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Foreword

Detecting gravitational waves is still a dream. After several years of commis-
sioning of Virgo, and after reaching its target sensitivity, we know that a gain of
roughly one order of magnitude is still necessary, so that a new detector called
‘‘Advanced Virgo’’ is in construction. Gravitational waves are not only a unique
messenger coming from extreme regions of the universe, but also, it is well known,
an experimental challenge. Starting from the very beginning, with resonant bars, if
a gravitational signal is detected in 2015, it will crown one century of General
Relativity theoretical studies, and half a century of technological developments.
The coupling coefficient between matter energy and waves is so tiny, and the
amplitude of waves so weak that any spurious physical effect negligible in an
ordinary context must be carefully assessed: shot noise, frequency noise, residual
seismic activity, thermal noise, stray light, and other microscopic effects are
however much larger than the signal if no care.

This particular circumstance has defined since years the matter now called
‘‘experimental gravitation.’’ The lessons presented in this book reflect the various
fields that proved necessary to allow some hope for a first historical detection. We
hope that for the young searchers who took part in this school, it will be some day
classical science.

Jean-Yves Vinet
Virgo spokesperson
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Preface

Why this book? Whom is it intended for? How should the reader use it? These are
the questions a preface is called to answer.

Let us start by pointing out what this book is not: it is not an introduction to the
theory and basics of gravitational waves (GW), that our reader should have already
acquired. Any recent textbook on General Relativity has a chapter on GW gen-
eration, propagation, and detection. Besides, there are excellent monographs on
GW, from the books of P. Saulson (unfortunately out of print) and M. Maggiore to
the reviews of D. Blair and the thorough online overview of B. Schutz and
Sathyaprakash [1–5].

However, very little is required to read and fully exploit the contents of this
book: the reader should be familiar with the fundamentals of GW detection (not
much more than the very basic h(t) ¼ dL(t)/2L) and be at ease with concepts like
interferometers and noise spectral density, signal-to-noise ratio and chirp.

This book is not an overview of all current experimental efforts to detect GW:
we cover neither Pulsar Timing Array, a promising technique to detect sub-lHz
radiation, nor Laser Interferometer Space Antenna, the so-called LISA concept for
a space mission that will fly in the early 2030s, placing a Gm long interferometer
in a heliocentric orbit to observe GW in the 1 mHz-1 Hz frequency range. This
book only deals with the present and the future of ground-based, km-long inter-
ferometers, aiming at detecting GW in the 10 Hz–3 kHz range. We did not attempt
to cover the advances in data analysis, that would deserve a book on its own [6].

What is then the goal of this book? Its goal is to be a guide for both new and
experienced scientists that decide to venture in the field of experimental search for
gravitational radiation. It aims to be a handbook for the physicist who wants to
join, or is already a member of one of the large collaborations now engaged in the
construction of ground based, second generation, GW detectors; Advanced LIGO
in the USA, Advanced Virgo and GEO in Europe, KAGRA in Japan. It aims to be
a reference book on how to tackle the huge, impressive technological challenges
that can intimidate even the experienced experimentalists.

The past of gravitational radiation is well known: it is part of scientists’
common knowledge since the papers [7, 8] of 1916 and 1918, almost a century
ago, where A. Einstein himself worked out the wave solution to his field equations,
passing through the debate of the 1950s on the detectability of these waves to the
first attempts of building a detector and the indirect, but indisputable evidence of
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GW from observation of binary pulsars [9, 10]. Resonant antennas, where the
vibration of a massive cylinder is to be detected against thermal and readout noise,
held the scene from the early 1960s, with the pioneering work of J. Weber, to the
cryogenic apparata of the 1980s and finally the ultra-cryogenic detectors (Nautilus,
Auriga, Minigrail) of the 1990 and early 2000s, when they were finally surpassed,
both in sensitivity and bandwidth, by the large interferometers. Interferometers
themselves have a long history of technological development: from the first, table-
top, seed work of Forward, Miller, and Moss [11] in 1971, they have grown in size,
sensitivity, and complexity, passing through the 30 or 40 m of arm length of the
prototypes in Garching, Glasgow, and Caltech, to the 600 m of GEO600, still
active as a test bench for new technologies. The last 15 years have seen the
construction, commissioning, and operation of the km-scale interferometers, some
of the largest research infrastructures in the world: the scientific teams have grown
from local groups of a dozen scientists to international collaborations of several
hundreds people; the two 4 km observatories of LIGO, in the USA and the 3 km
Virgo detector, in Italy (a French–Italian joint venture, now grown to a European
collaboration with The Netherlands, Poland, Hungary) have observed the cosmos,
producing relevant upper limit science (an overview of these results can be found
in Chap. 2) but missing the ‘‘smoking gun’’ of an evidence for direct detection of
GW. This task is thus passed on to the next generation of devices, the advanced
detectors, now under construction.

The present of the experimental search of GW is what this book is mainly
about: after several years of successful data taking, the large interferometers have
been decommissioned and dismantled, and the construction of the advanced
detectors has begun within the same infrastructures (the end buildings and the 3 or
4 km long vacuum system), both on the two LIGO sites and at Virgo. This ‘‘second
generation’’ is characterized by physical and technological advances that are
described in detail in the Chaps. 3-11 and will provide a sensitivity ten times
better: it is common belief that direct detection of GW cannot be missed by these
detectors.

And finally the future of GW detectors: in the short term, the years 2014-2017,
will see the commissioning and then operation of Advanced LIGO and Advanced
Virgo and, most likely, will deliver a direct detection, sought after and relentlessly
chased for over 50 years. In 2018, according to optimistic schedules, also KAGRA
will join the detectors’ network: a Japanese effort that will fold into an Advanced
detector some features, like cryogenics and underground location, typically con-
sidered as further, delayed improvements, so that we can call it a ‘‘second and half
generation.’’ More detectors may appear in the coming years: LIGO-India, a joint
venture of LIGO and several Indian scientific institutions (Indigo) is, at the
moment of writing, seriously considered by funding agencies.

For the not-so-near-future, running over into the next decade, a third generation
of detectors, again ten times more sensitive, is already being conceived and
designed: the last two chapters describe this long-term effort, that should move the
status of GW observations from detection to routine astronomy. The Einstein
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Telescope will probably complement the wealth of physics information that we
can expect from a LISA space mission.

This book springs as a by-product of a specialized course, held at the EGO-
Virgo site in May 2012, that focused on the science and technology that are at the
core of the so-called Advanced Interferometers. The course, that I was called to
direct, attracted many enthusiastic students and a dozen of excellent lecturers:
there was immediately a large consensus and interest in collecting the lecture notes
in a publication, that could serve as a guide for future schools and as a handbook
for any GW experimentalist. The table of contents of this book closely retraces the
course syllabus, and all of the authors (with one exception) had lectured the same
topic in the course. Each one of them is an experienced specialist, extremely
knowledgeable, and deeply involved in the development that she or he discusses,
chosen among the very best scientists in that particular field. Each of their con-
tribution has been thoroughly revised both by the book editor and by the internal
refereeing system of the author’s own scientific collaboration (Virgo, GEO, or
LIGO) In this respect, we are confident that we are providing contents that are
rigorous, nontrivial and up-to-date.

Acknowledgments The Virgo-Ego Science Forum (VESF) has provided the
framework for the course and this book. The VESF coordinator Valeria Ferrari had
the correct intuition of diversifying the VESF Schools (we now have Introduction
to GW, Theory, Data Analysis, Advanced Detectors…) and was instrumental in
pushing forward the idea that schools are a pivotal tool to approach new gener-
ations of young researchers and to convey them toward (and integrate into) the
GW community. VESF is closely dependent on its parent institutions: the EGO
observatory consortium and the Virgo Scientific Collaboration. We are therefore
grateful to Federico Ferrini, the EGO Director, and to the Virgo spokesperson
Jean-Yves Vinet, for providing hospitality, motivation and financial support for the
school and for supporting this project. Thanks to M.me Sevèrine Perus of EGO
who handled the school logistic. A special thanks goes to all the authors who bore
with my periodic reminders and with the pressure to deliver their manuscripts; but
to some of them I am particularly grateful: Gabriele Vajente lead the way, sub-
mitting two chapters before we even considered writing this book. Andrea Viceré
and Catherine Nary Man filled in for unexpected defections with very little notice,
Giovanni Losurdo was the key adviser for the syllabus. Finally, thanks to all the
reviewer who contributed, through accurate and critical reading, to further improve
the quality of each chapter…and to the Springer editors, for their patience during
gestation of this work.

An exciting time is ahead of us all, gravitational waves hunters: the Holy Grail
of detection has never been so likely and so near!

Rome, October 2013 Massimo Bassan
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Chapter 1
Towards Gravitational Wave Astronomy

Giovanni Losurdo

Abstract This chapter is meant to introduce the reader to the forthcoming network
of second-generation interferometric detectors of gravitational waves, at a time when
their construction is close to completion and there is the ambition to detect gravita-
tional waves for the first time in the next few years and open the way to gravitational
wave astronomy. The legacy of first-generation detectors is discussed before giving
an overview of the technology challenges that have been faced to make advanced
detectors possible. The various aspects outlined here are then discussed in more detail
in the subsequent chapters of the book.

1.1 Introduction

This book sees light at a time when a new generation of interferometric detectors,
capable in principle to expand the explorable volume of the universe by three orders
of magnitude, and thus to start the era of GW astronomy, is being realized. Virgo
and LIGO have stopped taking data in 2011, and started the decommissioning and
then the construction of Advanced Virgo and Advanced LIGO. Thus, no new science
data will be available until 2015. In the GW community, this period with no data is
usually known as the crossing of the desert: a tough time when scientists get ready
to discover a new promised land, working on the prototyping and construction of the
new detectors, preparing their commissioning and the data analysis for the upcoming
years. A good time to focus on the technology challenges that we are facing in the
realization of such new detectors (and even beyond), which are discussed in this
book. This first chapter aims to provide a reference frame for the following chapters:
it starts with a brief summary on what has been achieved by the first-generation

G. Losurdo (B)

Istituto Nazionale di Fisica Nucleare (INFN)–Sezione di Firenze, Via G. Sansone, 1,
I-50019 Sesto Fiorentino, FI, Italy
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2 G. Losurdo

detectors and then discusses the main technology novelties, pointing to the rest of
the book for a more exhaustive description.

1.2 The Legacy of the First-Generation Interferometric Detectors

The existence of gravitational waves (GW) was predicted by Albert Einstein almost
one century ago [1]. The effort to detect GW was initiated by Joe Weber, half a century
ago, using resonant bars at room temperature. For several decades the resonant bars
have been used, improving the technology and the sensitivity and establishing, for
the first time, an observing worldwide network. In the first decade of the twenty-first
century, the interferometric detectors of GW have overcome the resonant detectors
demonstrating a big improvement in sensitivity and bandwidth. The operation of the
kilometer-scale ground-based interferometers LIGO [2] and Virgo [3] has proven
that such a technology is now suitable and reliable to realize a worldwide network
of wideband detectors with duty cycle and sensitivity sufficient to aim and open the
way to the GW astronomy (for a more complete description and bibliography of the
history of GW research see [4] and references therein).

No discovery has been reported after some years of operation. However, interest-
ing science results have been collected and a significant legacy has been left by the
so-called first-generation detectors to the science community:

• Infrastructure: The relevant investments undertaken to create the infrastructure
hosting the first-generation interferometers will continue to pay off, since the same
facilities will host the advanced interferometers: the LIGO facilities (Hanford,
WA and Livingston, LA), the Virgo site (Cascina, Italy), and GEO600 (Hannover,
Germany) [5]. However, the expansion of the network requires the creation of new
observatories. The construction of the underground 3 km detector KAGRA has
been funded in Japan [6] and the possibility to move one of the three Advanced
LIGOs to India is being explored.

• Sensitivity and robustness: LIGO and Virgo have reached or approached the design
sensitivity over the whole frequency range. Some important upgrades have allowed
us to enhance the detectors and go beyond the initial design sensitivity. Most of the
noise contributions were understood and modeled. The reliability and robustness
achieved has been quite impressive (given the complexity of these machines): all
detectors could finally run with duty cycles of ∼80 % or larger. These achievements
have eventually demonstrated the technology of the interferometric detectors
of GW.

• Commissioning experience: Reaching the design sensitivity required about 5 years
of commissioning work (alternated to data taking periods). The sensitivity (see
Fig. 1.1) was improved progressively: the interferometric detectors were new
instruments, never before tested in such extreme configurations. Commissioning
teams had to learn how to operate and control the interferometers, cope with optical
configurations of increasing complexity, cope with thermal effects and scattered
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Fig. 1.1 The evolution of the Virgo sensitivity. The black solid lines are the design sensitivities of
the initial Virgo and the enhanced Virgo+ configuration (Credit The Virgo Collaboration)

light, identify unknown sources of noise, and fix the detectors when unexpected
problems emerged.

• Technologies for advanced detectors: Some technologies relevant for the second
generation have been tested in most recent years on Virgo, LIGO, and GEO600,
allowing debugging and further developments which will pay off in the commis-
sioning and operation of the advanced detectors.

• Data analysis: An intense effort has been pursued to analyze the data of the first-
generation detectors, leaving a big heritage in terms of methods, software, and
expertise which will be very useful to analyze the data of the advanced detectors.

• Network: During the years the GW community became more and more aware
that joint observation is necessary to increase the confidence in the events and the
amount of science that could be extracted from them. The creation of a worldwide
network of GW observatories is the cornerstone for the start of the GW astronomy.

• Multi-messenger observations: In addition to establishing a network, the GW com-
munity has advanced further by initiating a multi-messenger approach, signing
memoranda of understanding for joint observation with optical and radio tele-
scopes, gamma and X-ray satellites, and neutrino detectors.
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• Science: Extensive science runs have been performed and, despite the fact that no
detection has been claimed, relevant upper limits have been set.

1.3 Creating a Worldwide Network

The LIGO Scientific Collaboration (including the LIGO and GEO600 detectors)
and Virgo have signed a Memorandum of Understanding for joint data taking, and
publications policy joint analysis after May 2007. They have been operating as a
“single machine,” thus enhancing the chances of detection. Several joint science
runs have been held so far:

• LIGO S5 (Nov. 2005–Sept. 2007) and Virgo VSR1 (May 2007–Oct. 2007): the
overlap between the long S5 run and the VSR1 lasted 4 months.

• LIGO S6 (July 2009–Oct. 2010) and Virgo VSR2 (July 2009–Jan. 2010) / VSR3
(July 2010–Oct. 2010): LIGO and Virgo run together for 6 months at the end of
2009. Then Virgo was shut down to install monolithic suspensions. Once Virgo
was back in operation (with monolithic suspensions) LIGO and Virgo run jointly
for 2 more months. Then LIGO was shut down to start the upgrade to Advanced
LIGO.

• Virgo VSR4 and GEO S6e (June–Aug. 2011): Virgo and GEO run together for
3 months. Then Virgo was shut down to start the upgrade to Advanced Virgo.

The network of interferometers has pushed the upper limits on gravitational
wave amplitude emitted by several astrophysical sources to the lowest level ever
reached (see for instance [7–11]). The most relevant results achieved so far are dis-
cussed in Chap. 2. The analysis of the data of the last runs is still ongoing and more
papers are expected in the following months. Hopefully, this network approach will
be undertaken also for the second generation, with a much better sensitivity. The
science case for the advanced detectors and the expectations for the event rates are
discussed in Chap. 2 of this book.

1.4 Advanced Detectors: The Scenario

The first decade of the century has been characterized by the operation of the first
generation of the interferometric detectors and the demonstration of their technology.
In the second decade a network of advanced interferometers, exploiting the results
of many years of R&D, will be taking data. The construction of the Advanced LIGO
detectors and of Advanced Virgo is in progress and a first science run could be
possible in 2015. GEO600 is undergoing a phase of incremental upgrades (GEO-
HF) aimed at reaching a competitive sensitivity in the high frequency range. Besides
the upgrades of existing detectors, a 3 km underground detector (KAGRA) has also
been funded in Japan and currently the tunnels are being excavated. The schedule is

http://dx.doi.org/10.1007/978-3-319-03792-9_2
http://dx.doi.org/10.1007/978-3-319-03792-9_2
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Table 1.1 This table has been extracted from Aasi et al. [12]

Epoch Estimated BNS range (Mpc) Number of BNS % BNS localized within

run duration LIGO Virgo detections 5 deg2 20 deg2

2015 3 months 40–80 – 0.0004–3 – –
2016–2017 6 months 80–120 20–60 0.006–20 2 5–12
2017–2018 9 months 120–170 60–85 0.04–100 1–2 10–12
2019+ (per year) 200 65–130 0.2–200 3–8 8–28
2022+ (India) (per year) 200 130 0.4–400 17 48

It contains a summary of a plausible observing schedule, expected sensitivities, and source localiza-
tion with the advanced LIGO and Virgo detectors. In the first two columns, the possible dates and
durations of the science runs are listed. For each run, in the third column, the expected inspiral range
(a figure of merit indicating the distance at which a coalescing binaries can be detected, averaged
over the GW polarization states and the source direction in the sky) for coalescing binary neutron
stars (BNS), computed on the basis of the likely sensitivity evolution of the detectors, is indicated for
LIGO and Virgo. In the next columns, the corresponding number of events and network capability
to localize the source in the sky are indicated. See [12] for the full explanation of the underlying
assumptions

quite ambitious: the goal is to be a part of the second-generation network as soon as
2017. A further novelty might be the installation of a new detector in a location far
enough from LIGO and Virgo to considerably enlarge the network baseline, and thus
to improve the accuracy in the reconstruction of the source angular position: LIGO
and the Indigo consortium have proposed to install a third Advanced LIGO in India.

The goal of Advanced LIGO/Virgo is to extend the distance at which a target
source can be detected by a factor ∼10, which corresponds to increasing the event
rate by ∼1,000 with respect to the detectors of first generation. The final sensitivity
goal, as the experience with the first-generation teaches, will be reached gradually.
As the sensitivity improves, the detection rate, as well as the source localization
capability, will improve. The likely evolution of the network capabilities (based on
the experiment construction schedules and on the former experience on the com-
missioning evolution) has been outlined in a recent paper by the LIGO Scientific
Collaboration and the Virgo Collaboration [12] and it is summarized in Table 1.1.

The improved sensitivity of the GW detectors and the largely increased expected
event rate widens the possibilities with multi-messenger science. The joint opera-
tion of GW detectors and high energy neutrinos (HEN) telescopes is particularly
appealing. Both GW and HEN travel undisturbed over cosmological distance and
escape dense media. Both carriers are likely to provide an image of the universe com-
plementary to that given by electromagnetic information. Thus, coincident observa-
tion of GW and HEN from the same event could allow a deep investigation of the
source. Moreover, current plans of advanced GW detectors and neutrino telescopes
(IceCube [13] and KM3NET [14]) promise observation on the same timescale.
Among the astrophysical targets for a simultaneous detection of GW and HEN
there are several sources that could be also observed through electromagnetic waves:
gamma ray burts, supernovae, and soft gamma repeaters.
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Fig. 1.2 The Advanced LIGO principal anticipated noise sources limiting the sensitivity in different
configurations. The solid red curve (the one with the best sensitivity at 2 kHz) is the reference
configuration, using tuned signal recycling, which provides a good sensitivity over a wide range.
The yellow and light blue curves (respectively, the one with worst and best sensitivity at 400 Hz)
correspond to a tuning which optimize the SNR for binary black holes and binary neutron stars
respectively. The black dashed curve corresponds to a narrow band tuning, useful to enhance the
sensitivity at the frequency of a monochromatic source. Figure from Harry [15]

In Sect. 1.5 an overview of the technologies needed to achieve such an ambitious
goal is given and the following chapters in this book provide a deeper insight into
each of those aspects. The crucial features allowing to increase the sensitivity are
recalled here:

• the mirror technology has been improved in all the aspects: better substrates, better
polishing, coatings with reduced absorption and mechanical dissipation;

• the mirrors are suspended through silica fibers, thus reducing the suspension ther-
mal noise;

• the input laser power is increased by one order of magnitude to improve the shot
noise limited high frequency sensitivity. This requires improved thermal compen-
sation systems (to cope with thermal lensing) and heavier mirror (to reduce the
effect of radiation pressure noise);

• the Advanced LIGO bandwidth is extended at lower frequencies by implementing
a new vibration isolation system. This is not needed in the Virgo case thanks to
the existing Superattenuator;

• signal recycling allows to tune the detector bandwidth and enhance the sensitivity
in a chosen frequency range (see Fig. 1.2).

The path toward the best sensitivity will obviously take time. Both the opera-
tion of signal recycling and the increase in the input power by almost one order of
magnitude with respect to the first generation will put forward relevant commission-
ing challenges. Therefore, Advanced LIGO/Virgo will start their operation with low
input power and increase the complexity and performance in steps.
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Fig. 1.3 The angular resolution of the LIGO-Virgo network without and with LIGO-India. Figure
from Fairhurst [17]

1.4.1 Advanced LIGO

The Advanced LIGO project has been approved by the National Science Foundation
in April 2008. It foresees the upgrade of the three LIGO interferometers to second
generation. At the time of this writing, the construction works are close to completion
while the commissioning of components of the detector has already started in 2012.
At the design sensitivity (in the configuration optimized for BNS detection) the BNS
inspiral range will be of 200 Mpc, which corresponds to detecting a BNS up to a
distance of 450 Mpc if optimally oriented. With such a sight of distance, tens of BNS
events per years are expected [16].

The LIGO laboratory and the Indigo Consortium are studying the possibility to
move the third interferometer (Hanford-2) to India. This would require the indian
funding agencies to provide the vacuum system and the infrastructure, while all
the rest of the equipment will be shipped by LIGO. Such a choice would allow to
considerably increase the angular resolution of the worldwide network [17] (see
Fig. 1.3).

1.4.2 Advanced Virgo

Advanced Virgo [18] has been approved by INFN and CNRS at the end of 2009
(beside the Virgo funding agencies, Advanced Virgo will be contributed by the dutch
laboratory NIKHEF). The Advanced Virgo design is described in the Technical
Design Report [19].

In Fig. 1.4 the noise budget is shown. The sensitivity below 50 Hz is limited by
a combination of suspension thermal noise and radiation pressure noise. The first
is minimized by suspending the large mirrors (42 kg mass) with fused silica fibers
similarly to what has been done for Virgo+. Around 100 Hz the main limitation to the
sensitivity is due to the thermal noise in the mirror coatings. The sensitivity shown in
the figure assumes current coating technology. So, any further improvements from
this ongoing R&D will have a direct positive impact on the detector sensitivity. The
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Fig. 1.4 The Advanced Virgo
target sensitivity with the main
noise contributions in the
BNS-optimized configuration

effect of coating thermal noise is minimized running the Fabry–Perot cavities near
the co-focal configuration, thus maximizing the beam size on the mirrors.

In order to reduce the laser shot noise and thus increase the interferometer
sensitivity at higher frequencies the available laser input power will be around
200 W. A different choice with respect to LIGO has been made for the Advanced
Virgo laser: a fiber amplifier will be used instead of a solid-state one. To cope with the
larger radiation pressure effects due to the larger power injected heavier test masses
(42 kg) will be used and will be suspended, as it was in Virgo+, through fused silica
fibers. To this extent, the experience done with the new Virgo+ payloads will be pre-
cious to understand all the features of this technology, improve it further, and reduce
the risk for the advanced detectors.

The optical scheme is modified by the introduction of a signal recycling cavity.
The sensitivity shown in the figure assumes that the signal recycling is detuned in
such a way as to have the best sensitivity to binary neutron stars coalescences. In this
case, the coalescences of binary neutron stars will be visible up to distances of about
135 Mpc. Other tunings are possible and can be used to target other sources. Also,
the finesse of the 3 km Fabry–Perot cavities will be larger (∼450). A DC detection
scheme will be adopted to reduce some technical noises.

The vacuum system and the infrastructures will also be upgraded to improve the
sensitivity in the low and mid-frequency ranges. Large cryotraps will be installed at
the extremes of the 3 km vacuum pipes to isolate them from the rest of the vacuum
system. This, combined with the baking of the tubes, will allow reducing the residual
gas pressure to the target of 10−9 mbar. The air-conditioning machines as well as
several other sources of acoustic and seismic noise will be moved out of the central
experimental hall to reduce the sources of vibrations of vacuum pipes, optical mounts,
or any other parts that could scatter photons and generate stray light noise.

All the photodiodes to be used in science mode will be in vacuum and seismically
isolated by compact vibration isolators.
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Virgo+ has been shut down in November 2011 and the installation of Advanced
Virgo has started. The installation of the upgrades is expected to be completed
in 2015.

1.4.3 KAGRA

KAGRA (KAmioka GRAvity and gravitational waves) is a 3 km underground
detector to be realized in Japan, in the mine of Kamioka. KAGRA will start its
operation at room temperature and will then be upgraded to the cryogenic (baseline)
configuration. In its final configuration, the KAGRA test masses will be cooled down
to 20 K. Therefore, KAGRA will anticipate some of the features envisaged for the
third generation: being underground and cryogenic.

The reduction of the sapphire mirror thermal noise by cooling has been recently
demonstrated on CLIO, a 100 m interferometer in the Kamioka mine used as a test
facility for KAGRA technologies [20].

The construction of the KAGRA detector has officially started on January 2012.
KAGRA aims to joining Advanced LIGO, Advanced Virgo and GEO-HF in the
world network of second generation from 2017.

1.5 Advanced Detectors: The Technologies

In this section, we discuss the relevant technologies that allowed to approach the
design sensitivity of the first-generation interferometric detectors and how these
technologies have been further developed to realize the advanced interferometers.

1.5.1 Optical Configurations

The optical configurations of the advanced detectors will maintain the general scheme
of the Michelson interferometer with Fabry–Perot cavities but will be updated in
several features:

• Fabry–Perot cavities in the arms: the finesse of the Fabry–Perot cavities will be
increased to ∼450 (for Advanced LIGO/Virgo).

• Signal recycling: a signal recycling mirror suspended between the beam splitter
and the output port of the interferometer can recycle the audio sidebands containing
the signal created by the impinging GW and increase the signal-to-noise ratio
in a limited bandwidth [21]. The position of the signal recycling mirror and its
reflectivity determine the central frequency and the bandwidth, respectively. Signal
recycling has already been used by GEO600 in the first generation, and will be
adopted by Advanced LIGO/Virgo.
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Fig. 1.5 Optical layout of Advanced LIGO

• Stable recycling cavities: the power recycling cavity of the initial Virgo and LIGO
is marginally stable: the Gouy phase of the cavity is close to zero and high-order
modes can resonate into it. This makes the cavity more sensitive to aberrations,
induced by thermal effects, optical defects, or misalignments. To increase the
robustness with respect to such effects Advanced LIGO will be provided with
stable recycling cavities (see Fig. 1.5). The non-degeneracy is achieved by folding
the beam path and having the mode matching telescope inside the cavity.

The optical schemes for Advanced LIGO/Virgo are shown in Figs. 1.5 and 1.6.
Chapter 3 explores in detail the optical configuration aspects mentioned here.

1.5.2 Mirrors

The quality of the mirrors is a crucial element for the correct operation of the detectors.
It may affect the final performance in several different ways since it plays a role in
the thermal noise budget, scattered light, optical aberrations, and radiation pressure
noise:

• the diameter of the mirrors must be large to allow for large beam spot size (which
helps reducing the impact of thermal noise). The Advanced Virgo test masses are
350 mm in diameter as the Virgo mirrors, but twice as thick (20 cm). The beam
splitter will be exceptionally large (55 cm in diameter) to reduce the risk of spurious
scattering (see Fig. 1.7);

• the weight of the mirrors should be sufficient to reduce the effect of radiation pres-
sure fluctuations below the other noise contributions. The mass of the Advanced
Virgo test masses will be 42 kg (twice as heavy as the Virgo mirrors);

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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Fig. 1.6 Optical layout of Advanced Virgo

Fig. 1.7 The Advanced Virgo
beam splitter
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• the material used to make the mirror must be chosen in such a way as to minimize
the absorption at the laser wavelength (better than 1 ppm/cm) while keeping the
mechanical internal dissipation responsible for thermal noise at a minimum. Dif-
ferent kinds of fused silica are available today on the market that meet the stringent
requirements for GW interferometers;

• the polishing of the surface must be excellent, since the deviations from perfect
flatness and the residual microroughness are responsible for scattering losses (see
Chap. 10). The flatness required for the Virgo test masses was 8 nm rms, while
for the advanced detectors it should be better than 0.5 nm rms. Superb polishing
figures (∼0.2 nm rms) have been already achieved on the Advanced LIGO test
masses by ion beam milling;

• the coating should guarantee low absorption and low thermal noise. In the advanced
detectors, the thermal noise generated in the high reflectivity coating layers limits
the sensitivity in the mid-frequency range, while its absorption is mainly respon-
sible for the thermal lensing aberrations. Progress has been made in reducing the
coating losses by doping the high index layer of Ta2O5 with Titanium [22, 23].
A very good uniformity in the thickness of the coating layer (at the level of 0.5 nm
rms) must also be achieved in order to avoid excess optical losses (see Chap. 8 for
more details).

1.5.3 Vibration Isolation

The test masses and the other sensitive optical components of interferometric detec-
tors must be suspended and isolated from ground vibrations. The isolator must also
allow to apply suitable control forces to the mirrors to bring the interferometer into
operating conditions and maintain it as such. The approach to the problem of the
vibration isolation has been different for the various projects. Virgo was the only one
to pursue, since its beginning, the development of a vibration isolation system able
to extend the detector bandwidth down to ∼10 Hz: the superattenuator [24]. It was
conceived to suppress seismic vibrations by about 300 dB at 10 Hz. This is achieved
by an 8 m long vertical chain of mechanical filters, able to low-pass vibrations in 6
degrees of freedom above their resonance frequencies. Passive filtering is not the end
of the story: the chain of filters is suspended from an inverted pendulum platform [25]
actively controlled to compensate for the earth tidal strain over the interferometer
arm length and to damp the superattenuator normal modes [26]. Moreover, the mirror
position and alignment can be controlled at the level required by the interferometer
control system. Three main actuation points are envisaged and the mirror control is
achieved by splitting the actuation over them with a hierarchical approach [27]. The
superattenuator was already conceived as a second-generation device: it has been
thoroughly and successfully tested in the operation of Virgo and its isolation perfor-
mance has been demonstrated to be compliant with the requirements of Advanced
Virgo [30]. More details are provided in Chap. 7.

http://dx.doi.org/10.1007/978-3-319-03792-9_10
http://dx.doi.org/10.1007/978-3-319-03792-9_8
http://dx.doi.org/10.1007/978-3-319-03792-9_7
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Fig. 1.8 The monolithic payload installed in Virgo in 2010

Unlike Virgo, initial LIGO was provided with less performing vibration isolation:
the mirrors were suspended from a bench laying on a stack of metal and rubber
layers [31]. One of the most important upgrades to Advanced LIGO is the imple-
mentation of new isolators capable of pushing the seismic wall down to 10 Hz [32].
It is made of three different parts:

• a hydraulic external pre-isolator (HEPI) for low frequency control;
• a two-stage actively controlled platform, designed to suppress the seismic noise

by ∼10−3 at 10 Hz;
• a quadruple pendulum passive isolation system providing passive isolation above

a few Hz.

1.5.4 Monolithic Suspensions

The Virgo low frequency sensitivity was limited by the thermal noise of the steel
wires suspending the mirrors. To beat that limit both Advanced Virgo and Advanced
LIGO will use monolithic suspensions, that is, to suspend the test masses by means
of fused silica fibers. The intrinsic dissipation of fused silica is a factor ∼1,000 better
than steel, so there is a large potential improvement of the corresponding thermal
noise. The pioneering work on this technology was pursued at GEO600 (see [5] and
references therein), which has been using monolithic suspensions for years. Their
design was not pushed to the level required by advanced detectors (for what concerns
thickness of the fibers and weight of the mirrors). However, this has triggered a long
R&D work that finally allowed to engineer monolithic payloads suitable for advanced
detectors.

A further step forward has been achieved when Virgo built monolithic payloads
with 21 kg standard mirrors and operated them successfully on the interferometer [33]
(see Fig. 1.8). For the first time the first generation suspension thermal noise limit
was beaten. The realization of monolithic payloads has required several important
technological achievements:
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Fig. 1.9 The Advanced LIGO
quadruple pendulum

• the production of the fibers: the fibers are produced starting from a fused silica
rod. The rod is heated in the central part by a CO2 laser and its two ends are then
pulled away in a controlled way (the speed profile determines the shape of the
fiber) [34].

• the handling of the fibers: monolithic payloads have proven to be very robust in
the usual operation on the interferometers. However, the handling of the fibers
must be very careful: any contact of the fiber with an external body, no matter how
gentle and soft, will cause microcracks on the fiber surface that will lead to its
breaking.

• the attachment of the fiber to the mirror: this is achieved in two steps. First
an intermediate fused silica block must be attached to the mirror side. This
is done using a hydroxy-catalyst bond (better know as silicate bonding), a
chemical procedure able to joint the parts in a low loss way (unlike using
ordinary glues) [28, 29]. The second step is the welding of the silica fiber to
the intermediate block, which is done again using a CO2 laser.

The technology has been further refined for the advanced detectors. Advanced
LIGO will use a quadruple pendulum where the last stage (test mass) and the penul-
timate stage are made in silica and connected through silica fibers (Fig. 1.9).
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1.5.5 Laser

New lasers are needed for the advanced detectors which plan to improve the high
frequency sensitivity by reducing the laser shot noise. The nominal power of such
laser is 200 W. The lasers for GW detectors must satisfy stringent requirements:

• continuous, single frequency, single mode;
• high power (10–20 W for the first generation, 200 W for the advanced detectors);
• low noise (frequency, power, geometry);
• long lifetime;
• good efficiency.

In the early phases of interferometer design Argon-ion lasers emitting at 514 nm
had been considered and used on prototypes (see for example [35]). Their perfor-
mance was not satisfactory, mostly for efficiency and reliability. They were phased
out as the Nd:YAG amplifiers were developed. Virgo chose the 1,064 nm wavelength
first and in 1989 the first 18 W injection locked Nd:YAG amplifier was developed
[36–39].

Eventually, all the first-generation detectors were equipped with infrared sources
at 1,064 nm (Nd:YAG or Nd:YVO) providing power of 10–20 W. The advanced
detectors have been designed assuming an available power of ∼200 W. A solid-state
laser using a three-stage injection locked oscillator scheme has been developed at the
Albert Einstein Institute and Laser Zentrum Hannover and will be used in Advanced
LIGO [40, 41].

A different technology has been chosen for Advanced Virgo: a fiber amplifier.
Fiber lasers are more efficient (and so it is easier to manage thermal effects), more
compact, tunable in power, and have very good performance in terms of noise and
stability. They are cheaper than solid-state laser and show great potential for extrap-
olation to higher power. The development of such amplifier is still in progress. In
fact, Advanced Virgo will start its operation with the old solid-state laser of Virgo+,
which can provide up to 60 W, more than enough for the first phase of the operation.
Implementation of the 200 W fiber laser is foreseen in 2017 or 2018 (see Chap. 4).

1.5.6 Thermal Compensation

Heat absorption in the mirror bulk and in the coatings can induce both geometrical
distortions (depending on the thermal expansion coefficient) and purely optical ones
(through the temperature dependence of the refraction index). Such thermal lensing
causes aberrations of the beams and proper thermal compensation systems are needed
to cope with it. When the first generation of interferometers was being designed
nobody foresaw to introduce actuators to cope with thermal effects. While it was well
known that the heat absorption in the mirrors could be a source of thermally induced
aberrations [42], their effect was expected to be negligible. During the commissioning

http://dx.doi.org/10.1007/978-3-319-03792-9_4
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it was found that the impact of thermal effects on the mirrors could be large enough
to degrade the performance of the interferometers already at low power. Therefore,
techniques to manage such effects had to be implemented. On the other hand, it
was also understood that thermal actuators could be also used to correct for optics
imperfections or to fine-tune the detector. GEO600 installed ring heaters around the
tests masses to tune the radius of curvatures and reduce the aberrations observed [43].
LIGO used a flexible thermal compensation system using a CO2 laser beam to deposit
heat on the test mass [44]. A similar system was used in Virgo and was successfully
used to increase the power in the interferometer.

In the second-generation detectors, the impact of such effects will be much larger
due to the higher power envisaged and the design of the thermal compensation system
is rather sophisticated. First of all, it is necessary to act independently to correct the
thermal effects both in the Fabry–Perot cavities and in the power/signal recycling
cavities.

• The main effect in the Fabry–Perot cavities is associated to the heat absorption in
the high reflective coatings which causes a change in the radius of curvature of the
test masses via thermoelastic deformation. This will be corrected by using ring
heaters around each test mass.

• The input test masses heat up in the center due to absorption of laser power. Since
the refraction index is temperature-dependent this effect causes the optical path to
be not uniform, which is equivalent to having a spurious lens in the interferometer.
This can be corrected by heating up the borders of the mirror in such a way as to
null the thermal lensing. In LIGO and Virgo, this has been done by projecting on
the mirror a CO2 laser beam in annulus shape, obtained by an axicon. In Advanced
LIGO/Virgo a similar approach will be followed. However, given the increase of
power to be managed and the better sensitivity, it will not be possible to shine
the CO2 laser directly on the test masses: the amplitude noise of the CO2 laser
would spoil the detector sensitivity. To solve this problem a further optics, named
“compensation plate” will be suspended and the CO2 laser will be shone on it. Such
plate will stay in the recycling cavity, thus its movement is not directly coupled to
the dark fringe.

The thermal compensation system described so far can only cope with deforma-
tions with cylindrical symmetry. In some cases, non- axisymmetric deformations can
play a relevant role.1 Thus, a thermal compensation system for the non-axisymmetric
part should as well be designed. The technology chosen for Advanced Virgo is a scan-
ning laser, first developed by Ryan Lawrence in his PhD thesis [45].

The thermal compensation system needs suitable sensing: Hartmann sensors [46]
and phase cameras will be used. The Hartmann sensors are able to measure the
thermal deformations, while the phase cameras are suitable to measure the intrinsic
optical defects (such as the inhomogeneity of the substrates crossed by the laser

1 This is expected in Advanced Virgo, which is designed with so-called marginally stable recycling
cavities. With such a design the detector is more sensitive to aberrations induced by thermal effects
and optical defects. For instance, an inhomogeneous pattern of the refraction index of the mirrors,
which can be non-axisymmetric, can cause important aberrations and must be compensated for.
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beam). The combination of the information by the sensors and a proper combination
of the different actuator should be sufficient to approach an aberration free inter-
ferometer (in practice, to reduce the aberrations to a tolerable level). This topic is
widely discussed in Chap. 9.

1.5.7 Squeezing

Shot noise limits the sensitivity at high frequency. In principle, the possibility to
improve it is associated to the progress of the laser technology and the available
laser power. In fact, already in the first generation, thermally induced aberrations
have been limiting the possibility to increase the power inside the interferometer
and thermal compensation systems capable of correcting such aberrations have been
implemented. The advanced detectors are designed for an available laser power ten
times larger and more sophisticated thermal compensation.

However, another possibility to improve high frequency sensitivity without
increasing the thermal load has been put forward by recent experiments: the injection
of squeezed light [47] in the interferometer (better known as squeezing). Sources of
squeezed light have been realized and progressively improved and a gain of 13 dB
below the shot noise level has recently been achieved [48].

An experiment of squeezing on a real interferometric detector has been done
first by GEO600, achieving promising results. A broadband noise reduction of up
to 3.5 dB has been achieved in the shot noise-limited frequency range (Fig. 1.10).
This results opens the way to implementing squeezing in the advanced detectors.
Chapter 11 is dedicated to this topic.

1.6 Third Generation: The Einstein Telescope

Advanced detectors at their best sensitivity promise to detect tens of events per
year. However, the expected signal-to-noise ratios might be insufficient for accu-
rate astronomical and astrophysical studies. Therefore, a natural question arised in
the GW community: could we conceive a third-generation detector, able to enhance
the sensitivity of the advanced detectors by an order of magnitude and further extend
the low frequency bandwidth toward 1 Hz? A large part of the European GW com-
munity participated in a design study, funded by the EU within the Framework Pro-
gram 7, and came up with the proposal of the Einstein Telescope, a large underground
and cryogenic interferometer aiming to reach that sensitivity goal.

The sensitivity goals of ET cannot be met within the current infrastructure. On
ground, the gravity gradient noise, generated by the fluctuations of the local gravity
fields due to seismic oscillations of the ground, couples directly to the test masses
and short-circuits the vibration isolators. The only way to suppress such noise is to

http://dx.doi.org/10.1007/978-3-319-03792-9_9
http://dx.doi.org/10.1007/978-3-319-03792-9_11
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Fig. 1.10 Nonclassical reduction of the GEO600 instrumental noise using squeezed vacuum states
of light. Figure from LIGO Scientific Collaboration [49]

go underground, where seismic activity is orders of magnitude lower than on the
surface. The following features are envisaged [50]:

• 10 km armlength, underground detector;
• very long vibration isolators, able to push the seismic wall2 down to 1 Hz;
• cryogenic test masses for thermal noise suppression;
• non-gaussian beam profiles, for thermal noise and thermal lensing suppression;
• high power: ∼1 kW laser, high finesse Fabry–Perot arm cavities, high power recy-

cling factor;
• signal recycling and squeezed states injection;
• heavy test masses for suppression of radiation pressure noise.

The observatory will have the shape of an equilateral triangle with 10 km long side
(thus, 30 km of tunnel should be excavated). Such infrastructure would host three
co-located interferometers.

The science reach of such an instrument would be formidable [51]:

• the high SNR would allow to investigate with great details the physics of compact
stars (e.g., constraining the equation of state of neutron stars);

• the details of the waveforms would allow to constrain alternative metric theories
of gravity;

2 Vibration isolators act as very steep low-pass filters. Therefore, the residual seismic noise trans-
mitted to the mirrors has a spectrum that behaves as ∼1/ f N with N ⊗ 1, looking like a “wall”
limiting the sensitivity at very low frequencies.
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• cosmological parameters could be measured using standard sirens3;
• detection of GW and neutrino from a supernova event would allow to constrain

the graviton and neutrino masses.

Chapter 13 is dedicated to the ET project while Chap. 14 describes the cryogenics
aspects.
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Chapter 2
The Science Case for Advanced Gravitational
Wave Detectors

Andrea Viceré

Abstract We provide an introduction to the science case for advanced interferomet-
ric gravitational wave detectors, which are currently being realized in the world and
in the second half of the present decade will achieve a sensitivity ten times larger
than first generation instruments. Starting from the results obtained with first gener-
ation instruments, this paper will motivate the experimental effort and will provide
an introduction to the science that will be harvested by second generation detectors.

2.1 Introduction

The first-generation, km-scale interferometric gravitational wave detectors com-
pleted their science runs in 2011, having achieved the design sensitivity and having
collected years of observation: no signal was detected in data published so far, and
the LIGO Scientific Collaboration (LSC) [1] and the Virgo Collaboration [2] could
set upper limits on several of the possible Gravitational Wave (GW) sources. On this
solid basis, we now look forward to the second-generation instruments and to the
science that will be harvested thanks to their increased sensitivity, starting in 2015
when the detectors will progressively come back online [3].

Before looking forward, it is important to underline the success of first-generation
interferometers: when the construction of LIGO [4], Virgo [5] and other large inter-
ferometers began in the 1990s, reaching the declared sensitivity goals seemed a
formidable challenge in face of the many noises which would plague the instruments.
Although each of these noises had been estimated and appropriate countermeasures
had been devised, it still seemed incredible that a mirror could be located in space
with an accuracy better than 10−18 m, and over a wide frequency range.
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Fig. 2.1 Results from the first generation large interferometric detectors. The two almost superpos-
ing curves are representative of the sensitivities achieved by the LIGO detectors at Hanford (LHO)
and at Livingston (LLO), USA; the third curve is instead representative of the sensitivity of the
Virgo detector at Cascina, Italy. Note that LIGO detectors are more sensitive above 70Hz, whereas
Virgo is better at lower frequencies, thanks to its advanced seismic isolation. See Eq. 2.9 for the
definition of the linear spectral density of h, displayed in this figure

Despite legitimate doubts, the first-generation goals have been reached and even
surpassed: for instance we show in Fig. 2.1 representative sensitivities achieved
during the latest runs of the LIGO and Virgo instruments, which could be compared
with design sensitivities, and found consistent [6]. The curves show the linear spectral
density of the metric deformation h = g − η that would be needed to produce in the
detector the same level of signal as the one observed.

Such sensitivities allowed to achieve an “inspiral range” of about 20 Mpc in first-
generation LIGO detectors: this is the distance at which a binary coalescence of two
neutron stars could be seen by the detectors with a signal-to-noise ratio (SNR) of 8,
after averaging over the directions of the source and polarizations.1

An instrument devoted to astrophysical observations has to achieve not just its
design sensitivity, but has also to deliver a good duty cycle: as an example, during
its second science run (VSR2), between July 2009 and January 2010, the Virgo
interferometer was in a locked state for more than 85 % of time, and could record
science data over 80 % of the run [7].

1 At the same distance, an optimally located and oriented source, namely at the zenith or nadir of
the detector, could be seen with an SNR as high as 18.
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Fig. 2.2 Comparison of AdV
sensitivity with the design
sensitivity of Virgo. The
“BNS optimized” curve is just
a representative of a range of
possible sensitivity tunings
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The advanced gravitational detectors, like Advanced LIGO (aLIGO in the follow-
ing) [8] and Advanced Virgo (AdV in the following) [9], are designed to improve the
amplitude sensitivity by a factor of about 10 over a large fraction of the bandwidth:
as an example, we show in Fig. 2.2 a comparison of AdV and Virgo design sensi-
tivities [9]. Note that the AdV sensitivity will be tunable, allowing to optimize the
detection probability for different sources: in this plot we show the so-called BNS
optimized curve, tuned for Binary Neutron Star coalescences, which is a conve-
nient benchmark. The sensitivity improvement will allow detecting transient sources
about 10 times farther, thus increasing the chances of observation by a factor of about
103, due to the enlargement of the observed space volume. The same improvement
will raise by a factor 100 the detector sensitivity to a continuous signal like the
cosmological stochastic background. It is therefore one of the goals of this chapter
to convince the reader that the advanced detector era (ADE) will be an interesting
time!

In the rest of this chapter we will try to provide the scientific motivations for
the realization of aLIGO and AdV, discussing the most interesting GW sources and
what could be learned by detecting their signals or by placing even more stringent
upper limits. For each of these sources we will also recapitulate the main results
obtained, in terms of upper limits, thanks to first-generation instruments; this will
help us understand how a sensitivity translates into an astrophysical statement. We
will show that aLIGO and AdV will harvest their scientific potential thanks to a close
collaboration: their instruments constitute a long baseline network of observatories,
capable to coherently exploit the time, amplitude, and phase information coming
from the different sites, thus reconstructing the source position, the polarization of
the impinging waves, and ultimately giving access to the physics of the sources. We
will also see that further information, coming from electromagnetic and neutrino
observatories, will be important and even in some cases critical in order to fully
harvest the scientific potential of a GW observation: to this purpose, a wide program
of collaboration with the astronomical community has been pioneered with first-
generation detectors, and will be fully developed with second-generation ones.
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Several very good and extensive reviews on possible astrophysical sources for
gravitational waves already exist [10–15]: we could refer interested readers particu-
larly to [13] for sources for ground-based interferometers.

2.2 Generalities

Before discussing the individual sources and their interest for advanced detectors, it
is convenient to introduce some conventions and notations which will be used in the
following.

We recall that an interferometric detector produces a single time series s(t), com-
posed of a signal h(t), proportional to the metric deformation induced by the GW,
and of a background noise n(t). We assume that the instrument transfer function has
already been compensated for [7], so that h(t) is linearly related to the metric change
hab(t), as follows: assuming that the interferometric detector arms are oriented along
the unit vectors X̂ , Ŷ , the output is normalized to have

h(t) ∼ hab(t)
1

2

⎧
X̂a X̂b − Ŷ aŶ b

⎨
= 1

2
T r [h · (X ⊗ X − Y ⊗ Y)] ; (2.1)

the detector moves in space, and the vectors X̂ , Ŷ rotate with time, modulating the
response to the metric hab; this effect can be disregarded if the timescale of the signal
is much shorter than the rate of variation of the detector orientation, a condition true
for ground-based detectors when considering transient signals, but false when dealing
with permanent signals like those emitted by distorted neutron stars.

Expanding the signal in series of plane waves, one can write

hab(t, x) =
⎩

A=+,×

∫ +∞

−∞
d f

∫

S2
dΩ̂ h A( f, Ω̂)ei2π f (t−Ω̂·x/c)εA

ab(Ω̂) (2.2)

as a sum over frequencies f , directions Ω̂ and polarizations εA. For instance, con-
sidering a plane wave traveling along Ω̂ and taking a reference frame in which axes
x̂, ŷ are orthogonal to Ω̂ = ẑ, one has2

h =

⎛
⎜⎜⎝

0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞
⎟⎟⎠ = h+ε+ + h×ε× . (2.3)

More generally, the response of the detector, located at d(t), will be a sum

2 We use 4-vectors specified as (ct, x, y, z).
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Fig. 2.3 The antenna pattern of a interferometric detector, averaged over the possible signal polar-
izations. Left the two orthogonal beams represent the arms of the detector, and the distance between
a point on the surface and the intersection of the arms represents the quantity in Eq. 2.6. Right the
same quantity is represented as a pattern of colors on the sky

h(t) =
⎩

A=+,×

∫ +∞

−∞
d f

∫

S2
dΩ̂ h A( f, Ω̂)ei2π f (t−Ω̂·d/c)F A(Ω̂) (2.4)

in which the antenna patterns F+,×(Ω̂) are introduced:

F A(Ω̂) ∼
⎩
ab

εA
ab(Ω̂)

1

2

⎧
X̂a X̂b − Ŷ aŶ b

⎨
= 1

2
T r

[
εA · (X ⊗ X − Y ⊗ Y)

]
;

(2.5)
they depend on the sky location Ω̂ and specify how a GW signal of given polarization
translates into the output of the detector.

The average response of the detector to different polarizations, as a function of
the sky location Ω̂ , can be defined as

F̄(Ω̂) =
√[

F+(Ω̂)
]2 +

[
F×(Ω̂)

]2
(2.6)

and its dependence on Ω̂ is shown in Fig. 2.3: we note the limited directionality, with
favored locations and a few blind spots.

Note that if the output of the detector is normalized (a procedure called
h-reconstruction) so as to have the relation in Eq. 2.1 between the metric and the
output, then different detectors can compare their data directly, without knowing
instrument details, apart from position and orientation of the arms.

We have already said that the signal s(t) output by a detector is the sum of a
gravitational signal h(t) and a noise n(t): the detector sensitivity h̃( f ) is actually
defined in terms of the spectral density of this noise. Assuming that the noise is
Gaussian and stationary, its autocorrelation function
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Cn(ta − tb) = ⊥n(ta)n(tb)〉, (2.7)

depends only on the time difference of the noise samples, and determines the noise
statistical characteristics completely: its Fourier transform allows to define the (one-
sided) noise spectral density Sn( f ) as

1

2
Sn( f ) =

∫
ei2π f t Cn(t)dt (2.8)

and the detector sensitivity is simply defined as

h̃( f ) ∼ √
Sn( f ) ; (2.9)

This is the quantity which has been displayed, for instance, in Fig. 2.1, for first-
generation detectors.

2.3 Transients

We define transients as those events which have a duration significantly shorter
than the observation time: for ground-based detectors, such events include a variety
of phenomena, of which the coalescence of compact objects is perhaps the best
understood, and will deserve a specific treatment. Many other phenomena are also
relevant, most notably the core-collapse of supernovae, and the emission of transient
signals by excited compact objects.

2.3.1 Compact Binary Coalescence

We define Compact Binary Coalescence (CBC) as the coalescence of binary systems
formed by neutron stars (NS–NS), by black holes (BH–BH), or mixed systems formed
by neutron stars and black holes (NS–BH); although only the existence of NS–NS
systems is observationally verified (see for instance [16] for a review), there are good
arguments to anticipate the existence also of systems in other classes.

2.3.1.1 The Signal from a Coalescence

The signal emitted during a coalescence is conventionally divided into three phases,
better illustrated pictorially by the signal shown in Fig. 2.4, emitted by a pair of BH:
we have an initial “inspiral” phase, during which the orbit shrinks adiabatically and
the signal is a chirp with amplitude and frequency increasing with time; a “merger”
phase, during which the objects collide, generally the most difficult phase to model
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Fig. 2.4 The final seconds of the signal emitted by a pair of (non-spinning) black-holes (10+20
M�) in coalescence

(but also perhaps the most interesting); finally a “ring-down” phase during which the
resulting object relaxes toward a stable state, emitting damped sinusoids. The relative
importance of the three phases, as seen by a ground-based detector, depends on the
system’s mass: focusing first on binary neutron stars, whose existence is attested by
the observation of pulsars in binary systems and for which mass parameters have
been estimated to be close to 1.4 M�, the inspiral phase is by far the dominant one,
and the emission of energy in GW’s is given by

ΔErad � 4.2 × 10−2 M�c2
⎡

M

1.22 M�

⎢5/3 ⎡
fmax

1 kHz

⎢2/3

, (2.10)

where we have introduced the chirp mass M ∼ μ3/5 M2/5, in terms of the total
mass M ∼ m1 + m2 and the reduced mass μ ∼ m1m2/M of the binary system. We
introduce as well fmax, the GW frequency at the end of the inspiral phase.

It is therefore a rather efficient mechanism, which makes it possible to see such
NS–NS signals at large distances, as far as about 200 Mpc in aLIGO [17]. For larger
mass systems the SNR grows approximately as M5/6, thus allowing to detect events
further out, as far as 1 Gpc for BH–BH systems of moderate mass: however the fmax
frequency becomes smaller as the mass grows, and eventually the inspiral signal falls
below the low-frequency cutoff due to the detector’s seismic and thermal noise, so
the SNR becomes dominated by the merger and the ring-down phases.
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The waveform at the inspiral phase is fairly well understood theoretically, and
its dominant features can be grasped even using just Newtonian mechanics, com-
plemented with the knowledge that the dominant contribution to the GW emission
by a distribution of mass ρ(x), at a distance R by the observer, is given by the time
variation of its quadrupole component

hi j = − 2G

c4 R

d2

dt2

∫
ρ(x)xi x j dV = −2c

R

d2

dt2

∫
ρ(x)xi x j dV/

⎣
c5

G

⎤
(2.11)

where the factor c5/G = 3.63×1052 W = 2.03×105 M�c2/s ∼ Lo is a luminosity
of 105 solar masses per second! Stellar size distributions of masses are required to
generate sizable signals.

Assuming for simplicity a pair of objects with equal mass m, in a circular orbit
characterized by an angular frequency ω and a semi-axis a, the equivalence of grav-
itational and centripetal forces translates into Kepler’s law ω2 = Gm/4a3, which
yields

hi j ∝ 2 (Gm)2

c4a R
= (2Gm)5/3

c4 R
ω2/3 (2.12)

hence the signal increases if the objects’ separation a decreases; and this in fact
happens, because the mechanical energy

E = −Gm2/4a (2.13)

of the system decreases by radiation in gravitational waves. In linearized general
relativity, an energy momentum tμν can be associated to the GW, and the source
luminosity is

LGW ∼ −dE

dt
= G

5c5

⎥
...

Qi j

...
Qi j

⎦
with Qi j =

∫
ρ

⎡
xi x j − 1

3
δi j xk xk

⎢
dV (2.14)

which, for a binary system in circular orbit, gives

LGW = 128

5

G

c5

⎧
ma2ω3

⎨2 = 32G7/3

5 3
√

4c5
(mω)10/3 . (2.15)

Comparing with Eq. 2.13 and using again Kepler’s law, it is straightforward to com-
pute the time evolution of ω

ω(t) = ω0

[
1 − 256 G5/3μ M2/3

5 c5ω
−8/3
0

t

]−3/8

, (2.16)

which shows the chirping behavior of the signal. Note that after a time τ
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τ = 5c5

256G5/3μ M2/3ω
8/3
0

(2.17)

the angular frequency goes to infinity, signaling a breakdown of the approximation,
close to the collision. Integrating the expression for ω(t) we find the phase and
instantaneous frequency of the signal

φ (t) = 16πν0τ (ν0)

11

[
1 −

⎡
1 − t

τ (ν0)

⎢5/8
]

; ν (t) = ν0

⎡
1 − t

τ (ν0)

⎢−3/8

,

(2.18)
in which ν0 = 2ω0 is the GW frequency (twice the orbital frequency) at t = 0 and
τ (ν0) is the time to coalescence:

τ(ν0) ∼ 5

256

c5

G5/3

(πν0)
−8/3

M 5/3
. (2.19)

This simplified treatment tells nothing about the merger and ring-down phase:
a more complex analysis is required to compute accurately enough the signal, even
in the inspiral phase (see [18] for a review). Still, theorists are able to model the
emitted GW signal in an accurate way: as long as the compact objects, orbiting
each other at a distance d, are sufficiently separated, say up to (dc2)/(MG) > 103,
post-Newtonian expansions allow to precisely predict the waveform. The analytical
methods fail when the post-Newtonian expansion (in powers of v/c), fails, and this
is an issue particularly for large mass systems, as well as for neutron stars when they
start merging, but significant progress with numerical relativity [19] is enabling to
model the signal through the last stages of the collision and down to the relaxation
processes which take place in the compact resulting system (generally a black-hole).

This said, many characteristics of the signal can be deduced on the basis of these
simple formulas: in particular, it is immediate to estimate the inspiral’s phase duration
in a certain frequency band [νl , νu] as

tu − tl = τ (ν0)

[⎡
νl

ν0

⎢−8/3

−
⎡

νu

ν0

⎢−8/3
]

: (2.20)

Extending the sensitivity toward lower frequencies (νl → 0) increases the signal’s
observable duration faster than 1/ν2

l , which motivates the quest for sensitive detectors
at low frequencies.

Coalescences therefore appear on ground-based detectors as transients just because
of the restricted detectors’ bandwidth: we start observing only above a few tens of Hz
in first-generation detectors, and above 10 Hz in advanced detectors. For more mas-
sive sources (larger M ), the observation time becomes shorter, to the point that large
mass binaries are just not accessible to observation by ground-based laboratories.
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2.3.1.2 The Rate of NS–NS Signals

There are basically two ways by which astrophysicists can predict the number of
NS–NS events: empirical, based on a few observations of compact binary systems
which will coalesce on a timescale comparable with the age of the Universe; and
theoretical, based on models of binary star formation and evolution.

For an account of the results of the empirical method, the reader could refer to [20];
on the basis of the observations, corrected for selection factors linked to the fact that
we only see binary systems in which at least one component is a visible pulsar, the
authors quote a rate range Remp ∈ 3–190 Myr−1 MWEG−1, where MWEG stands
for Milky-Way Equivalent Galaxy.

The theoretical models display different cases, depending on assumptions about
the dominant channel by which a pair of massive stars evolves into a pair of close
compact objects, surviving two supernova explosions without being disrupted, and
whether during a common envelope phase3 the binary system undergoes instead a
premature merger as a result of friction.

The reader is referred to [21] for an example of the comparison of different models,
and the resulting recent re-estimate of the rates; the authors introduce several models,
two of which are more pessimistic, since they assume that binaries in a common
envelope phase are more likely to undergo a premature merger; the third model
instead allows for survival of stars through the common envelope phase and leads to
larger estimates.

The range of variability of the results within each theoretical model depends also
on the way they are calibrated, either by means of assumptions about the star forma-
tion rate, or by means of the rate of supernova events in a Milky Way type galaxy;
low rates are obtained with star formation calibration, high rates with supernova
calibration.

The wide range of models available in the literature has been taken into account
into a summary document published by LSC and Virgo [17]: the realistic NS–NS rate
value is expected to be Rre � 100 Myr−1MWEG−1, but models allow this figure to
vary by orders of magnitudes above and below.

The other ingredient for estimating the rate of detectable events is the density of
MWEG, which can be assumed to be

ρgal � 0.01 Mpc−3 ; (2.21)

for NS–NS events, the detection range is sufficiently close not to require correcting
this density to take into account cosmological effects.

To which distance can advanced detectors see NS–NS signals? Conservatively,
we rely only on the accurate knowledge of the waveform in the inspiral phase, which
yields an SNR for an optimally oriented source

3 A common envelope phase takes place when the larger of the two stars fills its Roche lobe and a
mass transfer is initiated toward the companion.
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SNR =
√

4
∫ νu

νl

|s̃ ( f )|2
Sn ( f )

d f = (GM )5/6

r c3/2 π2/3

⎡
5

6

⎢1/2

√√√√∫ νu

νl

f − 7
3

Sn ( f )
d f

= 1.56 × 10−19
[
M

M�

]5/6 [
Mpc

r

] √√√√∫ νu

νl

f − 7
3

Sn ( f )
d f , (2.22)

where we recall that Sn( f ) is the detector one-sided spectral density, defined in
Eq. 2.8, namely the square of the sensitivity as shown in Fig. 2.1. The actual value of
the νu beyond which the merger begins is somewhat model dependent; a conservative
estimate is given by the frequency at the “innermost stable circular orbit”, ISCO. To
lowest order in the PN expansion, this frequency can be written as

fISCO � 4.4 kHz

(M/M�)
. (2.23)

Given the SNR expression, we define the “inspiral range” drange as the distance at
which an advanced detector would see an event with SNR=8, a value conventionally
assumed as safe for claiming a detection.4 This distance results to be

drange

1 Mpc
= 1

2.26
× 1.95 × 10−20

[
M

M�

]5/6

√√√√∫ fISCO

νl

f − 7
3

Sn ( f )
d f , (2.24)

where the factor 1/2.26 accounts for an average over source location and polarization,
leading to a reduction of the SNR as compared with a optimally oriented source.

As an example, if we assume an NS–NS event, with m1 = m2 � 1.4 M�, one
has M � 1.22 M�, and fISCO � 1.4 kHz; in AdV, the resulting sight distance is
about 155 Mpc; the resulting volume observable by AdV alone is therefore VBNS �
1.5 × 107 Mpc3, which allows to compute a rate through the simple formula

ρ = VBNS × RMW × ρgal (2.25)

where RMW is the merger rate in a MWEG.
Actually, the operation in network of aLIGO and AdV further boosts the detection

rate, by allowing a better coverage of the sky: again referring to [17] we simply
quote that a realistic rate of 40 events/year is anticipated, to be compared with two
events/century in first-generation instruments. Again, these numbers are to be taken
with great care, and could be affected by very large errors.

4 Actually, experience has taught that actual detectors may yield spuria well above this limit,
depending on the quality of the detector noise; this is also the reason why a network of detectors in
coincidence is required.
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2.3.1.3 The Rate of BH–NS and BH–BH Coalescences

Again, there are essentially two ways by which a population of BH–BH or BH–NS
systems can be inferred: it is possible to use the same population synthesis models
applied to the NS–NS systems, and partially calibrated by the observation of binary
pulsars, to infer the population of more massive stars; or one can exploit the few
observations of binary systems including a massive star and a BH, to infer the rate
of BH–BH production.

The population synthesis models, for instance the one discussed in [21], display
for BH–BH the same variation of the results, internal within each model and across
models that we have discussed for the NS–NS sources. The most pessimistic model
predicts for BH–NS pairs galactic merger rates of 0.07–0.11 Myr−1, whereas for
BH–BH systems it predicts chirp masses in the range 4–8 M� and galactic merger
rates in 0.02–0.03 Myr−1. Optimistic models assume a more favorable evolution of
the binary system through the common-envelope phase, and predict galactic merger
rates in 3.2–4.8 Myr−1 for BH–NS sytems, and in 7.7–11 Myr−1 for BH–BH sys-
tems.

The large variability of the models calls for caution by itself, and population
synthesis models are not extended easily to higher masses, because very large mass
stars have a complex evolution, marked by explosive events and large mass losses
over short periods. However, the few observations of very massive binary systems
lead to believe that high mass BH pairs are actually formed and are detectable by
advanced GW detectors.

In particular, the IC10 X-1 and NGC300 X-1 X-ray sources are tight binary
systems comprising a 20–30 M� BH accreting from a massive ∼20 M� Wolf-Rayet
star,5 whose future evolution has been studied in-depth in [22]. The authors predict
that the systems will evolve in BH pairs, with a chirp mass M ∼ 15 M�; systems
with such a mass will be detectable by advanced detectors at distances beyond 1 Gpc.
The other important prediction in [22] is that the systems will remain tight enough
to coalesce in about 3 Gyr: the authors are able to estimate the abundance of such
systems and predict a rate of detection, by the network of advanced detectors, of
several thousand events per year.

The variability of these predictions is summarized in [17]; for first-generation
detectors plausible estimates of BH–NS and BH–BH events are of the order of a few
per thousand year, but could be as high as one every few years. The estimates for
aLIGO and AdV are much more favorable, respectively 10 BH–NS and 20 BH–BH
per year, and could be as high as 300 and 1,000.

5 A Wolf-Rayet is a very hot star (T > 25000 K) surrounded by a large envelope of rapidly
expanding gas carried by stellar winds up to a billion times stronger than our Sun’s. WR stars are
believed to be a stage in the evolution of massive stars, with M > 20 M�.
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2.3.2 Core Collapse Supernovae

The collapse of the core of a massive star, the so-called Supernova Type II events,
was in the past considered a very promising source of GW emission, with optimistic
values for the energy emitted in GWs, of the order of 10−2 M�c2, comparable to a
NS–NS coalescence.

More recent estimates of the energy emitted in GWs have shown, though, that
the GW energy emitted is likely to be ≤10−8 M�c2, and this fact, together with the
limited knowledge of the waveform emitted, reduced the prospects of detection by
first-generation interferometric detectors to galactic events, at best.

Galactic events are known to be rare: the latest galactic supernova observed has
been the explosion of the blue star Sanduleak −69◦ 202a, which led to the famous
SN1987a event. The estimates of less than one event per two decades in the Milky
Way and in the local group of galaxies is supported by indirect evidence, provided
by the Integral experiment. Integral has detected γ rays emitted in the radioactive
decay of the 26Al isotope, copiously produced in Supernova explosions; the galactic
abundance of this Al isotope, about 3 M�, is consistent with the supernova rate
quoted above [23].

A recent review [24] recalls, however, that there may be 1 SN occurring about
every other year within 3–5 Mpc from Earth. The recent SN 2008bk, which exploded
roughly 3.9 Mpc away, is an example SN from this region of space. Initial LIGO and
Virgo class detectors had no chances, though, of detecting GWs from SN 2008bk;
however, within a few years of observation, the advanced detectors will possibly
detect a few such events in our local universe up to a few Mpc [25].

The shape of the signals emitted during supernova events is not as well modeled
as for coalescences: although models exist, based on complex simulations of the core
collapse [26–28], the large uncertainty in the models, and in the model parameters,
give rise to very different signal shapes; some examples are shown in Fig. 2.5. This
uncertainty makes it impractical to classify the signals in terms of SNR, which would
imply a good knowledge of the signal template: instead, it is preferred to quantify
the strength of the signals with a “root sum square” (rss) amplitude, defined for a
signal h(t) as

hrss ∼
√∫

|h(t)|2 dt , (2.26)

where h(t) = F+h+(t) + F×h×(t) in terms of the two polarizations of the GW
waveform and the detector’s antenna patterns F+,× : hence hrss at the detector is
different from the signal’s energy.

Let us introduce the GW power crossing an area element dA

ρGW ∼ d2 EGW

dA dt
= c3

32πG

⎥
dhi j (t)

dt

dhi j (t)

dt

⎦
; (2.27)

using Eq. 2.3 it can be rewritten in terms of polarization components
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Fig. 2.5 Examples of burst GW signals emitted by a simulated core collapse supernova, taken
from [26]

d2 EGW

dA dt
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16πG
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dh+ (t)

dt

⎢2

+
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dh× (t)

dt
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〉

(2.28)

or equivalently as a power per unit area and frequency, in terms of the Fourier
transform of the signal ĥ±

d2 EGW

dA d f
= πc3

2G
f 2

[∣∣∣ĥ+( f )

∣∣∣
2 +

∣∣∣ĥ×( f )

∣∣∣
2
]

. (2.29)

This quantity can be related to hrss in a signal-dependent way: for instance for a
sine-Gaussian signal with central frequency f0 and “quality factor” Q

hsg(t) = hc sin (2π f0t) exp
[
− (2π f0t)2 /

⎧
2Q2

⎨]
, (2.30)

emitted by a source at (non-cosmological) distance r , one obtains

EGW = r2c3

4π
(2π f0)

2 h2
rss . (2.31)
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Formulas like Eq. 2.31 allow one to translate the received signal into an energy
emitted by the source, in a model-dependent way, and hrss is used as a measure of
the signal strength generally for any transient event of unknown shape.

2.3.3 Scientific Results on Transients

Having accumulated years’ worth of observation, first-generation instruments data
have been used to establish upper limits on two types of quantities: on the rates
of transient signals, such as the coalescence of binary compact objects, and on the
amplitude of events possibly emitted in coincidence with some external trigger.

2.3.3.1 Untriggered Searches

The analysis of LIGO S6 run, which lasted from July 2009 to October 2010, and
Virgo VSR2 (July 2009–Jan 2010), VSR3 (July 2010–Oct 2010) data provides the
best results obtained so far on the low-mass binaries [6], namely systems with Mtot
in the 2–25 M� range, including NS–NS coalescences, which could be searched as
far away as 40 Mpc, and heavier systems which would have been visible further
out, obtaining limits on the rate RNS−NS < 1.3 × 10−4yr−1Mpc−3, RNS−BH <

3.1 × 10−5yr−1Mpc−3 and RBH−BH < 6.4 × 10−6yr−1Mpc−3.
The same data allowed to set the best limits so far on heavier BH–BH events: the

larger masses required to search in the data not only for the inspiral phase, but also the
merger and ringdown phase of the signal [29]. For Mtot in the 25–100 M� interval,
the search achieved a range of 300 Mpc for (20, 20) M� BH–BH systems, and set
a limit R < 3.3 × 10−7 yr−1Mpc−3 for systems with non-spinning components in
the 19–28 M� range.

When searching instead for unmodeled signals, the best results obtained by inter-
ferometers so far are due again to LIGO S6 and Virgo VSR2,3 science runs: in an
untriggered search [30], over a total observation time of 207 days, signals shorter than
1 s were targeted over a 64–5000 Hz frequency band, setting an upper limit on the
rate of 1.3 events/year, for signals having hrss in the range 5 × 10−22–10−20 Hz−1/2,
depending on the kind of waveform searched. These sensitivities would have allowed
to detect, with a 50 % efficiency, sources emitting an energy of about 2.2×10−8 M�c2

at 10 kpc, a plausible scenario for a galactic supernova.

2.3.3.2 Triggered Searches

The use of a network of gravitational wave detectors brings at least two advantages:
first, in a simultaneous analysis of data from different instruments it is possible to
introduce artificial relative time shifts that allow to measure the background of false
coincidences. Second, it is possible to increase the sensitivity to specific directions
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in the sky by specifying appropriate time delays in the analysis and by imposing
conditions on the relative signal amplitudes, as resulting from the antenna pattern of
each instrument.

These procedures become crucial when searching for events coincident with some
external trigger, for which we generally know precisely both the sky localization and
the timing.

As an example, considerable interest was raised by GRB070201, a short hard
γ -ray burst electromagnetically localized in the direction of M31 (Andromeda),
about 770 kpc away, comfortably within the range of first-generation instruments. The
LIGO Hanford detectors were taking data, which were analyzed under the assumption
of a coalescing binary progenitor. The search could exclude at 99 % confidence level
the occurrence of a coalescence in M31: if the event had really been associated with
a coalescence, the GRB should have been emitted further away along the line of
sight [31]. Or it could have been due to a soft γ -ray repeater (SGR) [32], a source
emitting periodically short (∼0.1 s) flares of soft γ rays, with peak luminosity up
to 1035 J/s. These sources are believed to be magnetars, that is, neutron stars with
very large magnetic fields, in excess of 1015 gauss, in which crust rearrangements
may occur, thus exciting non-radial modes which decay emitting also GW [33]. Also
a search for generic bursts of GWs was carried out, which set an upper limit of
less than 4.4 × 10−4 M�c2 = 7.9 × 1043 J on the emitted energy; the loose energy
constraint, significantly larger than the energy expected by an SGR, implies that the
non-observation of a GW counterpart is compatible with the SGR hypothesis.

Gravitational waves emitted by SGR sources were searched for with high sensi-
tivity in data acquired by GEO600 [34], LIGO and Virgo detectors between 2006
and 2009, looking for GW bursts in coincidence with soft γ -ray bursts from six
galactic magnetars [35]: in a sample of 1279 γ events, no evidence of coincident
GW burst was found, and upper limits could be obtained, particularly interesting for
SGR 0501+4516, a source likely to be just 1 kpc away, setting limits on GW energy
between 3 × 1037 J and 1.4 × 1040 J, depending on the signal model.

A different kind of triggered search was carried out in correspondence of a timing
glitch of the Vela pulsar, a sudden change in the pulsar’s e.m. signal, of a few parts
per million, observed in the radio spectrum on August 12, 2006: such a glitch is
indicative of a sudden jump of the pulsar’s rotational frequency and could be due
to a “star-quake”, exciting NS’s normal modes. A search for oscillatory, damped
waveforms was carried out in [36], under the assumption of GW signals in the
1–3 kHz range and damping times in the 50–500 ms range, placing an upper limit
on the signal amplitude ranging from 6.3 × 10−21 Hz−1/2 to 1.4 × 10−20 Hz−1/2,
as a function of the excited mode, corresponding to energy limits from 5 × 1037 to
1.3 × 1038 J.

Recent LIGO and Virgo data, from runs S6, VSR2, and VSR3, were searched for
GW events in coincidence with a sample of 154 GRBs, as usual searching both for
coalescences of compact object pairs, or for generic bursts [37]: an overall median
lower limit on the distance of the events D ∼ 17 Mpc could be deduced, whereas for
NS–NS and NS–BH systems the median limit was 16 and 28 Mpc respectively.
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It should be underlined that these non-detections were expected: GRBs distances,
when measured, are significantly larger, for instance GRB030329 had a redshift z =
0.1685 corresponding to a distance d � 800 Mpc, out of reach for first-generation
detectors, but possibly within the range of advanced instruments.

2.3.4 Transients in the ADE: Science and Prospects

We have seen that the advanced detectors, aLIGO and AdV, promise a sensitivity
10 times better, in amplitude, than first-generation instruments: when achieved, this
improvement will allow searching for coalescing binaries events in a space volume
1,000 times larger, and we have already discussed in Sects. 2.3.1.2 and 2.3.1.3 what
is the expected rate of events. As discussed also in [38], under a realistic scenario
advanced detectors should not just perform the first detection, but collect a sizable
sample of events, and really start gravitational astronomy: for instance, it has been
argued that early detections of GWs with reasonable localization would be possible
even before the binary merger [39–43], thus opening interesting perspectives in
collaboration with e.m. observatories.

We should admit that pessimistic scenarios exist, under which a non-detection of
NS–NS events would not violate strongly the astrophysical expectations; however,
a non-detection by the LSC-Virgo network over several years of observation would
push the models of sources and of source populations to their limits.

For unmodeled sources, signals with hrss ∼ 10−23 Hz−1/2 will be accessible,
making it possible, for instance, to detect galactic supernova events with energies
released in GWs as small as a few 10−9 M�c2. Such a sensitivity should grant the
detection of a galactic supernova, or place extremely tight limits on the models of
the core collapse.

2.3.4.1 Science from NS–NS Detections

It should be underlined that, indirectly, we already believe that binary NS emit grav-
itational waves: there is no mechanism, other than the emission of GW predicted in
general relativity (GR), which could explain the very good agreement of the period
evolution of the Hulse-Taylor binary pulsar [44, 45].

However, this is an indirect evidence, whereas the detection of GW waves from
the inspiral phase would be a very clean, direct confirmation of GR, and the detection
of a number of such events would also allow to test alternative theories of gravity in
a model independent way [46].

The detection of a good number of NS–NS events would also constitute a new
way to calibrate the distances: in fact, a network of detectors allows to reconstruct
the waveform amplitude, which is a known function, as in Eq. 2.12, of the source
distance and binary masses. On the other hand, masses can also be deduced by the
time evolution of the waveform, as in Eq. 2.16. Hence the distance of a NS–NS event
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can be reconstructed, and if the event can be associated with an astrophysical object,
it will serve as distance calibration, and potentially compete with other methods
for determining the Hubble constant [47]: such a program could be implemented for
instance by associating GW events with GRBs [48]. In the absence of electromagnetic
counterparts, it has been proposed to measure the Hubble constant by relying on
the narrow observed distribution of NS masses: then the information in the GW
waveform allows to directly deduce the event redshift [49]; an alternative approach
exploits catalogs of galaxies with measured redshifts to associate the GW events with
a host [50].

Perhaps even more interesting is what could be learned by studying the merger
phase of the NS–NS coalescence: when the two NS are close enough, and start to
be disrupted by the tidal forces, they cannot be considered point particles anymore
and the emitted GWs become dependent on the details of the NS structure, and
on the Equation of State (EoS) of the nuclear matter [51]. The effects are most
evident during the merger phase, which is however very complicated to model, and
requires sophisticated simulations which take into account general relativity and
nuclear physics in order to predict the emitted GW [52] and possibly a simultaneous
γ -ray burst [53]. Since the merger signal in NS–NS will be relatively weak, and
the SNR carried will thus be limited, the prospects of extracting information which
could strongly constrain the complex physics of the NS will be reduced, even in the
ADE. It may be more promising to rely on the last stages of the inspiral phase, during
which an NS becomes distorted in the tidal field of the other; this distortion induces
a phase change in the GW signal which could be detected, and in [54] it is shown that
a few tens of such observations could allow to discriminate between hard, moderate,
and soft EoS.

The ringdown phase of the resulting BH, characterized by the emission of waves
corresponding to the quasi-normal-modes of the system, will be another clean lab-
oratory: the modes are entirely determined by the mass and the spin parameters of
the final objects, and the measurement of their frequencies and damping times will
allow to completely determine the final BH.

2.3.4.2 Science from NS–BH and BH–BH Detections

Differently from NS–NS systems, no BH–BH or BH–NS system has been observed
yet; consequently, the assumptions about the coalescence rate of such systems is
somewhat less firm, as already discussed. However, since the SNR scales roughly as
M5/6, larger mass systems are visible to greater distances and their interest is quite
substantial.

The BH–BH collisions will be a unique laboratory; each BH is solely charac-
terized by its mass and spin, which completely determine the dynamic of the event
horizon, and the theoretical problem is conceptually simple because the only relevant
equations are those of general relativity. Hence a direct BH–BH observation would
be a clean test of GR in a regime of strong fields, which could allow, for instance, to
discriminate between alternative formulations of the theory. However, the deviations



2 The Science Case for Advanced Gravitational Wave Detectors 39

from the simple Newtonian formulas become relevant not just for the merger, but
also for the inspiral phase, and an accurate calculation of the effects has called for a
substantial theoretical effort, contributing to the development of the field of numer-
ical relativity (NR), which was born in the 1980s mainly to study the core-collapse
events [55]. One important milestone was the simulation of a head-on BH–BH col-
lision [56, 57], whereas later the progress in the simulation methodologies made it
possible to study realistic collisions in three dimensions, including eventually spin
effects, which are expected to be important in binary black-holes: it is not possible
to account here for the rich literature on the subject, and the reader could consider
for instance the reviews [58, 59].

From the point of view of gravitational wave searches, the results of NR have been
exploited to assess the sensitivity of the search waveforms [60], and a significant effort
is still ongoing to further translate the knowledge gained by several NR groups into
waveforms usable for the data analysis: in the ADE, this effort is likely to lead to a
close collaboration of theorists and experimentalists.

Some of the considerations made for NS–NS events apply also to BH–BH and
BH–NS events, in particular the possibility to measure the event distance, and actually
to much larger distances: however, no mechanism is known by which a BH–BH event
could result also in an e.m. event, and therefore the contribution to determining the
Hubble constant is uncertain.

The BH–NS collisions have in principle a good potential to shed light on the EoS
of the NS; for a wide range of mass parameters, the latter should be disrupted by
the tidal forces due to the BH, and the resulting GWs will be within the frequency
range of GW detectors, thus allowing a direct probe of the NS structure [61]. It has
been recently argued though, considering NS–BH pairs with a non-spinning BH and
a range of BH masses considered most likely, that the resulting GW signal would
have only a weak dependence on the NS characteristics, to the point that a NS–BH
event may be indistinguishable, in simulation, from a BH–BH event with the same
masses [62]: this happens for instance in systems comprising a NS and an 8M� BH,
because the NS is “swallowed whole” by the BH, before being tidally disrupted.

Together with NS–NS events, it should also be noticed that BH–NS coalescences
are one of the proposed mechanisms for producing the violent shocks that would gen-
erate Gamma Ray Burst events; the importance of collaborating with GRB detectors
is therefore evident.

2.3.4.3 Association with Gamma and X-ray Bursts

The gamma-ray bursts, detected by instrumentation on board of satellites, are
believed to be originated by shocks in matter rapidly accreting onto newly formed
black holes, as a consequence either of a coalescence of compact objects, or of the
collapse of particularly massive supernovae. Observationally, the events are divided
into two broad classes, a minority of short bursts (lasting less than about 2 s) and
a majority of long ones, lasting anywhere between 2 s to several minutes, with an
average of 30s duration.
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There is mounting evidence (see for instance [63]) that long GRBs, or at least
those with a softer γ spectrum, are associated with collapsars, that is massive,
rapidly spinning Wolf-Rayet stars that collapse in Kerr black-holes with accretion
disks. Instead, good arguments [64] exist to assert that short bursts are related with
coalescing NS–NS or NS–BH pairs. In fact, it was argued in the past that NS–BH
coalescences could also be an alternative mechanism for long γ -ray bursts, but now
the collapsar model is favored.

The γ rays would be powered by the accretion disk orbiting around the newly
formed Kerr black hole; a disk, for instance, formed by material resulting by the
tidal disruption of part of the two colliding objects, in the case of short GRBs: it is
worth recalling that the infall of matter on a rotating BH is the most efficient known
mechanism for turning matter into energy [65], far more efficient than thermonuclear
reactions.

If the pictures for short and long gamma ray bursts are correct, GW observatories
may be able to detect a signal from the inspiral and merger event, or by the supernova
respectively. As we have seen, such events have already been searched for in the data
of the first-generation detectors (see for instance [66] for a search triggered by a long
γ -ray burst), finding no evidence of a correlation, but this was not a surprise since
for most of the short GRB there is observational evidence, by the observation of faint
X-ray afterglows, that they occur at cosmological distances (z ≥ 0.1), beyond the
range of first-generation GW detectors.

Advanced detectors, with their 10-fold larger range, will have greater chances, and
a confirmed association of a CBC with a GRB would have tremendous consequences.

First of all, the GRB trigger could give a greater confidence in the GW event,
thanks to the tight time association. For short GRBs, the models show that it is
necessary to allow only for about 2 minutes before and after the GRB maximum in
order to over-cover the time windows where a GW event is expected. Considering a
GRB rate ∼ 1/day, false alarms can be abated by factors O(103). At fixed false-alarm
rate, the coincidence with GRBs allows thus lowering the thresholds applied to GW
events, thus gaining in sensitivity.

From the physical point of view, as we have already discussed, the observation of
a NS–NS (or NS–BH) GW event would allow reconstructing the mass parameters
of the progenitors, through observation of the inspiral phase, and potentially also
the mass and spin parameters of the formed Kerr BH, by observing its relaxation
through GW emission at the frequencies of quasi-normal modes; this information
would be an input for constraining the models of the GRB process and could help
in understanding the complex dynamics in the accretion disk. For instance, the GW
event would provide information about the event distance, thus allowing a precise,
absolute calibration of the energy emission.

When the advanced detectors era comes, the NASA’s SWIFT [67] satellite, which
is a veritable multi-messenger observatory, carrying also optical and X-ray tele-
scopes, will no longer be operational, but will be replaced by the international Fermi
Gamma-ray Space Telescope (formerly known as GLAST) [68], which retains the
capability of “swift” pointing towards GRB sources, while providing greater sky
coverage and sensitivity over a much wider range of energies, up to ∼300 GeV.
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Although γ -ray events have captured most of the interest, also X-ray prompt bursts
or longer tails have been observed in conjunction with core-collapse supernovae and
GRB events, by a range of X-ray satellites, including Chandra [69] by NASA and
X-MM Newton [70] by ESA. While both Chandra and X-MM Newton missions
can be expected to last until the beginning of the ADE, we can hope that the joint
ESA-NASA X-Ray Evolving Universe Spectrometer (XEUS) [71] will be operating
as a successor.

2.3.4.4 Soft γ -Ray Repeaters

Besides the very powerful GRBs, soft gamma repeaters (“SGRs”) are X-ray stars
that emit bright, repeating flashes of soft (i.e., low-energy) gamma rays. While four
SGRs have been identified in our galaxy so far, many other millions almost certainly
exist, and a similar number probably exists in every other galaxy. According to
the “magnetar” model, SGR are associated to neutron stars (NS) with very intense
magnetic fields, such that the star crust may break under accumulated magnetic
stress [33]. A hot fireball forms which cools down through the emission of bursts of
electromagnetic (EM) radiation. During the crust quake, the star’s non-radial seismic
modes could be excited, thus leading to the emission of a GW burst as well, in fact
theoretical estimates predict comparable EM and GW energy release, within a few
orders of magnitude. We have seen in Sect. 2.3.3.2 that the best upper limit on the
strength of the GW emission placed with current LIGO data is 3 × 1037 J, which is
within the range 1037–1039 J for the observed EM emission: the advanced detectors,
thanks to a sensitivity improvement (in amplitude) by a factor of 10, will be able
to detect GW energies 100 times smaller, hence the SGRs will be very promising
sources, either for a detection or for placing stringent constraints on the models.

At times (though rarely), SGRs undergo “giant flares,” also called hyperflares,
during which the emission is dramatically increased with a total energy about a
thousand times higher than in a typical burst; this has been the case on 27 December
2004 for SGR 1806–1820 [72]. Quasi-periodic oscillations (QPO) in the tails of the
giant flares have been observed, thought to be driven by the star’s seismic modes,
the same that are expected to emit GWs. This information could be used to narrow
down the search in the GW spectrum to the observed QPO frequencies, leading to an
improvement in sensitivity. For hyperflare events occurring at the time of advanced
detector operation, the observable GW energetics at 100 Hz would be close to 1036 J,
leading to stringent constraints on the magnetar model [73].

2.3.4.5 Association with Neutrino Observations

We have seen that advanced GW detectors should be able to detect supernova events
emitting as little as 10−9 M�c2 in GWs: this sensitivity should allow to confirm
a detection with a high confidence level, but probably will not allow a detailed
characterization of the GW signal.
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This said, the significant uncertainty about the mechanism of the SN collapse,
in which neutrino, magneto-hydrodynamic and acoustic effects are expected to be
relevant [74], implies that even a mere detection, or a non-detection, of GWs from a
nearby SN could constrain significantly the core-collapse explosion mechanism.

Actually, we expect that about 99 % of the gravitational energy released during
the collapse of the SN is carried out of the core by the so-called thermal neutrinos,
having energies of a few tens of MeV, released in a short burst (a few seconds) through
the inverse β-decay process of neutronization. The existing neutrino detectors, like
Super-Kamiokande [75], LVD [76] and IceCube [77] can detect these abundant
neutrinos from sources in the Milky Way and beyond the Magellanic clouds,6 and
operate under an agreement [78], exchanging time information about events, and
regularly searching for coincidences which could correspond to a real SNe.7 Both
Super-Kamiokande and IceCube are expected to be in operation in the advanced
detectors era, and a correlated detection of an event by neutrino and GW detectors
would first of all strengthen its statistical significance. Perhaps more interestingly,
the neutrino emission is expected to be separated by a very small delay, of a few
ms, from the emission of GWs: this tight coincidence at the source level could be
partially spoiled in presence of a nonzero neutrino mass, which will induce a delay
tprop at detection level, expressed as [81]

tprop = 5.2 ms
d

10 kpc

⎧ mν

1 eV

⎨2
⎡

10 MeV

Eν

⎢2

(2.32)

which means that a good accuracy in determining this delay could allow constraining
neutrino masses tightly.

In addition to the detection of thermal, or low-energy, neutrinos from SNe, there
is considerable interest for detecting High Energy ν, which is actually the main
goal of IceCube and of the future KM3NeT detector [82]: their respective locations
at the south pole and in the Mediterranean sea allow them to cover the entire sky.
These neutrino detectors use an array of photomultipliers, regularly spaced in a large
volume of ice or water to collect the Cerenkov light emitted by charged particles,
which result from the collision of the high-energy ν’s with the nuclei in water. The
quasi-simultaneous excitation of several photomultipliers allows to reconstruct the
direction of the charged particles and to infer the one of the incoming ν. An attempt
at identifying coincidences between high-energy neutrinos detected by Antares (the
predecessor of the KM3NeT) and GW candidate events detected by LIGO and Virgo
has been carried out in [83], starting the development of a methodology.

There exist potential sources of joint high energy ν and GW emission; for instance,
it has been speculated [64] that HE ν’s could be emitted during the binary mergers,

6 Even though IceCube is designed for high energy ν, it can detect SN neutrinos in the Large
Magellanic Cloud with a 5σ significance.
7 The Sudbury Neutrino Observatory (SNO) [79] was also part of the agreement SNEWS (Super-
Nova Early Warning System), and has been recently decommissioned. Plans are underway, though,
to upgrade it to SNO+ [80].
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and thus be associated with short GRBs as well. More generally, it is expected that HE
ν’s are produced in the shocks by accelerated protons, for instance in collapse events
associated with long GRBs: the resulting fluxes could be sufficient to be detected at
cosmological distances by km2 scale ν detectors like IceCube and KM3NeT. Also,
during the giant flares from Soft Gamma Repeaters, the violent crustal reorganization
of the magnetar is believed to emit both GW and ν’s, with fluxes that might be
detectable or at least allow to constrain the models.

As with other joint observations, the simultaneous detection of GWs and HE ν’s
would thus give enormous insight into the generation processes.

2.3.4.6 The Electromagnetic Follow-up of Transient GW Events

We have seen that GW experiments have carried out searches of signals triggered by
external events. The converse starts to be true: GW candidate events are becoming
targets for detectors of electromagnetic radiation, and optical, X-ray orγ observations
can be exploited to look for transients that could be associated with the same source
of a GW signal candidate.

There are some difficulties: first, a network of three sites like the one formed
by LIGO and Virgo detectors is capable of reconstructing the candidate’s source
position with rather limited accuracy, not better than tens of degrees, depending on
the candidate signal’s strength. The lack of accurate localization calls for observing
wide areas of the sky, using instruments generally designed with smaller fields of
view, thus requiring the development of specific methods for the analysis of images.
Second, one needs a low-latency GW search, capable of delivering candidate events
a few minutes after data acquisition: this requires that a number of data processing
steps are performed on-time, including calibration, data quality and vetoes, trigger
generation, and event reconstruction.

In [84] this program has been implemented and tested, focusing on signals from
coalescing pairs of neutron-stars, and using terrestrial telescopes, whereas in [85]
both neutron-star binaries and un-modeled signals were targeted, using the Swift
satellite observatory. During the advanced detector era this approach will be fur-
ther expanded, by covering more extensively the spectrum of GW signals, and by
involving several partner observatories, both on Earth and in space.

2.4 Continuous Signals

Besides transient signals, the ground-based advanced GW detectors will target also
permanent signals, which are expected to be essentially of two kinds: the periodic
ones emitted by rotating, distorted neutron stars, and the stochastic ones emitted
either by astrophysical sources, or immediately after the Big Bang.
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A permanent source is clearly particularly appealing, but the price to pay is that
signals are expected to be extremely weak, and first-generation detectors have already
set stringent limits: still, the science potential is immense, as we will try to discuss.

2.4.1 Rotating Neutron Stars

Spinning compact objects emit gravitational waves when their mass distribution dis-
plays a time-varying quadrupolar component: for example, a freely precessing rotor
could exhibit a momentum of inertia along one axis ẑ different from the ones along the
other two axes. The emitted signal would be particularly intense in compact objects
like the neutron stars: considering the extremely high stability of the electromagnetic
signal emitted by a particular type of neutron stars, the pulsars, we anticipate that
the emitted GW radiation would be essentially monochromatic, with a frequency
stability comparable to that of the rate of pulsar electromagnetic pulses.

What could cause the deviation from spherical shape in a compact object like an
NS? It could be due to internal magnetic stresses (e.g., [86, 87]) or to accretion onto
neutron stars residing within low mass X-ray binaries [88].

2.4.1.1 The Signal from a Rotating NS

A freely precessing NS emits a periodic signal with a characteristic amplitude, as
seen at distance R

hc = 2G

c4

ε Ixx

R
Ω2, with ε ∼ Izz − Ixx

Ixx

� 10−26
[

Ixx

1038 kg m2

] [
10 kpc

R

] [
f

100 Hz

]2
ε

10−6 (2.33)

where Ω is the angular frequency of the spinning object; in the second line, we have
exposed typical values for the momentum of inertia I of the star, and plausible values
for its “ellipticity” parameter ε, which expresses its degree of asymmetry.8 In order to
compare this amplitude with a detector’s sensitivity, like the linear spectral densities
shown in Fig. 2.1, one should multiply hc by the square root of the observation time
T , which determines the accessible frequency resolution. One year of observation
corresponds to

√
T � 5600 s1/2, therefore a perfectly monochromatic signal with

an amplitude as in Eq. 2.33 would yield peaks at about 10−23 Hz−1/2 in the linear

8 A similar formula holds for a tri-axial rotator, in which case one has

hc = 2G

c4

ε Izz

R
Ω2 with ε ∼ Ixx − Iyy

Izz
.
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Fig. 2.6 The evolution of the frequency of the signal emitted by a pulsar, as received by a detector
located on Earth. Left the yearly evolution of the frequency, dominated by the Earth revolution.
Right a zoom over 18 days which shows the daily modulation due to Earth rotation, superposed to
the frequency drift due to the revolution

spectra of the data; this shows that searches for such signals are limited to galactic
sources. However, the number of galactic sources is easily estimated to be very
large: 108 − 109 neutron stars in the Milky Way alone, on the basis of the supernova
rate (about 1 every 30 years), the Milky Way age (about 13 billion years) and the
assumption that most supernovae evolve in NS and not BH.

Besides, the signal emitted is simply a periodic wave, in general with pulsation
Ω and 2Ω , but the detection is made difficult by the Doppler effect due to Earth
rotation and revolution, which modulates the signal phase and leads to an evolution
of the instantaneous frequency with time, as shown for example in Fig. 2.6.

To appreciate the size of the effect, let us consider just the Earth’s revolution
motion, modeled as a circular orbit with angular frequency ωm : the phase of a periodic
signal with pulsation ω received from direction n̂ is altered as

φ(t) = ω

⎡
t + n̂ · r⊕(t)

c

⎢
= ω (t + β cos ωmt) (2.34)

where r⊕ (t) is Earth position in a reference frame centered on the Sun, hence β =
O(1AU/c); the signal itself can be expanded in a series of sidebands

cos(ω(t + β cos ωmt)) =
+∞⎩

k=−∞
(−1)k J2k(ωβ) cos(ω + 2kωm)t (2.35)

−
+∞⎩

k=−∞
(−1)k J2k+1(ωβ) sin(ω + (2k + 1)ωm)t .

The Bessel functions Jl(ωβ) determine the amplitude of each sideband: if ωβ � π/2,
only the lowest two l values matter. In the case of Earth revolution though,β ∼ 5×102
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Fig. 2.7 A simulated exam-
ple of the correction of the
Doppler effect due to Earth
rotation and revolution: the
signal received by the detec-
tor, which is spread over many
sidebands, is transformed
back into a monochromatic
signal

s, hence for ω = 2π · 100 Hz we obtain ωβ ∼ 3 × 105, and a similar number of
small sidebands contributes,9 each correspondingly weaker.

The Doppler effect can be corrected for, as shown in Fig. 2.7, but only if the source
location is known with high accuracy, hence signals associated with known pulsars
can be searched for with a higher sensitivity.

Besides, the fundamental period of the source will evolve with time: a rotating
neutron star will lose energy as

dE

dt
= − G

5c5

⎥
...
Qi j

...
Qi j

⎦
= −32G

5c5
I 2
zzε

2Ω6 ; (2.36)

given the rotational kinetic energy E = 1
2 IzzΩ

2, it follows

Ω̇ = −32G

5c5
Izzε

2Ω5 (2.37)

hence the following relation holds for the rotation period P:

Ṗ � 10−14 Izz

1038 kg m2

⎡
P

1 ms

⎢−3 ⎧ ε

10−6

⎨2
. (2.38)

A measured braking Ṗ provides therefore an upper limit on ε:

9 It is useful to recall the formula ∑
l l2 Jl (x)∑

l Jl (x)
= x2

2

which relates the variance of the index l in the distribution of Jl (x) to the square of the argument
x : for large x , large values of l are important.
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ε ≤ εmax ∼ 3 × 10−9
⎡

P

1 ms

⎢3/2 ⎡
Ṗ

10−19

⎢1/2

. (2.39)

As an example, for the Crab Ṗ = 38 ns/day = 4.4 × 10−13 hence

εmax(Crab) � 1.2 × 10−4 . (2.40)

In deriving Eq. 2.39 we have assumed a braking due solely to GW emission; using
Eq. 2.33 the value εmax could be translated into a maximum hc value, also called
the spin-down limit. This is known to be an upper limit, since the EM emission is a
competing, and likely dominant, mechanism for the loss of rotational energy, which
actually alters also the dependence of the braking on the period P [89].

2.4.1.2 Existing Limits on NS Signals

The LIGO and Virgo runs provide the most stringent limits so far on periodic signals
emitted by compact objects; for instance a targeted search was carried out using S5
data (Nov 2005–Nov 2007) [90], considering 116 known millisecond and young
pulsars, and exploiting also radio and X-ray observations to deduce ephemerides
for the phase of the signal. This search allowed to set the best limit so far on the
Crab’s GW emission, a factor of 7 below the spin-down limit; this being a limit
on the amplitude, it implies that less than ∼2 % of the energy loss could be due,
in principle, to GW emission. For several other young pulsars, the limits are only
slightly above the spin-down limits: the best results were obtained for pulsar J1603-
1720, with a limit hc < 2.3×10−26, and for J2124-3358, with a limit ε < 7×10−8,
in the ballpark of plausible values.

Despite their lesser sensitivity, for lack of precise knowledge of the source location
and phase, all-sky searches are important because of the expected large number of
neutron stars which are not detected as pulsar: the LIGO S5 data [91] were exploited
to this end, searching a frequency band 50–800 Hz, and assuming −6×10−9 Hz/s ≤
dν/dt < 0 Hz/s. At the frequency of 150 Hz, where the detector displays its best
sensitivity, an upper limit hc < 10−24 was obtained for linearly polarized signals,
whereas at the upper end of the frequency band a limit hc < 3.8×10−24 was obtained
for all polarizations and sky locations.

Using Virgo VSR2 data, thanks to the good low-frequency sensitivity, an upper
limit on the emission by the Vela pulsar (expected to emit at ν ∼ 22.47 Hz) could be
placed [92] at hc <1.9–2.2 × 10−24, the interval being determined by the assump-
tions on the signal, thus obtaining a limit more stringent than the spin down limit
hc,max = 3.3 × 10−24 derived from the pulsar’s period evolution.
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2.4.1.3 Science from NS Continuous Signals

From the numbers discussed above, it should be clear that even in the advanced
detectors era, the chances to detect continuous signals emitted by compact objects will
remain limited to sources in our own galaxy; however, the sensitivity improvement
will allow detecting signals with hc ten times fainter, and consequently to probe
neutron-star ellipticities as small as ε ∼ 10−9, therefore significantly improving the
prospects of a detection or the relevance of the resulting upper limits.

Even limiting to AdV, and considering only the known pulsars, it is possible to
show that the improved sensitivity will allow to beat the spin-down limit by orders
of magnitude, for about 40 of the pulsars presently known [93].

The increased sensitivity will open new prospects also for electromagnetically
quiet NS: on the basis of the neutron star birthrate [94] it is possible to estimate that
there exist O(105–106) such objects in a radius of just 1 kpc; within this volume the
sensitivity of advanced detectors may allow discovering a close enough NS.

Within the theoretical framework of GR, the detection of continuous GW signals
from galactic pulsars would provide good insight into the source physics, thanks to
the simple form of the expected signal, and its direct relation to the source parameter,
in particular to the ellipticity parameter ε, and this in turn to the rigidity of the NS
crust.

For pulsars, the relationship between the GW emission frequency and the rate
of EM pulses would help discriminating among competing mechanisms generating
this asymmetry. Moreover, it is well known that pulsar rotation may undergo sudden
phase discontinuities, believed to be related to “starquakes”, or rearrangements of
the NS crust stresses. If such events could be related with analogous losses of phase
coherence in the GW signals, this observation could shed light on the nature of
the deformation and ultimately on the rich physics of these stars, which possess
huge magnetic fields and are believed to contain a core with the characteristics of a
superfluid [95].

Besides pulsars, we should mention another potentially interesting class of spin-
ning neutron stars; the Low Mass X-ray Binaries, constituted by a NS which is
spun-up by the infall of material through an accretion disk. The evidence is that the
spin of these systems results from the equilibrium between the torque due to the
accretion mechanism and some braking mechanism, the most likely being the GW
emission [96]. The resulting GW frequencies could be stabilized by this feedback
mechanism and are expected in the range 600–1200 Hz; these sources could be tar-
geted especially well by advanced detectors operating in narrowband mode, when
their rotational frequency is measured; this is not the case for instance for Sco X-1,
for which however interesting limits would be placed also operating in wide-band
mode [97].

As discussed already, the targeted search of GW emitted by known objects relies
on the assumption that the phase evolution is coherent over long timescales. If a
“star quake” occurs, it can introduce a “glitch” both in the series of EM pulses and
in the GW signal. Knowing whether a glitch has occurred is possible, if the radio
telescopes regularly check the count of pulses for slight variations in the expected
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arrival of the event. A confirmed correlation between GW and EM glitches would
tell us a lot about the structure of the NS crust and its dynamics.

2.4.2 Stochastic Background

Besides periodic signals, we anticipate the existence of stochastic signals, either of
cosmological or of astrophysical origin. The same inflationary mechanism that is
believed to have amplified the vacuum fluctuations of the early universe should have
led to the emission of GWs shortly after the Big Bang [98], whereas a stochastic
signal can result also from the incoherent superposition of transient signals, emitted
by a large population of distant sources [99]. It has been shown [100] that advanced
detectors are likely to detect the stochastic signals caused by binary coalescences,
and that these could form a “foreground” potentially masking the GW background
due to cosmological sources.

2.4.2.1 The Stochastic Signal as Seen by a Detector

A detector l will receive a superposition of signals from different directions

hl(t) =
⎩

p

∫
dΩ F p

l (Ω̂)

+∞∫

−∞
d f e

i2π f

⎡
t− dl ·Ω̂

c

⎢

h p

⎧
f, Ω̂

⎨
; (2.41)

here dl specifies the location of the detector, Ω̂ is a unit vector pointing to a source,
and F p

l is the detector’s l antenna pattern, for polarization p; therefore h p( f, Ω̂)

represents the p component of the stochastic signal from direction Ω̂ at frequency f .
Signals of cosmological origin are expected to be stationary, isotropic and

Gaussian, hence the statistical properties of h are specified entirely by the second-
order moment

⊥h p( f, Ω̂)h∗
q( f ′, Ω̂ ′)〉 = 1

4π
δ( f − f ′)δ2(Ω̂ − Ω̂ ′)δpq

1

2
H2( f ) (2.42)

in which H ( f ) is a one-sided linear spectral density: by computing

⊥hl(t)hl(t
′)〉 =

⎩
p

1

4π

∫
dΩ [F p

l (Ω̂)]2 ·
+∞∫

−∞
d f ei2π f (t−t ′) 1

2
H2( f ) (2.43)

one sees that, apart factors of the order of unity, H2 ( f ) directly contributes to the
detector’s spectral noise density. Using the energy density of GW



50 A. Viceré

ρgw = c3

32πG

⎥
dhi j (t)

dt

dhi j (t)

dt

⎦
(2.44)

already defined in Eq. 2.27, it can be directly shown that

dρgw

d log f
= πc3

2G
f 3 H2( f ) . (2.45)

It is customary to use a normalized logarithmic energy density

ΩGW( f ) ∼ 1

ρc

dρgw

d log f
(2.46)

in terms of the critical energy density ρc required to close the Universe, defined as

ρc = 3H2
0 c3

8πG
(2.47)

where the Hubble constant H0 = h0 × 100 × km/(s · Mpc). One obtains

h2
0ΩGW( f ) = 4π2h2

0

3H2
0

f 3 H2( f ) (2.48)

as a dimensionless measure of the spectral strength of the GW background, inde-
pendent on the experimental uncertainty on h0 (recall the most recent estimates
h0 � 0.714 ± 0.016 [101]).

The models for the cosmological stochastic background in general foresee a spec-
tral density well approximated by a power law, at least in the frequency band acces-
sible to ground-based interferometric detectors [98]:

ΩGW( f ) = Ωn

⎡
f

f0

⎢n

(2.49)

for instance, the standard inflationary theory foresees a flat spectrum n = 0, while
other models, including string models, foresee n > 1, and therefore spectra increas-
ing with the frequency [93].

Taking into account existing bounds, one should aim at h2
0ΩGW( f ) ≤ 10−6, or

H( f ) ≤
√

3

4

H0

πh0
f −3/2 × 10−6 � 10−21 Hz

f 3/2 (2.50)

a quantity which should be compared the detector’s sensitivity: at 100 Hz one should
detect H( f ) � 3×10−24 Hz−1/2, about a factor 10 below the best sensitivity attained
so far.
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Fig. 2.8 An example of overlap reduction function γ (r × f ). Setting a detector distance, say
r = 150 km, the function displays maxima and minima, with the first lobe ending at about 150 Hz

In fact, correlating the output of several instruments, it is possible to do much
better, as we will see later.

2.4.2.2 Existing Limits on the Stochastic Background, and Prospects

A stochastic background appears in a single detector as an additional noise, and
Eq. 2.50 shows that this would be below the instruments’s noise floor.

However, the noise is coherent across different instruments, and can be exposed
by a cross-correlation of their outputs: this correlation can be written as

< hl(t)hm(t ′) > =
∫

ei2π f (t−t ′)γ (rlm, f )H2( f ) d f (2.51)

where γ is a “overlap reduction function” depending on the product rlm × f , with
rlm the distance between the two detectors l, m.

An example of γ is shown in Fig. 2.8: for distant detectors, it is similar to a sinc
function of the argument, displaying an oscillating pattern, and tends to 1 for parallel,
co-located detectors.

The best published limits have been obtained by correlating LIGO data from
the two distant detectors at Hanford and Livingston, acquired during the S5-VSR1
runs [102]:

h2
0ΩGW < 6.9 × 10−6 @ 100Hz , (2.52)

a result which improved over direct limits from Big Bang nucleosynthesis [98] and
from CMB [103], and which constrained also more exotic cosmological models, like
those involving cosmic strings [104]. During the same run, a limit at high frequencies
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could be set using the LIGO and Virgo detectors [105]: for instance, assuming the
power law in Eq. 2.49 with n = 3, one obtains

h2
0ΩGW = h2

0Ω3

⎡
f

900Hz

⎢3

< 0.16 ×
⎡

f

900Hz

⎢3

in 600–1000 Hz . (2.53)

Relaxing the assumption of complete isotropy of the stochastic background, it
was possible to investigate potential anisotropies, either due to point sources or to
extended sources, again using S5 data [97], obtaining:

H2 ( f ) < 2–20 × 10−50Hz−1(point sources)

H2 ( f ) < 5–35 × 10−49Hz−1sr−1(extended sources) (2.54)

and limits as low as 7×10−25 could be set on the rms GW strain emitted from selected
interesting directions, like the galactic center or Sco X-1, at the best sensitivity of
160 Hz.

It is immediate, on the basis of Eq. 2.51, to see that a 10-fold improvement in
the detectors sensitivity provides a limit on H( f ) 10 times better as well, and there-
fore 100 times better on ΩGW, which will further constrain the theoretical models,
restricting the range of the allowed parameters for the equation-of-state [106]. Most
of the space of parameters for the cosmic (super) string models will become accessi-
ble [107], and even very exotic theories like the so-called pre-Big Bang models will
be constrained [108].

2.5 Conclusions

A large experimental effort is underway in order to start, with the second generation
of interferometric gravitational wave detectors, the era of gravitational astronomy.
The successes of the first generation make us confident that the promised sensitivity
improvements will be achieved, and the mature state of the analysis methods guaran-
tees that all the accessible science will be harvested from the data. Science that, we
have tried to argue, is rich: not only will we test general relativity in its most elusive
prediction, the gravitational waves, but we will also shed light on some of the most
energetic events in the Universe, we will acquire information about exotic states of
the matter, and further extend our knowledge of the Big Bang; sufficient value, we
hope, in return for taxpayer’s money.
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Chapter 3
Interferometer Configurations

Gabriele Vajente

Abstract Gravitational waves induce a differential strain between free-falling test
masses. The most sensitive instruments to measure this kind of effect are laser inter-
ferometers. This chapter introduces the working principles of the different optical
configuration that were and will be used in gravitational wave detectors: Michelson
interferometer, Fabry-Perot resonant cavity, power and signal recycling techniques.
Advanced detectors will feature high power levels, therefore the important issue of
radiation pressure effects is addressed. Finally, a brief introduction to the topic of dif-
fraction limited beams and high order transverse electromagnetic modes is included.

3.1 The Interferometer as a Transducer

The effect of a gravitational wave (GW) is a change in the local space-time metric,
which can be considered equivalent to a change in the distance measured between
free-falling test masses. The GW polarization nature tells us that the distance variation
is intrinsically differential: two measurements performed along orthogonal directions
provide opposite results. Given a baseline length L , the measured variation ηL is
linked to the gravitational wave amplitude (strain) h by the simple relation [1–3]

ηL = ±1

2
h L (3.1)

where the sign depends on the orientation of the length being measured with respect
to the wave polarization. To all practical effects, the detection of a gravitational wave
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signal is equivalent to the measurement of a small differential variation of the distance
between test masses.

Interferometers are today among the most sensitive instruments to measure such
relative distance changes. Any optical configuration chosen for our interferometer
can be considered as a transducer, which converts a length variation (caused hopefully
by a gravitational wave signal) to a variation of the phase of a laser field. One of
the key parameters of any detector is its optical gain G which gives the phase of
the output field as a function of the length variation. Since the expected effect of a
gravitational wave is really small, any instrument can be considered as linear:

ηΩ = G ηL (3.2)

The optical gain G is in principle a function of the signal frequency. The first goal
in designing a gravitational wave detector is to make its gain as large as possible
with respect to the intrinsic noise limitation of the measurement. In other words, we
want to optimize our system in order to have the largest possible signal-to-noise ratio
(SNR).

In this chapter, we are not taking into account how to measure the phase variation
of the output laser field, or in other words how to build a phase-meter. This will be
one of the topics covered in Chap. 6. We simply assume to have a perfect way to
produce a signal proportional to the field phase variation with respect to a reference
value.

3.1.1 Plane Wave Description of Laser Fields

The electromagnetic field at any point inside the interferometer is in principle
described by the vector amplitudes of both magnetic and electric fields. In most
of the applications of our interest however the input laser beam is polarized. There-
fore only the amplitude and the phase of the field is relevant, meaning that we can
use a scalar description. It is also customary to use complex number representations:

π = AeiΩ (3.3)

Propagating solutions of the vacuum Maxwell equations can be described in terms
of plane waves [4] of well-defined frequency, corresponding to the main laser wave-
length ε:

π (t, z) = π0eiΔt−ikz (3.4)

Δ = 2ρc

ε
(3.5)

k = 2ρ

ε
= Δ

c
(3.6)

http://dx.doi.org/10.1007/978-3-319-03792-9_6
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In the so-called plane-wave approximation, we can describe the laser field at any point
inside the interferometer as a coherent plane wave, thus neglecting the transverse
shape of the laser beam generated by diffraction effects. This approximation is good
enough to describe most of the dynamics of the laser field inside a GW interferometer.
Later on in this chapter, we will give a brief introduction on diffraction effects.

In summary, we will consider only the longitudinal evolution of the laser field
amplitude and phase, assigning to each point inside our optical system a complex
number which gives the amplitude of the field at that point. We can also choose
our units in such a way that the power at each point is simply given by the squared
modulus of the field:

P(t, z) = |π (t, z)|2 (3.7)

Our optical system is mainly composed of mirrors, therefore it is important to
properly describe what happens when the laser impinges on a reflecting surface. The
amplitude of the reflected and transmitted fields are linked to the incoming one by
the (real valued) reflectivity r and transmissivity t of the mirror:

|πr | = r |πi | (3.8)

|πt | = t |πi | (3.9)

The conservation of energy requires that

r2 + t2 = 1 − L (3.10)

where L are the total power losses in the mirror, due for example to internal absorption
of light. Equations 3.8 and 3.9 are still missing the phase information to completely
determine the output fields. There is some freedom in choosing the phases. Here we
follow the convention of [5]:

πr = irπi (3.11)

πt = tπi (3.12)

The need of the additional i comes again from the conservation of energy, which
requires a phase jump of ρ/2 between the transmitted and reflected fields, as
explained in [5, Sect. 1.1.2]. Different conventions are used in other texts, but the
physical results are clearly equivalent.

3.1.2 Effect of a Gravitational Wave

Let us consider a laser beam propagating along a distance L . The effect of a grav-
itational wave passing by is a variation of the distance, as seen by the laser, of an
amount proportional to the GW amplitude. If π0 is the laser field at the beginning of
the space, the propagated one will be given by
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πL = π0 · e−ik(L+ h(t)
2 L) = π

(0)
L e−ikL h(t)

2 (3.13)

The effect is therefore an additional dephasing, with respect to the propagation in
the absence of GW, proportional to the GW amplitude. In the previous equation, we
have assumed that the GW amplitude varies on a timescale which is much longer
than the typical period of variation of the source laser field. If the GW signal is
monochromatic h(t) = h0 cos(Δgwt), then the previous equation can be rewritten at
first order:

πL = π0e−ikL
⎧

1 + ikLh0

4
eiΔgwt + ikLh0

4
e−iΔgwt

⎨
(3.14)

In other words, the effect of a GW passing through our detector is the creation of
two signal sidebands around the main carrier field. The laser is no more purely
monochromatic, but it contains two new components spaced by the GW frequency
from the main laser one. Since the frequency of the GW we expect to be able to
detect is comprised between 10 Hz and 10 kHz, these sidebands are also commonly
called audio sidebands.

3.2 The Michelson Interferometer

Since GW are intrinsically differential, the best configuration to convert them to an
optical signal is a Michelson interferometer, see Fig. 3.1. The input laser beam is
entering the system from the symmetric port and it is divided into two equal parts by
the beam-splitter. The two beams created in this way travel along the two km-long
arms, are reflected back to the central vertex and recombine at the beam-splitter. The
interference condition of the returning fields, exiting through the antisymmetric port
can be tuned by changing the microscopic length difference between the two arms.

Mathematically, using the conventions shown in the figure, the following relations
between the fields at different positions are easily found:

π2 = i∼
2
π1 + 1∼

2
π11

π5 = e−2ikLY irY π2

π6 = 1∼
2
π1 + i∼

2
π11

π9 = e−2ikL X irXπ6

π10 = i∼
2
π9 + 1∼

2
π5

π12 = 1∼
2
π9 + i∼

2
π5
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Fig. 3.1 Scheme of a simple
Michelson interferometer

Here the reflectivity of the two end mirrors are indicated by rX and rY and for
simplicity we assumed that the beam splitter is perfectly balanced, i.e., |rBS| = |tbs| =
1/

∼
2. For the moment being, no input from the antisymmetric port is considered.

For our purposes, the only interesting fields are those exiting from the symmetric
and antisymmetric ports, which can be found solving the above equations:

πASY = −1

2

⎩
rX e−2ikL X + rY e−2ikLY

)
π1 (3.15)

πSYM = i

2

⎩
rX e−2ikL X − rY e−2ikLY

)
π1 (3.16)

In the ideal world, the two mirrors will be perfectly equal. However, in reality we
might consider that the reflectivity of the two mirrors can be slightly unbalanced

rX = r + ηr

2
(3.17)

rY = r − ηr

2
(3.18)

Moreover we assume the two arms to have possible different lengths:

L X = L + ηL

2
(3.19)

LY = L − ηL

2
(3.20)

Using these new conventions we can rewrite the field at the antisymmetric port as
follows:

πASY = −re−2ikL
⎧

cos kηL − i

2

ηr

r
sin kηL

⎨
π1 (3.21)

The power exiting through the antisymmetric port can be compute with the squared
modulus of Eq. 3.21:
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Fig. 3.2 Interference fringes in a Michelson interferometer, visible in the power exiting at the
antisymmetric port as a function of the microscopic length difference of the two arms

PASY =
⎛⎧

r2 − ηr2

4r2

⎨
cos2 kηL + ηr2

4r2

⎜
Pinput (3.22)

It is easy to show that the minimum possible power at the antisymmetric port is
obtained (regardless of the reflectivity asymmetry) when the length difference is
chosen such to have cos kηL = 0. This is a microscopic condition, in the sense that
it tells us that the length difference must be an odd multiple of half wavelength

ηL = (2n + 1)
ε

2
(3.23)

This condition can clearly be satisfied by an infinite number of lengths. Once the
macroscopic length difference is set, one still has lots of possible values all differing
by multiples of one wavelength (the so-called interference fringes), see Fig. 3.2.
If we want to use the power at the antisymmetric port to measure the relative length
change of the two arms, the best position would be the one that maximizes the slope,
which is obtained at the gray fringe condition, which is the one corresponding to half
of the maximum power.

The presence of asymmetries, such as the reflectivity ηr makes it impossible to
reach perfectly destructive interference, as visible in Fig. 3.2 where different values
of ηr/r are considered. The minimum power attainable at the antisymmetric port
defines the contrast defect:

1 − C = 2Pmin

Pmin + Pmax
(3.24)
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3.2.1 Common and Differential Signals

As we said we are using the interferometer as a transducer to convert GW signals
(in the form of a differential variation ηL = ηL0 + d of the two arm lengths) to an
optical signal. We will now compute the response of a Michelson interferometer to
such a signal. In addition, we will consider how the system responds to a common
mode signal, in this case a variation of the mean length of the two arms L = L0 + c.
If we consider only small signals, i.e., d and c are much smaller than one wavelength,
the response of our Michelson interferometer can be computed simply taking the
derivative of Eq. 3.21 with respect to L and ηL:

dπASY

d L
= 2ikre−2ikL0

⎛
cos kηL0 − i

2

ηr

r
sin kηL0

⎜
π1 (3.25)

dπASY

dηL
= kre−2ikL0

⎛
sin kηL0 + i

2

ηr

r
cos kηL0

⎜
π1 (3.26)

We want to maximize the response of our detector to differential motions and, if
possible, minimize the response to common motions. This happens for exactly the
same condition that makes the power minimum as shown in Eq. 3.23. This is the best
working point for our system. It is often called the dark fringe condition. The field
at the antisymmetric port simplifies to:

πASY = re−2ikL0
2ρ

ε

⎧
d − ηr

r
c

⎨
π1 (3.27)

This equation shows one of the peculiar characteristic of Michelson interferometers:
if the system is symmetric, common mode signals are not reaching the antisymmetric
port. In the real world, any asymmetry will introduce a coupling of common modes
to the output signal, as shown in the previous equation for the case of a mirror
reflectivity asymmetry. This property of Michelson interferometers is measured by
the common mode rejection factor, which is given in this case by ηr/r .

3.2.2 Shot Noise

Equation 3.27 shows that one can improve the sensitivity of a Michelson interfer-
ometer to a GW signal by increasing the reflectivity of the end mirrors (that cannot
be larger than 1 in any case) or by increasing the input laser power. Clearly, also an
increase of the arm length will result in a larger differential displacement with the
same GW amplitude.

The amplitude of the output signal of the Michelson interferometer must be
compared to the fundamental noise limits on the read-out of such signal. We’ll
see more about this in a following chapter. For the moment we can say that we are
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using optical sensors to convert the laser field fluctuations to electric signals. The
fundamental limit comes from the shot-noise of the laser itself.

The poor man explanation is that every time you have a fixed amount of power
reaching your photo-sensor, the average number of photons impinging on it is fixed,
but the statistics of arrivals is Poissonian. The number of photons actually hitting
the diode in the unit of time is fluctuating, resulting in a limiting noise source. The
time-independent nature of the fluctuations give rise to a white noise, or in other
words to a noise which is independent of the frequency.

A better explanation of shot noise is to consider the quantum fluctuations of the
laser field, which are converted in classical fluctuation by the sensor. You will learn
more about this topic reading Chap. 11.

Without entering into too many details (that can be found in [5, Sect. 1.1] and in
[6]), the shot-noise level for a certain amount of power impinging on a diode is given
by the following equation

nS = ⎝
2h Pω P (3.28)

where ω is the laser optical frequency, h P the Planck constant and P the power
reaching the diode. One can argue that if a Michelson interferometer is tuned at dark
fringe this value would be zero. However, we will see in Chap. 6 that this is not
possible, since we need to send some additional power at the dark port in order to
extract the signal. Indeed, if we tune the interferometer to have perfect destructive
interference, Eq. 3.27 shows that the field will be proportional to the GW signal.
Photo-diode however will detect the power, which is the squared value of the field,
as given by Eq. 3.22. Therefore we will have a signal proportional only to the square
of the GW signal. Since the GW is very small, its squared value is essentially zero
and therefore our system will be perfectly insensitive to GWs. If we want to use
the power at the antisymmetric port of a Michelson interferometer to measure the
differential length change, we need to move a little bit further away from the dark
fringe condition, increasing the slope but also increasing the shot noise. One can
show that there is an optimum offset from dark fringe, see [1, Sect. 1.1.3] for more
details.

3.3 Improving the Sensitivity: Resonant Fabry-Perot Cavities

Michelson interferometers are very simple, but unfortunately their sensitivity is not
good enough. The first additional technique that is implemented in GW detectors is
the replacement of the two arms with long resonant cavities.

http://dx.doi.org/10.1007/978-3-319-03792-9_11
http://dx.doi.org/10.1007/978-3-319-03792-9_6
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3.3.1 Static Response of a Fabry-Perot Cavity

A Fabry-Perot cavity is made of two mirrors aligned to the optical axis: the first
one (input mirror) is partially reflecting (with reflectivity ri ) and the second one
(end mirror) is almost completely reflective (typically t2

e is few parts per million).
Referring to Fig. 3.3 for the definition of the fields, one can find simple relations
among them, as done in the Michelson case:

π2 = tiπ1 − riree−2ikL π2

π5 = iree−2ikLπ2

π6 = tiπ5 + iriπ2

We are particularly interested in the reflected field (π6) and in the intra-cavity
field (π2):

πcav = ti
1 + riree−2ikL

π1 (3.29)

πref = i
ri + re(t2

i + r2
i )e−2ikL

1 + riree−2ikL
π1 (3.30)

From Eq. 3.29 we infer that for a proper tuning of the microscopic length that gives

e−2ikL = −1 (3.31)

the power stored inside the cavity is maximum and given by

Pcav = t2
i

(1 − rire)2 Pin = Gcav Pin (3.32)

where we have defined the cavity gain Gcav. The condition of Eq. 3.31 shows also
that there are multiple resonant peaks, spaced in length by half wave-length and in
frequency by the cavity free spectral range of

η fFSR = c

2L
(3.33)

If we consider a detuning ηL around one of the resonant positions, the power
stored inside the cavity is given by

Pcav = t2
i

(1 − rire)2 + 4rire sin2 kηL
Pin = Gcav

1

1 +
⎞

2
∼

ri re
1−ri re

sin 2ρηL
ε

⎟2 Pin

(3.34)
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Fig. 3.3 Scheme of a resonant
Fabry-Perot cavity

Fig. 3.4 Example of how
the power stored inside a
resonant Fabry-Perot cavity
depends on the detuning
from the resonance position.
In this example the input
mirror reflectivity is 0.9,
corresponding to a relatively
low finesse of about 30
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See Fig. 3.4 for an example of the dependence of the stored power on the cavity
microscopic length.

The detuning from resonance that gives half of the maximum power (half width
at half maximum) is determined by

ηLHWHM = ε

4F
(3.35)

where we defined the finesse of the cavity

F = ρ
∼

rire

1 − rire
(3.36)

Equation 3.34 can be re-written in terms of the finesse as

Pcav = Gcav

1 +
⎩

2F
ρ

)2
sin2 2ρηL

ε

Pin (3.37)

In gravitational wave interferometers the reflectivities are relatively high, and
therefore the cavity finesse is much larger than unity (>50). This allows us to use
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Fig. 3.5 Example of the reflection of a Fabry-Perot cavity as a function of the detuning from
resonance. The cavity considered here has the same parameters used for Fig. 3.4, plus additional
(large) round-trip losses of 200 ppm

the following approximate relation between the finesse and the product of the two
reflectivities

rire = 1 − ρ

F

⎠
1 + ρ2

4F 2 − ρ2

2F 2 ⊗ 1 − ρ

F
(3.38)

Let’s now turn our attention to the expression for the cavity reflectivity, given in
Eq. 3.30. The term r2

i +t2
i is equal to one minus all the power losses in the input mirror

1 −Li . This term can be used to account for all the sources of power loss inside the
cavity, since in GW detectors these are typically small (required to be below 75 ppm
in Advanced Detectors). When the cavity crosses the resonance, the amplitude of
the reflected field is indeed slightly reduced (see Fig. 3.5): this is due to the fact
that the circulating power is larger and the losses are more relevant. However, the
most interesting feature of the reflected field is its phase variation, see again Fig. 3.5.
As often happens with classical oscillators, the phase undergoes a ρ shift when
passing through resonance. One moreover notices that when the cavity is close to
resonance, the slope of the phase variation in reflection with respect to length change
can get pretty large. Here is why Fabry-Perot cavities are used in GW detectors: they
can optically amplify the dephasing due to a GW.

It can be easily shown with some computations, taking into account that the finesse
is typically much larger than unity and total losses are small, that the slope around
resonance is given by

dΩ

d L
= 8F

ε
(3.39)

This must be compared with the case of propagation in free space, without any
resonant cavity, having only the end mirror to bounce back the laser beam. The
dephasing would be in this case simply:
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dΩ

d L
= 4

ε
(3.40)

In conclusion, using a Fabry-Perot cavity we can amplify the dephasing in reflection
by a factor proportional to the finesse. If two cavities like these are used in the two
arms of a Michelson interferometer, the gain in sensitivity is also proportional to the
finesse of the cavities. It would therefore seem a good idea to use cavities with very
high finesse. However, there are many drawbacks to this solution.

We have already seen the first one: if we increase the cavity finesse, maintaining
similar losses inside the cavity, the reflectivity at resonance will be smaller, since the
power build-up will be larger. Therefore at the end of the day, if the finesse is too
large we start losing our precious laser power inside the resonant cavity.

The second drawback is linked to the cavity line-width, which becomes smaller
and smaller as the finesse increases. To maintain proper resonance conditions the
length must be controlled with an accuracy much better than the line-width. This
will be one of the topics of Chap. 6: however, it is obvious that the more stringent
the accuracy requirement is, the more difficult it is to control the cavity length.

3.3.2 Frequency Response of a Fabry-Perot Cavity

The last and more important drawback in using very high finesse for the arm cavity
is the dependence of their response on the frequency, which we neglected so far.
Referring to Fig. 3.6, we can model the effect of a change in the distance between
the two test masses as a motion of the end mirror with a sinusoidal time dependence
at a signal frequency fs :

x(t) = x0 cos(2ρ fs t) = x0 cos Δs t (3.41)

The field which is reflected from the end mirror gets an additional dephasing due to
the motion. Assuming x0 ∞ ε, this can be modeled, as explained in Sect. 3.1.2, with
the creation of two signal sidebands at the signal frequency:

π4 = iree−2ikx(t)π3 = ireπ3 + 2krex(t)π3 (3.42)

= ireπ3 + 2ρ
x0

ε

⎩
e−iΔs t + eiΔs t

)
π3 (3.43)

The effect of the moving mirror is therefore to inject two new signal sidebands at
frequencies ± fs inside the cavity, with an amplitude proportional to the displacement
and to the static field inside the cavity. These additional sidebands propagate inside
the cavity and undergo interference, being partially recycled. If we consider only the
field at the signal frequency + fs we get the following equation

http://dx.doi.org/10.1007/978-3-319-03792-9_6
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Fig. 3.6 Scheme of a resonant
Fabry-Perot cavity with a
moving end mirror

π4(Δs) = ireiri e
−2i(k+ Δs

c )Lπ4(Δs) + 2reρ
x0

ε
π3(0) (3.44)

π4(Δs) = 2ρπ3(0)

1 − riree−2i Δs
c L

x0

ε
(3.45)

and in the last equation we used the fact that the carrier is resonant in the cavity to
set e−2ikL = −1. We are again interested in the field exiting from the reflection port
of the cavity, which is easily computed:

πR(Δs) =
[

2ρ

ε
re

i ti e−i Δs
c L

1 − riree−2i Δs
c L

i ti
1 − rire

π1

]
x0 (3.46)

If we consider signal frequencies small enough (such that Δs L
c ∞ 1) and we remem-

ber the expression in Eq. 3.38 for the reflectivities of a high finesse cavity, we can
simplify Eq. 3.46 to the final result:

πR(Δs) = −2ρ

ε
re

1

1 + i fs
c

4LF

t2
i

(1 − rire)2 π1 x0 (3.47)

The third fraction in the previous equation is telling us what we already discovered
before: the response of a Fabry-Perot cavity is enhanced by the increased stored
power inside it. However now we have also a frequency dependent term, given by
the second fraction. This is a simple pole at a frequency given by the free spectral
range of the cavity divided by twice the finesse. This is the cavity pole: the frequency
response of the cavity is almost flat below it, and decreases like 1/ f above, see
Fig. 3.7.

In conclusion, if we use a Fabry-Perot resonant cavity in a GW interferometric
detector, we can increase the sensitivity of a factor proportional to the finesse, but the
bandwidth of our detector is limited by the cavity pole. It is important to note that the
origin of the gain in sensitivity and the limitation of bandwidth is slightly different.
We gain in sensitivity because of the increased circulating power inside the cavity:
any variation of the length will create signal sidebands with an amplitude proportional
to the static circulating field. These sidebands are then filtered, since they are forced
to circulate inside the cavity: for low frequencies there is an additional gain since
the sidebands are inside the cavity resonant line-width; for higher frequency the
sidebands get an additional dephasing (due to their not zero frequency) which starts
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Fig. 3.7 Absolute value of
the response in reflection
of a Fabry-Perot cavity to a
length variation, as a function
of the frequency. The cavity
considered here have a length
of 3 km and a finesse of
about 150, resulting in a pole
frequency of about 160 Hz
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to destroy the constructive resonance and therefore reduce the gain. The distinction
between these two effects might seem a little bit academic here, but its relevance will
become more clear when considering the signal recycling technique.

3.4 Increasing the Circulating Power: Power Recycling
Technique

So far we improved the sensitivity by replacing the Michelson arms with resonant
Fabry-Perot cavities. In this way, we could largely improve the detector sensitivity at
low frequencies (below few hundreds Hz). Another simple way to improve the signal-
to-noise ratio is to increase the laser power: as already stated in Eq. 3.28 the shot
noise increases proportionally to the square root of the laser power, while the signal
typically increases with the power. Therefore we can gain in SNR proportionally to
the square root of the power which is stored inside the arm cavities.

When the Michelson interferometer is tuned close to the dark fringe condition, no
power exits through the anti-symmetric port. Moreover, we already saw that the arm
cavities have reflectivities very close to unity, therefore almost no power is transmitted
through the end mirrors and a very small amount is lost inside the Fabry-Perot cavities.
It’s a simple matter of energy conservation to understand that in this configuration,
almost all the input power is reflected back to the symmetric port. In other words,
the Michelson interferometer is seen, from the symmetric port, as an equivalent
mirror with very high reflectivity, given by the mean of the two arm resonant cavity
reflectivities. Here comes into play the power recycling technique: an additional
semi-transparent mirror is added at the symmetric port, see Fig. 3.8. This mirror
forms, together with the rest of the Michelson interferometer, an additional resonant
cavity (the power recycling cavity PRC). If the length of this new cavity is properly
controlled to maintain constructive resonance, we can increase the power circulating
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Fig. 3.8 Scheme of a power
recycled Michelson interfer-
ometer with resonant Fabry-
Perot cavities in the arms

inside it as in the case of the arm Fabry-Perot. In this way, the effective laser power
that enters into the arms is increased by the recycling gain which can be computed
with a variation of Eq. 3.32 where the end mirror reflectivity is replaced by the Fabry-
Perot one at resonance. In the hypothesis of large finesse F and small round-trip
losses L , the arm cavity reflectivity (Eq. 3.30) can be quite well approximated by

R = −i(1 − F

ρ
L ) (3.48)

This means that the reflectivity of the Michelson interferometer is completely deter-
mined by the losses inside the arms and by their finesse. It is obvious that one should
make the losses as small as possible, to increase the effective reflectivity. The recy-
cling gain is then given by

Grec = t2
R⎞

1 − rR

⎩
1 − F

ρ
L

)⎟2 (3.49)

where rR and tR are the reflectivity and transmissivity of the power recycling mirror.
Figure 3.9 shows the dependence of the recycling gain on the PR mirror reflectivity.
The maximum possible gain is obtained for a reflectivity of the PR mirror which
is equal to the effective reflectivity of the Michelson interferometer. In this case,
the PR cavity is optimally coupled and the reflected power is zero. However, it is
clear from Fig. 3.9 that the gain is not much decreased for small changes of the PR
reflectivity away from the optimal one. It is finally easy to compute the maximum
possible recycling gain. Again in the hypothesis of large finesse and small losses, it
is simply given by

Gmax = ρ

2FL
(3.50)
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Fig. 3.9 Dependence of the power recycling gain on the PR mirror reflectivity. Here the arm Fabry-
Perot cavities have a finesse of 450 and round-trip losses of 75 ppm, as requested in the Advanced
Virgo design

and we see again that the smaller the losses the larger the gain in circulating power
we can get by installing a power recycling mirror.

The last important point to understand is the effect of the power recycling cavity
on the detector sensitivity, or in other words on the differential signal sidebands.

As explained in Sect. 3.2, a GW will create a differential displacement in the two
arms, which will translate in a pair of signal sidebands in reflection of each cavity.
The differential nature of GW will transfer to the sidebands: those coming from the
north arm will have a ρ phase difference with respect to those coming from the
west one. This implies that the signal sidebands interfere at the beam splitter with
an additional dephasing with respect to the main beam, reversing the destructive and
constructive interference. In other words, signal sidebands coming from differential
displacements are completely transmitted to the antisymmetric port where they sum
up. Therefore, the presence of the power recycling cavity is completely irrelevant for
them, since they are not exiting through the symmetric port.

In conclusion, the addition of the power recycling cavity has the only effect of
increasing the circulating power inside the interferometer and proportionally increas-
ing the detector sensitivity.

The power-recycled Fabry-Perot Michelson configuration is the one that was
chosen by most of the first generation interferometric detectors (Virgo, LIGO, and
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TAMA) and will very likely be the first step also for the second generation of advanced
detectors.

3.5 Shaping the Optical Response: Signal Recycling Technique

Here we are finally entering the realm of advanced gravitational wave detectors.
As explained in the previous section, signal sidebands coming from differential dis-
placements are completely transmitted to the antisymmetric port and unaffected by
whatever happens in the symmetric part. On the contrary, the carrier field is com-
pletely reflected back to the symmetric port and not transmitted to the antisymmetric
one. One can therefore add a mirror at the antisymmetric port [7], without affecting at
all the carrier behavior inside the interferometer. Only differential signal sidebands
will reach this mirror and will be partially reflected back into the interferometer,
entering from the antisymmetric port. It is easy to see with symmetry considerations,
that anything entering from the antisymmetric port will be transmitted only toward
the two arms, with opposite signs, creating again differential sidebands inside the
main interferometer. In conclusion, the newly installed signal recycling (SR) mirror
will create an additional signal recycling cavity (SRC) which will be seen only by
the signal sidebands. This cavity can be used to change the frequency response of
the instrument.

The exact behavior of a dual recycled (signal and power) interferometer can be
computed considering the power-recycled interferometer as a single box. Referring
to Fig. 3.10, we consider the additional signal sidebands π ⊥

2(Δs) that are exiting the
power recycled interferometer at the antisymmetric port as a source. These sidebands
are given by an equation that puts together all the elements we computed in the
previous sections:

π ⊥
2(Δs) = −eiρ/4−ikl+ 2tR

1 − rR R
πin

t2
i re

1 − rire

e−i Δs
c L

1 − riree−2i Δs
c L

2ρ

ε
x0 (3.51)

In this equation, one can recognize the Fabry-Perot cavity frequency dependent
response and the power increase due to the presence of the power recycling cavity.
The phase term in front of everything comes from the constructive interference at
the beam-splitter and takes into account the propagation of the signal sidebands from
the arm cavity input mirror to the beam-splitter with the average length of the central
Michelson part l+ = (lN + lW )/2. This field is then recycled by the SR mirror:

π2(Δs) = π ⊥
2(Δs) + irS RASY(Δs)e

−2i(k+ Δs
c )ls π2(Δs) (3.52)

πASY(Δs) = tse−i(k+ Δs
c )ls π2(Δs) (3.53)

where RASY(Δs) is the reflectivity of the entire power recycled interferometer for the
signal sideband entering at the antisymmetric port. Considering again the interference
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Fig. 3.10 Scheme of a dual recycled interferometer

conditions at the beam-splitter, this is simply given by the Fabry-Perot cavity reflec-
tivity rFP(Δs) at that frequency plus an additional dephasing due to the propagation
from the beam-splitter to the input mirrors. The Fabry-Perot cavity reflectivity as a
function of frequency can be easily obtained from Eq. 3.46. We are interested in the
field transmitted by the SR mirror, which can be computed to be

πASY(Δs) = ts
e−i(k+ Δs

c )lS

1 − irSrFP(Δs)e−i(k+ Δs
c )lSRC

π ⊥
2(Δs) (3.54)

where we introduced the total length of the signal recycling cavity lSRC = lS + l+.
The microscopic position of the SR mirror is often expressed in terms of the phase the
carrier field would acquire inside it, using the signal recycling cavity tuning which
is conventionally defined as

Ω = klSRC + ρ

4
(3.55)

We can now put everything together to compute the full response of a dual recycled
interferometer. One additional approximation is considered here: the length of the
signal recycling cavity is typically of the order of few tens of meters. Therefore, the
additional propagation dephasing of the signal sidebands due to their small frequency
(with respect to the carrier) is neglected.

πASY(Δs) = − 2tStR

1 − rR R
πin

t2
i re

1 − rire

eiΩ

1 − rSrFP(Δs)e2iΩ

× e−i Δs
c L

1 − riree−2i Δs
c L

2ρ

ε
x0 (3.56)
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Fig. 3.11 Response of a dual recycled detector to differential displacement as a function of the
signal frequency. Some different tunings of the signal recycling cavity are shown. For comparison,
the purple curve shows the detector response without any signal recycling mirror

rFP(Δs) = ri − re(1 − L )e−2i Δs
c L

1 − riree−2i Δs
c L

(3.57)

R = ri − re(1 − L )

1 − rire
(3.58)

It is not obvious to understand from the previous equations what is the effect of
adding a signal recycling mirror in terms of the interferometer response. The shape
of the optical response of the detector clearly depends on the choice of the tuning Ω.
Figure 3.11 compares the response for some choices of the SRC tuning with the one
of a detector without signal recycling. If the tuning is Ω = 0 the detector band-width
is largely increased, at the price of a lower mean optical gain. This configuration
is called broad-band signal recycling. In the opposite direction, if the tuning is set
to Ω = ρ/2 the low frequency sensitivity is largely improved, but at the price of a
narrower band-width. This is often called tuned signal recycling. All the intermediate
values of Ω introduce a peak frequency (function of the tuning) where the maximum
gain is reached. The low frequency sensitivity is comparable to the broad-band case,
while the high frequency is typically worsen than in the power-recycled configuration.
These configurations are often called detuned signal recycling. Figure 3.12 shows
how the shape of the detector response changes as a function of the signal recycling
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Fig. 3.12 Dependence of a dual recycled interferometer response on the reflectivity of the signal
recycling mirror

mirror reflectivity: the larger the reflectivity, the narrower is the peak and the larger
the peak gain.

Equations are very useful to proper design your detector. However, it is much
more useful to get an intuitive understanding of what signal recycling is doing. Only
differential signal sidebands are affected by the presence of the SRC. As explained
in Sect. 3.3.2, signal sidebands are generated inside the arm cavities. Depending on
their frequency they might be still inside the resonant peak and therefore optically
amplified, or they might be outside and suppressed.

When a signal recycling mirror is present, the situation is slightly different. Indeed,
differential sidebands will see a situation very close to the one depicted in Fig. 3.13.
Signal sidebands at a given frequency are still generated inside the arm cavity with
amplitude proportional to the field stored inside the arm. However, since they have
a differential nature, when they exit the arm cavities they are completely transmitted
to the antisymmetric port and inside the signal recycling cavity. For them, the beam
splitter does not exist and they see a double resonant cavity made of the SR mirror,
the arm cavity input mirror and the end mirror. The behavior of such a double cavity
can be understood considering that the SR and the input mirrors act together creating
a resonant cavity. We can model this cavity as an “equivalent” mirror with reflectivity
and transmissivity which depend on the tuning of the signal recycling cavity:
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Fig. 3.13 Conceptual scheme of signal sideband fields propagation inside the signal recycling
cavity. Input mirror and signal recycling mirrors acts together to provide an “equivalent” input
mirror with tunable reflectivity

R = i
ri − rse2iΩ

1 − rirse2iΩ
(3.59)

T = ti tseiΩ

1 − rirse2iΩ
(3.60)

For a general value of the tuning, this mirror will also introduce an additional dephas-
ing in reflection with respect to the simple input mirror (see Fig. 3.14). This dephasing
can be considered as independent of the signal frequency, since the length of the sig-
nal recycling cavity is much shorter than the wave-length corresponding to the signal
frequency. This “equivalent” mirror will acts as the input one for the arm Fabry-Perot
cavity to determine the behavior of the signal sidebands.

For Ω = 0 this additional cavity is resonant for the carrier field (which means for
signal sidebands of zero frequency). In this case, the reflectivity of the equivalent
mirror is the lowest possible (see Fig. 3.14) and the additional dephasing is null. This
means that the signal sideband at (almost) zero frequency remains resonant inside
the composite arm cavity. However, the input mirror of this cavity will have a lower
reflectivity with respect to the real input mirror. In other words, signal sidebands will
see an arm cavity with reduced finesse: the band-width is increased, but the maximum
gain reduced. This corresponds to the already considered broadband configuration.

A similar behavior is obtained whenΩ = ρ/2. In this case the additional dephasing
is again null, but the reflectivity is almost one. Therefore, the zero frequency signal
sidebands will be again resonant, but the equivalent arm cavity finesse will be very
high. The bandwidth is largely reduced and the low frequency gain increased. This
is the already discussed narrow-band or tuned configuration.

When we choose an arbitrary detuning of the SRC, the situation is clearly inter-
mediate. The absolute value of the reflectivity is somewhere between the minimum
and the maximum and increases with increasing detuning. Upon reflection on the
equivalent input mirror the signal sidebands will get an addition dephasing which will
move them out of resonance. However, there exists one signal frequency for which
this additional dephasing is exactly compensated by one accumulated in propagation
over the arm cavity length. This particular signal sideband will be again resonant
inside the composite cavity and therefore enhanced. This is the origin of the gain
peak in the response of a detuned dual recycled interferometer (see again Fig. 3.11).
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Fig. 3.14 Reflectivity and additional dephasing induced on reflection for the equivalent mirror
composed of the SR and input ones. The behavior of this cavity is slightly different with respect to
the arm Fabry-Perot considered for example in Fig. 3.5. In this case there is no ρ jump in the phase
when passing from resonance to anti-resonance. This is due to the fact that the end mirror of this
cavity has a lower reflectivity than the input one, making the cavity under-coupled [5]

It is maybe useful to add a comment here about positive and negative signal
frequencies. When a differential displacement at a given physical frequency fs hap-
pens, two signal sidebands are created at + fs and − fs around the carrier optical
frequency. Since the entire interferometer is kept resonant for the carrier, only the
frequency difference matters. For this reason, we often speak of positive and neg-
ative frequency sideband. When propagating inside the km-long arm cavity they
will undergo a certain additional dephasing (with respect to the carrier) of opposite
sign. This sign difference in the dephasing is relevant only when detuned signal
recycling is used. Only the positive or the negative sidebands can get a dephasing
in reflection of the equivalent mirror that completely compensates the propagation
dephasing. This means that a given detuning of the SRC will make either the positive
or negative sideband resonant, while the other one will remain not resonant. Another
consequence is that inside detuned dual recycled interferometers signal sidebands
are typically unbalanced, meaning that they have different amplitudes and phases.

Advanced gravitational wave detectors will use, at least in the final configuration,
the signal recycling technique. This will not only improve the detector sensitivity at
some frequencies, but will also allow building a tunable detector, capable of changing
its sensitivity depending on the kind of astrophysical searches that are needed.
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3.6 High Power Brings Radiation Pressure

Advanced gravitational wave detectors will implement a dual recycled configuration.
The arm Fabry-Perot cavities will have a finesse of about 450, increased of a factor 3
with respect to first generation instruments. The round-trip losses inside the cavities
are required to be not larger than 75 ppm, much lower than the 200–300 ppm of
Virgo and Virgo+. According to the discussion of Sect. 3.4 this will limit the power
recycling gain to about 46. The plan is to use high power lasers, in order to be able to
inject at the input of the interferometer a maximum of 125 W, to be compared to the
20 W of LIGO and Virgo. This will give us about 6 kW of circulating power inside
the PRC and finally about 800 kW inside the arm cavities. Such a large power will
exert a force on the mirrors due to radiation pressure. Since the mirror reflectivities
are very large, each photon bouncing on the mirror will transfer a momentum equal
to the double of its own. The total force is therefore given by

F = 2P

c
⊗ 5 mN (3.61)

This might seem a quite small force, but it is however of the same order of magnitude
of the ones that are applied to control the mirror positions. Let us anticipate a bit of
things that will be discussed in other chapters. Mirrors in advanced GW detectors
will have typical masses of m = 40 kg and will be suspended to pendulums with
length of about 70 cm. The static force computed above, applied to the mirror, will
produce a displacement given by

ηz = l
F

mg
⊗ 10 μm (3.62)

which is ten times larger than the laser wavelength and therefore not at all negligible.
However, this static force does not create problems provided you equip the system
with a way to apply an opposite force to maintain the cavity length at resonance.

3.6.1 Opto-Mechanical Couplings

Let us now consider a Fabry-Perot resonant cavity as a simple but meaningful example
of how radiation pressure can play a dynamical role. In GW interferometers, the
mirror is suspended to pendulums with relatively low resonant frequency. If we
apply a force F to the mirror, we obtain a displacement which is determined by the
longitudinal equation of motion

z̈ = −Δ2
0 z − ν ż + F

m
(3.63)
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Fig. 3.15 When a cavity is moved around resonance, no first order power fluctuations are created.
Instead, if the cavity is detuned from resonance, there is a direct linear conversion of displacement
to power fluctuations

where Δ0 is the resonance frequency of the pendulum and ν a constant describing the
amount of friction. The above equation is normally solved with a Fourier transform
to compute the mechanical transfer function, which describes the dynamics of the
mirror alone

z(Δ) = F(Δ)

m

1

Δ2
0 − Δ2 + iνΔ

(3.64)

Let’s now imagine to have a Fabry-Perot cavity close to resonance. If we apply a
very small sinusoidal force of frequency Δ to one of the two mirrors, we obtain a
small displacement determined by the above equation. As explained in the previous
sections, this displacement creates two signal sidebands at the Δ frequency which
circulate inside the cavity. The main question here is: does the motion produce a
fluctuation of the power inside the cavity? The answer to this question is clearly
positive, however we are interested only in power fluctuations at the same frequency
of our external disturbance. Referring to Fig. 3.15, it is clear that if the cavity is
perfectly tuned at resonance, any motion around this point will not create a power
fluctuation at the same frequency, but only at higher harmonics and with amplitude
proportional to higher powers of the displacement. These nonlinear effects can be
neglected, given the very small amplitude of the displacement we are considering.

If the cavity is, for some reason, detuned from the resonance, there is a linear
conversion of the cavity length variation to power fluctuations at the same frequency,
as clearly visible from Fig. 3.15.

Another way to understand this point is the following. Regardless of the cavity
tuning, the length variation creates two signal sidebands at a given frequency Δ with
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equal amplitudes, proportional to the displacement and to the stored field inside the
cavity. These sidebands will be recycled inside the cavity. If the tuning is zero, the
two sidebands will fall exactly at the same distance from the resonance center and
they will maintain the same amplitude and phase relation. Instead, if the cavity is
detuned, one of the two sidebands will be closer to the resonance than the other and
will therefore be amplified more. In both cases, the field inside the cavity is described
by three components:

π = π0 + π+e−iΔt + π−eiΔt (3.65)

and the power is given by the squared modulus of the previous equation:

P = |π0|2 + |π+|2 + |π−|2 + (
π ∗

0 π+ + π0π
∗−
)

e−iΔt

+ (
π0π

∗+ + π ∗
0 π−

)
eiΔt

+ π+π ∗−e−2iΔt + π ∗+π−e2iΔt (3.66)

When the cavity is at resonance, π0 is real and the two sidebands are balanced:
all terms oscillating at Δ frequency cancel out and only the second harmonic terms
remains. If instead the cavity is detuned, the two sidebands have different amplitudes
and the cancellation is no more possible, meaning that power fluctuations at the Δ

frequency will be present.
If the power inside the cavity is oscillating, the radiation pressure force exerted

to both the input and end mirrors will be also varying at the Δ frequency. As visible
from Eq. 3.66 the power fluctuation is proportional to the signal sideband amplitude
which in turn is proportional to the cavity length motion. In conclusion, the additional
force introduced by radiation pressure is linearly proportional to the cavity motion,
or in other words the effect of radiation pressure is the introduction of an additional
elastic term FRP = −kRPz.

Moreover, even if we are applying an external force only to the end mirror, the
induced power fluctuation inside the cavity will exert a force to both end and input
mirrors. The effect of radiation pressure is therefore two-fold:

• The end mirror displacement will not be the same as in free mirror case, since the
force we apply causes a displacement which in turn causes an additional force to
be applied to the end mirror. The mechanical response of the mirror (displacement
as a function of applied force) is modified with respect to the simple pendulum by
an opto-mechanical effect which adds another elastic term.

• The input mirror will also move due to the radiation pressure force caused by the
power fluctuations induced by the end mirror motion. This introduces an opto-
mechanical coupling between the two mirrors, which are no more dynamically
disconnected as in the case of negligible power.

The important point to understand is the sign of the opto-mechanical stiffness
kRP. Let us first consider the case of a cavity detuned in the direction of increasing its
length. When the oscillating length variation increases a bit more the length, the power
inside the cavity decreases and therefore the radiation pressure force also decreases.
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In this case, the stiffness is positive and radiation pressure introduces a restoring
force which adds to the pendulum one. The total stiffness seen by the mirror remains
positive and the resonance is simply shifted to higher frequencies. Let us now consider
the opposite case, with a cavity detuned in the direction of decreasing its length. Now
when the oscillating length variation increases the length, the cavity is moved toward
the resonance and the power is increased. This has the effect of increasing the force.
The stiffness introduced by radiation pressure is negative, introducing a kind of anti-
spring. If the amplitude of the radiation pressure effect is small enough, the total
stiffness remains positive. However, for increasing values of the stored power or of
the offset from resonance, the kRP might exceed in modulus the pendulum stiffness,
resulting in a total negative stiffness: the opto-mechanical system become unstable.

A complete rigorous computation of opto-mechanical effects in a Fabry-Perot
cavity is feasible, but the computations are far from being simple and straightforward.
An example of one possible (very rigorous) approach can be found in [8].

Here we consider an approximate approach, that is however good enough for
many applications. The dynamics of the input and end mirrors are described by their
coordinate and the following equations:

z̈ I = −Δ2
0 zI − ν ż I + F I

RP

m
(3.67)

¨zE = −Δ2
0 zE − ν żE + F E

RP + FEXT

m
(3.68)

Here we assume that the two mirror have exactly the same mechanical behavior (same
mass, same length of the pendulum and same friction). In general, the force induced
by radiation pressure might be different for the two mirrors, since they are separated
by few kilometers. However, if we consider only low frequency disturbances, we can
neglect the propagation time inside the cavity and consider the two forces as equal
in modulus but simply opposite in sign. This is valid as long as the frequencies we
are considering are small with respect to the cavity pole (typically 60 Hz for a 3 km
long cavity with a finesse of 450). We can therefore consider only the variation in
the cavity length z, which is described by the equation one gets by subtracting the
previous two:

z̈ = −Δ2
0 z − ν ż + 2FRP

m
+ FEXT

m
(3.69)

We need now to compute the force exerted by radiation pressure. Assuming the reflec-
tivity of both mirror to be very close to unity, Eq. 3.61 tells us that it is proportional
to the power variation, which will be a function of the cavity length variation

FRP = 2

c
ηP(z) (3.70)

In general ηP(z) should contain a frequency dependence, due to the propagation
of the signal sidebands inside the cavity. However, as already explained, we are
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neglecting this effect by considering only low frequencies. We know that the power
stored inside the cavity is given by Eq. 3.37 which can be rewritten as:

P(z) = P0

1 +
⎩

2F
ρ

)2
sin2 kηL

(3.71)

where P0 is the maximum power inside the cavity at resonance. We can express the
cavity displacement from resonance as a static term Ω = kηL0 plus the fluctuation
kz we are interested in. Finally, the power fluctuation are given by the derivative of
the previous equation

ηP(z) = dP

dz
z = −8F 2

ρε
P0

sin 2Ω⎧
1 +

⎩
2F
ρ

)2
sin2 Ω

⎨2 z (3.72)

Substituting everything inside Eq. 3.69 we get:

z̈ = − 1

m

⎡
⎢⎣k + 32F 2

ρεc
P0

sin 2Ω⎩
1 + 2F

ρ
sin2 Ω

)2

⎤
⎥⎦ z − ν ż + FEXT

m
(3.73)

The term inside brackets is the total stiffness of the system for the degree of free-
dom corresponding to the cavity length. The typical detuning Ω is small, so we can
approximate to first order:

ktot = kpend + 64F 2 P0

ρεc
Ω (3.74)

The corresponding equation of motion can be solved again using the Fourier trans-
form:

z(Δ) =
FEXT(Δ)

m

−Δ2 + iνΔ + ktot
m

(3.75)

The behavior of this opto-mechanical oscillator is determined by the roots of the
denominator which give the characteristic frequencies of the system

Δp = i
ν

2
±

⎠
ktot

m
− ν 2

4
(3.76)

In typical GW application the friction is very small, making ν negligible inside the
square bracket. If we call Δ0 = |ktot|/m we can distinguish the two cases
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Fig. 3.16 Dependence of the opto-mechanical stiffness (top) and resonant frequency (bottom) on
the detuning from resonance of Fabry-Perot cavity with a finesse of 450 and 800 kW of circulating
power

ktot > 0 Δp = ±Δ0 + i
ν

2
(3.77)

ktot < 0 Δp = ±iΔ0 (3.78)

In the second case the system is unstable, being similar to an upside-down pendulum.
Let us take as an example an Advanced Virgo like Fabry-Perot cavity, with a finesse

of 450 and a circulating power of about 800 kW. The single pendulum resonant
frequency is about 600 mHz and the mirror masses 42 kg. The simple pendulum
stiffness is therefore about 600 N/m. Figure 3.16 shows how the total opto-mechanical
stiffness depends on the cavity detuning from resonance. A (relatively small) detuning
of 1 pm is more than enough to make the cavity unstable, with a (negative) resonant
frequency of about 6 Hz.

3.6.2 Change in the ITF Optical Response

We will discuss in Chap. 6 how Advanced Detectors will operate with a small dif-
ferential detuning of the two arms from resonance, of the order of 10 pm. Moreover
we already saw that when operating with a detuned signal recycling cavity the signal
sidebands are typically unbalanced. We can therefore expect significant radiation
pressure effects in the optical response of the interferometer to a differential dis-
placement. Indeed, the low frequency response turns out to be quite different from
the one obtained in Sect. 3.5.

http://dx.doi.org/10.1007/978-3-319-03792-9_6
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Fig. 3.17 Response of a dual recycled interferometer with Advanced Virgo parameters, compared
to the (unphysical) situation when there are no radiation pressure effects

Computing the effect of radiation pressure on the response of a full dual recycled
interferometer is a much more complex computation. For this reason, we enter the
realm of numerical optical simulations. The equations linking the displacement of a
given mirror with the surrounding fields are quite simple and can be easily imple-
mented numerically.

Figure 3.17 shows the actual response of a dual recycled interferometer to a differ-
ential motion of the arm length. The dashed line is what we would measure in a world
without radiation pressure, as computed in Sect. 3.5. The effect of radiation pressure
is that of stiffening the arms in the differential degree of freedom. Any motion we
try to impose on the arms causes a fluctuation of the power that exerts a force to
the mirror such that the low frequency motion is largely suppressed. The additional
peak around 40 Hz is the new (unstable) resonance of the opto-mechanical system,
shifted up from the 600 mHz case.

3.7 Beam Optics and High Order Transverse Modes

So far we used the plane-wave approximation to describe the laser field inside the
interferometer. This is however not completely correct, since our mirrors have finite
sizes and our laser beams are limited by diffraction.
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3.7.1 The Paraxial Diffraction Equation

In the general case, the propagation of light inside an optical system is described by
the Maxwell equations. As already discussed in Sect. 3.1.1, the polarized nature of
the laser beam allows reducing to a scalar wave equation

⎩
δ + k2

)
Ek(x, y, z) = 0 (3.79)

In the simpler case of a laser beam inside an interferometer, the propagation is
well described in the paraxial approximation [5, 9]. The light field is supposed
to propagate mainly along the cavity axis direction called z and all its transverse
variations to be small. If the field is written as

E (x, y, z) = eikzπ (x, y, z) (3.80)

and the variation along z of the envelope is small
∣∣∣ τπ

τz

∣∣∣ ∞ kπ , the wave equation

simplifies to the paraxial diffraction equation:

⎩
2ikτz + τ2

x + τ2
y

)
π = 0 (3.81)

which can be used to describe the propagation of an almost monochromatic beam
concentrated along the z direction. Without entering too much into details (that can
be found for example in [7, 9]), one can say that under the assumption of cylindrical
symmetry the fundamental Gaussian solution of the paraxial diffraction equation is
found:

π (r, z) = 1√
1 + z2

z2
R

e
− x2+y2

w2(z) e−ik x2+y2

2R(z) e
i arctan z

zR e−ikz (3.82)

where

w(z) = w0

⎠
1 + z2

z2
R

(3.83)

R(z) = z

(
1 + z2

R

z2

)
(3.84)

zR = kw2
0

2
(3.85)

The transverse intensity shape is a Gaussian function for every z. Its width is
minimum when z = 0, at the waist of the beam, and increases for larger z according
to the function w(z) (see Fig. 3.18). The Rayleigh distance zR gives the length scale
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Fig. 3.19 Dependence of the Gouy phase on the distance the beam traveled from the waist. The
Rayleigh length in this case is about 280 m

of the beam expansion: after propagating over a distance zR along the axis, the beam
is

∼
2 times larger in the transverse direction.

The constant phase surfaces of this beam are parabolic, with a decreasing curvature
given at r = 0 by R(z). When propagating along z the field undergoes an additional
dephasing with respect to the one predicted in the plane-wave approximation. This
is the Gouy phase

ΩG = − arctan
z

zR
(3.86)

The behavior of the Gouy phase as a function of the distance the beam propagated
from the waist is shown in Fig. 3.19.
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Table 3.1 Hermite
polynomials of lowest order

Order Polynomial

0 1
1 2x
2 4x2 − 2
3 8x3 − 12x

3.7.2 Transverse Electro-Magnetic Modes

Starting from the fundamental solution of Eq. 3.82 it is possible to relax the
requirement of cylindrical symmetry and search for solutions with different trans-
verse shape. The most used set is given by the Hermite-Gauss functions, also called
electro-magnetic transverse modes (TEM). They depends on two integer indexes n
and m:

TEMmn(x, y, z) = Nmn(z)eikz Hm

(∼
2x

w(z)

)
Hn

(∼
2y

w(z)

)

e−i(n+m+1) arctan(z/zR)eik x2+y2

2R(z) e
− x2+y2

w2(z) (3.87)

where the normalization coefficient Nmn(z) is chosen in order to make this set ortho-
normal for any fixed z:

Nmn(z) =
⎠

2

ρw(z)2 2n+mm!n! (3.88)

and the Hn(t) are the Hermite polynomials that can be defined for example as [10]:

Hn(t) = et2
⎧

− d

dt

⎨n

e−t2
(3.89)

Given a value of the beam size at the waist w0, these solutions form a complete,
orthonormal set, meaning that every beam can be expressed as a linear combination
of these functions at fixed z. The first Hermite polynomials are listed in Table 3.1
and the transverse intensity pattern of the first TEM modes are shown in Fig. 3.20.

3.7.3 Resonant Cavity Stability and Mode Separation

If one excludes the waist position (z = 0) where the wave-front is flat, the surfaces of
constant phase are curved. The mirrors we are using to build our detector therefore
can not be all flat, otherwise they will not match the wavefront of the laser beam
and will act as a lens. This is particularly true for Fabry-Perot cavities. Imagine that
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Fig. 3.20 Transverse intensity maps of the first TEM modes

one of the mirror surfaces does not match the laser wave-front: every time the beam
bounces back from the mirror it will change its shape and therefore partially destroy
the crucial constructive interference that must hold to take advantage of the cavity
resonance.

Therefore in general the two mirrors that compose a Fabry-Perot cavity must be
curved in such a way to match exactly the wave-front curvature at their position.
Referring to Fig. 3.21, Eq. 3.84 tells us what is the curvature of the wavefront at the
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Fig. 3.21 Scheme of a
Gaussian beam inside a
Fabry-Perot cavity

two mirror positions, as a function of the beam waist size:

R1 = L1

(
1 + z2

R

L2
1

)
(3.90)

R2 = L2

(
1 + z2

R

L2
2

)
(3.91)

The convention used here is that both radii of curvature are positive if their center
lays in the direction of the other mirror. Assuming that the radii of curvature are
known, the previous two equations can be used to compute the properties of the laser
beam which matches the two surfaces (the resonant mode). To solve these equations,
we first define the cavity g factors [9]:

g1 = 1 − L

R1
(3.92)

g2 = 1 − L

R2
(3.93)

and then we can use these definitions to solve for the beam waist dimension and
position:

L1 = g2(1 − g1)

g1 + g2 − 2g1g2
L (3.94)

L2 = g1(1 − g2)

g1 + g2 − 2g1g2
L (3.95)

w2
0 = Lε

ρ

⎠
g1g2(1 − g1g2)

(g1 + g2 − 2g1g2)
2 (3.96)

From the last equation it appears that a resonant mode exists only if some conditions
are satisfied. In particular, the cavity admits a resonant mode only if
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Fig. 3.22 Resonance conditions inside a stable Fabry-Perot cavity, with a Gouy phase of about
25◦. High order modes are well separated with respect to the fundamental one

0 ≤ g1g2 ≤ 1 (3.97)

If this relation is satisfied the cavity is called stable, otherwise unstable.
Let us now consider a stable cavity. The fundamental resonant mode is well

defined inside it. Let’s assume that the cavity microscopic length is tuned in such a
way to have the fundamental Gaussian mode (TEM00) resonant inside it. The actual
microscopic position is slightly different from the one expected from the plane-wave
approximation, because of the presence of the Gouy phase shift. This is however
irrelevant for all practical purposes.

However, Eq. 3.87 shows that, when propagating inside the cavity, high order
modes will acquire an additional dephasing given by the cavity Gouy phase multiplied
by the mode order. If this phase shift is larger than the cavity line-width (which is
typically true for the high-finesse arm cavities used in GW detectors) the high order
modes will no more be resonant and therefore they will not be amplified by the cavity.
This shows the mode cleaning effect of stable resonant cavity: only one mode can
resonate inside them. All other modes will be rejected by the cavity. For this reason,
stable cavities are often called non-degenerate (see Fig. 3.22).

Figure 3.23 shows what happens when we scan the microscopic position of a
resonant cavity. The horizontal axis is rescaled in terms of the phase acquired by the
propagating field when doing a complete round trip. Some defects have been added
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Fig. 3.23 Simulation of scanning a Fabry-Perot resonant cavity with some defects. High order
modes are well visible when the length of the cavity makes them resonant

to the cavity in order to generate higher order modes. In this case, the cavity is stable
and the Gouy phase is large enough to move all higher order modes out of resonance.

If instead the Gouy phase shift is smaller than the cavity line-width, there will be
a finite (possibly large) number of high order modes that will fall inside the same
resonance of the fundamental one. In this case the cavity will accept and amplify
them in a way similar to the fundamental mode. These cavities are called marginally
stable, meaning that, despite being optically stable and admitting a unique resonant
mode, they are not able to completely separate the fundamental mode from a set of
high order ones (Fig. 3.24).

3.8 Stability of Recycling Cavities

Before closing this chapter, we should consider the geometry of the entire interfer-
ometer. The kilometer-long arm cavities must be stable and with a good separation
between high order modes. In this way, the beam shape resonating inside them is
well defined. Advanced detectors will use a bi-concave geometry of the arm cavities:
in this way the beam size on the mirrors will be as large as possible. This is useful,
as will be briefly discussed in the next section, in order to reduce the impact of the
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Fig. 3.24 Resonance conditions inside a stable Fabry-Perot cavity, with a small Gouy phase. Some
high order modes are still inside the same resonant peak as the fundamental one

mirror coating Brownian noise (the bigger the beam spot, the larger the surface over
which Brownian motion is averaged).

In the Advanced Virgo case the cavity is 3 km long. The two mirrors will have
radii of curvature of 1420 m (input) and 1683 m (end). In this way the spot radii will
be about 49 mm on the input test masses and 58 mm on the end test masses. The waist
position will be close to the center of the cavity.

One must then choose the geometry of the recycling cavities. The most obvious
choice would be to have them stable. However, this has some important implications.
First of all the mode which is resonant inside the PRC and SRC must be equal to the
one which is resonant in the arms, otherwise we will loose part of the laser power
because of the mismatch between the two. Moreover, to make the recycling cavity
stable one must ensure that the Gouy phase accumulated by propagation inside it is
not negligible.

Looking at Eq. 3.86 we see that the Gouy phase increases with the length of the
cavity. Therefore a simple way to make the cavity stable is to make it long: the total
Gouy phase is given by the difference between the power recycling and the input
mirror, which are placed a distances zPR and zI from the beam waist:

δΩG = arctan
zI

zR
− arctan

zPR

zR
(3.98)
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Unfortunately, in the bi-concave configuration the input mirror is already placed quite
far from the waist position, in the region when the arc tangent slope is quite small.
This means that to accumulate enough phase the cavity should be very long. This
solution is not feasible from an infrastructural point of view, since it would imply
the construction of another km-long cavity.

A second way to ensure that the Gouy phase inside the recycling cavity is large
is to insert focusing optical elements. In this way, one can change the shape of
the mode and decrease significantly its Rayleigh distance. This approach is used in
the Advanced LIGO and KAGRA detectors, by folding the two recycling cavities
with mirrors having small radii of curvature (of the order of tens of meters). The
main drawback is the increased complexity of the system, both from an optical and
mechanical point of view.

The opposite choice would be to design marginally stable cavities. This was the
configuration chosen by all first generation detector and by Advanced Virgo. The
recycling cavities are simpler, since the power and signal recycling mirror could
be on the same axis of the arm cavities and their curvature will be very close to
the one of the input mirrors. The main drawback is the fact that a large numbers
of high order modes can resonate inside them. However, this is not a real problem
for the carrier fields. Indeed when operating at the working point, the fundamental
mode of the carrier will be resonant simultaneously inside the arm and the power
recycling cavities, as explained in Sect. 3.4. Let us assume we generate somehow
a high order mode inside the recycling cavity. This will not be resonant inside the
arm cavities, since they are stable. Therefore it will be reflected by the arm cavities
being anti-resonant and therefore acquiring an additional ρ dephasing with respect
to the TEM00 (as explained in Sect. 3.3). This large dephasing will for sure move
the high order mode out of resonance also in the power recycling cavity. Therefore
the stability of the arm cavity for the carrier field enforces also some kind of stability
of the recycling cavities. This effect does not happen however for fields that are
designed to be resonant inside the PRC but anti-resonant inside the arms. As we will
see in the following chapter, all interferometers use radio-frequency sidebands for
control purposes. For these fields, the power and signal recycling cavities remain
marginally stable and therefore do not provide mode filtering. This is the origin of
all the problems related to thermal deformations of the mirrors, which will be the
topic of Chap. 9.

3.9 Exercises

3.9.1 Etalon Effect

Real mirrors are obviously made of a transparent substrate (typically of fused sil-
ica) with a high reflectivity (HR) coating on one surface. If the secondary face of
the mirror is left untreated, it will reflect about 4%, creating lots of troubles in
the form of losses and multiple beams. For this reason it is also coated with an

http://dx.doi.org/10.1007/978-3-319-03792-9_9
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anti-reflection (AR) treatment. Typical reflectivities of this AR coating can range
from 50 to 500 ppm.

If the two faces of the mirror are parallel, the beam reflected back by the AR face
will have the same shape of the main one. Therefore, a spurious resonant cavity is
created: the two reflecting surfaces composing the cavity are the coatings on the two
faces of the mirror itself. If the temperature of the mirror changes, the optical path
length can vary due to a variation of the refractive index of the substrate. This is the
so-called etalon effect.

1. Compute the dependence of the mirror reflectivity as a function of its temperature,
assuming you know the dn/dt of fused silica at room temperature.

2. What are the maximum and minimum values of the reflectivity as a function of
the HR and AR coatings? Assume a HR reflectivity of 98 % and an AR reflectivity
of 200 ppm.

3. Imagine now that this etalon effect acts on the input mirror of a Fabry-Perot cavity.
What is the effect on the cavity properties?

4. In Virgo and Virgo+ the input mirrors had parallel faces, thus implementing an
etalon. Can you imagine why having an etalon effect was desirable in a power
recycled interferometer? (Hint: the presence of the power recycling cavity is not
important and you can neglect it).

5. Can you imagine other application to an Advanced Detector of the etalon effect,
excluding the Fabry-Perot resonant cavities?
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Chapter 4
Pre-stabilized Lasers for Advanced Detectors

C.-Nary Man

Abstract Gravitational wave detectors need very stable continuous wave laser
sources able to delivering high power beams. Realization of those lasers is a special
R&D calling on very low noise controls on very reliable laser sources. After a brief
introduction on the laser principles, we review the current laser sources for gravi-
tational wave interferometric detectors, shortly describing the technologies of both
solid-state and fiber lasers and amplifiers. A final section addresses the issue of laser
pre-stabilization.

4.1 Brief Introduction on the Laser

Providing the laser source for interferometric detection of gravitational waves has
always been an exciting challenge for the scientists. Differently from the usual lasers
found in other experiments, this laser needs to be simultaneously incredibly stable
while delivering a high power (HP) in a very stable spatial mode. In the evolution
of the kilometric detectors Virgo and LIGO or the long-based subkilometric detec-
tors GEO or TAMA, the request for the laser source has been an increasing output
power from a few Watts to hundreds Watts and possibly higher for future projects
like Einstein Telescope (ET). Besides that the wavelength of this source does not
matter except for the fact that at some wavelengths, the mirrors can have better
performances in terms of scattering as well as benefiting of more know-how in the
coating deposition techniques.

Let’s first take a glance at the laser basics. Theodore Maiman built the first laser
in 1960 on the idea that a coherent beam can be created from an optical amplifier
(the gain medium) surrounded by a regenerating feedback to build up an oscillation.
The laser process occurs most often in a four-level system of the active ion. When

C.-N. Man (B)

Dir UMR 7250, OCA-CNRS, Bd de l’Observatoire, BP 4229 06304 Nice cedex 4, France
e-mail: nary.man@oca.eu

M. Bassan (ed.), Advanced Interferometers and the Search for Gravitational Waves, 97
Astrophysics and Space Science Library 404, DOI: 10.1007/978-3-319-03792-9_4,
© Springer International Publishing Switzerland 2014



98 C.-N. Man

Fig. 4.1 Only the two levels of the transition have been represented here for sake of clarity

illuminated by appropriate light (the pumping process), the system absorbs the light
energy and re-emits photons in a spontaneous emission and a stimulated emission
forming the laser light itself. Those phenomena are represented schematically in
Fig. 4.1.

The energy of the spontaneously emitted photon is related to the energetic differ-
ence of the two levels: hν = E2 − E1 and the change of the upper level population
N2 is given by the Einstein coefficient A which is the inverse of the lifetime τsp

(
dN2

dt

)

sp
= −AN2 A = 1

τsp

(In 1917, Albert Einstein proposed that there are three processes occurring in the for-
mation of an atomic spectral line. The three processes are referred to as spontaneous
emission, stimulated emission, and absorption. With each is associated an Einstein
coefficient that measures the probability of that particular occurring process).

A resonant photon hν stimulates the active atom or ion to make a transition from
the level N2 to the level N1 (population number N1) with a creation of a second
photon identical in direction (vector k), in frequency ν and in phase and polarization:

(
dN2

dt

)

st
= −W21N2 W21 = σ21F

where W21 is the stimulated transition probability, σ21 the cross section of the tran-
sition and F is the photon flux. The photon stimulates absorption from E1 to E2 with
a population variation of:

(
dN1

dt

)

abs
= −W12N1 W12 = σ12F

where Einstein demonstrated that σ21 = σ1. With sufficient pumping there is a
population inversion when N2 > N1 and the differential between the incoming flux
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Fig. 4.2 Basic scheme of a laser

Fig. 4.3 Three-level and four-level systems are the most representatives of the usual lasers

and the out coming flux
dF = σ21F(N2 − N1)dZ

is then positive. By adding now a resonator that feeds back the light with a leak rate
(output coupler of the resonator) smaller than the gain, we end up with a laser (light
amplification by stimulated emission radiation) on Fig. 4.2.

As mentioned previously, laser media are based on three- or four-level system,
because a population inversion between two levels is impossible. A three-level sys-
tem presents the advantage of higher efficiency in the pumping and a faster decay
while in the four-level system the population inversion is easier because the thermal
population of the lower level of the laser transition has a weaker thermal population
(Fig. 4.3).

Let’s have a quick look at the basic laser parameters based on the rate equations
with the example of a four-level system of Fig. 4.3. Under adequate pumping process,
the population density N is related to the photon number q by:

dN2

dt
= WpN0 − N2

τ
− BqN2

dq

dt
= VaBqN2 − q

τc

Nt = N0 + N2
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Ni = population density (cm−3)
q = photon number inside the resonator
τ = lifetime of the upper laser level

Va = mode volume in the active medium
τc = photon lifetime in the resonator

N2/τ = spontaneous decay, 1/τ : spontaneous rate
WpN0 = pump process, Wp: pump rate
BqN2 = stimulated decay process

VaBqN2 = growth rate of photon number in the resonator
q/τc = loss rate of photons = output coupling losses + internal losses

In a continuous wave operation, we set d/dt = 0 in the above equations. That
yields the important parameters of the laser, where L is the length of the resonator
and T is the output coupler transmission:

• the threshold pumping power for a four-level system:

Pthr = 1

ηp

hνp

σ21(λ1)τ
(T + L)

V

2d

• the threshold parameter for a three-level system

Pthr = 1

ηp

hνp

σ21(λ1)τ
(T + L + 2dσGSA(λ1)(n − nthr))

V

2d

• the slope efficiency which is another relevant parameter that laser scientists uses
when investigating a laser optimization, for small L and T << 1:

η = ηp
λp

λ1

T

T + L

Figure 4.4 represents an example of the output power versus pump power, a line
whose slope is the efficiency and Pthr is the minimum pump power for starting the
laser oscillation.

4.2 Laser Sources for Gravitational Wave Interferometric
Detection

The gravitational waves produce on the dark fringe of the Michelson such a tiny
signal that it has to be almost free of any perturbation such as the power fluctua-
tions of the laser, the frequency fluctuations and beam position fluctuations of the
laser. When reading out a signal from a light source, one fundamental and unavoid-
able noise is the shot noise. In Michelson interferometers, the ratio of the potential
gravitational wave signal to the readout shot noise scales as the square root of the
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Fig. 4.4 Threshold and slope
efficiency of a typical laser in
a laser output power versus
pump power

power in the interferometer. Then, to overcome the shot noise the laser power has
to respect some requirements following the sensitivity planned for the detector. This
sensitivity, when limited by readout shot noise is proportional to the square root of the
laser power circulating inside the interferometer. Hopefully the combination of res-
onant optical cavities (Fabry–Perot) and recycling techniques (Chap. 3 of this book)
will relax the constraints on the laser source from kilowatts or hundred of kilowatts in
advanced generations, to hundred of watts. Recycling techniques have been invented
for microwave oscillators and applied later to optical interferometry [1] it consists
of enclosing the Michelson interferometer inside a resonant cavity, by adding at the
input port, a mirror whose reflectivity compensates the losses of the Michelson’s
mirrors. Then the first generation of detectors used 10 W laser to end up with 1 kW
inside the Michelson, while the advanced detectors Advanced LIGO (aLIGO) and
Advanced Virgo (AdV) will need around 200 W to get 1 MW of circulating power.

The high power circulating inside the cavities produces another noise created by
fluctuating radiation pressure forces on the mirrors, and the next question is when
will that noise be equivalent to the readout shot noise. For a power P the mirror
displacement caused by radiation pressure scales as

√
P/f 2, where f is the Fourier

frequency above the pendulum resonances. Then induced radiation pressure noise
is an issue at lower frequencies while readout shot noise is more relevant at high
frequencies. The introduction of signal recycling which is a mirror placed at the
output port that encloses the sidebands produced by the signal, will make this simple
analysis more complex and a complete simulation of the detector is then necessary [2].

The Michelson interferometer needs to be illuminated by a single frequency polar-
ized source in order to achieve a very good interference contrast in absence of a perfect
symmetry in the Michelson and in the Fabry–Perot arms. If the contrast defect of
the Michelson is (1 − C), where C is very close to 1, the interference between the
two arms reflects any frequency and power fluctuations of the laser. In order to be
able to detect such a small gravitational wave signal as 10−23 in relative strain, the
relative frequency and power fluctuations of the laser have to stick to the same order

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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of magnitude. Then for a laser light emitting at 1µm wavelength, we end up with the
requirements of a few µHz/

√
Hz for the laser frequency fluctuations, while in com-

parison a free-running quiet laser presents a noise of a few kHz/
√

Hz. The current
detectors use the TEM00 fundamental mode of the cavities and an efficient incoming
laser beam has to contain as much as possible TEM00; the higher order modes that are
not rejected before will produce dangerous scattered light inside the interferometer.
To minimize the influence of laser power fluctuations, the interferometer operates
on the dark fringe but the DC readout method used in advanced detectors, requires
a small deviation from the dark fringe. At this point again, a complete simulation of
the interferometer behavior will help determining which level of light fluctuations
is allowed to reach the desired sensitivity. The relative power noise, especially at
low Fourier frequencies, where the radiation pressure coupling is most significant,
has to be in the 10−9/

√
Hz range and the beam pointing stability injected into the

interferometer has to be below 10−11rad/
√

Hz in angular jitter or of 10−10m/
√

Hz
in lateral shifts. The details of the specifications required can be found in different
chapters of this book. Sophisticated stabilization techniques have been in for a few
decades with the development of frequency standards metrology as far as long term
(integration time higher than 1 s) performances are concerned; the gravitational wave
field has extended their applied developments to the short-term performances with
the venue of new design reference cavity and fast transducers. Let’s define what kind
of lasers could reach such performances.

4.3 Getting Stable HP Lasers

Getting a high power output with a highly stable laser is a serious challenge that is
usually managed by separating the two functions of high power output and stabiliza-
tion. Actually a low power stable laser called master laser is used to injection-lock a
high power in a configuration called injection-locking technique [3], where the beam
of the master laser controls the oscillation of the high power laser, called slave laser,
with all the lasing gain redirected in a single frequency output. A second alternative
is to just amplify the beam of the master laser in a single pass slave oscillator, this
technique is called master oscillator power amplifier (MOPA). In this second case,
the high power stage has no optical cavity around it. While in the first case the stable
output of the low power laser is transferred automatically to the HP laser, the MOPA
contains no filtering cavity for the amplifier noise and the transfer of stability to the
HP beam can be achieved in saturation regimes.
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4.4 HP Laser Candidates

Bulk Lasers

When the advanced detectors started to be developed, neodymium doped yttrium
aluminum garnet (Nd:YAG) was the best choice for 100 W class lasers. The solid-state
Nd:YAG or Nd:YVO4 (Yttrium Orthovanadate) laser emitting in the near infrared
range (1.06µm) has superseded the Argon ion laser emitting at 5,145 nm used in
the first prototypes for its visible light. The solid-state laser (SSL) presents many
advantages such as intrinsic stability of the solid medium, diode pumping with long
lifetime, and last but not least, the longer wavelength implying smaller Rayleigh
scattering in the optics which varies as 1/λ2.

To reach HP level, different configurations have been proposed in order to mini-
mize or to remove the pumping heat; actually about 24–25 % of the pump power is
converted into heat in the laser crystal. A few sophisticated cooling interfaces have
been designed for HP Nd:YAG lasers as well as very clever laser zigzag paths [4] in
the side-pumped crystal to average the thermal effects. Nevertheless, residual ther-
mal induced effects such as stress-fracture limit of the crystal, nonisotropic thermal
lensing spoiling the laser spatial mode, etc… limit the output power of those HP
lasers to about 200 W today [5]. By managing correctly the thermal load on more
than one amplifier stage, this SSL technology reveals to be a good basic solution for
this first generation of advanced detectors where about 200 W is required.

The non-planar ring oscillator [6] has a very high intrinsic stability due to its com-
pactness and is used as the master laser in all the projects today (Fig. 4.5). Designed
in a small monolithic block the Nd:YAG crystal forms the laser cavity and the only
fluctuations encountered by the laser are due to small temperature changes in the
crystal, caused themselves by the power fluctuations of the pumping diodes. For
frequency controls, a piezo actuator is mounted on top of the crystal and acts as a fast
transducer of 1 MHz/V, while the slow drifts are fed back to the temperature control
of the crystal with a tuning of 3 GHz/K. As far as the power noise is concerned, the
NPRO is equipped with a noise eater that suppresses the 30 dB relaxation oscillation
peak (at a few hundred kHz) intrinsic to any solid state laser, and leaves the relative
intensity noise (RIN) below 10−6/

√
Hz.

The thermo-optical effects in this monolithic block limits the NPRO design to a
few Watts [7] and make them good candidates for playing the role of master laser.

HP Lasers for Advanced LIGO

The laser concept chosen for the advanced LIGO project (aLIGO) is an end-pumped
rod laser design [8] which presents the advantages of matching the pump light with
the circular beam shape of the Gaussian laser mode in a very good spatial overlap
between the gain medium and the laser mode. The thermal effects in rod lasers are
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Fig. 4.5 The NPRO non-planar ring oscillator is robust, compact, and simple and has a high intrinsic
stability. Dimensions of the crystal are 3 mm×8 mm×12mm

still strong compared to the other designs but it can either be compensated or used
advantageously to achieve stable fundamental mode operation. One limiting effect
of the rod lasers is the depolarization caused by stress-induced birefringence [9]
and [10], then a linearly polarized laser mode senses different refractive indices on
the horizontal and vertical directions and depolarization and a differential thermal
focusing (bi-focusing) occurs in two transverse sections that limit the achievable
output power of linearly polarized beams. To scale to HP the use of Nd:YVO4
instead of Nd:YAG leads to a strong reduction of the depolarization and bi-focusing
effects while emitting at the same wavelength 1.06µm. Nevertheless to reach 200 W
output without totaling intense thermal effects on one laser, it is unavoidable to use
more than one amplification stage from the master to the final HP stage.

The single frequency laser for advanced LIGO (Fig. 4.6) is a compound system
consisting of a Master low power laser, a first stage amplifier and a final HP stage.
A Master oscillator which is a 2 W NPRO Nd:YAG is sent to a medium power
amplifier bringing the laser power to 35 W: it is composed of a Nd:YV04 rods in
series, each of them pumped axially by HP laser diodes. The HP stage contains 4
Nd:YV04 rods end-pumped laser diodes, but built inside a ring cavity able to lase
up to more than 200 W. This final stage is then injection-locked by the 35 W beam
of the first stage to yield a 200 W single frequency output.

Though thermal effects are strong inside laser crystals, the rods are suitably
pumped in a very clever configuration such as to minimize those effects and the
220 W output of the amplifiers contain more than 88 % of fundamental mode. Then
by spatial filtering, 165 W can be measured in the beam with only less than 2 % in
high order modes [11].
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Fig. 4.6 Advanced LIGO laser concept: the master laser NPRO is amplified by a front-end first
stage of four laser rods and delivers around 35 W which is sent into the HP stage combining two
pairs of laser rods. Two lenses and a quartz rotator (QR) are inserted in the middle of each pair of
rods to act as a depolarization unit [8]

Fiber Lasers and Amplifiers

A fiber laser is the laser in which the active medium is an optical fiber doped with
rare-earth elements such as erbium, ytterbium, neodymium, etc… Fiber amplifiers
are doped fibers providing amplification without lasing. Fiber medium has some
intrinsic advantages over bulk medium: the large ratio of surface area to volume of
fibers provides excellent heat dissipation, fiber laser is virtually alignment free due
to the wave-guided laser cavity and pump laser path, and thus more robust against
mechanical disturbance. The output beam quality of a fiber is determined mostly by
the guiding technique because the thermal load is no more concentrated on a small
volume but distributed along the fiber. At the same time as the gain, the thermal
effect evacuation also scales up with the length of the fiber. Furthermore, the low
number of optical components and the small size of the laser head also simplify the
maintenance on site.

Rare-earth doped fiber amplifiers can offer single-frequency output at higher effi-
ciencies (up to 50 %) and at lower cost than solid-state amplifiers for the similar power
levels [12]. Over recent years, the powers that can be achieved from Ytterbium-doped
silica fiber lasers have grown rapidly due to parallel advances in high power diodes,
diode-to-fiber coupling schemes and doped fiber design and fabrication. To ensure
single-mode guidance in the fiber, the core diameter of the standard fiber is at the
same order of magnitude as the wavelength of the guided beam (5–10 microns). To
transport higher optical intensities as well as to have higher damage thresholds, larger
diameter cores of the order of 50µm (large-mode-area or LMA fibers) have been
invented while keeping single-mode guidance (Fig. 4.7). A straightforward approach
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Fig. 4.7 Comparison of bare uncoated fibers with a standard core size (8µm diameter) and a large
core (50µm diameter). A microscope picture of a photonic crystal fiber is shown on the right

is then to decrease the refractive index difference between the core and the cladding
putting limitations to the bending capacity of the fiber. More sophisticated design
based on photonic crystal fibers have been developed to address this drawback. Pho-
tonic crystal fibers (PCF) also called holey or microstructure fibers are optical fibers
in which waveguide properties are done not from a spatially varying glass com-
position but from an arrangement of very tiny and closely spaced air holes which
go through the whole length of the fiber. They typically guide light in a relatively
narrow wavelength range but can be used for pulse compression with very high opti-
cal intensities as most of the power propagates in the hollow core. Those kind of
fiber lasers have enabled output powers to exceed 1 kW while retaining excellent
efficiencies [13].

Fiber lasers or amplifiers based on single-mode fibers can generate diffraction-
limited output when it restricts the pump source to diffraction-limited beam and thus
usually low power sources. The invention of double-clad fibers resolved that issue by
extending the pumping to the cladding: the laser light propagates in a single-mode
core, surrounded by an inner cladding in which the pump light propagates. Only the
core is rare-earth doped. The pump light is confined to the inner cladding by an outer
cladding with lower refractive index. Figure 4.8 shows a schematic of a double-clad
fiber used as an amplifier.

Double clad fiber lasers with continuous-wave powers in excess of 100 W with
diffraction-limited beam quality have been demonstrated in 2002 and a 246 W single-
frequency master oscillator power amplifier have been already achieved with 91 %
in TEM00 mode [14]. This has been achieved with a large mode field diameter fiber
without any stimulated Brillouin (SBS) scattering effect. One of the major obstacles
when propagating signals through fibers is the stimulated Brillouin scattering (SBS)
effect, which is frequently encountered when narrow-bandoptical signals (e.g., from a
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Fig. 4.8 Double-clad fiber with a pump light launched into the inner cladding while the signal to
be amplified is launched into the doped core

single-frequency laser) are amplified in a fiber amplifier, or just propagated through
a passive fiber. While the material nonlinearity of, e.g., silica is actually not very
high, the typically small effective mode area and long propagation length strongly
favor nonlinear effects. For silica fibers, the Brillouin frequency shift is of the order of
10–20 GHz, and the Brillouin gain has an intrinsic bandwidth of typically
50–100 MHz, which is determined by the strong acoustic absorption (short phonon
lifetime). New fiber designs have been invented to lower successively the SBS thresh-
old in doped fibers, but the issue remains open when using undoped fibers to transport
HP narrow linewidth lasers in a few meters length, for instance the fiber length should
be shorter than 2 m when 200 W frequency stabilized laser is launched through it
without being spoiled by SBS. This is still an issue today when we want to transport
the HP stabilized laser to the interferometer through fibers in order to avoid all the
loss due to intermediate optics.

Another HP limitation of the rare-earth doped silica fibers come from the perfor-
mance degradations due to photodarkening mechanism which involves the formation
of color centers or other microscopic structural transformations in the medium [15]
this process is a fundamental issue for fiber amplifiers involving long exposure to
very high pump intensity levels. Though it is a permanent effect it can be reversed
by heating the fiber or by co-doping it with Cerium.

Rod fibers with large core (Fig. 4.9 and [16]) have been proposed in order to
maximize the pumped intensity in the doped core while reducing the fiber length.
Commercially available amplifiers exist on then 300 W range in pulsed operation
[17], but again delivering cw HP output give rise to thermal gradients and then risk
of mode instabilities due to mode competition.

Ytterbium-doped YAG (Yb:YAG), can lase at 1,064 nm in a four-level system
and at 1,030 nm in a three-level system. This shorter wavelength could replace the
1,064 nm light as it has a smaller quantum defect and a better thermal management
because it is pumped by 940 nm diodes instead of 890 nm for the 1,064 line. Further-
more, the 940 nm diodes have potentially longer lifetimes and the gain at 1,030 nm
is two times larger than at 1,064 nm. The switch to this new wavelength is not a
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Fig. 4.9 Photonic crystal fiber, a section of the rod fiber

big issue for the mirror coatings performances as long as they are coated for normal
incidence. For beamsplitters and other non-normal incidence mirrors, a check of
reflectivity performances is necessary before going to 1,030 nm. Today, an impres-
sive number of publications on HP fiber amplifiers exist but very few of them are
useful for our applications as most often the given M2 factor (Siegman’s Book) give
less information than the measurements on the modal content of the beam [18].

Fiber Amplifiers for Advanced Virgo

For Advanced Virgo (AdV), the laser concept has been defined more recently and to
exploit a new solution which can be scaled up to higher power, Yb3+ doped fibers
have been chosen for some relevant issues: beam quality, power tunability, efficiency,
maintenance, and last but not least the cost. Adopting this new technology for the
AdV has been an important challenge for the project and to minimize the potential
risks in long-term operation, the reference solution adopted is the coherent addition of
lasers to achieve the HP beam. The potential risks are the onset of mode instabilities
and photodarkening effects in the fibers at high pump levels when they are used to
amplify narrow linewidth lasers such as the ones specified for gravitational wave
detection. Today a few options are still to be tested and compared for the R&D:
combining the beams of many medium power amplifiers to get close to 200 W or
have a multistage amplifier, each of them working with a gain low enough to avoid
the mode instabilities and the photodarkening effect in the lifetime of the experiment.

In order to investigate the fiber laser behavior, a prototype has been designed
in 2009 by the US company Nufern, a manufacturer of specialized fiber optics,
delivering 180 W in single frequency operation. It is a two-stage amplifier fiber
coupled to a seed source of 50 mW by a pre-amplifier delivering 10 W. Figure 4.10
shows the output power versus the diode current: the backward signal appears (SBS)
appears above 150 W and a nominal power of 177 W could be achieved with 300 W
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pump power. We have checked (Fig. 4.11) that the frequency noise is due to the
master frequency noise and with a standard servo-loop acting on the diodes current,
we could get a noise floor close to photon shot noise at a photocurrent of 24 mA [18].
Unfortunately, an unexplained phenomenon that we suspect to be photodarkening
effect combined to some SBS, decreases the power after a few weeks of running and
damaged the fiber completely.

The GW laser source needs to be reliable in long-term operation and the need
is beyond a publication’s result. Prototypes and commercial amplifiers that claimed
HP output have to be operated during a few months to be sure that no SBS or
photodarkening or mode instabilities appear. It is obvious that commercial fibers
have made large progress and will continue to be better and better in terms of HP
behavior and in the time of the need for a full HP laser for Advanced Virgo, we are
confident that commercial fiber amplifiers will appear on the shelves.

The combination or coherent addition of continuous wave lasers is not a big
issue since it has been done almost 30 years ago with Argon ion lasers [20] and
applied on fiber lasers in 2011 [21]. They obtained a complete summation of two
fiber lasers without loss and a very good beam quality (97 % TEM00 content) without
introduction of extra noise in the addition.

4.5 Laser Pre-stabilizations

The goal of the lasers pre-stabilization (PSL subsystem) is to achieve an intermediate
level in the 100 mHz/

√
Hz range on the laser beam before it is sent to explore the long

baseline cavities. The laser heads are provided with high-bandwidth actuators for the
last stage of frequency control loops that lock the laser frequency to the length of
the kilometric cavities. The laser frequency is controlled in short term via the piezo
actuator of the NPRO (low power stable laser) and by an electro-optic modulator
(EOM) placed between the NPRO laser and the amplifiers.

The schematic layout of the aLIGO pre-stabilized laser [11] and AdV are rep-
resented respectively on Figs. 4.12 and 4.13. Both layouts have the same typical
stabilizations: a pre-mode-cleaner (PMC) consisting of a rigid spacer in a ring three-
mirror configuration cavity to avoid light feedback. The length of aLIGO’s PMC
is 2 m round-trip while in AdV it is about 50 cm length. The HP beam transmitted
through the PMC has a pointing in angular and in transverse directions, filtered by
a factor proportional to the finesse of the PMC. This step is a first “rough” filter-
ing of the beam to ease the alignment of the incoming through the vacuum system
containing the suspended input mode cleaners (IMC). This IMC acts as a low pass
filtering for all the amplitude and beam jitters noise of the laser. The design of PMC
takes into account the spatial filtering needs for the length and the power standing
of its mirrors, determining the finesse of the cavity. If F is the finesse and L is the
length of the cavity, the filtering transfer function of the cavity optical resonator can
be described as a low-pass with a corner frequency given by:
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Fig. 4.10 Measured output power of the Nufern laser prototype and evidence of backward propa-
gating SBS power through 0.01 % tap port (Nufern flyer) [19]

Fig. 4.11 Relative intensity noise (RIN) in units of 1/
√

Hz of the Nufern fiber amplifier prototype
versus frequency in the GW detection range. In red curve of free-running RIN, in black electronic
noise, in green dark noise of the photodiode and in blue the RIN in closed loop below 10−8/

√
Hz

limited only by the photodiode noise
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Fig. 4.12 Layout of the Advanced LIGO pre-stabilized laser system including a schematic of the
nested frequency control scheme. EOM electro-optical modulator, AOM acousto-optical modu-
lator, FI Faraday isolator, PMC pre-mode-cleaner resonator, PZT piezo-electric transducer, FSS
frequency stabilization electronics

fFP = c

4LF

with L = 0.5 m and F =10000, we can get a cut-off frequency of 15 kHz which will
give an attenuation of more than 100-fold for any frequency above a few MHz. Then,
depending on the modulation frequencies used in the interferometer, the PMC can
also be designed to filter the laser power noise at those frequencies. For the beam
noises, it will filter out the high order modes not resonating in the mode-cleaner
by a factor proportional to 1/

√
F2. The PMC length is kept resonant with the laser

frequency by a piezo-actuator adequately mounted inside the resonator, i.e., without
introducing any spurious drift by itself.

When investigating a laser’s performances, one needs to measure precisely all the
free-running noises such as the RIN, the beam pointing noise, the modes content,
and the frequency fluctuations. Those measurements are mandatory to determine if
active (mode-cleaners) and passive controls (servo-loops) will make it suitable for a
GW interferometric detector.

4.6 Conclusion

The very prolific work done today on fiber lasers will possibly set the path to very
high power needed for the third generation of interferometers, though their optical
design could reduce significantly the requirements. Depending on the thermal noise
limitations of mirrors, coatings, preferred wavelength could be shorter and beam
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Fig. 4.13 Layout of the
advanced Virgo PSL with the
same kind of elements as for
LIGO. The input mode cleaner
IMC is a part of INJ (injection)
subsystem but closely related
to PSL

shape could be different from the fundamental TEM00 modes. High order Laguerre-
Gaussian modes have been calculated to give less thermal noise and mainly less
themal effects and their use might allow to matching the beam coming out of the
laser and the beam exciting one resonance of the optical caivty. Other lasers medium
could be exploited such as discs or multisegmented laser rods, etc …Though they
already exist for industrial applications or pulsed applications, their operation on
narrow linewidth remains to be experimented in terms of long-term reliability. In any
case, the lasers will most likely be based on injection-locking or MOPA techniques
or a combination of both. Furthermore, the lasers need to operate in single transverse
mode with free-running noises compatible with the performances of the servo-loops
to be added on for the future gravitational waves detectors.
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Chapter 5
Input Optics System

Matteo Tacca

Abstract In the gravitational waves interferometric detectors, the properties of the
light beam at the input of the interferometer are very different from the ones of
a standard laser source. Therefore, an interface between the laser source and the
interferometer is essential. In this chapter, the interface devoted to deliver a light
beam characterized by the right properties is described. This interface is called Input
Optics System. The Input Optics System of Advanced Virgo is considered and taken
as example: all the subsystems are described, focusing on the involved physical
phenomena. Some possible future upgrades are also introduced. At the end, the
few differences between the Advanced Virgo and the Advanced Ligo Input Optics
Systems are presented.

5.1 Introduction

In the gravitational waves interferometric detectors, the properties of the light beam
at the input of the interferometer are very different from the ones of a standard laser
source. Therefore, an interface between the laser source and the interferometer is
essential. This interface is called Input Optics System and is devoted to deliver a
light beam characterized by the right properties for what concerns power, dimen-
sions, frequency stability, and position stability in order to ensure the right optical
matching inside the interferometer. Since the Input Optics System has to satisfy
many requirements, it is quite complex and is made of many subsystems. Most of
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Fig. 5.1 Advanced Virgo Injection System

the aims of the Input Optics System are the same for all the large gravitational wave
detectors, i.e., Advanced LIGO (aLIGO) [1], Advanced Virgo (AdVirgo) [2], and
KAGRA [3]. Therefore, many features and the physical phenomena of this system
are common in the various interferometers. In order to describe its various subsys-
tems, the Advanced Virgo Input Optics System, called Injection System (INJ) [2], is
considered and taken as example. At the end, a few differences between the AdVirgo
and aLIGO Input Optics Systems are summarized.

The Advanced Virgo Injection System is divided into two large parts: the first
part is assembled on an in-air optical bench (called External Injection Bench, EIB),
the second is on an in-vacuum suspended optical bench (named Suspended Injection
Bench, SIB). Figure 5.1 shows the general scheme of the Injection System.

In particular, the Radio Frequency (RF) modulation system, the Input Mode
Cleaner (IMC) mode matching telescope, one Input Power Control (IPC) system,
the Beam Pointing Control (BPC) system, and some steering optical elements are
installed the in-air bench. On the other hand, a part of the Input Mode Cleaner Cav-
ity, the High Power Faraday Isolator (FI), the Injection Mode Matching Telescope
(MMT), the Reference Cavity (RFC), one Input Power Control system, and some
steering optical elements are assembled on the in-vacuum bench.

The main troubles, common to almost all subsystems of the Input Optics System,
are due to the thermal aberrations introduced by the very high input power laser beam
that hits all the optical elements. In facts, some watts of power can be dissipated and
absorbed in the various elements, resulting in temperature gradients. These tempera-
ture gradients introduce refractive index gradients and geometrical alterations of the
elements, which, in the end, can affect their optical properties.

5.2 Radio Frequency Modulation System

A Radio Frequency modulation of the laser beam is needed in order to provide the dif-
ferent modulation frequencies exploited in both the longitudinal and angular control
systems of the interferometer. In particular, five different modulation frequencies are
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needed for the automatic control system of Advanced Virgo. In order to modulate an
optical beam two main modulation techniques are used: the electro-optic modulation
[4, 5] and the acousto-optic modulation [4, 5].

5.2.1 Electro-Optic Effect

Electro-optic modulators are usually made with crystals that exhibit the electro-optic
effect, which is a variation of the optical properties of a material as a consequence
of the application of an external electric field. Many distinct phenomena are induced
by the application of an electric field. They can be divided into two main effects: the
variation of the absorption of the crystal and the change of its reactive index.

An electric field can transform an isotropic medium in an anisotropic one. In
particular, the refractive index can be expressed as a function of the applied electric
field:

n(E) = n + a1E + a2E2 + · · · (5.1)

The coefficients a1 and a2 are, respectively, the linear and the second-order electro-
optic coefficients. The refractive index variations induced by the linear term are
named Pockels Effect, whereas the ones related to the second-order coefficient are
called Kerr Effect. The Pockels Effect can occur only in certain crystals, the non-
centrosymmetric materials. On the contrary, all the materials show the Kerr Effect
with different magnitudes even if, in general, it is weaker than the Pockels Effect.

5.2.1.1 Pockels Effect

The electro-optic modulators are built with crystals that exhibit the Pockels Effect,
such as Lithium Niobate (LiNbO3), Gallium Arsenide (GaAs), Potassium Titanyl
Phosphate (KTP), Potassium Dihydrogen Phosphate (KDP), or Rubidium Titanyl
Phosphate (RTP). The Pockels Effect can be simply understood by considering the
refractive indices ellipsoid and its deformation induced by the applied electric field. In
particular, an isotropic medium changes into a birefringent one (like GaAs), whereas
a uniaxial material turns into a biaxial one (like KDP).

When an electric field is applied, the non-perturbed refractive indices ellipsoid is:
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(5.2)
if x, y, and z are parallel to the principal axes of the crystal characterized by the
indices n1, n2, and n3 and following notation is adopted (considering a 3×3 matrix):
11 ∼ 1; 22 ∼ 2; 33 ∼ 3; 23, 32 ∼ 4; 13, 31 ∼ 5; 12, 21 ∼ 6. The linear
perturbation of the refractive index induced by the applied electric field Ej can be
written as:
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Fig. 5.2 Electric field applied
on a uniaxial crystal

Δ
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i
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rijEj (5.3)

where rij are constants that depend on the material, named the Pockels coefficients.
They are the components of the electro-optic tensor:
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Only a few of the Pockels coefficients are nonzero for most of the
non-centrosymmetric materials. There are two different kinds of the Pockels Effect
depending on the direction of the application of the external electric field: the trans-
verse Pockels Effect when the electric field is orthogonal to the beam direction of
propagation; the longitudinal one if the electric field is parallel to beam direction
of propagation. Moreover, the electro-optic effect depends on the polarization of
the light beam with respect to the crystal cross-section. For example, coefficient r13
nonzero constrains the application of the electric field along the z axis and the prop-
agation of the light beam in the y direction with polarization along the x axis, as
shown in Fig. 5.2.

In general, the principal axes of the perturbed refractive indices ellipsoid are
changed by the application of the electric field; therefore the new axis and the new
refractive index values have to be found starting from the ellipsoid equation. For
example, the KDP is one of the most used materials in order to realize electro-
optic crystals, thanks to its mechanical resistance and its transparency at visible
wavelengths. Its electro-optic tensor is:

[r] =


⎛⎛⎛⎛⎛⎛⎜

0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r63

⎝
⎞⎞⎞⎞⎞⎞⎟

(5.5)
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The KDP crystals are uniaxial (refractive indices ro and re) and they become
biaxial after the application of an electric field (Ex , Ey, Ez). The new refractive
indices ellipsoid is:

(x2 + y2)

n2
o

+ z2

n2
e

+ 2r41Exyz + 2r41Eyxz + 2r63Ezxy = 1 (5.6)

When the applied electric field is parallel to the axis Oz, Eq. 5.6 becomes:

(x2 + y2)

n2
o

+ z2

n2
e

+ 2r63Ezxy = 1 (5.7)

Oz remains one of the principal axes of the indices ellipsoid characterized by its
principal index nz = ne. On the other hand, the section at the plane z = 0 becomes an
ellipse whose axes (Ox⊗, Oy⊗) are tilted of 45 deg. with respect to the crystal principal
axes (Ox, Oy). Principal indices nx⊗ and ny⊗ relatives to the axes (Ox⊗, Oy⊗) can be
calculated from the indices ellipsoid equation:

nx⊗ = no − Δn

ny⊗ = no + Δn (5.8)

where Δn = 1
2 n3

or63Ez.
If the Pockels Effect in a KDP crystal is used in the longitudinal configuration

(applied electric field parallel to the direction of the propagation of the beam), the
optical delay introduced by an electric field E in a crystal of length L is proportional
to the difference between nx⊗ and ny⊗ and is equal to:

Γ = 2π

λ
n3

or63EzL = 2π

λ
n3

or63V (5.9)

where V is the tension applied to produce the electric field E. Therefore, a phase
shift proportional to the applied tension is induced. If the crystal is put between two
crossed polarizers, the phase modulation is transformed in an amplitude one, which
is:

IT = I0 sin2 Γ

2
= I0 sin2 π

2

V

Vπ

(5.10)

where I0 is the incident intensity, IT the transmitted intensity, and Vπ = λ/(2n3
or63)

is the tension, independent from L, which has to be applied in order to obtain a
half-waveplate (Γ = π ).

On the other hand, if the KPD crystal is used in the transverse configuration
(applied electric field perpendicular to the direction of the propagation of the beam),
for a linearly polarized input beam, the introduced phase shift is:
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Γ = 2π

λ
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⎠
(ne − no) − 1

2
n3

or63Ez

]
(5.11)

Therefore, there is a natural birefringence and an electrical one. To compensate the
natural birefringence the crystal length L can be chosen in order to have 2π/λL(ne −
no) as a multiple of 2π. Between two crossed polarizers, the transmitted intensity
becomes:

IT = I0 sin2 π

2

V

Vπ

(5.12)

where V = Ezd and Vπ = (λd)/(n3
or63L).

The RTP material is another most used crystal in the realization of the electro-optic
modulators. It shows a stronger Pockels Effect. Its electro-optic tensor is:

[r] =
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0 0 r13
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0 0 r33
0 r42 0

r51 0 0
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(5.13)

In particular, applying the electric field along the z-axis of this uniaxial crystal,
the refractive indices ellipsoid becomes:

(x2 + y2)

n2
o

+ z2

n2
e

+ r13Ezx2 + r23Ezy2 + r33Ezz2 = 1 (5.14)

The crystal axis remains the same and the new refractive indices are

nx = no − 0.5n3
or13Ez

ny = no − 0.5n3
or23Ez

nz = ne − 0.5n3
er33Ez (5.15)

In a longitudinal configuration, since nx = ny, the light beam sees the same
phase shift for any polarization. Therefore, a phase modulator, independent from the
light polarization, can be implemented, whereas an amplitude modulation cannot be
introduced.

On the other hand, in the transverse configuration, for an input beam linearly
polarized along z, the induced phase shift is:

Γ = 2π

λ
nzL = 2π

λ
L(ne − 0.5n3

er33Ez) (5.16)

The tension necessary to obtain an amplitude modulation is Vπ = (λd)/(n3
er33L).
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5.2.1.2 Kerr Effect

The Kerr Effect is the change in the refractive index of a medium after the application
of an external electric field. The Kerr Effect is different from the Pockels Effect
because the induced refractive index variation is directly proportional to the square
of the applied electric field. Moreover, it exists for all the symmetries of the crystals.
The equation of the refractive indices ellipsoid is:
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(
1
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+ 2zx(s51E2
x + · · · + 2s56ExEy) + 2xy(s61E2

x + · · · + 2s66ExEy) = 1 (5.17)

where the elements sij of the 6×6 matrix are the Kerr coefficients along the medium
principal axis.

The induced birefringence is:

Δn = 1

2
n3sijE

2 (5.18)

The Kerr effect is observed in almost every liquid. The induced birefringence is
due to the molecules orientation after the application of the electric field; but it is
present also in solid materials. The Kerr effect is exploited to control the polarization
of an incident beam.

5.2.1.3 Electro-Optics Modulators

In the description of the Pockels Effect (Sect. 5.2.1.1), it has been shown that the
application of an external electric field on a crystal induces a phase shift, which can
be used as a direct phase modulator of the light beam. The polarization of the incident
beam is parallel to one of the principal directions of the crystal. The application of the
electric field linearly modulates the phase of the light beam that crosses the crystal. At
the output of the crystal, a signal characterized by the spectral components ω0 ± nΩ

is obtained, where ω0 is the laser frequency and Ω is the modulation frequency. The
amplitude of the wave at the frequency ω0 ± nΩ is proportional to the nth-order
Bessel function: Jn(2π/λLΔn). Figure 5.3 shows the scheme of an electro-optic
phase modulator used in the transverse configuration.
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Fig. 5.3 Electro-optic phase modulator (transverse configuration)

5.2.2 Acousto-Optic Effect

An acoustic wave propagating in a medium produces mechanical stresses that cause
a modification in the refractive index through the photoelectric effect. An acoustic
wave that varies periodically can generate a refractive index grating of the same
period. An optical wave that hits this grating will be diffracted in two different ways.
If it is diffracted in only one order of diffraction, the grating is working in the Bragg
regime; if it is diffracted in various orders of diffraction, the grating is working in
Raman-Nath regime.

The interaction between acoustic and optical waves is exploited in the realization
of modulation devices. It can be described with the photoelastic tensor of the mate-
rials. The effect of a stress on the optical properties of a medium is the modification
of the refractive indices ellipsoid. If x, y, z are the principal axes of the ellipsoid and
n1, n2, n3 are the principal refractive indices, the non-modified ellipsoid is:
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= 1 (5.19)

The refractive index and the stress S are related through the photoelastic tensor
[pij]:
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where i, j = 1, 2, . . . , 6 and S1 = Sxx , S2 = Syy, S3 = Szz, S4 = Syz, S5 = Szx ,
S6 = Sxy are the stress components. After the interaction between the acoustic and
the optic waves, the modified ellipsoid is:
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Therefore, the stress modifies the dimension and the form of the refractive indices
ellipsoid. The relations among the coefficients pij of the photoelastic tensor are deter-
mined by the symmetries of the system.

For example, in one isotropic medium (water) [pij] is characterized by two inde-
pendent coefficients p11 and p12. If a longitudinal acoustic wave propagates along z,
the associated stress is:

S3 = S sin(Ωt − Kz) (5.22)

where K is the acoustic wave vector. The refractive indices ellipsoid becomes:

x2
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n2 + p12S sin(Ωt − Kz)
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+ y2

⎧
1

n2 + p12S sin(Ωt − Kz)
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+ z2
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n2 + p11S sin(Ωt − Kz)

⎨
= 1 (5.23)

where n is the water refractive index. Since there are no crossed components, the
principal axes do not change and the modified refractive indices are:

nx = n − 0.5n3p12S sin(Ωt − Kz)

ny = n − 0.5n3p12S sin(Ωt − Kz)

nz = n − 0.5n3p11S sin(Ωt − Kz) (5.24)

Therefore, if an acoustic wave is applied, the water becomes a periodic medium
equivalent to a grating with a period of 2π/K = Λ.

An acoustic wave, which varies periodically, produces a refractive index grating
characterized by a period equal to the acoustic wavelength. Refractive index varia-
tions around the mean value are of the order of 10−4. An optical wave interacting
with this refractive index grating is diffracted. The variation of the refractive index
is:

Δn =
⎡

M2107Pa/2A (5.25)

where Pa is the total acoustic power, A is the section of the sound wave, and M2 is
the diffraction merit factor, defined as:

M2 = n6p2

ρν3
a

= η (5.26)

where n is the initial refractive index of the medium, p the corresponding component
of the photoelastic tensor, ρ is the density, and νa is the speed of sound in the medium.
η identifies the ratio of the diffracted light.

In addition to M2, there are two other merit factors, M1 and M3:
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M1 = n7p2

ρνa
∞ Δf

M3 = n7p2

ρν2
a

∞ Δf τ (5.27)

where Δf is the modulation bandwidth and τ is the access time. Therefore, M2
qualifies the efficiency of the diffraction, M1 the modulation bandwidth and M3 the
access time.

The perturbation varies in time and space. It moves inside the medium with the
speed of sound νa, which is some orders of magnitude lower than the speed of
light, thus it is nearly stationary. An optical wave, characterized by a wave vector
k = 2πn/λ, that interacts with an acoustic wave, characterized by the wave vector
K = 2π/Λ, is effectively reflected in the directions defined by:

2k sin θ = mK = m
2π

Λ
(5.28)

where m is an integer and represents the diffraction order. The diffraction on several
orders is possible only if the thickness of the medium is much smaller with respect
to Λ: this is the condition for the thin gratings in the Raman-Nath regime. If the
medium thickness is larger, the light beam will be diffracted only on the first-order,
which that is the condition for the Bragg regime. In this situation Eq. 5.28 becomes:

2k sin θ = K (5.29)

that is,

2Λ sin θ = λ

n
(5.30)

It can be shown that the frequency of the reflected beam is shifted to a factor ±Ω

with respect to the frequency of the incident one.
In order to distinguish between the two regimes, the parameter Q is used:

Q = 2πλL

nΛ2 (5.31)

where L the length of the acousto-optic interaction. If Q << 1 the incident wave
is diffracted in several orders that represents the Raman-Nath regime, which cor-
responds to a thin grating. If Q >> 1 the incident wave is diffracted only in the
first-order that is the Bragg regime, which corresponds to a thick grating. In both
regimes, the diffracted waves are characterized by a frequency that is different with
respect to that of the incident wave.
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5.2.2.1 Raman-Nath Regime

In the Raman-Nath regime, the phase of a light beam that crosses along z a medium
excited by an acoustic wave is varied by the factor:

Δφ = Δn2πnL

λ
sin

2πy

Λ
(5.32)

where Δn is the refractive index variation induced by the acoustic wave, L the length
of the acousto-optic interaction, and Λ the acoustic wavelength. By replacing Δn
with the expression 5.25, the phase shift becomes:

Δφ = 2πnL

λ

⎡
M2107Pa/2a sin

2πy

Λ
(5.33)

where a is the thickness of the acoustic beam.
The incident beam is diffracted in several orders defined by the angle θ

sin θRN = mλ

nΛ
(5.34)

If I is the intensity of the diffracted beams and I0 is the transmitted optical intensity
without acoustic modulation, the diffraction efficiency η is given by:

η = I

I0
= [Jm(ΔφM)]2

2
|m| > 0

η = I

I0
= [J0(ΔφM)]2 m = 0 (5.35)

where J are the Bessel functions of order m and ΔφM is the maximum-induced phase
shift.

5.2.2.2 Bragg Regime

In order to fulfill the Bragg condition, the light beam incident on a medium excited
by an acoustic wave must have an angle of incidence defined by:

sin θB = λ

2nΛ
(5.36)

The diffracted beam (order 1) is characterized by an angle of 2θB with respect to
the direct beam (order 0). The diffraction efficiency is:

η = I

I0
= sin2

⎧
Δφ

2

⎨
(5.37)
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5.2.2.3 Acousto-Optic Modulators

The acousto-optic effect can be exploited in the realization of various devices as light
modulators, beam deflectors, tunable filters, and spectrum analyzers. In particular
a variety of light modulators, for both amplitude and frequency modulation, can
be produced. Either the Raman-Nath regime or the Bragg regime can be used for
the modulation, but the Raman-Nath regime is characterized by a small interaction
length, too small for practical application, that limits the frequency operation and
the bandwidth. Therefore, the Bragg modulators are the most used, since they are
characterized by a high frequency operation and a wide bandwidth.

Equation 5.37 shows that the Bragg diffraction efficiency is proportional to the
acoustic power. Therefore, if the acoustic power is modulated, so is the diffracted
light beam. Thus, by exploiting the Bragg diffraction an information can be given to
a light beam. The efficiency of the diffraction is acceptable only when the incident
and the refracted beams are almost symmetric with respect to the acoustic wave.
Since the angle of incident is small, θB can be written as:

sin θB ⊥ θB = λ

2nΛ
= λfa

2nνa
(5.38)

where fa is the sound frequency. Therefore, for small Bragg angles θB, the deflection
angle 2θB is linearly proportional to the frequency of sound.

The bandwidth Δf of an acousto-optic modulator depends on the angular spread
of the light beam. Since both the acoustic and the light waves are finite, also the
angular spread is finite. Therefore, the Bragg diffraction can occur over a range of
acoustic frequencies. The relation between the finite bandwidth and the variation of
the angle of incidence and diffraction, due to the angular spread of the acoustic and
light waves, is:

Δf = 2nνa cos θ

λ
Δθ (5.39)

Δθ is the variation of the Bragg angle needed to satisfy the Bragg condition when
the acoustic wave is characterized by a frequency bandwidth Δf . Moreover, Δθ is
the sum of the angular spreads of both the light wave δθ and the acoustic wave δφ:

Δθ = δθ + δφ (5.40)

where δθ ⊥ 2λ
πnω0

and δφ ⊥ Λ
L . ω0 is the waist of the light beam. For all the angular

components of the light beam, the Bragg condition can be satisfied over a range of
acoustic frequencies. The diffracted beam corresponding to a particular incidence
angle is characterized by an angular spread of 2δφ. Every direction corresponds
to a different frequency shift. The condition that permits to recover the intensity
modulation of the diffracted beam is δθ ⊥ δφ.
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Fig. 5.4 Scheme of the 2-section modulator

5.2.3 Advanced Virgo Modulator

Among the various modulation methods, in the gravitational waves interferometers
the phase modulation is needed, since it is the basis of the Pound Drever Hall tech-
nique [6]. Therefore, an electro-optics modulator, exploiting the Pockels Effect, is
the chosen technology to introduce a modulation. Due to the high incident power,
thermal effects can become significant in the electro-optic crystal [7]. Therefore,
the choice of the appropriate material is crucial to limit as much as possible these
effects. Indeed, it is important to select the right material not only to limit wavefront
aberrations but also to limit heating that can induce slow variations of the modulation
index and a disturbance of the interferometer control. In addition to the five modula-
tion frequencies mentioned before, other requirements are put on the modulator that
will be exploited in Advance Virgo: it has to withstand 200 W of input power, the
maximum modulation depth approved is 0.2, and thermal lensing effects have to be
quite limited. Among all the possible electro-optic crystals, the RTP has been cho-
sen because it satisfies the requirements and it is characterized by a low absorption
value [8].

An electro-optic modulator prototype, made in RTP, has been realized. In order
to minimize the losses and to avoid as much as possible spurious reflections from
input and output faces of the modulators, a 2-section modulator of the length of 20
mm is implemented. The proposed scheme is shown in Fig. 5.4.

With this scheme it is possible to obtain two modulation frequencies for each
crystal. Therefore, three different EOMs will be installed on the high power beam in
Advanced Virgo: two of them will have two sets of electrodes, the last one will be a
simple electrode modulator.

5.3 Faraday Isolation

A source of problem in the correct working of the interferometer can be the light that
propagates back from the interferometer itself and from the power recycling mirror
into the Input Optics System. Therefore, an isolation system, which isolates the Input
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Mode Cleaner Cavity from the ITF back-reflected beam, is needed. This isolation
system has to satisfy some requirements: the isolation factor must be >40 dB for a
power of 150 W, its total transmission must be >95 %, its residual thermal focal lens
must be >100 m, and it must be ultra-high vacuum (UHV) compatible (pressure <

10−6 mbar).
The adopted isolation system exploits the Faraday Effect.

5.3.1 Faraday Effect

The Faraday Effect is the most important magneto-optic effect [4]. This effect is
the rotation of the polarization of a light beam that crosses a medium affected by
the presence of a magnetic field. Considering an infinite medium characterized by
a magnetization M, the interaction between a light beam and M can be described
by two principal effects: the Faraday Effect and the Voigt Effect (or Cotton-Mouton
Effect). The former appears when the magnetization and the direction of propagation
of the light beam are parallel and it origins the rotation of the polarization, also called
magnetic circular birefringence (MCB). The latter appears if the magnetization and
the direction of propagation of the light beam are perpendicular and it origins the
magnetic linear birefringence (MLB).

The linear polarization of a light beam can be decomposed into the superposition of
two opposite circularly polarized components with the same amplitude and different
phases. When a linearly polarized beam crosses a medium of length d affected by
a magnetic field, its two circularly polarized components propagate with different
speeds. Therefore, a relative phase shift between them is induced at the output of the
medium originating a rotation of the orientation of the linearly polarized wave. The
relation between the rotation angle of the polarization and the magnetic field is:

β = νBd (5.41)

where B is the magnetic flux density in the direction of propagation and ν is the
material Verdet constant, which varies with wavelength and temperature. The rotation
of polarization is not reciprocal, i.e., it depends on the direction of transmission. If
ν is positive and the magnetic field and the light beam propagation are parallel, a
counterclockwise rotation is induced. On the other hand, if the magnetic field and
the light beam are antiparallel, the induced rotation is clockwise. Therefore, if a light
beam crosses a magnetized material in both directions (back and forth), the induced
angle of rotation is doubled. Some materials, as the Terbium Gallium Garnet (TGG),
are characterized by a very high Verdet constants (−40 rad / (Tm)). If a high magnetic
field is applied on a small piece of these materials, large angles of rotation can be
obtained. Therefore, these materials are exploited in the construction of the Faraday
rotators, which are the main components of the Faraday isolators.
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5.3.1.1 Faraday Isolator

An optical isolator is used to protect a light source from the undesired back reflections,
which can make the source unstable. In the particular situation of a gravitational
waves detector, an isolator protects the source from the light back reflected by the
interferometer. A simple Faraday Isolator depends on the polarization of the input
beam. In general, it is made of three parts: an input polarizer (aligned for a vertical
polarization), a Faraday Rotator, and an output polarizer (usually named analyzer,
aligned at 45◦ with respect to the input polarizer). In the forward direction, the
input light beam crosses the polarizer and becomes vertically polarized. The Faraday
Rotator rotates the polarization of the beam by 45◦. The output analyzer enables the
transmission of the light at the output of the isolator. In the backward direction the
input beam becomes polarized at 45◦ after the analyzer. The Faraday Rotator adds a
rotation of 45◦ and the light becomes horizontally polarized. Since the polarizer is
aligned in the vertical direction, the transmission of the light is blocked.

5.3.2 Advanced Virgo Faraday Isolator

The isolation requirements have been defined considering that no fringes, coming by
the spurious cavity made by IMC and Power Recycling mirror, with amplitude larger
than 0.5 % are present in reflection of the IMC cavity. The full power considered
in the definition of the requirements is 150 W (125 W of input power and 25 W of
interferometer reflected power). With the high input power foreseen in Advanced
Virgo, a standard Faraday Isolator will not work properly, since it will be character-
ized by loss of optical isolation due to the thermally induced birefringence and by
modification of the mean angle of rotation. Moreover, it will also exhibit very high
thermal lensing. All these troubles have to be corrected at the Faraday Isolator level
itself. Therefore, a custom designed Faraday Isolator has to be used in order to reach
all the requirements [9–11].

Since high power hits the crystal, a large amount of energy is absorbed inside the
TGG medium inducing a variation of the internal temperature, which introduces also
a modification of the refractive index of the medium. As a consequence, a change of
the optical path inside the medium arises causing a thermal lensing effect. Figure 5.5
shows the experimental measurements of the thermal lensing for a laser power going
from 10 to 180 W for two different TGG crystals, TGG1, and TGG2, characterized
by two different absorption values (2300 ppm/cm for TGG1 and 2600 ppm/cm for
TGG2) [11, 12]. It can be noticed that a thermal focal length of about 14 m is induced
in both crystals at full power.

A passive compensation is exploited to correct the thermal lensing. In particular,
a plate of the right length made of Deuterated Potassium Dihydrogen Phosphate
(DKDP), a material characterized by a large negative thermo-optic coefficient, is
inserted in the Faraday Isolator in order to compensate the thermal lensing created
in the TGG crystal. Figure 5.6 shows the residual thermal lens power, evaluated
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Fig. 5.5 TGG crystals thermal focal length

Fig. 5.6 Faraday isolator residual thermal lens power

in diopters (m−1) after the installation of the DKDP plate, as a function of the
incident power for a range from 20 to 180 W [11, 12]. It can be noticed that the
compensation is very efficient up to 150 W. Then the compensation starts to get
worse. The requirement (residual focal length >100 m (0.01 diopters) at 125 W) is
satisfied.

The thermal isolation value changes because the angle of rotation is modified when
the TGG crystal is heated. This modification is due to the temperature dependence
of the Verdet constant:

Δβ

β
= 1

ν

dν

dT
ΔT (5.42)

Therefore, the thermal isolation varies when the power sent inside the Faraday
Isolation is modified or when the thermal condition is changed (e.g., a Faraday
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Fig. 5.7 Faraday isolator optical isolation

Isolator used in air or in vacuum). In order to compensate this effect, a motorized
half-wave plate is introduced in the Faraday Isolator [13]. By adjusting the half-
wave plate, the mean angle of rotation can be tuned and the optimum level of the
optical isolation is recovered. Figure 5.7 shows the optical isolation reached with
and without the introduction of the half-wave plate [11]. An improvement of about
7 dB is reached by introducing the wave plate.

Another important problem induced by the high power hitting the TGG crystal of
the Faraday Isolator is the thermal depolarization. In fact, when the TGG crystal is
heated, it acts as a birefringent medium and changes the polarization of the incident
beam. In particular, the thermal depolarization depends also on the alignment of the
incident polarization with respect to the crystal axis. The depolarization introduced
by the two TGG (TTG1 and TGG2) crystal has been experimentally evaluated. The
crystal is rotated in order to find the axis of minimum depolarization, which will
suggest the right orientation to mount it in the Faraday Isolator. As example, Fig. 5.8
shows the obtained result for the thermal depolarization of one of the TGG crystals
as a function of its orientation with an impinging power of 200 W [11].

It can be noticed that the crystals are characterized by orientations that minimize
or maximize the thermal depolarization: there is a difference in the polarization
state of 7 dB between these two axis orientations. After the identification of the two
main orientations, it is possible to measure the depolarization as a function of the
input power P for the minimum and maximum conditions. As example, the obtained
experimental results for one of the TGG crystals are shown in Fig. 5.9 for impinging
power going from 10 to 200 W [11]: thermal depolarization increases with the input
power and an important gain on thermal depolarization is obtained when the best
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Fig. 5.8 Measured thermal
depolarization in one TGG
crystal as a function of the
axis orientation

Fig. 5.9 Measured thermal
depolarization in one TGG
crystal as a function of the
input power

orientation is chosen. In particular, at high power the trend of the depolarization is
proportional to P2. The behavior of the second TGG crystal is almost the same.

The physical mechanism at the origin of the limiting depolarization at high power
is a self-induced conversion from a spin angular momentum (SAM) to an orbital
angular momentum (OAM) of the photon [14]. In particular, the depolarization of
the beam is due to the occurrence of maximal entanglement between the SAM and the
OAM. The high power of the input Gaussian beam induces in the material temperature
gradients that create a birefringence with a radial symmetry, which can transform
the impinging light beam in a vortex one, which carries OAM. Therefore, the heated
material can be considered as a q-plate, an optical device developed for optical
angular momentum manipulation.

In order to limit the effect of the thermal depolarization and to compensate it in the
backward direction, a solution which foresees two TGG crystals rotating the polar-
ization by 22.5◦ each separated by a −67.5◦ quartz rotator, instead of the classical
solution of a single TGG crystal rotating the polarization by 45◦, is adopted [15].
With this configuration, it is mandatory to find the orientation giving the minimum
depolarization for each TGG crystal and align them correctly inside the Faraday Iso-
lator. The orientation of the polarization of light inside the Faraday Isolator is shown
in Fig. 5.10. The red and the blue arrows describe the orientation of the polarization
of light at different stages in the Faraday Isolator, respectively, in the backward and
forward directions. The total polarization rotation is −22.5◦ in the forward direction
and +112.5◦ in the backward direction.



5 Input Optics System 133

Fig. 5.10 Orientation of the polarization of light inside the Faraday Isolator

Fig. 5.11 Advanced Virgo
Faraday Isolator scheme

Considering all the compensators (the half-wave plate, which compensates the
isolation change, the quartz rotator, which compensates the depolarization and the
DKDP crystal, which compensates the thermal lensing) that are introduced, the final
design of the system is shown in Fig. 5.11 and the assembled prototype is shown in
Fig. 5.12.

5.4 Input Mode Cleaner Cavity

At the input of a gravitational waves interferometer, a pure fundamental Gaussian
mode (TEM00) (see Chap. 3) is needed in order to match the resonant mode of the
arm cavities, but the light beam at the output of the laser source can be characterized
by the presence of some transverse higher order modes. Therefore, the Input Optics

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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Fig. 5.12 Advanced Virgo Faraday Isolator assembled prototype

Fig. 5.13 Two possible different configurations for the Input Mode Cleaner Cavity

System has to guarantee that the laser beam is the proper one, not characterized by
the presence of higher order modes, before entering in the interferometer. In order
to reach this purpose a resonant cavity, whose role is to suppress all the higher
order modes other than the fundamental one, is added on the Injection System. This
cavity is called Input Mode Cleaner Cavity and the laser beam has to pass through
it before entering the interferometer. Moreover, the laser frequency has to be very
stable inside the interferometer and the Input Mode Cleaner Cavity conducts an
important role also in the stabilization of it. In the end, thanks to the suppression
of the higher order modes, this cavity is used also in the filtering of the residual
beam jitter. Summarizing the Input Mode Cleaner Cavity acts as passive spatial filter
(reducing the beam jitter by suppression of the higher order modes), as a filter of
the laser frequency and amplitude fluctuations (reduction of the fluctuations above
the cut-off frequency around 500 Hz) and as part of the laser frequency stabilization
loop at high frequency (above some tens of kHz).

A ring geometry has been chosen for the Input Mode Cleaner Cavity in order to
avoid the problem of back reflection on different optical elements of setup placed
before it [16]. Two different configurations of the cavity have been considered: a
so-called bow-tie cavity, characterized by four mirrors and a triangular cavity, char-
acterized by three mirrors, as shown in Fig. 5.13.
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Fig. 5.14 Input Mode Cleaner
Dihedron

The bow-tie configuration is interesting because it should be compliant with pos-
sible future upgrades of Advanced Virgo, which could foresee the use of a higher
order Laguerre-Gauss mode instead of the fundamental Gaussian one [17], but this
technology is not yet mature to allow the choice of this kind of cavity. Moreover, a
four-mirror cavity would be much more complicated to control and its performances
in terms of small angles scattered light, which is one of the main problems of the
Input Mode Cleaner Cavity, are worse than the ones of the triangular cavity [16].
Therefore, the triangular configuration has been chosen for the Input Mode Cleaner
Cavity, which is the same solution that was adopted in Virgo. In the final design two
of the three mirrors, the input and the output flat mirrors, are rigidly fixed in a dihe-
dral shape (Fig. 5.14) and are installed on the Suspended Injection Bench. The other
mirror, which is parabolic and is called IMC end mirror, is on the other side of the
cavity and is mounted on a payload (Fig. 5.15) suspended to a Virgo Super-attenuator.

The design of the Input Mode Cleaner triangular cavity foresees a cavity length of
144 m, a cavity finesse of 1,200, and a cavity throughput greater than 90 %. Moreover,
it has not to suffer radiation pressure effects introduced by the high power incident
on the end mirror.

As almost all the other parts of the Input Optics System, also the Input Mode
Cleaner Cavity can suffer from thermal effects due to the high input power. In partic-
ular, the thermal lensing induced on the input substrate affects the matching coupling
of the input beam with the cavity. This effect, which is independent on the cavity
geometry, depends on the properties both of the materials of the substrate and of
the coating of the mirror: in particular, it relies on the absorption of the coating, on
the variation of the refractive index with temperature and on the conductivity of the
substrate. Figure 5.16 shows the optical coupling in a cavity as a function of the
power absorbed in the coating of the first mirror. Since the requirement on the Input
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Fig. 5.15 Input Mode Cleaner
Payload

Mode Cleaner Cavity is a coupling greater than 90 %, the total power absorbed in
the coating should be lower than 100 mW.

This result can be achieved, in the case of high finesse (around 1,000) and high
input power (around 180 W), if the coating absorption is lower than 2 ppm, which is
a very stringent requirement on its quality.

Another stringent requirement that affects the quality of the mirrors of the cavity
is set on the total throughput, which can be defined as the total amount of power
transmitted by the cavity and has to be greater than 90 %. In fact, for the triangular
Input Mode Cleaner Cavity, it is linked to the transmission coefficients of the mirrors
(T1 and T2) and to the total round trip losses (LRT ) [18]:

T = 4T1T2

(T1 + T2 + LRT )2 (5.43)

In particular, the total round trip losses, which determine the part of the power that
becomes unusable at each round trip, are related to the absorbed and the scattered
light. These two phenomena depend on the quality of the coating of the mirrors in
terms of absorption and roughness.

There is another important property of the cavity that depends on the same para-
meters (T1, T2 and LRT ), the finesse [18]:

T1 + T2 + LRT = 2π

F
(5.44)
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Fig. 5.16 Cavity optical coupling versus absorbed power in the coating of the first mirror

Therefore, round trip losses and finesse are linked in order to have high throughput.
Figure 5.17 shows the dependance of the throughput on the finesse and the round
trip losses for the Input Mode Cleaner triangular cavity [16].

Therefore, a compromise should be found for the choice of the finesse of the cavity.
In fact it has to be as high as possible to increase the filtering effect of the cavity, but
too high finesse will put very stringent constraints (very difficult to achieve) on the
losses of the mirror and, thus, on their quality. Moreover, there is a large constraint
also on the absorbed power in order to limit the thermal effects. The compromise has
been found on a value of 1,200 for the finesse of the cavity, which means a throughput
of 95 % for 100 ppm of round trip losses.

The choice of the length of the cavity has been determined considering the con-
straint of the interferometer modulation frequency. In fact, for a length L of about
150 m, the Free Spectral Range (FSR) of the cavity is FSR = c/2πL = 1 MHz. It
means that all the multiples of 1 MHz can be used as modulation frequencies for the
control of the interferometer. Having a shorter cavity could affect in a not negligible
way the constraints on the modulation frequency. Moreover, the same filtering prop-
erties can be achieved by increasing the finesse, affecting the requirements on all the
other components of the cavity.
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Fig. 5.17 Cavity throughput as a function of cavity finesse and round trip losses

5.5 Reference Cavity System

As mentioned in the previous section, the frequency of the laser has to be very
stable. The Input Mode Cleaner Cavity is used as reference at high frequency. On
the other hand, a Reference Cavity System (RFC) is exploited in order to provide a
low frequency stabilization reference [16]. The monolithic Reference Cavity is the
reference for the laser frequency pre-stabilization: the laser frequency will be locked
on the Input Mode Cleaner Cavity and the IMC length will be locked on the Reference
Cavity. At the beginning, it is the low frequency (<10 Hz) reference for the pre-
stabilized beam, at the end it is used as main interferometer low frequency reference in
order to control the Interferometer common mode. The residual frequency fluctuation
requirement provided by the Reference Cavity is δν < 1 Hz rms up to 0.1 Hz.

In order to fulfill all the tasks, the Reference Cavity has to be quite independent
from the other parts of the interferometer. It means that the alignment and the match-
ing of the Reference Cavity must be performed independently from the interferometer
beam.

Since the Reference Cavity has to be isolated from the ground seismic noise, it is
installed on the lower part of the Suspended Injection Bench. The Reference Cavity is
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mounted inside its separate vacuum tank. A maximum of 30 mW of power is picked
up from the main interferometer beam to feed the Reference Cavity. The beam sent to
the Reference Cavity is picked off just after the IMC, before entering in the Faraday
Isolator. In this way two main advantages are obtained: the beam entering in the RFC
is geometrically stable in shape and lateral jitter, improving the matching with the
cavity and the RFC alignment is decoupled from the one of the main beam and from
matching adjustments on the interferometer.

5.6 Beam Pointing Control

The beam at the input of the interferometer should be always stable at the right
position, but it could move because of the residual motion of the mechanical benches
that hold the optical elements. Therefore, a subsystem, which reads and adjusts the
position of the beam at the input of the Input Mode Cleaner and, in consequence,
at the input of the interferometer, is implemented. This subsystem is named Beam
Pointing Control System (BPC) and it also monitors and stabilizes the jitter, both
lateral and angular, of the input beam.

5.6.1 Beam Jitter

In the field of the gravitational wave interferometry, the term “beam jitter” is used to
indicate the time-dependent fluctuations in the location of the impinging laser field.
It mainly originates at the level of the unsuspended optical components that steer the
laser beam into the interferometer. It is shown in the spectrum of the interferometer
output as peaks or bumps at particular frequencies (in some range under 500 Hz),
which are the typical resonance frequencies of the benches and of the mounts that
hold the optical components.

Starting from the hypothesis that the input beam of the interferometer is a TEM00
mode (zero-order Hermite-Gaussian mode) matched to the spatial mode of the inter-
ferometer, any jitter, i.e., tilt or displacement of the phase front of the beam, can be
described as a pair of sidebands separated from the carrier by the jitter frequency
[19]. The spatial order of the sidebands is the first-order Hermite-Gaussian mode
(TEM10 − TEM01), which propagates along with the zero-order mode. The complex
amplitude of the sidebands a1 = (y + iβ) can be calculated from the displacement
y and the tilt β. In particular, the modulus of a1 is:

|a1| =
⎢⎣ y

w

⎤2 +
⎣
β

πw

λ

⎤2
(5.45)

where w is the beam waist of the TEM00 mode and λ is the laser wavelength.
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Fig. 5.18 Scheme of a quad-
rant photodiode A B 
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5.6.2 Beam Jitter Control System

In order to measure the jitter, quadrant photodiodes are used as sensors [20]. These
photodiodes are discrete components that usually feature four optically active areas
separated by a small gap, as shown in Fig. 5.18.

In order to understand the functioning of the position sensing quadrant consider
a uniform round light spot that impinges on the active surface of the detector. The
position of the spot, relative to the center of the photodiode, can be determined by
comparing the signal acquired by the four separate quadrants. In particular, x and y
displacements can be calculated as:

x = (B + D) − (A + C)

A + B + C + D

y = (A + B) − (C + D)

A + B + C + D
(5.46)

The incident light spot must be smaller than the detector total active area and larger
than the gap between the single quadrants. Moreover, the detection range increases
with the spot size, while the positional resolution decreases.

The Beam Pointing Control System is composed of position sensors and steering
mirrors. In particular, the signal acquired by the quadrants is used as an error signal
for the actuators, mounted on the steering mirrors, which control the position of the
beam and reduce the jitter at low frequency. The signal on the quadrant photodiodes
has to be maintained null in order to guarantee the right alignment of the beam. Its
scheme is shown in Fig. 5.19.

This system should allow to lower the beam jitter at low frequency and keep
the beam at the right position. In order to measure the tilt and the displacement of
the beam, two detectors are needed. These two sensors have to be installed at right
positions and to detect beams of the proper dimension. In order to decouple the
measurement of tilt and displacement, a Gouy phase shift of 90 deg. between the
field detected by the two quadrants is mandatory. Therefore, one sensor is installed
to detect the so-called Near Field (named QN in Fig. 5.19) and the other one has to
acquired the Far Field (named QF in Fig. 5.19). In particular the Near Field Quadrant
measures a pure displacement, while the Far Field Quadrant acquires a pure tilt. In
order to have the right beam size on the two quadrants, different systems of lenses
are installed on the path of the beam before both quadrants. Starting from the beam
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Input Optics System

Laser

BPC
sensing MATRIX

Towards Input 
Mode Cleaner 
Cavity

DC position sensors 
(2 signals)
Piezo actuators

BPC_QN BPC_QF

Beam Pointing Control
System

Fig. 5.19 Scheme of the Advanced Virgo Beam Pointing Control System

jitter measured by the quadrants of the Beam Pointing Control System it is possible
to estimate the jitter on the beam at the input of the interferometer. In parallel to the
sensors used to control the beam position, the whole system is composed of two other
quadrants, which are used to monitor the jitter over the entire detection bandwidth.

5.7 Input Power Control System

The Input Optics System should provide a way to change the interferometer input
power without changing the incident power on elements that can experience possible
thermal effects, such as the Input Mode Cleaner or the Faraday Isolator. Moreover, it
should also guarantee that the power impinging on the different detectors devoted to
control the whole system does not change. For these purposes a subsystem composed
of a few polarizers and a wave plate, named Input Power Control System (IPC), is
installed right before the Input Mode Cleaner cavity. Two other IPC systems are
installed in the Input Optics System: the first one is placed just after the Faraday
Isolator in order to modify the interferometer input power without inducing other
changes on the laser and injection systems; the second one is installed on the interfer-
ometer reflected beam to simplify the adjustment of the laser power on the quadrant
photodiodes used for the interferometer sensing and control.

The Input Power Control System should be able to modify the laser power by
two orders of magnitude (from 1 to 99 % of the full power) without spoiling the
polarization state, which should be better than 30 dB for the whole power range.
Moreover, it should induce no significant thermal distortions at full power. The
overall thermal lens power of the system should be below 0.0045 diopters at full
power.

The most convenient system consists of a half-wave plate placed between polar-
izers. It should handle both light going to and reflected back from the interferometer.
Both situations are shown in Fig. 5.20.
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Fig. 5.20 Input Power Control System scheme

Fig. 5.21 Advanced Virgo Input Power Control System

Light going to interferometer (S polarization) passes through P1 and its polariza-
tion is rotated by an angle θ by the half-wave plate. After crossing P2 it recovers
an S polarization and it goes toward the interferometer with an attenuated power
of Pout = P0 cos2(θ). Light emerging from P2 goes through a third polarizer, P3,
aligned along the same direction to better clean the polarization. P3 is mandatory to
assure a good polarization in low IPC transmission configuration. The light reflected
by P2 should go to a high power beam dump.

Light reflected back from the interferometer should pass through P3 and P2 and
its polarization is rotated by an angle θ by the half wave plate. Therefore, it goes
back toward the laser system with a power Pout = Pback(1 − cos2(θ)) after crossing
P1. This last polarizer fixes the polarization of the light coming back whatever the
position of the wave plate. The light reflected by P1 should go to a high power beam
dump.

The scheme and the assembled prototype of the Advanced Virgo Input Power
Control System are shown in Fig. 5.21.

It is composed of three optical contacted cubes that can be easily tilted and an
adjustable half-wave plate. Figure 5.22 shows the polarization quality of the beam
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Fig. 5.22 Polarization quality of the light emerging from the Input Power Control System prototype

emerging from the prototype for an input power range from 1 to 125 W. The polar-
ization quality remains better than 35 dB for all the range of power.

5.8 Mode Matching Telescope

In the gravitational waves interferometers some resonant cavities are installed. The
main are the Fabry–Perot cavities that characterized the two arms of the Michelson
interferometer. Another important cavity is the Input Mode Cleaner cavity, which
is part of the Input Optics System. In all the cavities a light beam characterized by
a proper shape, dimension, and phase can resonate. The beam that is produced at
the output of the laser source is very different for what concerns the main properties
of the mode, from the one that can resonate inside the Input Mode Cleaner Cavity
and, most important, inside the interferometer. In order to obtain the right light beam
two Mode Matching Telescopes are part of the Injection System: the first is installed
on the External Injection Bench and allows to manipulate the laser beam to make
it resonant in the Input Mode Cleaner Cavity, the second, the most important, is
installed on the Suspended Injection Bench and permits to transform the light beam
in order to make it resonant in the Fabry Perot Cavities. A similar system of telescopes
is present also on the Detection System, in order to collect the light beam at the output
of the interferometer and to steer it in the Output Mode Cleaner Cavity.
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Fig. 5.23 Advanced Virgo Input Mode Matching Telescope scheme: Input waist = 2.6 mm, Output
waist = 49 mm

5.8.1 Optical Telescope

A telescope is an optical system that collects a light beam coming from a source,
transforms it, and produces an image of it. The optical telescopes can be classified
on the basis of the optical components that they use to manipulate the input light
beam [21]. In particular, there are two main classes of telescopes: the refractive ones,
which exploit the refraction of a system of lenses and the reflective ones, which use
the reflection of a system of mirrors. There are also some mixed schemes made by
both mirrors and lenses. For example the catadioptric telescopes exploit both the
reflection and the refraction of the light.

In the Advanced Virgo Input Optics System, the Mode Matching Telescope that
has to steer the beam in the Input Mode Cleaner Cavity is reflective. It is composed
of four parabolic mirrors characterized by different radii of curvature. It manipulates
the laser beam in order to obtain the proper one at the input of the Input Mode Cleaner
Cavity (waist of the cavity, whose size is 5.17 mm, located on the input/output flat
mirrors).

The most critical telescope is the one installed on the Suspended Injection bench,
which recovers the light from the Faraday Isolator, transforms it, and provides the
right beam for the Fabry Perot Cavities. It is a catadioptric telescope composed of two
parabolic mirrors and one meniscus diverging lens in combination with the Power
Recycling Mirror, whose input face is characterized by the proper radius of curvature,
as shown in Fig. 5.23. The great advantage of this configuration is its compactness,
mandatory due to the lack of room on the bench.

This telescope is the most critical one, because the requirements are very stringent.
In fact, it has to provide a mode matching greater than 99 %, a very low noise coming
from the diffused and back-reflected light, very small aberrations, and a magnification
sufficient to separate the secondary beams. Moreover, it is characterized by quite
small dimensions because of the space constraints on the Injection Suspended Bench.
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Fig. 5.24 Simple afocal
system

The two parabolic mirrors form an afocal off axis parabolic telescope, which
increases the beam size by a factor of 8.5 (i.e., from 2.6 to 22 mm). An example of
a general simple afocal system is shown in Fig. 5.24.

It is an optical system that produces no net convergence or divergence of the
input beam. In practice, it is a system without a focus, or better, characterized by an
infinite effective focal lens. This kind of system can be implemented with a pair of
optical elements where the distance between the element is equal to the sum of the
focal lengths of each element. An important property of these systems is that it does
not alter the divergence of a collimated beam, while altering the width of it, i.e., it
introduces a magnification on the beam.

The diverging lens is used in combination with the Power Recycling mirror to
match the beam to the interferometer, where the input beam waist has to be 49 mm.
The meniscus shape of the diverging lens has been optimized in order to compensate
the spherical aberrations introduced by the recycling mirror.

The Mode Matching Telescope can introduce a noise due to the diffused light
created by imperfection on the surfaces of all the components, which can spoil the
interferometer sensitivity. Moreover, also the noise coming from the back reflection of
the faces of the meniscus lens can limit the sensitivity. Therefore, all the specifications
on the roughness and radii of curvature of the optics elements of the telescope have
been made in order to have a maximum noise, even in the worst case, due to scattered
and back-reflected light that will not affect the interferometer sensitivity.

5.9 Future Improvements

In the future the Input Optics System could be upgraded by adding some other
subsystems or adopting new technological solutions. In particular, two main upgrades
that could improve the performance of the system, are under evaluation. The first
one is a subsystem, called Input Beam Monitoring System (IBMS) that permits to
monitor the laser beam properties in several points of the injection system [22]. The
second one is a new technique, called Thermally Deformable Mirror (TDM), that
could correct the thermal lensing effects for example in the Input Mode Cleaner
Cavity or in the Faraday Isolator [23].



146 M. Tacca

Fig. 5.25 Input Beam Moni-
toring System Scheme

5.9.1 Input Beam Monitoring System

The input beam monitoring system is used to monitor the laser beam properties in
several points of the INJ system. The beam monitoring system will measure the
intensity distribution and wavefront shape for the different fields of the beam at
different points of the Injection System. It is important because it could permit to
have a tool that can be quickly and easily used to assess the beam quality at all stages
of the Input Optics System. Moreover, it should monitor the residual thermal effects
and provide the error signals for tuning and acting compensation systems.

The Input Beam Monitoring System should assess the beam in particular points
of the Injection System, specifically at the output of the External Injection Bench, at
the output of the Input Mode Cleaner Cavity, at the input of the interferometer, and
in reflection of the interferometer, as shown in Fig. 5.25.

The check of the beam at the output of the External Injection Bench is important
because it permits to measure the thermal effects on it and to ensure the right quality
of the beam that is entering in the Input Mode Cleaner Cavity. At the output of the
IMC, it is important to verify the thermal effects of the cavity and to provide an
error signal for a possible active compensation. At the input of the interferometer the
thermal effects in the Faraday Isolator and the quality of the beam are checked. In
reflection of the interferometer the thermal effects in it are measured. To perform all
the relevant measurements, a single beam is shared among all the installed devices.
Due to its conception, the Input Beam Monitoring System should be considered like
a “black box” that is installed in the Input Optics System, with a single input beam
that is injected in the system and it will be automatically adjusted in terms of power,
alignment and size for all the receiving devices. A full measurement of the intensity
and the relative phase of the beam is needed. In particular, the aim is to detect the
intensity and the phase distribution for the global beam and for each field separately.

In order to make all the foreseen measurements, five diagnostic tools will be
installed in this system: two CCD cameras (one put in the Near Field and the other in
the Far Field), a wavefront sensor (WFS) [24], a Scanning Fabry–Perot Interferometer
(SFPI), and a Phase Camera (PC) [25]. Two CCD cameras are exploited to acquire
high-resolution intensity images both in the Near Field and in the Far Field. These
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Fig. 5.26 Input Beam Moni-
toring System prototype

images are useful to know the distribution, the position, the size, and the divergence
of the global input beam. Therefore, an imaging device with a sufficient resolution,
a sufficient frame ratio of acquisition, and a sufficient active area to collect the
entire beam has to be used and the CCD cameras have been chosen as sensors for
these purposes. A multilateral shearing interferometer is used as wavefront sensor
to acquire a global intensity and wavefront map of the beam: it splits the beam into
several replicas that will interfere by overlapping after translation, magnification, or
rotation. The interferogram is acquired by a CCD camera in order to be analyzed.
To complete the analysis the intensity and phase distribution for each field of the
input beam, composed of a carrier and two sidebands, have to be acquired. The
evaluation of the relative power of each field is performed by a Scanning Fabry
Perot Interferometer. It is based on the Fabry–Perot etalon principle: an incident
beam is either reflected or transmitted by two successive reflective surfaces that are
separated by free space and form a resonant cavity. One part of the incident light
is transmitted and the other part is reflected, creating multiple reflections between
surfaces, therefore the light interferes (both in a constructive and in a destructive
way). In the case of constructive interference, the light is transmitted at the output of
the device. In order to separately measure the different fields of the incident beam,
a Phase Camera is adopted. It would be the ideal device to accurately determine
the amplitude and phase distribution for each field of the input beam. In fact, it is a
high-resolution wavefront sensor that can measure the complete spatial profile and
phase of any frequency component of a light beam containing multiple frequencies.
It is based on the heterodyne technique to measure the beat between the beam under
test and a reference one that spatially overlaps it. The interference is acquired by two
photodiodes, which permit to measure the amplitude and the phase of the carrier and
the sidebands separately.

A prototype of the Input Beam Monitoring System is shown in Fig. 5.26.
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Fig. 5.27 Thermally
Deformable Mirror work-
ing principle

5.9.2 Thermally Deformable Mirrors

As described in the previous sections, the Input Optics System is affected by thermal
effects and nonoptimal matching in the cavities. Thermally induced beam-wavefront
distortions can be compensated using deformable mirrors driven by thermal actua-
tors. A new device, called Thermally Deformable Mirror [23], in which the heating
actuators are placed in direct contact with the reflecting surface of the mirrors, is
under test in order to be installed in the Injection System to correct, for example, the
thermal lensing effects in the Input Mode Cleaner Cavity or in the Faraday Isolator.

The working principle of the TDM is shown in Fig. 5.27: an incident beam passes
through the antireflective (AR) surface of the mirror and is reflected back by the
high-reflective (HR)-coated surface. An array of micro-resistors is placed directly in
contact with the HR surface and allows to locally control its temperature. By heating
the surface, it is possible to change its shape and glass refractive index inducing a
variation in the optical path length (OPL) of the beam, which results in a modification
of the reflected wavefront. The variation of the optical path length is:

OPL =
⎥

C

⎧
ΔT(s)

⎠
dn

dT
+ αT (1 + ν)n

]
+ n

⎨
ds (5.47)

where ΔT(s) is the local increase in temperature as a function of distance s along the
path C, ν is the Poisson ratio, n is the glass refractive index, dn/dT is the thermo-optic
coefficient, and αT is the coefficient of thermal expansion.

This system, exploited in the correction of the thermal effects, has some important
advantages: it is simple and cheap, it does not introduce any extra noise, and it is
ultra-high vacuum compatible. A prototype has been realized by Stevenage Circuits
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Fig. 5.28 Thermally
Deformable Mirror ptoto-
type

Ltd. (Stevenage, UK) and is under test [26]: it is composed of a micro array of 61
independently controlled actuators (0.9 × 0.9 mm2 each). Figure 5.28 shows the
prototype installed on a test mirror.

This prototype has been design to correct the aberrations of a beam with a waist of
2.6 mm. The phase modifications induced on the beam by the TDM are measured with
a wavefront sensor. Each actuator subjected to a constant current produces a phase
deformation that is the individual spatial response of this actuator. Figure 5.29 shows
examples of this response for three different actuators. The difference in amplitude
responses among the actuators is mainly due to the difference in the resistors’ values.

It can be seen that the wavefront phase modification is in good correlation with the
switched on actuator. Therefore, the first tests are satisfying and this kind of device,
after the proper development, could be installed in the future on the Input Optics
System of the interferometer. Moreover, it could also open a way to introduce more
adaptive optics devices in the correction of various aberrations in the next generations
of gravitational waves interferometers.
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Fig. 5.29 Thermally Deformable Mirror ptototype results: on the left scheme of three switched on
actuators (one at a time), on the right the obtained responses

5.10 Advanced Ligo Input Optics

In this section a short description of the Advanced Ligo Input Optics System is
presented [27]. Its role is the same as in Advanced Virgo: it has to transform the
laser beam in order to guarantee that it satisfies all the requirements at the input of
the interferometer. But there are two main differences in the design of Advanced
Ligo with respect to that of Advanced Virgo: the source system exploits a solid-state
laser instead of a rod fiber one and the recycling cavities are stable instead of mar-
ginally stable. The Input Optics System is the connection between the laser source
and the power recycling cavity, therefore there are some differences between its
implementation in Advanced Virgo and in Advanced Ligo. As in Advanced Virgo,
also the Advanced Ligo Input Optics System is divided into two main parts: one
in air and the other under vacuum. In particular, the Electro-Optic Modulation Sys-
tem, the Input Mode Cleaner mode matching telescope, the Input Power Control Sys-
tem, the Beam Pointing Control System, and a Beam Analysis System are installed
on the in-air bench. Therefore, the main tasks and, in consequence, the main com-
ponents of the in-air optics system are the same as in Advanced Virgo. On the other
hand, the differences between the Input Optics Systems of the two interferometer are
mainly on the in-vacuum bench. In fact, some systems as the Input Mode Cleaner and
the Isolation System are almost equal, but some other systems, as the Mode Matching
System or the Alignment System to the Power Recycling Cavity are different. In fact,
the Power Recycling Cavity in Advanced Ligo is formed by three mirrors instead of
one and systems to align and to match the beam to this cavity are mandatory. These
systems are installed on the in-vacuum bench of the Input Optics System. Another
difference is that the Reference Cavity System in aLigo is not installed in the Input
Optics System but is part of the Laser System.

Some parameters and some requirements among the devices of the two interfer-
ometers can be different, such as the values of the modulation frequencies required
to the electro-optic crystals, but the main tasks are almost the same.



5 Input Optics System 151

References

1. G.M. Harry, [LIGO Scientific Collaboration], Advanced LIGO: The next generation of gravi-
tational wave detectors. Class. Quant. Grav. 27, 084006 (2010)

2. Virgo Collaboration, Advanced Virgo Technical Design Report, VIR0128A12, https://tds.ego-
gw.it/ql/?c=8940

3. K. Kuroda, [LCGT Collaboration], Large-scale gravitational wave telescope (LCGT). Int. J.
Mod. Phys. D 20, 1755 (2011)

4. A. Carenco, Composants actifs, Collection SFO 27, (1992)
5. A. Yariv, Quantum Electronics (Wiley, New York ,1989)
6. E. D. Black, An introduction to Pound Drever Hall laser frequency stabilization. Am. J. Phys.

69, 79–87 (2001)
7. J.D. Mansell et al., Evaluating the effect of transmissive optic thermal lensing on laser beam

quality using a Shack-Hartmann wavefront sensor. Appl. Opt. 40, 366–374 (2001)
8. B. Canuel et al., High power input optics R&D: Final report, Virgo internal document VIR-

0296A-10 (2010)
9. E.A. Khazanov et al., AdV Faraday isolator design study, Virgo internal document VIR-0245A-

10 (2010)
10. E.A. Khazanov et al., AdV INJ: TheFaraday isolator prototyper for AdV Description and

assembling procedure, Virgo internal document VIR-0283A-10 (2010)
11. B. Canuel, E. Genin, AdV INJ: Faraday isolator prototype characterization, Virgo internal

document VIR-0455A-11 (2011)
12. Virgo Collaboration, In-vacuum optical isolation changes by heating in a Faraday isolator Appl.

Opt. 47, 5853–5861 (2008)
13. Virgo Collaboration, In-vacuum optical isolation remote tuning. Appl. Opt. 49, 4780 (2010)
14. S. Mosca et al., Photon self-induced spin-to-orbital conversion in a terbium-gallium-garnet

crystal at high laser power. Phys. Rev. A 82, 043806 (2010)
15. E.A. Khazanov et al., Suppression of self-induced depolarization of high-power laser radiation

in glass-based Faraday isolators, JOSA B 17, 99–102 (2000)
16. B. Canuel et al., Advanced Virgo: Inj subsystem Preliminary Design study, Virgo internal

document VIR-023A-09 (2009)
17. J.Y. Vinet, On special optical modes and thermal issues in advanced gravitational wave inter-

ferometric detectors. Living Rev. Relativity 12, 5 (2009)
18. E. Genin et al., Virgo Input Mode Cleaner: Optical characterization, Virgo internal document

VIR-0232A-10 (2010)
19. G. Muller, Beam jitter coupling in advanced LIGO. Opt. Exp. 13, 7118–7132 (2005)
20. S. Donati, Electro-Optical Instrumentation: Sensing and Measuring with Lasers (Prentice Hall,

USA, 2004)
21. D.J. Schroeder, Astronomical Optics (Academic Press, New York, 2000)
22. M. Kasprzack et al., Laser Beam Characterization System Development and Wavefront Cor-

rection System Prototype Validation for Advanced Virgo. M.Sc Thesis, 2011
23. B. Canuel et al., Wavefront aberration compensation with a thermally deformable mirror. Class.

Quant. Grav. 27, 084006 (2010)
24. S. Velghe, Wave-front reconstruction from multidirectional phase derivatives generated by

multilateral shearing interferometers. Opt. Lett. 30, 245–247 (2005)
25. K. Goda, Frequency-resolving spatiotemporal wave-front sensor. Opt. Lett. 29, 1452–1454

(2004)
26. M. Kasprzack et al., Performance of a thermally deformable mirror for correction of low order

aberrations in laser beams. Appl. Opt. 52, 2909–2916 (2013)
27. D. Feldbaum et al., Advanced LIGO Input Optics —status update, LIGO internal document

G1200911–v2 (2012)

https://tds.ego-gw.it/ql/?c=8940
https://tds.ego-gw.it/ql/?c=8940


Chapter 6
Readout, Sensing, and Control

Gabriele Vajente

Abstract Suspending the mirrors is one of the most crucial tasks in gravitational
wave interferometer technology. The performance of the suspensions must provide
the required attenuation of seismic noise and reduction of thermal noise, two fun-
damental limits to the sensitivity of any gravitational wave detector. Moreover, the
suspension system must be equipped with sensors and actuators which are used to
actively control some relevant degrees of freedom, so to be able to keep the interfer-
ometer at its working point (i.e., “locked”). In the first part of this chapter we deal
with the basic principles behind the super attenuator chains developed in Virgo to
reduce the seismic noise. In the second part, we illustrate the techniques to suspend
the mirror reducing the thermal noise in the detection bandwidth, according to the
theory illustrated in Chap. 8.

6.1 Foundations of the Problem

In the previous chapters we learned how to build an interferometric gravitational
wave detector with high sensitivity. Advanced GW detectors will be dual recycled
Michelson interferometers with Fabry–Perot cavities in the arms. To take full advan-
tage of the presence of all the resonant cavities we must maintain their length close to
the correct working position. This is a two-step problem: we must first find a way to
measure the microscopic deviation of all lengths from the resonance point and then
find a way to correct them. Typically, the accuracy needed ranges from 10−15 m for
the most critical arm differential length motion to some 10−12 for the other degrees
of freedom.
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Moreover, we showed that an interferometer is a good transducer, in the sense
that it is able to convert gravitational waves into phase changes in the carrier field at
the anti-symmetric port. We however completely neglected the problem of how to
measure this phase variation, or in other words how to convert them into some kind
of electrical signal that can be measured, digitized, and stored for the analysis.

6.2 How to Measure the Laser Field Phase Change

Let us consider the following situation: our precious GW signal is encoded in the
phase η(t) of the laser carrier field at the dark port:

Ω(t) = Ae2π iεt+iη(t) (6.1)

where ε is the laser optical frequency (ε ∼ 3 × 1014 Hz). When this field is detected
at a photo-diode, only the power is accessible and our phase signal is lost:

P(t) = |Ω(t)| = A2 (6.2)

We must therefore do something to our field before sending it to the photo-diode in
order to be able to extract the phase information. One possible strategy was already
discussed in Chap. 3, when describing the Michelson configuration.

6.2.1 Heterodyne Detection

One of the most used techniques is the optical heterodyne. Referring to Fig. 6.1, a
laser source is used to probe an optical system. The laser field acquires a dephasing
when traveling through the system

ΩSYS = Ae2π iεt+iη(t) (6.3)

To detect this phase we take a pick-off of the input beam, before it enters the system.
This beam is then sent to an acousto-optical modulator (AOM)1 which is driven by
a sinusoidal signal at a heterodyne frequency fH . The AOM generates a transmitted
beam which has a frequency shifted by fH :

ΩAOM = Be2π i(ε+ fH )t (6.4)

This beam is then recombined with the one transmitted by the optical system and
finally probed by the photo-diode

1 See Chap. 5 for more details on AOMs.

http://dx.doi.org/10.1007/978-3-319-03792-9_3
http://dx.doi.org/10.1007/978-3-319-03792-9_5
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Fig. 6.1 Optical heterodyne scheme for measuring the phase the laser field has acquired inside an
optical system

ΩPD = ΩSYS + ΩAOM (6.5)

P(t) = |ΩSYS + ΩAOM|2 (6.6)

= A2 + B2 + AB
[
e−iη(t)e2iπ fH t + eiη(t)e−2iπ fH t

]
(6.7)

= A2 + B2 + 2AB cos (2π fH t + η(t)) (6.8)

The mixing of the frequency shifted beam with the probe one creates a beat note at the
heterodyne frequency fH which is visible in the power detected by the photo-diode.
The phase of this beat note is exactly the phase acquired by the laser beam through
the optical system. Since this signal is at a frequency fH , which is typically of the
order of few MHz, it is possible to precisely measure its phase. The simplest approach
would be to acquire digitally the signal with fast converters, running at a frequency
larger than fH and then fit the sinusoidal motion. This approach is however rather
new, since in the past such fast converters and digital system were not available. The
standard method, still used in many cases, is to multiply the output of the photo-diode
signal with synthesized sinusoid and cosinusoid again at fH :

c(t) = P(t) cos (2π fH t) =
(

A2 + B2
)

cos (2π fH t)

+ AB [cos (4π fH t) + cos η] (6.9)

s(t) = P(t) sin (2π fH t) =
(

A2 + B2
)

sin (2π fH t)

+ AB [sin (4π fH t) − sin η] (6.10)

These signals contain components at high frequencies ( fH and 2 fH ) and at low
frequency. The latter can be separated with a proper low pass filter. These low fre-
quency components are the sine and cosine of the dephasing we are interested in and
therefore can be used to reconstruct η.
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The heterodyne method is quite simple, but however it has some disadvantages.
First of all, we need to properly recombine two beams at the photo-diode. Moreover,
so far we considered that only the probe beam accumulates a dephasing, but this is not
true in the real world. Any variable dephasing accumulated by the beam going through
the AOM will show up in the output signal and it will not be possible to distinguish
it from η. Therefore, this system is only capable of measuring the phase difference
of the probe beam with respect to the reference one. This kind of measurement is not
what we need, for example, to control the length of a Fabry–Perot cavity: in this case
we need to measure the relative distance variation and not the absolute positions.

6.2.2 Pound-Drever-Hall Technique

The base of all the methods used to measure the length variations in a GW interfer-
ometer is the Pound-Drever-Hall technique (PDH) [1, 2]. This technique was first
developed with the goal of stabilizing the laser frequency on reference cavities.

Referring to Fig. 6.2, the input laser beam is passing through an electro-optical
modulator (EOM).2 This typically consists of a Pockels cell, which is a crystal with
an optical length that can be changed by driving an applied voltage [3]. The EOM in
our application is driven with a radio-frequency sinusoidal signal which is converted
in a variation of the phase of the transmitted beam:

Ω = Ω0ei(Δt+m cos ρt) (6.11)

where Δ corresponds to the laser optical frequency and ρ to the radio-frequency
modulation. The amplitude of the phase modulation m is called the modulation
depth or index. The exponential can be expanded in terms of Bessel functions [4]

Ω = Ω0eiΔt
[

J0(m) + i J1(m)e−iρt + i J1(m)eiρt
]

+ · · · (6.12)

We have therefore found a description of the modulated beam in terms of radio-
frequency sidebands around the main carrier field, space by the modulation frequency.
The dots in the above equation are there just to remind us that higher order sidebands
are also generated, spaced by multiples of the modulation frequencies. These high-
order sidebands have however a much smaller amplitude and are often neglected,
since the Bessel functions behave, for small m as Jn(m) ⊗ mn [5]. Just for reference,
the low m approximation of the first Bessel functions are

J0(m) ∼ 1 − m2

4
(6.13)

J1(m) ∼ m

2
(6.14)

2 See Chap. 5 for more details on EOMs.

http://dx.doi.org/10.1007/978-3-319-03792-9_5
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Fig. 6.2 Scheme of the Pound-Drever-Hall technique to measure the length of a Fabry–Perot cavity

Finally, if assuming m to be small and substituting these two approximations into
Eq. 6.12, we found the small m expansion of Eq. 6.11.

Equation 6.12 describes the beam impinging on the Fabry–Perot resonant cavity
as composed of three independent fields. The basic idea of the PDH technique is that
if we choose properly the modulation frequency we can ensure that the sidebands
are not resonant inside the cavity when the carrier is. Recalling what we learned
in the previous chapter, when a field is resonant inside the cavity, the phase of its
reflection changes very fast as a function of the cavity length. Instead, when a field
is not resonant, its phase is roughly constant even when the cavity length varies
slightly around the working point. We can therefore use the sidebands as static
phase references for the measurement of the carrier phase. In this sense they play
more or less the same role of the reference beam we introduced in the heterodyne
configuration.

Let us assume that the cavity is tuned at resonance and allow a displacement z
from this position. For the moment we are not requiring z to be small. As we learned
in the previous chapter, the reflectivity of the Fabry–Perot cavity for the carrier field
is given as

R0 = i
ri − ree−2ikz

1 − riree−2ikz
(6.15)

where we neglected the losses inside the arm. The reflectivity for the sidebands is
slightly different because of their frequency shift which introduces an additional
dephasing (with respect to the carrier) in propagation along the arm length given as

ηsb = ±2
ρ

c
L (6.16)

There should also be a term proportional to ρz but this is for sure negligible, since
z is of the order of 1 wavelength and the modulation frequency is typically of a few
MHz. We can then write the Fabry–Perot arm reflectivity for the sidebands as
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R± = i
ri − ree−2ikz∞2i ρ

c L

1 − riree−2ikz∞2i ρ
c L

(6.17)

Since we want to use the sidebands as phase reference, we want them anti-resonant
inside the cavity when the carrier is resonant. This means that the additional dephasing
should be π . This gives us a relation between the cavity length and the modulation
frequency

fmod =
(

N + 1

2

)
c

2L
(6.18)

which means that the modulation frequency must be a semi-integer multiple of the
free spectral range of the cavity. With this choice the reflectivity simplifies to

R± = i
ri + ree−2ikz

1 + riree−2ikz
(6.19)

As shown in Fig. 6.2 we use an optical isolator to send the reflected beam to the
photo-diode which as usual detects the total power:

ΩR = Ω0eiρt
[

J0 R0 + i J1 R−e−iρt + i J1 R+eiρt
]

(6.20)

P = |Ω0|2
[

J 2
0 |R0|2 + J 2

1 |R+|2 + J 2
1 |R−|2

+ ie−iρt J0 J1
(−R0 R⊥+ + R⊥

0 R−
) − ieiρt J0 J1

(−R⊥
0 R+ + R0 R⊥−

)

+ e−2iρt J 2
1 R− R⊥+ + e2iρt J 2

1 R⊥− R+
]

(6.21)

The terms in the first row of the power equation give the low frequency contribution
to the photo-diode signal, which corresponds to the static power in reflection of
the cavity. The second row instead contains a contribution which oscillates at the
modulation frequency, while the last one at twice the modulation frequency. The
situation is therefore quite similar to the heterodyne case. We want to extract the beat
note at the modulation frequency. For this reason we again multiply the output of the
photo-diode with a sinusoidal signal at the modulation frequency

s(t) = 1

2

(
eiρt+iη + e−iρt−iη

)
(6.22)

Here we added the possibility of selecting the demodulation phase of the signal. This
is equivalent to multiply with both a sine and a cosine and then combine the results.

The photo-diode output signal is therefore multiplied with the local oscillator
signal defined above. The result will contain several components, each one oscillating
at different frequencies: quasi static, ρ , 2ρ and 3ρ . However, we are interested only
in the quasi static component and therefore we apply a low pass filter to the result.
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The surviving terms give us the demodulated signal:

d = Pin
J0 J1

2

[
i
(
R⊥

0 R− − R0 R⊥+
)

eiη + c.c.
]

(6.23)

= Pin J0 J1 R
[
i
(
R⊥

0 R− − R0 R⊥+
)

eiη
]

(6.24)

where in the last equation we are taking the real part of the result. The argument in
square brackets of the last equation is a complex number and the demodulation phase
η just rotates it in the complex plane. However, we do not have an infinite number
of independent components but only two, corresponding to the real and imaginary
part of the complex number. Therefore, we can consider the two cases η = 0 and
η = π/2 and construct the in-phase and quadrature signals:

p = Pin J0 J1 I
(
R⊥

0 R− − R0 R⊥+
)

(6.25)

q = Pin J0 J1 R
(
R⊥

0 R− − R0 R⊥+
)

(6.26)

We can use Eqs. 6.15 and 6.19 to substitute into the previous equations to find

p = −4Pin J0 J1 re(1 + r2
e )ri t

2
i

sin 2kz

1 + r4
i r4

e − 2r2
i r2

e cos 4kz
(6.27)

q = 0 (6.28)

The behavior of the in-phase signal as a function of the cavity displacement from
resonance is shown in Fig. 6.3. The interesting feature is that the signal shows a
linear dependence on the cavity displacement when close enough to the resonance.
One can indeed show that the width of the linear region is proportional to the cavity
line-width. The slope can be computed with the derivative of Eq. 6.27 in the origin.
If we assume the cavity finesse to be large with respect to unity we finally obtain

dp

dz
= J0(m)J1(m)Pin

2F

π

4π

ω
(6.29)

This tells us that the larger the finesse is, the more sensitive our signal is to the
cavity length variation. This however comes at the price of a reduced linear range
of the error signal. The signal is also proportional to the input power, while the
shot noise increases only with the square root of the power. We can therefore gain
in signal-to-noise ratio with the square root of the power we are injecting into the
cavity.

Finally, a clear advantage of the PDH technique with respect to the simple hetero-
dyne one is that the signal is insensitive to any dephasing happening outside of the
cavity, i.e., along the path from the laser to the input mirror and from the input mirror
to the photo-diode. Indeed, any variation of these optical lengths induces dephasings
which are common to the carrier and the sideband fields and therefore cancel out in
the detection and demodulation process.
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Fig. 6.3 Pound-Drever-Hall signal in reflection of a Fabry–Perot cavity with Advanced Virgo
parameters. The input power is 1 W

Fig. 6.4 Scheme of the frontal modulation technique applied to the control of a power-recycled
interferometer

6.2.3 Frontal Modulation

The Pound-Drever-Hall technique is quite simple when applied to a single resonant
cavity. However, it is possible to extend it to the control of a full interferometer
for GW detection with the frontal modulation approach, see Fig. 6.4. Here the word
frontal refers to the fact that the laser beam is phase modulated with an EOM before
entering the main optical system to control.

The laser beam is modulated at a radio-frequency fmod which is chosen as before
in order to be anti-resonant inside the arm Fabry–Perot cavities. However, now we
have a power-recycling cavity which must be maintained resonant for the carrier
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field. The point here is that we must make also the sidebands resonant inside the
PRC, otherwise they will be almost completely reflected by the interferometer.

The two sidebands will undergo an additional dephasing with respect to the carrier
when propagating over one entire round-trip inside the PRC. This dephasing is made
of two contributions. The first is due to their anti-resonance inside the arms, which
adds a π in reflection of the cavities. The second contribution comes clearly from
the propagation over twice the PRC length. In total

ηSB = π + 2
2π fmod

c
lPRC (6.30)

To have the sidebands resonant, we must ensure that this phase is a multiple of 2π :

π + 2
2π fmod

c
lPRC = 2Nπ (6.31)

which turns out to be
fmod = (2N − 1)

c

4lPRC
(6.32)

If the power recycling cavity has a length of about 12 m as in Advanced Virgo, the
modulation frequency must be an odd multiple of about 6.25 MHz. This condition
must hold together with Eq. 6.18 that determines the anti-resonance inside the arm
cavities. These two requirements together imply a relationship between the arm and
the power recycling cavity lengths.

6.2.4 The Schnupp Asymmetry

We already explained in the previous chapter that in this configuration the GW signals
can be read out with the carrier field at the anti-symmetric port. However, since the
Michelson interferometer is tuned in order to be in the dark fringe condition, it is
not possible to simply use the power read by a photo-diode to read the GW signal.
The frontal modulation technique can be used for this purpose, in a way quite similar
to the Pound-Drever-Hall technique for a single resonant cavity. We indeed need to
tune the interferometer in such a way as to have some reference field at the dark port,
in order to be able to read the beat note with the carrier and extract the GW signal
with a demodulation technique.

The simplest way to have some sideband fields leaking through the antisymmetric
port is to introduce a macroscopic difference between the two short Michelson arm:
in other words we make the two distances between beam-splitter and input mirrors
slightly different. This will have no impact on the carrier field, since only the micro-
scopic length difference is relevant to ensure the destructive interference. The story
is different for the two sidebands. When recombining at the beam-splitter, the side-
bands that traveled nort will have accumulated a different phase with respect to those
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traveling west, due to the different distances:

νη = 2
ρ

c
(lN − lW ) = 2

ρ

c
νl (6.33)

where νl is called the Schnupp asymmetry. This phase must be inserted in the
equation that gives the field transmitted to the anti-symmetric port. The net result is
that the Michelson interferometer is no more perfectly reflective for the sidebands
entering from the symmetric port, but transmits a fraction to the anti-symmetric port

Rsb = ir FP cos

(
ρνl

c

)
(6.34)

Tsb = ±ir FP sin

(
ρνl

c

)
(6.35)

If we consider a modulation frequency of 6.25 MHz as was done in Virgo and Virgo+
and a Schnupp asymmetry of 0.8 m we obtain that 1 % of the sidebands that circulate
inside the power recycling cavity are transmitted to the anti-symmetric port, with
equal and opposite amplitudes. Without entering too much into detailed computa-
tions, the antisymmetric port field will be composed of the two sidebands and a
carrier field which is directly proportional to the differential motion of the two arm
lengths. The photo-diode will detect a power which contains a beat note coming
from the interference of the carrier and the two sideband fields. The amplitude of
this beat note is proportional to the differential displacement and can be extracted
using a demodulation technique as was done in the PDH scheme. It is clear that the
optical gain of the system is proportional to the amplitude of the sideband fields, or
in other words to the square root of the sideband power leaking to the antisymmetric
port.

Moreover, the average power reaching the dark port will be dominated by the
sidebands, assuming that the Schnupp asymmetry is large enough and that the contrast
defect of the interferometer is small enough. This means that the shot noise which will
limit the photo-diode output signal will have an amplitude proportional to the square
root of the sideband power reaching the antisymmetric port. Putting all together, we
see that in this configuration the signal-to-noise ratio is independent of the sideband
amplitude.

6.2.5 Phase Noise

The frontal modulation technique was used to read-out the GW signal in all first-
generation interferometers and it worked quite well. However, it is largely based
on the goodness of the sideband fields: if these are for some reason noisy, if their
transverse shape is bad, or if their amplitudes are largely unbalanced we might
have some trouble. The typical examples are the phase and amplitude noises: the
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Fig. 6.5 Coupling mecha-
nism of phase noise into the
interferometer output signal

Q

P

sinusoidal signal which is used both for the generation of the sidebands and for
the demodulation typically contains some noise affecting both the amplitude and the
phase. This noise can couple to the interferometer output signal. The mechanism
is explained in Fig. 6.5. We can represent the output signal as a vector in a plane,
where the two components are given by the in-phase and quadrature signals. If the
demodulation phase changes, the vector rotates on this plane. The effect is clearly
the same if the phase of the modulation signal changes. Let us assume that our signal
of interest is in the in-phase (P) quadrature, which is typically zero because we are
(magically) maintaining the interferometer close to the correct resonance condition.
Let us assume however that some defects (typically unbalance of the two sideband
amplitudes) create a large signal in the orthogonal (Q) quadrature. Phase noise will
make the Q vector jitter around the vertical position, thus contributing with nonzero
projection on the P signal:

ñ P = 〈Q〉 ñη (6.36)

where ñη is the phase noise of the modulation/demodulation sinusoid, 〈Q〉 is the
average of the quadrature signal and ñ P is the noise induced in the main in-phase
signal. A similar mechanism can couple amplitude noise in the in-phase quadrature,
depending on its own mean value.

Another complication enters the game when the signal recycling cavity is added.
This cavity can be detuned for the carrier, resulting in a detuning also for the side-
bands. These could become very unbalanced at the exit of the SRC, resulting in a
large coupling of phase noise in the main output signal. Even with the present state
of the art oscillators, this would be a source of limiting noise in the sensitivity of
Advanced Detectors.

6.2.6 Homodyne Detection

For the reasons explained in the previous section, among others, a different signal
read-out strategy has been chosen for all the Advanced Detectors. The idea is quite
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Fig. 6.6 Dependence of the
antisymmetric port power on
the differential tuning of the
interferometer

simple: we add a static offset to the differential length of the arms, or in other words,
we make one of the two cavities slightly shorter and the other slightly longer. The
offset is very small in order to maintain the two cavities well inside their resonance
width. This offset translates in a small difference in the static phase of the two beams
recombining at the beam splitter: the perfect destructive interference is spoiled and
a small fraction of the carrier field leaks to the antisymmetric port:

ΩASY = ΩDC + x0

[
G(Δ)eiΔt + G(−Δ)e−iΔt

]
(6.37)

Here, the first term is the static contribution coming from the offset and the second
one is the time-varying one coming from the GW-induced differential motion x0
multiplied by the interferometer gain G(Δ). The photo-diode will as usual sense the
power, which this time contains a term directly proportional to the GW signal times
the static field:

P(t) = · · · + [
Ω⊥

DCG(Δ) + ΩDCG⊥(−Δ)
]

x0eiΔt + c.c. + · · · (6.38)

In this homodyne read-out, often called also DC read-out, scheme the static carrier
field plays the role of the phase reference against whic the carrier GW signal beats
to provide a readable output.

Another simple way to understand the working principle of the DC read-out
approach is to look at how the carrier power reaching the antisymmetric port depends
on the differential detuning of the arms. As shown in Fig. 6.6, for small offsets the
dependence is quadratic. If the offset is zero, the slope of the power curve is also zero
and therefore any fluctuation of the differential degree of freedom will not contribute
to a variation of the power at the antisymmetric port. However, if we introduce a
small offset, the slope gets different from zero and therefore we linearly convert
differential signals into power signals. The gain is directly proportional to the offset
or, which is the same thing, directly proportional to the square root of the static power
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at the antisymmetric port. As happened in the frontal modulation scheme, shot noise
is also proportional to the square root of the power, so the signal-to-noise ratio is
independent of the offset.

This approach to the extraction of the GW signal is pretty simple, but as usual
in the real world it does not come without complications. First of all, any spurious
field reaching the photo-diode will spoil the sensitivity, since it will increase the total
power (and the shot noise) without increasing the optical gain and thus the signal.
The sidebands are a first example of this spurious field. Indeed, it is not possible to
switch them off since, as we will see in a moment, they are still needed to control all
the other lengths of the interferometer. Therefore, we need a way to filter them out
before the photo-diode. The only way is to add at the output port an additional short
and high finesse cavity called the output mode cleaner. The line-width of this cavity
must be significantly smaller than the lowest modulation frequency. In this way only
the carrier field is transmitted.

Another difficulty introduced by the DC read-out scheme is the fact that arm
cavities are working slightly out of resonance. As we learned in the previous lecture,
this introduces strong radiation pressure effects. Since the two cavities are detuned
in different directions, one will remain optomechanically stable, while the other
will become unstable. The typical offsets foreseen for Advanced Detector is of the
order of 10 pm. Using this number in the radiation pressure equations obtained in the
previous chapter shows that the pendulum resonant frequency can be shifted as high
as 40 Hz.

6.3 Longitudinal Control of the Interferometer

In a dual recycled interferometer the distances between the reflecting surfaces of
the mirrors must be maintained fixed to the correct resonance conditions, which are
typically expressed in terms of suitable multiples of the laser wavelength.

Referring to the definition shown in Fig. 6.7 the following physical degrees of
freedom can be identified:

DARM = L N − LW (differential arm length) (6.39)

CARM = L N + LW

2
(average arm length) (6.40)

MICH = lN − lW (differential Michelson short arm length) (6.41)

PRCL = lP + lN + lW

2
(power recycling cavity length) (6.42)

SRCL = lS + lN + lW

2
(signal recycling cavity length) (6.43)

The role of the longitudinal control system is to measure the variation of all these
lengths with respect to the resonance position and to correct them. Let us first under-
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Fig. 6.7 Definition of lengths in a dual recycled interferometer. The black arrows indicate the probe
beam that are sensed with photo-diode to extract the signals needed for the longitudinal control of
the system

stand how we can measure the variation of these degrees of freedom. We already
explained the strategy used for DARM, which corresponds to the GW channel. This
degree of freedom is sensed using the power read by the antisymmetric port photo-
diode.

All the other degrees of freedom are typically called auxiliary and they are con-
trolled using the frontal modulation technique. The antisymmetric port beam is not
enough for all the degrees of freedom. For this reason other probe beams are extracted,
as indicated by the black arrows in Fig. 6.7: the reflection of the interferometer and
a pick-off of the beam circulating inside the power recycling cavity.

In a power recycled interferometer one modulation frequency is enough to con-
trol all the four degrees of freedom: CARM and MICH are sensed with the two
quadrature of the PRC pick-off, while PRCL is sensed with one of the quadratures
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in reflection of the interferometer. To control a dual recycled interferometer an addi-
tional modulation is added, to be able to separate the signal and the power recycling
cavities. The first modulation is chosen with a low frequency. This, together with a
small Schnupp asymmetry (10–20 cm), makes the first sideband poorly transmitted
to the antisymmetric port of the beam-splitter and thus almost insensitive to the SRC.
The second modulation is instead chosen with higher frequency, in order to be sig-
nificantly transmitted to the signal recycling cavity and therefore resonant therein.
The interferometer reflected beam, together with the PRC pick-off, are demodulated
at both frequencies, providing plenty of signals for the control of the interferometer.

6.3.1 The Problem of Lock Acquisition

All the optical signals that should be used for the interferometer control show behavior
similar to the Pound-Drever-Hall signal in reflection of a single resonant cavity. This
means that they are linearly proportional to a given d.o.f. displacement only in a
small region around the working point. The width of this region is determined by
the finesse of the corresponding cavity: DARM and CARM are linked with the arm
cavities, PRCL and SRCL, with the power and signal recycling finesses.

When the interferometer is not controlled, the mirrors are free to move. Their
typical low frequency peak to peak motion can span as much as one wavelength,
since the seismic isolation system is designed to attenuate the high frequency residual
motion but cannot do much for the very low frequency one. Here comes the problem
of lock acquisition: how can we bring the system from a complete uncontrolled state
to the final one, when all distances are tuned to the correct working point?

It is not possible to simply use the signals we identified before, since the linear
range is very small and the probability that all distances are simultaneously close to
the correct one is ridiculously small (something like 10−8).

The lock acquisition procedure of a gravitational wave interferometer is a complex
algorithm, which relies on different approaches depending on the detector. A detailed
explanation would be too long for this chapter. The interested reader can refer to [6]
for an introduction to the LIGO technique and to [7] for the Virgo one.

To briefly give an example, the Virgo lock acquisition procedure starts with a mis-
aligned power recycling mirror. In this way the beam reflected by it cannot recombine
with the main one. In this condition the power recycling cavity does not exist and
the two arm cavities are optically separated. They can be locked independently using
the PDH technique and looking at the peak in transmitted power at resonance as
a trigger. Once the two cavities are robustly controlled, the entire interferometer
behaves like a simple Michelson one and therefore the MICH degree of freedom can
be controlled by looking at the amount of power exiting through the antisymmetric
port. The interferometer is not locked at dark fringe yet, but instead at a gray fringe:
the interference condition at the beam-splitter is such that half the power is exiting
through the antisymmetric port and half is reflected back. At this stage the power
recycling mirror is realigned. However, the Michelson interferometer reflectivity is
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rather small due to the choice of fringe. The field mixing due the presence of the
PRC is not very large and the two arms can still be controlled independently. At this
point also the PR mirror is controlled using a demodulated signal coming from the
interferometer reflection. From this stage on all degrees of freedom are controlled,
even if not yet at the final working point, which is adiabatically reached by moving
the MICH degree of freedom to the dark fringe condition.

6.3.2 Laser Frequency Stabilization

So far we never considered the laser frequency ε as a variable in our system. Indeed,
in all the computations we did in the previous chapter, the dephasing acquired by a
field propagating over a distance L was written as

η = −kL = −2π

ω
L = −2π

εL

c
(6.44)

This equation shows that a variation of the dephasing can be obtained with a small
change of the length but also with a small change in the laser frequency. Indeed

δη = −2π

c
(δεL + εδL) (6.45)

This equation is telling us something quite obvious: we are using our laser beam to
measure length variations, therefore if the laser wavelength changes, our measure-
ment also changes. The implication of this equation is that any variation of the laser
frequency will be seen by our sensors as (almost [8]) equal to a length variation:

δε

ε
= δL

L
(6.46)

A free running laser like those used in GW detectors have a typical frequency noise

δε( f ) = 100

(
100 Hz

f

)
Hz/

√
Hz (6.47)

with a total RMS of many kHz, larger than the arm cavity free spectral range. Since
these frequency variation are quite fast, it is a good idea to stabilize them before
the interferometer, otherwise it would be impossible to acquire the lock of the arm
cavities. This is typically obtained by measuring the frequency variation with a
Pound-Drever-Hall technique in reflection of a small rigid reference cavity made of
a very low thermal expansion material.

In addition, when the entire interferometer is at resonance, the laser frequency
variation is equivalent to a change in the mean arm length (the CARM degree of
freedom). Therefore, the laser frequency is further stabilized on the mean length
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Fig. 6.8 Definition of pitch
and yaw rotations

of the arms, obtaining a remarkable residual fluctuation of a few mHz on a second
timescale, limited on longer times by the motion of the arm cavity lengths, which
are no more mechanically controlled.

6.4 Angular Control

So far we considered only the longitudinal motion of the mirrors. However, they
are rigid bodies and therefore there are five more degrees of freedom for each one.
Two of them are rotations around axis orthogonal to the beam, often called pitch and
yaw, see Fig. 6.8. The other three are not interesting for our applications: the rotation
around the beam axis (roll) is irrelevant, since mirrors have spherical surfaces; the
two translations orthogonal to the beam axis are equivalent to a combination of pitch
or yaw with a longitudinal displacement, again because the mirrors have spherical
surfaces.

Pitch and yaw degrees of freedom are instead very important and must be sensed
and controlled as precisely as the longitudinal degree of freedom. There are two
possible ways to measure the angular position of the mirrors. The first and simplest
one is to use the ground as a reference. It is possible to send a small auxiliary laser to
the surface of the mirror with a large angle and read out the reflected beam using a
position sensing device (PSD): a sensor which returns the position of the laser spot in
its surface. Using a proper combination of lenses at the output of this optical lever it
is possible to reconstruct the angular motions in pitch and yaw of every single mirror.
This measurement is however referred to the ground and therefore partially affected
by seismic motion. It is moreover local in the sense that it measures the position of
one single mirror, without any knowledge of the main laser beam position or of the
other mirror positions.

This approach is not enough: this becomes clear when considering a Fabry–Perot
resonant cavity. The optical axis of the cavity, the one that defines the resonant mode
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Fig. 6.9 Effect of tilting the mirrors on the cavity axis. The blue dashed lines are pairs of radii of
the mirror surface. The red dashed lines show the position of the cavity axes, compared to the green
dotted lines, which is the axis in the perfectly aligned case

we considered in the previous chapter, is defined as the only straight line which
is perpendicular to both mirror surfaces at the impact points. Figure 6.9 shows the
effect of mirror misalignment on the cavity axis, in the case of a stable bi-concave
configuration. Simple geometrical considerations show that the cavity axis, which
corresponds to the resonant mode axis, is the line passing through the two mirror
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centers. If we call τ1 and τ2 the tilts of the two mirrors (around their vertexes)
with respect to the perfectly aligned case, the position of the two surface centers are
written in coordinates with respect to the vertex of the first mirror as

C1 = (R1 cos τ1, R1 sin τ1) (6.48)

C2 = (L − R2 cos τ2, R2 sin τ2) (6.49)

Since we are considering small angular deviations, typically of the order of a few
μrad, we can take only the leading order in the angles and write the equation of the
line passing through the two points:

y = R2τ2 − R1τ1

L − R1 − R2
(x − R1) + R1τ1 (6.50)

This axis is both tilted and translated with respect to the perfectly aligned one (τ1 =
τ2 = 0). The tilt angle is already defined by the above equation, while to identify
the translation we must decide a reference coordinate along the cavity axis. Since
we are considering the resonant mode, the correct position to consider is where the
waist of the resonant beam is

τ = −τ1
R1

L − R1 − R2
+ τ2

R2

L − R1 − R2
(6.51)

d = τ1
R1(R2 − L)

R1 + R2 − 2L
+ τ2

R2(R1 − L)

R1 + R2 − 2L
(6.52)

It is important to control the position of the beam axis. First of all, in our interfer-
ometers we have (at least) two cavities and if their axes does not coincide the two
beams cannot properly recombine at the beam splitter and our precious interference
conditions are spoiled. A second reason is that when the beam axis is not properly
aligned with the geometrical axis of the interferometer, the spot is no more centered
on the mirrors. This introduces a coupling of any residual angular motion of the
mirror into longitudinal displacement, proportional to the mis-centering.

All these considerations make it clear that in GW interferometer it is necessary
to implement a way to globally measure the position of the beam with respect to the
mirrors and to maintain it close to the aligned one.

The standard technique foresees the use of photo-diodes with the sensitive surface
divided into four quadrants. The sum of the power signal of each of the four quadrants
will give the same result as a standard photo-diode. However, by taking the difference
between the left and right halves and the top and bottom halves it is possible to derive
a signal which gives a measurement of the spot position with respect to the sensor.

One drawback of this approach is that it is impossible to distinguish between
motions of the beam and motions of the sensor. A solution for this problem is again
based on the frontal modulation technique and it is usually called wavefront sensing
or Ward technique. If we look at the beam reflected by a Fabry–Perot cavity with a
quadrant-split photo-diode, we will have as in the longitudinal case two contributions:
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the carrier field will be linked to the cavity axis and therefore it will be displaced on
the sensor in accordance with it; the sideband field instead will be promptly reflected
and therefore insensitive to what happens inside the cavity. If we take the difference
between the sensor halves and demodulate it, we will use the sideband as a position
reference. Any motion of the sensor will equally displace the sidebands and the
carrier without any effect on the demodulated signal.

The angular control of a full dual recycled interferometer is clearly more complex
than this. In particular, a simple counting shows that there are 18 degrees of freedom
in total: the angular position in pitch and yaw of all seven mirrors and the pointing
and translation of the input laser beam. A description of the Virgo angular control
system can be found in [9].

Before leaving the topic, we can note that radiation pressure does play a role also
in the angular control, even if the working point corresponds to a perfectly aligned
system. As we saw, radiation pressure exerts a static force on the mirrors. If the
beam is not perfectly centered, due for example to the residual angular motion of the
mirrors, this static force will apply a nonzero torque to the mirror, therefore inducing
a potential angular motion. It is easy to show that similarly to what happened in the
longitudinal case, the effect is to introduce an additional optomechanical coupling
that will change the stiffness of the system. Looking again at Fig. 6.9, one can see that
for a misalignment like the one in the bottom row (plus mode) the torques applied
to the mirror tends to move them back to the aligned configuration: the stiffness of
this mode is increased as well as the corresponding resonance frequency. In the case
of a misalignment like the middle row of Fig. 6.9 (minus mode), radiation pressure
torques instead tend to move the mirrors further away from the aligned condition:
the stiffness of the mode is therefore reduced and the mode can become unstable
for high circulating powers. The design of the Advanced Detector arm cavities was
carried out in such a way as to avoid this problem even at full power. A detailed
analysis of the problem can be found in [10].

6.5 A Brief Introduction to Feedback Control Systems

So far we considered how to measure the deviation of the interferometer degrees of
freedom from the desired one, but we did not consider how to actively and continu-
ously act in order to maintain the right resonance conditions. There is nothing new
to develop here, since the field of feedback control systems has been doing exactly
this for a long time. We are mainly interested in the control of linear systems and for
simplicity we will consider only one-dimensional systems.

A more detailed description of the basics of linear feedback systems can be found
for example in [11, 12].
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6.5.1 Linear Systems

The simplest model of a physical system with one single input and one output is a
linear transformation:

y(t) =
∫ t

−∝
h(t, φ ) x(φ ) dφ

where the requirement of causality has been already taken into account. In general the
integral kernel h(t, φ ) is a function of two variables, since the behavior of the system
can vary with time. If this is not the case, the system being time-invariant, the above
expression can be simplified considering that it is possible to write h(t, φ ) = h(t −φ)

and therefore

y(t) =
∫ 0

−∝
h(φ ) x(t − φ) dφ (6.53)

This is the most general expression of a linear time-invariant system. The vast major-
ity of the systems involved in interferometric detectors are well described by these
kinds of models.

A very convenient way to describe linear transformations, widely used in the
theory of control systems for example, is the Laplace transform [13]. Given a signal
x(t), null when t < 0, its Laplace transform is defined as

x̃(s) =
∫ ∝

0
x(t) e−st dt

It can be shown that this function of the variable s can be extended to a complex
function with s varying in a defined domain of the complex plane. Applying the
Laplace transform to Eq. 6.53 one obtains

ỹ(s) = h̃(s) x̃(s) (6.54)

where the new function h̃(s) is usually called the (Laplace) transfer function of the
linear system. The Laplace transform is an extension of the Fourier transform, which
can be recovered putting s = iΔ, if the imaginary axis is contained in the domain of
existence of the transform.

In most cases the transfer function of a linear system can be described using
rational functions

F(s) = P(s)

Q(s)
= bmsm + bm−1sm−1 + · · · + b1s + b0

ansn + an−1sn−1 + · · · + a1s + a0

If both numerator and denominator are factorized, the function can be described as
a list of poles and zeros. Moreover, if F(s) is the transfer function of a physical
system, all complex poles and zeros appear together with their complex conjugates,
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since in the time domain the integral kernel h(φ ) must be real, being both x(t) and
y(t) physical real signals.

A rational function is characterized by its poles and can therefore be written as

F(s) =
∑

i

Ki

(s − pi )ni

where ni are the pole multiplicities and Ki the corresponding residuals. The anti-
transform of each of these terms in time-domain is proportional to an exponential epi t

(see Table 6.1).3 This result is very useful when considering the response of a system
to a step function or to an impulse (usually called step response and impulse response).
In the latter case, being the Laplace transform of an impulse at t = 0 a constant, from
Eq. 6.54 it follows that the impulse response of the system is given simply by the
anti-transform of the transfer function. Therefore, it will contain oscillating terms at
frequencies given by the imaginary part of each pole. If one pole has negative real
part the oscillation is damped, otherwise it has constant amplitude if the pole is purely
imaginary, or it grows up exponentially if the pole has positive real part. Therefore
a system is stable, in the sense that its response to an impulse is asymptotically
decreasing, if its transfer function has only poles with negative real part.

In developing feedback control system and in describing the properties of mechan-
ical and optical systems, it is customary to describe transfer functions in terms of
pole and zero frequencies and quality factors. A real (simple) zero at a frequency f0
is given by

Z1(s) = s − 2π f0

while a real pole is given by the inverse of this expression. A complex (double) zero
at frequency f0 and with quality factor Q is given by

Z2(s) = s2 + 2π f0

Q
s + (2π f0)

2

The inverse of this formula gives the transfer function of a complex double pole
(see Fig. 6.10): this corresponds to a system whose impulse response is a damped
oscillation at frequency f = f0

√
1 − 1/4Q2, with time constant φ = Q

π f0
: the higher

the Q, the longer the oscillation will last. An example of such a system is a simple
mechanical pendulum with friction. In electronic systems, an RC circuit provides an
example of a simple pole, while a resonant RLC circuit of a complex pole.

6.5.2 Simple Feedback System

The simplest situation in a problem of control is a physical object (see Fig. 6.11),
usually called plant, which can be described as a linear system with one single input

3 This is true only if the pole multiplicity is 1. In case of multiple coincident poles, there is an
additional multiplicative term proportional to a power of the time t .
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Table 6.1 List of
anti-transform of common
second-order rational
functions

Laplace transform Time function (for t > 0)
1
s 1

1
s−s0

es0t

Δ2
0

s2+ Δ0
Q s+Δ2

0

Δ0√
1− 1

4Q2

e− Δ0 t
2Q sin

(
Δ0t

√
1 − 1

4Q2

)

Fig. 6.10 Transfer function of systems described by a simple real pole or one complex pole with
different quality factors Q

(for example a Fabry–Perot cavity and its length) and one single output, the error
signal (a photo-diode demodulated output for example). This system is usually called
in engineering books SISO (single-input single-output).

The goal of the control system is to keep the input degree of freedom as close
as possible to a given function of time, the reference. Being the system linear, this
can be taken as the value 0, and therefore controlling the input degree of freedom
is equivalent to keeping the error signal close to 0. The response of the plant can in
general be described using a linear transfer function H(s) depending on the Laplace
variable s. The error signal can be affected by some sensing noise which can be
related to the sensor itself (for example shot noise for photo-diodes, ADC noise,
etc.) or can be injected on purpose to measure the features of the system.
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Fig. 6.11 Scheme of a simple feedback loop. See the text for details

The feedback is obtained passing the error signal through an ad hoc corrector F(s)
and feeding the result (correction signal) back to the plant by means of actuators
whose response is modeled by A(s). For example the length of a Fabry–Perot cavity
is controlled by sending currents to coils attached to one of the mirrors. In general
the actuators themselves can introduce some additional noise, called actuation noise,
or as before an external excitation can be added on purpose to the correction signal.
There is a general convention that puts a minus sign at the summation point of the
correction and the system free motion. In this way the correction signal is in-phase
with the motion that the feedback suppresses.

The behavior of the full linear system can be easily computed as

e(s) = H(s)
[
z√(s) − na(s) − A(s) (nc + F(s)ns + F(s)e(s))

]

z(s) = z√(s) − na(s) − A(s) (nc + F(s)ns + F(s)e(s))

where e(s) and z(s) are the error and input signal respectively. These implicit equa-
tions can be solved to obtain
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e(s) = H(s)

1 + H(s)F(s)A(s)
z√(s) − H(s)

1 + H(s)F(s)A(s)
(na(s) + A(s)nc(s))

− H(s)F(s)A(s)

1 + H(s)F(s)A(s)
ns(s)

(6.55)

z(s) = 1

1 + H(s)F(s)A(s)
z√(s) − 1

1 + H(s)F(s)A(s)
(na(s) + A(s)nc(s))

− F(s)A(s)

1 + H(s)F(s)A(s)
ns(s)

(6.56)

The fact that the output of the system is used also as part of the input justifies the
name feedback and also explains why it is customary to refer to feedback control
system as loops and to distinguish between the open loop configuration when the
feedback signal is disconnected from the input and the closed loop configuration.

For simplicity the actuator transfer function can be considered as a part of the
plant transfer function H(s) and the correction and actuation noise can be treated on
the same basis.

All signals that are measured inside a feedback loop are called in-loop (for example
the error and correction signals) while those measured outside or added from outside
are called out-of-loop (for example the free motion of the system or any external
added perturbation). As an effect of the feedback all in-loop signals are reduced,
with respect to the free system, by an amount given by the suppression factor

GCLTF(s) = 1

1 + H(s)F(s)

also called closed-loop gain or closed-loop transfer function (CLTF) to differentiate
from the open-loop gain or open loop transfer function (OLTF) given by

GOLTF(s) = H(s)F(s)

Usually the value of the open loop transfer function at a given frequency is called
the gain at that frequency. A change in the overall gain of the transfer function
is simply a multiplication by a frequency-independent coefficient. The frequency
(usually unique) where the gain is equal to 1 is called unity gain frequency UGF or
bandwidth of the loop.

One widely used method to measure the open-loop transfer function of a system
consists in adding a known source of noise n(s) for example to the error point. If
this noise dominates all the signals, in Eqs. 6.55 and 6.56 only terms proportional to
n(s) are relevant:



178 G. Vajente

e(s) = − H(s)F(s)

1 + H(s)F(s)
n(s)

e√(s) = 1

1 + H(s)F(s)
n(s)

where e√ is the error signal measured after the noise injection point. Taking the ratio
of these two equations, one can see that the OLTF is given by the opposite of the
transfer function between the error signal measured after and before the addition of
the noise.

Both the error and correction signals contain information about the residual motion
of the system. At frequencies where the open-loop gain is higher than 1, the error
signal gives a good estimate of the residual motion of the system, apart from a
calibration factor given by the plant transfer function.

At the same frequencies on the other hand the correction signal is not a good
estimate of the motion. For example consider a resonant Fabry–Perot cavity with its
length controlled by applying a force to one of the two mirrors, using the demodulated
transmission as error signal. If the input mirror is moving a lot, the correction signal
must be large enough to induce a motion of the end mirror such that the cavity length
is constant. Therefore, the correction can be quite large even if the error signal and
the residual fluctuation of the cavity length are small.

6.5.3 Response to Variations of the Input Signal

One of the most interesting properties of a control system is the ability to track a
varying input signal. This performance of a linear system, described by a transfer
function F(s), can be studied by analyzing the response to an input step:

x(t) =
{

0 if t < 0
1 if t → 0

The Laplace transform of this signal is x̃(s) = 1
s and therefore the system output is

given by

ỹ(s) = F(s)

s

The behavior of the anti-transform of this expression for large times can be obtained,
assuming the system to be stable, by using the final value theorem [13]:

lim
t∈+∝ y(t) = lim

s∈0
s ỹ(s)

In particular the response of the linear system to the input step for large times is
given by
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lim
t∈∝ y(t) = F(s = 0)

Therefore, the output of the system goes to zero only if its transfer function includes
a zero at s = 0, or in other words, if the global system gain is null at DC.

In terms of feedback systems, the input signal is an external disturbance added to
the controlled d.o.f. and the output is for example the residual motion of the system.
Therefore, the transfer function of the system is given by

F(s) = 1

1 + GOLTF(s)

and it has a zero at the origin only if GOLTF(s) includes a pole for s = 0 (a pure
integrator). For this reason, real poles at zero frequency are usually added to the
corrector filter.

The simplest case is that of a system with open loop transfer function given by a
simple pure integrator with unity gain at Δ0:

GOLTF(s) = Δ0

s

F(s) = 1

1 + GOLTF(s)
= s

s + Δ0

Its response to an input unity step is given by the anti-transform of

ỹ(s) = F(s)

s
= 1

s + Δ0

which is exponentially decaying:

y(t) = e−Δ0t

From this equation it is also possible to extract the time constant of the system, which
is the typical timescale of its response to variations of the input signal

φ = 1

Δ0
= 1

2π f0

where f0 is the unity gain frequency of the system.
In a similar way the behavior of a system with two real poles at the origin can be

studied.
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GOLTF(s) = Δ2
0

s2

F(s) = 1

1 + GOLTF(s)
= s2

s2 + Δ2
0

ỹ(s) = F(s)

s
= s

s2 + Δ2
0

and the anti-transform of the last expression gives the time response to an input step:

y(t) = cos (Δ0t)

which is not exponentially decreasing in time. Therefore the response of this system
does not converge to zero when the input is perturbed, but rather a persistent oscil-
lation at the unity gain frequency is present. This introduces the subject of stability
of a feed-back system.

6.5.4 Stability

From the general point of view, a linear system described by a transfer function H(s)
is proper if G(i∝) is finite and strictly proper if G(i∝) = 0. This is usually true
for all physical system, since for very high frequency the response is always small.

Moreover, a system is stable if its transfer function is analytic in the closed right
half-plane s → 0 or in other words if it has no poles in that region. It is asymptotically
stable if there are also no poles on the imaginary axis.

As explained in Sect. 6.5.1, the anti-transform of the transfer function gives
the response of the system to an impulse (usually called impulse response of the
system). Any pole in the half right-plane will anti-transform to an oscillation with
exponentially increasing envelope amplitude and any pole on the imaginary axis to a
constant envelope amplitude oscillation. In the first case the response of the system
to an impulse is therefore growing exponentially, while in the second case it remains
constant with time. This explains the given definitions of stability: a stable system
responds to an input impulse with a limited amplitude output, while an asymptoti-
cally stable system with an output which goes to zero when time tends to infinite.
Since the system is linear, the behavior with any input is completely characterized
by the impulse response.

Therefore any control system, in order to be able to maintain the controlled d.o.f.
close to the desired value must be stable or better asymptotically stable. Otherwise
any disturbance to the input will be amplified and will soon diverge exponentially.
The control will fail to work as soon as the motion is larger than the linearity range
of the system.

For a feedback system, the requirements of stability and asymptotic stability
translate in requirements on the closed loop transfer function: a feedback system is
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Fig. 6.12 Contour in the
complex plane used for the
derivation of the Nyquist
stability criterion

Re

Im

+i∞

-i∞

asymptotically stable if and only if the closed loop transfer function

GCLTF(s) = 1

1 + F(s)H(s)

has no pole for Re s → 0.

6.5.4.1 Nyquist Stability Criterion

Usually the study of a system transfer function is carried out in the frequency domain
rather than in the Laplace domain, mainly because only the values of the transfer
function on the imaginary axis s = iΔ correspond to physical frequencies and that
can be directly measured. The link between the behavior of the system transfer
function and the requirements of stability can be derived using standard complex
analysis methods [12].

The starting point is the well-known argument principle [13]: the variation over
a closed contour γ of the phase of a function, analytic in the domain bounded by γ

except for a finite number of poles, is given by the following equation:

1

2π i
νArg F(s) =

∮

γ

F √(s)
F(s)

ds = nz(γ ) − n p(γ ) (6.57)

where the contour is covered in counterclockwise sense, n p and nz denote the number
of poles and zeros encircled by γ . The integrand is called the logarithmic derivative
of the function F .

The Nyquist criterion for the stability of a closed-loop feedback system can be
derived starting from the open loop transfer function GOLTF(s) and considering the
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contour in the Laplace s-plane shown in Fig. 6.12: it consists of the entire imaginary
axis, with a small half-circle around the origin if GOLTF(s) has poles there. The entire
contour is closed by a half-circle at infinity and covered in clockwise direction from
−i∝ to +i∝. The case of poles on the imaginary axis is not taken into account here.
If the system is stable in the open-loop configuration, then the function 1+GOLTF(s)
has no pole in the right half-plane. The closed-loop system is stable if and only if
this function has also no zeros in the right half-plane. Using the argument principle,
this is equivalent to the following integral being zero:

0 =
∮

γ

G √
OLTF(s)

1 + GOLTF(s)
ds = 1

2π i
νArg (1 + GOLTF(s)) (6.58)

The Nyquist plot of the open loop transfer function is the image of the γ contour,
which is the curve obtained plotting the complex value of the transfer function while
varying the frequency from −∝ to +∝. Since the time-domain response of the
system must be real, the transfer function obeys the relation G(−iΔ) = G⊥(iΔ) and
therefore it is enough to plot the transfer function for the positive physical frequencies
and to complete it with its mirror image with respect to the real axis. The Nyquist plot
must be covered in the direction corresponding to frequency going from 0 to +∝ and
then from −∝ to 0. The right-hand term of Eq. 6.58 therefore is the total variation of
the phase of the function 1 + GOLTF(s), which corresponds to the number of times
the point −1 is encircled in clockwise sense by the Nyquist plot of the open-loop
transfer function.

In conclusion the following criterion for the stability of closed-loop feed-back
system is established:

Nyquist stability criterion. Given a system with stable open-loop transfer function,
it is also stable in the closed-loop configuration if and only if its Nyquist plot does
not encircle the critical point −1 in clockwise sense.

It is worth to better explain this result by means of some examples. If the system
has no pole at zero frequency, the Nyquist plot has no point at infinity and the
application of the criterion is straightforward. Figure 6.13 shows the Nyquist plots
for the following, very simple, first and second order systems:

F1(s) = 1

s − Δ0

F2(s) = 1

s2 − Δ0
Q s − Δ2

0

Both systems are stable since the −1 point is never encircled. Both transfer functions
go to zero when the frequency goes to ±∝ and are always finite, therefore there is
no need to complete the Nyquist plot with the image of a circle at infinite frequency.
In both cases if the sign of the transfer function is changed, which corresponds
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Fig. 6.13 Examples of Nyquist plot for a system of the first-order (right) and of the second-order
(left). The plots in the left panel are closing out of the plot boundary

to changing the sign of the control filter, the system becomes unstable, since both
Nyquist plots encircle the critical point.

As explained in the previous section, corrector filters often include one or more
pure integrators. In this case the application of the Nyquist criterion is made slightly
more complex by the presence of the singularity in the origin. The Nyquist contour
β must include a semicircle around the origin, in the right half-plane. To understand
the Nyquist plot at infinity, it is sufficient to consider the asymptotic behavior of the
open loop transfer function, which is characterized only by the number of real poles
at zero frequency. For a first-order system

H(s) ∼ 1

s

The small circle around the origin in the s-plane can be parameterized as

s = σeiη

with η varying from −π
2 to +π

2 . The corresponding section of the Nyquist plot
describes a half-circle with very large radius in clockwise sense:

H(s) ∼ 1

σ
e−iη

starting from the point at i 1
σ

and ending at −i 1
σ
. This circle moves to infinity when

σ goes to zero. In any case it never encircles the critical point. If instead the sign of
the open loop transfer function is changed, the portion at infinity of the Nyquist plot
encircles the critical point and the system becomes unstable. This allows to state as a
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general rule that for a system including a pure integrator the phase of the open loop
transfer function for frequencies going to zero must be −90◦.

A similar result can be obtained for a double pole at the origin. It must be noted that
a system whose open loop transfer function is described by only a double real pole at
zero frequency cannot be stable, since whatever is the sign chosen, the Nyquist plot
always passes through the critical point. Therefore, some more poles and zeros must
be added to the corrector filter to stabilize the system. However, for what concerns
the behavior at infinity of the Nyquist plot, the same trick as before can be used. If
the open loop transfer function for small frequencies can be approximated by

H(s) ∼ 1

s2

then the part of the Nyquist plot at infinity is a circle starting from a phase close
to −180◦ from above and ending again close to −180◦ from below. This circle is
covered in clockwise direction. As before, the system is stable with the chosen sign,
while it is unstable with the opposite one. In other words, in the presence of a double
pure integrator, the phase of the open loop transfer function in the limit of zero
frequency must be −180◦.

In general, in the presence of poles in the origin, the Nyquist plot must be com-
pleted with a contour at infinity consisting in one half-clockwise circle for each pole,
starting from the point at positive infinite frequency and ending in the one at negative
infinite frequency.

6.5.5 Bode and Nichols Plots

Together with the Nyquist plot, there are two other common ways to represent the
open loop transfer function of a system.

The first one is the Bode plot: it simply represents in two different panels the
absolute value of the transfer function and its phase as a function of frequency. This
plot is useful to get an idea of where the unity gain frequency sits and of the gain of
the transfer function at different frequencies. However, it is not straightforward to
infer the stability of the closed-loop system from this kind of plot.

The Nichols plot of the system is obtained plotting the logarithm of the absolute
value against the phase of the open loop transfer function (see Fig. 6.14) when the
frequency varies from 0 to +∝. The Nyquist stability criterion can be translated in
terms of the Nichols plot. If the transfer function includes pure integrators, the plot
must start for large amplitudes from the correct phase: −90◦ for one pure integrator,
−180◦ for a double integrator and so on. The request that the critical point −1 is
not encircled corresponds to the request that the Nichols plot crosses the unity gain
axis between the two points corresponding to −180◦ and 0◦ phases. If the unity gain
line is crossed on the left of this segment, the plot must return again to gains greater
than 1 remaining on the left of the critical point, otherwise this would correspond to
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Fig. 6.14 Example of Nichols
plot of the open loop transfer
function of a stable system.
The curves around the critical
point show the minimum mar-
gin allowed for an overshoot
going from 1 to larger values,
in steps of one unity

a circle around −1 which would make the system unstable according to the Nyquist
criterion.

The Nichols plot is particularly useful to easily obtain information on the behavior
of the closed loop transfer function near the unity gain frequency. Indeed, if the open
loop transfer function passes close to the critical point, the motion of the system
can be enhanced instead of reduced at that frequency, since the closed loop transfer
function:

GCLFT(s) = 1

1 + GOLTF(s)
(6.59)

can become even much larger than 1. A limit on this overshoot σ can be imposed:

∣∣∣∣
1

1 + GOLTF(s)

∣∣∣∣ ≤ 1 + σ

Usually the system transfer function is much greater than 1 at low frequency and the
closed loop transfer function is smaller than 1. It also decreases at high frequency and
the closed loop transfer function is then very close to unity. Therefore to characterize
the overshoot only the behavior around the unity gain frequency is needed. If the
open loop transfer function is close to 1, it can be approximated as

GOLTF(s) ◦ eM eiπ+iη ◦ −1 − M − iη

The request of Eq. 6.59 translates to
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M2 + η2 → 1

(1 + σ)2

which is the equation of a circle in the Nichols plot, with radius given by 1
1+σ

. The
circles corresponding to overshoots from 1 to 9 are shown in Fig. 6.14.

Moreover, in the Nichols plot a change in the overall gain of the open loop transfer
function corresponds to a vertical translation of the curve. If the translation is large
enough to make the plot cross the critical point, the system becomes unstable. The
distances along the vertical direction of the critical point from the Nichols plot are
called gain margins since they give the maximum possible changes in the overall
gain that leave the system stable. The two points of the Nichols plot that intersect
the −180◦ vertical line give also the typical frequencies of the instability oscillations
that arise if the gain of the control loop changes too much.

Finally, the distance along the horizontal direction from the critical point to the
Nichols plot gives the phase margin which is an indication of the robustness of the
control against changes in the system transfer function.

6.5.6 An Example: Locking of a Fabry–Perot Cavity

The simplest application of the control theory to the GW interferometric world is the
development of a feedback system to maintain a Fabry–Perot cavity at resonance. We
already saw that the Pound-Drever-Hall signal in reflection is a good error signal to
measure the cavity length. In the previous chapter we saw that the frequency response
of the carrier reflected field is characterized by a simple pole. Since the sidebands
are not affected by the cavity, the same pole is present in the response of the PDH
signal. Without entering in all the details of the computation, the transfer function
of the plant is given by the simple pole model

H(Δx ) = −2J0 J1i
(tI tE )2

1 − (rI rE )2

F

π

1

1 − i Δx
2π f p

(6.60)

where f p = c
4LF is the pole of the Fabry–Perot cavity. This transfer function is a

low pass filter with a simple pole. We will consider here the initial Virgo arm cavities
for which f p ◦ 500 Hz.

The last missing point is the frequency response of the actuators: for the locking
of a single cavity, acting only on the end mirror, this can be modeled by a simple
pendulum with resonant frequency at about 600 mHz and very high quality factor.

The corrector filter designed to control the length of the cavity is a very simple
one, see Fig. 6.15, consisting in a double integrator, compensated at 1 Hz with a
simple zero and at 10 Hz with a complex zero and again at 800 Hz with a complex
pole, to have a unity gain frequency around 50 Hz. In this way below the resonant
frequency of the actuators the system is a double integrator, capable of maintaining
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Fig. 6.15 Left Bode plot of the corrector filter implemented for the control of a single arm cavity.
Right open loop transfer function for the control of a single cavity. The unity gain frequency is set
at 50 Hz

fixed the length of the cavity even in presence of big motions of the input mirror. The
pole and zero pair is a common method used to stabilize the system.

The Nichols plot of this system is shown in Fig. 6.16. The loop margins can be
easily read from this plot: the overall gain can be increased or decreased by a factor
of 5. The phase margin is 50◦. This is a really robust feedback system, capable of
maintaining the control of the cavity even with large changes in the optical transfer
function. This robustness is indeed needed in the first moments of the lock acquisition,
when the system response is highly nonlinear.

6.6 Actuation: How to Apply Forces to the Mirrors

So far we considered the problem of measuring the displacement of the interferometer
degrees of freedom from the desired position and implementing a feedback control.
The last missing point is how to apply the computed correction to the mirrors. It
is obvious that we cannot touch in any way the mirror to apply the force, therefore
we must use some kind of electromagnetic actuator. Two different strategies have
been adopted in first-generation detectors: LIGO and Virgo used coil-magnet pairs,
while GEO600 used electrostatic actuators. It is outside the scope of this chapter to
describe the difference and the advantages of one solution with respect to the other.
We will take into consideration only the coil-magnet case as an example.

The passive element (the magnet) is clearly attached to the mirror (Fig. 6.17). The
active element (the coil) cannot be attached to the ground, otherwise it would rein-
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Fig. 6.16 Nichols plot of the control system for a single arm cavity with a finesse of 50

troduce seismic noise due to its relative motion with respect to the mirror. Therefore
the coils must be attached to a recoil mass that must be also seismic isolated.

Moreover, since we need to control also the angular position of the mirror, one
magnet is not enough. In Virgo and Advanced Virgo four magnets are used, placed
in a plus configuration on the back surface of the mirror. By applying different
corrections to each magnet it is possible to actuate in the longitudinal, pitch, and yaw
directions.

6.6.1 Hierarchical Control

The maximum actuation force is determined by the needs of the lock acquisition
procedure and by the maximum motion of the suspended mirror that must be com-
pensated during the steady-state configuration. Both requirements typically bring
to actuators with a relatively large peak force. For example, the largest contribution
to the correction that we must apply to the cavity length comes from the strain due
to luni-solar tidal forces. The typical measured peak to peak amplitude of the length
variation over the 3 km baseline can be as large as 150µm over 1 day. Considering
a mirror of 40 kg attached to a pendulum system with a length of about 0.7 m, to
compensate for this we would need a force of the order of 80 mN.

One key point on the actuation is the noise level of the correction. In the ideal
world the force applied to the mirror is exactly equal to the correction computed by
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Fig. 6.17 Conceptual draw-
ing of the mirror with the
reference mass and the mar-
ionette as it was in Virgo.
The concept is similar for
Advanced Virgo, even if
mechanical details will be
largely different

the feedback system. In the real world, the force will contain several noise contri-
butions coming from the electronic systems: arithmetic noise, digital-to-analog con-
version noise, power amplifier noise, etc. All these translate to displacement noise
directly applied to the mirror, which will therefore perfectly mimic a GW signal.
All the amplitudes of these noise sources must remain well below the target science
sensitivity.

Let us consider the implications of this requirement, assuming the maximum
force needed is of the order of 80 mN as discussed above. If we consider a frequency-
independent noise F̃ at the level of the force applied to the mirror, this will correspond
to a displacement which is given for frequencies above the resonance of the last stage
of the suspension:

z̃( f ) = F̃

4π2 f 2m
(6.61)

This must be compared with the science sensitivity of, for example, the Advanced
Virgo detector in the low frequency band. The most critical region is the one around
50 Hz, where the target in terms of strain is about 6×10−24 Hz−1/2 which corresponds
to 2 × 10−20 m Hz−1/2. A flat force noise generates this displacement with an
amplitude of about 7 × 10−13 N Hz−1/2. We should require the force noise to be
10 times lower than this to avoid any contribution to the detector sensitivity: ñF <

7 × 10−14 N Hz−1/2. This number must be compared with the maximum force
needed:



190 G. Vajente

ñF < 9 × 10−12 Hz−1/2 Fmax (6.62)

These 11 orders of magnitude (220 db) are a huge amount. If we consider to generate
the force with a electronic system with maximum output of 10 V, the noise level
should be 10 pV/

√
Hz, which is unfeasible.

This conclusion seems to make noise-less actuation on an Advanced Detector a
hopeless problem. The solution is the use of hierarchical control. The mirrors and its
reference mass are suspended to complex isolation systems, that can be schematized,
at least in the horizontal degrees of freedom, as a chain of simple pendulums with
typical resonant frequencies below a few Hz. A simplified scheme is reported in
Fig. 6.18. Three actuation points are used: at the level of the mirror, at the level of
the mass from which the mirror is suspended (called in Virgo marionette), and at
the topmost mass of the chain, which is clearly not rigidly connected to the ground
but somehow seismically pre-isolated (in Virgo it is sitting on top of the inverted
pendulum, which is made of three legs attached to the ground with flexible joints and
providing a very low resonant frequency of a few tens of mHz).

The global correction is the output of our control system and gives the total force
that must be applied to the mirror. Instead of sending everything to the actuators at
the mirror level, we split the correction into two: the high frequency part (above a
cut-off fc here set to 8 Hz) is sent to the mirror actuators, while the low frequency
part is sent to the intermediate mass (the marionette in Virgo).

The typical correction that must be applied to mirror is mostly concentrated at
very low frequencies, below 1–2 Hz. The reason is linked to the performances of the
suspension system: since all the pendulums have resonance frequencies around 500–
1000 mHz, the filtering of seismic noise starts to be effective only above these values.
This property of the correction helps us understand the first gain we get when using
the described split strategy: the largest part of the correction is sent to the intermediate
mass and only the residual high frequency part is still sent to the mirror. This strategy
allows a reduction of many orders of magnitude of the correction that is sent to the
mirror. In this way we can relax the requirement on the driving noise to a level which
is still difficult, but feasible. However, it seems that the problem would appear again
at the level of the intermediate mass, where now the correction is still quite high. We
should consider that any force noise sent to the intermediate mass actuator must be
transmitted by an additional pendulum before reaching the mirror. We gain therefore
an additional ( f/ f0)

−2 filtering above the resonant frequency which again relaxes
enormously the driving noise requirement.

The final force reallocation is performed at very low frequency, using the global
correction signal in place of displacement sensors used to control the top-most stage
of the suspension. At very low frequency, where the gain of the locking feedback loop
is very large, the correction is a direct measurement of the displacement of the mirror
suspension point which, at frequencies below all the chain resonances, corresponds to
the motion of the top stage. We can therefore substitute the displacement sensor (that
is normally used to measure and control the motion of the top stage) with the global
correction signal. This strategy has two advantages. The first one is to reduce the
correction that must be sent to the intermediate mass, moving the very low frequency
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Fig. 6.18 Scheme of the hierarchical control in a multi-stage suspension system

(<100 mHz) component to the top stage. Any actuation noise at the top level will
not reach the mirror, due to the large number of seismic filters between them. The
second advantage is that the top stage is no more controlled with signals measured
with respect to the ground, but with global ones, which are measuring the relative
displacement of mirrors. In other words we are only considering the relevant motions
of the suspension system that affects the cavity length, neglecting all the others.

6.7 Exercises

6.7.1 Dither Control

The Pound-Drever-Hall technique is not the only one that can be used to generate
an error signal to control a resonant cavity. Another possibility, which was used for
example to control the Virgo and Virgo+ output mode cleaner cavity, is to modulate
the length of the cavity itself, at a frequency which is still inside the cavity line-width.

1. Compute the response to a cavity length motion of the error signal obtained by
demodulating the reflection of the cavity.

2. Compute the frequency response of the same signal.
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3. We can use thermal actuation to change the cavity length. The response of such an
actuator is a simple low-pass filter with a typically corner frequency of few tens
of mHz, depending on the cavity material and mass. Develop a stable controller
for the cavity length using this kind of actuator.
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Chapter 7
An Introduction to the Virgo Suspension System

Franco Frasconi and Piero Rapagnani

Abstract Suspending the mirrors is one of the most crucial tasks in gravitational
wave interferometer technology. The performance of the suspensions must provide
the required attenuation of seismic noise and reduction of thermal noise, two fun-
damental limits to the sensitivity of any gravitational wave detector. Moreover, the
suspension system must be equipped with sensors and actuators which are used to
actively control some relevant degrees of freedom, so to be able to keep the interfer-
ometer at its working point (i.e., “locked”). In the first part of this chapter, we deal
with the basic principles behind the Superattenuator chains developed in Virgo to
reduce the seismic noise. In the second part, we illustrate the techniques to reduce
the thermal noise in the detection bandwidth, according to the theory illustrated in
Chap. 8.

7.1 Introduction

The gravitational waves detection with a ground-based interferometer depends on
the capability to include into the experimental apparatus free-falling masses, the
test masses, well isolated from various noise sources, the influence of which has
great relevance on the design sensitivity all over the detection bandwidth. Seismic
noise gives the most important contribution at low frequency where gravitational
waves emitted by pulsars and coalescing binaries are expected. For these reasons, the
first generation of ground based and broadband interferometers have been equipped
with an appropriate suspension system of the test masses, but also the upcoming
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Fig. 7.1 One-dimensional harmonic oscillator at rest (a) and when an exciting force is applied (b)

second and future generations detectors will include complex mechanical structures
studied to inhibit noise transmission to the suspended optics. To this purpose, the
VIRGO Collaboration has developed and built a very sophisticated system to isolate
from seismic noise and local disturbances the optical components of a Michelson
interferometer having, along the arms, two Fabry-Perot cavities, each 3 km long.
With this solution, it has been possible to extend the detection bandwidth in the low
frequency region starting from a few Hertz.

7.2 The Harmonic Oscillator as a Mechanical Filter

Let us consider a one-dimensional harmonic oscillator formed by a mass m connected
to a massless spring of elastic constant k, as represented in Fig. 7.1a. Applying a force
in the right direction, the system will react and the equation of motion representing
the status of the excited system (see Fig. 7.1b) can be written:

mẍ = −k(x − xo) , (7.1)

where xo is the coordinate of the mass at rest, while x is the mass position when the
force is applied with respect to the chosen reference frame. This is a second order
differential equation which admits a solution x(t) = xeiωt in the frequency domain.
Substituting it in Eq. 7.1, it turns out:

− mω2x = −k(x − xo) , (7.2)

and then defining ωo
2 = k/m Eq. 7.2 becomes:

(ωo
2 − ω2)x = ωo

2xo , (7.3)

By introducing the concept of mechanical Transfer Function of the harmonic
oscillator as the absolute value of the ratio between output and input signal of the
system:

TF = |x̃out/x̃in| , (7.4)
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Fig. 7.2 The transfer function
of a one dimensional harmonic
oscillator

where x̃ represents the Fourier transform (frequency domain) of x and applying it to
Eq. 7.3, it turns out:

TF = | x̃out

x̃in
| = | ωo

2

(ωo
2 − ω2)

| (7.5)

Analyzing the result obtained, the behavior of the Transfer Function can be re-
constructed as follows, in accordance with the plot shown in Fig. 7.2:

TF =
⎧⎨
⎩

1/ω2 ω >> ωo

∼ ω = ωo

1 ω << ωo

(7.6)

It can be argued that for frequencies ω higher than the harmonic oscillator
fundamental mode ωo(ω >> ωo) the system behaves as a second order low pass
mechanical filter.

It is evident that the harmonic oscillator represents a very good base element for
the design of a suspension system for test masses of ground based interferometer
developed for gravitational physics. With this solution it is possible to filter the
transmission of seismic noise and local disturbances in all degrees of freedom.

The attenuation response of a mechanical structure based on the working prin-
ciple of the harmonic oscillator can be enhanced by cascading a certain number of
this base element. The comparison between the Transfer Function of a single pendu-
lum with that one of a double pendulum having identical overall length is reported,
as an example, in Fig. 7.3, where the improvement in the filtering performance at
frequencies higher than the pendulum chain normal modes is showed.

Extending this approach to a pendulum chain with n-stages, it is evident that the
horizontal motion of its suspension point at frequency ω higher than the frequencies
of the chain normal modes (ω > ω0 > ω1 > · · · > ωn), is transmitted to the
suspended mass with an attenuation proportional to ω−2n . In particular, the ratio
between the linear spectral density of the last mass horizontal displacement (the
optical component) and the linear spectral density of the suspension point horizontal
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Fig. 7.3 Comparison of the
mechanical transfer function
between a single pendu-
lum (blue line) with normal
mode at 0.7 Hz and a dou-
ble pendulum (red line) of
the same overall length with
normal mode at 0.8 Hz and
2 Hz respectively. The im-
provement of the attenuation
performance is evident in
the red curve (slope change)
for frequency higher than
2 Hz (characteristic cut-off
frequency of a double-stage
pendulum chain)

displacement (where the excitation is applied) decreases as A/ω2n where A = ω2
0 ·

ω2
1 ·ω2

2 · · · ω2
n . With this system a very large attenuation of the seismic noise horizontal

component is reachable at frequencies above the highest pendulum mode. Therefore,
the complete Transfer Function of this multistage pendulum for a frequency ω much
higher than the normal modes of the chain (ω ⊗ ω0 ⊗ ω1 ⊗ · · · ⊗ ωn), is
given by the product of the transfer functions of each harmonic oscillator forming
the suspension chain:

T F = | x̃out

x̃in
| = 1

ω2n

n∏
i=1

ω2
1 (7.7)

where x̃out is the linear spectral density of the test mass horizontal displacement
while x̃in is that one of the suspension point and n is the number of stages.

7.3 The Real Suspension Systems in Gravitational Wave
Interferometers

The first generation detectors [1] developed for the study of gravitational field have
been equipped with a mechanical structure to isolate from seismic noise the free-
falling masses. The solution adopted for the VIRGO interferometer is based on the
idea to replicate a certain number of harmonic oscillators forming a filtering chain to
enhance the natural capability of a single stage to attenuate the noise transmission at
the test mass level. Seismic motion, always present on the ground, even in the absence
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of earthquakes, is a very powerful noise source for gravitational wave detectors. The
typical linear spectral density of seismic displacement in all three space coordinates
can be approximated, in the frequency range of VIRGO, by:

x̃ ∞ α

f 2 , (7.8)

measured, in m·H−1/2, as a function of the frequency f and of the parameter α, which
ranges typically between 10−6 and 10−9 m · Hz3/2, depending on the geographical
location. From the equation above, it turns out that the seismic motion reaching the
test masses (the mirrors) has to be reduced by at least a factor 1012, in order to have
an acceptable sensitivity in the 10 Hz region. For these reasons, a high-performing
device should be developed to suspend the free-falling masses, strongly reducing
seismic induced motion.

The example of the previous paragraph has been focused on the attenuation
performance of a generic harmonic oscillator in the horizontal degrees of freedom.
A similar logic path should be followed for the noise transmission along the vertical
direction. This is of great importance in the development of any mechanical system
because the final goal is the construction of a supporting structure with comparable
capability of seismic noise isolation in all degrees of freedom. With this intent a
common detection threshold will be defined and a cut-off frequency, above which
the system behaves as a chain of second order low pass filters, will represent the
general characteristic of the chain. Adopting a multistage pendulum this goal can
be achieved by replacing each suspension wire with a spring to form a cascade of
vertical oscillators. The spring should support heavy load and, at the same time, it
should be soft enough to exhibit a low resonant frequency. Paying particular attention
during the design phase, it is possible to confine the vertical modes of the chain in a
low frequency region obtaining a strong attenuation starting from a few Hz. While
the pendulum mode (horizontal degrees of freedom) is a simple inverse function of
the wire length l in accordance with the equation:

f = 1

2π

⎛
g

l
, (7.9)

the construction of the suspension chain presents some difficulties in the design of the
vertical harmonic oscillator which should have the same attenuation performance and
similar cut-off frequency as the horizontal one. For the VIRGO interferometer [2],
where the two end mirrors are suspended 3 km away, the situation is more complex
because of the different directions of the vertical line on the curved Earth surface. This
means that they are misaligned with respect to one another by about 3 × 10−4 rad.
In addition any vertical vibration will be partially transmitted to the interferometer
horizontal axis (laser beam direction) because of an unavoidable coupling among
different degrees of freedom. With this intent the experimental apparatus will have
a cut-off frequency above which the system behaves as a chain of second order low
pass filters.
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The horizontal displacements of the mirror along the laser beam direction can also
be induced by rotations of the pendulum chain around the vertical axis (mechanical
coupling between rotations and horizontal direction). To confine these rotational
mode frequencies below the detection band, each pendulum mass has to be replaced
by a structure having a high momentum of inertia. In addition, the diameter of the
suspension wire connecting two consecutive stages, must be small enough to reduce
its restoring torque (their diameter should be of the order of a few millimeters)
which opposes the rotation of the chain and determines its rotational frequency.
An interconnection of the stages at small distance and as close as possible to their
centers of mass, guarantees low frequency tilt mode (i.e., rotational modes around
the horizontal axes) and negligible coupling among different degrees of freedom,
which can induce horizontal displacements of the suspended mass.

7.3.1 The Virgo Superattenuator

The Superattenuator (SA) is the mechanical structure developed by the INFN Pisa
Group to isolate the test mass of the VIRGO interferometer [2] from seismic noise
and local disturbances [3]. The system is a hybrid one formed by a chain of passive
mechanical filters linked to each other by a thin metallic wire, a three leg structure
based on the working principle of an Inverted Pendulum (see next paragraph) and
a payload as last stage formed by a marionette, a recoil mass and the mirror (see
Fig. 7.4). The design has been developed considering three important guide lines:

• The confinement of the multistage pendulum normal modes in the low frequency
region;

• The introduction of a pre-isolation stage to be used as mechanical structure sup-
porting the suspension point of the chain with the possibility to steer it by applying
small forces;

• The introduction a soft suspension stage on top of the chain allowing Active Mode
Damping (AMD) and seismic noise reduction by means of inertial sensors, position
sensors and electromagnetic actuators. In addition, any noise introduced by acting
on the top stage must be filtered out by the Superattenuator chain.

7.3.2 The Inverted Pendulum

After a preliminary version of the Superattenuator design, a three-leg mechanical
structure based on the working principle of an Inverted Pendulum (IP) was added
to the final design [4]. As shown in Fig. 7.4, each leg, an Aluminum cylinder about
7 m high, is connected to ground through a flexible joint while the tops of the three
legs are interconnected to a mechanical ring (Top Ring) surrounding the first filter
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Fig. 7.4 A long Superatten-
uator of the VIRGO inter-
ferometer. All the elements
of the mechanical structure
are represented here within
the vacuum tank divided in
two sections: the upper part,
where the suspension chain
is accommodated, is main-
tained at a vacuum level of
10−7 mbar while the bottom
part hosting the free-falling
mass is at 10−9 mbar

of the chain (Filter 0). The flexible joints act on two horizontal degrees of freedom
(displacements along x and z direction) as well as in the rotation of the structure
around the vertical axis (θy d.o.f.). The Filter 0 is bolted on the Top Ring, and its
action is limited to the vertical degree of freedom only.

An ideal inverted pendulum can be conceived as a mass-less vertical bar of length
L , connected to ground by means of an elastic joint with stiffness k and supporting
a mass m on its top (see Fig. 7.5). For a similar structure, the equation of the system
can be written:

I θ̈ = −kθ + mgL sin θ | (7.10)

where I is the cylinder moment of inertia, the first term of the equation right-hand
side is the elastic torque due to the mechanical joint and the second one is the gravity
torque.
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Fig. 7.5 A schematic view
of the inverted pendulum
working principle

Considering the system in the small oscillation regime, Eq. 7.10 can be written:

θ̈ + (
k

mL2 − g

L
)θ = 0 (7.11)

having assumed I = mL2 as the generic moment of inertia for a massless bar. The
Inverted Pendulum resonant frequency will be:

fIP = 1

2π

⎛
k

mL2 − g

L
(7.12)

From Eq. 7.12 it is evident that, with a fixed bar length, the resonant frequency
depends on the mass m connected on its top. The frequency value can be lowered by
increasing the mass m until the mechanical instability is reached while gravity acts
as an anti-spring; such mechanical structure can operate at very low frequency (in
Virgo around 50 mHz).

Attaching the suspension point of the multistage pendulum chain on the top of
an inverted pendulum, we achieve an ultralow frequency pre-isolator stage that sup-
presses a large part of the input horizontal seismic noise. Moreover, due to its very
low overall stiffness, the inverted pendulum can be moved applying very small forces.

7.3.3 The Top Ring and the Filter 0

As mentioned above, the upper parts of the three cylindrical legs of the Inverted
Pendulum mechanical structure are connected by means of three thin steel wires
(each 31 mm long) to a metallic ring, the so-called Top Ring. This last element
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Fig. 7.6 The inverted pendulum Top Stage. Note the crowded Top Stage of a Superattenuator where
the mechanical elements together with sensors and actuators are positioned

surrounding the Filter 0 forms the top stage of the Superattenuator (see. Fig. 7.6).
Thanks to the triangular cantilever blades and the magnetic anti-springs installed on
the Filter 0, which is bolted to the Top Ring (see next paragraph for the mechanical
filter description), it has been possible to complete a seismic pre-attenuation stage
in the three translational degrees of freedom. Seismic pre-isolation stage along the
other two horizontal degrees of freedom has been fulfilled by using the flexible joints
within the Inverted Pendulum structure [4].

The Superattenuator top stage represents a platform on top of which a set of sen-
sors and actuators are installed for feedback control purpose [5]. In particular, three
Linear Variable Differential Transformer (LVDT) displacement sensors, three hori-
zontal accelerometers, two vertical accelerometers together with three coil-magnets
actuators and three stepping motors are the devices used to perform a very low
frequency control of the chain suspension point as well as the Superattenutator res-
onances Active Mode Damping.

Blending the LVDT signals, ground connected through the Inner Structure (see
Fig. 7.4) and as a consequence non seismic noise free, with the accelerometer sig-
nals measuring the acceleration with respect to the fixed stars (inertial reference
frame), a very accurate tidal strain and drift control can be performed up to about
200 mHz. This feedback, based on the acceleration measurements, is often called
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Fig. 7.7 Technical drawings of the mechanical filters for the VIRGO superattenuator. A complete
mechanical filter is visible (upper left) where 12 cantilever triangular blades are clamped on the
outer circumference of the filter body bottom part. A detail of the blade tip connection through a
thin steel piano wire to the mobile central column, is shown in the left bottom corner (detail view
C). The filter body cross section is shown on the right bottom. The crossbar (moving part of the
mechanical filter) supporting the permanent magnets of the anti-spring system, is visible on top of
the filter body. The fine alignment of these moving magnets with respect to those anchored to the
filter body is obtained via the remotely controlled fishing rod, also shown. In the right top corner, a
detail of the central column cross section (detail view D) shows the connection of two suspension
wire sections in the mechanical filter center of mass

Inertial Damping in the VIRGO jargon. It plays a crucial role in the hierarchical con-
trol of the Superattenuator chain thanks to the Inverted Pendulum softness, conceived
to allow a wide positioning of the suspension point in three degrees of freedom.

7.3.4 The Seismic Filters

In our system, each pendulum mass has been replaced by a rigid drum-shaped
metallic structure also acting as an oscillator in the vertical direction (Fig. 7.7). A
sequence of six mechanical filters guarantees good seismic noise isolation of the
optical components according to the working principle of a multistage pendulum.
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Each mechanical filter (70 cm diameter, 18.5 cm high for a total weight of about
100 kg) is suspended as close as possible to its center of mass. On the outer circum-
ference of the filter body bottom part, a set of triangular cantilever spring blades is
clamped. Each blade (3.5 mm thick and 385.5 mm long) is bent at a constant curvature
radius and with a different base width according to the load to be supported. These
differently curved blades become flat and horizontal under loads ranging between
48 and 96 kg. Each blade tip is connected by a 1 mm diameter steel piano wire to
a mobile central column (see detail view C in Fig. 7.7), coaxial to the filter body.
Any movement of the central column, apart from the vertical direction, is prevented
by two sets of four centering wires stretched on the top and on the bottom of the
filter body. A crossbar, bolted on the upper part of the central column, is used as a
mechanical support for the magnetic anti-spring system described in the next section.
The central column and the crossbar represent the moving part of the mechanical
filter from which the load of the lower stages is suspended by a steel suspension
wire. By connecting each filter to the next one, a chain of mechanical oscillators in
the vertical direction is obtained.

The set of triangular steel blades mounted under each filter (see Fig. 7.7), sustains
the weight of the lower part of the chain. The support capability of each spring set
is tuned varying the number of blades from 12 to 4, the base width of each blade
between 180 mm and 110 mm and the curvature radius without load.

Once properly loaded, the main vertical resonance frequency of each filter is
about 1.5 Hz. In order to reduce the peak amplitude of the blade first flexural mode
(about 100 Hz), a rubber/metal damper is mounted in the middle of each blade.
Another special damper, mounted on the crossbar, suppresses a mode at about 50 Hz,
due to the suspension wire connecting the crossbar to the next filter and acting as a
stiff spring.

Maraging steel has been used in place of standard steel for blade construction
[6, 7], in order to minimize micro-creep effects1 due to the high load applied. The
same material has been also used to machine the suspension wires with nail-heads
at both ends [9]. Since the suspended load decreases as we move from the top to the
bottom of the chain, the wire diameter changes accordingly, from 4 mm to 1.85 mm.
In this way, it has been possible to confine the wire violin modes (see [10]) within
the high frequency band and to reduce their angular stiffness, which determines
the rotational frequencies around the vertical axis. The two nail-heads of the wires
connecting a filter to that above and below are into the central part of its body at a
relative distance of 5 mm (see detail view D in Fig. 7.7), very close to the filter center
of mass. As mentioned above, this guarantees a small restoring torque to rotations
of the filter around a horizontal axis and thus a low tilt frequency.

1 A micro-creep event is a sudden release of the stress accumulated in the lattice (microstructure of
the material), which can propagate all the way to the bottom of the chain, to the suspended mirror,
thus simulating a Gravitational Wave burst event. Though the micro-creep is a noise of thermal
origin, it comes from a non linear phenomenon and it has a non-Gaussian spectrum [6–8].
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Fig. 7.8 The working principle of the magnetic anti-spring system: when the magnets are displaced
in vertical direction (right side) a vertical component of the repulsive force appears

7.3.5 The Magnetic Anti-Spring

The chosen suspension wire length of 1.15 m sets the pendulum resonant frequency
of each stage at about 0.5 Hz. In the vertical direction, the stiffness of the triangular
blade springs fixes the natural resonant frequency at about 1.5 Hz.

In order to reduce the vertical stiffness of the blades, and then to confine the main
vertical resonant frequency of each filter below that of the pendulum, a system of
magnetic anti-springs was conceived [11, 12]. This consists of four sets of permanent
magnets (two assembled on the crossbar and two on the filter body) facing each other
with opposite horizontal magnetic moment (namely in a repulsive configuration).
The two matrices on the crossbar are constrained to move in vertical direction only.
The working principle of this system is sketched in Fig. 7.8. When the magnets are
perfectly faced, the repulsive force has a null vertical component, but as soon as
the crossbar (and its magnets) moves in the vertical direction, a vertical component
of the magnetic force appears. Considering a small relative displacement (Δy), the
vertical component of the repulsive force (Fy) is proportional to Δy:

Fy ∞ F0 · Δy/d (7.13)

where F0 is the module of the repulsive force and d is the magnet separation (see
Fig. 7.8). Such a device is equivalent to a vertical spring with a negative elastic con-
stant (anti-spring) whose module is kAS = F0/d. Its rest position is thus the position
for which the two couples of matrices are perfectly faced. On a seismic filter the mag-
netic anti-springs act on the crossbar in parallel with the blade mechanical springs,
so that the overall elastic constant is reduced and the vertical mode frequencies of
the chain can be confined below the highest frequency of the horizontal modes. To
this purpose writing down the equation of the mechanical system with the combined
action of the blade springs and the magnetic anti-spring, it turns out:
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mÿ = −kbΔy + kASΔy (7.14)

where kb is the stiffness of the blade springs and and kAS, as defined above, is that
one obtained by the fine tuning of the magnets distance mounted on the crossbar and
on the filter body respectively. From Eq. 7.14, defining:

ωo
2 = kb − F0/d

m
(7.15)

it is evident that the elastic constant of the system and then the vertical mode frequency
ω0 (see Eq. 7.15) can be changed modifying the distance of the permanent magnets
pairs bolted on the mechanical filter in accordance with Eq. 7.13.

The device working principle requires that in the rest position all the mag-
netic anti-springs are perfectly aligned, in order to null the vertical component of
the magnetic force. To this end, a small remotely adjustable cantilever blade (the
so-called fishing rod, visible in Fig. 7.7) has been added on top of each filter, to bring
the anti-springs to the correct working point.

7.3.6 The Filter 7

The last mechanical filter of the chain is the so-called Filter 7 [13]. Since it has
been designed to steer the payload, it has been equipped with four aluminum legs
(about 900 mm-long and 250 mm in diameter) bolted on the filter body bottom part
(see Fig. 7.9). These legs are used as a mechanical support for the coils mounted in
front of the permanent magnets on the marionette wings (see next paragraphs for the
marionette description). The coil-magnet pairs are used to apply forces and torques
to the marionette, controlling its position in three degrees of freedom: translation
along the beam direction (z), rotation around the vertical (θy), and transverse axes
(θx ).

In addition, the Filter 7 is equipped with different vacuum-compatible stepping
motors. Two of them are dedicated to the filter alignment around its vertical axis.
The first one is accommodated on top of the filter body and is used to rotate the
filter with respect to the upper part of the Superattenuator together with the whole
payload. The second is mounted under the filter and rotates the marionette and the
rest of the payload with respect to Filter 7, adjusting the relative positions of coils
and magnets.

A second pair of vacuum-compatible stepping motors moves two small masses
attached to mechanical trolleys on top of the filter body, performing a fine adjustment
of the tilts (rotations around the two horizontal axes).

The set of sensors and actuators is completed with three position sensors with
permanent magnets bolted on the cylindrical mantel of the filter body (not visible in
Fig. 7.9 because their installation is performed after the Filter 7 integration within the
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Fig. 7.9 The Filter 7 during the integration phase within a suspension chain of the Superattenuator.
The four aluminum legs used as mechanical support for the actuation coils are visible. The first
stepping motor used to rotate the system Filter 7-payload with respect to the upper part of the
suspension chain is visible (platform for its installation) on top of the mechanical body. The second
one, devoted to the payload rotation with respect to the Filter 7, is also visible on the bottom part
filter body

vacuum tower). These are installed reproducing the geometry of the IP top stage (pin-
wheel configuration at 120⊥ from one other) and, together with a set of three 110 mm
diameter actuation coils, mounted on the ground connected bottom ring, represent the
system used to feedback control the Filter 7 position during interferometer alignment.
The large size of the coils, having a field gradient uniformity of better than 2 % over
a 30 mm distance, ensures that seismic noise reintroduction at this stage is negligible
and the coupling among different degrees of freedom is minimized.
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7.4 The Last Stage Suspension

7.4.1 Overview of the Last Stage Suspension

The main role of the last stage of the suspension is to steer the optical components to
maintain the interferometer at its working point [14]. Passive attenuation is obtained
by suspending the mirror with wires so to have a pendulum, which provides a further
mechanical filtering at frequencies higher than the pendulum resonances. However,
such a scheme must be integrated with the capability to apply a feedback control
to the position of the optical components. For this reason, a series of actuators acts
directly on the mirror and on the mass from which it is suspended, the so-called
marionette. Indeed, for these actuators to be effective, the mirror must be hung with
two wires, so that, changing the inclination of the plane of the suspension, also the
inclination of the mirror changes.

The marionette is also suspended from the last filter of the Superattenuator chain,
the above described Filter 7. In this way, the suspended marionette is also a pendulum
acting as any other mechanical filter and providing further passive attenuation for
seismic noise.

By construction, the marionette orientation and inclination define orientation and
inclination of the mirror. These degrees of freedom of the marionette are controlled
using coils which are rigidly connected to the Filter 7, and act on magnets on the
marionette arms. Injecting a current in the coils we can, for instance, push the mari-
onette and the mirror along the z axis (which in Virgo reference frame is horizontal
and coincides with the optical axis) and control the length of the Fabry Perot cavity.
However, there is a strong geometrical constraint that must be followed if we want
this action to be effective: the forces acting on the magnets of the marionette in the
z direction should result, as much as possible, in a motion of the marionette along
the z direction only. This can be achieved if the suspension point of the marionette,
its center of mass, and the magnets dipoles lie all on the same geometrical plane.
This is not pursuable with infinite precision and therefore a force along the z axis
will always give also a motion (a coupling) along other degrees of freedom, e.g., a
torsion along the vertical axis (the y axis in Virgo reference frame). In any case, we
want this coupling to be as small as possible: acting on z (our input) must result in in
a displacement of the mirror along the z direction only: this is sometimes referred to
saying that our controls must be orthogonal. Currently the coupling reduction that
has been achieved between different degrees of freedom in Virgo is ∞10−3.

A further difficulty comes from the fact that the mirror is connected to the mar-
ionette by the suspension wires: this connection is not a problem if we want to
change the static position of the mirror, for instance with a dc current in the coils,
but, of course, acts as a mechanical filter also when we want to move the mirror at a
frequency much higher than the pendulum frequency of the mirror suspension, for
instance to feedback the motion due to the seismic noise at, say, 5 Hz. In Virgo, the
typical pendulum frequency of the mirror suspension is 0.6 Hz, so that the motion
imposed on the marionette at 5 Hz is attenuated by a factor ∞(0.6/5)2 ∞ 10−2 when
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it reaches the mirror. To overcome this problem, we must be able to act directly on
the mirror, and not only via the action on the marionette: to this purpose, we glue
some small magnets on the mirror and position some coils in front. In this way, if
we feed a current to the coils, we exert a force directly on the mirror, without any
filtering effect from the marionette.

However, “putting some coils in front of the mirror” requires a mechanical support,
which again must be connected somewhere. Of course, we cannot just bolt it on the
ground, because in that way the seismic noise would move directly the coils and
be transmitted to the mirror via the e.m. coupling with the magnets, spoiling the
Superattenuator efficiency. The safest thing to do is suspend the support in the same
way as the mirror: in this way, we are sure that any seismic noise reaching it is
attenuated at the same level as for the mirror itself. So we suspend our support
from the marionette, with a two wire suspension, like the mirror: the motion of the
marionette will move the mirror and the coil support (which is called recoil mass in
Virgo) in the same way. Of course, this is true if the center of mass of the mirror and
of this recoil mass are coincident. This puts some strong constraints on the shape
of the recoil mass: its typical geometry is that of a hollow cylinder surrounding the
mirror, with coils placed on one face. As a by-product, this set-up proved to be quite
useful also to protect the mirror from accidents like wire breaking and excessive
motion of the Superattenuator chain due to a failure in feedback control, and has
been used both in initial Virgo and in Virgo+. A simplified view of this apparatus
can be seen in Fig. 7.10a.

The Marionette, the Mirror and the Recoil Mass are what we call a branched triple
pendulum, according to the scheme shown in Fig. 7.10b.

The frequencies of the coupled modes of these pendula can be evaluated solving
a simple system of equations:

⎧
⎨
⎩

M1 ẍ1 = −k1x1 − β1 ẋ1 + k2(x2 − x1) + β2(ẋ2 − ẋ1) + k3(x3 − x1) + β3(ẋ3 − ẋ1)

M2 ẍ2 = −k2(x2 − x1) − β2(ẋ2 − ẋ1) − β2,3(ẋ2 − ẋ3)

M3 ẍ3 = −k3(x3 − x1) − β3(ẋ3 − ẋ1) − β2,3(ẋ3 − ẋ2)

(7.16)
which gives the frequencies of the pendulum modes of the branched system.

7.4.2 The Last Stage Suspension and the Local Control
of the Mirror

The motion of the mirror at these frequencies, as well as the motion due to the other
low frequency modes of the attenuation chain, must be damped in order to keep
the interferometer locked on its working point: this damping effect is provided by a
system, the Local Control, that monitors the payload position, and damps the internal
angular and longitudinal modes involving the mirror, that the inertial damping of the
Superattenuator chain is not able to control. In that way, it is possible to recover
the reference position of each mirror separately and to approach the interferometer
working point.
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Fig. 7.10 a Scheme of the marionette—recoil mass— mirror system. b The equivalent system of
three pendula

Longitudinal and angular mirror positions are reconstructed by means of two
optical levers based on two low-power red laser diodes: one laser beam points directly
the mirror, while the second one is reflected by an auxiliary mirror installed below
the marionette. The reflected beams are detected by position sensing devices (PSD),
as shown in Fig. 7.11.

When the oscillation amplitude is larger than the dynamical range of the PSD
sensors, the coarse position is reconstructed using a camera CCD which monitors
the relative position of the diffusive markers attached to the mirror itself. The local
control system also receives the global interferometric signals for the longitudinal
and angular sensing and control, transmitted to the central and terminal buildings
by digital optical links (DOL). In order to reduce as much as possible the required
dynamics of the actuators, part of the control force is re-allocated from the mirror-
reaction mass actuators to higher stages: the very low frequency component is sent
to the inertial damping control system (in particular to the filter 0); the intermediate
frequency component is actuated on the marionette and only the high frequency part
of the signal is sent to the reaction mass coils.

Indeed, the local control of the mirror position has an accuracy of ∞1µrad and it
is not sufficient to fulfill the interferometer requirements for keeping the detector on
the resonance condition. Furthermore, this control system is referred to the ground,
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Fig. 7.11 Scheme of the local control sensing system, including the marionette and mirror optical
levers

and as a consequence, limited by the seismic motion. Moreover, it is also affected
by temperature drifts, and so it is not stable for long-time periods. For these reasons,
a global control is necessary, as it has been discussed in Chap. 6.

The specification for mirror swing over a long period of time is <1 µm, with
velocity <1 µm/s. The reached values are 0.7 µm, 0.25 µm/s, respectively. The
specifications for angular control are to reduce the angular swings from a few dozens
of µrad to 1µrad. The attained value is ∞1 µrad for both pitch and yaw (rotations
defined in Fig. 7.11).

A more detailed description of this fundamental system can be found in [15, 16].

http://dx.doi.org/10.1007/978-3-319-03792-9_6
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Fig. 7.12 a Details of marionette design. b Details of recoil mass design

7.4.3 The Real Design of Last Stage Suspension Elements

The construction details, both for marionette and recoil mass, must be compliant with
strict requirements of ultra-high vacuum compatibility and cleanliness. Moreover,
these parts must be made of materials which give a negligible contribution to the
dissipation of energy of the pendulum motion of the mirror by means of eddy currents.
Such additional complications are reflected in the real design of a marionette and of
a recoil mass, that can be seen in Fig. 7.12a, b.

The counterweight is a piece of high density alloy of Copper and Tungsten which
is used to set the center of mass of the marionette on the suspension point. The arms
holding the magnets are in peek, a UHV compatible plastic. In this way, any effect
due to coupling of the magnetic field of the magnets with the arms is avoided. For
the same reason, the body of the marionette is also made of a special nonmagnetic
stainless steel.

The recoil mass has the same constraints as the marionette: for instance, its center
of mass coincides with that of the mirror, and amagnetic steel and UHV PVC (peek)
are used for many pieces. Also, not shown in the figure is a series of stops to prevent
the mirror from falling down if its wires break. For safety, the wire suspending the
recoil mass are dimensioned so to be able to withstand the entire weight of both mirror
and recoil mass. In Fig. 7.13 is the beam splitter payload of Virgo and Virgo+: this
is how a real payload looks like.

7.4.4 Last Stage Suspension and Thermal Noise

If we look at the curve shown in Fig. 7.14 we can now recognize the contribution
due to the seismic noise (green line) and the peaks in the transfer function due to
the resonances of the Superattenuator chain. We can see that, because of the high
efficiency of Virgo mechanical filters, the seismic noise becomes negligible already
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Fig. 7.13 The Beam Splitter mirror payload in Virgo

Fig. 7.14 The Virgo sensitivity curve for the advanced stage: the limiting contributions of seismic
noise at low frequency is shown
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at frequencies of the order of 4 Hz, and another kind of noise becomes dominant: the
thermal noise. To reduce such noise is one of the most important functions of the last
stage.

The general theory of the thermal noise is extensively described in Chap. 8: here,
in the following, we shall mainly deal with the methods that are being devised to
reduce it, referring again principally to the Virgo case.

In any case, literature on this subject is large and rapidly growing. An extensive
list of references, as well as a more detailed discussion of the topics that we shall
treat in the following, can be found in [17].

7.4.4.1 The Thermal Noise Contribution of the Mirror and of Its Suspension

In order to evaluate how the sensitivity of the interferometer is limited by thermal
noise, we must apply the theoretical model analyzed in Chap. 8 to the real case of
a mirror suspended to a marionette, as described above. It is evident that in such
a configuration, the motion of the coated face of the mirror, which is detected by
the laser beam resonating into the F-P cavity, is due also to the thermal motion of
the entire bulk of the mirror, with a spatial shape and frequency that depends on
its normal modes of resonance. Typical values for the resonance frequencies in a
mirror are of the order of a few kHz. So, in the frequency spectrum at the output
of the interferometer we shall see a series of peaks, due to the thermal motion of
the mirror at the resonance of each normal mode. The behavior of the thermal noise
at frequencies lower and higher than the peak value is given by the fluctuation-
dissipation theorem, and depend on the dissipation processes going on inside and on
the surface of the mirror (see Chap. 8). Moreover, the suspended mirror behaves like
a simple pendulum, with a frequency of about 1 Hz. Also this oscillator will have
its thermal motion, and this noise will be detected by the interferometer. However,
in this case, we have the advantage of the so-called dilution factor (see for instance
[18]). Indeed, the motion of a pendulum is mainly due to a restoring force which is
gravity, and gravity is intrinsically non dissipative, while only a small contribution
is given by the elasticity of the wire, whose dissipations can be described by the
fluctuation-dissipation theorem. In particular, if kg = mg/ l is the elastic constant
due to gravity, and kel(1+ iφstruct) is the complex elastic constant taking into account
the structural dissipative effects of the wire material, described by φstruct , the equation
of motion of the pendulum can be written as:

mẍ = kgx − kel(1 + iφstruct)x (7.17)

which can also be written as:

mẍ = −(kg + kel)(1 + i
kel

kg + kel
φstruct)x (7.18)

http://dx.doi.org/10.1007/978-3-319-03792-9_8
http://dx.doi.org/10.1007/978-3-319-03792-9_8
http://dx.doi.org/10.1007/978-3-319-03792-9_8
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This equation shows that it is possible to define an effective loss angle φeff given by:

φeff = kel

kg + kel
φstruct ∞ kel

kg
φstruct = Dpφstruct (7.19)

since usually kel << kg . The factor Dp = kel
kg

<< 1 is the pendulum dilution factor.
If we insert in this formula, the explicit expressions for kel and kg , we find:

Dp = kel

kg
=

⎛
E I

T L2 (7.20)

where E is the Youngs modulus, I is the moment of the cross section, T is the tension
applied to the wire of length L . Thanks to the dilution factor, the effective measured
loss angle φeff is much lower than the value which is due only to the properties of
the wire material.

The value of φeff includes all the dissipative effects that play a role in the pendulum
motion. For instance, another important dissipation mechanism is due to the heat
transfer between zones of the wire having different stresses: the temperature in a
compressed zone is higher than in an extended zone, and as heat moves to even out
the temperature difference, energy is lost. This mechanism is more efficient when
the motion of the wire is at a certain frequency, depending on the characteristics of
the materials: if we plot the losses of the material as a function of frequency, this
effect appears as a characteristic peak in dissipation, and is often referred to as the
thermal peak. Another important effect contributing to the overall losses is due to
the fact that, in a material, surfaces usually have more defects than the bulk. So the
losses of the material due to the status of the surface are usually higher and taken
into account separately. Finally, further dissipations of the pendulum motion are due
simply to the recoil of the supporting structure. These dissipations can be limited by
careful design, but are not due to a part of the pendulum, thus, are not mitigated, like
the others, by the dilution factor.

In summary, we must account for all these losses when we write down explicitly
φeff :

φeff = Dp(φstruct + φtherm + φsurf) + φrecoil (7.21)

Using φeff we can write down the thermal noise estimation for the pendulum mode:

Spend
X (ω) = 4kB T

ωm

φeffω
2
p

(ω2 − ω2
p)

2 + ω4
oφ

2
eff

(7.22)

where ωp =
⎜

g
l is the simple pendulum resonant frequency and kB is Boltzmann’s

constant.
In a typical interferometer, the thermal noise due to the pendulum of the mirror

suspension is dominant from a few Hz to about 100 Hz, while the thermal noise due
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Fig. 7.15 Sensitivity of
Advanced Virgo with both
seismic and thermal noise
contributions put in evidence

to bulk of the mirror is dominant from 100 Hz to a few kHz. In Fig. 7.15 we show
the same sensitivity curve of Virgo of Fig. 7.7 (the black line), but now we highlight
also the thermal noise contributions due to the pendulum (grey line) and to the mirror
(dashed line).

7.4.5 The Monolithic Suspensions

The thermal noise sources which we described in the preceding section depend
mainly on the intrinsic characteristics of the mirror (substrate and coating) and of the
suspension wires. Moreover, an important contribution is also given by the friction
on the clamping points of the suspension. The best way devised so far to reduce
these sources of noise, has been to use fused silica (i.e., glass) wires, attached to the
mirror by welding or using a procedure called silica bonding, which can reproduce
the connection between materials at the molecular level [19]. For this reason, they
are often referred to as monolithic suspensions.

Indeed, fused silica has a very low internal loss angle φFS ∞ 10−9 [20, 21]. For
a comparison, the value for steel is φSTEEL ∞ 10−4. As an additional vantage, fused
silica wires have a tensile strength of 4 GPa (for a comparison, it is 2.9 GPa for C85
steel).

However, these good properties are balanced by some important drawbacks, that
make the implementation of fused silica fibers for mirror suspension rather complex
and challenging: in particular, the tensile strength is strongly dependent on cracks and
defects present on the fiber surface. Moreover, such cracks can also be induced by a
long exposure to environment pollution. Therefore, it is crucial to avoid contaminants
and impurities during the fibers production and also it is necessary to store them in
a high performance clean room (class 100 or better) avoiding contact with virtually
anything.
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Fig. 7.16 Scheme of monolithic suspension in Virgo+

As a consequence, design, production, and integration of monolithic suspension
is a difficult task. The first step is to identify the optimal geometry to minimize the
pendulum thermal noise. This choice must be compatible also with the requirements
for an optimal control of the test mass, and must, at the same time, ensure safety and
reliability.

In Virgo, each fiber is welded to two fused silica blocks (see Fig. 7.16) which are
then connected to the marionette on one side and to the mirror on the other side.
From the mirror side, the fused silica piece welded to the fiber (we call this piece the
anchor) is glued with a silica bonding technique to a section of fused silica protruding
from the mirror (the ear). Machining the ear out of the mirror is rather difficult, so
the ear itself is silica bonded to the mirror before the fiber is assembled. If silica
bonding is correctly applied, fiber, anchor, ear, and mirror are a continuous body,
and we have a monolithic suspension. The other end of the fiber, welded to another
fused silica piece, is connected to the marionette with a stainless steel interface (the
upper clamp assembly).

Fiber length, fiber stiffness, and position of bending points are constrained by
the available space and the choice of resonant frequency of the various modes of the
suspension. This choice depends strongly on control issues. For instance, the vertical
bouncing frequency (for a description of this and other typical modes of a string, see
for instance [10]) of the last stage represents the lower limit of the detection band
because, although the vertical to horizontal coupling is small (a value of 10−3 is
assumed, as said above), the vertical oscillation does not have any dilution factor.
The result is that the vertical bouncing mode is clearly visible in the thermal noise
spectrum and so, in order not to spoil the sensitivity, this frequency must be kept
below 10 Hz, i.e., below the low frequency limit of the detection bandwidth. This
can be achieved with a careful choice of the dimensions and shape of the fiber. Also,
in order to have the detection band with the smallest possible number of resonant
modes, its first violin mode [10] should be as high as possible. Violin modes are
resonances of a stretched string clamped at its ends, like in a guitar or in a violin. The
frequency of the first violin mode and of its harmonics depends on the fiber cross
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Fig. 7.17 a A fused silica fiber being ready to be stretched by the facility in Virgo. b The fiber has
been stretched to its final length

section and then ultimately on its breaking stress. The first violin mode of our fibers
is at about 430 Hz, about 100 Hz higher than what can be obtained with steel wires.

In Virgo, each fused silica fiber is produced starting from high purity fused silica
cylindrical bars, commercially available (suitable materials are Herasil or Suprasil),
10 cm long and 1.5 mm thick. This small cylindrical bar is clamped at both ends
and heated in the central region using a 100 W CO2 commercial laser with 10.6 µm
wavelength. Subsequently, the two ends are pulled apart, extending the fiber at the
desired length and shape. In fact, once melted, the fused silica material becomes
highly viscous and it can be plastically deformed. This process is performed by a
dedicated machine developed at the University of Glasgow for GEO gravitational
interferometer and duplicated in Virgo in a dedicated laboratory (Fig. 7.17).

After being produced, the fibers are tested to a load at least double the operation
load. Then, if the fiber survives, its bending length is measured. The bending length
λ of the suspension is the distance of the fiber bending point from the clamped end.
This is an important information, because tells us where is the point where the fiber
bends during the pendulum motion of the mirror. That is also the point that must
be contained in the plane passing by the suspension point of the marionette and the
actuation axis of the coil-magnet actuators. Positioning the bending point on the
center of mass plane of both the marionette and the mirror allows minimum coupling
between the different degrees of freedom; it is also possible, through a simple model
of the fiber based on the knowledge of λ, to study its dynamical behavior. The tapered
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Fig. 7.18 Test of a fiber after
production

profiles of the fibers near the heads require this quantity to be directly measured. For
doing this, a specific instrument was realized (Fig. 7.18).

The fiber is clamped to a rotary stage, suspending a load as similar as possible
to the working conditions. If the bending point is placed exactly on the rotation axis
of the stage, when the top head of the fiber is rotated, the bottom part of it actually
does not move. Acting on a micrometric translator moving along a diameter of the
rotary stage it is possible to find a position where the fiber movements get their
minimum amplitude, thus having a measurement of the bending length. It is found
that a repeatibility of some micrometers is achieved. This device also provides an
easy way to measure the first violin and bouncing frequencies.

After being produced and validated, the fibers are then placed in position, clamping
the upper part to the marionette and inserting the lower anchor below the lateral
supports bonded to the mirror. In the end, the anchor and the supports are bonded
together through silicate bonding.

In Fig. 7.19, we can see the assembly of the fused silica fibers into the payload.
The complete payload is then inserted in a container with controlled humidity

and cleanliness and transported under the tower for integration, with a continuous
monitor of acceleration during transport (Fig. 7.20).

The insertion of the payload into the tower and its integration with the Super-
attenuator is a complex procedure: after several hours of stressful work the mirror
is suspended at the end of the Super Attenuator chain by the monolithic fibers (see
Fig. 7.21), and the weeks long procedure to activate the local control and subsequently
the global control can start.

In 2009, the solution we have described has been implemented in Virgo+. That
has been the first time that such a technology was used on a large interferometer:
the four mirrors of the 3 km Fabry-Perot arms were in operation for about 2 years,
suspended to glass fibers of 0.4 mm in diameter, before being disassembled to start
the upgrade of Virgo to the Advanced state. While this new set up was a success as
a technical achievement, the actual values of Q measured for violin modes were in
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Fig. 7.19 The four fibers silica bonded to the mirror

Fig. 7.20 The transport of the monolithic payload for integration with its Superattenuator

general a factor 10 lower than expected. The cause of these extra dissipations was
probably in the design of the upper clamp of the fibers. This design is being revised
now in order to implement monolithic suspension in Advanced Virgo.
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Fig. 7.21 The NI mirror monolithic payload of Virgo+ integrated with its Superattenuator
suspension

7.4.6 The Last Stage Suspension in Advanced Virgo

A revised design of the clamps of the monolithic suspensions is not the only dif-
ference that will be implemented in the payloads for Advanced Virgo. In this new
configuration of the detector, the power circulating into the interferometer and stored
in the cavities will be increased by at least an order of magnitude, to reduce the shot
noise contribution to the sensitivity. This increased power will produce a deforma-
tion of the mirrors that must be compensated by installing large optical pieces (the
so-called “compensation plates”) near the mirrors at the input of the Fabry-Perot
cavities, and some heaters near the lateral surfaces of all mirrors (the “ring heaters”).
Also, having more power inside the interferometer means having more light of the
main beam scattered around the mirrors, toward the wall of the vacuum chamber.
Scattered light has been found to be one of the main limits in sensitivity in previ-
ous versions of the interferometer and this problem will probably be more severe in
Advanced Virgo. Hence large baffles (about 1 m in diameter) to intercept and damp
any scattered light are being designed and produced, and will be installed either
ground connected inside the vacuum chambers or suspended around all mirrors.

As a consequence of the requirements of this new set up, we had to make a deep
change of the basic scheme of the mirror suspension. In brief, we found that it is
very difficult to design and implement a suspended recoil mass supporting all needed
items (baffles, compensation plates, ring heaters...), so we decided to take out the
recoil mass suspension and to rigidly connect it to the body of the Filter 7. In this way,
we can support easily large pieces very near to the mirror, andhave the additional
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Fig. 7.22 Scheme of last stage suspension for mirrors in Virgo (a) and Advanced Virgo (b)

advantage to take out some low frequency resonances of the suspended recoil mass
(e.g., the bouncing frequency of the wires of the recoil mass suspension) that were
difficult to control. In Fig. 7.22, we can see a comparison between the old and the
new scheme of the payload.

Of course, this new scheme has some disadvantages as well: the control of the
Filter 7 must be improved, because now also the positioning of the coils facing
the magnets on the mirror depends on it. Moreover, the metal wall that in Virgo
separated the upper vacuum of the tower from the lower one, where the mirror is
located, must be moved over the Filter 7. This change requires also that the Filter
7 must now meet the strict requirements of cleanliness and UHV compatibility of
all other parts of the payload. These constraints drove a thorough redesign of the
Filter 7 and of some elements of the vacuum chamber of the suspension, that is now
underway.

The new payloads for Advanced Virgo are currently (october 2013) being designed
and tested at the prototype level. In Fig. 7.23 we can see a first implementation,
designed and built for the Beam Splitter Mirror.

We hope that with Advanced Virgo we shall be able to improve the sensitivity by
an order of magnitude with respect to the past, as shown in Fig. 7.24. In such a way,
we shall increase the volume in the detector range, and consequently the detection
rate, by a factor of one thousand.

After the advanced detectors, it will be difficult to reach a further increase in sen-
sitivity by improving the dissipations of suspensions beyond the already challenging
limits imposed by the monolithic technique. In future, a further reduction of the
thermal noise in gravitational wave interferometers will be probably given by the use
of cryogenic technologies. The perspectives that such a development will open are
dealt with in Chap. 14.

http://dx.doi.org/10.1007/978-3-319-03792-9_14
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Fig. 7.23 a Design of the new Beam Splitter payload. b The prototype of the Beam Splitter payload
ready to be integrated with a Superattenuator for testing

Fig. 7.24 Sensitivity of Virgo compared to the sensitivity expected for Advanced Virgo
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Chapter 8
Thermal Noise in Laser Interferometer
Gravitational Wave Detectors

Raffaele Flaminio

Abstract Thermal noise is one of the major limitations to the sensitivity of present
and future laser interferometers devoted to gravitational wave detection. According to
the fluctuation-dissipation theorem any mechanical oscillator is affected by a motion
of thermal origin directly related to its thermodynamic temperature. The mirrors
and their suspensions that are used in gravitational wave detectors such as Virgo or
LIGO are examples of such mechanical oscillators. As a consequence their position
is affected by this thermal vibration and the sensitivity of the gravitational wave
detector is thermal noise limited over a wide range of frequencies. After recalling
briefly the fluctuation-dissipation theorem and its origins, this chapter describes the
main types of thermal noise affecting gravitational wave detectors. In the last part of
the chapter a special emphasis is given to the thermal noise due to dissipation in the
mirrors optical coatings.

8.1 Introduction

Gravitational wave detectors such as Virgo [1] or LIGO [2] use long baseline laser
Michelson interferometers to measure the vibration of space–time associated with
a gravitational wave. Gravitational waves act as quadrupolar tidal forces on the
suspended mirrors of the interferometer (the so-called test masses) thus induc-
ing a change in the interferometer arms lengths difference. Present gravitational
wave detectors have reached a strain sensitivity of a few times 10−23/

√
Hz. Such a

strain sensitivity corresponds to mirror displacements of the order of 10−19m/
√

Hz
or equivalently to a displacement of about 10−18 m over a time of 10 ms. Future
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Fig. 8.1 Main noises limit-
ing the strain sensitivity of
Advanced Virgo as a function
of the frequency

advanced detectors such as Advanced Virgo [3], Advanced LIGO [4], or KAGRA
[5] aim at improving this sensitivity by about a factor of 10 thus decreasing the resid-
ual mirror displacements to the level of 10−20m/

√
Hz. Figure 8.1 shows the planned

strain sensitivity of Advanced Virgo reaching a level of about 5×10−24/
√

Hz for fre-
quencies around 100 Hz. At such a tiny level of displacement thermal noise becomes
an issue. According to the fluctuation-dissipation theorem any mechanical system
subject to some form of dissipation will be affected by a fluctuation of its position
directly related to the system temperature. The equipartition theorem establishes that
the total thermal energy of each degree of freedom of a mechanical system should be
equal to 1

2 kT . A simple application of this theorem to the case of the main mechan-
ical mode of a 20 kg mirror shows that the total vibration amplitude will be in the
range of 10−15 m, much larger than the effect of the gravitational waves one wishes
to detect. Luckily, most of the thermal vibration is concentrated at the resonance of
the mirror mechanical mode, the spectral displacement off-resonance being consid-
erable smaller. The distribution of the thermal noise off resonance is known from
the fluctuation-dissipation theorem [6, 7] once the dissipation is known. As a conse-
quence, it is of primordial importance to have a detailed knowledge of the dissipation
mechanisms in order to foresee and possibly reduce the thermal noise amplitude.

Later in this chapter, the fluctuation-dissipation theorem is briefly recalled while
in Sect. 8.3 its application to the case of a harmonic oscillator is discussed. Different
cases of dissipation are discussed. In Sect. 8.4 the case of the pendulum thermal noise
is discussed since this is one of the main limitations to the sensitivity of gravitational
wave detectors at low frequencies, i.e., below 100 Hz. The discussion of thermal
noise in continuous system is presented and discussed in Sect. 8.5. In the following
section, we present the case of the mirror substrate thermal noise. Both the Brownian
noise and the thermoelastic noise are dealt with. Section 8.7 is devoted to a discussion
of thermal noise due to the losses in the optical coatings that are deposited on the
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substrate to provide the required reflectivity. This is at present the main limitation
to the performance of gravitational wave detectors around the 100 Hz region, i.e.,
where interferometers reach their best strain sensitivity. This section includes a brief
summary of the ongoing R&D to have a better understanding of this limitation and
of the paths envisaged to reduce it. Finally, some conclusions are given in Sect. 8.8.

8.2 The Fluctuation-Dissipation Theorem

According to the Fluctuation-Dissipation theorem [6, 7], any linear physical system
affected by some form of dissipation is subject to a fluctuation directly related to
its thermodynamic temperature. The first evidence of such an effect was noted by
Einstein while studying the so-called Brownian motion of pollen grains suspended
inside water. Einstein noticed that the random motion of the pollen grains was orig-
inated by its collision with the water molecules, the latter being the same as causing
the friction of a body moving inside water [8]. He deduced a relationship among the
amplitude of the fluctuation of the random motion, the liquid viscosity, and the liquid
temperature. This is the first example of an application of the Fluctuation-Dissipation
theorem.

More than 20 years later in 1926, B. Jonhson [9] at the Bell Laboratories noticed
that it was possible to measure a fluctuating voltage across any conductor. He empir-
ically found a relationship between the resistance of the conductor and the amplitude
of the voltage fluctuation measured across it. The square of the voltage fluctuation
measured over a frequency bandwidth Δf is equal to:

< V2 >= 4kBTRΔf (8.1)

with kB the Boltzmann constant, T the conductor temperature and R its resistance.
Once again a relation is empirically found between the amplitude of the dissipation
(the resistance) and the amplitude of the fluctuation (the voltage). The relation was
theoretically explained by H. Nyquist [10]. It took more than 20 years to arrive
to the general form of the so-called Fluctuation-Dissipation theorem [6, 7]. The
theorem applies to any linear physical system. It provides a relation between the
power spectrum of the fluctuating thermal force applied on a generalized coordinate
x(ω) of the system and the system impedance Z(ω), the latter being defined as the
ratio between the system speed v(ω) = iωx(ω) and the generalized force F(ω)

applied to the same generalized coordinate. The theorem states that:

F2
th(ω) = 4kBTR(ω) (8.2)

R(ω) being the real part of the system impendence Z(ω). The analogy with the
expression of the voltage fluctuation across a resistor is clear, the force replacing the
voltage and the real part of the impedance being the resistance. From the previous
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expression one can deduce the fluctuation of the generalized coordinate < x2
th(ω) >

using the relation x(ω) = 1
ω

F(ω)/Z(ω):

x2
th(ω) = 1

ω2 4kBTRe(Y(ω)) (8.3)

Y(ω) being the system admittance Y(ω) = 1/Z(ω). The conclusion is that the real
part of the system admittance (or impendence) is the parameters which defines the
distribution of the fluctuations as a function of frequency.

8.3 Application to the Harmonic Oscillator

Let us consider the case of a damped harmonic oscillator whose equation of motion
is given by:

mẍ + β ẋ + kx = F (8.4)

m being the oscillator mass, k the elastic constant, and β the viscous damping factor.
The impedance of such a system is given by:

Z(ω) = imω + β + k/iω (8.5)

And the real part of the impedance is the viscous damping factor β. The admittance
of the system is

Y(ω) = −imω3 + βω2 + ikω

(k − mω2)2 + β2ω2 (8.6)

and as a consequence the thermal noise affecting the position of the harmonic
oscillator is:

x2
th(ω) = 4kBTβ

(k − mω2)2 + β2ω2 (8.7)

Assuming a pure viscous damping, i.e., β constant as a function of frequency,
the spectrum of the harmonic oscillator position due to thermal noise is shown in
Fig. 8.2.The spectrum exhibits a sharp resonance at the oscillator resonance fre-
quency. The resonance sharpness, defined as the ratio of the resonance frequency f0
and the resonance width δf , is also known as the oscillator quality factor Q = f0/δf .
Its value depends on the damping factor, the quality factor increasing as the damping
factor decreases. If τ is the oscillator damping time and T its period the quality factor
is also equal to the number of oscillations before the oscillation amplitude decreases
by a factor e, i.e., QT = τ . The thermal noise spectrum is constant at low frequen-
cies, i.e., below the resonance. In this region of frequencies the noise decreases as the
quality factor increases or equivalently the damping decreases. Something similar
occurs at high frequency (above the resonance) but in this case the noise decreases
as a function of frequency. On the contrary, the amount of noise at the resonance



8 Thermal Noise in Laser Interferometer Gravitational Wave Detectors 229

1e-032

1e-030

1e-028

1e-026

1e-024

1e-022

1e-020

1e-018

0.01 0.1 1 10 100

P
ow

er
 s

pe
ct

ru
m

 (
m

2 /H
z)

Frequency (rad/s)

Fig. 8.2 Thermal noise power spectrum of an harmonic oscillator. The continuous line refers to
the case of viscous damping. The dashed line refers to the case of structural damping. In both cases
the quality factor is 100

increases when the damping decreases. In other words when the damping decreases
the thermal noise is more and more concentrated at the resonance and the power
spectrum outside the resonance decreases. If one looks for signals with frequencies
different from the mechanical resonances of the mirrors and of the suspensions,
as is the case in laser interferometer gravitational wave detectors, it is possible to
reduce the thermal noise limitation by improving the mechanical quality factors of
the system.

A classic case of viscous damping might be due to the residual gas around the
mirror. This is usually negligible given the very low pressure maintained inside
the vacuum chambers hosting the interferometer (10−7 Pa in the case of Advanced
Virgo). Some effects may appear if a very small gap is left between the back surface
of the mirror and the front face of the so-called actuation mass (or reference mass),
the mass used to hold the electrostatic actuators to act on the mirror position. In this
case the same gas molecules bouncing back and forth between the two surfaces hit
several times the mirror surface increasing the overall noise. Equivalently, a small
gap increases the damping due to the residual gas contained in the volume of the
gap. A detail study of this situation can be found in [11].

Another classic case of viscous damping is the one of the damping due to eddy
currents. This can be due to the magnets attached on the mirror producing stray mag-
netic fields on metal parts placed around the mirror. For this reason it is important to
avoid placing conducting parts near the magnets. As an example the Virgo+ reference
mass were partly made of Tecapeek CF30 to avoid this problem. Ideally the solution
is to use masses made of glass around the mirror.
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Another kind of mechanical losses could originate from dissipation inside the
material composing the harmonic oscillator. These are the so-called structural losses.
In their simpler form they are described by a model where the elastic constant k
includes an imaginary part kφ, φ being called the loss angle. Physically, this translates
into a delay between the spring length and the restoring force. Analogously in a
continuous body this would translate into an imaginary part of the Young modulus
of the material composing the system. A delay between the displacement and the force
implies a dissipation and as a consequence a fluctuation of the oscillator position.
The equation of motion of such an oscillator is the following:

mẍ + k(1 + iφ)x = F (8.8)

From the equation of motion one can deduce the oscillator impedance, its admittance,
and finally the oscillator fluctuation due to thermal noise:

x2
th(ω) = 1

ω

4kBTkφ

(k − mω2)2 + k2φ2 (8.9)

Figure 8.2 shows the thermal noise power spectrum of such an oscillator assuming the
structural losses φ to be constant as a function of frequency. Similarly to the case of
viscous damping, the smaller the losses are (the value of φ) the more the fluctuations
are concentrated in the region of the resonance. Compared to the case of viscous
damping the power spectrum increases inverse proportionally to the frequency as the
frequency decreases. To avoid divergence and to satisfy the Kramers-Kronig relations
there should be a cut-off at some very low frequency where φ starts decreasing to
become equal to zero at DC. A similar difference is visible above the resonance; there
the power spectrum decreases as f −5, i.e., more rapidly that in the case of viscous
damping.

In many cases the loss factor φ(ω) turns out to be approximately constant with
frequency. There is no precise theory explaining this general behavior. As mentioned
above there should be a frequency cut-off below which φ decreases reaching zero at
zero frequency. The Kramers-Kronig relations require φ(ω) to be an odd function.
In some cases the loss angle φ(ω) exhibits a broad maximum at a characteristic
frequency fc = 1/τ . These are the so-called anelastic solids.

Such a behavior can be modeled as an oscillator with a classical spring k1 in
parallel with a second spring k2 in series with a dashpot. The latter is a pure viscous
damping element (see Fig. 8.3) characterized by a damping factor β. At low frequency
the dashpot does not oppose any resistance and the overall elastic constant is given by
k1. At very high frequency the dashpot becomes rigid and the overall elastic constant
will be the sum k1 + k2. In between, the elastic constant increases with frequency.
According to Bode’s theorem if the gain of a linear system (in this case the elastic
constant) increases with ωn a phase lag equal to nπ/2 should appear in the system
response. Similarly, in the case of an anelastic solid modeled as in Fig. 8.3, a phase
lag will appear between the force and the displacement with a broad maximum at
an intermediate frequency between the two regimes corresponding to k = k1 and
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Fig. 8.3 Model of an anelastic
oscillator. Figure is from [12]

k = k1 + k2. The amplitude of the phase lag at its maximum will depend on the
difference between the high frequency and the low- frequency elastic constants, i.e.,
on k2. Using the model given in Fig. 8.3, it is possible to deduce the behavior of the
elastic constant as a function of frequency. One finds that:

F = k1

[
1 + k2

k1

ω2τ 2

1 + ω2τ 2 + i
k2

k1

ωτ

1 + ω2τ 2

]
(8.10)

where τ = β/k2 is a relaxation time determined by the viscous damping of the
dashpot and the spring elastic constant k2. The phase lag is given by the imaginary
part. The latter exhibits a broad maximum for frequencies around fc = 1/τ . The ratio
k2/k1 is the relaxation strength and determines the amplitude of the dissipation. The
real term is also frequency-dependent and shows the increase of the elastic constant
with frequency which follow the behavior described above.

An example of losses due to anelasticity is the so-called thermoelastic damping.
This is particularly relevant in small flexures like wires or thin cantilevers. Ther-
moelastic damping is related to the coefficient of thermal expansion of the material.
As a wire is bent, one side of the wire gets hotter and the other gets colder. As a con-
sequence heat flows from one side of the wire to the other, thus reducing the restoring
force from its original value. The process being irreversible it ends up damping the
wire oscillation. The model shows that such a process is well described by an anelas-
tic oscillator as the one described above. In this case the relaxation strength is given
by the following expression:

δ = Ea2T

C
(8.11)

where E is the Young modulus, a the thermal expansion coefficient, T the tempera-
ture, and C the specific heat per unit volume. The relaxation frequency (or time) is
given by:

fc = 1

2πτ
= 2.16k

Cd2 (8.12)

where k is the thermal conductivity and d the wire diameter. One notes that the
relaxation strength, i.e., the maximum of the damping at the relaxation frequency,
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only depends on the thermal and mechanical properties of the wire material. Thus this
is a fundamental limit inherent to each material according to its thermomechanical
properties. On the other hand, the wire geometry (i.e., its diameter) determines the
relaxation time. If the relaxation frequency is larger than the frequency of interest,
it is possible to reduce the effect of the thermoelastic damping at such frequency by
pushing the thermoelastic peak toward higher frequencies. This can be achieved by
reducing the wire diameter.

8.4 Pendulum Thermal Noise

All the mirrors of laser interferometer gravitational wave detectors are suspended as
pendulum having wires length L in the range between 0.5–1 m. Pendulums are clas-
sical examples of harmonic oscillators subject to losses. Actually the main restoring
force is provided by gravity which, of course, is lossless. But a small fraction of the
restoring force comes from the elasticity of the wires that are used to suspend the
mirrors. This part of the restoring force is affected by losses. The total equivalent
elastic constant for a pendulum of length L suspended with Nw wires of diameter d
is given by:

k = Mg

L
+ Nw

√
TwEI

2L2 (1 + iφw) = kg + kel(1 + iφw) (8.13)

where M is the mirror mass, g the gravitational acceleration, E the wire Young
modulus, I the wire cross-section moment of inertia, and φw the losses in the wires.
kg and kel represent respectively the restoring forces due to gravity and to the elasticity
of the wires. This can be rewritten as:

k = kg(1 + kel

kg
+ i

kel

kg
φw) ≈ kg(1 + i

kel

kg
φw) (8.14)

assuming that the restoring force due to gravity will be always much larger than the
one due to the wires. From the last equation one sees that the losses due to the wires
are diluted by the ratio kel/kg so that the pendulum loss angle is φp = (kel/kg)φw.
In the case of the initial Virgo mirrors which had a weight of 20 kg and were suspended
with four steel wires 0.7 m long and 300 microns in diameter, the dilution factor was
about 10−3. The intrinsic losses of steel wires being around 10−3 the final pendulum
losses φp were around 10−6, i.e., the pendulum quality factor was of the order of 106.
This was slightly reduced by additional friction between the wires and the mirrors
at the point of contact between the wire and its standoff.

Using the result of the previous section one can evaluate the pendulum thermal
noise. For frequencies above the pendulum resonance (which is typically of the order
of 1 Hz or less) the thermal noise spectrum is well approximated by the relationship:
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Fig. 8.4 Main noises limiting the strain sensitivity of Virgo as a function of the frequency

x2
th(ω) = 4kBT

ω2
0Mω4

φp

ω
(8.15)

where ω0 is the pendulum angular frequency at resonance. One may note that the
thermal noise power spectrum decreases with the inverse of the square root of the
mirror mass. The reason is that the pendulum losses φp increase with the square
root of the mirror mass. In fact increasing the mirrors mass requires to increase the
diameter of the wires and the wire tension. In the end, there is still a gain in increasing
the mirror mass and this is one of the reasons one tries to have mirrors as massive as
possible.

Figure 8.4 shows the Virgo sensitivity and the various noises limiting its initial
sensitivity. The pendulum thermal noise is the main limitation in the low-frequency
region. This consideration has pushed the development of the so-called monolithic
suspensions. In this case the mirrors are suspended by silica fibers. The silica fibers
are welded to small silica blocks that are silicate bonded to the sides of the mirrors.
This solution avoids loose contacts between the suspension wires and the mirrors.
Moreover, it takes advantage of the excellent quality factor of the silica fibers whose
losses are in the range of 10−7. Due to larger uncertainties on the fiber strength a
larger security factor is usually required and as a consequence the dilution factor is in
the range of a few hundreds. Still, the overall pendulum quality factor exceeds 109.
This change in the mirror suspension should allow improving considerably the sen-
sitivity of laser interferometer gravitational wave detectors. The improvement of the
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Fig. 8.5 Model of a double
oscillator. Figure is from [12]

Advanced Virgo planned sensitivity at 10 Hz (Fig. 8.1) compared to Virgo (Fig. 8.4)
is largely due to this change in the design.

In laser interferometer gravitational wave detectors the mirrors are suspended to
pendulums which are themselves suspended to a chain of pendulums (or to other
kinds of oscillators) providing the required seismic isolation. The overall Q of the
suspension will depend on the losses of all the stages. One can then expect that the
thermal noise affecting the mirror will depend on all these losses. The fluctuation-
dissipation theorem helps answering this question. For simplicity let us consider
the case of a double oscillator (or equivalently of a double pendulum) like the one
schematized in Fig. 8.5.

The equations of motions can easily be written as a function of the masses, elas-
tic constant, and viscous damping. To calculate the system impedance one should
apply a force on the last masses (the mirror in our case) and calculate its speed.
A detailed treatment of this example can be found in [12]. The result is that while
both resonances of the system have quality factors which depend on both damping
factors, the last stage thermal noise for frequencies larger than the resonant frequen-
cies is only affected by the losses in the last stage. This is of course true only if the
latter does not become negligible. The loss in the upper stage is a source of noise
as well, but this noise is filtered by the second oscillator. Figure 8.6 shows the ther-
mal noise affecting the mirror in the case where β1/m1 = 10−2, β2/m2 = 10−6,
m1 = m2 = 1kg, and k1/m1 = k2/m2 = 1 Hz2. The dotted line shows the level of
the noise if only the second oscillator was present. One sees that above the resonance
the thermal noise is equal to the one of the lower oscillator as if it was alone. In case
the second oscillator has zero losses then the thermal noise is due to the losses in
the first oscillator, but in this case the noise goes as ω−8 at high frequency (instead
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Fig. 8.6 Thermal noise power spectrum of a double oscillator. The dotted line shows the thermal
noise if only the lower oscillator was present, i.e., the case where the upper ocillator has no losses

of ω−4). As the frequency decreases and approaches the resonances the effect of the
upper oscillator starts to be visible. If the lower stage has losses much lower than the
upper stage, the latter can start playing a role. This is in fact the case for the planned
Advanced Virgo sensitivity around 10 Hz which starts to be limited by the losses of
the penultimate pendulum.

8.5 Thermal Noise in Continuous Systems

A continuous mechanical system can be thought of as made of an infinite number
of harmonic oscillators corresponding to the normal modes of the system. Each
mode will have its own resonant frequency, effective mass, and damping time. When
thinking of the thermal noise affecting the system one should consider which degree
of freedom to look at. This will depend on the sensor used to measure the system.
An example could be that of a mirror suspended to a wire. The wire itself is a
continuous system and the coordinate of interest is the displacement of the mirror
(considered in this case as point-like) suspended to the wire. Another example could
be the mirror itself and its internal modes. In this case the coordinate one is sensing
the displacement of the mirror surface as seen by the Gaussian laser beam. In both
cases one could think the system as made by an infinite number of eigenmodes
un(r) where r is a vector giving the position in the system. Each eigenmode has
a resonant frequency ωn. The eigenmode functions un(r) are normalized with the
density function ρ(r) such that:
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∫
ρ(r)un(r)um(r)dr = δnm (8.16)

The system position u(r, t) will be a specific superposition of eigenmodes:

u(r, t) =
∑

qn(t)un(x) (8.17)

where the qn(t) are the generalized coordinates and should obey the dynamic law:

q̈n(t) + ω2
n(1 + iφn)qn(t) = Qn(t) (8.18)

Qn(t) is the generalized force, i.e., the projection of the force f(r, t), applied on the
system, on the eigenmode un(r). Using the equation above one can calculate the
impedance (or admittance) of each mode and deduce the thermal noise affecting
each mode. The result is:

q2
n,th = 4kBT

ω

ω2
nφn

(ω2
n − ω2)2 + ω4

nφ
2
n

(8.19)

In general, none of the eigenmodes will coincide with the observable x(t) one is
looking at. The latter will be a specific combination of the system coordinates u(r, t)
and can be written as an arbitrary superposition of the eigenmodes:

x(t) =
∫

drα(r)u(r, t) =
∑

n

qn(t)
∫

drα(r)un(r) (8.20)

From the equation above one can deduce the noise affecting the observable x(t) as

x2
th(ω) = 4kBT

ω

∑
n

ω2
nφn

(ω2
n − ω2)2 + ω4

nφ
2
n

[∫
drα(r)un(r)

]2

(8.21)

This formalism can be applied to the case of the thermal noise due to the losses in the
pendulum wires and showing up at the resonances of the wire vibration modes. The
thermal noise affecting a mass m suspended to a wire of length L and linear density
ρ is:

x2
th(ω) = 4kBT

ω

∑
n

ω2
nφn

(ω2
n − ω2)2 + ω4

nφ
2
n

2ρL

π2m2n2 (8.22)

where ωn and φn are the angular frequency and the loss angle of the n-th wire’s
mode (usually known as violin modes). The result in the case of the Virgo sensitivity
is shown in Fig. 8.4 (see the curve labeled ‘tnviol’). The peak at 300 Hz and its
harmonics results from the thermal noise at the wires vibration modes (known as
violin modes). This same method can be used to calculate the mirror thermal noise.
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The main limitation of this formalism is that it assumes the losses to be uniform
across the system. The case of the double pendulum discussed previously is the best
demonstration of this limitation. At each of the resonances the thermal noise of the
suspended mass depends on the losses of both stages while well above the resonance
frequencies only the losses at the second stage play a role. A model describing the
thermal noise as a simple composition of the two modes each with its own quality
factor would not work in this case. The other limitation is that in some cases many
modes need to be considered. This may become computationally expensive. For
instance in the case of the mirror thermal noise all the modes with spatial wavelength
equal to a non-negligible fraction of the beam size need to be included. More details
can be found in references [13, 14].

For these reasons, a more effective method was introduced by Levin [15] to
calculate the thermal noise of continuous systems and applied to the case of the
mirror thermal noise. In this case the observable x(t) is the displacement of the
mirror surface u(r, t) as monitored by the laser beam, i.e.,

x(t) =
∫

I(r)u(r, t)dS (8.23)

where I(r) is the laser beam intensity as a function of the position r on the mirror
surface and u(r,t) is the displacement of the mirror surface as a function of time
and of the position on the surface. In the case of a Gaussian laser beam I(r) will be
Nexp(−2r2/w2), w being the beam radius and N a normalization constant. To calcu-
late the mirror mechanical impedance a force having the same spatial distribution of
the laser beam is applied on the mirror surface, i.e., F(r, t) = I(r)F(t). The mirror
admittance will thus be:

Y(ω) = iωx(ω)

F(ω)
(8.24)

x(ω) being the Fourier transform of the observable x(t) when the system is subject
to the force F(ω). The real part of the admittance is proportional to the dissipated
energy. In fact:

Re [Y(ω)] = Re

[
v(ω)F∗(ω)

|F(ω)|2
]

= Wdiss(ω)

|F(ω)|2 (8.25)

where v(ω) is the speed Fourier transform and Wdiss(ω) is the power spectrum of
the dissipated energy. From the real part of the admittance one deduces the thermal
noise affecting the observable x using the fluctuation-dissipation theorem:

x2
th(ω) = 4kBT

ω2 Re [Y(ω)] = 8kBT

ω2

Wdiss(ω)

|F(ω)|2 (8.26)

The calculation of Wdiss allows evaluating the thermal noise amplitude without using
the modal decomposition previously described. Let us consider the simple case of
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a mirror with homogenous structural losses, i.e., whose Young modulus E can be
written as E(ω) = E0(1 + iφ(ω)), φ(ω) being the loss angle. Since the loss angle
is the phase shift between the force and the displacement, the energy dissipated is
given by:

Wdiss(ω) = ωφ(ω)Umax(ω) (8.27)

where Umax(ω) is the maximum energy stored in the mirror during the forced oscil-
lation at frequency ω. Since the frequency of the gravitational waves one is looking
for is in general lower than the resonance frequencies of the mirror modes, the cal-
culation of Umax at ω = 0 is sufficient. As a consequence to evaluate the thermal
noise it is sufficient to calculate the energy stored in the mirror when it is subject to
a constant force having the same spatial distribution of the laser beam used to sense
its surface. The exact calculation gives [15]:

Umax = 1 − σ 2

2
√

πE0w
|F(ω)|2 (8.28)

where σ is the Poisson ratio, E0 the mirror Young modulus, and w the laser beam
radius. From the expression above one can deduce the amplitude of the mirror thermal
noise as:

x2
th(ω) = 4kBT

ω2

1 − σ 2

√
πE0w

φ(ω) (8.29)

As expected the thermal noise increases with the loss angle φ(ω). Moreover, one
notes that the thermal noise decreases with the stiffness of the material composing
the mirror and with the laser beam size. Using larger beam sizes allows reducing the
thermal noise, the limit being the loss of light out of the mirror edges.

8.6 Substrate Thermal Noise, Thermo-Elastic Noise,
and Thermo-Refractive Noise

From the equation of the mirror thermal noise developed in the previous section it is
clear that the structural losses in the material composing the mirror substrate are of
primordial importance. The choice of the substrate material consists in finding the
best optical materials with the lowest possible mechanical losses. The material that
has been used so far is fused silica since it combines very low optical absorption,
tiny birefringence, and excellent homogeneity with very low mechanical losses. An
extensive study of fused silica mechanical losses [16] has shown that losses depend
on the material shape and that they are a combination of intrinsic losses and surface
losses. For cylindrical shapes having an aspect ratio (radius to thickness ratio) of
the order of one as the substrates commonly used in gravitational wave detectors
the loss angle can be as low as 10−9. Other materials that have been considered are
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sapphire, calcium fluoride, and silicon. These are crystalline materials with rather
different thermal and mechanical properties compared to silica [17]. Even if their
structural losses are quite low as well, thermoelastic losses need to be investigated
in these cases.

As in the case of structural losses, the fluctuation dissipation theorem can be
used to evaluate thermoelastic noise in the mirror substrate. The method is the same
previously described and developed by Levin. As a force having the Gaussian shape
of the laser beam is applied on the substrate surface, the material gets compressed
and heats up. The heat transfer toward the colder regions produces a reduction of the
restoring forces and as consequence a loss of energy. The calculation of the energy
dissipated and the fluctuation dissipation theorem allow extracting the equation of
the thermoelastic noise [18]:

x2
th(ω) = 8kBT

ω2

2α2(1 + σ)2kT√
πC2ρ2w3

(8.30)

where α is the material thermal expansion coefficient, k is the thermal conductivity,
and C the specific heat per unit volume. As in the case of structural losses the noise
decreases when the temperature is decreased and when the beam size is increased.
The rest of the expression depends on the intrinsic thermal and mechanical proper-
ties of the material. In particular one notes that the noise increases when the thermal
expansion coefficient and the thermal conductivity increase. On the other hand, an
increase of the thermal capacity induces a reduction of the thermoelastic effect. An
alternative way to deduce this equation [18] is to consider the temperature fluc-
tuations affecting any material of volume V as the source of the noise. Using the
thermomechanical equation of the material under consideration one finds the same
expression. Given some temperature fluctuation one can expect the noise to be larger
when the thermal expansion coefficient gets larger.

In general, the thermal properties of materials depend on the temperature consid-
ered. At room temperature crystalline materials such as sapphire or silicon exhibit a
thermal expansion coefficient and a thermal conductivity considerably higher than
fused silica. As a consequence their thermoelastic noise is larger. Figure 8.7a shows
the expected substrate thermal noise (or Brownian noise) and thermoelastic noise
for silica, sapphire, and silicon. The structural losses are respectively 4 × 10−10,
3.8 × 10−9, and 10−8 [16, 19, 20]. While the difference in the substrate Brownian
noise is relatively small and in any case, as we will see, small compared to coating
thermal noise (see Sect. 8.7), below 100 Hz the effect of thermoelastic noise becomes
relevant both for sapphire and silicon. This result excludes the possibility to use these
materials for gravitational wave detectors operating at room temperature. It should
be mentioned that thermoelastic noise in sapphire mirrors has been directly measured
using a test interferometer (known as Thermal Noise Interferometer). This interfer-
ometer used a configuration where the laser beam size on the mirrors was of only
a few hundred microns in order to increase the sensed thermal noise and make it
dominate the other concurrent noises [21].
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Fig. 8.7 Brownian noise and thermoelastic noise of silica, sapphire, and silicon substrates at 300 K
(a) and at 10 K (b)

At cryogenic temperatures the results are quite different. First of all, the structural
losses in silica increase dramatically as the temperature decreases. This prevents
the use of silica as substrate material at low temperatures. On the other hand, the
evolution of the thermal properties of crystalline materials at low temperatures, and in
particular the decrease of the thermal expansion coefficient, reduces considerably the
thermoelastic noise making it negligible compared to the effect of structural losses.
The case of silicon is particularly interesting since it has been observed that the
thermal expansion coefficient goes through zero at 20 K and at 120 K thus nulling the
thermoelastic noise at these temperatures [22]. At the same time the structural losses
of both sapphire and silicon decrease considerably at low temperature reaching values
as low as a few parts in 10−9 as the temperature drops to the 10–20 K region [17].
For all these reasons, crystalline materials are considered for laser interferometers
planned to operate at cryogenic temperatures. The Einstein telescope project [17] is
considering silicon while the KAGRA interferometer [5] is planned to use sapphire.
Figure 8.7b shows the Brownian noise and the thermoelastic noise in the case of a
mirror operating at 10 K and made, respectively of silica, silicon, or sapphire [17].

The same dissipative process which is at the origin of the thermoelastic-noise also
causes the so-called thermo-refractive noise. In this case the process which is at the
origin of the effect is the variation of the material index of refraction due to a change
in its temperature. The amplitude of the effect depends on the so-called thermo-
refractive coefficient of the material. This causes a noise on the laser beam phase if
transmissive optics are used as, for instance, in the case of the Fabry–Perot cavity
input mirrors or in the case of the beam-splitter. The exact calculation of the effect
can be found in [23–25]. It is found that the thermo-refractive noise is equivalent to
a displacement of the mirror surface equal to:

x2
th(ω) = 4kBT

ω2

4kTl

π(ρC)2w4

(
dn

dT

)2

(8.31)
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Fig. 8.8 The effect of thermo-refractive noise in the Fabry–Perot input mirrors compared to the ET
planned sensitivity. The mirrors substrates are made of silicon and the temperatures of operation
are those shown. dn

dT is supposed constant and equal to 10−6K−1

where l is the optics length and dn/dT is the thermo-refractive coefficient. As men-
tioned above, the effect increases when the thermo-refractive coefficient increases.
Of course, the noise also increases with the optics length and, as usual, it decreases
when the laser beam size gets larger. In most cases this effect is found to be neg-
ligible compared to the other noise souorces considered so far. Figure 8.8 shows
an evaluation of the thermo-refractive noise in ET assuming the input mirrors of the
Fabry–Perot cavities to be made of silicon (see [17] for the complete set of parameters
used for the ET design).

8.7 Coating Thermal Noise

Surprising as it may be, the main contribution to the mechanical losses in a mirror
weighing several tens of kilograms comes from the few microns of coating deposited
on its surface in order to obtain the required reflectivity. The coating deposited on the
substrate surface is typically made of a multilayer of alternating low refraction index
and high refraction index layers. Usually, the low refraction index material is silica
(refraction index around 1.45) and the high index material is tantalum pentoxide
(refraction index slightly above 2) also known as tantala. In a standard design each
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layer will have an optical thickness of λ/4, λ being the operating wavelength (usually
1064 nm for current gravitational wave laser interferometers). The number of layers
depends on the required reflectivity and typically is in a range between 15 and 40.

Several experiments have shown that when a multilayer coating is deposited on
a substrate of silica the quality factor drops considerably. From these measurements
one finds that the coating loss angle is in the range of 10−4 [26]. A more detailed
analysis [27–29] has shown that the loss angle is dominated by the losses in the
tanatalum pentoxide layers (found to be around 3–4×10−4) while the loss angle of
the silica layers is considerably lower, usually around 5 × 10−5.

Coatings with low optical absorption, as those required for gravitational wave
detectors, are made by ion beam sputtering. An ion beam source combined with an
electron source is used to produce a beam made of an inert gas (typically Argon)
having a typical energy of 1 keV. The atomic beam is used to sputter a target made of
the material one wants to deposit. The sputtered atoms having an energy of tens of
eV reach the substrate surface and condensate on it thus forming the thin film. The
substrate is moved around typically in a simple rotational motion in order to make
the coating more uniform.

Despite the fact that the coating represents only a very small fraction of the
mirror total mass its thermal noise dominates the mirror total thermal noise. This
is due to a combination of two effects. The first is that the losses in the coating are
considerably higher than the losses in the silica substrate. The second is due to the fact
that the coating losses are concentrated on the surface where the beam is reflected.
The calculation of the energy Umax stored in the system when a gaussian force is
applied on the mirror surface (see Sect. 8.4), shows that the largest part of this energy
is stored at the surface itself, i.e., where the coating is located. As a consequence
the losses in the coating play a larger role compared to losses located elsewhere.
The exact calculation can be found in [27, 30]. The coating thermal noise is given
by the following expression:

x2
th(ω) = 4kBT

ω

1 − σ 2

√
πE0w

φeff ,c(ω) (8.32)

where φeff ,c(ω) are the effective coating losses:

φeff ,c(ω) = t√
πw

(
E0

E⊥
φ⊥(ω) + E||

E0
φ||(ω)

)
(8.33)

In the expression above t is the coating total thickness, w is the laser beam radius,
E0 is the Young modulus of the substrate, E⊥ is the Young modulus of the coating
along a direction normal to the layers, and E|| is the Young modulus of the coating
along a direction parallel to the layers. Similarly, φ⊥ and φ|| are the loss angles of
the coating respectively along a direction perpendicular and parallel to the layers.
The Young moduli and the losses φ⊥ and φ|| are given by:
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E⊥ = t1 + t2
t1/E1 + t2/E2

(8.34)

E|| = E1t1 + E2t2
t1 + t2

(8.35)

φ⊥ = E⊥
t1 + t2

(
t1
E1

φ1 + t2
E2

φ2

)
(8.36)

φ|| = E1t1φ1 + E2t2φ2

E||(t1 + t2)
(8.37)

As expected the thermal noise increases with the coating thickness and the coating
losses. As usual it decreases when the laser beam size increases.

Coating thermal noise has been measured directly with the thermal noise interfer-
ometer [31]. It has been found to be also the limitation to the frequency stabilization
of lasers to high finesse cavities [32]. In both cases the result are well in agreement
with expectations. The conclusion is that coating thermal noise is expected to be
the main limitation to the Advanced Virgo sensitivity around 100 Hz, i.e., where the
detector will reach its best strain spectral sensitivity (see Fig. 8.1).

A considerable R&D program was pursued over the last years to reduce the losses
of the high index materials. Other high index materials such as ZrO2, Nb2O5, TiO2,
and others have been tested. None has shown better performances than the tantalum
pentoxide. The measured properties are summarized in the ET design studies and
are reproduced in Table 13 of [17]. The only material, ZrO2, having slightly lower
mechanical losses has considerably larger optical absorption. Niobium pentoxide
has slightly higher mechanical losses and absorption. The higher optical index of
refraction of Nb2O5 helps compensating part of these lower performance but does
not allow reaching lower thermal noise.

Another approach consisted in doping the tantalum pentoxide with other materials.
Cobalt, tungsten, and titanium were tested at the Laboratoire des Materiaux avances
(LMA) [33]. The best performances were obtained by doping the tantalum pentoxide
with titanium [27]. This mixture, made of a ratio titanium/tantalum of about one-
third, allows reaching loss angles as low as 2 × 10−4. On top of this result, this
material also shows a lower optical absorption and a higher refraction index (see
Fig. 8.9). An higher index of refraction allows reducing the amount of material to be
deposited in order to obtain a given reflectivity, thus reducing the final thermal noise
of the coating.

Even when using titanium-doped tantala, the high index material remains the
material with larger losses. An approach to reduce the overall coating losses consists
in revisiting the coating design and try to reduce the amount of high index material.
Typically, a high reflectivity mirror is made of a stack of quarter wavelength layers.
By properly changing the stack design it is possible to decrease the amount of tantala
and increase the amount of silica while keeping the same optical response. The total
deposited thickness is increased but the ratio tantala over silica is reduced and the
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Fig. 8.9 Refraction index (left) and absorption of titania doped tantala as function of the Ti
concentration in arbitrary units

Fig. 8.10 Dissipation in
vitreous silica as a function
of temperature. The different
curves correspond to differ-
ent resonant frequencies. A
dissipation peak is visible
on all the curves. The peak
temperature increases as the
mode frequency increases

total mechanical losses are decreased [34]. These so-called optimized coatings have
been realized at LMA and tested on the Thermal Noise Interferometer at Caltech [35].
These types of coatings will be used in Advanced LIGO. They should allow to reduce
the spectral density of the coating thermal noise by about 10–15 %.

The need to find coating materials with lower mechanical losses has triggered
a R&D program to better understand the origin of mechanical losses in amorphous
materials. The study of the mechanical losses as a function of temperature has allowed
having some insight into the origin of the losses. From the literature, it is known that
mechanical losses in silica glass increase considerably at cryogenic temperature.
A dissipation peak is found around a few tens of degrees Kelvin, the exact temperature
depending on the frequency of the resonant mode being studied. For a given sample,
it is usual to find the dissipation peak temperature increasing with the resonance
frequency of the vibration mode considered (see Fig. 8.10 [36]).

This behavior is consistent with a model where the atoms in the material undergo
a dissipative motion inside double well potentials. These double well potentials
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Fig. 8.11 The asymmetric
double well potential used
to describe dissipation inside
amorphous materials such as
silica

(Fig. 8.11) are characterized by the barrier height V and the potential asymmetry Δ,
the latter being related to the material deformation [37]. It can be shown that each
single relaxation mechanism having an asymmetric double well potential produces
an effect on the elastic response of the material that can be modeled with the standard
anelastic solid (see Sect. 8.3) with some relaxation time τ . The relaxation time is a
function of the barrier parameters, an intrinsic time constant τ0, and the temperature
[37]:

τ = τ0sinh

(
Δ

kbT

)
exp

(
V

kbT

)
(8.38)

To each double well potential thus corresponds a dissipation peak (known as Debye
peak) having the same shape seen in the case of an anelastic solid at angular frequency
ω = 1/τ . Each double well potential contributes to the imaginary part of the material
Young modulus which depends on the potential asymmetry. The total imaginary part
of the Young modulus will be the sum of all these contributions:

EI(ω) =
∫ ∫

ΔE(Δ)
ωτ(Δ, V)

1 + ω2τ 2(Δ, V)
g(Δ)f (V)dΔdV (8.39)

with g(Δ) and f (V) being the distribution of the double well potential parameters. It
can be demonstrated that if g(Δ) is a Gaussian distribution and f (V) is an exponential
distribution, than EI(ω) has to have a maximum for a given temperature. This is what
is found is silica glass and is thought to be linked to dissipative motion of the oxygen
atoms in a double well potential whose asymmetry depends on the material stress.

A similar behavior of the losses versus the temperature is seen in dielectric coatings
(see Fig. 8.12). Both the coatings made of tantalum pentoxide and of silica exhibit
a dissipation peak at cryogenic temperatures typically in the range between 10 and
30 K [17, 38, 39]. In the case of tantala the height and the width of the dissipation
peak vary with the coating annealing temperature. This is thought to be due to change
in the material structure as the crystallization temperature is approached.
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Fig. 8.12 a Measured values of the coating loss of tantala annealed at different temperatures and b
Comparison of 600 ◦C heat treated tantala and silica coatings at low temperatures and 350 Hz [17]

To study the coating material structure transmission electrons microscopy has been
used. The reduced density function (RDF) of the electron diffraction pattern has been
used to study the structure of the amorphous coatings and to look for correlation with
mechanical losses [40, 41]. The reduced density function exhibits peaks which are
representative of the average distances between the atoms. The first peak is believed
to provide information concerning the distance between the metal atoms (Ta) and
the oxygen atoms. The second peak is related to the metal–metal average distance.
The peak widths are related to the distribution of distances. Thinner peaks reveal
more ordered structures (peaks becomes very thin in the case of crystals, of course).
These studies allowed detecting a change in the RDF of titanium-doped tantala as
the level of doping is changed. The width of the first peak becomes thinner indicating
that titanium replaces the tantalum in the metal–oxygen bond thus producing a more
ordered structure. At the same time the mechanical losses of the tantala coating
decrease. Studies and simulations are ongoing to understand this correlation.

The study of mechanical losses in amorphous materials is very important to reduce
the coating thermal noise. The measurements available in the literature show that
most amorphous materials have mechanical losses in the range of 10−4–10−3 [42].
A striking exception is the case of bulk silica which, at room temperature, has very
low losses, in the range of 10−6–10−9 (depending on the type of silica). Silica
coatings show mechanical losses lower than those measured in tantala coatings.
Still the losses in silica coatings are considerably higher than those seen in bulk
silica. The reasons for this difference are not understood but it has been shown
that losses in silica coatings can be reduced somehow by annealing at temperatures
approaching 1000 K [43]. Unfortunately these high annealing temperatures are not
possible for multilayer coatings since high index materials such as Ta2O5 (or others)
would crystalize. Crystallization will give rise to a higher level of scattering and
probably absorption. The problem of having high index materials with losses as low
as those observed in silica remains open. Some measurements made on amorphous
silicon have shown mechanical losses as low as a few parts in 10−5 at cryogenic
temperatures [44]. In principle, these coatings could be candidate for cryogenic
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Fig. 8.13 Bandgap versus
lattice constant of different
kinds of crystals. The light
blue areas show the materials
being evaluated as coatings
for gravitational wave laser
interferometers

mirrors deposited on silicon substrates and operating at 1550 nm. Unfortunately so
far amorphous silicon coatings appear to have a rather large optical absorption [45].

An alternative path to the reduction of coating thermal noise is in the development
of coatings made of monocrystals. Crystals are known to have better mechanical
properties and lower mechanical losses. Crystal coatings are made by Molecular
Beam Epitaxy (MBE) or Metal Organic Chemical Vapor Deposition (MOCVD) and
are widely used for applications in microelectronics. Their applications in optics are
much more limited. One of the reasons is that their growth is very slow and thus
not convenient compared to other technologies when coatings several microns thick
are needed. Moreover, the growth of crystal coatings requires the matching of the
lattice constants of the substrate and of the coating materials (low index and high
index materials). As a consequence the choice of materials one could use is limited.
Figure 8.13 shows the lattice constant of different kinds of crystals. Two kinds of
crystal coatings have been investigated so far.

The first is a multilayer using GaAs as high index material and AlAs as low index
material. Actually, since the GaAs layer includes some Al and the AlAs includes
some Ga [46] one refers to this multilayers as AlxGa1−xAs. The layers are grown on
a GaAs substrate which is then removed leaving the free standing multilayer coating.
By measuring the quality factor of the resulting oscillators it has been possible to
show coating mechanical losses as low as 2.5 × 10−5 at room temperature and
4.5 × 10−6 at 10 K [47]. Reflectivities as high as 99.982 % at 1064 nm have been
measured [48]. The absorption of these coatings have been measured at a level of
about 10 ppm.

The second type of crystalline mirror that has been investigated is a multilayer
of GaP (as high index material) and AlGaP (as low index material). In this case
the stack is grown on a silicon substrate. A ten doublets stack with a reflectivity of
83 % (well in agreement with predictions) has been grown on a silicon substrate and
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tested. Preliminary measurements show the coating mechanical losses to be around
1.4×10−5 at 12 K [44]. The optical performances of the coating in terms of scattering
and absorption remain to be measured.

One of the main limitations to crystalline coatings is that one cannot grow the
coating on any substrate since the substrate and coating lattices need to match. One
technique that has been developed consists of transferring the coating from the initial
substrate on which it was grown to another substrate. This is done in two steps: first
the coating is separated from the original substrate via chemo-mechanical substrate
removal or epitaxial lift-off processes. Then the multilayer is bonded on the final mir-
ror substrate. This technology has already been used to transfer GaAs epitaxial layers
to sapphire, silicon, and quartz on surfaces as large as 150 mm for microelectronics
applications. In all these application the transfer was done on a flat substrate. Attempts
are ongoing to transfer AlGaAs multilayers stack on fused silica substrates to be used
as mirrors of a high finesse Fabry–Perot cavity [47]. Preliminary measurements show
finesses approaching 105.

8.8 Conclusions

Thermal noise will be one of the main limitations to the sensitivity of advanced
detectors such as Advanced LIGO, Advanced Virgo and KAGRA. To overcome as
much as possible this limitation these detectors will use monolithic suspensions for
the mirror last stage suspension and last generation dielectric coatings in their opti-
mized design. In addition the KAGRA detector will open the field of km-scale laser
interferometers operating at cryogenic temperature. To further reduce thermal noise
and allow reaching the sensitivities envisaged for the Einstein Telescope a strong
R&D program on new coating and substrate materials and on cryogenic suspensions
is ongoing. From the success of this program will depend the future improvements
in the field of laser interferometers devoted to gravitational wave detection.
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Chapter 9
Thermal Effects and Other Wavefront
Aberrations in Recycling Cavities

Alessio Rocchi

Abstract Thermal effects in the test masses of gravitational waves interferometric
detectors may result in a strong limitation to their operation and sensitivity. Already in
initial LIGO and Virgo, these effects have been observed and required the installation
of dedicated compensation systems. Based on CO2 laser projectors, the thermal
compensators heat the peripheral of the input test masses to reduce the lensing effect.
In advanced detectors, the power circulating in the interferometer will increase, thus
making thermal effects more relevant. Moreover, other sources of optical defects,
due to the fabrication process of the optics, will play a crucial role. High precision
beam shaping of the CO2 laser beam and high sensitivity wavefront sensors will
be implemented to face these challenges, moving the thermal compensation system
toward adaptive optical systems.

9.1 Introduction to Thermal Effects

In interferometric GW detectors, the sensitivity at frequencies above 200 Hz is limited
by the photon shot noise as [1]

hFP
shot( f ) = λ

4LF

√
hν

2P

√
1 + (4π f τs)2 (9.1)

where τs is the storage time of the light inside the Fabry–Perot cavity. This feature is
shown in Fig. 9.1, where the Virgo design sensitivity is plotted with the fundamental
noise sources.

The obvious method to decrease this fundamental limit is to increase the power
circulating in the interferometer. However, this is limited by the nonzero optical
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Fig. 9.1 Virgo design sensi-
tivity plotted with its funda-
mental noise sources

absorption in the substrate and coatings of the test masses and the beam splitter.
The temperature-dependent index of refraction and a nonzero thermal expansion
coefficient of optical materials suitable for laser interferometric gravitational wave
detectors ensures that nonuniform temperature increases induced by the absorption
of the Gaussian-profiled probe light will result in nonuniform optical path length
distortions which will affect both the controllability and sensitivity of the instrument.

9.1.1 Thermal Lensing

Let us consider a body at uniform temperature T0, thickness l, refraction index n,
and nonzero thermo-optic coefficient (dn/dT ∼= 0). The optical path length through
the body is OPL = n · l. If we increase uniformly the temperature of the body by
a quantity ΔT , since the refraction index depends on the temperature (neglecting at
first approximation the thermal expansion), the new OPL through the body becomes:

OPL1 = n1 · l (9.2)

where

n1 = n + dn

dT
ΔT (9.3)

thus

OPL1 =
(

n + dn

dT
ΔT

)
· l = n · l + dn

dT
ΔT · l = OPL + ΔOPL (9.4)

and we can define the quantity optical path length increase as
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Fig. 9.2 Some of the many applications of finite element models

ΔOPL = dn

dT
ΔT · l (9.5)

If we include the thermal expansion, Eq. 9.5 becomes [2]

ΔOPL = dn

dT
ΔT · l + α(1 + σ)(n − 1)ΔT · l (9.6)

where α is the thermal expansion coefficient and σ the Poisson’s ratio. In the most
general case of a nonuniform heating, the expression for the optical path length
increase reads as

ΔOPL(r, θ) = dn

dT

∫ l

0
ΔT (r, θ, z)dz + α(1 + σ)(n − 1)

∫ l

0
ΔT (r, θ, z)dz (9.7)

Another contribution to the optical path length increase comes from the elasto-
optic effect: the local refractive index changes with mechanical strain resulting from
thermal expansion. Generally, this contribution is negligibly small compared to the
thermo-optic and the thermoelastic terms and it is usually not accounted for.

In practice, most of our efforts are devoted to determining the temperature field
inside the optics of the interferometer. This can be accomplished by following two
methods: looking for an analytical solution or through Finite Element Method (FEM).

The FEM (also known as finite element analysis (FEA)) is a numerical technique
for finding solutions to partial differential equations systems, when the analytical
approach would be impossible or extremely difficult to implement. In simple terms,
FEM divides a very complicated problem into small elements that can be solved
in relation (usually linear or quadratic) to each other. Thus, FEM replaces partial
differential equations with systems of algebraic equations.

Developed for solving problems in mechanical engineering, nowadays FEM is
used in a variety of scientific disciplines, ranging from physics to biology (see
Fig. 9.2).
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Fig. 9.3 Left plot of the
intensity of a Gaussian laser
beam. Right sketch of the
cylindrical coordinate system
used for the calculations

9.1.1.1 Analytical Approach: Hello-Vinet Theory

This section summarizes in brief the Hello-Vinet theory and a full explanation of the
method can be found in the Virgo Physics Book, Chap. 21 and in [2].

The laser beam in the interferometer crossing the mirrors has a Gaussian profile
(fundamental TEM00 mode), and the intensity as a function of the radial coordinate
can be expressed as

I (r) = 2P

πw2 e
− 2r2

w2 (9.8)

It does not depend on any angular coordinate nor on z. Thus, we can exploit the
symmetry of the problem and use cylindrical coordinates (r, z, θ), with 0 < r < a
and −h/2 < z < h/2, with a the radius and h the thickness of the mirror, as shown
in Fig. 9.3.

In the most general case, the time evolution of the temperature field is found by
solving the Fourier equation:

[
ρC∂t − Kc⊗2

]
T (r, z, t) = p(r, z, t) (9.9)

where T is the temperature increase (it was ΔT ), ρ the density, C the specific heat, Kc

the thermal conductivity, p the possible heat source inside the mirror, and ∂t = ∂/∂t .
We want to determine the steady-state (∂t ∞ 0) temperature field, when the heat

lost by radiation balances the power absorbed by the mirror. If we limit ourselves
only to the heat absorbed by the mirror surface, then there are no internal heat sources
and the Fourier equation becomes the Laplace one

⊗2T (r, z) = 0 (9.10)

which in cylindrical coordinates can be rewritten as

(
∂2

r + 1

r
∂r + ∂2

z

)
T (r, z) = 0 (9.11)

1 Available at https://wwwcascina.virgo.infn.it/vpb/vpb2.ps.gz.

http://dx.doi.org/10.1007/978-3-319-03792-9_2
https://wwwcascina.virgo.infn.it/vpb/vpb2.ps.gz
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The general solution to Eq. 9.11 is a harmonic function of the kind

T (r, z) = J0(kr)
(

Aekz + Be−kz
)

(9.12)

where J0(x) are the Bessel functions of the first kind, A, B e k the constants deter-
mined by the boundary conditions.

On the mirror surface hit by the laser beam (z = −h/2), the boundary condition
will be

− Kc

[
∂T (r, z)

∂z

]

z=−h/2
= −σe

(
[T0 + T (r,−h/2)]4 − T 4

0

)
+ ε I (r) (9.13)

ε is the absorption coefficient of the mirror high reflectivity coating and σe is the
emissivity of fused silica. Since T ⊥ T0, because T represents the temperature
increase and T0 the room temperature, it is possible to linearize the term relative to
irradiance and rewrite Eq. 9.13 as

− Kc

[
∂T (r, z)

∂z

]

z=−h/2
= −4σeT 3

0 T (r,−h/2) + ε I (r) (9.14)

On the opposite surface (z = h/2), it will be

− Kc

[
∂T (r, z)

∂z

]

z=h/2
= 4σeT 3

0 T (r, h/2) (9.15)

And finally, the irradiance boundary condition on the barrel of the mirror (r = a)
reads as

− Kc

[
∂T (r, z)

∂r

]

r=a
= 4σeT 3

0 T (a, z) (9.16)

Let us consider Eq. 9.16: we know that the general solution is described by Eq. 9.12
and that a Bessel function has the following property:

∂x J0(x) = −J1(x) (9.17)

By inserting Eqs. 9.12 into 9.16 and using the property (9.17), it is straightforward
to get

Kck J1(ka) = 4σeT 3
0 J0(ka) (9.18)

If we define χ ≡ 4σeT 3
0 a

Kc
and ζ = ka, the previous equation becomes

ζ J1(ζ ) − χ J0(ζ ) = 0 (9.19)
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which has a discrete and infinite set of solutions {ζn, n = 1, 2 . . .}. Thus, the constant
k gets values kn = ζn/a and the general solution to Eq. 9.11 can be written as

T (r, z) =
∑

n

(
Anekn z + Be−kn z

)
J0(ζnr/a) (9.20)

It can be shown from the Sturm–Liouville theorem that the functions {J0(ζnr/a), n =
1, 2 . . .} form a complete orthogonal basis for functions defined in the interval [0, a].
Thus, any function I (r) can be expanded in series of J0 in [0, a] (Fourier–Bessel
series).

I (r) =
∞∑

n=0

In J0(ζnr/a) (9.21)

and

In = 2ζ 2
n

a2
(
χ2 + ζ 2

n

)
J0(ζn)2

∫ a

0
I (r)J0(ζnr/a)rdr (9.22)

In the case of interferometric detectors, I (r) is given by Eq. 9.8, so that

In = 2ζ 2
n

a2
(
χ2 + ζ 2

n

)
J0(ζn)2

∫ a

0

2P

πw2 e
− 2r2

w2 J0(ζnr/a)rdr (9.23)

Moreover, to minimize clipping losses the radius of the mirrors is chosen to be much
larger than the size of the Gaussian laser beam, so that in Eq. 9.23 it is possible to
replace the upper integration limit with ∞, getting

In = P

πw2

2ζ 2
n

a2
(
χ2 + ζ 2

n

)
J0(ζn)2

e
− w2ζ2

n
8a2 (9.24)

and finally, the intensity profile of the laser Gaussian beam becomes

I (r) = P

πw2

∞∑
n=0

2ζ 2
n

a2
(
χ2 + ζ 2

n

)
J0(ζn)2

e
− w2ζ2

n
8a2 J0(ζnr/a) (9.25)

Using Eqs. 9.20 and 9.25, the boundary conditions (9.14) and (9.15) reduce to a linear
system of equations, where An and Bn are the unknowns

(ζn − χ) Γ 2
n An − (ζn + χ) Bn = −ε InaΓn

Kc
(9.26)

(ζn + χ) An − (ζn − χ) Γ 2
n Bn = 0 (9.27)

having defined, for the sake of simplicity, Γn = e− ζn h
2a . Solving for An and Bn

is straightforward and we are finally able to write the equation describing the
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Fig. 9.4 Temperature field
inside a Virgo mirror for 2 W
total absorbed power

temperature field into a cylindrical mirror that absorbs a fraction ε of the power
stored in a Gaussian-profiled laser beam

T (r, z) =
∑

n

ε Ina

Kc
e− ζn h

2a
(ζn − χ) e− ζn (h−z)

a + (ζn + χ) e− ζn z
a

(ζn + χ)2 − (ζn − χ)2 e− 2ζn h
a

J0(ζnr/a) (9.28)

In a similar manner, it is possible to determine the temperature field when the heating
occurs inside the bulk of the mirror [2]. Figure 9.4 shows an example of temperature
field inside a Virgo mirror for 1 W of power absorbed on the high reflectivity surface
and in the substrate.

We are now able to evaluate the optical path length increase. Inserting Eqs. 9.28
into 9.7 and performing the integration along the z direction, that represents the
thickness of the mirror, one obtains

ΔOPL(r) =
(

dn

dT
+ α(1 + σ)(n − 1)

)∑
n

ε Ina2

Kcζn

1 − e− ζn h
a

ζn + χ − (ζn − χ) e− ζn h
a

J0(ζnr/a)

(9.29)
An analog expression could be found for the optical path length increase due to
substrate absorption [2]. The total ΔOPL is the sum of these two contributions.
Figure 9.5 shows the optical path length increase due to coating absorption in a
Virgo mirror for 1 W of absorbed power. One important thing to notice is that thermal
lensing does not create a spherical lens.

9.1.2 Consequences of Thermal Effects

An important point to clarify is where thermal lensing is occurring in a GW
interferometric detector. Let us consider the scheme shown in Fig. 9.6, where the
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Fig. 9.5 Optical path length
increase inside a Virgo mirror
for 2 W total absorbed power
as a function of the radial
coordinate (0 is the center of
the mirror)

Fig. 9.6 Linear scheme of
a power-recycled Michelson
interferometer with Fabry–
Perot arm cavities

interferometer has been “linearized,” i.e., only two coupled cavities, the power recy-
cling and one Fabry–Perot, are drawn.

The Power Recycling (PR) mirror will absorb for sure some power on its high
reflectivity surface and in its bulk. So, the refraction index inside the substrate will
change due to the temperature increase, thus there will be some thermal lensing.
However, the PR bulk lies outside the interferometer. In fact, the Power Recycling
cavity is defined by the High Reflectivity (HR) surfaces of the PR mirror and input
test mass. We can thus conclude that the thermal lensing in the PR mirror does not
affect the interferometer.

Similar considerations apply to the end test masses (ETM): their substrate is out
of the Fabry–Perot cavity, thus out of the interferometer and is not crossed by the
beam.

Input Test Masses (ITM) absorb some of the power stored in the recycling cavity
in their substrates, plus they absorb some of the Fabry–Perot cavity power on the
high reflectivity coating. So, the ITM substrate is where the thermal lensing occurs,
as it is inside the power recycling cavity.

We know that three fields circulate inside the interferometer: the carrier and the
lower and upper radio frequency sidebands. Thermal lensing will affect only the
control sidebands. To help understand this sentence, we can take a look at Fig. 9.7.
The carrier resonates both in the recycling and in the Fabry–Perot cavities. It will
sense the thermal lensing in the ITM substrate, but when it enters the FP cavity it
will be cleaned by the Finesse of the cavity itself that acts as a filter.
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Fig. 9.7 Resonant conditions
of the fields circulating in the
interferometer

Fig. 9.8 Amplitude images
of a sideband field. Left with
no thermal lensing. Right in
presence of strong thermal
lensing. Lack of cylindrical
symmetry may be due to some
tilted optic

Fig. 9.9 Typical transient
decrease of the sidebands
amplitude as observed during
a Virgo lock acquisition

On the contrary, the sidebands only resonate in the recycling cavity and, so, they do
not take advantage of the filtering effect of the FP cavity. Radio frequency sidebands
fully sense the thermal lens in the ITM substrate. Since thermal effects give rise to a
nonspherical lens, the sidebands fields in the recycling cavity are strongly aberrated
(see Fig. 9.8).

The cavity, seen by the sidebands, is “less” resonant and so the sidebands power
decreases (as shown in Fig. 9.9). At a certain level, the sidebands amplitude becomes
too low to keep the interferometer locked. In this situation, the only solution is to
decrease the power at the input of the interferometer, to reduce the strength of the
thermal lens. However, in this way, the sensitivity of the detector is degraded because
of the increase in the shot noise.
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9.2 Compensation of Thermal Effects in Virgo

9.2.1 General Guidelines

To correct the thermal lens, one could think, at first glance, to introduce in the
recycling cavity two spherical lenses, one for each ITM. However, we have seen that
thermal lensing generates a lens that is not spherical. Moreover, the “strength” of the
lens, that is the focal length, changes according to the interferometer input power.

Somehow, we must induce in the input mirrors a lens equal but opposite to the
thermal one. We must use an adaptive (flexible) system in order to be able to change at
will the strength and shape of the corrective lens, to follow the different interferometer
(ITF) operating conditions.

Another important point to establish is to what extent the OPL must be flattened.
The input mirrors are cylinders with a radius of 175 mm, so is it necessary to have a
flat OPL up to the edge? The answer to this question comes from optical simulations.
In fact, we must recall that the size of the ITF beam is much smaller than that of the
mirror. So, the beam will sense optical path length distortions only where it exists.
In practice, it turns out that the extent over which the OPL must be corrected is
approximately 1.5 times the size of the beam on the ITMs. For instance, in Virgo the
YAG laser radius on the ITM was about 22 mm, thus the area to be compensated had
a dimension of about 33 mm.

Finally, from Eq. 9.7, we can see that thermal lensing is only given by the radial
component of the temperature gradient. Thus, to flatten the OPL, we need to null this
component. This can be done by heating the peripheral of the mirrors. Not all the
techniques are suitable for this goal as the mirrors are the free-fall test masses of our
GW detector. A “touchless” way to heat the mirror is by shining it with a radiation
that is completely absorbed (>5µm for fused silica). For this reason, LIGO and
Virgo thermal compensation systems (TCS) used CO2 (λ = 10.6µm) lasers to heat
the peripheral of the input test masses.

9.2.2 The Virgo Scheme

The wavefront distortions in the recycling cavities have been corrected in Virgo by
shining an annular heating pattern generated by a CO2 laser, directly on the input
test masses [3]. Figure 9.10 shows the layout of the Virgo TCS optical bench. Two
identical benches were installed, one for each input test mass.

An axicon lens (an optic with a conical surface) is used to convert the laser
Gaussian beam into an annular beam. The left image of Fig. 9.11 shows the working
principle of an axicon lens, while on the right a measured intensity profile of a CO2
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Fig. 9.10 Layout of the Virgo TCS bench. The beam emitted by the laser crosses an acousto-optic
modulator for intensity stabilization, polarization optics (half wave plate and polarizer) for DC
power control, the axicon, and an imaging lens

laser after going through an axicon is reported. An acousto-optic modulator2 is used
to reduce the intensity noise of the laser, while DC control of the power content of the
beam is accomplished using a half-wave plate and a fixed polarizer. Such a system
allows to significantly reduce the deviation of the beam impinging on the axicon,
which would otherwise result in a nonhomogeneous intensity distribution inside the

2 An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to dif-
fract and shift the frequency of light using sound waves (usually at radio-frequency). A piezoelectric
transducer is attached to a material such as glass. An oscillating electric signal drives the transducer
to vibrate, which creates sound waves in the glass. These can be thought of as moving periodic
planes of expansion and compression that change the index of refraction. Incoming light scatters
off the resulting periodic index modulation and interference occurs similar to Bragg diffraction.
The interaction can be thought of as four-wave mixing between phonons and photons.
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Fig. 9.11 Left working prin-
ciple of an axicon lens. Right
intensity profile of a laser
beam after passing through an
axicon

annular pattern. Since no viewport facing the ITMs is available, the TCS beam enters
the tower where the ITM is hosted from a lateral window and two in-vacuum optics
(M1 and M2 in Fig. 9.10) steer it onto the ITM high reflectivity face. Mirror M2 can
be remotely actuated to allow a precise alignment of the heating pattern onto the
test mass. A high sensitivity infrared camera is installed on each bench to constantly
monitor the quality of the heating beam sent to the test masses. Moreover, an active
control loop is used to reduce the CO2 laser intensity fluctuations. The signal from a
high sensitivity infrared photodiode is band-passed and fed back through an acousto-
optic modulator.

The efficiency of the Virgo TCS has been tested by progressively increasing the
CO2 power, while looking at the behavior of the interferometer and at the optical
phase and amplitude of the carrier and modulation sidebands recorded by a phase
camera [4]. The TCS power was increased until the thermal effects in the input mirrors
were totally compensated [3, 5], as if the interferometer was operating at low power.
In the upper left plot of Fig. 9.12 it is possible to see that when no correction is
applied the sideband field is strongly aberrated. The other plots in the same figure
show that, as the TCS power is increased, the sidebands amplitude recovers the
expected Gaussian shape.

Another indicator that the TCS is working correctly is represented by the sidebands
power. As it can be seen from Fig. 9.13, when the TCS is on, the sidebands power
increases by about a factor of 5.

The improvement of the interferometer operating point could be confirmed also
by the increase of the optical gain (about 50 %) and by the shape of the transfer
function of the second stage frequency stabilization loop, which looks very close to
what should be in absence of thermal effects. The performances of the TCS allowed
the interferometer to run VSR2 [6] with 17 W input power compared to 8 W during
VSR1 [7].
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Fig. 9.12 Amplitude images
of the sidebands recorded with
a phase camera. Upper left no
TCS (one only is shown for
simplicity). The other plots
show the change in shape as a
function of the TCS power

Fig. 9.13 Sidebands power
as a function of time when the
TCS is off (bottom, blue line)
and when it is on (top, green).
The increase is about a factor
of 5

9.3 Adaptive Optical System for Advanced Virgo

9.3.1 Thermal Effects in Advanced Detectors

Advanced detectors aim to improve the sensitivity by a factor of 10 at all frequencies.
Thus, also where the shot noise is limiting. Figure 9.14 shows the expected sensitivity
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Fig. 9.14 Advanced Virgo design sensitivity plotted against the Virgo sensitivity (dashed curve).
The major noise contributions are also evidenced

Fig. 9.15 Left optical path length increase in Advanced Virgo (blue) and Virgo (green dashed).
Right thermoelastic deformation of the HR surface in Advanced Virgo (blue) and Virgo (green
dashed)

curve for Advanced Virgo [8] compared to the Virgo one. Several technical upgrades
will be implemented to achieve this result. Among others, what is relevant for the
issue of thermal effects is represented by the increase in the ITF input power (from
25 to 125 W) and in the arm cavity finesse (from 150 to 450). These improvements
lead to a considerable increase in the optical power stored in the detector, from about
20 to about 700 kW. Considering an absorption of 1 ppm on the HR coating, it means
that the absorbed power in advanced detectors test masses is about 0.7 W with respect
to 20 mW in initial detectors.

The consequence is an increase in the amplitude of thermal lensing by more than
one order of magnitude, as shown in the left plot of Fig. 9.15.

Moreover, another effect, that so far has been neglected, becomes relevant. The
right plot of Fig. 9.15 shows the thermoelastic deformation of the high reflectivity



9 Thermal Effects and Other Wavefront Aberrations 265

surface of the Advanced Virgo test masses, again compared to Virgo. The deformation
will increase the Radius of Curvature (RoC) of all mirrors (by about 40 m in Advanced
Virgo) and, thus, also the Fabry–Perot cavities will be affected by thermal aberrations.
As a consequence, the Fabry–Perot cavity will become less concentric, and the spot
sizes at the mirrors will shrink, leading to an increase in thermal noise. Moreover,
higher order modes can become resonant in the arm cavities, considerably increasing
round trip losses. To maintain the arm cavity mode structure, it will be then necessary
to control the radii of curvature of all test masses (within ±2 m from the initial RoC
in Advanced Virgo).

The need to control the radius of curvature of the test mass in GW interferometric
detectors has already been faced in the past: the GEO detector [9] used a ring heater
(RH) to change the RoC of one of the two test masses [10]. The GEO RH is placed
on the back of the mirror, radiatively coupled with the optic.

Compensation and control of the test mass high reflectivity (HR) surfaces will
be accomplished in Advanced Virgo with the same technique. The TCS baseline
design considers four ring heaters, one around each test mass. The input mirror RH
also provides limited compensation of thermo-optic effect in the recycling cavities.
Unlike the GEO heater, the Advanced Virgo RH will be equipped with a reflecting
shield to maximize the amount of power reaching the test mass.

9.3.2 TCS Noise Coupling

There is an issue that so far has been neglected: TCS can inject displacement noise
into the detector. In fact, the intensity fluctuations of the CO2 laser “shake” the test
mass through several coupling mechanisms [11].

There are four distinct mechanisms that do contribute (see also Chap. 8):

• Thermoelastic (TE): fluctuations in locally deposited heat cause fluctuations in
local thermal expansion. This effect mostly changes the FP cavity length. The
change in the optical path length outside the cavity is small for this effect.

• Thermo-refractive (TR): fluctuations in locally deposited heat cause fluctuations
in local refractive index. This effect changes the optical path length of the light
outside the FP cavity.

• Flexure (F): fluctuations in locally deposited heat cause fluctuations in global
shape of the optic. The deposited heat effectively curls the optic like a bimetallic
strip. The area read out by the arm cavity beam will move even if there is no
overlap with the heating beam.

• Radiation pressure: negligible.

When the heating pattern has an annular shape, the dominant coupling mechanism
is the Flexure.

Thus, the total displacement noise due to thermo-optical intensity noise coupling
is [11]:

http://dx.doi.org/10.1007/978-3-319-03792-9_8
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〈ΔzTCS∝ = PCO2

2π f Cρ

(
Θ

[
(1 + σ)α

(
1 − π

2F
(n − 1)

)
− π

2F

dn

dT

]
+ 6α

h2 Cnum

)

× RIN

[
m√
Hz

]
(9.30)

where PCO2 is compensating power, C the specific heat, ρ the density, σ the Poisson’s
ratio, α the linear thermal expansion coefficient, dn/dT the thermo-optic coefficient,
and n the refraction index of the substrate’s material. Θ is a constant proportional to
the overlap integral between the ITF and TCS beams, h the thickness of the mirror,
and F the finesse of the arm cavity. Cnum is a parameter that depends on the geometric
dimensions of the TCS beam and that is numerically evaluated. Finally, the RIN is
the relative intensity noise of the CO2 laser, δP/P measured in 1/

√
Hz.

Intensity stabilization servos have already been implemented in initial detectors,
capable of reducing the CO2 laser fluctuations by one order of magnitude over the
whole frequency band of interest [3]. However, the limit of 10−7/

√
Hz, due to

the intrinsic noise of the photodetectors, is not enough for advanced interferome-
ters. The stabilization servo should gain another factor of 10 to bring the TCS noise
below the sensitivity requirements. This is not possible with the present technology.

Thus, it is no more possible to shine the input test masses directly with the CO2
laser, as it is done in initial detectors. This implies the need of an additional transmis-
sive optic, named Compensation Plate (CP) to act on with the compensating beam.
The CPs are placed in the recycling cavity, the thermoelastic and flexure terms
become zero and the total displacement noise is reduced by a factor equal to the
inverse of the Fabry–Perot cavity gain (π/2F).

9.3.3 TCS in Advanced Virgo

Following the above considerations, the conceptual actuation scheme of the compen-
sation system foreseen for Advanced Virgo [12, 13] is shown in Fig. 9.16. A pictorial
view of the input payload, with the ITM, RH, and CP, is shown in Fig. 9.17.

This scheme also allows to reduce the coupling between the two degrees of free-
dom (lensing and RoC), so as to have a control matrix as diagonal as possible.

The thickness of the CP has been optimized by minimizing the heat escaping from
its barrel and taking into account the need to accumulate enough optical path length.
The distance between CP and ITM is 20 cm, this allows to minimize the radiative
coupling between the two optics. In fact, the heated CP radiates heat toward the test
mass. The heating of the TM is uniform, but since the barrel of the input mirror
radiates away a part of the heat, a radial temperature gradient is established. This
gives rise to an increase in optical path length that adds to the thermal lensing.

The position of the RH along the barrel of the TM is such as to maximize its
efficiency.
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Fig. 9.16 Actuation scheme
of the Advanced Virgo TCS:
blue rectangles represent the
CPs (heated by the CO2 lasers)
while the green dots around
the test masses are the ring
heaters

Fig. 9.17 Picture of the input
payload, comprising the input
test mass with the ring heater
and the compensation plate

A useful way to picture the effect of thermal distortions is the fractional power
scattered out from the TEM00 mode [14], termed “coupling losses” L:

L = 1 − A→ A, (9.31)

where

A = 〈E0|E∝
〈E0|E0∝ = 〈E0|ei2π/λh(x,y)|E0∝

〈E0|E0∝ = 2π

∫ rITM

0
ei2π/λh(r)|E0(r)|2rdr. (9.32)

E0 represents the normalized undisturbed cavity field before being subjected to the
phase distortion 2π/λ ·h(x, y), E is the distorted field, rITM is the radius of the input
test mass, and h(x, y) is the optical path length increase in the recycling cavity. The
last equality in Eq. 9.32 holds if cylindrical symmetry is assumed. A phase distortion



268 A. Rocchi

in a cavity acts to scatter power out of the fundamental mode into higher order modes,
and thus out of the cavity, and can be viewed as a simple coupling loss term.

Another figure of merit often used to describe the amplitude of aberrations is
the Gaussian-weighted Root-Mean-Squared (RMS) of the optical path length in-
crease. The weighting function represents the intensity of the beam circulating in the
interferometer, which, indeed, is “sensing” the aberrations. This quantity is defined
as [15]

σ 2
g =

∑
m,n G(xm, yn)[h(xm, yn) − hg]2

∑
m,n G(xm, yn)

(9.33)

where G(x, y) is the interferometer beam intensity at (x, y), and hg is given by

hg =
∑

m,n G(xm, yn)h(xm, yn)∑
m,n G(xm, yn)

(9.34)

With no thermal compensation, in Advanced Virgo, the sideband fields coupling
losses would amount to approximately 5 · 105 ppm and the corresponding RMS is
about 125 nm. For a comparison, in Virgo, the losses due to thermal lensing are of
the order of 104 ppm. The Advanced Virgo TCS needs to reduce to coupling losses
at least by a factor of 103 (corresponding, roughly speaking, to a maximum RMS of
about 2 nm [16, 17]) to allow the correct operation of the detector at design sensitivity.

Enhanced interferometers used axicon-based optical projectors to convert a CO2
laser Gaussian beam into an annular beam [3]. This heating pattern is not adequate
for the advanced detectors, since it can reduce the residual coupling losses only by
a factor of 102, while at least a factor of 103 is required. Studies on the optimization
of the heating pattern, made with Finite Element Model (FEM), have shown that
it is possible to reduce the residual coupling losses to about 6 ppm, thus leading
to a reduction factor of about 105, with about 18 W of CO2 power shined on the
compensation plate.

9.3.4 Other Sources of Wavefront Aberrations in Advanced Virgo
Recycling Cavities

So far, we have focused our attention only on thermal effects, both for the optical path
length increase in the recycling cavity and for the increase of the test masses RoCs in
the Fabry–Perot cavity. Moreover, up to now we have considered only effects arising
from uniform absorption, i.e., with cylindrical symmetry.

However, in an ITF there are several sources of optical defects, often without
any symmetry, arising from imperfections in the production and polishing of the
glass used for the various substrates in the recycling cavity. Surface figure errors on
reflective and transmissive surfaces do contribute to the aberrations as well as spatial
variations in the index of refraction of the substrates (see Fig. 9.18).
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Fig. 9.18 Left substrate transmission map measured at LMA on an advanced LIGO test mass, the
color scale is 10−7 m. Right simulated surface map. Color scale in nanometers

Fig. 9.19 Left coating absorption map measured at LMA on an advanced LIGO test mass. Right
resulting nonuniformity of the OPL for 125 W of ITF input power. Color scale in nanometers

Finally, we also have to consider the nonhomogeneity of the high reflectivity
coating absorptions which generates a nonsymmetric optical path length increase, as
shown in Fig. 9.19.

The sum of these aberrations on all the surfaces in the recycling cavity exceeds
the 2 nm RMS requirement. Thus, the Advanced Virgo recycling cavity gain for the
sidebands is strongly reduced [18]. As a consequence also these sources of aberrations
must be corrected. As already done for the symmetric contribution, the Finite Element
Method can be used to evaluate the corrective heating pattern to be applied to the
compensation plates. Due to the lack of symmetry of the optical defects, full 3D
modeling is required, making such simulations rather computationally expensive
(few days of CPU time).

The results of the optimization procedure show that, by depositing heat in the
right CP positions, the residual optical path length RMS can be reduced by a factor
of 20 for spatial frequencies below 40 m−1 [19] and amounts to 0.35 nm, well within
the requirements.
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Fig. 9.20 Left working principle of a MEMS deformable mirror. Right picture of the reflecting
surface of a mems deformable mirror, the segments are clearly visible

The method selected to generate the heating patterns is based on a CO2 laser scan-
ning system. This technique, developed at MIT [20], comprises a pair of galvanome-
ter mirrors, to move the laser beam on the surface of the CP, and an acousto-optic
modulator to modify the power content of the beam.

An alternative method under investigation exploits the new possibilities offered by
the development of Micro-Electro-Mechanical-System (MEMS) deformable mirrors
(see Fig. 9.20), often used in adaptive optical systems. The working principle is the
same as for Liquid-crystal-on-silicone spatial light modulators (or diffractive optical
elements) used to generate higher order Laguerre-Gauss modes [21, 22]: a phase
plate imprints the phase modulation to the wavefront of the incoming Gaussian
beam and converts the beam into the desired one holographically. For a more detailed
description of the working principle, see for example [23]. In practice, by applying
a known phase modulation, it is possible to change the intensity distribution.

9.3.5 Sensing Wavefront Aberrations in Recycling Cavities

The aberrations in the recycling cavity optics will be sensed by several complemen-
tary techniques. The amplitude of the optical path length increase will appear in some
ITF channels, such as the power stored in the radio frequency sidebands. These are
scalar quantities that can only give a measurement of the amount of power scat-
tered into higher order modes. Moreover, phase cameras [4] will sense the intensity
distribution and phase of the fields in the recycling cavity (carrier and sidebands).
However, active control of the aberrations using error signals coming from such
detectors seems a difficult task.

Therefore, each optic with a significant thermal load will be independently moni-
tored. The HR face of each test mass will be monitored in reflection for deformation.
The input test mass/compensation plate phase profile will be monitored on reflection
on-axis from the recycling cavity side. The TCS control loop will then use a blend
of all the signals from the different channels.
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Fig. 9.21 Left working prin-
ciple of the Hartmann Wave-
front Sensor. Right close view
of a Hartmann plate

The TCS sensors, dedicated to the measurement of thermally induced distortions,
consist of a Hartmann Wavefront Sensor (HWS) and a probe beam (at a different
wavelength than the ITF beam) whose wavefront contains the thermal aberration
information to be sensed. The working principle of the device is shown in the left
image of Fig. 9.21. An aberrated wavefront W’ is incident on a Hartmann plate
(essentially a plate containing a series of apertures, see right image of Fig. 9.21).
The resulting rays propagate a distance L , normal to the wavefront, and are incident
on a CCD. The new spot position, x ∈

i , is measured and compared to a reference spot
positions, xi , determined using a non-aberrated wavefront W. The wavefront gradient
in the ith position is given as

∂ΔW

∂x
= Δxi

L
(9.35)

The Hartmann sensor selected for Advanced Virgo is that already developed and
characterized on test bench experiments and in the Gingin High Optical Power Test
Facility for the measurement of wavefront distortion [24].

This sensor has been demonstrated to have a shot-to-shot reproducibility of λ/1450
at 820 nm, which can be improved to λ/15500 with averaging, and with an overall
accuracy of λ/6800 [25].

Due to the requirement on the maximum residual optical path length rms of 2 nm,
the precision of the wavefront sensing must be of the order of 0.2 nm, corresponding
to λ/4000 @ 800 nm (the wavelength of the probe beam) and must be compared with
the Hartmann sensor measured noise level of λ/15500.

The key to the wavefront measurement is to relay the image of the measured
optical surface onto the Hartmann plate. In other words, if M is the magnification of
the optical system between the measured optical surface and the wavefront sensor
surface, then the wavefront gradient is

(
∂ΔW

∂x
,
∂ΔW

∂y

)
(9.36)

at coordinate (x, y) on the optic will result in a measurement of the gradient
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Fig. 9.22 Working principle of the optical system for wavefront measurement

Fig. 9.23 Left experimental setup for the characterization of the Hartmann sensor. Right measured
wavefront, 100 frames were averaged for this measurement

(
M

∂ΔW

∂x
, M

∂ΔW

∂y

)
(9.37)

at sensor coordinates (x/M, y/M). The general optical scheme for such measure-
ments is shown in Fig. 9.22.

A prototype of a Hartmann sensor is currently being characterized in the Tor
Vergata laboratories. Figure 9.23 shows, on the left, the experimental setup, while on
the right a measured wavefront averaged over 100 frames, at a speed of 60 frames/s.
The peak-to-valley optical path length increase is about 0.5 nm, corresponding to a
RMS of 0.1 nm or λ/6500 at 650 nm.

The conceptual layout of the HWS beams in the recycling cavity is shown in
Fig. 9.24. In the figure, the beams have different colors for the sake of clarity; indeed
the wavelength is the same for both beams. The beams will be injected/extracted
from the injection and detection suspended benches, superposed to the main ITF
beam with a dichroic mirror3 at the level of the mode matching telescopes. This
scheme allows for on-axis double pass wavefront measurement (that increases the
signal-to-noise ratio by a factor of 2) and for probing of all the optics in the recycling
cavity.

Additional optics are necessary to fulfill the main optical requirements for HWS
beams: to image a plane around the ITM HR surface on the Hartmann plate, to
illuminate the ITM with a Gaussian beam 10 cm in size and to match the optimal
beam size on the sensor. The two sensing beams are kept separated by the BS HR

3 Dichroic mirrors are color filters often used to reflect visible light and transmit infrared radiation.
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Fig. 9.24 Conceptual layout
of the HWS probe beams
in the recycling cavity. For
the sake of clarity the beams
have different colors, but the
wavelength is the same

coating: with a reflectivity @ 800 nm of about 98 %, the cross-coupling4 becomes
less than 2 % and the cross-sampling5 less than 0.04 %. Beam from the detection
bench will also sense the BS thermal lensing, thus allowing its correction on the NI
CP.

9.4 Conclusions

Thermal effects are an unavoidable annoying presence in our interferometric GW
detectors: tiny fractions of the power stored in the ITF are absorbed by the mirrors
and the low thermal conductivity of SiO2 generates temperature gradients that, in
turn, result in optical path length increase. The wavefronts of the sideband fields in
the recycling cavity get strongly aberrated and finally the ITF cannot acquire the lock
at high input powers.

Thermal effects can be compensated using thermal actuators (Far-Infra-Red lasers,
ring heaters) as shown by the Virgo and LIGO experiences.

However, in Advanced Virgo, the strength of thermal effects will increase by
more than one order of magnitude with respect to Virgo and another effect will be
relevant: change of the RoC of all the TMs due to thermal expansion, requiring one
more actuator (ring heater). More sources of wavefront aberrations, i.e., intrinsic
optics defects (nonthermally induced), introducing the necessity to generate also
nonsymmetric heating patterns. Finite element modeling becomes an essential tool
to derive the optimized heating patterns to be shined on the compensation plates.

4 Cross-coupling is defined as the amount of light from one source that reaches the other (wrong)
sensor. For example, how much radiation emitted from the source on the injection bench reaching
the Hartmann sensor on the detection bench.
5 Cross-sampling defines the quantity of light from one source coming back to its (right) sensor after
probing the wrong optic. For instance, the quantity of light emitted by the source on the injection
bench that returns to the Hartmann sensor on the injection bench after passing through the North
ITM.
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Increase in sensitivity to aberrations and in complexity of the compensating system
will require a rather complex control loop and extremely sensitive sensors.
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Chapter 10
Stray Light Issues

Julien Marque and Gabriele Vajente

Abstract Stray light in gravitational wave interferometric detectors is a possible
source of limitation for the low frequency performance of these instruments. It has
to be “controlled,” i.e., the instrument has to be carefully designed and baffled in order
to overcome this potential issue. We will see in this chapter that this problem has
already been identified and taken into account in the design phase of the detectors in
the 1980s. However, all the first- generation instruments had to deal with unexpected
issues regarding stray light. Commissioners have set up systematic investigations to
trace the various noise sources and fix optical setups. The new generation of advanced
detectors will actually be even more sensitive to displacement noise due to stray light
because of the increase of power stored in the cavities and the enhanced sensitivity
to amplitude field fluctuation. We will review all kinds of mechanisms that can lead
to “stray light noise,” we will see how to quantify it, and mitigate it. Despite all
the precautions that have been taken, we will see that the detectors will actually be
affected by this noise at least for a limited period of their data taking time.

10.1 The Stray Light Displacement Noise

Stray light is light in an optical system, which was not intended in the design. In the
case of gravitational wave detectors, the light is from the laser source, but follows
different paths with respect to the main beam. This light will be seen by the detector
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as a spurious displacement noise which can limit its sensitivity. There are many
possible sources of stray light:

• Secondary beams/spurious reflection (generated by imperfect anti-reflective coat-
ings of optics used in transmission),

• Scattering from rough surface (diffuse reflection from imperfect mirror surface),
• Scattering from micro-defects (like dust, ditch, or scratch),
• Diffraction on the edge (all optics have a limited aperture).

Stray Light Control (SLC) is the name of the advanced detector subsystem that
takes all the precautions in order to mitigate the displacement noise induced by the
stray light sources. Actually, the stray light issue is not something new and peculiar to
the advanced detector generation. It was already a concern in the design phase of the
first generation, back in the 1980s. Indeed, the issue was put in evidence with the
first prototypes. In [1], a 3 m arm length prototype was used to identify and study
various noise sources. Evidences of parasitic interferences were observed, leading to
large amplitude noise at the frequency of the suspension pendulum and harmonics.
Therefore, an active damping of the pendulum resonance was introduced and the use
of Faraday Isolators was suggested.

In the 30 following years, the calculation of the stray light coupling mecha-
nism was further investigated, using different approaches. This will be discussed
in Sect. 10.2, and the most common approach will be developed. During the com-
missioning phase of the first-generation instruments, many unexpected issues came
up. We will review this experience and report about the measurements made to verify
the models in Sect. 10.3.

There exists many, often complementary, ways to deal with stray light noise issue.
Here is a not exhaustive list (these items will be further detailed in Sect. 10.4):

• Optimization of low scattering optics/beam dumps/baffles,
• Mitigation of the motion of the stray light sources (suspension and motion control),
• Optimization of Anti-Reflective coatings,
• Optical isolation (by using Faraday Isolators).

Section 10.5 will conclude this chapter by reviewing the most recent works in the
field. We will see that this question is far from being closed. Indeed, the duty cycle of
advanced detectors at optimal performance will likely be limited in a non-negligible
manner due to unavoidable periods of high microseismic ground activity.

10.2 Stray Light Coupling Mechanisms

Stray light can affect the sensitivity and the operations of a gravitational wave inter-
ferometer when it couples back with the main laser beam which is used to extract
information on the motion of the test masses. It is therefore important to understand
with which mechanism stray light can affect the interferometric signals.
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The first step is to compute the fraction of light that couples back with the fun-
damental mode. We consider one output port of the interferometer and the corre-
sponding laser beam, which is, typically, mainly a fundamental Gaussian mode. An
optical element in the laser path is responsible for the creation of stray light which
partially propagates back into the interferometer. The key parameter to compute is
the amount of this power that is superimposed with the mode of the exiting beam:

fsc = ∣∣∼Ψstray|Ψ ⊗
0 ∞∣∣2

, (10.1)

where Ψstray is the stray light field and Ψ ⊗
0 is a normalized field in the interferometer

mode. The star indicates that the mode should be reversed, in order to correspond
to the beam entering from the port. We can consider two different processes that
create the stray light: specular reflection and incoherent scattering. In the first case,
it is possible to exactly compute the Gaussian beam parameter of the reflected beam,
using for example the ABCD matrix formalism [2]. Then the superposition integral
in Eq. 10.1 can be computed analytically [3, 4]. The case of scattering due to surface
roughness is more complex. The method that can be used to tackle this phenomenon
mainly depends on the spatial frequency of the surface defects that create the scatter-
ing. We first consider the case of low and medium frequencies, i.e., when the typical
spatial length of the surface defects is of the same order of magnitude or larger than
the laser beam size. In this case it is possible to carry out optical simulation with
realistic surface maps, using techniques based on FFT propagation of the laser field
[5]. These simulations directly provide the field propagating back into the interfer-
ometer and this allows to compute the superposition integral of Eq. 10.1. In the case
of large spatial frequencies, the light is scattered mainly at large angles and therefore
an FFT approach is not able to properly simulate it. In this case a statistical approach
can be followed, based on the expected angular distribution of the scattered light.
See [4] for an example of this approach.

Finally, more complex configurations might arise, when the light undergoes mul-
tiple scattering before recoupling into the main beam. A typical example is the
scattering of light at large angles by one of the cavity mirrors, the subsequent scat-
tering off the vacuum tube wall, and finally the recoupling with the main beam. Such
complex paths are important and estimates of fsc can be obtained with analytical or
statistical approaches [6–8].

The fact that part of the light recouples with the main beam might not seem a
problem in itself. However, this light will carry a phase information which depends
on the length of the scattering path, and that is modulated by the motion of the
scattering element zs(t):

φs(t) = φ0 + 4π

λ
zs(t) (10.2)

The stray light field Es sums with the unperturbed field Ein at a reference position
inside the interferometer:

Ein + Es = Ein + √
fsc Eoute

iφs (t), (10.3)
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where Eout is the field exiting from the interferometer port being considered and
impinging on the scattering element. Equation 10.3 can be rewritten in terms of the
ratio of the laser powers exiting and into the interferometer:

Ein + Es = Ein

[
1 + √

fsc
Eout

Ein
eiφs (t)

]
= Ein

[
1 +

√
fsc

Pout

Pin
eiφs (t)

]
(10.4)

and in the last equality we factored out the phase difference of the two fields and
included it in the static contribution to the scattering phase φ0 of Eq. 10.2. At this
point we make the assumption that the amount of scattering is small, which should
be always true in our interferometric detectors. To be more precise, we assume that

√
fsc

Pout

Pin
⊥ 1 (10.5)

This allows us to recognize that the leftmost term in Eq. 10.4 is the first-order expan-
sion of an exponential:

Ein + Es = Ein exp

[√
fsc

Pout

Pin
(cos φs(t) + i sin φs(t))

]
(10.6)

where we have expanded the phase exponential of Eq. 10.4 in terms of sine and
cosine.

The interpretation of Eq. 10.6 is simple: the effect of the recoupling stray light
is embedded in the exponential term and therefore it consists in an additional mod-
ulation of the laser field. Since the exponent contains both a real and an imaginary
part, both the phase and the amplitude of the field are modulated. The description of
such modulations on the field is detailed in Chap. 5. A comparison with the results
of that chapter allows us to write the phase and amplitude modulation of the laser
field inside the interferometer, varying with time depending on the motion of the
scattering element:

nφ(t) =
√

fsc
Pout

Pin
sin φs(t) (10.7)

δP(t)

P
=

√
fsc

Pout

Pin
cos φs(t) (10.8)

It is important to note that so far we have not made any assumption on the amplitude
of the scattering element motion zs(t). Indeed the above equation is valid for every
magnitude of this motion: the only assumption was that the amount of stray power
which recouples into the interferometer is small, in order to be able to treat it as a
perturbation. The dependency of phase and amplitude noise on the scattering element

http://dx.doi.org/10.1007/978-3-319-03792-9_5
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Fig. 10.1 Simulation of coupling of stray light into phase noise. We assumed a scattering element
with a total coupling fsc

Pout
Pin

of 10−6, moving as a pendulum with resonant frequency of 3 Hz and
quality factor of 100, excited by white noise. The phase noise induced by stray light is shown as a
function of the RMS amplitude of the motion

motion depends a lot on the amplitude of the latter. If the motion is small, then
we can approximate the sine and cosine with their argument and recover a linear
dependence of the added noises on the scattering element motion. However, as the
amplitude of the motion increases, the first-order approximation is no longer valid,
and therefore we expect to start seeing the effect of quadratic and higher order
couplings. Figure 10.1 shows a simulation of the phase noise induced by a scattering
element with fsc

Pout
Pin

� 10−6. The element is moving like a pendulum with a resonant
frequency of 3 Hz and a quality factor of 100, driven by a white noise. The motion is
therefore almost monochromatic at 3 Hz. When the amplitude of the motion is much
smaller than one wavelength, the coupling is mostly linear and the phase noise is also
a simple monochromatic oscillation at the pendulum frequency. When the amplitude
increases, we see that the coupling at 3 Hz is reduced and higher order harmonics
appears. When the motion is comparable with one wavelength, it makes no more
sense to describe it in terms of harmonics and indeed the noise assumed a typical
flat shape, ending abruptly at a corner frequency fmax which depends on the motion
amplitude. Indeed, if we assume that the scattering element has a sinusoidal motion
with amplitude As and at a frequency fs , the maximum frequency can be calculated
by counting how many times the phase crosses zero over one second [9]:

fmax = 2π
2As

λ
fs (10.9)

A different picture of the effect of stray light is obtained when we look at the
time-frequency spectrogram of the phase noise of Eq. 10.7. As shown in Fig. 10.2,
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Fig. 10.2 Simulation of cou-
pling of stray light into phase
noise, with the same parame-
ters described in Fig. 10.1.
Here, a fast spectrogram of the
field phase noise is shown. The
scattering element is moving
with an amplitude of 10λ
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it is possible to see a clearly fast nonstationary behavior of the noise. The smooth
bump visible in the spectrum of Fig. 10.1 appears to be composed of a narrow
feature moving up and down in frequency. Indeed, a scattering element moving
with a constant velocity will create a linear ramp in the phase φs(t) with a slope
proportional to its speed. When insert the sine or cosine of Eq. 10.7, this will create a
pure oscillation at a frequency which depends again on the velocity of the scattering
element. Therefore, what we see in Fig. 10.2 is the oscillatory motion of the scattering
element which has a velocity that goes from zero to maximum and back to zero in
half a period. Indeed the arches in the spectrogram are spaced exactly by one-sixth
of a second, since the object in this simulation is moving at 3 Hz.

One important point to stress here is that all the nonlinear behavior of stray
light is encoded in the above equations which converts possibly large motions to
additional noises. These noises are however always very small, in the hypothesis
of small coupling of the stray light. This means that once the noises are computed
from the estimated motion of the scattering element, they can be propagated into the
interferometer and to the output signal using simply the known linear response of
the detector (see Chap. 3):

h̃( f ) = Kφ( f )

√
fsc

Pout

Pin
F [sin φs(t)] + KδP/P ( f )

√
fsc

Pout

Pin
F [cos φs(t)]

(10.10)

where we indicated with F the Fourier transform and with Kφ( f ) and KδP/P ( f )

the transfer functions from, respectively, phase and amplitude noise to the detector
output h. We see that in general the effect of stray light can couple through both phase
and amplitude noise, the relative importance depending on the detector response. For
example, in first-generation detectors, the coupling of amplitude noise was negligible
with respect to the phase noise, and therefore the latter was the dominant process.

The situation is different in the case of advanced detectors. The first reason is
that they will use DC readout, which means that the gravitational wave signal is

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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encoded in power variations at the antisymmetric port. Therefore, amplitude noise
coming from stray light coupling at this port will be important. The second reason is
that amplitude noise can create fluctuation of the stored power inside the main arm
cavities, which will couple to real motion of the test masses through radiation pressure
effects. For this reason it is normally necessary to use detailed optical simulation of
the interferometer to properly compute the coupling of amplitude and phase noise
to the sensitivity. In addition, it is important to keep in mind that the response to
these noises might be changed by the action of the feedback control loops. Let us
consider, for example, stray light entering from the symmetric port, together with the
main input beam. Phase noise at this port is for all purposes equivalent to input laser
frequency noise: this is however measured inside the interferometer and actively
suppressed by the frequency stabilization loop. Since this loop can have very large
gain, up to some kHz, the coupling of stray light through phase noise is largely
suppressed. Therefore, we can expect the coupling of stray light at the symmetric
port to be dominated through the amplitude noise mechanism only.

10.3 Experimental Evidences and Measurements

Evidence of stray light effect was present in all first-generation detectors. Figure 10.3
shows a collection of measured gravitational wave detector sensitivities, all limited
by phase noise introduced by stray light. From these four plots it is apparent that
all coupling were quite nonlinear, since the noise was shaped like a big bump in
the sensitivity. The noise was coming from large motion of some element at low
frequency, up-converted into the detector sensitive bandwidth. This predominant
nonlinear effect made it very difficult to understand the origin of the noise and
to track it down to the correct culprit. Fortunately, the stray light noise amplitude
and maximum frequency depends on how much the offending element is moving,
which is typically not constant in time but changing with environmental conditions.
It proved to be very important to track the evolution over time of the noise, to identify
any nonstationary behavior and correlate it with environmental and seismic activity.
In many cases, it is possible to look at the fast variation of the noise level and to
recognize the characteristic behavior already shown in Fig. 10.2.

An important step forward in the understanding of stray light coupling came with
the first campaigns of systematic measurements, that tried to artificially increase in a
controlled way the stray light noise coupling. The simplest way to do this is to shake
one optical element at a known frequency and see if the increase of its motion has a
visible effect on the detector sensitivity. This kind of measurement, first reported in
TAMA [10], was extended to almost all possible points of the interferometers that
could generate stray light: vacuum tubes, optical elements placed on benches sitting
on ground, walls, etc.

In GEO600, a scattering element was added on purpose on the antisymmetric
port of the detector and its motion was controlled with a shaker. Figure 10.4 shows
the result of this campaign of measurement. The effect of the scattering element is
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Fig. 10.3 All figures represent the reference sensitivity of various detectors as well as the sensitivity
when affected by phase noise originating from a scattering element. Upper left plot: stray light
shoulder in the LIGO Livingston detector, a Power Recycled Michelson interferometer (PRMI)
with 4 km Fabry Perot arm cavity length. Upper right plot: stray light shoulder in the GEO600
detector in the configuration PRMI with a single-folded arms of 600 m length. Lower left plot: stray
light shoulder in the GEO600 detector in the configuration Power and Signal-Recycled Michelson
interferometer (dual recycled DRMI) with single-folded arms of 600 m length. Lower right plot:
stray light shoulder in the Virgo detector, a PRMI with 3 km Fabry Perot arm cavity length. (Courtesy
S. Hild [11])

very clear, even when it is not actively driven. In this case the element was moving
because of the local microseismic activity. The large nonlinear effect, often called
up-conversion, and the increase of the noise bandwidth proportionally to the motion
amplitude is very clear.

In a similar way, the linear coupling regime at higher frequency was also tested,
as shown in Fig. 10.5, where a sinusoidal excitation at about 800 Hz was added to
one of the optical element in transmission of the arm mirrors. The coupling shows a
predominant linear term. However, the presence of sidebands around the main peak
is an indication of a nonlinear mechanism, which mixes low and high frequency
components. In all first-generation detectors stray light was, at some point, a dominant
noise source, which was searched for and solved with many ad hoc interventions [12].



10 Stray Light Issues 283

Fig. 10.4 Injection of stray light from the signal recycling port. The stray light source motion is
driven with a triangular voltage of 1 Hz and different amplitude in the millimeter range. The stray
light shoulders have different cut-off frequencies depending on the scatterer relative displacement
amplitude. (Courtesy S. Hild [11])

Fig. 10.5 Injection of stray light from the transmission of one arm mirror. The stray light source
motion is driven with a triangular voltage of 810 Hz and an amplitude of less than one laser wave-
length. A noise peak at 810 Hz surrounded by some sideband structure is observed. (Courtesy S.
Hild [11])
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10.4 Stray Light Noise Mitigation

First of all, it is important to underline how much the issue is delicate. Indeed, if a
scatterer object is ground connected, the maximum amount of light back-scattered
into the arm of the interferometer that is allowed before this noise becomes dominant
in advanced detectors is very tiny: only about 10−24 W per Watt in the arm [13]. At
full interferometer power, it means less than 5 photons per second!

Besides, most of the light of Advanced Detectors will be lost in the Fabry–Perot
arm cavities. Indeed, the recycling technique maximizes the power in the arm cavities
(600–800 kW): the recycling cavity is optimally coupled, meaning that it does not
reflect the input power which is entirely transmitted to the arms, and then actually
lost into the arms. The light is mainly lost by scattering off the surface of the Fabry–
Perot mirrors [14]. Given the current state of the art of the coating and polishing
techniques, 30 cm diameter mirrors absorb a bit less than 1 ppm, scatter 10 ppm of
light at wide angle, and 10–20 ppm at small angles. Small angle scattering comes
from the surface figure error of the mirror, currently limited by the nonuniformity
of the coating deposition. Wide angle scattering is limited by point defects located
at the surface and/or within the layers of the coating (the surface micro-roughness
contribution to wide angle scattering is negligible). The limit between small angle and
wide angle scattering, where both scattering mechanisms have equal contribution, is
about 0.5◦.

Because the noise coming from the arms themselves must involve at least three
scattering events, there are other locations where scattering processes can be even
more critical. Indeed, some of the light is also transmitted by the arm cavities (a few
ppm), reflected by the recycling cavity (a few per cent), and will leak to the dark
fringe since the contrast defect is expected to be of the order of one per thousand
(see Chap. 3). The external optics at these ports are critical since a single scattering
event is enough to recouple part of the light into the interferometer.

10.4.1 Core Optics Small Angle Scattering

Very small angle scattering due to imperfect mirror surface can be modeled as high-
order Hermite-Gauss modes [15]. This interpretation is quite important for advanced
detectors. Indeed, the resonance properties of these higher order modes in the various
cavities can play a significant role. These modes being larger than the fundamental
modes, their clipping losses will also be larger, and this will enhance very small angle
scattering in the cavities [16].

But, since the small angle scattering process would require a very large number of
higher order modes to be modeled in a realistic way, it is more common to interpret
mirrors as diffractive elements and use Fast Fourier Transform propagation compu-
tations [17]. This method has actually been used to predict the distribution of power
scattered around the core optics of advanced detectors. And the results have been

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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Fig. 10.6 Left picture of the Virgo laser bench, taken through an Infrared viewer (green light is
exclusively light scattered by the optics on the bench). Right picture of the Virgo Beam Splitter
mirror (white light is exclusively light scattered by optics in the interferometer). Credit: B. Canuel

used to specify the requirements of the baffles placed around the core optics of the
arm cavity mirrors. These baffles have in general a diaphragm shape and are made
of some absorbing material in order to prevent the stray light to recombine with the
main beam.

For Advanced Virgo, the arm cavity baffle will sustain a maximum power den-
sity of 0.25 W/cm2. An 80 cm diameter baffle would catch 95 % of the small angle
scattering [14]. The advanced detector baffles that will catch the smallest angle scat-
tering will be suspended. They will be made of absorbing material (as Diamond-like
Carbon or oxidized stainless steel [18]) in order to absorb as much light as possible.

The rest of the small angle scattering needs to be caught directly inside the kilo-
meters long tubes. For this purpose, in Virgo for instance, 160 baffles with a clear
aperture of 920–990 mm have been pre-installed in each arm. They are made of stain-
less steel and have serrated edges. Serrated edges mitigate the back-scattering from
the edge facets normal to the impinging beam, and the diffraction toward the center
of the mirrors. These baffles have been laser machined in order to get very sharp
edges.

10.4.2 Core Optics Wide Angle Scattering

The wide angle scattering of optics, as seen on the pictures of Fig. 10.6, is commonly
characterized by the Total Integrated Scattering (TIS), which the total amount of light
that is scattered off the surface of the optics. A more detailed characterization can
be done by measuring the scattering at each angle: this is called the Bidirectional
Reflectance Distribution Function (BRDF). It is usually admitted that the scattering
at large angles for common optics (micro-roughness larger than 3Å) depends only on
the micro-roughness of the surface. Moreover, a Lambertian law is usually admitted
for large angles: the BRDF does not depend on the angle and is equal to the TIS
divided by π .
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The best mirrors available today are superpolished: they have a sub-Angstrom
micro-roughness. However, their typical TIS, as seen by a millimeter beam width,
is 4 ppm, at best, which cannot be explained just by the micro-roughness of the
surface [19]. BRDF measurements in LIGO arm cavities have confirmed the mis-
match between measured wide angle scattering and expected scattering due to micro-
roughness [20]. The analysis of the data measurement has clearly identified point
defects in the coating, or at its surface, to be the dominant source of scattering. While
often thought to be dust or particle encapsulated in the coating, the origin of the point
defects has never been clearly demonstrated.

In order to deal with this issue, large baffles are being positioned in advanced
detectors either in the vacuum chambers of the core optics or in the large vacuum
links of the central interferometer. These baffles are made of absorbing glass Anti-
Reflective coated, or mirror polished oxidized stainless steel. The oxidation process
allows to decrease the reflectivity of stainless steel to about 10 % at 1064 nm.

10.4.3 External Optics Back-Scattering

At every port of the advanced detector interferometers (symmetric, antisymmetric,
and in transmission to the arms), there will be complicated optical setups that have
as main function to collect some light in order to build the error signals required for
the main interferometer longitudinal and alignment controls. These external optics
systems essentially consist of telescopes to adapt the beam size (typically from 50
to 1 mm beam width). All these elements are critical as they can back-reflect or
back-scatter light into the interferometer. Some detailed analysis was done in [4] for
the input optics of Advanced Virgo. It is shown that some of the optics of the input
telescope are required to have the best possible Anti-Reflective coating (<100 ppm),
while the roughness of many other components should be of very high quality.

In many cases (at the symmetric and antisymmetric ports in particular), once the
beam width has been reduced to few millimeters, a Faraday isolator is used to further
reduce the amount of light coming from the following optics (see Chap. 5). These
Faraday isolators have been developed along the past 10 years in order to provide a
very high isolation factor (about 40–50 dB) even at high power (up to 200 W) [21].

A more original technique has been proposed in [22], then further developed for
GEO600 and demonstrated in [23] to deal with scattered light noise from external
optics. This technique relies on an optomechanical phase shifter placed between
the interferometer and the external optics. By modulating the optical path length at
high frequency, the noise due to the light back-scattered from the external optics
can be shifted out of the frequency band of interest. This technique, implemented in
GEO600, allowed for a noise reduction of one order of magnitude.

Besides, there is the need to block some beams which can have a high power, up
to 100 W, when the lock of the interferometer is lost. Various materials have been
investigated for the construction of these beam dumps. High absorbing material at
1064 nm with high thermal conductivity, that implies high damage threshold, as well

http://dx.doi.org/10.1007/978-3-319-03792-9_5
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as low out-gasing properties are required. Three materials have been proposed and
are currently used (the damage threshold in air is indicated between parenthesis):
Diamond-like Carbon [24] (0.5 kW/cm2), Silicon (6 kW/cm2) and Silicon Carbide
(30 kW/cm2).

Finally, the best way to mitigate back-scattering noise from the external optics is
actually to seismically isolate the optics. This will be the case for most of the optics
for the advanced detector generation. In advanced LIGO, more optics are integrated
in the large vacuum chambers with respect to the enhanced LIGO optical scheme,
like the optics bench in transmission of the arms. In advanced Virgo, new vacuum
chambers are being constructed to host optical benches suspended to a small seismic
isolator at every port. A relative motion control at low frequencies, between these
benches and the interferometer, is envisaged in order to prevent any nonlinear process
to occur.

10.5 Future Prospects

Despite all the efforts to prevent stray light noise from limiting the performance of
advanced detectors, the most recent calculations combined with seismic data col-
lected over more than one year [13] show that the low frequency sensitivity of the
instruments will likely be compromised during the highest microseismic periods.
Figure 10.7 represents the ground motion amplitude spectrum measured at the LIGO
Livingston site. More precisely, each of the 3 solid curves are the amplitude spec-
trum contour for which 50, 90, and 95 % of the collected data have an equal or lesser
amplitude. On the same figure, dashed curves represent the corresponding amplitude
spectrum of the scattered field (assuming the scatterer is moving as the ground at
microseismic frequencies). It is clear that during 5 % of the time, the shoulder shape
of the scattered light field will have a cut-off frequency higher than 10 Hz, so that
the noise will possibly affect the detector performance at low frequency. Figure 10.8
represents a tentative noise projection for an hypothetic scatterer for advanced LIGO.
Various assumptions were made for the recoupling amplitude depending on the sur-
face figure error of the core optics (see [13] for more details). In conclusion, it seems
very likely that the displacement noise due to stray light will very likely affect the
sensitivity of advanced detectors during at least a few percent of their total data taking
time.

As we have seen in Sect. 10.4, the stray light issue in advanced detectors would
also greatly benefit from lower scattering optics, both in terms of surface figure error
and wide angle scattering. The Round-Trip losses of an optical cavity is limited by
the scattering performance of the optics for a wide range of cavity lengths (see [25]
for more details). This in turn limits the performance of many instruments that use a
Fabry–Perot cavity for very accurate measurements in physics.

In this chapter, we intentionally neglected to discuss the possibility to install
systems that can monitor the performance of the baffling system of advanced detec-
tors. Indeed, these systems have not been implemented yet. However, there is an
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Fig. 10.7 Each contour (solid lines) represents the fraction of time for which the ground motion
was smaller than the contour. The respective dashed lines represents the associated amplitude
spectral density of the unconverted scattered field. The data have been collected on the Livingston
observatory for about 3000 days. (Courtesy D. Ottaway [13])

Fig. 10.8 Advanced LIGO
design sensitivity and pre-
dicted displacement noise due
to unconverted scattered light
for the Livingston interferom-
eter. Solid and dashed curves
represent a pessimistic and an
optimistic projection depend-
ing on the expected surface
figure error performance of
the core optics. (Courtesy D.
Ottaway [13])

obvious need to setup diagnosis systems to quickly identify potential issues given the
high number of baffling hardware. During the commissioning of the first-generation
interferometers, this task was difficult and time-consuming.

Finally, it is also important to veto from the scientific data short events related
to stray light noise (due, for instance, to an object moving suddenly fast). Simple
techniques have already been used during the science runs of the first-generation
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detectors [26]. But more ambitious techniques [27] that involve the injection of
squeezed light (see Chap. 11) have been proposed for the future. This technique
would not only allow to veto noisy periods but also to subtract the noise from the
gravitational wave channel.

Acknowledgments The authors would like to acknowledge S. Hild, D. Ottaway, and OSA for the
authorization to reproduce Figs. 10.3, 10.4, 10.5, 10.7 and 10.8 in this chapter.
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Chapter 11
A Basic Introduction to Quantum Noise
and Quantum-Non-Demolition Techniques

Stefan Hild

Abstract For the past 120 years the Michelson interferometer has served as the
standard tool for high precision length measurements. Starting from the very first
Michelson interferometer to today’s large-scale gravitational wave observatories, the
peak sensitivity of the Michelson interferometer has improved by about 10 orders
of magnitude. Advanced gravitational wave detectors, such as Advanced LIGO or
Advanced Virgo, will achieve a measurement precision limited by the Heisenberg
Uncertainty Principle, giving rise to the interferometric Standard Quantum Limit for
40 kg test masses. This chapter will give a basic outline of the concepts currently
under consideration for surpassing the Standard Quantum Limit.

11.1 How to Approach This Chapter

In this chapter we will discuss the notion of quantum noise and some methods by
which it can be reduced in laser-interferometric Gravitational Wave (GW) detec-
tors1. It needs to be pointed out that a comprehensive discussion of this topic is far
beyond what is possible within the limited space here. So, the reader might wonder
what can be gained from reading this chapter? In this chapter I will give my best,
trying to approach quantum noise and quantum-non-demolition (QND) techniques
from the standpoint of an experimental physicist who aims at thinking in terms of
clear and lightweight models with easy applicability, rather avoiding excessive the-
oretical formalism; hence, my main goal is to convey an intuitive understanding of
the underlying concepts of quantum noise and interferometry techniques aiming to

1 Please note, that if not stated explicitly otherwise, we neglect in this chapter all other funda-
mental noises, such as thermal noise, as well as the myriad of technical noises that commis-
sioners of GW detectors have to battle with.
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reduce this noise. While this approach requires certain simplifications to be made, the
presented formalism will help to foster a qualitative understanding of the underlying
phenomena and may serve as a springboard for an in-depth study of the topic.

If you are looking for a mathematically exact description of quantum noise and
QND techniques, please stop reading here and please be deferred to one of the
excellent books and articles already existing [1–4]. Otherwise, please lean back and
enjoy the beauty of interferometry experiments at and beyond the quantum limit!

11.2 The Basics of Quantum Noise

The notation quantum noise originates from the fact that this noise is a direct conse-
quence of the quantum nature of light. For two reasons quantum noise plays a very
special role in the noise-cocktail of advanced laser-interferometric GW detectors:

First of all, quantum noise is of a different nature compared to most other lim-
iting noise sources, because quantum noise originates directly from measure-
ment and readout processes (in contrast to, for example, seismic excitation or
thermally driven fluctuations which directly change the position of test mass
surfaces). Secondly, as can be seen in Fig. 11.1, quantum noise is the noise
source directly limiting the sensitivity of advanced GW detectors over most
frequencies of the detection band.

Hence, reducing the quantum noise contribution by means of clever interferometry
concepts is of the highest priority if we want to further improve the sensitivity of
future GW detectors. So, let us start our quest!

11.2.1 Principles for Building a GW Detector

Before we have a closer look at the nature of quantum noise and what processes lead
to its presence in the GW channel of the interferometer, it is helpful to recall what is
required for conceiving a GW detector with good performance. Although the current
laser-interferometric GW detectors are extremely complex machines, a successful
design can be boiled down to two basic design principles:
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Fig. 11.1 Noise budget of the advanced LIGO broadband configuration as described in Abbott et al.
[5]. The coloured lines (1–8) represent the amplitude spectral density of various noise components,
whereas the trace labelled “Total Noise” shows the overall instrument sensitivity. For all frequencies
above about 12 Hz quantum noise is the dominating noise source (This figure was produced using
the GWINC software [6])

1. You need to make sure your test masses are quieter than the signal you
want to observe.

2. You need to make sure that the test mass position can be read out to the
required accuracy, without introducing any significant level of back action
noise.

In order to satisfy the first of the requirements stated above we employ a myr-
iad of sophisticated techniques and we exercise the greatest care when it comes to
providing seismic isolation of the test masses, put them into ultra-high vacuum to
reduce their acoustic coupling, and use ultra-low loss materials for the test masses
as well as for their suspensions to reduce the influence of thermal noise. The second
design principle relates fundamentally the optical readout and the interferometric
measurement of the differential arm length degree of freedom of the GW detector.
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Fig. 11.2 Illustrations of radiation pressure noise (left) and shot noise (right)

11.2.2 Photon Shot Noise and Quantum Radiation Pressure Noise

So, finally let us answer the question of what quantum noise is actually composed of.
It is ultimately made up from two components: photon shot noise at high frequencies
and photon radiation pressure noise at the low frequency end of the detection band.
The most straightforward way to understand the origin of the two quantum noise
components is illustrated in Fig. 11.2. The photons in a laser beam are not equally
spaced in time, but follow a Poissonian distribution. Consequently, when a laser
is shone onto a photodetector, the resulting time-series of the photo current is not
constant over time but is subject to fluctuations. These fluctuations, literally also
called shot noise, increase proportional to the square root of the optical power in
the laser beam. In contrast, the signal strength in the GW detector increases linearly
with the optical power. Hence, by increasing the optical power in a GW detector the
signal-to-shot-noise ratio can be effectively increased, proportional to the square root
of the optical power inside the GW interferometer. The amplitude spectral density of
strain equivalent of photon shot noise in a simple Michelson interferometer (without
arm cavities or recycling) can be expressed as

hsn( f ) = 1

L

√
�cλ

2π P
, (11.1)

where f is the frequency, L is the arm length of the GW detector, c is the speed of
light, λ the laser wavelength, and P the optical power in the interferometer arms.

The second effect of the temporally inhomogeneous distribution of the photons
in a laser beam is illustrated on the left panel of Fig. 11.2. Photons carry momentum
and when they are reflected from a free-falling test mass they transfer momentum,
or better, a radiation pressure force onto the mirror. Since the photons do not arrive
at the test mass with exactly similar separation in time, the force onto the mirror and
therefore also its position fluctuate over time, giving rise to photon radiation pressure
noise. The amplitude spectral density of the quantum radiation pressure noise in a
simple Michelson is given by
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hrp( f ) = 1

m f 2L

√
�P

2π3cλ
, (11.2)

where m is the mass of the mirror. In contrast to shot noise we see that the radiation
pressure noise spectrum is not white, but its contribution falls off as 1/ f 2. From this
it is obvious that radiation pressure noise will dominate at low frequencies, while
shot noise is the dominant contribution at high frequencies.

We define the quantum noise of an interferometer to be the (uncorrelated) sum
of photon shot noise and photon radiation pressure noise.

11.2.3 The Standard Quantum Limit

It is important to note in Eqs. 11.1 and 11.2 that shot noise and radiation pressure noise
scale inversely with the optical power inside the Michelson interferometer; so, while it
is possible to improve the strain sensitivity of an interferometer at high frequencies by
increasing the circulating light power, inevitably at the same time the sensitivity will
decrease at low frequencies as the radiation pressure increases with the light power.
This relation is illustrated in Fig. 11.3. Ultimately, for every observation frequency
there exists an optimal power, which results in identical magnitude contributions from
shot noise and quantum radiation pressure noise at this frequency. For example, the
best sensitivity at a frequency of 8 Hz is achieved for 1 MW (see trace 2c in Fig. 11.3).
The Standard Quantum Limit (SQL) is defined as the lower bound envelope of the
quantum noise spectra for all optical powers circulating in interferometer with a
specific set of design parameters [7]. As illustrated in Fig. 11.3, the SQL for a simple
Michelson interferometer follows a slope inverse to the observation frequency.

The SQL has originally been suggested as an ultimate limit for the sensitivity of
laser interferometers that cannot be surpassed. However, it was quickly realized that
the SQL only imposes a limit on the achievable sensitivity of classical interferometers
but that there are several techniques, such as detuned signal recycling and quantum
non-demolition configurations, which can enable interferometric measurements with
displacement sensitivities below the SQL. The basic principles of the most prominent
techniques that allow us to beat the SQL will be discussed in the following sections.

11.3 A Simple Graphical Tool to Understand Quantum Noise

11.3.1 The Quadrature Picture

In order to gain an intuitive understanding of quantum noise in interferometric mea-
surements, in the following we will introduce a rather simple, yet powerful graphical
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  (1a) shot noise, P = 10 kW
 (1b) radiation pressure, P = 10 kW
 (1c) quantum noise, P = 10 kW
 (2a) shot noise, P = 1 MW
 (2b) radiation pressure, P = 1 MW
 (2c) quantum noise, P = 1 MW
 (3) SQL, L=10km, m=10kg

(1c)

(2c)

(1a)

(2a)

(1b) (2b) (3)

Fig. 11.3 The SQL (trace 3) and the quantum noise contribution for a simple Michelson interfer-
ometer, featuring 10 km arm length and test masses of 10 kg weight, for low (traces 1a–1c) and high
(traces 2a–2c) circulating power

tool, often formally referred to as the quadrature picture or informally sometimes
referred to as the ball on a stick picture.

In general we can describe an electric field E at a position r and at the time t by

E(r, t) = E0

[
a(r)e−iωt − a∼(r)e+iωt

]
p(r, t), (11.3)

where a is the complex amplitude of the electro-magnetic field, ω its angular fre-
quency and p the polarization. We can introduce the following two new properties:

X1(r) = a∼(r) + a(r) (11.4)

X2(r) = i
[
a∼(r) − a(r)

]
. (11.5)

X1 and X2 are usually referred to as the amplitude and phase quadrature, respectively.
Using the quadrature representation we can now rewrite Eq. 11.3 to express the
electromagnetic field in terms of the amplitude and phase quadratures:

E(r, t) = E0 [X1 cos(ωt) − X2 sin(ωt)] p(r, t). (11.6)
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In close analogy to Eqs. 11.4 and 11.5 we can formulate the so-called quadrature
operators which are the foundation of a description of light fields in the realm
of quantum mechanics as

X̂1(r) = â†(r) + â(r) (11.7)

X̂2(r) = i
[
â†(r) − â(r)

]
, (11.8)

where X̂1(r) is the amplitude quadrature operator and X̂2(r) is the phase
quadrature operator.

11.3.2 The Ball on a Stick Picture

A common way to visualize the quadrature operators introduced above is the “ball
on the stick” picture. In the following we use a concept similar to that which has
been introduced for example by Chen [8, 9]. The left-hand side of Fig. 11.4 shows
an example of a coherent light field. Let us assume the light field consists of a huge
number of photons and we continuously perform measurements over a finite duration
to determine the light states. We can represent each measurement by a single dot
in the X̂1, X̂2 plane. If we perform a large number of measurements, then we can
measure the probability distribution of the light state, which is indicated by the “ball”
or “cloud” shown in Fig. 11.4. The solid arrow points at the center of that ball which
is the point in the X̂1, X̂2 plane featuring the highest probability to encounter the
field in this state if a measurement is carried out. So we can graphically represent
the coherent part of a light field (with a certain amplitude and phase) by the arrow
shown, while the uncertainty (or noise) of the field is represented by the ball; hence
the phrase ball on a stick. The quantum nature of light forbids us to reduce the area of
the ball below a certain limit, in the following referred to as the uncertainty limit. This
limit can be considered to be a direct consequence of the Heisenberg Uncertainty
Principle which also applies in a quantum-mechanical description of light.

While the uncertainty principle dictates the minimal area of the ball, we have
the freedom to manipulate its shape. One way to change the shape of the ball is a
technique with the figurative name squeezing [10]. The right-hand panel of Fig. 11.4
shows a light field that is squeezed in phase quadrature, i.e., the uncertainty of the
light state is reduced in one quadrature (in this case the phase quadrature), while at the
same time one has to pay the price of at least a proportionally increased uncertainty
in the orthogonal quadrature (in this case the amplitude quadrature). As we will see
later in Sects. 11.4 and 11.6, squeezed light can be used to improve the quantum
noise limited sensitivity of laser-interferometric gravitational wave detectors.



298 S. Hild

Fig. 11.4 Left Graphical representation of a coherent state in the quadrature picture. Due to the
quantum nature of light the photons in a laser beam do not all have the same amplitude and phase,
but follow a probability distribution indicated by the ball or cloud. The minimal area of this ball
is limited by the uncertainty principle. Right Graphical representation of a squeezed state. While
the uncertainty in the phase quadrature is reduced, the uncertainty in the amplitude quadrature is
increased, so that the ball now takes the shape of an ellipse, i.e., the so-called squeezing ellipse

However, for the moment let us go back to the quadrature picture of a conven-
tional, unsqueezed light field and explore how our graphical tool relates to the strain
spectrum of quantum noise we previously discussed in Sect. 11.2. The strain spectral
density of quantum noise can simply be understood as an inverse signal-to-noise ratio
(SNR), or better as a noise-to-signal ratio, where “noise” refers to the amplitude of the
quantum fluctuations in the instrument and “signal” refers to the gravitational wave-
induced phase change of the light which manifests as the change in the differential
arm length scaled with the frequency-dependent signal gain in the instrument. The
lower the quantum noise at constant signal amplitude or the higher the signal ampli-
tude at a constant noise level, the lower is the quantum noise limited strain spectral
density of the interferometer, i.e., the better is the sensitivity of the instrument.

So, where do we find the quantum noise-limited strain spectral density in our
graphical picture? Let us have a look at Fig. 11.5: The second panel shows the uncer-
tainty ball of the light state entering our interferometric system of interest, but in
contrast to the previous section we have omitted the filling of the ball and just
represent its outline by a circle.2 In addition, we have drawn two arrows, E1 and
E2, representing the noise in the two orthogonal quadratures. Please note that for a
coherent state the noise in the two quadratures is completely uncorrelated which is
the reason why the two arrows here are displayed in different colors.

When a gravitational wave causes the length of an interferometer arm to change
or if a local disturbance moves the position of an interferometer mirror, then this
will cause a signal to show up in the phase quadrature, indicated in the third panel

2 Please note, that the circle does not indicate 100 % of the distribution function, but the radius
usually corresponds to 1 σ .
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Fig. 11.5 Illustration of optomechanical coupling of quantum noise on suspended mirrors. The
input field is described by the uncorrelated noise contributions E1 and E2 in the amplitude and
phase quadrature, respectively. Without optomechanical coupling the noise contributions in the
phase and amplitude quadrature are uncorrelated. In case the optomechanical coupling becomes
dominant, fluctuations in the amplitude quadrature (E1) are converted into fluctuations in the phase
quadrature (ERP), thereby introducing correlations of the noise components in the two quadratures.
P is the optical power inside the system, m is the reduced mass of the ensemble of test masses, f
is the frequency, and X symbolises a test mass displacement or the equivalent strain

of our picture by the short arrow EGW. To measure our gravitational wave signal
we have to decide on a readout angle or quadrature angle. Obviously, in the simple
case displayed in the third panel of Fig. 11.5, we obtain the best SNR exactly reading
out the phase quadrature; while the magnitude of the noise is similar for all possible
readout angles the signal is maximal in the phase quadrature (vertical direction).
So let us assume for the moment that, if not stated explicitly otherwise, we always
choose a readout angle that perfectly coincides with the phase quadrature.

So far we have not included any optomechanical coupling in our picture, i.e.,
the situation displayed in the third panel of Fig. 11.5 is only valid for scenarios
with negligible radiation pressure (i.e., for high frequencies or very low ratio of
optical power and mirror mass). Let us now include the effects of quantum radiation
pressure acting on our suspended test masses. As illustrated on the left-hand panel of
Fig. 11.5, both phase and amplitude fluctuations are “impinging” onto the test mass.
While the phase fluctuations have no mechanical effect on the mirror, the amplitude
fluctuations couple via radiation pressure into position fluctuations of the test mass.
These position fluctuations then show up, similar to the GW signal, as an additional
component in the phase quadrature (see ERP on the right-hand panel of Fig. 11.5). The
key difference between the original fluctuations in the phase quadrature (E2) and the
fluctuations optomechanically coupled from the amplitude quadrature into the phase
quadrature (ERP) is the fact that now we have introduced correlated fluctuations in
the amplitude and phase quadrature. As we will see in later sections, these introduced
correlations between E1 and ERP can be used for beating the SQL. However, for the
moment let us get back to the right-hand panel of Fig. 11.5: The magnitude of the
radiation pressure induced fluctuations in the phase quadrature, i.e., the length of
ERP, scales directly with the light power, is inverse to the mass of the mirror, and
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due to the response function of a suspended mirror to an external force inverse to the
frequency squared.

So, now we have completely assembled our graphical tool and it is time to check
whether it delivers useful results and predictions. Let us see if we can explain the
individual traces in Fig. 11.3. For the low power case (traces 1a–1c) at high frequen-
cies radiation pressure does not play any role and the sensitivity of the interferometer
is limited by the ratio of the shot noise in phase quadrature (E2) and the GW signal
(EGW). At the low frequency end the coupling of fluctuations from the amplitude
quadrature into the phase quadrature increases and the length of ERP showing up
in the phase quadrature becomes more and more dominant with lower frequency.
While the GW signal stays constant in frequency, the change of ERP significantly
reduces the SNR of our measurement and therefore decreases the sensitivity towards
the low frequency end of the measurement band. So, our picture allows us to explain
the shape of the overall quantum noise spectrum (trace 1c). What will happen if
we increase the optical power by a factor of 100? First of all the length of the GW
arrow will increase by a factor of 10. At the same time the length of E1 and E2 stays
constant, so that the overall signal-to-noise ratio at high frequencies increases by a
factor of 10, i.e., the quantum noise contribution is reduced by a factor 10. How-
ever, since ERP scales directly with the optical power, its length is now 100 times
longer. So, at low frequencies the noise is increased by a factor of 100, whereas the
length of the signal arrow EGW is only increased by a factor of 10, so that in total
we lose SNR at the low frequency end. Hence, our simple model predicts that for a
factor 100 power increase we will obtain a factor 10 improvement with respect to the
trace 1c at high frequencies and a factor 10 sensitivity reduction at low frequencies.
These predictions match exactly the shape of the trace 2c in Fig. 11.3. So, our simple
graphical tool has passed its first crucial test.

11.4 Squeezed Light Injection

In the previous section we already briefly discussed squeezed light and described it
in the quadrature picture (see right-hand panel of Fig. 11.4). The squeezing ellipse
can be characterized by three properties: (i) the squeezing level, i.e., ratio of diameter
of the “unsqueezed” ball and the length of the minor axis of the “squeezed” ellipse,
as well as the level of anti-squeezing which is given by the ratio of the ball diameter
and the length of the major axis of the squeezing ellipse; (ii) the orientation of
the squeezing ellipse in the quadrature plane, also referred to as squeezing angle;
and (iii) the frequency of the squeezed light field. Squeezed states of light can in
general be created by means of nonlinear optical effects, such as for instance an
optic parametric oscillator (OPO). During the past decade there have been major
advances in the generation of squeezed light for gravitational wave detectors such as
the demonstration of squeezing levels of more than 12 dB [11] as well as squeezing
down to frequencies of a few Hz [12]. Due to limited space in this chapter we will omit
a detailed description of the generation of squeezed light states here. The interested
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Fig. 11.6 Quadrature picture for a simple Michelson interferometer with phase squeezing (right)
and without squeezing (left) as reference

reader can find good overviews of the technical principles involved in the generation
of squeezed light in [13, 14].

Let us now investigate how the application of squeezing can improve the sensitivity
of a GW detector. Assuming we have produced sufficiently strong squeezing at
the desired frequency, then the only other parameter we need to decide on is the
orientation of the squeezing ellipse. If we want to increase the sensitivity of our
GW detector at high frequencies then we should inject phase squeezing, i.e., the
minor axis of the squeezing ellipse is oriented in parallel to the phase quadrature.
Figure 11.6 illustrates the application of phase squeezing. The ball is squeezed so
that E2 is shortened and E1 becomes longer. Since the magnitude of the GW signals
stays constant, at high frequencies we can improve the signal-to-noise ratio and
therefore improve the sensitivity of our interferometer. However, as indicated in
the third panel of Fig. 11.6, at low frequencies the noise in the phase quadrature is
strongly increased when applying phase squeezing, because the increased amplitude
fluctuations originating from the anti-squeezing couple via radiation pressure into the
phase quadrature (ERP). So, whereas the GW signal is independent of the squeezing
level, the quantum noise at low frequencies increases with the application of phase
squeezing and therefore overall we lose sensitivity at the low frequency end of the
spectrum.

However, if we are keen to improve the interferometer sensitivity at low frequen-
cies, this can also be accomplished by the injection of squeezed light. In this case we
have to apply amplitude squeezing, so that the length of E1 is reduced and therefore
also the radiation pressure noise coupling into the phase quadrature decreases. The
consequence of this is improved low frequency sensitivity at the expense of reduced
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Fig. 11.7 Improvement of the
GEO 600 sensitivity achieved
by the injection of phase
squeezing at the output port of
the interferometer
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sensitivity at high frequencies, because due to the anti-squeezing in that case E2 will
be longer than in the unsqueezed case. Hence, we see that the application of purely
phase-squeezed or purely amplitude-squeezed light only allows us to improve the
sensitivity over a certain part of the detection band. From a qualitative point of view
such squeezing in the ideal case (i.e., if the squeezing level is exactly the same as the
anti-squeezing level) allows exactly the same sensitivity variations as is possible by
increasing or decreasing the light power inside the interferometer.

It is not possible to surpass the SQL by application of purely phase-squeezed
or purely amplitude-squeezed light.

GEO 600 was the first large-scale GW detector to routinely improve its sensitivity
by the application of squeezed light [15]. The implemented squeezing source is able
to produce phase squeezing of almost 10 dB, which would be equivalent to a factor 3
improvement in strain sensitivity. However, due to high optical losses (in particular
in the output mode cleaner) the obtained sensitivity improvement is only about a
factor

⊗
2. Please note that at low frequencies GEO 600 is limited by seismic and

control noise, masking the expected increase of quantum noise at the low-frequency
end which is a consequence of the injection of phase squeezed light.

The experience with long-term injection of squeezed light states at GEO 600
[16] together with the recent tests of squeezed light in the Hanford 2 km inter-
ferometer [17], transform squeezing from “science fiction” to an established
tool for gravitational wave detection.
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Fig. 11.8 Left panel Schematic layout of a simple Michelson interferometer with homodyne read-
out. The output port is kept on destructive interference so that only the signal can leave towards the
photodiodes, where it beats with light picked off before the interferometer. In order to avoid open
ports a homodyne detector consisting of a pair of photodiodes is used. Right panel Illustration of
radiation pressure noise cancellation via homodyne readout

11.5 Homodyne Readout and Variational Readout

So far we have always assumed that we would read out our interferometer exactly in
the phase quadrature. Naively thinking, this choice seems to make most sense because
this gives us the strongest GW signal. However, as we will see in this section it can
be beneficial to use a different readout angle, i.e., to readout a superposition of phase
and amplitude quadrature.

From a technical point of view it is possible to vary this readout angle by utilizing
a homodyne readout scheme as illustrated on the left-hand part of Fig. 11.8. Instead
of using DC-readout [18, 19] in which a deliberate offset is introduced to make
a fraction of the carrier field leak out through the output port forming the local
oscillator for the gravitational wave signal. We can also pick off some light before
the main interferometer and guide it to the output port where it can serve as local
oscillator. The latter scheme is referred to as “homodyne readout.” By shifting the
phase of the local oscillator with respect to the light leaving the main interferometer,
for instance by microscopically changing the local oscillator path length, one can
choose whether to read out the amplitude quadrature, the phase quadrature, or an
arbitrary superposition of these.

So, how does the homodyne readout help us to reduce quantum noise? In order to
understand this our graphical tool comes in handy again, as displayed on the right-
hand panel of Fig. 11.8. Recall that the length of ERP depends on the observation
frequency. However, the length of E1, which is correlated with ERP and represents
the noise in the amplitude quadrature is not frequency dependent. This means that
for every frequency there is a specific readout angle for which the projections, E ∞

RP
and E ∞

1, of the two correlated arrows (ERP, E1) onto the readout axis have exactly
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Fig. 11.9 SQL and simulated
quantum noise of the AEI
10 m sub-SQL interferometer
for different readout angles.
Using homodyne readout it
is possible to exactly cancel
radiation pressure noise at one
frequency and to surpass the
SQL in a narrow frequency
range. The figure is taken from
[20]
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the same length. Since E ∞
RP and E ∞

1 are correlated but point in opposite directions
they exactly cancel out; thus our sensitivity is determined by the ratio of the lengths
of the E ∞

GW and E ∞
2. In this case we have managed to cancel completely the radiation

pressure noise at our measurement frequency. Please note that the ratio of the E ∞
GW

and E ∞
2 stays constant for any readout angle different from pure amplitude quadrature

readout.
The experimental demonstration of radiation pressure noise cancellation via

homodyne readout is one of the goals of the AEI 10 m sub-SQL interferometer [21,
22]. Figure 11.9 shows the simulated quantum noise for the AEI-10m interferome-
ter for 4 different readout angles [20]. Trace 2 represents the standard case of pure
phase quadrature readout. We see a flat shot noise spectrum at frequencies above a
few 100 Hz (plus the additional roll-off at 10 kHz originating from the limited band-
width of the arm cavity), and at low frequencies we see the characteristic increase
in quantum noise due to radiation pressure noise, following a 1/ f 2 characteristic.
The other three traces show the quantum noise for a certain readout angle. As one
can see it is possible to cancel the radiation pressure noise at one frequency and to
dip down below the SQL achieving exactly the same peak displacement sensitivity
as in the shot noise limited frequency regime of trace 2, i.e., the potential sensitivity
improvement is limited by shot noise which was buried under quantum radiation
pressure noise before.

A simple homodyne readout is one of the possibilities to achieve narrowband
sub-SQL sensitivities.

Let us have a closer look at trace 4 in Fig. 11.9 and try to better understand its shape.
We have already explained that we can completely cancel radiation pressure noise
at one frequency, in this case 100 Hz. However, at frequencies below and above this
“sweet spot” quantum noise is only partly reduced or even increased. Below 100 Hz
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E ∞
1 is shorter than E ∞

RP and therefore the cancellation of the correlated noise terms
works only partly. Finally we should explain why the noise represented by trace 4
is higher than the trace 2 for all frequencies above a few 100 Hz where the trace
2 is made up of shot noise. At these high frequencies E ∞

RP is of negligible length.
However, due to the rotated readout angle amplitude noise from E1 is mixed into our
readout signal (E ∞

1), so that the sensitivity is determined by the ratio of E ∞
GW and the

sum of the uncorrelated noise contributions E ∞
2 and E ∞

1.

So, we have seen that changing the readout quadrature (homodyne readout)
allows us to cancel radiation pressure noise at a single frequency at the expense
of reduced sensitivity at high frequencies. If it would be possible to change
the readout angle in a frequency-dependent way, then it should be possible
to cancel radiation pressure noise at low frequencies, i.e., where it dominates,
without introducing additional noise at high frequencies. This technique, called
variational readout can actually be realized by making use of the dispersion of
the light reflected from a cavity [23], in analogy to the generation of frequency-
dependent squeezing discussed in the following section.

11.6 Frequency-Dependent Squeezing

We have seen above that the injection of simple amplitude or phase squeezing can-
not improve the sensitivity over the whole frequency range and therefore with such
squeezed light states it is not possible to surpass the SQL. However, if we were to
manage to change the squeezing angle of the injected light in a frequency-dependent
way, then it should be possible to obtain a reduction of quantum noise at all frequen-
cies, which in turn would allow broadband measurements with a sensitivity below
the SQL.

Using our graphical tool, in Sect. 11.3.2 we learned that our sensitivity is limited
at high frequencies by shot noise in the phase quadrature, while at low frequencies
the dominant noise term originates from amplitude fluctuations coupled to the phase
quadrature via radiation pressure-induced mirror motion. Hence, if we could rotate
the squeezing ellipse as a function of the detection frequency to always provide
squeezing in the optimal quadrature we could reduce quantum noise in the entire
detection band.

Injection of squeezed light for which the squeezing angle is a function of
frequency is in the following referred to as frequency-dependent squeezing.
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Fig. 11.10 Left Illustration of frequency-dependent squeezing using the quadrature picture. Right
Quantum noise of a simple Michelson interferometer with pure phase squeezing as well as
frequency-dependent squeezing. Please note that even though theoretically a squeezing factor of
10 is possible, in real interferometers optical losses and control noise of the squeezing will degrade
the sensitivity improvement. It is assumed that in future GW detectors quantum noise reduction by
squeezing injection is limited to a factor of 3 to 4 [24]

The two left panels of Fig. 11.10 illustrate frequency-dependent squeezing in the
quadrature picture. For all frequencies we readout the phase quadrature. At high
frequencies we apply phase squeezing and obtain a quantum noise reduction exactly
the same as for injection of frequency-independent phase squeezing. In contrast to
this, towards the low frequency end of the detection band we arrange for the squeezing
ellipse to continuously rotate from phase quadrature squeezing to squeezing in the
amplitude quadrature. The key here is that the length of the original E1 arrow in
the amplitude quadrature reduces, which results in less noise coupled to the phase
quadrature via radiation pressure-induced mirror motion. Therefore, also the length
of the ERP arrow in the phase quadrature is reduced. As a consequence the SNR at low
frequency is larger than in the unsqueezed case (compare to left panel of Fig. 11.6).
The right-hand plot of Fig. 11.10 compares the quantum noise spectrum of a simple
Michelson interferometer without squeezing (trace 2), pure phase squeezing (trace 3),
and frequency-dependent squeezing (trace 4), where the gray ellipses at the bottom
of the plot illustrate the optimized orientation of the squeezing ellipse of the injected
squeezing at different frequencies in the detection band.

Frequency-dependent squeezing can provide a broadband reduction of quan-
tum noise significantly below the SQL.

Frequency-dependent squeezing has been identified as one of the key technologies
for the Einstein Telescope [25, 26] as well as for upgrades to the Advanced LIGO
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Fig. 11.11 Left Cartoon of the optical layout of the ET low-frequency interferometer, which uses
detuned signal recycling and exploits the dispersion of the squeezed light being reflected from two
filter cavities to provide squeezing at the optimal frequency-dependent angle for all frequencies.
Right Quantum noise for an ET low-frequency interferometer without squeezing (trace 1), with 6 dB
of frequency-dependent squeezing injected into an ideal interferometer (trace 3) and frequency-
dependent squeezing considering realistic losses (trace 2)

instruments [27, 28]. Figure 11.11 illustrates the implementation of frequency depen-
dent squeezing into an ET low frequency interferometer. The squeezed light leaving
the squeezing source is reflected from two slightly differently detuned cavities. The
dispersion of the detuned cavities introduces the frequency dependent rotation of
the squeezing ellipse. Afterwards the squeezed light is injected into the output port
of the interferometer. For the squeezing injected into the detection port the inter-
ferometer acts as a reflector. The injected squeezing leaves the interferometer and
co-propagates with the GW signal towards the detection stage where the squeezed
output field is converted into an electronic signal.

From the technical point of view the key difficulties in realizing frequency-
dependent squeezing are the design and low-noise operation of the filter cavities with
the required bandwidth and low enough losses in order not to destroy the squeezing.
In the case of the ET low-frequency interferometer the required bandwidth of the
filter cavity is similar to the bandwidth of the signal recycling. As one can see from
the right-hand plot of Fig. 11.11, for an ET low frequency interferometer the signal
recycling bandwidth is about 10 Hz, which in turn requires to employ filter cavities
of the same finesse and length as the main interferometer. If shorter filter cavities
are preferred it is necessary to increase the finesse which, depending on the chosen
length, may take on extremely high values.

In high-finesse filter cavities the presence of even very low optical losses may
strongly degrade the squeezing strength of the generated frequency-dependent
squeezing, as is illustrated in Fig 11.11. Whereas trace 3 shows the quantum noise
level for filter cavities without any losses, trace 2 represents the quantum noise for
10 km long filter cavities with 75 ppm round-trip loss. Why are losses so important,
even though we only use the filter cavities in reflection? The problem is that some
of the squeezing (mainly at and around the resonances of the detuned filter cavities)
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Fig. 11.12 Illustration of the
optical spring principle. In
a cavity tuned slightly away
from its resonance, the optical
power strongly depends on
the microscopic position of
the mirrors or more accurately
the cavity length. If one or
both of the cavity mirrors
are suspended, then they
are susceptible to radiation
pressure forces, which depend
on the position of the mirror.
Radiation pressure, together
with gravity, acts as a linear
restoring force, resembling
the dynamics of a mechanical
spring

actually enters the filter cavities and hence is subject to internal optical loss. Loss
in this context means that a fraction of the squeezed field is lost and replaced by a
coherent unsqueezed state. For constant optical loss per filter cavity mirror, the higher
we choose the finesse of the filter cavity, the stronger is the squeezing degradation.

11.7 Optical Springs and Optomechanical Rigidity

An optical spring is a fascinating physical phenomenon, which allows to connect
two or more suspended mirrors with springs completely made out of photons (also
compare Chap. 12 of this book). These springs can be made kilometers long and
stiffer than diamond [29, 30], while at the same time, in contrast to any mechanical
spring, they are somewhat free from classical noise.

So how can we create an optical spring? The basic principle is shown in Fig. 11.12:
in a detuned Fabry-Perot cavity featuring high optical power and at least one sus-
pended mirror, the equilibrium position of the suspended mirror is given by radiation
pressure trying to push the mirrors further apart and gravity pulling the suspended
mirror to shorten the cavity. Now, let us consider the case labelled “optical spring” in
Fig. 11.12 and let us try to push the right mirror away from equilibrium. In case we
push the mirror to the right two things will change: first, gravity will try to pull the
mirror back towards its equilibrium and secondly as the cavity length has increased
the cavity power will decrease, as the cavity is pushed further away from resonance.
Therefore, the radiation pressure force will decrease. Both these effects will cause
the mirror to move towards the left back into its equilibrium position. Now let us
try to push the mirror towards the left. As this means that we shorten the cavity and

http://dx.doi.org/10.1007/978-3-319-03792-9_12
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move closer to resonance, the cavity power increases and the increased radiation
pressure force pushes the mirror back towards the equilibrium. So, we have a sys-
tem exhibiting a linear restoring force, which can in simple terms be described by
Hooke’s law F = −kx , where F is the superposition of forces acting on the mirror,
x is the distance of the mirror from its equilibrium point, and k is the effective spring
constant.

In a cavity with two suspended mirrors connected by an optical spring, when
we push one mirror (and keep it fixed so that it cannot return to its original
position), then the other mirror will move exactly by the same amount, so that
the pathlength for the light stays constant. Using this phenomenon one can
control the position of a mirror over several kilometers of distance, just by
acting on the second cavity mirror.

There are two more interesting aspects about optical springs worth to be mentioned
here: When setting the cavity operation point onto the opposite slope of the Airy
peak (labeled as “anti-spring” in Fig. 11.12), then it is easy to see that there will be
an optical anti-spring, i.e., the radiation pressure force acts in the same direction
as a mirror displacement. The other interesting aspect is related to the damping of
optical springs: When changing the cavity length, the optical power does not settle
immediately at its new value, but it takes some time for the light in the cavity to build
up or relax. This kind of “delay” causes the optical spring to feature anti-damping.
The anti-damping can render optical systems unstable if no counter measures are
applied. Two ways have been proposed to avoid this problem: First of all one can
use active feedback to introduce damping or one can use two different springs acting
on the same system and combining them in a way such that the result is an effective
spring with positive damping [31].

So, how can optical springs actually help to surpass the SQL? In this respect
two concepts are of interest. First of all optical springs play an important role in
the context of advanced GW detectors employing detuned signal recycling [32],
which has already been discussed in detail in Chap. 3 of this book. The other class of
concepts employs optical spring systems to act as transducer of the GW. Figure 11.13
shows the simplest variant of such a transducer configuration, a so-called optical bar
[33]. Two detuned cavities with a heavy end mirror each (EM1 and EM2) share a
lightweight mirror (MR) so that MR is connected via optical springs to both end test
masses. In case a GW with a frequency below the optical spring frequency is incident
on the detector perpendicular to the plane spanned by the interferometer arms, one
of the arms will shrink, while the other will stretch. If you think about this in terms
of a system of coupled mechanical springs, then this means that one spring will be
squeezed, i.e., it will push on MR, while the spring in the perpendicular arm will be
stretched and pull on MR, so that as a consequence in the presence of a GW the mirror
denoted MR will move in its local frame. This local movement of MR can then be
read out relative to a local reference. The trick of the optical bar topology is that this

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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Fig. 11.13 Simplified optical
layout of an optical bar. A
lightweight mirror (MR) is
connected via optical springs
to two heavy end mirrors
(EM1 and EM2). If there
occurs a change in the differ-
ential armlength (e.g., due to
GW), MR is displaced with
respect to its local frame. A
separate local readout can then
be used to readout the GW
signal

concept allows to separate the GW transducer from the readout process and hence
gives the possibility to optimize both parts of the optical bar system independently
to minimize quantum noise in the measurement. More advanced and more complex
configurations involving optical springs, such as optical levers [34, 35] and local
readout configurations [36] have been proposed in the literature, but due to lack of
space will not be discussed here.

11.8 Speedmeter Topologies

We have seen above that Michelson interferometers are limited by the SQL. The rea-
son for this is that quantum theory imposes a limitation on how accurate subsequent
position measurements can be carried out. This is a direct consequence of the fact
that position measurements at different times x(t), x(t ∞) do not commute, i.e.,

[
x̂(t), x̂(t ∞)

] ⊥= 0. (11.9)

However, already in the 1930s John von Neumann realized that for some sys-
tems it is possible to find observables which are not limited by an uncertainty
relation [37]. For instance in systems where the momentum is conserved you
can in principle measure the momentum p of an ensemble of mirrors contin-
uously with arbitrary precision since

[
p(t), p(t ∞)

] = 0. (11.10)

In 1990, Braginsky and Khalili proposed this concept for application in bar detec-
tors, which were the predecessors of laser-interferometric GW detectors [38]. Hence,
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Fig. 11.14 Simplified optical layout of a Michelson interferometer with arm cavities (top left) and
a Sagnac interferometer with arm cavities (bottom left). Whereas in the case of the Michelson inter-
ferometer all photons only travel through one of the arms, in the case of the Sagnac interferometer
all photons travel through both arms. Transfer functions from differential arm length to signal on
the main photo detector (top right). Quantum noise limited effective “displacement” sensitivity for
a Michelson and a Sagnac interferometer (bottom right)

for detectors of this type, in which the velocity would be measured instead of the
position of the test mass, the name “speed-meter” was coined. Later, the concept
was also suggested for application in interferometric GW detectors.The first speed-
meter interferometer configuration was based on a Michelson interferometer with
a so-called shloshing cavity at the output port the interferometer. With the aid of
this shloshing cavity the conventional Michelson interferometer is transformed into
a speedmeter [39]. In the year 2003, Chen demonstrated in a theoretical work that a
Sagnac interferometer naturally constitutes a speedmeter [40] .

In order to understand why a Sagnac interferometer is a natural representative of
the class of speedmeters we should have a look at the optical layouts of a Michelson
interferometer and a Sagnac interferometer as displayed in the two left-hand panels
of Fig. 11.14. In a Michelson interferometer, depending on whether the photons
in the input laser beam are transmitted or reflected, the light either travels along
the horizontal or the vertical arm. It is important that when the returning photons
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interfere at the beam splitter, each photon has only sensed the mirror positions of
a single arm. Contrasting this, in a Sagnac interferometer all photons travel along
both arm cavities, i.e., they sense the positions of all relevant mirrors. Only after all
photons have passed through both arm cavities the light interferes again at the output
port of the beam splitter. This means that the light initially transmitted through the
beam splitter measures the position of the end mirrors of the horizontal arm at a time
t1, while it measures the position of the end mirrors in the vertical arm at a slightly
later time t2. The light initially reflected at the beam splitter measures the position
of the end mirrors of the vertical arm at a time t1, while it measures the position of
the end mirrors in the horizontal arm at a slightly later time t2. So, each of the end
mirrors is sensed at two different times, or, in other words, we measure the velocity
of the end mirrors, but not their absolute position.

As the Sagnac speedmeter is not sensitive to absolute displacement, its response
to absolute differential arm lengths goes down to zero. This can be seen in the top
right plot of Fig. 11.14. While the Michelson has a flat response at low frequencies,
the Sagnac response falls linearly towards lower frequencies. So, if the signal at low
frequencies is smaller in the Sagnac compared to the Michelson Interferometer, how
can the quantum noise limited sensitivity be better for the speedmeter?

Please recall that the achievable sensitivity is related to the SNR. For the
Michelson the signal is flat, but the radiation pressure noise is present and
increases quadratically towards lower frequency. In contrast, in the Sagnac
speedmeter the signal decreases linearly towards low frequency, while the
noise is flat because the radiation pressure noise is mostly cancelled, resulting
in a significantly reduced and constant value of the radiation pressure noise
at low frequencies. So, in conclusion the Sagnac speedmeter wins in terms of
low frequency sensitivity over the Michelson.

The slight bend in the Sagnac sensitivity trace below 10 Hz (compare Fig. 11.14)
originates from the presence of optical losses in the considered configuration.

11.9 Challenges Towards Sub-SQL Interferometry

It is a fabulous achievement that the advanced GW detectors such as Advanced LIGO
are on the brink of reaching a sensitivity limited by the Heisenberg Uncertainty Limit
for 40 kg mirrors! However, further improvements are possible since the SQL does
not really pose an ultimate limit. Above we have introduced, and briefly discussed,
a wealth of concepts available to tackle the SQL and eventually surpass it.

It is important to point out that all of the discussed concepts are not exclusive
in terms of their application, but many of them can be combined to maximize the
sensitivity improvement. For instance, already at the moment GEO 600 uses phase
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quadrature squeezing in combination with signal recycling. The baseline design for
ET as well as upgrades to Advanced LIGO are likely to employ signal recycling with
frequency-dependent squeezing, while at the same time speedmeters with squeezing
and/or signal recycling have been proposed as alternatives to the well-established
Michelson interferometers.

So far pure phase squeezing is the only example of a technique discussed in
this chapter that has already been demonstrated in a km-scale GW detector. All
other concepts have so far only been analyzed theoretically. Careful experimental
verification of these techniques in table-top experiments and in suspended low-noise
prototypes is urgently required to have these technologies available for installation in
the future GW detectors, to outwit quantum mechanics and measure with sensitivities
below the Standrad Quantum Limit.
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Chapter 12
The Parametric Instability in Advanced
Gravitational-Wave Interferometers

Pierre-François Cohadon and Slawomir Gras

Abstract The Parametric Instability (PI) consists in the coherent ringing of a
mechanical mode of a cavity mirror triggered by the circulating optical power,
which may significantly jeopardize the stable operation of high-power advanced
gravitational-wave interferometers. We present a model and a simple physical pic-
ture of radiation pressure effects and relevant experiments in the single-cavity con-
figuration. We discuss the reasons why the PI is an essential feature of the advanced
interferometers, how it can be computed using finite-element modeling, and possible
schemes or techniques to overcome it.

12.1 Radiation-Pressure Effects

The high-power operation of the advanced gravitational-wave interferometers cur-
rently being built, with incident optical power at the 100 W level and above, comes
at multiple costs, such as thermal lensing or scattered light issues. We investigate in
the following another one: the radiation-pressure induced dynamics of the suspended
mirrors, which may lead to an optomechanical instability [1], with the potential to
threaten the interferometer locking and stable operation.
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Fig. 12.1 Intracavity power
P as a function of the cavity
length L . Around a steady-
state detuning ϕ (defined
in Eq. 12.2), the force Frad
applied by the intracavity
field upon the moving mirror
is proportional to the slope
of the Airy peak and to the
displacement x

Detuning

Intracavity power P

Cavity length Lx

Frad

12.1.1 Optomechanical Dynamics

Light has been commonly used to probe mechanical displacements for decades, but
the reverse coupling field ∼ mechanical motion has gained experimental interest
only recently. We present here a simple theory of these optomechanical effects in a
single cavity.

At frequencies Ω close to a resonance frequency Ωm of the mirror, its dynamics
can be approximated as the one of a single harmonic oscillator, with resonance
frequency Ωm, mass M , and mechanical quality factor Q. Note that this is adequate
to describe all relevant degrees of freedom such as pendulum modes, violin modes,
or internal modes of the test masses, once the appropriate parameters (and especially
the effective mass M) are used.

As the intracavity power P depends on the cavity length, any displacement x of
the resonator induces a variation of the intracavity radiation pressure Frad ⊗ P (see
Fig. 12.1). As a consequence, the intrinsic stiffness MΩ2

m of the resonator is balanced
by the radiation pressure force: for a positive detuning, the displacement creates a
negative linear force and thereby an additional binding force, increasing the effective
stiffness, whereas for a negative detuning, the force corresponds to a softening of the
oscillator. These effects obviously cancel at resonance, but are maximum halfway
of the optical cavity resonance, and proportional to the incident power. Such optical
spring effects (see also Chap. 3) have been first demonstrated on a suspended mirror
[2] or on a specially-designed flexure oscillator [3].

The previous argument is however only valid when the mechanical frequency Ωm
is negligible compared to the cavity bandwidth Ωc. Otherwise, the cavity storage
time has to be taken into account to evaluate the resonator dynamics. Linearizing
the cavity equations around the corresponding steady-state detuning, one gets the
radiation pressure force Frad Fourier component at frequency Ω [4]:

Frad [Ω] = −2
ϕϕNL

Δ
MΩ2

m x [Ω] , (12.1)

with

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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ϕ ∞ 4π L/λγ (mod 2π) (12.2)

ϕNL = 8π

λγ c

P

MΩ2
m

(12.3)

Δ = (1 − iΩ/Ωc)
2 + ϕ2, (12.4)

where L is the cavity length, λ the laser wavelength, ϕ the detuning normalized to
the cavity damping rate γ , and ϕNL the normalized phase-shift of the cavity induced
by the static recoil effect of the mirror.

In the framework of linear response theory, the mirror responds to an external force
F (superimposed to the radiation-pressure force exerted by the intracavity light field)
with a displacement x[Ω] given by:

x [Ω] = χm [Ω] (F [Ω] + Frad [Ω]) , (12.5)

with the mechanical susceptibility χm [Ω]:

χm [Ω] = 1

M
(
Ω2

m − Ω2 − iΩΩm/Q
) . (12.6)

Using (12.1) to include cavity-induced radiation pressure, the mirror responds now
to F with an effective mechanical susceptibility χeff [Ω]:

χeff [Ω]−1 = χm [Ω]−1 + 2
ϕϕNL

Δ
MΩ2

m. (12.7)

In the limit of a mechanical quality factor Q ⊥ 1, χeff [Ω] still has a lorentzian
shape, but with effective resonance frequency and mechanical quality factor given
by:

Ωeff = Ωm

(
1 + Re

ϕϕNL

Δ(Ωm)

)
(12.8)

1/Qeff = 1/Qm

(
1 − 2Q Im

ϕϕNL

Δ(Ωm)

)
. (12.9)

The in-quadrature component of the radiation pressure Frad (with respect to the
displacement x) yields a damping/anti-damping force, which can significantly alter
the mechanical Q for Ωm � Ωc.

12.1.2 Experimental Results: Optical Damping

After the first optical spring demonstrations [2, 3], a number of related table-top
experiments have demonstrated this optomechanical damping behavior, in the context
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Fig. 12.2 Thermal noise spectra, normalized as micro-resonator displacements. Black thick curves
correspond to the resonant case ϕ = 0. a Lighter color curves are obtained for negative detunings
ϕ from −0.1 to −0.6 and for an incident power of 5 mW. b Lighter color curves are obtained for
positive detunings ϕ from 0.03 to 0.13 and for an incident power of 2.5 mW. The damping and anti-
damping effects are demonstrated by the area reduction or increase of the spectra. Note the related
shift of the mechanical resonance frequency. The insert shows a picture of the silicon micro-mirror,
with a close-up on the actual mechanical resonator used

of radiation-pressure cooling of macroscopic mechanical resonators, a subject which
has gained momentum since 2006.

Figure 12.2 shows the thermal noise spectra obtained in a table-top experiment
at Laboratoire Kastler Brossel, with a silicon micro-mirror [4] (see the insert in the
figure), both for negative (a) and positive detunings (b). In both cases, the thick curve
corresponds to the resonant situation ϕ = 0. Both damping and anti-damping effects
are evident on the noise spectra. For a negative detuning, the spectra are both widened
and drastically decreased at their resonance frequencies. The decrease of the area of
the curves, which is directly related to the effective temperature by the equipartition
theorem, is a strong indication of the simultaneous effective temperature reduction
of the mirror mechanical mode [4]. The situation is opposite for positive detunings,
where the spectra are strongly narrowed and increased at resonance. Note in both
cases the clear frequency shift (Ωeff − Ωm) of the mechanical resonances.

The simple theoretical model can be further tested by looking at the dependence
of the effective damping ratio Q/Qeff with respect to the detuning ϕ. Figure 12.3
presents our experimental results, for five optical powers from 0.5 to 3.2 mW, along
with the theoretical fits deduced from Eqs. (12.3) and (12.9). The insert shows the
intracavity power at resonance P , single free parameter derived from the preceeding
fits, as a function of the incident power Pin. It exhibits the expected linear dependence,
with a slope in agreement at the 1 % level with the one deduced from cavity and mode-
matching losses. This clearly shows that the observed damping/anti-damping effects
are solely due to radiation pressure.
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Fig. 12.3 Evolution of the
cavity damping/anti-damping
effects with respect to the
detuning. Damping ratio
Q/Qeff for five values of
incident power, from 0.5
to 3.2 mW (red). Points are
experimental results and full
lines are fits. The region
where 1/Qeff vanishes is the
PI region. Insert: Evolution of
the adjusted intracavity power
P with the incident power.
The dashed line is the linear
dependence expected from
cavity and mode-matching
losses
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12.1.3 Optomechanical Instability

At some point, for positive detunings, the effective damping cancels: the resonator
becomes unstable and starts to oscillate at its effective resonance frequency, with
a net energy flow from the optical field to the mechanical motion. Such an effect
has been first demonstrated in a fused silica micro-toroidal resonator [5]. This is the
Parametric Instability, well-known in the microwave domain and first discussed by
Braginsky in the gravitational-wave interferometry context [1].

12.2 Three-Mode Parametric Effects

Figure 12.4a presents an alternative interpretation of the damping/anti-damping
processes as a scattering of photons (at angular frequency ω0) by the mechanical
phonons of the mirror (at Ωm), giving rise to Stokes (at ω0 − Ωm) and anti-Stokes
(at ω0 + Ωm) motional sidebands.

For a resonant cavity, both sidebands have equal amplitudes: they can be used to
infer the mirror motion (as a phase modulation of the reflected field) but have no net
mechanical effect. As the cavity optical resonance curve acts as an effective density
of output modes, detuning the cavity promotes the scattering of photons to one side-
band with respect to the other. For negative detunings for instance, more photons
are scattered at the ω0 + Ωm frequency than at ω0 − Ωm and the net effect of the
optomechanical coupling is a nonzero energy transfer from the mechanical motion to
the optical field, i.e., damping. Anti-damping is obtained as well for positive detun-
ings. The optimal efficiency is very simple to state in the resolved sideband regime
(Ωm ⊥ Ωc) (Fig. 12.4a, dark curve) as the damping/anti-damping processes are
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Fig. 12.4 Radiation-pressure damping seen as a scattering process. a Two-mode damping. The
photon is scattered to the same optical mode, with a frequency offset Ωm with respect to the
incident photon. The cavity is detuned in order to favor the anti-Stokes process, and the pump laser
is out of resonance. b Three-mode damping. The photon is scattered from a pump mode ωp to a
target mode ωt of the cavity. Both the pump laser and the anti-Stokes band can be simultaneously
resonant with the cavity. The vibration profile of the mechanical mode must somehow match the
output mode

resonant for a detuning matching the mechanical resonance frequencyΩm. Figure 12.4a
presents the case where the anti-Stokes process is resonant, both in the non-resolved
and resolved sideband regimes.

12.2.1 From Two-Mode to Three-Mode Effects

As the driving laser is strongly out of resonance, the process is somehow not efficient.
But the situation is different in the case with two optical modes involved, one resonant
with the driving laser, the other with the (anti-)Stokes band (see Fig. 12.4b). In that
case, the anti-Stokes process corresponds to an effective scattering of one photon of
the pump mode ωp to the target mode ωt , possibly of a different optical transverse
profile, by absorption of mechanical phonons ωm. Such a process actually involves
three modes (one mechanical and two optical) and naturally embodies the physics of
the radiation-pressure effects. It is resonant close to an optical frequency mismatch:

Δω = ωt − ωp = ±Ωm (12.10)
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(− for the Stokes process, + for the anti-Stokes).
In such a configuration, close to a Stokes resonance for instance, the effective

mechanical Qeff of the mechanical resonator is altered:

Q/Qeff = 1 − R, (12.11)

with the parametric gain R (neglecting the nonresonant anti-Stokes effect):

R = 16

πλc

FpFt Pin Q Λ

MΩ2
m

(
Ω2

t

Ω2
t + (ωp − Ωm − ωt)2

)
, (12.12)

whereFp andFt are the optical finesses for the pump and target modes of the cavity,
Ωt the related optical bandwidth, Pin the incident power, and Λ the spatial overlap
between mechanical mode um and optical modes ϑp and ϑt:

Λ =
(∫

dr⊥ um(r⊥) ϑp(r⊥) ϑt(r⊥)

)2

, (12.13)

where r⊥ is the transverse position upon the mirror surface. To avoid the unstable
regime, the gain R must never exceed one. At this point, it is worth noting that three-
mode effects are only possible with the internal vibration degrees of freedom of
the mirrors as for center-of-mass motion (such as for a suspension pendulum mode),
the corresponding flat vibration profile um(r⊥) = um cancels the overlap Λ due to
the orthogonality of the TEM modes ϑp(r⊥) and ϑt(r⊥).

12.2.2 Experimental Demonstration of Three-Mode Coupling

Three-mode optomechanical effets have been first demonstrated by Zhao et al. in
a suspended 80-m cavity, pumped by a high-power TEM00 laser beam [6]. In that
experiment, the resonance condition Δω = Ωm of the anti-Stokes process has been
demonstrated through the variation of output intensity of the TEM01 mode. The mir-
ror is first driven into motion by an electrostatic drive at the resonance frequency of a
mechanical mode whose vibration profile gives a significant overlap Λ with the opti-
cal modes. The mode frequency difference Δω is tuned by heating a compensation
plate which changes the g-factor (see Chap. 3) of the cavity. Three-mode parametric
effects are demonstrated with the measured TEM01 power. As the optical spacing
is swept through the resonance condition (12.10), the power detected on the output
quadrant photodiode reaches a peak value (see Fig. 12.5b).

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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Fig. 12.5 Experimental demonstration of three-mode parametric coupling. a Setup. The Nd:YAG
laser is locked to a TEM00 mode of a 80-m suspended-mirror cavity. The end test mirror ETM
is electrostatically driven at a mechanical resonance frequency. The frequency difference between
the TEM00 and TEM01 modes is tuned by heating the compensation plate CP. The cavity tuning
and the TEM01 mode power are measured with the CCD device and quadrant photodiode QPD.
b Measured power of the TEM01 mode (dots) as a function of the mode spacing between the TEM00
and TEM01 modes. The solid line is a fit. Adapted from Ref. [6]

12.2.3 Toward Table-Top Demonstrations of the PI

Yet, with only 4 W of optical power available at the cavity input mirror ITM, the
maximum detected power only corresponds to |R| � 10−2 as the high Q and optical
finesses are insufficient to balance the large mass of the suspended mirror. A number
of experiments have therefore aimed at demonstrating the PI with microoptomechan-
ical systems, for which incident powers at the mW level should be sufficient.

In the experiment performed at Laboratoire Kastler Brossel, the moving mirror
is a 1 mm × 800µm × 30µm silicon doubly-clamped beam, very similar to the
one already used in [4]. A mechanical mode with a resonance frequency close to
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Fig. 12.6 Experimental
implementation of three-mode
coupling. a Three-mode opto-
mechanical system. A TEM00
pump laser is sent into a res-
onant cavity. Its photons are
scattered to the TEM04 mode
by the moving mirror. The
cavity length is set in order to
set one of the motional side-
bands at resonance. b Mode
spectrum of the cavity close
to the semi-confocal working
point. The cavity length is set
such that the TEM04 mode
associated with a given lon-
gitudinal mode of the cavity
is almost resonant with the
subsequent TEM00

TEM00

TEM04

TEM00

Moving mirror
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5 MHz and a significant overlap Λ with the optical modes is used (see its profile on
Fig. 12.6). Gaussian modes TEM00 and TEM04 are used as pump and target modes.

As the mechanical frequency is in the MHz range, the frequency resonance con-
ditions (12.10) are reached with a cavity close to the semi-confocal configuration,
with the moving mirror cavity as a plane end mirror. The input mirror is concave,
with a 50-mm radius of curvature (see Fig. 12.6). The cavity length is finely tuned
to set alternatively both TEM00 motional sidebands at resonance with the TEM04
mode. The cavity has a finesse F � 20,000 for the TEM00 and TEM04 modes. As
demonstrating three-mode effects requires the frequency difference Δω to be much
lower than the cavity bandwidth Ω04, cavity length has to be controlled at the 100-nm
level.

One finds a three-mode mechanical amplification close to the Stokes process res-
onance Δω = −Ωm and a three-mode damping close to the anti-Stokes resonance
Δω = Ωm. Results are displayed in Fig. 12.7 for one specific mechanical mode,
but similar results have been obtained for two adjacent modes as well. Even with
an incident power up to 5 mW, the three-mode parametric instability regime (corre-
sponding to R > 1) has however eluded observation, the maximum gain obtained
being limited to |R| � 0.5.

A related experiment is under progress at UWA, with a thin dielectric membrane
embedded inside a high-finesse optical cavity [8].
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Fig. 12.7 Experimental demonstration of anti-damping by the Stokes mechanism. Calibrated ther-
mal noise spectra measured for the (0,6) mode close to the Stokes resonance condition. Insert, a–d:
Effective mechanical damping of the (0,6) mechanical mode, deduced from the noise spectra. The
solid line is a fit by Eq. (12.12)

12.3 Computing the PI in Large-Scale Interferometers

The three-mode instability we have just discussed is likely to play a major role in the
advanced gravitational-wave interferometers. Both Advanced Ligo and Advanced
Virgo, with their substantial intracavity powers and the high optical finesses of the
compound cavities, are indeed favorable playgrounds for this kind of effects, all the
more since they present a high mechanical mode density in the tens of kHz band,
which is the typical spacing between optical transverse modes as well.

It is therefore of utmost importance to fully understand and eventually to control
these instabilities, which are likely to drive the mechanical modes over very large
amplitudes, resulting in a loss of the interferometer lock, with typical timescales

τ ⊗ Q

Ωm(R − 1)
, (12.14)

on the order of a few seconds to reach the lock-breaking amplitude. Unstable modes
will therefore prevent stable operation of the interferometer even though they are out
of the detection window.
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12.3.1 Finite-Element Computation of the Parametric Gain

After Braginsky’s pioneering works over a single cavity [1], a number of groups
have modeled a complex interferometer such as AdvLigo or AdvVirgo, with dual
recycling. David Blair’s group at the University of Western Australia for instance has
shown that three-mode coupling may involve as many as dozens of optical modes
for a given mechanical one. The parametric gain then has to be summed over all
possible Stokes and anti-Stokes processes, even far from the resonance condition:

R = 8Pin Q

λcMΩ2
m

∑
p

(
Fp ΛpΩ

2
cp

Ω2
cp + (ω0 − ωp − Ωm)2 − Fp Λp Ω2

cp

Ω2
cp + (ω0 − ωp + Ωm)2

)
,

(12.15)
where the summation is on all optical longitudinal and transverse modes p.

Results by the UWA group [9, 10] have allowed a reliable estimate of the number
of potentially unstable modes, even if they are out of the detection window. Estimating
the chances to reach the PI threshold requires a detailed modeling of the mechanical
modes (resonance frequency, effective mass, quality factor Q, vibration profile),
which can be performed by Finite-Element Modeling, for example with ANSYS.

A MatLab code then computes successively:

• the mechanical Qs, taking into account the mechanical losses due to the optical
coating of the mirrors (see typical results on Fig. 12.8)

Acoustic mode frequency (kHz)
10 20        30       40        50
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ct
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107

108

109

60        70        80       90 100

Fig. 12.8 Computed Q-factors for the mechanical modes of an Advanced Virgo test mass, up to
107 kHz. Upper curve Q-factors due to the substrate losses. Scattered dots Q-factors due to the
coating and substrate losses



326 P.-F. Cohadon and S. Gras

Fig. 12.9 Parametric gain |R|
for the mechanical modes of
an Advanced Virgo test mass,
in its standard configuration at
full power (125 W). Full dots
indicate modes with a positive
gain, open dots modes with
a negative one. The R = 1
horizontal line corresponds
to the Parametric Instability
threshold
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• the optical high-order transverse modes of the interferometer cavities (resonance
frequencies, losses and field profiles)

• the spatial overlap Λp for all triplets of modes (mechanical mode, TEM00 pump
mode, and target mode p)

• at last, the mechanical gain R for each mechanical mode, by direct summation of
Eq. (12.15).

The FEM modeling takes into account the details of the test mass geometries such
as the flats, but ignores up to now suspension-induced mechanical losses, which may
significantly alter the Q and hence lower the gain R. Optical coating λ/4 layers
are modelled as an effective medium, taking into account both SiO2 and Ta2O5
mechanical properties and their respective total thicknesses.

The whole computation can be performed for different configurations: single
cavity, interferometer, power-recycled or dual-recycled interferometer. Figure 12.9
presents a typical plot obtained with that simulation tool: parametric gain R for every
mechanical mode of an Advanced Virgo test mass, up to 107 kHz, for a dual-recycled
interferometer at full power (125 W). In such a configuration, about 15 modes (per
test mass) are likely to be unstable, but this is an upper limit, as Qs are expected to
be somehow limited by clamping losses.

12.3.2 Feedback Approach and Monte-Carlo Estimate of the Gain

An alternative approach by Evans et al. is based on a feedback description of the
PI: a small excitation of a given mechanical mode scatters light from the TEM00
pump mode to higher-order modes, the interferometer responds to the scattered field
and radiation pressure couples back the field to the mirror motion, thereby closing
the feedback loop. This approach is suitable for matrix methods to compute the
corresponding parametric gain. It gives similar results as the previous one [11].

As already mentioned, the parametric gain R and hence the number of unstable
modes are extremely sensitive to details of the interferometer design and configura-
tion: exact geometry of the test masses, computed mechanical resonance frequencies,
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mechanical Q, optical finesse of high-order modes. For example, the sole manufac-
turing tolerances of the radii of curvature of the test masses or the FEM computation
inaccuracies (at the 1 % level) are sufficient to alter significantly the Gouy phase in
the arm cavities (see Chap. 3), or to change the resonance conditions. As a conse-
quence, computing the exact number of unstable modes in a planned configuration
is just impossible.

To get a tractable evaluation of the gain for a given mechanical mode, a tech-
nique is to compute it for a (large) number of plausible neighbouring interferometer
configurations. In practice, varying all parameters in an independant way is both
untractable (because heavily time-consuming) and unnecessary as the gain varia-
tions are mainly driven by the relative frequencies of the mechanical modes and the
optical resonances in the compound cavitites [11].

Evans et al. limited accordingly their analysis to Gouy phase variations of 5×10−3

rad in the arm cavities and a few degrees in the recycling cavities. After 120,000 trials,
they define a “worst case” situation by the value of R greater than 99 % of the results
and establish that AdvLigo faces the possibility of a couple of unstable modes (per
test mass).

12.4 Mitigation Strategies

Thermal tuning of the Gouy phase through the radius of curvature has been proposed
to find a sweet spot where the number of unstable modes is the lowest possible
[10]. Yet, not even considering the thermal time scale issues that might jeopardize
the efficiency of such a method, it is unlikely to find a configuration without any
unstable modes at all.

Mitigation strategies have therefore to be planned to ensure the stable operation
of the advanced interferometers. Such strategies can be either passive- primarily
targeted Q reductions to lower the parametric gain- or active, feedback loops that
can use either local or global readout (at the interferometer dark fringe) to monitor the
PI and cancel it by real-time actuation of the mirror. We present here a few strategies
currently investigated.

12.4.1 Passive Damping

Reducing the mechanical quality factors is an obvious solution to the PI problem as
the gain is proportional to Q. The main issue is the frequency band where the sensi-
tivity is thermal-noise limited, as a global (i.e., frequency-independent) increase
of the mechanical losses should directly impact the interferometer sensitivity.
A targeted reduction is however possible, taking advantage of the wide frequency gap
between the mechanical resonance frequencies (above 10 kHz, where the parametric
gain has to be lowered) and the science frequency band.

http://dx.doi.org/10.1007/978-3-319-03792-9_3
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Fig. 12.10 Acoustic Mode
Damper on a LIGO test mass
at LASTI (MIT). Photograph
by S. Gras

A first proposal was to coat the barrels of the test masses with a thin strip of
a lossy material (such as Al2O3 or gold). It is indeed possible to reduce the Q by
a factor >10 for most modes, with a limited thermal noise increase penalty. Yet,
the damping strongly depends on the relative location of the strip with respect to
the mechanical mode and it turns out difficult to achieve sufficient damping for all
potentially unstable modes [12].

Another promising technique has been recently studied. It consists in resonant
dampers made of a piezoelectric resonator shunted by a resistor (see Fig. 12.10). If
located close to an antinode of a given mechanical mode, such a damper can lower
significantly its Q and its parametric gain. A preliminary experiment at LASTI (MIT)
has confirmed the damping effect [13].

Open issues are the thermal noise increase due to the epoxy bonding between the
dampers and the test masses and the required number of dampers to be glued to the
test mass. Further investigations are under way at MIT.

12.4.2 Active Damping with an Electrostatic Drive

A possible mitigation strategy would be to monitor the PI in real-time on the inter-
ferometer dark fringe and feed the signal back to the mirror, taking advantage of the
dielectric behavior of the test mass. Actuation could be performed with electrostatic
drives, deposited on the surface of the AdvLigo reaction masses for control purpose
(see Fig. 12.11) [14]. With a 800 V bias voltage, the typical available force is on the
order of 200µN while only 10µN are required at most to damp a typical internal
vibration mode. Unlike passive damping, such a technique doesn’t introduce any
additional thermal noise.
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Fig. 12.11 Electrostatic
Drive actuator implemented
on an Advanced Ligo pro-
totype reaction mass. From
Ref. [14]

The practical implementation of such a technique is however far from straight-
forward. The dark fringe signal at mechanical resonance frequencies should be split
up to individually address each unstable mode of each test mass. A PI signal would
then require some commissioning to link it to a specific test mass, an amount of
time which could turn problematic as the power is ramped up and more and more
instabilities appear.

12.4.3 Active Damping with Optical Feedback

The generation of intracavity optical higher-order modes is part of the PI process
and its feedback effect. An elegant way to circumvent the PI would then be to
monitor the target optical mode in real time and use that signal to inject a field with
a similar transverse profile but out of phase to kill the mechanical amplification
process in situ by destructive interference. Such a proof-of-principle experiment has
been successfully performed at the High Power Facility in Gingin [15] (see setup on
Fig. 12.12).

It is in principle applicable to advanced interferometers. Yet, the technique seems
rather difficult to implement. It would not only require a dedicated commissioning to
assign each detected instability to a given test mass (as for the electrostatic actuation)
but also to generate a complete set of phase-locked higher-order modes to inject into
the interferometer cavities (up to 60 modes are usually taken into account for the PI
computation, though a couple should be enough to suppress the PI).
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Fig. 12.12 Experimental setup to demonstrate the optical injection feedback technique. The main
laser beam enters the cavity at beamsplitter BS3. The mirror displacement signal is read out on
photodiode PD2. An auxiliary laser beam is picked off at BS1, converted to the transverse optical
mode by the phase mask, and has a sideband at the mechanical resonance frequency Ωm created
by the electro-optical modulator EOM2. Its phase is controlled by EOM1. Depending on the loop
phase, the injected sidebands will interfere either constructively or destructively with the optical
field created by the three-mode parametric process, possibly suppressing the parametric instability.
From Ref. [15]

12.5 Conclusion

The Parametric Instability is a serious threat to the stable operation of advanced
interferometers once they will be operated at full optical power. We have presented
a simple model of the PI in the simplest optical configuration, and discussed its
relevance based on optical and mechanical characteristics of the currently built
large-scale projects. Nevertheless, a number of PI-suppression schemes are envi-
sioned and currently being investigated.
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Chapter 13
A Third Generation Gravitational Wave
Observatory: The Einstein Telescope

Michele Punturo, Harald Lück and Mark Beker

Abstract The first decade of the second millenium has seen the realization and the
operation of the initial generation of large interferometric gravitational wave detec-
tors, like Virgo and LIGO; these detectors demonstrated the capability of reaching
their design sensitivity, which due to the novelty of their design was quite a challeng-
ing task. Achieving the target of the detection of gravitational waves still requires a
large improvement in sensitivity. This is promised by the operation of the advanced
detectors that are dominating the gravitational wave scene in the second decade of
this century. But, in order to open the era of routine gravitational wave astronomy a
new (third) generation of gravitational wave observation instruments will be needed.
Will the third generation (3G) of gravitational wave observatories be the core of the
gravitational astronomy in the third decade of this century? An overview of the tech-
nological progress needed to realize a 3G observatory, like the Einstein Telescope
(ET), and a possible evolution scenario are discussed in this chapter.

13.1 Introduction

In the first decade of this century, the first generation of interferometric gravitational
wave (GW) detectors (GEO600 [1], LIGO [2], TAMA [3], Virgo [4]) has been com-
pleted, commissioned and a series of scientific data taking runs has been performed;
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this not only demonstrated the capability of the scientific collaborations, that are
operating these complex machines, to reach the design sensitivity of the detectors
but also confirmed the viability of the working principle [5].

Even achieving the design sensitivity with the largest initial detectors (LIGO and
Virgo) didn’t resulted in the detection of a GW signal in these data taking runs, as the
detection rate, in agreement with the expectations from existing GW sources [6], was
too low. Although amazing, the sensitivity of the initial GW interferometers yielded a
too short detection range (up to few tens of Megaparsec) to include enough potential
GW sources in the detection volume. The initial GW interferometers are evolving to
the so-called Advanced or Second Generation Detectors (“Advanced LIGO” [7] and
“Advanced Virgo” [8]); the aim of this evolution is to gain a factor of ten in sensitivity,
corresponding to about a factor of thousand in accessible volume and therefore in
detection rate. The expectation is to have a few tens of GW signal detections per
year from coalescing binary neutron star systems, with signal-to-noise ratios (SNR)
larger than eight [6]. Advanced detectors are implementing rather well established
technologies (some tested in reduced scale prototypes, some already implemented
in GEO 600) in the same infrastructures hosting the initial detectors. The installation
of the advanced detectors will take up the first half of the current decade, whereas
the commissioning and scientific data taking will be done in the second half.

Although the detection of a GW signal is expected in the first years of operation
of the advanced detectors, the expected SNR is generally too low for detailed astro-
nomical investigations of the GW sources, for pinpointing the source, and finding
the electromagnetic counterpart with optical and X-ray telescopes. To open the era of
routine precision gravitational wave astronomy, roughly another factor of ten in sen-
sitivity gain is needed, in order to transform the simple detection of a GW signal into
an observation and measurement of the physical parameters of a GW astronomical
source. These considerations pushed the GW scientific community into the inves-
tigation of a third generation (3G) of GW observatories, where the technological
limitations of the advanced interferometers are overcome; in particular, in the Ein-
stein Telescope (ET) [9, 10] conceptual design study, a special focus has been put on
the design of a new infrastructure, capable to host the new generations of future GW
observatories. Probably, at the end of the third decade of this century, the 3G GW
observatories will play a new and crucial role in the observation of the Universe.

13.2 Scientific Targets of ET

The scientific objectives of a 3G GW observatory like ET have been discussed in detail
in the ET design study document [9] and more recently by B. Sathyaprakash et al. [11].
A detailed review of relevant sources, accessible to the advanced detectors, is given
in Chap. 2. Hereafter a short and not exhaustive overview of the scientific potential
of ET is presented.

The main ingredients of the ET observatory are the factor of 10 gain in sensitivity
and an even bigger improvement in the low frequency range (1−10 Hz) with respect

http://dx.doi.org/10.1007/978-3-319-03792-9_2
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to second generation (2G) detectors. This will enable ET to detect many loud events
with SNR > 50; in these conditions it is possible to perform detailed studies of
single source systems, like black-holes (BH) quasi-normal modes and neutron stars
(NS) cores and of systems characterized by strong gravitational fields.

The structure of a NS and the role of its magnetic field are still unknown, but
the signature of its equation of state (EoS) is present in almost any GW emission
of a NS system. For example, the GW emission by a coalescing binary neutron
star system (BNS), beyond the simple point-particle approximation, is expected to
contain [12] characteristics sensitive to the NS EoS; ET is able to distinguish between
different models of EoS [9]. According to the model described in [13], ET is able
to measure the radius of a NS for a 1.35–1.35M∼ BNS at 100 Mpc with an error of
±0.5−1.0 km, with a fractional incertitude in pressure of 5–10 %. The result of a BNS
coalescence could be a hyper-massive remnant object oscillating and emitting GWs
for relatively long time; the EoS of the coalescing NS is affecting the presence and
the characteristics of these oscillation. According to the models in [14], ET should
be able to see that signal and determine the corresponding physical mechanisms.
Furthermore, the observation of glitches and r-mode instabilities [15] in the GW
emitted by isolated NS could provide a probe of the NS dynamics.

Gamma-ray bursts (GRBs) are the most luminous explosions in the Universe;
they are usually subdivided, according to the duration ηt of the impulse, into short-
GRB (ηt < 2 s) and long-GRBs (ηt > 2 s); core collapse Supernovae are thought
to be the progenitors of long-GRBs [16, 17], whereas BNS and NS-BH coales-
cences are expected to be the progenitors of short-GRB [18]. First generation GW
detectors (LIGO and Virgo) performed several searches of GW emissions in coin-
cidence with GRB [19–24], but the detection distance of initial GW interferometers
was insufficient in view of the cosmological distance of the GRBs detected by the
satellites. In the second generation of GW interferometers, the detection of the GW
emitted in short-GRBs is expected to be possible [24], although with a low expected
rate (3 year−1 for NSBH progenitors and 0.3 year−1 for BNS progenitors) [25]. ET
promises to detect a BNS up to a luminosity distance of 17 Gpc corresponding to a
red-shift of about 2 and a NSBH system up to a red-shift z ⊗ 2 − 5, matching the
expected distance of the emitted short-GRBs (z < 1) with an expectation of BNS
mergers detected with electromagnetic (EM) counterpart of the order of 102 events
per year [26].

As demonstrated by B.Schutz [27], the GW signal from compact binary systems
can be seen as a cosmological standard candle or better standard siren, the frequency
being in the audio band. In fact, the amplitude of the GW signal is completely given
by the chirp mass and by the luminosity distance DL , with no need to introduce
complex astrophysical models; through the reconstruction of the coalescence GW
signal it is possible, hence, to determine both of these properties and therefore to
measure the luminosity distance of the binary system. Actually, for cosmological
distances, the GW signal will be red-shifted (f (t) ∞ f (t)/(1 + z)) causing a wrong
reconstruction of the masses (M ∞ (1+z)M) and of the distance (DL ∞ (1+z)DL).
As shown by B. Sathyaprakash et al. [26], the simultaneous detection of the BNS
coalescence GW signal (in ET) and of the short-GRB flash (in an EM telescope)
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will allow us to measure both the luminosity distance and the red-shift of the source;
detecting about 500 events of this kind (about 5 years of data taking in ET) it is
possible to constrain the cosmological model of the Universe with a good precision
(e.g., computing the dark-energy equation of state parameter with an error of percent
[11, 26]). More recent studies are investigating the possibility to use tidal effects to
better reconstruct the NS masses (and then overcome the red-shift ambiguity) [28]
or to use a population of BH-BH binaries [29].

Understanding the mechnisms of Supernovae (SN) explosions is another target of
ET. The details of the explosion mechanism of core-collapsing SN is still unknown,
despite a long series of modeling attempts. The collapsing core cannot be investigated
by means of optical telescopes, because the surrounding stellar envelope is opaque
to the EM emissions. GW emissions instead bring information directly from the core
of the collapsing massive star and their observation could constrain [30] the plethora
of the proposed shock-revival mechanisms. Advanced detectors have a marginal
probability to detect SN explosions because a few events per century are expected
within their detection volume; on the other hand, within the sight distance of ET (up
to 5 Mpc) a few events per decade are expected, but it will still be possible to gain
insights into the SN mechanisms. Furthermore, the simultaneous detection of EM
waves, GWs, and neutrino emissions of a SN explosion (if enough sensitive neutrino
detectors will be available) would be a wonderful multimessenger framework for the
study of such a complex phenomenon.

13.3 The Einstein Gravitational Wave Telescope Project

We need two key ingredients for the ET project:

• The design of an infrastructure that can host the future evolutions of GW detectors,
without being or becoming a limiting factor to their sensitivities;

• the identifications of the technologies needed to overcome the current limitations
of the advanced detectors, aiming at a gain in sensitivity of a factor of 10 with
respect to them.

These two ingredients are closely related and the best way to understand how to get
them is to start from the expected sensitivity of a second generation GW detector, as
shown in Fig. 13.1. Considering only the fundamental noises, the dominating sources
are:

• At very low frequency (below 4–5 Hz) the seismic noise and the Newtonian noise
(see Sect. 13.3.1); these noises are mainly related to the characteristics of the site
hosting the observatory.

• Below 300 Hz, the thermal noise of the optics suspension system (see Sect. 13.3.3),
the thermal noise of the suspended mirrors (mainly the coating contribution, see
Sect. 13.3.3) and the radiation pressure component of the quantum noise (see
Sect. 13.3.4.3).
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Fig. 13.1 Sensitivity model of an advanced GW detector (in particular this is a model quite close
to the expected sensitivity of the advanced Virgo detector [31] with 125 W of injected power). At
very low frequency, the noises mainly related to the site characteristics (seismic and Newtonian
noises) are dominating. The remaining part of the spectrum is instead dominated by noises related
to the detector characteristics: thermal noises, related to the suspension systems and to the mirrors
properties, and the radiation pressure component of the quantum noise play a crucial role at low
and intermediate frequencies; at high frequencies the shot noise component of the quantum noise
dominates

• Above 300 Hz, the shot noise component of the quantum noise (see Sect. 13.3.4.1).

The last two components of the sensitivity are mainly related to the design and to
the technologies adopted in the detector.

The initial design of the Einstein Telescope will be based on the principles of
the advanced detectors, which have reached a very high level of maturity and have
proven their viability in the existing detectors. The capability of these techniques
will be expanded to allow reaching the sensitivity aimed for. The main extensions
are the following:

• Increasing the interferometer arm length to dilute displacement noises1

1 Indicating with displacement noises the pile-up of all the noise sources that are causing an effective
movement of the test masses, like seismic noise, thermal noise, …
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• Build the observatory at an underground site to minimize the influence of seismic
motion

• cool parts of the interferometer optics and supensions to cryogenic temperatures
to minimize thermal noises

• Use silicon as optics substrates for the cryogenic optics to optimize their perfor-
mance

• Use high circulating light powers of up to 3 MW to cut down shot noise in the high
frequency regime

• Use frequency dependent input squeezing to lower shot noise and radiation pres-
sure noise

The conflicting requirements of high light power (required for low shot noise at
high frequencies but unfortunately accompanied by high levels of absorbed light)
and cryogenic operation of the mirrors (required to cut down thermal noises in the
low frequency range) are resolved by using two interferometers each dedicated to a
different frequency range, the so called Xylophone concept as described in Sect. 13.4.

13.3.1 Seismic Noise

Seismic noise is the continuous and nonstationary soil vibration; it is due both to
natural sources, like volcanic and geoseismic activities, weak or remote earthquakes,
ocean or sea waves, atmospheric activities like wind and rain, Moon tides, and
to human disturbances like transportation, industries, towns, agricultural activities.
Each site has its own seismic signature, given by the geological properties of the soil,
the natural and human activities and this signature fluctuates with the environmental
conditions. A worldwide characterization of the seismic noise spectral properties has
been done by J. Peterson [32]; measuring the seismic noise in several sites, distributed
around the world, he has been able to present an envelope for the seismic noise power
spectrum density (PSD) bounded by the NLNM (New Low Noise Model) and NHNM
(New High Noise Model) curves in Fig. 13.2. Natural disturbances usually dominate
below 1 Hz, whereas human activities dominate above 1 Hz. The very low frequency
(few×10−5 s) motion is produced by tidal effects of the Moon, the region between
0.01 Hz and 1 Hz (the so-called microseism) is dominated by wind and sea activities;
in particular the peaks visible in many spectra in that frequency range are generated
by oceanic [33] (and local sea [34]) waves. In the ET project, several sites (mainly
in Europe) have been investigated measuring the seismic noise in underground and
surface locations [9, 35]; driven by the pioneer experience of the CLIO [36] exper-
iment in Japan, now continued with the construction of the KAGRA [37] detector
(former LCGT project), the attention has been focused on possible underground sites,
where the contribution to the seismic noise given by the surface waves is reduced, as
highlighted by the comparison in Fig. 13.3 of the seismic noise level at the CLIO site
with the corresponding spectra measured in the sites hosting the other GW detectors
in the World. As result of the sites survey, operated in the ET project, a list of possi-
ble candidates has been produced; in Fig. 13.4 the best three underground candidates
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Fig. 13.2 Peterson Seismic Noise Model [32]. The NLNM (New Low Noise Model) and NHNM
(New High Noise Model) curves are a composite of station spectra obtained in different World-
wide distributed stations, acquired with heterogeneous instruments and different conditions. These
curves delimit the coloured area, where a new seismic noise measurement usually should be found,
although it is always possible to find noisier periods/sites because of seismic storms or intensive
human activities

(Hungary-Gyöngyösoroszi, Spain-Canfranc Underground Laboratory and Italy in
Sardinia) are compared with a good surface site (in the Netherlands).

Ground-based GW interferometers are and will be limited, in the low frequency
range, roughly to 1–10 Hz, by soil vibration acting on the suspended test masses
through two mechanisms:

• shaking the hanging point of the suspension chain,
• shaking directly the test masses of the interferometer via the mutual attraction

forces, given by Newton’s universal law of gravitation, between these masses and
the soil layers which are perturbed by the seismic waves (Newtonian noise, see
Sect. 13.3.2).

13.3.1.1 Seismic Noise Filtering

As it has been shown in the previous section, the seismic noise is peculiar of each
site and depends on several factors. However, an over-simplified model, in terms of
displacement amplitude spectral density (ASD), can be used to introduce the filtering
issues. As mentioned in Chap. 7.3, the seismic displacement spectral amplitude xseism
can roughly be expressed, above 1 Hz, by:

xseism(f ) ⊗ Ω

f 2 (13.1)

http://dx.doi.org/10.1007/978-3-319-03792-9_7
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Fig. 13.3 The seismic noise (acceleration) measured at the CLIO underground site in Japan is
compared with the corresponding spectra measured at the sites hosting the other GW detectors in
the World. The advantage to realize a site underground is quite evident. In this plot the Virgo site
seismic noise is affected by a microseism excess because of the bad weather conditions during the
data taking

where the amplitude Ω usually ranges between 10−8 and 10−6 m·Hz3/2, depending on
the quietness of the detector site (more refined models for the displacement spectral
amplitude at the Virgo site can be found in [31] and in Fig. 4.8b of [38]). From
Eq. 13.1 it is clear that, in order to have a reasonable sensitivity at a few Hertz, the
seismic vibration must be filtered by the suspension chain before it reaches the test
masses. This has been true for the initial and advanced detectors and it is clearly even
more true for the 3G observatories. If the selected location for the 3G observatory
is seismically quiet, like the underground sites shown in Fig. 13.4, the technologies
adopted in the advanced detectors are still valid. For example it has been shown
in [39] that a passive seismic filtering (à la Virgo [40]) approach is possible in
ET if the chain of the Virgo Super-Attenuator (SA) is prolonged up to about 17 m
(with respect to the current ⊥ 9 m) and if the site has a seismic noise similar to that
measured at the KAGRA [37] site. Braccini and coll. in [39] showed that in these
conditions it is possible to meet the ET required sensitivity above 3 Hz. Probably, ET
will implement an evolution of the Virgo SA, based on the Geometric Anti-Spring

http://dx.doi.org/10.1007/978-3-319-03792-9_4
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Fig. 13.4 The seismic noise (acceleration) measured at three underground sites in Europe compared
to the same measurement at the surface (in the Netherlands, courtesy of the Nikhef-ET group).
It is well evident, in the spectrum acquired in Sardinia, the peak at 0.5–0.7 Hz, a typical feature of
the Mediterranean sites

(GAS) [41, 42] technology (as KAGRA is doing), allowing a filtering chain more
compact and tunable with respect to the Magnetic Anti-Spring technology used in
Virgo.

13.3.2 Newtonian Noise

Each object in the neighborhood of the suspended test masses is exerting a mutual
attraction on them given by the Newtonian gravitational force. Therefore, the GW
interferometer is affected by any variation of the local mass distribution. This effect
is known as Newtonian noise or gravity gradient noise [43]. The major contributors
to this noise source are density perturbations in the surrounding media as a result of
seismic motion or atmospheric effects. In addition, Newtonian noise from objects,
such as people, cars, and tumbleweeds, moving in the vicinity of the test masses has
also been studied [44, 45]. While some of these sources can be controlled, others will
provide technical challenges for the low-frequency sensitivity of future generations
of ground-based detectors.
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Fig. 13.5 Basic scheme of the Newtonian noise: the fluctuation of the gravitational attraction
between the mass element at position r and the mirror at position Rm, due to the seismic displacement
π of the mass element, accelerates the mirror itself

13.3.2.1 Seismic Newtonian Noise

Fluctuating gravitational forces due to seismic density perturbations will interact
with the suspended test masses, producing Newtonian noise. It is evident that the
seismic filtering chain doesn’t play any role in the suppression of this noise source.
Being a gravitational force, the test masses cannot be shielded from it in any way.
In [38] it is possible to find a clear mathematical description of the Newtonian noise
and hereafter only the conclusions of that description are included. The acceleration
variation εaNN caused by the displacement

−∞
π of the element dV at position r (see

Fig. 13.5) is given by:

εaNN (Rm, t) = GΔ0

∫

V

[−∞
π (r, t) · ∇

]
k dV (13.2)

where Δ0 is the equilibrium density (considering a homogeneous medium) and k =
(r − Rm)/ |r − Rm|3.

The Newtonian noise for surface GW detectors has been modeled in the past
by several authors [43, 46, 47]; a well-established model is due to Hughes and
Thorne [47], where the differential mirror displacement ASD due to the Newtonian
noise is given by

SNN (ρ) = 4ω
GΔ0

ρ2 νSseism(ρ) (13.3)

where Sseism is the displacement ASD of the seismic motion and ν is a dimension-
less parameter accounting for the coupling of the various seismic wave modes to
Newtonian noise.

In the initial GW interferometers the low-frequency sensitivity of the detector
was too poor to be affected by the Newtonian noise. However, in the advanced
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Fig. 13.6 Newtonian noise estimated in [38] for the Advanced Virgo detector. Estimation is based
on formula 13.3 and on one week of seismic data taking; in the figure it is indicated the amount of
time spent in each level of noise amplitude spectral density

detectors it approaches the overall noise level (see Fig. 13.1) and in the case of high
seismic activity it is expected to dominate the low frequency noise budget as shown
in Fig. 13.6.

In the third generation of gravitational wave detectors, the more stringent re-
quirements in terms of sensitivity at low frequencies will enhance the importance of
this noise source. Using the results obtained during the ET site survey presented in
Fig. 13.4, combined with estimates of the Newtonian coupling to the test masses and
the desired level of sensitivity, a limit could be set on the acceptable levels of seismic
motion for ET. The requirement sets a limit below which the seismic motion, aver-
aged over several days, should remain and is parameterized by the average displace-
ment amplitude spectral density given in Eq. (13.1) with A0 = 5 × 10−10m · Hz3/2

for frequencies between 1 and 10 Hz. Note that this corresponds to a acceleration
power spectral density (PSD) requirement that is constant in frequency and given by
Paa(f ) = 4 × 10−16 (m2/s4)/Hz.

As was already discussed above, seismic noise in the frequency range of interest
to third generation gravitational wave detectors (>1 Hz), originates predominately
from human activity on the surface. The largest fraction of the seismic energy from
these sources is coupled to surface waves that propagate along the surface with
amplitudes reducing with depth. Therefore, it is proposed that ET is constructed at
an underground and / or remote location where seismic noise was found to be lower
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and more stable [38]. Despite such a low seismic noise environment however, the ET
sensitivity (in Fig. 13.9) will still be limited by Newtonian noise at frequencies below
6 Hz. To improve low-frequency sensitivity even further, subtraction techniques will
be implemented. These monitor the seismic wave fields with arrays of sensors and
subsequently estimate and subtract the Newtonian signal from the interferometer
output.

13.3.2.2 Atmospheric Newtonian Noise

Density perturbations in air will produce fluctuations in the local gravitational field.
Such perturbations are caused by a number of mechanisms. Saulson [43] was the first
to consider the effects of pressure or infrasound waves. These act on a gravitational
wave detectors in an analogous way to seismic pressure waves but were estimated
to contribute roughly an order of magnitude less Newtonian noise than their seismic
counterparts in the frequency band of interest to second generation detectors. Other
types of atmospheric Newtonian noise were studied by Creighton [45] and include:
density perturbations caused by temperature variations that are transported past the
test masses by wind, vortices around detector buildings, and shockwaves from, for
example, sonic booms.

For third generation observatories, these noise sources need to be re-evaluated,
in particular to include the significance of an underground location. Sources related
to features with length scales much smaller than the detector depth, such as wind
and vortices, are expected to have Newtonian contributions vanishing with depth.
Large-scale phenomena, such as infrasound, needs to be studied carefully as little is
known about low frequency infrasound waves and the reduction of their Newtonian
effects with depth.

13.3.2.3 Newtonian Noise Subtraction

To construct an optimal Newtonian noise filter algorithm, we make use of the fact that
the seismic Newtonian noise will be correlated with the seismic wave field but not
with the gravitational wave signal. In this way, we can adopt a Wiener filter approach
to develop filter coefficients for seismic sensors in a 2 or 3D array around each test
mass. Consider the gravitational wave signal H that is corrupted by the Newtonian
noise N , such that the interferometer output is Y = H + N . The frequency domain
signal of the i-th seismic sensor is given by Xi = Ui +δi where Ui is the the seismic
displacement signal and τ the instruments self noise. Assuming that the seismic
noise is stationary and has no nonlinear effects we can then construct filters Ωi(ρ) to
produce an estimate of the Newtonian noise signal N̂ and minimize an error function
defined by
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E(ρ) = Y(ρ) − N̂(ρ)

= Y(ρ) −
∑

i

Ωi(ρ)Xi(ρ). (13.4)

It can then be shown [38] that in order to minimize the power of this error function
the filter coefficients must be chosen such that

Ωj(ρ) =
∑

i

〈Xi(ρ)∗Xj(ρ)∝−1〈Xi(ρ)∗Y(ρ)∝, (13.5)

where 〈·∝ denote expectation values. We note that the above filters can be derived
from measurable quantities. The term 〈Xi(ρ)∗Xj(ρ)∝ is the cross correlation matrix
between all of the sensors in the array, while the last term 〈Xi(ρ)∗Y(ρ)∝ is a vector
containing the cross spectra between each sensor and the interferometer output. We
define a Newtonian noise subtraction residual Δ2 as the ratio between the power of
the error signal and the interferometer output. It is be given by

Δ2 = 〈E(ρ)∗E(ρ)∝
〈Y(ρ)∗Y(ρ)∝ = 1 − 〈Xi(ρ)∗Y(ρ)∝〈Xi(ρ)∗Xj(ρ)∝−1〈Y(ρ)∗Xj(ρ)∝

〈Y(ρ)∗Y(ρ)∝ . (13.6)

In the case that the interferometer output is dominated by Newtonian noise and the
subtraction is perfect then the residual will approach zero. Numerical and analyt-
ical simulations of seismic motion with virtual arrays of sensors have been used
to evaluate the effectiveness of subtraction schemes and various array topologies
[38, 48, 49]. For example, numerical simulations based on seismic noise charac-
teristics measured at the Virgo site showed that significant subtraction factors are
possible with a few hundred sensors in a regular grid around each test mass. The re-
sults of these simulations for a surface “Advanced Virgo”-like detector are presented
in Fig. 13.7. The sensors measure vertical seismic displacement are positioned in a
regular 2D grid around each test mass. We see that with just four sensors close to
the test mass roughly half of the Newtonian noise could already be subtracted. Addi-
tional sensors decrease the residual up to 98 % subtraction, reached with a thousand
sensors. These studies also revealed that more careful placement of the sensors will
lead to improved subtraction efficiency.

Another important notion when considering seismic Newtonian noise is its
apparent relation to the amount of seismic correlation. For low seismic correlation,
or short coherence lengths, the Newtonian noise integration process described in
Eq. (13.2) will take place over a larger number of incoherently vibrating volumes of
soil, that partially cancel each other out. High coherence lengths, on the other hand,
produce Newtonian contributions over larger coherently moving volumes, producing
a stronger level of net Newtonian forces. With respect to subtraction techniques, long
coherence lengths means sensors will need to be distributed over larger areas. Short
coherence lengths will require more densely distributed sensors in closer proximity
to the test masses. This is an important consequence for third generation detectors as
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Fig. 13.7 Newtonian noise
subtraction residual for a grid
of sensors around each test
mass for a surface detector.
Each curves present different
separation distances between
sensors
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seismic correlation over lengths of tens of meters is generally high for frequencies
around a few Hz but drops quickly toward higher frequencies [38].

We have discussed Newtonian noise subtraction techniques from a seismic
Newtonian noise point of view. Similar techniques can be used to address atmospheric
Newtonian noise issues. Both tasks will be challenging for third generation detectors
as the required levels of measurement sensitivity for both seismic and infrasound
sensors border on that of currently available technology.

13.3.3 Thermal Noise

Thermal noise in GW interferometers is due to all processes that modulate the phase
of the light on its optical path, coupling it to Brownian fluctuations, i.e., to stochastic
fluctuations of the temperature field in the optical components. Thermal noise plays
an important role both in initial and in advanced GW detectors; in fact, its component
due to the last stage suspension mechanics competes with seismic and quantum
(radiation pressure) noises at low frequencies whereas its component due to the
mirrors (coatings) competes with quantum (shot noise) at medium frequency (see
Fig. 13.1 as example). A detailed description of thermal noise and its many ways to
couple to the detector has been given in Chap. 8.

Due to its importance, thermal noise effects on GW detectors have been mod-
eled in detail (see [50] for a review and for an outlook on the perspectives for 3G
interferometers) and mitigation strategies have been implemented in advanced detec-
tors. The amount of thermal energy in each vibrational degree of freedom is clearly
defined by the equipartition theorem and, since initial and advanced interferometers
are operating at room temperature, the only handle available to reduce the effect of
thermal noises on the detector’s sensitivity is to confine the influence of the thermal

http://dx.doi.org/10.1007/978-3-319-03792-9_8


13 A Third Generation Gravitational Wave Observatory 347

energy to frequencies around the resonance frequencies of mechanical modes of the
mirrors or suspensions, making it less prejudicial in the detection frequency band of
interest. Indications on how to do it are given by the fluctuation-dissipation theorem
(see Chap. 8 and [51]) relating the PSD of the fluctuation of a system in thermal
equilibrium to the dissipation mechanisms, described by its mechanical impedance.
It is possible to generalize the equations introduced in Chap. 7 for the thermal noise
of the last stage of the Advanced Virgo suspension,using the matrix formalism devel-
oped in [31, 52] , and to relate the vector F̃ of the spectral amplitudes of the thermal

stochastic forces acting on the payload elements to the fluctuation velocity vector ˜̇X
(describing the motion of the various payload bodies) through the impedance matrix
Z:

F̃ √ Z˜̇X ; Z = 1

iρ

[
M · (Ω + iρΓ − ρ2I)

]
(13.7)

where M is the mass diagonal matrix, containing the masses of the elements (Mirror,
Reference Mass, Marionette, …) of the payload:

M =
(

m1 0
0 m2

)
(13.8)

Ω is the vibrational mode frequencies matrix,

Ω =
(

ρ2
1 −ρ2

1

−μ1
μ2

ρ2
1

μ1ρ
2
1+ρ2

2
μ2

)
(13.9)

Γ is the (viscous) dissipation coefficients matrix

Γ =
(

φ1 −φ1

−μ1
μ2

φ1
μ1φ1+μ2φ2

μ2

)
(13.10)

and I is the identity matrix. The Eqs. 13.8, 13.9, 13.10 are referred to a payload
composed by the mirror (1) and the marionette (2), like in Advanced Virgo. The Virgo
design, described in Chap. 7, includes, instead, also a third body, the reference mass.
In these equation is μj = mj/

∑
j mj and the frequencies ρj contain an immaginary

part,

ρ2
j = g

Lj

[(
1 + Dj

) + iDjγj
]

(13.11)

to take into account the structural dissipation (Lj is the suspension wire length and Dj

is the geometrical dilution factor [53] related to the geometry of the suspension). The
computation of the relevant pendulum thermal noise (the fluctuation of the mirror),
taking into account the dissipative contribution of the other elements of the payload,
is, then, formally given by:

http://dx.doi.org/10.1007/978-3-319-03792-9_8
http://dx.doi.org/10.1007/978-3-319-03792-9_7
http://dx.doi.org/10.1007/978-3-319-03792-9_7
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Sp,1 (ρ) = 4kBT

ρ2 →
{(

Z−1
)

11

}

= 4kBT

ρ2 →
{[[

1

iρ

[
M ·

(
Ω + iρΓ − ρ2I

)]]−1
]

11

}
(13.12)

The minimization of the dissipation processes (in Γ and Ω) confines the ther-
mal energy around the internal modes frequencies (Ω). In advanced detectors, the
mechanical dissipation mechanisms are minimized adopting a monolithic fused sil-
ica design [54, 55] in the suspension system, special low losses fused silica in
the mirror substrates and optimizing the design [56] and the chemical composition
[57, 58] of the reflective dielectric coatings on the mirrors.

In order to have a significant decrement of the thermal noise, in 3G detectors
it is necessary to reduce also the amount of thermal energy available in the sys-
tem, reducing the temperature of the main optics down to cryogenic values. This
strategy is anticipated by the KAGRA detector, that will adopt cooling technologies
(cryo-coolers, radiation shields, …) of clear interest for ET. The choice to operate at
cryogenic temperature implies relevant novelties in 3G detectors. The first important
change with respect to 2nd generation detectors is related to the realization of the
optics and of the suspension last stage; the use of fused silica, crucial in initial and
advanced detectors for the test mass substrates and suspension realization is impos-
sible in 3G detectors both because of a well-established dissipation peak [59] and
because of the poor thermal conductivity [60] exhibited by that material at cryogenic
temperature. New materials are investigated for cryogenic GW detectors: KAGRA
focused its interest on Sapphire suspension fibers and test masses [37], ET is in-
vestigating the possibility to use Silicon. Both these crystalline materials show an
excellent loss angle at low temperature (see [61] for a complete review), good ther-
mal conductivity (reference values are βAl2O3 ⊗ 2330 W m−1K−1 at about 10 K,
βSi ⊗ 1200 W m−1K−1 at about 12 K), crucial in order to extract the heat deposited
by laser beams impinging on the suspended test masses), relatively high Young’s
modulus2 (YAl2O3 ⊗ 400 GPa, YSi ⊗ 132 GPa), high tensile strength.3 The thermal
expansion coefficient of Silicon shows a peculiar behavior, vanishing at about 120 K
and 20 K, allowing a efficient suppression, around these temperatures, of the ther-
moelastic noise both in the suspensions wires [62] or ribbons [63] and in the mirror
substrates. Furthermore it is known [64] that Silicon is suitable for chemical bonding
procedures (Hydroxide Catalysis Bonds) allowing to realize monolithic all-Silicon
suspensions (recent unpublished and preliminary results [65] are suggesting the pos-
sibility to reach a similar achievement with all-Sapphire suspensions). It is a fact that,
anyways, the fabrication of a monolithic suspension with these crystalline materials
is still to be realized.

Silicon and Sapphire are candidate materials in the realization of the mirror sub-
strates in future GW detectors; the mechanical properties (high thermal conductivity,

2 The higher the Young’s modulus of a body, the less deformation is generated by the same thermal
energy, thus less thermal noise.
3 Useful to realize high dilution factor suspensions.
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low loss angle, high Young’s modulus, and low thermal expansion coefficient) indi-
cating them as excellent materials for the realization of the monolithic suspensions
are obviously still valid in the selection of a low thermal noise material for the
test masses, but in this case the optical properties play a crucial role. Sapphire is
transparent to the laser wavelength (σ = 1064 nm) adopted in initial and advanced
interferometer, allowing an easy re-use of the optoelectronics developed for these
detectors; it shows birefringence effects [66] (AL2O3 is an uni-axial crystal and the
light propagating along the C-axis does not change its polarization state, but imper-
fections in the direction of the C-axis could give rise to birefringence effects) and
it suffers of high levels of optical absorption, 30–60 ppm/cm [67], quite high with
respect to silica at room temperature (and affecting the design of KAGRA). Silicon
is not birefringent, it is available in quite large pieces, but it is not transparent at
1064 nm, forcing the adoption of a longer wavelength. Current studies are focused
on the optical properties of Silicon at σ = 1550 nm and recent results [68] confirmed
the relationship between free-carrier concentration and optical absorption, identify-
ing a high resistivity (104 Θcm) n-doped Silicon sample having an optical absorption
at room temperature lower than 5 ppm/cm. Still to be understood is the excess of
absorption found in [68] at cryogenic temperature, that contrary to expectations, for
some samples, has twice the optical absorption measured at room temperature.

Mechanical losses in the high reflectivity dielectric coating deposited on the Fabry-
Perot cavities mirrors are the main noise source for the advanced detectors in the in-
termediate frequency range (see Fig. 13.1); mitigation strategy (see Chap. 8) adopted
in advanced detectors (like doping the Tantala layers with Titanium atoms [58] or
optimizing the amount of high dissipation material (Ta2O5) while keeping the same
reflectivity [56]) are needed in 3G interferometers, but further developments are
needed. Several are the R & D activities in progress in this framework; grating4 reflec-
tors [70–72] are reaching high reflectivity values and promising a reduction of thermal
noise in case of Silicon mirrors [73]; crystalline coatings, based on AlGaAs [74] or
AlGaP [75] structures, are showing high reflectivity, low thermal noise [76, 77] but
still too high absorption with respect to the amorphous multilayer coatings used in
advanced detectors.

In order to reduce the mirror thermal noise, another mechanism is under investi-
gation for ET; it is well known that a larger beam spot on the cavity mirrors reduces
the thermal noise effects because, naively, the beam is averaging over a larger fluc-
tuating surface of the mirror. But because of the limited diameter of the mirror in ET
and because of the stringent constrains in clipping losses,5 it will be difficult to have
in ET beams substantially larger than the beams in the advanced detectors. Having,

4 Currently used coatings are based on alternate layers of dielectric materials (see Chap. 8 for
a detailed description); the high refraction index material Ta2O5 is dissipative and generates the
largest fraction of the thermal noise. Grating reflectors are based on resonant waveguide grating
nanostructures, grown on the surfaces of the mirror substrates. With this design it is possible to
obtain high reflectivity with a single layer of high refraction index material or even without the
deposition of Ta2O5 on a Silicon test mass. See [69] for an introduction.
5 Optical losses due, roughly, to the finite size of the mirrors with respect to the nominally infinite
radial extension of a Gaussian beam.

http://dx.doi.org/10.1007/978-3-319-03792-9_8
http://dx.doi.org/10.1007/978-3-319-03792-9_8
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instead, a beam with an intensity distribution "flatter" than the Gaussian one, can
generate a thermal noise reduction in the interferometer (see Sect. 3.2). For this rea-
son the possibility to use high-order Laguerre-Gauss modes has been introduced [78,
79] and several aspects are currently under evaluation about the generation of these
modes [80] and the mitigation of the effects of the mirror surface imperfections on
their cross-coupling [81, 82].

13.3.4 Quantum Noise

The initial phase design of the Einstein Telescope relies on well-explored conven-
tional technologies, defined by their maturity, either proven in the first generation,
planned for the advanced generation gravitational wave detectors, or tested in pro-
totypes. Consequently, the configurations described in the following sections are
a challenging application of the technologies and of the principles described in
Chap. 3; for this reason, a limited level of detail has been adopted.

In the high frequency range, all existing and planned advanced GW detectors
will be limited by shot noise, which is one facet of quantum noise. The other side of
quantum noise manifests itself in radiation pressure noise which, due to the frequency
dependent mechanical susceptibility of the test masses, becomes dominant in the low
frequency region. Although the product of amplitude noise and phase noise, resulting
in radiation pressure noise and shot noise, is limited by Heisenberg’s uncertainty
principle, both noise contributions can be traded against each other using squeezed
states. An introduction to Quantum Noise and means to overcome some limitations
is given in Chap. 11, while a comprehensive description can be found, e.g., in [83]
or [84] and references cited therein.

The design chosen for the optical layout of initial ET in the conceptual design study
is similar to the one for the advanced detectors. In addition to the advanced detectors
topology, the Einstein Telescope will use frequency dependent squeezed vacuum
injected to the output port. The technological feasibility of alternative topologies
like speed meters (see Chap. 11.8), which promise advantages especially in the low
frequency range will be investigated in the close future, but until they have reached
a sufficient level of maturity, the base plan for the Einstein Telescope will be a
dual recycled arm cavity Michelson Interferometer with frequency dependent input
squeezing as depicted in Fig. 13.8. In the following, we will shortly list how these
techniques lower the quantum noise.

Quantum noise arises from the zero point (vacuum) fluctuations of the electro-
magnetic field, resulting from its quantization. These vacuum fluctuations enter the
interferometer through each open port. The interferometer arm end mirrors ETM1
and ETM2 have got very low transmission (for quantum noise considerations these
ports can be regarded as closed); that leaves only the laser port and the detection
port where vacuum fluctuations can enter. Mostly for technical reasons all interfer-
ometers are operated close to the so-called dark port, an operation point where the
arm lengths are adjusted such that the laser carrier fields returning from the inter-

http://dx.doi.org/10.1007/978-3-319-03792-9_3
http://dx.doi.org/10.1007/978-3-319-03792-9_3
http://dx.doi.org/10.1007/978-3-319-03792-9_11
http://dx.doi.org/10.1007/978-3-319-03792-9_11
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Fig. 13.8 Schematic views
of the optical topology of
the Einstein Telescope: a
dual recycled Michelson
with arm cavities and filtered
input squeezing. The optical
elements are: ETM1 and
ETM2: highly reflective arm
end mirrors; ITM1 and ITM2:
partly transmissive cavity
coupling mirrors; BS: the
beam splitter; SRM: Signal
Recycling mirror; PRM:
Power Recycling mirror. FC1
and FC2 are filter cavities. FI
is a Faraday Isolator acting as
an optical diode and PD is the
photo detector
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ferometer arms destructively interfere toward the detection port of the beam splitter
and consequently constructively interfere toward the laser. Under these conditions,
the interferometer acts like a mirror, meaning it reflects light back if shone into one
of these two ports. Quantum fluctuations entering the laser port get reflected back
to it and do not (or only to a very small amount) reach the output. Vacuum fluctua-
tions entering the detection port of the interferometer also get reflected and reach the
photo detector. Fluctuations in the amplitude quadrature (relative to the carrier light
exiting through the output port) will affect the power detected by the photo detector
and appear as noise—the shot noise. One of the goals of reducing quantum noise is
to reduce the relative amount of the fluctuations in relation to the signal. The most
obvious way to do so is to enhance the signal.

13.3.4.1 Increasing the Light Power

Increasing the signal can be done by using more light in the interferometer arms where
the GW converts carrier light into signal sidebands. High power in the interferometer
arms is achieved by three different means:

• High laser power
• Arm Cavities
• Power Recycling
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High Laser Power

The most obvious way to increase the light power inside the interferometer is to
use a powerful laser. All first and second generation interferometric GW detectors
(see Chap. 4) use lasers with a wavelength of 1064 nm. During the construction and
operation of the first generation detectors, the available laser power increased from
about 10–20 W in the first generation to 200 W available for the second generation.
According to current plans, solid state 1 kW lasers will be available for the third
generation. The use of high laser power gives rise to thermal problems resulting from
the light absorbed in auxiliary optics like modulators, Faraday rotators or polarizers.
The absorbed light will lead to a local temperature increase which, through the
temperature dependence of the refractive index, will lead to thermal lensing. This
in turn can lead to a reduced quality of mode matching to the optical resonators.
Although the absorption levels of fused silica have been cut down in the past to
a level of 0.25 ppm/cm for bulk absorption and to the sub-ppm level for coating
absorption, thermal problems will still pose a problem for the second generation of
detectors. Elaborate thermal compensation systems, discussed in Chap. 9, are needed
to compensate the effect.

As stated in Sect. 13.3.3, the possibility to use Silicon as test mass material in 3G
detectors is pushing the development of a new generation of lasers; in fact Silicon
is opaque at the light at wavelenghts around σ = 1064 nm (adopted in the current
GW detectors), while it promises extremely low absorption values at the wavelength
of σ = 1550 nm [68, 85]. High power fiber lasers are currently being developed but
have not yet reached the performance level of solid state lasers.

Arm Cavities

Placing Fabry-Perot cavities in the interferometer arms (see Fig. 13.8) resonantly
enhances the light in the individual arms and with it the signals created by the GWs.
The amount of power enhancement is limited by the fact that the line width of
the optical resonator decreases with increasing buildup until relevant parts of the
signal frequency spectrum fall outside of the resonance of the cavity and the GW
sidebands do not get simultaneously enhanced with the carrier light any more. The
low transmission of the input mirror then causes a reduction of the signal amplitude
for high frequencies signals at the output port, i.e., a reduced sensitivity. The possible
power enhancement in the interferometer arms is hence a compromise between a low
relative shot noise level and bandwidth. This effect can partly be undone with the
Signal Recycling technique.

Power Recycling

The carrier light as well as all common fluctuations returning from the interferometer
arms constructively interfere toward the input port where they can be reflected with

http://dx.doi.org/10.1007/978-3-319-03792-9_4
http://dx.doi.org/10.1007/978-3-319-03792-9_9
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Table 13.1 Typical light
powers and mirror masses for
different generations of GW
interferometers

Detector generation 1st 2nd 3rd

Laser power 10 W 200 W 1 kW
Light power @ beam splitter 200 W 2 kW 20 kW
Light power inside ifo arms 15 kW 800 kW 3 MW
Mirror mass 10 kg 40 kg 200 kg

a mirror located in the input, called the Power Recycling mirror (see Fig. 13.8). The
interferometer together with this mirror then forms an optical resonator where the
light power can resonantly be enhanced. This technique is called Power Recycling
and essentially has the same effect as directly increasing the laser power injected
into the interferometer. All detectors of the first and second generation used and will
use Power Recycling. With a laser power of about 200 W the second generation will
reach power levels inside the arm cavities of around 800 kW. The Einstein Telescope
is aiming at a light power in the interferometer arms of 3 MW. With the promising
prospect of 1 kW high-power-lasers available for the third generation there will be
no need to increase the Power Recycling factor beyond what already planned in the
second generation.

Approximate numbers for power requirements for the 1st to the third generation
are given in the upper part of Table 13.1.

13.3.4.2 Signal Recycling

The second generation of interferometric gravitational-wave detectors (in this sense,
we regard GEO600 as a precursor second generation instrument) uses an additional
technique to enhance the GW signal: Signal Recycling ([86, 87]). The signals being
generated by the GW (with a phase difference of ω ) in the interferometer arms
constructively interfere toward the output port. If these signals are sent back toward
the interferometer with a recycling mirror (see Fig. 13.8), they get reflected back
to the output port by the interferometer, similar to the laser power being reflected
back to the input port. Together with the interferometer this mirror forms an optical
resonator, the Signal Recycling cavity. The signals created from the carrier field
inside this resonator (in the interferometer arms) are resonantly enhanced, resulting
in an increased signal even after being transmitted through the Signal Recycling
mirror. By microscopic adjustment of the position of the Signal Recycling mirror,
the resonance of this cavity can be tuned to any desired frequency. Depending on
this tuning the bandwidth of the interferometer can either be narrowed (called Signal
Recycling in the case where the carrier frequency is close to a resonance) or widened
(called Resonant Sideband Extraction in the anti resonant case). The tuning changes
the resonance conditions of the fields in the signal recycling cavity and with it the
phase relation between the signal sidebands and the carrier at the output port and
inside the interferometer arms. Signal Recycling enhances the GW Signal but does
not enhance the vacuum fluctuations reaching the photo detector.
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Beside the optical resonance, detuned Signal Recycling produces another opto-
mechanical resonance, typically at lower frequencies (see Fig. 13.1), which gives
an increase in sensitivity and, through the correlations that it introduces between
amplitude and phase fluctuations, even allows to surpass the Standard Quantum
Limit [88–91].

13.3.4.3 Radiation Pressure Noise

While increasing the power in the interferometer lowers the relative readout noise,
i.e., the shot noise, it increases the radiation pressure noise. The impulse transfer of
the photons onto the mirrors upon reflection causes a force acting onto the mirrors, the
radiation pressure p = 2I/c, where I is the light power and c the speed of light. The
phase quadrature of the vacuum fluctuations entering the output port gets converted
into differential amplitude fluctuations in the interferometer arm in the same way as
the phase modulation caused by the GW in the interferometer arms get converted
into detectable amplitude modulation at the output port. Here, when saying “phase
quadrature of the vacum fluctuations,” we define the quadrature by comparing the
phase of the vacuum fluctuations, after being reflected from the interferometer and
arriving at the photo detector, with the phase of the carrier light emerging from the
interferometer, also at the location of the photo detector; “amplitude quadrature” we
call in-phase light and “phase quadrature” we call the 90∈ shifted quadrature. In the
interferometer arms, these amplitude fluctuations beat with the strong carrier field
and cause fluctuating radiation pressure forces on the mirrors.

In this way, the amplitude fluctuations on the light in the interferometer arms get
converted into mirror motion causing the so-called radiation pressure noise. This
radiation pressure noise increases with increasing light power in the interferometer
arms.

The mechanical susceptibility (displacement/applied force) of a free mass, or of a
pendulum mass well above its resonance frequency, is (Mα)−2, were M is the mass
of the test mirror and α the frequency of interest. Radiation pressure therefore is more
important at low frequencies. The worsening of the Quantum Noise at frequencies
below about 20 Hz shown in Fig. 13.1 is due to this effect.

Increasing the mirror mass decreases the mechanical susceptibility and hence
cuts down the effect of radiation pressure on test mass movement. Consequently
the mirror mass will increase from the first to the third generation as indicated in
Table 13.1. With the Xylophone strategy (see Sect. 13.4) of the Einstein Telescope
the radiation pressure in the low frequency interferometers due to the lower power
of only 18 kW is much less. Still due to the increasing suceptibility of the mirrors to
applied forces toward low frequencies the mirror mass needs to be as high as for the
high-power (3 MW), high-frequency interferometers.
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13.3.4.4 Squeezing

The other option to increase the ratio of GW signal to vacuum-fluctuation-produced
noise is to lower the vacuum fluctuations. The fluctuations in the different quadratures
of the vacuum field entering the output port can be traded against each other, still
fulfilling the requirements of Heisenberg’s uncertainty relation. So, as discussed in
Chap. 11, the noise in one quadrature, e.g., the amplitude quadrature, can be lowered
while at the same time raising the noise in the phase quadrature. If such a squeezed
state with lowered amplitude noise (as defined in Sect. 13.3.4.3) is injected into
the output port, the shot noise of the light registered by the photo-detector will be
lowered. At the same time, the radiation pressure contribution will increase. The fact
that shot noise and radiation pressure noise are dominant in disjunct frequency ranges
allows to use amplitude squeezed vacuum in one frequency range and phase squeezed
vacuum in the other. By appropriately rotating the phase angle of the squeezing as
a function of frequency, which can be achieved by reflecting the squeezed state
from a filter cavity [92–95], the shot noise (at high frequencies) and the radiation
pressure noise (at low frequencies) can be simultaneously reduced. In case of using
squeezing together with a detuned interferometer, i.e., not tuned to zero frequency,
which means that the laser carrier frequency is not resonant in the Signal Recycling
cavity, the rotation of the squeezing ellipse with respect to the light coming from
the interferometer (due to the dispersion of the Signal Recycling cavity) causes an
increased amount of Quantum Noise outside the Signal Recycling resonance due
to the anti-squeezed quadrature of the injected squeezing [95]. This effect can be
avoided by filtering the injected squeezing with a second filter cavity.

Squeezing is already implemented in the current generation of interferometric
gravitational-wave detectors in the case of GEO-600 [96], aiming at a squeezing
level of 6 dB over the entire frequency range of interest. 6 dB effective squeezing at
the photo-detector lowers the shot noise by a factor of two corresponding to a light
power increase of a factor of 4. An overall gain from squeezing of about 10 dB, i.e., a
factor of 3 in noise amplitude spectral density, is foreseen for the Einstein Telescope
and seems realistic with the squeezing levels already achieved today [97].

13.3.4.5 Parametric Instabilities

The use of high power in the resonant Fabry-Perot cavities may show a crucial
drawback: the parametric instabilities [98], discussed in detail in Chap.12. This is
a process in which the coupling between optical modes of resonant cavities and
acoustic modes in the cavity mirror substrates creates a combined resonance, which
when excited would spoil the cavity’s performance, disrupting controlled operation
(unlock) of the cavity. These parametric instabilities may be a serious problem for the
advanced interferometers [99–101]. Studies for LCGT [102] (now called KAGRA)
have shown that the problem is less severe in this interferometer because of the
different geometry and materials of the mirrors, since the radius of curvature of the

http://dx.doi.org/10.1007/978-3-319-03792-9_11
http://dx.doi.org/10.1007/978-3-319-03792-9_12
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mirror and the sound velocity at the operating temperature play a relevant role in
determining the number of unstable modes.

Hence, for a third generation gravitational wave detector, the evaluation of the
relevance of the parametric instabilities issue strongly depends on the selected design
options and for this reason the current ET design parameters are hereafter used to
describe the possible situation. It has been computed [103] that the number of the
instable modes of the ET cavity is a few hundreds times larger than that of the
KAGRA cavity and it is likely that a method to suppress the parametric instabilities
is needed. The reduction of the mechanical Q factor of elastic modes is a promising
method currently investigated in advanced detectors and LCGT: a mechanical loss is
deliberately added to the mirror, in order to damp the elastic modes. If the mechanical
loss is concentrated far away from the optical beam, it will not significantly contribute
to the mirror thermal noise. A possible implementation of this solution is realized
by coating the barrel surface with a dissipative layer of Ta2O5. This method seems
promising for ET if a Sapphire substrate would be used; on the other hand, in the
case of a Silicon substrate, the excess of thermal noise could affect the expected
sensitivity. These studies suggest that the parametric instabilities may be an issue
for the Einstein telescope, but there are technical solutions available that will evolve
with the progress of dedicated R&D.

13.4 Infrastructures, Geometries, and Topologies

As described in the previous sections, the site hosting a future 3G observatory like ET
will most likely have to be underground; this obviously requires a new infrastructure
to be built. The ET design study [9] was mainly addressed to a feasibility study
for such an infrastructure and to the understanding of the scientific potential of the
observatory. The proposed infrastructure is an underground ( 100–200 m) laboratory,
in a site having the low seismic noise characteristics cited in Sect. 13.3.1, allowing a
length of the interferometers arms of the order of 10 km, capable to host more than
one detector. Each detector should be able to span a different frequency interval, all
in the range 2–3 Hz to 10 kHz, guaranteeing an improvement, in terms of sensitivity,
of roughly a factor of ten with respect to advanced detectors. The wide detection
frequency range requirement heavily affects the design of a 3G detector; the request
to have an excellent low-medium frequency sensitivity, achieved by reducing the
thermal noise with cryogenic suspensions and cryogenic test-masses, conflicts with
the request of an excellent high frequency sensitivity, achieved by increasing the
light power circulating in the Fabry–Perot cavities up to 3 MW.6 In the ET design

6 The optical power deposited by the ligh impinging on the mirror surfaces, is extracted through
the suspension fibers; the amount of heat to be extracted constrains the minimal diameter of the
suspension fibers to a value that conflicts with the requirement to have very thin suspension fibers
imposed by the request to have a high dilution factor in order to minimize the thermal noise.
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Fig. 13.9 Sensitivity model (named ET-D, black and thick curve) of a single ET detector, having
10 km L-shaped (90∈ opening angle) arms, dual-recycled Michelson layout with Fabry-Perot arm
cavities. The ET sensitivity is composed by the overlap of the sensitivities of the low-frequency
interferometer (ET-LF, blue dashed curve) and high-frequency interferometer (ET-HF, red dotted
curve). Parameters and specifications of these interferometers are described in Table 13.1 of [105].
The ET detector sensitivity is compared in the figure to the reference Advanced Virgo sensitivity
(gray curve) and to the nominal Virgo sensitivity (green dashed line)

this conflict has been solved with the so-called Xylophone [104] design: each ET
detector is composed of two interferometers:

• ET–LF, devoted to the low-frequency range, implementing a state-of-the-art sus-
pension system, cryogenic (⊗10 K) silicon test masses and cryogenic suspensions,
low laser power at σ = 1550 nm;

• ET–HF, devoted to the high-frequency range, operating at room temperature, using
fused silica test masses and high laser power at σ = 1064 nm.

With the implementation of such a configuration and the technologies described in
the previous paragraphs, the ET observatory will reach a sensitivity [105] as shown
in Fig. 13.9.

As previously stated, the ET observatory will be composed of more than one
detector, resulting in several advantages, already largely analyzed for the similar
configuration of the LISA low frequency space observatory [106] :

• The capability to fully reconstruct the two polarizations of the GW [11], through
virtual interferometry compositions;



358 M. Punturo et al.

Fig. 13.10 Schematic implementation of the ET layout; in the triangular geometry the three (color
coded) detectors are visible, each composed by two interferometers (Xylophone configuration); in
the top–left small image a possible distribution of the beam pipes is shown; in the top–right image,
a schematic view of a corner station is shown. All the pictures are derived from [9]

• The possibility to construct a null-data-stream [107], in which by design no GW
signal is present. Signals that appear in this data stream can be used for vetoing
noisy events;

• High duty cycle for the observatory is guaranteed by the redundancy of the con-
figuration: even if one detector completely fails, the two remaining can assure full
sky coverage, even if at the loss of polarization information.

It is evident that the capability to host more than one detector, has a cost implication.
In an underground installation, the largest cost is the excavation of the underground
tunnels and halls; the ET design study revealed that a triangular geometry optimises
the construction cost of the infrastructure with respect to the number of interfer-
ometer composing the observatory. The implementation of the ET observatory is
schematized in Fig. 13.10. It is worth to note that the use of a triangular geometry
has a minimal impact on the sensitivity of the observatory; the loss in sensitivity due
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to the 60∈ angle between the arms is compensated by the conbined use of the tree
detectors outputs, resulting in a loss in sensitivity ranging between 0 and 6 % [107].
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Chapter 14
Low Temperature and Gravitation Wave
Detectors

Fulvio Ricci

Abstract The success of a precision experiment is often associated to the use of low
temperature techniques. In particular, when the thermal noise is a barrier for improv-
ing the experiment sensitivity, the cryogenics is crucial for beating this limitation.
This strategy was applied in the case of the resonant gravitational wave detectors
(GW) and now it is proposed for the future generation of the GW interferometers. In
the following we summarize the history of GW detectors and we recall some of the
basic principles of the cryogenic techniques. Then, we focus on the issues of cooling
the mirrors of a GW interferometer.

14.1 Introduction

In the early 1960s, Joseph Weber initiated the experimental search for cosmic grav-
itational wave (GW) signals using massive aluminum cylinders with a fundamental
longitudinal frequency of about 1 kHz and of a motion sensor converting the vibration
of the bar into an electric signal [1].

In 1969, Weber announced the detection of signals in coincidence between two
identical detectors set at a distance of nearly 1,000 miles [2]. The claim stimu-
lated the construction and operation of new room temperature detectors, which gave
no evidence that GW were being seen [3–6].1 Despite of the controversial results,
the scientific challenge of the direct detection of GW signals was launched and in
1970 William Fairbank at Stanford University proposed a new, much more sensitive

1 Here we cite just few experiments among the several ones. A more detailed bibliography can
be found in [7].
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detector, a five ton bar cooled to the mK range [8], which involve the use of cryogen-
ics and superconducting techniques for noise reduction. W. Hamilton in Louisiana
[9] and E. Amaldi and G. Pizzella in Rome [10] followed the same path starting
to develop cryogenic detectors. The cryogenic antennas took data in coincidence
more than two decade later and today two ultra cryogenic detectors that achieved a
temperature of 0.1 K [11, 12], are in continuous data taking. Although we are still
waiting for the first detection, these cryogenic systems improved by four order of
magnitude the energy sensitivity over Weber’s original antennas.

Since several years now, the sensitivities of the kilometer scale interferometers
surpassed the sensitivity limits of the cryogenic bars [13], over a larger frequency
band. At present we are upgrading the interferometer configuration and we expect
(on the base of robust theoretical predictions) that these instruments in their advanced
configuration will detect several GW events during the next quinquennium. In this
scenario, even the study of a third-generation detector was started (see Chap. 13):
it was focused on the realization of a GW observatory ten times more sensitive so
that, at this level of sensitivity, it will turn the detection into a routine astronomical
tool. The design study of the Einstein Telescope observatory (ET) has been recently
completed, setting the specifications for the site infrastructure and the necessary
technologies. Cryogenics is considered again one of the main technologies to be
applied for beating the thermal noise limit achieved by the advanced detectors.

In addition, the construction of a new 3-km interferometer, KAGRA, has started
in Japan: it is based on the use of cryogenics in an underground laboratory. Thus, the
interest in all the aspects of the use of low temperature techniques for a GW detector
is grown again.

The advantages of lowering the temperature T in a GW interferometer are sum-
marized in the following list:

1. Test mass and suspension thermal noise are reduced at low temperature (see
Chap. 8), being the displacement power spectrum of the mirror Sxx ∝ T .

2. Thermoelastic noise in both the mirror substrates and in coatings decrease as T 2,
because of the decrease of the thermal expansion coefficient.

3. The thermorefractive noise associated with the fluctuation of the refraction index
decrease as T 2.

4. The acoustic losses of several materials characterized in terms of the loss angle
Φ decrease at low temperature. Thus, the noise power spectral of the mirror
displacement is expected to decrease as Φ.

Finally, we stress another important advantage: the thermal lensing is drastically
reduced for two reasons:

1. Refraction index variation with temperature is very small at low temperature,
2. Generally, the thermal conductivity increases and consequently reduces thermal

gradients on the mirror.

In Fig. 14.1, we show the expected sensitivity curves of the advanced detectors and
a tentative curve of the ET sensitivity. The grey box indicates the spectral range where

http://dx.doi.org/10.1007/978-3-319-03792-9_13
http://dx.doi.org/10.1007/978-3-319-03792-9_8
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Fig. 14.1 Sensitivities of gravitational wave detectors from the first to the third generation. The
grey box indicates the spectral range of the sensitivity dominated by the thermal noise

the dominant source noise is the thermal one. The main improvement is obtained by
cooling the suspended mirror at low temperatures.

As we said before the use of low temperature for operating the GW detectors was
proposed by W. Fairbank, who used to say...

Any experiment is better, if it is done at low temperature.
However, in case of a GW interferometer we are facing the challenge of cooling

untouchable super-mirrors of more than 100 kg, suspended by thin crystal fibers in
ultra high vacuum and in absence of any element polluting its surface. For this reason
we also tend to agree with Bill Hamilton, who used to add to Fairbank’s statement
(Fig. 14.2):

Any experiment will be harder, if it is done at low temperature.
In the following sections, we introduce few fundamental concepts of cryogenics

and then we discuss the main problem to be solved for cooling the super-mirrors of
the ET detector without spoiling the stringent requirement of a GW interferometer.

14.2 Cryogenics

Research and development into the field of cryogenics began during the nineteenth
century with the liquefaction of common gases as O2 and N2 (see Fig. 14.3). However,
the great step forward, the storage of cryofluids, occurred in 1892 when sir James
Dewar, a Scottish chemist and physicist, invented a double-walled container with
a vacuum insulation flask. This was the crucial element that led the way to liquefy
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Fig. 14.2 On the left William Fairbank in the earlier 1970s. On the right William O. Hamilton
these days

Fig. 14.3 Chronological
development of the cryogenic
techniques up to 1 K

helium, a liquid with an extremely low latent heat. Kamerlingh Onnes was able to
attain the goal of the first successful liquefaction of helium in 1908. In the old days of
low temperature physics, the production of liquid helium was a painful process. The
experimentalist had to start in the early morning with liquid nitrogen (TN2 = 77 K)
to produce hydrogen (TH2 = 20 K), by means of which it was possible to obtain at
the end of the day the liquid helium (THe = 4.2 K). Then, pushed by the need to
produce liquid oxygen and hydrogen used as propellants for missiles, in the 1940s
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commercial development of gas liquefiers began. Samuel Collins designed a machine
providing helium without the need to liquefy hydrogen and even without nitrogen.
Today nitrogen and helium cryogenics has progressed and a variety of liquefiers exist
for small or large liquid helium production.
Cryogenics has many applications. Cryogenic liquids, such as oxygen, nitrogen,

and argon, are often used in industrial and medical applications. Taking advantage
of the reduction with temperature of the vapor tension of gas, the cryogenics is
used for producing high vacuum. Other applications include fast freezing of some
foods and the preservation of biological materials such as human blood, tissue, and
embryos. Moreover, the electrical resistance of most metals decreases as temperature
decreases. Certain metals lose all electrical resistance below some transition temper-
ature and become superconductors. An electromagnet wound with a wire of such a
metal can produce extremely high magnetic fields with no generation of heat and no
consumption of electric power once the field is established and the metal remains
cold. These metals, typically niobium and titanium alloys cooled to 4.2 K, are used
for the magnets of magnetic resonance imaging (MRI) systems in most hospitals.
The industrial application of cryogenics can be synthesized in various categories of
applications

1. Storage of gases
2. Vacuum systems
3. Low noise detectors and superconductors
4. Biological and medical applications.

Cryogenic fluids are also used in a variety of applications for research. Among the
large-scale applications of cryogenics, the most impressive is by far the cryogenic
plant set for the Large Hadron Collider at CERN, a proton-proton accelerator fully
equipped with cryogenic magnets cooled at 1.9 K along the entire particle ring 27 km
long.

In the case of small-scale applications of cryogenics, more and more often the
use of cryogenic refrigerators (cryocoolers) is preferred to cryofluids. Cryocoolers
are required for a wide variety of applications, and the number of applications keeps
expanding as improvements to cryocoolers technology are achieved. One of the ear-
liest applications, appeared about 50 years ago, was for cooling infrared sensors to
about 80 K for night vision capability of the military. Then, they have been in wide-
spread use for tactical military applications to meet ground, airborne, and shipboard
infrared sensor cooling needs. Today the list of targeted applications is impressively
broad: it includes IR detectors, low noise amplifiers, front-end passives in commu-
nication systems, SQUIDs, MEMs and next generation nanoscale devices.

While there are several types of cryocoolers, most operate on some variation of
a common process. Gas is circulated through a closed cycle to absorb heat from the
interior of the device and transfer it to the outside environment. This gas may be
helium or some other mixture of gases. The ability of the device to cool its interior
environment depends largely on the thermodynamic properties of the gas circulating
through the system. Cooling cycles in these devices begin with gas being sent to a
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compressor. As the compressed gas passes through a heat exchanger, it absorbs heat
from the cryocooler, thereby cooling anything connected to it. When this gas absorbs
heat at a constant volume in the heat exchanger, its pressure increases. It expands in
volume and its pressure decreases in the next portion of the cycle. Finally, it returns
to the compressor, which completes a closed loop through the cycle, and begins to
circulate through the cycle again.

Common types of cryocoolers include the Joule–Thomson cooler, the Gifford-
McMahon and the Stirling cooler, the pulse tube (PT) refrigerator, etc. Although
less efficient than other devices, Joule–Thomson cryocoolers provide advantages in
reliability and low electrical and mechanical noise levels,2 while the more efficient
coolers generate vibration due to the piston movement in the cold environment.

In the case of the mirror cooling for a GW interferometer we will analyze both
methods to bring the mirror at low temperature, i.e.,

1. the first is based on the use of cryofluids
2. the second method relies on a battery of PT cryocoolers, which are more efficient

than the Joule–Thomson systems and weaker source of mechanical noise than the
traditional McMahon or Stirling machines.

14.2.1 The Cryofluids

The simplest way to produce low temperature is still the use of cryoliquids (e.g.,
nitrogen, helium). Liquid oxygen and hydrogen are rarely used in refrigeration: the
former because of its high chemical reactivity, the latter again for its flammability.
Both cryoliquids find also important applications in the space activity and in the
industry. In the following table, we summarize some of the thermodynamical prop-
erties of cryofluids.

For our purpose, helium is the most interesting element and the most used in
cryogenics after nitrogen. There exist two stable isotopes of helium, both of strong
cryogenic interest (Table 14.1):

1. 4He(nuclear spin I = 0). The 4He content of near-surface atmospheric air has
been determined to be 5.2204 ± 0.0041 parts per million by volume. To get it
for industrial use 4He is found in the natural gas field (mainly in Russia and the
USA) with a concentration of ∼7 %.

2. 3He (nuclear spin I = 1
2 ). The 3He/4He ratio for atmospheric helium is established

as 1.393 × 10−6. By far the most common source of 3He is the nuclear weapons
program, of which it is a byproduct. In fact, the nuclear weapons program produces
tritium which decays into helium-3.3

2 The Joule–Thomson cryocoolers are based on an adiabatic expansion of the gas through an
impedance orifice or a valve. This procedure is called a throttling process, and it permits to cool the
gas when it is kept below its inversion temperature.
3 During the cold war, the USA, Russia, and other countries stockpiled tens of thousands of nuclear
weapons, and in doing so accumulated vast amounts of 3He. Initially, the National Nuclear Security
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Table 14.1 Thermodynamical properties of the two helium isotopes

Properties 3He 4He

Density [g/cm3] (T = 0 K) 0.0863 0.146
Boiling temperature Tb (K) 3.191 4.215
Critical temperature Tc (K) 3.324 5.20
Critical pressure (bar) 1.165 2.289
Critical density (g/cm3) 0.0413 0.0693
Melting pressure (T = 0 K) (bar) 29.31 25.32
Maximum superfluid transition temperature (K) 0.0025 2.177
(Gas at 300 K and 1 bar)/(Liquid at 1K) volume ratio 662 866

4He plays a crucial role for achieving temperatures down to ∼1 K. Below it 3He
or a mixture of both liquids is used.

Liquid helium is notoriously difficult to handle. If you do not use the correct
equipment or techniques, you can easily lose all the liquid, because of the very low
latent heat of vaporization. For example, a heat load of 1 W will evaporate 1.4 l of
liquid per hour. Moreover, we have to stress that the latent heat of evaporation Lev
and the vapor pressure pvap are fundamental parameters when using a cryo-liquid
in the refrigeration process. The evaporation process provides a refrigeration power
Wev, which depends on Lev and pvap. However, looking at Table 14.2, we note
that the value Lev = 2.56 kJ/l for 4He is very small in comparison, for example,
with that of hydrogen (31.8 kJ/l) or of nitrogen (160 kJ/l). A low value of Lev
means a small cooling power, a serious drawback when cooling by evaporation. To
increase the refrigeration efficiency of the cooling process, the enthalpy of the cold
gas warming from 4.2 K to room temperature is used. The curve of the 4He enthalpy
versus temperature is shown in Fig. 14.4.

For example, on the cooling process of a 100 g of Cu, the full use of the 4He
enthalpy reduces at just 0.08 l the amount of the liquid helium, i.e., 1/30 times the
amount needed using the 4He latent heat only. In practice, if the material is cooled
by cold helium gas flowing over it, the amount of liquid helium is reduced by a
following theoretical factors:

1. 32 in the range 300–4.2 K
2. 10 in the range 77–4.2 K

When the liquid helium-4 and its vapor are cooled to 2.177 K, known as its λ

point, a third phase forms still liquid. The new liquid He-II showsthe remarkable

(Footnote 3 continued)
Administration (NNSA) and its predecessor agencies, which have maintained the US tritium stock-
pile, used to consider the gas useless and they considered to vent it into the atmosphere. In the
1980s, however, scientists began to realize the potential of 3He as a neutron detector and the price
skyrocketed.
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Table 14.2 Boiling and melting temperature at 1 bar of gas and their latent heat

Substance Tb Boiling tempera-
ture at 1 bar (K)

Tm Melting tempera-
ture at 1 bar (K)

Latent heat at Tb Lev (kJ/l)

H2O 373.15 273.15 2252
NH3 293.8 195 –
CO2 194.6 216 –
Xe 165.1 161.3 303
Kr 119.9 115.8 279
CH4 111.18 90.8 –
O2 90.2 54.4 245
Ar 87.3 83.8 224
N2 77.4 63.3 160
H2 20.3 14 31.8
4He 4.21 – 2.56
4He 3.19 – 0.48

Fig. 14.4 The enthalpy of the 4He gas in the range 2–300 K

property known as superfluidity.4 It flows with practically no friction through small
openings and narrow capillaries and if we plot the volume rate flowing in a capillary
versus temperature we note the striking change in the curve slope crossing the λ

point. The flow of helium II acts as if it were a mixture of two fluids [14–17]. One,
called the superfluid, has no viscosity or entropy and can flow without dissipation
through extremely narrow channels. The other, called the normal fluid, does have
a finite viscosity and carries all the entropy. The liquid is pictured to be all normal
fluid at the lambda transition and all superfluid at absolute zero.

Above the λ-point, 4He shows transport properties similar to those of a classic
fluid; it has a low thermal conductivity (a factor of 10−4 compared to Cu and a factor

4 The liquid phase above the λ point is named He-I.
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Fig. 14.5 Thermal flux func-
tion of the liquid helium Q̇n L
below 2.2 K versus tempera-
ture

of 10−1 compared to stainless steel) and boils with strong bubbling. In particular,
when pumping on He-I, bubbles of vapor form inside the liquid, which is warmer
than the surface cooled by the evaporation process.

Below 2.17 K, the properties of heat conduction in the liquid helium drastically
change. The steady-state heat flux Q̇ in a tubular conduit of length L , the ends of
which are maintained at temperatures T and Tw, is expressed by the empirical relation

Q̇n = X (T ) − X (Tw)

L
(14.1)

where n = 3.4 is the exponent value derived from the best experimental fit, and
X (T ) is a function of temperature shown in the Fig. 14.5, physically analogue to a
conductivity integral [18]. On the base of this information, it is possible to show that
the highest heat flux per unit temperature is maximized near 1.9 K.

As an example, the heat flux transported by conduction between 1.9 and 1.8 K in a
helium tube one meter long is ∼1.2 Wcm−2, which corresponds to a specific heat flux
per unit surface three orders of magnitude higher than that through a similar bar made
of OFHC copper. Because of the very high thermal conductivity, the temperature
gradient in the He-II bath is very close to zero, and for this reason bubbles do not
form in the liquid during the evaporation process.5

The absence of boiling in He-II is a great advantage in a GW cryogenic detector. In
fact, the long history of the cryogenic GW experiments can be told as a never ending
fight for reducing the residual vibration associated to the boiling of the cryofluids. We
just recall here the case of the Explorer antenna installed at CERN [19]. In the plot
we show in the vertical axis the detector output filtered for enhancing the sensitivity

5 The high thermal conductivity allows also for the propagation of temperature waves (called second
sound), which are reflected and diffracted as standard waves, but which give rise to temperature
variations in small regions.
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Fig. 14.6 The output of the
GW detector Explorer when
we were pumping on the 4He
bath. The sharp change is in
coincidence of the λ point
crossing

to the sudden change of the vibration energy of the detector. On the horizontal axis,
we show the time referred to a period during which we were pumping on the liquid
helium bath of ∼3000 l and decreasing its temperature from 4 K down to 1.5 K. In
Fig. 14.6, we notice the striking reduction of the detector output observed during and
after the λ point transition, when the boiling noise disappeared.

Noise associated with the boiling of the cryofluids was experienced by other
resonant GW detectors and it can be also a potential problem for the third generation
of GW interferometers. In fact, some disturbances associated to the boling process
of cryofluids has been observed already during the refilling phase of the N2 cryotraps
mounted both in LIGO and VIRGO.

In a design phase of the detector, there is the need to quantify the effect of the
boiling on the GW test masses. Our need is to infer the acceleration (or displacement)
noise induced on the wall of the test mass container. The noise spectral density
of the acceleration due to the boiling process depends on the boiling rate and on
the geometry and the material of the container. For example, in the case of the
GW resonant antenna Explorer, we evaluated the order of magnitude of the random
displacement of the wall of the helium container, a stanley steel cylinder of ∼1.6 m
diameter and ∼4 m long. The r.ms. value of the displacement noise, peaked around
900 Hz, was of the order of 10−10 m at 4 K when the boiling rate of the liquid helium
was ∼2 l/h.

Since the power spectrum of the boiling noise is mainly concentrated in the
acoustic range, it can be measured using sound level meters (see Fig. 14.7). The
signal output of these microphones, proportional to the pressure change detected on
the microphone surface, is calibrated to give the relative sound intensity Ir in dBSPL
units:

Ir [dBSPL] = 10 × log(I/H),

where I is the sound intensity (usually measured in W/m2) and H = 1.0 ×
10−12 W/m2. The quantity H is an intensity reference value corresponding to the
earing threshold of a normal ear in good health. This should correspond to a hear
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Fig. 14.7 Pressure noise
spectrum of a boiling fluid
in a cylindric container of
10 cm diameter and 30 cm
height, made of steel. The
boiling rate was ∼0.4 l/h. In
the vertical axis we show
the spectral density of the
amplified output voltage of
the microphone and on the
x-axis the frequency. The
voltage/pressure factor was
6.3 × 10−2 Pa/V

pressure change Δp0 = 20µPa. Under this assumption, the microphone noise can
be translated also in terms of a pressure change being

LSPL = 10 × log(I/H) = 20 × log(Δp1/Δp0).

Then, the pressure fluctuation is interpreted as a stress field applied to the walls of the
test mass container, provided that a correction factor, which takes into the account
the distance and directionality of the microphones with respect to the container wall,
is included.

Unfortunately this is not the end of the story. The companies producing audio
systems calibrate often their devices in dBA units. To give an idea of the sound level
in dBA, we report here a couple of common cases:

• a whispering level of noise is ranging around 20 dBA, which corresponds to ∼2 ×
10−4 Pa,

• a bird twitter outside at 15 m distance is quoted around 50 dBA corresponding to
∼6.3 × 10−3 Pa.

The letter A following the abbreviation dB designate a frequency-response func-
tion that filters the sounds picked up by the sound level meter. The filter shape is not
standard and it can change from microphone producer to producer. The consequence
is that there is not a conversion formula for measured dBA values to sound level in
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dBSPL or vice versa and the lesson is that often this kind of measurements gives just
the order of magnitude of the acoustic disturbance.

In practice, the most reliable approach for inferring the sound noise contribution
to the noise budget of a GW detector is to put in contact with the container wall a
full set of low temperature accelerometers, which monitor the random movement
induced by the boiling (Fig. 14.7).

The quietest scheme for cooling the test mass of a GW detector is the Claudet bain:
it permits to use super fluid helium at atmospheric pressure and to insure continuous
refilling from the container of the helium in the normal state

A 4He bath at 4 K at atmospheric pressure flows gently through a high impedance
porous filter acting also as acoustic filter to a second 4He bath kept in thermal con-
tact with a cell unit cooled below the 2 K. In this way, the He-II bath is in a quiet
hydrodynamic status well far from the boiling point and with enhanced heat removal
capability. Moreover, since He-II is modeled as a mixture of two fluids flowing with
velocities of opposite sign (the superfluid and the normal component), it should be
possible to operate the cryo system in the state of zero mass flow [20]. This implies
that, in absence of the vapor phase, we have

ρsνs = −ρnνn (14.2)

where ρ and ν are the density and the velocity of the normal (n) and superfluid (s)
components.

In this condition, in principle the test mass can be in a direct thermal contact with a
cold element filled by superfluid helium at atmospheric pressure. However, the fluid
still transmits sound waves and we should limit the acoustic effect of the cooling fluid
on the test masses. Therefore, this approach requires also a deeper analysis of the
impact of the acoustic losses of the fluid to the dynamic behavior of the suspended
test masses [21].

In conclusion, as we will discuss later, the simpler and safer approach will be to
fill a copper box with He-II at atmospheric pressure and bring the refrigeration power
to the mirror through its suspension wire made of a crystalline material.

14.2.2 The Cryocooler

The vapor-compression refrigerator, first developed in the latter part of the nine-
teenth century, in a single stage produced temperatures down to about 230 K. Since
the middle of the twentieth century a steadily increasing demand for cryogenic tem-
peratures below 120 K has developed for a wide variety of applications. Initially most
of these applications required to develop very large plants with power inputs of many
megawatts. Then, a need for small cryogenic refrigerators (cryocoolers) has evolved
triggering an impressive research and development effort during the past 40 years
(see Fig. 14.8). One such cryocooler, the pulse tube (PT) refrigerator, first conceived
in the mid-1960s, was of academic interest until the mid-1980s. At the Moscow
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Fig. 14.8 Ratio between the thermal cycle efficiency of refrigeration and the corresponding Carnot
cycle efficiency versus temperature

Fig. 14.9 Scheme of a pulse tube cryocooler

Bauman Technical Institute in 1984 Alexander Mikulin et al. [22] introduced an
orifice inside the pulse tube near the warm end and achieved a low temperature of
105 K. Since then, improvements in its efficiency have occurred rapidly.

Unlike the Stirling or Gifford-McMahon refrigerators, the PT one has no moving
parts at the cold end (see Fig. 14.9). Therefore, no expensive high-precision seals are
required and the cold head can be operated without any service inspection. In this way,
some of the problems associated with cryocoolers in many different applications,
such as vibration and reliability are attenuated (Table 14.3).

Subsequent modifications and improved designs yielded much improved efficien-
cies.
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Table 14.3 Progress of the pulse tube technology

Year PT type Final temperature (K) Pcool (W) Pel (W)

1993 Single stage 80 0.8 33
1994 Single stage 77 133 3400
1995 Double stage 4.2 0.5 6300
2004 2 double stages for 4 He and 3 He 1.3 0.04 (@2 K) 4500+1300

Pcool is the refrigeration, Pel the electric power of the compressor

Pushed in large part by NASA and the military, the efficiency figures, i.e., the
ratio Pcool/Pel are still improving, thanks to the effort of the research laboratories
and few commercial companies.

The Pulse Tube cryocooler (PT) is based on the displacement and the expansion of
a gas, usually He4. The working fluid undergoes an oscillating flow and an oscillating
pressure. A typical average pressure in a PT is 25 bar, and a typical pressure amplitude
range between 2 and 7 bar.

A piston compressor and a set of switching valves are used to create the pressure
oscillations of the helium gas. A crucial element of the cryocooler is the PT regen-
erator. It is a heat exchanger, which acts as cold storage systems for the pulsed flow
processes used in the cryocooler.

The piston moves periodically pushing the gas, which enters the regenerator with
temperature Th and leaves it at the cold end with temperature Tc, hence heat is
transferred into the regenerator material. On its return the heat stored within the
regenerator is transferred back to the gas.

In practice, the regenerator stores the energy from one stream and later transfer
the energy to a second stream, for example between the out-of-phase pulses of gas.

Let us consider a gas element entering the tube with temperature Th and leaving it
with a higher temperature when the pressure in the tube is low. Later in the cycle the
same element is pushed out the tube again when the pressure inside the tube is high.
As a consequence, its temperature will be higher than Th . In the heat exchanger, it
releases heat and cools to the ambient temperature Th . At the cold end of the pulse
tube, there is the opposite effect: here gas elements enter the tube when the pressure
is high with temperature Tc and return when the pressure is low with a temperature
below Tc. The heat is extracted from the cold point, providing the desired cooling
power.

The thermal environment of a gas element, that moves back and forth in the
system, changes when it passes the heat exchanger. In the regenerator and in the heat
exchanger, the heat contact between the gas and its surrounding material is good.
Here the temperature of the gas is practically the same as that of the surrounding
medium. However, in the pulse tube the gas element is thermally isolated, so, in the
pulse tube, the temperature of the gas element varies with the pressure.

As we said before, Mikulin and his co-workers [22] inserted a flow resistance
(the orifice) at the warm end of the pulse tube to allow some gas to pass to a large
reservoir acting as buffer volume. This is typically 10 times larger than the volume
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of the pulse tube and its pressure is almost constant and close to the average pressure
in the pulse tube. The combination of the orifice and the buffer provides a phase
difference between the flow of the gas in the tube and the pressure oscillation; such
phase difference is necessary for the performance of the PT.

In 1990, Zhu et al. [23] connected the warm end of the pulse tube with the main
gas inlet by a tube, containing a second orifice. Thus, a part of the gas could enter
the pulse tube from the warm end, bypassing the regenerator. The function of the
second orifice is to reduce losses. It allows some gas to bypass the regenerator and
to enter the pulse tube directly.

The quality of the regenerator material sets in practice the cryocooler performance.
It consists of a porous matrix of finely divided material in the form of wire mesh,
plates, or small balls. These forms maximize the surface area and minimize the
thermal conduction necessary within the solid to maximize the heat transfer with the
surrounding gas within the duration of a cooling cycle. The regenerator stores the
heat of the gas during a half-cycle and, therefore, it must have a high heat capacity,
compared to the heat capacity of the gas.

At temperatures above 10 K materials as bronze or stainless steel are often used.
Below 10 K one uses rare earth materials, which are specially developed for this
application.

To obtain temperatures below 20 K, the system is operated at low frequency (ν ∼ 1
Hz). The frequency defines the diffusion depth δ in the working gas and the regen-
erator material:

δ =
√

k

πνC
(14.3)

where k is the heat conductivity, ν is the frequency and C is the volumetric heat
capacity of the regenerator material. It follows that when the frequency is increased,
the diffusion depth decreases, and the heat storage in the regenerator degrades. More-
over, a high operating frequency leads to a large pressure drop in the regenerator,
i.e., a poor performance of the system.

A pulse tube cryocooler seems to be suitable for cooling the mirrors of the GW
interferometer. However, also this kind of refrigeration system injects mechanical
noise because of the gas pulse flowing in its cold head.

We measured the acceleration of the 4 K cold head of the Pulse Tube 407 of
CRYOMECH and that of the Sumitomo SRP-052A (see Fig. 14.10).

It results that the noise produced by this kind of refrigerators is still too high for
cooling the GW test masses so that it is necessary to design a cooling system, which
can attenuate the PT cryocooler vibrations. An active system to reduce the residual
vibrations associated to the gas pulse is the so-called Vibration Free Cryostat (VFC)
cryostat [24]: it was conceived to host a suspended mirror cooled by a PT cryocooler.

The cryostat scheme is sketched in Fig. 14.11. It is based on the idea to attenuate
the cryocooler vibrations by directly acting on it and consequently allowing a shorter
heat link between the cryocooler and the mirror.
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Fig. 14.10 We show the displacement noise spectrum of the coldest point of the CRYOMECH
PT407 obtained by by an accelerometer for low temperature applications. The similar data taken
on Sumitomo SRP-052A are obtained using an optic fiber sensor

The active control on the cold head vibration is performed by a digital feedback
system in which the cold head displacement are monitored by a low temperature sen-
sor. The sensor output provides the error signal for the correction, which is performed
at room temperature by piezoelectric actuators.

The cryocooler cold head is clamped to a platform placed on dampers and it is
connected to the cryostat by means of an elastic bellow designed to mechanically
decouple the head and the platform from the lower part of the cryostat connected to
the ground. The feedback correction signal is sent to three piezo-actuators which are
loaded by the platform and can act on it from below. The attenuation provided by this
system is of the order of 200. Then, in a GW detector, the cold head will be connected
to the test mass via flexible heat links insuring an other signifiant insulation factor.

However, for achieving the ET sensitivity goal a R&D activity on a further re-
duction of the PT vibration is highly recommended. The pulsed force due to the gas
deforms the tube of the cold head displacing the cold plate of several micrometers.
This effect has been simulated via finite element software showing that, depending
on the the cold head geometry, the longitudinal expansion of the tube can be of the
same order the horizontal displacement. Thus, there is still a large margin of im-
provement changing the geometry of the cold head and/or enhancing both the active
and passive attenuation damping of the gas pulse effects.
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Fig. 14.11 Sketch of the vibration free cryostat

14.2.3 Cooling Strategy Comparison

The two methods for cooling the mirrors have both advantages and drawbacks. The
cryocoolers insure a longer duty cycle for the GW observatory and they require less
maintenance and manpower.

Moreover, the use of cryocoolers in an underground environment significantly
relaxes all the safety issues associated with the use of cryofluids in an ambient with
limited ventilation.

On the other hand, the main limitations of this approach are

• the low refrigeration power that implies the use of a battery of cryocoolers and
associated compressors to be installed in the underground laboratory not too far
from the test masses,

• the low efficiency, which requires a large amount of electric power to be distributed
in the laboratory,

• the residual vibrations of the cold heads and the acoustic noise transmitted along
the high pressure helium gas lines.

The use of cryofluids implies the construction of a cryoplant outside the under-
ground laboratory surface: it will be the production center of liquid helium hosting
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the liquefiers and the compressors. Then, the liquid helium will be transferred to
the cryostats using special low loss lines deployed from the surface to the under-
ground interferometer. This system has a higher cost, needs more manpower and
more stringent safety requirements.

The KAGRA project has already chosen the cooling strategy based on PT: they
are confident that at the level of sensitivity of the advanced detectors it is possible,
with present technology, to damp enough of the residual vibration of the cryocoolers.
The entire GW community will follow their experience, which will orient also the
final technical design of the Einstein Telescope detector.

14.3 The Cryogenic Payload

The last suspension stage, simply called the payload, is suspended from a long series
of pendula kept at room temperature, for reducing the seismic and acoustic distur-
bances (the super attenuator). The payload is designed to compensate the residual
seismic noise and to steer the mirror through internal forces exerted from the last
element of the super attenuator. The main components of the payload are: the Mar-
ionette, the Recoil Mass, and the Mirror (see Chap. 7). The marionette is the first
stage used to control the mirror position by means of coil-magnet actuators acting
between the last stage upper part suspension and the marionette arms. The recoil
mass6 is used to protect and to steer the mirror by means of the coils of the elec-
tromagnetic actuators acting on four small magnets mounted on the mirror back
side.

The mechanical losses of the suspended mirror determine the thermal noise con-
tribution of interferometer sensitivity because of the well-known relation between
mechanical dissipations and thermal motion in macroscopic systems (see Chap. 8).
The parts in contact with the mirror are made of materials having intrinsic low
mechanical dissipation; in particular, the suspension wires are attached by means of
low friction mechanical clamps. Cryogenic operation introduces additional difficul-
ties, but the benefit in thermal noise reduction can be enhanced by the selection of
materials with improved properties at low temperatures. Moreover, to take advantage
of the low temperature, the design of a last stage suspension should satisfy a couple
of new requirements in addition to those of a room temperature payload:

1. the refrigerating power transmission to the mirror level should not deteriorate the
position control performance;

2. the residual vibration transmitted to the mirror through the cryogenic system,
should be well below the detector noise sensitivity curve.

As a consequence, a good mechanical isolation between the mirror and the cooler
is necessary. Another important element in a cryogenic system is the thermal link

6 The idea of using a reaction mass to control a suspended mirror has been originally pursued by
the GEO group [25].

http://dx.doi.org/10.1007/978-3-319-03792-9_7
http://dx.doi.org/10.1007/978-3-319-03792-9_8
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Fig. 14.12 Scheme of the cryogenic payload

with the refrigerator. Taking care of having short thermal links and good thermal
couplings is important to have low refrigerating power losses. For instance, the use
of a mechanical attenuator as a heat link is a good solution to damp the vibrations
of the cooler, but has the disadvantage to limit the heat flow. On the other hand,
the mirror suspension itself must have the required thermal conductivity to reduce
thermal gradients and to optimize the cooling time.

The requirements we have just described suggest that the new system will be
the result of a trade-off between the need to have a strong thermal contact with
the refrigeration apparatus and the need to reduce any dissipation source due to the
coupling of the suspension with the mirror. Thus, the materials used for building a
cryogenic payload must have high thermal conductivity as well as good mechanical
and optical properties at low temperature. Crystalline materials are preferred at low
temperature for their thermal capacitance properties and in particular sapphire and
silicon appears to be the best candidates, both for the mirror and for its suspensions.
Indeed they have high thermal conductivity, low thermal expansion rate and very low
mechanical losses at cryogenic temperatures. If test masses of large size are required,
as in the ET case, then silicon is preferred.

In the Fig. 14.12 of the payload scheme, it is shown how a cryogenic suspension
should work during the interferometer operation, i.e., when the payload has been
cooled down and the laser is turned on. The fraction of the laser power, which is
absorbed by the mirror (Q̇laser), flows through suspension wires; then it crosses the
points where the suspension wire clamps are set and reaches the refrigerating system.
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Fig. 14.13 Thermal properties of silicon. The red curve represents the thermal conductivity, the
black one the thermal expansion coefficient, a crucial properties of the material for reducing the
thermal lensing effect in the optical element

To this aim, the marionette has to be connected with very efficient, soft heat links to
the cooling power.

In a similar way as for the mirror, the reaction mass is cooled down via its suspen-
sion wires and, if there is not extra thermal input, it reaches the thermal equilibrium
and acts as a thermal shield for the mirror. The choice of the wires for the recoil
mass must fulfill the request of having a good mechanical and thermal performance.
For this reason, the use of a silicon suspension also for this part is the most obvious
option (Fig. 14.13).

14.3.1 Payload Thermal Input and Heat Extraction

The main heat inputs into the cold mirror of the interferometer are the thermal
radiation coming from the warm surface of the kilometric vacuum tube hosting the
laser beam of the interferometer. To this, we have to add it the heat load due to
the absorption of a small fraction of the laser light by the mirror surface (see
Fig. 14.14). The latter is estimated considering that the laser power circulating in
the optical resonant cavity of the interferometer. For example, let us assume 1 ppm
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Fig. 14.14 Finite element analysis of the heat flow from the mirror to the marionette via the
suspension wires, when the laser is impinging on the mirror

as a reference value for the absorption coefficient of the mirror optical coating at the
laser wavelength. In this case, if ∼20 kW of light power are stored in the interferom-
eter, we have ∼20 mW of absorbed laser power.

The radiation from the warm surface of the vacuum tube to the mirror is derived
from the Stefan-Boltzmann equation and we have:

Q̇r/A1 = σ Fe F1−2(T
4
2 − T 4

1 ) (14.4)

where Q̇r/A1 is the heat transfer rate by radiation per unit area of the mirror surface,
σ = 5.67 10−8 W/m2/K4 is the Stefan-Boltzmann constant, Fe is the emissivity
factor, and F1−2 is a geometric configuration factor relating the two surfaces, whose
temperatures are T2 (warm) and T1 (cold). From Eq. 14.4 the heat flux on the mirror
at T1 = 10 K, coming from the vacuum tube at T2 = 300 K can be as high as
Q̇r/A1 ∼ 460 W/m2. This huge heat flux is not compatible with the cryogenic
environment and needs to be reduced by several orders of magnitude.

To limit this huge contribution, we need to reduce the solid angle under which the
warm surface is seen by the cold mirror. This is obtained by providing, in the region
adjacent to the mirror, cold sections of the vacuum tube, i.e., adding thermal shields
(cryotraps) along the part of the vacuum tube near the cryostat hosting the mirror.
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The mirror thermal equilibrium is reached when the power extracted by the cooling
system is equivalent to that absorbed by the mirror (Q̇abs = Pcool). If this condition
is met, most of the power absorbed by the mirror flows through its suspension wires
(a small fraction is lost in radiation), and then is removed by the heat link directly
connected to the cooling system. The equilibrium temperature of the mirror Tmir can
be calculated by the simple analytical model relating it to the temperature of the
thermal bath Tbath of the cooler via the power flow through the mirror wires:

Q̇abs = 4Σw

L
< Ksi > (Tbath − Tmir) ≡ 1

Z therm
ΔT (14.5)

with

< Ksi >= 1

ΔT

Tmir∫

Tbath

Ksi (T ) dT (14.6)

and where Σw is the wire section, L its length and Ksi (T ) is the thermal conductivity
of silicon. For a given thermal input Q̇abs, the thermal impedance Z therm is the relevant
parameter to yield the final temperature of the mirror: this is the quantity which sets
the performance of our system and influences the choice of both the material and the
geometry of the mirror suspension wire.

In the design of a cryogenic payload (as an example, we show a prototype, devel-
oped in Roma, in Fig. 14.15), a few other issues must be considered. First of all, we
need to limit the power dissipated in vacuum by the current flowing into the elec-
tromagnetic actuator coils used to steer the mirror: a possible solution is the use of
superconducting alloys for the coil wires. In fact, despite of the significant decrease
of the copper resistivity with temperature, the heat radiated in vacuum can cause
a large drift of the mirror temperature because of the lower thermal capacitance of
crystals at cryogenic temperatures.

During the commissioning and noise hunting phase, it can happen that we need
to access the last stage of suspension for improving the detector performance. This
implies that a short cooling (and warm up) time improves the flexibility of the appa-
ratus.

To avoid any possible contamination of the mirror, the KAGRA project has chosen
to cool the mirror by embedding the payload in a heavy shield thermally connected
to the PT cold heads. Thin wires made of pure aluminum connect the shield to the
marionette and the heat is extracted from the suspended elements of the payload both
via radiation and solid conduction. This approach eliminates the danger of mirror
contamination but implies to wait nearly one month to bring the 23 kg sapphire mirror
at 20 K.

In the case of the proposed ET detector, the silicon mirror will have a mass with a
thermal capacitance 3–4 times that of the KAGRA mirror: another approach should
therefore be considered. In Fig. 14.16, we plot the typical values of the heat exchange
coefficients in function of the temperature for various mechanisms of heat transfer.
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Fig. 14.15 The first proto-
type of cryogenic payload
built in the VIRGO laboratory
of the university of Rome La
Sapienza. The payload is ready
to be inserted in the inner vac-
uum chamber of the vibration
free cryostat equipped with a
PT cryocoolers

The plot shows that an improvement of the cooling time is obtained by using a low
pressure helium gas, which improve the heat exchange between the cold shield of the
cryostat and the payload. The drawback of this solution is a more complex design
of the cryostat: it requires to transform the cold shield in a second vacuum chamber
hosting the payload. During the cooling phase, the inner chamber is filled with helium
gas insuring a more efficient heat extraction. Then, in the low temperature state, the
gas is pumped out.7 This approach implies to solve two problems at least:

• insure the vacuum tightness of the inner vacuum chamber, which contains the
payload suspended vertically via a cable to the room temperature super attenuator
and which is connected horizontally to the kilometric vacuum tube via the cold
traps,

7 This technique is applied also in the cooling process of all the GW resonant antennas.
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Fig. 14.16 Typical curves of
the heat transfer coefficients
versus temperature for the
various mechanisms of heat
exchange. We notice that the
radiative exchange is poor,
while the gas heat exchange
is a way to reduce the cooling
time significantly

• limit the high risk of mirror contamination by adding a purification system for the
gas flowing in and out the inner vacuum chamber.

Although a few technical solutions have been proposed, at present none of them is
yet validated by an experimental test.

14.4 Conclusion

The third generation of GW detectors is renewing the alliance between low tempera-
ture physics and gravitational wave astronomy. One of the most challenging goals in
the construction of a new generation gravitational wave interferometers is cooling the
mirrors at low temperature. Here, we presented the alternative strategies for cooling
the mirrors in the case of the Einstein Telescope trying to focus on those aspects
which require R&D activity and experimental tests.

At present, the construction of the Japanese detector KAGRA has started. This 3
km-arm interferometer has an innovative design and implements the key technologies
of a third generation gravitational wave observatory. The KAGRA project already
made few crucial choices to overcome several difficulties associated to the use of
cryogenics in a GW interferometer. The common aspects of the KAGRA and ET
detectors are pushing for a tighter collaboration between the Japanese and European
scientists, and it will influence the final design of the ET cryogenic detector.
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