methods, many algorithms could be adopted,
not limited to Diffeomorphic Demons adopted in this study.

We have been focusing on the graph based groupwise image registration methods
in this chapter, including kNN, MST and sparse graph (including dynamic sparse
graph), due to their high computation efficiency and accuracy. The basic idea of
these methods is to estimate the underlying manifold of input images so that the
shortest paths that approximate the geodesic distance between each pair of images
can be derived. Based on all of the geodesic distances between images, the geodesic
center of image can be chosen as a template image. Final deformation field mapping
each image to the template can be obtained by composing deformation fields along its
corresponding shortest paths. For such methods, image similarity measurement plays
an important role. Therefore, in this chapter, the pairwise (e.g., Euclidean distance)
and groupwise (e.g., sparse coding and adaptively weighted sparse coding) image
similarity measurements have been reviewed. Evaluation of both kinds of similarity



252 Z. Tang and Y. Fan

measurements using the LPBA40 and NIREP-NA0 datasets has demonstrated that
the groupwise image similarity measurement can lead to better groupwise image
registration performance than the pairwise image similarity measurements due to
that the groupwise image similarity measures are estimated from a global point of
view, while the pairwise image similarity measures considers only two images to be
measured and no information of the other images is utilized.

Graph based manifold learning techniques have been increasingly adopted in
the groupwise image registration methods to capture the distribution of images to
be registered so that a group center image can be identified and the deformation
between the group center and other images can be decomposed into small ones that
register similar images pairwisely. For the graph based manifold learning techniques,
a critical parameter is the neighborhood size for constructing a graph of images. Since
the distribution of images to be registered is not necessarily uniform, especially
in applications of medical image analysis with a limited number of images, the
manifold of images estimated using kNN graph might be sensitive to its parameter,
which inevitably renders the groupwise image registration unstable. Although the
sparse coding based graph construction could be robust for estimating manifold of
images with a non-uniform distribution, it merits further investigation how the image
registration performance is hinged on its sparsity parameter.

Groupwise image registration algorithms have been successful in many applica-
tions of brain image analysis [4, 7, 10–12, 74]. However, all these algorithms have
been focusing on imaging data of single image modality, either structural imaging
data or functional imaging data. Groupwise registration of both structural and func-
tional data might be helpful to better align the brain structure and function units
across subjects [74, 86]. How to effectively integrate both structural and functional
information of multimodality images for groupwise image registration merits inves-
tigation.
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Abstract This chapter provides a complete model-based approach for analysis of
lung nodules visibly observed in clinical low dose CT (LDCT) scans of the human
chest. The purpose is to highlight elements of computer-assisted diagnosis (CAD)
software that can be validated using multiple radiologists using modern computing
and information technology. The front-end components of the proposed approach
are the following: lung nodule modeling, nodule detection, nodule segmentation, and
CAD system design and evaluation. The implicit steps involved in developing these
components, include filtering of the LDCT scans to reduce noise artifacts and other
uncertainties associated with the imaging protocol; segmentation of the lung tissue
from the rest of organs appearing in the LDCT of the chest; and creating an ensemble
of nodules by human experts. As nodules take various shapes, sizes and pathologies,
we limit our treatment to small size nodule ∝1 cm in diameter. Our ultimate goal is
to create a robust system for early detection and classification, as well as tracking,
of small-size nodules before they turn into cancerous. The entire development in the
chapter is model-based and data-driven, allowing design, calibration and testing for
the CAD system, based on archived data as well as data accrued from new patients. We
provide standard development using two clinical datasets that are already available
from the ELCAP and LIDC studies.
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1 Introduction

In this chapter, we highlight a state-of-the-art analytic approach to lung nodule analy-
sis using low dose CT (LDCT) of the human chest. Our focus is on small-size nodules
(∝1 cm in diameter) that appear randomly in the lung tissue. Radiologists diagnose
these nodules by visible inspection of the LDCT scan. Despite the wide range of nod-
ule classifications among radiologists, the nodule classification of Kostis et al. [1] is
found to be particularly useful in the algorithmic evaluation presented in this work.
Nodules in Kostis’s work are grouped into four categories:(i) well-circumscribed
where the nodule is located centrally in the lung without being connected to vascu-
lature; (ii) vascularized where the nodule has significant connection(s) to the neigh-
boring vessels while located centrally in the lung; (iii) pleural tail where the nodule
is near the pleural surface, connected by a thin structure; and (iv) juxta-pleural where
a significant portion of the nodule is connected to the pleural surface.

Figure 1 shows examples of small size nodules (∝1 cm in diameter) from the four
categories. The upper and lower rows show zoomed images of these nodules. Notice
the ambiguities associated with shape definition, location in the lung tissues, and
lack of crisp discriminatory features.

Modeling aims at representing the objects with mathematical formulation that
captures their characteristics such as shape, texture and other salient features. The
histogram of the object’s image provides some information about its texture—the
modes of the histogram indicate the complexity of the texture of the object. Figure 2
shows sample of nodules and their histograms. These histograms are essentially bi-
modal, for the nodule and background regions, and may be sharpened if the region
of interest (ROI) is limited to be around the spatial support of the nodules.

Another difficulty of small-size nodules lies with inabilities of exact boundary
definition. For example, radiologists may differ in outlining the lung nodules spatial
support as shown in Fig. 3. Difference in manual annotation is common of small
objects that have not well-defined description. This adds another dimension of diffi-
culty for automatic approaches, as they are supposed to provide outputs that mimic
human experts. In other words, human experts differ among themselves, how would
they judge a computer output? Validation of automatic approaches for lung nod-
ule detection, segmentation and classification - using only the visible information
in an image - is an order of magnitude more difficult than that of automatic face
recognition, for example.

Farag [2] studied the behavior of the intensity versus the radial distance of the
nodule centroids [2]. The intensity versus radial distance distribution for small nod-
ules was shown to decay almost exponentially. An empirical measure of the region
of support of the nodules was derived based on this distribution. This approach has
been tested further on three additional clinical studies in this work and has shown to
hold true. The summation of the intensities of Hounsfield Units (HU) in concentric
circles (or ellipses) beginning from the centroid of the nodule, decays in a nearly
exponential manner with the distance from the centroid.
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Fig. 1 Examples of lung nodules of size below 10 mm from two clinical studies. The upper and
lower rows show zoomed pictures of the nodules

Figure 4 shows the radial distances for four nodule types from the LIDC clinical
studies [4]. This behavior provided a clue for empirically deciding the spatial support
(ROI) of the nodules—which is used for auto cropping of the detected nodules. Of
course a refinement step is needed to precisely define the exact ROI of the nodule—
this is carried out in nodule segmentation. This behavior is similar with the ELCAP
study as well.

Object segmentation is a traditional task in image analysis. Real world objects are
hard to model precisely; hence the segmentation process is never an easy task. It is
more difficult with the lung nodules due to the size constraints.

Figure 5 shows the average intensity (HU) histograms of the manually cropped
nodules in the ELCAP and LIDC screening studies. The histograms are distinctly
bimodal and a binary classifier (thresholding) may be used for separating the nodules
and non-nodules regions. The decision boundary (threshold) may be selected by
various techniques, including fitting one-dimensional Gaussian density for the nodule
and non-nodule regions and using the expectation-maximization approach (EM) to
estimate the parameters (e.g., [2]). Unfortunately, this approach does not work well
due to the uncertainties associated with the physical nodules as previously described.

There is a vast literature on object modeling and considerably larger literature on
the subsequent steps of modeling; e.g., synthesis, enhancements, detection, segmen-
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Fig. 2 Sample of nodules and their gray level (Hounsfield Units) histograms. Nodules in left are
from ELCAP [3] study and those in the right table from LIDC [4] study. On top row, from left to
right: well-circumscribed, vascular, juxta-pleural and pleural-tail nodules, respectively. a Nodules
and histograms from the ELCAP study. b Nodules and histograms from the LIDC study

tation, recognition, and categorization. Farag [2] considered a five-step system for
modeling of small lung nodules: (i) Acquisition and Enhancement; (ii) Parametric
Modeling; (iii) Detection; (iv) Segmentation; and (v) Categorization (Classification)
[2]. By constructing a front-end system of image analysis (CAD system) for lung
nodule screening, all of these steps must be considered. Activities in the past few
years have led to the following discoveries: (1) Feature definitions on small size
objects are hard to pin point, and correspondences, among populations, is very tough
to obtain automatically; (2) Classical approaches for image segmentation based on
statistical maximum a posteriori (MAP) estimation and the variational level sets
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Fig. 3 Manual annotation of the main portion of the spatial support of lung nodules by four
radiologists. Note the difference in size and shape of the annotations. a Outlines of fouur well-
circumscribed nodules. b Outlines of four vascular nodules. c Outlines of four juxta-pleural nodules
d Outlines of four pleural-tail nodules
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Fig. 4 Distribution of the nodule intensity (HU) for four nodule types manually cropped from the
LIDC (over 2000 nodules). For nodules less than 10 mm in diameter, an ROI of size 21 × 21 pixels
may be used

approaches do not perform well on small size objects due to unspecific object char-
acteristics; (3) Prior information is essential to guide the segmentation and object
detection algorithms—the more inclusive the a-priori knowledge, the better the per-
formance of the automated algorithms; (4) An integration of attributes is essential for
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Fig. 5 The intensity (HU) histograms of the manually cropped nodules from the ELCAP and LIDC
screening studies. These histograms are bio-modal showing the nodule and non-nodule regions in
the ROI. These histograms are used as estimates of the probability density functions in the nodule
segmentation process. a Intensity of well-circumscribed nodules for ELCAP (upper) and LIDC
(lower) b Intensity of vascular nodules for ELCAP (upper) and LIDC (lower) c Intensity of juxta-
pleural nodules for ELCAP (upper) and LIDC (lower) d Intensity of pleural-tail nodules for ELCAP
(upper) and LIDC (lower)

robust algorithmic performance; in particular shape, texture, and approximate size
of desired objects are needed for proper definition of the energy functions outlining
the MAP or the level sets approaches. These factors play a major motivational role
of this work.

The rest of the material in this chapter will focus on four steps related to an analytic
system for lung nodule analysis: lung nodule modeling by active appearance; lung
nodule detection; lung nodule segmentation; and lung nodule categorization.

2 Modeling of Lung Nodules by Deformable Models

Deformable models are common in image modeling and analysis. Random objects
provide major challenges as shapes and appearances are hard to quantify; hence,
formulation of deformable models are much harder to construct and validate. In this
work, we devise an approach for annotation, which lends a standard mechanism for
building traditional active appearance (AAM), active shape (ASM) and active tensor
models (ATM). We illustrate the effectiveness of AAM for nodule detection.
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Automatic approaches for image analysis require precise quantification of object
attributes such as shape and texture. These concepts have precise definitions, but
their descriptors vary so much from one application to another. A shape is defined
to be the information attributed to an object that is invariant to scale, origin and
orientation [5]. A texture may be defined as the prevalence pattern of the interior
of an object [6]. Geometric descriptors identify “features” that are “unique” about
an object. Shape, texture and geometric descriptors are major concepts in this work;
they will be defined and used in the context of modeling small size objects under
uncertainties [7]. The theoretical development in this work falls under the modern
approaches of shape and appearance modeling. These models assume the availability
of an ensemble of objects annotated by experts—the ensemble includes variations
in the imaging conditions and objects attributes to enable building a meaningful
statistical database.

Active shape models (ASM) and active appearance models (AAM) have been
powerful tools of statistical analysis of objects (e.g., [8, 9]). This section highlights
some of the authors’ work on data-driven lung nodule modeling and analysis (e.g.,
[10, 11]), with focus on active appearance models (AAM).

2.1 Lung Nodule Modeling

Real world objects may take various forms of details, and may be linear, planar
or three-dimensional. In [7], Dryden and Marida, define anatomical landmarks as
points assigned by an expert that corresponds between organisms in some biologically
meaningful way; mathematical landmarks as points located on an object according
to some mathematical or geometrical property, i.e. high curvature or an extremum
point; and pseudo-landmarks as constructed points on an object either on the outline
or between landmarks. Figure 6 is a sample of small-size nodules smaller than 1 cm
in diameter from the LIDC [4] clinical study, showing the variations that can be
captured by shape and appearance models.

From a computer vision prospective, AAM and ASM modeling have been used
with great successes in objects having distinct landmarks (e.g., [8, 9]). A shape is
considered to be a set of n−vertices x ∗ Rk ; for the two-dimensional case:

x = [x1; x2; · · · ; xn; y1; y2; · · · ; yn]T (1)

The shape ensemble (realizations of the shape process of a certain object) is to be
adjusted (aligned) on the same reference to enable filtering of scale, orientation and
translation among the ensemble, per the shape definition. This alignment generates
the so-called shape space, which is the set of all possible shapes of the object in
question. To align the shapes in an ensemble, various procedures may be used. The
Procrustes procedure is common for rigid shape alignments. The alignment process
removes the redundancies of scale, translation and rotation using a similarity mea-
sure that provides the minimum Procrustes distance.
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Fig. 6 An ensemble of 140 nodules manually cropped from the LIDC study

Suppose an ensemble of shapes is available with one-to-one point (feature) cor-
respondence is provided. The Procrustes distance between two shapes s1 and s2 is
the sum of squared distance (SSD)

P2
d =

∑n

j=1

(
xj1 − xj2

)2 + (yj1 − yj2)
2 (2)

Annotated data of an ensemble of shapes of a certain object carries redundancies due
to imprecise definitions of landmarks and due to errors in the annotations. Principal
Component Analysis (PCA) may be used for reducing these redundancies. In PCA,
the original shape vector is linearly transformed by a mapping such that has z = Mx
less correlated and highly separable features. The mapping M is derived for an
ensemble of N shapes as follows:

x̄ = 1

N

∑N

i=1
xi;

∑
x

= 1

N

∑N

i=1
(xi − x̄)(xi − x̄)T (3)

are the mean and covariance of X. Therefore, the mean and covariance of z would
be:

z̄ = 1

N
ΣN

j=1z j (4a)

Σz = 1

N
ΣN

i=1(zi − z̄)(zi − z̄)T = MΣxMT (4b)

If the linear transformation M is chosen to be orthogonal; i.e., M−1 = MT , and
selecting it as the eigenvectors of the symmetric matrix

∑
x , this would make

∑
z

to be a diagonal matrix of the eigenvalues of
∑

x . The eigenvectors corresponding
to the small eigenvalues can be eliminated, which provides the desired reduction.
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Fig. 7 Definition of Control points (landmarks) for nodules. Right-to- left: juxta-pleural, pleural
tail, vascular, a well-circumscribed nodule models

Therefore , x may be expressed as:

x = x̄ + P b (5)

where P = (p1|p2| . . . |pm) matrix of m largest eigen vectors of
∑

x and b =
PT(x − x̄) is an m × 1 vector. Equation (5) is the statistical shape model, which
is derived using PCA. By varying the elements of b one can vary the synthesized
shape x in Eq. (5). The variance of the i th parameter bi ∗ b can be shown across the
training set to be equal to the eigenvalue Φi [8].

2.2 Nodule Annotation

In order to construct the active appearance or active tensor models, we need an
annotated ensemble of objects. In case of random objects, the annotation process
becomes extremely difficult; it takes yet another level of difficulty with small-size.
Yet, the major goal of this work is to address such objects, specifically, small size
lung nodules, which are used for early detection screening of possible lung cancer.
We used the fuzzy description of lung nodules from Kostis et al. [1] to devise a
feature definition approach for four categories of nodules; well-circumscribed, vas-
cularized, juxta-pleural and pleural-tail nodules. Figure 7 illustrates the landmarks
that correspond to the clinical definition of these four nodule categories.

Using the above definitions, we created a manual approach to annotate the nodules.
First, we take the experts’ annotation, zoom it and manually register it to a template
defining the nodule type/category, and then we select the control points on the actual
nodule using the help of the template. This annotation enabled creation of active
appearance models, which mimics largely the physical characteristics of lung nodules
that cannot be modeled otherwise.

Figure 8 shows examples for the nodule models generated by ensembles from the
ELCAP and LIDC clinical lung screening studies. The average nodules (shown in
Fig. 8) capture the main features of real nodules. Incorporation of other basis has
been studied in Farag et al. [11]. Figure 9 shows examples of AAM nodule models
with additional “Eigen nodules”.
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(a)

(b)

Fig. 8 AAM Models for lung nodules from clinical CT scans. Right-to-left: juxta-pleural, pleural
tail, vascular, a well-circumscribed nodule models. a Average nodules from ELCAP study. b Average
nodules from LIDC study

Nodule Type
Average

Nodule

1st Eigen

Nodule

2nd Eigen

Nodule

3rd Eigen

Nodule

4th Eigen

Nodule

5th Eigen

Nodule

Juxta- pleural

Pleural - Tail

Vascular

Well- circumscribed

Fig. 9 Average and 1st five eigen nodules on ELCAP study

3 Lung Nodule Detection

The above modeling approach has provided tremendous promise in three subsequent
steps of lung nodule analysis: detection, segmentation, and categorization. Due to
space limitations, we only consider lung nodule detection using the AAM nodule
models. Further, we use only a basic detection approach that is based on template
matching with normalized cross-correlation (NCC) as similarity measure. Other mea-
sures have been examined in our related work (e.g., [11]). We report the detection
performance by constructing the ROC of both the ELCAP and LIDC clinical stud-
ies. We chose to limit the ensemble size for modeling to be 24 per nodule type for
the two studies, to provide a comparison with our earlier work [10]. The ROCs are
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Fig. 10 ROC curves for template matching detection on the ELCAP and LIDC database versus
the circular and semi-circular models. a ROC for the ELCAP study. b ROC for the LIDC study

built to show the overall sensitivity and of the detection process. The textures of the
parametric nodules were generated by the analytical formulation in our earlier work
(e.g., [10]).

3.1 Clinical Evaluation

ELCAP Data: The ELCAP database [3] contains 397 nodules, 291 identified and
categorized nodules are used in the detection process. Results using only the average
(mean) template models generated from the AAM approach is examined against
parametric nodule models, (i.e. circular and semi-circular) of radius 10, templates in
this first set of experiments.
LIDC Data: The Lung Imaging Data Consortium (LIDC) [4] contains 1018 helical
thoracic CT scans from 1010 different patients. We used ensembles of 24 nodules per
nodule type to design the nodule models (templates) and the rest to test the detection
performance.

Figure 10 shows the ROC of 1—specificity versus sensitivity. The results show the
superior performance of the AAM-models over the parametric models. In generating
these ROC curves, we used the mean in the AAM models as the nodule template
(note: in [11] we used other eigen-nodules besides the mean).

We note from Figure 10 that the templates from the ELCAP ensemble provided
better performance than those from the LIDC ensemble. This because the wide range
of variations in texture information found in the LIDC database, which affects the
appearance of the resulting nodule model (template). We used 24 nodules, per nodule
type, in both ELCAP and LIDC in order to have even comparison. It is expected that
the better AAM models result with larger ensemble size; which is possible with the
LIDC study as it contains over 2000 nodules vs. ELCAP which is only few hundreds.



270 A. A. Farag et al.

3.2 Extensions

We note that in the ELCAP database, the data acquisition protocol was the same
throughout; very low resolution. That was reflected in the AAM model, showing a
texture that is relatively more homogenous than that in the LIDC case, which uses
data from various imaging centers and various imaging scanners, with somewhat
variable range of Hounsfield Units (HU). In general, if we include more nodules in
the design, we expect a better appearance modeling; the LIDC database allows such
choice.

This section dealt with modeling of small-size lung nodules using two clinical
studies, the ELCAP and LIDC. We discussed the process of nodule annotation and
the steps to create AAM nodule models. These models resemble the real nodules, thus
using them as templates for nodule detection is more logical than the non-realistic
parametric models. These types of models add two additional distinctions over the
parametric approaches; it can automate the processes of nodule segmentation and
categorization. Tensor modeling may also be used to generate the nodule models.
From the algorithmic point of view, an adaboost strategy for carrying out the detection
may lend speed advantage over the typical cross-correlation implementation used in
this work.

4 Nodule Segmentation

This section describes a variational approach for segmentation of small-size lung
nodules which may be detected in low dose CT (LDCT) scans. These nodules do
not possess distinct shape or appearance characteristics; hence, their segmentation
is enormously difficult, especially at small size (∝1 cm). Variational methods hold
promise in these scenarios despite the difficulties in estimation of the energy function
parameters and the convergence. The proposed method is analytic and has a clear
implementation strategy for LDCT scans.

The lungs are a complex organ which includes several structures, such as ves-
sels, fissures, bronchi or pleura that can be located close to lung nodules. Also, the
main “head” of the nodule is what radiologists consider when computing the size. In
the case of detached nodules (i.e. well-circumscribed nodules) the whole segmented
nodule is considered in size computations and growth analysis, while in detached
nodules (i.e. juxta-pleural, vascularized and pleural-tail) the “head” is required to be
extracted from the anatomical surrounds. Intensity-based segmentation [13, 14] has
been applied to nodule segmentation using local density maximum and thresholding
algorithms. These classes of algorithms are primarily effective for solitary nodules
(well-circumscribed), however, fail in separating nodules from juxtaposed surround-
ing structures, such as the pleural wall (i.e., juxta-pleural and pleural-tail nodules)
and vessels (vascular nodules), due to their similar intensities.
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More sophisticated approaches have been proposed to incorporate nodule-specific
geometrical and morphological constraints (e.g., [1, 15–17]). However, juxta-pleural,
or wall-attached, nodules still remain a challenge because they can violate geomet-
rical assumptions and appear frequently. Robust segmentation of the juxta-pleural
cases can be addressed in two approaches: a) global lung or rib segmentation (e.g.,
[18]), and b) local non-target removal or avoidance [14]. The first can be effective
but also computationally complex and dependent on the accuracy of the whole-lung
segmentation. The second is more efficient than the former but more difficult to
achieve high performance due to the limited amount of information available for the
non-target structures. Other approaches have been proposed in the literature (e.g.,
[19]), but require excessive user interaction. In addition, some approaches assumed
predefined lung walls before segmenting the juxta-pleural nodules (e.g., [20]).

4.1 Variational Approach for Nodule Segmentation

The level set function as a signed distance map is able to capture complicated topo-
logical deformations. A level set function ∅ : σ ≤ R2 ∈ R can be defined as
the minimum Euclidean distance between the point X ∗ σ and the shape boundary
points. A curve can be initialized inside an object, and then evolves to cover the
region guided by image information. The evolving curve within the level set for-
mulation is a propagating front embedded as the zero level of a 3D scalar function
∅(X, t), where X represents a location in space. In order to formulate the intensity
segmentation problem, it is necessary to involve the contour representation. Given
an image I : σ ≤ R2 ∈ R, the segmentation process aims to partition the image
into two regions: object (inside the contour denoted by o) and background (outside
the contour denoted by b). An error term can be computed by counting the number
of correctly classified pixels and then measuring the difference with respect to the
total number of pixels. This can be done by summing up the probabilities of the
internal pixels to be object and the external pixels probabilities to be classified as
background. This is measured by the term:

Error = 1 − Θo

∫

σo

Po(I (X)) dσ − Θb

∫

σb

pb(I (X)) dσ (6)

where po and pb are the probabilities of the object and background according to the
intensity values (Gaussian distributions are used to model these regions). Prior prob-
abilities of regions (Θo and Θb) are involved in the formulation as well. Minimizing
this error term is equivalent to minimizing the energy functional:

E(∅) = −Θo

∫

σo

po Hθ(∅) dσ − Θb

∫

σb

pb Hθ(−∅) dσ (7)
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where H is the Heaviside step function and θ ∗ R+ represents the narrow band
region width. An extra term is added to the energy function to represent the contour
arc-length (L) which also needs to be minimal to guarantee a smooth evolution. The
new energy will be:

E(∅) = −Θo

∫

σo

po Hθ(∅) dσ − Θb

∫

σb

pb Hθ(−∅) dσ + ΦL (8)

where Φ ∗ R+. The level set function evolves to minimize such a functional using
the Euler-Lagrange formulation with the gradient descent optimization:

κ∅
κt

= γθ(∅)(Θo po − Θb pb) + Φk (9)

where γ is the derivative of the Heaviside function and k is the curvature. Thus, the
evolution depends on the local geometric properties (local curvature) of the front
and the external parameters related to the input data I. The function ∅(· , ·) deforms
iteratively according to the above equation, while solving ∅(X, t = 0 gives the
position of the 2D front iteratively. Let ∅g denote the intensity segmented region
function representation The Gaussian distribution and prior probabilistic parameters
are computed according to the method in [21].

4.2 Shape Alignment

This process aims to compute a transformation A that moves a source shape (λ) to
its target (β). The in-homogeneous scaling matching criteria from [21] is adopted,
where the source and target shapes are represented by the signed distance functions
∅λ and ∅β respectively. The transformation function is assumed to have scaling
components: S = diag(sx , sy), rotation angle, π (associated with a rotation matrix R)
and translations: T = [Tx , Ty]T A dissimilarity measure to overcome the scale
variance issue is formulated by assuming that the signed distance function can be
expressed in terms of its projections in the coordinate directions as: dλ = [dx , dy]T

at any point in the domain of the shape λ . Applying a global transformation A on
∅λ results in a change of the distance projections to d→

λ = RSdλ which allows the
magnitude to be defined as: ∅→

λ = ||Sdλ|| which implies that ∅→
λ ∝ max(sx , sy)∅

Thus, a dissimilarity measure to compute the difference between the transformed
shape and its target representation can be directly formulated as:

r(X) = ||RSdλ(X)|| − ∅β(A). (10)

By summing-up the squared difference between the two representations, an energy
function can be formulated as:
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E1 =
∫

σ

γ→
θ(∅λ,∅β) r2 dσ (11)

where γ→
θ reduces the complexity of the problem and θ is the width parameter of the

band around the shape contour. The given measure r, from the shown derivations,
satisfy the relation r ∝ s∅λ(X) − ∅β(A), where s = max(sx , sy). Thus, an energy
function can be obtained where E ∝ E1;

E =
∫

σ

γ→
θ(∅λ,∅β)

(
s∅λ(X) − ∅β(A)

)2
dσ (12)

The above functional better describes the registration since it incorporates a scaled
version of the source shape representation. In this work, the gradient descent opti-
mization is used to solve the problem, which requires the involved functions to be
differentiable. A smeared version of s(sx , sy) = max(sx , sy), is used at the line
since, (sx = sy) the function is not differentiable there, which is based on its original
definition:

s(sx , sy) = max(sx , sy) = sx Hθ(sx − sy) + sy(1 − Hθ(sx − sy)) (13)

which will return sx if sx − sy ≥ 0, otherwise sy . The smeared Heaviside step
function H is used to obtain a smooth transition around the line sx = sy allowing the
function to be differentiable everywhere. The function derivatives will be calculated
as

κs

κsx
= Hθ(sx − sy) + (sx − sy)γθ(sx − sy) (14)

κs

κsy
= Hθ(sy − sx ) + (sy − sx )γθ(sy − sx ) (15)

The parameters {sx , sy, π, Tx , Ty} are required to minimize the energy functional E.

4.3 Level Set Segmentation Algorithm with Shape Prior

The above steps have resulted in an algorithm whose input is LDCT scans and output
is segmented lung nodules. The algorithm can be summarized as follows:

Lung Nodule Segmentation Algorithm:

1. Segment the Lungs from their surroundings—Lung tissue segmentation (e.g.,
[22]).

2. Train the lung nodule modeling step on a portion of the data at hand—Lung
Nodule Modeling

3. Apply the lung nodule detection approach to compute the positions of the candi-
date nodules and hence crop them for classification. Cropping here means setting a
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box around the nodule center and extracts its neighbor area from the surroundings;
i.e., a region of interest, ROI, is cropped around the detected nodules—Nodule
detection and ROI determination

4. Based on the input image size, construct the initial prior shape circle and its shape
model representation ∅p.

5. Solve Eq. 8 to compute the intensity segmentation region representation ∅g . Solu-
tion is iterative until the function converges—reaches a certain state. Note the
function keeps the sign distance property by following the approach in [22].

6. Initialize the transformation parameters to sx = 1, sy = 1 and . π = 0 At this
moment the nodule center location is manually selected which initializes the
translation parameters tx and t y

7. Solve the gradient descent approach to minimize the energy in Eq. 11. Parameters
converge to their steady state values and hence the final boundaries of the ellipse
are computed.

8. Threshold the region inside the ellipse to accurately mark the nodule pixels. The
resulting region may undergo a median filter smoothing step to remove noisy
pixels.

4.4 Some Results

This work is validated using four different databases. The first is the ELCAP [3] public
database, DB1.This database has nodules of diameter ranging from 2 to 5 mm. The
second database (DB2) contains 108 nodules from LDCT scans of slice thickness
2.5 mm and a pixel-spacing of 0.72461 × 0.72461 mm (diameter from 2.9 to 6 mm).
The third database (DB3) has 28 nodules, 1.25 and 2.5 mm slice thickness, and
nodules diameter ranging from 7 to 20 mm. The fourth dataset is the LIDC (DB4)
which contains nodules ranging in sizes. The slices are both low-dose and high-dose
CT images [4].

Figure 11 demonstrates the performance of a number of model-based methods
for nodule segmentation. Nodules are cropped by four different radiologists, and the
approaches are applied to these cropped nodules. Overall the variational shape-based
level set method provided the best segmentation results for obtaining the “head” of
the nodule region. The results show that the intensity-based approaches can be used
as an initial or post segmentation process to the variational shaped-based level sets.
Also, approaches where a shape model can be embedded into the formulation of the
segmentation method are necessary for such cases as nodule segmentation.

The developed approach uses a region of interest (ROI) image that contains the
lung nodule as input. Image intensity segmentation using level sets (as described
above) is used to extract the non-lung regions from the lung tissue regions and
represents the slices by a level set function (∅g). Different scales, rotation, and
translation parameters are computed in each case to obtain an ellipse exactly around
the nodule head (see Fig. 12). Changes of the shape model can be noticed until the
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Fig. 11 Nodule segmentation by a number of approaches. Columns 5 and 6 show results of the
variational approach with and without shape alignments. First column is a nodule segmented by
four radiologists. Second column is the EM segmentation. Third column is the level set method.
Fourth column is level sets plus shape priors. Fifth column is EM plus shape priors. Last column is
graph cuts. a Nodule centrally located in the lung tissue. b Nodules connected to the pleural surface

Fig. 12 Nodule segmentation results from DB1 (left block-first four columns) and DB2 (right
block-last four columns). Initialization is given in green while final nodule boundaries are shown
in red
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steady state around the nodule boundaries is reached. Also, the axis of the ellipse
rotates and varies in size to include the most boundary information of the nodule. The
approach is robust for various nodule sizes from larger nodules (<1 cm) to nodules
that occupy smaller spatial support regions (i.e. >1 cm). Similar results are obtained
from other databases (e.g., [12, 23]).

4.5 Extensions

Among the possible extensions of the above algorithm are the following:

a. Proper modeling of the shape shape priors in the statistical segmentation approach.
b. Generlizing the transformation paramters that embed the shape model into the

image domain, thus, avoiding the post EM step;
c. Incorporatation of the shape priors into the energy function, of general topological

cliques in the MGRF models, and evaluation of the segmentation algorithm with
respect to variational shape-based techniques such as level sets.

The nodule segmentation is a componenet of the CAD system for analysis of lung
nodules; it requires exhaustive validation by large scale clinical studies and various
radiologists.

5 Nodule Categorization

In the computer vision and biomedical imaging literature the terms categorization,
classification, identification, and recognition share a lot of commonality of methods
and purpose. In the lung nodule example, one may also denote the classification
step as recognition. However, classification may indeed entail two aspects: assigning
segmented objects into types (classes, such as the four nodule types that we have
been considering in this chapter), or assigning them into a definitive group (e.g.,
pathology in the lung nodule case). Our focus is on descriptors that adhere to shape
and appearance contexts

5.1 Object Feature Descriptors

In the past decade, several object descriptors have been introduced in the computer
vision literature, including the local binary pattern (LBP) [24] and the scale-invariant
feature transform (SIFT) [25]. A comprehensive evaluation of the geometric feature
descriptors may be found elsewhere, in particular Mikolajczyk and Schmid 2005
[26]. Below we describe the LBP and SIFT descriptors and their performance for
small-size nodule categorization (see [23] for detailed evaluation).
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Fig. 13 Circularly symmetric neighbor sets for different values of (P , R); left (a) P = 4, R = 1.0;
right P = 16, R = 2.0

5.1.1 Multi-Resolution Local Binary Pattern (LBP)

The Local Binary Pattern is an operator invariant to monotonic changes in grayscale
and can resist illumination variations as long as the absolute gray-level value differ-
ences are not badly affected (e.g., [24]). The original operator labeled the pixels of
an image by thresholding the 3 × 3 neighborhood of each pixel with the center value
and considered the result as a binary number. At a given pixel position (xc, yc), the
decimal form of the resulting 8-bit word is

LBP(xc, yc) =
∑7

i=0
s(Ii − Ic)2

i (16)

where, Ic corresponds to the center pixel (xc, yc), Ii to gray level values of the eight
surrounding pixels and function s(·) is a unit-step function.

The LBP operator was extended to a circular neighborhood of different radius
size to overcome the limitation of the small original 3 × 3 neighborhood size failing
to capture large-scale structures. Each instance is denoted as (P, R), where P refers
to the equally spaced pixels on a circle of radius R. The parameter P controls the
quantization of the angular space and R determines the spatial resolution of the
operator. An LBP pattern is considered uniform if it contains at most two bitwise
transitions from 0 to 1 and vice-versa, when the binary string is circular. The reason
for using uniform patterns is that they contain most of the texture information and
mainly represent texture primitives. The operator is derived on a circularly symmetric
neighbor set of P members on a circle of radius R denoting the operator as L B Pu2

P R .
Figure 13 illustrates examples of circularly symmetric neighbor sets for various

(P, R). The LBP operator was further enhanced by combining it with a rotation
invariant measure V ARP,R , which characterizes the contrast of local image tex-
ture. The combination of the L B Pu2

P R operator and the variance measure produces a
powerful operator that is rotation and gray-scale invariant.

In the multi-resolution analysis the responses of multiple operators realized with
different (P , R) are combined together and an aggregate dissimilarity is defined as
the sum of individual log-likelihoods computed from the responses of individual
operators [24]. The notation L B Pu2

P R used in this chapter refers to the extended LBP
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Fig. 14 Block diagram of generating the LBP for a juxta-pleural nodule. The equation for the above
picture is: LBPu2

8,1 + LBPu2
16,2 + LBPu2

8,1 + LBPu2
16,2, where the first two terms represent the original

image and the last two terms represent the gradient image

operator in a neighborhood, with only uniform patterns considered. The LBP is used
to generate a feature vector which describes the nodule region of interest in a LCDT
slice. The LBP is applied to one of three scenarios on: (i) the original nodule images;
(ii) the gradient of the nodule image or, (iii) an addition of the original and gradient
nodule images. The gradient image was computed by first obtaining each individual
image in the x- and y-spaces by filtering the corresponding directional-space original
image with the corresponding parameter vector identified in the author’s work (e.g.,
[23, 27]); the overall gradient nodule image is:

∀nodule =
√

∀2
x + ∀2

y (17)

A similarity measure is then used to classify these nodules to one of the four classes:
juxta, well-circumscribed, pleural tail and vascularized. Principle component analy-
sis (PCA) and linear discriminant analysis (LDA) are used to project the extracted
LBP descriptors to a low-dimensional subspace where noise is filtered out. Figure 14
illustrates the formation of the LBP descriptors on lung nodules.

5.1.2 The Signed Distance Transform

The distance transform is a shape-based feature descriptor that represents each pixel
of the binary edge map image with a distance to the nearest obstacle pixel (i.e.,
binary pixel). The extracted Signed Distance transform images were projected to a
lower-dimensional subspace using PCA and LDA. The LBP of the signed distance
image results were also obtained, thus, resulting in a combinational shape and texture
feature descriptor representation of the nodules and non-nodules. The relevance of
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Fig. 15 First row shows typical non-nodule (firstcolumn) and nodule textures (juxta-pleural, well-
circumscribed, vascularized and pleural tail, respectively). Second row shows edge maps (using the
Canny Operator). Third row is the signed distance. Fourth row is the LBP of the nodules. Final
results depict the LBP + Signed distance features

combining shape and texture feature vectors is described in the recognition stage.
Figure 15 illustrates the approach which combines the LBP and Signed Distance
Transform.

5.1.3 The Scale-Invariant Feature Transform (SIFT)

The SIFT is a combinational detector and descriptor approach introduced by Lowe
[25] that allows extraction of distinctive scale and rotation invariant features from
images. The SIFT is a combination of a scale invariant region detector known as the
difference of Gaussian (DoG) detector and a proper descriptor referred to as SIFT-
key. The approach consists of four major steps of computation to generate the set of
image features: Scale Space extrema detection, Key-point Localization, Orientation
assignment and Key-point descriptor. In the first stage of computation all scales and
image locations are searched over using a DoG function to identify potential interest
points that are invariant to orientation and scale. Once the potential interest points
are found at each candidate location a detailed model is fitted to determine scale and
location.
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The keypoints selected are based on the stability measures. To each keypoint
location one or more orientations are assigned based on the local image gradient
directions. All future operations are performed on image data that has been trans-
formed relative to the assigned scale, location and orientation for each feature. At
the selected scale in the region around each keypoint the local image gradients are
measured and transformed into a representation that allows for significant levels of
change illumination and local shape distortion. The scale-space of an image defined
as a function, L(x, y, ϕ ), was shown by Koenderink [28] and Lindeberg [29] as
follows: The only possible scale-space kernel, under reasonable assumptions, is the
Gaussian function, thus the scale-space of an image L(x, y, ϕ ) is produced from
convolving a variable-scale Gaussian, G(x, y, ϕ ), with an input image, I (x, y):

L(x, y, ϕ ) = G(x, y, ϕ ) √ I (x, y) (18)

Lowe proposed using scale-space extrema in the difference-of-Gaussian function,
to accurately detect stable keypoint locations in scale-space, convolved with the
image, D(x, y, ϕ ) which from the difference of two nearby scales separated by a
constant multiplicative k factor can be computed:

D (x, y, ϕ ) = (G (x, y, kϕ) − G (x, y, ϕ ))√ I (x, y) = L (x, y, kϕ)− L (x, y, ϕ )

(19)
In order to detect the local maxima and minima of D(x, y, ϕ ), each sample point is

compared to its eight neighbors in the current image and nine neighbors in the scale
above and below. The keypoint is selected if it larger or smaller than all of these
neighbors. Once the keypoint candidate is obtained a detailed fit to the nearby data
for location, ratio of principal curvatures and scale is performed to reject points with
low contrast or poorly localized along an edge. Consistent orientation assignment to
each keypoint based on local image properties allows the keypoint descriptor to be
represented relative to this orientation and thus achieve invariance to image rotation.
The scale of the keypoint is used to select the Gaussian smoothed image, L, with
the closest scale. Each image sample, L(x, y), at this scale, the gradient magnitude,
m(x, y) and orientation π(x, y) is pre-computed using pixel differences:

m (x, y) =
√

(L (x + 1, y) − L (x − 1, y))2 + (L (x, y + 1) − L (x, y − 1))2

(20)
π (x, y) = tan−1 (L (x, y + 1) − L (x, y − 1) /(L (x + 1, y) − L (x − 1, y)))

(21)
An orientation histogram of 36 bins covering the 360◦ range of orientations is

formed from the gradient orientation of sample points within a region around the
keypoint. Additional samples added to the histogram is weighted by its gradient
magnitude and by a Gaussian-weighted circular window with a ϕ that is 1.5 times
that of the scale of the keypoint. All the weighted gradients for the descriptor are
normalized to the main orientation of the circular region around the keypoint which
is divided into 4 × 4 non-overlapping patches. The histogram gradient orientations
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within the patches are computed and then histogram smoothing is performed to
avoid sudden orientation changes and bin size reduction to eight bins to limit the
descriptor’s size results into a 4 × 4 × 8 = 128 dimensional feature vector for each
key-point. The feature vector is finally normalized to unit length and thresholded to
reduce the effects of linear and non-linear illumination changes.

In nodule analysis framework, it is assumed that nodules have been already
detected which correspond to interest/key points in Lowe’s algorithm; hence, this
step can be bypassed. In order to obtain a nodule SIFT descriptor which is invariant
to orientation, a consistent orientation should be assigned to the detected nodule
which is represented by its centroid, xo. This orientation is based on the gradient
of the nodule’s local image patch. Considering a small window surrounding xo,
the gradient magnitude and orientation can be computed using finite differences.
Local image patch orientation is then weighted by the corresponding magnitude
and Gaussian window. Eventually the orientation is selected to be the peak of the
weighted orientation histogram.

Building a nodule SIFT descriptor is similar to orientation assignment, for exam-
ple a 16 × 16 image window surrounding the nodule centroid point is divided into
sixteen 4×4 sub-windows, then an 8-bin weighted orientation histogram is computed
for each sub-window, hence, 16 × 8 = 128 descriptors for each nodule is obtained.
Thus, each detected nodule can now be defined at location (x0, y0), specific scale
ϕ , explicit orientation π and descriptor vector, xo = {x0, y0, ϕ, π, d}. Thus the SIFT
operatorS : I (x) ∈ X can be viewed as mapping a CT slice I(x) to the nodule space
with n-nodules, X = {xi}n

i=1 detected from I(x), where xi = {
xi

0, yi
0, ϕi, πi, di

}
. Prin-

ciple component analysis (PCA) and linear discriminant analysis (LDA) are used to
project the extracted SIFT descriptors to a low-dimensional subspace where noise is
filtered out.

Example: Figure 16 shows four slices containing nodules <1 cm in size. The SIFT
algorithm was applied to the four nodule types and the resulting discriptors were used
to classify the nodules after a detection step, in order to reduce false positives. Small-
size nodules lack textural distinction, but the shapes are distinct. Figure 17 shows the
construction and values of the SIFT algorithm for the four nodule types. The values
of the SIFT descriptor shows decent discrimination among the nodules.

5.2 Feature Distance Measures

The feature distance measurement is a numerical description of how far apart the
feature vectors are from one another. Numerous methods found in the literature can
be used; below are described three different distance measurements.

The Euclidean Distance: The Euclidian distance (ED) between feature point
vectors p and t in the Euclidean n-space

ED =
√∑n

i =1
(pi − ti)2 (22)



282 A. A. Farag et al.

Fig. 16 Small-size lung nodules from LDCT scans. Upper left (well-circumscribed); upper right
(vascular); lower left (juxta-pleural); lower right (pleural-tail). Nodules are marked by a circle

Note that the Euclidean distance is rotation invariant but not scale-invariant.
The Mahalanobis Distance: The Mahalanobis Distance is a scale-invariant distance
measure based on correlations between variables by which variations can be identified
for analysis. A multivariate vector X = [x1, x2, . . . , xN]T from a group of values
with mean μ = [μ1, μ2, . . . , μN]T and covariance matrix, S, is defined as:

DM (X) =
√

(X − μ)T S−1 (X − μ) (23)

The Chebyshev Distance: This distance is a metric defined on a vector space where
the distance between two vectors is the greatest of their differences along any coor-
dinate dimension. The distance between two vector points P and t with standard
coordinates pi and ti is defined as:

DChebyshev(p, t) = max (|pi − ti|) (24)

Evaluation of these distance measures for shape analysis exist elsewhere (e.g.,
[30, 31]).
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Fig. 17 SIFT desciptor applied to small-size nodule types in LDCT of the human chest. From top
to bottom: well-cricumscribed, vascular, juxta-pleural and pleural-tails nodule types

5.3 Lung Nodule Classification

The above descriptors form the basis for the classification process to be examined in
the following section.
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5.3.1 General Approach

The general approach for nodule classification may be summarized by the following
algorithm.

1. Construct a statistically sufficient database of pathological nodules;
2. Co-Register members of the nodule database to create the templates used for

nodule detection, as described before;
3. Generate the feature vectors using the geometric descriptors (e.g., SIFT, ASFIT,

SURF, LBP and Gabor Wavelet) for all members of the nodule database and store
offline. Machine learning algorithms may be used such as PCA, RANSAC and
Adaboost for optimal selections of the feature vector in terms of discrimination
as well as execution time;

4. Perform the nodule detection using template matching;
5. Crop ROIs of sizes N × N over detected nodules (e.g., N=21)— these will be

used for categorization;
6. Segment the nodule regions with the ROIs using the variational approach described

in Chapter IV, enhanced with a priori information about shape and intensity, using
the nodule database;

7. Repeat step #3 on the candidate nodules after segmentation; and
8. Calculate the distance between the feature vectors of candidate nodules and those

in the pathological database, and assign the nodule category based on minimum
distance.

The above algorithm may be carried out by various ways, depending the features
available. Below feature-based and registartion-based nodule classifcation imple-
mented in the author’s recent work [23, 27] are discussed.

5.3.2 Feature-Based Classification

The most significant classification results were obtained when the shape based signed
distance transform was combined to the texture based LBP approach. The results in
Tables 1, 2, 3 illustrate the classification results of the signed distance transform
versus the multi-resolution local binary pattern (LBP). A third feature descriptor
using the combination of the methods is also shown.

Higher true-positive rates can be seen from the LDA projection in Tables 1 and
2 when more training is conducted using either the LBP or distance descriptors
separately. When comparing the PCA results less training data resulted in better
true-positive classification of nodules. In the non-nodule distance transform experi-
mentations more training data was needed to obtain in some instances perfect results.
This is understandable since the non-nodules do not have specific shape character-
istics that can be defined or manipulated as in the nodules case.

Overall, the PCA combinational shape and feature description of nodules resulted
in a drastic true-positive rate increase in classification. All of the results depicted in
Tables 1 and 2 allow the conclusion to be made that non-nodules do in-fact contain
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Table 1 Classification results for various nodules using raw LBP, LDA LBP and PCA LBP with
variable training percentages

Nodule type Raw LBP LDA LBP PCA LBP
100 % 75 % 50 % 25 % 100 % 75 % 50 % 25 % 100 % 75 % 50 % 25 %

Juxta pleural 52 50 47 38 100 86 65 50 64 64 59 67
Well-circumscribed 40 41 40 26 65 80 63 36 64 60 66 82
Vascular 22 29 32 10 32 76 56 32 20 22 37 56
Pleural tail 22 20 17 11 100 76 52 39 33 17 33 46
Non nodule 78 77 74 68 100 88 60 44 86 87 83 96

Table 2 Classification results for various nodules using raw distance transform, LDA LBP and
PCA distance transform with variable training percentages

Nodule type Raw distance LDA distance PCA distance
transform transform transform
100 % 75 % 50 % 25 % 100 % 75 % 50 % 25 % 100 % 75 % 50 % 25 %

Juxta pleural 38 39 35 34 100 88 61 45 62 54 60 68
Well-circumscribed 33 33 36 34 74 83 63 45 46 59 48 55
Vascular 12 12 15 15 29 76 54 29 37 22 61 63
Pleural tail 17 17 17 15 100 85 54 33 17 24 35 52
Non nodule 63 68 68 49 100 87 65 49 83 89 85 79

Table 3 Classification results obtained from raw combinational feature transform and PCA com-
binational feature transform with variable training percentages

Nodule Type Raw combinational feature PCA on combinational feature
descriptor descriptor
100 % 75 % 50 % 25 % 100 % 75 % 50 % 25 %

Juxta Pleural 40 41 39 37 78 76 76 79
Well-circumscribed 40 37 36 34 73 68 71 68
Vascular 24 20 22 12 51 54 44 76
Pleural tail 22 26 22 20 33 35 41 54
Non nodule 63 57 58 49 100 99 100 98

descriptor variations that allow them to be correctly classified. Also, combination of
shape and texture feature information allows for better object representation to be
obtained, thus improved results in classification.

Table 3 depicts impressive results when the LBP was obtained from the distance
transform images. A 20 % true-positive rate increase was found, in the PCA 25 %
training combinational vascular nodule case when comparing it to the PCA LBP
results obtained when only the texture information was used for classification, and
a 13 % increase over the distance transform results alone. Variations of percentage
increases were seen for each nodule category.
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5.3.3 Registration-Based Classification

The idea of the registartion-based classification is to compare the segmented nod-
ules with nodule models, using a registration algorithm. Since the AAM approach
generated impressive nodule models, which resembled both the shape and appreance
of real nodules, it is plausible to use the normalized nodule models as templates to
compare with candidate nodules for classifcation. From the face recognition anal-
ogy, a probe (test face) is compared to a gallary using either direct matching (by
registration) or through the use of features.

The following terminologies are relavant to the categorization process:

(i) Target set T : a set of textured regions containing the nodule models generated
by the deformable model approach for all nodule types.

(ii) Gallery set G: a subset of T containing template(s) to be matched in a certain
matching setup.

(iii) Query set Q: a set of textured regions of unknown nodule type, where nodule
type identification is performed by matching all elements in the query set to the
target set.

(iv) Probe set PG :a subset of Q, where each element has a match in the gallery set.
(v) Imposter set PN : a subset of Q, which contains elements that don’t have a

match in the gallery set.

As an example, again, using the face recognition terminology, a region centered at
a well circumscribed nodule is considered an imposter to a gallery containing only
juxta pleural nodules. Also a non-nodule region is always considered as an imposter.
Comparing the feature vector for all nodule models in the gallery set with the feature
vector for all regions in the probe set results in a similarity matrix S, where the i j th
element is the similarity between the ith element of the gallery and the jth element
of the probe. The following metrics can be defined according to a similarity score:
Normalized cross-corerlation (NCC), the mutual information (MI) or the output of
descriptors such as SFIT, LBP, etc.

Identification Rate/Probability: It is calculated as the proportion of testing nodules
correctly matched to its own type, i.e. probe Pj is identified correctly in the top N
gallery nodule types, where N = renk(Pj), such that:

rank
(
pj

) = ∣∣{gk : skj ≥ sij, id (gi) = id
(
pj

)}∣∣ ∞gk, gi ∗ G (25)

For each probe in the probe set , the similarity measures are sorted against the
gallery, and obtain the rank of the match. Identification performance is then stated as
the fraction of probes whose gallery match is at rank or lower. Thus the probability
of identification at specific rank is defined as:

PI (r) =
∣∣{pj : rank

(
pj

) ∝ r
}∣∣

∣∣PG
∣∣ ∞pj ∗ PG (26)
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Table 4 Results of the nodule categorization using registration/matching nodule candidates to
nodule models

Nodule model Nodule and background Nodule region segmented
Rank 1 Rank 2 Rank 3 Rank 4 Rank 1 Rank 2 Rank 3 Rank 4

Juxtal pleural 0.4606 0.9217 0.9826 1.0 0.4261 0.9217 0.9826 1.0
Well-circumscribed 0.764 0.7978 0.8427 1.0 0.8876 0.9663 0.9775 1.0
Vascularized 0.4146 1.0 1.0 1.0 0.5122 1.0 1.0 1.0
Pleural tail 0.3261 0.7609 0.8261 1.0 0.3913 0.5217 0.5435 1.0

These quantities have been calculated for all the nodules in the ELCAP data. Table 4
shows the results for the four nodule categories.

In measuring the ranking, the cropped nodules are used in two fashion; without
segmentation (i.e., no extraction of the nodule part in the cropped region) and with
segmentation. The segmentation of nodules were conducted by various homegrown
methods (including use of shape and intensity priors in an energy model optimized by
graph cuts; also experimented with were basic segmentation using adaptive thresh-
olding of the cropped regions by median filtering and anisotropic diffusion filtering,
etc.).

Figure 18 is the ROC for 291 nodules specified in the ELCAP dataset. Both the
well-circumscribed and the viscularized nodules provide the best performance. This
is because both nodule types possess the best texture and shape information that
enhances the correlation between the nodules and the models.

In general, the results of the ranking (i.e., matching models with nodules)
improved by segmentation of the nodule portion in the cropped region. Model-based
approaches such level sets and combinations of Gibbs-Markov models enhance the
segmentation at severe computation cost. Nodule segmentation is a work in progress
issue. A code or signature for the models and the nodules will provide better match-
ing than using the classic image registration methods on regions with small spatial
support. The conclusion, however is that the cropped regions have always been cor-
rectly categorized within second ranks by a simple computational approach such the
normalized cross-correlation. This indeed is very encouraging for moving into using
context based image processing and the ability to invoke advanced machine learning
approaches to perform the matching process.

The extensive analysis using the approaches described in this chapter has allowed
several conclusions to be made:

(1) Texture and shape feature information separately are not sufficient for lung
nodule categorization, since the combination of the approaches yielded great
improvements.

(2) In all of the approaches used, the non-nodule features generated and projected by
PCA or LDA provided excellent classification results; thus, non-nodules contain
descriptor variations that allow them to be correctly classified and not confused
with nodules.
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Fig. 18 ROC of automatic categorization on the ELCAP data. Well-circumscribed and vascular
nodule types possess the best ranking for automatic categorization

(3) Intensity-based registration methods did not provide accurate categorization of
small objects; a more appropriate similarity measures may be needed for these
types of objects.

(4) Signatures of nodules—based on multiple approaches—may be generated and
used for categorization; similar to face recognition methods. However, more
extensive annotated databases of nodules are needed.

5.4 Summary

In this chapter, a system for nodule candidate detection and classification was cre-
ated to show the robustness and accuracy of the produced models. Detection using
a template matching method with normalized cross-correlation similarity measure
without false positive reduction was implemented to show the robustness of the data-
driven templates formulated from the AAM and ASM approaches over the known
parametric template generation. Detection using the data driven template matching
approach, after false positive reduction via SIFT and LBP feature extraction, was
also implemented, further enhancing the detection process.

Classification of the nodules and non-nodules were examined using a k-NN leave-
one-out algorithm with the Euclidean distance as the similarity measure, in order to
test whether or not significant distinctions between the nodule classes exist. An over-
all 12% true-positive rate increase was found in the PCA combinational classification
results over using the PCA LBP or the PCA distance transform separately. Various
extensions and detailed analysis of biomedical imaging can be found in Farag [31].
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Analyzing the Shape and Motion of the Lungs
and Heart in Dynamic Pulmonary Imaging

Jianming Liang, Tim McInerney and Demetri Terzopoulos

Abstract The “Dynamic Chest Image Analysis” project aims to show focal and
general abnormalities of lung ventilation and perfusion based on a sequence of dig-
ital chest fluoroscopy frames. An indispensable source of information recorded in
the image sequence is the shapes and motions of the lungs and heart. This chapter
employs this shape and motion information of lung and heart to detect abnormalities
in both lung ventilation and perfusion. To extract the shape and motion information
of lung and heart, we utilize a technique, called United Snakes, in which both the
shape and motion of the lung and heart can be modeled using a single consistent
theoretical and implementational framework. Along with case studies, we demon-
strate the capability of United Snakes through four applications: lung registration,
diaphragm motion analysis, cardiac motion analysis, and cardiac shape analysis, in
revealing both lung ventilation and perfusion abnormalities.

1 Introduction

The respiratory system facilitates the exchange of gases (O2 and C O2) between
the blood and ambient air; therefore, adequate pulmonary ventilation (air flow) and
perfusion (blood flow) are essential for the lungs to function properly. Inadequate
pulmonary function may be due to failure in ventilation and perfusion, among other
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factors. To detect abnormalities of lung ventilation and perfusion, ventilation and
perfusion isotope scans are conventionally used, but they can only provide a static,
coarse 2D distribution of air and blood in the lungs, and also have a disadvantage of
using radioactive isotopes. The primary imaging modality for diagnosing pulmonary
disorders is chest X-ray, but the information about pulmonary function (ventilation
and perfusion) that may be gleaned from a single chest X-ray is rather limited. To
overcome this limitation, this chapter utilizes sequences of digital chest fluoroscopy
frames to reveal focal and general pulmonary functional abnormalities by analyzing
shape and motion of the lungs and heart.

2 Dynamic Pulmonary Imaging

2.1 Patient Examination

With Dynamic Pulmonary Imaging [1], we can collect a sequence of chest X-ray
images of up to 512 × 512 pixels at a sampling frequency of 25 Hz with a copper
filter of 3 mm. The reason of using a copper filter is to reduce the radiation dose to
patients. Two separate examination procedures are used for ventilation and perfu-
sion studies. In the ventilation study, the patient is asked to breathe naturally and
normally in a supine position with posteroanterior projection. An image sequence
of 55 frames with 192 × 144 pixels is collected in 4.32 s with a sampling frequency
of 12.5 Hz, because in most cases the lungs can complete a full ventilation cycle
in 4 s. Based on our experiments, a spatial resolution of 192 × 144 is sufficient for
ventilation analysis. In the perfusion study, the patient is also in a supine position
with posteroanterior projection, but with breath held to effectively remove the ven-
tilation effects. An intravenous bolus of X-ray contrast medium may be further used
to enhance the perfusion signal strength. Comparing with ventilation, perfusion has
a higher frequency, thus requiring a higher temporal sampling rate but a shorter
examination time. Furthermore, pulmonary perfusion is asynchronous,1 demanding
a higher spatial resolution. As a result, for perfusion analysis we acquire an image
sequence of 52 frames with 384 × 288 pixels at a sampling frequency of 25 Hz in
2.04 s. The imaging parameters are summarized in Table 1.

The acquired image sequences may be represented with intensity function
I (x, y, t), where 0 ∝ I ∝ 255, 1 ∝ x ∝ width (192 for ventilation and 384 for
perfusion), 1 ∝ y ∝ height (144 for ventilation and 288 for perfusion), and t is
a discrete time point in 0 ∝ t ∝ examtime (4.32 s for ventilation and 2.04 s for
perfusion). We may also represent it as I (x, y, i), with i the frame index, such that
t = (i − 1)/ f , where f is the sampling frequency of 12.5 Hz for ventilation analysis
and 25 Hz for perfusion analysis.

1 The speed of blood flow is roughly 10 cm/s. When the blood flows in the lungs, the phase ( i.e.,
timeshifts) of a pulse signal at one location may be different from that at another location, although
they have the same pulse frequency.
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Table 1 Dynamic pulmonary imaging parameters used for ventilation and perfusion examinations

Examination Image size Temporal sampling
frequency (Hz)

Number of frames Examination
time (s)

Ventilation ∗ 192 × 144 12.5 55 4.32
Perfusion ∗ 384 × 288 25 52 2.04

Because of the very short examination time and the use of a copper filter, the
radiation dose to the patient is low. The entrance skin dose of a patient is about 0.1 to
0.2 mGy [1]. For comparison, the radiation dose of a normal chest X-ray image varies
between 0.1 and 0.2 mGy, and the radiation dose of fluoroscopy is about 2 mGy per
minute [1].

2.2 Ventilation and Perfusion Analysis

The 2D image sequence obtained from the patient examination carries valuable
information for ventilation and perfusion studies thanks to the physical properties of
X-rays: The attenuation of X-rays in air is much lower than in blood and soft tissue.
As a result, the average pixel intensity of an area in the lung field varies over time due
to the respiratory and cardiac cycles; this variation, called a lung functional signal,
reflects the air and blood volume change in the corresponding 2D projectional area of
the lung when the patient breathes naturally. When the patient is asked to hold their
breath, we observe the perfusion signal disturbed by noise. The ventilation intensity
variation depends on the depth of the tidal volume ventilation and on lung area. It is
usually between 5 and 15 units in the 8-bit grey scale. The image intensity variation
for perfusion is about 3 to 4 units without contrast media. The ventilation signal to
noise ratio is about 10:1 and the perfusion signal to noise ratio is about 3:1. This
phenomenon is illustrated in Figs. 1, 2 and 3.

We detect ventilation and perfusion abnormalities by extracting meaningful ven-
tilation and perfusion parameters from the lung functional signals. To do so, it is
necessary to accurately locate the “turning points” from the signal, but it is challeng-
ing due to the existence of both ventilation and perfusion components, in addition to
noise. Furthermore, a phase (exhalation, inhalation, diastole, or systole) might not
be complete in a signal. For instance, the signal in Fig. 1b does not have a complete
exhaling phase. To this end, we introduce a mathematical function (Fig. 4):

M(A, D,U, S, L , t) =
{

A cos(πt ∅/D) + L if 0 ∝ t ∅ < D
A cos(π(t ∅ − D)/U + π) + L if D ∝ t ∅ < (D + U )

(1)

where
t ∅ = (t − S) mod (D + U ), (2)
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Fig. 1 A case in quiet breath. a A region of interest (ROI) in the right lung field and b its cor-
responding lung functional signal (observation), which reflects the air and blood change in the
corresponding lung area over time during the examination due to the physical properties of X-rays.
c A set of ventilation parameters can be extracted from the observation b with a ventilation model
(see Fig. 4) via optimization, where the observation is indicated with an “o”, the initial guess is
plotted as a dashed curve and the final solution as a solid curve. The image gets whiter (higher
intensity) during inhalation (more air in the lungs). The ROI shown here is a rectangle, but it may
be of arbitrary shape. The ROI may be as large as a whole lung or may be as small as a single pixel

20

40

60

80

100

120

140

160

180

(a)

0 0.5 1 1.5 2
175.5

176

176.5

177

177.5

178

178.5

179

Time (second)

In
te

ns
ity

(b)

Fig. 2 A case with the breath held and an intravenous bolus of X-ray contrast media. a An ROI
(region of interest) in the right lung field and b its corresponding observation—an enhanced lung
perfusion signal which (due to the physical properties of X-rays) reflects the blood flow in the
corresponding lung area with contrast media. The image gets darker (lower intensity) during the
systolic phase (more blood in the lungs). Comparing to ventilation in Fig. 1, the perfusion signal is
very noisy and weak (only about 3 intensity-unit variation)

with t for t ime, and t ∅ ≤ [0, D + U ), so that ventilation and perfusion parameters
can be extracted automatically from lung functional signals via optimization [2–4].
From these five extracted parameters, more parameters can be derived. In case of
ventilation, we can compute:

• Ventilation Frequency (F̂v) (expressed as the number of breaths per minute):

F̂v = 60/(D̂v + Ûv), (3)
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Fig. 3 A case with the breath held but using no X-ray contrast media. a An ROI (region of interest)
in the right lung and b its corresponding observation—a perfusion signal reflecting the blood flow
in the lung area due to the physical properties of X-rays. It is plotted in the same scale as in Fig. 2
for comparison
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Fig. 4 A mathematical function can be used for both ventolation and perfusion analysis. In case of
ventilation, it models the volume change of air during lung ventilation (increasing during inhalation
and decreasing during exhalation) with five primitive parameters: amplitude A (ventilation strength),
downtime D (time for exhalation), uptime U (time for inhalation), timeshift S (time from the starting
of examination to the completion of the first inhalation) and level L (mean intensity; its value
depending on various factors, medical meaning un-defined). In case of perfusion, it models the
blood volume change, increasing during the diastolic phase and decreasing during the systolic
phase, but its five free primitive parameters have completely different medical meanings: amplitude
A (perfusion strength in the lung area), downtime D (time for the systolic phase in the lung area),
uptime U (time for the diastolic phase in the lung area), timeshift S (time from the first image to
the completion of the first diastolic phase) and level L (the mean intensity but with no well-defined
medical meaning)

• Inhaling Rate ( Îv):

Îv = Âv/Ûv, (4)

• Exhaling Rate (Êv):
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Êv = Âv/D̂v, (5)

• Normalized timeshift (Ĥv):

Ĥv = Ŝv/(Ûv + D̂v), (6)

• Updown Ratio (R̂v):

R̂v = log10(Ûv/D̂v). (7)

We take the logarithm of the “updown ratio” to make it symmetric. All these
parameters may be used as ventilation abnormality indicators, but our experiments
show that in most cases three parameters, Âv (amplitude), Ĥv (normalized timeshift)
and R̂v (updown ratio) are sufficient in revealing ventilation abnormalities.

2.3 Shape and Motion Analysis

An additional, indispensable source of information recorded in the image sequence
is the shape and motion of the lungs and heart. This chapter employs this shape and
motion information to detect abnormalities of the lungs and heart with the United
Snakes technique, which is to be reviewed in Sect. 3. It should be noted that the
tasks of lung registration and cardiac motion analysis are challenging, because of the
reduced image contrast by the copper filter used in image acquisition to reduce the
radiation dose to patients.

3 United Snakes

A snake [5] is a flexible, elastic contour whose behavior is governed by an energy
functional, where an internal energy controls the degree of stretchiness and flexibility
of the contour while an external energy couples the contour to an image, attracting
the snake to features of interest (e.g., intensity edges). The active research in Snakes
has resulted in a large family of Snakes algorithms [6–8], including finite element
Snakes, B-Snakes, and Fourier Snakes, and related algorithms, such as “live-wire”
(also known as “intelligent scissors”) [9–15]. Each of these variants has its strengths
and weaknesses.

To extract and model the shape and motion of both the lung and the heart in
an accurate and robust manner, the differences between these two organs must be
taken into consideration and the most appropriate Snake algorithm selected. For
example, the lung boundary is smooth with readily identifiable curved corner regions.
Consequently, a Hermite finite-element Snake, which can be constructed directly
from user-defined lung boundary points and which can easily control the relative
position of its nodal points, is most suitable for lung registration and motion analysis.
On the other hand, much of the heart boundary is not visible in the image sequence
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and there are no readily identifiable landmark points directly on the boundary. In
this case, the reduced number of degrees of freedom, high degree of smoothness
and control polygon of a B-spline Snake make it an ideal choice. Furthermore, the
live-wire algorithm is effective for providing a quick delineation of the lungs and
heart and this delineation can then be used by a Snakes algorithm for subsequent
segmentation and motion tracking of an image sequence. As a result, a common
framework combining the best features of the various Snakes algorithms and the
live-wire algorithm is highly desirable.

To this end, United Snakes unifies various Snakes algorithms in a finite element
framework, where a particular type of Snake can be derived simply by changing
the shape functions at the user level. This unification expands the range of object
modeling capabilities within a uniform Snake construction process and provides
a uniform Snakes motion tracking mechanism. Consequently, both the shape and
motion of the lung and heart can be modeled using a single consistent theoretical
and implementational framework. United Snakes is also advantageously combined
with live-wire by introducing an effective hard constraint mechanism. The United
Snakes framework amplifies the efficiency and reproducibility of the component
techniques, and it offers more flexible interactive control while further minimizing
user interactions. The reader is referred to [16] for the mathematical details.

In the following sections, along with case studies, we present four applications of
United Snakes: lung registration, diaphragm motion analysis, cardiac motion analy-
sis, and cardiac shape analysis.

4 Lung Registration

Through our clinical studies, our expert radiologists have found it convenient and
effective to use four rectangles (regions of interests, ROIs) covering the apex, upper,
middle and lower lung field in each lung for a quick ventilation examination by
inspecting the behaviors of the four corresponding lung functional signals. To facil-
itate this inspection, we propose an ROI-based analysis with lung registration and
division.

4.1 Quick ROI-Based Analysis with Lung Registration
and Division

The rapid ROI-based analysis is performed by first interactively delineating the lungs
in the first frame with United Snakes (see Fig. 5), and then using the tracking capa-
bilities of Snakes to automatically follow the motion throughout the entire image
sequence (Fig. 6). The result is a lung delineation in each frame of the sequence.
This step is followed by an automatic division of each lung field into four rectangu-
lar regions in each frame (Fig. 7) and an automatic calculation of the average intensity
for each region. This process forms four lung functional signals in each lung field,
from which ventilation parameters can be automatically extracted as shown in Fig. 8.
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Fig. 5 Lung delineation with United Snakes. Once the first seed (point 1 in (a)) is placed on the
lung boundary, an interactive snake is automatically constructed from the first seed to the current
mouse position (position 2 in (a)). With three seeds, the left lung can be delineated (b), and similarly
for the right lung (c)

4.2 Clinical Case Studies

(a) Frame 5 (b) Frame 15 (c) Frame 25

(d) Frame 35 (e) Frame 45 (f) Frame 55

Fig. 6 The tracking result (every tenth image shown). The edge information at the lung apex is
rather weak. Furthermore, there is no observable lung motion during quiet breathing. In order to
make the snake firmly stick to the apex, it is desirable to maintain a hard constraint point there.
Therefore, in the lung delineation as illustrated in Fig. 5, the first seed is usually placed at the lung
apex so that it can be utilized as a hard constraint in the tracking process

Here we present two representative cases—one normal and one abnormal—to
illustrate typical abnormalities:
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Fig. 7 Each lung field is divided into four regions with equal heights in each frame so that four
lung functional signals in each lung field can be formed. Ventilation parameters are automatically
extracted from these signals (see Fig. 8 and Table 2)
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Fig. 8 Extracting the ventilation parameters from the eight lung functional signals resulting from
the lung division (the observations are indicated with “o”, the initial guesses with dashed curves
and the final results with solid curves). The numerical results are given in Table 2

• Case 1: This case has been clinically classified as normal, but we have found some
slightly asynchronous ventilation and non-symmetrical ventilation at both apices
(see Table 2).
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Table 2 Clinical case I: Extracted ventilation parameters

Signal A H R

1 2.43 0.72 −0.325
2 5.61 0.79 −0.186
3 5.87 0.79 −0.160
4 7.23 0.83 −0.099
5 2.32 0.70 −0.421
6 4.54 0.80 −0.174
7 4.95 0.81 −0.181
8 9.79 0.81 −0.169

Clinically normal but slightly asynchronous ventilation (ASV) and non-symmetrical ventilation
(NSV) seen in regions 1 and 5

Fig. 9 Clinical case II with
lung division
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Table 3 Clinical case II: Parameter extraction. Reduced ventilation (RV) in regions 2, 3 and 7, and
compensatory ventilation (CV) in regions 4 and 8

Signal A H R

1 2.44 0.81 −0.129
2 2.98 0.74 −0.098
3 2.63 0.75 −0.133
4 15.94 0.76 −0.082
5 3.18 0.86 0.013
6 10.58 0.76 0.037
7 8.81 0.77 0.034
8 22.76 0.75 −0.023

It is abnormal that the updown ratios of the right lung are negative, while those of the left lung are
almost all positive

• Case 2: A pathological case (see Fig. 9 and Table 3). By comparing this case with
the previous normal case, it is clear that ventilation in regions 2 and 3 is poor.
Ventilation amplitudes are expected to increase from region 1 to region 4 and from
region 5 to region 8. Therefore, it is abnormal to observe an amplitude in region 7
smaller than region 6. It is also abnormal to observe negative updown ratios in the
right lung and predominantly positive ratios in the left lung. Furthermore, regions
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Table 4 Statistics of ventilation abnormalities with ROI-based analysis

Right/Left NV RV ASV NSV CV

Apex(1/5) 0/0 4/5 25/19 23/17 0/1
Upper(2/6) 0/1 3/1 1/1 3/4 1/2
Mid(3/7) 2/0 9/4 5/3 11/3 0/1

Lower(4/8) 0/0 7/7 2/3 3/3 0/0

Table 5 Number of user interactions required to guarantee segmentation accuracy and robustness

Seeds in first frame User interactions in other frames

Max 5 2
Min 3 0
Average 3.3 0.3

4 and 8 are “hard” at work to compensate for the abnormal areas—the phenom-
ena of “compensatory ventilation”: an area with excessive ventilation in order to
compensate for the abnormal areas in other parts of the lungs. This generally goes
along with non-ventilation and reduced ventilation. The area itself should be con-
sidered as normal, but it is suggestive for abnormalities in other parts of the lungs.
The HRCT report confirmed our findings in the right lung: bronchiectatic changes
in the right middle and lower lobes, and scar changes in the right middle lobe
medially. However, the report provided no explanation for the smaller amplitude
of region 7 with respect to region 6.

The statistics of abnormal findings with our 53 ventilation patients are summa-
rized in Tabel 4. Through the clinical cases studies, we have found that ROI-based
ventilation analysis is efficient and effective with respect to the size of lung divisions.
As the lung field is divided into finer regions, smaller ventilation irregularities are
detected.

In the clinical studies, we also have found that United Snakes are not only efficient,
providing real-time performance, but also accurate and require little user intervention.
This performance is due, in part, to the use of the hard constraint mechanism offered
by the United Snakes technique. The hard constraint at the lung apex plays a critical
role by pinning the Snake—without it the snake would slide away from the lung
apex. Furthermore, due to the interaction mechanisms provided by United Snakes,
the segmentation and motion tracking can be made as accurate as desired by the user.
The number of user interactions are given in Table 5, showing little user intervention
is required.
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5 Diaphragm Motion Analysis

The diaphragm is a dome-shaped sheet of muscle that separates the chest from the
abdomen. As the diaphragm contracts and flattens, the volume of the chest increases
and air is drawn into the lungs. As it relaxes, the dome pushes upward, forcing air out
of the lungs. The diaphragm contracts without any voluntary control. During quiet
breathing, there is no contraction of intercostal muscles. Therefore, analyzing the
diaphragm motion gives first-hand information concerning pulmonary ventilation.

5.1 Quantifying Diaphragm Motion

Although we can extract diaphragm motion from the lung delineation result in Sect. 4,
a more efficient quantitative analysis can be obtained using United Snakes. In the
current patient orientation, the diaphragm is restricted to an up-and-down motion.
Consequently, we use an open Snake and restrict its motion along the y-axis, leading
to efficient tracking as only a few Snake nodes are required and only one deformation
direction is needed for each node. The diaphragm motion can be characterized using
the average position of the Snake over time.

5.2 Clinical Case Studies

Three clinical cases are presented:

• Case 1 (Fig. 10): A clinically normal case. The diaphragm moves freely and con-
tinuously.

• Case 2 (Fig. 11): Local abnormal diaphragm motion. The right diaphragm is
expected to contract even further during inhalation, but it exhibits no observable
motion for about half a second. Air is not effectively drawn into the right lung.

• Case 3 (Fig. 12): Global diaphragm motion abnormality. The left diaphragm cannot
move freely and exhibits further irregularities during exhalation.

The number of user interactions needed for diaphragm motion analysis is
minimal—only two seeds are required in the first frame to initialize a Snake, and
no further user intervention is needed for any other frames due to the strong image
contrast at the diaphragm. The abnormal diaphragm motion findings are summarized
in Table 6.
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Frame 5 (t=0.32) (b) Frame 15 (t=1.12) (c) Frame 25 (t=1.92)

(d) Frame 35 (t=2.72) (e) Frame 45 (t=3.52) (f) Frame 55 (t=4.32)
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(g) Diaphragm Motion: Average -positions of the two open snakes

(a)

Fig. 10 Clinical case I: Normal diaphragm motion. The diaphragm moves freely and continuously
on both sides

6 Cardiac Motion Analysis

For effective perfusion analysis, it is essential to understand the cardiac function.
Analyzing the cardiac motion gives the first-hand information concerning its func-
tion.



304 J. Liang et al.

(a) Frame 1 (t=0) (b) Frame 39 (t=3.04) (c) Frame 40 (t=3.12)

(d) Frame 41 (t=3.20) (e) Frame 42 (t=3.28) (f) Frame 43 (t=3.36)

(g) Frame 44 (t=3.44) (h) Frame 45 (t=3.52) (i) Frame 46 (t=3.60)
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(j) Diaphragm Motion: Average -positions of the two open snakes

Fig. 11 Clinical case II: Local abnormal diaphragm motion. a The two open snakes on the first
frame. (b)–(i) From Frame 39 (t = 3.04) to Frame 46 (t = 3.60), the right diaphragm is expected to
contract even further during inhalation, but it exhibits no observable motion (in term of pixels) for
about half a second. j The average positions of the two open snakes. The local motion abnormality
is indicated with a rectangle. The right diaphragm motion amplitude is also small
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(a) Frame 1 (t=0) (b) Frame 5 (t=0.32) (c) Frame 10 (t=0.72)

(d) Frame 15 (t=1.12) (e) Frame 20 (t=1.52) (f) Frame 25 (t=1.92)

(g) Frame 30 (t=2.32) (h) Frame 35 (t=2.72) (i) Frame 40 (t=3.12)

(j) Frame 45 (t=3.52) (k) Frame 50 (t=3.92) (l) Frame 55 (t=4.32)
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(m) Diaphragm Motion: Average -positions of the two open snakes

Fig. 12 Clinical case III: Global abnormal diaphragm motion. The left diaphragm cannot move
freely and exhibits irregularities during exhalation
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Table 6 Statistics of diaphragm motion abnormalities

Global Local

Right 4 11
Left 3 7
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Fig. 13 a An ROI on the heart and b its corresponding observation. The observation is dominated by
ventilation when the patient breathes. Our simple approach cannot extract the systolic and diastolic
phases from such a signal. c However, with cardiac motion tracking (Fig. 15), the heart signal
(indicated with “o”) can be obtained with Eq. 8, and cardiac systolic and diastolic phases from the
heart signal can be extracted with our perfusion model even when the patient breathes (the dashed
curve indicates the initial guess and the final optimized result is shown with the solid curve)—the
uptime corresponds to the diastolic phase (the heart proportion increases) and the downtime to the
systolic phase of the heart (the heart proportion decreases). The extracted parameters for this patient
are included in Table 7 as clinical case I, indicating that the heart is working properly

6.1 Characterizing Cardiac Motion

In order to use cardiac information to accelerate the pulmonary perfusion analysis,
we proposed a simple approach to extract the cardiac systolic and diastolic phases
from the heart [17]. We justify in Sect. 6.2 that this simple approach is sufficiently
accurate for this purpose. However, it cannot be used to characterize complete cardiac
motion for the following reasons:

• Its amplitude cannot be fully trusted in measuring the effectiveness of cardiac
function. During perfusion examination, the patient is asked to hold their breath.
The amount of air held in the lungs may differ from patient to patient and may
differ from examination to examination, even for the same patient. As a result,
when there is more air kept in the right lung, even if the heart doesn’t pump
effectively we may still have a higher amplitude due to the higher contrast along
the cardiac boundary.

• This simple approach does not work when ventilation is present. When the patient
breathes, the signal will be dominated by ventilation as shown in Fig. 13. Therefore,
it cannot extract the systolic and diastolic phases from such a signal.

United Snakes offers a general solution for characterizing cardiac motion. By
tracking cardiac motion (see Fig. 14), the heart proportion in an ROI can be computed
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Fig. 14 Clinical case IV: Extracting cardiac motion parameters (with the same notation as in Fig. 16)

Table 7 Cardiac motion parameters given by our general approach for the four clinical cases

Clinical cases Our new approach
A (amplitude %) D (systolic) U (diastolic) S (timeshift) F (frequency)

I 5.10 0.2398 0.3698 0.6106 98
II 2.40 0.3869 0.7931 0.9252 51
III 2.93 0.2065 0.9277 0.2144 53
IV 0.86 0.2106 0.3869 0.1105 100

The downtime (D) corresponds to the systolic phase, while the uptime (U) corresponds to the
diastolic phase. The amplitude parameters show that the heart of Case I (a clinically normal case)
is pumping effectively, while the heart pumping of Case IV (with advanced pulmonary embolism)
is extremely weak. Cases II and III (both athletes) represent the typical “ineffective” phenomena of
athletic hearts during rest: Low amplitude and low frequency

over time throughout the entire sequence resulting in a heart signal:

sh = |intersection of heart and ROI|
|ROI| . (8)

Analyzing the heart signal reveals the condition of cardiac function.

6.2 Clinical Case Studies

Clinical studies show that the new approach is effective in detecting abnormal cardiac
function. We have applied this new approach to all of our clinical cases (53 ventilation
patients and the 52 perfusion cases). We found weak cardiac function in 16 patients.
Included here are three representative cases. Their results are listed in Table 7 and
shown in Figs. 15, 16 and 17 as clinical cases II, III and IV. The amplitude parameters
show the effectiveness of heart pumping action. According to our experiments, we
expect that the amplitude of a healthy person is greater than 5.0 % (with the exception
of athletes). Case I is a clinically normal case and the heart is pumping effectively. The
heart pumping action of Case IV (with advanced pulmonary embolism) is extremely
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Fig. 15 A united snake with B-spline shape functions (noise insensitive) is used to track cardiac
motion (every tenth image shown). The dashed polygon is the B-spline control polygon. To effec-
tively bridge the gap along the heart boundary, a hard constraint is further imposed on control
polygon node 3. The robust tracking performance is largely due to the hard constraint
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Fig. 16 Clinical case II: Extracting cardiac motion parameters with our previous, simple approach
used for perfusion analysis in [17] (a, b) and the more general approach (c,d). The observations are
indicated with “o”, the initial guesses with the dashed curves and the final optimized results with
the solid curves. The numerical results are given in Tables 8 and 7, respectively

ineffective. Cases II and III are both athletes representing the typical “ineffective”
phenomena of athletic hearts during rest (low amplitude and slow cardiac rate).

The cardiac motion tracking approach can be used to justify the accuracy of our
previous approach in [17]. By comparing the results given by our previous approach
(see Table 8) and by the motion tracking approach (see Table 7), the absolute dif-
ferences of the systolic/diastolic phases are less than 0.08 s. This means that our
previous approach is a simple, fast, and accurate technique for extracting the systolic
and diastolic phases from the heart.
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Fig. 17 Clinical case III: Extracting cardiac motion parameters (with the same notation as in
Fig. 16)

Table 8 Cardiac motion parameters given by our previous approach

Clinical cases Our previous approach
D (diastolic) U (systolic) S (timeshift) F (frequency)

I N/A N/A N/A N/A
II 0.8361 0.3366 0.1067 51
III 0.8473 0.2658 0.4301 53
IV 0.4250 0.1770 0.3112 100

The method does not work when ventilation is present (Case I). The amplitude is not included,
since it does not have a well-defined medical meaning. The uptime (U) for the systolic phase and
the downtime (D) for the diastolic phase. The uptime and downtime in this table have completely
different medical meanings from those in Table 7. Comparing with Table 7, the maximal absolute
difference in systolic/diastolic phases is 0.08 s. Therefore, the simple approach is sufficiently accu-
rate for extracting the systolic and diastolic phases and safe for perfusion analysis in [17]

7 Cardiac Shape Analysis

7.1 Revised Cardiothoracic Ratio (RCTR)

Cardiac size is an important and useful diagnostic parameter in chest radiographs. The
conventional measurement for assessing cardiac enlargement is the cardiothoracic
ratio (CTR) [18, 19]. Referring to Fig. 18, the CTR is defined as the ratio of the
transverse diameter of the cardiac shadow to the greatest transverse diameter of
the thorax [20] or the transverse diameter of the thorax at the highest level of the
diaphragm [21]. Many researchers have reported the relationship between cardiac
disease and heart size, and demonstrated the usefulness of the CTR and estimated
cardiac size in clinical applications (e.g., [22–29]). Several research groups have
attempted the automatic calculation of cardiac parameters for diagnosis [30–36].

However, the CTR is generally calculated from a single chest radiograph in which
the heart may be in any phase of motion and, consequently, it is subject to mea-
surement errors. In Dynamic Pulmonary Imaging, a whole cardiac motion cycle is
available and the minimal CTR and maximal CTR may be computed to form an
interval as a revised measurement of cardiac size. That is,
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Fig. 18 Various parameters
of the heart and lungs in
chest radiographs given by
Nakamori et. al. in [36].
“Cardiac broad diameter” may
also be referred as “cardiac
short diameter”

CT Rmin = mint C(t)

maxt T (t)
(9)

CT Rmax = maxt C(t)

maxt T (t)
(10)

where C(t) is the transverse diameter of the cardiac shadow at time t and T (t) is
the transverse diameter of the thorax at time t . The difference between CT Rmin

and CT Rmax indicates the strength (effectiveness) of the heart pumping action.
For a normal case, we expect that CT Rmin < CT Rmax ∝ 50 % and CT Rmax −
CT Rmin > 5 % with the exception of athletes.

T(t)

C(t)

(a) (b) (c)

Fig. 19 Case I (with ventilation): Calculating RCTR. a The maximal thoracic transverse diameter
(i.e., maxt (T (t))). b The minimal cardiac transverse diameter (i.e., mint (C(t))). c The maximal
cardiac transverse diameter (i.e., maxt (C(t))). A clinically normal case with normal heart size and
effective heart pumping
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(a) (b)

Fig. 20 Case II (with the breath held): a The minimal cardiac transverse diameter. b The maximal
cardiac transverse diameter. The thoracic transverse diameter is a constant over time due to the held
breath. An athlete. Heart size is normal, but heart pumping is weak. This is the typical “ineffective”
phenomena of athletic hearts during rest

(a) (b)

Fig. 21 Case III (with the breath held): Another athlete with the typical phenomena of athletic
hearts during rest. The same notation is used as in Fig. 20

(a) (b)

Fig. 22 Case IV (with the breath held): Calculating RCTR. a The minimal cardiac transverse
diameter. b The maximal cardiac transverse diameter. The thoracic transverse diameter is a constant
over time due to the breath held. A pathological case with advanced pulmonary embolism. Large
heart and extremely ineffective heart pumping action
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7.2 Clinical Case Studies

We have applied this new measurement to our 53 ventilation patients and 52 perfusion
patients. We have found that 7 of them have large hearts and heart pumping is not
effective in 16 cases. Here we list four representative cases:

• Case I (with ventilation) (see Fig. 19): A clinically normal case. Normal heart
size and effective heart pumping (CT Rmin = 40.22 % and CT Rmax = 46.53 %).

• Case II (see Fig. 20): An athlete. Heart size is normal, but heart pumping is weaker
(CT Rmin = 45.97 % and CT Rmax = 47.29 %) than Case I. This is the typical
“ineffective” phenomena of athletic hearts

• Case III (see Fig. 21): Another athlete. Heart size is good but it does not pump as
effectively (CT Rmin = 37.99 % and CT Rmax = 40.92 %) as Case I. Again, the
typical phenomena of athletic hearts during rest.

• Case IV (see Fig. 22): This is a pathological case with advanced pulmonary
embolism. Large heart and extremely ineffective heart pumping (CT Rmin =
53.49 % and CT Rmax = 54.38 %).

These patients are the same as in Sect. 6.2. Referring to Table 7, we can see that the
findings there are corroborated by the new findings here.

8 Conclusions

This chapter has utilized our United Snakes technique to reveal pulmonary ventilation
and perfusion abnormalities through motion and shape analysis of the lungs and heart.
This fluoroscopical examination takes only about 4 s for ventilation studies and 2 s
for perfusion studies with low radiation dose to the patient and with no preparation,
radioactive isotopes, and contrast media.
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Abstract We present a robust and high-throughput computational method for cell
segmentation using multiplexed immunohistopathology images. The major chal-
lenges in obtaining an accurate cell segmentation from tissue samples are due to (i)
complex cell and tissue morphology, (ii) different sources of variability including
non-homogeneous staining and microscope specific noise, and (iii) tissue quality.
Here we present a fast method that uses cell shape and scale information via unsu-
pervised machine learning to enhance and improve general purpose segmentation
methods. The proposed method is well suited for tissue cytology because it captures
the the morphological and shape heterogeneity in different cell populations. We dis-
cuss our segmentation framework for analysing approximately one hundred images
of lung and colon cancer and we restrict our analysis to epithelial cells.
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Fig. 1 Example of a whole slide image of breast tissue. Digital images of whole tissue sections
are very large. This particular tissue section has been acquired at 20X resolution and the resulting
image size is 71, 300 × 44, 400 pixels. While pathologists are trained on what areas of the tissue
they need to focus, it is very difficult to construct analysis methods that mimic this process. As it
is necessary to assess morphological properties of individual cells, it is, clear that the analysis of
such tissue samples needs to take several different resolutions into account

1 Introduction

According to the American Cancer Society, in 2013 nearly 8 million of people will
die due to cancer worldwide; cancer will account for approximately 22 % out of all
the non-communicable diseases [1]. Even more concerning, the current mortality
trend is projected to increase by 60 %, with an estimated 13.1 million deaths in
2030 [2]. Histology plays a critical role in both clinical practice and basic research.
To date most pathologists make use of very traditional tools and techniques. Light
microscopy, and in particular, Hematoxylin-Eosin (H&E) and Diaminobenzidine
(DAB) staining, have been essential technologies that pathologist have used for a
long time. Traditionally, pathologists make clinical assessments using H&E or DAB
stained tissue sections by interrogating the cellular properties such as nuclei shape,
texture, size, and the spatial relationship of the cells within the tumor.

Low cost, short acquisition time, consistent coloration, and the ability to highlight
the overall tissue architecture are the advantages of this process. Figure 1 depicts a
whole slide image of a breast cancer sample from a Hematoxylin-Eosin (H&E)
stained tissue section acquired at 20X resolution. As it is shown, the tissue section
is highly heterogeneous for both morphology and tissue components.
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Fig. 2 Tissue analysis challenges. Most traditional histology methods are based on thin tissue
sections. In that sense the histology slide is only a sample of the overall three dimensional tissue
block. The graphic on the left (a) illustrates how this sampling process affects the appearance of
individual cells. It is, for example, clear that not every cellular region needs to contain a nucleus. The
tissue sections on the right give an example how disease can effect tissue architecture. Morphology
of (b) breast cancer and (c) breast normal tissue

The field of digital microscopy is relatively new and it can be seen as a one of
the key technologies that researchers use to increase our understanding of cancer.
It promises to bring precision medicine to regular clinical practice with the goal
of improving early detection, prognosis, and treatment [3, 4]. It is now possible to
capture very rich information from tissue samples and cancer biopsies in form of
high resolution images that can be reviewed on any computer rather than a dedicated
microscope. This has already redefined clinical workflows and enabled methods of
collaboration that have not been possible before [5, 6]. The impact of this digitization
process will go beyond the way in how histology and cytology images are stored,
viewed, analyzed and shared. Like Computer Assisted Diagnosis (CAD) enabled
by advanced algorithms revolutionized certain radiology tasks, the evolving field
of computational pathology will enable new methods of fully automated and user
assisted diagnosis [4, 7, 8].

Guidelines like the Gleason Score [9] or the Nottingham Prognostic Index [10]
include measurements such as the shape and size of nuclei. For example, in breast
cancer nuclei size and mitotic features are diagnostic indicators. While anatomical
atlantes [11] can greatly enhance our understanding of disease at the organ level,
such prior knowledge is not available for analyzing the complex tumor heterogene-
ity at the microscopic scale. One of the major challenges in current pathology is
human subjectivity in clinical assessment. Among the major benefits of integrat-
ing automated image analysis in clinical workflows are: objective quantification,
study reproducibility, and consistency. The structure and appearance of the tumor
microenvironment varies greatly according to the function of each specific organ
[5, 12–14]. The major challenges towards a comprehensive framework in computa-
tional pathology and histopathology can be summarized as:

• Complex cell morphology. Cells are three-dimensional objects, and the corre-
sponding microscopy image captures are two-dimensional projections which cor-
respond to the slice of the tissue. Figure 2a illustrates examples of partial cell
volumes at different focal planes.
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• Tissue architecture. Tissue morphology varies greatly from organ to organ. Differ-
ent organs and tissue types exemplify different tissue parenchymal architecture and
stromal components. Cancer tissue shows very different morphological features
from normal tissue even in their original organs. Figure 2b and c show different
tissue architectures in breast cancer and normal tissue respectively.

• Process variability. There are a number of sources of variability including pre-
analytical variables such as how tissues are fixed, processed, stored, and sectioned
and analytical variables such as staining protocol, image acquisition and instru-
mentation.

As part of a novel fluorescent multiplexing method, referred to as MultiOmyxTM

and described in detail by Gerdes et al. [13], we have developed a single cell seg-
mentation framework for tissue images. The hallmark of the MultiOmyxTM process
is the ability to image a large number of protein targets in a single tissue section.
The overall goal of this segmentation framework is the detection and precise delin-
eation of individual cells. This information is then compiled into a map of the tissue.
Subsequently this tissue map is used to quantify the expression of the set of protein
markers at a single cell level.

As part of different preclinical studies, this new imaging process is being applied to
a large morphological variations of different tissue types and disease states. Hence our
segmentation framework needs to handle a broad range of morphological variations.
The concrete example of a lung and colon cancer dataset will be presented. In order
to achieve more robust and reliable segmentation results, we have explored the utility
of a shape ranking algorithm. Our focus here is the review of algorithm development,
the discussion of the merits of the proposed method in context of a concrete study,
and the presentation of some recent performance improvements.

The organization of this Chapter is the following. In Sect. 2, we will review rel-
evant methods for data tissue analysis based on pattern recognition approaches and
tissue morphological reconstruction. In Sect. 3, we will outline the GE MultiOmyxTM

imaging for acquiring immunohistochemistry (IHC) multiplexing imaging, in Sect. 4
we will present our cell shape segmentation algorithm. Results and discussion will be
presented in Sects. 5 and 6 respectively. Finally in Sect. 7 we will present our future
work.

2 Related Literature

As part of this Chapter we review a set of methods that enhance the ability of extract-
ing the local tissue architecture in order to construct a tissue map. The limited space
available does not permit a comprehensive review of relevant literature as many
of the established image segmentation approaches have been adopted to cell and
tissue image analysis. For a detailed review of image analysis methods in tissue
histopathology we direct the reader to Gurcan et al. [8]. Here we would like to
differentiate between approaches that focus on the extraction of disease specific pat-
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terns or signatures and methods that apply model-based algorithms to reconstruct
the architecture of the tissue. In Sect. 2.1 we summarize recent research [7, 15–22]
that makes extensive use of sophisticated feature extraction techniques and machine
learning algorithms. The second group, related to the model-based approaches for
reconstructing the tissue morphology at the individual cell level [23–30] are reviewed
in Sect. 2.2.

2.1 Pattern Recognition Methods

Doyle et al. [18, 19] presented a Bayesian multi-resolution classification method for
prostate cancer tissue from whole slide histopathology images. The approach is based
on extracting a number of intensity and texture based statistics at different resolution
levels and deriving a Bayesian classification method. In Basavanhally et al. [16] a
learning-based method for detection and grading lymphocytic infiltration in breast
cancer tissue using histopathology images was proposed. The method automatically
segments lymphocytes using region growing and Markov random field algorithms. A
graph representation then is constructed from the segmented lymphocytes, defining
fifty features used for lymphocytic classification. The method was applied to approx-
imately one hundred images obtained from fifty eight patients. Monaco et al. [15]
used a Markov Random Field to train a model for identifying glands from training
data. While the model effectively deals with the wide variety of shapes, it focuses
on segmenting and labeling regions and does not highlight individual cells.

Kaynig et al. [17] introduced an energy function that incorporates the probabil-
ity output from a random forest classifier. The goal of this approach is to improve
the segmentation of elongated structures (e.g., membranes) in electron microscopy
images. Their model combines a discriminative model for membrane appearance
learned from training data with perceptual grouping. The effectiveness of incorpo-
rating additional shape priors [31] that are identified through supervised training
has been demonstrated recently. A graph-based method for mitosis identification in
breast cancer in whole tissue slides is proposed by Roullier et al. [22]. The approach
consisted of decomposing the whole image at multiple resolution levels and perform-
ing a graph-based clustering approach using a number of image features at different
resolution levels.

2.2 Model-Based Methods

Typically, cell detection relies on structural markers that include nuclei and mem-
brane markers [32, 33]. A variation of the watershed segmentation was presented
by Na and Heru [33] to segment milk somatic cell images. The proposed method
addresses the typical over-segmentation obtained from the watershed algorithm.
Srinivasa et al. [34] proposed an active mask algorithm for cell segmentation in flu-
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orescence microscope images based on punctate patterns. Their method is inspired
by active-contour methods and multiresolution methods. The authors demonstrated
their method in HeLa cells.

In Xiao et al. [35], a method for segmenting stem cells is proposed. The algorithm
uses a morphological descriptor for cellular shapes in terms of a “symmetry axis
transformation”. The method accounts for morphological changes that are induced
by cell growth. A method for segmenting cells for in-situ microscopy is presented
in Martinez et al. [36]. Here the instrument is positioned inside a bioreactor in order
to monitor cell culture processes. The method relies on a bubble segmentation algo-
rithm which is based on shape from shading. Cells are segmented based on closed
boundaries that are extracted from thresholding a depth map by applying Bichsel
and Pentland’s original shape from shading algorithm. A framework for supervised
cell-image segmentation and a touching-cell splitting method is proposed by Kong et
al. [37]. In this work cells are segmented by classifying the image pixels into either
cell or extra-cellular category. The classification algorithm uses the color-texture
extracted at the local neighborhood of each pixel. Local features utilized by the
classification algorithm rely on a local Fourier transform from a color space.

Recently, a number of learning-based techniques have been suggested. Xiaong [38]
proposed the use of computer generated models to provide synthesized images of
healthy red blood cell populations. In order to develop cell segmentation and count-
ing algorithms, learning-based techniques were used. The estimation of average cell
shape and deformation was inferred from the synthetic models. Park [39] presented
a watershed-based algorithm for the segmentation of clustered cells. The method
incorporates specific image color-knowledge using the watershed transform with
iterative shape alignment to segment the cell shape. Extensions to 3D segmentation
include segmenting the spots in cDNA microarray images [40]. The segmentation
is represented in a three-dimensional (3-D) space by a 3-D spot model posed via an
optimization problem, which is solved by a genetic algorithm. The 3D segmentation
is provided by contours of the 3-D spot models.

Given a set of training images Lempitsky and Zisserman [41] proposed to learn
a linear classifier that allows cell counting. This approach is very general and has
been applied to live cell data. The concept of learning from dot annotations has been
applied by Arteta et al. [42] to detect cell like structures from a broad number of
candidate regions that have been scored with a learning based measure such that
the solution is globally optimal. Their approach has been successfully applied to
different microscopy techniques. The major limitation of both approaches is that the
segmentation does not use morphological assessment of individual cells. In a simi-
lar path, hierarchical segmentation schemes have been suggested to splitand merge
cells [24, 26]. These models use supervised learning and enforce spatialconsistency
through Markov random fields [26].

Here we are building on both of these developments to formulate an unsuper-
vised cell segmentation method for epithelial cells that incorporates shape clues to
dynamically adapt the segmentation to the cell shape and morphology. Based on sta-
tistical shape analysis we propose a framework for simultaneous cell classification
and detection in tumor tissue with very heterogeneous morphology. The key idea is
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Fig. 3 Schematic of MultiOmyxTM IHC. The three main axes illustrate the key components of
the technology: (i) serial information (ii) different excitation wavelengths such as DAPI, Cy3,
Cy5, and (iii) repeated stain-image-bleach and de-stain sequence using direct antibody-fluorophor
conjugation [43–46]

to optimize the cell segmentation according to the tumor tissue morphology via cell
shape descriptors. This process is equivalent to solving in non-polynomial time an
optimization problem, and here we propose an efficient solution via sparse random
sampling.

3 Multiplexed Fluorescence Microscopy

Sequential multiplexed immunofluorescence is a powerful technique for understand-
ing the complex interaction of different proteins in tissues while keeping the tissue
morphology in context. We describe a novel image analysis method for an extended
panel of biomarkers on a single, formalin-fixed paraffin embedded tissue section. We
will provide a brief overview of the GE MultiOmyxTM methodology, for more details,
we refer the reader to a more detail presentation in Gerdes et al [13]. We utilize a
novel technology for simultaneous co-localization of multiple protein biomarkers on
a single formalin-fixed paraffin embedded tissue section or core biopsy. The core of
this technology is denoted as MultiOmyxTM and it has been developed at GE Global
Research (Niskayuna, NY; USA). It comprises of a repeated stain-image-bleach and
de-stain sequence using direct antibody-fluorophor conjugation [43–46]. Figure 3
illustrates the concept of applying MultiOmyxTM in Tissue Micro-Arrays (TMAs).1

1 Tissue micro-arrays (TMAs) is a collection of tissue samples (biopsies) organized in a two-
dimensional array. Typically, they contain hundred of samples organized in one or multiple two-
dimensional arrays, where each sample has a diameter of approximately of 0.6 mm. The samples
are collected using standardized tissue fixation protocols and each sample is embedded in paraffin
and can be used as biomarker discovery tool [12–14].
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This technology allows the simultaneous detection of multiple protein expressions
at the individual cell level, revealing not only the complex morphology of the cancer
tissue but the expression patterns of different molecules in each individual cell.

We have applied the MultiOmyxTM to two TMAs using two different tissue
types: lung and colon with approximately 100 images in each tissue type. Images
were acquired at 20X magnification, a numerical aperture of 0.75, a pixel size of
0.37µm. We used a customized OlympusTM microscope with filters tuned to the
emission wavelength of three dyes: cyanine3 (Cy3, emits at 570 nm); cyanine5 (Cy5,
670 nm); and 46-diamidino-2-phenylindole (DAPI, 460 nm). Image size was set to
2048 × 2048 pixels, using 12-bit digital camera. Tissue sections were 4µm thick and
they were fixed in paraffin. Modeling the inherent variability of the biological spec-
imen combined with the image-to-image variation is the major challenges through
robust tissue processing and analysis. Biomarker abundance, fixation methods, sec-
tioning, and storage could affect the staining process. Different tissue types and,
more importantly, different disease states exhibit vastly different morphology and
architecture. In order to design computational tools that can, for example, effectively
support the quantification of cell phenotypes, algorithms need to capture minute
details and tissue specific morphological variations. Figure 4a presents a conceptual
representation of the information content in TMA’s. On the left we show a tissue
micro-array, in the center a single tumor biopsy, and on the right a selected region of
interest corresponding to epithelial tissue. The color images in the back, represent
different excitation wavelengths corresponding to DAPI, Cy3, Cy5 channels and
they target different molecular protein targets. Figure 4b–d present representative
examples of epithelial cells in lung tissue exhibiting very different cell morphology.
Cells in Fig. 4b, c show relatively uniformity in cell size and shape, whereas cells
in Fig. 4d the show heterogeneous shape and size. Here we are combining general
purpose segmentation with unsupervised machine learning techniques to construct
algorithms that are robust while capturing phenotypically relevant information.

4 Cell Segmentation via Shape Ranking

The image analysis workflow of the MultiOmyxTM process has been presented in
more detail in [47]. In this chapter we focus on improving the robustness and fidelity
of the cell segmentation algorithm. The current version of the single cell segmentation
framework is based on a variant of a hierarchical watershed segmentation. For the
purpose of this discussion, the reader can assume that any standard implementation
the watershed segmentation can be utilized.

This approach is inspired by the idea of capturing the shape distribution for a given
image class. Assuming that the available segmentation results are of reasonable
quality, (i.e., the majority is correct) regions that correspond segmentation errors
will be outliers of this shape distribution. Here we use a shape descriptor to capture
the tissue’s shape distribution. Based on this ranking function it is then possible to
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Fig. 4 Morphological heterogeneity in lung cancer tissue. Illustration of tissue micro-arrays and
example of different size and morphology of epithelial cells from lung cancer tissue. a Regions
of interest in tissue micro-arrays. Color images correspond to different excitation wavelengths
corresponding to different molecular protein targets. Cells exhibiting: b smaller size, c medium
size, and d larger size. Note the homogeneity of cell morphology and shape in b and c but the cell
hetero- geneity in d

identify the regions in the hierarchical segmentation that rank high with respect to
the given shape model.

4.1 Shape Ranking

The main idea of cell ranking is that abnormal objects can be consider to be out-
liers and they are likely the outcome of an error during the segmentation process.
Assuming that the cell shape distribution is Gaussian-like, we aim to optimize the
segmentation from a family of known parameters by minimizing the number of out-
liers during multiple segmentations. We presented a ranking method that maximizes
the shape similarity using the k-nearest neighbors in [48]. While computing object
similarity using k-nearest neighbor is computationally efficient, estimating a similar-
ity matrix for a very large number of objects can be computationally very expensive.
In this work, we propose to increase the efficiency of the cell ranking algorithm
while preserving the fidelity of the shape ranking metric. Rather than estimating the
object-to-object shape similarity from k-nearest neighbors, we propose to select an
uniformed distributed sub-sample of the population.
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Fig. 5 Sub-sampling and ranking. Schematic illustrating the key idea of the similarity metric:
outliers (abnormal points) should have a higher distance (lower ranking) as compared to points close
to the center of the distribution (highest ranking). a Distribution of all points in X . b Distribution
of a sample A ⊂ X (yellow), c Outliers (red) and inliers (green) using k-nearest neighbors in A

Let X = {X1, ..., Xn} be a set of points, and A ⊂ X a uniformly distributed
sample, for Xi ∈ X , let N A

i (k) ⊂ A represents the k-nearest neighbors within A. We
then define the cost of every element of X within A as:

C (Xi ) =
∑

X j ∈N A
i (k)

d(Xi , X j ), (1)

where d(Xi , X j ) is a distance metric. Figure 5 illustrates the idea of the of the sub-
sampling and ranking. Figure 5a and b shows all points in X (blue) and A (yellow).
Figure 5c shows outliers (red) and normal (green) points. Note that according to
our definition of similarity, the ranking of Xi is obtained from the cost C (Xi ) and
indicates the degree of “abnormality”; that is, top candidates in the ranking have a
high probability of being segmented correctly.

4.2 Shape Descriptors

Shape descriptors such as ‘shape context’ [49] and ‘Histogram of Oriented Gradients’
(HOG) [50] have been successfully applied to various problems in shape matching,
recognition and object recognition. However, computing cell-to-cell similarity based
on shape context involves a shape matching phase, which would be computationally
very expensive. In the presence of thousands of different cells this would be unprac-
tical. Histogram of Oriented Gradients is defined in the image coordinates, which is
not translation, rotation and scale, invariant.

We represent the shape as a parameterized curve in polar-coordinates. The cell
shape descriptors are rotational and scale invariant [48], and the provide an approx-
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Fig. 6 Computation of the shape descriptors. The left image shows points corresponding to the
cell border, the center image shows rotation along the major axis, and the right image illustrates a
log-polar histogram

imation to the cell shape. We compute the shape descriptors in the following steps.
First, given a segmented object, we select points that are two pixels away from the
border and we translate the points with respect to its center of gravity, defining a
new origin. Secondly, we rotate the border points with an angle equal to the axis of
least inertia which is defined as the line for which the integral of the square of the
distances to points on the shape boundary is a minimum. Thirdly, each boundary
point is represented in the polar-coordinate system by a two-tuples (θ, ρ), where θ

denotes the angular coordinate, ρ is the distance between the pole and the boundary
point. The histogram from all boundary points is defined as:

xi = 1∑
∀ j

B( j)

∑

∀θ∈B( j)

log

(
1 + 1

ρ

)
, (2)

where B( j) denotes the degree interval of the i-th bin; 1∑
∀ j

B( j) is a normalization term.

By this definition, our shape descriptor are translation, rotation and scale variant; the
logarithm function makes them more sensitive to the boundary points near to the
pole than those of points far away. The steps of computing the shape descriptor are
illustrated in Fig. 6.

4.3 Shape Similarity Metric via Kernel Distance

We define a shape similarity measure by finding a suitable transformation K such
that for any X, Y ∈ Rn, K (X, X) = 1 and as the distance X, Y increases, K (X, Y)

decreases. Then, K can be defined as a kernel transformation that induces a similarity
measure. We encode shape and scale information as: X = [x, a] = [x1, ..., xn−1, a],
where xi represents the shape descriptors and a is a scalar representing the object
area.

We define a shape kernel distance measure that combines shape and scale infor-
mation as:
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K (Xi , X j ) = αKshape(xi , x j ) + (1 − α)Kscale(ai , a j ), (3)

where Kshape and Kscale are kernels for the shape and scale terms, 0 ≤ α ≤ 1
regulates the shape-scale terms.

To measure shape-to-shape similarities, we use a Gaussian kernel:

Kshape(xi , x j ) = e

(
− Disshape(xi ,x j )

Disshape

)

, (4)

where Disshape is the Chi-Squared histogram distance χ2 to measure the distance
between two shape descriptors:

Disshape(xi , x j ) = χ2(xi , x j ) = 1

2

∑

∀k

|xi (k) − x j (k)|2
xi (k) + x j (k)

, (5)

and Disshape is the mean value of the shape distances: Disshape =
∑

χ2(xi ,x j )

N .
The scale information Kscale(ai , a j ) is defined as a Gaussian Kernel in terms of

the cell area as:

Kscale(ai , a j ) = e

(
− |ai −a j |)

μa

)

, (6)

μa is the mean value of all scale differences. Note that K (Xi , X j ) is a kernel since
it is expressed as a linear combination of two kernel functions.

Figure 7 illustrates different types of ranking based on: size, shape and size plus
shape, the ranking results are color coded from red (lowest ranking) to green (highest
ranking). Figure 7a shows a synthetic image with a limited number of shape primitives
at different sizes, Fig. 7b–d shows ranking results based on size, shape and size plus
shape respectively. Figure 7e shows an instance of cell segmentation, and Fig. 7f–h
represent the ranking results using the criteria previously described (note that green
objects are the most similar).

4.4 Hierarchical Top-Down Segmentation

We define the cost (Eq. 1) of the object Xi ∈ X , in terms of the its similarity function
at the level l ≤ L as:

C (Xi ) = Sl
i (Xi ) =

∑

X j ∈N A
i (k)

d(Xi , X j ) =
∑

j∈N A
i (k)

−K (Xi , X j ), (7)

where N A
i (k) is the set of k-nearest neighbors, A ⊂ X . We define the cumulative

cost function C (Xi) in terms of the similarity Sl
i in the hierarchical segmentations

as:
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Fig. 7 Schematic illustrating different ranking results in a synthetic image and a lung tissue section.
a Binary image with synthetic objects, b ranking by size, c ranking by shape and d ranking by size
and shape. e Cell segmentation in lung tissue. f ranking by size, g ranking by shape, h ranking by
size and shape

min
∑

i

C (Xi ) = min
∑

i,l

Sl
i (Xi ) = min

∑

i,l

∑

j∈N A
i (k)

−K (Xi , X j ). (8)

The minimization of the previous function may not converge to a global minima and
the convergence depends of the selection of A ⊂ X . However, if A is uniformly
distributed sample, the solution of the minimization problem can be very close to the
global minimum.

In general, minimizing Eq. 8 is an NP-hard optimization problem, given that the
number of different object-to-object combinations grows exponentially as the number
of scale levels increases. To overcome this difficulty, we efficiently approximate Eq. 8
by introducing topological constrains in the number of object-to-object combinations
(Fig. 8). Let cl

i be a partition of the image at the scale level l. We introduce a pyramidal-
hierarchical relation in the multilevel-partition as: cl

i = ⋃
cl−1

j , where cl−1
j are

mutually exclusive.
The optimization process utilizes the ranking information to dynamically penalize

the cl
i objects corresponding to the top ranking (outliers) at the level l. We introduce

a parameter p ∈ [0, 1] that regulates the portion of objects to further subdivide if
they meet a quality criteria. Intuitively, a cell cl

i should be subdivided if and only if
all their ancestors cl−1

j have a lower average cost, that is, given cl
i = ⋃

cl−1
j , then:
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Fig. 8 Schematic of a
hierarchical top-down
segmentation at three different
levels. The object at the high-
est level one the result of under
segmentation, the objects
in the level two correctly
segmented and the objects at
level three are the result of
over-segmentation. Objects in
level two have the lowest cost
across all the levels

(
J∑

j=1
Sl

j

J

)
− Sl−1

i ≤ 0. (9)

We present our Cell Segmentation Via Shape Ranking algorithm.

Algorithm 1 Cell Segmentation Via Shape Ranking
1: Given a initial segmentation at a level l, select a sample (reference) A ⊂ X .
2: Using the reference set A, compute the cell similarity matrix K (Xi , X j ), Xi ∈ X , X j ∈ A

(Eq. 3).
3: Rank the cells according to N A

i k-nearest neighbors, A ⊂ X .
4: Split cells with the lowest ranking if condition from Eq. 9 is met.
5: Go to Step 1 and iterate for level l − 1.

The parameter p ∈ [0, 1] regulates the number of candidates of objects that may
split across scales. If p = 1, all cl

i candidates will split. If p = 0, the algorithm
produces a shape ranking function at level l.

5 Results and Discussions

We applied our algorithm in immunohistopathology images obtained from lung and
colon tissue. Dataset and image acquisition is as described in Sect. 3. Illumination
correction [51] has been applied to all images. Since we are interested in segmenting
epithelium cells, we utilized a pan cytokeratin marker to segment the epithelium tis-
sue by removing the background via a minimum error thresholding algorithm [52].
The membrane protein marker used was Na+/K+-ATPase. For membrane detection,
we applied the multiscale vessel enhancement filter proposed by Frangi [53] at dif-
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ferent scale levels. Then the image was normalized to [0, 255]. We enhanced the
membrane image by multiplying the membrane detection image with the original
membrane image. To construct hierarchical partitions, the Morphological Watershed
algorithm [54] was utilized at different flooding levels: 32, 16, 12, and 9. To imple-
ment our proposed shape descriptors, we used 12 bins, each one of 30◦. We tested
different values for the parameter p and we experimentally found that p = 1/3
provided good results. In our experiments the number of k-neighbors was 15.

Figure 9 shows an overlay of the membrane enhanced image with the segmen-
tation results after applying the morphological watershed algorithm [54]. Figure 9a
shows under-segmentation (flooding level 32), while in Fig. 9b under-segmentation
is less evident (flooding level 16), and over-segmentation can be observed in Fig. 9c
(flooding level 9). Figure 9d, shows results in a typical tissue core acquired at 20X.
To visualize the results, cells are color-coded according to the ranking function from
red (abnormal) to green (normal). Figure 9a–h show segmentation details.

We observed that the most homogeneous cluster corresponds to the “normal”
(green) cells, which is expected since each cell minimizes the distance from its k-
neighbors. Cells between red and green are not very homogenous (in overall they
don’t have smooth contours as cells in green) and they are relatively bigger or smaller
than the green objects. The most heterogeneous cluster is the “abnormal” (red) cells.
In general, this cluster contains the largest and smallest cells and the most irregular
cell shapes.

Figure 10 presents the evolution of the ranking at different iterations. Figure 10a–
c show the ranking evolution (best segmentations) by combining multiple scales,
Fig. 10a shows the initial ranking, derived from the Watershed algorithm [54] at
level 32, Fig. 10a shows the segmentation from levels 32, 16, and Fig. 10a from 32,
16, 12 and 9. Figure 10d presents the original image. Figure 10e–g present selected
details from evolution of the segmentation via ranking.

Figure 11a presents a comparison of the algorithm running time as function of the
percentage of the random sample size for a typical image. We compare four sampling
rates: 100, 75, 50, and 25 %, all using four scale levels for the watershed algorithm:
32, 16, 12, and 9. As we can observe, the algorithm running time is reduced as the
sampling rate decreases. We noted, that the execution time execution time is reduced
from approximately 45 s to about 15 s, almost three times faster as compared with
the full sampling. Figure 11b shows the number of detected cells in function of the
sampling rate. When comparing the maximum vs. minimum number of detected cells,
the difference was 1.24 %. Also, the maximum number of cells 4991, corresponded to
25 %, while the minimum number of cells 2929, corresponded to 100 %. The system
used for these experiments was a machine with a 2.7 GHz processor in images with
size of 2048 × 2048 and the algorithm was implemented in ITK. Figures 12 and
13 show results in colon tissue. Figures 12a and 13a depict the enhanced membrane
image, while Figs. 12b and 13b depict the cell segmentation results in colon.

When viewed in context with related work [42] our results indicate the promise
of modeling cell shape for extracting biologically relevant information. In future
research we plan to extend the scope of shape modeling and integrate appearance
models. In addition, we believe that there may be different Kernel transformations
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Fig. 9 Overlay of the enhanced membrane image with segmentations obtained with the morpho-
logical watershed implemented in ITK [54] at three different flooding levels: a high (level 32), b
medium (level 16) and c, low (level 9). d Results from our algorithm. e–h detail of the segmentation
results
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Fig. 10 Evolution of the ranking at different scale levels, from a coarser to detail scale levels
derived from the ITK watershed algorithm [54]. a Ranking at level 32 (initialization), b ranking
after two iterations with levels 32, 16, c ranking after four iterations with levels 32, 16, 12, 9, d
original membrane image. e–h details of the previous images
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Fig. 11 Graphs corresponding to the running time and number of cells detected in a typical image.
a Running time in seconds in function of the percentage of the percentage random sample with 100,
75, 50 and 25 %. b Number of cells detected in function of the percentage random sample with 100,
75, 50 and 25 %

that could be suitable for effectively modeling of the cell shape ranking (as opposed
to Gaussian Kernel). Finally, the statistical analysis of sub-populations will need to
be extended before the framework can be successfully applied to larger scale studies.
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Fig. 12 Segmentation results in colon tissue. a Enhanced membrane image, b results of our seg-
mentation algorithm. Green, red and yellow correspond to the most “normal”, “abnormal” and
“close to normal (or abnormal)” cell shape
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Fig. 13 Segmentation results in colon tissue. a Enhanced membrane image, b results of our seg-
mentation algorithm. Green, red and yellow correspond to the most “normal”, “abnormal”, and
“close to normal (or abnormal)” cell shape

6 Conclusion

We have developed this approach with the goal of supporting the concept of tissue
based cytometry applications. This chapter presents a framework for enhancing gen-
eral segmentation methods by incorporating a statistical shape model. The presented
segmentation method is an extension of our previous work [48] and is approximately
three times faster while keeping the fidelity of the segmentation results. Given a spe-
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cific set of tissue samples it is necessary to extract as much high quality information
as possible. Although MultiOmyxTM methodology developed by GE is the primary
use case for this technology, the overall concept is of much broader applicability [55].
The results that are being presented here clearly indicate the promise of modeling
cell shape for extracting biologically relevant information.

This study focuses on a very localized analysis. In fact only the epithelial regions
of the tissue are being analyzed. In the context of the lung study presented in Sect. 3
our results demonstrate that the proposed framework enables to capture a greater
morphological variation of shapes. Currently we are in the process of extending this
framework so that it will be possible to identify and analyze sub-populations of cells.
Here it will be necessary to utilize advanced classification methods. We believe that
user interactive annotation methods will be needed to capture the information for
learning shape models that can deal with morphological variation in the tissue.

7 Future Work

Ultimately it will be necessary to construct methods and algorithms that can ana-
lyze the overall tissue architecture. Existing approaches for identifying certain tissue
regions that rely on molecular markers are only a crude attempt to address this
problem. Rather than merely extracting information on a single cell level, this infor-
mation would need to be set in context with the spatial organization of the tissue
itself. Although most tissue processing methods restrict ourselves to 2D processing,
it might be possible to obtain full volumetric information routinely.

As this technology matures, the developed tools will be of increasing value to
pathologists and life science researchers. While this is a dream at this point in time, we
envision that future systems will enable practitioners to apply grading standards, as
for example the Nottingham grading guideline for breast cancer, in a fully interactive
fashion. There is the promise that such systems will reduce the high level of inter-
operator variability. In turn they would also enable completely new applications in
the area of data retrieval and data mining. Based on the extracted information the
system could present a user with similar or related cases. At the same time it might
be possible to highlight certain regions of the tissue for a more detailed review. This
way such systems could insure that no critical areas have been omitted from the
analysis.

We firmly believe that advanced feature extraction methods, sophisticated machine
learning algorithms, and novel image understanding approaches will need to be devel-
oped to achieve this goal. Achieving the exceedingly high level of system perfor-
mance that is necessary to enable real clinical applications is a significant challenge.
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Computational Modeling of the Spine

Tobias Klinder, Samuel Kadoury and Cristian Lorenz

Abstract Modeling of the human spine requires the extension from single object
modeling to object ensembles. The spine consists of a constellation of vertebrae
where the individual vertebrae show a complex shape. While most neighbouring
vertebrae look very similar, their shape changes significantly along the spine. Due to
these challenges, more sophisticated model formulations are needed that go beyond
shape modeling of vertebrae. In this article, we combine several high-level models
of the spine into one common framework. The individual vertebrae are represented
as a set of models covering shape, gradient and appearance information as well as
relative location and orientation. By encoding further anatomical information into the
shape representation of the individual vertebrae, e.g., important anatomical regions
or significant landmarks, clinically relevant parameters can be easily derived from the
shape models. The spine is expressed as a sequence of rigid transformations between
vertebrae and different statistical methods can be used to cover the variability of spinal
curvatures. For selected applications that are vertebra labelling in limited field of
view scans and segmentation in both CT and MRI, we show how this comprehensive
framework can be used for an automatic image interpretation of medical images of
the spine. Furthermore, the problem of change assessment for osteoporotic fracture
detection is tackled with this framework as an example for CAD.
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1 Introduction

The spine represents both a vital central axis for the musculoskeletal system and a
flexible protective shell surrounding the most important neural pathway in the body,
the spinal cord. Spine related diseases or conditions are common and cause a huge
burden of morbidity and cost to society. As an example, back pain is the second most
common neurological ailment in the United States after headache. For many spine
related diseases, imaging is required for diagnosis ranging from applications that
include plain radiographs, CT, MR, ultrasound but also nuclear medicine. To assist
the diagnosis, automatic image interpretation is desired.

Usually, the spine consists of 24 vertebrae grouped as cervical (C1–C7), tho-
racic (T1–T12) and lumbar (L1–L5) vertebrae. Thus, compared to other anatomical
structures, the spine poses additional challenges as it consists of a constellation of
vertebrae where the individual vertebrae show a complex shape. Although the shape
of the individual vertebrae changes significantly along the spine, most neighbouring
vertebrae look very similar and are difficult to distinguish.

In recent years, a variety of approaches has been presented in the context of spine
related image analysis for various applications, such as, degenerative disc disease
[1], osteoporosis [2, 29], scoliosis [8], fracture [40, 41], spine metastasis [15, 38,
39], or spondyloarthropathy [37]. Depending on the clinical application and target
modality, different methods have been proposed. For most applications based on CT,
segmentation of vertebrae is crucial and region-growing [3], graph-cuts [4, 5] and
level-sets [2] were applied. In order to guide the segmentation prior knowledge was
included, e.g., vertebra shape representations consisting of geometrical primitives
[42]. Initialisation of the segmentation method was either not addressed, e.g., [2–4]
or automatically determined, e.g., by first extracting the spine and then detecting
the individual vertebrae [42]. In the context of scoliosis analysis, X-ray or more
specifically bi-planar X-ray is usually the modality of choice. Particular efforts were
made for the extraction of the three-dimensional spine curve instead of analyzing
vertebrae individually. For the modeling of the global spine curve and its variability,
a representation of the spine as an articulated model build from rigid transforma-
tions between neighboring vertebrae is often used [8, 9, 27, 43]. Another common
approach for modeling the spine is by means of graph representations as done in [1,
11, 36].

While a lot of work has been done over the last decade, most solutions were very
problem specific. In many cases, only dedicated parts of the spine were considered,
e.g., lumbar spine as in [11, 31], and it is thus unclear how such methods can then be
applied to other regions of the spine. In this article, we introduce a comprehensive
framework for computational modeling of the whole spine integrating several high-
level models for the individual vertebrae as well as the global spine curve. For the
individual vertebrae, we propose a set of models covering shape, gradient and ap-
pearance information as well as relative location and orientation. By encoding further
anatomical information into the detailed shape representation of the individual verte-
brae, e.g., important anatomical regions or significant landmarks, clinically relevant
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parameters can be easily derived from the shape models. The spine is expressed as a
sequence of rigid transformations between vertebrae and different statistical methods
can be applied to model the variability of spinal curvatures. These methods can be
used to perform model adaptation to a new instance. Compared to other work, we are
able to consider global spine curvature and local vertebra shape simultaneously. This
article combines and unifies our recent work done seperately in two different groups
meaning [16–21] and [23, 24, 29]. The proposed framework can be applied to a
variety of applications. Examplarily, we selected three different clinical challenges:
(i) vertebra labelling in limited field of view scans, (ii) segmentation in both CT and
MRI and (iii) change assessment for osteoporotic fracture detection.

The reminder of this article is structured as follows. In Sect. 2, we introduce
different models for the individual vertebrae, while Sect. 3 focusses on the articulated
model to express the global spine curve. For the selected applications, results are
given in Sect. 4. Finally, we conclude in Sect. 5.

2 Vertebra Modelling

Anatomical modeling by means of shape modeling has proven to be extremely bene-
ficial for many problems in medical image analysis. However, modeling of the human
spine requires the extension from single object modeling to object ensembles. Since
the shape of the vertebrae changes along spine, we first introduce detailed shape rep-
resentations for each of the 24 pre-sacral vertebrae in Sects. 2.1 and 2.2. In addition
to the shape representation, we define for each vertebrae a coordinate system to ex-
press position and orientation in Sect. 2.3. This information can then be used to later
model the whole spine shape. Finally, each vertebra model is further extended by
adding gradient as explained in Sect. 2.4 enabling vertebra detection and appearance
information as introduced in Sect. 2.5 to allow for vertebra identification.

2.1 Model Geometry

A first surface representation of the vertebrae was obtained by scanning of cadavers
[17] or commercially available plastic phantoms [24] with a CT scanner. Out of
the scanned data set, the individual vertebrae can be firstly segmented using simple
thresholding and afterwards triangulated using the marching cubes algorithm [28].
Finally, mesh operations can be applied like surface smoothing, vertex insertion in
the case of too large triangles, or edge deletion in the case of too small edges resulting
in a smooth surface with a roughly uniform distribution of vertices. Thus, each of the
24 surface mesh representation mi consists of Vi vertices {vi

j | j = 1, . . . , Vi } and Ti

triangles.
Further prior knowledge can be encoded into the surface meshes by labelling the

individual triangles. An example is given in Fig. 1a. This labelling allows to easily
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(a) (b)

Fig. 1 Illustration of additional prior knowledge encoded into the shape models, a Labelling of
anatomical regions. b Annotated anatomical landmarks

derive certain vertebra characteristics directly from the mesh, e.g., distance between
vertebral body surfaces. Finally, important anatomical landmarks can be annotated
in the mesh as shown in Fig. 1b. As both surface labelling and landmark setting only
need to be done once during model generation, manual annotation is typically done.

The surface descriptions can be embedded into a multi-resolution representation
with different levels of complexity. In [20], three levels of polygonal mesh catalogues
were created to speed up processing and allow for optimal convergence using a
coarse-to-fine strategy during registration.

2.2 Statistical Shape Modelling

From the initial vertebra surface representations, we can build statistical vertebra
shape models by adapting the surfaces to a set of images. During patient individu-
alization, we carefully preserve the established vertex distribution of the generated
vertebra surface representation. By using the adaptation algorithm from Chapter 5,
the topology remains unchanged and the vertex distribution is constrained to be sim-
ilar to the respective reference mesh, so that the j th landmark of the i th mesh lies at
approximately the same anatomical position for all cases. After segmentation of all
vertebrae in a set of training images, a Procrustes co-registration is performed and
finally a point distribution model can be obtained. In the following, we keep how-
ever only the mean surface models si for each vertebra. Thus, the overall geometrical
spine model can be expressed as S = {s1, . . . , sL} with L = 24 if all vertebrae are
considered.

http://dx.doi.org/10.1007/978-3-319-03813-1_5
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(a) (b) (c)

Fig. 2 Invariant features of vertebrae used to define a VCS: Cylinder fit to vertebral foramen (a),
middle plane of upper and lower vertebral body surface (b) as well as sagittal symmetry plane (c)

2.3 Vertebra Coordinate System

In addition to the surface representation, each vertebra model carries its own local
vertebra coordinate system (VCS). This allows to express relative location and ori-
entation of the individual vertebrae. In order to have similar definition of the VCS
for the individual vertebrae along the spine, a VCS is typically defined by invari-
ant object characteristics and different definitions have been proposed. In [23], we
derived the VCS of all vertebra from the surface mesh representation including the
labelling of anatomical regions (see Fig. 1a). For the vertebrae C3 to L5, the VCS
was defined in the same way since these vertebrae show similar shape characteristics.
The definition of the VCS was based on three object-related simplified representa-
tions: a cylinder fit to the vertebral foramen, the middle plane of the upper and lower
vertebral body surfaces, and the sagittal symmetry plane of the vertebra (see Fig. 2).
The definition of the VCS was as follows: The origin of the VCS was located in the
mid-vertebral plane at the centre of the vertebral foramen. The normal vector of
the middle plane defined the zVCS-axis, the xVCS-axis was defined by the orthogonal
component of the normal vector of the symmetry plane and the zVCS-axis. The cross
product of zVCS-axis and xVCS-axis resulted in the yVCS-axis [23]. For the unique
definition of the VCS for C1 and C2, other characteristics were chosen. A vertex
subset was chosen containing the vertices belonging to the inferior articular faces
and the anterior tubercle. The axes of the specific VCSs are given by the covariance
analysis of the subset. The eigenvector corresponding to the largest eigenvalue of the
covariance matrix points to the lateral direction defining the xVCS-axis, the second
eigenvector pointing towards the anterior tubercle gives the yVCS-axis, and finally,
the third eigenvector points towards the direction of the spinal canal denoting the
zVCS-axis. The barycentre of the subset defines the origin of the VCS.

Alternatively, the VCS for the thoracic and lumbar vertebrae was derived in [21]
from six anatomical landmarks defined in the mesh (4 pedicle tips and 2 on the
vertebral body, as depicted in Fig. 1b).
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Fig. 3 Gradient model representation of sixth thoracic vertebra in axial and sagittal view showing
the model points. The model has been created from ten samples

2.4 Gradient Model

For vertebra detection, we further created generalised Hough transform models of
each vertebra. The generalised Hough transform (GHT) [6] is a robust and powerful
method to detect arbitrary shapes in an image undergoing geometric transformations.
During GHT learning, description of the shape is encoded into a reference table also
called R-table. Its entries are vectors pointing from the shape boundary to a reference
point being commonly the gravity centre of the shape. During detection, the gradient
orientation is measured at each edge voxel of the new image yielding an index for an
entry of the R-table. Then, the positions pointed by all vectors under this entry are
incremented in an accumulator array. Finally, the shape is given by the highest peak
in the accumulator array. Usually, the GHT is trained for one single reference shape
of an object class. In addition to specific GHT models for C1 to L5 we build general
cervical, thoracic and lumbar GHT models. The general models can be applied if the
field of view of the available image is unknown while the more specific models can
be used if some indication for a certain area of the spine is given.

For model generation, shape models adapted to a set of training images are su-
perimposed based on the VCSs and the obtained aligned shapes are used to build up
the R-table. Note that the orientation is not considered during GHT learning since all
shapes were aligned via the respective VCS. In contrast to the above mentioned shape
models, the GHT models do not only contain shape information but also gradient
information. A gradient model for the sixth thoracic vertebra can be seen in Fig. 3.
For more details about the gradient models, we refer to [24].

2.5 Appearance Model

Vertebra appearance models in this case are represented as average intensity volumes
inside a bounding box around each vertebra without explicitly modeling the verte-
bra’s shape. The information covered in the model about expected appearance in the
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Fig. 4 Appearance model of sixth thoracic vertebra in axial and sagittal view generated from ten
training images. The volume has a sample distance of 0.5 mm in each direction. The cross gives the
origin of the VCS

direct neighbourhood of each vertebra can be used to identify vertebrae in an image
by comparing the similarity between model and image content. For model genera-
tion, shape models need to be adapted to a set of training images. Mean intensity
volumes are then generated by aligning volumes around corresponding vertebrae
and averaging the intensity values. Alignment is performed by registration of the
vertebra shape models to their respective model space. The obtained transformations
can then be applied on the respective voxel positions. Location and pose of the object
in the volumes are expressed by the VCSs of the mean vertebra models that were
used for alignment. Exemplarily, the appearance model of the sixth thoracic vertebra
is shown in Fig. 4. Inter-patient variability becomes obvious by blurry object bound-
aries whereas the particular objects are still clearly delimited. More details can be
found in [24].

3 Articulated Models

In the previous section, each vertebra has been represented seperately by a set of
detailed models. However, in order to model the overall constellation of the spine,
the articulation between the individual vertebrae has to be considered. In this section,
we first introduce a general representation of the articulated spine model in Sect. 3.1.
Based on this representation, statistical modeling of the spine can be done and two
different methods are proposed in Sects. 3.2 and 3.3. In each case, it is furthermore
shown how the articulated model can be individualized to a new patient.
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3.1 Model Definition

As defined in Sect. 2, the geometric model of the spine is defined as S = {s1, . . . , sL}
consisting of an interconnection of L objects. Each local shape si is represented
as a triangulated mesh including a VCS to rigidly register each object to its upper
neighbor.

The resulting rigid transforms are stored for each inter-object link. Hence, an
articulated deformable model (ADM) is represented by a series of local inter-object
rigid transformations Ti (translation and rotation) between neighbouring vertebrae
resulting in

A = [T1, T2, . . . , TL−1] . (1)

While A covers the individual inter-object transformations, the global shape of the
spine shape can be expressed by converting A into an absolute representation

Aabs = [T1, T1 ∝ T2, . . . , T1 ∝ T2 ∝ . . . ∝ TL−1] (2)

using recursive compositions. The respective transformations are expressed in the
VCS of the lower object.

The relationship between the shape model S and the ADM is that the articulation
vector A controls the position and orientation of the object constellation S. The
ADM can achieve deformation by modifying the vector of rigid transformations,
which taken in its entirety, performs a global deformation of the spine [22].

The rigid transformations are the combination of a rotation matrix R and a trans-
lation vector t, while scaling is not considered. We formulate the rigid transformation
T = {R, t} of a triangular mesh model as y = Rx + t where x, y, t ∗ ∅3. Composi-
tion is given by T1 ∝ T2 = {R1R2, R1t2 + t1}.

Alternatively, a rigid transformation can be fully described by an axis of rotation
supported by a unit vector u and an angle of rotation θ . The rotation vector r is
defined as the product of u and θ . Thus, a rigid transformation can be expressed as
T = {θn, t} = {r, t}. The conversion between the two representations is simple,
since the rotation vector can be converted into a rotation matrix using Rodrigues’
formula (see Appendix for more details).

3.2 Linear Model

3.2.1 Model Generation

In order to capture variations of the spine curve, statistics need to be applied on
the articulated model. As defined in the previous section, the spine is expressed
as a vector of rigid transformation and there is no addition or scalar multiplication
defined between them. Thus, as the representation no longer belongs to a vector space,
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conventional statistics can not be applied. However, rigid transformations belong
to a Riemannian manifold and Riemannian geometry concepts can be efficiently
applied to generalize statistical notions to articulated shape models of the spine. The
mathematical framework described in the following has been introduced by Boisvert
et al. and explained, e.g., in [8–10].

Following the statistics for Riemannian manifolds, the generalization of the usual
mean called the Fréchet mean can be defined for a given distance measure as the
element μ that minimizes the sum of the distances with a set of elements x0, . . . , xN

of the same manifold M:

μ = arg minx∗M
N∑

i=0

d(x, xi )
2 . (3)

Since the mean is given as a minimization, the gradient descent method can be
performed on the summation obtaining

μn+1 = Expμn

(
1

N

N∑

i=0

Logμn
(xi )

)
. (4)

The functions Exp and Log are respectively the exponential map and the log map
associated with the distance d(x, y). The exponential map projects an element of the
tangent plane on the manifold M and the log map is the inverse function.

The intuitive generalization of the variance is the expectation of the squared
distance between the elements xi :

σ 2 = E[d(μ, x)2] = 1

N

N∑

i=0

d(μ, xi )
2. (5)

The covariance is usually defined as the expectation of the matricial product of
the vectors from the mean to the elements on which the covariance is computed. The
expression for Riemannian manifolds can thus be given by using again the Log map
[8]:

Σxx = E[Log(μ−1x)T Log(μ−1x)] = 1

N

N∑

i=0

Logμ(x)Logμ(x)T . (6)

To use the Riemannian framework defined by Eqs. 3–6, a suitable distance needs
to be defined first to find the structure of the geodesics on the manifold. For this
purpose, we rely on the representation of transformation as a rotation vector as
defined in Sect. 3.1. With this representation, the left-invariant distance definition
between two rigid transformations can be defined [9]:

d(T1, T2) = Nω(T −1
2 ∝ T1) with Nω(T )2 = Nω({r, t})2 = ≤r≤2 + ≤ωt≤2 (7)
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where ω is used to weight the relative effect of rotation and translation, r is the
rotation vector, and t the translation vector. An appropriate value for the weight
factor ω in the case of the spine is found to be 0.05 [8].

Finally, exponential and logarithmic map associated with the defined distance are
the conversions between the rotation vector and the rotation matrix combined with
a scaled version of the translation vector [8]

ExpI d(T ) =
∣∣∣∣

R(r)

ω−1t
and LogI d(T ) =

∣∣∣∣
r(R)

ωt
. (8)

Given the articulated model of the spine is expressed as the multivariate vector
AT = [T1, T2, . . . , TL ]T from Eq. 1 of L rigid transformations, we obtain for the
mean and the covariance

μ =

⎧

⎨⎨⎨⎩

μ1
μ2
...

μL

⎫

⎬⎬⎬⎭ and Σ =

⎧

⎨⎨⎨⎩

ΣT1T1 ΣT1T2 . . . ΣT1TL

ΣT2T1 ΣT2T2 . . . ΣT2TL
...

...
...

ΣTL T1 ΣTL T2 . . . ΣTL TL

⎫

⎬⎬⎬⎭ . (9)

With Eq. 9, the formulation for the linear statistical spine model is given. In order
to reduce the dimensionality of the model, principal component analysis (PCA) can
be performed on the covariance matrix. As an example, Fig. 5 shows the first three
eigenmodes after applying PCA to the statistics of transformations between the 12
thoracic vertebrae obtained from 18 patients.

3.2.2 Model Adaption

The statistical spine model can be used to support image segmentation. It allows
to consider the object constellation during segmentation instead of separate seg-
mentation of the individual vertebrae, thus going from single object to multi-object
segmentation. Such a framework has been presented in [25] for the segmentation of
the spine in CT. Its general idea is to follow a two-scale adaptation approach. During
a global adaptation step, the individual vertebrae are at first roughly positioned in the
image. Afterwards, exact segmentation of the vertebrae is achieved by adaptation of
the respective vertebra shape models. In this section, we focus on the adaptation of
the global model, while details for deformable surface mesh adaptation are basically
explained earlier in Chap. 5.

The idea of global adaptation is to determine the inter-object transformations Tk

by minimizing an energy term E(Tk) where an external energy Eext(Tk) drives the
vertebrae towards image features, while an internal energy Eint(Tk) restricts attraction
to a former learned constellation model

E(Tk) = Eext(Tk) + αEint(Tk) . (10)

http://dx.doi.org/10.1007/978-3-319-03813-1_5
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Fig. 5 First, second and third
eigenmode of the statistical
model on transformation
between the local coordinate
systems defined on the 12
thoracic vertebrae. Each row
shows the mean transforma-
tion model μ and the mean
plus a particular eigenmode
weighted by ±3

∈
λi with

i = 1, ..., 3. The resulting
transformations are applied
to mean shape models based
on 18 patient data sets, a
μ − 3

∈
λ1φ1, b Mean μ, c

μ + 3
∈

λ1φ1, d μ − 3
∈

λ2φ2,
e Mean μ, f μ + 3

∈
λ2φ2,

g μ − 3
∈

λ3φ3, h Mean μ, i
μ + 3

∈
λ3φ3

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)
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The parameter α controls the trade-off between both energy terms which are
explained in the following.

The external energy attracts each vertebra towards its corresponding image struc-
tures. Thus, we first need to define a feature function such as

Fi (xi ) = −ni
T → I (xi )

gmax(gmax + ≤→ I (xi )≤)
g2

max + ≤→ I (xi )≤2 (11)

that evaluates for each vertebra independently the match between the vertebra surface
mesh and the underlying image structure. The feature function is evaluated for each
triangle of the surface mesh at the position of the triangle barycentre xi . The image
gradient → I (xi ) is projected onto the face normal ni of each triangle and damped
by gmax. The feature values of all triangles are summed up providing one value per
vertebra for the current position.

The search for a new vertebra position is performed by testing various discrete
locations inside a local neighborhood around a given position. For that purpose, a
cartesian grid inside a bounding box around the current estimated vertebra location
is defined. In order to not only cope with translations but also rotations, the original
object is rotated in discrete steps around all axes obtaining M rotation matrices Rm .
At each of the N grid positions, the feature function from Eq. 11 is evaluated for the
corresponding surface mesh translated by tn as well as its M rotated versions. Due
to the frequent presence of local minima, the exhaustive search of transformation
parameters is preferred to other optimization strategies. It has to be noted again that
this search aims at finding a new vertebra position while the original surface model
is not deformed yet.

The transformation resulting in the highest feature strength determines the new
position of the object:

arg maxRm ,tn

∑

i∗T

Fi (Rmxi + tn) , (12)

where T is the number of triangles per mesh.
After finding the most promising positions for a pair of neighboring objects m

and n, we can define the global external energy for the corresponding kth transfor-
mation using the distance measure between transformations as introduced in Eq. 7:

Eextk = d(T̃ −1
VCSm

· T̃VCSn , Tk)
2 (13)

where T̃VCSm and T̃VCSn are the transformations of the corresponding VCSs at the
new positions to the world coordinate system. Thus, T̃ −1

VCSm
· T̃VCSn gives the trans-

formation between the corresponding VCSs.
Driving the model towards high image features as performed by the external

energy is restricted by the internal energy to prevent false attraction. The internal
energy preserves similarity of the ensemble towards an earlier learned constellation
model. This is expressed by defining for each transformation Tk
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Eintk = d
⎪

Expμk

( t∑

i=1

bi ci,k

)
, Tk

)2
with b = CT (LogμAT ) (14)

where the matrix of the individual eigenvectors ci is denoted as C and bi is the coordi-
nate of the weight vector b associated with the i th principal component. The internal
energy penalizes differences between the model and the current constellation. The
closest constellation to the model is determined by projecting the given constellation
AT in the sub-space defined by the principal components.

After calculating the respective energy terms, the final transformations Tk between
the individual objects are determined by minimizing

E(Tk) = d(Textk , Tk)
2 + α · d(Tintk , Tk)

2 (15)

for each object separately. The transformations Textk and Tintk are obtained from
the external and internal energy, respectively. The final transformation Tkopt is found
using a Downhill-Simplex optimizer. As the representation of the ensemble as a
consecution of rigid transformations requires a reference VCS, the vertebra with the
highest feature strength is taken as the reference in each iteration.

After positioning the vertebra models using the global model adaptation, a local
non-rigid free-form deformation similar to Chap. 5 of the individual surface meshes
can be carried out. In order to improve segmentation, all vertebrae are adapted si-
multaneously with the individual shapes interacting on each other to prevent mis-
adaptations. This has been realized in [25] by introducing a collision detection into
feature search and decreasing the feature strength the deeper a target point lies inside
another mesh.

3.3 Manifold Embedding

3.3.1 Model Generation

As an alternative to the linear statistical model proposed in the previous section,
low-dimensional manifold embedding of the articulated model has been proposed in
[20, 21].

For non-linear embedding, we rely on the absolute vector representation Aabs =
[T1, T1 ∝ T2, . . . , T1 ∝ T2 ∝ . . . ∝ TL−1] as given in Eq. 2. Let us now consider N
articulated shape models expressed by the feature vectors Ai

abs, of dimensionality
D. The aim is to create a low-dimensional manifold consisting of N points Yi , Yi ∗
∅d , i ∗ [1, N ] where d � D based on [35]. In such a framework, if an adequate
number of data points is available, then the underlying manifold M is considered to
be “well-sampled”. Therefore, it can represent the underlying population structure. In
the sub-cluster corresponding to a pathological population, each point of the training
set and its neighbours would lie within a locally linear patch as illustrated in Fig. 6.

http://dx.doi.org/10.1007/978-3-319-03813-1_5
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Fig. 6 Representation of inter-vertebral transformations in manifold space

The main limitation of embedding algorithms is the assumption of Euclidean
metrics in the ambient space to evaluate similarity between sample points. Thus,
similar to Sect. 3.2, a metric in the space of articulated structures is defined that
accommodates for anatomical spine variability and adopts the intrinsic nature of the
Riemannian manifold geometry allowing us to discern between articulated shape
deformations in a topological invariant framework. For each point, the K closest
neighbours are selected using a distortion metric which is particularly suited for
geodesics. The metric dM(Ai

abs, A j
abs) estimates the distance of articulated models

i, j . The distance measure for absolute representations can therefore be expressed
as a sum of articulation deviations

dM (Ai
abs, A j

abs) =
L∑

k=1

dM (T i
k , T j

k ) =
L∑

k=1

≤ti
k − t j

k≤ +
L∑

k=1

dG(Ri
k, R j

k ). (16)

While for the translation, the L2 norm is chosen, geodesical distances are used
between rotation neighbourhoods. This is expressed as dG(Ri

k, R j
k ) = ≤ log((Ri

k)
−1

R j
k )≤F where the log map is used to map a point in the manifold to the tangent plane.
Afterwards, the manifold reconstruction weights are estimated by assuming the

local geometry of the patches can be described by linear coefficients that permit
the reconstruction of every model point from its neighbours. In order to determine
the value of the weights, the reconstruction errors are measured using the following
objective function:

ε(W) =
N∑

i=1

∥∥∥Ai
abs −

K∑

j=1

Wij A
j
abs

∥∥∥
2

(17)
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subject to

⎡
Wij = 0 if Ai

abs not neighbor A j
abs⎢

j Wi j = 1 for every i.
(18)

Thus, ε(W) sums the squared distances between all data points and their correspond-
ing reconstructed points. The weights Wi j represent the importance of the j th data
point to the reconstruction of the i th element.

The algorithm maps each high-dimensional Ai
abs to a low-dimensional Yi . These

internal coordinates are found with a cost function Φ minimizing the reconstruction
error:

Φ(Y) =
N∑

i=1

∥∥∥Yi −
K∑

j=1

Wi j Y j

∥∥∥
2

(19)

=
N∑

i=1

N∑

j=1

Mi j YT
i Y j

with M as a sparse and symmetric N ×N matrix enclosing the reconstruction weights
Wi j such that M = (I − W)T (I − W), and Y spanning the Yi ’s. The optimal
embedding, up to a global rotation, is obtained from the bottom d + 1 eigenvectors
of M and helps to minimize the cost function Φ(Y) as a simple eigenvalue problem.
The d eigenvectors form the d embedding coordinates. The coordinates Yi can be
translated by a constant displacement without affecting the overall cost Φ(Y). The
eigenvector corresponding to the smallest eigenvalue corresponds to the mean value
of the embedded data Y0 = {y1, . . . , yd}, yi = 0,∀i . This can be discarded with⎢

Yi = 0 to obtain an embedding centered at the origin. Hence, a new ADM can
be inferred in the embedded d-space as a low-dimensional point Ynew by finding its
optimal manifold coordinates yi .

To obtain the articulation vector for a new embedded point in the ambient space
(image domain), one has to determine the representation in high-dimensional space
based on its intrinsic coordinates. We first assume an explicit mapping f : M √ ∅D

from manifold space M to the ambient space ∅D . The inverse mapping of Yi is then
performed by estimating the relationship between ∅D and M as a joint distribu-
tion, such there exists a smooth functional which belongs to a local neighborhood.
Theoretically the manifold should follow the conditional expectation:

f (Yi ) ◦ E(Ai
abs|M(Ai ) = Yi ) =

⎣
Ai

p(Yi , Ai )

pM(Ai )(Yi )
dD (20)

which captures the overall trend of the data in D-space. Here, both pM(Ai )(Yi )

(marginal density of M(Ai )) and p(Yi , Ai ) (joint density) are unknown. Based on
the Nadaraya-Watson kernel regression [33], we replace densities by kernel functions
as pM(Ai )(Yi ) = 1

K

⎢
j∗N (i) Gh(Yi , Yj ) and p(Yi , Ai ) = 1

K

⎢
j∗N (i) Gh(Yi , Yj )

Gg(Ai , Aj ) [12]. The Gaussian regression kernels G require the neighbors A j
abs of
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j ∗ N (i) to determine the bandwidths h, g so it includes all K data points (N (i)
representing the neighborhood of i). Plugging these estimates in Eq. (20) gives:

fNW(Yi ) =
⎣

Ai

1
K

⎢
j∗N (i) Gh(Yi , Yj )Gg(Ai , Aj )

1
K

⎢
j∗N (i) Gh(Yi , Yj )

dD. (21)

By assuming G is symmetric about the origin, we propose to integrate in the kernel
regression estimator, the manifold-based distortion metric dM which is particularly
suited for geodesic metrics and articulated diffeomorphisms. This generalizes the
expectation such that the observations Y are defined in manifold space M:

fNW(Yi ) = arg min
Ai

abs

⎢
j∗N (i) G(Yi , Yj )dM (Ai

abs, A j
abs)⎢

j∗N (i) G(Yi , Yj )
(22)

which integrates the distance metric dM (Ai
abs, A j

abs) defined in Eq.(16) and up-
dates fNW(Yi ) using the closest neighbors of point Yi in the manifold space. This
constrains the regression to be valid for similar data points in its vicinity since locality
around Yi preserves locality in Ai

abs.
To capture local vertebra shape variation, we rely on the assumption that global

deformations, represented in a local neighborhood of M, will also manifest similar
local geometries due to the same type of pathological deviation affecting shape
morphology. We assume that local appearances follow a linear distribution within
the low-dimensional manifold. Hence, given a data point Y j and its K neighbors,
the local shape model si , representing the i th element of the ADM, is obtained
by building a particular class of shapes given the set of examples {s1

i , ..., sK
i }. We

approximate the distribution of the shape using a point distribution model so that a
new vertebra snew

i = s̄i + [e1 . . . en][ω1 . . . ωn] can be instantiated, where n are the
eigenvalues with corresponding eigenvectors e and s̄i is the mean shape of the K
neighboring local objects as well as weight vector w = [ω1 . . . ωn].

3.3.2 Model Adaptation

Once an appropriate modeling of spine shape variations is determined with a mani-
fold, a successful inference between the image and manifold must be accomplished.
We describe here how a new model is deformed. We search the optimal embedded
manifold point Y = (Y1, . . . , Yd) of the global spine model. Such a strategy of-
fers an ideal compromise between the prior constraints, as well as the individual
shape variation described by the weight vector W = (w1, . . . , wn) in a localized
sub-patch. The energy E of inferring the model S in the image I is a function of the
set of displacement vectors Δ in the manifold space for global shape representation.
This involves: (a) a data-related term expressing the image cost and (b) a global prior
term measuring deformation between low-dimensional vectors with shape models.
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The third term represents (c) a higher-order term which is expressed by the recon-
struction weights Ω for local vertebra modeling. The energy E can be expressed as
the following combination of a global and local optimization:

E
⎪

S0, I,Δ,Ω
)

= V
⎪

Y0 + Δ, I
)

+ α V
⎪

N,Δ
)

+ β V
⎪

H,Δ,Ω
)
. (23)

The global alignment of the model with the target image primarily drives the
deformation of the model. The purpose is to estimate the set of articulations describing
the global spine model by determining its optimal representation Y0 in the embedded
space. This is performed by obtaining the global representation using the mapping
in Eq. 22 so that: fNW(Yi + Δ) = fNW({y1 + δ1, . . . , yd + δd}). This allows to
optimize the model in manifold space coordinates while retrieving the articulations
in I. The global cost can be expressed as:

V
⎪

Y0 + Δ, I
)

= V
⎪

fNW({y1 + δ1, . . . , yd + δd}), I
)
. (24)

The inverse transform allows to obtain Ai
abs + D, with D as deformations in the

image space. Since the transformations Ti are implicitly modeled in the absolute
representation A0

abs, we can formally consider the singleton image-related term as a
summation of costs associated with each L vertebra of the model:

V
⎪

A0
abs + D, I

)
=

L∑

i=1

Vi

⎪
si ∞ (T 0

i + Di ), I
)

(25)

where Vi (s, I) = ⎢
vi ∗s nT

i (vi )→I(vi ) minimizes the distance between mesh ver-
tices of the inferred shape and gradient image I by a rigid transformation. Here, ni

is the normal pointing outwards and →I(vi ) the image gradient at vi .
The prior constraint for the rigid alignment are pairwise potentials between neigh-

boring models yi such that the difference in manifold coordinates is minimal with
regards to a prior distribution of neighboring distances P:

α V
⎪

N,Δ
)

= α
∑

i∗G

∑

j∗N (i)

Vi j (y0
i + δi , y0

j + δ j , P). (26)

This term represents the smoothness term of the global cost function to ensure that the
deformation δi applied to point coordinates are regular, with Vi j = (0, 1) a distance
assigning function based on the distances to P .

Local shape geometry for each vertebrae of the articulated model is obtained by
varying the weight parameters of the principal variations at each level. We parame-
terize these potentials with a set C of clique variables c, controlled by high-order
potential Vc [34] which assigns a cost to a configuration of c. Each clique is assigned
to weight vectors ωc. Hence the third term of Eq. 23 is described as a high-order
functional:
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β V
⎪

H,Δ,Ω
)

= β
∑

c∗C
Vc(w0

c + ωc) (27)

where independent clique variables c are treated as a graph minimization problem.
The prior term is represented by higher-order potentials of degree n, based on the
eigenvalues of the L local vertebrae from our model S. Our work is inspired from
a mesh reconfiguration Chap. 5 where costs are associated to cliques c based on the
positions of the morphed mesh vertices vi . A search is performed along the normal ni

from vi to find the optimal compromise between boundary detection and the distance
to the mean eigenvalue shape. We therefore penalize deformations which deviates
from the local distribution.

One can integrate the global data and prior terms along with local shape terms
parameterized as the higher-order cliques, by combining Eqs. 24, 26 and 27:

E
⎪

S0, I,Δ,Ω
)

= V
⎪

fNW({y1 + δ1, . . . , yd + δd}), I
)

+ α
∑

i∗G

∑

j∗N (i)

Vi j (y0
i + δi , y0

j + δ j ) + β
∑

c∗C
Vc(w0

c + ωc).

(28)

The optimization strategy of the resulting MRF (28) in the continuous domain
is not a straightforward problem. The convexity of the solution domain is not guar-
anteed, while gradient-descent optimization approaches are prone to non-linearity
and local minimums. We seek to assign the optimal labels LΔ = {l1, . . . , ld} and
LΩ = {l1, . . . , ln} which are associated to the quantized space Δ of displacements
and local weight parameters Ω respectively. We consider that displacing the coor-
dinates of point y0

i by δli is equivalent to assigning label li to y0
i . An incremental

approach is adopted where in each iteration t we look for the set of labels that im-
proves the current solution s.t. yt

i = y0
i + ⎢

t δli t , which is a temporal minimization
problem. Then (28) can be re-written as:

Et (LΔ,LΩ) = V
⎪

fNW({yt−1
1 , lΔ1 , . . . , yt−1

d , lΔd }), I
)

+ α
∑

i∗G

∑

j∗N (i)

Vi j (yt−1
i , yt−1

j , lΔi , lΔj ) + β
∑

c∗C
Vc(wt−1

c , lΩc ). (29)

We solve the minimization of the higher-order cliques in (29) by transforming them
into quadratic functions [34]. We apply the FastPD method [26] which solves the
problem by formulating the duality theory in linear programming.

http://dx.doi.org/10.1007/978-3-319-03813-1_5
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4 Results

4.1 Spine Segmentation Using Articulated Models

4.1.1 Linear Model

Model building was based on vertebra shape models adapted to 18 thoracic CT
volumes. From the adapted meshes, mean shape models of all vertebrae as well as a
statical model of rigid transformations between the VCSs was created.

The articulated model was adapted to ten test thoracic CT data sets including
pathologies like strong classifications between vertebrae or scoliosis. In-plane voxel-
resolution varied between 0.85 and 0.97 mm and slice thickness between 2.5 and
3.5 mm. Model initialization was given as described in [23].

Automatic segmentation was compared to reference segmentations by calculating
for each vertex of the adapted mesh the closest point on the reference surface. If seg-
mentation for each vertebra is done seperately, misadaptation to neighbouring can
occur. In the ten test cases, this scenario was observed for four patients. However,
when considering the overall constellation by means of the statistical articulated
model as described in Sect. 3.2.1, this problem could be circumvented resulting in a
significant improvement. After global model adaptation, a simultaneous segmenta-
tion of the individual vertebrae was performed using collision detection to prevent
overlapping between neighbouring vertebrae. Overall, a segmentation accuracy of
1.0 ± 0.3 mm with the proposed approach, which is a clear improvement to 2.7 ±
2.8 when adapting the vertebrae individually. Figure 7 illustrates the improvements
when using the articulated model and simultaneous vertebra segmentation.

4.1.2 Manifold Embedding

The manifold was built from a database containing 711 scoliotic spines demonstrating
several types of deformities. Each spine model in the database was obtained from
biplanar radiographic stereo-reconstructions [16]. It is modelled with 12 thoracic
and 5 lumbar vertebrae (17 in total), represented by 6 landmarks on each vertebra
(4 pedicle extremities and 2 endplate center points) which were manually identified
by an expert on the radiographic images. Once a 3D point-based vertebra model is
obtained, each vertebra was fitted with a triangulated mesh surface using generic
vertebra priors obtained from a serial CT-scan reconstruction of a cadaver specimen.
The same six precise anatomical landmarks (4 pedicle tips and 2 on the vertebral
body) were annotated on each triangulated model as shown in Fig. 1b. The coordinates
for each anatomical points were used to determine the VCS of each vertebral body.
Figure 8 displays the resulting embedding from the training data of 711 spine models
in M.

Adaptation of the articulated model was done on two different data sets. The
first consisted of volumetric CT scans (512 × 512 × 251, resolution: 0.8 × 0.8 mm,
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(a) (b) (c) (d)

Fig. 7 Automatically positioned models a are individually adapted b and using the articulated
model including simultaneous vertebra adaptation (c). Due to the consideration of overall con-
stellation, misadaptation of T11 and T12 could be overcome and overlapping between neighbored
models could be decreased. Surface rendering of adapted meshes (d)

thickness: 1–2 mm) of the lumbar and main thoracic regions obtained from 21 dif-
ferent patients acquired for operative planing purposes. The MR dataset comprised
multi-parametric volumetric data (256×256×160, resolution: 1.3×0.9 mm, thick-
ness: 1 mm) of 8 patients acquired for diagnostic purposes. For this study, only the
T1 sequence was selected for the experiments. All patients on both datasets (29 in
total) had 12 thoracic and 5 lumbar vertebrae. Both CT and MR data were manually
annotated with 3D landmarks by an expert in radiology, corresponding to left and
right pedicle tips as well as midpoints of the vertebral body. Segmentation of the ver-
tebrae from the CT and MR slices were also made by the same operator. Quantitative
assessment consisted of measuring landmark accuracy, as well as inferred surface
distance errors.

CT imaging experiments. We first evaluated the model accuracy in CT im-
ages by computing the correspondence of the inferred vertebral mesh models to
the segmented target structures. As a pre-processing step, a rough thresholding was
performed on the whole volume to filter out noise artifacts. The overall surface-to-
surface comparison results between the inferred 3D vertebral models issued from the
articulated model and from known segmentations were first calculated. The mean
errors are 2.2 ± 1.5 mm (range: 0.6–5.4 mm) for thoracic vertebra and 2.8 ± 1.9 mm
(range: 0.7–8.1 mm) for lumbar vertebra. A qualitative assessment of the 3D model
from the CT images is presented for the thoraco-lumbar region in Fig. 9a, with the
outline of the vertebral body extracted from the inferred mesh model. One could
observe accurate delineation of geometrical models on selected multi-planar views.
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Fig. 8 Low-dimensional manifold embedding of the spine dataset comprising 711 models exhibit-
ing various types of deformities. The sub-domain was used to estimate both the global shape pose
costs and individual shape instances based on local neighborhoods

In fact, it is still very challenging to precisely capture the exact vertebra geometry
(with transverse and spinous processes) given limited visibility and varying patient
morphology.

Furthermore, we evaluated 3D landmark mean and S.D. differences to annotations
made by an expert in radiology. While these types of data cannot be considered as
ground-truth, as the annotated landmarks are also prone to human variability, this
gives a good indication on the degree of convergence from the method. The overall
mean difference (method vs. expert) for the selected cases was of 1.6 ± 0.6 mm for
the pedicle and endplate landmarks. The errors also yields statistically significantly
lower standard deviations compared to a manual technique (0.64 vs. 1.76 mm).

MR imaging experiments. For the experiments involving the segmentation of
3D spine models from MR images, an anisotropic filtering combining diffusion and
shock filters was applied to the images in order to reduce inhomogeneity due to the
magnetic and motion artifacts which hinders the bony boundaries. The surface-to-
surface comparison showed encouraging results (thoracic: 2.9 ± 1.8 mm, lumbar:
3.0 ± 1.9 mm) based on differences to ground-truth. As in the previous experiments
with CT imaging, ground-truth data was generated by manually segmenting the
structures models which were validated by an expert in radiology. An illustrative
result of the 3D model from the MR images is shown in Fig. 9b. As difficult as
the CT inference is, the MR problem represent an even greater challenge as the
image resolution is more limited and inter-slice spacing is increased compared to CT.
Modeling of the statistical properties of the shape variations and global pose becomes
even more important in this case, as it relies heavily in the non-linear distribution of
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(a) (b)

Fig. 9 Qualitative assessment of the spine model segmentation in CT a and MR b images for two
levels with projected anatomical landmarks

the patient morphology. The accuracy is still comparable to ground-truth but not as
reliable as in the case for CT imaging.

Comparison of 3D vertebral landmarks to those identified by an expert in radiology
gave an overall mean squared distances (method vs. expert) of 2.0 ± 0.8 mm for the
pedicle body landmarks and of 2.1 ± 0.8 mm for vertebral body landmarks. The
global 3D point landmark difference was 2.0±0.8 mm. When we separate the point-
to-point differences in specific anatomical regions of the 3D models issued from
the proposed technique, the mean difference was of 2.4 ± 1.0 mm for lumbar and
1.9 ± 0.7 mm for thoracic vertebrae.

4.1.3 Discussion

Both linear and non-linear articulated model representations could be adapted suc-
cessfully to the respective image data with a segmentation accuracy of a few milime-
ters. In the case of the non-linear model, multi-model adaptation could also been
shown. Nevertheless, in each case, the image data used for evaluation was still com-
parably small and it still needs to be shown that both are robust in a clinical environ-
ment. Unfortunately, in both cases different image data sets have been used limiting
the comparison of both methods.

4.2 Vertebra Identification

A reliable identification of vertebrae in CT images containing parts of the spine
column is essential for numerous orthopedic, neurological, and oncological appli-
cations. For example, in the case of spine surgery it is important that the correct
vertebra is treated.

However, identification of individual vertebrae can be extremely challenging as
illustrated in Fig. 10. Adjacent vertebrae can hardly be distinguished from each other,
particularly if they belong to the same spinal region, like cervical, thoracic, or lumbar
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(a) (b) (c)

Fig. 10 Adjacent vertebra show very similar characteristics, especially if they belong to the same
region as shown by means of T5–T7. There are only marginal differences like the shape of the
processes or the size of the vertebral bodies

vertebrae. Marginal differences can be determined at the vertebral processes or for the
size of the vertebral bodies. Even physicians usually solve the identification problem
by searching for one characteristic vertebra, e.g., the first cervical or first thoracic
vertebra, and subsequently label the neighbored vertebrae iteratively. In many cases,
the labeling can be facilitated by the use of reference structures. However, spine CT
scans may sometimes show a small part of the spine containing only a few vertebrae
which additionally impedes distinguishing characteristics. Furthermore, surrounding
structures may appear only sparsely, hence they cannot be used as reference structures
for the identification of vertebrae.

However, with the prior knowledge captured in the appearance models, we are
able to tackle vertebra identification. In the following, we shortly explain how the
identification of vertebrae using appearance models can be performed in Sect. 4.2.1.
Then, two key experiments are carried out. At first, the identification rate depending
on the number of vertebrae shown in the image are evaluated in Sect. 4.2.2. The
identification of individual vertebrae is analyzed in Sect. 4.2.3. More information
can be found in [24].

4.2.1 Identification Using Appearance Models

All experiments were carried out on 64 patient images with a voxel size in-plane
ranging from 0.316 to 0.976 mm and a slice thickness of 0.8–2.79 mm. Each image
plane had 512 × 512 voxels with varying voxel numbers in z-direction of about 20–
300. 18 head neck scans, 33 thorax scans including 3 scans showing also the lumbar
spine, 9 abdominal scans showing a small part of the lower thoracic and upper lumbar
spine, 4 scans that exclusively show the lumbar spine.

For identification, we first detected the vertebrae in the images using the gradient
models from Sect. 2.4. Afterwards, the appearance models were registered to the
image content around each candidate and the similarity to the model was evaluated.
In this way, we can measure the similarity between all candidates and the appearance
models as illustrated in Table 1.
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Table 1 Evaluation of
similarities of vertebra
models to detected
candidates. The identification
is carried out by averaging
each diagonal which
represents a configuration

C1 C2 C3 … L5

Cand 1 s1,1 s1,2 s1,3 … s1,24

Cand 2 s2,1 s2,2 s2,3 … s2,24

Cand 3 s3,1 s3,2 s3,3 … s3,24
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Cand NC sNC ,1 sNC ,2 sNC ,3 … sNC ,24

Fig. 11 Identification success rates for different amounts of vertebrae. Success rates increase as
more candidates were detected. The values in parentheses on the x-axis denote the number of
configurations for each case

For each diagonal of this table, denoted as a configuration, the average similarity
measure was calculated and the diagonal with the highest mean similarity value was
supposed to correspond to be the true configuration. Thus, so far we were always
assuming that the detection provides consecutive candidates without missing or false
detections. By evaluating the whole table, which means that, e.g., also the fifth lumbar
vertebra was compared to the atlas, not only false detections beyond the vertebral
column could be detected, but also the reliability of the identification of vertebra
candidates was evaluated. As a similarity measure for the registration, we applied
local correlation which turned out to provide the best results compared to cross
correlation and sum of squared differences.

4.2.2 Dependence on the Amount of Candidates

By analysing each row of every table of similarities (see Table 1), the success rate
for an arbitrary amount of detected candidates could be evaluated. Figure 11 shows
the identification success rate for one up to 19 candidates (largest amount of visible
vertebrae in image). Even if only one single vertebra is given, the registration suc-
cessfully identified the object in more than 70 % of the cases. Increasing the number
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of available vertebrae lead to an increase in identification rate reaching 100 % if 16
or more vertebrae were shown in the image since this reduced the number of possible
configurations. The slight decrease for the cases of 13 and 15 shown vertebrae was
probably caused by the fact that the more vertebrae were shown, the smaller the
sample size was.

4.2.3 Identification Rate for Individual Vertebrae

Another key question is how reliable certain vertebrae can be identified. From a visual
inspection, there are some vertebrae that can be identified more easily than others.
In this experiment, we determined the identification rates for individual vertebrae by
registering to each vertebra candidate in the training data all vertebrae and evaluating
each row in the table of similarities (see Table 1). The results are shown in Fig. 12a.
As one would expect, the identification rate was quite low in the middle of the
thoracic spine since in this area the neighbouring vertebrae are very similar and can
also be hardly distinguished by human observers. However, the large differences in
success rates between the neighbouring vertebrae, e.g., fourth cervical vertebra (C4),
were surprising and probably caused by the fact that the appearance models were
created only from a small sample size of ten images. Another reason could be that
neighbouring objects—besides of the cervical vertebrae—were extracted in parts
from different samples. The shift in vertebrae in the case of a failure in identification
is given in Fig. 12b. In 84 %, a shift by one vertebra, and in 13 % by two vertebrae
occurred. It has to be noted that each row always showed a global maximum in the
table of similarities.

4.3 Change Assessment

As an example for CAD, we show how the introduced models can be used for
spine segmentation on follow-up exams for osteoporotic fracture detection. For more
details, we refer to [29].

The image data base used in this study consisted of 16 patients with a base-line
and a follow-up examination, including 11 patients with at least one new fracture
in the follow-up scan. Patient age ranged from 44 to 79 years. In total, the study
comprises 246 vertebra pairs in thoracic and lumber spine with no fracture in both
scans and 20 vertebrae pairs with a new fracture in the follow up scan (Fractures: 1 ×
T5, 1 × T6, 1 × T9, 2 × T10, 2 × T11, 3 × T12, 4 × L1, 3 × L2, 2 × L3, 1 × L4).
The fractures were diagnosed by two radiologists in consensus by using the spinal
fracture index (SFI [13]). The time distance between base-line and follow-up scan
ranged from 7 to 180 weeks. The 3D images were reconstructed in sagittal slices,
(slice distance 3 mm, in-plane resolution between 0.3 × 0.3 and 1.3 × 1.3 mm), for
which previous studies [7, 32] had indicated improved fracture detection.
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(a)

(b)

Fig. 12 Vertebra identification rates (a), mean transposition and standard deviation in the case of
failed identification (b)

Segmentation of the vertebrae was done automatically using the approach de-
scribed in [24]. The vertebrae were at first detected in curved planar reformatted
images of the spine using the gradient models from Sect. 2.4 and then identified
using the appearance models from Sect. 2.5. Finally, segmentation was done by
adapting the surface models from Sect. 2.1. Since point correspondences were pre-
served during adaptation, a point-based rigid registration Tbf from the space of
the base-line image Ib into the follow-up image I f could be calculated between the
meshes. Furthermore, in the neighborhood of the chosen vertebra, it allowed to define
voxel correspondence between the images. In the same way, the transformation be-
tween model space and image space could be estimated, allowing geometric entities
defined in the model space to be transformed into the image space. An example case
is shown in Fig. 13 illustrating the result of the vertebra segmentation in base line
and follow-up.
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(a)

(c) (d)

(b)

Fig. 13 Example case illustrating osteoporotic fracture detection. Top row T11 with no obvious
change between base line and follow-up exam. Bottom row T12 where the vertebra body is signifi-
cantly collapsed in the follow-up compared to the base line scan. In each case, adapted vertebra shape
models are given by contours. The adapted meshes can be used for automatic change assessment

For change assessment, we define the mean vertex-to-vertex distance between
base-line mesh sb and follow-up mesh s f of a given vertebra as

DS
vv = 1

|S|
∑

i∗S

∣∣∣Tbf (vb
i ) − v f

i

∣∣∣ (30)

with S being the vertex index set, vb
i and v f

i being the vertices of base-line and
follow-up mesh, respectively.
The vertex index set S may include either all mesh vertices (St ), or a sub-set, e.g., all
vertices that are associated to the lower and upper end plates of the vertebral body
(Se). While vertex-to-vertex distances are a measure of anatomical vertex correspon-
dence, a vertex-to-surface measure is more appropriate for evaluating segmentation
reproducibility. We therefore defined for a vertex v f

i on mesh s f the projection oper-

ator P f
i that yields the point on the surface which is closest to the transformed vertex

Tbf (vb
i ) of mesh sb and obtain the following vertex-to-surface mesh distance:

DS
vs = 1

|S|
∑

i∗S

∣∣∣Tbf (vb
i ) − P f

i (Tbf (vb
i ))

∣∣∣ (31)
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Fig. 14 Vertex-to-surface (DSe
vs ) statistics for distances in mm between vertebra segmentations from

base-line and follow-up scans. Only the vertebral body end plates were evaluated (see Fig. 1a).
Distances in case of no change are displayed on the right side of the vertebra label (blue), and
distances in case of a new lesion on the left side (red). Only vertebrae with lesion samples in the
follow-up scans are shown

Furthermore, the difference of volume enclosed by base-line and follow-up mesh,
DV ol , was used as a further measure of change. To evaluate the possibility of an
automated change detection, we selected all vertebrae with a lesion in the follow-
up scan, but no lesion in the base-line scan. For the patient data used in this study,
the lesion of interest is a compression fracture of the vertebral body, caused by
osteoporotic fracture detection. Therefore, the distance measure was only evaluated
for vertices in Se, being part of to the end plates of the vertebral body. For each
vertebra scan pair, the mean vertex-to-surface distance DSe

vs was calculated.
Figure 14 depicts the resulting distribution of mean mesh distances for all vertebra

types with lesion samples in at least one of the follow-up scans.
The results show, that the mesh distances for pairs with a lesion in the follow-up

scan are typically well separated from the no-change cases. The distance ranges,
however, overlap to some extend, making it impossible to define a distance threshold
with 100 % classification accuracy. To show the threshold dependent classification
potential, we calculated receiver operating characteristic (ROC) curves for the dis-
tance measures DSe

vs , DSt
vs , and DV ol . The curves as depicted in Fig. 15, show the rate

of true positive results (TPR) as function of the rate of false positive results (FPR),
when varying the distance threshold. While the best operating point on the curve
can be debated depending on application and work flow, the curve integral (Area
Under Curve, 0 ⊂ AUC ⊂ 1) is often used to compare classification approaches. We
achieved AUC values between 0.97 and 0.86 depending on the differences measure.
A max Youden Index of 0.75 and a max F1 score of 0.86 is both reached at a threshold
of 1.26 mm when using the DSe

vs distance measure. The finding that DSe
vs leads to the

highest AUC was consistent with the clinical approach to detect vertebral fractures.



Computational Modeling of the Spine 367

Fig. 15 ROC curves for change detection based on three mesh distance measures. The area under
curve (AUC) shows that a good discrimination can be achieved, especially with the end-plate based
distance measure

The spinal fracture index (SFI) was based on visual inspection of the end plates
of each vertebral body estimating the reduction in height without direct vertebral
measurement [13].

5 Conclusion

In this article, we presented a comprehensive framework for computational modeling
of the spine. The individual vertebrae are represented using a set of different models
covering shape, relative location, gradient as well as appearance information. In
order to model the global spine curve, the spine is expressed as a sequence of rigid
transformations between the individual vertebrae.

Given the representation of the spine as a set of rigid transformations, statistical
modeling is no longer straightforward as this representation does not belong to a
vector space and statistics suited for Riemannian geometry have to be considered.
Two different methods for statistical modelling of the articulated spine model was
proposed using linear and non-linear embeddings. Linear statistical methods are
usually more intuitive and thus easier to interpret the results. Furthermore, mapping
a new instance to the linear space as well as the calculation of the inverse map-
ping are well defined. However, non-linear manifold embedding algorithms map
high-dimensional observation data that are presumed to lie on a non-linear manifold,
onto a single global coordinate system of lower dimensionality. Manifold embedding
preserves neighborhood relationships of similar spine geometries and thereby reveals
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the underlying structure of the data. Thus, dimensionality reduction using manifold
embedding allows to recover the underlying manifold, whereas linear embedding
methods map various data points to nearby points in the plane, creating distortions
both in the local and global geometry. While we presented the mathematical con-
cepts and also the possibility to individualize both models to an unseen patient in
this article, thorough evaluation of the individual methods needs to be addressed in
the future. So far, comparison was difficult as different data sets were used both for
model building as well as for model adaptation.

A key task for many applications but also very challenging is vertebrae identifi-
cation. Neighbouring vertebrae are usually so similar that even for a human observer
it is difficult to identify the individual vertebrae without using additional context
information or simply counting them. Based on the detailed modeling of each indi-
vidual vertebra, automated identification was tackled using appearance models that
captured statistical image information in the local neighbourhood around each ver-
tebra. Identification was done by matching each model to the vertebra shown in the
image and evaluating the similarity to the respective model. In this case, it could be
shown that even if only one single vertebra is given, it could be identified in more
than 70 % of the cases. However, in case of a misidentification in 84 % a shift by only
one vertebra occured, and in 13 % by two vertebrae. Success rates were different for
the individual vertebra which is intuitive as some vertebrae show quite characteristic
features. It is worth noting that inspired by our pioneering work others have further
investigated and improved vertebra identification, e.g., [14, 30].

Finally, automatic change assessment in the context of osteoporotic fracture de-
tection was addressed as an example for CAD. The framework provides automated
labeling, segmentation, and registration of vertebra pairs with high reproducibility
and change sensitivity. Explicit encoding of anatomical information into the shape
models, allows for efficient quantification once the model is individualized to the
patient anatomy. It could be shown when using an evaluation based on the adapted
shape models, pairs with a lesion in the follow-up scan can be typically well separated
from the no-change cases.

Future efforts should be made to bring the framework closer to clinical practice.
Currently, most results are promising but were still mostly done on a limited set of
data. Thus, more work is needed to meet the requirements in a clinical workflow,
e.g., in terms of robustness or computation time.

Appendix

The conversion between the two representations of rotation is described by
Rodrigues’ formula:

R = I + sin(θ)C(n) + (1 − cos(θ))C(n)2 (32)
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with C(n) =
⎤

⎥
0 −nz ny

nz 0 −nx

−ny nx 0

⎦

.

The inverse map (from a rotation matrix to a rotation vector) is given by the following
equations [8]:

θ = arccos

(
tr(R) − 1

2

)
and C(n) = R − RT

2 sin(θ)
. (33)
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Shape Constraints for the Left Ventricle
Segmentation from Cardiac Cine MRI
Based on Snake Models

Yuanquan Wang, Yuwei Wu and Yunde Jia

Abstract Segmentation of the left ventricle (LV) is a hot topic in cardiac magnetic
resonance (MR) images analysis. To make thorough use of the anatomical and func-
tional information, it is necessary to segment the endocardium and epicardium of
the left ventricle. However, automatic and accurate segmentation of the left ventricle
remains a challenging problem because of papillary muscles, lack of edge infor-
mation, image inhomogeneity and low contrast at the epicardium. In this chapter,
we address the shape constraints for extracting the endocardium and epicardium
from cardiac cine MRI based on snake models. For endocardium segmentation, a
circle/ellipse-based shape energy term is incorporated into the snake model. With
this prior constraint, the snake contour can conquer the unexpected local minimum
stemming from artifacts and papillary muscle. After extracting the endocardium,
the edge map is modified to yield a new external force field for active contours,
which automatically pushes the snake contour directly to the epicardium by employ-
ing the endocardium result as initialization. However, the circle constraint does not
work very well for the epicardium, and the ellipse constraint needs the troublesome
calculation of the ellipse orientation during snake evolution. Assuming that the epi-
cardium resembles the endocardium in shape, we further propose a novel shape
similarity energy for epicardium segmentation. With this energy, the snake model
can avoid being trapped into artifacts and leaking out at weak boundaries. Based on
the circle constraint and shape similarity energy, we present an automatic algorithm
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to extract the endocardium and epicardium of the LV simultaneously. Both qualita-
tive and quantitative evaluations on our dataset and the publicly available database
(e.g., MICCAI 2009) demonstrate the good performance of our algorithm.

1 Introduction

Cardiovascular diseases (CVD) are the leading cause of death in most countries [1].
Nowadays, extensive techniques available for cardiac imaging provide qualitative and
quantitative information about the morphology and function of the heart and great
vessels [2]. These imaging modalities include angiocardiography, cardiac ultrasound
(US), isotope imaging, computed tomography (CT) and magnetic resonance imaging
(MRI). Cardiac magnetic resonance imaging has proven to be a versatile and non-
invasive imaging modality. It can acquire the anatomical and functional information
of a heart within a short period of time, and thus be widely used in clinical diagnosis
due to its specific advantages:

• It owns a wide topographical field of view with visualization of the heart and its
internal morphology and surrounding mediastinal structures.

• It is more favorable for the analysis of heart movements owning to the high soft-
tissue contrast discrimination between the flowing blood and myocardium.

The segmentation of cardiac magnetic resonance images (MRIs) is one of the most
critical prerequisites for quantitative study of the left ventricle (LV). Many clinically
established diagnosis indices such as wall thickness, myocardial motion, ejection
fraction, and circumferential shortening of myocardial fibers are evaluated by the
segmentation results of MRIs.

In clinical practice, the LV segmentation task is often performed manually by
an experienced clinician. Manual segmentation of the LV, however, is tedious, time
consuming, subjective and irreproducible. This issue has motivated the development
of automatic extraction of the contours of the LV. Although an impressive research
effort has been devoted to automatic LV segmentation, it remains a challenging prob-
lem, mainly because of the difficulties inherent to MR cardiac images [3]. Figure 1
illustrates a typical MR image, where the blood pool appears bright and myocardium
and surrounding structures appear dark. Still segmentation difficulties mainly include
the following aspect:

• Since papillary muscles and the myocardium are connected, it is prone to take
the papillary muscles as a part of the myocardium. According to clinical stan-
dards, papillary muscles should not be taken into account for endocardial wall
segmentation.

• The myocardium and surrounding tissues such as the liver have almost the same
intensity profile, leading to low contrast between them.

• A major difficulty in segmentation of the cardiac MR images is the intensity
inhomogeneity due to the radio-frequency coils or acquisition sequences.
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Fig. 1 A typical short axis cardiac MR image containing LV, RV and papillary muscles

There have been extensive researches such as graph cuts [4, 5], morphological
operations [6, 7], dynamic weights fuzzy connectedness framework [8, 9], active
contours or snake model [3, 10–14] and supervised learning methods [15–18], to
overcome challenges of the LV segmentation. Petitjean and Dacher [19] presented
a comprehensive review of LV segmentation algorithms. Among approaches men-
tioned above, the snake model is one of the most successful methods, which deforms a
closed curve using both the intrinsic properties of the curve and the image information
to capture the boundaries of the region of interest (ROI). However, the information
(e.g. intensity, texture) only deriving from the image itself is not sufficient to get
satisfactory segmentation results. The prior knowledge concerning the LV, therefore,
is necessary to be incorporated into the snake model.

In this work, we address the segmentation of the LV focusing on the following
challenges: (1) image inhomogeneity; (2) effect of papillary muscle; and (3) weak
edges. Our strategy is the employment of the anatomical shape of the LV, rather
than the constraints derived from a finite training set. The proposed method is based
on the parametric snake model, in which the external forces include the gradient
vector flow (GVF) and the proposed gradient vector convolution (GVC). The GVC
model can be implemented in real time due to its convolutional nature and possesses
similar properties of the GVF model. Considering the LV is roughly a circle, a circle-
shape based energy is introduced into the snake model to extract the endocardium
of the LV. The circle shape energy is also employed for epicardium segmentation.
The ellipse constraint is employed for segmenting the LV as well. The drawback
of the ellipse constraint is that one has to estimate the orientation of the ellipse
during snake evolution. Assuming the epicardium resembles the endocardium in
shape, we further develop a shape-similarity energy functional to prevent the snake
contour from leaking out from weak boundaries. With the circle constraint and shape
similarity energy, we can extract the endocardium and epicardium of the LV robustly
and accurately. This work is based on our approaches presented in [13, 20–23].
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2 Related Work

In this study, we address the shape constraints for segmentation of the LV from cine
MRI based on snake models. We define intensity, texture or color statistics as weak
prior. The prior shape obtained from a training set or from anatomical information
(e.g., circle, ellipse) is regarded as strong prior. Based on these principles, in this
section, we classify the relevant literature as no prior, weak prior and strong prior
to review.

2.1 LV Segmentation Without Prior

The studies falling into this category have mainly concentrated on the design
of the external energy. Ranganath [24] tracked the LV endocardium in cardiac
MRI sequences by propagating the conventional snake from one frame to another.
Makowski et al. [25] employed the balloon snake [26] to extract the LV endocardium
and introduced an antitangling strategy to exclude the papillary muscles. The balloon
force is defined as

F = k1
−−∝
n(s) − k2

∗Eimage

∅∗Eimage∅ , (1)

where
−−∝
n(s) is the normal unit vector to the curve at point C(s) and k1 is the amplitude

of the force. If we change the sign of k1 or the orientation of the curve, it will have
an effect of deflation instead of inflation. The curve expands and it is attracted and
stopped by edges as before, but since there is a pressure force, if the edge is too weak
the curve can pass through this edge. Therefore, it is prone to lead to weak edge
leakage during LV segmentation. Based on the discrete contour model, Hautvast
et al. [27] developed a method that attempts to maintain a constant contour environ-
ment in the vicinity of the cavity boundary. Due to the high performance at capture
range enlarging, the gradient vector flow (GVF) snake [28] has been employed for
the LV segmentation [29], but Santarelli et al. [29] did not consider the effect of weak
boundaries, papillary muscle and artifacts stemming from swirling blood. It is also
not clear how the GVF snake model captured the epicardium soon after the endo-
cardium was extracted. The GVF field V (x, y) = [u(x, y), v(x, y)] is defined as

E(u, v) =
∫∫ [

μ
(

u2
x + u2

y + v2
x + v2

y

)
+ |∗ f |2|V − ∗ f |2

⎧
dxdy. (2)

The behavior of the GVF will be discussed in Sect. 3.2. Lee et al. [30] presented the
iterative thresholding method to extract the endocardium, which effectively allevi-
ates the interference of papillary muscle. However, the endocardial contour is not
smooth enough and the movement constraint based on image intensity for the snake
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is too empirical. Nguyen et al. [31] compared the conventional snake, balloon snake
and GVF snake on extracting the LV endocardium and concluded that the GVF snake
has the best performance.

However, the information (e.g. intensity, texture) only derived from the image
itself is not sufficient to get satisfactory segmentation results. It is difficult to deal
with the noisy and incomplete data. The prior knowledge concerning the anatomy,
appearance and motion of the LV, therefore, is necessary to be incorporated into the
snake model. The prior information may be the statistical shape from a training set
[11, 32, 33], be anatomical information such as ellipse in [34–36], or be intensity,
texture or color statistics [37, 38].

2.2 LV Segmentation with Weak Priors

Lynch et al. [39] presented a novel and intuitive approach to combine 3-D spa-
tial and temporal MRI data in an integrated segmentation algorithm to extract the
myocardium of the left ventricle. By encoding prior knowledge about cardiac tempo-
ral evolution, an EM algorithm optimally tracks the myocardial deformation over the
cardiac cycle. Punithakumar et al. [38] presented an original information theoretic
measure of heart motion based on the Shannon’s differential entropy (SDE), which
allows heart wall motion abnormality detection. Folkesson et al. [33] extended the
geodesic active region method by incorporating the statistical classifier for segmen-
tation of cardiac MRI. Paragios [32] integrated visual information with anatomical
constraint into the variational level set approach [40].

Ayed et al. [12] proposed to derive the curve evolution equations by minimiz-
ing two functionals each containing an original overlap prior constraint between
the intensity distributions of the cavity and myocardium. This overlap prior con-
straint largely improves the segmentation accuracy and enhances the robustness of
the algorithm. For each region R ≤ {Cn, Mn, Bn, n = 1, 2, . . . , N }, define PR,I as
the nonparametric (kernel-based) estimate of intensity distribution within region R
in frame I ≤ {I n, n = 1, 2, . . . , N }

∈z ≤ R
+, PR,I =

⎨
R K

⎩
z − I (X)d X

⎫

a(R)

, (3)

where a(R) is the area of region R

a(R) =
∫

R
d X . (4)

Ayed et al. [12] assume that a segmentation of the first frame I 1, i.e., a partition
{C1, M1, B1} is given. The amount of overlap between the intensity distribution
within the heart cavity region in I n and the myocardium model learned from the first
frame, is formulated as
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Bn
in = B⎩

PCn ,I n /PM1,I 1
⎫
. (5)

Similarly, the background model learned from the first frame is given by

Bn
out = B⎩

PMn ,I n /PB1,I 1
⎫
. (6)

Mean-matching terms measures the conformity of intensity means within the cavity
and the myocardium in the current frame to mean priors learned form the first frame

⎬
Mn

in = ⎩
μn

in − μ1
in

⎫2

Mn
out = ⎩

μn
out − μ1

out

⎫2
,

(7)

where
⎭
⎪


μn

in =
⎨

Cn I nd X
aCn

μn
out =

⎨
Mn I nd X

aMn
.

(8)

The gradient terms is defined as

⎬Gn
in = ∮

−∝
Σ n

in
(gn + c)ds

Gn
out = ∮

−∝
Σ n

out
(gn + c)ds,

(9)

where c is a positive constant and gn is an edge indicator. The functionals to minimize
are a weighted sum of the three characteristic terms (i.e., overlap prior terms, mean-
matching terms and gradient terms) given by

⎭
⎡⎡⎡⎪

⎡⎡⎡

Fn
in = αOn

in + βMn
in + λGn

in

= α
⎩
Bn

in − B1
in

⎫2 + β
⎩
μn

in − μ1
in

⎫2 + λ
∮

−∝
Σ n

in
(gn + c)ds

Fn
out = αOn

out + βMn
out + λGn

out

= α
⎩
Bn

out − B1
out

⎫2 + β
⎩
μn

out − μ1
out

⎫2 + λ
∮

−∝
Σ n

out
(gn + c)ds.

(10)

To relax the dependence on the choice of a training set, Zhu et al. [41] build
subject-specific dynamic model from a user-provided segmentation of one frame
in the current cardiac sequence, which is able to simultaneously handle temporal
dynamics (intrasubject variability) and intersubject variability. The Bayesian frame-
work combining the forward and backward segmentation is expressed as

⎢st = arg max
st

P
⎩
st |I1:N

⎫

= arg max
st

P
⎩
It |st

⎫
P

⎩
st |⎢s+

1:t−1

⎫
P

⎩
st |⎢s−

t+1:N
⎫

= arg max
st

⎣
log P

⎩
It |st

⎫
⎤ ⎥⎦ ︸

data adherence

+ log P
⎩
st |⎢s+

1:t−1

⎫
⎤ ⎥⎦ ︸
f orward dynamics

+ log P
⎩
st |⎢s−

t+1:N
⎫

⎤ ⎥⎦ ︸
backward dynamics

}
.

(11)
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Ayed et al. [3] introduced a novel max-flow segmentation of the LV by recov-
ering subject-specific distributions learned from the first frame via a bound of the
Bhattacharyya measure. The total cost function is given by

arg min
L:P∝0,1

[
− ∑

i≤I

√
P L ,I n (i)Mc,I (i) − ∑

d≤D

√
P L ,Dc (d)Mc,D(d)

+ ∑
{p,q}≤N

1
||p−q||δL(p)→=L(q)

]
,

(12)

where Mc,I is the learned model distribution of intensity and Mc,D is the model
distribution of distances within the cavity in the first frame. Jolly et al. [42] combined
the edge, region and shape information to extract the LV endocardium, the approx-
imate shape of the LV is obtained based on the maximum discrimination method.
They used the shape alignment method proposed by Duta et al. [43] to establish
the correspondence between a subset A

′
of the template points and a subset B

′
of

the candidate points. The goal of shape constraint in [42] is to find the coefficients
(a, b, c, d) of the similarity transform which minimize the distance f (Nc).

f (Nc) = 1
N 2

c

Nc∑
j=1

w(B j )

[⎩
xA j − axB j − cyB j − b

⎫2

+⎩
yA j − ayB j − cxB j − d

⎫2
]

+ 2
Nc

,

(13)

where Nc is the number of established correspondence.

2.3 LV Segmentation with Strong Priors

As shown by the growing literature on the LV segmentation, it benefit from the use
of an anatomical constraint (e.g., shape model) on active contour model to enhance
the robustness and accuracy of the segmentation. Pluempitiwiriyawej et al. [35]
incorporated the ellipse constraint into the segmentation scheme. However, there
should be an isolated step to estimate the five parameters of the ellipse, which does
not comply with the evolution of the snake contour.

The atlas warping technique introduced by Lorenzo-Valdes et al. [44] is a typical
training-based method, the atlas is constructed from manually segmented and tem-
porally aligned data and is registered on the data for automatic segmentation. This
algorithm is based on the 4D extension of expectation maximization (EM) algorithm.
The active shape model (ASM) first proposed by Cootes et al. [15] is constructed from
a training set of segmented objects using the principal component analysis (PCA)
algorithm. The ASM minimizes the difference between the synthesized image from
the model and an unseen image by tuning the model parameters, when it is applied
to image interpretation or segmentation. Assen et al. [45] applied 3D-ASM to image
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data sets with an increasing sparsity comprising images with different orientations
and stemming from different MRI acquisition protocols. Later, Assen et al. [46]
investigated the effect of initialization on segmentation results in [45] and proposed
a semiautomatic segmentation method of cardiac CT and MR volumes, without the
requirement of retraining the underlying statistical shape model.

The active appearance model (AAM) is extended from the ASM by taking into
account the intensity distribution in the training set [16, 47]. AAM is able to simulta-
neously describe the shape and texture variation of objects. The AAM is more robust
than the ASM when the intensity contrast is low and the object boundary is weak.
There has been a great diversity of works devoted to the construction and application
of the ASM/AAM models, particularly for the extraction of the LV from cardiac
MRI. Gopal et al. [48] applied AAM and deformable superquadric models to auto-
mate the segmentation of the LV in cardiac MR cine images for the end-diastole and
end-systole phases, in which the texture model in the AAM is modified by radially
sampling gradient magnitude values. Ghose et al. [49] applied 2D AAM with a 3D
shape restriction imposed by rigidly registering the obtained volume to a 3D average
model of the prostate. Mitchell et al. [50] devised a multistage hybrid active appear-
ance model (AAM) by combining ASM and AAM. Pfeifer et al. [51] used a 2D
AAM for the blood mass of left and right ventricle and an additional three division
2D AAM to cope with the shape variation of the blood mass of the left and right
ventricle. Zambal et al. [52] combined AAM and ASM for the LV segmentation, in
which the global model construction interconnects a set of 2D AAM by a 3D shape
model. Recently, Zhang et al. [17] also combined the ASM and AAM but to con-
struct a biventricular model to segment the left and right ventricles simultaneously.
Although excellent results have been achieved in [45, 48, 51, 52] where the LV
shape is learned from an annotated training data set, the segmentation performance
depends heavily on the size and richness of images in the training set.

3 Background: Active Contours

3.1 Tranditional Active Contours

Active contour models, or snakes [10], have been proven to be very effective tools
for image segmentation. It integrates an initial estimate, geometrical properties of
the contour, image data and knowledge-based constraints into a single process, and
provides a good solution to shape recovery of objects of interest in visual data.
A traditional active contour model is represented by a curve C(s) = (x(s), y(s)),
s ≤ [0, 1]. It moves through the spatial domain of an image to minimize the energy
functional
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E(C) =
1∫

0

1

2

(
α | C ′(s) |2 +β | C ′′(s) |2

)

⎤ ⎥⎦ ︸
I nternal energy

+ g
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

External energy

+ ECon
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

Constraint energy

ds,

(14)

where C ′(s) and C ′′(s) denote the first and second derivatives of C ′ with respect
to s, respectively. The first term of the integral stands for the internal force that
keeps the contour continuous and smooth during deformation, the second term is
the external force that drives the contour toward an object boundary or the other
desired features within an image. The constraint energy term ECon

⎩
C(s)

⎫
is derived

from the prior information (e.g., in this chapter, we concentrate on designing a novel
constraint energy by considering the anatomical information of the LV to enhance
the robustness and accuracy of the LV segmentation). The external energy function
g
⎩
C(s)

⎫
is derived from the image so that it takes on its smaller values at the features

of interest, such as boundaries. Given a gray-level image I (x, y), typical external
energies are defined as follows,

g(x, y) = −|∗ I (x, y)|2
g(x, y) = −|∗(Gσ(x, y) ∀ I (x, y))|2, (15)

where Gσ(x, y) is a two-dimensional Gaussian function with standard deviation σ,
∗ is the gradient operator, and ∀ is convolution operation. If the image is a line
drawing (black and white), then appropriate external energies include

g(x, y) = I (x, y)

g(x, y) = Gσ(x, y) ∀ I (x, y).
(16)

By using the calculus of variation, the Euler equation to minimize E(C) is

αC ′′(s) − βC ′′′′(s) − ∗g
⎩
C(s)

⎫ − ∗Econ
⎩
C(s)

⎫ = 0. (17)

According to the representation and implementation, active contour models are
classified into two categories: the parametric active contour models [26, 28, 53] and
the geometric active contour models [54–57]. In this paper, we focus on the parametric
active contour models, and our approach can be also integrated into geometric active
contour models. Since the external force plays a leading role in driving the active
contours to approach objects boundaries in the parametric active contour models,
designing a novel external force field has been extensively studied [26, 28, 58–61].
Among all these external forces, gradient vector flow (GVF) proposed by Xu and
Prince [28], has been one of the most successful external forces, which is computed
as a diffusion of the gradient vectors of a gray-level or binary edge map derived
from a given image to increase the capture range. Due to the outstanding properties
of GVF, a large number of modified versions have been presented [58, 60, 62, 63]
to improve the performance of active contour models. However, researchers found
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that the GVF suffers from several challenges including narrow and deep concavity
convergence as well as weak edge leakage. In the next section, we elaborate the
behavior of the GVF snake model.

3.2 GVF Snake Model

Notwithstanding the marvelous ability in representing object shapes, the traditional
active contour model is limited to capture range and poor convergence to boundary
concavities. Gradient vector flow (GVF) was proposed by Xu and Prince [28] as a
new external force for active contour model to overcome these issues. It is a dense
vector field, generated by diffusing the gradient vectors of a gray-level or binary edge
map derived from an image. The GVF field is defined as a vector field V (x, y) =
[u(x, y), v(x, y)] that minimizes the following energy functional:

E(u, v) =
∫∫ [

μ
(

u2
x + u2

y + v2
x + v2

y

)
+ |∗ f |2|V − ∗ f |2

⎧
dxdy, (18)

where f is the edge map defined as

f (x, y) = |∗ I (x, y)|
f (x, y) = |∗(Gσ(x, y) ∀ I (x, y))|. (19)

|∗ f | is high near the edges and nearly zero in homogeneous regions and μ is a
positive weight to control the balance between smoothness energy and edge energy.
We see that when |∗ f | is small, the energy is dominated by sum of the squares of the
partial derivatives of the vector field, yielding a slowly-varying field. On the other
hand, when |∗ f | is large, the second term dominates the integrand and minimized
by setting V = |∗ f | . This produces the desired effect of keeping V nearly equal to
the gradient of the edge map when it is large, but forcing the field to be slow-varying
when in homogeneous regions.

By the calculus of variation, the minimization of Eq. (18) reduces to solving the
following Euler-Lagrange equation:

μ∗2V − (V − ∗ f )
(

f 2
x + f 2

y

)
= 0. (20)

The Euler-Lagrange equations evolving Eq. (20), embedded into a dynamic
scheme by treating V (x, y) as the function of t , x and y, formally are
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⎭
⎡⎡⎡⎡⎡⎪

⎡⎡⎡⎡⎡

∂u
∂t = μ · ∗2u⎤⎥⎦︸

di f f usion term

− (u − fx )
(

f 2
x + f 2

y

)

⎤ ⎥⎦ ︸
data attraction term

= 0

∂v
∂t = μ · ∗2v⎤⎥⎦︸

di f f usion term

− ⎩
v − fy

⎫ (
f 2
x + f 2

y

)

⎤ ⎥⎦ ︸
data attraction term

= 0 ,
(21)

where ∗2 is the Laplacian operator. The active contour model with V (x, y) as exter-
nal force is called GVF active contour model.

GVF has successfully addressed the issues of building a satisfactory capture range
and approaching boundary concavities, e.g., U-shape concavity convergence. How-
ever the GVF active contour model still fails to converge to narrow and deep con-
cavity and would leak out around weak edges, especially neighbored by strong ones.
More importantly, the computational cost of the GVF model is very high. In the next
Section, we will elaborate the calculation of the GVF.

4 A New External Force: Gradient Vector Convolution

4.1 Computational Analysis of the GVF

The computation of a GVF field consists mainly of solving a huge discretized system
of partial differential equations, which has restricted its potential applications to
images with large sizes. Among the general numerical implementation of the GVF
filed, diffusion is an iterative technique that depends upon a termination time. This
involves how to choose an optimal iteration number in diffusion process. As discussed
in [28] ,“the steady-state solution of these linear parabolic equations is the desired
solution of the Euler equations ... ,” this statement gives rise to the following question:
dose “the desired solution of the Euler equations” be the desired external force for
Snake model, i.e., the desired GVF? We answer this question and demonstrate the
influence of iteration number in Fig. 2. GVF fields at 100, 200 and 2000 iterations
of diffusion are given in Fig. 2a–c respectively. Visibly, the result in Fig. 2c is far
from available in that the GVF flows into the ventricle from right and out from left-
bottom depicted in the white rectangle. Surely, the result in Fig. 2c approximates the
steady state solution, but it cannot serve as the external force for snake model. The
reason behind this situation is that Eq. (21) is a biased version of V t = μ∗2V by

(V − ∗ f )
(

f 2
x + f 2

y

)
, where V t = μ∗2V is an isotropic diffusion. As t increases,

the isotropic smoothing effect will dominate the diffusion of Eq. (21) and converge
to the average of the initial value. Small enough μ could depress this oversmoothing
efficacy, but, at the same time, preserves excessive noise. Alternatively, an optimal
iteration number, say, 200 for this example, would be an effective solution for this
issue, however, it is still computationally expensive.
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(a) (b) (c)

Fig. 2 Gradient vector flow fields at different iteration: a GVF at 100 iteration; b GVF at 200
iteration; c GVF at 2000 iteration. The white dots represent critical points of the flow field [22].
The parameters of GVF are μ = 0.15, time step τ = 0.5

One possible solution is to develop alternative external forces which can be effi-
ciently computed. For example, Park and Chung [64] and Yuan and Lu [65] simulta-
neously proposed the virtual electric field (VEF) based external force, in which each
pixel is considered as a static charge. The VEF possesses the advantage of being
implemented in real time over the GVF while maintaining other desirable properties
such as large capture range and concavity convergence. Jalba et al. [66] recently
proposed the charged particle model, where each pixel is also considered as static
charge. The authors demonstrated that the particles could be initialized randomly
across the image and did not suffer from convergence issues related to GVF/GGVF.
Li and Acton et al. [67] proposed convolving the image edge map with a vector field
kernel, which comprises radial symmetric vectors pointing towards the center of the
kernel.

Another solution is to design efficient numerical schemes for fast GVF computa-
tion. Vidholm et al. [68] employed the preconditioned conjugate gradient methods
and multigrid methods to accelerate the computation of 3D GVF fields. Han et al.
[69] proposed a multigrid GVF/GGVF algorithm, which can significantly improve
the computational efficiency. Boukerroui [70] compared several efficient numerical
schemes for GVF computation, and showed that the alternating direction explicit
scheme (ADES) may be a suitable alternative to the multigrid method. Ren et al.
[71] presented methods for fast GVF and GGVF computation by combining the
augmented Lagrangian method and multiresolution scheme.

To overcome issues mentioned above, we argue that one can extend the gradient
vector and suppress noise by convolving the gradient vector with a certain kernel.
To this end, a convolution-based external force called gradient vector convolution
(GVC) will be introduced in Sect. 4.2. Due to the fast fourier transform, the con-
volution operation would be implemented in real time and the snake model would
benefit much from this convolution operation in computation time. The GVC method
possesses some advantages of the GVF such as enlarged capture range, initializa-
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tion insensitivity, concavity convergence, but its computational cost is low owing to
its convolution mechanism. Some experiments are presented to demonstrate these
advantages in Sect. 4.2.

4.2 Gradient Vector Convolution External Force

For any bounded g ≤ R
2, the linear diffusion process ut = ∗2u, u(x, 0) = g(x)

possesses the unique solution u(x, t) = ⎩
G√

2t ∀ g
⎫
(x), t > 0, where ∀ denotes

convolution, G√
2t is the Gaussian kernel of standard deviation

√
2t . We argue that

the solution of Eq. (21) can be approximated by convolving the ∗ f = [ fx , fy]
with a kernel. This convolution-based external force is referred to as gradient vector
convolution (GVC). Followed by fast Fourier transform, this convolution operation
can be implemented in real time and the snake model would benefit much from this
property in computation time. Denote the convolution kernel by Kcon , the GVC takes
the following form:

⎣
u(x, y) = Kcon ∀ fx

v(x, y) = Kcon ∀ fy .
(22)

The GVC model possesses the desirable properties of the well-known GVF model
such as enlarged capture range and insensitivity to initialization, whilst it can be
implemented in real time owing to its convolution mechanism.

In practice, we take Kcon = 1
(rh)n , where rh = √

x2 + y2 + h, h ≤ R+, n ≤
R+. Kcon always works well in terms of extending and smoothing gradient vector.
Generally, the factor h plays a role analogous to scale space filtering, the greater the
value of h, the greater the smoothing effect on the results. This property suggests that
GVC would be robust to noise. In addition, large n makes the potential to degrade
fast with distance and vice versa. Thereby it allows the GVC snake to preserve edges
and to drive into C-shape concavities.

In order to well understand the behavior of h and n, we plot the proposed kernel
Kcon in 1D case with different h and n in Fig. 3. It can be seen from Fig. 3a that,
the larger the value of h, the smaller the value of Kcon at points nearby x = 0, but
almost unchanged at points far from x = 0. Note that Kcon is not defined at x = 0
when h = 0, we set Kcon(0) = Kcon(1) for the sake of exhibition. Similar strategy
is employed in Fig. 3b. From Fig. 3b, we can observe that the larger the value of n,
the faster Kcon degrades with distance. For example, although point A is 3 while
B is 9 far from x = 0, due to varying n, the values of Kcon at point A and B are
almost identical. It seems as if the point B is as near as A to x = 0 in terms of the
value of Kcon . Similar results can be observed for points C and D and it seems as
if the point C is as far as D from x = 0. As a result, if one wants to separate two
closely-neighbored objects or preserve edges, one can use large n such that nearby
points are less weighed as if they are far away. On the other hand, if concavity is too
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(a) (b)

Fig. 3 Analysis of the behavior of h and n in 1D case

(a)

(d) (e) (f)

(b) (c)

Fig. 4 The performance of GVC snake on U-shape and room images: a is the GVC field of room
image; b and c are the convergence of the GVC snakes with the initial contours inside and outside
the room, respectively; d is the GVC field of U-shape image; e is the close-up of GVC field within
the concavity; f is the convergence of the GVC snake on the U-shape image

deep, small n can be employed to weigh relatively more on faraway points as if they
are nearby.

Figure 4 shows two examples of the GVC snake. These experiments are imple-
mented in MATLAB on an Intel Core2 2.66 GHz processor with 2GB RAM. The
room and U-shape images are coined in [28] to demonstrate capture range enlarging
and concavity convergence. The size of both images is 64 × 64. The parameters for
GVC are: h = 0, n = 2.0, the kernel size is the same as that of the image. The GVC
is able to obtain similar results as the GVF (see [28]). It is worth noting that the
execution time of GVC for both images is 0.027 s while that of GVF is 2.36 s with
50 iterations.
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Comparison of GVC and GVF on the heart image

As a second example, a comparative study of GVC and GVF is conducted on
the heart image used in [28], shown in Fig. 5. The heart image is first blurred with a
Gaussian kernel with standard deviation 3.0, and the edge map is shown in Fig. 5b.
The GVC is calculated with n = 2.0, h = 2.0, and execution time is 0.531 s, as
shown in Fig. 5c. A circle is used as initial contour, the snake contour can correctly
locate the left ventricle and the result is in Fig. 5d. The GVF is also calculated, for all
GVF in this experiment, μ = 0.15 and time step is 0.5. Figure 5e presents the GVF
after 200 iterations, and execution time is 6.407s. However, due to the critical points
in GVF [22], a larger circle including the critical points is employed as initialization
and the segmentation result is fairly satisfactory, see Fig. 5f. This result implies that
the critical point issue of GVC snake is less serious than that of the GVF snake. In
addition, comparing Fig. 5d and f, although the initial contour in Fig. 5f is larger,
but the segmentation result of the GVC snake is much better than that of the GVF
snake. We also observe this phenomenon in the room image that GVC snake can
detect the corner more accurately than that of the GVF snake. Let us keep in mind:
the computation time of the GVC is much shorter than that of the GVF.

Furthermore, we use the C-shape image of 256 × 256 pixels to verify the
performance of the GVC snake on concavity convergence. We apply the GVF [28],
VEF [64] , VFC [67] and GVC snakes to a C-shape image, as shown in Fig. 6. The
difference between C-shape concavity and U-shape concavity is that the C-shape is
semi-close, while the U-shape is open. The results show that the GVC snake evolves
into the concave region progressively, steadily and correctly. In contrast, others fail.
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(a) (b) (c) (d)

Fig. 6 Comparisons of C-shape image convergence on GVF, VEF, VFC and GVC snakes. Note
that the dashed red lines represent the initial curves, and the solid red lines denote the final active
contours

The success of GVC snake is ascribed by the larger weight on faraway points with
a small n. The parameters of GVC snake are: α = 0.5, β = 0.5, time step τ = 1,
h = 1 and n = 2.6.

5 Left Ventricle Segmentation with Shape Constraints

Though MRI provides quite good contrast between the myocardium and the blood
pool, the difficulties in segmenting the endocardium originate primarily from arti-
facts and papillary muscles. In the classical internal energy of snake model (see
Eq. (14)), the first and second derivatives control the continuity and smoothness of
the curve, respectively. However, continuity and smoothness are only local geomet-
rical properties. If the object is partially occluded or there are weak boundaries, the
snake contour would not know how to bridge such gaps because there is no prior
information about the overall shape of the object. If there are local minima caused
by imperfectness of external force, the snake contour would get trapped. A solution
to these issues is to incorporate the object overall shape into snake energies since the
overall shape is a global property. The total energy of the snake model with shape
constraints can be written as follows:

E(C) =
1∫

0

1

2

(
α | C ′(s) |2 +β | C ′′(s) |2

)

⎤ ⎥⎦ ︸
I nternal energy

+ g
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

External energy

+ ECon
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

shape constraints

ds.

(23)
In this section, we focus on designing an effective shape constrains for LV segmen-
tation based on GVF snake and GVC snake.
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5.1 A Preliminary Study: GVF Snake Based LV Segmentation
with Circle Constraint

5.1.1 Endocardium Segmentation

Observed that the endocardium of the LV is roughly a circle, a circle-shape constraint
[72] is adopted for the endocardium segmentation. It is formulated as

Ecir (x, y) = λ

2

∫ 1

0

⎩
R(s) − R

⎫2
ds, (24)

where
⎭
⎡⎡⎡⎡⎪

⎡⎡⎡⎡

R(s) =
√⎩

x(s) − xc
⎫2 + ⎩

y(s) − yc
⎫2

xc = ⎨ 1
0 x(s)ds

yc = ⎨ 1
0 y(s)ds

R = ⎨ 1
0 R(s)ds.

(25)

(xc, yc) is the centroid of the snake contour. The energy Eq. (24) measures the devia-
tion of the snake contour from a circle with radius R and center (xc, yc). Both R and
(xc, yc) are dynamic with the evolution of the snake contour. If the snake contour
is attracted by artifacts or papillary muscle, this constraint would penalize the snake
contour to be a circle, thus, the global shape of the LV would be maintained.

Suppose that there are n discrete points on the snake contour, the center (xc, yc)

can be estimated by the following equations:

⎭
⎡⎡⎡⎪

⎡⎡⎡

xc = 1
n

∑n
i=1 xi

yc = 1
n

∑n
i=1 yi

R(i) =
√⎩

xi − xc
⎫2 + ⎩

yi − yc
⎫2

R = 1
n

∑n
i=1 Ri ,

(26)

where i = 1, 2, . . . , n. Since

⎭
⎡⎡⎡⎪

⎡⎡⎡

⎩
R(s) − R

⎫2 = ⎩
R(s) − R

⎫2⎩
cos2(2πs) + sin2(2πs)

⎫

= ⎩
R(s) cos(2πs) − R cos(2πs)

⎫2 + ⎩
R(s) sin(2πs) − R sin(2πs)

⎫2

R(s) cos(2πs) = x(s) − xc
R(s) sin(2πs) = y(s) − yc,

by the calculus of variation, the discrete Euler equation of Eq. (24) is given by

⎣
λ
⎩
xi − xc − R cos(2πi/n)

⎫ = 0
λ
⎩
yi − yc − R sin(2πi/n)

⎫ = 0 .
(27)
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(a)

(b)

Fig. 7 Effectiveness of the circle-shape energy for endocardium segmentation. a Failed segmen-
tations without the circle-shape constraint. b Succeeded segmentations with the circle-shape con-
straint

The solution of Eq. (27) obtained by treating x and y as the functions of time t is
expressed as

⎭
⎪



xt+1
i −xt

i
Φt + λxt+1

i − λ
⎩
xt

c + R
t
cos(2πi/n)

⎫ = 0
yt+1

i −yt
i

Φt + λyt+1
i − λ

⎩
yt

c + R
t
sin(2πi/n)

⎫ = 0 .
(28)

Equation (28) is incorporated into the shape constraints term in Eq. (23) to extract
the endocardium, and the force vector −∗g

⎩
C(s)

⎫
in Eq. (17) will be replaced by

[u(x, y), v(x, y)] in Eq. (21). The total energy of the GVF snake model with shape
constraints can be written as follows:

E(C) =
1∫

0

1

2

(
α | C ′(s) |2 +β | C ′′(s) |2

)

⎤ ⎥⎦ ︸
I nternal energy

+ g
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

GV F

+ ECir
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

circle constraint

ds. (29)

We demonstrate the effectiveness of the proposed circle shape constraint for seg-
menting the LV. Figure 7 illustrates segmentation results of the endocardium by using
the circle-shape energy to conquer the papillary muscle and artifacts. The images are
taken from mid-ventricle slice, where the papillary muscles are obstacles for the GVF
snake model. When the initial contour excludes the papillary muscles, the snake con-
tour halts at the papillary muscles and artifacts (see Fig. 7a) unless the initial contour
is close enough to the endocardium. In contrast, when the global shape constraint is
incorporated into the snake model, the snake contour conquers the papillary muscles
successfully and sticks to the endocardium (see Fig. 7b).



Shape Constraints for the Left Ventricle 391

We can extend the circle-shape constraint to the ellipse-shape constraint [72]
which is a more versatile shape model. The ellipse-based energy function is defined
as

Eelli (x, y) = λ
2

⎨ 1
0

[(⎩
x(s) − cx

⎫
cos(θ) + ⎩

y(s) − cy
⎫

sin(θ) − r1 cos(2πs − θ)
)2

+
(

− ⎩
x(s) − cx

⎫
sin(θ) + ⎩

y(s) − cy
⎫

cos(θ) − r2 sin(2πs − θ)
)2

]
ds,

(30)

where θ is the orientation of the semimajor axis of the ellipse with the x-axis, r1 and
r2 represent the two radius of the ellipse, xc and yc denote the center coordinates,
respectively. Here, we do not allow the snake shape to deviate significantly from an
ellipse. It is clear from the formulation that we penalize the snake if it deviates from
the best-fitted ellipse with the method of direct least squares method in the process
of snake contour evolution every time. If there is no external force, the snake contour
would just be an ellipse. If r1 = r2, i.e., the ellipse is a circle, then Eq. (30) will reduce
to already mentioned circle-shape based constraint in Eq. (24). Once we obtain the
values of parameters [θ, cx , cy, r1, r2], the Euler equations of the functional (30) is
given by

⎭
⎪


λ
(

x(s) − cx − r1 cos(2πs − θ) cos(θ) + r2 sin(2πs − θ) sin(θ)
)

= 0

λ
(

y(s) − cy − r1 cos(2πs − θ) sin(θ) − r2 sin(2πs − θ) cos(θ)
)

= 0 .
(31)

The solution of Eq. (31) obtained by treating x and y as the functions of time t is
expressed as

⎭
⎡⎡⎡⎡⎡⎪

⎡⎡⎡⎡⎡

xt+1
i −xt

i
Φt + λxt+1

i

−λ
(

ct
x + r t

1 cos(2πi/n + θt ) cos(θt ) − r t
2 sin(2πi/n − θt ) sin(θt )

)
= 0

yt+1
i −yt

i
Φt + λyt+1

i

−λ
(

ct
y + r t

1 cos(2πi/n − θt ) sin(θt ) − r t
2 sin(2πi/n − θt ) cos(θt )

)
= 0 .

(32)

Similarly, Eq. (32) is incorporated into the shape constraints term in Eq. (23) to extract
the endocardium, and the force vector −∗g

⎩
C(s)

⎫
in Eq. (17) will be replaced by

[u(x, y), v(x, y)] in Eq. (21).

5.1.2 Epicardium Segmentation

The contrast between the myocardium and surrounding tissues (e.g. fat, lung and
liver) is poor, and thus it would be more difficult to segment the epicardium [19]. The
energy Eq. (24) regularize the snake to a canonical circle, but for the epicardium, the
uniformly weighted circle shape constraint would cause poor performance because
the left ventricle is not an exact circle but more like an ellipse and there are gaps on the
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Fig. 8 Illustration of cardiac
anatomy

epicardium boundary as well. As illustrated in Fig. 8, the LV can be generally divided
into four partitions: septum, anterior, lateral and posterior, denoted as “S”, “A”, “L”,
and “P”, respectively. The boundary at septum interfacing the RV is salient; the
anterior and posterior parts are in junction with the RV, and therefore the boundaries
are fraudulent; the lateral part interfaces the lung and the boundaries are usually not
as salient as those at septum, possibly very weak. When the circle shape energy is
applied uniformly, it would be too strong for some parts but too weak for others, so, we
employ different weights for different partitions as λS , λA, λL , λP . In practice, more
weights can be adopted according to the image quality, for instance, the posterior also
partially neighbors other organs, therefore, one more weight can be associated to it.

Because the endocardium is a local minimum of the GVF field, the snake contour
would become stationary there and it is impossible to extract the epicardium succes-
sively after the endocardium is located. But as far as we know, among the existent
studies based on GVF snake, there is one exception in [29]; however, it is not clear
how their method sequentially “search for the first local minimum that is expected to
correspond to the epicardium surface”. In this study, we develop a novel strategy to
erase the endocardium, and then generate the external force for epicardium locating.

We take the center of the endocardium as reference and generate two edge maps
by selectively choosing the gradient in direction of x and y according to the charac-
teristics of the image. Taking the image in Fig. 9a as an example, on the left of the
center, the septum interfaces the blood pools of RV and LV, the gradient in direction
of x is taken as f x

l = | min(Ix , 0)| such that the edge between septum and the LV
blood pool is neglected; but for the right part, the gradient is f x

r = | max(Ix , 0)|
while the lateral is surrounded by fat (if no fat, choosing f x

r = | min(Ix , 0)|), thus,
the edge between lateral and the LV blood pool and the one between the fat and the
lung are neglected. Likewise, the gradient in direction of y up and down the center
are f y

u = | min(Iy, 0)| and f y
d = | min(Iy, 0)|. Then fx and fy are utilized as edge

maps to calculate GVF external force.
Figure 9 shows the edge maps derived from this strategy, Fig. 9b is the usual edge

map, and Fig. 9c, d are fx and fy , respectively. Generally speaking, this method is
robust to noise because the min-max operation can weaken the side effects of noise;
meanwhile, it depends on the characteristics of the image which should be known in
advance.
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(a) (b) (c) (d)

Fig. 9 Edge maps for epicardium locating

(a)

(b)

Fig. 10 Segmentation of the epicardium. a Epicardium extraction using new external force. b
Comparison of segmentation results with and without shape energy

Figure 10a illustrates the epicardium segmentation; the left image is gray level,
the external force by the proposed method is overlaid on the middle and the right is
the segmentation result. Although the external force is not perfect, it can push the
snake contour directly to the epicardium, with the shape energy, its imperfectness is
conquered. Figure 10b shows segmentation results with and without shape energy.
There are two groups and for each group, the left is the results without shape constraint
and the right is with shape constraint. We can see that the snake contour with shape
energy can prevent the snake contour from being trapped into local minimum and
leaking from weak boundaries.

5.2 GVC Snake Based LV Segmentation with Shape
Similarity Constraint

Although the segmentation results of LV are promising using the method described
in Sect. 5.1, still drawbacks mainly include the following points:
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• The GVF is computationally expensive.
• Since the epicardium is not an exact circle, we employ different weights for differ-

ent partitions as λS , λA, λL , λP . However, the segmentation results are sensitive
to these four parameters. In other words, the circle-based shape constraint is not
suitable to segment the epicardium.

• The ellipse-based shape constraint needs to estimate the shape parameters explic-
itly during evolution of the curve C(s).

To tackle these problems, we apply the GVC snake model to segment the endo-
cardium and epicardium of the left ventricle. For endocardium segmentation, the pro-
posed method pays particular attention to papillary muscle and artifacts by adopting a
shape energy described in Sect. 5.1, with this energy, the snake contour can overcome
the spurious edges stemming from artifacts and the final results could depend much
less on the initial contour. In practice, the segmented endocardium would be benefi-
cial significantly to segment the epicardium. We exploit the relationship between the
endocardium and the epicardium in shape and position for the epicardium segmen-
tation in the following aspects: (1) using the endocardium result as initialization to
automatically segment the epicardium; (2) the endocardium is always encircled by
and nearby the epicardium, as a result, one can build new external force according
to this position relationship. (3) the endocardium usually resembles the epicardium
in shape, therefore, the endocardium may serve as a priori shape to guide the seg-
mentation of the epicardium. With these strategies, the epicardium is automatically
extracted after the endocardium is segmented.

Since the strategy of segmenting the endocardium is similar to that in Sect. 5, we
focus on a novel energy based on shape similarity to segment the epicardium. The
total energy of the GVC snake with similarity constraint can be written as follows:

E(C) =
1∫

0

1

2

(
α | C ′(s) |2 +β | C ′′(s) |2

)

⎤ ⎥⎦ ︸
I nternal energy

+ g
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

GV C

+ Esimi
⎩
C(s)

⎫
⎤ ⎥⎦ ︸

similari t y constraint

ds,

(33)

5.2.1 The Shape Similarity Constraint

Generally speaking, there would be spurious edges on the myocardium, and the
contrast between myocardium and surrounding structures would be low. Even though
the endocardium edge is removed, the new external force would not be good enough
to prevent the snake contour from leaking out from weak boundaries. In order to get
more accurate segmentation results of the epicardium, we employ the endocardium
result as a priori shape and construct a new shape-similarity based constraint given by

Esimi = ρ

2

∫ 1

0

⎩
(R(s) − R) − (r(s) − r)

⎫2
ds. (34)
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Fig. 11 Comparisons of external force for epicardium segmentation. The upper row the original
edge map. The lower row the modified edge map

The variables in Eq. (34) have similar meanings as in Eq. (24), but R and R are for
epicardium while r and r are for segmented endocardium. The snake contour for
epicardium is supposed to be identically centered with th endocardium. It is clear in
Sect. 5 that r(si )−r measures the deviation of the endocardium contour from a circle
with radius r at snaxel si , thus R(si )− R measures the deviation of the snake contour
for epicardium from a circle with radius R at snaxel si . Minimizing the energy Esimi

will make the two deviations close, finally the snake contour for epicardium will
resemble the endocardium in shape although their scales, i.e., R and r are different.

Similar to Eq. (24), by the calculus of variation, we obtain the Euler equation for
Eq. (34) as follows:

⎣
ρ
⎩
xs − xendo(s) − (R − r) cos(2πs)

⎫ = 0
ρ
⎩
ys − yendo(s) − (R − r) sin(2πs)

⎫ = 0 .
(35)

It is discretized as

⎣
ρ
⎩
xi − xendo

i − (R − r) cos(2πi/n)
⎫ = 0

ρ
⎩
yi − yendo

i − (R − r) sin(2πi/n)
⎫ = 0 .

(36)

Similar to Eq. (28), this equation can be solved by taking x and y as the function
of time t . Eq. (36) is incorporated into the similarity constraints term in Eq. (33) to
extract the epicardium, and the force vector −∗g

⎩
C(s)

⎫
in Eq. (17) will be replaced

by [u(x, y), v(x, y)] in Eq. (22) using the modified edge map depicted in Fig. 11.
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Since the endocardium is a local minimum, this prevents the GVC active contour
moving into the boundary of epicardium. In order to extract automatically the epi-
cardium by taking the endocardium as initialization, the local minimum stemming
from the endocardium edge should be filtered out. To this end, we directly set the
original edge map around and within the endocardium to zero. This modified edge
map is used to generate a new GVC force field, which leads to the fact that the endo-
cardium is no longer a local minimum of the new GVC force. This new GVC force,
therefore, can push final endocardium contour forward to the epicardium directly. In
addition, since the endocardium and epicardium are adjacent, the capture range of the
new GVC force needs not to be very large, so it takes even shorter time to calculate.

Figure 11 illustrates the effectiveness of the modified edge map for the epicardium
segmentation. From left to right, the upper row in Fig. 11 shows the original edge
map, the GVC field and the segmentation result, respectively. Moreover, the original
force field flows into the myocardium at the weak epicardium boundaries (see the
white ellipse on the upper row in Fig. 11). In contrast, when the edge map is modified
using the proposed strategy, as shown on the lower row in Fig. 11, the associated force
field can characterize the epicardium very well.

6 Segmentation Framework and Results

Our segmentation methods consist of the following steps as shown in Fig. 12:

1. Automatic localization of the LV. Hough transform is applied to intensity differ-
ence image to locate the LV centroid and the ROI.

2. Designing the external force for snake model. The external force field plays a
leading role in driving the active contours to approach objects boundaries in the
snake model, and thus significantly influences the segmentation performance. The
GVF and (GVC) are utilized as the external forces of the snake model.

3. The endocardium segmentation. Considering that the LV is roughly a circle, the
circle-shape or ellipse-shape based energy functional is integrated into the snake
model to extract the endocardium.

4. The epicardium segmentation. After extracting the endocardium, the edge map
is modified to yield a new external force field for active contours, which auto-
matically pushes the snake contour directly to the epicardium by employing the
endocardium result as initialization. We also adopt the segmentation result of the
endocardium as a priori shape to get an accurate estimate of the epicardium.

5. Assessment of segmentation accuracy. The segmentation results are compared
with the state-of-the-art methods using the mean absolute distance (MAD) and
Dice metric (DM) [3].
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Mean Absolute Distance (MAD); 
Dice Metric (DM)

(a)

(e)

(c)(b)

(d)

Fig. 12 Framework for segmenting the cardiac cine MRI. a The cardiac cine MRI input; b Auto-
matic localization of the LV; c The external force of snake model for segmenting endocardium and
the segmentation result; d The external force of snake model for segmenting epicardium and the
segmentation result; e Evaluation of segmentation results

6.1 Automatic Localization of the LV

In a short-axis view of cardiac MR images, the myocardium is a dark area between
two concentric circles enclosing a bright area corresponding to the blood in LV. The
left side of the myocardium is a bright region corresponding to the blood in RV. The
right side of the myocardium is a very dark area corresponding to the lungs. Under
breath-hold condition, LV moves more obviously than its surrounding structures that
are almost static during the cardiac cycle. This trait encourages intensity difference
algorithm upon two consecutive frames in temporal image sequences to remove
stationary background structures, and thereby locating the moving region of the left
ventricle.

Suppose a cardiac MR images sequence It (x, y), where (x, y) denotes the spatial
coordinates of an image and t ≤ T is the time instant. The nearly non-moving back-
ground pixels in two consecutive frames are excluded by the difference or subtraction
operation defined as

D(x, y) = [
It+1(x, y) − It (x, y)

]
> T h. (37)

Here D(x, y) is the intensity difference image, T h is a threshold value which we
consider as non-moving background. T h is estimated by the OTSU method [73].
Figure 13 shows one of adjacent frames from a cardiac MR images sequence. In this
sequence, myocardium moves along with heart beating; the chest cavity and lung
change little due to the breath-hold condition; and there exists the nearly non-moving
image background. The intensity difference image represents the most dynamic
region. Observing the Fig. 13, the intensity values near the myocardial boundaries
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Fig. 13 Automatic localization of the LV

Fig. 14 LV segmentation using GVF snakes with circle constraint

are different from other region because of larger movement of the LV. The dense
highlight circle-like region implies that the endocardium moves faster than the epi-
cardium. Applying Hough transform to the difference image, we can obtain the LV
centroid and the region of interest represented by a yellow solid circle.
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Fig. 15 LV segmentation using GVF snakes with ellipse constraint

(a) (b) (c) (d)

Fig. 16 Segmentation of the epicardium

6.2 Evaluation Criterions

For quantitative evaluation, we use two measurements to assess the segmentation
performance. Suppose there are n points on the snake contour denoted by S =
{s1, s2, . . . , sn}, k points on the ground truth expressed as M = {m1, m2, . . . , mk},
the mean absolute distance (MAD) [74] is defined as

M AD(S, M) = 1

2

(1

n

∑n

i=1
d(si , M) + 1

k

∑k

j=1
d(m j , S)

)
, (38)
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Fig. 17 Effectiveness of the shape-similarity based constraint for epicardium segmentation. The
upper row without the shape-similarity based constraint. The lower row with the shape-similarity
based constraint

where d(si , M) = min j ∅si − s j∅ is the distance from point si to the closet point on
contour M .

The dice metric (DM) [3] is a measure of contour overlap utilizing the contour
areas automatically segmented Aa, manually segmented Am, and their intersection
Aam. It is expressed as

DM = 2Aam
⎩

Aa + Am
⎫−1

. (39)

DM is always between 0 and 1, with higher DM indicating better match between
automatic and manual segmentations.

6.3 Experiment Results

6.3.1 GVF Snake Based Results

We applied the proposed strategies described in Sect. 5.1 to our own data set. Images
of this dataset (147 images) were acquired using a 1.5T Siemens MRI scanner
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(a)

(b)

Fig. 18 Effectiveness of the shape based constraints for the LV segmentation. a The segmentation
results of the LV without shape constraints. b The segmentation results of the LV with shape
constraints
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Fig. 19 The MAD errors corresponding to Fig. 18 of one subject on MICCAI 2009 dataset with
and without shape based constraints

from a healthy volunteer. Typical parameters were: TR: 29.16 ms; TE: 1.08 ms;
flip angle: 50◦, image dimension: 192 × 156; typical spatial resolution: 1.82 ×
1.82 mm2 in-plane; and slice thickness: 8 mm. There are 7 slices covering the entire
LV from the apex to the base, and 21 cardiac phases in each slice. Figure 14 shows the
segmentation results of the images from one slice using GVF snakes with the circle
constraint in our dataset. The parameters of the snake model for endocardium are
α = 1, β = 1 and λ = 0.5. The parameters for epicardium are α = 1, β = 1 λS = 0,
λA = 1, λL = 0.5, λP = 1. By taking the manual collections as ground truth, the
results by the proposed methods are evaluated using MAD. Among the 147 MADs,
for endocardium, the mean MAD is 0.78 pixels for circle-shape based constraint,
while for epicardium, mean MAD is 1.12. Figure 15 illustrates the segmentation
results of a set of cardiac cine MR images. It is noted that the segmentation strategy
is similar to that described in Sect. 5.1 except that the circle-based shape constraint
Eq. (24) is replaced with the ellipse-shape constraint Eq. (30).

6.3.2 GVC Snake Based Results

(a) The effectiveness of the similarity based constraints: In this section, we demon-
strate the effectiveness of the shape similarity energy for epicardium extraction.
Although the GVC derived from usual edge map cannot push the snake contour from
the endocardium to the epicardium (Fig. 16a), the proposed strategy in Sect. 5.2.1
works well for this purpose(Fig. 16b), but this new force is not perfect yet, the snake
contour with only local constraints would leak out from weak boundaries (Fig. 16c),
after the proposed energy based on shape similarities is incorporated, the snake con-
tour behaves satisfactorily, the result is in Fig. 16d. Figure 17 shows another example
of this case. In the upper row, the snake contour leaks out since there is no shape
constraint and the GVC field is not perfect. In contrast, when the shape similarity
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(a)

(b)

(c)

Fig. 20 Qualitative results of one subject on our own dataset. a The segmentation results with LSM
method [12]. b The segmentation results with MFM method [3]. c The segmentation results with
our method

energy is incorporated, the snake contour works well to delineate the epicardium (see
the lower row of Fig. 17).

Figure 18 depicts the segmentation results of LV with and without shape prior
information on MICCAI 2009 dataset. Cardiac cine MRI data of MICCAI 2009 is
provided by the MICCAI 2009 Cardiac MR LV Segmentation Challenge organizers.
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Table 1 Quantitative performance evaluations on our own dataset (147 images) for the LSM [12],
MFM [3] and our methods

LSM MFM Ours

Cavity DM 0.80 ± 0.021 0.86 ± 0.011 0.84 ± 0.019
Myocardium DM 0.84 ± 0.032 0.83 ± 0.027 0.85 ± 0.053
Endocardium MAD 3.7667 1.1238 1.1190
Epicardium MAD 2.8048 1.2238 1.1333

The first two rows denote the statistics of the DM given by mean ± standard deviation. The second
two rows are average MAD (in pixels)
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Fig. 21 Quantitative results corresponding to Fig. 20 of one subject on our own dataset

The scanning protocol and evaluation criterion of this datasets are fully described
in [75]. Without shape constraint, the external force field pulls the snake to a false
contour shown in Fig. 18a. These results are hardly to be accepted. Figure 18b shows
that the shape energy functionals presented in Eqs. (24) and (34) are efficient to
push the snake contours to the desire solution. Figure 19 illustrates the MAD errors
corresponding to Fig. 18 of one subject on MICCAI 2009 dataset with and without
constraints. Overall, the shape constraints integrated into the GVC snake model
effectively alleviate the side-effect of papillary muscle and noise, and prevent the
snake contour from leaking out from weak boundaries.

(b) Comparison with the state-of-the-arts: To evaluate the performance of the
proposed algorithm, we compare our method described in Sect. 5.2 with two pub-
lished shape-based approaches including the level-set method (referred to as LSM)
[12] and max-flow method (referred to as MFM) [3]. The parameters of these three
models are unchanged for all the datasets. The parameters of LSM are α = 1000,
β = 10, λ = 0.1 and c = 10. The parameters of MFM are γ = 1, λ = 0.0011. The
parameters of our GVC based model are α = 0.5, β = 0.5, λ = 0.4, ρ = 1.2, h = 8
and n = 2.6.

From the qualitative comparisons depicted in Fig. 20, we can see that the segmen-
tation results of LSM methods are noticeably worse than those of both MFM and
our methods, at some frames (such as around the frames 9, 19, 20 and 21). It can
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(a)

(b)

(c)

Fig. 22 Qualitative results of one subject on MICCAI 2009 dataset. a The segmentation results of
LSM method [12]. b The segmentation results of MFM method [3]. c The segmentation results of
our approach

be explained that the LSM method is based on the assumption that the overlap is
approximately constant, thus a high variation of the overlap in a given sequence will
affect segmentation accuracy. In contrast, The MFM and our methods obtain good
results.
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Fig. 23 Quantitative results corresponding to Fig. 22 of one subject on MICCAI 2009 dataset

Table 1 and Fig. 21 show quantitative evaluations on our own dataset (147 images)
for MFM, LSM and our methods. The first two rows in Table 1 report the DM
statistics, where DM is given by mean ± standard deviation. For the cavity detection,
MFM and our methods led to a region accuracy slightly better than LSM method.
The second two rows in Table 1 show average MAD (in pixels) of these models. We
see that our method outperforms other approaches.

We also run our algorithm on the MICCAI 2009 dataset. Visually, these methods
obtain the similar results, as shown in Fig. 22. However, our method is able to achieve
much more accurate and consistent segmentation results, as shown in Fig. 23. The
average MAD of LSM, MFM and our methods for the endocardium segmentation are
7.21, 4.79 and 5.06 pixels, respectively, and those of the epicardium are 5.70, 5.23
and 5.18 pixels, respectively. Overall, the proposed method could conquer image
noise, artifacts, weak boundaries and papillary muscles on both endocardial and epi-
cardial boundaries extraction. Nevertheless, our method remains great MAD errors
during segmenting the endocardium, especially at the frames 7, 13 and 17. Around at
these frames, the blood pool has almost the same intensity profile (e.g. the papillary
muscles within the cavity and the myocardium ). With the circle constraint and shape
similarity energy, we can extract the endocardium and epicardium of the LV from
MR images sucessfully. More representative images on MICCAI 2009 dataset are
shown in Fig. 24.

6.4 Discussion

Although the results obtained by our method are desirable, one significant assump-
tion is that the shape of the LV is pre-defined circularly. This assumption limits a
more extensive exploration of our method for the LV segmentation. Moreover, A
major difficulty in segmentation of MR images is the intensity inhomogeneity due
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Fig. 24 More experiment results of our method on MICCAI 2009 dataset
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Fig. 25 Failed segmentation cases of our method

to the radio-frequency coils or acquisition sequences. There exists the inefficiency
in handling images with severe intensity inhomogeneity. Figure 25 shows failed seg-
mentation cases of our method, in which the myocardium and its neighbor organs
such as the liver are connected, resulting in the same intensity profile. Segmenting
such region of interest is extremely difficult because the contour is almost indistin-
guishable in this situation, even for human eyes. In addition, it should be emphasized
that, different from the MFM method [3], the proposed approach requires a large
number of iterative updates of the segmentation, therefore, is computationally oner-
ous. Running on a Intel Core2 2.66 GHz processor with 2GB RAM, on average, our
implementation needs 4.76 s to process a frame of 256 × 256 pixels. These issues
motivate us to develop a more efficient LV segmentation algorithm in future.

7 Conclusion

We investigated the shape constraints for extracting the endocardium and epicardium
from cine MRI based on snake models. A circle-shape based energy is first integrated
into the GVF snake model for extracting the endocardium to conquer papillary muscle
and artifacts. Considering the LV is not an exact circle, we employ different weights
for different partitions of the LV (i.e., septum, anterior, lateral and posterior) to extract
the epicardium when using the circle constraint.. In the framework of GVF snake
model, we also generalize the circle-shape constraint to the ellipse-shape constraint
which is a more versatile shape model. Although the shape-constraint-based GVF
snake model yields promising results, the shortcomings of this strategy, such as
computation cost of the GVF, parameters estimation of the ellipse and different
weights for the circle constraint for epicardium segmentation, limit its application.
Therefore, we apply the proposed GVC snake model to segment the endocardium and
epicardium of the left ventricle based on the circle constraint and shape similarity
constraint by assuming that the epicardium resembles the endocardium in shape.
Comparative results on both our dataset and the MICCAI 2009 dataset demonstrated
a good performance of the proposed segmentation approach over the state-of-the-art
methods.
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An Optical Flow Approach to Assessment
of Ventricular Shape Change Based
on Echocardiography

Vahid Tavakoli, Nirmanmoh Bhatia, Rita Longaker, Motaz Alshaher,
Marcus Stoddard and Amir A. Amini

Abstract The quantitative analysis of cardiac motion from echocardiographic
images helps clinicians in the diagnosis and therapy of patients suffering from heart
disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging)
or speckle tracking. These methods are based on two techniques which to a large
degree are independent—the Doppler phenomenon and image sequence processing,
respectively. Herein, to increase the accuracy of the speckle tracking technique and
to cope with the angle dependency of TDI, a combined approach dubbed TDIOF
(Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on
the combination of B-mode and Doppler energy terms minimized using algebraic
equations and is validated on simulated images, a physical heart phantom, and in-vivo
data. It was observed that the additional Doppler term is able to increase the accu-
racy of speckle tracking, compared to two popular motion estimation and speckle
tracking techniques (Horn-Schunck and block matching methods). This observa-
tion was more pronounced when noise was present. . The magnitude and angular
error for TDIOF applied to simulated images when comparing estimated motion
with ground-truth motion were 15 % and 9.2 degrees/frame, respectively. The mag-
nitude and angular error for images acquired from physical phantoms were 22 %
and 15.2 degrees/frame, respectively. As an additional validation, echocardiography-
derived strains were compared to tagged MRI-derived myocardial strains in the same
subjects. The correlation coefficient (r) between the TDIOF-derived radial strains
and tagged MRI-derived radial strains value were 0.83 (P < 0.001). The correla-
tion coefficient (r) for the TDIOF-derived circumferential strains compared to the
tagged MRI-derived circumferential strains were 0.86 (P < 0.001). The comparison
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of TDIOF-derived and block matching speckle tracking and Horn-Schunck opti-
cal flow strain values using student t-test demonstrated superiority of TDIOF (95 %
confidence interval, P < 0.001).

1 Introduction

Cardiovascular Disease (CVD) is the leading cause of death in the modern world.
The mortality rate associated with CVD was estimated to be 17 million in 2005
and continues to be ranked as the top killer worldwide. CVD is the result of under-
supply of the cardiac tissue and can lead to malfunction of the involved myocardial
territories and manifest as hypokinesia or akinesia. Several imaging methods such
as X-ray CT, MRI, and Ultrasound have been used for visualization of the heart
function. MRI and X-ray CT provide excellent spatial resolution but the cost and
lack of wide-spread availability cause challenges in the clinical settings. Echocar-
diography is a popular technique for cardiac imaging due to its availability, ease of
use, and low cost. Echocardiography shows the motion and anatomy of the heart
in real time, enabling physicians to detect different pathologies. However, analy-
sis of motion of the myocardium in echocardiographic images is based on visual
grading by an observer and suffers from inter and intra-observer variability. To over-
come the inter- and intra-observer variability, computerized image analyses can help
by quantitatively interpreting the data. To that end, cardiac image processing tech-
niques, mainly categorized as segmentation and registration, have been widely used
for assessing the regional function of the heart [1–3]. To perform such analysis, two
independent techniques, have been utilized; these are TDI (Tissue Doppler Imaging)
and speckle tracking. TDI computes the tissue motion based on the Doppler phenom-
enon and is dependent on the angle of insonification. Speckle tracking, on the other
hand,is an image processing method based on the analysis of the ultrasound B-mode
or RF images. B-mode based algorithms are robust to the variation of the transducer
angle but rely entirely on the properties of echocardiographic images which may
be noisy or inaccurate. The physical principle underlying B-mode and TDI are to
a large degree independent and therefore for myocardial motion estimation carry
complementary information [4, 5].

Many methods such as optical flow [6], feature tracking [7], level sets [8], block
matching [9], and elastic registration [10] have been utilized for quantitative assess-
ment of myocardial motion in B-mode images. Table 1 shows a description of some
of the current methods used in motion estimation in echocardiographic images
[6–21]. Suhling et al. [6] integrated rigid registration in an optical flow framework
in order to detect myocardial motion from 2D echocardiographic images. B-spline
moments invariants were applied to echo images to achieve invariance to the transla-
tion and rotation. The motion estimation algorithm was then applied to the B-spline
moments of the image instead of the image intensity in a coarse to fine strategy and
was validated using open chested dogs after ligation of a coronary artery. Additional
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Table 1 Description of some of the current methods used in motion detection in echocardiography
images

Article Output Technique Validation (# of sub-
jects)

Suhling et al. [6] Motion B-spline moments,
optical flow

2D dog (6), simulated
images, phantom

Yu et al. [7] Motion Maximum
likelihood,
spline based
control points

2D Dog (4), Sonomi-
crometry

Paragios [8] Endocardium, motion Level set + learned
shape-motion
prior

2D Human

Hayat et al. [9] Motion Block matching 3D echo, MRI
Elen et al. [10] Motion Elastic registration 3D human (normal: 3,

patient: 1), simulated
images

Esther Leung et al. [11] Motion Optical flow and
shape model

3d echo

Myronenco et al. [12] Motion Motion coherence
by temporal
regularization

3D human, EB

Duchateau et al. [13] Motion Diffeomorphic
registration

2D human (normal:
21, patient: 14),

Bachner et al. [14] Motion fiber direction 2D human, simula-
tion, phantom

Dydenco et al. [15] Epicardium, motion Regional statistics
curve evolution

2D Human, TDI

Yan et al. [16] Epicardium, motion Finite element
model

3D human, implanted
marker

De Craene et al. [17] Epicardium Diffeomorphic
B-spline free
form
deformation

3D human (normal: 9,
patient: 13)

Ashraf et al. [18] Motion 3D Pig Sonomicrometry
Papademetris [19, 20] Motion Finite element

model
3D echo

Kleijn et al. [21] Motion Block Matching 3D echo

validations were performed on simulation and phantom images. Ellen et al. [10] used
elastic registration on 3D B-mode echocardiography images to extract myocardial
motion and strain values. The method was validated using simulated and real ultra-
soundimages. Esther-Leung et al. [11] proposed two different methods (1. model-
driven, 2. edge-driven) for tracking the left-ventricular wall in echocardiographic
images. Their approach was motivated by the fact that in echocardiography images,
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visibility of the myocardium depends on the imaging view; so the myocardium may
be, partly, invisible to the beam. Their technique relied on a local data-driven tracker
using optical flow applied to the visible parts of the myocardium and a global statisti-
cal model applied to the invisible parts. It was concluded that the shape model could
render good results for both the visible and the invisible tissues in ultrasound images.
Myronenco et al. [12] proposed the so-called Coherent Point Drift (CPD) technique
for myocardial motion estimation, constraining the motion of the point set in the
temporal direction for both rigid and nonrigid point set registration. A set of point
distribution was computed based on endocardium and epicardium locations. The
point set was modeled with a Gaussian mixture model (GMM). The GMM centroids
were updated coherently in a global pattern using maximum likelihood to preserve
the topological structure of the point sets. A motion coherence constraint was added
based on regularization of the displacement fields. The purpose of regularization was
to increase the motion smoothness.

Most of the motion estimation techniques developed thus far, are either based
on TDI or B-mode. Recently, Garcia et al. [22] considered the combination of car-
diac B-mode images and intra-cardiac blood flow data for computing the blood flow
motion in the heart using continuity equation and mass conservation in polar coor-
dinates. Their paper focused on the blood flow computation and did not consider the
cardiac tissue displacements. Dalen et al. [23] and Amundsen et al. [24] previously
combined TDI with speckle tracking by integrating TDI in the beam direction and
speckle tracking in the direction lateral to the beam. However, this method discarded
the speckle tracking data in the beam direction. The authors reported that they were
unable to improve the motion estimation performance compared to speckle track-
ing techniques. In this paper, we propose integration of tissue Doppler and speckle
tracking within a novel optical flow framework, we call TDIOF (Tissue Doppler
Optical Flow). Our experimental results indicate that TDIOF outperforms both TDI
and speckle tracking approaches.

The organization of the rest of the paper is as follows: in Sect. 2, we review the
mathematical and algorithmic basis for the proposed method. Section 3 is a descrip-
tion of datasets used for validation of the proposed method. These include computa-
tional simulations, US data collected in a cardiac phantom, and in vivo data collected
in patients recruited from the echocardiography laboratory at the Robley Rex VA
Medical Center to our IRB-approved study. In Sect. 4, strain computations are dis-
cussed and, in Sect. 5, results from validation of the proposed method are described.
Finally, in Sect. 6 we discuss observations related to TDIOF and our findings.

2 Methods and Materials

TDI and B-mode speckle tracking are different in both their physical underpinning
and data type. In speckle tracking, tissue motion is determined from motion of speck-
les in Ultrasound images–typically, using a block matching approach applied to 2-D
B-mode images [give references]. Although speckle tracking provides both com-
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ponents of the motion in the spatial domain, it is based on noisy B-mode images.
TDI on the other hand only computes the velocity of tissue in one direction as mov-
ing towards (displayed as red) or away (displayed as blue) from the transducer. This
means that the computed motion is the projection of the real motion in the direction of
the transducer and therefore TDI is angle dependent. In this section, we first describe
a novel energy minimization framework for estimation of myocardial motion from
B-mode images which incorporates a velocity constraint from TDI.

The proposed method is based on optimization of three energy functions: (1)
intensity constancy assumption, (2) velocity smoothness, and (3) similarity with
Doppler data. The framework is minimized using an incremental algebra in method
[25, 26] as described in Appendix A. In order to show the performance of TDIOF, it
is compared to two popular motion detection techniques Horn-Schunck optical flow
[27] and block matching [28] (Appendix B). Block matching is utilized in several
commercial software platforms [29].

3 Validations

3.1 Simulated Computerized Phantom

Echocardiographic images are the result of the mechanical interaction between the
ultrasound field and the contractile heart tissue. Previously, we reported on develop-
ment and use of an ultrasound cardiac motion simulator [29]. In the current study,
we utilized the COLE convolution based simulation technique reported in [30]. The
significance of an Ultrasound cardiac motion simulator is the availability of both
echocardiographic images as well as the actual ground-truth vector field of deforma-
tions.

A moving 3D heart was modeled based on a pair of prolate-spheroidal represen-
tations and used for the ultrasound simulation. The 3D forward model of cardiac
motion was simulated using 13 time-dependent kinematic parameters of Arts et al.
[30] (see Table 2). The evolution of the 13 kinematic parameters was previously
derived by Arts following a temporal fit to actual location of tantalum markers in
a canine heart [31]. In Arts’ model, seven time-dependent parameters are applied
to define the ventricular shape change, torsion, and shear while six parameters are
used to model the rigid-body motions. To simulate the Ultrasound imaging process,
scatterers were randomly distributed in the simulated LV wall and the motion pre-
scribed by Arts’ model was used to move the ultrasound scatterers. To determine
Ultrasonic B-mode intensities, the COLE method was used [30]. COLE is an effi-
cient convolution-based method in the spatial domain, producing US simulations by
convolving the segmental PSF (point spread function) with the projected amplitudes
of the scatterers [29] with the segmental PSF derived using Field II [30, 32]. In order
to model the Doppler Effect, the frequency of the RF signal was shifted in the fre-
quency domain based on the attributed ground truth motion vector and mixed with
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Table 2 The 13 k-parameters
of the Art’s kinematic model
for left-ventricular
deformation used in our
cardiac US motion simulator

Non-rigid body motion

k1 Radially dependent compression
k2 Left ventricular torsion
k3 Ellipticalization in long-axis (LA) planes
k4 Ellipticalization in short-axis (SA) planes
k5 Shear in x direction
k6 Shear in y direction
k7 Shear in z direction
Rigid body motion
k8 Rotation about x-axis
k9 Rotation about y-axis
k10 Rotation about z-axis
k11 Translation along x-axis
k12 Translation along y-axis
k13 Translation along z-axis

additive Gaussian noise. If the velocity of the particle is v, ultrasound velocity is c,
and transducer frequency is f , then the frequency shift is:

Σ f = 2v f

c
(1)

The resolution of the first simulated sequence was 0.1 mm/pixel for both B-mode
and TDI images and included 14 mid-ventricular temporal frames in the axial ori-
entation. In order to analyze the robustness of the method to noise, another set of
simulated images were produced by adding Gaussian noise of 1.12 db to the noise-
less data

3.2 Physical Cardiac Phantom

As described in [30], a physical cardiac phantom was built in-house, suitable
for validation of echocardiographic motion estimation algorithms. Here, a brief
description of this phantom is provided. To manufacture the phantom, a cardiac
computerized model was used to build an acrylic based cardiac mold. A 10 % solu-
tion of Poly Vinyl alcohol (PVA) and 1 % enamel paint were used as the basic material.
PVA has the ability to mimic cardiac elasticity, ultrasound and magnetic properties.
The solution was heated up to 90 ∝C. Consequently, it was poured into the cardiac
mold and gradually exposed to the temperature of −20 ∝C until it froze. The mold
and the solution were kept in that temperature for 24 h. Finally, the mold and the
frozen gel were gradually exposed to the room temperature. At this point, the normal
heart phantom has passed one freeze-thaw cycle.
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An additional model consisting of the left and right ventricles but with a segmental
thin wall in the LV was used to build an additional mold for a pathologically scarred
heart. The thinner wall was designed to mimic an aneurysmal, dyskinetic wall. Three
PVA-based inclusions were separately made as a circle; slab and cube using nine,
six and three freeze-thaw cycles respectively. Each freeze-thaw cycle decreases the
elasticity of the heart mimicking scarred myocardium. The attenuation of the PVA
and speed of sound increase after each freeze-thaw cycle.The cylindrical, slab like
and cube like objects were placed in the mold in different American Heart Association
cardiac segments [33]. Subsequently, the PVA solution was added to fill the rest of
the space in the mold. After one freeze-thaw cycle, the abnormal heart consisted
of a background of normal texture with one freeze-thaw cycle plus three infarct-
mimicking inclusions having 10, 7 and 4 freeze-thaw cycles. The speed of sound in
PVA is 1527, 1540, 1545, and 1550 m/s and ultrasound attenuation is 0.4, 0.52, 0.57,
and 0.59 db/cm for 1, 4, 7 and 10 freeze-thaw cycles. The parameters of the synthetic
phantom was adjusted based on the previous phantom studies [34].

A mediastinal phantom that provides the ability to acquire trans-esophageal
images was manufactured using another mold. A solution of 50 % water and 50 %
glycerol was used to mimic the blood. Finally, a syringe was used to manually force
the fluid inside and outside the phantom for contraction and expansion. The enamel
paint particles are robust scatterers and can generate reliable markers on the B-mode
image. Since each marker is not restricted to just one pixel, the center of the mass
of each manually segmented marker is considered as landmark. The displacements
of the landmarks are compared to the computed motion field for the validation pur-
poses. Figure 1 shows the cardiac phantom and the acquired phantom images using
ultrasound and MRI.

3.3 Patient Studies

Two separate sets of data were utilized for in vivo validations (sets A and B). Set A
contained 15 patients and was used for manual tracking validation. Set B was a joint
echo and tagged MRI set and was used for both manual tracking and comparison
with tagged MRI (as will be discussed in Sect. 3.3.2) (Fig. 2).

3.3.1 Set A: Echocardiography Studies

Data from fifteen subjects who had already undergone echocardiographic imaging
as part of their diagnostic evaluation were deidentified and transferred to the labo-
ratory following IRB approval. The data included 13 male, 4 female, average age
52.9 ± 7.3, consisting of hypertension (8 cases), Coronary Artery Disease (4 cases),
Left Ventricular Hypertrophy (4 cases), Congestive Heart Failure (1 case), Chronic
Obstructive Pulmonary Disease (2 cases), Diabetes Mellitus (2 cases) and smokers
(1 case). 2D echocardiography (short-axis, long-axis, four-chamber, two-chamber
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Fig. 1 Seventeen AHA prescribed segments for the heart. a Basal SAX view, b mid-LV SAX view,
c apical SAX view (AS antero-septal, A anterior, L lateral, P posterior, I inferior, IS infero-septal)
[35, 37, 38]

B-mode with TDI. At the University of Louisville Hospital’s echocardiography labo-
ratory, Echocardiographic images are acquired with a commercially available system
(iE33, Philips Health Care, Best, The Netherlands) using a S5-1 transducer (3 MHz
frequency) and the operator is free to change the gain and filter as needed. The full
data set included two-chamber, three-chamber, four-chamber, and long-axis views.

3.3.2 Set B: Echocardiography-MRI Studies

The prospective protocol for patient selection and imaging was approved by the
Institutional Review Board of the Robley Rex Veterans’ Affairs Medical Center,
and a written informed consent was obtained from patients. Eight male subjects
were prospectively recruited to the study with average age 54.6 ± 8.5. The subjects
included hypertension (5 cases), Coronary Artery Disease (2 cases), Congestive
Heart Failure (1 case), Chronic Obstructive Pulmonary Disease (1 case), Diabetes
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Fig. 2 a A picture of the two-chamber model. b TDI image of the moving phantom during balloon
inflation. c A static slice of the phantom using T1 weighted FFE. The arrow points to the aneurysm
(the thin ventricular wall). d A static slice of the phantom using balanced FFE (1 LV, 2 RV, 3
cylindrical inclusion, 4 slab-like inclusion, 5 cube like inclusion, 6 mediastinum and mediastinal
structures)

Mellitus (3 cases) and smokers (4 cases).The imaging protocol included a primary
2D echocardiography including short-axis, long-axis, three-chamber, four-chamber
and two-chamber B-mode and TDI imaging as well as simultaneous B-mode/TDI
imaging (two-chamber, three-chamber, four-chamber, long-axis). At the Robley Rex
Veterans Affair Medical Center’s echocardiography laboratory, Echocardiographic
images are acquired with an iE33 commercial echocardiography system (Philips
Health Care, Best, The Netherlands) using a S5-1 transducer (3 MHz frequency) and
the operator is free to change the gain and filter as needed.

Following Ultrasound imaging, cine and tagged MRI data were collected in
all subjects. Tagged MRI data acquisition was performed using Philips Achieva,
TFE/GR sequence, TE/TR 2/4 ms, Flip Angle 15, spatial resolution 1.25×1.25 mm,
slice thickness 8 mm, and spatial size 256 × 256 × 8 pixels. In all subjects, both
echocardiography and MR imaging were performed within two hours to decrease any
confounding events that could cause discrepancy between wall motion studies in
echocardiography and MRI. MRI was performed immediately after the echocardio-
graphy. In order to ensure that the B-mode and TDI images were matched, B-mode
and TDI images were simultaneously acquired. Additionally, subjects were asked to
hold their breath during data collection.

3.4 In-Vivo Comparison of TDIOF-Derived Strains with Strains
from Tagged MRI

Tagged MRI [35] is known to provide highly accurate displacement fields in the
systolic portion of the cardiac cycle while the tags last. We analyzed the strain
field in echocardiography and tagged MR images of slices similar in location in the
two modalities in set B. In selecting corresponding slices, qualitative anatomical
landmarks such as the papillary muscles and cardiac contours as well as cine MRI
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images were utilized. Anatomical landmarks such as endocardial shape and papillary
muscle were used to locate the appropriate short axis sections of the heart. The
recently proposed SinMod technique [36] was then used to derive displacements
from tagged MRI data in the first few systolic phases of the cardiac cycle, while
the tags persisted. SinMod is an automated motion estimation technique for tagged
MRI that models the pixels as a moving sine wavefront.Since no pixel to pixel
mapping between echo and MR images was known, the ventricular geometry from
2-D echo and tagged MRI was divided into 17 segments following the American
Heart Association’s recommendations. Subsequently the averaged Lagrangian strain
for each of the 17 heart segments were compared between the two modalities. Since
the frame rate of echo and MRI is not the same and the heart rate may change, it was
necessary to align the images in the temporal dimension. This was done by spline
interpolation of the measured strain data in the time domain.

4 Strain Analysis

Strain is a measure of deformation of the cardiac tissue. With I representing the
identity matrix, the Lagrangian strain tensor at a given myocardial point and for a
specific time point can be expressed as:

E = 1

2
(FT F − I ) (2)

where the elements of the deformation gradient tensor, F, are:

F =



Φx
Φ X

Φx
ΦY

Φx
Φ Z

Φy
Φ X

Φy
ΦY

Φy
Φ Z

Φz
Φ X

Φz
ΦY

Φz
Φ Z



 (3)

while x = X + V (X), X represents the spatial coordinates in the undeformed
coordinates (typically taken to be the end-diastolic frame), and V (X)is the accumu-
lated motion vector at the corresponding spatial location relative to the undeformed
state . For the echocardiography data, the reference frame for the strain computation
was considered to be the end diastolic frame and was selected based on ECG trigger.
The deformation field was then computed between each two frames and was added
to the motion field from the previous frame in order to measure the accumulated
deformation and strain . Since the deformation field of the consecutive frames do not
represent the motion of the same pixels, spline interpolation was used to align the
deformation fields. For the tagged MRI data, the end-diastolic frame was always the
first acquired image which is collected immediately after the R-wave trigger.

The normal strain in the direction of the unit vector n can be calculated from the
Lagrangian strain tensor through the quadratic form nT n, where n is a unit vector and
can point to any direction on the unit sphere. Due to the geometry of the left ventricle,
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the normal strains are usually calculated in radial, circumferential, and longitudinal
directions.

Regional analysis is performed on 17 American Heart Association (AHA) pre-
scribed segments. Figure 7 shows the different segments. The acronyms stand for
antero-septal (AS), anterior (A), lateral (L), posterior (P), inferior (I), and infero-
septal (IS). For a review of topics related to determination of strain from cardiac
images, the reader is referred to [35, 37, 38].

5 Results

As noted in Sect. 3, TDIOF was applied to three different datasets: simulated images,
data collected in a physical phantom, and in vivo data (both set A and set B). To
further elucidate the effect of the Doppler term, results from TDIOF were compared
to Horn-Schunck (HS) optical flow (beta = 0 in Eq. (A.11)) and block-matching (BM)
(see Appendix) with the latter being the basis for most commercial speckle tracking
methods [13]. Since the performance of each technique depends on the parameters of
the method, it was necessary to optimize the parameters. Based on simulated images,
an exhaustive search was performed over the parameters of TDIOF, HS optical flow,
and BM speckle tracking method (a large range was considered for each parameter)
and the best values were selected experimentally. To analyze the performance of the
techniques with different parameter settings, simulated images were compared to the
next simulated frame after being warped using the estimated motion field. Relative
mean absolute error was used for the comparison. Relative mean absolute error was

computed as 1
N

⎧
i, j

⎨⎨⎨ Î − I
⎨⎨⎨ /I ; where I and Î are the first and subsequent warped

images, and N is the total number of points. Figure 3 shows the performance of
the TDIOF technique using different parameters. The methods were then applied
to all the datasets using the resulting parameters: number of scales for multiscale
implementation: 5, σ (smoothness weight): 2000, Θ (TDI similarity weight): 0.001,
and θ (penalizer parameter): 0.1. The parameters for the HS technique were set as
follows: number of scales 5, and smoothness weight 2000.

5.1 Validations on Simulated Images

The simulated 3D cardiac model built based on Arts’ et al. [31] is shown in Fig. 4a.
The deformation shown in the figure is that of a systolic motion. The 3D B-mode
image deformation was computed based on [29] and was shown in Fig. 4b. Figure 4c
shows the computed TDI using the simulated sequence—the red colors represent
motion towards the transducer and the blue colors represents motion away from the
transducer. Figure 5 shows application of TDIOF to simulated data and comparison
with ground truth. Angular and magnitude error metrics were used for validation of
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Fig. 3 Performance of TDIOF using different parameters based on relative mean absolute error:
X-axis is shown with a logarithmic scale in order to report a wide range of parameter settings.
The performance of TDIOF is plotted versus smoothness coefficient for different TDI similarity
coefficients (Θ). Changes of performance is evident when smoothness parameter (σ) changes. As
seen from the plots, performance was more dependent on the smoothness and insensitive to the
scale for the TDIOF term

Fig. 4 a Simulated cardiac model in diastole and systole. b A 3D simulated B-mode image based
on COLE. c The computed tissue Doppler image using the simulated sequence

the proposed technique as stated in Eqs. (4) and (5):

Magnitude Error = 1

N

⎩

i, j

⎫⎫⎫⎫
∗V̂ ∗ − ∗V ∗

∗V ∗
⎫⎫⎫⎫ (4)

Angular Error = 1

N

⎩

i, j

⎫⎫⎫⎫Arc cos

⎬
V, V̂

⎭

∗V ∗ · ∗V ∗
⎫⎫⎫⎫ (5)

whereV and V̂ are the true and estimated displacement vectors and N is the total
number of vectors.

To quantitatively analyze the proposed method, averaged performance of TDIOF,
Horn-Schunck optical flow, and block matching speckle tracking are reported in
Table 3. The methods were applied to 14 simulated cardiac frames (one full cardiac
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Fig. 5 a Results of TDIOF from a mid ventricular section of the 3D simulated echo data. b Ground
truth motion field

Table 3 TDIOF versus HS optical flow and BM speckle tracking when applied to simulated images

Data Simulation (no noise) Simulation (SNR 1.12 db)
Method TDIOF HS BM TDIOF HS BM

Magnitude error
(pixel/frame)

0.15 ± 0.09 0.20 ± 0.13 0.20 ± 0.14 0.22 ± 0.12 0.34 ± 0.16 0.31 ± 0.15

Angular error
(degrees/frame)

9.2 ± 3.8 11.2 ± 5.2 11.3 ± 5.6 10.0 ± 5.5 12.5 ± 6.8 12.7 ± 6.0

BM block-matching, HS Horn-Schunck

cycle) of size 300 × 300 × 150 pixels with and without noise. The error represents
the angular or magnitude error averaged over all 100 slices and over all 14 temporal
frames (averaged in both space and time). Please note that TDIOF was applied to
100 short-axis cross sections of the simulated heart. Table 3 illustrates that TDIOF
has markedly improved performance on noisy images. Figure 6 shows the magnitude
and angular error over one cardiac cycle for the 3 techniques—note that for each time
point, the errors have been averaged over all spatial positions and all slices.It is evident
that for all methods the errors are more pronounced in systolic frames compared to
diastolic frames. This, we believe, is due to larger out of plane displacements causing
errors for the 2-D method. From the figure, it can also be observed that, TDIOF
outperforms Horn-Schunck optical flow and BM speckle tracking more significantly
on noisy images.
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Fig. 6 Comparison of (a) magnitude (Eq. (4)) and (b) angular error (Eq. (5)) over one cardiac cycle
for different techniques

5.2 Validation on Data Collected in a Physical Phantom

In order to validate TDIOF on phantom data, the enamel markers on the B-mode
images were manually segmented and the centers of mass of the markers were con-
sidered as landmarks. The error was computed on 128 landmarks over one cardiac
cycle with 54 2D echocardiographic frames. As with simulated images, angular and
magnitude errors were used to analyze the performance. The averaged magnitude
and angular error of the landmarks for TDIOF, HS optical flow, and BMspeckle
tracking are shown in Table 4. Figure 7 shows application of TDIOF and TDI to the
physical phantom.

5.3 Validation on In Vivo Images

The algorithm was also evaluated in a similar way using in vivo images with 519
landmarks selected by an expert over 106 sets acquired from 23 patients. Landmarks
were prominent regions in in vivo images such as speckles that could easily be
detected. Each landmark was delineated and the center of mass of the landmark was
defined to be the actual location. The average error for each of the three methods
(TDIOF, Horn-Schunck, block matching) applied to in vivo data was classified per
segment and is reported in Table 5. Figure 8a shows the application of the TDIOF
technique to one four-chamber in-vivo B-mode study in systole. Figure 8b shows the
end-systolic longitudinal strain map for the same patient.
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Fig. 7 a TDIOF applied to phantom data in “systole”, b TDI forthe same phase

5.4 Preliminary Comparison of Strains from TDIOF and Tagged
MRI

In this part of the study, radial and circumferential strains derived from TDIOF,
HS optical flow, and BM speckle tracking were computed from B-mode echoand
were compared to tagged MRI strains. Anatomical landmarks such as endocardial
shape and papillary muscle locations were used to locate the corresponding short
axis sections of the heart in tagged MRI and echocardiography. In addition, since the
papillary muscles could not be easily visualized in the tagged studies, non-tagged
cine MR images were used to better define the papillary muscles locations. Despite
these efforts to ensure correspondence of the data, as alignment of the data based
on landmarks could only be approximate (due to differences in slice thickness and
identical view orientation in echo and MRI), and the results reported here should
only be qualitatively interpreted.

The image-derived strain values related to the same cardiac phase and the same
sections of the same patient were compared by averaging the corresponding radial
and circumferential strain values for each of the 17 AHA segments. For alignment, the
short-axis tagged MR images were visually matched to the corresponding short axis
echocardiographic images acquired from basal, mid-ventricular, and apical slices.
Since the tag lines fade after systole, only the first 3–4 systolic tagged frames and the
corresponding temporal extent in echo was considered in this analysis. Furthermore,
since the number of the frames in echocardiography is several times that of tagged
MRI data (roughly 20 tagged MR frames versus 4 echocardiographic frames during
the cardiac cycle), the strain fields in echo images were interpolated using spline
interpolation to match the systolic tagged MRI frames. Finally, 2-D strain maps from
corresponding echocardiography and tagged MRI were computed and averaged over
17 segments.
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Fig. 8 Application of TDIOF to four-chamber B-mode data during diastole. As expected, TDIOF-
derived displacements are larger for the basal segments when compared to the apical segments

Figure 9a shows B-mode and TDI images in early systole at the high papillary
muscle level of a subject. The computed motion of the heart between these two
frames is shown in Fig. 9b and c based on HS optical flow and TDIOF, respectively.
The cardiac strain maps for the same cardiac phase and same slice are shown in
Figs. 10 and 11. Figure 11 compares the radial strain map with the tagged MRI
radial strain map. As expected and observed from the tagged MRI results, the radial
strains from TDIOF are positive and gradually increase during systole. The increased
radial strain is more pronounced in AL and IL segments in both SinMod derived and
TDIOF strain maps. The increased radial strain is also prominent in the AS and IS
segments. Figure 11 shows the circumferential strain map compared to the tagged
MRI circumferential strain map. As expected and observed from the tagged MRI
results, the circumferential strains from TDIOF are negative and gradually increase
in magnitude during systole. This increase is more pronounced in AL and ANT
segments in both SinMod tagged MRI-derived and TDIOF strain maps.

To compare the performance of TDIOF and HS, statistical analysis of the strain
map results are helpful. Figure 12 shows correlation studies of the radial and cir-
cumferential strain values compared to tagged MRI. The correlation coefficient (r)
for the TDIOF radial strain values compared to the tagged MRI radial strain values
was 0.83 (P < 0.001); while the correlation coefficient (r) for the HS and BM radial
strain values compared to the tagged MRI radial strain values were 0.71(P < 0.001)
and 0.75(P < 0.001), respectively. The correlation coefficient (r) for the TDIOF cir-
cumferential strain values compared to the tagged MRI circumferential strain values
was 0.86 (P < 0.001); while the correlation coefficient (r) for the HS and BM cir-
cumferential strain values compared to the tagged MRI circumferential strain values
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Fig. 9 a A short axis B-mode image at the high papillary muscle level of a subject during early
systole compared to TDI image for the same phase. b Horn-Schunck motion field for the same phase
and in the same subject as a. c Corresponding TDIOF motion field. d Tagged MRI motion field for
the same approximate slice location in systole (AS antero-septal, ANT anterior, IL infero-lateral,
AL antero-lateral, P posterior, INF inferior, IS infero-septal)

were 0.77 (P < 0.001) and 0.79 (P < 0.001). Therefore, it may be concluded that for
both radial and circumferential strains, TDIOF analysis achieves a more significant
correlation with the tagged MRI in comparison to HS and BM analysis. This effect is
believed to be due to the additional Doppler term that is added to the TDIOF frame-
work. The comparison of TDIOF and HS radial strain using student t-test showed
superiority of TDIOF (95 % confidence interval, P < 0.001). Similarly, the compar-
ison of TDIOF and HS circumferential strain using student t-test showed superiority
of TDIOF (95 % confidence interval, P < 0.001).The comparison of TDIOF and
BM radial strain using student t-test was statistically meaningful (95 % confidence
interval, P < 0.001).The comparison of TDIOF and BM circumferential strain using
student t-test was prominent as well (95 % confidence interval, P < 0.001).
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Fig. 10 Top row Lagrangian radial strain maps computed from TDIOF. Lower row Lagrangian
radial strain maps computed with SinMod from tagged MRI during the same cardiac phase at the
high papillary muscle level in one subject (AS antero-septal, ANT anterior, IL infero-lateral, AL
antero-lateral, P posterior, INF inferior, IS infero-septal). The tagged MR images are resized to
match the echo images with respect to the size

Fig. 11 Top row Lagrangian circumferential strain maps computed from TDIOF. Lower row
Lagrangian circumferential strain maps computed with SinMod from tagged MRI during the same
cardiac phase at the high papillary muscle level in one subject (AS antero-septal, ANT anterior, IL
infero-lateral, AL antero-lateral, P posterior, INF inferior, IS infero-septal). The tagged MR images
have been resized to match the echo images with respect to size

6 Discussion

In order to increase the accuracy of motion estimation and speckle tracking techniques
and to overcome the angle dependency of TDI, fusion of the techniques has been
proposed. TDIOF makes use of the combination of B-mode and Doppler energy
terms, minimized using linear algebraic methods. It was demonstrated that TDIOF
outperforms the Horn-Schunck optical flow technique and block matching speckle
tracking when applied to simulated, physical phantom, and real data. In this paper,
we demonstrated that the additional Doppler term is able to increase the accuracy of
the intensity (B-mode) based methods in tracking left-ventricular wall motion. The
additional Doppler term may very well be added to other cardiac Ultrasound image
registration techniques and we expect a corresponding improvement in performance.
As demonstrated in the simulation study, the improvement in performance is more
pronounced on noisy images.

TDIOF had better performance when compared to HS and Block matching in
simulated, phantom, and in vivo data. Due to increased thickness of the wall, the
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Fig. 12 a TDIOF radial strain value versus tagged MRI radial strain is shown as red; while HS
radial strain value versus tagged MRI radial strain value is shown as blue stars; and BM radial
strain vs tagged MRI radial strain is shown as green dots. b TDIOF circumferential strain value
versus tagged MRI circumferential strain is shown as red; while HS circumferential strain value
versus tagged MRI circumferential strain value is shown as blue stars; and BM circumferential
strain versus tagged MRI circumferential strain is shown as green dots. For both cases, it is evident
that the blue dots (HS strain values) are more scattered compared to the tagged strain values. The
plots include corresponding average strain quantities for 17 segments in 8 patients over 4 tagged
MRI frames

results were better in mid-ventricular slices for all three methods. Nevertheless,
results at the basal and apical slices were still acceptable. Due to poor acquisition
at the apex, results for apical segments,were not as good for all three techniques
compared. Similarly, in comparison to HS and BM, results from TDIOF correlated
more significantly with tagged MRI. It is evident from Figs. 11 and 12, that both
radial and circumferential strains increase over the cardiac systole, while the heart is
contracting and peaks attend systole and then as the heart recoils back to the original
length the cardiac strain decreases to about zero at end diastole. It should be noted
that the strain values for TDIOF and tagged MRI are not exactly the same because
it is not possible to perfectly align the images in space and time due to differences
in image slice thickness, resolution, and precise image orientation.

6.1 Comparison with Previous Work

A comparison of correlative strain results for TDIOF reported in this paper can further
illustrate the performance of the proposed technique. In [39], a comparison of MRI-
derived strains and speckle tracking-derived strains were reported. The authors col-
lected data in patients using a commercially available system (Vivid 7, GE Vingmed
Ultrasound AS, Horten, Norway) and performed off-line analysis (EchoPac BT04,
GE Vingmed Ultrasound AS). Subsequently, the same group of patients underwent
tagged MRI scan and HARP off-line analysis to determine the regional strains. The
correlation between radial strain based on B-mode speckle tracking and tagged MRI
was reported to be (r = 0.60, p < 0.001) while the correlation between circumfer-
ential and longitudinal strain values based on B-mode speckle tracking and tagged
MRI was reported to be (r = 0.51, p < 0.001) and (r = 0.64, p < 0.001). The
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authors concluded that there is a modest correlation between echocardiographic and
tagged-MRI-derived strains.

6.2 Limitations

The present study has several limitations that should be stated. At this time it is not
possible to extend TDIOF to three dimensions because TDI is only possible in two
dimensions.

Another limitation is lack of availability of ground truth applicable to in vivo
images which makes the validation more difficult. Tagged MRI is a good surrogate
but it is not perfect. Tagged MRI slices do not exactly overlap on echocardiographic
slices and there is no accurate pixel to pixel mapping from the cardiac tissue in tagged
MRI to the cardiac tissue in echocardiography. Additionally, the orientation of the
Ultrasound transducer is not exactly the same as image orientation in tagged MRI.
Furthermore, Echocardiography and tagged MRI have different resolutions in space
and time.

An additional potential issue is that MRI and echocardiography cannot be per-
formed simultaneously. In our study, since MRI was performed immediately after
echocardiography, the cardiac physicologic changes are felt to be less significant.
However, heart rate variability may cause alignment problems between the images.
We attempted to overcome these issues by careful image acquisition and matching
of the slices in space and time.

7 Conclusion

In order to increase the accuracy of the speckle tracking technique and to cope
with the angle dependency of TDI, a combined approach dubbed TDIOF (Tissue
Doppler Imaging Optical Flow) has been proposed. TDIOF is formulated based
on the combination of B-mode and Doppler energy terms minimized using linear
algebraic methods. TDIOF was validated extensively based on simulated images,
physical cardiac phantom, and in-vivo data. The performance of TDIOF was demon-
strated to be better than popular motion estimation and speckle tracking techniques
in echocardiography.

Appendix A: Mathematical Framework for TDIOF

To determine myocardial motion, we propose a novel optical flow energy function
which combines three energy terms: B-mode intensity constancy, Doppler/B-mode
velocity similarity, and motion smoothness.
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(1) B-mode intensity constancy: If we assume that p = (x, y, t)and the flow field
is w(p) = (u(p), v(p), 1) where u and v are the motion vectors and x, y and t are the
spatial and temporal dimensions, B-mode intensity constancy term assumes that the
pixel intensity is the same along the motion vector. When I (p) is the pixel intensity
at location p and I (p + w) is the pixel intensity in the subsequent frame at location
p + w,

Edata = |I (p + w) − I (p)|2 (A.1)

Although optical flow is usually solved using calculus of variation, we use the
recent incremental flow framework [25] which provides significant computational
savings. The incremental flow assumes that an estimate of flow is already known (iter-
ation 0) and then, the best increment will be found at each iteration,.With inclusion
of an incremental motion vector, the intensity constancy is then revised to be:

Edata = |I (p + w + dw) − I (p)|2 (A.2)

The above equation can be linearized using Taylor series expansion:

It (p + w + dw) − I (p) = It (p) + Ix (p)du(p) + Iy(p)dv(p) (A.3)

with

Ix (p) = Φ I (p + w)

Φx
(A.4)

Iy(p) = Φ I (p + w)

Φy
(A.5)

It (p) = I (p + w) − I (p) (A.6)

(2) The smoothness energy term forces the flow field to be continuous:

Es = |∅(u + du)|2 + |∅(v + dv)|2 (A.7)

with

|∅(u + du)|2 =
⎪

Φ(u + du)

Φx

)2

+
⎪

Φ(u + du)

Φy

)2

(A.8)

(3) TDI velocity term. The 2D motion when projected in the direction of the trans-
ducer should be similar to the computed velocity. If ≤v = (u, v) is the B-mode velocity,
≤vt = (ut , vt ) is the transducer orientation and wtdi is the TDI velocity acquired from
the echo machine, then the constraint is formulated as:

Etdi =
(
≤vT≤vt − wtdi

⎡2 = (ut u + vt v − wtdi )
2 (A.9)
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Fig. A.1 Geman-Mcclure
penalizer for different θ

parameters (0.1, 0.3, 0.5, 0.7,
0.9)

In order to keep the range of Etdi between 0 and 1, and to reject outliers, we
utilized a Geman-Mcclure penalizer (κ) [26]:

κ(s) = s2

s2 + σ2 (A.10)

In (A.10), s is the input data and θ is the scaling parameter. The behavior of
Geman-Mcclure equation is shown in Fig. A.1.

The total energy function to be minimized is:

E(u, v) = Edata + σEs + Θκ(Etdi ) (A.11)

=
⎢

γ

(|I (P + w + dw) − I (p)|2 +σ(|∅ (u + du)|2 + |∅ (v + dv)|2)

+ Θ.κ((ut (u + du) + vt (v + dv) − wtdi )
2))

where σ is the smoothness weight and Θ is the TDI/velocity correspondence
parameter—we note that setting beta to zero essentially results in the Horn and
Schunck optical flow frame case in the incremental flow framework.

Next, we vectorize u, v, du, dv as U, V, dU, dV .

Ix = diag(Ix )Iy = diag(Iy)

Dx and Dy are denoted as matrices related to the x and y derivative filters such that:
DxU = u ∈ [0 − 11]. The derivative operator is used to compute the gradient of
the image in each direction. Additionally the column vector λp is defined as a Dirac
function with the only nonzero element at location p such thatλp Ix = Ix (p). Now
the discretized version of the energy function (Eq. (A.11)) becomes:
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E =
⎩

p

(δ
T
p(It + IxdU + IydV))2 + δ

T
pDx(U + dU)2 + (δ

T
pDy(U + dU)2)

+ (δ
T
pDx(V + dV)2 + (δ

T
pDy(V + dV)2)] + Θ((δ

T(ut(U + dU)

+ vt(V + dV) − wtdi))
2) (6)

To minimize (A.12), Iterative Reweighted Least Squares (IRLS) was used with the
stopping criterion that [ Φ E

ΦdU ; Φ E
ΦdV ] = 0. Here, it is noteworthy to state that since for

matrix A and vectors x, b:

d

dx
xT Ax = 2Ax

d

dx
xT b = b

Therefore:

ΦE

ΦdU
= 2

⎩

p

(
Ixδpδ

T
p (IydV + It) + Ixδpδ

T
p IxdU

⎡
+ α[(DT

x δpδ
T
p Dx (A.13)

+ DT
y δpδ

T
p Dy)(U + dU)] + βψ→(Etdi)[utδp(δ

T
p ((U + dU)ut

+ (V + dV)vt − wtdi))] = 2((I2
x + α L + βψ→u2

t )dU

+ (IxIy + β ψ→utvt)dV + (σL + βψ→u2
t )U + βψ→utvtV

+ (IxIt − βψ→utwtdi)

:

ΦE

ΦdU
= 2((I2

x + α L + βψ→u2
t )dU + (IxIy + βψ→utvt)dV (A.14)

+ (σL + βψ→u2
t )U + βκ →utvtV + (IxIt − βψ→utwtdi)

where:

L = DT
x ψ→Dx + DT

y ψ→Dy (A.15)

ψ→ = diag(κ →(Etdi)) (A.16)

and
⎧
p

λT
p λp is the identity matrix.

Similarly

ΦE

ΦdV
= 2((IxIy + β ψ→utvt)dU + (I2

y + α L + β ψ→v2
t )dV + βψ→utvtU+ (A.17)

+ (σL + βψ→v2
t )V(IyIt − βψ→vtwtdi)
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Finally, the following linear equation is derived as:

⎪
I2
x + α L + βψ→u2

t IxIy + β ψ→utvt

IxIy + βψ→utvt I2
y + α L + βψ→v2

t

) ⎪
dU
dV

)
(A.18)

=
⎪

IxIt + α LU − βψ→utwtdi + βψ→u2
t U + βψ→utvtV

IyIt + α LV − βψ→vtwtdi + + β ψ→utvtU + βψ→v2
t V

)

In practice, u, v, dU and dV are initialized as zero with dU and dV iteratively
updated using linear least squares. In order to cover a wide range of displacements and
to reduce the computational time, the algorithm is applied in a multi-scale strategy.
The coarse scale is tackled in the first step, while the fine scale is computed in the
last stage.

Appendix B: Block Matching

The main idea in this type of motion estimation is that each block of a frame moves
toward a block with similar intensity in the next frame, when the time interval between
the two frames is small. The general strategy is to slide each block of the first
frame over the next frame in order to locate the most similar match. To find the best
matching block, it is necessary to have a similarity metric that measures the similarity
between two blocks. There are several well-known block matching algorithms based
on different cost functions such as Mean Absolute Difference (MAD), Mean Square
Error (MSE), or correlation. MAD is utilized in this paper because of its accuracy
and computational efficiency [28]. MAD is formulated as:

M AD = 1

N 2

N−1⎩

i=0

N−1⎩

j=0

⎫⎫Ci j − Ri j
⎫⎫ (A.19)

In (A.9), N is the size of macro-block while Ci j and Ri j define the pixel locations
within the blocks. The index i is the shift in x and j is the shift towards y when the
main block is sliding over the image [28].
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