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Abstract. We study the following TV ad placement problem: m
identical time-slots are on sell within a period of m days and only one
time-slot is available each day. Advertisers arrive online to bid for some
time-slots to publish their ads. Typically, advertiser i arrives at the ai’th
day and wishes that her ad would be published for at most si days. The
ad cannot be published after its expiration time, the di’th day. If the
ad is published for xi ≤ si days, the total value of the ad for advertiser
i is xi · vi; otherwise, the value of the ad to be published for each day
diminishes and the total value is always si · vi. Our goal is to maximize
the social welfare: the sum of values of the published ads. As usual in
many online mechanisms, we are aiming to optimize the competitive
ratio: the worst ratio between the optimal social welfare and the social
welfare achieved by our mechanism.

Our main result is a competitive online mechanism which is truthful
and prompt for the TV ad placement problem. In the mechanism, each
advertiser is motivated to report her private value vi truthfully and
can learn her payment at the very moment that she wins some time-
slots. Before studying the general case where the maximum demands
si’s are non-uniform, we study the special case where all si’s are uniform
and prove that our mechanism achieves a non-trivial competitive ratio
of 5. For the general case where the maximum demands si’s are non-
uniform, we prove that our mechanism achieves a competitive ratio of
5 · �smax/smin�, where smax, smin are the maximum and minimum value
of si’s. Besides, we derive a lower bound of min{ vmax+vmin

2vmin
, smax
smin

} on the
competitive ratio for the general case, where vmax, vmin are the maximum
and minimum value of vi’s.

1 Introduction

TV advertising has long been a profitable industry and advertising revenue
provides a significant portion of the funding for most privately owned television
networks. Advertisers are eager to promote a wide variety of goods, services and
ideas by making use of advertisements. From the viewpoint of advertising, one
television station, or publisher of advertisements, owns an inventory of time-
slots, which are typically between 30 seconds to 120 seconds long and available
daily. For an advertiser arriving online, she wishes that her advertisement could
be published in a proper time-slot and repeated for a few days before the ad
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is expired. As the value of one ad is diminishing when the ad is broadcast for
too many times and the advertiser has budget constraint, the repeating times of
the ad should have upper limit. In the paper, we design an auction mechanism
for publishers to allocate time-slots that maximizes the social welfare while
satisfying advertisers’ preferences.

1.1 The Problem

We study the following TV ad placement problem: m identical time-slots are
on sale within a period of m days and only one time-slot is available each
day. Advertisers arrive online to bid for some time-slots to publish their ads.
Typically, advertiser i arrives at the ai’th day and wishes her ad could be
published for at most si consecutive days.

1 The ad cannot be published after its
expiration time, the di’th day. If the ad is published for xi ≤ si days, the total
value of the ad for advertiser i is xi · vi; otherwise, the value of the ad to be
published for each day diminishes and the total value is always si · vi.2 The goal
is to maximize the social welfare: the sum of values of the published ads.

In this paper, we focus on designing truthful mechanisms. The information of
all advertisers arriving in future is unknown in the online auction. However, we
assume that when one advertiser i arrives, its arrival time ai, expiration time di
and maximum demand si are public information. The only private information
is the value vi and selfish advertisers may report false values to the publisher
in order to maximize their profits. A truthful mechanism would motivate selfish
advertisers to reveal their true values. This goal is usually achieved by means of
making the payments collected from advertisers depending on the mechanism’s
outcome instead of advertisers’ reported values.

Besides truthful, we also require our mechanisms to be prompt, which means
that any advertiser that wins some time-slots could always learn her payment
immediately after winning these time-slots. Prompt mechanisms are firstly
proposed in [10]. For mechanisms that are not prompt, three main disadvantages
are discussed in [10]: (1) A winning advertiser does not know how much money
she has spent and thus does not know how much money she has left. She
cannot use her remaining money to take part in another auction. (2) A winning
advertiser may pay long after she won her time-slots. If she is not honest, she can
deny paying the money while her ad has already been published. (3) A winning
advertiser essentially provides the publisher with a “blank check” in exchange
for time-slots. It is hard for advertisers to verify the exact calculation of their
payments. In prompt mechanisms, all these disadvantages are avoided, as any
advertiser can learn her payment when her ad begins to be displayed.

1 In the whole paper, we consider the scenario that each advertiser is only interested
in publishing her ad on some consecutive days. Note that even if advertisers can
publish ads on days which are not consecutive, our prompt mechanism still works
and has the same competitive ratio; but our lower bound on the competitive ratio
does not hold in such model.

2 To utilize time-slots efficiently, any rational publisher will not allocate advertiser i
more than si time-slots.
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1.2 Our Results

Our main result is an online mechanism which is truthful and prompt for the TV
ad placement problem. In the mechanism, we partition all time-slots into groups
evenly and all time-slots in one group can only be allocated to one advertiser.
One advertiser can win at most one group even though she may demand more.
We prove that each advertiser is motivated to reveal her true value in order to
win one group of time-slots. Once an advertiser wins a group of time-slots, the
price she pays for each time-slot in the group can be determined to be the least
value she can report to win one group.

Before studying the general case where the maximum demands si’s are
non-uniform, we study the special case where all si’s are uniform and prove
that our mechanism achieves a non-trivial competitive ratio of 5. The crucial
technique we use is to construct a novel mapping from the optimal solution to
the solution produced by our online mechanism. For the general case where the
maximum demands si’s are non-uniform, we prove that our mechanism achieves
a competitive ratio of 5 · �smax/smin�, where smax, smin are the maximum and
minimum value of si’s. If smax is comparable with smin, our mechanism is still
very competitive. Besides, we derive a lower bound of min{ vmax+vmin

2vmin
, smax

smin
} on

the competitive ratio for the general case, where vmax, vmin are the maximum
and minimum value of vi’s.

Remarks: Besides applied in TV ad placement problem, our online auction
mechanism can solve other problems. Instead of time-slots in TV stations, the
ad space may be a physical newspaper sheet with ads being published on it
daily or a billboard that displays a set of ads on a fixed space with changes
every specific time period. Our mechanism can also be used to solve the on-
demand data broadcast problem [7, 13], in which clients make requests for data
and all requests have deadlines. The server broadcasts the requested data at
some time.

1.3 Related Work

The advertisement placement problem has been widely studied in recent years.
In [12], the auction system used by Google for allocation and pricing of TV ads
is introduced. The system uses a simultaneous ascending auction to generate a
schedule of ads for TV companies daily. Online keyword advertising among mul-
tiple bidders with limited budgets is studied in [1,6,15]. In [1], bidders are offline
while the ad places arrive online and an optimal e

e−1 -competitive randomized
algorithm is introduced. Another important branch about advertisement auction
is designing truthful mechanisms, which is studied in [2, 3].

One classical technique used in many truthful mechanisms is the VCG
payment scheme where each advertiser is charged the harm she causes to other
advertisers and bidding the true value is the dominant strategy [14]. However,
VCG cannot be applied to online problems because it requires computing the
social welfare of the optimal allocation which cannot be computed in an online
fashion. Moreover, even when the optimal allocation is known, the payment of a
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winner cannot be determined by VCG at the time when she wins her time-slots;
her payment may depend on future events.

One special case of the TV ad placement problem is studied in [10]. They
assume that advertisers arrive and depart over time. In contrast to our problem,
each advertiser is interested in winning only one time-slot to publish her ad before
she departs. For this special case, they show a 2-competitive prompt and truthful
mechanism. The proof of truthfulness and the analysis of the competitive ratio
are somewhat straightforward as any advertiser can win only one time-slot in
both the optimal solution and the solution produced by their prompt mechanism.
When analyzing the competitive ratio, they match at most two advertisers that
win one time-slot in the optimal solution to exactly one advertiser that wins one
time-slot in their prompt mechanism. In our problem, one advertiser can win
more than one group of time-slots in the optimal solution. We need to design
a novel matching from the optimal solution to the solution produced by our
mechanism without collision. In the analysis, we map at most 5 advertisers in
the optimal solution to one advertiser with higher value winning one group in our
online mechanism. One difficulty in the analysis is that several advertisers may
share one group of time-slots in the optimal solution. We adjust advertisers’
arrival time and expiration time slightly and prove a competitive ratio of 5
successfully.

Azar et al. [4] studies a problem similar to that in [10]. In their auction
problem, each ad can be published for at most once before the ad is expired.
But each ad has an arbitrary size no greater than one and several ads can be
published in one time-slot on condition that the total size does not exceed one.
They design a truthful and prompt mechanism. The mechanism treats ads with
size < 1

2 and size ≥ 1
2 separately. They maintain a tentative schedule of ads for

each day, and always prefers ads with higher density (i.e., the ratio of value to
size). Their mechanism is proved to be 6-competitive.

In the full information setting, our TV ad placement problem is similar to the
online scheduling problem with jobs arriving over time and having deadlines to be
finished. Online scheduling with unit-length jobs has been studied in [5,8,9,11].
The best deterministic algorithm achieves a competitive ratio of 2

√
2 − 1 [11]

and no deterministic algorithm can be better than
√
5+1
2 -competitive [8]. The

on-demand broadcasting problem is studied in [7, 13], which can be reduced to
online scheduling problem with jobs in different lengths. In [7], Chan et al. show
an upper bound of 4Δ + 3 and a lower bound of Δ/ lnΔ on the competitive
ratio, where Δ is the ratio between the length of the longest and shortest jobs.

2 Preliminaries

Consider that m identical time-slots are on sale within a period of m days. Only
one time-slot is available each day. There are advertisers arriving online and
each advertiser has an ad to be published for a period before the ad is expired.
One advertiser i can be represented by a tuple (si, vi, ai, di), where si ∈ N

+ is
the maximum number of consecutive time-slots the advertiser demands her ad
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would be published for, vi ∈ R
+ refers to the value of the ad if it is published for

one day, and ai, di ∈ N
+ are the arrival and expiration time (di − ai + 1 ≥ si).

The lower bound of all si’s are smin and known ahead of time. For any advertiser
i, we assume that her value vi is private while the other information is public.
Advertiser i wishes that her ad is published in time window Wi = [ai, di]. If
x ≤ si consecutive time-slots in Wi are assigned to advertiser i and her payment
for these time-slots is pi, she gains a total value of x · vi and a net profit of
x · vi − pi.

Our goal is to maximize the social welfare which is the total value of all the
published ads. The auction mechanism should be:

(a) Incentive compatible: each advertiser i is incentive to reveal her true
value vi in the auction.

(b) Prompt: each advertiser can learn her total payment at the very moment
that her ad begins to be published.

We say a mechanism is c−competitive if it can always achieve social welfare
which is at least 1

c times of the optimal social welfare.
The further structure of the paper is as follows: in section 3 we show a lower

bound on the competitive ratio of the problem. In section 4, we introduce a
mechanism which is truthful and prompt. In section 5, we show the mechanism
achieves a competitive ratio of 5 when all advertisers’ demands are uniform and
a competitive ratio of 5 · �smax/smin� when their demands are non-uniform.

3 A Lower Bound on the Competitive Ratio

Before showing our main result, a prompt mechanism for the TV ad placement
problem, we derive a lower bound on the competitive ratio for this problem.
Assume that for any advertiser i, smin ≤ si ≤ smax and vmin ≤ vi ≤ vmax.
For the case where all si’s are one, a lower bound of 2 is shown in [10]. For the
general case where si’s are not uniform, we show that the lower bound of the
competitive ratio is min{ vmax+vmin

2vmin
, smax

smin
}.

Theorem 1. The competitive ratio of the TV ad placement problem is at least
min{ vmax+vmin

2vmin
, smax

smin
}.

Proof. To prove the lower bound of the competitive ratio, we measure the
performance of any prompt mechanism against an adversary that knows all
information and adjusts the input sequence according to the decisions made by
the prompt mechanism. On the 1’st day, advertiser u1 : (smax, vmin, 1, smax)
arrives. Wlog, all the x time-slots in time window [x0, x0 + x− 1] are allocated
to u1 at the x0’th day in the prompt mechanism. These x time-slots will not be
available to any advertiser arriving after the x0’th day.

– If x ≤ smin, the adversary stops the input sequence. The social welfare of the
prompt mechanism is: ALG = x ·vmin ≤ smin ·vmin. In the optimal solution,
all time-slots in window [1, smax] are allocated to u1 and the optimal social
welfare is: OPT = smax · vmin. So: OPT/ALG ≥ smax/smin.
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– Else, x > smin, the adversary sends another advertiser u2 : (x−1, vmax, x0+
1, x0 + x − 1) and then stops the input sequence. No time-slot in u2’s time
window W2 = [x0 + 1, x0 + x − 1] is available for u2 and ALG = x · vmin.
One feasible solution is to allocate u2 all the x − 1 time-slots in window
W2 and allocate u1 all the x0 time-slots in windows [1, x0]. Then we get:
OPT ≥ (x− 1) · vmax + x0 · vmin ≥ (x− 1) · vmax + vmin. So

OPT

ALG
≥ (x− 1) · vmax + vmin

x · vmin
=

vmax − vmax−vmin

x

vmin
≥ vmax + vmin

2 · vmin
,

the last inequality is true as x ≥ 2.

No matter what the value of x is, we get that OPT/ALG ≥ min{ vmax+vmin
2vmin

, smax
smin

}.

4 A Prompt and Truthful Mechanism

In this section, we introduce a prompt and truthful mechanism for the TV ad
placement problem. In section 5, we will continue to analyze the competitive
ratio of the mechanism.

In the auction, advertisers arrive online and it is known that smin is the lower
bound of all si’s. When advertiser i arrives, we are not clear about the advertisers
arriving later. As shown in the analysis of the section 3, we cannot allocate i
either too many or too few time-slots to achieve a low competitive ratio. In
our prompt mechanism, no matter what si is, we allocate each advertiser 0 or
s = �smin/2� time-slots. We partition all the m time-slots into M = �m/s�
groups and call all the s time-slots in time window [(j − 1) · s+ 1, j · s] as group
Gj (1 ≤ j ≤ M)3. In our mechanism, each group can be allocated to only one
advertiser and each advertiser can win only one group which is totally included
in her time window4 .

Our mechanism is implemented by the HALF-algorithm, as shown in Algo-
rithm 1. In the HALF-algorithm, we maintain one candidate advertiser cj for
each group Gj . Whenever a new advertiser i arrives, look at the candidates for
groups totally included in Wi and let cj be the candidate with the lowest value
(we say i competes on group Gj). If vcj < vi, i will replace cj as the candidate
of Gj ; otherwise, i is rejected irrevocably. On day (k− 1) · s+1, the group Gk is
allocated to its current candidate ck and the payment for the group is calculated.
The price that any winner pays for each time-slot in her winning group equals
her critical value: the minimum value she can declare and still win one group.

In the HALF-algorithm, any advertiser i can only be allocated s time-slots
or 0 slots, although she bids for as many as si time-slots. Before proving the
truthfulness and promptness of HALF-algorithm, we will prove an important
property shown in Lemma 2.

3 When M is not a multiple of s, introduce some dummy slots which will not be used
by any advertiser.

4 Group Gj is totally included in time window Wi = [ai, di] if and only if ai ≤
(j − 1) · s+ 1 and di ≥ j · s.
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Data: Advertisers arriving online
Result: Allocation of time-slots
Set s := �smin/2� and t := 1 ; /* t means it is the t’th day now */

Initialize all candidates for groups as dummy advertisers with value of 0;
while t ≤ m do

while there is a new advertiser ui : (si, vi, ai, di) arriving on day t do
Let S be the set of candidate advertisers for groups which are totally
included in windows Wi;
Let cj be the candidate with the lowest value in S (if there are more
than one such candidate, choose one arbitrary) ; /* We say i competes

on group Gj. */

if vcj < vi then
Make i be the new candidate for group Gj .

end

end
if t == (k − 1) · s+ 1 then

Allocate group Gk to its current candidate advertiser ck;
Let p be the minimum value that advertiser ck can declare and still win
one group;
The payment of advertiser ck is s · p;

end
t := t+ 1;

end
Algorithm 1. HALF-algorithm

Lemma 2. Assume that one advertiser wins a group in the HALF-algorithm.
If she has reported a higher bid and others’ bids are unchanged, she can still win
one group.

Proof. Suppose that advertiser i : (si, vi, ai, di) wins one group Gj in the HALF-
algorithm. We will prove that if she reports v′i > vi and others’ bids are
unchanged, she can still win one group to publish her advertisement. First, note
that advertiser i will compete on the same group Gj , no matter what value she
reports. Second, compare two runs of the HALF-algorithm in two cases: i reports
vi in case 1 and v′i in case 2, and we can show that at any time the candidate
for any group is the same in these two cases (this implies that i can win the
same group in both cases). Before i arrives, these two cases are identical. Look
at the next advertiser r arriving after i. For a contradiction, assume that the
candidate for some group changes after r arrives in case 2. This can only happen
when r competes on group Gj in case 1 and competes on another group Gh

in case 2. Assume ch is the candidate of Gh before r arrives. In case 1, both
i and r compete on Gj and i wins. Thus, vi ≥ vr. r competes on Gj instead
of Gh so vch ≥ vi. It follows that vch ≥ vi ≥ vr. In case 2, r competes on
Gh instead of Gi. But as vr ≤ vch , r cannot become the candidate of Gh. The
candidates of Gj and Gh are unchanged and so do the candidates of all the other
groups. A contradiction occurs. Thus, the candidates of all groups are unchanged
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after advertiser r arrives. To finish the proof of monotonicity, we observe all the
advertisers arriving after i one by one and use the same analysis.

Theorem 3. The HALF-algorithm is truthful and prompt.

Proof. We prove the truthfulness first. The true value of advertiser i is vi. Let ui,
u′
i be the net profits that advertiser i gains when bidding vi, v

′
i respectively. We

argue that ui ≥ u′
i in each of the following cases, as a result bidding truthfully

is a dominant strategy.

1. i wins one group when bidding either vi or v
′
i. In these two cases, i competes

on one identical group Gj and then wins that group. The price p that i pays
for each time-slot in Gj equals her critical value. So p is independent of i’s
bidding values and her total payment is pi = s ·p. Thus, ui = s ·vi−s ·p = u′

i.
2. i wins one group when bidding vi and no group when bidding v′i. From lemma

2, we know that vi ≥ v′i. When bidding vi, i wins group Gj and the price
paid for each time-slot is p. As p is the minimum value that i can bid to win
group Gj , we get p ≤ vi. Hence, ui = s · vi − s · p ≥ 0 = u′

i.
3. i wins one group when bidding v′i and no group when bidding vi. When

bidding v′i, i wins group Gj and the price paid for each time-slot is p. As p
is the minimum value that i can bid to win group Gj and i wins no group
when bidding vi, we have p ≥ vi. Thus, u

′
i = s · vi − s · p ≤ 0 = ui.

4. i wins no group when bidding either vi or v
′
i. Thus, ui = u′

i = 0.

Now we prove the promptness. Recall that regardless what value advertiser
i reports, she will compete on one identical group Gj . Moreover, the winner of
group Gj cannot be advertisers arriving after time-slot (j − 1) · s + 1. As the
algorithm is monotone, the payment of i for group Gj is well defined and can
be calculated at the very moment when Gj is allocated to i, which is time-slot
(j − 1) · s+ 1. Thus the algorithm is prompt.

5 Competitive Ratios

We have shown a lower bound of min{ vmax+vmin

2vmin
, smax

smin
} on the competitive ratio

for the ad placement problem in section 3. We analyze the competitive ratio
of the HALF-algorithm in this section. For the case where all demands si’s are
uniform, the HALF-algorithm is proved to be 5-competitive. For the general
case where si’s are non-uniform, the algorithm is proved to be 5 · �smax/smin�-
competitive. Note that when smax is comparable with smin, the algorithm is still
very competitive.

5.1 Competitive Ratio When Demands Are Uniform

Assume that all demands si’s have the same value of smin. Then in HALF-
algorithm, s = �smin/2� and each advertiser i can only win one group (s time-
slots) which is totally included in her time window Wi. However, in the optimal
solution with the optimal social welfare OPT , i can win any time-slot in Wi.
To compare the social welfare of HALF-algorithm, ALG, with OPT , we need to
define an intermediate variable:
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Definition 4. OPT ′ is the optimal social welfare when the maximum number
of time-slots that any advertiser i demands is 2s and her time window is W ′

i =
[a′i, d

′
i] = [�ai−1

s 	 · s+ 1, �di

s � · s].
We call W ′

i as i’s extended time window. As in the optimal solution, any
advertiser i can win at most smin ≤ 2s time-slots in windows Wi ⊆ W ′

i , we
can get that OPT ≤ OPT ′. We will compare ALG with OPT ′. Consider one
solution which achieves the social welfare of OPT ′ now. In the solution, each
advertiser bids for at most 2s time-slots in time window W ′. Note that there
are s time-slots in one group and any a′i is the beginning of one group while any
d′i the end of one group. Without loss of generality, we can find one solution O′

in which the social welfare is OPT ′, each group is allocated to one advertisers
and each advertiser i wins 0, 1 or 2 groups in her extended window W ′

i . In the
following theorem, we will study this solution O′ in detail.

Theorem 5. The HALF-algorithm is 5-competitive when maximum demands
are uniform.

Proof. Let A = (p1, . . . , pM ) be the solution of HALF-algorithm where advertiser
pj wins groupGj . Let O

′ = (o1, . . . , oM ) be the solution which achieves the social
welfare of OPT ′. In O′, advertiser oj wins group Gj and some advertisers may
appear twice in O′ (e.g. oj = oj+1). We will match each oj in O′ to exactly one
advertiser � in A where voj ≤ v�. Each advertiser in A is associated with at most
5 members of O′. In this way, OPT ≤ OPT ′ ≤ 5 · ALG and the competitive
ratio of 5 is proved.

The matching is constructed as follows. Let (oj1 , . . . , ojkj ) be the members

of O′ that compete on time-slot j in HALF-algorithm (ordered by their arrival
time). Note that ojr wins group Gjr in O′ and Gjr should be in ojr ’s extended
time window W ′

ojr
. The number of groups in the extended time window W ′

ojr
may be one or two more than that in the original time window Wojr . Before
showing the matching, we define function P mapping ojr to one member in A
which wins one group in Wojr :

1. P (ojr ) = pjr if group Gjr is totally included in Wojr ;
2. P (ojr ) = pjr+1 if group Gjr is not totally included in Wojr and is the first

group in W ′
ojr

;
3. P (ojr ) = pjr−1 if group Gjr is not totally included in Wojr and is the last

group in W ′
ojr

;

In case (2) group Gjr+1 should be totally included in Wojr and in case (3) group
Gjr−1 should also be totally included in Wojr as s = �smin/2� and dojr − aojr +
1 ≥ smin. Now we show the rules of matching:

1. If ojkj−1
= ojkj , match both ojkj−1

and ojkj to pj (denoted by ojkj−1
, ojkj →

pj); otherwise, ojkj → pj .

2. If r < kj and ojr �= ojr+1 and ojr �= ojr−1 , then ojr → P (ojr+1).
3. If r < kj − 1 and ojr = ojr+1 , then:

(a) If ojr+2 = ojr+3 , then ojr → P (ojr+2) and ojr+1 → P (ojr+3);
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(b) Else if there exists t s.t. t > r and ojt = ojt+1 , then choose the minimum
t, ojr → P (ojr+2 ) and ojr+1 → P (ojt+1 );

(c) Else, ojr → P (ojr+2) and ojr+1 → pj;

Rule (1) is used to deal with the last advertiser ojkj competing on time-slot

j. Rule (2) is for advertisers appearing once in O′ and rule (3) is for those
appearing twice in O′. As one advertiser can appear at most twice in O′, our
matching covers all cases and each element in O′ can be matched to exactly one
advertiser in A. Another important fact we will use later is that there are no
two elements, oj′1 , oj′2 s.t. oj′1 → P (oj′3 ) and oj′2 → P (oj′3) in our matching.

Firstly, we prove that any advertiser pj is associated with at most 5 elements
in O′. There are two possible cases: (a) ojkj−1

= ojkj , which implies that rule

(3c) is not applicable. Rule (1) matches two elements, ojkj −1 and ojkj , to pj . pj
can also appear in matching like oj′r → P (oj′

r′
), where P (oj′

r′
) = pj . Note that

function P can map at most three elements in O′ to pj (they are oj−1, oj , oj+1)
, and it does not happen that there are two elements, oj′1 , oj′2 s.t. oj′1 → P (oj′3)
and oj′2 → P (oj′3). So rule (2) and (3) can match at most three elements in O′ to
pj . (b) ojkj−1

�= ojkj . Rule (1) and (3c) matches two elements, ojkj and ojr+1 , to

pj (ojr+1 may not exist). Similar to the former case, pj can also appear at most
three times in matching like oj′r → P (oj′

r′
), where P (oj′

r′
) = pj.

It remains to be proved that any element in O′ is always matched to an
advertiser with higher or equal value. In rule (1), since both ojkj and pj compete

on Gj and pj wins, vojkj
≤ vpj . In rule (2), when ojr+1 arrives, she competes

on Gj rather than the group advertiser P (ojr+1) wins. At this moment, ojr has
already arrived, thus the current candidate h for the group advertiser P (ojr+1)
wins has value at least vojr , i.e., vojr ≤ vh. As vP (ojr+1

) should be no less than vh,

vojr ≤ vh ≤ vP (ojr+1
). In rule (3a), when ojr+2 arrives, she competes on Gj rather

than the group advertiser P (ojr+2) or P (ojr+3) wins. Similarly, vojr ≤ vP (ojr+2
)

and vojr+1
≤ vP (ojr+3

). In rule (3b) and (3c), we can get similar results.

5.2 Competitive Ratio When Demands Are Non-uniform

Now we consider the general case where smax is not necessarily equal to smin.
In this case, let ALG2 be the social welfare achieved by the HALF-algorithm.
Let O2 be the optimal solution and OPT 2 be the optimal social welfare. In O2,
advertisers may win more than smin time-slots. We will use O2 to construct one
new solution O2′ in which any advertiser wins no more than smin time-slots.
The social welfare of O2′ is OPT 2′ and it can be proved that OPT 2 ≤ OPT 2′ ·
�smax/smin�. Then we will compare OPT 2′ with ALG2 and a competitive ratio
of 5 · �smax/smin� is proved.

Theorem 6. The HALF-algorithm is 5 · �smax/smin�-competitive when maxi-
mum demands are non-uniform.
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Proof. Let ALG2 be the social welfare achieved by the HALF-algorithm. Let
O2 be the optimal solution and OPT 2 be the optimal social welfare. We use
O2 to construct a new solution O2′. For any advertiser i who wins xi time-slots
in O2, we choose the first x′

i = �xi/�smax/smin�� time-slots from all these xi

time-slots and allocate them to i in O2′. The social welfare of O2′ is OPT 2′. As
xi ≤ x′

i · �smax/smin� for any i, we get:

OPT 2 ≤ OPT 2′ · �smax/smin�.
In the auction, each advertiser i demands at most si time-slots. Now consider

another scenario where each advertiser i’s maximum demand is smin instead of
si and her other information remains the same as before. In this scenario, the
social welfare achieved by HALF-algorithm is ALG3. The optimal solution is O3
and the optimal social welfare is OPT 3. As all maximal demands are uniform,
by Theorem 5, we can get:

OPT 3 ≤ 5 · ALG3.

Recall that advertiser i wins x′
i slots in O2′. As x′

i ≤ �smax/�smax/smin�� ≤
smin, advertiser i wins no more than smin slots in O2′. In solution O3, any
advertiser i can also win no more than smin slots. As O3 is the optimal solution,
OPT 3 should be the maximum social welfare and OPT 2′ ≤ OPT 3. On the
other hand, note that the only difference between the two scenarios we have
considered is advertisers’ maximum demands si. However, no matter what the
value of si is, the HALF-algorithm will only allocate each advertiser 0 or s time-
slots. In these two scenarios, the HALF-algorithm has the same output and then
ALG2 = ALG3. Thus,

OPT 2 ≤ �smax/smin� ·OPT 2′ ≤ �smax/smin� · OPT 3
≤ 5 · �smax/smin� · ALG3 = 5 · �smax/smin� ·ALG2.
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