
Efficient Code Obfuscation for Android

Aleksandrina Kovacheva

University of Luxembourg
aleksandrina.kovacheva.001@student.uni.lu

Abstract. Recent years have witnessed a steady shift in technology
from desktop computers to mobile devices. In the global picture of avail-
able mobile platforms, Android stands out as a dominant participant
on the market and its popularity continues rising. While beneficial for
its users, this growth simultaneously creates a prolific environment for
exploitation by vile developers which write malware or reuse software ille-
gally obtained by reverse engineering. A class of programming techniques
known as code obfuscation targets prevention of intellectual property
theft by parsing an input application through a set of algorithms aiming
to make its source code computationally harder and time consuming to
recover. This work focuses on the development and application of such
algorithms on the bytecode of Android, Dalvik. The main contributions
are: (1) a study on samples obtained from the official Android market
which shows how feasible it is to reverse a targeted application; (2) a
proposed obfuscator implementation whose transformations defeat cur-
rent popular static analysis tools while maintaining a low level of added
time and memory overhead.

Keywords: Android, bytecode obfuscation, Dalvik, reverse engineering.

1 Introduction

Ever since the early 1990s, devices combining telephony and computing have
been offered for sale to the general public. Evolving to what is presently referred
to as “smartphones", their extensive usage is indisputable: a report from Febru-
ary 2013 estimated the total number of smartphone devices sold only in 2012
as surpassing 1.75 billion [1]. Due to their wide ranging applicability and high
mobility smartphones have been preferred over stationary or laptop computers
as access devices to personal information services such as e-mail, social network
accounts or e-commerce websites. By the end of 2012, the mobile market was
dominated with a ratio of 70% by the Android platform [1].

The huge market share as well as the sensitivity of the user data processed by
most applications raise an important security question regarding the source code
visibility of the mobile software. Firstly, developers have an interest of protecting
their intellectual property against piracy. Moreover, an alarming 99% of the
mobile malware developed in 2012 has been reported to target Android platform
users and inspection reveals both qualitative and quantitative growth [2]. Hence,
Android applications code protection is crucial to maintaining a high level of

B. Papasratorn et al. (Eds.): IAIT 2013, CCIS 409, pp. 104–119, 2013.
© Springer International Publishing Switzerland 2013

Efficient Code Obfuscation for Android 105

trust between vendors and users which in turn reflects in a correct functioning
of the Google Play market itself.

In general, there are two main approaches towards software protection: enforc-
ing legal software usage policies or applying various forms of technical protection
to the code. This work concentrates on the latter, more precisely on a technique
called code obfuscation. In the context of information security the term obfusca-
tion encompasses various deliberately made modifications on the control-flow and
data-flow of programs such that they become computationally hard to reverse
engineer by a third party. The applied changes should be semantic preserving
with ideally negligible or minor memory-time penalty.

2 Related Work

The idea of obfuscation was first suggested by Whitfield Diffie and Martin Hell-
man in 1976 in their paper “New Directions in Cryptography" [3] where they
introduced the usefulness of obscuring cryptographic primitives in private key
encryption schemes for converting them into public key encryption schemes. In
1997 C. Collberg et al. presented obfuscation together with a relevant taxonomy
as a way of protecting software against reverse engineering [4]. The theoretically
computational boundaries of obfuscation are examined in a work titled “On the
(Im)possibility of Obfuscating Programs" by Boaz Barak et al. in 2001 [5]. In
the latter, the authors give a framework for defining a perfect or black-box obfus-
cator and show that such a primitive cannot be constructed. Although in theory
perfect obfuscation is proven impossible, there is a discrepancy with its practical
aspects.

In applied software engineering obfuscation is used on various occasions, mainly
for protection against reverse engineering, defending against computer viruses and
inserting watermarks or fingerprints on digital multimedia. Usually, a software
vendor does not try to hide the functionalities of their program, otherwise software
would never be accompanied by user documentation which is not the case. Rather,
the developer aims at making unintelligible the implementation of a selected set
of functions.

To recover the original code of an application, bytecode analysis is most often
used. By applying both dynamic and static techniques, in the context of Android
applications, it is possible to detect an over-privileged application design, find
patterns of malicious behavior or trace user data such as login credentials. Due to
its simplicity over bytecode for other architectures, Dalvik bytecode is currently
an easy target for the reverse engineer. The following listed set of analysis tools
and decompilers is a representative of the largely available variety: androguard
[6],baksmali [7], dedexer [8], dex2jar [9], dexdump [10], dexguard [11],
dexter [12], radare2 [13].

Evidently, there are numerous tools to the help of the Android reverse en-
gineer. They can be used either separately or to complement each other. The
same diversity cannot be claimed for software regarding the code protection
side, especially concentrating on Dalvik bytecode. Most existing open-source

106 A. Kovacheva

and commercial obfuscators work on source code level. The reason is that effec-
tive protection techniques successfully applied on Java source code have been
suggested previously [14]. Furthermore, Java code is architecture-independent
giving freedom to design generic code transformations. Of the here listed Dalvik
bytecode obfuscation tools the first two are open-source, the last (which also
modifies the source code) is commercial: dalvik-obfuscator [15], APKfus-
cator [16], DexGuard [17]. Unfortunately, the open-source tools have the status
of a proof-of-concept software rather than being used at regular practice by ap-
plication developers.

3 A Case Study on Applications

There exist an extensive set of works examining Android applications from the
viewpoint of privacy invasion as can be seen in [18–21]. The here presented case
study aims to show that bytecode undergoes few protection. If present, obfus-
cation is very limited with regards to the potential transformation techniques
which could be applied, even for applications which were found to try protecting
their code.

3.1 Study Methodology

To obtain a sample apps set, a web crawler was developed downloading the
50 most popular applications from each of the 34 categories available on the
market. There were applications in repeating categories, thus the actual number
of the examined files was 1691. The study was performed in two stages. Initially,
automated static analysis scripts were run on bytecode for a coarse classification
the purpose of which was profiling the apps according to a set of chosen criteria. A
secondary, fine grinding examination, was to manually select a few “interesting”
apps and looking through the code at hand. The following enumerated were used
for apps profiling:

1. Obfuscated versus non-obfuscated classes. A study on the usage of
ProGuard which is an available in the Android SDK code obfuscator was
an easy target. Since this tool applies variable renaming in a known manner,
the classes names and contained methods were processed with a pattern
matching filter according to the naming convention i.e. looking for minimal
lexical-sorted strings. A class whose name is not obfuscated, but contains
obfuscated methods was counted as an obfuscated class.

2. Strings encoded with Base64. Several applications were found to contain
“hidden” from the resources files in the form of strings encoded with Base64.
Manual examination of a limited number of these revealed nothing but .gif
and flash multimedia files. However, this finding suggests that it might be
common practice that data is hidden as a string instead of being stored as a
separate file which is why this criteria was considered relevant to the study.

Efficient Code Obfuscation for Android 107

3. Dynamic loading. Dynamic loading allows invocation of external code not
installed as an official part of the application. For the initial automation
phase its presence was only detected by pattern matching check of the classes
for the packages:
Ldalvik/system/DexClassLoader
Ljava/security/ClassLoader
Ljava/security/SecureClassLoader
Ljava/net/URLClassLoader

4. Native code. Filtering for the usage of code accessing system-related infor-
mation and resources or interfacing with the runtime environment was also
performed. For the coarse run only detecting the presence of native code in
the following packages was considered:
Ljava/lang/System
Ljava/lang/Runtime

5. Reflection. The classes definition table was filtered for the presence of the
Java reflection packages for access to methods, fields and classes.

6. Header size. The header size was also checked in referral to previous work
suggesting bytecode injection possibility in the .dex header [22].

7. Encoding. A simple flag check in the binary file for whether an application
uses the support of mixed endianess of the ARM processor.

8. Crypto code. With regards to previous studies on inappropriate user pri-
vate data handling as well as deliberate cryptography misuse, the classes
were also initially filtered for the usage of the packages:
Ljavax/crypto/
Ljava/security/spec/

3.2 Results Review

The distribution of applications according to the percentage of obfuscated code
with ProGuard is shown on table 1. On table 2 are noted the absolute number
of occurrences of each factor the apps were profiled for. The automated study
reveals that encoding strings in base64 is quite common practice: 840 applications
containing a total of 2379 strings were found and examined, shown on table 3. To
determine the file format from the decoded strings the python magic library1

was used. Unfortunately, 1156 files which is 48.59% of the total encoded files
could not be identified by this approach and using the Unix file command
lead to no better results. The remaining set of files was divided into multimedia,
text and others. As a final remark to table 3 is that the percentage marks the
occurrences in the 1241 successfully identified files.

A set of several applications was selected for manual review, the selection
criteria trying to encompass a wide range of possible scenarios. Among the files
were: (1) a highly obfuscated (89.7%) malicious application2; (2) a very popular
social application with no obfuscation and a large number of packages; (3) a pop-
ular mobile Internet browser with 100% obfuscated packages; (4) an application
1 https://github.com/ahupp/python-magic
2 Detected by the antivirus software on the machine where the download occurred.

https://github.com/ahupp/python-magic

108 A. Kovacheva

Table 1. Obfuscation ratio. The row with # marks the absolute number of applications
with obfuscated number of classes in the given range. The row with % marks the
percentage this number represents in the set of the total applications.

OBF 100% (100− 80] (80− 60] (60− 40] (40− 20] (20− 0) 0% Total
82 291 196 166 283 423 250 1691
% 4.85 17.21 11.59 9.82 16.74 25.01 14.78 100%

Table 2. Profiling the set of applications according to the given criteria: OBF (total
obfuscated classes), B64 (apps containing base64 strings), NAT (native code), DYN
(dynamic code), REF (reflection), CRY (crypto code), HEAD (apps with header size
of 0x70), LIT (apps with little endian byte ordering). The row with # marks the
absolute numbers of occurrences, % marks the percentage this number represents in
the set of the total applications.

OBF B64 NAT DYN REF CRY HEAD LIT
41.839 840 629 224 1519 1236 1691 1691
% 46.74 49.68 37.20 13.25 89.83 73.09 100 100

Table 3. Classification of the base64 encoded strings. Categories are denoted as follows:
TXT for text, MUL for multimedia, OTH for other.

files %total DATA TYPE
unknown 1156 48.59 non-identified data

known 1241 51.41

type # % category
ASCII text 56 4.51 TXT
GIF 48 3.87 MUL
HTML 3 0.24 OTH
ISO-8859 text 1 0.08 TXT
JPEG 33 2.66 MUL
Non-ISO extended-ASCII text 24 1.93 TXT
PNG 522 42.06 MUL
TrueType font text 548 44.17 MUL
UTF-8 Unicode text 1 0.08 TXT
XML document 2 0.16 OTH

which androguard (DAD) and dexter failed to process; (5) an application
which is known to use strings encryption and is claimed to be obfuscated as
well; (6) an application containing many base64 encoded strings; (7-10) four
other applications chosen at random.

With the exception of application (4) all files were successfully processed by
the androguard analysis tool. The source code of all checked obfuscated meth-
ods was successfully recovered to a correct Java code with the androguard
plugin for Sublime Text3. The control-flow graphs of all analyzed files was

3 http://www.sublimetext.com/

http://www.sublimetext.com/

Efficient Code Obfuscation for Android 109

recovered successfully with androgexf.py. However, in some applications the
excessive number of packages created an inappropriate setting for adequate anal-
ysis thus the graphs were filtered by pattern-matching the labels of their nodes.
Having the graphs of all applications simplified revealed practices such as im-
plementation of custom strings encryption-decryption pair functions and having
their source code implementation hidden in a native library (seen in two of the
analyzed files). Reviewing the graph of application (4) was a key towards under-
standing why some tools break during analysis: they simply do not handle cases
of Unicode method or field names (e.g. 文章:Ljava/util/ArrayList;). On
the other hand, baksmali did fully recover the mnemonics of the application,
Unicode names representing no obstacle.

Regarding the permissions used in the malicious application, it is no surprise
that it required the INTERNET permission. In fact, being at-first-sight a wall-
paper application, it had as much as 27 permissions including install privileges,
writing to the phone’s external storage and others. This result only comes as
confirmation to what previous studies have already established as user privacy
invasive practices [20].

3.3 Study Conclusion

The main conclusion of both automated and manual inspection is that even in
cases where some tools hindered recovering the bytecode mnemonics or source
code, there is a way round to obtain relevant information. Where a given tool
is not useful, another can be used as complement. Reversing large applications
may be slowed down due to the complexity of the program graph, but with
appropriate node filtering a reasonable subgraph can be obtained for analysis. To
prevent information extraction by static analysis some applications made use of
Java reflection or embedding valuable code in a native library. Apart from using
ProGuard to rename components and decrease program understandability, no
other code obfuscation was found. Using Unicode names for classes and methods
could be regarded as an analogical type of modification: it merely affects program
layout not the control flow.

3.4 Remarks

A number of considerations need to be taken into account when reviewing the re-
sults of the performed study. (1) All applications studied were available through
the official Google Play market as of March 2013. (2) Only freely available appli-
cations were processed: the results will highly likely differ if identical examina-
tions were performed on payed applications. (3) The set of popular applications
in the Google Play market differs with the country of origin of the requesting
IP address: the download for this study was executed on a machine located in
Bulgaria.

110 A. Kovacheva

4 Implementing a Dalvik Bytecode Obfuscator

This section suggests an implementation of a Dalvik bytecode obfuscator includ-
ing four transformations whose main design accents fall on fulfilling the generic
and cheap properties.

In the context of this work the term “generic” denotes that the transformations
are constructed in aspiration to encompass a large set of applications without
preliminary assumptions which must hold for the processed file. On Android
this can be a challenge since an application has to run on a wide range of de-
vices, OS versions and architectures. Thus, it is crucial that any applied code
protection would not decrease the set of application running devices. When a
transformation is characterized as “cheap”, this is in referral to previously pub-
lished work by Collberg et. al. on classifying obfuscating transformations [4].
By definition, a technique is cheap if the obfuscated program P ′ requires O(n)
more resources than executing the original P . Resources encompass processing
time and memory usage: two essential performance considerations, especially for
mobile devices. Following is a description of the general structure of the Dalvik
bytecode obfuscator4 as well as details on the four transformations applied.

4.1 Structure Overview

The input of the tool is an APK file which can be either processed by ProGuard
i.e. with renamed classes and methods, or not modified at all. Auxiliary tools used
during the obfuscation are the pair smali assembly and baksmali disassembly.
The application is initially disassembled with baksmali which results in having
a directory of .smali files. These files contain mnemonics retrieved from the
immediate bytecode interpretation. Three of the transformations parse, modify
the mnemonics and assemble them back to a valid .dex file using smali. One
transformation modifies the bytecode of the .dex file directly. After the modi-
fications have been applied, the .dex file is packed together with the resource
files, signed and is verified for data integrity. This last step yields a semantically
equivalent obfuscated version of the APK file. Figure 1 summarizes the entire
obfuscation process.

Adopting this workflow has the advantage of accelerating the development
process by relying on a .dex file assembler and disassembler pair. However, a
disadvantage is that the implemented obfuscator is bound by the limitations of
the used external tools.

4.2 Transformations

The tool can apply four transformations designed such that all of them af-
fect both the data and control flow. The transformations targets are: calls to
native libraries, hardcoded strings, 4-bit and 16-bit numeric constants. Native

4 https://github.com/alex-ko/innocent

https://github.com/alex-ko/innocent

Efficient Code Obfuscation for Android 111

Fig. 1. Workflow of the obfuscator

calls are redirected through external classes in methods that we call here “wrap-
pers”. Strings are encrypted and numeric constants are packed in external class-
containers, shuffled and modified. The fourth modification injects dead code
which has a minor effect on the control flow, but makes the input APK resistant
to reverse engineering with current versions of some popular tools which is why
it is called “bad” bytecode injection.

Adding Native Call Wrappers. While native code itself is not visible through
applying static analysis, calls to native libraries cannot be shrunk by tools such
as ProGuard. The reason is that method names in Dalvik bytecode must corre-
spond exactly to the ones declared in the external library for them to be located
and executed. This transformation does not address the issue with comprehensive
method names since this depends on the developer. However, another source of
useful information is the locality of the native calls i.e. by tracking which classes
call particular methods metadata information for the app can be obtained. To
harden the usage tracking process one could place the native call in a supplemen-
tary function, what is referred here as a native call wrapper. The exact sequence
of steps taken is on the following schematic figure:

Fig. 2. Adding native call wrappers

Let us have a class containing three native calls which are highlighted on
(a). For each unique native method a corresponding wrapper with additional
arguments is constructed redirecting the native call. To complicate the control
flow, the wrappers are scattered randomly in external classes from those located
originally. As a final step each native call is replaced with an invocation of its
respective wrapper as shown in (b).

112 A. Kovacheva

The impact of this transformation on the call graph can be seen as a transition
from what is depicted in (c) to the final result in (d). Initially, the locality of
the native method calls give a hint on what the containing class is doing. After
applying the transformation once, the reversing time and effort is increased by
locating the wrapper and concluding that there is no connection between the
class containing the wrapper and the native invocation. If the transformation is
applied more than once, the entire nesting of wrappers has to be resolved. Usu-
ally, a mobile application would have hundreds of classes to scatter the nested
wrapping structures: a setting that slows down the reversing process.

Packing Numeric Variables. The idea behind this transformation stems from
what is known in literature as opaque data structures [23]. The basic concept is
to affect data flow in the program by encapsulating heterogeneous data types in
a custom defined structure.

The target data of this particular implementation are the numeric constants
in the application. The bytecode mnemonics are primarily scanned to locate the
usages and values of all 4-bit and 16-bit constants. After gathering those, the
obfuscator packs them in a 16-bit array (the 4-bit constants being shifted) in a
newly-created external class as shown on (a) in the schematic figure below. Let
us call this external class a “packer”. The numeric array in the packer is then pro-
cessed according to the following steps. Firstly, to use as little additional memory
as possible, all duplicated numeric values are removed. Next, the constants are
shuffled randomly and are transformed in order to hide their actual values. Cur-
rently, three transformations are implemented: XOR-ing with one random value,
XOR-ing twice with two different random values and a linear mapping. Then,
a method stub to get the constant and reverse the applied transformation is
implemented in the packer. Finally, each occurrence of a constant declaration is
replaced with an invocation to the get-constant packer method.

Fig. 3. Packing numeric variable constants

The transformation thus put represents not much of added complexity to the
program. To further challenge the reverser, the packer class creates between 3
and 10 replicas of itself, each time applying anew the shuffling and the selection of
the numeric transformation to the array. This means that even if the obfuscated
application has several packer classes which apply, for example, the XOR-twice
transformation, in each of them the two random numbers will differ as well
as the data array index of every unique numeric value. Designed like this, the
transformation has the disadvantage of data duplication. However, an advantage

Efficient Code Obfuscation for Android 113

that is possible due to this reduplication is removing the necessity that a single
class containing constants is calling the get-constant method of the same packer
which is shown on (b) in the figure above.

To summarize, control flow is complicated by multiple factors. Firstly, addi-
tional classes are introduced to the application i.e. more data processing paths in
the program graph for the reverser to track. Then, in each packer class the array
constant values will diverge. Lastly, different packers are addressed to retrieve
the numeric constants in a single class and the reverser would have to establish
that the connection between each of the different packer calls is merely data
duplication.

Strings Encryption. The decision to include this transformation in the tool is
motivated by the fact that none of the here cited open-source tools implements
strings encryption at the moment of submission. Moreover, the transformation
is designed in such a way that it aspires to add more control flow complexity
than what is currently found to be implemented [11] and instead of using a
custom algorithm (usually simply XOR-ing with one value) the strings here are
encrypted with the RC4 stream cipher [24].

Fig. 4. Strings encryption

The figure on the right gives an overview
to how the transformation works. The classes
containing strings are filtered out. A unique
key is generated for and stored inside each
such class. All strings in a class are encrypted
with the same class-assigned-key. Encryption
yields a byte sequence corresponding to each
unique string which is stored as a data array in a private static class field. This
results in removing strings from the constant pool upon application re-assembly
thus preventing from visibility with static analysis. A consideration to use static
class fields for storing the encrypted strings is the relatively small performance
impact. Decryption occurs during runtime, the strings being decoded once upon
the first invocation of the containing class. Whenever a given string is needed,
it is retrieved from the relevant class field.

Analogically to previous transformations, adding control flow complexity is
at the cost of duplication. The decryption class creates between 3 and 10 se-
mantically equivalent replicas of itself in the processed application as shown
in the figure. Each class containing strings chooses randomly its corresponding
decryption class.

To summarize, there are several minor improvements of the here suggested
implementation over what was found in related works. Encrypting the strings
in each class with a unique key slows down automatic decryption because the
keys are placed at different positions and need to be located separately for each
class. Designing the transformation by using a decryption-template approach
allows in principal the developer to modify this template: they can either choose
to strengthen potency and resilience or change easily the underlying encryp-
tion/decryption algorithm pair. Finally, the added control flow complexity is
increased by the supplementary decryption classes.

114 A. Kovacheva

Injecting “Bad" Code. The proposed here transformation has as main purpose
to defy popular static analysis tools without claiming to be highly resilient.
In fact, it is shown that a simple combination of known exploits is enough to
cause certain tools to crack and produce an output error. There are two defeat
target tool types: decompilers and disassemblers performing static analysis. The
used techniques are classified in previous works as “preventive” [4] for exploiting
weaknesses of current analysis tools.

To thwart decompilers an advantage is taken from the discrepancy between
what is representable as legitimate Java code and its translation into Dalvik
bytecode. Similar techniques have been proposed for Java bytecode protection
[25]. The Java programming language does not implement a goto statement,
yet when loop or switch structures are translated into bytecode this is done with
a goto Dalvik instruction. Thus by working directly on bytecode it is possible
to inject verifiable sequences composed of goto statements which either cannot
be processed by the decompilers or do not translate back to correct Java source
code.

To thwart disassemblers several “bad” instructions are injected directly in the
bytecode. Execution of the bad code is avoided by a preceding opaque predicate
which redirects the execution to the correct paths. This technique has already
been shown to be successful [26]. However, since its publishing new tools have
appeared and others have been fixed. The here suggested minor modifications
are to include in the dead code branch: (1) an illegal invocation to the first entry
in the application methods table; (2) a packed switch table with large indexes
for its size; (3) a call to the bogus method we previously created such that it
looks as if it is being used (not to be removed as dead code).

4.3 Evaluation of the Modified Bytecode

To verify the efficiency of the developed tool a set of 12 test applications was
selected among the huge variety. The apps profiling is given in Appendix A.
The performance tests of the modified applications were executed on two mo-
bile devices: (1) HTC Desire smartphone with a customized Cyanogenmod v7.2
ROM, Android v2.3.7; (2) Sony Xperia tablet with the original vendor firmware,
Android v4.1.1.

During the development process all transformations were tested and verified
to work separately. On table 4 are given the results of their combined appli-
cation. The plus sign should be interpreted as that the transformations have
been applied consequently (e.g. w+o+p means applying adding wrappers then
obfuscating strings then packing variables).

With the exception of the bad code injection on the facebook application,
every application undergoing the possible combinations of transformations was
installed successfully on both test devices. An observation on the error console
logs for the facebook application suggests that the custom class loader of this app
conflicts with the injected bad code [27]. The rest of the transformations did not
make the app crash. For the Korean ebay app no crash occurred, but not all of
the UTF-8 strings were decrypted successfully i.e. some messages which should

Efficient Code Obfuscation for Android 115

Table 4. Testing the obfuscated applications on HTC Desire and Sony Xperia tablet.
The transformations abbreviations are as follows: w adding native wrappers, o obfus-
cating strings, p packing variables, b adding bad bytecode. The black bullet indicates
successful install and run after applying the series of transformations.

APP w w+o w+o+p w+o+p+b
com.adobe.reader.apk • • • •
com.alensw.PicFolder.apk • • • •
com.disney.WMPLite.apk • • • •
com.ebay.kr.gmarket.apk • • • •
com.facebook.katana.apk • • • ◦
com.microsoft.office.lync.apk • • • •
com.rebelvox.voxer.apk • • • •
com.skype.android.access.apk • • • •
com.teamlava.bubble.apk • • • •
cz.aponia.bor3.czsk.apk • • • •
org.mozilla.firefox.apk • • • •
snt.luxtraffic.apk • • • •

have been in Korean appeared as their UTF-8 equivalent bytes sequence. The
most probable reason is that large alphabets are separated in different Unicode
ranges and smali implements a custom UTF-8 encoding/decoding5 which might
have a slight discrepancy with the encoding of python for some ranges. Finally,
the Voxer communication app did not initially run with the injected bad code.
This lead to implementing the possibility to toggle the verification upon byte-
code injection. By setting a constant in the method as verified its install-time
verification can be suppressed. Enabling this feature let the Voxer app run with-
out problems. However, verifier suppression is disabled by default for security
considerations.

Besides the upper mentioned, no other anomalies were noted on the tested
applications. No noticeable runtime performance slowdown was detected while
testing manually. The memory overhead added by each transformation sepa-
rately is shown on Appendix B. Because the applications differ significantly in
size, for a better visual representation only the impact on the least significant
megabyte is shown.

Finally, some of the popular reverse engineering tools were tested against the
modified bytecode. Two possible outcomes were observed: either the tool was
defeated i.e. did not process the app at all due to a crash, or the analysis output
is erroneous. Tools which crashed were: baksmali, apktool, DARE decompiler,
dedexer, dex2jar. Tools with erroneous output were: androguard, JD-GUI.

4.4 Limitations

To be effective, the transformations had to comply with the Dalvik verifier and
optimizer [28]. Moreover, the workflow used by the obfuscator relies on external
5 https://code.google.com/p/smali/source/browse/dexlib/src/main/java/org/
jf/dexlib/Util/Utf8Utils.java

https://code.google.com/p/smali/source/browse/dexlib/src/main/java/org/jf/dexlib/Util/Utf8Utils.java
https://code.google.com/p/smali/source/browse/dexlib/src/main/java/org/jf/dexlib/Util/Utf8Utils.java

116 A. Kovacheva

tools which imply their own constraints. Hence, it is worth noting the limitations
of the proposed transformations.

Native Call Wrappers is applied only to native methods which have no
more than 15 registers. The reason is that smali has its own register imple-
mentation distinguishing between parameter and non-parameter registers and
is working only by representing methods with no more than 15 non-parameter
registers. In case more registers need to be allocated, the method is defined with
a register range, not a register number. Defined so to ease the editing of smali
code, this has its restrictions on our transformation.
Packing Numeric Variables is applied only to the 4-bit and 16-bit registers,
because there is a risk of overflowing due to the applied transformation when
extended to lager registers. Clearly, a transformation shifts the range of the
possible input values. Regarding the simple XOR-based modifications, the scope
is preserved but a linear mapping shrinks the interval of possible values. Also,
packing variables was restricted only to numeric constant types because in Dalvik
registers have associated types i.e. packing heterogeneous data together might
be a type-conversion potentially dangerous operation [29].

5 Conclusion

This work accented on several important aspects of code obfuscation for the
Android mobile platform. To commence, we confirmed the statement that cur-
rently reverse engineering is a lightweight task regarding the invested time and
computational resources. More than 1600 applications were studied for possible
applied code transformations, but found no more sophisticated protection than
variable name scrambling or its slightly more resilient variation of giving Uni-
code names to classes and methods. Some applications used strings encryption
during runtime. Yet, these applications themselves had hardcoded strings visible
with analysis tools.

Having demonstrated the feasibility of examining randomly selected applica-
tions, a proof of concept open-source Dalvik obfuscator was proposed. Its main
purpose is introducing a reasonable slowdown in the reversing process. The ob-
fuscator performs four transformations all of which target both data flow and
control flow. Various analysis tools were challenged on the modified bytecode,
showing that the majority of them are defeated.

Android is merely since five years on the market, yet because of its commer-
cial growth much research is conducted on it. The evolution of the platform is
a constantly ongoing process. It can be seen in its source code that some of the
now unused bytecode instructions were former implemented test instructions.
Possible future opcode changes may invalidate the effects our transformations.
Moreover, analysis tools will keep on getting better and to defeat them newer,
craftier obfuscation techniques will need to be applied. This outwitting com-
petition between code protectors and code reverse engineers exists ever since
the topic of obfuscation has been established of practical importance. So far,
evidence proves this game will be played continuously.

Efficient Code Obfuscation for Android 117

Acknowledgements. This paper is a derivation of the author’s thesis work
which was supervised by Prof. Alex Biryukov and Dr. Ralf-Philipp Weinmann
while in candidature for a master degree at the University of Luxembourg. The
author wishes to thank them for their guidance, especially Dr. Ralf-Philipp Wein-
mann for his valuable advice and support.

References

1. Gartner News (February 2013, press release),
http://www.gartner.com/newsroom/id/2335616

2. Kaspersky Lab: 99% of all mobile threats target Android devices,
http://www.kaspersky.com/about/news/virus/2013/
99_of_all_mobile_threats_target_Android_devices

3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

4. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfuscating Transfor-
mations, Technical Report 148, Department of Computer Science, University of
Auckland, New Zealand (1997)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

6. Androguard project home page, https://code.google.com/p/androguard/
7. Smali/Baksmali project home page, https://code.google.com/p/smali/
8. Dedexer project home page, http://dedexer.sourceforge.net/
9. Dex2jar project home Page, https://code.google.com/p/dex2jar/

10. Dexdump, Android SDK Tools,
http://developer.android.com/tools/help/index.html

11. Bremer, J.: Automated Deobfuscation of Android Applications,
http://jbremer.org/automated-deobfuscation-of-android-applications/

12. Dexter project home page, http://dexter.dexlabs.org/
13. Radare2 project Home Page, http://radare.org/y/?p=download
14. Collberg, C., Thomborson, C., Low, D.: Manufacturing Cheap, Resilient, and

Stealthy Opaque Constructs (1998)
15. Schulz, P.: Dalvik-obfuscator project GitHub page,

https://github.com/thuxnder/dalvik-obfuscator
16. Strazzere, T.: APKfuscator project GitHub page,

https://github.com/strazzere/APKfuscator
17. DexGuard main page, http://www.saikoa.com/dexguard
18. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android Permissions De-

mystified. University of California, Berkeley (2011)
19. Gommerstadt, H., Long, D.: Android Application Security: A Thorough Model

and Two Case Studies: K9 and Talking Cat. Harvard University (2012)
20. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids

you’re looking for: retrofitting android to protect data from imperious applications.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security (2011)

21. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Applica-
tion Security. In: Proceedings of the 20th USENIX Security Symposium (2011)

22. Strazzere, T.: Dex Education: Practicing Safe Dex, Blackhat, USA (2012)

http://www.gartner.com/newsroom/id/2335616
http://www.kaspersky.com/about/news/virus/2013/99_of_all_mobile_threats_target_Android_devices
http://www.kaspersky.com/about/news/virus/2013/99_of_all_mobile_threats_target_Android_devices
https://code.google.com/p/androguard/
https://code.google.com/p/smali/
http://dedexer.sourceforge.net/
https://code.google.com/p/dex2jar/
http://developer.android.com/tools/help/index.html
http://jbremer.org/automated-deobfuscation-of-android-applications/
http://dexter.dexlabs.org/
http://radare.org/y/?p=download
https://github.com/thuxnder/dalvik-obfuscator
https://github.com/strazzere/APKfuscator
http://www.saikoa.com/dexguard

118 A. Kovacheva

23. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection (2009) ISBN-13: 978-0321549259

24. Cypherpunks (mailing list archives), RC4 Source Code,
http://cypherpunks.venona.com/archive/1994/09/msg00304.html

25. Batchelder, M.R.: Java Bytecode Obfuscation, Master Thesis, McGill University
School of Computer Science, Montréal (2007)

26. Schulz, P.: Dalvik Bytecode Obfuscation on Android (2012),
http://www.dexlabs.org/blog/bytecode-obfuscation

27. Reiss, D.: Under the Hood: Dalvik patch for Facebook for Android (2013),
http://www.facebook.com/notes/facebook-engineering/
under-the-hood-dalvik-patch-for-facebook-for-android/10151345597798920

28. Android Developers Website, http://developer.android.com/index.html
29. Bornstein, D.: Dalvik VM Internals (2008),

https://sites.google.com/site/io/dalvik-vm-internals

Appendix

A Profiles of the Applications Selected for Testing

Table 5. Profiles of the test applications. The label abbreviations are identical to those
in the case study of applications. The black bullet marks a presence of the criteria.
The label MISC stands for “miscellaneous” and indicates notable app features. In the
facebook app, CCL stands for the custom class loader.

APP OBF NAT DYN REF CRY MISC
com.adobe.reader.apk 0% • ◦ • • SD card
com.alensw.PicFolder.apk 100% • ◦ • ◦ camera
com.disney.WMPLite.apk 5% • ◦ • • graphics
com.ebay.kr.gmarket.apk 0% • ◦ • • UTF-8 text
com.facebook.katana.apk 84% • • • • CCL
com.microsoft.office.lync.apk 0% • ◦ • • phone calls
com.rebelvox.voxer.apk 0% • ◦ • • audio, SMS
com.skype.android.access.apk 0% • ◦ • ◦ audio, video
com.teamlava.bubble.apk 0% • ◦ • • graphics
cz.aponia.bor3.czsk.apk 0% • ◦ • ◦ GPS, maps
org.mozilla.firefox.apk 0% • • • • internet
snt.luxtraffic.apk 0% ◦ ◦ ◦ ◦ GPS, maps

http://cypherpunks.venona.com/archive/1994/09/msg00304.html
http://www.dexlabs.org/blog/bytecode-obfuscation
http://www.facebook.com/notes/facebook-engineering/under-the-hood-dalvik-patch-for-facebook-for-android/10151345597798920
http://www.facebook.com/notes/facebook-engineering/under-the-hood-dalvik-patch-for-facebook-for-android/10151345597798920
http://developer.android.com/index.html
https://sites.google.com/site/io/dalvik-vm-internals

Efficient Code Obfuscation for Android 119

B Memory Overhead Results

Table 6. Measuring the memory overhead of the transformations

	Efficient Code Obfuscation for Android
	1 Introduction
	2 Related Work
	3 A Case Study on Applications
	3.1 Study Methodology
	3.2 Results Review
	3.3 Study Conclusion
	3.4 Remarks

	4 Implementing a Dalvik Bytecode Obfuscator
	4.1 Structure Overview
	4.2 Transformations
	4.3 Evaluation of the Modified Bytecode
	4.4 Limitations

	5 Conclusion
	References

