
Uniform-Circuit and Logarithmic-Space

Approximations of Refined Combinatorial
Optimization Problems

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui, 910-8507 Japan

Abstract. We lay out a refined framework to discuss various approxi-
mation algorithms for combinatorial optimization problems residing in-
side the optimization class PO. We are focused on optimization problems
characterized by computation models of uniform NC1-circuits, uniform-
AC0, and logarithmic-space Turing machines. We present concrete op-
timization problems and prove that they are indeed complete under
reasonably weak reductions. We also show collapses and separations
among refined optimization classes.

Keywords: optimization problem, approximation-preserving reduction,
approximation algorithm, NC1 circuit, AC0 circuit, logarithmic space.

1 Introduction

A combinatorial optimization problem asks to find an “optimal” solution among
all feasible solutions associated with each admissible instance, where the opti-
mality usually takes a form of either maximization or minimization according
to a certain fixed ordering over all solutions. A significant progress was made in
a field of fundamental research during 1990s and its trend has continued pro-
moting our understandings of the approximability of optimization problems. In
particular, NP optimization problems (or NPO problems, in short) have been a
centerfold of our interests in a direct connection to NP decision problems. Let
NPO express the collection of such optimization problems. NPO problems that
can be exactly solved in polynomial time form a “tractable” optimization class
PO, whereas APX (which is denoted in this paper by APXP for technicality)
consists of NPO problems whose optimum solutions are relatively approximated
within constant factors in polynomial time. A large number of NPO problems
that have been studied are classified into those complexity classes.

Those classifications of optimization problems are all described from a view-
point of polynomial-time computability and any systematic discussion on opti-
mization problems inside PO has been vastly neglected except for [7], in which
logarithmic-space optimization problems (or NLO problems) were discussed. Note
that Àlvarez and Jenner [1] also studied from a slightly different viewpoint a class
OptL of functions computing optimal solutions using only logarithmic space.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 318–329, 2013.
c© Springer International Publishing Switzerland 2013



Refined Combinatorial Optimization Problem 319

A number of intriguing optimization problems have been already known to re-
side within PO. As a typical example, the problem, Min st-Cut, of finding a
minimal s-t cut of a given directed graph is well-known to belong to PO. Another
example is the minimum path weight problem (Min Path-Weight), which is
to find a path S = (v1, v2, . . . , vk) with k ≥ 2 from given source v1 to sink vk
on a given directed graph such that the path weight

∑k
i=1 w(vi) is minimum,

where w(v) is a given weight (expressed in binary) of vertex v. This problem is
also in PO. Although Min st-Cut is a “complete” problem for PO, Min Path-
Weight, which is actually an NLO problem, seems to have low complexity
within PO.

Here, we wish to raise a question of whether it is possible to obtain a finer
classification inside PO. To achieve our goal, we seek to develop a new, finer
framework—a low-complexity world of optimization problems—and reexamine
the computational complexity of optimization problems within this new frame-
work. In particular, we look into a world of optimization problems that can be
approximated by logarithmic-space (or log-space) Turing machines and by uni-
form families of NC1-circuits. For this purpose, we need to reshape the existing
framework of expressing optimization complexity classes by clarifying the scope
and complexity of verification processes for solutions and objective functions. For
instance, to expand the approximation class APX into lower complexity classes,
we intend to use a new notation APXPNPO to emphasize the polynomial-time
approximability of NP optimization problems. Similarly, we describe a collection
of NP optimization problems that are P-solvable as PONPO.

As logarithmic-space computation has often exhibited intriguing features in
the past decades, significant differences also exist between NPO and NLO. For
example, unlike NPO problems, weak computation models do not seem to sup-
port a typical reduction between minimization problems and maximization prob-
lems within NLO unless they are polynomially bounded (see Section 3.2).

The optimization class LONLO was introduced in [7] as a collection of NL opti-
mization problems that are L-solvable (i.e., solvable by multi-tape deterministic
Turing machines using logarithmic space). If we replace directed graphs of Min
Path-Weight by undirected forests, then the resulted problem, called Min
Forest-Path-Weight, belongs to LONLO. In a similar way, using log-space
uniform families of NC1-circuits and AC0-circuits in place of logarithmic-space
Turing machines, we can define NC1ONLO and AC0ONLO, respectively.

We will present a number of concrete optimization problems that are “com-
plete” for the aforementioned refined classes of optimization problems under
weak reductions. We need such weak reductions among low-complexity optimiza-
tion problems because strong reductions tend to obscure essential characteristics
of “complete” problems. We will also prove relationships among those classes.

2 Optimization and Approximation Preliminaries

We will refine an existing framework for studying combinatorial optimization
problems of, in particular, low computational complexity. Throughout this pa-
per, the notation N denotes the set of all natural numbers (i.e., nonnegative



320 T. Yamakami

integers) and Q indicates the set of all rational numbers. Two special notations
Q

>1 and Q
≥1 respectively express the sets {q ∈ Q | q > 1} and {q ∈ Q | q ≥ 1}.

Given two numbers m,n ∈ N with m ≤ n, an integer interval [m,n]Z is a set
{m,m+ 1,m+ 2, . . . , n}. A string (or a word) over alphabet Σ is a finite series
of symbols taken from Σ. The empty string is denoted λ. Given a binary string
w, rep(w) denotes the positive integer represented by w in binary.

2.1 Models of Computation

As a model of computation, we will use the following basic form of Turing ma-
chine, which is equipped with a random-access input tape, an input-index tape,
multiple work tapes, and possibly an output tape. A tape is called read-once if
it is a read-only tape and its tape head either stays at the same cell without
reading any information (whose move is called an λ-move or ε-move) or moves
to the right cell to scan another symbol. Similarly, a write-only tape indicates
that, whenever its tape head writes a nonempty symbol in a tape cell, the head
should move immediately to its right tape cell. In this paper, “output tapes” are
always assumed to be write-only tapes.

An auxiliary Turing machine is the above-mentioned deterministic Turing
machine equipped with an extra read-once auxiliary tape on which a sequence
of symbols is provided as an extra input. This machine can therefore read off
two symbols at once from an input tape and an auxiliary tape to make a de-
terministic move. Let auxL denotes the collection of all sets A for which there
exist a polynomial p and a log-space auxiliary Turing machine M such that, for
every x and y, (i) (x, y) ∈ A implies |y| ≤ p(|x|) and (ii) M accepts (x, y) iff
(x, y) ∈ A, where y is given on an auxiliary tape. Its functional version (with
polynomially-bounded output symbols) is denoted by auxFL.

We assume that the reader is familiar with four complexity classes, P, NP,
L, and NL, and two function classes, FP and FL. For circuit-based complexity
classes AC0 and NC1 (and their functional versions FAC0 and FNC1), we use a
standard notion of Boolean circuits, which are composed only of three basic gates
AND, OR, and NOT . A family of NC1-circuits requires log-space uniformity,
whereas a family of AC0-circuits requires DLOGTIME-uniformity.

It is important to note that, on an output tape of a machine, a natural number
is represented in binary, where the least significant bit is always placed at the
right end of the output bits.

2.2 Refined Optimization Classes

Combinatorial optimization problems that we will extensively discuss in this
paper can be formulated in the following manner. Since our purpose is to examine
lower-complexity problems, it is better to reformulate an existing framework of
NP optimization problems or NPO problems (see, e.g., [2]) in terms of auxiliary
Turing machines.

An NPO problem P = (I, SOL,m, goal):



Refined Combinatorial Optimization Problem 321

◦ I is a finite set of admissible instances. There must be a deterministic Turing
machine (DTM) that recognizes I in polynomial time.

◦ SOL is a function mapping I to a collection of certain finite sets, where
SOL(x) is a set of feasible solutions of input instance x. There must be a
polynomial q such that (i) for every x ∈ I and every y ∈ SOL(x), it holds
that |y| ≤ q(|x|) and (ii) the set I ◦ SOL = {(x, y) | x ∈ I, y ∈ SOL(x)} is
recognized in time polynomial in |x| by a certain auxiliary Turing machine
stating with x on an input tape and y on an auxiliary tape.

◦ goal is either max or min. When goal = max, P is called a maximization
problem; when goal = min, it is a minimization problem.

◦ m is a measure function (or an objective function) from I ◦ SOL to N whose
value m(x, y) is computed in time polynomial in |x| by a certain auxiliary
Turing machine starting with x on an input tape and y on an auxiliary tape.
For any instance x ∈ I,m∗(x) denotes the “optimal” value goal{m(x, y) | y ∈
SOL(x)}. Moreover, SOL∗(x) expresses the “optimal” set {y ∈ SOL(x) |
m(x, y) = m∗(x)} of x.

Since a polynomial-time Turing machine can copy y into its work tape and
manipulate it freely, the above use of auxiliary Turing machines does not alter
the existing notion of NPO problems. Let the notation NPO express the class
of all NPO problems. We say that an NPO problem P is P-solvable if there ex-
ists a polynomial-time deterministic algorithm M such that, for every instance
x ∈ I, M returns an optimal solution y in SOL(x) (possibly together with its
optimal value m∗(x)). To analyze log-space optimization problems, Tantau [7]
considered NL optimization problems (or NLO problems, in short), which are
obtained simply by replacing the term “polynomial time” in the above defini-
tion of NPO problems with “logarithmic space.” For NLO problems, the use of
auxiliary Turing machine is essential and it may not be replaced by any Turing
machine having no read-once tapes. To express the class of all NLO problems,
we use the succinct notation of NLO. Moreover, MinNL (MaxNL, resp.) denotes
the class of all minimization (maximization, resp.) problems in NLO. Given a
class C of optimization problems, the notation POC expresses the class of all
optimization problems in C that are P-solvable. Similarly, we can define the
notions of LOC , NC1OC , and AC0OC by replacing the term “P-solvable” with
“L-solvable,” “NC1-solvable,” and “AC0-solvable,” respectively. Conventionally,
PONPO is written as PO, and LONLO is noted briefly as LO in [7].

A measure function m is called polynomially bounded if there exists a polyno-
mial p such that m(x, y) ≤ p(|x|, |y|) holds for all pairs (x, y) ∈ I ◦ SOL. More-
over, an optimization problem is said to be polynomially bounded if its measure
function is polynomially bounded. We use a succinct notation PBO to denote
the collection of all optimization problems that are polynomially bounded.

Next, we will define approximation classes using a notion of γ-approximation.
Given an optimization problem P = (I, SOL,m, goal), the performance
ratio of solution y with respect to instance x is defined as R(x, y) =
max{|m(x, y)/m∗(x)|, |m∗(x)/m(x, y)|}, provided that neither m(x, y) nor
m∗(x) is zero. Notice that R(x, y) = 1 iff y ∈ SOL∗(x). Let γ > 1 be a



322 T. Yamakami

constant indicating an upper bound of performance ratio. We say that P is
polynomial-time γ-approximable if there exists a polynomial-time deterministic
Turing machine M such that, for any instance x, R(x,M(x)) ≤ γ. Such a ma-
chine is also called a γ-approximate algorithm. The γ-approximability implies
that the set {x ∈ I | SOL(x) �= Ø} is in P. We also define three extra no-
tions of “log-space γ-approximation” [7], “NC1 γ-approximation,” and “AC0

γ-approximation” by replacing “polynomial-time Turing machine” in the above
definition with “logarithmic-space (auxiliary) Turing machine,” “uniform family
of NC1-circuits,” and “uniform family of AC0-circuits,” respectively.

The notation APXPC denotes a class consisting of problems P in class
C of optimization problems such that, for a certain fixed constant γ >
1, P is polynomial-time γ-approximable. Similarly, we introduce the nota-
tions of APXLC , APXNC1

C , and APXAC0
C using “log-space γ-approximation,”

“NC1 γ-approximation,” and “AC0 γ-approximation,” respectively. Notice that
APXPNPO is conventionally expressed as APX.

2.3 Approximation-Preserving Reductions

We will use three types of reductions between two optimization prob-
lems. Given two optimization problems P = (I1, SOL1,m1, goal) and Q =
(I2, SOL2,m2, goal), P is polynomial-time AP-reducible (or APP-reducible, in
short) to Q, denoted P ≤P

AP Q, if there are two functions f, g and a constant
c ≥ 1 such that the following APP-condition is satisfied:

◦ for any instance x ∈ I1 and any r ∈ Q
>1, it holds that f(x, r) ∈ I2,

◦ for any x ∈ I1 and any r ∈ Q
>1, if SOL1(x) �= Ø then SOL2(f(x, r)) �= Ø,

◦ for any x ∈ I1, any r ∈ Q
>1, and any y ∈ SOL2(f(x, r)), it holds that

g(x, y, r) ∈ SOL1(x),
◦ f(x, r) and g(x, y, r) are computed by two deterministic auxiliary Turing
machines that run in time polynomial in (|x|, |y|) for any fixed r ∈ Q

>1, and
◦ for any x ∈ I1, any r ∈ Q

>1, and any y ∈ SOL2(f(x, r)), R2(f(x, r), y) ≤ r
implies R1(x, g(x, y, r)) ≤ 1 + c(r − 1).

When the above APP-condition holds, we also say that P APP-reduces to Q. The
triplet (f, g, c) is called a polynomial-time AP-reduction (or an APP-reduction)
from P to Q.

Notice that the above definition excludes the case of r = 1. As a result, PONPO

is not closed under polynomial-time AP-reductions. Since our main target is
problems inside PONPO, we further need to introduce another type of reduction
(f, g), in which g “exactly” transforms in polynomial time an optimal solution
for Q to another optimal solution for P . We write P ≤P

EX Q when the following
EX-condition holds:

◦ for any instance x ∈ I1, it holds that f(x) ∈ I2,
◦ for any x ∈ I1, if SOL1(x) �= Ø then SOL2(f(x)) �= Ø,
◦ for any x ∈ I1 and any y ∈ SOL2(f(x)), it holds that g(x, y) ∈ SOL1(x),
◦ f(x) and g(x, y) are computed by two deterministic auxiliary Turing ma-
chines that run in time polynomial in (|x|, |y|), and



Refined Combinatorial Optimization Problem 323

◦ for any x ∈ I1 and y ∈ SOL2(f(x)), R2(f(x), y) = 1 implies R1(x, g(x, y)) =
1, where R1 and R2 respectively express performance ratios for P1 and P2.

The above pair (f, g) is called a polynomial-time EX-reduction from P to Q.
By combining ≤P

AP and ≤P
EX, we define the third notion of polynomial-time

strong AP-reduction (or strong APP-reduction), denoted ≤P
sAP, obtained from

≤P
AP by allowing r to be chosen from Q

≥1 (instead of Q>1).
By replacing the requirement of “polynomial time” in the above (strong) APP-

condition with “logarithmic-space,” “uniform family of NC1-circuits,” and “uni-
form family of AC0-circuits,” we obtain (strong) APL-reduction (≤L

AP, ≤L
sAP),

(strong) APNC1-reduction (≤NC1

AP , ≤NC1

sAP ), and (strong) APAC0-reduction (≤AC0

AP ,

≤AC0

sAP ), respectively. The following lemma is immediate.

Lemma 1. For any reduction type c ∈ {P,L,NC1,AC0}, P1 ≤c
sAP P2 implies

both P1 ≤c
AP P2 and P1 ≤c

EX P2.

Given a type of reduction, say, ≤ discussed above as well as a class C of
optimization problems, an optimization problem P is called ≤-hard for C if Q ≤
P holds for every problem Q in C. Moreover, P is said to be ≤-complete for C if
P is in C and it is ≤-hard for C.

3 Complete Problems

In Section 2, we have introduced basic classes of low-complexity optimiza-
tion problems. Note that, for any given class C of optimization problems,
NC1OC ⊆ LOC ⊆ POC and APXNC1

C ⊆ APXLC ⊆ APXPC . Moreover, it holds
that NC1OC ⊆ APXNC1

C , LOC ⊆ APXLC , and POC ⊆ APXPC .

3.1 General Complete Problems

Hereafter, we will discuss complete problems for refined optimization classes.
We first note that the type of reduction is often crucial. The ≤L

AP- and ≤L
EX-

reductions are quite powerful so that all problems in APXLNLO and LONLO

become reducible to problems even in APXAC0
NLO and AC0ONLO, respectively.

Proposition 1. 1. APXLNLO = {P ∈ NLO | ∃Q ∈ APXAC0
NLO [P ≤L

AP Q]}.
2. LONLO = {P ∈ NLO | ∃Q ∈ AC0ONLO [P ≤L

EX Q]}.
In a given graph, a path of G is a sequence (v1, v2, . . . , vk) of vertices satisfying

that (vi, vi+1) is an edge for every index i ∈ [k − 1]. A path is called simple
if there are no repeated vertices in it. The maximum vertex weight problem
(Max Vertex) takes a directed graph, a source s ∈ V , and a weight function
w : V → N

+ and finds a path from s to a certain vertex t ∈ V so that the
weight of t is maximum. It follows from [7] that Max Vertex is ≤L

AP-complete
for APXLMaxNL.

Proof Sketch of Proposition 1. We will show only (1). (⊆) Since Max
Vertex is in APXLNLO, take a constant γ > 1 and a log-space deterministic



324 T. Yamakami

Turing machine M that produces γ-approximate solutions for Max Vertex.
Letting Max Vertex = (I, SOL,m,max), we modify it as follows and obtain
a new problem, say, Pmax. Instances of Pmax are of the form (x, t0), where
x ∈ I and t0 ∈ V , satisfying the condition that (*) for every v ∈ V , w(t0) ≤
w(v) ≤ γw(t0). Consider an AC0-circuit that outputs t0 on input (x, t0). Since
w(t0) ≤ m∗(x, t0) ≤ γw(t0), Pmax must belong to APXAC0

NLO.
Let r ≥ 1 and define f(x, r) = (x, t0) and g(x, y, r) = y. Since t0 can be

obtained by running M on x, f is in FL. Note that the performance ratio
R2(f(x, r), y) equals R1(x, g(x, y, r)). Thus, Max Vertex APL-reduces to P .
Moreover, because Max Vertex is ≤L

AP-complete for APXLMaxNL, we conclude
that every maximization problem in APXLNLO is ≤L

AP-reducible to Pmax. The
case of minimization is similar.

(⊇) Let P ∈ NLO and Q ∈ APXAC0
NLO satisfying P ≤L

AP Q. It is not difficult
to prove that Q ∈ APXAC0

NLO implies P ∈ APXLNLO. �

The complete problems presented in the proof of Proposition 1 does not seem
to capture the essence of problems in APXLNLO as well as NLO. Therefore, in
what follows, we intend to look into weaker notions of reducibilities. In partic-
ular, we want to limit our attention within ≤NC1

AP -complete and ≤NC1

EX -complete
problems.

Let DSTCON denote the well-known s-t connectivity problem on directed
graphs. Let us recall the minimum path weight problem (Min Path-Weight)
introduced in Section 1. Notice that, if we set a weight of every vertex of a
given input graph to be 1, then Min Path-Weight is equivalent to a problem
of finding the shortest s-t path in the graph. We will prove that Min Path-
Weight is ≤NC1

sAP -complete for MinNL.

Proposition 2. Min Path-Weight is ≤NC1

sAP -complete for MinNL.

Proof Sketch. For notational convenience, let Min Path-Weight =
(I0, SOL0,m0,min). It is not difficult to show that Min Path-Weight be-
longs to NLO. Next, we will show that every minimization problem in NLO is
≤NC1

sAP -reducible to Min Path-Weight. Let P = (I, SOL,m,min) be any mini-
mization problem in NLO. For m, we choose an appropriate log-space auxiliary
Turing machine M with three tapes computing m. Recall that any solution
candidate is written on M ’s auxiliary read-once tape. We define a partial con-
figuration of M as a 〈a, σ, b, τ, c, u, d, ξ〉, where an input tape-head scans σ at
cell a, an auxiliary-tape head scans τ at cell b, u indicates the entire content
of an O(log n)-space work tape with its head scanning at cell c, and an output
tape-head writes ξ in cell d, where all cell numbers are expressed in binary. The
weight of this vertex is defined as ξ (expressed in binary). For convenience, we
call this graph a configuration graph of M on input x. Let us define an instance
of Min Path-Weight as follows. Let f(x, r) denote the configuration graph
of M on input x. Let y be any path of the graph f(x, r). Let g(x, y, r) denote
the content of the auxiliary tape that is reconstructed from labels attached to
vertices along the path y. Clearly, f and g are in FNC1. It is not difficult to



Refined Combinatorial Optimization Problem 325

show that m(f(x, r), y) = m0(x, g(x, y, r)). Therefore, Min Path-Weight is

≤NC1

sAP -complete for MinNL. �

Under the assumption that L = NL, we can prove that the optimization
problem Min Path-Weight is ≤NC1

sAP -complete for NLO = MaxNL ∪MinNL.

Lemma 2. If L = NL, then Min Path-Weight is ≤NC1

sAP -complete for NLO.

Proof Sketch. By Proposition 2, it suffices to show that every maximization
problem P1 in NLO is sAPAC0-reducible to a certain minimization problem
P2 in NLO (since AC0 ⊆ NC1). Let P1 = (I1, SOL1,m1,max) in NLO. We
construct a minimization problem P2 = (I2, SOL2,m2,min) in NLO as follows.
Take an appropriate polynomial p satisfying that b(x) = 2p(n) ≥ m∗

1(x) for every
x ∈ I. Let I2 = I1 and SOL2 = SOL1. Moreover, for every (x, y) ∈ I2◦SOL2, let

m2(x, y) = � b(x)2

m1(x,y)
� if m1(x, y) > 0; b(x)2 otherwise. Here, we define f(x, r) = x

and g(x, y, r) = y. If R2(f(x, r), y) ≤ r with r ≥ 1, then R1(x, g(x, y, r)) equals
m∗

1(x)
m1(x,y)

, which is at most b(x)2

m∗
2(x)+1 /

b(x)2

m2(x,y)
= m2(x,y)

m∗
2(x)

≤ rm∗
2(x)

m∗
2(x)+1 ≤ 1 + c(r − 1),

where c = 1, since m2(x, y) ≤ rm∗
2(x).

To complete the proof, assuming that L = NL, we still need to prove that the
measure function m2 is in auxFL. Consider the following procedure: on input
x ∈ I, guess a number e and a series of carry-on integers, check bit by bit whether
em1(x, y) ≤ b(x)2 and (e + 1)m1(x, y) > b(x)2, check that all carry-on numbers
are correct, and output e. Under the assumption of L = NL, this procedure can
be implemented on a log-space auxiliary Turing machine. �

When we consider an undirected-graph version of Min Path-Weight, de-

noted Min UPath-Weight, it is log-space 2n
O(1)

-approximable because, by the
result of [6], using log space, we not only determine whether there exists a feasi-
ble solution for Min Upath-Weight but also find at least one feasible solution
if any. When all admissible input graphs of Min UPath-Weight are restricted
to be forests, we call the corresponding problem Min Forest-Path-Weight,
where a forest is an acyclic undirected graph.

Proposition 3. Min Forest-Path-Weight is ≤NC1

EX -complete for LONLO.

Different from standard terminology, we will define a mixed graph G = (V,E)
to be induced from a directed graph (V1, E1) and an undirected graph (V2, E2)
as V = V1 × V2 and E = {((v1, v2), (v′1, v′2)) | (v1, v′1) ∈ E1, (v2, v

′
2) ∈ E2}.

The minimum mixed path weight problem (Min Mix-Path-Weight) takes
an instance of a mixed graph G = (V,E) induced from (V1, E1) and (V2, E2),
a source pair (s1, s2) ∈ V , and a weight function w : V → N × N with two
extra conditions: (i) (V2, E2) is a forest and (ii) w2(v2) ≤ w1(v1) ≤ 2w2(v2) for
every (v1, v2) ∈ V , where w(v1, v2) = (w1(v1), w2(v2)). The problem is to find
a (mixed) path S of G starting at (s1, s2) and ending at (t1, t2) for which the
partial path weight

∑
(v1,v2)∈S w1(v1) is minimum.



326 T. Yamakami

Proposition 4. Min Mix-Path-Weight is ≤NC1

sAP -complete for APXLMinNL.

Proof Sketch. It is not difficult to show that Min Mix-Path-
Weight is in APXLNLO (and thus APXLMinNL). For simplicity, we
set Min Mix-Path-weight = (I0, SOL0,m0,min) with measure function
m0(x,S) =

∑
(v1,v2)∈S w1(y1).

Next, let P = (I, SOL,m,min) be any minimization problem in APXLNLO.

Our goal is to show that P is ≤NC1

AP -reducible to Min Mix-Path-Weight. Let
M1 be a log-space auxiliary Turing machine computing m and let M2 be a log-
space γ-approximation algorithm for P , where γ > 1 is a constant. This implies
that (*) m∗(x)/γ ≤ m(x,M2(x)) ≤ m∗(x). Let M3 compute m(x,M2(x)) using
log space. As in the proof of Proposition 2, we consider a pair of partial config-
urations of M1 and M3. Those pairs constitute a mixed graph. For each i ∈ [3],
let si be the initial configuration of Mi and let yi be the final and accepting
configuration of Mi. The weight of a path corresponds to the value of m. Given
auxiliary input pair (z1, z3) of M1 and M3, let h(z1, z3) denote the associated
series of pairs of partial configurations of M1 and M3, respectively. Let us de-
fine f(x, r) to be 〈G, (s1, s2), (t1, t2), w〉 and let g(x, (y1, y3), r) = h−1(y1, y3).
The desired weight function w(v1, v2) = (w1(v1), w2(v2)) is defined as follows.
Note that m(x, y) = m0(f(x, r), (y1, y3)). If γ ≤ 2, then Condition (*) im-
plies m∗

0(f(x, r))/2 ≤ m0(f(x, r), (y1, y3)) ≤ m∗
0(f(x, r)). Next, we assume that

γ > 2. Fix x ∈ I. Let us define Δ = (γ − 2)m(x,M2(x)). We define w2(v2) to
be Δ plus the output value produced by M1 that appears inside partial con-
figuration v2. Similarly, let w1(v1) be Δ plus the value outputted by M3 inside
v1. Note that w is computed from x using log space. Let b(x) = m(x,M2(x)).

The ratio m0(f(x,r),(y1,y3))
m∗

0(f(x,r))
equals b(x)+Δ

m∗(x)+Δ ≤ b(x)+Δ
γb(x)+Δ = 1

2 by (*), as requested.

Therefore, P ≤NC1

AP Min-Path-Weight holds. �

3.2 Polynomially-Bounded Problems

For low-complexity optimization classes, polynomially-bounded optimization
problems play a quite special role. Hereafter, we are focused on those problems.

Lemma 3. 1. Let P be a minimization (maximization, resp.) problem in
APXLNLO ∩ PBO. There exists a maximization (minimization, resp.) prob-

lem Q in APXLNLO ∩ PBO such that P is ≤AC0

sAP -reducible to Q.
2. For any minimization (maximization, resp.) problem P in NLO∩PBO, there

exists a maximization (minimization, resp.) problem Q in NLO∩PBO such

that P is ≤AC0

sAP -reducible to Q.
3. For any minimization (maximization, resp.) problem P in LONLO ∩ PBO,

there exists a maximization (minimization, resp.) problem Q in LONLO ∩
PBO such that P is ≤AC0

sAP -reducible to Q.

The maximum bounded vertex weight problem (Max B-Vertex) takes an
undirected graph G = (V,E), a source s ∈ V , and a weight function w : V → N

satisfying w(v) ≤ |V | for every v ∈ V , and finds a path of G starting at s and
ending at a certain vertex t of the maximum non-zero weight.



Refined Combinatorial Optimization Problem 327

Proposition 5. Max B-Vertex is ≤NC1

EX -complete for LONLO ∩ PBO.

The maximum Boolean formula value problem (Max BFVP) takes a set of
Boolean formulas and a Boolean assignment σ for variables in the formulas and
finds a maximal set of satisfied formulas by σ. Note that Max BFVP is known
to be NC1-complete.

Lemma 4. Max BFVP is ≤NC1

EX -complete for NC1ONLO ∩ PBO.

If we use ≤L
AP-reductions instead of ≤NC1

sAP -reductions, then it is possible to
prove that APXLNLO contains polynomially-bounded ≤L

AP-complete problems.

Lemma 5. There exists a polynomially-bounded optimization problem that is
≤L

AP-complete for APXLNLO.

Proof Sketch. It is shown in [7] that APXLNLO ∩ PBO has an ≤L
AP-complete

maximization problem. To prove the lemma, we want to show that every mini-
mization problem P1 = (I1, SOL1,m1,min) in APXLNLO is ≤L

AP-reducible to a
certain maximization problem P2 = (I2, SOL2,m2,max) in APXLNLO ∩ PBO.
Assume that, for an appropriate constant γ > 1, P1 is γ-approximable by a
log-space deterministic Turing machine M1. Let b(x) = m1(x,M1(x)) for every
x ∈ I. Note that b(x)/γ ≤ m∗

1(x) ≤ b(x). For convenience, set c = γ log γ+γ−1.
Since the case where 1+ c(r−1) ≥ γ is easy, we consider the other case where

1+c(r−1) < γ. For brevity, we set δ = 1+c(r−1). Define k = �log γ/ log δ�. Note
that δk−1 ≤ γ ≤ δk. For convenience, we define I0 = {((x, r, i) | x ∈ I, r ≥ 1, 0 ≤
i ≤ k} and SOL0(x, r, i) = {y ∈ SOL1(x) | m1(x, y) ∈ (b(x)/δi+1, b(x)/δi]}. Let
i0 be the maximum integer i satisfying that 0 ≤ i ≤ k and SOL0(x, r, i) �= Ø.
Note that m∗

1(x) ∈ (b(x)/δi0+1, b(x)/δi0 ].
Let I2 = {(x, r) | x ∈ I1, r ≥ 1} and SOL2(x, r) = {〈y0, y1, . . . , yk〉 | ∃i ∈

[0, k]Z∀j ∈ [i + 1, k]Z [yi ∈ SOL0(x, r, i) ∧ yj �∈ SOL0(x, r, j)]}. Note that I2 ∈
L and I2 ◦ SOL2 ∈ auxL. We set m2((x, r), y) = i + 1 if y = 〈y0, . . . , yk〉
and i is the maximum integer satisfying yi ∈ SOL0(x, r, i). Note that m2 ∈
auxFL. Define f(x, r) = (x, r) and g((x, r), y, r) = yi where i = m2((x, r), y).
Take any y ∈ SOL2(x, r) for which R2(x, y) ≤ r. Since m∗

2(x, r) = i0 + 1,
it follows that i0+1

r ≤ m2((x, r), y) ≤ i0 + 1. We then obtain b(x)/δi0+1 ≤
m1(x, yi) ≤ b(x)/δ(i0+1)/r. Thus, R1(x, g((x, r), y, r)) = R1(x, yi) = m1(x,yi)

m∗
1(x)

≤
b(x)/δ(i0+1)/r

b(x)/δi0+1 = δ(i0+1)(1−1/r). Since log z ≥ z−1
z for all real numbers z ∈ [1, 2], it

follows that k ≤ log γ
log δ +1 ≤ δ log δ

δ−1 + 1 = c
δ−1 . Hence, r = δ−1

c + 1 ≤ 1
k + 1. From

this inequality, we obtain (i0 + 1)(1− 1/r) ≤ (k + 1)(1− 1/r) = 1. This implies
R1(x, g((x, r), y, r)) ≤ δ = 1 + c(r − 1). Therefore, P1 ≤L

AP P2 holds. �

4 Relations among Refined Optimization Classes

We will turn our attention to relationships among basic optimization problems
introduced in Section 2. We start with claiming that two classes APXPNLO and
PONLO coincide with NLO.



328 T. Yamakami

Lemma 6. APXPNLO = PONLO = NLO.

Proof Sketch. Note that PONLO ⊆ APXPNLO. First, we claim that
APXPNLO ⊆ NLO. By the definition of APXPNLO, all problems in APXPNLO

must be NLO problems, and hence they are in NLO. Next, we show that
NLO ⊆ PONLO. Let P = (I, SOL,m, goal) be any problem in NLO. We con-
sider only the case of goal = max. We want to show that P also belongs to
PONLO. Let x be any instance in I. Consider the following algorithm on x. De-
fine D = {(x, y) ∈ I ◦ SOL | ∃z ∈ SOL(x) [z ≥ y ∧m(x, z) ≥ m(x, y)]}, where
≥ is the lexicographic ordering. Note that D ∈ NL ⊆ P. By a binary search
technique using D, we can find a maximal solution y ∈ SOL∗(x) in polynomial
time. Therefore, NLO ⊆ PONLO ⊆ APXPNLO ⊆ NLO. �

Proposition 6. 1. [7] L = NL iff LONLO ∩ PBO = NLO ∩ PBO.
2. NC1 = L iff NC1ONLO ∩ PBO = LONLO ∩ PBO.
3. L = P iff LONPO ∩ PBO = PONPO ∩ PBO.

Proposition 7. 1. [7] If L �= NL, then LONLO �= APXLNLO �= NLO.
2. If L �= P, then PONPO � APXLNPO.
3. If NC1 �= NL, then NC1ONLO �= APXNC1

NLO.

Proof Sketch. We will show only (3). Assume that NC1ONLO = APXNC1
NLO.

Consider DSTCON (on unweighted directed graphs), which is ≤NC1

m -complete
for NL. Taking a constant γ > 1, let us define a restricted version of Min
Path-Weight, called Min Rest-Path(γ) = (I, SOL,m,min), as follows. An
instance of Min Rest-Path is w = 〈G, s, t, p0〉, where G = (V,E) is a directed
graph, and s, t are distinct vertices in G, p0 is a special path from s to t. Let
len(p) denote the length of a path p. A solution of w is a path p from s to t
satisfying len(p0)/γ ≤ len(p) ≤ len(p0). We use the length of a path as the
measure. It is not difficult to show that Min Rest-Path(γ) is in APXAC0

NLO,
which is included in APXNC1

NLO.
By our assumption, Min Rest-Path(γ) ∈ NC1ONLO for any γ > 1. Now,

we take γ = 2. Given an instance 〈G, s, t〉 of DSTCON, define 〈G′, s′, t, p0〉 as
follows. Let n = |V | and let G′ = (V ′, E′), where V ′ = V ∪{v1, v2, . . . , vn, s′} and
E′ = E ∪ {(s′, v1), (vn, s), (s, w1), (wn, t)} ∪ {(vi, vi+1), (wi, wi+1) | i ∈ [n − 1]}.
Moreover, let p0 = (s′, v1, v2, . . . , vn, s, w1, w2, . . . , wn, t). If p is a path from s
to t, let p′ = (s′, v1, . . . , vn, s) ∗ p, which is a concatenation of two paths. Since
len(p′) = n+ 1 + len(p), it follows that n ≤ len(p′) ≤ 2n. Thus, an appropriate
NC1-circuit computes the minimal path p by our assumption. If len(p) < len(p0),
then we accept the input; otherwise, we reject the input.

Notice that 〈G′, s′, t, p0〉 may be quite larger than 〈G, s, t〉 and, in gen-
eral, we cannot produce 〈G, s, t, p0〉 on a log-space work tape. However, we
can avoid this pitfall as follows. Whenever a circuit needs information on ver-
tices {v1, . . . , vn, w1, . . . , wn, s

′}, the circuit automatically answer the question.

This implies that DSTCON ∈ NC1. Since DSTCON is ≤NC1

m -complete for NL,
DSTCON ∈ NC1 implies NC1 = NL. �



Refined Combinatorial Optimization Problem 329

Proposition 8. 1. NC1ONLO � APXAC0
NLO.

2. AC0ONLO �= APXAC0
NLO.

The parity function π is defined as π(x1, x2, . . . , xn) = x1⊕x2⊕· · ·⊕xn, where
each xi ∈ {0, 1}. Let π∗(x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn) be the n-
bit string π(x11, . . . , x1n)π(x21, . . . , x2n) · · ·π(xn1, . . . , xnn). It is not difficult to
show that π∗ is in FNC1 but not in FAC0 because π resides in NC1−AC0. Given
y ∈ {0, 1}+, rep(y) expresses one plus the natural number represented in binary
as y.

Proof Sketch of Proposition 8. We will show only (1). Here, we consider
the minimization problemMin m-Parity = (I, SOL,m,min) defined as follows.

Let I =
⋃

n∈N+{0, 1}n2

and SOL(x) = {y ∈ {0, 1}n | rep(y) ≥ rep(π∗(x))} for
each x ∈ I with |x| = n2. Let m(x, y) = rep(y). Clearly, I is in L, I ◦ SOL is
in auxL, and m is in FNC1. Hence, Min m-Parity ∈ NLO. Since SOL∗(x) =
{π∗(x)} for every x ∈ I, it follows from π∗ ∈ FNC1 that Min m-Parity is
NC1-solvable.

Next, we will prove that Min m-Parity �∈ APXAC0
NLO. Assume otherwise.

There exists a uniform family {Cn}n∈N+ of AC0-circuits such that, for every x ∈
I, C|x|(x) computes a string y in SOL(x) such that (1/γ)rep(y) ≤ rep(π∗(x)) ≤
rep(y). Take any number n satisfying 2n > γ and any string x ∈ {0, 1}n. Let
us consider π∗(xn). Define Cn2(xn) = y. If π(x) = 1, then we have 2n+1 ≤
rep(y) ≤ γ · 2n+1 because of rep(π∗(xn)) = 2n+1. Since |y| = n, it must hold
that rep(y) = 2n+1; that is, y = 1n. However, if π(x) = 0, then we obtain
1 ≤ rep(y) ≤ γ since rep(π∗(xn)) = 1. Since γ < 2n, y has the form 0z. Hence,
π(x) equals the first bit of y. This gives an AC0-circuit that computes π. This is
a contradiction against the fact that π is not in AC0. Therefore, Min m-Parity
does not belong to APXAC0

NLO. �

References

1. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107, 3–30 (1993)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer (2003)

3. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arbores-
cences. In: STOC 1991, pp. 112–122. ACM Press (1991)

4. Goldschlager, L.M., Shaw, R.A., Staples, J.: The maximum flow problem is log space
complete for P. Theoret. Comput. Sci. 21, 105–111 (1982)

5. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In: SODA 1993, pp. 21–30 (1993)

6. Reingold, O.: Undirected connectivity in log-space. J. ACM 55, article 17 (2008)
7. Tantau, T.: Logspace optimisation problems and their approximation properties.

Theory Comput. Syst. 41, 327–350 (2007)


	Uniform-Circuit and Logarithmic-Space Approximations of Refined Combinatorial
Optimization Problems
	1 Introduction
	2 Optimization and Approximation Preliminaries
	2.1 Models of Computation
	2.2 Refined Optimization Classes
	2.3 Approximation-Preserving Reductions

	3 Complete Problems
	3.1 General Complete Problems
	3.2 Polynomially-Bounded Problems

	4 Relations among Refined Optimization Classes
	References




