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Abstract. In this paper, we consider the problem of computing the
map of geometric minimal cuts (MGMC) induced by a general planar
embedding (i.e., the edge orientation is either rectilinear or diagonal) of
a subgraph H = (VH , EH) of an input graph G = (V,E). The MGMC
problem is motivated by the critical area extraction problem in VLSI
layout and finds applications in several other areas. In this paper, we
extend an earlier result for planar rectilinear embedding to its more gen-
eral case. The increased freedom on edge orientation in the embedding
imposes new challenges, mainly due to the fact that the inducing re-
gion of a geometric minimal cut is no longer unique. We show that the
MGMC problem can be solved by computing the L∞ Hausdorff Voronoi
diagram of a set of rectangle families, each containing an infinite num-
ber of axis-aligned rectangles. By exploiting the geometric properties
of these rectangle families, we present an output-sensitive algorithm for
computing the Hausdorff Voronoi diagram in this general case which runs
in O((N + K) log2 N log logN) time, where K is the complexity of the
Hausdorff Voronoi diagram and N is the number of geometric minimal
cuts.

1 Introduction

In this paper, we consider the following problem, called Map of Geometric Min-
imal Cuts or MGMC problem: Given a graph G = (V,E) and an planar em-
bedding of a subgraph H = (VH , EH) of G with rectilinear or diagonal edges,
compute a map M of the embedding plane P of H so that for every point p ∈ P ,
the cell in M containing p is associated with the “closest” geometric cut (in G)
to p, where the distance between a point p and a cut C is defined as the max-
imum distance between p and any individual element of C. A geometric cut C

� The research of the third author was supported in part by NSF under grant
IIS-1115220.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 238–249, 2013.
c© Springer International Publishing Switzerland 2013



Map of Geometric Minimal Cuts for General Planar Embedding 239

of G is a set of edges and vertices in H that overlap a given geometric shape S
in P and whose removal from G disconnects G. In this paper we consider the
case where geometric cuts are induced by axis-aligned rectangles and distances
are measured by the L∞ metric. The main objective of the MGMC problem is
to compute the map M of all geometric minimal (or canonical) cuts (the exact
definition of geometric minimal cuts will be given in next section) of the planar
embedding of H .

The MGMC problem was introduced in [5] motivated by the VLSI critical area
computation problem. The critical area problem for various types of faults can
be reduced to different variants of Voronoi diagrams that lead to accurate critical
area extraction (see e.g., [4,6] and references therein). A VLSI net can be modeled
as a graph G = (V,E) with a subgraph embedded on every conducting layer. A
subgraph H = (VH , EH) on a layer X is vulnerable to random defects associated
with layer X . Defects on layer X may create cuts on graph G that result in
disconnecting the net N . The Voronoi framework for critical area extraction
asks for a subdivision of layer X into regions that reveal for every point p the
radius of the smallest disk centered at p inducing a cut of G.

The MGMC problem was first addressed in [5,6], based on higher order
Voronoi diagrams and an iterative process to determine min-cuts that resulted in
the L∞ Hausdorff Voronoi diagram of all geometric min-cuts. In [7] the rectilin-
ear version of the problem was considered and an output sensitive approach was
proposed that first computed all possible geometric min-cuts and then directly
computed the L∞ Hausdorff Voronoi diagram, where each geometric min-cut in-
duced an axis-aligned rectangle representing its minimum inducing region. The
MGMC problem is also closely related to the farthest line-segment Voronoi dia-
gram which has constant complexity for non-crossing line segments [2].

2 Geometric Cuts

Let G = (V,E) be the undirected graph in an MGMC problem and H =
(VH , EH) be its planar subgraph embedded in the plane P with |V | = NG,
|E| = MG, |VH | = n, and |EH | = m. Due to the planarity of H , m = O(n).
Edges in H are straight line segments with rectilinear or diagonal orientation. A
pair of vertices u and v in a graph is connected if there is a path in this graph
from u to v, and disconnected otherwise. A graph is connected if every pair of its
distinct vertices is connected. Without loss of generality (WLOG), we assume
that G is connected. A cut C of G is a subset of edges in G whose removal
disconnects G. A cut C is minimal if removing any edge from C no longer forms
a cut.

Definition 1 (see [7]). Let R be a connected region in P , and C = R ∩H be
the set of edges in H intersected by R. C is called a geometric cut induced by
R if the removal of C from G disconnects G. A geometric cut C is called a 1-D
geometric cut (or a 1-D cut) if R(C) is a segment. If R(C) is an axis-aligned
rectangle, then C is called a 2-D geometric cut (or a 2-D cut). A geometric cut
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Fig. 1. (a) R(C) of a 2-D cut C is bounded by 4 edges. (b) Each vertical line segment
between R(C)left andR(C)right (gray region) forms a 1-D cut {1, 2}. (c) Two minimum
reducing regions (dashed and dotted rectangles) of geometric cut {1,2,3}.

C is a geometric minimal cut if the set of edges intersected by any rectangle
shrinking from R(C) is no longer a cut.

When there is no ambiguity of the region R, we often call the cut induced by
R as a geometric cut for simplicity. For a given cut C, its minimum inducing
region R(C) is the minimum axis-aligned rectangle which intersects every edge
of C. For some geometric cut C, its R(C) could be degenerated into a horizontal
or vertical line segment, or even a single point. If R(C) is not a point, it may
not be fixed for a given geometric minimal cut C (see Figure 1).

Let B(C) denote the set of edges bounding a geometric minimal cut C (i.e.,
the set of edges in C intersecting R(C)). Due to the minimality nature of C,
removing any edge in B(C) will lead to a non-cut. This means that any edge in
B(C) is necessary for forming the cut. However, this is not necessarily true for
edges in C \ B(C). Thus, a geometric minimal cut may not be a minimal cut.
This also explains why the number of geometric minimal cuts is polynomial and
the number of minimal cuts is exponential [7].

Clearly edges in B(C) define the boundary position of R(C). However, it is
not true that all edges in B(C) are needed to define R(C).

Lemma 1. For any 1-D (or 2-D) geometric minimal cut, the number of edges
in B(C) needed to define R(C) is at most two (or four) (see Figure 1(a)).

For simplicity, we assume thereafter that B(C) contains only those edges
which are barely sufficient to define R(C).

For a 1-D cut C, the location of R(C) may not be fixed, since there may
be an infinite number of 1-D cuts cutting the same set of edges (see Figure
1(b)). For a 2-D cut C, it is also possible that R(C) is not fixed due to the
appearance of diagonal oriented edge(s) in B(C). For example, if the vertex of
R(C) incident to a diagonal oriented edge e ∈ B(C), moving the vertex along e
continuously could generate an infinite number of different R(C). In Figure 1(c),
two minimum inducing regions represented by dotted and dashed rectangles are
induced by the geometric cut {1, 2, 3}.
Lemma 2. For a given geometric minima cut C, if R(C) is not fixed, the num-
ber of R(C) is infinite.
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Note that in the presence of non-fixed inducing region, the computation of
mapM is quite different. In this case, if point p ∈ P falls in the cell of a geometric
minimal cut C, p is closer to one of its R(C) than to all R(C′) of any other cut
C′. Thus the MGMC problem is to construct a Hausdorff Voronoi diagram of
which each cell corresponding to a geometric minimal cut C is a union of its
R(C). The main challenge is to efficiently deal with those Voronoi cell owned by
an infinite number of rectangles corresponding to the same geometric minimal
cut.

3 Identifying Geometric Minimal Cuts and Minimum
Inducing Regions

To compute the map M of geometric minimal cuts, we first identify all possible
geometric minimal cuts and then construct the Hausdorff Voronoi diagram of
their infinite number of minimum inducing regions.

3.1 Computing Geometric Minimal Cuts

To identify all 1-D and 2-D geometric minimal cuts, we adopt the algorithm
proposed in [7]. In [7], it has shown that all geometric minimal cuts induced
by a planar rectilinear embedding of H can be identified in a worst case
O(n3 logn(log logn)3) time and in O(n log n(log logn)3) time if the maximum
size of the cut is bounded by a constant.

3.2 Computing Minimum Inducing Regions
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Fig. 2. (a) R1 with 2 neighboring crossings {e3, e4} is not an R(C). (b) R2 with 2
opposite crossings {e1, e4} is an R(C). (c) Compute e5 by {e1, e2, e3}. (d) Compute
{e5, e6} by {e1, e3}.

First, we emphasize that the methods of computing minimum inducing regions
described in this section actually can be applied to arbitrary planar embedding of
H . Given a set C of geometric minimal cuts of H , we need to first identify their
minimum inducing regions before computing the Hausdorff Voronoi diagram.
For a given cut C ∈ C, from our previous discussion we know that R(C) may
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not be unique. If R(C) is fixed, R(C) is bounded by the edges in B(C) and
can be computed in O(1) time. If R(C) is not fixed, we know (from Lemma
2) that there are infinite number of R(C)s. Thus it is impossible to compute
the Hausdorff Voronoi diagram for all such R(C)s. To overcome this difficulty,
our main idea is to find a discrete representation to capture the behaviors of all
possible R(C)s. In other words, we need to find a small set of extreme R(C)s
to represent the infinite number of R(C)s. To achieve this goal, our idea is to
analyze the geometric properties of all R(C)s. For instance, if R(C) is not fixed
for a given 1-D cut C, it is easy to see that each R(C) is bounded by the two
extreme 1-D cuts R(C)left and R(C)right (or R(C)top and R(C)bottom), and the
two bounding edges in B(C) (see Figure 1(b)). For a 2-D cut C, it is more
complicated since (1) B(C) contains up to 4 edges and (2) one or more edges
could be arbitrarily orientated. From now on, we assume that B(C) consists of 4
non-rectilinear edges. We focus on this case since all the other cases are simpler
and can be handled similarly. Thus we omit the details for other cases in this
extended abstract.

Definition 2. B(C) is general if it contains 4 non-rectilinear edges.

Definition 3. Given an edge e of a general B(C), e is crossing (or tangent
to) a rectangle R if e intersects R twice (or once). Each intersection is called a
crossing (or tangency) between B(C) and R. (see Figure 2(b))

To better understand these concepts, consider the geometric minimal cut C =
{e1, e2, e3, e4} shown in Figure 2. R1 is not a minimum inducing region of C since
shrinking it a little bit still cuts C. e2 (e3) is tangent to R2. R2 is an R(C) with
2 crossings {e1, e4}.
Lemma 3. Given a geometric minimal cut C, if R(C) is not unique, the number
of crossing between B(C) and any R(C) is at most 2. If it is 2, the two crossings
are not neighboring to each other.

Proof. Clearly it is sufficient to prove that there is no pair of neighboring cross-
ings. Suppose that this is not true. We can shrink R(C) by moving the boundary
edge of R(C) connecting the two neighboring crossings toward its opposite edge
by a small distance and R(C) still cuts all edges in C. This is a contradiction. ��

Thus, to find all R(C)s, we have two cases to consider, (1) the number of cross-
ing is 1 and (2) the number of crossings is 2. For case (1), we explain our idea by
an example. In Figure 2(c), a general B(C) contains 4 edges {e1, e2, e3, e4} with
slopes {κ1, κ2, κ3, κ4} respectively. A rectangle (shown by dashed line) tangent to
{e1, e2, e3} respectively and crossed by e4 is a minimum inducing region R1(C).
Another rectangle (shown by dotted line) tangent to the same set of edges as
R1(C) forms another minimum inducing region R2(C). R2(C) is also crossed by
e4. For all R(C)s tangent to e1, e2, e3, their corner points which are not on any
edge of B(C) induce a new edge e5 (i.e., union of all such corner points forms
an edge), called skating edge. The skating edge e5 can be easily computed from
{e1, e2, e3}. Given a set of 4 edges {e1, e2, e3, e5}, if we move a point p along
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the valid interval of e1, each p corresponds to exactly one minimum inducing
region R(C). Note that the valid interval in which R(C) exists can be easily
computed. Thus we call {e′1, e′2, e′3, e5} a configuration of R(C), where e′i is the
valid interval of ei for i ∈ {1, 2, 3}. For case (2), as shown in Figure 2(d), the
dotted and dashed rectangles are tangent to e2 and e3 respectively. Similar to
case (1), we can also compute two skating edges e5 and e6 for all R(C)s tangent
to e2 and e3. For any three edges of B(C), the corresponding configuration can
be computed in either case (1) or (2). Thus we have the following lemma.

Lemma 4. Given a geometric minimal cut C, R(C) has at most 4 configura-
tions and each configuration is a set of 4 edges.

For a general B(C), we only need to find a set of 4 configurations to represent
all its R(C)s.

Lemma 5. Given a geometric minimal cut C, the representation of R(C) (i.e.,
all configurations if R(C) is not unique) can be computed in O(|B(C)|) time.

4 Generating Map of Geometric Minimal Cuts

Given a set C of geometric minimal cuts of H , the Hausdorff Voronoi diagram of
C is a partition of the embedding plane P of H into regions (or cells) so that the
Hausdorff Voronoi cell of a cut C ∈ C is the union of all points whose Hausdorff
distance to some R(C) is closer than to any minimum inducing region of other
cuts in C.

In our MGMC problem, we have four types of objects, the fixed and non-
fixed minimum inducing regions of 1-D geometric minimal cuts and the fixed
and non-fixed minimum inducing regions of 2-D geometric minimal cuts. As it is
well known, the Hausdorff Voronoi diagram can be viewed as the intersections of
wavefronts propagating from each object with unit speed. Thus our construction
of the Hausdorff Voronoi diagram uses the wave propagation concept. We focus
on the discussion of 2-D R(C)s since the same idea can be applied to the 1-D
case. More specifically, for non-fixed R(C), we assume that B(C) is general. We
have two types of objects to consider, the fixed rectangle R(C) and the union
of non-fixed rectangle UR(C). To visualize the whole growing process, we can
lift the waves to 3D with time being the third dimension and thus each object
corresponds to a 3D cone. We will discuss the properties of 3D cones of R(C)
and UR(C) in the next section.

Lemma 6 (see [7]). The Hausdorff Voronoi diagram can be obtained by pro-
jecting the lower envelope of the 3D facet cones to the xy plane.

4.1 Properties and Plane Sweep Approach

Lemma 7. Let C be a 2-D geometric minimal cut with a fixed R(C). At any
moment, the wavefront of R(C) is either empty or an axis-aligned rectangle.
Furthermore, the wavefront in 3D is a facet cone apexed at a segment and with
each facet forming a 45 degree angle with the xy plane. (see Figure 3)
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(a) (b)

Fig. 3. (a) The wavefront (dashed line) of a fixed R(C)
(solid line). (b) Its corresponding 3D V -cone. Note that
the bold dashed line in (a) is corresponding to the bold
solid line in (b).
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Definition 4. Given a fixed R(C), a 3D facet cone ∂W (C) is a U -cone (or
V -cone) if its apex segment sC is parallel to the y (or x) axis. (see Figure 3(b))

Next we discuss the properties of the wavefront of UR(C) of a general B(C).
By Lemma 4, we know that UR(C) is represented by at most 4 configurations
UR1(C), UR2(C), UR3(C) and UR4(C), with each corresponding to a 3D wave-
front. The 3D wavefront of UR(C) is simply the lower envelope of the wavefronts
of the four configurations (looking from −∞ of the z axis). Since the prop-
erty of each wavefront is the same, we only need to focus on one configuration
UR1(C) = {e1, e2, e3, e4}.

UR1(C) is the union of an infinite number of R(C)s. It is possible that some
of them have U -cones as their 3D wavefronts and the others have V -cones as
their 3D wavefronts. To distinguish these R(C)s, we further classify UR1(C)
into two sub-configurations UR1U (C) = {e1U , e2U , e3U , e4U} and UR1V (C) =
{e1V , e2V , e3V , e4V } such that any rectangle from UR1U (C) (or UR1V (C)) gen-
erates only U -cone (or V -cone). The computation of UR1U (C) and UR1V (C)
can be done in O(1) time since we only need to check the position of the square
(denoted by Rsquare in Figure 4) of UR1(C) if it exists. All the rectangles of
UR1(C) with length bigger (or smaller) than the width form U -cones (or V -
cones). In Figure 4, RU (or RV ) is a minimum inducing region corresponding
to an U - (or V -) cone in 3D. Now we analyze the property of the wavefront of
UR1U (C) and UR1V (C) respectively.

To better illustrate the whole growing process of the wavefront of UR1U (C) =
{e1U , e2U , e3U , e4U}, we first choose 3 rectangles {Rmin, Rmid, Rmax} such that
Rmin (or Rmax) is an extreme rectangle of UR1U (C) in which the difference
between the length and width is minimum (or maximum). Rmid is any rectangle
in between. We first analyze the wavefront of these three rectangles and then
generalize the idea to all rectangles in UR1U (C).

Since the Hausdorff distance to a rectangle Rmin is determined by the four
corner points, an equivalent view is to propagate 4 separated waves from the 4
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Fig. 5. The growing process of the wavefront for 3 rectangles

corner points of Rmin with each being an L∞ ball. Let B1min, B2min, B3min

and B4min be the 4 L∞ balls of Rmin. The common intersection of the 4 balls
are the wave WRmin of Rmin. We grow the 4 corner balls of Rmid and Rmax

in the same way and denote their waves by WRmid and WRmax respectively.
Initially, both of them are empty. We call it stage 1. Once the size of the 4
balls of Rmin reaches the minimum Hausdorff distance to Rmin, their common
intersection forms a segment smin located at the center of Rmin and parallel to
the shorter side of Rmin (see Figure 5(a)). As Bimin grows, WRmin becomes
a rectangle. Later, smid appears when the size of the 4 balls of Rmid reaches
the minimum Hausdorff distance to Rmid and intersects WRmin (see Figure
5(b)). After that, WRmid grows in the same way as WRmin does. Finally, smax

appears and intersects the above two rectangles (see Figure 5(c)). We call the
above procedure stage 2. In stage 3, all 3 rectangles grows simultaneously (see
Figure 5(d)).

To analyze the wavefront WUR1U (C) of UR1U (C), we generalize the above
discrete process by replacing Rmid with the union of all rectangles between Rmid

and Rmax. It is easy to see the shape of WUR1U (C) at each stage. In stage 1,
WUR1U (C) is empty. In stage 2, WUR1U (C) is a segment smin. WUR1U (C)
keeps the shape as a hexagon (see Figure 6(a)) until smax appears. Each non-
rectilinear edge of the hexagon is parallel to {e1U , e2U , e3U , e4U} respectively. In
stage 3, WUR1U (C) is an octagon, since each endpoint of smax grows to an
segment paralleled to the x-axis. We denote the two endpoints of smin (or smax)
as pamin and pbmin (or pamax and pbmax). ea (or eb) is the straight line segment
between pamin and pamax (or pbmin and pbmax) (see Figure 6(b)). The property
of wavefront of UR1V (C) is the same except that everything in each stage is
rotated counterclockwise by 90-degree.



246 L. Xu, E. Papadopoulou, and J. Xu

(a)

Smax
Hexagon OctagonSmin

Smax Smin

pamax

pamin

pbmin

pbmax

ea

eb

(b)
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Fig. 7. (a) CV -cone. (b) 5 stages of sweeping CV -
cone. (c) 4 stages of sweeping CU -cone (view the
process by rotated 90-degree).
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Fig. 8. (a) stage 4 (b) stage 5

To better understand the whole growing process, we lift the wavefront
WUR1U (C) to 3D, with time being the third dimension (see Figure 7(a)). The
following lemma summarizes the main properties of the growing process.

Lemma 8. Let C be a 2-D geometric minimal cut with non-fixed R(C). At
stage 1, the wavefront WUR1U (C) (or WUR1V (C)) is empty. At stage 2 (or
3), WUR1U (C) (or WUR1V (C)) is a hexagon (or an octagon) with the property
discussed above. Furthermore, the wavefront in 3D is a facet cone apexed at a
segment and with each facet forming a 45 degree angle with the xy plane. It is a 6-
sided (or 8-sided) facet cone in stage 2 (or 3). Let la and lb be the top and bottom
(or left and right) edge of the 6-sided facet cone of WUR1U (C) (WUR1V (C))
at stage 2. Then ea (or eb) is the projection of la (or lb) on the xy plane.

Definition 5. Given a non-fixed R(C) and one of its sub-configuration I, a
3D facet cone ∂WI(C) is a CU -cone (or CV -cone) if its apex segment smin is
parallel to the y (or x) axis.

By the above lemma, CU -cone (or CV -cone) has 6 facets at stage 2 and 8
facets at stage 3. Thus we totally have 4 types of objects in 3D, U -cone, V -cone,
CU -cone and CV -cone.

Lemma 9. The wavefront of UR(C) can be represented by at most 4 CU -cones
and 4 CV -cones.

To efficiently construct the Hausdorff Voronoi diagram HVD(C), we follow
the spirit of Fortune’s plane sweep algorithm for points [3], and sweep along the
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x axis direction a tilted plane Q in 3D which is parallel to the y axis and forms a
45 degree with the xy plane. Q intersects the xy plane at a sweep line L parallel
to the y axis.

Since every facet of a 3D facet cone forms a 45 or 135-degree angle with the xy
plane and apexed at either a horizontal or vertical segment, at each moment, the
intersection of Q and a cone ∂WI(C) is either a V -shape curve (i.e., consisting
of a 45-degree ray and a 135-degree ray on Q) or a U -shape curve (i.e., consisting
of a 45-degree ray, a segment parallel to L, and a 135-degree ray). When the cone
is first encountered, it introduces either a V -shape curve or a U -shape curve to
Q. When L (or Q) moves, the curve grows and its shape may change from a
V -shape to a U -shape. In addition, the height of the apex of a V -shape curve
could change due to the existence of CV -cones. For both CU -cone and CV -
cone, the 45-degree and 135-degree ray of a U -shape curve could move along the
y direction on Q. Next, we discuss the intersection between each type of cones
and Q in details.

First we consider U cones. Let ∂W (C) be any U cone with apex segment
sC , and v1 and v2 be the two endpoints of sC . When the sweep plane Q first
encounters ∂W (C), it introduces a U -shape curve Cu to Q. Let rl, rr, and sm
be the left and right rays and the middle segment of Cu respectively. Initially
sm is the apex segment sC , and rl and rr are the two edges of facet cone. When
Q (or L) moves, Cu grows and always maintains its U -shape.

Lemma 10 (see [7]). Let ∂W (C), Cu, rl, rr and sm be defined as above. When
Q moves in the direction of the x axis, Cu is always a U -shape curve. The
supporting lines of rl and rr remain the same on Q, and the two endpoints of
sm (the fixed points of rl and rr) moves upwards in unit speed along the two
supporting lines.

Let ∂WI(C) be any CU -cone with apex segment smin, and pamin and pbmin be
the two endpoints of smin. When the sweep plane Q first encounters ∂WI(C),
it introduces a U -shape curve Ccu to Q. Let rl, rr, and sm be the left and right
rays and the middle segment of Ccu respectively.

Lemma 11. Let ∂WI(C), Ccu, rl, rr and sm be defined as above. When Q
moves in the direction of the x axis, Ccu is always a U -shape curve (i.e., at each
moment, rl and rr remain 45-degree and 135-degree respectively.). The whole
process can be divided into 4 stages (see Figure 7(c)). At stage 1, sm is the apex
segment sMM which is the edge of rectangle RI parallel to y-axis with smaller
x coordinate. RI is the rectangle growing from smin at the moment when smax

appears. At stage 2, sm moves in unit speed downwards from sMM to smin with
its two endpoints staying on la and lb respectively. At stage 3, sm moves in unit
speed upwards from smin to SNN with its two endpoints staying on la and lb
respectively. SNN is the edge of rectangle RI parallel to sMM . At stage 4, two
endpoints of sm moves upwards in unit speed along rl and rr.

For an arbitrary V cone ∂W (C′), let sC′ be its apex segment, and v′1 and v′2
be its two endpoints (or left and right endpoints). When Q first touches ∂W (C′)
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at v′1, it generates a V -shape curve C′
v. C′

v remains a V -shape curve before
encountering v′2. After that, C

′
v becomes a U -shape curve.

Lemma 12 (see [7]). Let rl and rr be the two rays of C′
v, and sm be the middle

segment of the U -shape curve C′
v after Q visiting v′2. During the whole sweeping

process, the supporting lines of rl and rr are fixed lines on Q. C′
v remains the

same V -shape curve on Q before encountering v′2. sm moves upwards in unit
speed along the supporting lines of rl and rr after Q encounters v′2.

For an arbitrary CV -cone ∂WI(C′), let s′min be its apex segment, and pa′min

and pb′min be its two endpoints (or left and right endpoints).

Lemma 13. The whole sweeping process of a CV -cone can be divided into 5
stages (see Figure 7(b)). At stage 1, when Q first touches ∂WI(C′) at pa′max, it
generates a V -shape curve Ccv. At stage 2, Ccv is still a V -shape curve moving
in unit speed downwards from pa′max to pa′min with its apex staying on l′a. At
stage 3, Ccv remains the same V -shape curve on Q before encountering pb′min.
At stage 4, Ccv is a 4-edge V -shape curve (see solid lines in Figure 8 (a)) moving
in unit speed upwards from pb′min to pb′max with its apex staying on l′b. At stage
5, after Q encounters pb′max, Ccv becomes an 5-edge U -shape curve (see solid
lines in Figure 8 (b)) with the middle segment s′m moves upwards in unit speed
along the fixed supporting lines of r′l and r′r on Q.

The 4-edge V -shape curve (5-edge U -shape curve) is essentially a union of U-
shape curves if a V -shape is considered as a degenerated case of U -shape curve
(See dotted lines in Figure 8 (a)). Two of those U -shape curves are shown at
dotted lines in Figure 8. For each 4-edge V -shape curve (5-edge U -shape curve),
we divide it to two curves, one curve with 45 and 135 degrees lines and another
curve with the rest. Instead of working on the 4-edge V -shape curve and 5-edge
U -shape curve directly, we convert each of them to the normal U or V -shape
curve by computing the intersections with other curves on the beach line. Since
any two curves may intersect at most twice, the same complexity will be kept
of the beach line as [7]. Thus, even though there are 4 types of cones, at each
moment, we only have U and V -shape curves on Q. We have two cases in which
a hidden U or V -shape curve could appear in the beach line instead of only one
case as in [7].

Lemma 14. Let ∂W (C1) be either a U or V cone and ∂W (C2) be a V cone
with its left endpoint v1 of sC2 being inside of ∂W (C1) and its right endpoint
v2 being outside of ∂W (C1). If ∂W (C2) is not entirely contained by the union
∪Ci∈C;Ci �=C2∂W (Ci), the V -shape curve C2 introduced by ∂W (C2) will be hidden
by the beach line at the beginning and then becomes part of the beach line later.
This is the first case in which a hidden U or V -shape curve could appear in the
beach line.

Lemma 15. Let ∂W (C′
1) be any type of cone and ∂W (C′

2) be a CV -cone
with pa′max or pa′min being inside of ∂W (C′

1) and its right endpoint pb′min

being outside of ∂W (C′
1). If ∂W (C′

2) is not entirely contained by the union
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∪Ci∈C;Ci �=C′
2
∂W (Ci), the V -shape curve C′

2 introduced by ∂W (C′
2) will be hidden

by the beach line at the beginning and then becomes part of the beach line later.
This is the second case in which a hidden U or V -shape curve could appear in
the beach line.

Lemma 16. Let C be a set of N minimal geometrical cuts. The edges of HVD(C)
are either segments or rays, and the vertices of the HVD(C) are either the ver-
tices of bisectors or the intersections of bisectors.

Lemma 17. The size K of the L∞ Hausdorff Voronoi diagram of N minimum
geometrical cuts is O(N+M ′), where M ′ is the number of intersecting minimum
inducing region pairs. The bound is tight in the worst case.

4.2 Events, Data Structures and Algorithm

To implement the plane sweep algorithm, we use similar data structures as in
[7] with one modification for handling V events. To efficiently detect all possible
V events, our idea is to process the apex points of all V -shape curves, including
(1) the left endpoint of a V-cone’s apex segment and (2) pamax and pamin of a
CV -cone into the 3D dynamic range search tree data structure MD. Thus we
are able to handle all events efficiently in a similar way as [7].

Theorem 1. The L∞ Hausdorff Voronoi diagram HVD(C) of a set C of geo-
metric minimal cuts can be constructed by a plane sweep algorithm in O((N +
K) log2 N log logN) time, where N = |C| and K is the complexity of the Haus-
dorff Voronoi diagram.
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