
Analysis of Optimization Techniques to Improve

User Response Time of Web Applications
and Their Implementation for MOODLE

Priyanka Manchanda

Department of Computer Science and Information Technology,
Jaypee Institute of Information Technology,

Sector 128, Noida, UP - 201304, India
pmanchanda1992@gmail.com

Abstract. Analysis of six optimization techniques grouped under three
categories (hardware, back-end, and front-end) is done to study the
reduction in average user response time for Modular Object Oriented
Dynamic Learning Environment (Moodle), a Learning Management Sys-
tem which is scripted in PHP5, runs on Apache web server and utilizes
MySQL database software. Before the implementation of these tech-
niques, performance analysis of Moodle is performed for varying number
of concurrent users. The results obtained for each optimization tech-
nique are then reported in a tabular format. The maximum reduction
in end user response time was achieved for hardware optimization which
requires Moodle server and database to be installed on solid state disk.

Keywords: Optimization, SSD, HTTP, Moodle, Nginx, caching, DNS.

1 Introduction

The Internet has seen a significant growth of web based applications over the
last few years. These have now become an inseparable part of numerous in-
dustries like airline, banking, business, computer, education, financial services,
healthcare, publishing and telecommunications. They are preferred because of
their zero installation time (as they run on a browser), availability of centralised
data, their global reach, and their availability (24 hours a day, 7 days a week).
According to [1], in June 2011 an average US user spent 74 minutes a day using
web applications as compared to 64 minutes a day in June 2010.

In current scenario, improvement in the user response time is the most im-
portant issue for enhancing the performance of web applications. With reference
to [2], a delay of one second in the performance of web applications can impact
customer satisfaction by up to 16%.

Web applicationsmake use of a wide range of technologies including JavaScript,
Apache,CSS,HTML,MySQL,PHPandprotocols likeHTTPheaders.Optimizing
the way they use these technologies can significantly improve user response time.
Furthermore, the browser and hardware capabilities can be employed to reduce the
user response time.

B. Papasratorn et al. (Eds.): IAIT 2013, CCIS 409, pp. 150–161, 2013.
c© Springer International Publishing Switzerland 2013



Analysis of Optimization Techniques for Moodle LMS 151

Many research groups and authors have addressed this problem and reported
their solutions. These include teams such as Yahoo Exceptional Performance
Team [3], book authors [4] and research papers [5].

In this contribution, six optimization techniques grouped under three cat-
egories are analysed. Further, implementation of these six techniques is done
for the Modular Object Oriented Distance Learning Environment (Moodle) [6].
The efficiency of these techniques is studied by comparing the original and the
improved average user response time.

2 Performance Analysis of Moodle

Performance Analysis for Varying Number of Concurrent Users

Moodle is a free source Learning Management System (LMS) which is used by
thousands of educational institutions around the world to provide an organized
interface for e-learning. As of June 2013, it has 83059 currently active sites that
have been registered from 236 countries [7]. Moodle LMS is written in PHP and
uses XHTML 1.0 Strict, CSS level 2 and JavaScript for its web user interface[5].

With reference to [8], it has been reported that Moodle can support 50 con-
current users for every 1GB RAM. An experiment was performed to verify this
result.

Experimental Setup
The experiment was perfomed on a machine with the following specifications:

Hardware: Intel R©CoreTMi5-2310 CPU @2.90GHz x 4 processor, 8GB Hard disk
and 1GB RAM.
Operating system: Ubuntu 12.10
Web server: Apache v2.2.22 and PHP v5.4.6 for Moodle v2.5 for Ubuntu 12.10
Database software: MySQL v5.5.31 for Ubuntu 12.10

– The experiment was performed using Apache JMeter 2.9, an open source
load testing tool by the Apache Software Foundation [9].

– The test script was generated by using the JMeter Script Generator plugin
for Moodle by James Brisland [10].

– The bandwidth of the network was set to 1024 kbps (1 Mbps) using JMeter.
– The load testing of Moodle was done for a chat activity.
– The sequence of pages visited on Moodle was :

Login to site -> View Course -> View Chat page -> View Chat window ->
Initialize Chat -> Initialize Initial Update

– After initializing chat the following tasks were performed five times for each
concurrent user : Post Chat Message -> Initialize Update

– To test the performance of Moodle in the worst case scenario the ramp-up
period, that is the amount of time for creating the total number of threads,
was set to zero so as to ensure immediate creation of all the threads by
JMeter.



152 P. Manchanda

Table 1. Average Response Time and Throughput for load testing Moodle on 1GB
RAM and 8GB HARD DISK

No. of Concurrent Users Average Response Time(s) Throughput (per m)

10 3.671 147.6
20 8.874 129
30 15.303 99.6
40 129.786 16.8
49 243.469 11.4
50 364.480 7.8
51 Database Overload Database Overload

While load testing Moodle for 51 concurrent users, it was observed that the
connection to the database was aborted due to database overload and the testing
process was killed by JMeter.

3 Hardware Optimization

Employing Solid State Disk

The performance of the web applications can be highly enhanced by using a
solid state disk drive to reduce the latency of the input and output operations
carried out by the server.

A Solid State Disk, or SSD is a high performance plug and play data storage
device which uses integrated circuit assemblies as memory to store data persis-
tently [11]. An SSD incorporates solid state flash memory and emulates a hard
disk drive to store data [12]. However, unlike the traditional electromechanical
disks like hard disk and floppy disks, an SSD is a flash-based and DRAM-based
storage device which does not contain any moving parts [13].

An experiment was performed by replacing the Hard Disk Drive(HDD) of the
Moodle Server with a 128GB Kingston Solid State Disk Drive.

Experimental Setup
To conform to the experiment performed in section 2 and to compare the per-
formance of Moodle on HDD vs. SSD, the space allocated to Moodle server and
database collectively was 8GB of 128GB SSD and the RAM size was limited to
1GB. The experiment was performed on a machine with following specifications:

Hardware: Intel R©CoreTMi5-2310 CPU @2.90GHz x 4 processor,
8GB Solid State disk and 1GB RAM.
Operating system: Ubuntu 12.10
Web server: Apache v2.2.22 and PHP v5.4.6 for Moodle v2.5 for Ubuntu 12.10
Database software: MySQL v5.5.31 for Ubuntu 12.10
Bandwidth: 1024 Kbps (1 Mbps)

The experiment was performed for the chat activity mentioned in section 2 using
Apache JMeter 2.9.



Analysis of Optimization Techniques for Moodle LMS 153

Table 2. Average User Response Time on HDD vs SSD(in s)

No. of concurrent
users

Average Response
Time on HDD(s)

Average Response
Time on SSD (s)

Reduction in
Response time %

10 3.671 0.349 90.49

20 8.874 1.048 88.19

30 15.303 1.938 87.34

40 129.786 3.438 97.35

50 364.480 5.274 97.83

60 Database Overload 5.97 -

70 Database Overload 6.492 -

80 Database Overload 8.009 -

90 Database Overload 8.085 -

100 Database Overload 9.797 -

110 Database Overload 13.759 -

120 Database Overload 16.828 -

130 Database Overload 22.991 -

140 Database Overload 30.187 -

150 Database Overload 36.119 -

151 Database Overload 39.141 -

152 Database Overload Database Overload -

Fig. 1. Average user response time (in s) for Moodle on HDD vs. SSD

From Table 2, it is concluded that the number of concurrent users supported
by Moodle installed on SSD for 1 GB RAM is increased to 151 as compared to
50 concurrent users for Moodle installed on HDD with 1 GB RAM. Also, there
is a reduction of 87% to 98% in average user response time after installing
Moodle server and database on SSD.



154 P. Manchanda

4 Back-End Optimization

Switching to LNMP Stack from LAMP Stack

The Moodle web application runs on the LAMP stack which is a software bundle
comprising of Linux based operating system, Apache HTTP server, MySQL
database software and PHP object oriented scripting language. LNMP stack is
almost similar to LAMP, except the change of web server from Apache to Nginx.

Apache is a process-based server, while nginx is an event-based asynchronous
web server and is more scalable than Apache. In Apache, each simultaneous
connection requires a thread which incurs significant overhead whereas nginx is
event-driven and handles requests in a single (or at least, very few) threads [14].

The performance of Moodle or any web application that runs on Apache and
frequently encounters heavy load, can be boosted by replacing Apache by Nginx.
An experiment was performed to compare the performance of Moodle installed
on Apache vs. Nginx web server.

Experimental Setup
Since it was observed in Section 3 that the performance of Moodle is highly
enhanced by installing it on SSD, the experiment was performed on a machine
with Moodle installed on 128 GB Solid State Disk and 4GB RAM.

All the other specifications (Operating system, Database software, Web server
and Bandwidth) of the machine were kept same as in section 3. The experiment
was performed using Apache BenchMark 2.4 [15] for Moodle’s login page.

From Table 3, it is observed that there is a reduction of 24% to 34% in
average user response time after installing Moodle on Nginx v1.4.1 web server.

Table 3. Average User Response Time on Apache vs Nginx(in s) Web Server

No. of concurrent
users

Average Response
Time on
Apache(s)

Average Response
Time on Nginx(s)

Reduction in
Response time %

50 2.209 1.652 25.22

100 4.505 3.359 25.43

150 6.098 4.630 24.07

200 8.192 5.408 33.98

250 10.729 7.156 33.30

5 Front-End Optimization

For any web application, only 10% to 20% of the end user response time is spent
downloading the HTML document from the web server to the client’s browser.
The other 80% to 90% is spent in performing the front end operations, i.e., in
downloading the other components of web page [4].



Analysis of Optimization Techniques for Moodle LMS 155

A set of specific rules for speeding up the front end operations carried by
a web application is presented in Ref. [4]. Four of the most efficient techniques
which showed significant reduction in user response time for Moodle Learning
Management System are described in this section.

5.1 Browser Caching by Using Far Future Expires Header

Browsers and proxies use cache to reduce the number and size of the HTTP
requests thereby speeding up the web applications. A first-time visitor may have
to make several HTTP requests, but by using a Far Future Expires header the
developer can significantly improve the performance of web applications for re-
turning visitors. A server uses the Expires header in HTTP response to inform
the client that it can use the current copy of a component until the specified
time [4].

Moodle sends requests with an Expires Header which is set in past (20th
Aug 1969 09:23 GMT). An experiment was performed by changing it to fu-
ture date of 16th Apr 2015 20:00 GMT. Also max-age directive was used
in Cache control header so as to set the cache expiration window to 10 years in
future and the pragma header was unset to enable caching.

Given below are the lines which were added to the headers.conf file of Apache2
Web Server:

<FilesMatch".(ico|pdf|flv|jpg|jpeg|png|gif|js|css|swf|php|html)$">

Header set Expires "Thu, 16 Apr 2015 20:00:00 GMT" Header set

Cache-Control " max-age=315360000" Header unset Pragma

</FilesMatch>

The experimental setup is the same as section 3 and the experiment was per-
formed using Apache Jmeter 2.9. From Table 4, it is observed that there is a
reduction of 70% to 80% in average user response time after implementing Far
Future Expires Header Optimization Technique.

Table 4. Average user response time (in s) with and without caching for 10 iterations

No. of concurrent
users

Average Response
Time Without

Expires Header(s)
(no caching)

Average Response
Time with

Expires Header(s)
(caching)

Reduction in
Response time %

10 0.625 0.144 76.96

20 1.839 0.408 77.81

40 5.061 1.210 76.09

60 7.086 1.778 74.91

80 8.124 2.426 70.14

100 9.882 3.071 68.92



156 P. Manchanda

5.2 Reduce DNS Lookups

The Internet uses IP addresses to find webservers. Before establishing a network
connection to a web server, the browser must resolve the hostname of the web
server to an IP address by using Domain Name Systems (DNS). The latency
introduced due to DNS lookups can be minimized if the DNS resolutions are
cached by client’s browser [4]. The response time for Moodle’s login page of
Institutional Moodle websites of 13 universities situated in six continents of the
world was recorded for two cases: With DNS Cache and Without DNS Cache.
The experiment was performed for a client located in IIT Bombay, India with
128GB SSD, 4GB RAM, Intel R©CoreTMi5-2310 CPU @2.90GHz x 4 processor
and 2 Mbps average download speed.

Table 5. Average user response time (in s) With and Without DNS Cache for 1 user

Continent Country University Response
time
With
DNS

Cache(s)

Response
time

Without
DNS

Cache(s)

Reduction
in

Response
time(%)

Asia India IIT, Bombay [16] 2.357 1.426 39.50

Asia India IIT, Madras [17] 2.516 1.612 35.93

Asia Singapore SIM University [18] 1.381 1.055 23.61

Asia Japan Sojo University, Kumamoto
[19]

6.223 3.116 49.93

Europe Spain Graduate School of
Management, Barcelona [20]

3.138 1.813 42.22

Europe UK University of Nottingham [21] 4.174 2.041 51.10

North
America

US UCLA, California [22] 4.600 3.657 20.50

South
America

Argentina Pontifical Catholic University
of Argentina, Buenos Aires

[23]

2.534 1.710 32.52

South
America

Colombia University of Grand
Colombia, Bogot, D.C. [24]

2.341 1.438 38.57

Africa Egypt Oriflame University [25] 5.497 4.288 21.99

Africa South
Africa

Virtual Academy of South
Africa [26]

4.936 2.588 47.57

Australia Australia Australian National
University [27]

4.525 3.559 21.35

Australia Australia Monash University [28] 4.947 4.141 16.29

From Table 5 it is concluded that there is a reduction of 16% to 51% de-
pending on the geographical location of Moodle server, if the resolved
hostname for a web page is found in DNS cache.



Analysis of Optimization Techniques for Moodle LMS 157

Another experiment was carried out on the same client to compare the per-
formance of Moodle by changing the number of DNS cache entries, DNS cache
expiration period and HTTP keep alive timeout for Mozilla Firefox 21.0 browser.
The following three scenarios were tested for 100 iterations of Moodle’s login page
of Moodle websites of six universities situated in six continents of the world using
iMacros 9.0 Firefox extension [29] and HttpFox addon for Firefox [30].

Scenario 1 (S1):

DNS Cache Entries = 20

DNS Cache Expiration Period = 60 seconds

HTTP Keep Alive Timeout = 115 seconds

Scenario 2 (S2):

DNS Cache Entries = 512

DNS Cache Expiration Period = 3600 seconds

HTTP Keep Alive Timeout = 115 seconds

Scenario 3 (S3):

DNS Cache Entries = 512

DNS Cache Expiration Period = 3600 seconds

HTTP Keep Alive Timeout = 0 second

Table 6. Average user response time (s) for 1 user, 100 iterations for above Scenarios

Continent University Response
time for

S1

Response
time for

S2

Difference
(s) between
S1 & S2

Response
time for

S3

Difference(s)
between S2

& S3

North
America

UCLA, USA
[22]

173.984 169.284 4.7 178.69 9.406

Asia IIT, Madras,
India [17]

108.93 105.677 3.253 110.548 4.871

Australia Australian
National

University [27]

347.361 344.961 2.400 354.336 9.375

Africa Oriflame
University,
Egypt [25]

244.035 240.246 3.789 256.08 15.834

Europe University of
Nottingham,

UK [21]

153.71 150.213 3.497 156.76 6.547

South
America

University of
Grand

Colombia,
Colombia [23]

142.241 135.908 6.333 146.763 10.855



158 P. Manchanda

From Table 6, it is observed that the end user response time is minimum
under Scenario 2. Hence, it can be concluded that the performance of a web
application can be enhanced by reducing DNS Lookups, which was achieved by:

– Increasing the number of DNS cache entries,

– Increasing DNS expiration period, and

– Using a Network that supports HTTP keep-alive mechanism

5.3 Gzip Components

Gzip compression of web pages can significantly minimize the latency introduced
due to transfer of the web page files from web server to client’s browser. Starting
with HTTP/1.1, web clients indicate support for compression with the Accept-
Encoding header in the HTTP request [4].

Accept-Encoding: gzip, deflate

After the web server sees this header, it compresses the response using one of the
methods listed by the client. The web server uses the Content-Encoding header
in the response to inform the client about the compressed response [4].

Content-Encoding: gzip

An experiment was performed on the client mentioned in section 5.2 for Moodle
installed on the machine with specifications as mentioned in section 4 using Web
Developer Extension for Mozilla Firefox 21.0 [31].

It is observed that Gzip compression reduces the response size by 75%-77%.

Table 7. Response Size of Moodle pages with and without compression of components

Moodle Page No. of Files
Requested

Response Size
without

Compression(KB)

Response size
with Com-

pression(KB)

Reduction
in Response
Size (%)

Index 42 926 215 76.78

Login 13 597 138 76.88

View Course 42 804 187 76.74

View Forum
(with 1 post)

41 802 187 76.68

View Blog
(with 10 posts)

35 889 218 75.48

View Calendar 42 861 207 75.96

View Participants
(20 per page)

40 806 188 76.67

1 page quiz with
5 questions

49 847 198 76.62

View Assignments 43 804 187 76.74



Analysis of Optimization Techniques for Moodle LMS 159

5.4 Optimize AJAX

AJAX (Asynchronous JavaScript and XML) is a collection of technologies, pri-
marily JavaScript, CSS, DOM and asynchronous data retreival which is used to
exchange data with a server, and update parts of a web page - without reload-
ing the whole page. Though AJAX allows the server to provide instantaneous
feedback to the user, it does not guarantee that the user won’t have to wait for
the asynchronous JavaScript and XML responses. The performance of the web
application can be improved by optimizing the AJAX requests. The techniques
mentioned in section 5.1, 5.2 and 5.3 are collectively used to optimize the ajax
components of Moodle.

The AJAX components are made cacheable by modifying the expires header
which is defined in OutputRenderers.php file located in lib directory of main
Moodle directory. An experiment was performed on the client mentioned in
section 5.2 for Moodle installed on the machine with specifications as mentioned
in section 4 using Firebug Extension 1.11.4 for Mozilla Firefox 21.0 [32].

Modifications made to expires header in OutputRenderers.php file

Default:

@header(’Expires: Sun, 28 Dec 1997 09:32:45 GMT’); Line 3345

Modified:

@header(’Expires: Sun, 28 Dec 2020 09:32:45 GMT’); Line 3345

There is a reduction of an average of 23.54% in user response time after
optimizing the AJAX components.

Table 8. Average User Response Time (s) before and after optimizing AJAX

Activity Response Time
before optimizing

AJAX(s)

Response Time
after

optimizing
AJAX(s)

Reduction in
Response
Time(%)

Drag and Drop
Sections

309 227 26.54

Drag and Drop
Activities

2.17 1.62 25.35

Drag and Drop
Files

201 175 12.94

Drag and Drop
Blocks

440 354 19.55

AJAX Chat
Box

36 24 33.33

Average 23.54



160 P. Manchanda

6 Conclusion

In this presented paper, six methods to optimize web applications have been
analysed and tested for Moodle LMS. These methods can be further used to
optimize other essential web applications including webmail, online retail sales,
online auctions, wikis and e-learning. It is observed that Moodle shows faster
response time under heavy traffic, if it is loaded on a solid state disk. This
technique can be used to scale high traffic web applications.

The caching mechanism can be used by the client’s browser to optimize the
front-end operations that can reduce the end-user response time by up to 80%.
This mechanism can be used for content that changes infrequently, that is, ap-
plication’s static assets like graphics, style sheets and scripts. In addition to
application’s static assets, DNS resolutions can be cached by client’s browser
and can reduce the end-user response time by up to 50%.

The six web optimization techniques discussed in this paper were successfully
tested for the Moodle LMS which showed a maximum reduction of 98% in av-
erage user response time by using the hardware optimization technique used in
(Section 3). These best practices can be further applied to a novel or existing
web application to improve its performance by reducing end user response time
and thereby increasing the number of concurrent users and throughput.

Acknowledgement. The author would like to thank the members of Depart-
ment of Computer Science, Indian Institute of Technology, Bombay, India for
their kind support and encouragement.

References

1. French, C.N.: Mobile Apps Put the Web in Their Rear-view Mirror (June 20, 2011),
from Flurry Blog: http://blog.flurry.com/bid/63907/
Mobile-Apps-Put-the-Web-in-Their-Rear-view-Mirror (accessed June 4, 2013)

2. Borg, A.: Web Site Performance: When Seconds Count(December 17, 2009),
from technewsworld.com: http://www.techhnewsworld.com/story/68918.html

(accessed June 4, 2013)
3. Yahoo Exceptional Performance Team,

http://developer.yahoo.com/performance

4. Souders, S.: High Performance Web Sites. O’Reilly Media (2007)
5. Horat, D., Arencibia, A.Q.: Web Applications: A Proposal to Improve Response

Time and Its Application to MOODLE. In: Moreno-Dı́az, R., Pichler, F., Arencibia,
A.Q. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 218–225. Springer, Heidelberg
(2009)

6. Project Moodle, http://moodle.org
7. Moodle Statistiscs, https://moodle.org/stats/
8. Joint Information Systems Committee, Regional Support Centre, West Midlands

Moodle Wiki, http://wiki.rscwmsystems.org.uk/index.php/Moodle
9. Apache JMeter, http://jmeter.apache.org/

10. Moodle-jmeter-script-generator,
https://github.com/kabalin/moodle-jmeter-script-generator

http://blog.flurry.com/bid/63907/Mobile-Apps-Put-the-Web-in-Their-Rear-view-Mirror
http://blog.flurry.com/bid/63907/Mobile-Apps-Put-the-Web-in-Their-Rear-view-Mirror
http://www.techhnewsworld.com/story/68918.html
http://developer.yahoo.com/performance
http://moodle.org
https://moodle.org/stats/
http://wiki.rscwmsystems.org.uk/index.php/Moodle
http://jmeter.apache.org/
https://github.com/kabalin/moodle-jmeter-script-generator


Analysis of Optimization Techniques for Moodle LMS 161

11. Solid State Drive by Wikipedia.org,
http://en.wikipedia.org/wiki/Solid-state_drive

12. Wong, G.: SSD Market Overview. In: Micheloni, R., Marelli, A., Eshghi, K. (eds.)
Inside Solid State Drives (SSDs). Springer Series in Advanced Microelectronics,
vol. 37, pp. 1–18. Springer Science+Business Media, Dordrecht (2013)

13. Martin, D.: Is SSD Technology Ready for the Enterprise? (January 14, 2009),
from Wikibon.com:
http://wikibon.org/wiki/v/Is_SSD_Technology_Ready_for_the_Enterprise?

(accessed June 11, 2013)
14. Apache vs nginx, http://www.wikivs.com/wiki/Apache_vs_nginx
15. ab - Apache HTTP server benchmarking tool,

http://httpd.apache.org/docs/current/programs/ab.html

16. Indian Institute of Technology, Bombay : Moodle,
https://moodle.iitb.ac.in/login/index.php

17. Indian Institute of Technology, Madras : Moodle,
http://www.cse.iitm.ac.in/moodle/

18. Singapore Institute of Management University, Singapore : Moodle,
http://cp.unisim.edu.sg/moodle/

19. Sojo University, Nishi-ku, Kumamoto, Japan : Moodle,
http://md.ed.sojo-u.ac.jp/

20. Graduate School of Management, Barcelona, Spain : Moodle,
http://moodle.gsmbarcelona.eu/

21. University of Nottingham, Nottingham, UK : Moodle,
https://moodle.nottingham.ac.uk/login/index.php

22. University of California, Los Angeles : Physics and Astronomy Dept. Moodle,
http://reserve.pna.ucla.edu/

23. Pontifical Catholic University of Argentina, Puerto Madero, Buenos Aires, Ar-
gentina : LirWeb Moodle,
http://www.lirweb.com.ar/

24. University of Grand Colombia, Bogot, D.C., Colombia : Moodle,
http://virtual.ulagrancolombia.edu.co/login/index.php

25. Oriflame University : Moodle, http://www.oriflame-eg.com/uni/moodle/
26. Virtual Academy of South Africa: Moodle, http://www.virtualacademy.co.za/
27. Australian National University: Moodle, http://moodle.anu.edu.au/
28. Monash University: Moodle, http://moodle.vle.monash.edu/
29. iMacros, http://www.iopus.com/iMacros/
30. HttpFox Addon for Mozilla Firefox 21.0,

https://addons.mozilla.org/en-us/firefox/addon/httpfox/

31. Web Developer Extension for Mozilla Firefox 21.0,
https://addons.mozilla.org/en-US/firefox/addon/web-developer/

32. Firebug 1.11.4 Extension for Mozilla Firefox 21.0,
https://addons.mozilla.org/en-US/firefox/addon/firebug/

http://en.wikipedia.org/wiki/Solid-state_drive
http://wikibon.org/wiki/v/Is_SSD_Technology_Ready_for_the_Enterprise?
http://www.wikivs.com/wiki/Apache_vs_nginx
http://httpd.apache.org/docs/current/programs/ab.html
https://moodle.iitb.ac.in/login/index.php
http://www.cse.iitm.ac.in/moodle/
http://cp.unisim.edu.sg/moodle/
http://md.ed.sojo-u.ac.jp/
http://moodle.gsmbarcelona.eu/
https://moodle.nottingham.ac.uk/login/index.php
http://reserve.pna.ucla.edu/
http://www.lirweb.com.ar/
http://virtual.ulagrancolombia.edu.co/login/index.php
http://www.oriflame-eg.com/uni/moodle/
http://www.virtualacademy.co.za/
http://moodle.anu.edu.au/
http://moodle.vle.monash.edu/
http://www.iopus.com/iMacros/
https://addons.mozilla.org/en-us/firefox/addon/httpfox/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/firebug/

	Analysis of Optimization Techniques to Improve User Response Time of Web Applicationsand Their Implementation for MOODLE
	1 Introduction
	2 Performance Analysis of Moodle
	3 Hardware Optimization
	4 Back-End Optimization
	5 Front-End Optimization
	5.1 Browser Caching by Using Far Future Expires Header
	5.2 Reduce DNS Lookups
	5.3 Gzip Components
	5.4 Optimize AJAX

	6 Conclusion
	References




