
Chapter 11
A Basic Introduction to Quantum Noise
and Quantum-Non-Demolition Techniques

Stefan Hild

Abstract For the past 120 years the Michelson interferometer has served as the
standard tool for high precision length measurements. Starting from the very first
Michelson interferometer to today’s large-scale gravitational wave observatories, the
peak sensitivity of the Michelson interferometer has improved by about 10 orders
of magnitude. Advanced gravitational wave detectors, such as Advanced LIGO or
Advanced Virgo, will achieve a measurement precision limited by the Heisenberg
Uncertainty Principle, giving rise to the interferometric Standard Quantum Limit for
40kg test masses. This chapter will give a basic outline of the concepts currently
under consideration for surpassing the Standard Quantum Limit.

11.1 How to Approach This Chapter

In this chapter we will discuss the notion of quantum noise and some methods by
which it can be reduced in laser-interferometric Gravitational Wave (GW) detec-
tors1. It needs to be pointed out that a comprehensive discussion of this topic is far
beyond what is possible within the limited space here. So, the reader might wonder
what can be gained from reading this chapter? In this chapter I will give my best,
trying to approach quantum noise and quantum-non-demolition (QND) techniques
from the standpoint of an experimental physicist who aims at thinking in terms of
clear and lightweight models with easy applicability, rather avoiding excessive the-
oretical formalism; hence, my main goal is to convey an intuitive understanding of
the underlying concepts of quantum noise and interferometry techniques aiming to

1 Please note, that if not stated explicitly otherwise, we neglect in this chapter all other funda-
mental noises, such as thermal noise, as well as the myriad of technical noises that commis-
sioners of GW detectors have to battle with.
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reduce this noise.While this approach requires certain simplifications to bemade, the
presented formalism will help to foster a qualitative understanding of the underlying
phenomena and may serve as a springboard for an in-depth study of the topic.

If you are looking for a mathematically exact description of quantum noise and
QND techniques, please stop reading here and please be deferred to one of the
excellent books and articles already existing [1–4]. Otherwise, please lean back and
enjoy the beauty of interferometry experiments at and beyond the quantum limit!

11.2 The Basics of Quantum Noise

The notation quantum noise originates from the fact that this noise is a direct conse-
quence of the quantum nature of light. For two reasons quantum noise plays a very
special role in the noise-cocktail of advanced laser-interferometric GW detectors:

First of all, quantum noise is of a different nature compared to most other lim-
iting noise sources, because quantum noise originates directly from measure-
ment and readout processes (in contrast to, for example, seismic excitation or
thermally driven fluctuations which directly change the position of test mass
surfaces). Secondly, as can be seen in Fig. 11.1, quantum noise is the noise
source directly limiting the sensitivity of advanced GW detectors over most
frequencies of the detection band.

Hence, reducing the quantumnoise contribution bymeans of clever interferometry
concepts is of the highest priority if we want to further improve the sensitivity of
future GW detectors. So, let us start our quest!

11.2.1 Principles for Building a GW Detector

Before we have a closer look at the nature of quantum noise and what processes lead
to its presence in the GW channel of the interferometer, it is helpful to recall what is
required for conceiving a GW detector with good performance. Although the current
laser-interferometric GW detectors are extremely complex machines, a successful
design can be boiled down to two basic design principles:
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Fig. 11.1 Noise budget of the advanced LIGObroadband configuration as described inAbbott et al.
[5]. The coloured lines (1–8) represent the amplitude spectral density of various noise components,
whereas the trace labelled “Total Noise” shows the overall instrument sensitivity. For all frequencies
above about 12Hz quantum noise is the dominating noise source (This figure was produced using
the GWINC software [6])

1. You need to make sure your test masses are quieter than the signal you
want to observe.

2. You need to make sure that the test mass position can be read out to the
required accuracy, without introducing any significant level of back action
noise.

In order to satisfy the first of the requirements stated above we employ a myr-
iad of sophisticated techniques and we exercise the greatest care when it comes to
providing seismic isolation of the test masses, put them into ultra-high vacuum to
reduce their acoustic coupling, and use ultra-low loss materials for the test masses
as well as for their suspensions to reduce the influence of thermal noise. The second
design principle relates fundamentally the optical readout and the interferometric
measurement of the differential arm length degree of freedom of the GW detector.
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Fig. 11.2 Illustrations of radiation pressure noise (left) and shot noise (right)

11.2.2 Photon Shot Noise and Quantum Radiation Pressure Noise

So, finally let us answer the question of what quantum noise is actually composed of.
It is ultimately made up from two components: photon shot noise at high frequencies
and photon radiation pressure noise at the low frequency end of the detection band.
The most straightforward way to understand the origin of the two quantum noise
components is illustrated in Fig. 11.2. The photons in a laser beam are not equally
spaced in time, but follow a Poissonian distribution. Consequently, when a laser
is shone onto a photodetector, the resulting time-series of the photo current is not
constant over time but is subject to fluctuations. These fluctuations, literally also
called shot noise, increase proportional to the square root of the optical power in
the laser beam. In contrast, the signal strength in the GW detector increases linearly
with the optical power. Hence, by increasing the optical power in a GW detector the
signal-to-shot-noise ratio can be effectively increased, proportional to the square root
of the optical power inside the GW interferometer. The amplitude spectral density of
strain equivalent of photon shot noise in a simple Michelson interferometer (without
arm cavities or recycling) can be expressed as

hsn( f ) = 1

L

√
�cλ

2π P
, (11.1)

where f is the frequency, L is the arm length of the GW detector, c is the speed of
light, λ the laser wavelength, and P the optical power in the interferometer arms.

The second effect of the temporally inhomogeneous distribution of the photons
in a laser beam is illustrated on the left panel of Fig. 11.2. Photons carry momentum
and when they are reflected from a free-falling test mass they transfer momentum,
or better, a radiation pressure force onto the mirror. Since the photons do not arrive
at the test mass with exactly similar separation in time, the force onto the mirror and
therefore also its position fluctuate over time, giving rise to photon radiation pressure
noise. The amplitude spectral density of the quantum radiation pressure noise in a
simple Michelson is given by
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hrp( f ) = 1

m f 2L

√
�P

2π3cλ
, (11.2)

where m is the mass of the mirror. In contrast to shot noise we see that the radiation
pressure noise spectrum is not white, but its contribution falls off as 1/ f 2. From this
it is obvious that radiation pressure noise will dominate at low frequencies, while
shot noise is the dominant contribution at high frequencies.

We define the quantum noise of an interferometer to be the (uncorrelated) sum
of photon shot noise and photon radiation pressure noise.

11.2.3 The Standard Quantum Limit

It is important to note inEqs. 11.1 and 11.2 that shot noise and radiation pressure noise
scale inverselywith the optical power inside theMichelson interferometer; so,while it
is possible to improve the strain sensitivity of an interferometer at high frequencies by
increasing the circulating light power, inevitably at the same time the sensitivity will
decrease at low frequencies as the radiation pressure increases with the light power.
This relation is illustrated in Fig. 11.3. Ultimately, for every observation frequency
there exists an optimal power,which results in identicalmagnitude contributions from
shot noise and quantum radiation pressure noise at this frequency. For example, the
best sensitivity at a frequency of 8Hz is achieved for 1MW (see trace 2c in Fig. 11.3).
The Standard Quantum Limit (SQL) is defined as the lower bound envelope of the
quantum noise spectra for all optical powers circulating in interferometer with a
specific set of design parameters [7]. As illustrated in Fig. 11.3, the SQL for a simple
Michelson interferometer follows a slope inverse to the observation frequency.

The SQL has originally been suggested as an ultimate limit for the sensitivity of
laser interferometers that cannot be surpassed. However, it was quickly realized that
the SQLonly imposes a limit on the achievable sensitivity of classical interferometers
but that there are several techniques, such as detuned signal recycling and quantum
non-demolition configurations, which can enable interferometricmeasurements with
displacement sensitivities below the SQL. The basic principles of themost prominent
techniques that allow us to beat the SQL will be discussed in the following sections.

11.3 A Simple Graphical Tool to Understand Quantum Noise

11.3.1 The Quadrature Picture

In order to gain an intuitive understanding of quantum noise in interferometric mea-
surements, in the following we will introduce a rather simple, yet powerful graphical
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  (1a) shot noise, P = 10 kW
 (1b) radiation pressure, P = 10 kW
 (1c) quantum noise, P = 10 kW
 (2a) shot noise, P = 1 MW
 (2b) radiation pressure, P = 1 MW
 (2c) quantum noise, P = 1 MW
 (3) SQL, L=10km, m=10kg

(1c)

(2c)

(1a)

(2a)
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Fig. 11.3 The SQL (trace 3) and the quantum noise contribution for a simple Michelson interfer-
ometer, featuring 10km arm length and test masses of 10kg weight, for low (traces 1a–1c) and high
(traces 2a–2c) circulating power

tool, often formally referred to as the quadrature picture or informally sometimes
referred to as the ball on a stick picture.

In general we can describe an electric field E at a position r and at the time t by

E(r, t) = E0

[
a(r)e−iωt − a∗(r)e+iωt

]
p(r, t), (11.3)

where a is the complex amplitude of the electro-magnetic field, ω its angular fre-
quency and p the polarization. We can introduce the following two new properties:

X1(r) = a∗(r) + a(r) (11.4)

X2(r) = i
[
a∗(r) − a(r)

]
. (11.5)

X1 and X2 are usually referred to as the amplitude and phase quadrature, respectively.
Using the quadrature representation we can now rewrite Eq. 11.3 to express the
electromagnetic field in terms of the amplitude and phase quadratures:

E(r, t) = E0 [X1 cos(ωt) − X2 sin(ωt)]p(r, t). (11.6)
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In close analogy toEqs. 11.4 and11.5wecan formulate the so-calledquadrature
operators which are the foundation of a description of light fields in the realm
of quantum mechanics as

X̂1(r) = â†(r) + â(r) (11.7)

X̂2(r) = i
[
â†(r) − â(r)

]
, (11.8)

where X̂1(r) is the amplitude quadrature operator and X̂2(r) is the phase
quadrature operator.

11.3.2 The Ball on a Stick Picture

A common way to visualize the quadrature operators introduced above is the “ball
on the stick” picture. In the following we use a concept similar to that which has
been introduced for example by Chen [8, 9]. The left-hand side of Fig. 11.4 shows
an example of a coherent light field. Let us assume the light field consists of a huge
number of photons andwe continuously performmeasurements over a finite duration
to determine the light states. We can represent each measurement by a single dot
in the X̂1, X̂2 plane. If we perform a large number of measurements, then we can
measure the probability distribution of the light state, which is indicated by the “ball”
or “cloud” shown in Fig. 11.4. The solid arrow points at the center of that ball which
is the point in the X̂1, X̂2 plane featuring the highest probability to encounter the
field in this state if a measurement is carried out. So we can graphically represent
the coherent part of a light field (with a certain amplitude and phase) by the arrow
shown, while the uncertainty (or noise) of the field is represented by the ball; hence
the phrase ball on a stick. The quantum nature of light forbids us to reduce the area of
the ball below a certain limit, in the following referred to as the uncertainty limit. This
limit can be considered to be a direct consequence of the Heisenberg Uncertainty
Principle which also applies in a quantum-mechanical description of light.

While the uncertainty principle dictates the minimal area of the ball, we have
the freedom to manipulate its shape. One way to change the shape of the ball is a
technique with the figurative name squeezing [10]. The right-hand panel of Fig. 11.4
shows a light field that is squeezed in phase quadrature, i.e., the uncertainty of the
light state is reduced in one quadrature (in this case the phase quadrature), while at the
same time one has to pay the price of at least a proportionally increased uncertainty
in the orthogonal quadrature (in this case the amplitude quadrature). As we will see
later in Sects. 11.4 and 11.6, squeezed light can be used to improve the quantum
noise limited sensitivity of laser-interferometric gravitational wave detectors.
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Fig. 11.4 Left Graphical representation of a coherent state in the quadrature picture. Due to the
quantum nature of light the photons in a laser beam do not all have the same amplitude and phase,
but follow a probability distribution indicated by the ball or cloud. The minimal area of this ball
is limited by the uncertainty principle. Right Graphical representation of a squeezed state. While
the uncertainty in the phase quadrature is reduced, the uncertainty in the amplitude quadrature is
increased, so that the ball now takes the shape of an ellipse, i.e., the so-called squeezing ellipse

However, for the moment let us go back to the quadrature picture of a conven-
tional, unsqueezed light field and explore how our graphical tool relates to the strain
spectrum of quantum noise we previously discussed in Sect. 11.2. The strain spectral
density of quantum noise can simply be understood as an inverse signal-to-noise ratio
(SNR), or better as a noise-to-signal ratio, where “noise” refers to the amplitude of the
quantum fluctuations in the instrument and “signal” refers to the gravitational wave-
induced phase change of the light which manifests as the change in the differential
arm length scaled with the frequency-dependent signal gain in the instrument. The
lower the quantum noise at constant signal amplitude or the higher the signal ampli-
tude at a constant noise level, the lower is the quantum noise limited strain spectral
density of the interferometer, i.e., the better is the sensitivity of the instrument.

So, where do we find the quantum noise-limited strain spectral density in our
graphical picture? Let us have a look at Fig. 11.5: The second panel shows the uncer-
tainty ball of the light state entering our interferometric system of interest, but in
contrast to the previous section we have omitted the filling of the ball and just
represent its outline by a circle.2 In addition, we have drawn two arrows, E1 and
E2, representing the noise in the two orthogonal quadratures. Please note that for a
coherent state the noise in the two quadratures is completely uncorrelated which is
the reason why the two arrows here are displayed in different colors.

When a gravitational wave causes the length of an interferometer arm to change
or if a local disturbance moves the position of an interferometer mirror, then this
will cause a signal to show up in the phase quadrature, indicated in the third panel

2 Please note, that the circle does not indicate 100% of the distribution function, but the radius
usually corresponds to 1 σ .
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Fig. 11.5 Illustration of optomechanical coupling of quantum noise on suspended mirrors. The
input field is described by the uncorrelated noise contributions E1 and E2 in the amplitude and
phase quadrature, respectively. Without optomechanical coupling the noise contributions in the
phase and amplitude quadrature are uncorrelated. In case the optomechanical coupling becomes
dominant, fluctuations in the amplitude quadrature (E1) are converted into fluctuations in the phase
quadrature (ERP), thereby introducing correlations of the noise components in the two quadratures.
P is the optical power inside the system, m is the reduced mass of the ensemble of test masses, f
is the frequency, and X symbolises a test mass displacement or the equivalent strain

of our picture by the short arrow EGW. To measure our gravitational wave signal
we have to decide on a readout angle or quadrature angle. Obviously, in the simple
case displayed in the third panel of Fig. 11.5, we obtain the best SNR exactly reading
out the phase quadrature; while the magnitude of the noise is similar for all possible
readout angles the signal is maximal in the phase quadrature (vertical direction).
So let us assume for the moment that, if not stated explicitly otherwise, we always
choose a readout angle that perfectly coincides with the phase quadrature.

So far we have not included any optomechanical coupling in our picture, i.e.,
the situation displayed in the third panel of Fig. 11.5 is only valid for scenarios
with negligible radiation pressure (i.e., for high frequencies or very low ratio of
optical power and mirror mass). Let us now include the effects of quantum radiation
pressure acting on our suspended test masses. As illustrated on the left-hand panel of
Fig. 11.5, both phase and amplitude fluctuations are “impinging” onto the test mass.
While the phase fluctuations have no mechanical effect on the mirror, the amplitude
fluctuations couple via radiation pressure into position fluctuations of the test mass.
These position fluctuations then show up, similar to the GW signal, as an additional
component in the phase quadrature (see ERP on the right-hand panel of Fig. 11.5). The
key difference between the original fluctuations in the phase quadrature (E2) and the
fluctuations optomechanically coupled from the amplitude quadrature into the phase
quadrature (ERP) is the fact that now we have introduced correlated fluctuations in
the amplitude and phase quadrature. As wewill see in later sections, these introduced
correlations between E1 and ERP can be used for beating the SQL. However, for the
moment let us get back to the right-hand panel of Fig. 11.5: The magnitude of the
radiation pressure induced fluctuations in the phase quadrature, i.e., the length of
ERP, scales directly with the light power, is inverse to the mass of the mirror, and
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due to the response function of a suspended mirror to an external force inverse to the
frequency squared.

So, now we have completely assembled our graphical tool and it is time to check
whether it delivers useful results and predictions. Let us see if we can explain the
individual traces in Fig. 11.3. For the low power case (traces 1a–1c) at high frequen-
cies radiation pressure does not play any role and the sensitivity of the interferometer
is limited by the ratio of the shot noise in phase quadrature (E2) and the GW signal
(EGW). At the low frequency end the coupling of fluctuations from the amplitude
quadrature into the phase quadrature increases and the length of ERP showing up
in the phase quadrature becomes more and more dominant with lower frequency.
While the GW signal stays constant in frequency, the change of ERP significantly
reduces the SNR of our measurement and therefore decreases the sensitivity towards
the low frequency end of the measurement band. So, our picture allows us to explain
the shape of the overall quantum noise spectrum (trace 1c). What will happen if
we increase the optical power by a factor of 100? First of all the length of the GW
arrow will increase by a factor of 10. At the same time the length of E1 and E2 stays
constant, so that the overall signal-to-noise ratio at high frequencies increases by a
factor of 10, i.e., the quantum noise contribution is reduced by a factor 10. How-
ever, since ERP scales directly with the optical power, its length is now 100 times
longer. So, at low frequencies the noise is increased by a factor of 100, whereas the
length of the signal arrow EGW is only increased by a factor of 10, so that in total
we lose SNR at the low frequency end. Hence, our simple model predicts that for a
factor 100 power increase we will obtain a factor 10 improvement with respect to the
trace 1c at high frequencies and a factor 10 sensitivity reduction at low frequencies.
These predictions match exactly the shape of the trace 2c in Fig. 11.3. So, our simple
graphical tool has passed its first crucial test.

11.4 Squeezed Light Injection

In the previous section we already briefly discussed squeezed light and described it
in the quadrature picture (see right-hand panel of Fig. 11.4). The squeezing ellipse
can be characterized by three properties: (i) the squeezing level, i.e., ratio of diameter
of the “unsqueezed” ball and the length of the minor axis of the “squeezed” ellipse,
as well as the level of anti-squeezing which is given by the ratio of the ball diameter
and the length of the major axis of the squeezing ellipse; (ii) the orientation of
the squeezing ellipse in the quadrature plane, also referred to as squeezing angle;
and (iii) the frequency of the squeezed light field. Squeezed states of light can in
general be created by means of nonlinear optical effects, such as for instance an
optic parametric oscillator (OPO). During the past decade there have been major
advances in the generation of squeezed light for gravitational wave detectors such as
the demonstration of squeezing levels of more than 12dB [11] as well as squeezing
down to frequencies of a fewHz [12].Due to limited space in this chapterwewill omit
a detailed description of the generation of squeezed light states here. The interested
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Fig. 11.6 Quadrature picture for a simple Michelson interferometer with phase squeezing (right)
and without squeezing (left) as reference

reader can find good overviews of the technical principles involved in the generation
of squeezed light in [13, 14].

Let us now investigate how the applicationof squeezing can improve the sensitivity
of a GW detector. Assuming we have produced sufficiently strong squeezing at
the desired frequency, then the only other parameter we need to decide on is the
orientation of the squeezing ellipse. If we want to increase the sensitivity of our
GW detector at high frequencies then we should inject phase squeezing, i.e., the
minor axis of the squeezing ellipse is oriented in parallel to the phase quadrature.
Figure11.6 illustrates the application of phase squeezing. The ball is squeezed so
that E2 is shortened and E1 becomes longer. Since the magnitude of the GW signals
stays constant, at high frequencies we can improve the signal-to-noise ratio and
therefore improve the sensitivity of our interferometer. However, as indicated in
the third panel of Fig. 11.6, at low frequencies the noise in the phase quadrature is
strongly increased when applying phase squeezing, because the increased amplitude
fluctuations originating from the anti-squeezing couple via radiation pressure into the
phase quadrature (ERP). So, whereas the GW signal is independent of the squeezing
level, the quantum noise at low frequencies increases with the application of phase
squeezing and therefore overall we lose sensitivity at the low frequency end of the
spectrum.

However, if we are keen to improve the interferometer sensitivity at low frequen-
cies, this can also be accomplished by the injection of squeezed light. In this case we
have to apply amplitude squeezing, so that the length of E1 is reduced and therefore
also the radiation pressure noise coupling into the phase quadrature decreases. The
consequence of this is improved low frequency sensitivity at the expense of reduced
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Fig. 11.7 Improvement of the
GEO600 sensitivity achieved
by the injection of phase
squeezing at the output port of
the interferometer
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sensitivity at high frequencies, because due to the anti-squeezing in that case E2 will
be longer than in the unsqueezed case. Hence, we see that the application of purely
phase-squeezed or purely amplitude-squeezed light only allows us to improve the
sensitivity over a certain part of the detection band. From a qualitative point of view
such squeezing in the ideal case (i.e., if the squeezing level is exactly the same as the
anti-squeezing level) allows exactly the same sensitivity variations as is possible by
increasing or decreasing the light power inside the interferometer.

It is not possible to surpass the SQL by application of purely phase-squeezed
or purely amplitude-squeezed light.

GEO600 was the first large-scale GW detector to routinely improve its sensitivity
by the application of squeezed light [15]. The implemented squeezing source is able
to produce phase squeezing of almost 10dB, which would be equivalent to a factor 3
improvement in strain sensitivity. However, due to high optical losses (in particular
in the output mode cleaner) the obtained sensitivity improvement is only about a
factor

√
2. Please note that at low frequencies GEO600 is limited by seismic and

control noise, masking the expected increase of quantum noise at the low-frequency
end which is a consequence of the injection of phase squeezed light.

The experience with long-term injection of squeezed light states at GEO600
[16] together with the recent tests of squeezed light in the Hanford 2km inter-
ferometer [17], transform squeezing from “science fiction” to an established
tool for gravitational wave detection.
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Fig. 11.8 Left panel Schematic layout of a simple Michelson interferometer with homodyne read-
out. The output port is kept on destructive interference so that only the signal can leave towards the
photodiodes, where it beats with light picked off before the interferometer. In order to avoid open
ports a homodyne detector consisting of a pair of photodiodes is used. Right panel Illustration of
radiation pressure noise cancellation via homodyne readout

11.5 Homodyne Readout and Variational Readout

So far we have always assumed that we would read out our interferometer exactly in
the phase quadrature.Naively thinking, this choice seems tomakemost sense because
this gives us the strongest GW signal. However, as we will see in this section it can
be beneficial to use a different readout angle, i.e., to readout a superposition of phase
and amplitude quadrature.

From a technical point of view it is possible to vary this readout angle by utilizing
a homodyne readout scheme as illustrated on the left-hand part of Fig. 11.8. Instead
of using DC-readout [18, 19] in which a deliberate offset is introduced to make
a fraction of the carrier field leak out through the output port forming the local
oscillator for the gravitational wave signal. We can also pick off some light before
the main interferometer and guide it to the output port where it can serve as local
oscillator. The latter scheme is referred to as “homodyne readout.” By shifting the
phase of the local oscillator with respect to the light leaving the main interferometer,
for instance by microscopically changing the local oscillator path length, one can
choose whether to read out the amplitude quadrature, the phase quadrature, or an
arbitrary superposition of these.

So, how does the homodyne readout help us to reduce quantum noise? In order to
understand this our graphical tool comes in handy again, as displayed on the right-
hand panel of Fig. 11.8. Recall that the length of ERP depends on the observation
frequency. However, the length of E1, which is correlated with ERP and represents
the noise in the amplitude quadrature is not frequency dependent. This means that
for every frequency there is a specific readout angle for which the projections, E ′

RP
and E ′

1, of the two correlated arrows (ERP, E1) onto the readout axis have exactly
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Fig. 11.9 SQL and simulated
quantum noise of the AEI
10m sub-SQL interferometer
for different readout angles.
Using homodyne readout it
is possible to exactly cancel
radiation pressure noise at one
frequency and to surpass the
SQL in a narrow frequency
range. The figure is taken from
[20]
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the same length. Since E ′
RP and E ′

1 are correlated but point in opposite directions
they exactly cancel out; thus our sensitivity is determined by the ratio of the lengths
of the E ′

GW and E ′
2. In this case we have managed to cancel completely the radiation

pressure noise at our measurement frequency. Please note that the ratio of the E ′
GW

and E ′
2 stays constant for any readout angle different from pure amplitude quadrature

readout.
The experimental demonstration of radiation pressure noise cancellation via

homodyne readout is one of the goals of the AEI 10m sub-SQL interferometer [21,
22]. Figure 11.9 shows the simulated quantum noise for the AEI-10m interferome-
ter for 4 different readout angles [20]. Trace 2 represents the standard case of pure
phase quadrature readout. We see a flat shot noise spectrum at frequencies above a
few 100Hz (plus the additional roll-off at 10kHz originating from the limited band-
width of the arm cavity), and at low frequencies we see the characteristic increase
in quantum noise due to radiation pressure noise, following a 1/ f 2 characteristic.
The other three traces show the quantum noise for a certain readout angle. As one
can see it is possible to cancel the radiation pressure noise at one frequency and to
dip down below the SQL achieving exactly the same peak displacement sensitivity
as in the shot noise limited frequency regime of trace 2, i.e., the potential sensitivity
improvement is limited by shot noise which was buried under quantum radiation
pressure noise before.

A simple homodyne readout is one of the possibilities to achieve narrowband
sub-SQL sensitivities.

Let us have a closer look at trace 4 in Fig. 11.9 and try to better understand its shape.
We have already explained that we can completely cancel radiation pressure noise
at one frequency, in this case 100Hz. However, at frequencies below and above this
“sweet spot” quantum noise is only partly reduced or even increased. Below 100Hz
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E ′
1 is shorter than E ′

RP and therefore the cancellation of the correlated noise terms
works only partly. Finally we should explain why the noise represented by trace 4
is higher than the trace 2 for all frequencies above a few 100Hz where the trace
2 is made up of shot noise. At these high frequencies E ′

RP is of negligible length.
However, due to the rotated readout angle amplitude noise from E1 is mixed into our
readout signal (E ′

1), so that the sensitivity is determined by the ratio of E ′
GW and the

sum of the uncorrelated noise contributions E ′
2 and E ′

1.

So, we have seen that changing the readout quadrature (homodyne readout)
allows us to cancel radiation pressure noise at a single frequency at the expense
of reduced sensitivity at high frequencies. If it would be possible to change
the readout angle in a frequency-dependent way, then it should be possible
to cancel radiation pressure noise at low frequencies, i.e., where it dominates,
without introducing additional noise at high frequencies. This technique, called
variational readout can actually be realized by making use of the dispersion of
the light reflected from a cavity [23], in analogy to the generation of frequency-
dependent squeezing discussed in the following section.

11.6 Frequency-Dependent Squeezing

We have seen above that the injection of simple amplitude or phase squeezing can-
not improve the sensitivity over the whole frequency range and therefore with such
squeezed light states it is not possible to surpass the SQL. However, if we were to
manage to change the squeezing angle of the injected light in a frequency-dependent
way, then it should be possible to obtain a reduction of quantum noise at all frequen-
cies, which in turn would allow broadband measurements with a sensitivity below
the SQL.

Using our graphical tool, in Sect. 11.3.2 we learned that our sensitivity is limited
at high frequencies by shot noise in the phase quadrature, while at low frequencies
the dominant noise term originates from amplitude fluctuations coupled to the phase
quadrature via radiation pressure-induced mirror motion. Hence, if we could rotate
the squeezing ellipse as a function of the detection frequency to always provide
squeezing in the optimal quadrature we could reduce quantum noise in the entire
detection band.

Injection of squeezed light for which the squeezing angle is a function of
frequency is in the following referred to as frequency-dependent squeezing.
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Fig. 11.10 Left Illustration of frequency-dependent squeezing using the quadrature picture. Right
Quantum noise of a simple Michelson interferometer with pure phase squeezing as well as
frequency-dependent squeezing. Please note that even though theoretically a squeezing factor of
10 is possible, in real interferometers optical losses and control noise of the squeezing will degrade
the sensitivity improvement. It is assumed that in future GW detectors quantum noise reduction by
squeezing injection is limited to a factor of 3 to 4 [24]

The two left panels of Fig. 11.10 illustrate frequency-dependent squeezing in the
quadrature picture. For all frequencies we readout the phase quadrature. At high
frequencies we apply phase squeezing and obtain a quantum noise reduction exactly
the same as for injection of frequency-independent phase squeezing. In contrast to
this, towards the low frequency end of the detection bandwe arrange for the squeezing
ellipse to continuously rotate from phase quadrature squeezing to squeezing in the
amplitude quadrature. The key here is that the length of the original E1 arrow in
the amplitude quadrature reduces, which results in less noise coupled to the phase
quadrature via radiation pressure-induced mirror motion. Therefore, also the length
of the ERP arrow in the phase quadrature is reduced.As a consequence the SNRat low
frequency is larger than in the unsqueezed case (compare to left panel of Fig. 11.6).
The right-hand plot of Fig. 11.10 compares the quantum noise spectrum of a simple
Michelson interferometerwithout squeezing (trace 2), pure phase squeezing (trace 3),
and frequency-dependent squeezing (trace 4), where the gray ellipses at the bottom
of the plot illustrate the optimized orientation of the squeezing ellipse of the injected
squeezing at different frequencies in the detection band.

Frequency-dependent squeezing can provide a broadband reduction of quan-
tum noise significantly below the SQL.

Frequency-dependent squeezing has been identified as one of the key technologies
for the Einstein Telescope [25, 26] as well as for upgrades to the Advanced LIGO
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Fig. 11.11 Left Cartoon of the optical layout of the ET low-frequency interferometer, which uses
detuned signal recycling and exploits the dispersion of the squeezed light being reflected from two
filter cavities to provide squeezing at the optimal frequency-dependent angle for all frequencies.
Right Quantum noise for an ET low-frequency interferometer without squeezing (trace 1), with 6dB
of frequency-dependent squeezing injected into an ideal interferometer (trace 3) and frequency-
dependent squeezing considering realistic losses (trace 2)

instruments [27, 28]. Figure 11.11 illustrates the implementation of frequency depen-
dent squeezing into an ET low frequency interferometer. The squeezed light leaving
the squeezing source is reflected from two slightly differently detuned cavities. The
dispersion of the detuned cavities introduces the frequency dependent rotation of
the squeezing ellipse. Afterwards the squeezed light is injected into the output port
of the interferometer. For the squeezing injected into the detection port the inter-
ferometer acts as a reflector. The injected squeezing leaves the interferometer and
co-propagates with the GW signal towards the detection stage where the squeezed
output field is converted into an electronic signal.

From the technical point of view the key difficulties in realizing frequency-
dependent squeezing are the design and low-noise operation of the filter cavities with
the required bandwidth and low enough losses in order not to destroy the squeezing.
In the case of the ET low-frequency interferometer the required bandwidth of the
filter cavity is similar to the bandwidth of the signal recycling. As one can see from
the right-hand plot of Fig. 11.11, for an ET low frequency interferometer the signal
recycling bandwidth is about 10Hz, which in turn requires to employ filter cavities
of the same finesse and length as the main interferometer. If shorter filter cavities
are preferred it is necessary to increase the finesse which, depending on the chosen
length, may take on extremely high values.

In high-finesse filter cavities the presence of even very low optical losses may
strongly degrade the squeezing strength of the generated frequency-dependent
squeezing, as is illustrated in Fig 11.11. Whereas trace 3 shows the quantum noise
level for filter cavities without any losses, trace 2 represents the quantum noise for
10km long filter cavities with 75ppm round-trip loss. Why are losses so important,
even though we only use the filter cavities in reflection? The problem is that some
of the squeezing (mainly at and around the resonances of the detuned filter cavities)
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Fig. 11.12 Illustration of the
optical spring principle. In
a cavity tuned slightly away
from its resonance, the optical
power strongly depends on
the microscopic position of
the mirrors or more accurately
the cavity length. If one or
both of the cavity mirrors
are suspended, then they
are susceptible to radiation
pressure forces, which depend
on the position of the mirror.
Radiation pressure, together
with gravity, acts as a linear
restoring force, resembling
the dynamics of a mechanical
spring

actually enters the filter cavities and hence is subject to internal optical loss. Loss
in this context means that a fraction of the squeezed field is lost and replaced by a
coherent unsqueezed state. For constant optical loss per filter cavitymirror, the higher
we choose the finesse of the filter cavity, the stronger is the squeezing degradation.

11.7 Optical Springs and Optomechanical Rigidity

An optical spring is a fascinating physical phenomenon, which allows to connect
two or more suspended mirrors with springs completely made out of photons (also
compare Chap.12 of this book). These springs can be made kilometers long and
stiffer than diamond [29, 30], while at the same time, in contrast to any mechanical
spring, they are somewhat free from classical noise.

So how canwe create an optical spring? The basic principle is shown in Fig. 11.12:
in a detuned Fabry-Perot cavity featuring high optical power and at least one sus-
pended mirror, the equilibrium position of the suspended mirror is given by radiation
pressure trying to push the mirrors further apart and gravity pulling the suspended
mirror to shorten the cavity. Now, let us consider the case labelled “optical spring” in
Fig. 11.12 and let us try to push the right mirror away from equilibrium. In case we
push the mirror to the right two things will change: first, gravity will try to pull the
mirror back towards its equilibrium and secondly as the cavity length has increased
the cavity power will decrease, as the cavity is pushed further away from resonance.
Therefore, the radiation pressure force will decrease. Both these effects will cause
the mirror to move towards the left back into its equilibrium position. Now let us
try to push the mirror towards the left. As this means that we shorten the cavity and

http://dx.doi.org/10.1007/978-3-319-03792-9_12
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move closer to resonance, the cavity power increases and the increased radiation
pressure force pushes the mirror back towards the equilibrium. So, we have a sys-
tem exhibiting a linear restoring force, which can in simple terms be described by
Hooke’s law F = −kx , where F is the superposition of forces acting on the mirror,
x is the distance of the mirror from its equilibrium point, and k is the effective spring
constant.

In a cavity with two suspended mirrors connected by an optical spring, when
we push one mirror (and keep it fixed so that it cannot return to its original
position), then the other mirror will move exactly by the same amount, so that
the pathlength for the light stays constant. Using this phenomenon one can
control the position of a mirror over several kilometers of distance, just by
acting on the second cavity mirror.

There are twomore interesting aspects about optical springsworth to bementioned
here: When setting the cavity operation point onto the opposite slope of the Airy
peak (labeled as “anti-spring” in Fig. 11.12), then it is easy to see that there will be
an optical anti-spring, i.e., the radiation pressure force acts in the same direction
as a mirror displacement. The other interesting aspect is related to the damping of
optical springs: When changing the cavity length, the optical power does not settle
immediately at its new value, but it takes some time for the light in the cavity to build
up or relax. This kind of “delay” causes the optical spring to feature anti-damping.
The anti-damping can render optical systems unstable if no counter measures are
applied. Two ways have been proposed to avoid this problem: First of all one can
use active feedback to introduce damping or one can use two different springs acting
on the same system and combining them in a way such that the result is an effective
spring with positive damping [31].

So, how can optical springs actually help to surpass the SQL? In this respect
two concepts are of interest. First of all optical springs play an important role in
the context of advanced GW detectors employing detuned signal recycling [32],
which has already been discussed in detail in Chap.3 of this book. The other class of
concepts employs optical spring systems to act as transducer of the GW. Figure 11.13
shows the simplest variant of such a transducer configuration, a so-called optical bar
[33]. Two detuned cavities with a heavy end mirror each (EM1 and EM2) share a
lightweight mirror (MR) so that MR is connected via optical springs to both end test
masses. In case a GWwith a frequency below the optical spring frequency is incident
on the detector perpendicular to the plane spanned by the interferometer arms, one
of the arms will shrink, while the other will stretch. If you think about this in terms
of a system of coupled mechanical springs, then this means that one spring will be
squeezed, i.e., it will push on MR, while the spring in the perpendicular arm will be
stretched and pull onMR, so that as a consequence in the presence of aGW themirror
denoted MR will move in its local frame. This local movement of MR can then be
read out relative to a local reference. The trick of the optical bar topology is that this

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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Fig. 11.13 Simplified optical
layout of an optical bar. A
lightweight mirror (MR) is
connected via optical springs
to two heavy end mirrors
(EM1 and EM2). If there
occurs a change in the differ-
ential armlength (e.g., due to
GW), MR is displaced with
respect to its local frame. A
separate local readout can then
be used to readout the GW
signal

concept allows to separate the GW transducer from the readout process and hence
gives the possibility to optimize both parts of the optical bar system independently
to minimize quantum noise in the measurement. More advanced and more complex
configurations involving optical springs, such as optical levers [34, 35] and local
readout configurations [36] have been proposed in the literature, but due to lack of
space will not be discussed here.

11.8 Speedmeter Topologies

We have seen above that Michelson interferometers are limited by the SQL. The rea-
son for this is that quantum theory imposes a limitation on how accurate subsequent
position measurements can be carried out. This is a direct consequence of the fact
that position measurements at different times x(t), x(t ′) do not commute, i.e.,

[
x̂(t), x̂(t ′)

] �= 0. (11.9)

However, already in the 1930s John von Neumann realized that for some sys-
tems it is possible to find observables which are not limited by an uncertainty
relation [37]. For instance in systems where the momentum is conserved you
can in principle measure the momentum p of an ensemble of mirrors contin-
uously with arbitrary precision since

[
p(t), p(t ′)

] = 0. (11.10)

In 1990, Braginsky and Khalili proposed this concept for application in bar detec-
tors, whichwere the predecessors of laser-interferometric GWdetectors [38]. Hence,
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Fig. 11.14 Simplified optical layout of a Michelson interferometer with arm cavities (top left) and
a Sagnac interferometer with arm cavities (bottom left). Whereas in the case of the Michelson inter-
ferometer all photons only travel through one of the arms, in the case of the Sagnac interferometer
all photons travel through both arms. Transfer functions from differential arm length to signal on
the main photo detector (top right). Quantum noise limited effective “displacement” sensitivity for
a Michelson and a Sagnac interferometer (bottom right)

for detectors of this type, in which the velocity would be measured instead of the
position of the test mass, the name “speed-meter” was coined. Later, the concept
was also suggested for application in interferometric GW detectors.The first speed-
meter interferometer configuration was based on a Michelson interferometer with
a so-called shloshing cavity at the output port the interferometer. With the aid of
this shloshing cavity the conventional Michelson interferometer is transformed into
a speedmeter [39]. In the year 2003, Chen demonstrated in a theoretical work that a
Sagnac interferometer naturally constitutes a speedmeter [40] .

In order to understand why a Sagnac interferometer is a natural representative of
the class of speedmeters we should have a look at the optical layouts of a Michelson
interferometer and a Sagnac interferometer as displayed in the two left-hand panels
of Fig. 11.14. In a Michelson interferometer, depending on whether the photons
in the input laser beam are transmitted or reflected, the light either travels along
the horizontal or the vertical arm. It is important that when the returning photons
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interfere at the beam splitter, each photon has only sensed the mirror positions of
a single arm. Contrasting this, in a Sagnac interferometer all photons travel along
both arm cavities, i.e., they sense the positions of all relevant mirrors. Only after all
photons have passed through both arm cavities the light interferes again at the output
port of the beam splitter. This means that the light initially transmitted through the
beam splitter measures the position of the end mirrors of the horizontal arm at a time
t1, while it measures the position of the end mirrors in the vertical arm at a slightly
later time t2. The light initially reflected at the beam splitter measures the position
of the end mirrors of the vertical arm at a time t1, while it measures the position of
the end mirrors in the horizontal arm at a slightly later time t2. So, each of the end
mirrors is sensed at two different times, or, in other words, we measure the velocity
of the end mirrors, but not their absolute position.

As the Sagnac speedmeter is not sensitive to absolute displacement, its response
to absolute differential arm lengths goes down to zero. This can be seen in the top
right plot of Fig. 11.14. While the Michelson has a flat response at low frequencies,
the Sagnac response falls linearly towards lower frequencies. So, if the signal at low
frequencies is smaller in the Sagnac compared to the Michelson Interferometer, how
can the quantum noise limited sensitivity be better for the speedmeter?

Please recall that the achievable sensitivity is related to the SNR. For the
Michelson the signal is flat, but the radiation pressure noise is present and
increases quadratically towards lower frequency. In contrast, in the Sagnac
speedmeter the signal decreases linearly towards low frequency, while the
noise is flat because the radiation pressure noise is mostly cancelled, resulting
in a significantly reduced and constant value of the radiation pressure noise
at low frequencies. So, in conclusion the Sagnac speedmeter wins in terms of
low frequency sensitivity over the Michelson.

The slight bend in the Sagnac sensitivity trace below 10Hz (compare Fig. 11.14)
originates from the presence of optical losses in the considered configuration.

11.9 Challenges Towards Sub-SQL Interferometry

It is a fabulous achievement that the advanced GWdetectors such as Advanced LIGO
are on the brink of reaching a sensitivity limited by the Heisenberg Uncertainty Limit
for 40kg mirrors! However, further improvements are possible since the SQL does
not really pose an ultimate limit. Above we have introduced, and briefly discussed,
a wealth of concepts available to tackle the SQL and eventually surpass it.

It is important to point out that all of the discussed concepts are not exclusive
in terms of their application, but many of them can be combined to maximize the
sensitivity improvement. For instance, already at the moment GEO600 uses phase
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quadrature squeezing in combination with signal recycling. The baseline design for
ET as well as upgrades to Advanced LIGO are likely to employ signal recycling with
frequency-dependent squeezing, while at the same time speedmeters with squeezing
and/or signal recycling have been proposed as alternatives to the well-established
Michelson interferometers.

So far pure phase squeezing is the only example of a technique discussed in
this chapter that has already been demonstrated in a km-scale GW detector. All
other concepts have so far only been analyzed theoretically. Careful experimental
verification of these techniques in table-top experiments and in suspended low-noise
prototypes is urgently required to have these technologies available for installation in
the futureGWdetectors, to outwit quantummechanics andmeasurewith sensitivities
below the Standrad Quantum Limit.
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